
1 3 Reference

Encyclopedia of  
Algorithms

Ming-Yang Kao
Editor-in-Chief

Second Edition



Encyclopedia of Algorithms





Ming-Yang Kao
Editor

Encyclopedia of
Algorithms

Second Edition

With 379 Figures and 51 Tables



Editor
Ming-Yang Kao
Department of Electrical Engineering
and Computer Science
Northwestern University
Evanston, IL, USA

ISBN 978-1-4939-2863-7 ISBN 978-1-4939-2864-4 (eBook)
ISBN 978-1-4939-2865-1 (print and electronic bundle)
DOI 10.1007/ 978-1-4939-2864-4

Library of Congress Control Number: 2015958521

© Springer Science+Business Media New York 2008, 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher
nor the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature

The registered company is Springer Science+Business Media LLC New York



Preface

The Encyclopedia of Algorithms provides researchers, students, and
practitioners of algorithmic research with a mechanism to efficiently
and accurately find the names, definitions, and key results of important
algorithmic problems. It also provides further readings on those problems.

This encyclopedia covers a broad range of algorithmic areas; each area
is summarized by a collection of entries. The entries are written in a clear
and concise structure so that they can be readily absorbed by the readers and
easily updated by the authors. A typical encyclopedia entry is an in-depth
mini-survey of an algorithmic problem written by an expert in the field. The
entries for an algorithmic area are compiled by area editors to survey the
representative results in that area and can form the core materials of a course
in the area.

This 2nd edition of the encyclopedia contains a wide array of impor-
tant new research results. Highlights include works in tile self-assembly
(nanotechnology), bioinformatics, game theory, Internet algorithms, and
social networks. Overall, more than 70 % of the entries in this edition and
new entries are updated.

This reference work will continue to be updated on a regular basis via a
live site to allow timely updates and fast search. Knowledge accumulation
is an ongoing community project. Please take ownership of this body of
work. If you have feedback regarding a particular entry, please feel free to
communicate directly with the author or the area editor of that entry. If you
are interested in authoring a future entry, please contact a suitable area editor.
If you have suggestions on how to improve the Encyclopedia as a whole,
please contact me at kao@northwestern.edu. The credit of this Encyclopedia
goes to the area editors, the entry authors, the entry reviewers, and the project
editors at Springer, including Melissa Fearon, Michael Hermann, and Sylvia
Blago.
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Mihai Pătraşcu Computer Science and Artificial Intelligence Laboratory
(CSAIL), Massachusetts Institute of Technology (MIT), Cambridge, MA,
USA

Maurizio Patrignani Engineering Department, Roma Tre University,
Rome, Italy

Boaz Patt-Shamir Department of Electrical Engineering, Tel-Aviv
University, Tel-Aviv, Israel

Ramamohan Paturi Department of Computer Science and Engi-
neering, University of California at San Diego, San Diego, CA,
USA

Christophe Paul CNRS, Laboratoire d’Informatique Robotique et
Microélectronique de Montpellier, Université Montpellier 2, Montpellier,
France

Andrzej Pelc Department of Computer Science, University of Québec-
Ottawa, Gatineau, QC, Canada

Jean-Marc Petit Université de Lyon, CNRS, INSA Lyon, LIRIS, Lyon,
France

Seth Pettie Electrical Engineering and Computer Science (EECS) Depart-
ment, University of Michigan, Ann Arbor, MI, USA

Marcin Pilipczuk Institute of Informatics, University of Bergen, Bergen,
Norway

Institute of Informatics, University of Warsaw, Warsaw, Poland

Michał Pilipczuk Institute of Informatics, University of Warsaw, Warsaw,
Poland

Institute of Informatics, University of Bergen, Bergen, Norway

Yuri Pirola Università degli Studi di Milano-Bicocca, Milan, Italy

Olivier Powell Informatics Department, University of Geneva, Geneva,
Switzerland

Amit Prakash Microsoft, MSN, Redmond, WA, USA

Eric Price Department of Computer Science, The University of Texas,
Austin, TX, USA



xl Contributors

Kirk Pruhs Department of Computer Science, University of Pittsburgh,
Pittsburgh, PA, USA

Teresa M. Przytycka Computational Biology Branch, NCBI, NIH,
Bethesda, MD, USA

Pavel Pudlák Academy of Science of the Czech Republic, Mathematical
Institute, Prague, Czech Republic

Simon J. Puglisi Department of Computer Science, University of Helsinki,
Helsinki, Finland

Balaji Raghavachari Computer Science Department, The University of
Texas at Dallas, Richardson, TX, USA

Md. Saidur Rahman Department of Computer Science and Engineering,
Bangladesh University of Engineering and Technology, Dhaka,
Bangladesh

Naila Rahman University of Hertfordshire, Hertfordshire, UK

Rajmohan Rajaraman Department of Computer Science, Northeastern
University, Boston, MA, USA

Sergio Rajsbaum Instituto de Matemáticas, Universidad Nacional
Autónoma de México (UNAM), México City, México

Vijaya Ramachandran Computer Science, University of Texas, Austin,
TX, USA

Rajeev Raman Department of Computer Science, University of Leicester,
Leicester, UK

M.S. Ramanujan Department of Informatics, University of Bergen, Bergen,
Norway

Edgar Ramos School of Mathematics, National University of Colombia,
Medellín, Colombia

Satish Rao Department of Computer Science, University of California,
Berkeley, CA, USA

Christoforos L. Raptopoulos Computer Science Department, University of
Geneva, Geneva, Switzerland

Computer Technology Institute and Press “Diophantus”, Patras, Greece

Research Academic Computer Technology Institute, Greece and Computer
Engineering and Informatics Department, University of Patras, Patras, Greece

Sofya Raskhodnikova Computer Science and Engineering Department,
Pennsylvania State University, University Park, PA, USA

Rajeev Rastogi Amazon, Seattle, WA, USA

Joel Ratsaby Department of Electrical and Electronics Engineering, Ariel
University of Samaria, Ariel, Israel



Contributors xli

Kaushik Ravindran National Instruments, Berkeley, CA, USA

Michel Raynal Institut Universitaire de France and IRISA, Université de
Rennes, Rennes, France

Ben W. Reichardt Electrical Engineering Department, University of
Southern California (USC), Los Angeles, CA, USA

Renato Renner Institute for Theoretical Physics, Zurich, Switzerland

Elisa Ricci Department of Electronic and Information Engineering,
University of Perugia, Perugia, Italy

Andréa W. Richa School of Computing, Informatics, and Decision Systems
Engineering, Ira A. Fulton Schools of Engineering, Arizona State University,
Tempe, AZ, USA

Peter C. Richter Department of Combinatorics and Optimization, and
Institute for Quantum Computing, University of Waterloo, Waterloo, ON,
Canada

Department of Computer Science, Rutgers, The State University of New
Jersey, New Brunswick, NJ, USA

Liam Roditty Department of Computer Science, Bar-Ilan University,
Ramat-Gan, Israel

Marcel Roeloffzen Graduate School of Information Sciences, Tohoku
University, Sendai, Japan

Martin Roetteler Microsoft Research, Redmond, WA, USA

Heiko Röglin Department of Computer Science, University of Bonn, Bonn,
Germany

José Rolim Informatics Department, University of Geneva, Geneva,
Switzerland

Dana Ron School of Electrical Engineering, Tel-Aviv University, Ramat-
Aviv, Israel

Frances Rosamond Parameterized Complexity Research Unit, University
of Newcastle, Callaghan, NSW, Australia

Jarek Rossignac Georgia Institute of Technology, Atlanta, GA, USA

Matthieu Roy Laboratory of Analysis and Architecture of Systems (LAAS),
Centre National de la Recherche Scientifique (CNRS), Université Toulouse,
Toulouse, France

Ronitt Rubinfeld Massachusetts Institute of Technology (MIT), Cam-
bridge, MA, USA

Tel Aviv University, Tel Aviv-Yafo, Israel

Atri Rudra Department of Computer Science and Engineering, State
University of New York, Buffalo, NY, USA



xlii Contributors

Eric Ruppert Department of Computer Science and Engineering, York
University, Toronto, ON, Canada

Frank Ruskey Department of Computer Science, University of Victoria,
Victoria, BC, Canada

Luís M.S. Russo Departamento de Informática, Instituto Superior Técnico,
Universidade de Lisboa, Lisboa, Portugal

INESC-ID, Lisboa, Portugal

Wojciech Rytter Institute of Informatics, Warsaw University, Warsaw,
Poland

Kunihiko Sadakane Graduate School of Information Science and
Technology, The University of Tokyo, Tokyo, Japan

S. Cenk Sahinalp Laboratory for Computational Biology, Simon Fraser
University, Burnaby, BC, USA

Michael Saks Department of Mathematics, Rutgers, State University of
New Jersey, Piscataway, NJ, USA

Alejandro Salinger Department of Computer Science, Saarland University,
Saarbücken, Germany

Sachin S. Sapatnekar Department of Electrical and Computer Engineering,
University of Minnesota, Minneapolis, MN, USA

Shubhangi Saraf Department of Mathematics and Department of Computer
Science, Rutgers University, Piscataway, NJ, USA

Srinivasa Rao Satti Department of Computer Science and Engineering,
Seoul National University, Seoul, South Korea

Saket Saurabh Institute of Mathematical Sciences, Chennai, India

University of Bergen, Bergen, Norway

Guido Schäfer Institute for Mathematics and Computer Science, Technical
University of Berlin, Berlin, Germany

Dominik Scheder Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China

Institute for Computer Science, Shanghai Jiaotong University, Shanghai,
China

Christian Scheideler Department of Computer Science, University of
Paderborn, Paderborn, Germany

André Schiper EPFL, Lausanne, Switzerland

Christiane Schmidt The Selim and Rachel Benin School of Computer
Science and Engineering, The Hebrew University of Jerusalem, Jerusalem,
Israel



Contributors xliii

Markus Schmidt Institute for Computer Science, University of Freiburg,
Freiburg, Germany

Dominik Schultes Institute for Computer Science, University of Karlsruhe,
Karlsruhe, Germany

Robert Schweller Department of Computer Science, University of Texas
Rio Grande Valley, Edinburg, TX, USA

Shinnosuke Seki Department of Computer Science, Helsinki In-
stitute for Information Technology (HIIT), Aalto University, Aalto,
Finland

Pranab Sen School of Technology and Computer Science, Tata Institute of
Fundamental Research, Mumbai, India

Sandeep Sen Indian Institute of Technology (IIT) Delhi, Hauz Khas, New
Delhi, India

Maria Serna Department of Language and System Information, Technical
University of Catalonia, Barcelona, Spain

Rocco A. Servedio Computer Science, Columbia University, New York, NY,
USA

Comandur Seshadhri Sandia National Laboratories, Livermore, CA, USA

Department of Computer Science, University of California, Santa Cruz, CA,
USA

Jay Sethuraman Industrial Engineering and Operations Research,
Columbia University, New York, NY, USA
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Problem Definition

The Abelian hidden subgroup problem is the
problem of finding generators for a subgroup K
of an Abelian group G, where this subgroup is
defined implicitly by a function f W G ! X ,
for some finite set X . In particular, f has the
property that f .v/ D f .w/ if and only if the

cosets (we are assuming additive notation for the
group operation here.) vCK and wCK are equal.
In other words, f is constant on the cosets of the
subgroup K and distinct on each coset.

It is assumed that the group G is finitely
generated and that the elements of G and X have
unique binary encodings. The binary assumption
is only for convenience, but it is important to
have unique encodings (e.g., in [22] Watrous
uses a quantum state as the unique encoding of
group elements). When using variables g and h
(possibly with subscripts), multiplicative notation
is used for the group operations. Variables x and
y (possibly with subscripts) will denote integers
with addition. The boldface versions x and y will
denote tuples of integers or binary strings.

By assumption, there is computational means
of computing the function f , typically a circuit or
“black box” that maps the encoding of a value g
to the encoding of f .g/. The theory of reversible
computation implies that one can turn a circuit
for computing f .g/ into a reversible circuit for
computing f .g/ with a modest increase in the
size of the circuit. Thus, it will be assumed that
there is a reversible circuit or black box that
maps .g; z/ 7! .g; z ˚ f .g//, where ˚ denotes
the bit-wise XOR (sum modulo 2), and z is any
binary string of the same length as the encoding
of f .g/.

Quantum mechanics implies that any
reversible gate can be extended linearly to a
unitary operation that can be implemented in
the model of quantum computation. Thus, it
is assumed that there is a quantum circuit or

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4



2 Abelian Hidden Subgroup Problem

black box that implements the unitary map
Uf W jgi j zi 7! jgi j z˚ f .g/i.

Although special cases of this problem have
been considered in classical computer science,
the general formulation as the hidden subgroup
problem seems to have appeared in the context of
quantum computing, since it neatly encapsulates
a family of black-box problems for which quan-
tum algorithms offer an exponential speedup (in
terms of query complexity) over classical algo-
rithms. For some explicit problems (i.e., where
the black box is replaced with a specific function,
such as exponentiation modulo N ), there is a
conjectured exponential speedup.

Abelian Hidden Subgroup Problem:

Input: Elements g1; g2; : : : ; gn 2 G that gen-
erate the Abelian group G. A black box that
implements Uf W jm1; m2; : : : ; mni j yi 7!
jm1; m2; : : : ; mni jf .g/˚ yi where g D

g
m1

1 g
m2

2 : : : g
mn
n andK is the hidden subgroup

corresponding to f .
Output: Elements h1; h2; : : : ; hl 2 G that gen-

erate K.

Here we use multiplicative notation for the
group G in order to be consistent with Kitaev’s
formulation of the Abelian stabilizer problem.
Most of the applications of interest typically use
additive notation for the group G.

It is hard to trace the precise origin of this
general formulation of the problem, which simul-
taneously generalizes “Simon’s problem” [20],
the order-finding problem (which is the quantum
part of the quantum factoring algorithm [18]), and
the discrete logarithm problem.

One of the earliest generalizations of Simon’s
problem, order-finding problem, and discrete log-
arithm problem, which captures the essence of the
Abelian hidden subgroup problem, is the Abelian
stabilizer problem which was solved by Kitaev
using a quantum algorithm in his 1995 paper [14]
(and also appears in [15, 16]).

Let G be a group acting on a finite set X .
That is, each element of G acts as a map from
X to X in such a way that for any two elements
g; h 2 G, g.h.´// D .gh/.´/ for all ´ 2 X . For
a particular element ´ 2 X , the set of elements

that fix ´ (i.e., the elements g 2 G such that
g.´/ D ´) form a subgroup. This subgroup is
called the stabilizer of ´ in G, denoted StG.´/.

Abelian Stabilizer Problem:

Input: Elements g1; g2; : : : ; gn 2 G that
generate the group G. An element ´ 2 X .
A black box that implements U.G;X/ W

jm1; m2; : : : ; mni j ´i 7! jm1; m2; : : : ; mni

jg.´/i where g D gm1

1 g
m2

2 : : : g
mn
n .

Output: Elements h1; h2; : : : ; hl 2 G that gen-
erate StG.´/.

Let f´ denote the function from G to X that
maps g 2 G to g.´/. One can implement Uf´

using U.G;X/. The hidden subgroup correspond-
ing to f´ is StG.´/. Thus, the Abelian stabilizer
problem is a special case of the Abelian hidden
subgroup problem.

One of the subtle differences (discussed in
Appendix 6 of [12]) between the above for-
mulation of the Abelian stabilizer problem and
the Abelian hidden subgroup problem is that
Kitaev’s formulation gives a black box that for
any g; h 2 G maps jm1; : : : ; mni jf´.h/i 7!

jm1; : : : ; mni jf´.hg/i, where g D g
m1

1 g
m2

2 : : :

g
mn
n . The algorithm given by Kitaev is essentially

one that estimates eigenvalues of shift operations
of the form j f´.h/i 7! j f´.hg/i. In general,
these shift operators are not explicitly needed,
and it suffices to be able to compute a map of the
form j yi 7! j f´.h/˚ yi for any binary string y.

Generalizations of this form have been known
since shortly after Shor presented his factoring
and discrete logarithm algorithms (e.g., [23]
presents the hidden subgroup problem for a large
class of finite Abelian groups or more generally
in [11] for finite Abelian groups presented as a
product of finite cyclic groups. In [17] the natural
Abelian hidden subgroup algorithm is related to
eigenvalue estimation.)

Other problems which can be formulated in
this way include:

Deutsch’s Problem:

Input: A black box that implements Uf W

j xi j bi 7! j xi j b ˚ f .x/i, for some function
f that maps Z2 D f0; 1g to f0; 1g.
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Output: “constant” if f .0/ D f .1/ and “bal-
anced” if f .0/ ¤ f .1/.

Note that f .x/ D f .y/ if and only if x � y 2
K, where K is either f0g or Z2 D f0; 1g. If K D
f0g, then f is 1�1 or “balanced,” and ifK D Z2,
then f is constant [5, 6].

Simon’s Problem:

Input: A black box that implements Uf W

j xi jbi 7! j xi jb˚ f .x/i for some function
f from Z

n
2 to some setX (which is assumed to

consist of binary strings of some fixed length)
with the property that f .x/ D f .y/ if and
only if x � y 2 K D f0; sg for some s 2 Z

n
2 .

Output: The “hidden” string s.

The decision version allows K D f0g and
asks whether K is trivial. Simon [20] presents
an efficient algorithm for solving this problem
and an exponential lower bound on the query
complexity. The solution to the Abelian hidden
subgroup problem is a generalization of Simon’s
algorithm.

Key Results

Theorem (ASP) There exists a quantum algo-
rithm that, given an instance of the Abelian stabi-
lizer problem, makes nCO.1/ queries to U.G;X/

and uses poly.n/ other elementary quantum and
classical operations, with probability at least 2

3

output values h1; h2; : : : ; hl such that StG.´/ D
hh1i ˚ hh2i ˚ � � � hhli.

Kitaev first solved this problem (with a
slightly higher query complexity, because
his eigenvalue estimation procedure was not
optimal). An eigenvalue estimation procedure
based on the Quantum Fourier Transform
achieves the nCO.1/ query complexity [5].

Theorem (AHSP) There exists a quantum algo-
rithm that, given an instance of the Abelian hid-
den subgroup problem, makes nCO.1/ queries to
Uf and uses poly.n/ other elementary quantum
and classical operations, with probability at least

2
3

output values h1; h2; : : : ; hl such that K D

hh1i ˚ hh2i ˚ � � � hhli.
In some cases, the success probability can

be made 1 with the same complexity, and in
general the success probability can be made
1 � � using n C O.log.1=�// queries and
poly.n; log.1=�// other elementary quantum and
classical operations.

Applications

Most of these applications in fact were known
before the Abelian stabilizer problem or hidden
subgroup problem were formulated.

Finding the order of an element in a group:
Let a be an element of a group H (which does
not need to be Abelian), and let r be the smallest
positive integer so that ar D 1.

Consider the function f from G D Z to the
groupH where f .x/ D ax for some element a of
H . Then f .x/ D f .y/ if and only if x�y 2 rZ.
The hidden subgroup is K D rZ and a generator
for K gives the order r of a.

Finding the period of a periodic function:
Consider a function f from G D Z to a set X
with the property that for some positive integer r ,
we have f .x/ D f .y/ if and only if x � y 2 rZ.
The hidden subgroup of f is K D rZ and a
generator for K gives the period r .

Order finding is a special case of period find-
ing and was also solved by Shor’s algorithm
[18].

Discrete Logarithms: Let a be an element of a
group H (which does not need to be Abelian),
with ar D 1, and suppose b D ak from
some unknown k. The integer k is called the
discrete logarithm of b to the base a. Consider
the function f from G D Zr � Zr to H satis-
fying f .x1; x2/ D ax1bx2 . Then f .x1; x2/ D

f .y1; y2/ if and only if .x1; x2/ � .y1; y2/ 2

f.t;�tk/; t D 0; 1; : : : ; r � 1g which is the
subgroup h.1;�k/i of Zr � Zr . Thus, finding a
generator for the hidden subgroup K will give
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the discrete logarithm k. Note that this algorithm
works for H equal to the multiplicative group of
a finite field, or the additive group of points on an
elliptic curve, which are groups that are used in
public-key cryptography.

Recently, Childs and Ivanyos [3] presented
an efficient quantum algorithm for finding dis-
crete logarithms in semigroups. Their algo-
rithm makes use of the quantum algorithms for
period finding and discrete logarithms as subrou-
tines.

Hidden Linear Functions: Let � be some per-
mutation of ZN for some integer N . Let h be a
function from G D Z � Z to ZN , h.x; y/ D
x C ay mod N . Let f D � ı h. The hidden
subgroup of f is h.�a; 1/i. Boneh and Lipton
[1] showed that even if the linear structure of h
is hidden (by � ), one can efficiently recover the
parameter a with a quantum algorithm.

Self-Shift-Equivalent Polynomials: Given a
polynomial P in l variables X1; X2; : : : ; Xl over
Fq , the function f that maps .a1; a2; : : : ; al / 2

F
l
q to P.X1 � a1; X2 � a2; : : : ; Xl � al / is

constant on cosets of a subgroup K of Fl
q . This

subgroup K is the set of shift-self-equivalences
of the polynomial P . Grigoriev [10] showed how
to compute this subgroup.

Decomposition of a Finitely Generated
Abelian Group: LetG be a group with a unique
binary representation for each element of G, and
assume that the group operation, and recognizing
if a binary string represents an element of G or
not, can be done efficiently.

Given a set of generators g1; g2; : : : ; gn for a
group G, output a set of elements h1; h2; : : : ; hl ,
l � n, from the group G such that G D

hg1i ˚ hg2i ˚ : : : ˚ hgli. Such a generating set
can be found efficiently [2] from generators of
the hidden subgroup of the function that maps
.m1; m2; : : : ; mn/ 7! g

m1

1 g
m2

2 : : : g
mn
n .

This simple algorithm directly leads to an
algorithm for computing the class group and
class number of a quadratic number field, as
pointed out by Watrous [22] in his paper that
shows how to compute the order of solvable
groups. Computing the class group of a more

general number field is a much more difficult
task: this and related problems have been suc-
cessfully tackled in a series of elegant work
summarized in �Quantum Algorithms for Class
Group of a Number Field.

Such a decomposition of Abelian groups was
also applied by Friedl, Ivanyos, and Santha [9] to
test if a finite set with a binary operation is an
Abelian group, by Kedlaya [13] to compute the
zeta function of a genus g curve over a finite field
Fq in time polynomial in g and q, and by Childs,
Jao, and Soukharev [4] in order to construct
elliptic curve isogenies in subexponential time.

Discussion: What About Non-Abelian
Groups?
The great success of quantum algorithms for
solving the Abelian hidden subgroup problem
leads to the natural question of whether it
can solve the hidden subgroup problem for
non-Abelian groups. It has been shown that
a polynomial number of queries suffice [8];
however, in general there is no bound on
the overall computational complexity (which
includes other elementary quantum or classical
operations).

This question has been studied by many re-
searchers, and efficient quantum algorithms can
be found for some non-Abelian groups. However,
at present, there is no efficient algorithm for
most non-Abelian groups. For example, solving
the HSP for the symmetric group would directly
solve the graph automorphism problem.
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Problem Definition

Concrete Voronoi diagrams are usually defined
for a set S of sites p that exert influence over
the points ´ of a surrounding spaceM . Often, in-
fluence is measured by distance functions dp.´/

that are associated with the sites. For each p, its
Voronoi region is given by

VR.p; S/

D f ´2M I dp.´/<dq.´/ for all q2S n fpgg;

and the Voronoi diagram V.S/ of S is the decom-
position of M into Voronoi regions; compare the
entry �Voronoi Diagrams and Delaunay Trian-
gulations of this Encyclopedia.

Quite different Voronoi diagrams result de-
pending on the particular choices of space, sites,
and distance measures; see Fig. 1. A great num-
ber of other types of Voronoi diagrams can be
found in the monographs [1] and [14]. In each
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Abstract Voronoi
Diagrams, Fig. 1 Voronoi
diagrams of points in the
Euclidean and Manhattan
metric and of disks (or
additively weighted points)
in the Euclidean plane

case, one wants to quickly compute the Voronoi
diagram, because it contains a lot of distance in-
formation about the sites. However, the classical
algorithms for the standard case of point sites in
the Euclidean plane do not apply to more general
situations.

To free us from designing individual algo-
rithms for each and every special case, we would
like to find a unifying concept that provides struc-
tural results and efficient algorithms for gener-
alized Voronoi diagrams. One possible approach
studied in [5,6] is to construct the lower envelope
of the 3-dimensional graphs of the distance func-
tions dp.´/, whose projection to the XY -plane
equals the Voronoi diagram.

Key Results

A different approach is given by abstract Voronoi
diagrams that are not based on the notions of sites
and distance measures (as their definitions vary
anyway). Instead, AVDs are built from bisecting
curves as primary objects [7].

Let S D fp; q; r; : : :g be a set of n indices, and
for p 6D q 2 S , let J.p; q/ D J.q; p/ denote an
unbounded curve that bisects the plane into two
unbounded open domains D.p; q/ and D.q; p/.
We require that each J.p; q/ is mapped to a
closed Jordan curve through the north pole, under
stereographic projection to the sphere. Now we
define Voronoi regions by

VR.p; S/ WD
\

q2Snfpg

D.p; q/

and the abstract Voronoi diagram by

V.S/ WD R2 n
[

p2S

VR.p; S/:

The system J of the curves J.p; q/ is called
admissible if the following axioms are fulfilled
for every subset T of S of size three.

A1. Each Voronoi region VR.p; T / is pathwise
connected.

A2. Each point of R2 lies in the closure of a
Voronoi region VR.p; T /.

These combinatorial properties should not be
too hard to check in a concrete situation because
only triplets of sites need to be inspected. Yet,
they form a strong foundation, as was shown
in [8]. The following fact is crucial for the proof
of Theorem 1. It also shows that AVDs can be
seen as lower envelopes of surfaces in dimen-
sion 3.

Lemma 1 For all p; q; r in S , we have
D.p; q/ \ D.q; r/ � D.p; r/. Consequently,
for each point ´ 2 R2 not contained in any curve
of J, the relation

p <´ q W, ´ 2 D.p; q/

is an ordering of the sites in S at ´.

Theorem 1 If J is admissible, then axioms A1
and A2 hold for all subsets T of S . Moreover, the
abstract Voronoi diagram V.S/ is a planar graph
of size O.n/.
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Of the classical algorithm for constructing
Voronoi diagrams, the randomized incremental
construction method works best for abstract
Voronoi diagrams [8, 10].

Theorem 2 If J is admissible, then V.S/ can be
constructed in an expected number of O.n logn/
many steps and in expected linear space.

Here basic operations like computing an intersec-
tion of two bisecting curves are counted as one
step.

Applications

To show that a concrete type of Voronoi diagram
is under the roof of abstract Voronoi diagrams,
one needs to prove that its bisector system is
admissible.

Let d be a metric in the plane that enjoys
the following properties. Each d -disk contains a
Euclidean disk and vice versa; for any two points
a; b, there exists a point c different from a and b
such that d.a; b/ D d.a; c/ C d.c; b/ holds; for
any two points a; b, their metric bisector

Bd .a; b/ D
˚
´ 2 R2I d.a; ´/ D d.b; ´/

�

is itself a curve that maps to a closed Jordan curve
through the north pole by stereographic projec-
tion to the sphere, or, in caseBd .p; q/ contains 2-
dimensional pieces, its boundary consists of two
such curves.

The first two properties ensure that any two
points can be connected by a d -straight path
along which d -distances add up. The third
condition ensures that we can choose from
Bd .p; q/ suitable bisecting curves. Let us call
metric d very nice if also a fourth condition is
fulfilled. Given three points a; p0; p1, there exist
d -straight paths from a to p0 and from a to
p1 that have only point a in common, or each
d -straight path from a to pi contains p1�i for
i D 0 or i D 1. All convex distance functions
(gauges) are very nice.

Theorem 3 Very nice metrics have admissible
point bisector curves.

Other applications of AVDs include points with
additive weights, both the regular and the Haus-
dorff Voronoi diagram of disjoint convex sites
with respect to a convex distance function, and
some types of city Voronoi diagrams; see [1] for
further details.

Generalizations

How to dynamize abstract Voronoi diagrams
has been studied in [12]. Special cases of 3-
dimensional abstract Voronoi diagrams have been
discussed in [11]; they include all convex distance
functions whose unit spheres are ellipsoids.
It is well known that for the vertices of a
convex polygon, the Voronoi diagram can be
constructed in linear time. This result has been
generalized to AVDs in [9] and [4]. In [3] the
path-connectedness of abstract Voronoi regions
(axiom A1) has been relaxed. If a region of three
sites can have up to s connected components, the
abstract Voronoi diagram can still be constructed
in expected time O.s2n

Pn
jD3mj =j /, where mj

denotes the average number of faces per region
in any subdiagram of j sites from S .

In an order-k Voronoi diagram, all points of
space M are placed in one region that shares the
same k nearest sites in S . For k D n�1, this con-
cept has been generalized to furthest site abstract
Voronoi diagrams in [13]. Here the furthest (or
inverse) region of p 2 S is the intersection of all
domainsD.q; p/, where q 2 Snfpg. If all regular
Voronoi regions are nonempty, then the furthest
site AVD is a tree of sizeO.n/, even though some
regions may be disconnected.

General order-k abstract Voronoi diagrams
have been studied in [2]. If all regular Voronoi
regions are nonempty and if bisecting curves
are in general position, a tight upper complexity
bound of 2k.n�k/ can be shown. Fortunately, the
nonemptiness of the regular regions need only be
tested for all subsets of S of size 4.
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Problem Definition

Most classic machine learning methods depend
on the assumption that humans can annotate all
the data available for training. However, many
modern machine learning applications (including
image and video classification, protein sequence
classification, and speech processing) have mas-
sive amounts of unannotated or unlabeled data.
As a consequence, there has been tremendous in-
terest both in machine learning and its application
areas in designing algorithms that most efficiently
utilize the available data while minimizing the
need for human intervention. An extensively used
and studied technique is active learning, where
the algorithm is presented with a large pool of
unlabeled examples (such as all images available
on the web) and can interactively ask for the
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labels of examples of its own choosing from the
pool, with the goal to drastically reduce labeling
effort.

Formal Setup
We consider classification problems (such
as classifying images by who is in them or
classifying emails as spam or not), where the goal
is to predict a label y based on its corresponding
input vector x. In the standard machine learning
formulation, we assume that the data points
.x; y/ are drawn from an unknown underlying
distribution DXY over X � Y ; X is called the
feature (instance) space and Y D f0; 1g is the
label space. The goal is to output a hypothesis
function h of small error (or small 0=1 loss),
where err.h/ D P.x;y/�DXY

Œh.x/ ¤ y�:

In the passive learning setting, the learning
algorithm is given a set of labeled examples
.x1; y1/; : : : ; .xm; ym/ drawn i.i.d. from DXY

and the goal is to output a hypothesis of small
error by using only a polynomial number of
labeled examples. In the realizable case [10]
(PAC learning), we assume that the true label of
any example is determined by a deterministic
function of the features (the so-called target
function) that belongs to a known concept class
C (e.g., the class of linear separators, decision
trees, etc.). In the agnostic case [10, 13], we do
not make the assumption that there is a perfect
classifier in C , but instead we aim to compete
with the best function in C (i.e., we aim to
identify a classifier whose error is not much
worse than opt.C /, the error of the best classifier
inC ). Both in the realizable and agnostic settings,
there is a well-developed theory of Sample
Complexity [13], quantifying in terms of the so-
called VC-dimension (a measure of complexity of
a concept class) how many training examples we
need in order to be confident that a rule that does
well on training data is a good rule for future data
as well.

In the active learning setting, a set of labeled
examples .x1; y1/; : : : ; .xm; ym/ is also drawn
i.i.d. from DXY ; the learning algorithm is per-
mitted direct access to the sequence of xi values
(unlabeled data points), but has to make a label
request to obtain the label yi of example xi .

The hope is that we can output a classifier of
small error by using many fewer label requests
than in passive learning by actively directing the
queries to informative examples (while keeping
the number of unlabeled examples polynomial).

It has been long known that, in the realiz-
able case, active learning can sometimes provide
an exponential improvement in label complexity
over passive learning. The canonical example [6]
is learning threshold classifiers (X D Œ0; 1� and
C D f1Œ0;a� j a 2 Œ0; 1�g). Here we can actively
learn with only QO.log.1=�// label requests by
using a simple binary search-like algorithm as
follows: we first draw N D QO..1=�/ log.1=ı//
unlabeled examples, then do binary search to
find the transition from label 1 to label 0, and
with only O.log.N // queries we can correctly
infer the labels of all our examples; we finally
output a classifier from C consistent with all
the inferred labels. By standard VC-dimension
based bounds for supervised learning [13], we are
guaranteed to output an �-accurate classifier. On
the other hand, for passive learning, we provably
need ˝.1=�/ labels to output a classifier of error
at most � with constant probability, yielding the
exponential reduction in label complexity.

Key Results

While in the simple threshold concept class
described above active learning always provides
huge improvements over passive learning, things
are more delicate in more general scenarios.
In particular, both in the realizable and in
the agnostic case, it has been shown that for
more general concept spaces, in the worst case
over all data-generating distributions, the label
complexity of active learning equals that of
passive learning. Thus, much of the literature was
focused on identifying non-worst case, natural
conditions about the relationship between the
data distribution and the target, under which
active learning provides improvements over
passive. Below, we discuss three approaches,
under which active learning has been shown to
reduce the label complexity: disagreement-based
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techniques, margin-based techniques and cluster-
based techniques.

Disagreement-Based Active Learning
Disagreement-based active learning was the
first method to demonstrate the feasibility of
agnostic active learning for general concept
classes. The general algorithmic framework
of disagreement-based active learning in the
presence of noise was introduced with the A2

algorithm by Balcan et al. [2]. Subsequently,
several researchers have proposed related
disagreement-based algorithms with improved
sample complexity, e.g., [5, 8, 11].

At a high level, A2 operates in rounds. It
maintains a set of candidate classifiers from the
concept class C and in each round queries labels
aiming to efficiently reduce this set to only few
high-quality candidates. More precisely, in round
i , A2 considers the set of surviving classifiers
Ci � C , and asks for the labels of a few random
points that fall in the region of disagreement of
Ci . Formally, the region of disagreement of a set
of classifiers Ci is DIS.Ci / D fx 2 X j 9f; g 2

Ci W f .x/ ¤ g.x/g. Based on these queried la-
bels from DIS.Ci /, to obtain CiC1, the algorithm
then throws out hypotheses that are suboptimal.
The key ingredient is that A2 only throws out
hypotheses, for which it is statistically confident
that they are suboptimal.

Balcan et al. [2] show that A2 provides
exponential improvements in the label sample
complexity in terms of the 1=�-parameter
when the noise rate � is sufficiently small,
both for learning thresholds and for learning
homogeneous linear separators in Rd , one
of the most widely used and studied classes
in machine learning. Following up on this,
Hanneke [9] provided a generic analysis of the
A2 algorithm that applies to any concept class.
This analysis quantifies the label complexity
of A2 in terms of the so-called disagreement
coefficient of the class C . The disagreement
coefficient is a distribution-dependent sample
complexity measure that quantifies how fast the
region of disagreement of the set of classifiers
at distance r of the optimal classifier collapses
as a function r . In particular, [9] showed that

the label complexity of the A2 algorithm is

O
�
�2
�

�2

�2 C1
�
.d log.1=�/Clog.1=ı// log.1=�/

�
,

where � is the best error rate of a classifier
in C , d is the VC-dimension of C , and � is
the disagreement-coefficient. As an example,
for homogeneous linear separators, we have
� D �.

p
d/ under uniform marginal over the

unit ball. Here, the disagreement-based analysis

yields a label complexity of QO
�
d2 �2

�2 log.1=�/
�

in the agnostic case and QO
�
d3=2 log.1=�/

�
in the

realizable case.

Margin-Based Active Learning
While the disagreement-based active learning
line of work provided the first general
understanding of the sample complexity benefits
with active learning for arbitrary concept classes,
it suffers from two main drawbacks: (1) methods
and analyses developed in this context are often
suboptimal in terms of label complexity, since
they take a conservative approach and query even
points on which there is only a small amount of
uncertainty, (2) the methods are computationally
inefficient. Margin-based active learning is
a technique that overcomes both the above
drawbacks for learning homogeneous linear
separators under log-concave distributions. The
technique was first introduced by Balcan et al. [3]
and further developed by Balcan et al. [4], and
Awasthi et al. [1].

At a high level, like disagreement-based meth-
ods, the margin-based active learning algorithm
operates in rounds, in which a number of labels
are queried in some subspace of the domain
and a set of candidate classifiers for the next
round is identified. The crucial idea to reduce
the label complexity is to design a more ag-
gressive querying strategy by carefully choosing
where to query instead of querying in all of
the current disagreement region. Concretely, in
round k the algorithm has a current hypothesis
wk , and the set of candidate classifiers for the
next round consists of all homogeneous halfs-
paces that lie in a ball of radius rk around wk

(in terms of their angle with wk). The algorithm
then queries points for labels near the decision
boundary of wk ; that is, it only queries points
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Active Learning – Modern Learning Theory, Fig. 1
The margin-based active learning algorithm after iteration
k. The algorithm samples points within margin �k of the
current weight vector wk and then minimizes the hinge
loss over this sample subject to the constraint that the new
weight vector wkC1 is within distance rk from wk

that are within a margin �k of wk ; see Fig. 1. To
obtain wkC1, the algorithm finds a loss minimizer
among the current set of candidates with respect
to the queried examples of round k. In the realiz-
able case, this is done by 0=1-loss minimization.
In the presence of noise, to obtain a compu-
tationally efficient procedure, the margin-based
technique minimizes a convex surrogate loss.

Balcan et al. [3] and Balcan and Long [4]
showed that by localizing aggressively, namely
by setting the margin parameter to �k D 	. 1

2k /,

one can actively learn with only QO.d log.1=�//
label requests in the realizable case, when the
underlying distribution is isotropic log-concave.
A key idea of their analysis is to decompose,
in round k, the error of a candidate classifier
w as its error outside margin �k of the current
separator plus its error inside margin �k , and
to prove that for the above parameters, a small
constant error inside the margin suffices to re-
duce the overall error by a constant factor. For
the constant error inside the margin only �.d/
labels need to be queried, and since in each
round the overall error gets reduced by a con-
stant factor,O.log.1=�// rounds suffice to reduce
the error to �, yielding the label complexity of
QO.d log.1=�//. Passive learning here provably

requires ˝.d=�/ labeled examples. Thus, the

dependence on 1=� is exponentially improved,
but without increasing the dependence on d (as
in the disagreement-based method for this case,
see above).

Building on this work, [1] gave the first
polynomial-time active learning algorithm for
learning linear separators to error � in the
presence of agnostic noise (of rate O.�/) when
the underlying distribution is an isotropic log-
concave distribution in Rd . They proposed to
use a normalized hinge loss minimization (with
normalization factor 
k) for selecting the next
classifier wkC1 in round k. Awasthi et al. [1]
show that by setting the parameters appropriately
(namely, 
k D 	.1=2k/ and rk D 	.1=2k/),
the algorithm again achieves error � using only
O.log.1=�// rounds, with O.d2/ label requests
per round. This yields a query complexity of
poly.d; log 1=�/. The key ingredient for the
analysis of this computationally efficient version
in the noisy setting is proving that by constraining
the search for wkC1 to vectors within a ball of
radius rk around wk , the hinge-loss acts as a
sufficiently faithful proxy for the 0=1-loss.

A recent work [14] proposes an elegant gener-
alization of [3, 4] to more general concept spaces
and shows an analysis that is always tighter than
disagreement-based active learning (though their
results are not computationally efficient).

Cluster-Based Active Learning
The methods described above (disagreement-
based and margin-based active learning) use
active label queries to efficiently identify a clas-
sifier from the concept class C with low error. An
alternative approach to agnostic active learning is
to design active querying methods that efficiently
find a (approximately) correct labeling of the
unlabeled input sample. Here, “correct labeling”
refers to the hidden labels yi in the sample
.x1; y1/; : : : ; .xm; ym/ from the distribution
DXY (as defined in the formal setup section).
The so labeled sample can then be used as input to
a passive learning algorithm to learn an arbitrary
concept class.

Cluster-based active learning is a method
for the latter approach and was introduced
by Dasgupta and Hsu [7]. The idea is to use
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a hierarchical clustering (cluster tree) of the
unlabeled data, and check the clusters for label
homogeneity by starting at the root of the tree (the
whole data set) and working towards the leaves
(single data points). The label homogeneity of a
cluster is estimated by choosing data points for
label query uniformly at random from the cluster.
If a cluster is considered label homogeneous
(with sufficiently high confidence), all remaining
unlabeled points in that cluster are labeled with
the majority label. If a cluster is detected to be
label heterogeneous, it is split into its children
in the cluster tree and processed later. The key
insight in [7] is that since the cluster tree is fixed
before any labels were seen, the induced labeled
subsample of a child cluster can be considered
a sample that was chosen uniformly at random
from the points in that child-cluster. Thus, the
algorithm can reuse labels from the parent cluster
without introducing any sampling bias. The label
efficiency of this paradigm crucially depends
on the quality of input hierarchical clustering.
Intuitively, if the cluster tree has a small pruning
with label homogeneous clusters, the procedure
will make only few label queries.

Urner et al. [12] proved label complexity re-
ductions with this paradigm under a distributional
assumption. They analyze a version (PLAL) of
the above paradigm that uses hierarchical clus-
terings induced by spatial trees on the domain
Œ0; 1�d and provide label query bounds in terms of
the Probabilistic Lipschitzness of the underlying
data-generating distribution. Probabilistic Lips-
chitzness quantifies a marginal-label relatedness
in the sense of close points being likely to have
the same label. For a distribution with determin-
istic labels (PrŒY D 1 j X D x� 2 f0; 1g for all
x), the Probabilistic Lipschitzness is a function �
that bounds, as a function of �, the mass of points
x for which both labels 0 and 1 occur in the ball
B�.x/.

Urner et al. [12] show that, independently of
the any data assumptions, (with probability 1�ı)
PLAL labels a .1� �/-fraction of the input points
correctly. They further show that using PLAL as
a preprocedure, if the data-generating distribution
has deterministic labels and its Probabilistic Lip-
schitzness is bounded by �.�/ D �n for some

n 2 N, then classes C of bounded VC-dimension
on domain X D Œ0; 1�d can be learned with

QO

��
1
�

�nC2d
nCd

�
many labels, while any passive

proper learner (i.e., a passive learner that outputs
a function from C ) requires to see˝.1=�2/many
labels. Further, [12] show that PLAL can be used
to reduce the number of labels needed for nearest
neighbor classification (i.e., labeling a test point
by the label of its nearest point in the sample)

from ˝

��
1
�

�1Cd�1
n

�
to QO

��
1
�

�1C d2

n.nCd/

�
.
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Problem Definition

In the theory of molecular-scale self-assembly,
large numbers of simple interacting components
are designed to come together to build
complicated shapes and patterns. Many models
of self-assembly, such as the abstract Tile
Assembly Model [6], are cellular automata-like

crystal growth models. Indeed such models have
given rise to a rich theory of self-assembly as
described elsewhere in this encyclopedia. In
biological organisms we frequently see much
more sophisticated growth processes, where self-
assembly is combined with active molecular
components that change internal state and even
molecular motors that have the ability to push
and pull large structures around. Molecular
engineers are now beginning to design and build
molecular-scale DNA motors and active self-
assembly systems [2]. We wish to understand,
at a high level of abstraction, the ultimate
computational capabilities and limitations of
such molecular-scale rearrangement and growth.
The nubot model, put forward in [8], is akin
to an asynchronous nondeterministic cellular
automaton augmented with nonlocal rigid-body
movement. Unit-sized monomers are placed
on a 2D triangular grid. Monomers undergo
state changes, appear, and disappear using local
rules, as shown in Fig. 1. However, there is
also a nonlocal aspect to the model: rigid-body
movement that comes in two forms, movement
rules and random agitations.

A movement rule r , consisting of a pair of
monomer states A;B and two unit vectors, is a
programmatic way to specify unit-distance trans-
lation of a set of monomers in one step. See Fig. 2
for an example. If A and B are in a prescribed
orientation, one is nondeterministically chosen
to move unit distance in a prescribed direction.
The rule r is applied in a rigid-body fashion:
roughly speaking, if A is to move right, it pushes
anything immediately to its right and pulls any
monomers that are bound to its left which in turn
push and pull other monomers, all in one step.
The rule may not be applicable if it is blocked
(i.e., if movement of A would force B to also
move), which is analogous to the fact that an
arm cannot push its own shoulder. The other,
somewhat related, form of movement is called
agitation: at every point in time, every monomer
on the grid may move unit distance in any of the
six directions, at unit rate for each (monomer,
direction) pair. An agitating monomer will push
or pull any monomers that it is adjacent to, in a
way that preserves rigid-body structure and all in
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Active Self-Assembly and Molecular Robotics with
Nubots, Fig. 1 Overview of the nubot model. (a) A
nubot configuration showing a single nubot monomer
on the triangular grid. (b) Examples of nubot monomer
rules. Rules r1–r6 are local cellular automaton-like rules,

whereas r7 effects a nonlocal movement that may translate
other monomers as shown in Fig. 2. Monomers contin-
uously undergo agitation, as shown in Fig. 3. A flexible
bond is depicted as an empty red circle and a rigid bond is
depicted as a solid red disk (from [8])
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Active Self-Assembly and Molecular Robotics with
Nubots, Fig. 2 Movement rule. (a) Initial configuration.
(b) Movement rule with one of two results depending on
the choice of arm or base. (c) Result if the monomer with
state 2 is the arm or (d) monomer with state 1 is the arm.
The shaded monomers are the movable set. The affect on

rigid (filled red disks), flexible (hollow red circles), and
null bonds is shown. (e) A configuration for which the
movement rule is blocked: movement of 1 or 2 would
force the other to move; hence the rule is not applicable
(from [3])
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Active Self-Assembly and Molecular Robotics with
Nubots, Fig. 3 Example agitations. Starting from the
centre configuration, there are 48 possible agitations (8
monomers, 6 directions each) each with equal probability.
The right configuration is the result of agitation of the

monomer in state 2 in direction!, the left is the result
of the agitation of the monomer in state 1 in direction .
The shaded monomers are the agitation set – monomers
that are moved by the agitation (from [4])

one step as shown in Fig. 3. Unlike movement,
agitations are never blocked. Rules are applied
asynchronously and in parallel. Taking its time
model from stochastic chemical kinetics, a nubot
system evolves as a continuous time Markov
process.

For intuition, we describe motion in terms of
pushing and pulling. However movement and ag-
itation are actually intended to model a nanoscale
environment with diffusion, Brownian motion,
convection, turbulent flow, cytoplasmic stream-
ing, and other uncontrolled inputs of energy that
interact monomers in all directions, moving large
molecular assemblies in a random fashion (i.e.,
agitation) and allowing motors to simply latch
and unlatch large assemblies into position (i.e.,
the movement rule).

Key Results

Assembling simple structures, namely, lines and
squares, has proven to be a fruitful way to explore
the power of the nubot model for a few reasons.
Firstly, it helps us develop a number of tech-
niques and intuitions for the model. Secondly,
lines and squares get used again and again in
more general results that show the full power of
the model. Thirdly, the efficiency of assembling
simple shapes has been a de facto benchmark
problem for a number of self assembly models
(although this benchmark often does not give the
full story). In a variety of models, such as the
abstract Tile Assembly Model, cellular automata,
and some robotics models, it takes time ˝.n/ to
assemble a length n line. In the nubot model this

is achieved in merelyO.logn/ expected time and
O.logn/ states.

Theorem 1 ([8]) For each n 2 N, there is a
set of nubot rules N line

n such that starting from
a single monomer N line

n assembles a length n

line in O.logn/ expected time, n � 2 space, and
O.logn/ states.

One can trade time for states by giving a slightly
slower method with fewer states:

Theorem 2 ([3]) There is a set of nubot rules
N line such that for each n 2 N, from a line of
O.logn/ “binary” monomers (each in state 0 or
1), N line assembles a length n line in O.log2 n/

expected time, n � O.1/ space, and O.1/

states.

An n � n square can be built by growing a
horizontal line and then n vertical lines, showing
that assembly of squares with nubots is exponen-
tially faster than the 	.n/ expected time seen in
the abstract Tile Assembly Model [1]:

Theorem 3 ([8]) For each n 2 N, there is a
set of nubot rules N square

n such that starting from
a single monomer, N square

n assembles a n � n

square in O.logn/ expected time, n � n space,
and O.logn/ states.

The results above, and all of those in [3, 8],
crucially make use of the rigid-body movement
rule: the ability for a single monomer to control
the movement of large objects quickly and at
a time and place of the programmer’s choos-
ing. However, in a molecular-scale environment,
molecular motion is happening in a largely un-
controlled and fundamentally random manner,
all of the time. The agitation nubot model does
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not have the movement rule, but instead permits
such uncontrolled random agitation (movement).
Although this form of movement is challenging
to control in a precise manner, the following
result shows we can use it to achieve sublinear
expected time growth of a length n line in only
O.n/ space:

Theorem 4 ([4]) There is a set of nubot rules
Nline, such that 8n 2 N, starting from a line of
blog2 ncC1 monomers, each in state 0 or 1, Nline

in the agitation nubot model assembles an n � 1
line in O.n1=3 logn/ expected time, n � 5 space,
and O.1/ monomer states.

For a square we can do much better, achieving
polylogarithmic expected time:

Theorem 5 ([4]) There is a set of nubot rules
Nsquare, such that 8n 2 N, starting from
a line of blog2 nc C 1 monomers, each in
state 0 or 1, Nsquare in the agitation nubot
model assembles an n � n square in O.log2 n/

expected time, n � n space, and O.1/ monomer
states.

This section concludes with three results
on general-purpose computation and shape
construction with the nubot model. First we
have a computability-theoretic result: any finite
computable connected shape can be quickly self-
assembled.

Theorem 6 ([8]) An arbitrary connected com-
putable 2D shape of size �

p
n �
p
n can be

assembled in expected time O.log2 n C t .jnj//

using O.sC logn/ states. Here, t .jnj/ is the time
required for a program-size s Turing machine to
compute, given a pixel index as a binary string
of length jnj D blog2 nc C 1, whether or not the
pixel is present in the shape.

For complicated computable shapes the
construction for Theorem 6 necessarily requires
computation workspace outside of the shape’s
bounding box. The next result is of a more
resource-bounded style and, roughly speaking,
states that 2D patterns with efficiently com-
putable pixel colors can be assembled using
nubots in merely polylogarithmic expected time
while staying inside the pattern’s bounding box.

Theorem 7 ([8]) An arbitrary finite computable
2D pattern of size � n � n, where n D 2p; p 2

N, with pixels whose color is computable on
a polynomial time O.jnj`/ (inputs are binary
strings of length jnj D O.logn/), linear space
O.jnj/, program-size s Turing machine, can be
assembled in expected time O.log`C1 n/, with
O.s C logn/ monomer states and without grow-
ing outside the pattern borders.

The results cited so far can be used to compare
the nubot model to other models of self-assembly
and tell us that nubots build shapes and patterns
in a fast parallel manner. The next result quan-
tifies this parallelism in terms of a well-known
parallel model from computational complexity
theory: NC is the class of problems solved by
uniform polylogarithmic depth and polynomial-
size Boolean circuits.

Theorem 8 ([3]) For each language L 2 NC,
there is a set of nubot rules NL that decides L in
polylogarithmic expected time, constant number
of monomer states, and polynomial space in the
length of the input string of binary monomers
(in state 0 or 1). The output is a single binary
monomer.

This result stands in contrast to sequential ma-
chines like Turing machines, that cannot read all
of an n-bit input string in polylogarithmic time,
and “somewhat parallel” models like cellular au-
tomata and the abstract Tile Assembly Model,
that cannot have all of n bits influence a single
output bit decision in polylogarithmic time [5].
Thus, adding the nubot rigid-body movement
primitive to an asynchronous nondeterministic
cellular automaton drastically increases its paral-
lel processing abilities.

Open Problems

Some future research directions are discussed
here and in [3, 4, 8]. It remains as future work
to look at other topics such as fault tolerance,
self-healing, dynamical tasks, or systems that
continuously respond to the environment.
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A

The Complexity of Assembling Lines
Theorem 1 states that a line can be grown in
expected time O.logn/, space O.n/ � O.1/,
and O.logn/ states, and Theorem 2 trades time
for states to get expected time O.log2 n/, space
O.n/ � O.1/, and O.1/ states. What is the com-
plexity (expected time � states) of assembling a
line in the nubot model? Is it possible to meet
the lower bound of expected time � states D
˝.logn/? In this problem, the input should be a
set of monomers with space � statesD O.logn/.

Computational Power
Theorem 8 gives a lower bound on the compu-
tational complexity of the nubot model. What is
the exact power of polylogarithmic expected time
nubots? The answer may differ on whether we
begin from a small collection of monomers (as
in Theorem 8) or a large prebuilt structure. One
challenge, for the upper bound, involves finding
better Turing machine space, or circuit depth,
bounds on computing multiple applications of the
movable set on a large nubots grid.

Synchronization and Composition of
Nubot Algorithms
Synchronization is a method to quickly send
signals using nonlocal rigid-body motion [3, 8].
The nubot model is asynchronous, but synchro-
nization can be used to set discrete stages, or
checkpoints, during a complicated construction.
This in turn facilitates composition of nubot al-
gorithms (run algorithm 1, synchronize, run al-
gorithm 2, synchronize, etc.) and many of the
results cited here use it for exactly that reason.
However, synchronization-less constructions of-
ten exhibit a kind of independence where growth
proceeds everywhere in parallel, without waiting
on signals from distant components. Such sys-
tems are highly distributed, easy to analyze, and
perhaps more amenable to laboratory implemen-
tation. Intuitively, this seems like the right way
to program molecules. The proof of Theorem 7
does not use synchronization which shows that
without it a very general class of (efficiently)
computable patterns can be grown and indeed
the proof gives methods to compose nubot al-
gorithms without resorting to synchronization.

It remains as future work to formalize both this
notion of synchronization-less “independence”
and what we mean by “composition” of nubot
algorithms. What conditions are necessary and
sufficient for composition of nubot algorithms?
What classes of shapes and patterns can be as-
sembled using without synchronization or other
forms of rapid long-range communication?

Agitation Versus the Movement Rule
Is it possible to simulate the movement rule using
agitation? More formally, is it the case that for
each nubot program N , there is an agitation
nubot program AN , that acts just like N but with
some m � m scale-up in space, and a k factor
slowdown in time, wherem and k are (constants)
independent of N and its input? As motivation,
note that every self-assembled molecular-scale
structure was made under conditions where ran-
dom jiggling of monomers is a dominant source
of movement! Our question asks if we can pro-
grammably exploit this random molecular motion
to build structures quicker than without it.

Intrinsic Universality and Simulation
Is the nubot model intrinsically universal? Specif-
ically, does there exist a set of monomer rules U ,
such that any nubot system N can be simulated
by “seeding” U with a suitable initial configura-
tion? Here the simulation should have a spatial
scale factor m that is a function of the number of
states in the simulated system N . Is the agitation
nubot model intrinsically universal? Our hope
would be that simulation could be used to tease
apart the power of different notions of movement
(e.g., to understand if nubot-style movement is
weaker or stronger than other notions of robotic
movement), in the way it has been used to char-
acterize and separate the power of other self-
assembly models [7].

Brownian Nubots
With nubots, under agitation, or multiple parallel
movement rules, larger objects move faster. This
is intended to model an environment with uncon-
trolled and rapid fluid flows. But in Brownian
motion, larger objects move slower: what is the
power of nubots with such a rate model, for
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example, with rate equal to object size? Although
assembly in such a model may be slower than
with the usual model, many of the same program-
ming principles should apply, and indeed it will
still be possible to assemble objects in a parallel
distributed fashion.
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A

Problem Definition

Adaptive partition is one of major techniques
to design polynomial-time approximation
algorithms, especially polynomial-time approx-
imation schemes for geometric optimization
problems. The framework of this technique
is to put the input data into a rectangle and
partition this rectangle into smaller rectangles
by a sequence of cuts so that the problem is also
partitioned into smaller ones. Associated with
each adaptive partition, a feasible solution can be
constructed recursively from solutions in smallest
rectangles to bigger rectangles. With dynamic
programming, an optimal adaptive partition is
computed in polynomial time.

Historical Note
The adaptive partition was first introduced to
the design of an approximation algorithm by Du
et al. [4] with a guillotine cut while they studied
the minimum edge-length rectangular partition
(MELRP) problem. They found that if the par-
tition is performed by a sequence of guillotine
cuts, then an optimal solution can be computed
in polynomial time with dynamic programming.
Moreover, this optimal solution can be used as a
pretty good approximation solution for the origi-
nal rectangular partition problem. Both Arora [1]
and Mitchell et al. [12,15] found that the cut does
not need to be completely guillotine. In other
words, the dynamic programming can still run
in polynomial time if subproblems have some
relations but the number of relations is small.
As the number of relations goes up, the approxi-
mation solution obtained approaches the optimal
one, while the run time, of course, goes up. They
also found that this technique can be applied to
many geometric optimization problems to obtain
polynomial-time approximation schemes.

Key Results

The MELRP was proposed by Lingas et al. [10]
as follows: Given a rectilinear polygon possibly
with some rectangular holes, partition it into

rectangles with minimum total edge length. Each
hole may be degenerated into a line segment or a
point.

There are several applications mentioned in
[10] for the background of the problem: process
control (stock cutting), automatic layout systems
for integrated circuit (channel definition), and
architecture (internal partitioning into offices).
The minimum edge-length partition is a natural
goal for these problems since there is a cer-
tain amount of waste (e.g., sawdust) or expense
incurred (e.g., for dividing walls in the office)
which is proportional to the sum of edge lengths
drawn. For very large-scale integration (VLSI)
design, this criterion is used in the MIT place-
ment and interconnect (PI) system to divide the
routing region up into channels – one finds that
this produces large “natural-looking” channels
with a minimum of channel-to-channel interac-
tion to consider.

They showed that while the MELRP in general
is nondeterministic polynomial-time (NP)-hard,
it can be solved in time O.n4/ in the hole-
free case, where n is the number of vertices
in the input rectilinear polygon. The polynomial
algorithm is essentially a dynamic programming
based on the fact that there always exists an opti-
mal solution satisfying the property that every cut
line passes through a vertex of the input polygon
or holes (namely, every maximal cut segment is
incident to a vertex of input or holes).

A naive idea to design an approximation al-
gorithm for the general case is to use a forest
connecting all holes to the boundary and then to
solve the resulting hole-free case in O.n4/ time.
With this idea, Lingas [9] gave the first constant-
bounded approximation; its performance ratio
is 41.

Motivated by a work of Du et al. [6] on
application of dynamic programming to opti-
mal routing trees, Du et al. [4] initiated an idea
of adaptive partition. They used a sequence of
guillotine cuts to do rectangular partition; each
guillotine cut breaks a connected area into at least
two parts. With dynamic programming, they were
able to show that a minimum-length guillotine
rectangular partition (i.e., one with minimum
total length among all guillotine partitions) can
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be computed in O.n5/ time. Therefore, they
suggested using the minimum-length guillotine
rectangular partition to approximate the MELRP
and tried to analyze the performance ratio. Un-
fortunately, they failed to get a constant ratio in
general and only obtained an upper bound of 2 for
the performance ratio in an NP-hard special case
[7]. In this special case, the input is a rectangle
with some points inside. Those points are holes.
The following is a simple version of the proof
obtained by Du et al. [5].

Theorem 1 The minimum-length guillotine rect-
angular partition is an approximation with per-
formance ratio 2 for the MELRP.

Proof Consider a rectangular partition P . Let
proj x (P ) denote the total length of segments on
a horizontal line covered by vertical projection of
the partition P .

A rectangular partition is said to be covered
by a guillotine partition if each segment in the
rectangular partition is covered by a guillotine
cut of the latter. Let guil(P ) denote the minimum
length of the guillotine partition covering P and
length(P ) denote the total length of rectangular
partition P . It will be proved by induction on the
number k of segments in P that

gui l.P / � 2 � length.P / � projx.P /:

For k D 1, one has guil.P / D length.P /. If the
segment is horizontal, then one has projx.P / D
length.P / and hence

gui l.P / D 2 � length.P / � projx.P / :

If the segment is vertical, then projx.P / D 0 and
hence

gui l.P / < 2 � length.P / � projx.P /:

Now, consider k � 2. Suppose that the initial
rectangle has each vertical edge of length a and
each horizontal edge of length b. Consider two
cases.
Case 1. There exists a vertical segment s having
length greater than or equal to 0:5a. Apply a
guillotine cut along this segment s. Then the

remainder of P is divided into two parts, P1

and P2, which form rectangular partition of two
resulting small rectangles, respectively. By induc-
tion hypothesis,

gui l.Pi / � 2 � length.Pi / � projx.Pi /

for i D 1; 2. Note that

gui l .P / � gui l .P1/C gui l .P2/C a;

length .P / D length .P1/C length .P2/

C length .s/ ;

projx .P / D projx .P1/C projx .P2/ :

Therefore,

gui l.P / � 2 � length.P / � projx.P /:

Case 2. No vertical segment in P has length
greater than or equal to 0:5a. Choose a horizontal
guillotine cut which partitions the rectangle into
two equal parts. Let P1 and P2 denote rectangle
partitions of the two parts, obtained from P . By
induction hypothesis,

gui l.Pi / � 2 � length.Pi / � projx.Pi /

for i D 1; 2. Note that

gui l.P / D gui l.P1/C gui l.P2/C b;

length.P / � length.P1/C length.P2/;

projx.P / D projx.P1/ D projx.P2/ D b:

Therefore,

gui l.P / � 2 � length.P / � projx.P / :

Gonzalez and Zheng [8] improved this upper
bound to 1.75 and conjectured that the perfor-
mance ratio in this case is 1.5. ut
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Applications

In 1996, Arora [1] and Mitchell et al. [12, 14, 15]
found that the cut does not necessarily have
to be completely guillotine in order to have a
polynomial-time computable optimal solution for
such a sequence of cuts. Of course, the number
of connections left by an incomplete guillotine
cut should be limited. While Mitchell et al. de-
veloped the m-guillotine subdivision technique,
Arora employed a “portal” technique. They also
found that their techniques can be used for not
only the MELRP, but also for many geometric
optimization problems [1–3, 12–15].

Open Problems

One current important submicron step of tech-
nology evolution in electronics interconnects has
become the dominating factor in determining
VLSI performance and reliability. Historically
a problem of interconnects design in VLSI has
been very tightly intertwined with the classi-
cal problem in computational geometry: Steiner
minimum tree generation. Some essential char-
acteristics of VLSI are roughly proportional to
the length of the interconnects. Such character-
istics include chip area, yield, power consump-
tion, reliability, and timing. For example, the
area occupied by interconnects is proportional
to their combined length and directly impacts
the chip size. Larger chip size results in re-
duction of yield and increase in manufacturing
cost. The costs of other components required for
manufacturing also increase with the increase of
the wire length. From the performance angle,
longer interconnects cause an increase in power
dissipation, degradation of timing, and other un-
desirable consequences. That is why finding the
minimum length of interconnects consistent with
other goals and constraints is such an important
problem at this stage of VLSI technology.

The combined length of the interconnects on
a chip is the sum of the lengths of individual
signal nets. Each signal net is a set of electrically
connected terminals, where one terminal acts
as a driver and other terminals are receivers of

electrical signals. Historically, for the purpose
of finding an optimal configuration of intercon-
nects, terminals were considered as points on the
plane, and a routing problem for individual nets
was formulated as a classical Steiner minimum
tree problem. For a variety of reasons, VLSI
technology implements only rectilinear wiring
on the set of parallel planes, and, consequently,
with few exceptions, only a rectilinear version of
the Steiner tree is being considered in the VLSI
domain. This problem is known as the RSMT.

Further progress in VLSI technology resulted
in more factors than just length of interconnects
gaining importance in selection of routing topolo-
gies. For example, the presence of obstacles led
to reexamination of techniques used in studies of
the rectilinear Steiner tree, since many classical
techniques do not work in this new environment.
To clarify the statement made above, we will
consider the construction of a rectilinear Steiner
minimum tree in the presence of obstacles.

Let us start with a rectilinear plane with ob-
stacles defined as rectilinear polygons. Given n
points on the plane, the objective is to find the
shortest rectilinear Steiner tree that interconnects
them. One already knows that a polynomial-time
approximation scheme for RSMT without obsta-
cles exists and can be constructed by adaptive
partition with application of either the portal or
them-guillotine subdivision technique. However,
both the m-guillotine cut and the portal tech-
niques do not work in the case that obstacles ex-
ist. The portal technique is not applicable because
obstacles may block the movement of the line that
crosses the cut at a portal. The m-guillotine cut
could not be constructed either, because obstacles
may break down the cut segment that makes the
Steiner tree connected.

In spite of the facts stated above, the RSMT
with obstacles may still have polynomial-time
approximation schemes. Strong evidence was
given by Min et al. [11]. They constructed a
polynomial-time approximation scheme for the
problem with obstacles under the condition that
the ratio of the longest edge and the shortest edge
of the minimum spanning tree is bounded by a
constant. This design is based on the classical
nonadaptive partition approach. All of the above
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make us believe that a new adaptive technique
can be found for the case with obstacles.
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Problem Definition

A spanner is a subgraph of a given graph that
faithfully preserves the pairwise distances of that
graph. Formally, an .˛; ˇ/ spanner of a graph
G D .V;E/ is a subgraph H of G such that
for any pair of nodes x; y, dist.x; y;H/ � ˛ �

dist.x; y;G/ C ˇ, where dist.x; y;H 0/ for a
subgraph H 0 is the distance of the shortest path
from s to t in H 0. We say that the spanner is
additive if ˛ D 1, and if in addition ˇ D O.1/,
we say that the spanner is purely additive. If
ˇ D 0, we say that the spanner is multiplicative;
otherwise, we say that the spanner is mixed.
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Key Results

This section presents a survey on span-
ners with a special focus on additive span-
ners.

Graph spanners were first introduced in
[12, 13] in the late 1980s and have been
extensively studied since then.

Spanners are used as a key ingredient in many
distributed applications, e.g., synchronizers [13],
compact routing schemes [6, 14, 17], broadcast-
ing [11], etc.

Much of the work on spanners considers mul-
tiplicative spanners. A well-known theorem on
multiplicative spanners is that one can efficiently
construct a .2k � 1; 0/ spanner with O

�
n1C1=k

�

edges [2]. Based in the girth conjecture of Erdős
[10], this size-stretch ratio is conjectured to be
optimal.

The problem of additive spanners was also
extensively studied, but yet several key questions
remain open. The girth conjecture does not con-
tradict the existence of .1; 2k�2/ spanners of size
O
�
n1C1=k

�
, or in fact any .˛; ˇ/ spanners of size

O
�
n1C1=k

�
such that ˛Cˇ D 2k�1 with ˛ � 1

and ˇ > 0.
The first construction for purely additive

spanners was introduced by Aingworth et al. [1].
It was shown in [1] how to efficiently construct a
.1; 2/ spanner, or a 2-additive spanner for short,
with O

�
n3=2

�
edges (see also [8, 9, 16, 19] for

further follow-up). Later, Baswana et al. [3, 4]
presented an efficient construction for 6-additive
spanners with O

�
n4=3

�
edges. Woodruff [21]

further presented another construction for 6-
additive spanners with QO

�
n4=3

�
edges with

improved construction time. Chechik [7] recently
presented a new algorithm for .1; 4/-additive
spanners with QO

�
n7=5

�
edges. These are the only

three constructions known for purely additive
spanners. Interestingly, Woodruff [20] presented
lower bounds for additive spanners that match the
girth conjecture bounds. These lower bounds do
not rely on the correctness of the conjecture.
More precisely, Woodruff [20] showed the
existence of graphs for which any spanner of size
O
�
k�1n1C1=k

�
must have an additive stretch of

at least 2k � 1.

In the absence of additional purely additive
spanners, attempts were made to seek sparser
spanners with nonconstant additive stretch. Bol-
lobás et al. [5] showed how to efficiently con-
struct a

�
1; n1�2ı

�
spanner with O

�
21=ın1Cı

�

edges for any ı > 0. Later, Baswana et al. in [3,4]
improved this additive stretch to

�
1; n1�3ı

�
, and

in addition, Pettie [15] improved the stretch to�
1; n9=16�7ı=8

�
(the latter is better than the former

for every ı < 7=34).
Chechik [7] recently further improved the

stretch for a specific range of ı. More specifically,
Chechik presented a construction for additive
spanners with QO

�
n1Cı

�
edges and QO

�
n1=2�3ı=2

�

additive stretch for any 3=17 � ı < 1=3. Namely,
[7] decreased the stretch for this range to the root
of the best previously known additive stretch.

Sublinear additive spanners, that is, spanners
with additive stretch that is sublinear in the
distances, were also studied. Thorup and Zwick
[19] showed a construction of a O

�
kn1C1=k

�

size spanner such that for every pair of nodes s
and t , the additive stretch is O

�
d1�1=k C 2k

�
,

where d D dist.s; t/ is the distance between
s and t . This was later improved by Pettie
[15] who presented an efficient spanner

construction with O

�
kn

1C .3=4/k�2

7�2.3=4/k�2

�
size

and O
�
kd1�1=k C kk

�
additive stretch, where

d D dist.s; t/. Specifically, for k D 2, the size of
the spanner is O

�
n6=5

�
and the additive stretch

is O
�p

d
�

.

Chechik [7] slightly improved the size of
Pettie’s [15] sublinear additive spanner with
additive stretch O.

p
d/ from O

�
n1C1=5

�
to

QO
�
n1C3=17

�
.

Open Problems

A major open problem in the area of additive
spanners is on the existence of purely additive
spanners with O

�
n1Cı

�
for any ı > 0. In

particular, proving or disproving the existence of
a spanner of size O

�
n4=3��

�
for some constant

� with constant or even polylog additive stretch
would be a major breakthrough.
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Problem Definition

The model studied here is the same as that which
is first presented in [10] by Varian. For some
keyword, N D f1; 2; : : : ; N g advertisers bid
K D f1; 2; : : : ; Kg advertisement slots (K < N )
which will be displayed on the search result page
from top to bottom. The higher the advertisement
is positioned, the more conspicuous it is and the
more clicks it receives. Thus for any two slots
k1; k2 2 K, if k1 < k2, then slot k1’s click-
through rate (CTR) ck1

is larger than ck2
. That

is, c1 > c2 > � � � > cK , from top to bottom,
respectively. Moreover, each bidder i 2 N has
privately known information, vi , which repre-
sents the expected return of per click to bidder i .
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According to each bidder i ’s submitted bid bi ,
the auctioneer then decides how to distribute the
advertisement slots among the bidders and how
much they should pay for per click. In particular,
the auctioneer first sorts the bidders in decreasing
order according to their submitted bids. Then the
highest slot is allocated to the first bidder, the
second highest slot is allocated to the second
bidder, and so on. The last N �K bidders would
lose and get nothing. Finally, each winner would
be charged on a per-click basis for the next bid in
the descending bid queue. The losers would pay
nothing.

Let bk denote the kth highest bid in the de-
scending bid queue and vk the true value of the
kth bidder in the descending queue. Thus if bid-
der i got slot k, i ’s payment would be bkC1 � ck .
Otherwise, his payment would be zero. Hence,
for any bidder i 2 N , if i were on slot k 2 K,
his/her utility (payoff) could be represented as

ui
k D .v

i � bkC1/ � ck

Unlike one-round sealed-bid auctions where
each bidder has only one chance to bid, the
adword auction allows bidders to change their
bids any time. Once bids are changed, the
system refreshes the ranking automatically
and instantaneously. Accordingly, all bidders’
payment and utility are also recalculated. As a
result, other bidders could then have an incentive
to change their bids to increase their utility
and so on.

Definition 1 (Adword Pricing)

INPUT: The CTR for each slot, each bidder’s
expected return per click on his/her advertising

OUTPUT: The stable states of this auction and
whether any of these stable states can be
reached from any initial states

Key Results

Let b represent the bid vector .b1; b2; : : : ; bN /.
8i 2 N , Oi .b/ denotes bidder i ’s place
in the descending bid queue. Let b�i D

.b1; : : : ; bi�1; biC1; : : : ; bN / denote the bids

of all other bidders except i . Mi .b�i / returns a
set defined as

Mi .b�i / D arg max
bi2Œ0;vi �

n
ui
Oi .bi ;b�i /

o
(1)

Definition 2 (Forward-Looking Best-Response
Function) Given b�i , suppose Oi .Mi .b�i /;

b�i / D k, then bidder i ’s forward-looking
response function F i .b�i / is defined as

F i .b�i /

D

(
vi � ck

ck�1
.vi � bkC1/ 2 � k � K

vi k D 1 or k > K

(2)

Definition 3 (Forwarding-Looking Equilibr-
ium) A forward-looking best-response function-
based equilibrium is a strategy profile Ob such that

8i 2 N ; Obi 2 F i . Ob�i /

Definition 4 (Output Truthful (Kao et al.,
2006, Output truthful versus input truthful:
a new concept for algorithmic mechanism
design, unpublished) [7]) For any instance
of adword auction and the corresponding
equilibrium set E , if 8e 2 E and 8i 2 N ,
Oi .e/ D Oi .v1; : : : ; vN /, then the adword
auction is output truthful on E .

Theorem 1 An adword auction is output truthful
on Eforward�looking .

Corollary 1 An Adword auction has a unique
forward-looking Nash equilibrium.

Corollary 2 Any bidder’s payment under the
forward-looking Nash equilibrium is equal to
his/her payment under the VCG mechanism for
the auction.

Corollary 3 For adword auctions, the auction-
eer’s revenue in a forward-looking Nash equilib-
rium is equal to his/her revenue under the VCG
mechanism for the auction.

Definition 5 (Simultaneous Readjustment
Scheme) In a simultaneous readjustment
scheme, all bidders participating in the auction
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will use forward-looking best-response function
F to update their current bids simultaneously,
which turns the current stage into a new stage.
Then based on the new stage, all bidders may
update their bids again.

Theorem 2 An adword auction may not always
converge to a forward-looking Nash equilibrium
under the simultaneous readjustment scheme
even when the number of slots is 3. But the
protocol converges when the number of slots is 2.

Definition 6 (Round-Robin Readjustment
Scheme) In the round-robin readjustment
scheme, bidders update their biddings one after
the other, according to the order of the bidder’s
number or the order of the slots.

Theorem 3 An adword auction may not always
converge to a forward-looking Nash equilibrium
under the round-robin readjustment scheme even
when the number of slots is 4. But the protocol
converges when the number of slots is 2 or 3.

1 Readjustment Scheme: Lowest-First(K, j, b1, b2,· · ·, bN)
1: if (j= 0) then
2:      exit
3: end if
4: Let i be the ID of the bidder whose current bid is bj (and equivalently, bi).
5: Let h = Oi (Mi (b−i), b−i).
6: Let F i (b−i) be the best response function value for Bidder i.
7: Re-sort the bid sequence. (So h is the slot of the new bid F i(b−i) of Bidder i.)
8: if (h < j) then
9:      call Lowest-First (K,j,b1,b2,···,bN),

10: else
11:      call Lowest-First(K,h−1,b1,b2,···,bN)
12: end if

Theorem 4 Adword auctions converge to a
forward-looking Nash equilibrium in finite steps
with a lowest-first adjustment scheme.

Theorem 5 Adword auctions converge to
a forward-looking Nash equilibrium with
probability 1 under a randomized readjustment
scheme.

Applications

Online adword auctions are the fastest growing
form of advertising. Many search engine compa-
nies such as Google and Yahoo! make huge prof-
its on this kind of auction. Because advertisers
can change their bids anytime, such auctions can
reduce the advertisers’ risk. Further, because the
advertisement is only displayed to those people
who are really interested in it, such auctions can
reduce the advertisers’ investment and increase
their return on investment.

For the same model, Varian [10] focuses on
a subset of Nash equilibria, called Symmetric
Nash Equilibria, which can be formulated nicely
and dealt with easily. Edelman et al. [8] study
locally envy-free equilibria, where no player can
improve his/her payoff by exchanging bids with
the player ranked one position above him/her.
Coincidently, locally envy-free equilibrium is
equal to symmetric Nash equilibrium proposed
in [10]. Further, the revenue under the forward-
looking Nash equilibrium is the same as the
lower bound under Varian’s symmetric Nash
equilibria and the lower bound under Edelman
et al.’s locally envy-free equilibria. In [6], Cary
et al. also study the dynamic model’s equilibria
and convergence based on the balanced bidding
strategy which is actually the same as the
forward-looking best-response function in [4].
Cary et al. explore the convergence properties
under two models, a synchronous model which
is the same as simultaneous readjustment scheme
in [4] and an asynchronous model which is
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the same as randomized readjustment scheme
in [4].

In addition, there are other models for adword
auctions. Abrams [1] and Bu et al. [5] study
the model under which each bidder could submit
his/her daily budget, even the maximum number
of clicks per day, in addition to the price per
click. Both [9] and [3] study bidders’ behavior
of bidding on several keywords. Aggarwal et al.
[2] studies the model where the advertiser not
only submits a bid but additionally submits which
positions he/she is going to bid for.

Open Problems

The speed of convergence still remains open.
Does the dynamic model converge in polynomial
time under randomized readjustment scheme?
Even more, are there other readjustment scheme
that converge in polynomial time?
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Problem Definition

In the k-Server Problem, one wishes to schedule
the movement of k-servers in a metric space M,
in response to a sequence % D r1; r2; : : : ; rn of
requests, where ri 2 M for each i . Initially, all
the servers are located at some initial configu-
ration X0 � M of k points. After each request
ri is issued, one of the k-servers must move
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to ri . A schedule specifies which server moves
to each request. The cost of a schedule is the
total distance traveled by the servers, and our
objective is to find a schedule with minimum
cost.

In the online version of the k-Server Problem,
the decision as to which server to move to each
request ri must be made before the next request
riC1 is issued. In other words, the choice of this
server is a function of requests r1; r2; : : : ; ri . It
is quite easy to see that in this online scenario, it
is not possible to compute an optimal schedule
for each request sequence, raising the question
of how to measure the accuracy of such online
algorithms. A standard approach to doing this
is based on competitive analysis. If A is an
online k-server algorithm denote by costA.%/
the cost of the schedule produced by A on a
request sequence %, and by opt.%/ the cost of
the optimal schedule. A is called R-competitive
if costA.%/ � R � opt.%/ C B , where B is
a constant that may depend on M and X0. The
smallest such R is called the competitive ratio
of A.

The k-Server Problem was introduced by
Manasse, McGeoch, and Sleator [7, 8], who
proved that there is no online R-competitive
algorithm for R < k, for any metric space
with at least k C 1 points. They also gave a 2-
competitive algorithm for k D 2 and formulated
what is now known as the k-Server Conjecture,
which postulates that there exists a k-competitive
online algorithm for all k. Koutsoupias and
Papadimitriou [5, 6] proved that the so-called
Work-Function Algorithm has competitive ratio
at most 2k � 1, which to date remains the best
upper bound known.

Efforts to prove the k-Server Conjecture led to
discoveries of k-competitive algorithms for some
restricted classes of metric spaces, including Al-
gorithm DC-TREE for trees [3] presented in this
entry. (See [1, 2, 4] for other examples.) A tree
is a metric space defined by a connected acyclic
graph whose edges are treated as line segments
of arbitrary positive lengths. This metric space
includes both the tree’s vertices and the points on
the edges, and the distances are measured along
the (unique) shortest paths.

Key Results

Let T be a tree, as defined above. Given the
current server configuration S D fs1; : : : ; skg,
where sj denotes the location of server j , and a
request point r , the algorithm will move several
servers, with one of them ending up on r . For
two points x; y 2 T, let Œx; y� be the unique path
from x to y in T. A server j is called active if
there is no other server in Œsj ; r� �

˚
sj
�
, and j is

the minimum-index server located on sj (the last
condition is needed only to break ties).

Algorithm DC-TREE. On a request r , move all
active servers, continuously and with the same
speed, towards r , until one of them reaches the
request. Note that during this process some active
servers may become inactive, in which case they
halt. Clearly, the server that will arrive at r is the
one that was closest to r at the time when r was
issued.

More formally, denoting by sj the variable
representing the current position of server j , the
algorithm serves r as follows:

while sj ¤ r for all j do
let ı D 1

2
mini<j

˚
d.si ; sj /C d.si ; r/

�d.sj ; r/
�

move each active server sj by distance
ı towards r

The example below shows how DC-TREE

serves a request r (Fig. 1).
The competitive analysis of Algorithm DC-

TREE is based on a potential argument. The cost
of Algorithm DC-TREE is compared to that of
an adversary who serves the requests with her
own servers. Denoting by A the configuration of
the adversary servers at a given step, define the
potential by ˆ D k �D.S;A/C

P
i<j d.si ; sj /,

whereD.S;A/ is the cost of the minimum match-
ing between S and A. At each step, the adversary
first moves one of her servers to r . In this sub-
step the potential increases by at most k times the
increase of the adversary’s cost. Then, Algorithm
DC-TREE serves the request. One can show that
then the sum of ˆ and DC-TREE’s cost does not
increase. These two facts, by amortization over
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Algorithm DC-TREE for k-Servers on Trees, Fig. 1
Algorithm DC-TREE serving a request on r . The config-
uration before r is issued is on the left; the configuration
after the service is completed is on the right. At first, all

servers are active. When server 3 reaches point x, server 1
becomes inactive. When server 3 reaches point y, server
2 becomes inactive

the whole request sequence, imply the following
result [3]:

Theorem 1 ([3]) Algorithm DC-TREE is k-
competitive on trees.

Applications

The k-Server Problem is an abstraction of various
scheduling problems, including emergency crew
scheduling, caching in multilevel memory sys-
tems, or scheduling head movement in 2-headed
disks. Nevertheless, due to its abstract nature, the
k-server problem is mainly of theoretical interest.

Algorithm DC-TREE can be applied to other
spaces by “embedding” them into trees. For ex-
ample, a uniform metric space (with all distances
equal 1) can be represented by a star with arms
of length 1=2, and thus Algorithm DC-TREE

can be applied to those spaces. This also im-
mediately gives a k-competitive algorithm for
the caching problem, where the objective is to
manage a two-level memory system consisting
of a large main memory and a cache that can
store up to k memory items. If an item is in the
cache, it can be accessed at cost 0, otherwise it
costs 1 to read it from the main memory. This
caching problem can be thought of as the k-server
problem in a uniform metric space where the
server positions represent the items residing in
the cache. This idea can be extended further to the
weighted caching [4], which is a generalization of
the caching problem where different items may
have different costs. In fact, if one can embed
a metric space M into a tree with distortion
bounded by ı, then Algorithm DC-TREE yields
a ık-competitive algorithm for M.

Open Problems

The k-Server Conjecture – whether there is a k-
competitive algorithm for k-servers in any metric
space – remains open. It would be of interest
to prove it for some natural special cases, for
example the plane, either with the Euclidean or
Manhattan metric. (A k-competitive algorithm
for the Manhattan plane for k D 2; 3 servers is
known [1], but not for k � 4).

Very little is known about online randomized
algorithms for k-servers. In fact, even for k D 2

it is not known if there is a randomized algorithm
with competitive ratio smaller than 2.

Cross-References

�Deterministic Searching on the Line
�Generalized Two-Server Problem
�Metrical Task Systems
�Online Paging and Caching
�Work-Function Algorithm for k-Servers

Recommended Reading

1. Bein W, Chrobak M, Larmore LL (2002) The 3-
server problem in the plane. Theor Comput Sci 287:
387–391

2. Borodin A, El-Yaniv R (1998) Online computation
and competitive analysis. Cambridge University Press,
Cambridge

3. Chrobak M, Larmore LL (1991) An optimal online
algorithm for k servers on trees. SIAM J Comput
20:144–148

4. Chrobak M, Karloff H, Payne TH, Vishwanathan S
(1991) New results on server problems. SIAM J Dis-
cret Math 4:172–181



30 Algorithmic Cooling

5. Koutsoupias E, Papadimitriou C (1994) On the
k-server conjecture. In: Proceedings of the 26th
symposium on theory of computing (STOC). ACM,
Montreal, pp 507–511

6. Koutsoupias E, Papadimitriou C (1995) On the k-
server conjecture. J ACM 42:971–983

7. Manasse M, McGeoch LA, Sleator D (1988) Competi-
tive algorithms for online problems. In: Proceedings of
the 20th symposium on theory of computing (STOC).
ACM, Chicago, pp 322–333

8. Manasse M, McGeoch LA, Sleator D (1990) Com-
petitive algorithms for server problems. J Algorithms
11:208–230

Algorithmic Cooling

Tal Mor
Department of Computer Science, Technion –
Israel Institute of Technology, Haifa, Israel

Keywords

Cooling; Data compression; Nuclear magnetic
resonance; Quantum computing; Spin cooling;
State initialization

Years and Authors of Summarized
Original Work

1999; Schulman, Vazirani
2002; Boykin, Mor, Roychowdhury, Vatan,

Vrijen

Problem Definition

The fusion of concepts taken from the fields
of quantum computation, data compression, and
thermodynamics has recently yielded novel algo-
rithms that resolve problems in nuclear magnetic
resonance and potentially in other areas as well,
algorithms that “cool down” physical systems.

• A leading candidate technology for the con-
struction of quantum computers is nuclear
magnetic resonance (NMR). This technology
has the advantage of being well established

for other purposes, such as chemistry and
medicine. Hence, it does not require new and
exotic equipment, in contrast to ion traps and
optical lattices, to name a few. However, when
using standard NMR techniques, (not only for
quantum computing purposes) one has to live
with the fact that the state can only be ini-
tialized in a very noisy manner: The particles’
spins point in mostly random directions, with
only a tiny bias towards the desired state.

The key idea of Schulman and Vazi-
rani [27] is to combine the tools of both data
compression and quantum computation, to
suggest a scalable state initialization process,
a “molecular-scale heat engine.” Based on
Schulman and Vazirani’s method, Boykin,
Mor, Roychowdhury, Vatan, and Vrijen [4]
then developed a new process, “heat-bath
algorithmic cooling,” to significantly improve
the state initialization process, by opening
the system to the environment. Strikingly,
this offered a way to put to good use
the phenomenon of decoherence, which
is usually considered to be the villain in
quantum computation. These two methods are
now sometimes called “closed-system” (or
“reversible”), algorithmic cooling, and “open-
system” algorithmic cooling, respectively.

• The far-reaching consequence of this research
lies in the possibility of reaching beyond
the potential implementation of remote-
future quantum computing devices. An
efficient technique to generate ensembles of
spins that are highly polarized by external
magnetic fields is considered to be a Holy
Grail in NMR spectroscopy. Spin-half
nuclei have steady-state polarization biases
that increase inversely with temperature;
therefore, spins exhibiting polarization biases
above their thermal-equilibrium biases are
considered cool. Such cooled spins present an
improved signal-to-noise ratio if used in NMR
spectroscopy or imaging.

Existing spin-cooling techniques are
limited in their efficiency and usefulness.
Algorithmic cooling is a promising new
spin-cooling approach that employs data
compression methods in open systems.
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It reduces the entropy of spins to a point
far beyond Shannon’s entropy bound on
reversible entropy manipulations, thus
increasing their polarization biases. As a
result, it is conceivable that the open-system
algorithmic cooling technique could be
harnessed to improve on current uses of NMR
in areas such as chemistry, material science,
and even medicine, since NMR is at the basis
of MRI – magnetic resonance imaging.

Basic Concepts

Loss-Less In-Place Data Compression
Given a bit string of length n, such that the
probability distribution is known and far enough
from the uniform distribution, one can use data
compression to generate a shorter string, say
of m bits, such that the entropy of each bit
is much closer to one. As a simple example,
consider a four-bit string which is distributed as
follows: p0001 D p0010 D p0100 D p1000 D

1=4, with pi the probability of the string i . The
probability of any other string value is exactly
zero, so the probabilities sum up to one. Then,
the bit string can be compressed, via a lossy
compression algorithm, into a 2-bit string that
holds the binary description of the location of “1”
in the above four strings. One can also envision
a similar process that generates an output which
is of the same length n as the input, but such
that the entropy is compressed via a loss-less, in-
place, data compression into the last two bits. For
instance, logical gates that operate on the bits can
perform the permutation 0001 ! 0000, 0010 !
0001, 0100 ! 0010, and 1000 ! 0011, while
the other input strings transform to output strings
in which the two most significant bits are not
zero; for instance, 1100 ! 1010. One can easily
see that the entropy is now fully concentrated on
the two least significant bits, which are useful in
data compression, while the two most significant
bits have zero entropy.

In order to gain some intuition about the de-
sign of logical gates that perform entropy manip-
ulations, one can look at a closely related scenario
which was first considered by von Neumann.

He showed a method to extract fair coin flips,
given a biased coin; he suggested taking a pair of
biased coin flips, with results a and b, and using
the value of a conditioned on a ¤ b. A simple
calculation shows that a D 0 and a D 1 are now
obtained with equal probabilities, and therefore,
the entropy of coin a is increased in this case to 1.
The opposite case, the probability distribution of
a given that a D b, results in a highly determined
coin flip, namely, a (conditioned) coin flip with
a higher bias or lower entropy. A gate that flips
the value of b if (and only if) a D 1 is called a
controlled NOT gate. If after applying such a gate
b D 1 is obtained, this means that a ¤ b prior to
the gate operation; thus, now the entropy of a is
1. If, on the other hand, after applying such a gate
b D 0 is obtained, this means that a D b prior to
the gate operation; thus, the entropy of a is now
lower than its initial value.

Spin Temperature, Polarization Bias, and
Effective Cooling
In physics, two-level systems, namely, systems
that possess only binary values, are useful in
many ways. Often it is important to initialize such
systems to a pure state “0” or to a probability
distribution which is as close as possible to a pure
state “0.” In these physical two-level systems,
a data compression process that brings some of
them closer to a pure state can be considered as
“cooling.” For quantum two-level systems, there
is a simple connection between temperature, en-
tropy, and population probability. The population
difference between these two levels is known as
the polarization bias, �. Consider a single spin-
half particle – for instance, a hydrogen nucleus
– in a constant magnetic field. At equilibrium
with a thermal heat-bath, the probability of this
spin to be up or down (i.e., parallel or antipar-
allel to the field direction) is given by p" D
1C�

2
and p# D

1��
2

. The entropy H of the
spin is H.single � bit/ D H.1=2 C �=2/ with
H.P / 	 �P log2 P � .1 � P / log2.1 � P /

measured in bits. The two pure states of a spin-
half nucleus are commonly written as j"i 	“0”
and j#i 	“1”; the ji notation will be clarified
elsewhere. (Quantum Computing entries in this
encyclopedia.) The polarization bias of the spin at
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thermal equilibrium is given by � D p"�p#. For
such a physical System, the bias is obtained via
a quantum statistical mechanics argument, � D

tanh
�
„�B

2KB T

�
, where „ is Planck’s constant, B

is the magnetic field, � is the particle-dependent
gyromagnetic constant,(This constant, � , is thus
responsible for the difference in equilibrium po-
larization bias [e.g., a hydrogen nucleus is 4
times more polarized than a carbon isotope 13C
nucleus, but about 103 less polarized than an
electron spin].)KB is Boltzman’s coefficient, and
T is the thermal heat-bath temperature. For high
temperatures or small biases � 
 „�B

2KB T
; thus, the

bias is inversely proportional to the temperature.
Typical values of � for spin-half nuclei at room
temperature (and magnetic field of �10 T) are
10�5–10�6, and therefore, most of the analysis
here is done under the assumption that � �
1. The spin temperature at equilibrium is thus
T D Const

�
, and its (Shannon) entropy is H D

1 � .�2= ln 4/.
A spin temperature out of thermal equilibrium

is still defined via the same formulas. Therefore,
when a system is moved away from thermal
equilibrium, achieving a greater polarization bias
is equivalent to cooling the spins, without cool-
ing the system, and to decreasing their entropy.
The process of increasing the bias (reducing the
entropy) without increasing the temperature of
the thermal bath is known as “effective cooling.”
After a typical period of time, termed the ther-
malization time or relaxation time, the bias will
gradually revert to its thermal equilibrium value;
yet during this process, typically in the order
of seconds, the effectively cooled spin may be
used for various purposes as described in section
“Applications.”

Consider a molecule that contains n adjacent
spin-half nuclei arranged in a line; these form
the bits of the string. These spins are initially
at thermal equilibrium due to their interaction
with the environment. At room temperature, the
bits at thermal equilibrium are not correlated to
their neighbors on the same string: more pre-
cisely, the correlation is very small and can be
ignored. Furthermore, in a liquid state one can
also neglect the interaction between strings (be-
tween molecules). It is convenient to write the

probability distribution of a single spin at thermal
equilibrium using the “density-matrix” notation

� D

�
p" 0

0 p#

�
D

�
.1C �/=2 0

0 .1 � �/=2

�
;

(1)

since these two-level systems are of a quantum
nature (namely, these are quantum bits – qubits)
and, in general, can also have states other than
just a classical probability distribution over “0”
and “1.” The classical case will now be consid-
ered, where  contains only diagonal elements,
and these describe a conventional probability
distribution. At thermal equilibrium, the state of
n D 2 uncorrelated qubits that have the same po-
larization bias is described by the density matrix

fnD2g
init D �˝� , where˝means tensor product.

The probability of the state “00,” for instance, is
then .1 C �/=2 � .1 C �/=2 D .1 C �/2=4, etc.
Similarly, the initial state of an n-qubit system of
this type, at thermal equilibrium, is


fng
init D � ˝ � ˝ � � � ˝ �: (2)

This state represents a thermal probability distri-
bution, such that the probability of the classical
state “000. . . 0” is P000:::0 D .1 C �0/

n=2n, etc.
In reality, the initial bias is not the same on each
qubit,(Furthermore, individual addressing of each
spin during the algorithm requires a slightly dif-
ferent bias for each.) but as long as the differences
between these biases are small (e.g., all qubits
are of the same nucleus), these differences can be
ignored in a discussion of an idealized scenario.

Key Results

Molecular-Scale Heat Engines
Schulman and Vazirani (SV) [27] identified the
importance of in-place loss-less data compression
and of the low-entropy bits created in that pro-
cess: physical two-level systems (e.g., spin-half
nuclei) may be similarly cooled by data com-
pression algorithms. SV analyzed the cooling
of such a system using various tools of data
compression. A loss-less compression of an n-bit
binary string distributed according to the thermal
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equilibrium distribution, Eq. 2, is readily ana-
lyzed using information-theoretical tools: In an
ideal compression scheme (not necessarily real-
izable), with sufficiently large n, all randomness
– and hence all the entropy – of the bit string
is transferred to n � m bits; the remaining m

bits are thus left, with extremely high probability,
at a known deterministic state, say the string
“000. . . 0.” The entropy H of the entire system
is H.system/ D nH.single � bit/ D nH.1=2C

�=2/. Any compression scheme cannot decrease
this entropy; hence, Shannon’s source coding
entropy bound yields m � nŒ1�H.1=2C �=2/�.
A simple leading-order calculation shows that m
is bounded by (approximately) �2

2 ln 2
n for small

values of the initial bias �. Therefore, with typical
� � 10�5, molecules containing an order of
magnitude of 1010 spins are required to cool a
single spin close to zero temperature.

Conventional methods for NMR quantum
computing are based on unscalable state
initialization schemes [7, 14] (e.g., the “pseudo-
pure-state” approach) in which the signal-to-
noise ratio falls exponentially with n, the number
of spins. Consequently, these methods are
deemed inappropriate for future NMR quantum
computers. SV [27] were first to employ tools
of information theory to address the scaling
problem; they presented a compression scheme
in which the number of cooled spins scales
well (namely, a constant times n). SV also
demonstrated a scheme approaching Shannon’s
entropy bound, for very large n. They provided
detailed analyses of three cooling algorithms,
each useful for a different regime of � values.

Some ideas of SV were already explored a
few years earlier by Sørensen [29], a physical
chemist who analyzed effective cooling of spins.
He considered the entropy of several spin systems
and the limits imposed on cooling these systems
by polarization transfer and more general polar-
ization manipulations. Furthermore, he consid-
ered spin-cooling processes in which only unitary
operations were used, wherein unitary matrices
are applied to the density matrices; such oper-
ations are realizable, at least from a conceptual
point of view. Sørensen derived a stricter bound
on unitary cooling, which today bears his name.

Yet, unlike SV, he did not infer the connection
to data compression or advocate compression
algorithms.

SV named their concept “molecular-scale heat
engine.” When combined with conventional po-
larization transfer (which is partially similar to
a SWAP gate between two qubits), the term
“reversible polarization compression (RPC)” is
more descriptive.

Heat-Bath Algorithmic Cooling
The next significant development came when
Boykin, Mor, Roychowdhury, Vatan, and Vrijen
(hereinafter referred to as BMRVV), invented a
new spin-cooling technique, which they named
Algorithmic cooling [4] or more specifically heat-
bath algorithmic cooling in which the use of
controlled interactions with a heat bath enhances
the cooling techniques much further. Algorith-
mic cooling (AC) expands the effective cooling
techniques by exploiting entropy manipulations
in open systems. It combines RPC steps (When
the entire process is RPC, namely, any of the
processes that follow SV ideas, one can refer to
it as reversible AC or closed-system AC, rather
than as RPC.) with fast relaxation (namely, ther-
malization) of the hotter spins, as a way of pump-
ing entropy outside the system and cooling the
system much beyond Shannon’s entropy bound.
In order to pump entropy out of the system, AC
employs regular spins (here called computation
spins) together with rapidly relaxing spins. The
latter are auxiliary spins that return to their ther-
mal equilibrium state very rapidly. These spins
have been termed “reset spins,” or, equivalently,
reset bits. The controlled interactions with the
heat bath are generated by polarization transfer
or by standard algorithmic techniques (of data
compression) that transfer the entropy onto the
reset spins which then lose this excess entropy
into the environment.

The ratio Rrelax�times, between the relaxation
time of the computation spins and the relaxation
time of the reset spins, must satisfyRrelax�times 

1. This condition is vital if one wishes to perform
many cooling steps on the system to obtain sig-
nificant cooling.
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In a pure information-theoretical point of
view, it is legitimate to assume that the only
restriction on ideal RPC steps is Shannon’s
entropy bound; then the equivalent of Shannon’s
entropy bound, when an ideal open-system AC is
used, is that all computation spins can be cooled
down to zero temperature, that is to � D 1.
Proof: repeat the following till the entropy of
all computation spins is exactly zero: (i) push
entropy from computation spins into reset spins
and (ii) let the reset spins cool back to room
temperature. Clearly, each application of step
(i), except the last one, pushes the same amount
of entropy onto the reset spins, and then this
entropy is removed from the system in step (ii).
Of course, a realistic scenario must take other
parameters into account such as finite relaxation-
time ratios, realistic environment, and physical
operations on the spins. Once this is done, cooling
to zero temperature is no longer attainable. While
finite relaxation times and a realistic environment
are system dependent, the constraint of using
physical operations is conceptual.

BMRVV therefore pursued an algorithm that
follows some physical rules; it is performed by
unitary operations and reset steps and still bypass
Shannon’s entropy bound, by far. The BMRVV
cooling algorithm obtains significant cooling be-
yond that entropy bound by making use of very
long molecules bearing hundreds or even thou-
sands of spins, because its analysis relies on the
law of large numbers.

Practicable Algorithmic Cooling
The concept of algorithmic cooling then led
to practicable algorithms [13] for cooling
small molecules. In order to see the impact of
practicable algorithmic cooling, it is best to use a
different variant of the entropy bound. Consider
a system containing n spin-half particles with
total entropy higher than n � 1, so that there
is no way to cool even one spin to zero
temperature. In this case, the entropy bound
is a result of the compression of the entropy
into n � 1 fully random spins, so that the
remaining entropy on the last spin is minimal.
The entropy of the remaining single spin satisfies

H.single/ � 1 � n�2= ln 4; thus, at most, its
polarization can be improved to

�final � �
p
n : (3)

The practicable algorithmic cooling (PAC),
suggested by Fernandez, Lloyd, Mor, and
Roychowdhury in [13], indicated potential for
a near-future application to NMR spectroscopy.
In particular, it presented an algorithm named
PAC2 which uses any (odd) number of spins n,
such that one of them is a reset spin, and .n � 1/
are computation spins. PAC2 cools the spins such
that the coldest one can (approximately) reach
a bias amplification by a factor of .3=2/.n�1/=2.
The approximation is valid as long as the final
bias .3=2/.n�1/=2 � is much smaller than 1.
Otherwise, a more precise treatment must be
done. This proves an exponential advantage
of AC over the best possible reversible AC,
as these reversible cooling techniques, e.g.,
of [27, 29], are limited to improve the bias by
no more than a factor of

p
n. PAC can be applied

for small n (e.g., in the range of 10–20), and
therefore, it is potentially suitable for near-
future applications [9, 13, 19] in chemical and
biomedical usages of NMR spectroscopy.

It is important to note that in typical scenarios,
the initial polarization bias of a reset spin is
higher than that of a computation spin. In this
case, the bias amplification factor of .3=2/.n�1/=2

is relative to the larger bias, that of the reset
spin.

Exhaustive Algorithmic Cooling
Next, AC was analyzed, wherein the cooling
steps (reset and RPC) are repeated an arbitrary
number of times. This is actually an idealization
where an unbounded number of reset and logic
steps can be applied without error or decoher-
ence, while the computation qubits do not lose
their polarization biases. Fernandez [12] consid-
ered two computation spins and a single reset
spin (the least significant bit, namely, the qubit
at the right in the tensor-product density-matrix
notation) and analyzed optimal cooling of this
system. By repeating the reset and compression
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exhaustively, he realized that the bound on the
final biases of the three spins is approximately
f2; 1; 1g in units of �, the polarization bias of the
reset spin.

Mor and Weinstein generalized this analysis
further and found that n � 1 computation spins
and a single reset spin can be cooled (approx-
imately) to biases according to the Fibonacci
series: f: : : 34; 21; 13; 8; 5; 3; 2; 1; 1g. The com-
putation spin that is further away from the reset
spin can be cooled up to the relevant Fibonacci
number Fn. That approximation is valid as long
as the largest term times � is still much smaller
than 1. Schulman then suggested the “partner
pairing algorithm” (PPA) and proved the optimal-
ity of the PPA among all classical and quantum
algorithms. These two algorithms, the Fibonacci
AC and the PPA, led to two joint papers [25, 26],
where upper and lower bounds on AC were also
obtained. The PPA is defined as follows: repeat
these two steps until cooling sufficiently close to
the limit: (a) RESET, applied to a reset spin in a
system containing n � 1 computation spins and
a single (the LSB) reset spin, and (b) SORT, a
permutation that sorts the 2n diagonal elements of
the density matrix by decreasing order, so that the
MSB spin becomes the coldest. Two important
theorems proven in [26] are:

(1) Lower bound: When �2n  1 (namely, for
long enough molecules), Theorem 3 in [26]
promises that n� log.1=�/ cold qubits can be
extracted. This case is relevant for scalable
NMR quantum computing.

(2) Upper bound: Section 4.2 in [26] proves
the following theorem: No algorithmic cool-
ing method can increase the probability of
any basis state to above minf2�ne2n�; 1g,
wherein the initial configuration is the com-
pletely mixed state (the same is true if the
initial state is a thermal state).

More recently, Elias, Fernandez, Mor, and
Weinstein [9] analyzed more closely the case
of n < 15 (at room temperature), where
the coldest spin (at all stages) still has a
polarization bias much smaller than 1. This
case is most relevant for near-future applications

in NMR spectroscopy. They generalized the
Fibonacci-AC to algorithms yielding higher-
term Fibonacci series, such as the tribonacci
(also known as 3-term Fibonacci series),
f: : : 81; 44; 24; 13; 7; 4; 2; 1; 1g, etc. The ultimate
limit of these multi-term Fibonacci series
is obtained when each term in the series is
the sum of all previous terms. The resulting
series is precisely the exponential series
f: : : 128; 64; 32; 16; 8; 4; 2; 1; 1g, so the coldest
spin is cooled by a factor of 2n�2. Furthermore,
a leading-order analysis of the upper bound
mentioned above (Section 4.2 in Ref. [26]) shows
that no spin can be cooled beyond a factor of
2n�1; see Corollary 1 in [9].

Other Results
For several other theoretical results dealing with
relevant algorithms and with the connection to
thermodynamics, see [11, 15, 17, 21]. For several
popular “News and Views” discussions of AC in
Nature, see [18, 22, 24].

Applications

The two major far-future and near-future appli-
cations are already described in section “Prob-
lem Definition.” It is important to add here that
although the specific algorithms analyzed so far
for AC are usually classical, their practical im-
plementation via an NMR spectrometer must be
done through analysis of universal quantum com-
putation, using the specific gates allowed in such
systems. Therefore, AC could yield the first near-
future application of quantum computing devices.

AC may also be useful for cooling various
other physical systems; for several examples (the-
oretical and experimental), see [2, 16, 28, 30, 31],
since state initialization is a common problem in
physics in general and in quantum computation
in particular.

Open Problems

A main open problem in practical AC is
technological; can the ratio of relaxation
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times be increased so that many cooling steps
may be applied onto relevant NMR systems?
Other methods, for instance, a spin-diffusion
mechanism [3, 23], may also be useful for various
applications.

Another interesting open problem is whether
the ideas developed during the design of AC can
also lead to applications in classical information
theory.

Last but not least, in the context of building
scalable quantum computers, it is interesting to
study if AC can become a practical tool for ad-
vancing the non-conventional model of quantum
computing called the one pure qubit (or one clean
qubit) model as suggested in [1, 8] and to study
if AC can be useful for designing fault-tolerant
quantum computers as suggested in [20].

Experimental Results

Various ideas of AC had already led to several
experiments using 3–4 qubit quantum computing
devices in NMR (AC used in other systems was
mentioned earlier in section “Applications”):

(1) An experiment [6] that implemented a single
RPC step.

(2) Two experiments [5, 10] in which entropy-
conservation bounds (which apply in any
closed system) were bypassed. The second
one [10] was done on bio-molecules – amino
acids.

(3) A full AC experiment [3] that includes the
initialization of three carbon nuclei to the bias
of a hydrogen spin, followed by a single com-
pression step on these three carbons. This
work was later on extended also to multi-
cycle AC [23].
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Problem Definition

Mechanism design is a sub-field of economics
and game theory that studies the construction
of social mechanisms in the presence of selfish
agents. The nature of the agents dictates a basic
contrast between the social planner, that aims
to reach a socially desirable outcome, and the
agents, that care only about their own private
utility. The underlying question is how to incen-
tivize the agents to cooperate, in order to reach
the desirable social outcomes.

In the Internet era, where computers act and
interact on behalf of selfish entities, the connec-
tion of the above to algorithmic design suggests
itself: suppose that the input to an algorithm is
kept by selfish agents, who aim to maximize their
own utility. How can one design the algorithm so
that the agents will find it in their best interest
to cooperate, and a close-to-optimal outcome
will be outputted? This is different than clas-
sic distributed computing models, where agents
are either “good” (meaning obedient) or “bad”
(meaning faulty, or malicious, depending on the
context). Here, no such partition is possible. It is
simply assumed that all agents are utility maxi-
mizers. To illustrate this, let us describe a moti-
vating example:

A Motivating Example: Shortest Paths
Given a weighted graph, the goal is to find
a shortest path (with respect to the edge weights)
between a given source and target nodes. Each
edge is controlled by a selfish entity, and the
weight of the edge, we is private information
of that edge. If an edge is chosen by the
algorithm to be included in the shortest path,
it will incur a cost which is minus its weight
(the cost of communication). Payments to the
edges are allowed, and the total utility of an edge
that participates in the shortest path and gets
a payment pe is assumed to be ue D pe � we.
Notice that the shortest path is with respect to the
true weights of the agents, although these are not
known to the designer.

Assuming that each edge will act in order
to maximize its utility, how can one choose the
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path and the payments? One option is to ignore
the strategic issue all together, ask the edges
to simply report their weights, and compute the
shortest path. In this case, however, an edge
dislikes being selected, and will therefore prefer
to report a very high weight (much higher than
its true weight) in order to decrease the chances
of being selected. Another option is to pay each
selected edge its reported weight, or its reported
weight plus a small fixed “bonus”. However in
such a case all edges will report lower weights,
as being selected will imply a positive gain.

Although this example is written in an
algorithmic language, it is actually a mechanism
design problem, and the solution, which is now
a classic, was suggested in the 1970’s. The
chapter continues as follows: First, the abstract
formulation for such problems is given, the
classic solution from economics is described, and
its advantages and disadvantages for algorithmic
purposes are discussed. The next section then
describes the new results that algorithmic
mechanism design offers.

Abstract Formulation
The framework consists of a set A of alternatives,
or outcomes, and n players, or agents. Each
player i has a valuation function vi WA! <

that assigns a value to each possible alternative.
This valuation function belongs to a domain
Vi of all possible valuation functions. Let
V D V1 � � � � � Vn, and V�i D

Q
j¤i Vj .

Observe that this generalizes the shortest path
example of above: A is all the possible s � t

paths in the given graph, ve(a) for some path
a 2 A is either �we (if e 2 a) or zero.

A social choice function f WV ! A assigns
a socially desirable alternative to any given
profile of players’ valuations. This parallels the
notion of an algorithm. A mechanism is a tuple
M D .f; p1; : : : ; pn/, where f is a social choice
function, and pi WV ! < (for i D 1; : : : ; n) is the
price charged from player i. The interpretation is
that the social planner asks the players to reveal
their true valuations, chooses the alternative
according to f as if the players have indeed
acted truthfully, and in addition rewards/punishes
the players with the prices. These prices should

induce “truthfulness” in the following strong
sense: no matter what the other players declare,
it is always in the best interest of player i to
reveal her true valuation, as this will maximize
her utility. Formally, this translates to:

Definition 1 (Truthfulness) M is “truthful” (in
dominant strategies) if, for any player i, any pro-
file of valuations of the other players v�i 2 V�i ,
and any two valuations of player ivi ; v

0
i 2 Vi ,

vi .a/ � pi .vi ; v�i / � vi .b/ � pi .v
0
i ; v�i /

where f .vi ; v�i / D a and f .v0i ; v�i / D b.

Truthfulness is quite strong: a player need not
know anything about the other players, even not
that they are rational, and still determine the best
strategy for her. Quite remarkably, there exists
a truthful mechanism, even under the current
level of abstraction. This mechanism suits all
problem domains, where the social goal is to
maximize the “social welfare”:

Definition 2 (Social welfare maximiza-
tion) A social choice function f WV ! A

maximizes the social welfare if f .v/ 2

argmaxa2A

P
i vi .a/, for any v 2 V:

Notice that the social goal in the shortest path
domain is indeed welfare maximization, and, in
general, this is a natural and important economic
goal. Quite remarkably, there exists a general
technique to construct truthful mechanisms that
implement this goal:

Theorem 1 (Vickrey–Clarke–Groves (VCG))
Fix any alternatives set A and any domain V,
and suppose that f WV ! Amaximizes the social
welfare. Then there exist prices p such that the
mechanism (f, p) is truthful.

This gives “for free” a solution to the shortest
path problem, and to many other algorithmic
problems. The great advantage of the VCG
scheme is its generality: it suits all problem
domains. The disadvantage, however, is that
the method is tailored to social welfare
maximization. This turns out to be restrictive,
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especially for algorithmic and computational
settings, due to several reasons: (i) different
algorithmic goals: the algorithmic literature
considers a variety of goals, including many
that cannot be translated to welfare maximiza-
tion. VCG does not help us in such cases.
(ii) computational complexity: even if the goal is
welfare maximization, in many settings achieving
exactly the optimum is computationally hard.
The CS discipline usually overcomes this by
using approximation algorithms, but VCG will
not work with such algorithm – reaching exact
optimality is a necessary requirement of VCG.
(iii) different algorithmic models: common CS
models change “the basic setup”, hence cause
unexpected difficulties when one tries to use
VCG (for example, an online model, where the
input is revealed over time; this is common
in CS, but changes the implicit setting that
VCG requires). This is true even if welfare
maximization is still the goal.

Answering any one of these difficulties re-
quires the design of a non-VCG mechanism.
What analysis tools should be used for this pur-
pose? In economics and classic mechanism de-
sign, average-case analysis, that relies on the
knowledge of the underlying distribution, is the
standard. Computer science, on the other hand,
usually prefers to avoid strong distributional as-
sumptions, and to use worst-case analysis. This
difference is another cause to the uniqueness
of the answers provided by algorithmic mecha-
nism design. Some of the new results that have
emerged as a consequence of this integration
between Computer Science and Economics is
next described. Many other research topics that
use the tools of algorithmic mechanism design
are described in the entries on Adword Pric-
ing, Competitive Auctions, False Name Proof
Auctions, Generalized Vickrey Auction, Incen-
tive Compatible Ranking, Mechanism for One
Parameter Agents Single Buyer/Seller, Multiple
Item Auctions, Position Auctions, and Truthful
Multicast.

There are two different but closely related
research topics that should be mentioned in the
context of this entry. The first is the line of works
that studies the “price of anarchy” of a given

system. These works analyze existing systems,
trying to quantify the loss of social efficiency
due to the selfish nature of the participants, while
the approach of algorithmic mechanism design
is to understand how new systems should be
designed. For more details on this topic the reader
is referred to the entry on Price of Anarchy.
The second topic regards the algorithmic study
of various equilibria computation. These works
bring computational aspects into economics and
game theory, as they ask what equilibria notions
are reasonable to assume, if one requires com-
putational efficiency, while the works described
here bring game theory and economics into com-
puter science and algorithmic theory, as they ask
what algorithms are reasonable to design, if one
requires the resilience to selfish behavior. For
more details on this topic the reader is referred
(for example) to the entry on Algorithms for
Nash Equilibrium and to the entry on General
Equilibrium.

Key Results

Problem Domain 1: Job Scheduling
Job scheduling is a classic algorithmic setting: n
jobs are to be assigned to m machines, where job
j requires processing time pij on machine i. In the
game-theoretic setting, it is assumed that each
machine i is a selfish entity, that incurs a cost pij

from processing job j. Note that the payments
in this setting (and in general) may be negative,
offsetting such costs. A popular algorithmic goal
is to assign jobs to machines in order to minimize
the “makespan”: maxi

P
j is assigned to i pij . This

is different than welfare maximization, which
translates in this setting to the minimization ofP

i

P
j is assigned to i pij , further illustrating the

problem of different algorithmic goals. Thus the
VCG scheme cannot be used, and new methods
must be developed.

Results for this problem domain depend on the
specific assumptions about the structure of the
processing time vectors. In the related machines
case, pij D pj =si for any i j, where the pj’s are
public knowledge, and the only secret parameter
of player i is its speed, si.
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Theorem 2 ([3, 22]) For job scheduling
on related machines, there exists a truthful
exponential-time mechanism that obtains the
optimal makespan, and a truthful polynomial-
time mechanism that obtains a 3-approximation
to the optimal makespan.

More details on this result are given in the entry
on Mechanism for One Parameter Agents Sin-
gle Buyer. The bottom line conclusion is that,
although the social goal is different than welfare
maximization, there still exists a truthful mech-
anism for this goal. A non-trivial approximation
guarantee is achieved, even under the additional
requirement of computational efficiency. How-
ever, this guarantee does not match the best pos-
sible without the truthfulness requirement, since
in this case a PTAS is known.

Open Question 1 Is there a truthful PTAS for
makespan minimization in related machines?

If the number of machines is fixed then [2] give
such a truthful PTAS.

The above picture completely changes in the
move to the more general case of unrelated ma-
chines, where the pij’s are allowed to be arbitrary:

Theorem 3 ([13, 30]) Any truthful scheduling
mechanism for unrelated machines cannot ap-
proximate the optimal makespan by a factor bet-
ter than 1C

p
2 (for deterministic mechanisms)

and 2 � 1=m (for randomized mechanisms).

Note that this holds regardless of computational
considerations. In this case, switching from
welfare maximization to makespan minimization
results in a strong impossibility. On the
possibilities side, virtually nothing (!) is known.
The VCG mechanism (which minimizes the total
social cost) is an m-approximation of the optimal
makespan [32], and, in fact, nothing better is
currently known:

Open Question 2 What is the best possible ap-
proximation for truthful makespan minimization
in unrelated machines?

What caused the switch from “mostly possi-
bilities” to “mostly impossibilities”? Related

machines is a single-dimensional domain
(players hold only one secret number), for
which truthfulness is characterized by a simple
monotonicity condition, that leaves ample
flexibility for algorithmic design. Unrelated
machines, on the other hand, are a multi-
dimensional domain, and the algorithmic
conditions implied by truthfulness in such a case
are harder to work with. It is still unclear
whether these conditions imply real mathematical
impossibilities, or perhaps just pose harder
obstacles that can be in principle solved. One
multi-dimensional scheduling domain for which
possibility results are known is the case where
pij 2 fLj ;Hj g, where the “low” ’s and “high”
’s are fixed and known. This case generalizes
the classic multi-dimensional model of restricted
machines (pij 2 fpj ;1g), and admits a truthful
3-approximation [27].

Problem Domain 2: Digital Goods
and Revenue Maximization
In the E-commerce era, a new kind of “digital
goods” have evolved: goods with no marginal
production cost, or, in other words, goods with
unlimited supply. One example is songs being
sold on the Internet. There is a sunk cost of
producing the song, but after that, additional
electronic copies incur no additional cost. How
should such items be sold? One possibility is
to conduct an auction. An auction is a one-
sided market, where a monopolistic entity (the
auctioneer) wishes to sell one or more items to
a set of buyers.

In this setting, each buyer has a privately
known value for obtaining one copy of the good.
Welfare maximization simply implies the allo-
cation of one good to every buyer, but a more
interesting question is the question of revenue
maximization. How should the auctioneer design
the auction in order to maximize his profit? Stan-
dard tools from the study of revenue-maximizing
auctions (This model was not explicitly studied
in classic auction theory, but standard results
from there can be easily adjusted to this setting.)
suggest to simply declare a price-per-buyer, de-
termined by the probability distribution of the
buyer’s value, and make a take-it-or-leave-it offer.
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However, such a mechanism needs to know the
underlying distribution. Algorithmic mechanism
design suggests an alternative, worst-case result,
in the spirit of CS-type models and analysis.

Suppose that the auctioneer is required to
sell all items in the same price, as is the case
for many “real-life” monopolists, and denote by
F.Ev/ the maximal revenue from a fixed-price sale
to bidders with values Ev D v1; : : : vn, assuming
that all values are known. Reordering indexes so
that v1 � v2 � � � � � vn, let F.Ev/ D maxi i � vi .
The problem is, of-course, that in fact nothing
about the values is known. Therefore, a truthful
auction that extracts the players’ values is in
place. Can such an auction obtain a profit that is
a constant fraction of F.Ev/, for any Ev (i.e., in the
worst case)? Unfortunately, the answer is prov-
ably no [17]. The proof makes use of situations
where the entire profit comes from the highest
bidder. Since there is no potential for competition
among bidders, a truthful auction cannot force
this single bidder to reveal her value.

Luckily, a small relaxation in the optimality
criteria significantly helps. Specifically, denote
by F .2/.Ev/ D maxi�2 i � vi (i.e., the benchmark
is the auction that sells to at least two buyers).

Theorem 4 ([17, 20]) There exists a truthful
randomized auction that obtains an expected rev-
enue of at least F .2/=3:25, even in the worst-
case. On the other hand, no truthful auction
can approximate F .2/ within a factor better than
2.42.

Several interesting formats of distribution-free
revenue-maximizing auctions have been consid-
ered in the literature. The common building block
in all of them is the random partitioning of the
set of buyers to random subsets, analyzing each
set separately, and using the results on the other
sets. Each auction utilizes a different analysis on
the two subsets, which yields slightly different
approximation guarantees. Aggarwal et al. [1]
describe an elegant method to derandomize these
type of auctions, while losing another factor of
4 in the approximation. More details on this
problem domain can be found in the entry on
Competitive Auctions.

Problem Domain 3: Combinatorial
Auctions
Combinatorial auctions (CAs) are a central
model with theoretical importance and practical
relevance. It generalizes many theoretical
algorithmic settings, like job scheduling and
network routing, and is evident in many real-
life situations. This new model has various pure
computational aspects, and, additionally, exhibits
interesting game theoretic challenges. While each
aspect is important on its own, obviously only
the integration of the two provides an acceptable
solution.

A combinatorial auction is a multi-item auc-
tion in which players are interested in bundles
of items. Such a valuation structure can repre-
sent substitutabilities among items, complemen-
tarities among items, or a combination of both.
More formally, m items (�) are to be allocated
to n players. Players value subsets of items,
and vi(S) denotes i’s value of a bundle S � ˝.
Valuations additionally satisfy: (i) monotonicity,
i.e., vi .S/ � vi .T / for S � T , and (ii) normal-
ization, i.e., vi .;/ D 0. The literature has mostly
considered the goal of maximizing the social
welfare: find an allocation .S1; : : : ; Sn/ that max-
imizes

P
i vi .Si /.

Since a general valuation has size exponential
in n and m, the representation issue must be taken
into account. Two models are usually considered
(see [11] for more details). In the bidding lan-
guages model, the bid of a player represents his
valuation is a concise way. For this model it is
NP-hard to approximate the social welfare within
a ratio of ˝.m1=2��/, for any � > 0 (if “single-
minded” bids are allowed; the exact definition
is given below). In the query access model, the
mechanism iteratively queries the players in the
course of computation. For this model, any al-
gorithm with polynomial communication cannot
obtain an approximation ratio of ˝.m1=2��/ for
any � > 0. These bounds are tight, as there exist
a deterministic

p
m-approximation with polyno-

mial computation and communication. Thus, for
the general valuation structure, the computational
status by itself is well-understood.

The basic incentives issue is again well-
understood: VCG obtains truthfulness. Since
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VCG requires the exact optimum, which is NP-
hard to compute, the two considerations therefore
clash, when attempting to use classic techniques.
Algorithmic mechanism design aims to develop
new techniques, to integrate these two desirable
aspects.

The first positive result for this integration
challenge was given by [29], for the special case
of “single-minded bidders”: each bidder, i, is
interested in a specific bundle Si, for a value vi

(any bundle that contains Si is worth vi, and other
bundles have zero value). Both vi ; Si are private
to the player i.

Theorem 5 ([29]) There exists a truthful and
polynomial-time deterministic combinatorial
auction for single-minded bidders, which obtains
a
p
m-approximation to the optimal social

welfare.

A possible generalization of the basic model
is to assume that each item has B copies, and
each player still desires at most one copy from
each item. This is termed “multi-unit CA”. As B
grows, the integrality constraint of the problem
reduces, and so one could hope for better solu-
tions. Indeed, the next result exploits this idea:

Theorem 6 ([7]) There exists a truthful and
polynomial-time deterministic multi-unit CA,
for B � 3 copies of each item, that obtains
O.B �m1=.B�2//-approximation to the optimal
social welfare.

This auction copes with the representation issue
(since general valuations are assumed) by access-
ing the valuations through a “demand oracle”:
given per-item prices fpxgx2˝ , specify a bundle
S that maximizes vi .S/ �

P
x2S px .

Two main drawbacks of this auction motivate
further research on the issue. First, as B gets
larger it is reasonable to expect the approxi-
mation to approach 1 (indeed polynomial-time
algorithms with such an approximation guarantee
do exist). However here the approximation ratio
does not decrease below O.logm/ (this ratio is
achieved for B D O.logm/). Second, this auc-
tion does not provide a solution to the original
setting, where B D 1, and, in general for small

B’s the approximation factor is rather high. One
way to cope with these problems is to introduce
randomness:

Theorem 7 ([26]) There exists a truthful-in-
expectation and polynomial-time randomized
multi-unit CA, for any B � 1 copies of each item,
that obtains O.m1=.BC1//-approximation to the
optimal social welfare.

Thus, by allowing randomness, the gap from
the standard computational status is being com-
pletely closed. The definition of truthfulness-in-
expectation is the natural extension of truthful-
ness to a randomized environment: the expected
utility of a player is maximized by being truthful.

However, this notion is strictly weaker than
the deterministic notion, as this implicitly implies
that players care only about the expectation of
their utility (and not, for example, about the
variance). This is termed “the risk-neutrality”
assumption in the economics literature. An in-
termediate notion for randomized mechanisms is
that of “universal truthfulness”: the mechanism
is truthful given any fixed result of the coin toss.
Here, risk-neutrality is no longer needed. Dobzin-
ski et al. [15] give a universally truthful CA for
B D 1 that obtains an O.

p
m/-approximation.

Universally truthful mechanisms are still weaker
than deterministic truthful mechanisms, due to
two reasons: (i) It is not clear how to actually cre-
ate the correct and exact probability distribution
with a deterministic computer. The situation here
is different than in “regular” algorithmic settings,
where various derandomization techniques can
be employed, since these in general does not
carry through the truthfulness property. (ii) Even
if a natural randomness source exists, one cannot
improve the quality of the actual output by re-
peating the computation several times (using the
the law of large numbers). Such a repetition will
again destroy truthfulness. Thus, exactly because
the game-theoretic issues are being considered
in parallel to the computational ones, the impor-
tance of determinism increases.

Open Question 3 What is the best-possible
approximation ratio that deterministic and
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truthful combinatorial auctions can obtain, in
polynomial-time?

There are many valuation classes, that restrict the
possible valuations to some reasonable format
(see [28] for more details). For example, sub-
additive valuations are such that, for any two
bundles S; T;� ˝, v.S [ T / � v.S/C v.T /.
Such classes exhibit much better approx-
imation guarantees, e.g., for sub-additive
valuation a polynomial-time 2-approximation
is known [16]. However, no polynomial-time
truthful mechanism (be it randomized, or
deterministic) with a constant approximation
ratio, is known for any of these classes.

Open Question 4 Does there exist polynomial-
time truthful constant-factor approximations for
special cases of CAs that are NP-hard?

Revenue maximization in CAs is of-course
another important goal. This topic is still
mostly unexplored, with few exceptions. The
mechanism [7] obtains the same guarantees
with respect to the optimal revenue. Improved
approximations exist for multi-unit auctions
(where all items are identical) with budget
constrained players [12], and for unlimited-
supply CAs with single-minded bidders [6].

The topic of Combinatorial Auctions is
discussed also in the entry on Multiple Item
Auctions.

Problem Domain 4: Online Auctions
In the classic CS setting of “online computa-
tion”, the input to an algorithm is not revealed
all at once, before the computation begins, but
gradually, over time (for a detailed discussion
see the many entries on online problems in this
book). This structure suits the auction world,
especially in the new electronic environments.
What happens when players arrive over time, and
the auctioneer must make decisions facing only
a subset of the players at any given time?

The integration of online settings, worst-
case analysis, and auction theory, was suggested
by [24]. They considered the case where players
arrive one at a time, and the auctioneer must
provide an answer to each player as it arrives,

without knowing the future bids. There are
k identical items, and each bidder may have
a distinct value for every possible quantity of the
item. These values are assumed to be marginally
decreasing, where each marginal value lies in
the interval Œv; Nv�. The private information of
a bidder includes both her valuation function,
and her arrival time, and so a truthful auction
need to incentivize the players to arrive on time
(and not later on), and to reveal their true values.
The most interesting result in this setting is for
a large k, so that in fact there is a continuum of
items:

Theorem 8 ([24]) There exists a truthful on-
line auction that simultaneously approximates,
within a factor of O.log. Nv=v//, the optimal of-
fline welfare, and the offline revenue of VCG. Fur-
thermore, no truthful online auction can obtain
a better approximation ratio to either one of these
criteria (separately).

This auction has the interesting property of being
a “posted price” auction. Each bidder is not re-
quired to reveal his valuation function, but, rather,
he is given a price for each possible quantity, and
then simply reports the desired quantity under
these prices.

Ideas from this construction were later used
by [10] to construct two-sided online auction
markets, where multiple sellers and buyers arrive
online.

This approximation ratio can be dramatically
improved, to be a constant, 4, if one assumes
that (i) there is only one item, and (ii) player
values are i.i.d from some fixed distribution.
No a–priori knowledge of this distribution
is needed, as neither the mechanism nor the
players are required to make any use of it.
This work, [19], analyzes this by making an
interesting connection to the class of “secretary
problems”.

A general method to convert online algorithms
to online mechanisms is given by [4]. This is
done for one item auctions, and, more generally,
for one parameter domains. This method is com-
petitive both with respect to the welfare and the
revenue.
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The revenue that the online auction of The-
orem 8 manages to raise is competitive only
with respect to VCG’s revenue, which may be
far from optimal. A parallel line of works is
concerned with revenue maximizing auctions. To
achieve good results, two assumptions need to be
made: (i) there exists an unlimited supply of items
(and recall from section “Problem Domain 2:
Digital Goods and Revenue Maximization” that
F(v) is the offline optimal monopolistic fixed-
price revenue), and (ii) players cannot lie about
their arrival time, only about their value. This
last assumption is very strong, but apparently
needed. Such auctions are termed here “value-
truthful”, indicating that “time-truthfulness” is
missing.

Theorem 9 ([9]) For any � > 0, there exists
a value-truthful online auction, for the unlimited
supply case, with expected revenue of at least
.F.v//=.1C �/ �O.h=�2/.

The construction exploits principles from
learning theory in an elegant way. Posted
price auctions for this case are also possible,
in which case the additive loss increases to
O.h log log h/. Hajiaghayi et al. [19] consider
fully-truthful online auctions for revenue
maximization, but manage to obtain only
very high (although fixed) competitive ratios.
Constructing fully-truthful online auctions with
a close-to-optimal revenue remains an open
question. Another interesting open question
involves multi-dimensional valuations. The
work [24] remains the only work for players
that may demand multiple items. However
their competitive guarantees are quite high,
and achieving better approximation guarantees
(especially with respect to the revenue) is
a challenging task.

Advanced Issues

Monotonicity
What is the general way for designing a truthful
mechanism? The straight-forward way is to
check, for a given social choice function f,

whether truthful prices exist. If not, try to “fix”
f. It turns out, however, that there exists a more
structured way, an algorithmic condition that
will imply the existence of truthful prices. Such
a condition shifts the designer back to the familiar
territory of algorithmic design. Luckily, such
a condition do exist, and is best described in the
abstract social choice setting of section “Problem
Definition”:

Definition 3 ([8, 23)] A social choice function
f WV ! A is “weakly monotone” (W-MON) if
for any i, v�i 2 V�i , and any vi ; v

0
i 2 Vi , the fol-

lowing holds. Suppose that f .vi ; v�i / D a, and
f .v0i ; v�i / D b. Then v0i .b/ � vi .b/ � v0i .a/ �

vi .a/.

In words, this condition states the following.
Suppose that player i changes her declaration
from vi to v0i , and this causes the social choice
to change from a to b. Then it must be the case
that i’s value for b has increased in the transition
from vi to v0i no-less than i’s value for a.

Theorem 10 ([35]) Fix a social choice function
f WV ! A, where V is convex, and A is finite.
Then there exist prices p such that M D .f; p/ is
truthful if and only if f is weakly monotone.

Furthermore, given a weakly monotone f, there
exists an explicit way to determine the appropri-
ate prices p (see [18] for details).

Thus, the designer should aim for weakly
monotone algorithms, and need not worry about
actual prices. But how difficult is this? For single-
dimensional domains, it turns out that W-MON
leaves ample flexibility for the algorithm de-
signer. Consider for example the case where ev-
ery alternative has a value of either 0 (the player
“loses”) or some vi 2 < (the player “wins” and
obtains a value vi). In such a case, it is not hard
to show that W-MON reduces to the following
monotonicity condition: if a player wins with vi,
and increases her value to v0i > vi (while v�i

remains fixed), then she must win with v0i as
well. Furthermore, in such a case, the price of
a winning player must be set to the infimum over
all winning values.
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Impossibilities of truthful design
It is fairly simple to construct algorithms
that satisfy W-MON for single-dimensional
domains, and a variety of positive results were
obtained for such domains, in classic mechanism
design, as well as in algorithmic mechanism
design. But how hard is it to satisfy W-MON
for multi-dimensional domains? This question
is yet unclear, and seems to be one of the
challenges of algorithmic mechanism design.
The contrast between single-dimensionality and
multi-dimensionality appears in all problem
domains that were surveyed here, and seems to
reflect some inherent difficulty that is not exactly
understood yet. Given a social choice function
f, call f implementable (in dominant strategies)
if there exist prices p such that M D .f; p/ is
truthful. The basic question is then what forms of
social choice functions are implementable.

As detailed in the beginning, the welfare max-
imizing social choice function is implementable.
This specific function can be slightly generalized
to allow weights, in the following way: fix some
non-negative real constants fwig

n
iD1 (not all are

zero) and f�aga2A, and choose an alternative
that maximizes the weighted social welfare, i.e.,
f .v/ 2 argmaxa2A

P
i wivi .a/C �a. This class

of functions is sometimes termed “affine maxi-
mizers”. It turns out that these functions are also
implementable, with prices similar in spirit to
VCG. In the context of the above characterization
question, one sharp result stands out:

Theorem 11 ([34]) Fix a social choice function
f WV ! A, such that (i) A is finite, jAj � 3, and
f is onto A, and (ii) Vi D <

A for all i. Then f
is implementable (in dominant strategies) if and
only if it is an affine maximizer.

The domain V that satisfies Vi D <
A for all i

is term an “unrestricted domain”. The theorem
states that, if the domain is unrestricted, at least
three alternatives are chosen, and the set A of
alternatives is finite, then nothing besides affine
maximizers can be implemented!

However, the assumption that the domain is
unrestricted is very restrictive. All the above
example domains exhibit some basic combina-

torial structure, and are therefore restricted in
some way. And as discussed above, for many
restricted domains the theorem is simply not
true. So what is the possibilities – impossibilities
border? As mentioned above, this is an unsolved
challenge. Lavi, Mu’alem, and Nisan [23] ex-
plore this question for Combinatorial Auctions
and similar restricted domains, and reach partial
answers. For example:

Theorem 12 ([23]) Any truthful combinatorial
auction or multi-unit auction among two players,
that must always allocate all items, and that
approximates the welfare by a factor better than
2, must be an affine maximizer.

Of-course, this is far from being a complete
answer. What happens if there are more than two
players? And what happens if it is possible to
“throw away” part of the items? These questions,
and the more general and abstract characteriza-
tion question, are all still open.

Alternative solution concepts
In light of the conclusions of the previous section,
a natural thought would be to re-examine the
solution concept that is being used. Truthfulness
relies on the strong concept of dominant strate-
gies: for each player there is a unique strategy that
maximizes her utility, no matter what the other
players are doing. This is very strong, but it fits
very well the worst-case way of thinking in CS.
What other solution concepts can be used? As de-
scribed above, randomization, and truthfulness-
in-expectation, can help. A related concept, again
for randomized mechanisms, is truthfulness with
high probability. Another direction is to consider
mechanisms where players cannot improve their
utility too much by deviating from the truth-
telling strategy [21].

Algorithm designers do not care so much
about actually reaching an equilibrium point, or
finding out what will the players play – the major
concern is to guarantee the optimality of the so-
lution, taking into account the strategic behavior
of the players. Indeed, one way of doing this is to
guarantee a good equilibrium point. But there is
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no reason to rule out mechanisms where several
acceptable strategic choices for the players exist,
provided that the approximation will be achieved
in each of these choices.

As a first attempt, one is tempted to simply
let the players try and improve the basic result
by allowing them to lie. However, this can cause
unexpected dynamics, as each player chooses her
lies under some assumptions about the lies of the
others, etc. etc. To avoid such an unpredictable
situation, it is important to insist on using rigor-
ous game theoretic reasoning to explain exactly
why the outcome will be satisfactory.

The work [31] suggests the notion of “feasibly
dominant” strategies, where players reveal the
possible lies they consider, and the mechanism
takes this into account. By assuming that the
players are computationally bounded, one can
show that, instead of actually “lying”, the players
will prefer to reveal their true types plus all the
lies they might consider. In such a case, since
the mechanism has obtained the true types of
the players, a close-to-optimal outcome will be
guaranteed.

Another definition tries to capture the initial
intuition by using the classic game-theoretic no-
tion of undominated strategies:

Definition 4 ([5]) A mechanism M is an “al-
gorithmic implementation of a c-approximation
(in undominated strategies)” if there exists a set
of strategies, D, such that (i) M obtains a c-
approximation for any combination of strategies
from D, in polynomial time, and (ii) For any
strategy not in D, there exists a strategy in D
that weakly dominates it, and this transition is
polynomial-time computable.

By the second condition, it is reasonable to as-
sume that a player will indeed play some strategy
in D, and, by the first condition, it does not
matter what tuple of strategies in D will actually
be chosen, as any of these will provide the ap-
proximation. This transfers some of the burden
from the game-theoretic design to the algorithmic
design, since now a guarantee on the approxi-
mation should bu provided for a larger range of
strategies. Babaioff et al. [5] exploit this notion to

design a deterministic CA for multi-dimensional
players that achieves a close-to-optimal approxi-
mation guarantee. A similar-in-spirit notion, al-
though a weaker one, is the notion of “Set-
Nash” [25].

Applications

One of the popular examples to a “real-life” com-
binatorial auction is the spectrum auction that the
US government conducts, in order to sell spec-
trum licenses. Typical bids reflect values for dif-
ferent spectrum ranges, to accommodate different
geographical and physical needs, where different
spectrum ranges may complement or substitute
one another. The US government invests research
efforts in order to determine the best format for
such an auction, and auction theory is heavily
exploited. Interestingly, the US law guides the
authorities to allocate these spectrum ranges in
a way that will maximize the social welfare, thus
providing a good example for the usefulness of
this goal.

Adword auctions are another new and fast-
growing application of auction theory in general,
and of the new algorithmic auctions in particular.
These are auctions that determine the advertise-
ments that web-search engines place close to the
search results they show, after the user submits
her search keywords. The interested companies
compete, for every given keyword, on the right to
place their ad on the results’ page, and this turns
out to be the main source of income for com-
panies like Google. Several entries in this book
touch on this topic in more details, including
the entries on Adwords Pricing and on Position
Auctions.

A third example to a possible application, in
the meanwhile implemented only in the academic
research labs, is the application of algorithmic
mechanism design to pricing and congestion con-
trol in communication networks. The existing
fixed pricing scheme has many disadvantages,
both with respect to the needs of efficiently allo-
cating the available resources, and with respect to
the new opportunities of the Internet companies
to raise more revenue due to specific types of
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traffic. Theory suggests solutions to both of these
problems.
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Problem Definition

A phylogenetic tree is a binary, rooted, unordered
tree whose leaves are distinctly labeled. A phylo-
genetic network is a generalization of a phyloge-
netic tree formally defined as a rooted, connected,
directed acyclic graph in which (1) each node has
outdegree at most 2; (2) each node has indegree 1
or 2, except the root node which has indegree 0;
(3) no node has both indegree 1 and outdegree 1;
and (4) all nodes with outdegree 0 are labeled
by elements from a finite set L in such a way
that no two nodes are assigned the same label.
Nodes of outdegree 0 are referred to as leaves and
are identified with their corresponding elements
in L. Nodes with indegree 2 are called reticula-
tion nodes. For any phylogenetic network N , let
U.N / be the undirected graph obtained from N

by replacing each directed edge by an undirected
edge. N is said to be a galled phylogenetic
network (galled network, for short) if all cycles
in U.N / are node-disjoint. Galled networks are
also known in the literature as topologies with
independent recombination events [15], galled-
trees [6], and level-1 phylogenetic networks [2, 5,
7, 9, 10, 14].

A phylogenetic tree with exactly three leaves
is called a rooted triplet. The unique rooted triplet
on a leaf set fx; y; ´g in which the lowest com-
mon ancestor of x and y is a proper descendant
of the lowest common ancestor of x and ´ (or
equivalently, where the lowest common ances-
tor of x and y is a proper descendant of the
lowest common ancestor of y and ´) is denoted
by xyj´. For any phylogenetic network N , the
rooted triplet xyj´ is said to be consistent withN
if N contains three leaves labeled by x, y, and ´
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Fig. 1 A dense set T D
fabjc; abjd; cd ja; bcjdg
of rooted triplets with leaf
set fa; b; c; dg and a
galled phylogenetic
network that is consistent
with T . Note that this
solution is not unique
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as well as two internal vertices w and ´ such that
there are four directed paths of nonzero length
from w to a, from w to b, from ´ to w, and
from ´ to c that are vertex-disjoint except for in
the vertices w and ´. A set T of rooted triplets is
consistent with N if every rooted triplet in T is
consistent with N . See Fig. 1 for an example.

Denote the set of leaves in any phylogenetic
network N by �.N/, and for any set T of
rooted triplets, define �.T / D

S
ti2T �.ti /.

A set T of rooted triplets is dense if for each
fx; y; ´g � �.T /, at least one of the three
possible rooted triplets xyj´, x´jy, and y´jx

belongs to T . Observe that if T is dense, then
jT j D 	.j�.T /j3/. Jansson and Sung introduced
the following problem in [10].

Problem 1 Given a set T of rooted triplets, out-
put a galled networkN with�.N/ D �.T / such
that N and T are consistent, if such a network
exists; otherwise, output null.

A natural optimization version of Problem 1
is:

Problem 2 Given a set T of rooted triplets, out-
put a galled network N with �.N/ D �.T / that
is consistent with the maximum possible number
of rooted triplets belonging to T .

A generalization of Problem 1 studied by He
et al. in [8] involves forbidden rooted triplets and
is defined as follows.

Problem 3 Given two sets T and F of rooted
triplets, output a galled network N with�.N/ D
�.T / [�.F/ such that (1) N and T are consis-
tent and (2) N is not consistent with any rooted
triplet belonging to F ; if no such network exists,
output null.

Below, we write L D �.T / and n D jLj.

Key Results

As shown in [11], Problem 1 can be solved in
(optimal)O.jT j/ D O.n3/ time for dense inputs:

Theorem 1 ([11]) Given any dense set T
of rooted triplets with leaf set L, a galled
network consistent with T (if one exists) can
be constructed in O.n3/ time, where n D jLj.

The algorithm referred to in Theorem 1 was
extended by van Iersel and Kelk [14] as follows.

Theorem 2 ([14]) Given any dense set T of
rooted triplets with leaf set L, a galled network
consistent with T (if one exists) that contains
as few reticulation nodes as possible can be
constructed in O.n5/ time, where n D jLj.

For the more general case of nondense inputs,
Problem 1 becomes harder:

Theorem 3 ([11]) The problem of determining if
there exists a galled network that is consistent
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with an input nondense set T of rooted triplets
is NP-hard.

Since not all sets of rooted triplets are con-
sistent with a galled network, it is of interest to
consider Problem 2. It follows from Theorem 3
that Problem 2 is also NP-hard for nondense
inputs, and this motivates polynomial-time ap-
proximation algorithms. Say that an algorithm
for Problem 2 is an f -approximation algorithm
if it always returns a galled network N such
that N.T /

jT j � f , where N.T / is the number of
rooted triplets in T that are consistent with N .
Define the nonlinear recurrence relation S.n/ D
max1�a�n

˚�
a
3

�
C2�

�
a
2

�
�.n�a/Ca �

�
n�a

2

�
CS.n�

a/
�

for n > 0 and S.0/ D 0. It was shown in [4]

that limn!1
S.n/

3.n
3/
D 2.

p
3�1/
3


 0:488033 : : :

and that S.n/

3.n
3/

> 2.
p

3�1/
3


 0:488033 : : : for

all n > 2. The following theorem was proved by
Byrka et al. in [2].

Theorem 4 ([2]) There exists an S.n/

3.n
3/

-approxim-

ation algorithm for Problem 2 that runs in
O.n3 C njT j/ time.

A matching negative bound is:

Theorem 5 ([11]) For any f > limn!1
S.n/

3.n
3/

,

there exists a set T of rooted triplets such that
no galled network can be consistent with at least
a factor of f of the rooted triplets in T . (Thus,
no f -approximation algorithm for Problem 2 is
possible.)

For Problem 3, Theorem 3 immediately im-
plies NP-hardness by taking F D ;. The follow-
ing positive result is known for the optimization
version of Problem 3.

Theorem 6 ([8]) There exists anO.jLj2jT j.jT j
CjF j//-time algorithm for inferring a galled net-
work N that guarantees jN.T /j � jN.F/j �
5

12
� .jT j � jF j/, where L D �.T / [�.F/.

Finally, we remark that the analogous version
of Problem 1 of inferring a phylogenetic tree con-
sistent with all the rooted triplets in an input set
(when such a tree exists) can be solved in poly-
nomial time with a classical algorithm by Aho
et al. [1] from 1981. Similarly, for Problem 2, to

infer a phylogenetic tree consistent with as many
rooted triplets from an input set of rooted triplets
as possible is NP-hard and admits a polynomial-
time 1=3-approximation algorithm, which is op-
timal in the sense that there exist certain inputs
for which no tree can achieve a factor larger than
1=3. See, e.g., [3] for a survey of known results
about maximizing rooted triplet consistency for
trees. On the other hand, more complex network
structures such as the level-k phylogenetic net-
works [5] permit a higher percentage of the input
rooted triplets to be embedded; in the extreme
case, if there are no restrictions on the reticula-
tion nodes at all, then a sorting network-based
construction yields a phylogenetic network that
is trivially consistent with every rooted triplet
over L [10]. A number of efficient algorithms
for combining rooted triplets into higher level
networks have been developed; see, e.g., [2,7,14]
for further details and references.

Applications

Phylogenetic networks are used by scientists to
describe evolutionary relationships that do not
fit the traditional models in which evolution is
assumed to be treelike. Evolutionary events such
as horizontal gene transfer or hybrid speciation
(often referred to as recombination events) which
suggest convergence between objects cannot be
represented in a single tree but can be modeled in
a phylogenetic network as internal nodes having
more than one parent (i.e., reticulation nodes).
The phylogenetic network is a relatively new tool,
and various fast and reliable methods for con-
structing and comparing phylogenetic networks
are currently being developed.

Galled networks form an important class
of phylogenetic networks. They have attracted
special attention in the literature [5, 6, 15] due
to their biological significance (see [6]) and
their simple, almost treelike, structure. When
the number of recombination events is limited
and most of the recombination events have
occurred recently, a galled network may suffice
to accurately describe the evolutionary process
under study [6]. The motivation behind the
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rooted triplet approach taken here is that a highly
accurate tree for each cardinality-three subset of
the leaf set can be obtained through maximum
likelihood-based methods or Sibley-Ahlquist-
style DNA-DNA hybridization experiments
(see [13]). The algorithms mentioned above can
be used as the merging step in a divide-and-
conquer approach for constructing phylogenetic
networks analogous to the quartet method
paradigm for inferring unrooted phylogenetic
trees [12] and other supertree methods. We
consider dense input sets in particular because
this case can be solved in polynomial time.

Open Problems

The approximation factor given in Theorem 4
is expressed in terms of the number of rooted
triplets in the input T , and Theorem 5 shows that
it cannot be improved. However, if one measures
the quality of the approximation in terms of a
galled network NOP T that is consistent with
the maximum possible number of rooted triplets
from T , Theorem 4 can be far from optimal. An
open problem is to determine the polynomial-
time approximability and inapproximability of
Problem 2 when the approximation ratio is de-
fined as N.T /

NOP T .T /
instead of N.T /

jT j .
Another research direction is to develop fixed-

parameter polynomial-time algorithms for Prob-
lem 1. The level of the constructed network, the
number of allowed reticulation nodes, or some
measure of the density of the input set of rooted
triplet might be suitable parameters.

URLs to Code and Data Sets

A Java implementation of the algorithm for
Problem 1 referred to in Theorem 2 (coded by
its authors [14]) is available at http://skelk.sdf-
eu.org/marlon.html. See also http://skelk.sdf-eu.
org/lev1athan/ for a Java implementation of a
polynomial-time heuristic described in [9] for
Problem 2.
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Problem Definition

Given a communications network or road net-
work, one of the most natural algorithmic ques-
tions is how to determine the shortest path from
one point to another. The all pairs shortest path
problem (APSP) is, given a directed graph G D
.V;E; l/, to determine the distance and shortest
path between every pair of vertices, where jV j D
n; jEj D m, and l W E ! R is the edge length
(or weight) function. The output is in the form

of two n � n matrices: D.u; v/ is the distance
from u to v and S.u; v/ D w if (u;w) is the
first edge on a shortest path from u to v. The
APSP problem is often contrasted with the point-
to-point and single source (SSSP) shortest path
problems. They ask for, respectively, the shortest
path from a given source vertex to a given target
vertex and all shortest paths from a given source
vertex.

Definition of Distance
If ` assigns only non-negative edge lengths then
the definition of distance is clear: D.u; v/ is the
length of the minimum length path from u to v,
where the length of a path is the total length of
its constituent edges. However, if ` can assign
negative lengths then there are several sensible
notations of distance that depend on how negative
length cycles are handled. Suppose that a cycle
C has negative length and that u; v 2 V are
such that C is reachable from u and v reachable
from C . Because C can be traversed an arbitrary
number of times when traveling from u to v, there
is no shortest path from u to v using a finite
number of edges. It is sometimes assumed a priori
that G has no negative length cycles; however it
is cleaner to define D.u; v/ D �1 if there is no
finite shortest path. If D.u; v/ is defined to be the
length of the shortest simple path (no repetition of
vertices) then the problem becomes NP-hard. (If
all edges have length�1 thenD.u; v/ D �.n�1/
if and only if G contains a Hamiltonian path [7]
from u to v.) One could also define distance to be
the length of the shortest path without repetition
of edges.

Classic Algorithms
The Bellman-Ford algorithm solves SSSP in
O(mn) time and under the assumption that edge
lengths are non-negative, Dijkstra’s algorithm
solves it in O.m C n logn/ time. There is a
well known O(mn)-time shortest path preserving
transformation that replaces any length function
with a non-negative length function. Using
this transformation and n runs of Dijkstra’s
algorithm gives an APSP algorithm running in
O.mn C n2 logn/ D O.n3/ time. The Floyd-
Warshall algorithm computes APSP in a more
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direct manner, in O.n3/ time. Refer to [4] for
a description of these algorithms. It is known
that APSP on complete graphs is asymptotically
equivalent to (min, C) matrix multiplication
[1], which can be computed by a non-uniform
algorithm that performs O.n2:5/ numerical
operations [6].

Integer-Weighted Graphs
Much recent work on shortest paths assume
that edge lengths are integers in the range
f�C; : : : ; C g or f0; : : : ; C g. One line of research
reduces APSP to a series of standard matrix
multiplications. These algorithms are limited in
their applicability because their running times
scale linearly with C . There are faster SSSP
algorithms for both non-negative edge lengths
and arbitrary edge lengths. The former exploit
the power of RAMs to sort in o.n logn/ time
and the latter are based on the scaling technique.
See Zwick [20] for a survey of shortest path
algorithms up to 2001.

Key Results

Pettie’s APSP algorithm [12] adapts the hier-
archy approach of Thorup [16] (designed for
undirected, integer-weighted graphs) to general
real-weighted directed graphs. Theorem 1 is the
first improvement over theO.mnCn2 logn/ time
bound of Dijkstra’s algorithm on arbitrary real-
weighted graphs.

Theorem 1 Given a real-weighted directed
graph, all pairs shortest paths can be solved
in O.mnC n2 log logn/ time.

This algorithm achieves a logarithmic speedup
through a trio of new techniques. The first is to
exploit the necessary similarity between the SSSP
trees emanating from nearby vertices. The second
is a method for computing discrete approximate
distances in real-weighted graphs. The third is
a new hierarchy-type SSSP algorithm that runs
in O.m C n log logn/ time when given suitably
accurate approximate distances.

Theorem 1 should be contrasted with the time
bounds of other hierarchy-type APSP algorithms
[11, 14, 16].

Theorem 2 ([14], 2005) Given a real-weighted
undirected graph, APSP can be solved in
O.mn log˛.m; n// time.

Theorem 3 ([16], 1999) Given an undirected
graph G.V;E; l/, where ` assigns integer edge
lengths in the range f � 2w�1; : : : ; 2w�1 � 1g,
APSP can be solved in O.mn/ time on a RAM
with w-bit word length.

Theorem 4 ([13], 2002) Given a real-weighted
directed graph, APSP can be solved in
polynomial time by an algorithm that performs
O.mn log˛.m; n// numerical operations, where
˛ is the inverse-Ackermann function.

A secondary result of [12, 14] is that no
hierarchy-type shortest path algorithm can
improve on the O.m C n logn/ running time
of Dijkstra’s algorithm.

Theorem 5 Let G be an input graph such
that the ratio of the maximum to minimum
edge length is r . Any hierarchy-type SSSP
algorithm performs�.mCmin fn logn; n log rg/
numerical operations if G is directed and
�.m C min fn logn; n log log rg/ if G is
undirected.

Applications

Shortest paths appear as a subproblem in other
graph optimization problems; the minimum
weight perfect matching, minimum cost flow,
and minimum mean-cycle problems are some
examples. A well known commercial application
of shortest path algorithms is finding efficient
routes on road networks; see, for example,
Google Maps, MapQuest, or Yahoo Maps.

Open Problems

The longest standing open shortest path problems
are to improve the SSSP algorithms of Dijkstra’s
and Bellman-Ford on real-weighted graphs.



54 All Pairs Shortest Paths in Sparse Graphs

Problem 1 Is there an o(mn) time SSSP or point-
to-point shortest path algorithm for arbitrarily
weighted graphs?

Problem 2 Is there an O.m/ C o.n logn/ time
SSSP algorithm for directed, non-negatively
weighted graphs? For undirected graphs?

A partial answer to Problem 2 appears in
[14], which considers undirected graphs. Perhaps
the most surprising open problem is whether
there is any (asymptotic) difference between the
complexities of the all pairs, single source, and
point-to-point shortest path problems on arbitrar-
ily weighted graphs.

Problem 3 Is point-to-point shortest paths eas-
ier than all pairs shortest paths on arbitrarily
weighted graphs?

Problem 4 Is there a truly subcubic APSP al-
gorithm, i.e., one running in time O.n3��/? In
a recent breakthrough on this problem, Williams
[19] gave a new APSP algorithm running in

n3=2‚.
p

log n= log log n/ time. Vassilevska Williams
and Williams [17] proved that a truly subcubic
algorithm for APSP would imply truly subcubic
algorithms for other graph problems.

Experimental Results

See [5, 8, 15] for recent experiments on SSSP
algorithms. On sparse graphs the best APSP al-
gorithms use repeated application of an SSSP
algorithm, possibly with some precomputation
[15]. On dense graphs cache-efficiency becomes
a major issue. See [18] for a cache conscious
implementation of the Floyd-Warshall algorithm.

The trend in recent years is to construct a lin-
ear space data structure that can quickly answer
exact or approximate point-to-point shortest path
queries; see [2, 6, 9, 10].

Data Sets

See [5] for a number of U.S. and European road
networks.

URL to Code

See [5].
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Problem Definition

The all pairs shortest path (APSP) problem is
to compute shortest paths between all pairs of
vertices of a directed graph with nonnegative real
numbers as edge costs. Focus is given on shortest
distances between vertices, as shortest paths can
be obtained with a slight increase of cost. Classi-
cally, the APSP problem can be solved in cubic
time of O.n3/. The problem here is to achieve
a sub-cubic time for a graph with small integer
costs.

A directed graph is given by G D .V;E/,
where V D f1; : : : ; ng, the set of vertices, and E
is the set of edges. The cost of edge .i; j / 2 E is
denoted by dij . The .n; n/-matrixD is one whose
.i; j / element is dij . It is assumed for simplicity
that dij > 0 and di i D 0 for all i ¤ j . If
there is no edge from i to j , let dij D 1. The
cost, or distance, of a path is the sum of costs of
the edges in the path. The length of a path is the
number of edges in the path. The shortest distance
from vertex i to vertex j is the minimum cost
over all paths from i to j , denoted by d�ij . Let
D� D fd�ij g. The value of n is called the size of
the matrices.

Let A and B are .n; n/-matrices. The three
products are defined using the elements of A and
B as follows: (1) Ordinary matrix product over a
ring C D AB (2) Boolean matrix product C D
A � B (3) Distance matrix product C D A � B ,
where

.1/ cij D

nX

kD1

aikbkj ; .2/ cij D

n_

kD1

aik ^ bkj ;

.3/ cij D min
1�k�n

faik C bkj g:

The matrix C is called a product in each case; the
computational process is called multiplication,
such as distance matrix multiplication. In those
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three cases, k changes through the entire set
f1; : : :; ng. A partial matrix product of A and
B is defined by taking k in a subset I of V .
In other words, a partial product is obtained
by multiplying a vertically rectangular matrix,
A.�; I /, whose columns are extracted from A

corresponding to the set I , and similarly a hor-
izontally rectangular matrix, B.I;�/, extracted
from B with rows corresponding to I . Intuitively,
I is the set of check points k, when going from i

to j .
The best algorithm [11] computes (1) in

O.n!/ time, where ! D 2:373. This was recently
achieved as improvement from ! D 2:376 in [4]
after more than two decades of interval. We
use ! D 2:376 to describe Zwick’s result in
this article. Three decimal points are carried
throughout this article. To compute (2), Boolean
values 0 and 1 in A and B can be regarded
as integers and use the algorithm for (1), and
convert nonzero elements in the resulting matrix
to 1. Therefore, this complexity is O.n!/. The
witnesses of (2) are given in the witness matrix
W D fwij g where wij D k for some k such that
aik ^ bkj D 1. If there is no such k, wij D 0.
The witness matrix W D fwij g for (3) is defined
by wij D k that gives the minimum to cij . If
there is an algorithm for (3) with T .n/ time,
ignoring a polylog factor of n, the APSP problem
can be solved in QO.T .n// time by the repeated
squaring method, described as the repeated use
of D D �D O.logn/ times.

The definition here of computing shortest
paths is to give a witness matrix of size n by
which a shortest path from i to j can be given
in O.`/ time where ` is the length of the path.
More specifically, if wij D k in the witness
matrix W D fwij g, it means that the path from
i to j goes through k. Therefore, a recursive
function path.i; j / is defined by .path.i; k/, k,
path.k; j // if path.i; j / D k > 0 and nil if
path.i; j / D 0, where a path is defined by a list
of vertices excluding endpoints. In the following
sections, k is recorded in wij whenever k is found
such that a path from i to j is modified or newly
set up by paths from i to k and from k to j .
Preceding results are introduced as a framework
for the key results.

Alon-Galil-Margalit Algorithm
The algorithm by Alon, Galil, and Margalit [1]
is reviewed. Let the costs of edges of the given
graph be ones. Let D.`/ be the `-th approximate
matrix for D� defined by d .`/

ij D d�ij if d�ij � `,

and d .`/
ij D 1 otherwise. Let A be the adjacency

matrix of G, that is, aij D 1 if there is an edge
.i; j /, and aij D 0, otherwise. Let ai i D 1 for
all i . The algorithm consists of two phases. In the
first phase, D.`/ is computed for ` D 1; : : :; r ,
by checking the .i; j / element of A` D fa`

ij g.

Note that if a`
ij D 1, there is a path from i

to j of length ` or less. Since Boolean matrix
multiplication can be computed in O.n!/ time,
the computing time of this part is O.rn!/.

In the second phase, the algorithm computes

D.`/ for ` D r ,
˙

3
2
r
	

,
l

3
2

˙
3
2
r
	m
; : : : ; n0 by

repeated squaring, where n0 is the smallest integer
in this sequence of ` such that ` � n. Let
Ti˛ D fj jd

.`/
ij D ˛g and Ii D Ti˛ such

that jTi˛j is minimum for d`=2e � ˛ � `.
The key observation in the second phase is that
it is only needed to check k in Ii whose size
is not larger than 2n=`, since the correct dis-
tances between `C1 and d3`=2e can be obtained
as the sum d

.`/

ik
C d

.`/

kj
for some k satisfying

d`=2e � d
.`/

ik
� `. The meaning of Ii is

similar to I for partial products except that I
varies for each i . Hence, the computing time of
one squaring is O.n3=`/. Thus, the time of the
second phase is given with N D dlog3=2 n=re

by O
�PN

sD1 n
3=..3=2/sr/

�
D O.n3=r/. Bal-

ancing the two phases with rn! D n3=r yields
O.n.!C3/=2/ D O.n2:688/ time for the algorithm
with r D O.n.3�!/=2/.

Witnesses can be kept in the first phase in
time polylog of n by the method in [2]. The
maintenance of witnesses in the second phase is
straightforward.

When a directed graphG whose edge costs are
integers between 1 and M is given, where M is a
positive integer, the graph G can be expanded to
G0 by creating up to M � 1 new vertices for each
vertex and replacing each edge by up toM edges
with unit cost. Obviously, the problem for G can
be solved by applying the above algorithm to G0,
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which takes O
�
.Mn/.!C3/=2

�
time. This time is

sub-cubic when M < n0:116. The maintenance
of witnesses has an extra polylog factor in each
case.

For undirected graphs with unit edge costs,
QO.n!/ time is known in Seidel [9].

Takaoka Algorithm
When the edge costs are bounded by a positive in-
teger M , a better algorithm can be designed than
in the above as shown in Takaoka [10]. Romani’s
algorithm [7] for distance matrix multiplication is
reviewed briefly.

Let A and B be .n;m/ and .m; n/ distance
matrices whose elements are bounded by M or
infinite. Let the diagonal elements be 0. A and
B are converted into A0 and B 0 where a0ij D

.m C 1/M�aij , if aij ¤ 1, 0, otherwise, and
b0ij D .mC 1/

M�bij , if bij ¤1, 0, otherwise.
Let C 0 D A0B 0 be the product by ordinary

matrix multiplication and C D A � B be that
by distance matrix multiplication. Then, it holds
that

c0ij D

mX

kD1

.mC 1/2M�.aikCbkj /;

cij D 2M � blogmC1 c
0
ij c:

This distance matrix multiplication is called
.n;m/-Romani. In this section, the above
multiplication is used with square matrices, that
is, .n; n/-Romani is used. In the next section, the
case where m < n is dealt with.
C can be computed with O.n!/ arithmetic

operations on integers up to .n C 1/M . Since
these values can be expressed by O.M logn/
bits and Schönhage and Strassen’s algorithm
[8] for multiplying k-bit numbers takes
O.k log k log log k/ bit operations, C can be
computed in O.n!M logn log.M logn/ log log
.M logn// time, or QO.Mn!/ time.

The first phase is replaced by the one based on
.n; n/-Romani and the second phase is modified
based on path lengths, not distances.

Note that the bound M is replaced by `M

in the distance matrix multiplication in the first

phase. Ignoring polylog factors, the time for the
first phase is given by QO.n!r2M/. It is as-
sumed that M is O.nk/ for some constant k.
Balancing this complexity with that of second
phase, O.n3=r/, yields the total computing time
of QO.n.6C!/=3M 1=3/ with the choice of r D
O.n.3�!/=3M�1=3/. The value of M can be al-
most O.n0:624/ to keep the complexity within
sub-cubic.

Key Results

Zwick improved the Alon-Galil-Margalit algo-
rithm in several ways. The most notable is an im-
provement of the time for the APSP problem with
unit edge costs fromO.n2:688/ toO.n2:575/. The
main accelerating engine in Alon-Galil-Margalit
[1] was the fast Boolean matrix multiplication
and that in Takaoka [10] was the fast distance ma-
trix multiplication by Romani, both powered by
the fast matrix multiplication of square matrices.

In this section, the engine is the fast distance
matrix multiplication by Romani powered by the
fast matrix multiplication of rectangular matrices
given by Coppersmith [3] and Huang and Pan
[5]. Suppose the product of .n;m/ matrix and
.m; n/matrix can be computed withO.n!.1;�;1//

arithmetic operations, where m D n� with 0 �
� � 1. Several facts such as O.n!.1;1;1// D

O.n2:376/ and O.n!.1;0:294;1// D QO.n2/ are
known. To compute the product of .n; n/ square
matrices, n1�� matrix multiplications are needed,
resulting in O.n!.1;�;1/C1��/ time, which is re-
formulated as O.n2C�/, where � satisfies the
equation !.1; �; 1/ D 2� C 1. Also, the upper
bound of !.1; �; 1/ is given by

!.1; �; 1/ D 2; if 0 � � � ˛

!.1; �; 1/ D 2C .! � 2/

.� � ˛/=.1 � ˛/; if ˛ � � � 1

The best known value for �, when [12] was
published, was � D 0:575, derived from the
above formulae, ˛ > 0:294 and ! < 2:376.
So, the time becomes O.n2:575/, which is not as
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good as O.n2:376/. Thus, we use the algorithm
for rectangular matrices in the following.

The above algorithm for rectangular matrix
multiplication is incorporated into .n;m/-
Romani with m D n� and M D nt , and
the computing time of QO.Mn!.1;�;1//. The
next step is how to incorporate .n;m/-Romani
into the APSP algorithm. The first algorithm
is a monophase algorithm based on repeated
squaring, similar to the second phase of the
algorithm in [1]. To take advantage of rectangular
matrices in .n;m/-Romani, the following
definition of the bridging set is needed, which
plays the role of the set I in the partial distance
matrix product in section “Problem Definition.”

Let ı.i; j / be the shortest distance from i to j ,
and �.i; j / be the minimum length of all shortest
paths from i to j . A subset I of V is an `-
bridging set if it satisfies the condition that if
�.i; j / � `, there exists k 2 I such that ı.i; j / D
ı.i; k/C ı.k; j /. I is a strong `-bridging set if it
satisfies the condition that if �.i; j / � `, there
exists k 2 I such that ı.i; j / D ı.i; k/C ı.k; j /
and �.i; j / D �.i; k/ C �.k; j /. Note that those
two sets are the same for a graph with unit edge
costs.

Note that if .2=3/` � �.i; j / � ` and I is
a strong `=3-bridging set, there is a k 2 I such
that ı.i; j / D ı.i; k/ C ı.k; j / and �.i; j / D
�.i; k/ C �.k; j /. With this property of strong
bridging sets, .n;m/-Romani can be used for the
APSP problem in the following way. By repeated
squaring in a similar way to Alon-Galil-Margalit,
the algorithm computes D.`/ for ` D 1,

˙
3
2

	
,l

3
2

˙
3
2

	m
; : : : ; n0, where n0 is the first value of

` that exceeds n, using various types of set I
described below. To compute the bridging set, the
algorithm maintains the witness matrix with extra
polylog factor in the complexity. In [12], there are
three ways for selecting the set I . Let jI j D nr

for some r such that 0 � r � 1.

1. Select 9n lnn=` vertices for In from V at
random. In this case, it can be shown that
the algorithm solves the APSP problem with
high probability, i.e., with 1 � 1=nc for some
constant c > 0, which can be shown to

be 3. In other words, I is a strong `=3-
bridging set with high probability. The time T
is dominated by .n;m/-Romani. It holds that
T D QO.`Mn!.1;r;1//, since the magnitude
of matrix elements can be up to `M . Since
m D O.n lnn=`/ D nr , it holds that ` D
QO.n1�r /, and thus T D O.Mn1�rn!.1;r;1//.

When M D 1, this bound on r is � D
0:575, and thus T D O.n2:575/. When M D
nt � 1, the time becomes O.n2C�.t//, where
t � 3 � ! D 0:624 and � D �.t/ satisfies
!.1; �; 1/ D 1C2�� t . It is determined from
the best known !.1; �; 1/ and the value of t .
As the result is correct with high probability,
this is a randomized algorithm.

2. Consider the case of unit edge costs here.
In (1), the computation of witnesses is an
extra thing, i.e., not necessary if only shortest
distances are needed. To achieve the same
complexity in the sense of an exact algorithm,
not a randomized one, the computation of
witnesses is essential. As mentioned earlier,
maintenance of witnesses, that is, matrix W ,
can be done with an extra polylog factor,
meaning the analysis can be focused on Ro-
mani within the QO-notation. Specifically, I
is selected as an `=3-bridging set, which is
strong with unit edge costs. To compute I
as an O.`/-bridging set, obtain the vertices
on the shortest path from i to j for each i
and j using the witness matrix W in O.`/
time. After obtaining those n2 sets spending
O.`n2/ time, it is shown in [12] how to obtain
aO.`/-bridging set ofO.n lnn=`/ size within
the same time complexity. The process of
obtaining the bridging set must stop at ` D
n1=2 as the process is too expensive beyond
this point, and thus, the same bridging set is
used beyond this point. The time before this
point is the same as that in (1) and that after
this point is QO.n2:5/. Thus, this is a two-phase
algorithm.

3. When edge costs are positive and bounded
by M D nt > 0, a similar procedure can
be used to compute an O.`/-bridging set of
O.n lnn=`/ size in QO.`n2/ time. Using the
bridging set, the APSP problem can be solved
in QO.n2C�.t// time in a similar way to (1).
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The result can be generalized into the case
where edge costs are between �M and M

within the same time complexity by modifying
the procedure for computing an `-bridging set,
provided there is no negative cycle. The details
are shown in [12].

Applications

The eccentricity of a vertex v of a graph is the
greatest distance from v to any other vertices. The
diameter of a graph is the greatest eccentricity of
any vertices. In other words, the diameter is the
greatest distance between any pair of vertices. If
the corresponding APSP problem is solved, the
maximum element of the resulting matrix is the
diameter.

Open Problems

Recently, LeGall [6] discovered an algorithm
for multiplying rectangular matrices with
!.1; 0:530; 1/ < 2:060, which gives the upper
bound � < 0:530. This improves the complexity
of APSP with unit edge costs from O.n2:575/

by Zwick to O.n2:530/ in the same framework
as that of Zwick in this article. Two major
challenges are stated here among others. The
first is to improve the complexity of QO.n2:530/

for the APSP with unit edge costs.
The other is to improve the bound of M <

O.n0:624/ for the complexity of the APSP with
integer costs up to M to be sub-cubic.
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Problem Definition

All-distances sketches (The term least element
lists was used in [3]; the terms MV/D lists and
Neighborhood summaries were used in [6].) are
randomized summary structures of the distance
relations of nodes in a graph. The graph can
be directed or undirected, and edges can have
uniform or general nonnegative weights.

Preprocessing Cost
A set of sketches, ADS.v/ for each node v,
can be computed efficiently, using a near-linear
number of edge traversals. The sketch sizes are
well concentrated, with logarithmic dependence
on the total number of nodes.

Supported Queries
The sketches support approximate distance-based
queries, which include:

• Distance distribution: The query specifies a
node v and value d � 0 and returns the
cardinality jNd .v/j of the d -neighborhood of
v Nd .v/ D fu j dvu � dg, where duv

is the shortest path distance from u to v.
We are interested in estimating jNd .v/j from
ADS.v/.

A related property is the effective diameter
of the graph, which is a quantile of the dis-
tance distribution of all node pairs; we are in-
terested in computing an estimate efficiently.

• Closeness centrality (distance-decaying)
is defined for a node v, a monotone
nonincreasing function ˛.x/ � 0 (where
˛.C1/ 	 0), and a nonnegative function
ˇ.u/ � 0:

C˛;ˇ .v/ D
X

u

˛.dvu/ˇ.u/ : (1)

The function ˛ specifies the decay of rele-
vance with distance and the function ˇ weighs
nodes based on metadata to focus on a topic or
property of relevance. Neighborhood cardinal-
ity is a special case obtained using ˇ 	 1 and
˛.x/ D 1 if x � d and ˛.x/ D 0 otherwise.
The number of reachable nodes from v is

obtained using ˛.x/ 	 1. Also studied were
exponential decay ˛.x/ D 2�x with distance
[10], the (inverse) harmonic mean of distances
˛.x/ D 1=x [1, 14], and general decay func-
tions [4,6]. We would like to estimate C˛;ˇ .v/

from ADS.v/.
• Closeness similarity [8] relates a pair of nodes

based on the similarity of their distance rela-
tions to all other nodes.

SIM
˛;ˇ

.v; u/ D

P
j ˛.maxfdu;j ; dv;j g/ˇ.j /P
j ˛.minfdu;j ; dv;j g/ˇ.j /

:

(2)
We would like to estimate SIM˛;ˇ .v; u/ 2
Œ0; 1� from ADS.v/ and ADS.u/.

• Timed influence of a seed set S of nodes
depends on the set of distances from S to other
nodes. Intuitively, when edge lengths model
transition times, the distance is the “elapsed
time” needed to reach the node from S . Influ-
ence is higher when distances are shorter:

INF
˛;ˇ
.S/ D

X

j

˛.min
i2S

dij /ˇ.j / : (3)

We would like to estimate INF˛;ˇ .S/ from the
sketches fADS.v/ j v 2 Sg.

• Approximate distance oracles: For two nodes
v; u, use ADS.u/ and ADS.v/ to estimate du;v .

Key Results

We provide a precise definition of ADSs,
overview algorithms for scalable computation,
and finally discuss estimators.

Definition
The ADS of a node v, ADS.v/, is a set of node ID
and distance pairs .u; dvu/. The included nodes
are a sample of the nodes reachable from v.
The sampling is such that the inclusion proba-
bility of a node is inversely proportional to its
Dijkstra rank (nearest neighbor rank). That is, the
probability that the i th closest node is sampled is
proportional to 1=i .

The ADSs are defined with respect to random
mappings/permutations r of the set of all nodes
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and come in three flavors: bottom-k, k-mins, and
k-partition. The integer parameter k determines
a tradeoff between the sketch size and computa-
tion time on one hand and the information and
estimate quality on the other. For simplicity, we
assume here that distances dvu are unique for dif-
ferent u (using tie breaking). We use the notation
˚<u.v/ for the set of nodes that are closer to
node v than node u and �vu D 1 C j˚<u.v/j

for the Dijkstra rank of u with respect to v (u is
the �vu closest node from v). For a set N and
a numeric function r W N , the function kr th.N /
returns the kth smallest value in the range of r on
N . If jN j < k, then we define kr th.N / to be the
supremum of the range of r .

A bottom-k ADS [3,7] is defined with respect to
a single random permutation r . ADS.v/ includes
a node u if and only if the rank r.u/ is one of the
k smallest ranks among nodes that are at least as
close to v:

u 2 ADS.v/ ” r.u/ < kr th.˚<u.v//: (4)

A k-partition ADS (implicit in) [2] is defined
with respect to a random partition BUCKET W

V ! Œk� of the nodes to k subsets and a random
permutation r . ADS.v/ includes u if and only if
u has the smallest rank among nodes in its bucket
that are at least as close to v.

u 2 ADS.v/ ” r.u/

< min



r.h/ j

BUCKET.h/ D BUCKET.u/
^h 2 ˚<u.v/

�
:

A k-mins ADS [3, 15] is k bottom-1 ADSs, de-
fined with respect to k independent permutations.

It is often convenient to specify the ranks
r.j / and (for k-partition ADSs) the bucket
BUCKET.j / using random hash functions, so they
are readily available from the node ID. The same
randomization is used for all nodes, which results
in the sketches being coordinated. This means
that a node sampled in one sketch is more likely
to be included in other sketches. Coordination is
an artifact of scalable computation of the sketches

but also facilitates more accurate similarity and
influence queries.

Relation to MINHASH Sketches
All-distances sketches are related to MINHASH

sketches: ADS.v/ is the union of the MINHASH

sketches of the neighborhoods Nd .v/, for all
possible values of d . We explain how a MIN-
HASH sketch of a neighborhood Nd .v/ can be
obtained from ADS.v/. From a k-mins ADS,
we obtain a k-mins MINHASH sketch of Nd .v/,
which includes for each of the k permutations r
the value x  minu2Nd .v/ r.u/. Note that x is the
minimum rank of a node of distance at most d in
the respective bottom-1 ADS defined for r . The
k minimum rank values x.t/ t 2 Œk� we obtain
from the different permutations are the k-mins
MINHASH sketch of Nd .v/. We now consider
obtaining a bottom-k MINHASH sketch ofNd .v/

from a bottom-k ADS.v/. The MINHASH sketch
of Nd .v/ includes the k nodes of minimum rank
in Nd .v/, which are also the k nodes of mini-
mum rank in ADS.v/ within distance at most d .
Finally, a k-partition MINHASH sketch of Nd .v/

is similarly obtained from a k-partition ADS by
taking, for each bucket i 2 Œk�, the smallest rank
value of a node in bucket i that is in Nd .v/. This
is also the smallest value in ADS.v/ over nodes
in bucket i that have distance at most d from v.

Direction
For directed graphs, influence, centrality, and
closeness similarity queries can be defined with
respect to either forward or reversed distances.
Accordingly, we can separately consider for each
node v the forward ADS and the backward ADS
of each node, which are defined respectively
using forward or reverse paths from v.

Node Weights
All the ADS flavors can be extended to be with
respect to specified node weights ˇ.v/ � 0 [3,4].
This makes queries formulated with respect to the
weights more efficient.

Algorithms
There are two meta-approaches for scalable
computation of an ADS set. The first approach,



62 All-Distances Sketches

PRUNEDDIJKSTRA (Algorithm 1), performs
pruned applications of Dijkstra’s single-
source shortest paths algorithm (BFS when
unweighted) [3, 7]. The second approach, DP
(implicit in [2, 15]), applies to unweighted
graphs and is based on dynamic programming
or Bellman-Ford shortest paths computation.
LOCALUPDATES (Algorithm 2) [4] extends DP
to weighted graphs. LOCALUPDATES is node-
centric and is appropriate for MapReduce or
similar platforms, but can incur more overhead
than PRUNEDDIJKSTRA. The algorithms are
presented for bottom-k sketches, but both
approaches can be easily adopted to work with
all three ADS flavors.

Algorithm 1: ADS set for G via PRUNED-
DIJKSTRA

1 for u by increasing r.u/ do
2 Perform Dijkstra from u on GT (the transpose

graph)
3 foreach scanned node v do
4 if jf.x; y/ 2 ADS.u/ j y < dvugj D k

then
5 prune Dijkstra at v
6 else
7 ADS.v/ ADS.v/[f.r.u/; dvu/g

Both PRUNEDDIJKSTRA and DP can be
performed in O.km logn/ time (on unweighted
graphs) on a single processor in main memory,
where n and m are the number of nodes and
edges in the graph. These algorithms maintain a
partial ADS for each node, as entries of node
ID and distance pairs. ADS.v/ is initialized
with the pair .v; 0/. The basic operation we
use is edge relaxation: when relaxing .v; u/,
ADS.v/ is updated using ADS.u/. For bottom-k,
the relaxation modifies ADS.v/ when ADS.u/
contains a node i such that r.i/ is smaller than
the kth smallest rank among nodes in ADS.v/
with distance at most dui C wvu from v. Both
PRUNEDDIJKSTRA and DP perform relaxations
in an order which guarantees that inserted entries
are part of the final ADS, that is, there are no
other nodes that are both closer and have lower
rank: PRUNEDDIJKSTRA iterates over all nodes

in increasing rank, runs Dijkstra’s algorithm from
the node on the transpose graph, and prunes at
nodes when the ADS is not updated. DP performs
iterations, where in each iteration, all edges
.v; u/; such that ADS.v/ was updated in the
previous step, are relaxed. Therefore, entries are
inserted by increasing distance.

Algorithm 2: ADS set for G via LOCALUP-
DATES

// Initialization
1 for u do
2 ADS.u/ f.r.u/; 0/g

// Propagate updates .r; d/ at node
u

3 if .r; d/ is added to ADS.u/ then
4 foreach y j .u; y/ 2 G do
5 send .r; d C w.u; y// to y

// Process update .r; d/ received at
u

6 if node u receives .r; d/ then
7 if r < kth

xf.x; y/ 2 ADS.u/ j y < dg then
8 ADS.u/ ADS.u/[ f.r.v/; d/g

// Clean-up ADS.u/
9 for entries .x; y/ 2 ADS.u/ j y > d by

increasing y do
10 if x > kth

h
f.h; ´/ 2 ADS.u/ j ´ < yg

then
11 ADS.u/ ADS.u/ n .x; y/

Estimation

Distance Distribution
Neighborhood cardinality queries for a node v,
and d � 0 can be estimated with a small
relative error from ADS.v/. The generic estima-
tor extracts a MINHASH sketch of the neighbor-
hood Nd .v/ from ADS.v/ and applies a MIN-
HASH cardinality estimator to this sketch. This
approach was used in [3, 7, 15]. A nearly optimal
estimator, the Historic Inverse Probability (HIP)
estimator [4], has a factor 2 improvement in
variance by using all information in the ADS
instead of just the MINHASH sketch. HIP works
by considering for each entry .u; d / in the sketch,
the HIP threshold probability, which is the prob-
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ability, under randomly drawn rank for the node
u, but fixing ranks of all other nodes, that the
entry is included in the sketch. The entry then
obtains an adjusted weight that is the inverse
of the HIP threshold probability. Neighborhood
cardinality can be estimated by the sum of the
adjusted weights of ADS entries that fall in the
neighborhood.

Closeness Centrality (Distance-Decaying)
C˛;ˇ .v/ can be estimated from ADS.v/ with a
small relative error when the set of ADSs is
computed with respect to ˇ. Estimators using
MINHASH sketches were given in [6]. The tighter
HIP estimator in [4] simply sums, over entries
.u; d / 2 ADS.v/, the product of the adjusted
weight of the entry and ˛.d/ˇ.u/.

Closeness Similarity and Influence
When the sketches are computed with respect to
ˇ, the closeness similarity of two nodes u and
v can be estimated from ADS.u/ and ADS.v/
within a small additive � [8]. The influence of a
set of nodes S can be estimated from fADS.v/ j
v 2 Sg to within a small relative error [9]. These
estimators are instances of the L� estimator [5]
applied with the HIP inclusion probabilities [4].

Approximate Distance Oracles
An upper bound on the distance of two nodes u; v
can be computed from ADS.u/ and ADS.v/ [8].
This is done by looking at the minimum, over
nodes h that are in the intersection ADS.u/ \
ADS.v/, of duh C dhv . When the graph is undi-
rected, the oracle has worst-case quality guaran-
tees that match the distance oracle of [16] (oracle
time can be improved by looking only at nodes in
the few ADS entries that correspond to k D 1).
We note that observed quality in practice (using
the full oracle) tends to have a small relative
error [8].

Applications

Massive graphs, with billions of edges, are preva-
lent and model web graphs and social networks.
Centralities, similarities, influence, and distances

are basic data analysis tasks on these graphs.
ADSs are a powerful tool for scalable analysis of
very large graphs.

Extensions
An ADS can be viewed as a MINHASH sketch
constructed from a stream, where all updates are
recorded. This means that the HIP estimator [4]
can be applied for distinct counting on streams,
obtaining improved performance over estimators
applied to the MINHASH sketch alone [11, 12].

In a graph context, ADS.v/ is a recording of
all updates to a MINHASH sketch obtained by
sweeping through nodes in increasing distance
from v. More generally, we can construct ADS
for other settings and apply the same estimation
machinery. One example is Euclidean distances
[6, 13]. Another example is constructing a com-
bined ADS of multiple graphs for the application
of timed influence oracles [9].

Cross-References

�All-Distances Sketches can be viewed as an
extension of �Min-Hash Sketches. They are also
�Coordinated Sampling.

Recommended Reading

1. Boldi P, Vigna S (2014) Axioms for centrality. Inter-
net Math 10:222–262

2. Boldi P, Rosa M, Vigna S (2011) HyperANF: ap-
proximating the neighbourhood function of very large
graphs on a budget. In: WWW, Hyderabad

3. Cohen E (1997) Size-estimation framework with ap-
plications to transitive closure and reachability. J
Comput Syst Sci 55:441–453

4. Cohen E (2014) All-distances sketches, revisited: HIP
estimators for massive graphs analysis. In: PODS.
ACM. http://arxiv.org/abs/1306.3284

5. Cohen E (2014) Estimation for monotone sam-
pling: competitiveness and customization. In: PODC.
ACM. http://arxiv.org/abs/1212.0243, full version
http://arxiv.org/abs/1212.0243

6. Cohen E, Kaplan H (2007) Spatially-decaying ag-
gregation over a network: model and algorithms.
J Comput Syst Sci 73:265–288. Full version of a
SIGMOD 2004 paper

7. Cohen E, Kaplan H (2007) Summarizing data using
bottom-k sketches. In: PODC, Portland. ACM



64 Alternate Parameterizations

8. Cohen E, Delling D, Fuchs F, Goldberg A, Gold-
szmidt M, Werneck R (2013) Scalable similarity
estimation in social networks: closeness, node labels,
and random edge lengths. In: COSN, Boston. ACM

9. Cohen E, Delling D, Pajor T, Werneck RF (2014)
Timed influence: computation and maximization.
Manuscript. ArXiv 1410.6976

10. Dangalchev C (2006) Residual closeness in networks.
Phisica A 365:556–564

11. Flajolet P, Martin GN (1985) Probabilistic counting
algorithms for data base applications. J Comput Syst
Sci 31:182–209

12. Flajolet P, Fusy E, Gandouet O, Meunier F (2007)
Hyperloglog: the analysis of a near-optimal cardinal-
ity estimation algorithm. In: Analysis of algorithms
(AOFA), Juan des Pins

13. Guibas LJ, Knuth DE, Sharir M (1992) Randomized
incremental construction of Delaunay and Voronoi
diagrams. Algorithmica 7:381–413

14. Opsahl T, Agneessens F, Skvoretz J (2010) Node
centrality in weighted networks: generalizing
degree and shortest paths. Soc Netw 32.
http://toreopsahl.com/2010/03/20/

15. Palmer CR, Gibbons PB, Faloutsos C (2002) ANF:
a fast and scalable tool for data mining in massive
graphs. In: KDD, Edmonton

16. Thorup M, Zwick U (2001) Approximate dis-
tance oracles. In: Proceedings of the 33th annual
ACM symposium on theory of computing, Crete,
pp 183–192

Alternate Parameterizations

Neeldhara Misra
Department of Computer Science and
Automation, Indian Institute of Science,
Bangalore, India

Keywords

Above guarantee; Complexity ecology of
parameters; Dual parameters; Structural parame-
terization

Years and Authors of Summarized
Original Work

2013; Fellows, Jansen, Rosamond
2014; Lokshtanov, Narayanaswamy, Raman,

Ramanujan, Saurabh
2014; Marx, Pilipczuk

Problem Definition

A parameterized problem is a language L �
˙� � N. Such a problem is said to be fixed-
parameter tractable if there is an algorithm that
decides if .x; k/ 2 L in time f .k/jX jO.1/.
For attacking an intractable problem within the
multivariate algorithmic framework, a necessary
first step is to identify some reasonable param-
eters. The relevance of an FPT algorithm will
depend on the quality of the choice of parameters.
The first objective is of a practical concern: the
choice of parameter should not “cheat,” that is,
it should be a choice that leads to tractability in
the context of instances that are relevant to real-
world applications. On the other hand, the param-
eter should also lend a perspective that is useful
to the algorithm designer, usually by provid-
ing additional structural insights, thereby making
an otherwise unwieldy problem manageable. Fi-
nally, the parameter itself should be accessible,
in the sense that it should either typically accom-
pany the input or be easy to compute from the
input.

For a combinatorial optimization problem, the
size of the desired solution is a natural param-
eter. For a minimization problem, it is usually
reasonable to assume that this parameter is also
small in practice. For a maximization problem,
the dual parameter, which is the difference from
the best possible upper bound on the optimum,
is also a natural choice. For example, consider
the problem of satisfying at least k clauses of
a CNF formula. Here, the standard parameter
would be k, while the dual parameter would be
.m � k/: in other words, can we satisfy all but k
clauses in the formula? In the rest of this section,
we broadly describe the other possibilities for
parameters.

Structural Parameterizations
Structural parameters are a considered attempt at
acknowledging that various aspects of an instance
influence its complexity. A classic example is
ML-type checking [11], which is an NP-complete
problem but can be resolved in time O.2k/nO.1/,
where k is the maximum nesting depth of the
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input program. Fortunately, nesting depths of
most programs are no more than four or five; the
algorithm proposed is entirely adequate for real-
world instances.

Since every problem context is inherently
suggestive of several possible parameters, we
are only able to describe a few illustrative
examples. In the context of graph problems,
width parameters such as treewidth, cliquewidth,
and rankwidth have enjoyed immense success.
The notion of treewidth is particularly popular
because of a number of real-world instances
that are known to exhibit small treewidth, and
on the other hand, the theoretical foundations
of algorithms on graphs of bounded treewidth
are extremely well established and actively
developed (see, e.g., [3, Chapter 7]). An
analogous notion for treewidth for directed
graphs remains elusive, although several
proposals with varying merits exist in the
literature [7].

Special graph classes, such as interval graphs,
chordal graphs, planar graphs, and so on,
have been extensively studied, and most hard
problems turn out to be tractable on these
classes. For an arbitrary graph, one might hope
that the tractability carries over if the graph
is “close enough” to being, say, a chordal
graph. An increasingly popular program involves
considering distance-to-C parameterizations,
where C is a class of graphs on which the
problem of interest is easily solvable. For
instance, we might let k be the size of a smallest
subset of vertices whose removal makes the
input graph a member of C. Other measures
of closeness, using operations like addition,
removal, or contraction of edges, are also
frequently considered.

In the context of satisfiability and constraint
satisfaction also, the notion of distance from
tractable subclasses has garnered much attention
in recent times. This is formalized by the notion
of backdoors, which are subsets of variables
whose “removal” makes the formula tractable
(for instance, one of the Schaefer classes). Much
work has been done with backdoors as parame-
ters for determining satisfiability, and we refer the
reader to [9].

Above or Below Guarantee
Parameterizations
Consider the standard parameterization of VER-
TEX COVER: given a graph G D .V;E/ on n
vertices, decide whether G has a vertex cover
of size at most k. The best-known algorithm for
vertex cover is due to Chen et al. [1] and runs
in time O.1:2852k C kn/. Observe that if G
has a matching of size �, then any vertex cover
also has size at least �. In particular, if G has a
perfect matching, then all vertex covers ofG have
˝.n/ edges, and even the FPT algorithms for the
standard parameter will be obliged to spend time
that is exponential in n.

Mahajan and Raman [13] consider the follow-
ing alternative parameterization: does G have a
vertex cover of size at most �C k? Note that the
parameter k here is the size of the vertex cover
above the matching size. Since the matching size
is a guaranteed lower bound on the vertex cover
size, this problem is referred to as the ABOVE

GUARANTEE VERTEX COVER problem. Just as
one can parameterize above guaranteed values,
one can consider parameterizations below guar-
anteed values. A classic example is the follow-
ing variant of VERTEX COVER: given a planar
graph G D .V;E/ on n vertices and an integer
parameter k, does G admit a vertex cover of size
b3n=4c � k?

Key Results

One of the earliest attempts at parameterizing by
the size of the vertex cover was made in [4].
Various graph layout problems were considered,
where it turned out that a small vertex cover led
to a very convenient structure for formulating
a linear program. For many of these problems,
it is not known if they are FPT parameterized
by treewidth, and some are hard even on graphs
of bounded treewidth (indeed, BANDWIDTH is
NP-hard even on trees). This justifies the need
for a stronger structural parameter, and in these
examples, vertex cover turned out to be a very
fruitful parameterization.

These examples led to a broader theme,
namely, the “complexity ecology of parameters”
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program, which was proposed in [5]. The
theoretical foundations of this program were
further established and surveyed in [6]. An
immediate concern is that of how one formalizes
the structural parameterization in question. Along
the lines of [6], we distinguish the following
possible objectives from the formalization:

1. The complexity of verifying and then exploit-
ing a bounded parameter value

2. The complexity of exploiting structure that
is guaranteed, but not given explicitly (a
“promise” problem)

3. The complexity of exploiting structure that is
explicitly provided along with the input, as a
“witness”

The first setting is the most general but also
the most computationally restrictive, as it puts
the burden of discovering the structure also on
the algorithm. This definition makes the study
of parameters like bandwidth and cliquewidth
prohibitive, as these are hard to determine even in
the parameterized framework. On the other hand,
while the other two notions are increasingly re-
laxed, the premise of a promise or the availability
of witnesses in real-world witnesses remains a
concern. We point the reader to [6] for a detailed
discussion of the precise formalisms and their
respective merits and trade-offs.

One of the major theoretical themes with al-
ternate parameterizations is the exercise of iden-
tifying meta-theorems that explain the influence
of the parameter over a large class of prob-
lems, usually specified in an appropriate logic.
A cornerstone result of this kind is Courcelle’s
theorem, establishing that a problem express-
ible in Monadic Second Order Logic is FPT
when parameterized by treewidth and the size
of the formula [2]. Several generalizations of
Courcelle’s theorem have since been proposed,
and many of them are surveyed in [10]. More
recent work also establishes a similar result in
the context of kernelization and parameters like
vertex cover [8].

There is a rich literature that evidences the
growing consideration of alternate parameter-
izations for optimization problems in varied

contexts. As a concluding example, we turn
our attention to [14], which serves to illustrate
the scale at which it is possible to execute
an exercise in understanding a question from
several perspectives. Given two graphs H and
G, the SUBGRAPH ISOMORPHISM problem
asks if H is isomorphic to a subgraph of G.
In [14], a framework is developed involving
ten relevant parameters for each of H and G

(such as treewidth, maximum degree, number of
components, and so on). The generic question
addressed in this work is if the problem admits
an algorithm with running time:

f1.p1; p2; : : : ; p`/ � n
f2.p`C1;:::;pk/;

where each of p1; : : : ; pk is one of the ten pa-
rameters depending only on H or G. We refer
the reader to Figure 1 in [14] for a concise tab-
ulation of the results. Notably, all combinations
of questions (the number of which runs into the
billions) are answered by a set of 28 of positive
and negative results.

There are many examples of problems that
are parameterized away from guaranteed bounds.
We note that parameterizing vertex cover above
the LP optimum has attracted considerable inter-
est because a number of fundamental problems
including Above Guarantee Vertex Cover, Odd
Cycle Transversal, Split Vertex Deletion, and
Almost 2-SAT reduce to this problem. Indeed, for
many of these problems, the fastest algorithms at
the time of this writing are obtained by reducing
these problems to vertex cover parameterized
above the LP optimum [12].

Open Problems

We direct the reader to the excellent survey [6] for
several open problems concerning specific com-
binations of parameters for particular problems.
In an applied context, an interesting possibility is
to investigate if parameters can be learned from
large samples of data.



Alternative Performance Measures in Online Algorithms 67

A

Cross-References

�Kernelization, Constraint Satisfaction Prob-
lems Parameterized above Average

�Kernelization, Max-Cut Above Tight Bounds
�Kernelization, MaxLin Above Average
�Kernelization, Permutation CSPs Parameter-

ized above Average
�LP Based Parameterized Algorithms
� Parameterization in Computational Social

Choice
� Parameterized SAT
�Treewidth of Graphs

Recommended Reading

1. Chen J, Kanj IA, Jia W (2001) Vertex cover: further
observations and further improvements. J Algorithms
41(2):280–301

2. Courcelle B (1990) The monadic second-order logic
of graphs I: recognizable sets of finite graphs. Inf
Comput 85:12–75

3. Cygan M, Fomin FV, Kowalik L, Lokshtanov D,
Marx D, Pilipczuk M, Pilipczuk M, Saurabh S (2015)
Parameterized algorithms. Springer, Cham. http://
www.springer.com/us/book/9783319212746

4. Fellows MR, Lokshtanov D, Misra N, Rosamond FA,
Saurabh S (2008) Graph layout problems parameter-
ized by vertex cover. In: 19th international sympo-
sium on algorithms and computation (ISAAC). Lec-
ture notes in computer science, vol 5369. Springer,
Berlin, pp 294–305

5. Fellows M, Lokshtanov D, Misra N, Mnich M, Rosa-
mond F, Saurabh S (2009) The complexity ecol-
ogy of parameters: an illustration using bounded
max leaf number. ACM Trans Comput Syst 45:822–
848

6. Fellows MR, Jansen BMP, Rosamond FA (2013)
Towards fully multivariate algorithmics: parameter
ecology and the deconstruction of computational
complexity. Eur J Comb 34(3):541–566

7. Ganian R, Hlinený P, Kneis J, Meister D, Obdrzálek
J, Rossmanith P, Sikdar S (2010) Are there any
good digraph width measures? In: IPEC, vol 6478.
Springer, Berlin, pp 135–146

8. Ganian R, Slivovsky F, Szeider S (2013) Meta-
kernelization with structural parameters. In: 38th in-
ternational symposium on mathematical foundations
of computer science, MFCS 2013. Lecture notes in
computer science, vol 8087. Springer, Heidelberg,
pp 457–468

9. Gaspers S, Szeider S (2012) Backdoors to satisfac-
tion. In: Bodlaender HL, Downey R, Fomin FV, Marx
D (eds) The multivariate algorithmic revolution and

beyond. Lecture notes in computer science, vol 7370.
Springer, Berlin/Heidelberg, pp 287–317

10. Grohe M, Kreutzer S (2011) Methods for algo-
rithmic meta theorems. In: Grohe M, Makowsky J
(eds) Model theoretic methods in finite combina-
torics. Contemporary mathematics, vol 558. Ameri-
can Mathematical Society, Providence, pp 181–206

11. Henglein F, Mairson HG (1991) The complexity of
type inference for higher-order typed lambda calculi.
J Funct Program 4:119–130

12. Lokshtanov D, Narayanaswamy NS, Raman V, Ra-
manujan MS, Saurabh S (2014) Faster parameterized
algorithms using linear programming. ACM Trans
Algorithms 11(2):15:1–15:31

13. Mahajan M, Raman V (1999) Parameterizing above
guaranteed values: maxsat and maxcut. J Algorithms
31(2):335–354

14. Marx D, Pilipczuk M (2014) Everything you always
wanted to know about the parameterized complexity
of subgraph isomorphism (but were afraid to ask). In:
31st international symposium on theoretical aspects
of computer science (STACS), Lyon, pp 542–553

Alternative Performance Measures
in Online Algorithms

Alejandro López-Ortiz
David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, ON, Canada

Keywords

Bijective analysis; Diffuse adversary; Loose
competitiveness; Relative interval analysis;
Relative worst-order ratio; Smoothed analysis

Years and Authors of Summarized
Original Work

2000; Koutsoupias, Papadimitriou
2005; Dorrigiv, López-Ortiz

Problem Definition

While the competitive ratio [19] is the most
common metric in online algorithm analysis and
it has led to a vast amount of knowledge in the
field, there are numerous known applications in
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which the competitive ratio produces unsatisfac-
tory results. Far too often, it leads to unrealisti-
cally pessimistic measures including the failure to
distinguish between algorithms that have vastly
differing performance under any practical char-
acterization in practice. Because of this there,
has been extensive research in alternatives to the
competitive ratio, with a renewed effort in the
period from 2005 to the present date.

The competitive ratio metric can be derived
from the observation that an online algorithm, in
essence, computes a partial solution to a prob-
lem using incomplete information. Then, it is
only natural to quantify the performance drop
due to this absence of information. That is, we
compare the quality of the solution obtained by
the online algorithm with the one computed in
the presence of full information, namely, that of
the offline optimal OPT, in the worst case. More
formally,

Definition 1 An online algorithm A is said to
have (asymptotic) competitive ratio c if A.�/ �
c �OPT.�/Cb for all input sequences � and fixed
constants b and c.

The early literature considered only algorithms
with constant competitive ratio, and all others
are termed as algorithms with unbounded com-
petitive ratio. However, it is easy to extend this
definition to a C.n/-competitive algorithm as
follows:

Definition 2 An online algorithm A is said
to have (asymptotic) competitive ratio C.n/ if
A.�/ � C.n/ � OPT.�/C b for all � and a fixed
constant b. When b D 0, C.n/ is termed the
absolute competitive ratio.

A natural expectation would be that the per-
formance of OPT reflects both knowledge of the
future and the inherent structure of the specific
instance being solved, and hence, an online algo-
rithm with optimal competitive ratio must handle
most if not all instances in an efficient manner.
Unfortunately, for most problems, the worst-case
nature of the competitive ratio leads to algorithms
of varying degrees of sophistication having the
same equally bad competitive ratio. As a con-
sequence the competitive ratio leads to “equiva-

lence” for online algorithms with vastly differing
performance in practice.

In the next sections we discuss the main al-
ternatives to and refinements of the competitive
ratio and highlight their relative benefits and
drawbacks.

Key Results

Relative Worst-Order Ratio
The relative worst-order ratio [8, 10, 11] com-
bines some desirable properties of two earlier
measures, namely, the max/max ratio [6] and
the random order ratio [15]. Using this measure
we can directly compare two online algorithms.
Informally, for a given sequence, it considers the
worst-case ordering of that sequence for each
algorithm and compares their behavior as a ratio
on these orderings. Then it finds among all se-
quences (not just reorderings) the one that max-
imizes the ratio above in the worst-case perfor-
mance.

Let A and B be online algorithms for an
online minimization problem and let A.I /
be the cost of A on an input sequence I D
.i1; i2; : : : ; in/. Denote by I� the sequence
obtained by applying a permutation � to I ,
i.e., I� D .i�1

; : : : ; i�n
/. Define AW .I / D

min� A.I� /.

Definition 3 ([11]) Let S1.c/ and S2.c/ be the
statements about algorithms A and B defined in
the following way:

S1.c/ W There exists a constant b such that
AW .I / � c � BW .I /C b for all I .

S2.c/ W There exists a constant b such that
AW .I / � c � BW .I / � b for all I .

The relative worst-order ratio WRA;B of an on-
line algorithm A to algorithm B is defined if
S1.1/ or S2.1/ holds. In this case A and B
are said to be comparable. If S1.1/ holds, then
WRA;B D supfr jS2.r/g, and if S2.r/ holds, then
WRA;B D inffr jS1.r/g:

WRA;B can be used to compare the qualities
of A and B. If WRA;B D 1, then these two
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algorithms have the same quality with respect
to this measure. The magnitude of difference
between WRA;B and 1 reflects the difference
between the behavior of the two algorithms. For
a minimization problem, A is better than B with
respect to this measure if WRA;B < 1 and
vice versa. Boyar and Favrholdt showed that the
relative worst-order ratio is transitive [8].

Note that we can also compare the online
algorithm A to an optimal offline algorithm OPT.
The worst-order ratio of A is defined asWRA D
WRA;OPT. For some problems, OPT is the same
for all order of requests on a given input se-
quence, and hence, the worst-order ratio is the
same as the competitive ratio. However, for other
problems such as paging the order does matter for
OPT.

In [10], three online algorithms (FIRST-FIT,
BEST-FIT, and WORST-FIT) for two variants of
the seat reservation problem [9] are compared
using the relative worst-order ratio. The relative
worst-order ratio when applied to paging algo-
rithms can be used to differentiate LRU which
is strictly better than FWF with respect to the
worst-order ratio, while they have the same com-
petitive ratio [11]. Similarly, [11] proposes a new
paging algorithm, retrospective LRU (RLRU),
and shows that it is better than LRU under this
measure while not under the competitive ratio.

Loose Competitiveness
Loose competitiveness was first proposed in [22]
and later modified in [25]. It attempts to obtain
a more realistic measure by observing that first,
in many real online problems, we can ignore
those input sequences on which the online al-
gorithm incurs a cost less than a certain thresh-
old and, second, many online problems have a
second resource parameter (e.g., size of cache,
number of servers) and the input sequences are
independent of these parameters. In contrast, in
competitive analysis, the adversary can select
sequences tailored against those parameters. For
example, for caching the worst-case input with
competitive ratio k can only be constructed by
the adversary if it is aware of the size k of
the cache. However, in practice the competitive
ratios of many online paging algorithms have

been observed to be constant [25], i.e., indepen-
dent of k.

In loose competitiveness we consider an ad-
versary that is oblivious to the parameter by
requiring it to give a sequence that is bad for most
values of the parameter rather than just a specific
bad value of the parameter. Let Ak.I / denote the
cost of an algorithm A on an input sequence I ,
when the parameter of the problem is k.

Definition 4 ([25]) An algorithm A is .�; ı/-
loosely c-competitive if, for any input sequence
I and for any n, at least .1 � ı/ n of the
values k 2 f1; 2; : : : ; ng satisfy Ak.I / �

maxfc � OPTk.I /; � jI jg:

Therefore, we ignore the input sequences I which
cost less than � jI j. Also we require the algorithm
to be good for at least .1 � ı/ fraction of the
possible parameters. For each online problem, we
can select the appropriate constants � and ı. The
following result shows that by this modification
of the competitive analysis, we can obtain paging
algorithms with constant performance ratios.

Theorem 1 ([25]) Every k-competitive paging
algorithm is .�; ı/-loosely c-competitive for any
0 < �; ı < 1, and c D .e=ı/ ln.e=�/, where e is
the base of the natural logarithm.

Diffuse Adversary Model
The diffuse adversary model [16] tries to refine
the competitive ratio by restricting the set of legal
input sequences. In the diffuse adversary model,
the input is generated according to a distribution
belonging to a member of a class � of distribu-
tions.

Definition 5 Let A be an online algorithm for
a minimization problem and let � be a class of
distributions for the input sequences. Then A is
c-competitive against�, if there exists a constant
b, such that EI2DA.I / � c �EI2D OPT.I /Cb; for
every distribution D 2 �, where A.I / denotes
the cost of A on the input sequence I and the
expectations are taken over sequences that are
picked according to D.

In other words, for a given algorithm A, the
adversary selects the distribution D in � that
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leads to its worst-case performance in that family.
If � is highly restrictive, then A knows more
about the distribution of input sequences and the
power of adversary is more constrained. When
� contains all possible distributions, then the
competitive analysis against � is the same as the
standard competitive ratio.

Computing the actual competitive ratio of both
deterministic and randomized paging algorithms
against �� is studied in [23, 24]. An estimation
of the optimal competitive ratio for several algo-
rithms (such as LRU and FIFO) within a factor
of 2 is given. Also it is observed that around
the threshold � 
 1=k, the best competitive
ratios against �� are 	.ln k/. The competitive
ratios rapidly become constant for values of �
less than the threshold. For � D !.1=k/, i.e.,
values greater than the threshold, the competitive
ratio rapidly tends to 	.k/ for deterministic al-
gorithms while it remains unchanged for random-
ized algorithms.

Note that we can also model locality of refer-
ence using the diffuse adversary model by consid-
ering only those distributions that are consistent
with distributions obeying a locality of reference
principle. In particular Dorrigiv et al. showed
that for the list update problem MTF is optimal
in expected cost under any probability distribu-
tion that has locality of reference monotonicity,
i.e., a recently accessed item has equal or larger
probability of being accessed than a less recently
accessed item [14].

Bijective Analysis
Bijective analysis and average analysis [3] build
upon the framework of locality of reference by
[1]. These models directly compare two online
algorithms without appealing to the concept of
the offline “optimal” cost. In addition, these mea-
sures do not evaluate the performance of the
algorithm on a single “worst-case” request, but
instead use the cost that the algorithm incurs
on each and all request sequences. Informally,
bijective analysis aims to pair input sequences
for two algorithms A and B using a bijection
in such a way that the cost of A on input �
is no more than the cost of B on the image
of � , for all request sequences � of the same

length. In this case, intuitively, A is no worse
than B. On the other hand, average analysis
compares the average cost of the two algorithms
over all request sequences of the same length.
For an online algorithm A and an input sequence
� , let A.�/ be the cost incurred by A on � .
Denote by In the set of all input sequences of
length n.

We say that an online algorithm A is no worse
than an online algorithm B according to bijective
analysis if there exists an integer n0 � 1 so that
for each n � n0, there is a bijection b W In $ In

satisfying A.�/ � B.b.�// for each � 2 In. We
denote this by A �b B.

We say that an online algorithm A is no worse
than an online algorithm B according to average
analysis if there exists an integer n0 � 1 so that
for each n � n0,

P
I2In

A.I / �
P

I2In
B.I /.

We denote this by A �a B.
Under both bijective analysis and average

analysis alone, all lazy algorithms (including
LRU and FIFO, but not FWF) are in fact strongly
equivalent. This is evidence of an inherent
difficulty to separate these algorithms in any
general unrestricted setting. Their superiority
is seemingly derived from the well-known
observation that input sequences for paging
and several other problems show locality of
reference [12,13]. This means that when a page is
requested, it is more likely to be requested in the
near future. Therefore, several models for paging
with locality of reference have been proposed.

Hence, the need to combine bijective analysis
with an assumption of locality of reference model
such as concave analysis. In this model a request
sequence has high locality of reference if the
number of distinct pages in a window of size n
is small.

Using this measure Angelopoulos et al. [3]
show that LRU is never outperformed in any pos-
sible subpartition on the request sequence space
induced by concave analysis, while it always
outperforms any other paging algorithm in at
least one subpartition of the sequence space. This
result proves separation between LRU and all
other algorithms and provides theoretical back-
ing to the observation that LRU is preferable in
practice. This is the first deterministic theoretical
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model to provide full separation between LRU
and all other algorithms. Recently this result was
strengthened by Angelopolous and Schweitzer
[2] where they showed that the separation also
holds under the stricter bijective analysis (as
opposed to average analysis) using the concave
analysis framework.

Smoothed Competitiveness
Some algorithms that have very bad worst-case
performance behave very well in practice. One of
the most famous examples is the simplex method.
This algorithm has a very good performance in
practice but it has exponential worst-case running
time. Average case analysis of algorithms can
somehow explain this behavior, but sometimes
there is no basis to the assumption that the inputs
to an algorithm are random.

Smoothed analysis of algorithms [21] tries to
explain this intriguing behavior without assum-
ing anything about the distribution of the input
instances. In this model, we randomly perturb
(smoothen) the input instances according to a
probability distribution f and then analyze the
behavior of the algorithm on these perturbed
(smoothed) instances. For each input instance LI ,
we compute the neighborhood N. LI / of LI which
contains the set of all perturbed instances that
can be obtained from LI . Then we compute the
expected running time of the algorithm over all
perturbed instances in this neighborhood. The
smoothed complexity of the algorithm is the
maximum of this expected running time over all
the input instances. Intuitively, an algorithm with
a bad worst-case performance can have a good
smoothed performance if its worst-case instances
are isolated. Spielman and Teng show [21] that
the simplex algorithm has polynomial smoothed
complexity. Several other results are known about
the smoothed complexity of the algorithms [4, 7,
18, 20].

Becchetti et al. [5] introduced smoothed
competitive analysis which mirrors competitive
analysis except that we consider the cost
of the algorithm on randomly perturbed
adversarial sequences. As in the analysis of
the randomized online algorithms, we can
have either an oblivious adversary or an

adaptive adversary. The smoothed competitive
ratio of an online algorithm A for a mini-
mization problem can be formally defined as
follows.

Definition 6 ([5]) The smoothed competitive ra-
tio of an algorithm A is defined as

c D sup
LI

E
I N. LI/

� A.I /
OPT .I /


;

where the supremum is taken over all input in-
stances LI and the expectation is taken over all
instances I that are obtainable by smoothening
the input instance LI according to f in the neigh-
borhood N. LI /.

In [5], they use the smoothed competitive ratio
to analyze the MULTI-LEVEL FEEDBACK(MLF)
algorithm for processor scheduling in a time-
sharing multitasking operating system. This al-
gorithm has very good practical performance,
but its competitive ratio is very bad and obtains
strictly better ratios using the smooth competitive
analysis than with the competitive ratio.

Search Ratio
The search ratio belongs to the family of mea-
sures in which the offline OPT is weakened. It is
defined only for the specific case of geometric
searches in an unknown terrain for a target of
unknown position. Recall that the competitive
ratio compares against an all-knowing OPT; in-
deed, for geometric searches in the competitive
ratio framework, the OPT is simply a shortest
path algorithm, while the online search algorithm
has intricate methods for searching. The search
ratio instead considers the case where OPT knows
the terrain but not the position of the target.
That is, the search ratio compares two search
algorithms, albeit one more powerful than the
other. By comparing two instances of like objects,
the search ratio can be argued to be a more mean-
ingful measure of the quality of an online search
algorithm. Koutsopias et al. show that searching
in trees results the same large competitive ratio
regardless of the search strategy, yet under the
search ratio framework, certain algorithms are far
superior to others [17].
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Problem Definition

Let A be an enumeration algorithm. Suppose that
A is a recursive type algorithm, i.e., composed
of a subroutine that recursively calls itself several
times (or none). Thus, the recursion structure of
the algorithm forms a tree. We call the subroutine
or the execution of the subroutine an iteration.
We here assume that an iteration does not include
the computation done in the recursive calls gen-
erated by itself. We regard a series of subroutines
of different types as an iteration if they form a
nested recursion. We simply write the set of all
iterations of an execution of A by X .

When an iteration X recursively calls an iter-
ation Y , X is called the parent of Y , and Y is
called a child of X . The root iteration is that with
no parent. For non-root iteration X , its parent is
unique and is denoted by P.X/. The set of the
children of X is denoted by C.X/. The parent-
child relation between iterations forms a tree
structure called a recursion tree, or an enumer-
ation tree. An iteration is called a leaf iteration if
it has no child and an inner iteration otherwise.

For iteration X , an upper bound of the exe-
cution time (the number of operations) of X is
denoted by T .X/. Here we exclude the computa-
tion for the output process from the computation
time. We remind that T .X/ is the time for local
execution time and thus does not include the
computation time in the recursive calls generated
by X . For example, when T .X/ D O.n2/, T .X/
is written as cn2 for some constant c. T � is
the maximum T .X/ among all leaf iterations X .
Here, T � can be either constant or a polynomial
of the input size. If X is an inner iteration, let
T .X/ D

P
Y2C.X/ T .Y /.

Key Results

We explain methods to amortize the computation
time of iterations that only requires a local

condition and give simple algorithms which
achieves nontrivial time complexity. On
enumeration algorithms, it is very hard to grasp
the global structures of the computation and the
recursion tree that is coming from the hardness
of estimating the number of iterations in a
branch. Instead of that, we approach from local
amortization from parent and children. When
we go deep in a recursion tree, the number of
iterations tends to increase exponentially, and the
size of the input of each iteration often decreases
on the other hand. Motivated by this observation,
we amortize the computation time by moving
the computation time of each iteration to its
children from the top to bottom, so that the long
computation time on upper levels is diffused.

Amortization by Children
Suppose that each iterationX takesO..jC.X/jC
1/T / time. Note that this implies that a leaf itera-
tion takesO.T / time. Then, the total computation
time of the algorithm is O.T

P
X2X jC.X/j C

1/ D O.T .jX j C
P

X2X jC.X/j/ D O.T jX j/,
since any iteration is a child of at most one
iteration. Hence, an iteration takes O.T / time
on average. Let us see an example on the fol-
lowing algorithm for enumerating all subsets of
f1; : : : ; ng.

We can confirm that the algorithm correctly
enumerates all subsets without duplications, and
an iteration X takes O.jC.X/j/ time, except
for the output process. Without amortization, the
time complexity is O.n/ for each iteration, but
the above amortization reduces it to O.1/. Note
that the output process is shortened by outputting
each subset by the difference from the previously
output subset, and by this the accumulated com-
putation time for output process is also bounded
by O.1/ for each subset. This amortization tech-
nique is common in many algorithms. Further,
in the enumeration of spanning trees, the time

Algorithm EnumSubset (S; x):
1 output S
2 for i WD x C 1 to n; call EnumSubset

(S [ fig; i C 1)
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complexity is amortized by not only the chil-
dren but also the grandchildren [3]. More so-
phisticated amortization is used in [1, 2] for path
connecting given two vertices and subtrees of
size k.

Push-Out Amortization
When the computation time of an iteration X

is not proportional jC.X/j, the above amorti-
zation does not work. In such cases, push-out
amortization [4–6] can work. We amortize the
computation time by charging the computation
time of iterations near by the root of the recursion
to those in bottom levels, by recursively moving
the computation time from an iteration to its
children from top to down. The move is done in
the following push-out rule.

Push-out rule (PO rule): Suppose that
iteration X receives a computation time of
S.X/ from its parent; thus X has computation
time of S.X/ C T .X/ in total. Then, we fix

ˇ
˛�1

.jC.X/jC1/T � of the computation time toX
and charge (push-out) the remaining computation
time of quantity S.X/C T .X/� ˇ

˛�1
.jC.X/j C

1/T � to its children. Each child Z of X receives
computation time proportional to T .Z/, that
is, S.Z/ D .S.X/ C T .X/ � ˇ

˛�1
.jC.X/j C

1/T �/ T .Z/

T .X/
.

After the moves in this rule from the top to
bottom of the recursion tree, each inner itera-
tion has O..jC.X/j C 1/T �/ computation time,

thus O.T �/ time per iteration. Moreover, when
the following push-out condition holds for any
non-leaf iteration X , each leaf iteration receives
computation time of O.T �/ from its parent; thus
the computation time per iteration is bounded by
O.T �/. Suppose that ˛ > 1 and ˇ � 0 are two
constants.

Push-Out Condition (PO Condition)
T .X/ � ˛T .X/ � ˇ.jC.X/j C 1/T �

Intuitively, this means that T .X/ � ˛T .X/ holds
after the assignment of the computation time of
˛ˇ.jC.X/jC1/T � to children and the remaining
to itself, the inequation. Thus, the computation
time of one level of recursion intuitively increases
as the depth, unless there are not so many leaf it-
erations. These suggest that the total computation
time spent by middle-level iterations is relatively
short compared to that by leaf iterations.

Theorem 1 If any inner iteration of an enu-
meration algorithm satisfies PO condition, the
amortized computation time of an iteration is
O.T �/.

Proof We state by induction that when we charge
computation time with PO rule, from the root
iteration to the leaf iterations, each iteration X
satisfies S.X/ � T .X/=.˛ � 1/. The root it-
eration satisfies this condition. Suppose that an
iteration X satisfies it. Then, for any child Z of
X , we have

S.Z/ D .S.X/C T .X/ �
ˇ

˛ � 1
.jC.X/j C 1/T �/

T .Z/

T .X/

� .T .X/=.˛ � 1/C T .X/ �
ˇ

˛ � 1
.jC.X/j C 1/T �/

T .Z/

T .X/

D
˛T .X/ � ˇ.jC.X/j C 1/T �

T .X/
�
T .Z/

˛ � 1
:

Therefore, any leaf iteration receivesO.T �/ time
from its parent, and the statement holds.

Since PO condition is satisfied, T .X/ �
˛T .X/ � ˇ.jC.X/j C 1/T �. Thus,

˛T .X/ � ˇ.jC.X/j C 1/T �

T .X/

T .Z/

˛ � 1
�
T .Z/

˛ � 1
:ut

Matching Enumeration
Let us see an example of designing algorithms
so that push-out amortization does work. The
problem is the enumeration of matchings in an
undirected graph G D .V;E/. A matching is an
edge set M � E such that any vertex is incident
to at most one edge in M . A straightforward
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way to enumerate all matchings is to choose an
edge e and enumerate matchings including e and
enumerate matchings not including e, recursively.
This algorithm yields the time complexity of
O.jV j/ for each matching.

We here consider another way for the enumer-
ation. We choose a vertex v of the maximum de-
gree and partition the problem into enumeration
of matchings including e1, matchings including
e2, : : :, matchings including ek , and matchings
including none of e1; : : : ; ek . Here e1; : : : ; ek are
the edges incident to v. Since any matching has
at most one edge incident to v, this algorithm
is complete and makes no duplication. The algo-
rithm is described as follows. Note that G n fvg
denotes the graph obtained by removing vertex v
and edges incident to v from G.

Algorithm EnumMatching (GD .V;E/;
M ):

1 if E D ; then output M ; return
2 choose a vertex v having the maximum degree in G
3 call EnumMatching (G n fvg; M )
4 for each edge e D .v; u/, call EnumMatching

(G n fu; vg; M [ feg)

G n fu; vg is obtained from G n fu0; vg in
O.d.u/C d.u0// time, where d.u/ and d.u0/ are
the degrees of u and u0, respectively. From this,
the computation time in step 4 is bounded by the
sum of degrees of all vertices adjacent to v. Here
T .X/ D cjEj for some c, except for the output
process. Note that jEj is the number of edges in
the graph given to X .

The input graph of the child generated in step
3 has jEj � d.v/ edges and that in step 4 has
jEj�d.v/�d.u/C1 edges. Thus, when d.v/ <
jEj=4, we have T .X/ D c..jEj�d.v//C .jEj�
d.v/ � d.u/ C 1// � 1:25cjEj. When d.v/ �
jEj=4, jC.X/j � jEj=4. Thus, PO condition
holds by setting ˛ D 1:25 and choosing a certain
ˇ. The output process can be shorten as the subset
enumeration.

Theorem 2 Matchings of a graph can be enu-
merated in O.1/ time for each matching.

Elimination Ordering
An elimination ordering is a sequence of
elements obtained by iteratively removing an
element from an objectG with keeping a property
satisfied, until the object will be empty. Examples
are perfect elimination ordering and perfect
sequence. The former is the removal sequence
of simplicial vertices from a chordal graph, and
the latter is the removal sequence of cliques from
a connected chordal graph. Elimination orderings
can be enumerated by a simple algorithm as
follows.

Algorithm EnumElim (G;S ):
1 if G D ; then output S ; return
2 for each element e of G that can be removed, call

EnumElim (G n feg; S [ feg)

Here we assume that T .X/ D poly.jGj/
except for output process. The decision problem
of removing an element from G is naturally
considered to be solved in O.poly.jGj// time;
thus this assumption is natural.

Theorem 3 If any G of size larger than some
constant c has at least two removable elements,
elimination orderings are enumerated in O.1/

time for each.

Proof The statement means that each iteration
has at least two children, if its computation time is
not constant. For sufficiently large constant ı, we
always have poly.jGj/ � 2poly.jGj � 1/ for any
jGj > ı. This implies that PO condition always
holds for these iterations. ut
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Problem Definition

Streaming algorithms aim to summarize a large
volume of data into a compact summary, by main-
taining a data structure that can be incrementally
modified as updates are observed. They allow the
approximation of particular quantities. The AMS
sketch is focused on approximating the sum of
squared entries of a vector defined by a stream of
updates. This quantity is naturally related to the
Euclidean norm of the vector and so has many
applications in high-dimensional geometry and in
data mining and machine learning settings that
use vector representations of data.

The data structure maintains a linear projec-
tion of the stream (modeled as a vector) with
a number of randomly chosen vectors. These
random vectors are defined implicitly by sim-
ple hash functions, and so do not have to be
stored explicitly. Varying the size of the sketch

changes the accuracy guarantees on the resulting
estimation. The fact that the summary is a linear
projection means that it can be updated flexibly,
and sketches can be combined by addition or
subtraction, yielding sketches corresponding to
the addition and subtraction of the underlying
vectors.

Key Results

The AMS sketch was first proposed by Alon,
Matias, and Szegedy in 1996 [1]. Several re-
finements or variants have subsequently appeared
in the literature, for example, in the work of
Thorup and Zhang [4]. The version presented
here works by using hashing to map each update
to one of t counters rather than taking the average
of t repetitions of an “atomic” sketch, as was
originally proposed. This hash-based variation is
often referred to as the “fast AMS” summary.

Data Structure Description
The AMS summary maintains an array of counts
which are updated with each arriving item. It
gives an estimate of the `2-norm of the vector
v that is induced by the sequence of updates.
The estimate is formed by computing the norm of
each row and taking the median of all rows. Given
parameters " and ı, the summary uses space
O.1="2 log 1=ı/ and guarantees with probability
of at least 1� ı that its estimate is within relative
"-error of the true `2-norm, kvk2.

Initially, v is taken to be the zero vector. A
stream of updates modifies v by specifying an
index i to which an update w is applied, setting
vi  vi C w. The update weights w can be
positive or negative.

The AMS summary is represented as a com-
pact array C of d � t counters, arranged as d
rows of length t . In each row j , a hash func-
tion hj maps the input domain U uniformly to
f1; 2; : : : tg. A second hash function gj maps
elements from U uniformly onto f�1;C1g. For
the analysis to hold, we require that gj is four-
wise independent. That is, over the random choice
of gj from the set of all possible hash functions,
the probability that any four distinct items from
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the domain that get mapped to f�1;C1g4 is
uniform: each of the 16 possible outcomes is
equally likely. This can be achieved by using
polynomial hash functions of the form gj .x/ D

2..ax3 C bx2 C cx C d mod p/ mod 2/ � 1,
with parameters a; b; c; d chosen uniformly from
the prime field p.

The sketch is initialized by picking the hash
functions to be used and initializing the array of
counters to all zeros. For each update operation
to index i with weight w (which can be either
positive or negative), the item is mapped to an
entry in each row based on the hash functions
h and the update applied to the corresponding
counter, multiplied by the corresponding value
of g. That is, for each 1 � j � d , hj .i/ is
computed, and the quantity wgj .i/ is added to
entry C Œj; hj .i/� in the sketch array. Processing
each update therefore takes time O.d/, since
each hash function evaluation takes constant
time.

The sketch allows an estimate of kvk22, the
squared Euclidean norm of v, to be obtained.
This is found by taking the sums of the squares
of the rows of the sketch and in turn finding
the median of these sums. That is, for row j ,
it computes

Pt
kD1 C Œj; k�

2 as an estimate and
takes the median of these d estimates. The query
time is linear in the size of the sketch, O.td/, as
is the time to initialize a new sketch. Meanwhile,
update operations take time O.d/.

The analysis of the algorithm follows by con-
sidering the produced estimate as a random vari-
able. The random variable can be shown to be
correct in expectation: its expectation is the de-
sired quantity, kvk22. This can be seen by expand-
ing the expression of the estimator. The resulting
expression has terms

P
i v

2
i but also terms of the

form vivj for i ¤ j . However, these “unwanted
terms” are multiplied by either C1 or �1 with
equal probability, depending on the choice of the
hash function g. Therefore, their expectation is
zero, leaving only kvk2. To show that it is likely
to fall close to its expectation, we also analyze
the variance of the estimator and use Chebyshev’s
inequality to argue that with constant probabil-
ity, each estimate is close to the desired value.
Then, taking the median of sufficient repetitions

amplifies this constant probability to be close to
certainty.

This analysis shows that the estimate is be-
tween .1 � "/kvk22 and .1 C "/kvk22. Taking the
square root of the estimate gives a result that
is between .1 � "/1=2kvk2 and .1 C "/1=2kvk2,
which means it is between .1 � "=2/kvk2 and
.1C "=2/kvk2.

Note that since the updates to the AMS sketch
can be positive or negative, it can be used to mea-
sure the Euclidean distance between two vectors
v and u: we can build an AMS sketch of v and
one of �u and merge them together by adding the
sketches. Note also that a sketch of �u can be
obtained from a sketch of u by negating all the
counter values.

Applications

The sketch can also be applied to estimate the
inner product between a pair of vectors. A similar
analysis shows that the inner product of cor-
responding rows of two sketches (formed with
the same parameters and using the same hash
functions) is an unbiased estimator for the inner
product of the vectors. This use of the sum-
mary to estimate the inner product of vectors
was described in a follow-up work by Alon,
Matias, Gibbons, and Szegedy [2], and the anal-
ysis was similarly generalized to the fast version
by Cormode and Garofalakis [3]. The ability to
capture norms and inner products in Euclidean
space means that these sketches have found many
applications in settings where there are high-
dimensional vectors, such as machine learning
and data mining.

URLs to Code and Data Sets

Sample implementations are widely available in
a variety of languages.

C code is given by the MassDAL code
bank: http://www.cs.rutgers.edu/~muthu/
massdalcode-index.html.
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C++ code given by Marios Hadjieleftheriou
is available at http://hadjieleftheriou.com/
sketches/index.html.
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Problem Definition

Multicore processors are commonly equipped
with one or more levels of cache memory, some
of which are shared among two or more cores.
Multiple cores compete for the use of shared
caches for fast access to their program’s data,
with the cache usage patterns of a program
running on one core, possibly affecting the cache
performance of programs running on other cores.

Paging
The management of data across the various levels
of the memory hierarchy of modern computers is
abstracted by the paging problem. Paging models
a two-level memory system with a small and fast
memory – known as cache – and a large and
slow memory. Data is transferred between the
two levels of memory in units known as pages.
The input to the problem is a sequence of page
requests that must be made available in cache
as they are requested. If the currently requested
page is already present in the cache, then this
is known as a hit. Otherwise a fault occurs, and
the requested page must be brought from slow
memory to cache, possibly requiring the eviction
of a page currently residing in the cache. An
algorithm for this problem must decide, upon
each request that results in a fault with a full
cache, which page to evict in order to minimize
the number of faults. Since the decision of which
page to evict must be taken without information
of future requests, paging is an online problem.

The most popular framework to analyze the
performance of online algorithms is competitive
analysis [10]: an algorithm A for a minimization
problem is said to be c-competitive if its cost
is at most c times that of an optimal algorithm
that knows the input in advance. Formally, let
A.r/ and OPT.r/ denote the costs of A and the
optimal algorithm OPT on an input r . Then A
is c-competitive if for all inputs r , A.r/ � c �

OPT.r/C ˇ, where ˇ is a constant that does not
depend on r . The infimum of all such values c is
known as A’s competitive ratio.

Traditional paging algorithms, like least
recently used (LRU), evict the page currently
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in cache that was least recently accessed, or
first-in-first-out (FIFO), evict the page currently
in the cache that was brought in the earliest,
have an optimal competitive ratio equal to the
cache size. Other optimal eviction policies are
flush-when-full (FWF) and Clock (see [2] for
definitions).

Paging in Multicore Caches
The paging problem described above can be ex-
tended to model several programs running simul-
taneously with a shared cache. For a multicore
system with p cores sharing one cache, the mul-
ticore paging problem consists of a set r of p
request sequences r1; : : : rp to be served with one
shared cache of size k pages. At any timestep,
at most p requests from different processors can
arrive and must be served in parallel. A paging
algorithm must decide which pages to evict when
a fault occurs on a full cache.

The general model we consider for this prob-
lem was proposed by Hassidim [6]. This model
defines the fetching time 
 of a page as the
ratio between a cache miss and a cache hit. A
sequence of requests that suffers a page fault
must wait 
 timesteps for the page to be fetched
into the cache, while other sequences that in-
cur hits can continue to be served. In addition,
paging algorithms can decide on the schedule of
request sequences, choosing to serve a subset of
the sequences and delay others. In this problem,
the goal of a paging algorithm is to minimize
the makespan. López-Ortiz and Salinger [8] pro-
posed a slightly different model in which paging
algorithms are not allowed to make schedul-
ing decisions and must serve requests as they
arrive. Furthermore, instead of minimizing the
makespan, they propose two different goals: min-
imize the number of faults and decide if each
of the sequences can be served with a num-
ber of faults below a given threshold. We con-
sider both these settings here and the following
problems:

Definition 1 (Min-Makespan) Given a set r of
request sequences r1; : : : ; rp to be served with a
cache of size k, minimize the timestep at which
the last request among all sequences is served.

Definition 2 (Min-Faults) Given a set r of re-
quests r1; : : : ; rp to be served with a cache of
size k, minimize the total number of faults when
serving r .

Definition 3 (Partial-Individual-Faults) Given
a set r of requests r1; : : : ; rp to be served with a
cache of size k, a timestep t , and a bound bi for
each sequence, decide whether r can be served
such that at time t the number of faults on ri is at
most bi for all 1 � i � p.

Key Results

Online Paging
For both the models of Hassidim and López-Ortiz
and Salinger ,no online algorithm has been shown
to be competitive, while traditional algorithms
that are competitive in the classic paging setting
are not competitive in the multicore setting. Has-
sidim shows that LRU and FIFO have a com-
petitive ratio in the Min-Makespan problem of
	.
/, which is the worst possible for any online
algorithm in this problem.

In the following, k is the size of the shared
cache of an online algorithm, and h is the size of
the shared cache of the optimal offline.

Theorem 1 ([6]) For any ˛ > 1, the competitive
ratio of LRU (or FIFO) is 	.
=˛/, when h D
k=˛. In particular, if we give LRU a constant
factor resource augmentation, the ratio is 	.
/.
There is a setting with this ratio with just d˛eC 1
cores.

The bad competitive ratio stems from the abil-
ity of the offline algorithm to schedule sequences
one after the other one so that each sequence can
use the entire cache. Meanwhile, LRU or FIFO
will try to serve all sequences simultaneously, not
having enough cache to satisfy the demands of
any sequence. A similar result is shown in [8] for
the Min-Faults problem, even in the case in which
the optimal offline cannot explicitly schedule the
input sequences. In this case, given a set of
request sequences that alternate periods of high
and low cache demand, the optimal offline algo-
rithm can delay some sequences through faults in
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order to align periods of high demands of some
sequences with periods of low demands of others
and with a total cache demand below capacity.
As in the previous lower bound, traditional on-
line algorithms will strive to serve all sequences
simultaneously, incurring only faults in periods of
high demand.

Theorem 2 ([8]) Let A be any of LRU, FIFO,
Clock, or FWF, let p � 4, let n be the total
length of request sequences, and assume 
 > 1.
The competitive ratio of A is at least ˝.

p
n
=k/

when the optimal offline’s cache is h � k=2 C

3p=2. If A has no resource augmentation, the
competitive ratio is at least ˝.

p
n
p=k/.

These results give light about the characteris-
tics required by online policies to achieve better
competitive ratios. López-Ortiz and Salinger an-
alyzed paging algorithms for Min-Faults , sepa-
rating the cache partition and the eviction policy
aspects. They defined partitioned strategies as
those that give a portion of the cache to each
core and serve the request sequences with a given
eviction policy exclusively with the given part of
the cache. The partition can be static or dynamic.
They also define shared strategies as those in
which all requests are served with one eviction
policy using a global cache. The policies consid-
ered in Theorems 1 and 2 above are examples of
shared strategies.

If a cache partition is determined externally by
a scheduler or operating system, then traditional
eviction policies can achieve a good performance
when compared to the optimal eviction policy
with the same partition. More formally,

Theorem 3 Let A be any marking or conserva-
tive paging algorithm and B be any dynamically
conservative algorithm [9] (these classes include
LRU, FIFO, and Clock). Let S and D be any
static and dynamic partition functions and let
OPTs and OPTd denote the optimal eviction
policies given S and D, respectively. Then, for
all inputs r , A.r/ � k � OPTs.r/ and B.r/ �
pk � OPTd .r/.

The result above relies on a result by Peserico
[9] which states that dynamically conservative
policies are k-competitive when the size of the

cache varies throughout the execution of the
cache instance.

When considering a strategy as a partition plus
eviction policy, it should not be a surprise that
a strategy involving a static partition cannot be
competitive. In fact, even a dynamic partition that
does not change the sizes of the parts assigned
to its cores often enough cannot be competitive.
There are sequences for which the optimal static
partition with the optimal paging policy in each
part can incur a number of faults that is arbitrarily
large compared to an online shared strategy using
LRU. A similar result applies to dynamic parti-
tions that change a sublinear number of times.
These results suggest that in order to be com-
petitive, an online strategy needs to be either
shared or partitioned with a partition that changes
often.

Offline Paging
We now consider the offline multicore paging
problem. Hassidim shows that Min-Makespan is
NP-hard for k D p=3 and [7] extends it to arbi-
trary k and p. In the model without scheduling
of [8], Partial-Individual-Faults, a variant of the
fault minimization problem, is also shown to be
NP-hard. It is not known, however, whether Min-
Faults is NP-hard as well. Interestingly, Partial-
Individual-Faults remains NP-hard when 
 D 1

(and hence a fault does not delay the affected
sequence with respect to other sequences). In
contrast, in this case, Min-Faults can be solved
simply by evicting the page that will be requested
furthest in the future, as in classic paging. On
the positive side, the following property holds for
both Min-Makespan and Min-Faults (on disjoint
sequences).

Theorem 4 There exist optimal algorithms for
Min-Makespan and Min-Faults that, upon a fault,
evict the page that is the furthest in the future for
some sequence.

This result implies that multicore paging re-
duces to determining the optimal dynamic par-
tition of the cache: upon a fault, the part of the
cache of one sequence is reduced (unless this
sequence is the same as the one which incurred
the fault), and the page whose next request is
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furthest is the future in this sequence should be
evicted.

Finally, in the special case of a constant num-
ber of processors p and constant delay 
 , Min-
Makespan admits a polynomial time approxi-
mation scheme (PTAS), while Min-Faults and
Partial-Individual-Faults admit exact polynomial
time algorithms.

Theorem 5 ([6]) There exists an algorithm that,
given an instance of Min-Makespan with optimal
makespan m, returns a solution with makespan
.1C �/m. The running time is exponential on p,

 , and 1=�.

Theorem 6 ([8]) An instance of Min-Faults with
p requests of total length n, with p D O.1/ and

 D O.1/ can be solved in time O.nkCp
p/.

Theorem 7 ([8]) An instance of Partial-
Individual-Faults with p requests of total length
n, with p D O.1/ and 
 D O.1/, can be solved
in time O.nkC2pC1
pC1/.

Other Models
Paging with multiple sequences with a shared
cache has also been studied in other models
[1,3–5], even prior to multicores. In these models,
request sequences may be interleaved; however,
only one request is served at a time and all
sequences must wait upon a fault affecting one
sequence.

In the application-controlled model of Cao
et al. [3], each process has full knowledge of its
request sequence, while the offline algorithm also
knows the interleaving of requests. As opposed to
the models in [6, 8], the interleaving is fixed and
does not depend on the decisions of algorithms.
It has been shown that for p sequences and a
cache of size k, no online deterministic algorithm
can have a competitive ratio better than p C 1

in the case where sequences are disjoint [1] and
p
2

log
�

4.kC1/
3p

�
otherwise [7]. On the other hand,

there exist algorithms with competitive ratios
2.p C 1/ [1, 3] and maxf10; p C 1g [7] for the
disjoint case, and 2p.ln.ek=p/ C 1/ [7] for the
shared case.

Open Problems

Open problems in multicore paging are finding
competitive online algorithms, determining
the exact complexity of Min-Faults, obtaining
approximation algorithms for Min-Makespan for
a wider range of parameters, and obtaining faster
exact offline algorithms for Min-Faults and
Partial-Individual-Faults. Another challenge in
multicore paging is concerned with modeling
the right features of the multicore architecture
while enabling the development of meaningful
algorithms. Factors to consider are cache
coherence, limited parallelism in other shared
resources (such as bus bandwidth), different
cache associativities, and others.
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Problem Definition

The problem considered here is multiple
sequence access via cache memory. Consider
the following pattern of memory accesses. k
sequences of data, which are stored in disjoint
arrays and have a total length of N , are accessed
as follows:
for t WD 1 to N do

select a sequence si 2 f1; : : : kg
work on the current element of sequence si
advance sequence si to the next element.

The aim is to obtain exact (not just asymp-
totic) closed form upper and lower bounds for
this problem. Concurrent accesses to multiple
sequences of data are ubiquitous in algorithms.
Some examples of algorithms which use this
paradigm are distribution sorting, k-way merg-
ing, priority queues, permuting, and FFT. This
entry summarizes the analyses of this problem in
[5, 8].

Caches, Models, and Cache Analysis
Modern computers have hierarchical memory
which consists of registers, one or more levels
of caches, main memory, and external memory
devices such as disks and tapes. Memory size
increases, but the speed decreases with distance
from the CPU. Hierarchical memory is designed
to improve the performance of algorithms by
exploiting temporal and spatial locality in data
accesses.

Caches are modeled as follows. A cache has
m blocks each of which holds B data elements.
The capacity of the cache is M D mB . Data is
transferred between one level of cache and the
next larger and slower memory in blocks of B
elements. A cache is organized as s D m=a sets
where each set consists of a blocks. Memory at
address xB , referred to as memory block x, can
only be placed in a block in set x mod s. If
a D 1, the cache is said to be direct mapped, and
if a D s, it is said to be fully associative.

If memory block x is accessed and it is not in
cache, then a cache miss occurs, and the data in
memory block x is brought into cache, incurring
a performance penalty. In order to accommodate
block x, it is assumed that the least recently used
(LRU) or the first used (FIFO) block from the
cache set x mod s is evicted, and this is referred
to as the replacement strategy. Note that a block
may be evicted from a set, even though there may
be unoccupied blocks in other sets.

Cache analysis is performed for the number of
cache misses for a problem withN data elements.
To read or write N data elements, an algorithm
must incur �.N=B/ cache misses. These are the
compulsory or first reference misses. In the multi-
ple sequence access via cache memory problem,
for given values of M and B , one aim is to find
the largest k such that there are O.N=B/ cache
misses for the N data accesses. It is interesting
to analyze cache misses for the important case of
direct mapped cache and for the general case of
set-associative caches.

A large number of algorithms have been
designed on the external memory model [11],
and these algorithms optimize the number of
data transfers between main memory and disk.
It seems natural to exploit these algorithms



Analyzing Cache Misses 83

A

to minimize cache misses, but due to the
limited associativity of caches, this is not
straightforward. In the external memory model,
data transfers are under programmer control,
and the multiple sequence access problem has
a trivial solution. The algorithm simply chooses
k � Me=Be , where Be is the block size and
Me is the capacity of the main memory in the
external memory model. For k � Me=Be , there
areO.N=Be/ accesses to external memory. Since
caches are hardware controlled, the problem
becomes nontrivial. For example, consider the
case where the starting addresses of k > a equal
length sequences map to the i th element of the
same set, and the sequences are accessed in a
round-robin fashion. On a cache with an LRU or
FIFO replacement strategy, all sequence accesses
will result in a cache miss. Such pathological
cases can be overcome by randomizing the
starting addresses of the sequences.

Related Problems
A very closely related problem is where accesses
to the sequences are interleaved with accesses

to a small working array. This occurs in ap-
plications such as distribution sorting or matrix
multiplication.

Caches can emulate external memory with an
optimal replacement policy [3, 10]; however, this
requires some constant factor more memory.
Since the emulation techniques are software
controlled and require modification to the
algorithm, rather than selection of parameters,
they work well for fairly simple algorithms
[6].

Key Results

Theorem 1 ([5]) Given an a-way set-associative
cache with m cache blocks, s D m=a cache
sets, cache blocks size B , and LRU or FIFO
replacement strategy. Let Ua denote the expected
number of cache misses in any schedule of
N sequential accesses to k sequences with
starting addresses that are at least .a C 1/-wise
independent:

U1 � k C
N

B

�
1C .B � 1/

k

m

�
; (1)

U1 �
N

B

�
1C .B � 1/

k � 1

mC k � 1

�
; (2)

Ua � k C
N

B

�
1C .B � 1/

�
k˛

m

�a

C
1

m=.k˛/ � 1
C
k � 1

s � 1

�
(3)

for k �
m

˛
;

Ua � k C
N

B

�
1C .B � 1/

�
kˇ

m

�a

C
1

m=.kˇ/ � 1

�
(4)

for k �
m

2˛
;

Ua �
N

B

�
1C .B � 1/Ptail

�
k � 1;

1

s
; a

��
� kM; (5)

Ua �
N

B

 
1C .B � 1/

�
.k � a/˛

m

�a �
1 �

1

�
s

�k
!
� kM; (6)
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where ’ D ’.a/ D a=.aŠ/1=a, Ptail.n; p; a/ D
P
i�a

�
n

i

�
pi .1�p/n�i is the cumulative binomial

probability, and “ WD 1 C ’.daxe/ where x D
x.a/ D inff0 < ´ < 1 W ´ C ´=’.da´e/ D

1g.

Here 1 � ’ < e and “.1/ D 2, “.1/ D
1C e 
 3:71. This analysis assumes that an ad-
versary schedules the accesses to the sequences.
For the lower bound, the adversary initially ad-
vances sequence si for i D 1 : : : k by Xi el-
ements, where the Xi is chosen uniformly and
independently from f0;M � 1g. The adversary
then accesses the sequences in a round-robin
manner.

The k in the upper bound accounts for a
possible extra block that may be accessed due
to randomization of the starting addresses. The
�kM term in the lower bound accounts for the
fact that cache misses cannot be counted when
the adversary initially winds forwards the se-
quences.

The bounds are of the form pN C c, where c
does not depend on N and p is called the cache
miss probability. Letting r D k=m, the ratio
between the number of sequences and the number
of cache blocks, the bounds for the cache miss
probabilities in Theorem 1 become [5]

p1 � .1=B/.1C .B � 1/r/; (7)

p1 � .1=B/

�
1C .B � 1/

r

1C r

�
; (8)

pa � .1=B/.1C .B � 1/.r˛/
a C r˛ C ar/

for r �
1

˛
; (9)

pa � .1=B/.1C B � 1/.rˇ/
a C rˇ for r �

1

2ˇ

(10)

pa.1=B/

 
1C .B � 1/.r˛/a

�
1 �

1

s

�k
!
:

(11)

The 1/B term accounts for the compulsory or
first reference miss, which must be incurred in

order to read a block of data from a sequence.
The remaining terms account for conflict misses,
which occur when a block of data is evicted from
cache before all its elements have been scanned.
Conflict misses can be reduced by restricting
the number of sequences. As r approaches zero,
the cache miss probabilities approach 1/B . In
general, inequality (4) states that the number of
cache misses is O.N=B/ if r � 1=.2“/ and
.B � 1/.r“/a D O.1/. Both of these condi-
tions are satisfied if k � m=max.B1=a; 2“/. So,
there are O.N=B/ cache misses provided k D
O.m=B1=a/.

The analysis shows that for a direct-mapped
cache, where a D 1, the upper bound is a factor
of r C 1 above the lower bound. For a � 2,
the upper bounds and lower bounds are close if
.1 � 1=s/k 
 and .˛ C ˛/r � 1, and both these
conditions are satisfied if k � s.

Rahman and Raman [8] obtain closer up-
per and lower bounds for average case cache
misses assuming the sequences are accessed uni-
formly randomly on a direct-mapped cache. Sen
and Chatterjee [10] also obtain upper and lower
bounds assuming the sequences are randomly
accessed. Ladner, Fix, and LaMarca have ana-
lyzed the problem on direct-mapped caches on
the independent reference model [4].

Multiple Sequence Access with Additional
Working Set
As stated earlier in many applications, accesses
to sequences are interleaved with accesses to an
additional data structure, a working set, which
determines how a sequence element is to be
treated. Assuming that the working set has size
at most sB and is stored in contiguous memory
locations, the following is an upper bound on the
number of cache misses:

Theorem 2 ([5]) LetUa denote the bound on the
number of cache misses in Theorem 1 and define
U0 D N . With the working set occupying w
conflict-free memory blocks, the expected number
of cache misses arising in the N accesses to the
sequence data, and any number of accesses to the
working set, is bounded by w C .1 � w=s/Ua C

2.w=s/Ua�1.
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On a direct-mapped cache, for i D 1; : : : ; k, if
sequence i is accessed with probability pi inde-
pendently of all previous accesses and is followed
by an access to element i of the working set, then
the following are upper and lower bounds for the
number of cache misses:

Theorem 3 ([8]) In a direct-mapped cache with
m cache blocks, each of B elements, if sequence
i , for i D; : : : ; k, is accessed with probability
pi and block j of the working set, for j D
; : : : ; k=B , is accessed with probability Pj , then
the expected number of cache misses in N se-
quence accesses is at most N.ps C pw/C k.1C

1=B/, where

ps �
1

B
C

k

mB
C
B � 1

mB

kX

iD1

0

@
k=BX

jD1

piPj

pi C Pj

C
B � 1

B

kX

jD1

pipj

pi C pj

1

A ;

pw �
k

B2m
C
B � 1

mB

k=BX

iD1

kX

jD1

Pipj

Pipj

:

Theorem 4 ([8]) In a direct-mapped cache with
m cache blocks each of B elements, if sequence
i , for i D 1; : : : ; k, is accessed with probability
pi � 1=m, then the expected number of cache
misses in N sequence accesses is at least Nps C

k, where

ps �
1

B
C
k.2m � k/

2m2
C
k.k � 3m/

2Bm2
�

1

2Bm
�

k

2B2m
C
B.k �m/C 2m � 3k

Bm2

kX

iD1

kX

jD1

.pi /
2

pi C pj

C
.B � 1/2

B3m2

kX

iD1

pi

2

4
kX

jD1

pi .1 � pi � pj /

.pi C pj /2
�
B � 1

2

kX

jD1

kX

lD1

pi

pi C pj C pl � pjpl

3

5 �O.e�B/:

The lower bound ignores the interaction with
the working set, since this can only increase the
number of cache misses.

In Theorems 3 and 4, ps is the probability
of a cache miss for a sequence access, and in
Theorem 3, pw is the probability of a cache miss
for an accesses to the working set.

If the sequences are accessed uniformly ran-
domly, then using Theorems 3 and 4, the ratio
between the upper and lower bound is 3=.3 � r/,
where r D k=m. So for uniformly random data,
the lower bound is within a factor of about 3=2 of
the upper bound when k � m and is much closer
when k � m.

Applications

Numerous algorithms have been developed on the
external memory model which access multiple
sequences of data, such as merge sort, distribution

sort, priority queues, and radix sorting. These
analyses are important as they allow initial pa-
rameter choices to be made for cache memory
algorithms.

Open Problems

The analyses assume that the starting addresses
of the sequences are randomized, and current ap-
proaches to allocating random starting addresses
waste a lot of virtual address space [5]. An open
problem is to find a good online scheme to ran-
domize the starting addresses of arbitrary length
sequences.

Experimental Results

The cache model is a powerful abstraction of real
caches; however, modern computer architectures
have complex internal memory hierarchies, with
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registers, multiple levels of caches, and transla-
tion lookaside buffers (TLB). Cache miss penal-
ties are not of the same magnitude as the cost
of disk accesses, so an algorithm may perform
better by allowing conflict misses to increase in
order to reduce computation costs and compul-
sory misses, by reducing the number of passes
over the data. This means that in practice, cache
analysis is used to choose an initial value of k
which is then fine-tuned for the platform and
algorithm [1, 2, 6, 7, 9, 12, 13].

For distribution sorting, in [6], a heuristic was
considered for selecting k, and equations for
approximate cache misses were obtained. These
equations were shown to be very accurate in
practice.
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Problem Definition

Given a geometric graph in d -dimensional space,
it is useful to preprocess it so that distance
queries, exact or approximate, can be answered
efficiently. Algorithms that can report distance
queries in constant time are also referred to as
“distance oracles.” With unlimited preprocessing
time and space, it is clear that exact distance
oracles can be easily designed. This entry sheds
light on the design of approximate distance
oracles with limited preprocessing time and space
for the family of geometric graphs with constant
dilation.

Notation and Definitions
If p and q are points in Rd , then the notation jpqj
is used to denote the Euclidean distance between
p and q; the notation ıG.p; q/ is used to denote
the Euclidean length of a shortest path between
p and q in a geometric network G. Given a
constant t > 1, a graph G with vertex set S is
a t -spanner for S if ıG.p; q/ � t jpqj for any
two points p and q of S . A t -spanner network
is said to have dilation (or stretch factor) t . A
.1C "/-approximate shortest path between p and
q is defined to be any path in G between p and
q having length �, where ıG.p; q/ � � �

.1C"/ıG.p; q/. For a comprehensive overview of
geometric spanners, see the book by Narasimhan
and Smid [14].

All networks considered in this entry are sim-
ple and undirected. The model of computation
used is the traditional algebraic computation tree
model with the added power of indirect address-
ing. In particular, the algorithms presented here
do not use the non-algebraic floor function as a

unit-time operation. The problem is formalized
below.

Problem 1 (Distance Oracle) Given an arbi-
trary real constant � > 0, and a geometric
graph G in d -dimensional Euclidean space with
constant dilation t , design a data structure that
answers .1C �/-approximate shortest path length
queries in constant time.

The data structure can also be applied to
solve several other problems. These include (a)
the problem of reporting approximate distance
queries between vertices in a planar polygonal
domain with “rounded” obstacles, (b) query
versions of closest pair problems, and (c)
the efficient computation of the approximate
dilations of geometric graphs.

Survey of Related Research
The design of efficient data structures for
answering distance queries for general (non-
geometric) networks was considered by Thorup
and Zwick [17] (unweighted general graphs),
Baswanna and Sen [3] (weighted general graphs,
i.e., arbitrary metrics), and Arikati et al. [2] and
Thorup [16] (weighted planar graphs).

For the geometric case, variants of the problem
have been considered in a number of papers (for
a recent paper, see, e.g., Chen et al. [5]). Work
on the approximate version of these variants can
also be found in many articles (for a recent
paper, see, e.g., Agarwal et al. [1]). The focus
of this entry is the results reported in the work
of Gudmundsson et al. [10–13]. Similar results
on distance oracles were proved subsequently for
unit disk graphs [7]. Practical implementations of
distance oracles in geometric networks have also
been investigated [15].

Key Results

The main result of this entry is the existence
of approximate distance oracle data structures
for geometric networks with constant dilation
(see Theorem 4 below). As preprocessing, the
network is “pruned” so that it only has a linear
number of edges. The data structure consists of
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a series of “cluster graphs” of increasing coarse-
ness, each of which helps answer approximate
queries for pairs of points with interpoint dis-
tances of different scales. In order to pinpoint
the appropriate cluster graph to search in for a
given query, the data structure uses the bucketing
tool described below. The idea of using cluster
graphs to speed up geometric algorithms was first
introduced by Das and Narasimhan [6] and later
used by Gudmundsson et al. [9] to design an
efficient algorithm to compute .1 C "/-spanners.
Similar ideas were explored by Gao et al. [8] for
applications to the design of mobile networks.

Pruning
If the input geometric network has a superlinear
number of edges, then the preprocessing step
for the distance oracle data structure involves
efficiently “pruning” the network so that it has
only a linear number of edges. The pruning may
result in a small increase of the dilation of the
spanner. The following theorem was proved by
Gudmundsson et al. [12].

Theorem 1 Let t > 1 and "0 > 0 be real
constants. Let S be a set of n points in Rd ,
and let G D .S;E/ be a t -spanner for S with
m edges. There exists an algorithm to compute
in O.m C n logn/ time, a .1 C "0/-spanner
of G having O.n/ edges and whose weight is
O.wt .MST .S///.

The pruning step requires the following technical
theorem proved by Gudmundsson et al. [12].

Theorem 2 Let S be a set of n points in Rd , and
let c � 7 be an integer constant. In O.n logn/
time, it is possible to compute a data structure
D.S/ consisting of:

1. A sequence L1; L2; : : : ; L` of real numbers,
where ` D O.n/, and

2. A sequence S1; S2; : : : ; S` of subsets of S such
that

P`
iD1 jSi j D O.n/,

such that the following holds. For any two distinct
points p and q of S , it is possible to compute in
O.1/ time an index i with 1 � i � ` and two

points x and y in Si such that (a) Li=n
cC1 �

jxyj < Li and (b) both jpxj and jqyj are less
than jxyj=nc�2.

Despite its technical nature, the above theorem
is of fundamental importance to this work. In
particular, it helps to deal with networks where
the interpoint distances are not confined to a
polynomial range, i.e., there are pairs of points
that are very close to each other and very far from
each other.

Bucketing
Since the model of computation assumed here
does not allow the use of floor functions, an
important component of the algorithm is a “buck-
eting tool” that allows (after appropriate prepro-
cessing) constant-time computation of a quantity
referred to as BINDEX, which is defined to be the
floor of the logarithm of the interpoint distance
between any pair of input points.

Theorem 3 Let S be a set of n points in Rd that
are contained in the hypercube .0; nk/d , for some
positive integer constant k, and let " be a positive
real constant. The set S can be preprocessed
in O.n logn/ time into a data structure of size
O.n/, such that for any two points p and q of
S , with jpqj � 1, it is possible to compute
in constant time the quantity BINDEX".p; q/ D

blog1C" jpqjc:

The constant-time computation mentioned in
Theorem 3 is achieved by reducing the prob-
lem to one of answering least common ancestor
queries for pairs of nodes in a tree, a problem for
which constant-time solutions were devised most
recently by Bender and Farach-Colton [4].

Main Results
Using the bucketing and the pruning tools, and
using the algorithms described by Gudmundsson
et al. [13], the following theorem can be proved.

Theorem 4 Let t > 1 and " > 0 be real
constants. Let S be a set of n points in Rd , and let
G D .S;E/ be a t -spanner for S with m edges.
The graph G can be preprocessed into a data
structure of size O.n logn/ in time O.mn logn/,
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such that for any pair of query points p; q 2 S ,
it is possible to compute a .1C "/-approximation
of the shortest path distance in G between p and
q inO.1/ time. Note that all the big-Oh notations
hide constants that depend on d , t , and ".

Additionally, if the traditional algebraic model
of computation (without indirect addressing) is
assumed, the following weaker result can be
proved.

Theorem 5 Let S be a set of n points in Rd ,
and let G D .S;E/ be a t -spanner for S , for
some real constant t > 1, having m edges.
Assuming the algebraic model of computation,
in O.m log logn C n log2 n/ time, it is possible
to preprocess G into a data structure of size
O.n logn/, such that for any two points p and q
in S , a .1C"/-approximation of the shortest-path
distance in G between p and q can be computed
in O.log log n/ time.

Applications

As mentioned earlier, the data structure described
above can be applied to several other problems.
The first application deals with reporting distance
queries for a planar domain with polygonal ob-
stacles. The domain is further constrained to be
t -rounded, which means that the length of the
shortest obstacle-avoiding path between any two
points in the input point set is at most t times the
Euclidean distance between them. In other words,
the visibility graph is required to be a t -spanner
for the input point set.

Theorem 6 Let F be a t -rounded collection of
polygonal obstacles in the plane of total com-
plexity n, where t is a positive constant. One can
preprocess F inO.n logn/ time into a data struc-
ture of size O.n logn/ that can answer obstacle-
avoiding .1C"/-approximate shortest path length
queries in time O.logn/. If the query points are
vertices of F , then the queries can be answered
in O.1/ time.

The next application of the distance oracle data
structure includes query versions of closest pair

problems, where the queries are confined to spec-
ified subset(s) of the input set.

Theorem 7 Let G D .S;E/ be a geometric
graph on n points and m edges, such that G is
a t -spanner for S , for some constant t > 1. One
can preprocess G in time O.m C n logn/ into a
data structure of size O.n logn/ such that given
a query subset S 0 of S , a .1 C "/-approximate
closest pair in S 0 (where distances are measured
in G) can be computed in time O.jS 0j log jS 0j/.

Theorem 8 Let G D .S;E/ be a geometric
graph on n points and m edges, such that G is
a t -spanner for S , for some constant t > 1. One
can preprocess G in time O.m C n logn/ into a
data structure of size O.n logn/ such that given
two disjoint query subsets X and Y of S , a .1C
"/-approximate bichromatic closest pair (where
distances are measured inG) can be computed in
time O..jX j C jY j/ log.jX j C jY j//.

The last application of the distance oracle data
structure includes the efficient computation of the
approximate dilations of geometric graphs.

Theorem 9 Given a geometric graph on n ver-
tices with m edges, and given a constant C that
is an upper bound on the dilation t of G, it is
possible to compute a .1C "/-approximation to t
in time O.mC n logn/.

Open Problems

Two open problems remain unanswered:

1. Improve the space utilization of the distance
oracle data structure fromO.n logn/ toO.n/.

2. Extend the approximate distance oracle data
structure to report not only the approximate
distance but also the approximate shortest path
between the given query points.
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Problem Definition

The Problem and the Model
A static data structure problem consists of a set
of data D, a set of queries Q, a set of answers A,
and a function f W D �Q ! A. The goal is to
store the data succinctly, so that any query can be
answered with only a few probes to the data struc-
ture. Static membership is a well-studied problem
in data structure design [2, 6, 9, 10, 16, 17, 23].

Definition 1 (Static Membership) In the static
membership problem, one is given a subset
S of at most n keys from a universe U D

f1; 2; : : : ; mg. The task is to store S so that
queries of the form “Is u in S?” can be answered
by making few accesses to the memory.
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A natural and general model for studying any
data structure problem is the cell probe model
proposed by Yao [23].

Definition 2 (Cell Probe Model) An .s;w; t /
cell probe scheme for a static data structure
problem f W D �Q! A has two components: a
storage scheme and a query scheme. The storage
scheme stores the data d 2 D as a Table T Œd � of
s cells, each cell of word size w bits. The storage
scheme is deterministic. Given a query q 2 Q,
the query scheme computes f .d; q/ by making
at most t probes to T Œd �, where each probe reads
one cell at a time, and the probes can be adaptive.
In a deterministic cell probe scheme, the query
scheme is deterministic. In a randomized cell
probe scheme, the query scheme is randomized
and is allowed to err with a small probability.

Buhrman et al. [3] study the complexity of
the static membership problem in the bitprobe
model. The bitprobe model is a variant of the
cell probe model in which each cell holds just a
single bit. In other words, the word size w is 1.
Thus, in this model, the query algorithm is given
bitwise access to the data structure. The study of
the membership problem in the bitprobe model
was initiated by Minsky and Papert in their book
Perceptrons [16]. However, they were interested
in average-case upper bounds for this problem,
while this work studies worst-case bounds for the
membership problem.

Observe that if a scheme is required to
store sets of size at most n, then it must use
at least dlog

P
i�n

�
m
i

�
e number of bits. If

n � m1�	.1/, this implies that the scheme must
store �.n logm/ bits (and therefore use �.n/
cells). The goal in [3] is to obtain a scheme that
answers queries, uses only constant number of
bitprobes, and at the same time uses a table of
O.n logm/ bits.

Related Work
The static membership problem has been well
studied in the cell probe model, where each cell
is capable of holding one element of the universe.
That is, w D O.logm/. In a seminal paper,
Fredman, Komlós, and Szemerédi [10] proposed
a scheme for the static membership problem in

the cell probe model with word size O.logm/
that used a constant number of probes and a table
of size O.n/. This scheme will be referred to as
the FKS scheme. Thus, up to constant factors,
the FKS scheme uses optimal space and number
of cell probes. In fact, Fiat et al. [9], Brodnik
and Munro [2], and Pagh [17] obtain schemes
that use space (in bits) that is within a small
additive term of dlog

P
i�n

�
m
i

�
e and yet answer

queries by reading at most a constant number
of cells. Despite all these fundamental results
for the membership problem in the cell probe
model, very little was known about the bitprobe
complexity of static membership prior to the
work in [3].

Key Results

Buhrman et al. investigate the complexity of the
static membership problem in the bitprobe model.
They study

• Two-sided error randomized schemes that are
allowed to err on positive instances as well as
negative instances (i.e., these schemes can say
“No” with a small probability when the query
element u is in the set S and “Yes” when it is
not).

• One-sided error randomized schemes where
the errors are restricted to negative instances
alone (i.e., these schemes never say “No”
when the query element u is in the set S );

• Deterministic schemes in which no errors are
allowed.

The main techniques used in [3] are based
on 2-colorings of special set systems that are
related to r-cover-free family of sets considered
in [5, 7, 11]. The reader is referred to [3] for
further details.

Randomized Schemes with Two-Sided
Error
The main result in [3] shows that there are ran-
domized schemes that use just one bitprobe and
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yet use space close to the information theoretic
lower bound of �.n logm/ bits.

Theorem 1 For any 0 < � � 1
4

, there is a
scheme for storing subsets S of size at most n

of a universe of size m using O
�

n
�2 logm

�
bits

so that any membership query “Is u 2 S?” can
be answered with error probability at most � by a
randomized algorithm which probes the memory
at just one location determined by its coin tosses
and the query element u.

Note that randomization is allowed only in the
query algorithm. It is still the case that for each
set S , there is exactly one associated data struc-
ture T .S/. It can be shown that deterministic
schemes that answer queries using a single bit-
probe need m bits of storage (see the remarks
following Theorem 4). Theorem 1 shows that, by
allowing randomization, this bound (for constant
�) can be reduced to O.n logm/ bits. This space
is within a constant factor of the information
theoretic bound for n sufficiently small. Yet,
the randomized scheme answers queries using a
single bitprobe.

Unfortunately, the construction above does not
permit us to have sub-constant error probability
and still use optimal space. Is it possible to im-
prove the result of Theorem 1 further and design
such a scheme? Buhrman et al. [3] shows that this
is not possible: if � is made sub-constant, then the
scheme must use more than n logm space.

Theorem 2 Suppose n

m1=3 � � � 1
4

. Then,
any two-sided �-error randomized scheme which
answers queries using one bitprobe must use

space �
�

n
� log.1=�/

logm
�

.

Randomized Schemes with One-Sided
Error
Is it possible to have any savings in space if the
query scheme is expected to make only one-sided
errors? The following result shows it is possible
if the error is allowed only on negative instances.

Theorem 3 For any 0 < � � 1
4

, there is a
scheme for storing subsets S of size at most n of

a universe of size m using O
��

n
�

�2
logm

�
bits

so that any membership query “Is u 2 S?” can

be answered with error probability at most � by
a randomized algorithm which makes a single
bitprobe to the data structure. Furthermore, if
u 2 S , the probability of error is 0.

Though this scheme does not operate with op-
timal space, it still uses significantly less space
than a bitvector. However, the dependence on n is
quadratic, unlike in the two-sided scheme where
it was linear. Buhrman et al. [3] shows that this
scheme is essentially optimal: there is necessarily
a quadratic dependence on n

�
for any scheme with

one-sided error.

Theorem 4 Suppose n

m1=3 � � � 1
4

. Consider
the static membership problem for sets S of
size at most n from a universe of size m. Then,
any scheme with one-sided error � that answers
queries using at most one bitprobe must use

�
�

n2

�2 log.n=�/
logm

�
bits of storage.

Remark 1 One could also consider one-probe
one-sided error schemes that only make errors on
positive instances. That is, no error is made for
query elements not in the set S . In this case, [3]
shows that randomness does not help at all: such
a scheme must use m bits of storage.

The following result shows that the space
requirement can be reduced further in one-sided
error schemes if more probes are allowed.

Theorem 5 Suppose 0 < ı < 1. There is
a randomized scheme with one-sided error n�ı

that solves the static membership problem using
O
�
n1Cı logm

�
bits of storage and O

�
1
ı

�
bit-

probes.

Deterministic Schemes
In contrast to randomized schemes, Buhrman
et al. show that deterministic schemes exhibit a
time-space tradeoff behavior.

Theorem 6 Suppose a deterministic scheme
stores subsets of size n from a universe of
size m using s bits of storage and answers
membership queries with t bitprobes to memory.
Then,

�
m
n

�
� maxi�nt

�
2s
i

�
.

This tradeoff result has an interesting conse-
quence. Recall that the FKS hashing scheme is
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a data structure for storing sets of size at most
n from a universe of size m using O.n logm/
bits, so that membership queries can be answered
using O.logm/ bitprobes. As a corollary of the
tradeoff result, [3] show that the FKS scheme
makes an optimal number of bitprobes, within a
constant factor, for this amount of space.

Corollary 1 Let � > 0; c � 1 be any constants.
There is a constant ı > 0 so that the following
holds. Let n � m1�� and let a scheme for storing
sets of size at most n of a universe of size m
as data structures of at most cn logm bits be
given. Then, any deterministic algorithm answer-
ing membership queries using this structure must
make at least ı logm bitprobes in the worst case.

From Theorem 6, it also follows that any
deterministic scheme that answers queries using t
bitprobes must use space at least�

�
tm1=tn1�1=t

�

in the worst case. The final result shows the
existence of schemes which almost match the
lower bound.

Theorem 7 1. There is a nonadaptive scheme
that stores sets of size at most n from a

universe of size m using O
�

ntm
2

tC1

�
bits and

answers queries using 2t C 1 bitprobes. This
scheme is non-explicit.

2. There is an explicit adaptive scheme that
stores sets of size at most n from a universe
of size m using O

�
m1=tn logm

�
bits and

answers queries usingO.lognClog logm/Ct
bitprobes.

Power of Few Bitprobes
In this section, we highlight some of recent re-
sults for this problem subsequent to [3] and en-
courage the reader to read the corresponding
references for more details. Most of these results
focus on the power of deterministic schemes with
a small number of bitprobes.

Let S.m; n; t/ denote the minimum number of
bits of storage needed by a deterministic scheme
that answers queries using t (adaptive) bitprobes.
In [3], it was shown that S.m; n; 1/ D m and
S.m; n; 5/ D o.m/ for n D o

�
m1=3

�
(Theo-

rem 7, Part 1). This leads us to a natural question:

Is S.m; n; t/ D o.m/ for t = 2, 3, and 4 and under
what conditions on n?

Initial progress for the case t D 2 was made
by [18] who considered the simplest case: n D 2.
They showed that S.m; 2; 2/ D O

�
m2=3

�
.

It was later shown in [19] that S.m; 2; 2/ D
�
�
m4=7

�
. The upper bound result of [18] was

improved upon by the authors of [1] who showed
that S.m; n; 2/ D o.m/ if n D o.logm/.
Interestingly, a matching lower bound was shown
recently in [12]: S.m; n; 2/ D o.m/ only if
n D o.logm/.

Strong upper bounds were obtained by [1] for
the case t D 3 and t D 4. They showed that
S.m; n; 3/ D o.m/ whenever n D o.m/. They
also showed that S.m; n; 4/ D o.m/ for n D
o.m/ even if the four bitprobes are nonadaptive.
Recently, it was shown in [14] that S.m; 2; 3/ �
7m2=5. This work focuses on explicit schemes for
n D 2 and t � 3.

Finally, we end with two remarks. Our prob-
lem for the case n D ‚.m/ has been studied by
Viola [22]. A recent result of Chen, Grigorescu,
and de Wolf [4] studies our problem in the pres-
ence of adversarial noise.

Applications

The results in [3] have interesting connections to
questions in coding theory and communication
complexity. In the framework of coding theory,
the results in [3] can be viewed as constructing
locally decodable source codes, analogous to the
locally decodable channel codes of [13]. The-
orems 1–4 can also be viewed as giving tight
bounds for the following communication com-
plexity problem (as pointed out in [15]): Alice
gets u 2 f1; : : : ; mg, Bob gets S � f1; : : : ; mg of
size at most n, and Alice sends a single message
to Bob after which Bob announces whether u 2
S . See [3] for further details.

Recommended Reading

1. Alon N and Feige U (2009) On the power of two,
three and four probes. In: Proceedings of SODA’09,
New York, pp 346–354



94 Approximate Distance Oracles with Improved Query Time

2. Brodnik A, Munro JI (1994) Membership in constant
time and minimum space. In: Algorithms ESA’94:
second annual European symposium, Utrecht. Lec-
ture notes in computer science, vol 855, pp 72–81. Fi-
nal version: Membership in constant time and almost-
minimum space. SIAM J Comput 28(5):1627–1640
(1999)

3. Buhrman H, Miltersen PB, Radhakrishnan J,
Venkatesh S (2002) Are bitvectors optimal? SIAM J
Comput 31(6):1723–1744

4. Chen V, Grigorescu E, de Wolf R (2013) Error-
correcting data structures. SIAM J Comput 42(1):84–
111

5. Dyachkov AG, Rykov VV (1982) Bounds on the
length of disjunctive codes. Problemy Peredachi
Informatsii 18(3):7–13 [Russian]

6. Elias P, Flower RA (1975) The complexity of some
simple retrieval problems. J Assoc Comput Mach
22:367–379

7. Erdős P, Frankl P, Füredi Z (1985) Families of finite
sets in which no set is covered by the union of r
others. Isr J Math 51:79–89

8. Fiat A, Naor M (1993) Implicit O.1/ probe search.
SIAM J Comput 22:1–10

9. Fiat A, Naor M, Schmidt JP, Siegel A (1992) Non-
oblivious hashing. J Assoc Comput Mach 31:764–
782

10. Fredman ML, Komlós J, Szemerédi E (1984) Storing
a sparse table with O.1/ worst case access time. J
Assoc Comput Mach 31(3):538–544

11. Füredi Z (1996) On r-cover-free families. J Comb
Theory Ser A 73:172–173

12. Garg M, Radhakrishnan J (2015) Set membership
with a few bit probes. In: Proceedings of SODA’15,
San Diego, pp 776–784

13. Katz J, Trevisan L (2000) On the efficiency of local
decoding procedures for error-correcting codes. In:
Proceedings of STOC’00, Portland, pp 80–86

14. Lewenstein M, Munro JI, Nicholson PK, Raman V
(2014) Improved explicit data structures in the bit-
probe model. In: Proceedings of ESA’14, Wroclaw,
pp 630–641

15. Miltersen PB, Nisan N, Safra S, Wigderson A (1998)
On data structures and asymmetric communication
complexity. J Comput Syst Sci 57:37–49

16. Minsky M, Papert S (1969) Perceptrons. MIT,
Cambridge

17. Pagh R (1999) Low redundancy in static dictionaries
with O.1/ lookup time. In: Proceedings of ICALP
’99, Prague. Lecture notes in computer science, vol
1644, pp 595–604

18. Radhakrishnan J, Raman V, Rao SS (2001) Explicit
deterministic constructions for membership in the
bitprobe model. In: Proceedings of ESA’01, Aarhus,
pp 290–299

19. Radhakrishnan J, Shah S, Shannigrahi S (2010) Data
structures for storing small sets in the bitprobe model.
In: Proceedings of ESA’10, Liverpool, pp 159–
170

20. Ruszinkó M (1984) On the upper bound of the size of
r-cover-free families. J Comb Theory Ser A 66:302–
310

21. Ta-Shma A (2002) Explicit one-probe storing
schemes using universal extractors. Inf Process Lett
83(5):267–274

22. Viola E (2012) Bit-probe lower bounds for succinct
data structures. SIAM J Comput 41(6):1593–1604

23. Yao ACC (1981) Should tables be sorted? J Assoc
Comput Mach 28(3):615–628

Approximate Distance Oracles with
Improved Query Time

Christian Wulff-Nilsen
Department of Computer Science, University of
Copenhagen, Copenhagen, Denmark

Keywords

Approximate distance oracle; Graphs; Query
time; Shortest paths

Years and Authors of Summarized
Original Work

2013; Wulff-Nilsen

Problem Definition

This problem is concerned with obtaining a com-
pact data structure capable of efficiently reporting
approximate shortest path distance queries in
a given undirected edge-weighted graph G D

.V;E/. If the query time is independent (or nearly
independent) of the size of G, we refer to the
data structure as an approximate distance oracle
for G. For vertices u and v in G, we denote by
dG.u; v/ the shortest path distance between u and
v in G. For a given stretch parameter ı � 1, we
call the oracle ı-approximate if for all vertices u
and v in G, dG.u; v/ � QdG.u; v/ � ıdG.u; v/,
where QdG.u; v/ is the output of the query for u
and v. Hence, we allow estimates to be stretched
by a factor up to ı but not shrunk.
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Key Results

A major result in the area of distance oracles is
due to Thorup and Zwick [4]. They gave, for
every integer k � 1, a .2k � 1/-approximate
distance oracle of size O

�
kn1C1=k

�
and query

time O.k/, where n is the number of vertices of
the graph. This is constant query time when k
is constant. Corresponding approximate shortest
paths can be reported in time proportional to
their length. Mendel and Naor [3] asked the
question of whether query time can be improved
to a universal constant (independent also of k)
while keeping both size and stretch small. They
obtained O

�
n1C1=k

�
size and O.1/ query time

at the cost of a constant-factor increase in stretch
to 128k. Unlike the oracle of Thorup and Zwick,
Mendel and Naor’s oracle is not path reporting.

In [5], it is shown how to improve the query
time of Thorup-Zwick to O.log k/ without
increasing space or stretch. This is done while
keeping essentially the same data structure but
applying binary instead of linear search in so-
called bunch structures that were introduced by
Thorup and Zwick [4]; the formal definition
will be given below. Furthermore, it is shown
in [5] how to improve the stretch of the oracle of
Mendel and Naor to .2 C �/k for an arbitrarily
small constant � > 0 while keeping query time
constant (bounded by 1=�). This improvement is
obtained without an increase in space except for
large values of k close to logn (only values of k
less than logn are interesting since the Mendel-
Naor oracle has optimal O.n/ space and O.1/
query time for larger values). Below, we sketch
the main ideas in the improvement of Thorup-
Zwick and of Mendel-Naor, respectively.

Oracle with O.log k/ Query Time
The oracle of Thorup and Zwick keeps a hier-
archy of sets of sampled vertices V D A0 �

A1 � A2 : : : � Ak D ;, where for i D
1; : : : ; k � 1, Ai is obtained by picking each
element of Ai�1 independently with probability
n�1=k . Define pi .u/ as the vertex in Ai closest
to u. The oracle precomputes and stores for each
vertex u 2 V the bunch Bu, defined as

Bu D

k�1[

iD0

˚
v 2 Ai n AiC1jdG.u; v/

< dG.u; piC1.u//
�
:

See Fig. 1 for an illustration of a bunch. The
distance dG.u; v/ for each v 2 Bu is precomputed
as well.

Now, to answer a query for a vertex pair
.u; v/, the oracle performs a linear search through
bunches Bu and Bv . Pseudocode is given in
Fig. 2. It is clear that query time is O.k/, and it
can be shown that the estimate output in line 6
has stretch 2k � 1.

p2(u)

p1(u)

u = p0(u)

Approximate Distance Oracles with Improved Query
Time, Fig. 1 A bunch Bu in a complete Euclidean graph
with k D 3. Black vertices belong to A0, grey vertices to
A1, and white vertices to A2. Line segments connect u to
vertices of Bu

Algorithm distk(u, v)

1. w ← p0(u); j ←0
2. while w ∈ Bv
3.    j ← j + 1
4. (u, v) ← (v, u)
5.    w ← pj(u)
6. return dG(w, u) + dG(w, v)

Approximate Distance Oracles with Improved Query
Time, Fig. 2 Answering a distance query, starting at
sample level i
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We can improve query time to O.log k/
by instead doing binary search in the bunch
structures. A crucial property of the Thorup-
Zwick oracle is that every time the test in line
2 succeeds, dG.u; pj .u// increases by at most
dG.u; v/, and this is sufficient to prove 2k � 1
stretch. In particular, if the test succeeds two
times in a row, dG.u; pjC2.u//�dG.u; pj .u// �
2dG.u; v/, where j is even. If we can check that
dG.u; pj 0C2.u// � dG.u; pj 0.u// � 2dG.u; v/
for all smaller even indices j 0, we may start the
query algorithm at index j instead of index 0.
Since we would like to apply binary search, pick
j to be (roughly) k=2. It suffices to check only
one inequality, namely, the one with the largest
value dG.u; pj 0C2.u// � dG.u; pj 0.u//. Note
that this value depends only on u and k, so we
can precompute the index j 0 with this largest
value. In the query phase, we can check in O.1/
time whether dG.u; pj 0C2.u//�dG.u; pj 0.u// �
2dG.u; v/. If the test succeeds, we can start the
query at j , and hence, we can recurse on indices
between j and k � 1. Conversely, if the test fails,
it means that the test in line 2 fails for either j 0 or
j 0C1. Hence, the query algorithm of Thorup and
Zwick terminates no later than at index j 0 C 1,
and we can recurse on indices between 0 and
j 0 C 1. In both cases, the number of remaining
indices is reduced by a factor of at least 2. Since
each recursive call takes O.1/ time, we thus
achieve O.log k/ query time.

Since the improved oracle is very similar to the
Thorup-Zwick oracle, it is path reporting, i.e., it
can report approximate paths in time proportional
to their length.

Oracle with Constant Query Time
The second oracle in [5] can be viewed as a
hybrid between the oracles of Thorup-Zwick and
of Mendel-Naor. An initial estimate is obtained
by querying the Mendel-Naor oracle. This esti-
mate has stretch at most 128k, and it is refined
in subsequent iterations until the desired stretch
.2C�/k is obtained. In each iteration, the current
estimate is reduced by a small constant factor
greater than 1 (depending on �). Note that after
a constant number of iterations, the estimate will
be below the desired stretch, but it needs to be

ensured that it is not below the shortest path
distance.

In each iteration, the hybrid algorithm at-
tempts to start the Thorup-Zwick query algorithm
at a step corresponding to this estimate. If this can
be achieved, only a constant number of steps of
this query algorithm need to be executed before
the desired stretch is obtained. Conversely, if
the hybrid algorithm fails to access the Thorup-
Zwick oracle in any iteration, then by a prop-
erty of the bunch structures, it is shown that
the current estimate is not below the shortest
path distance. Hence, the desired stretch is again
obtained.

An important property of the Mendel-Naor
oracle needed above is that the set dMN of all
different values the oracle can output has size
bounded by O

�
n1C1=k

�
. This is used in the

hybrid algorithm as follows. In a preprocessing
step, values from dMN are ordered in a list L
together with additional values corresponding to
the intermediate estimates that the hybrid algo-
rithm can consider in an iteration. Updating the
estimate in each iteration then corresponds to a
linear traversal of part of L. Next, each vertex
pi of each bunch structure Bu of the Thorup-
Zwick oracle is associated with the value in the
list closest to dG.u; pi /. For each element of
L, a hash table is kept for the bunch vertices
associated with that element. It can be shown that
this way of linking the oracle of Thorup-Zwick
and Mendel-Naor achieves the desired.

Applications

The practical need for efficient algorithms to
answer the shortest path (distance) queries in
graphs has increased significantly over the years,
in large part due to emerging GPS navigation
technology and other route planning software.
Classical algorithms like Dijkstra do not scale
well as they may need to explore the entire graph
just to answer a single query. As road maps are
typically of considerable size, obtaining compact
distance oracles has received a great deal of
attention from the research community.
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Open Problems

A widely believed girth conjecture of Erdős [2]
implies that an oracle with stretch 2k � 1, size
O
�
n1C1=k

�
, and query time O.1/ would be op-

timal. Obtaining such an oracle (preferably one
that is path reporting) is a main open problem in
the area. Some progress has recently been made:
Chechik [1] gives an oracle (not path reporting)
with stretch 2k � 1, size O

�
kn1C1=k

�
, and O.1/

query time.
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Problem Definition

In graph theory, a matching in a graph is a
set of edges without common vertices, while a
perfect matching is one in which all vertices
are associated with matching edges. In a graph
G D .V;E;w/, where V is the set of vertices,
E is the set of edges, and w W E ! R is
the edge weight function, the maximum matching
problem determines the matching M in G which
maximizes w.M/ D

P
e2M w.e/. Note that a

maximum matching is not necessarily perfect.
The maximum cardinality matching (MCM) prob-
lem means the maximum matching problem for
w.e/ D 1 for all edges. Otherwise, it is called the
maximum weight matching (MWM).

Algorithms for Exact MWM
Although the maximum matching problem has
been studied for decades, the computational com-
plexity of finding an optimal matching remains
quite open. Most algorithms for graph matchings
use the concept of augmenting paths. An alternat-
ing path (or cycle) is one whose edges alternate
between M and EnM . An alternating path P is
augmenting if P begins and ends at free vertices,

that is,M˚P
def
D .MnP /[.P nM/ is a matching

with cardinality jM ˚P j D jM j C 1. Therefore,
the basic algorithm finds the maximum cardinal-
ity matching by finding an augmenting path in the
graph and adding it the matching each time, until
no more augmenting paths exist. The running
time for the basic algorithm will beO.mn/ where
m D jEj and n D jV j. The major improvement
over this for bipartite graphs is the Hopcroft-Karp
algorithm [10]. It finds a maximal set of vertex
disjoint shortest augmenting paths in each step
and shows that the length of shortest augmenting
paths will increase each time. The running time
of the Hopcroft-Karp algorithm is O.m

p
n/. Its

corresponding algorithm for general graphs is
given by Micali and Vazirani [14].

For the maximum weight matching (MWM)
and maximum weight perfect matching (MWPM),
the most classical algorithm is the Hungarian
algorithm [12] for bipartite graphs and the
Edmonds algorithm for general graphs [6, 7].
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For fast implementations, Gabow and Tarjan [8]
gave bit-scaling algorithms for MWM in
bipartite graphs running in O.m

p
n log.nN//

time, where the edge weights are integers
in Œ�N; : : : ; N �. Then, they also gave its
corresponding algorithm for general graphs [9].
Extending [15], Sankowski [18] gave anO.Nn!/

MWM algorithm for bipartite graphs (here, ! �
2:373 denotes the exponential of the complexity
of fast matrix multiplication (FMM) [2, 20]),
while Huang and Kavitha [11] obtained a similar
time bound for general graphs. We can see these
time complexities are still far from linear, which
shows the importance of fast approximation
algorithms.

Approximate Matching
Let a ı-MWM be a matching whose weight is
at least a ı fraction of the maximum weight
matching, where 0 < ı � 1, and let ı-MCM be
defined analogously.

It is well known that the greedy algorithm –
iteratively chooses the maximum weight edge not
incident to previously chosen edges – produces
a 1

2
-MWM. A straightforward implementation of

this algorithm takesO.m logn/ time. Preis [3,17]
gave a 1

2
-MWM algorithm running in linear time.

Vinkemeier and Hougardy [19] and Pettie and
Sanders [16] proposed several

�
2
3
� �

�
-MWM al-

gorithms (see also [13]) running in O.m log ��1/

time; each is based on iteratively improving a
matching by identifying sets of short weight-
augmenting paths and cycles.

Key Results

Approximate Maximum Cardinality
Matching
In fact, the Hopcroft-Karp algorithm [10] for bi-
partite graphs and Micali-Vazirani [14] algorithm
for general graphs both imply a .1 � �/-MCM
algorithm in O.��1m/ time. We can search for a
maximal set of vertex disjoint shortest augment-
ing paths for k steps, and the matching obtained
is a

�
1 � 1

kC1

�
-MCM.

Theorem 1 ([10, 14]) In a general graph G, the
.1 � �/-MCM algorithm can be found in time
O.��1m/.

Approximate Maximum Weighted
Matching
In 2014, Duan and Pettie [5] give the first .1��/-
MWM algorithm for arbitrary weighted graphs
whose running time is linear. In particular, we
show that such a matching can be found in
O.m��1 log ��1/ time, improving a preliminary
result of O.m��2 log3 n/ running time by the
authors in 2010 [4]. This result leaves little room
for improvement. The main results are given in
the following two theorems:

Theorem 2 ([5]) In a general graphG with inte-
ger edge weights between Œ0; N �, a .1� �/-MWM
can be computed in time O.m��1 logN/.

Theorem 3 ([5]) In a general graph G with real
edge weights, a .1 � �/-MWM can be computed
in time O.m��1 log ��1/.

Unlike previous algorithms of approximation
ratios of 1=2 [3, 17] or 2=3 [16, 19], the new
algorithm does not find weight-augmenting paths
and cycles directly, but follows a primal-dual
relaxation on the linear programming formulation
of MWM. This relaxed complementary slack-
ness approach relaxes the constraint of the dual
variables by a small amount, so that the itera-
tive process of the dual problem will converge
to an approximate solution much more quickly.
While it takes O.

p
n/ iterations of augmenting

to achieve a perfect matching, we proved that we
only needO.logN=�/ iterations to achieve a .1�
�/-approximation. Also, we make the relaxation
“dynamic” by shrinking the relaxation when the
dual variables decrease by one half, so that finally
the relaxation is at most � times the edge weight
on each matching edge and very small on each
nonmatching edge, which gives an approximate
solution.

Applications

Graph matching is a fundamental combinatorial
problem that has a wide range of applications in
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many fields, and it can also be building blocks
of other algorithms, such as the Christofides al-
gorithm [1] for approximate traveling salesman
problem. The approximate algorithm for maxi-
mum weight matching described above has linear
running time, much faster than the Hungarian
algorithm [12] and Edmonds [6,7] algorithm. It is
also much simpler than the Gabow-Tarjan scaling
algorithms [8,9] of QO.m

p
n/ running time. Thus,

it has a great impact both in theory and in real-
world applications.
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Problem Definition

Given a text string T = t1t2 : : : tn and a regular
expression R of length m denoting language,
L.R/ over an alphabet † of size � , and given a
distance function among strings d and a threshold
k, the approximate regular expression matching
(AREM) problem is to find all the text positions
that finish a so-called approximate occurrence of
R in T , that is, compute the set fj; 9i; 1; � i �

j; 9P 2 L.R/; d.P; ti ; : : : ; tj / � kg T;R,
and k are given together, whereas the algorithm
can be tailored for a specific d .

This entry focuses on the so-called weighted
edit distance, which is the minimum sum of
weights of a sequence of operations converting
one string into the other. The operations are inser-
tions, deletions, and substitutions of characters.
The weights are positive real values associated
to each operation and characters involved. The
weight of deleting a character c is written w.c !
"/, that of inserting c is written w." ! c/,
and that of substituting c by c ¤ c0 is written
w.c !c0). It is assumed w.c ! c/ = 0 for
all c 2 † [ " and the triangle inequality,
that is, w.x ! y/C w.y ! ´/ � w.x ! ´/ for
any x; y; ´;2 † [ f"g. As the distance may be
asymmetric, it is also fixed that d.A,B/ is the
cost of converting A into B . For simplicity and
practicality, m D o.n/ is assumed in this entry.

Key Results

The most versatile solution to the problem [3] is
based on a graph model of the distance computa-
tion process. Assume the regular expression R is
converted into a nondeterministic finite automa-
ton (NFA) withO.m/ states and transitions using
Thompson’s method [8]. Take this automaton
as a directed graph G.V ,E/ where edges are
labeled by elements in † [ f"g. A directed and

weighted graph G is built to solve the AREM
problem. G is formed by putting n+ 1 copies
of G;G0; G1; : : : ; Gn and connecting them with
weights so that the distance computation reduces
to finding shortest paths in G.

More formally, the nodes of G are {vi , v 2 V ,
0� i � n}, so that vi is the copy of node v 2 V in

graph Gi . For each edge u
c
! v in E, c 2 †[ ",

the following edges are added to graph G:

ui ! vi ; with weight w.c ! " /;

0 � i � n:

ui ! uiC1; with weight w." ! tiC1/;

0 � i � n:

ui ! viC1; with weight w.c ! tiC1/;

0 � i � n:

Assume for simplicity that G has initial state s
and a unique final state f (this can always be
arranged). As defined, the shortest path in G from
s0 to fn gives the smallest distance between T
and a string in L.R/. In order to adapt the graph
to the AREM problem, the weights of the edges
between si and si C 1 are modified to be zero.

Then, the AREM problem is reduced to com-
puting shortest paths. It is not hard to see that G
can be topologically sorted so that all the paths
to nodes in Gi are computed before all those to
Gi C 1. This way, it is not hard to solve this short-
est path problem in O(mnlog m/ time and O.m/
space. Actually, if one restricts the problem to the
particular case of network expressions, which are
regular expressions without Kleene closure, then
G has no loops and the shortest path computation
can be done in O(mn) time, and even better on
average [2].

The most delicate part in achieving O(mn)
time for general regular expressions [3] is to
prove that, given the types of loops that arise in
the NFAs of regular expressions, it is possible to
compute the distances correctly within each Gi

by (a/ computing them in a topological order of
Gi without considering the back edges introduced
by Kleene closures, (b/ updating path costs by
using the back edges once, and (c/ updating path
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costs once more in topological order ignoring
back edges again.

Theorem 1 (Myers and Miller [3]) There exists
an O(mn) worst-case time solution to the AREM
problem under weighted edit distance.

It is possible to do better when the weights
are integer-valued, by exploiting the unit-cost
RAM model through a four-Russian technique
[10]. The idea is as follows. Take a small subex-
pression of R, which produces an NFA that will
translate into a small subgraph of each Gi . At
the time of propagating path costs within this
automaton, there will be a counter associated to
each node (telling the current shortest path from
s0/. This counter can be reduced to a number in
[0, k + 1], where k + 1 means “more than k.”
If the small NFA has r states, rdlog 2.k + 2)e
bits are needed to fully describe the counters
of the corresponding subgraph of Gi . Moreover,
given an initial set of values for the counters,
it is possible to precompute all the propagation
that will occur within the same subgraph of Gi ,
in a table having 2rdlog2.k C 2/e entries, one per
possible configuration of counters. It is sufficient
that r < ˛log k C 2n for some ˛ < 1 to
make the construction and storage cost of those
tables o.n/. With the help of those tables, all the
propagation within the subgraph can be carried
out in constant time. Similarly, the propagation
of costs to the same subgraph at Gi C 1 can also
be precomputed in tables, as it depends only on
the current counters in Gi and on text character
ti C 1, for which there are only � alternatives.

Now, take all the subtrees of R of maximum
size not exceeding r and preprocess them with
the technique above. Convert each such subtree
into a leaf in R labeled by a special character
aA, associated to the corresponding small NFA
A. Unless there are consecutive Kleene closures
in R, which can be simplified as R � � = R � ,
the size ofR after this transformation isO.m=r/.
Call R0 the transformed regular expression. One
essentially applies the technique of Theorem 1 to
R0, taking care of how to deal with the special
leaves that correspond to small NFAs. Those
leaves are converted by Thompson’s construction
into two nodes linked by an edge labeled aA.

When the path cost propagation process reaches
the source node of an edge labeled aA with cost
c, one must update the counter of the initial state
of NFA A to c (or k + 1 if c > k/. One then
uses the four-Russians table to do all the cost
propagation within A in constant time and finally
obtain, at the counter of the final state of A, the
new value for the target node of the edge labeled
aA in the top-level NFA. Therefore, all the edges
(normal and special) of the top-level NFA can be
traversed in constant time, so the costs at Gi can
be obtained in O.mn=r/ time using Theorem 1.
Now one propagates the costs toGi C 1, using the
four-Russians tables to obtain the current counter
values of each subgraph A in Gi C 1.

Theorem 2 (Wu et al. [10]) There exists an
O.n+ mn/log k C 2n/worst-case time solution to
the AREM problem under weighted edit distance
if the weights are integer numbers.

Applications

The problem has applications in computational
biology, to find certain types of motifs in DNA
and protein sequences. See [1] for a more de-
tailed discussion. In particular, PROSITE pat-
terns are limited regular expressions rather pop-
ular to search protein sequences. PROSITE pat-
terns can be searched for with faster algorithms in
practice [7]. The same occurs with other classes
of complex patterns [6] and network expressions
[2].

Open Problems

The worst-case complexity of the AREM
problem is not fully understood. It is of
course �.n/, which has been achieved for
mlog(k + 2) = O(log n/, but it is not known
how much can this be improved.

Experimental Results

Some experiments are reported in [5]. For small
m and k, and assuming all the weights are 1
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(except w.c ! c/ = 0), bit-parallel algorithms
of worst-case complexityO.kn.m=log n/2/ [4,9]
are the fastest (the second is able to skip some text
characters, depending on R/. For arbitrary inte-
ger weights, the best choice is a more complex
bit-parallel algorithm [5] or the four-Russians
based one [10] for larger m and k. The original
algorithm [3] is slower, but it is the only one
supporting arbitrary weights.

URL to Code

A recent and powerful software package
implementing AREM is TRE (http://laurikari.
net/tre), which supports edit distance with
different costs for each type of operation.
Older packages offering efficient AREM are
agrep [9] (https://github.com/Wikinaut/agrep) for
simplified weight choices and nrgrep [4] (http://
www.dcc.uchile.cl/~gnavarro/software).

Cross-References

�Approximate String Matching is a simplifica-
tion of this problem, and the relation between
graph G here and matrix C there should be
apparent.

�Regular Expression Matching is the simplified
case where exact matching with strings in L.R/
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Problem Definition

Given a text string T D t1t2 : : : tn and a pattern
string P D p1p2 : : : pm, both being sequences
over an alphabet† of size � , and given a distance
function among strings d and a threshold k, the
approximate string matching (ASM) problem is to
find all the text positions that finish the so-called
approximate occurrence of P in T , that is, com-
pute the set fj; 9i; 1 � i � j; d.P; ti : : : tj / �

kg. In the sequential version of the problem, T; P ,
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and k are given together, whereas the algorithm
can be tailored for a specific d .

The solutions to the problem vary widely de-
pending on the distance d used. This entry fo-
cuses on a very popular one, called Levenshtein
distance or edit distance, defined as the minimum
number of character insertions, deletions, and
substitutions necessary to convert one string into
the other. It will also pay some attention to other
common variants such as indel distance, where
only insertions and deletions are permitted and
is the dual of the longest common subsequence
lcs .d.A;B/ D jAj C jBj � 2 � lcs.A;B//, and
Hamming distance, where only substitutions are
permitted.

A popular generalization of all the above is
the weighted edit distance, where the operations
are given positive real-valued weights and the
distance is the minimum sum of weights of a
sequence of operations converting one string into
the other. The weight of deleting a character c
is written w.c ! "/, that of inserting c is
written w." ! c/, and that of substituting c
by c0 ¤ c is written w.c ! c0/. It is assumed
w.c ! c/ D 0 and the triangle inequality, that
is, w.x ! y/C w.y ! ´/ � w.x ! ´/ for any
x; y; ´;2

P
[f"g. As the distance may now be

asymmetric, it is fixed that d.A;B/ is the cost
of converting A into B . Of course, any result for
weighted edit distance applies to edit, Hamming,
and indel distances (collectively termed unit-cost
edit distances) as well, but other reductions are
not immediate.

Both worst- and average-case complexity are
considered. For the latter, one assumes that pat-
tern and text are randomly generated by choosing
each character uniformly and independently from
†. For simplicity and practicality, m D o.n/ is
assumed in this entry.

Key Results

The most ancient and versatile solution to
the problem [13] builds over the process of
computing weighted edit distance. Let A D

a1a2 : : : am and B D b1b2 : : : bn be two strings.
Let C Œ0 : : : m; 0 : : : n� be a matrix such that

C Œi; j � D d.a1 : : : ai ; b1 : : : bj /. Then, it holds
C Œ0; 0� D 0 and

C Œi; j � D min.C Œi � 1; j �

C w.ai ! "/; C Œi; j � 1�C w."! bj /;

C Œi � 1; j � 1�C w.ai ! bj //;

where C Œi;�1� D C Œ�1; j � D 1 is assumed.
This matrix is computed in O.mn/ time and
d.A;B/ D C Œm; n�. In order to solve the approx-
imate string matching problem, one takes A D P
and B D T and sets C Œ0; j � D 0 for all j , so that
the above formula is used only for i > 0.

Theorem 1 (Sellers 1980 [13]) There exists an
O.mn/ worst-case time solution to the ASM
problem under weighted edit distance.

The space is O.m/ if one realizes that C can
be computed column-wise and only column j �1
is necessary to compute column j . As explained,
this immediately implies that searching under
unit-cost edit distances can be done in O.mn/
time as well. In those cases, it is quite easy to
compute only part of matrix C so as to achieve
O.kn/ average-time algorithms [14].

Yet, there exist algorithms with lower worst-
case complexity for weighted edit distance. By
applying a Ziv-Lempel parsing to P and T ,
it is possible to identify regions of matrix C

corresponding to substrings of P and T that
can be computed from other previous regions
corresponding to similar substrings of P and T
[5].

Theorem 2 (Crochemore et al. 2003 [5])
There exists an O.n C mn= log� n/ worst-
case time solution to the ASM problem under
weighted edit distance. Moreover, the time is
O.nCmnh= log n/, where 0 � h � log � is the
entropy of T .

This result is very general, also holding for
computing weighted edit distance and local sim-
ilarity (see section on “Applications”). For the
case of edit distance and exploiting the unit-cost
RAM model, it is possible to do better. On one
hand, one can apply a four-Russian technique:
All the possible blocks (submatrices of C ) of
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size t � t , for t D O.log� n/, are precomputed,
and matrix C is computed block-wise [9]. On
the other hand, one can represent each cell in
matrix C using a constant number of bits (as it
can differ from neighboring cells by ˙1) so as to
store and process several cells at once in a single
machine word [10]. This latter technique is called
bit-parallelism and assumes a machine word of
‚.logn/ bits.

Theorem 3 (Masek and Paterson 1980
[9]; Myers 1999 [10]) There exist O.n C

mn=.log� n/
2/ and O.n C mn= logn/ worst-

case time solutions to the ASM problem under
edit distance.

Both complexities are retained for indel dis-
tance, yet not for Hamming distance.

For unit-cost edit distances, the complexity
can depend on k rather than on m, as k < m for
the problem to be nontrivial, and usually k is a
small fraction ofm (or even k D o.m//. A classic
technique [8] computes matrix C by processing
in constant time diagonals C Œi C d; j C d�; 0 �
d � s, along which cell values do not change.
This is possible by preprocessing the suffix trees
of T and P for lowest common ancestor queries.

Theorem 4 (Landau and Vishkin 1989 [8])
There exists an O.kn/ worst-case time solution
to the ASM problem under unit-cost edit
distances.

Other solutions exist which are better for small
k, achieving time O.n.1 C k4=m// [4]. For
the case of Hamming distance, one can achieve
improved results using convolutions [1].

Theorem 5 (Amir et al. 2004 [1]) There exist
O.n

p
k log k/ andO.n.1Ck3=m/ log k/ worst-

case time solution to the ASM problem under
Hamming distance.

The last result for edit distance [4] achieves
O.n/ time if k is small enough (k D O.m1=4//. It
is also possible to achieveO.n/ time on unit-cost
edit distances at the expense of an exponential
additive term on m or k: The number of different
columns in C is independent of n, so the transi-
tion from every possible column to the next can
be precomputed as a finite-state machine.

Theorem 6 (Ukkonen 1985 [14]) There exists
anO.nCmmin.3m; m.2m�/k// worst-case time
solution to the ASM problem under edit distance.

Similar results apply for Hamming and in-
del distance, where the exponential term reduces
slightly according to the particularities of the
distances.

The worst-case complexity of the ASM prob-
lem is of course �.n/, but it is not known if this
can be attained for anym and k. Yet, the average-
case complexity of the problem is known.

Theorem 7 (Chang and Marr 1994 [3]) The
average-case complexity of the ASM problem is
‚.n.k C log� m/=m/ under unit-cost edit dis-
tances.

It is not hard to prove the lower bound as
an extension to Yao’s bound for exact string
matching [15]. The lower bound was reached in
the same paper [3], for k=m < 1=3�O

�
1=
p
�
�
.

This was improved later to k=m < 1=2 �

O
�
1=
p
�
�

[6] using a slightly different idea. The
approach is to precompute the minimum distance
to match every possible text substring (block) of
length O.log� m/ inside P . Then, a text window
is scanned backwards, block-wise, adding up
those minimum precomputed distances. If they
exceed k before scanning all the window, then
no occurrence of P with k errors can contain the
scanned blocks, and the window can be safely slid
over the scanned blocks, advancing in T . This
is an example of a filtration algorithm, which
discards most text areas and applies an ASM
algorithm only over those areas that cannot be
discarded.

Theorem 8 (Fredriksson and Navarro 2004
[6]) There exists an optimal-on-average solution
to the ASM problem under edit distance, for any

k=m �
1�e=

p
�

2�e=
p

�
D 1=2 �O

�
1=
p
�
�
.

The result applies verbatim to indel distance.
The same complexity is achieved for Hamming
distance, yet the limit on k=m improves to 1 �
1 / � . Note that, when the limit k=m is reached,
the average complexity is already ‚.n/. It is not
clear up to which k=m limit could one achieve
linear time on average.
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Applications

The problem has many applications in compu-
tational biology (to compare DNA and protein
sequences, recovering from experimental errors,
so as to spot mutations or predict similarity of
structure or function), text retrieval (to recover
from spelling, typing, or automatic recognition
errors), signal processing (to recover from trans-
mission and distortion errors), and several others.
See a survey [11] for a more detailed discussion.

Many extensions of the ASM problem exist,
particularly in computational biology. For exam-
ple, it is possible to substitute whole substrings
by others (called generalized edit distance), swap
characters in the strings (string matching with
swaps or transpositions), reverse substrings (re-
versal distance), have variable costs for inser-
tions/deletions when they are grouped (similarity
with gap penalties), and look for any pair of
substrings of both strings that are sufficiently
similar (local similarity). See, for example, Gus-
field’s book [7], where many related problems are
discussed.

Open Problems

The worst-case complexity of the problem is not
fully understood. For unit-cost edit distances, it is
‚.n/ if m D O.min.logn; .log� n/

2// or k D
O.min.m1=4; logm� n//. For weighted edit dis-
tance, the complexity is ‚.n/ if m D O.log� n/.
It is also unknown up to which k=m value can one
achieve O.n/ average time; up to now this has
been achieved up to k=m D 1=2 �O

�
1=
p
�
�
.

Experimental Results

A thorough survey on the subject [11] presents
extensive experiments. Nowadays, the fastest al-
gorithms for edit distance are in practice filtra-
tion algorithms [6,12] combined with bit-parallel
algorithms to verify the candidate areas [2, 10].
Those filtration algorithms work well for small
enough k=m; otherwise, the bit-parallel algo-
rithms should be used stand-alone. Filtration al-

gorithms are easily extended to handle multiple
patterns searched simultaneously.

URL to Code

Well-known packages offering efficient ASM
are agrep (https://github.com/Wikinaut/agrep)
and nrgrep (http://www.dcc.uchile.cl/~gnavarro/
software).
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Problem Definition

Identification of periodic structures in words
(variants of which are known as tandem repeats,
repetitions, powers, or runs) is a fundamental
algorithmic task (see entry �Squares and
Repetitions). In many practical applications, such
as DNA sequence analysis, considered repetitions
admit a certain variation between copies of the
repeated pattern. In other words, repetitions under

interest are approximate tandem repeats and not
necessarily exact repeats only.

The simplest instance of an approximate tan-
dem repeat is an approximate square. An approx-
imate square in a word w is a subword uv, where
u and v are within a given distance k accord-
ing to some distance measure between words,
such as Hamming distance or edit (also called
Levenshtein) distance. There are several ways
to define approximate tandem repeats as succes-
sions of approximate squares, i.e., to generalize
to the approximate case the notion of arbitrary
periodicity (see entry � Squares and Repetitions).
In this entry, we discuss three different definitions
of approximate tandem repeats. The first two are
built upon the Hamming distance measure, and
the third one is built upon the edit distance.

Let h.�,�) denote the Hamming distance be-
tween two words of equal length.

Definition 1 A word rŒ1: : :n� is called a K-
repetition of period p, p � n=2, iff h.rŒ1: : :n �
p�; rŒp C 1: : :n�/ � K.

Equivalently, a word rŒ1: : :n� is aK-repetition
of period p, if the number of mismatches, i.e., the
number of i such that rŒi � ¤ rŒi C p�, is at most
K. For example, ataa atta ctta ct is a 2-repetition
of period 4. atc atc atc atg atg atg atg atg is a
1-repetition of period 3, but atc atc atc att atc atc
atc att is not.

Definition 2 A word rŒ1: : :n� is called a K-run,
of period p, p � n=2, iff for every i 2 Œ1: : :n �
2pC 1�, we have h.rŒi : : :i Cp� 1�; rŒi Cp; i C
2p � 1�/ � K.

A K-run can be seen as a sequence of approx-
imate squares uv such that juj D jvj D p and u
and v differ by at most K mismatches. The total
number of mismatches in aK-run is not bounded.

Let ed(�,�) denote the edit distance between
two strings.

Definition 3 A word r is a K-edit repeat if it can
be partitioned into consecutive subwords, r D
v0w1w2 : : :w`v

00, ` � 2, such that

ed.v0;w01/C
`�1X

iD1

ed.wi ;wiC1/Ced.w
00
` ; v
00/�K;
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where w01 is some suffix of w1 and w00
`

is some
prefix of w`.

A K-edit repeat is a sequence of “evolving”
copies of a pattern such that there are at most
K insertions, deletions, and mismatches, overall,
between all consecutive copies of the repeat. For
example, the word r = caagct cagct ccgct is a 2-
edit repeat.

When looking for tandem repeats occurring in
a word, it is natural to consider maximal repeats.
Those are the repeats extended to the right and
left as much as possible provided that the corre-
sponding definition is still verified. Note that the
notion of maximality applies to K-repetitions, to
K-runs, and to K-edit repeats.

Under the Hamming distance, K-runs
provide the weakest “reasonable” definition of
approximate tandem repeats, since it requires
that every square it contains cannot contain
more than K mismatch errors, which seems
to be a minimal reasonable requirement. On
the other hand, K-repetition is the strongest
such notion as it limits by K the total number
of mismatches. This provides an additional
justification that finding these two types
of repeats is important as they “embrace”
other intermediate types of repeats. Several
intermediate definitions have been discussed in
[9, Section 5].

In general, each K-repetition is a part of a
K-run of the same period, and every K-run is
the union of all K-repetitions it contains. Ob-
serve that a K-run can contain as many as a
linear number of K-repetitions with the same
period. For example, the word (000 100)n of
length 6n is a 1-run of period 3, which contains
.2n � 1/ 1-repetitions. In general, a K-run r

contains .s � K C 1/ K-repetitions of the same
period, where s is the number of mismatches
in r .

Example 1 The following Fibonacci word con-
tains three 3-runs of period 6. They are shown in
regular font, in positions aligned with their oc-
currences. Two of them are identical and contain
each four 3-repetitions, shown in italic for the
first run only. The third run is a 3-repetition in
itself.

010010 100100 101001 010010 010100 1001

10010 100100 101001

10010 100100 10

0010 100100 101

10 100100 10100

0 100100 101001

1001 010010 010100 1

10 010100 1001

Key Results

Given a word w of length n and an integer K, it
is possible to find all K-runs, K-repetitions, and
K-edit repeats within w in the following time and
space bounds:

K -runs can be found in timeO.nK logKCS/
(S the output size) and working space O.n/
[9].

K -repetitions can be found in time O.nK

logK C S/ and working space O.n/ [9].
K -edit repeats can be found in time
O.nK logK log.n=K/ C S/ and working
space O.nCK2/ [14, 19].

All three algorithms are based on similar
algorithmic tools that generalize corresponding
techniques for the exact case [4, 15, 16] (see
[10] for a systematic presentation). The first
basic tool is a generalization of the longest
extension functions [16] that, in the case of
Hamming distance, can be exemplified as
follows. Given a word w, we want to compute,
for each position p and each k � K, the
quantity max fj jh.wŒ1: : :j �;wŒp: : :p C j �

1�/ � kg. Computing all those values can
be done in time O(nK) using a method
based on the suffix tree and the computation
of the lowest common ancestor described
in [7].

The second tool is the Lempel-Ziv factoriza-
tion used in the well-known compression method.
Different variants of the Lempel-Ziv factorization
of a word can be computed in linear time [7, 18].

The algorithm for computing K-repetitions
from [9] can be seen as a direct generalization of
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the algorithm for computing maximal repetitions
(runs) in the exact case [8, 15]. Although based
on the same basic tools and ideas, the algorithm
[9] for computing K-runs is much more involved
and uses a complex “bootstrapping” technique for
assembling runs from smaller parts.

The algorithm for finding the K-edit repeats
uses both the recursive framework and the idea
of the longest extension functions of [16]. The
longest common extensions, in this case, allow
up to K edit operations. Efficient methods for
computing these extensions are based upon a
combination of the results of [12] and [13]. The
K-edit repeats are derived by combining the
longest common extensions computed in the for-
ward direction with those computed in the reverse
direction.

Applications

Tandemly repeated patterns in DNA sequences
are involved in various biological functions and
are used in different practical applications.

Tandem repeats are known to be involved in
regulatory mechanisms, e.g., to act as binding
sites for regulatory proteins. Tandem repeats have
been shown to be associated with recombina-
tion hotspots in higher organisms. In bacteria,
a correlation has been observed between certain
tandem repeats and virulence and pathogenicity
genes.

Tandem repeats are responsible for a number
of inherited diseases, especially those involving
the central nervous system. Fragile X syndrome,
Kennedy disease, myotonic dystrophy, and Hunt-
ington’s disease are among the diseases that have
been associated with triplet repeats.

Examples of different genetic studies illustrat-
ing abovementioned biological roles of tandem
repeats can be found in introductive sections
of [1, 6, 11]. Even more than just genomic el-
ements associated with various biological func-
tions, tandem repeats have been established to be
a fundamental mutational mechanism in genome
evolution [17].

A major practical application of short tandem
repeats is based on the interindividual variability

in copy number of certain repeats occurring at a
single locus. This feature makes tandem repeats a
convenient tool for genetic profiling of individ-
uals. The latter, in turn, is applied to pedigree
analysis and establishing phylogenetic relation-
ships between species, as well as to forensic
medicine [3].

Open Problems

The definition of K-edit repeats is similar to
that of K-repetitions (for the Hamming distance
case). It would be interesting to consider other
definitions of maximal repeats over the edit dis-
tance. For example, a definition similar to the K-
run would allow up to K edits between each pair
of neighboring periods in the repeat. Other possi-
ble definitions would allowK errors between any
pair of copies of a repeat, or between all pairs
of copies, or between some consensus and each
copy.

In general, a weighted edit distance scheme is
necessary for biological applications. Known al-
gorithms for tandem repeats based on a weighted
edit distance scheme are not feasible, and thus,
only heuristics are currently used.

URL to Code

The algorithms described in this entry have
been implemented for DNA sequences and
are publicly available. The Hamming distance
algorithms (K-runs and K-repetitions) are part
of the mreps software package, available at
http://mreps.univ-mlv.fr/ [11]. The K-edit repeat
software, TRED, is available at http://tandem.sci.
brooklyn.cuny.edu/ [19]. The implementations of
the algorithms are coupled with postprocessing
filters, necessary due to the nature of biological
sequences.

In practice, software based on heuristic and
statistical methods is largely used. Among them,
TRF (http://tandem.bu.edu/trf/trf.html) [1] is the
most popular program used by the bioinformatics
community. Other programs include ATRHunter
(http://bioinfo.cs.technion.ac.il/atrhunter/) [20]
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and TandemSWAN (http://favorov.bioinfolab.
net/swan/) [2]. STAR (http://atgc.lirmm.fr/
star/) [5] is another software, based on an
information-theoretic approach, for computing
approximate tandem repeats of a prespecified
pattern.
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Problem Definition

Population and evolutionary dynamics have been
extensively studied, usually with the assumption
that the evolving population has no spatial struc-
ture. One of the main models in this area is
the Moran process [17]. The initial population
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contains a single “mutant” with fitness r > 0,
with all other individuals having fitness 1. At
each step of the process, an individual is chosen
at random, with probability proportional to its
fitness. This individual reproduces, replacing a
second individual, chosen uniformly at random,
with a copy of itself.

Lieberman, Hauert, and Nowak introduced a
generalization of the Moran process, where the
members of the population are placed on the
vertices of a connected graph which is, in gen-
eral, directed [13, 19]. In this model, the initial
population again consists of a single mutant of
fitness r > 0 placed on a vertex chosen uniformly
at random, with each other vertex occupied by a
nonmutant with fitness 1. The individual that will
reproduce is chosen as before, but now one of its
neighbors is randomly selected for replacement,
either uniformly or according to a weighting of
the edges. The original Moran process can be re-
covered by taking the graph to be an unweighted
clique.

Several similar models describing particle in-
teractions have been studied previously, including
the SIR and SIS epidemic models [8, Chapter 21],
the voter model, the antivoter model, and the
exclusion process [1,7,14]. Related models, such
as the decreasing cascade model [12, 18], have
been studied in the context of influence propa-
gation in social networks and other models have
been considered for dynamic monopolies [2].
However, these models do not consider different
fitnesses for the individuals.

In general, the Moran process on a finite, con-
nected, directed graph may end with all vertices
occupied by mutants or with no vertex occupied
by a mutant – these cases are referred to as fixa-
tion and extinction, respectively – or the process
may continue forever. However, for undirected
graphs and strongly connected digraphs, the pro-
cess terminates almost surely, either at fixation
or extinction. At the other extreme, in a directed
graph with two sources, neither fixation nor ex-
tinction is possible. In this work we consider
finite undirected graphs. The fixation probability
for a mutant of fitness r in a graph G is the
probability that fixation is reached and is denoted
fG;r .

Key Results

The fixation probability can be determined by
standard Markov chain techniques. However, do-
ing so for a general graph on n vertices requires
solving a set of 2n linear equations, which is not
computationally feasible, even numerically. As
a result, most prior work on computing fixation
probabilities in the generalized Moran process
has either been restricted to small graphs [6] or
graph classes where a high degree of symme-
try reduces the size of the set of equations –
for example, paths, cycles, stars, and complete
graphs [3–5] – or has concentrated on finding
graph classes that either encourage or suppress
the spread of the mutants [13, 16].

Because of the apparent intractability of exact
computation, we turn to approximation. Using
a potential function argument, we show that,
with high probability, the Moran process on an
undirected graph of order n reaches absorption
(either fixation or extinction) within O.n6/ steps
if r D 1 and O.n4/ and O.n3/ steps when r > 1
and r < 1, respectively. Taylor et al. [20] studied
absorption times for variants of the generalized
Moran process, but, in our setting, their results
only apply to the process on regular graphs,
where it is equivalent to a biased random walk
on a line with absorbing barriers. The absorption
time analysis of Broom et al. [3] is also restricted
to cliques, cycles, and stars. In contrast to this
earlier work, our results apply to all connected
undirected graphs.

Our bound on the absorption time, along with
polynomial upper and lower bounds for the fix-
ation probability, allows the estimation of the
fixation and extinction probabilities by Monte
Carlo techniques. Specifically, we give a fully
polynomial randomized approximation scheme
(FPRAS) for these quantities. An FPRAS for a
function f .X/ is a polynomial-time randomized
algorithm g that, given input X and an error
bound ", satisfies .1 � "/f .X/ 6 g.X/ 6 .1 C

"/f .X/ with probability at least 3
4

and runs in
time polynomial in the length of X and 1

"
[11].

For the case r < 1, there is no polynomial
lower bound on the fixation probability so only
the extinction probability can be approximated
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by this technique. Note that, when f � 1,
computing 1� f to within a factor of 1˙ " does
not imply computing f to within the same factor.

Bounding the Fixation Probability
In the next two lemmas, we provide polynomial
upper and lower bounds for the fixation proba-
bility of an arbitrary undirected graph G. Note
that the lower bound of Lemma 1 holds only
for r > 1. Indeed, for example, the fixation
probability of the complete graph Kn is given by
fKn;r D .1 � 1

r
/=.1 � 1

rn / [13, 19], which is
exponentially small for any r < 1.

Lemma 1 Let G D .V;E/ be an undirected
graph with n vertices. Then fG;r > 1

n
for any

r > 1.

Lemma 2 Let G D .V;E/ be an undirected
graph with n vertices. Then fG;r 6 1 � 1

nCr
for

any r > 0.

Bounding the Absorption Time
In this section, we show that the Moran process
on a connected graph G of order n is expected
to reach absorption in a polynomial number of
steps. To do this, we use the potential function
given by

�.S/ D
X

x2S

1

deg x

for any state S � V.G/ and we write �.G/ for
�.V.G//. Note that 1 < �.G/ < n and that
�.fxg/ D 1= deg x 6 1 for any vertex x 2 V .

First, we show that the potential strictly in-
creases in expectation when r > 1 and strictly
decreases in expectation when r < 1.

Lemma 3 Let .Xi /i>0 be a Moran process on a
graph G D .V;E/ and let ; � S � V. If r > 1,
then

EŒ�.XiC1/��.Xi / j Xi D S� >
�
1 �

1

r

�
�
1

n3
;

with equality if and only if r D 1. For r < 1,

EŒ�.XiC1/ � �.Xi / j Xi D S� <
r � 1

n3
:

To bound the expected absorption time, we
use martingale techniques. It is well known how
to bound the expected absorption time using a
potential function that decreases in expectation
until absorption. This has been made explicit by
Hajek [9] and we use the following formulation
based on that of He and Yao [10]. The proof is
essentially theirs but is modified to give a slightly
stronger result.

Theorem 1 Let .Yi /i>0 be a Markov chain with
state space ˝, where Y0 is chosen from some set
I � ˝. If there are constants k1; k2 > 0 and a
nonnegative function  W˝ ! R such that

•  .S/ D 0 for some S 2 ˝,
•  .S/ 6 k1 for all S 2 I and
• EŒ .Yi / �  .YiC1/ j Yi D S� > k2 for all
i > 0 and all S with  .S/ > 0,

then EŒ
 � 6 k1=k2, where 
 D min fi W  .Yi / D

0g.

Using Theorem 1, we can prove the following
upper bounds for the absorption time 
 in the
cases where r < 1 and r > 1, respectively.

Theorem 2 Let G D .V;E/ be a graph of order
n. For r < 1 and any S � V , the absorption time

 of the Moran process on G satisfies

EŒ
 j X0 D S� 6 1

1 � r
n3�.S/ :

Theorem 3 Let G D .V;E/ be a graph of order
n. For r > 1 and any S � V , the absorption time

 of the Moran process on G satisfies

EŒ
 j X0 D S� 6 r

r � 1
n3
�
�.G/ � �.S/

�

6 r

r � 1
n4:

The case r D 1 is more complicated as
Lemma 3 shows that the expectation is constant.
However, this allows us to use standard martin-
gale techniques and the proof of the following
is partly adapted from the proof of Lemma 3.4
in [15].
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Theorem 4 The expected absorption time for the
Moran process .Xi /i>0 with r D 1 on a graph
G D .V;E/ is at most n4.�.G/2 � EŒ�.X0/

2�/.

Approximation Algorithms
We now have all the components needed
to present our fully polynomial randomized
approximation schemes (FPRAS) for the problem
of computing the fixation probability of a graph,
where r > 1, and for computing the extinction
probability for all r > 0. In the following two
theorems, we give algorithms whose running
times are polynomial in n, r , and 1

"
. For the

algorithms to run in time polynomial in the
length of the input and thus meet the definition of
FPRAS, r must be encoded in unary.

Theorem 5 There is an FPRAS for MORAN FIX-
ATION, for r > 1.

Proof (sketch) The algorithm is as follows. If
r D 1 then we return 1

n
. Otherwise, we simulate

the Moran process on G for T D d 8r
r�1

Nn4e

steps, N D d1
2
"�2n2 ln 16e times and compute

the proportion of simulations that reached fixa-
tion. If any simulation has not reached absorption
(fixation or extinction) after T steps, we abort and
immediately return an error value.

Note that each transition of the Moran process
can be simulated in O.1/ time. Maintaining ar-
rays of the mutant and nonmutant vertices allows
the reproducing vertex to be chosen in constant
time, and storing a list of each vertex’s neigh-
bors allows the same for the vertex where the
offspring is sent. Therefore, the total running time
is O.NT / steps, which is polynomial in n and 1

"
,

as required.
For i 2 f1; : : : ; N g, let Xi D 1 if the i th

simulation of the Moran process reaches fixation
and Xi D 0 otherwise. Assuming all simulation
runs reach absorption, the output of the algorithm
is p D 1

N

P
i Xi . ut

Note that this technique fails for disadvan-
tageous mutants (r < 1) because there is no
analogue of Lemma 1 giving a polynomial lower
bound on fG;r . As such, an exponential number
of simulations may be required to achieve the
desired error probability. However, we can give
an FPRAS for the extinction probability for all

r > 0. Although the extinction probability is just
1�fG;r , there is no contradiction because a small
relative error in 1� fG;r does not translate into a
small relative error in fG;r when fG;r is, itself,
small.

Theorem 6 There is an FPRAS for MORAN EX-
TINCTION for all r > 0.

Proof (sketch) The algorithm and its correctness
proof are essential as in the previous theorem. If
r D 1, we return 1 � 1

n
. Otherwise, we run N D

d1
2
"�2.r C n/2 ln 16e simulations of the Moran

process on G for T .r/ steps each, where

T .r/ D

(
d 8r

r�1
Nn4e if r > 1

d 8
1�r

Nn3e if r < 1.

If any simulation has not reached absorption
within T .r/ steps, we return an error value; oth-
erwise, we return the proportion p of simulations
that reached extinction. ut

It remains open whether other techniques
could lead to an FPRAS for MORAN FIXATION

when r < 1.
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Problem Definition

This problem is to construct a random tree metric
that probabilistically approximates a given arbi-
trary metric well. A solution to this problem is
useful as the first step for numerous approxima-
tion algorithms because usually solving problems
on trees is easier than on general graphs. It
also finds applications in on-line and distributed
computation.

It is known that tree metrics approximate
general metrics badly, e.g., given a cycle Cn

with n nodes, any tree metric approximating this
graph metric has distortion ˝.n/ [17]. However,
Karp [15] noticed that a random spanning tree
of Cn approximates the distances between any
two nodes in Cn well in expectation. Alon,
Karp, Peleg, and West [1] then proved a bound
of exp.O.

p
logn log logn// on an average

distortion for approximating any graph metric
with its spanning tree.

Bartal [2] formally defined the notion of prob-
abilistic approximation.

Notations
A graph G D .V;E/ with an assignment of non-
negative weights to the edges of G defines a met-
ric space .V; dG/ where for each pair u; v 2 V ,
dG.u; v/ is the shortest path distance between
u and v in G. A metric (V, d) is a tree metric
if there exists some tree T D .V 0; E 0/ such that
V � V 0 and for all u; v 2 V , dT .u; v/ D d.u; v/.
The metric (V, d) is also called a metric induced
by T.

Given a metric (V, d), a distribution D
over tree metrics over V ˛-probabilistically
approximates d if every tree metric dT 2 D,
dT .u; v/ � d.u; v/ and EdT 2DŒdT .u; v/� �

˛ � d.u; v/, for every u; v 2 V . The quantity ’ is
referred to as the distortion of the approximation.
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Although the definition of probabilistic ap-
proximation uses a distribution D over tree met-
rics, one is interested in a procedure that con-
structs a random tree metric distributed according
to D, i.e., an algorithm that produces a random
tree metric that probabilistically approximates
a given metric. The problem can be formally
stated as follows.

Problem (APPROX-TREE)
INPUT: a metric (V, d)
OUTPUT: a tree metric .V; dT / sampled from
a distribution D over tree metrics that ’-
probabilistically approximates (V, d).

Bartal then defined a class of tree metrics, called
hierarchically well-separated trees (HST), as fol-
lows. A k-hierarchically well-separated tree (k-
HST) is a rooted weighted tree satisfying two
properties: the edge weight from any node to
each of its children is the same, and the edge
weights along any path from the root to a leaf
are decreasing by a factor of at least k. These
properties are important to many approximation
algorithms.

Bartal showed that any metric on n points
can be probabilistically approximated by a set
of k-HST’s with O.log2 n/ distortion, an
improvement from exp.O.

p
logn log logn//

in [1]. Later Bartal [3], following the same
approach as in Seymour’s analysis on the
Feedback Arc Set problem [18], improved the
distortion down to O.logn log logn/. Using
a rounding procedure of Calinescu, Karloff, and
Rabani [5], Fakcharoenphol, Rao, and Talwar [9]
devised an algorithm that, in expectation,
produces a tree with O.logn/ distortion. This
bound is tight up to a constant factor.

Key Results

A tree metric is closely related to graph decom-
position. The randomized rounding procedure
of Calinescu, Karloff, and Rabani [5] for the
0-extension problem decomposes a graph into
pieces with bounded diameter, cutting each edge
with probability proportional to its length and

a ratio between the numbers of nodes at certain
distances. Fakcharoenphol, Rao, and Talwar [9]
used the CKR rounding procedure to decompose
the graph recursively and obtained the following
theorem.

Theorem 1 Given an n-point metric (V, d), there
exists a randomized algorithm, which runs in
time O(n2), that samples a tree metric from the
distribution D over tree metrics that O.logn/-
probabilistically approximates (V, d). The tree is
also a 2-HST.

The bound in Theorem 1 is tight, as Alon et al. [1]
proved the bound of an ˝.logn/ distortion when
(V, d) is induced by a grid graph. Also note that it
is known (as folklore) that even embedding a line
metric onto a 2-HST requires distortion˝.logn/.

If the tree is required to be a k-HST, one
can apply the result of Bartal, Charikar, and
Raz [4] which states that any 2-HST can be
O.k= log k/-probabilistically approximated by
k-HST, to obtain an expected distortion of
O.k logn= log k/.

Finding a distribution of tree metrics that
probabilistically approximates a given metric
has a dual problem that is to find a single
tree T with small average weighted stretch.
More specifically, given weight cuv on edges,
find a tree metric dT such that for all u; v 2
VdT .u; v/ � d.u; v/ and

P
u;v2V cuv �dT .u; v/ �

˛
P

u;v2V cuv � d.u; v/.
Charikar, Chekuri, Goel, Guha, and Plotkin [6]

showed how to find a distribution of O.n logn/
tree metrics that ’-probabilistically approximates
a given metric, provided that one can solve the
dual problem. The algorithm in Theorem 1 can
be derandomized by the method of conditional
expectation to find the required tree metric
with ˛ D O.logn/. Another algorithm based on
modified region growing techniques is presented
in [9], and independently by Bartal.

Theorem 2 Given an n-point metric (V, d), there
exists a polynomial-time deterministic algorithm
that finds a distribution D over O.n logn/ tree
metrics that O.logn/-probabilistically approxi-
mates (V, d).
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Note that the tree output by the algorithm con-
tains Steiner nodes, however Gupta [10] showed
how to find another tree metric without Steiner
nodes while preserving all distances within a con-
stant factor.

Applications

Metric approximation by random trees has ap-
plications in on-line and distributed computation,
since randomization works well against oblivious
adversaries, and trees are easy to work with and
maintain. Alon et al. [1] first used tree embedding
to give a competitive algorithm for the k-server
problem. Bartal [3] noted a few problems in his
paper: metrical task system, distributed paging,
distributed k-server problem, distributed queuing,
and mobile user.

After the paper by Bartal in 1996, numerous
applications in approximation algorithms have
been found. Many approximation algorithms
work for problems on tree metrics or HST
metrics. By approximating general metrics with
these metrics, one can turn them into algorithms
for general metrics, while, usually, losing only
a factor of O.logn/ in the approximation factors.
Sample problems are metric labeling, buy-at-bulk
network design, and group Steiner trees. Recent
applications include an approximation algorithm
to the Unique Games [12], information network
design [13], and oblivious network design [11].

The SIGACT News article [8] is a review of
the metric approximation by tree metrics with
more detailed discussion on developments and
techniques. See also [3, 9], for other applications.

Open Problems

Given a metric induced by a graph, some applica-
tion, e.g., solving a certain class of linear systems,
does not only require a tree metric, but a tree
metric induced by a spanning tree of the graph.
Elkin, Emek, Spielman, and Teng [7] gave an
algorithm for finding a spanning tree with average
distortion of O.log2 n log logn/. It remains open
if this bound is tight.
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Problem Definition

The diameter of a graph is the largest distance be-
tween its vertices. Closely related to the diameter
is the radius of the graph. The center of a graph is
a vertex that minimizes the maximum distance to

all other nodes, and the radius is the distance from
the center to the node furthest from it. Being able
to compute the diameter, center, and radius of a
graph efficiently has become an increasingly im-
portant problem in the analysis of large networks
[11]. For general weighted graphs the only known
way to compute the exact diameter and radius
is by solving the all-pairs shortest paths problem
(APSP). Therefore, a natural question is whether
it is possible to get faster diameter and radius
algorithms by settling for an approximation. For
a graph G with diameter D, a c-approximation
of D is a value OD such that OD 2 ŒD=c;D�.
The question is whether a c-approximation can
be computed in sub-cubic time.

Key Results

For sparse directed or undirected unweighted
graphs, the best-known algorithm (ignoring poly-
logarithmic factors) for APSP, diameter, and ra-
dius does breadth-first search (BFS) from every
node and hence runs in O.mn/ time, where m
is the number of edges in the graph. For dense
directed unweighted graphs, it is possible to com-
pute both the diameter and the radius using fast
matrix multiplication (this is folklore; for a recent
simple algorithm, see [5]), thus obtaining QO.n!/

time algorithms, where ! < 2:38 is the matrix
multiplication exponent [4, 9, 10] and n is the
number of nodes in the graph.

A 2-approximation for both the diameter and
the radius of an undirected graph can be obtained
in O.m C n/ time using BFS from an arbitrary
node. For APSP, Dor et al. [6] show that any
(2 � �)-approximation algorithm in unweighted
undirected graphs running in T .n/ time would
imply an O.T .n// time algorithm for Boolean
matrix multiplication (BMM). Hence a priori it
could be that (2 � �)-approximating the diameter
and radius of a graph may also require solving
BMM.

Aingworth et al. [1] showed that this is not
the case by presenting a sub-cubic (2 � �)-
approximation algorithm for the diameter in both
directed and undirected graphs that does not
use fast matrix multiplication. Their algorithm
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computes in QO.m
p
n C n2/ time an estimate

OD such that OD 2 Œb2D=3c;D�. Berman and
Kasiviswanathan [2] showed that for the radius
problem the approach of Aingworth et al. can be
used to obtain in QO.m

p
nCn2/ time an estimate

Or that satisfies r 2 Œ Or; 3=2r�, where r is the radius
of the graph. For weighted graphs the algorithm
of Aingworth et al. [1] guarantees that the
estimate OD satisfies OD 2 Œb2

3
�Dc� .M �1/;D�,

where M is the maximum edge weight in the
graph.

Roditty and Vassilevska Williams [8] gave
a Las Vegas algorithm running in expected
QO.m
p
n/ time that has the same approximation

guarantee as Aingworth et al. for the diameter
and the radius. They also showed that obtaining
a .3

2
� �/-approximation algorithm running

in O.n2�ı/ time in sparse undirected and
unweighted graphs for constant �; ı > 0 would
be difficult, as it would imply a fast algorithm
for CNF Satisfiability, violating the widely
believed Strong Exponential Time Hypothesis
of Impagliazzo, Paturi, and Zane [7].

Chechik et al. [3] showed that it is possible
to remove the additive error while still keeping
the running time (in terms of n) subquadratic for
sparse graphs. They present two deterministic al-
gorithms with 3

2
-approximation for the diameter,

one running in QO.m
3
2 / time and one running in

QO.mn
3
2 / time.

Open Problems

The main open problem is to understand the
relation between the diameter computation and
the APSP problem. Is there a truly sub-cubic time
algorithm for computing the exact diameter or
can we show sub-cubic equivalence between the
exact diameter computation and APSP problem?

Another important open problem is to find an
algorithm that distinguishes between graphs of
diameter two to graphs of diameter three in sub-
cubic time. Alternatively, can we show that it
is sub-cubic equivalent to the problem of exact
diameter?
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Problem Definition

Spin systems are well-studied objects in statisti-
cal physics and applied probability. An instance
of a spin system is an undirected graph G D
.V;E/ of n vertices. A configuration of a two-
state spin system, or simply just two-spin system
on G, is an assignment � W V ! f0; 1g of two
spin states “0” and “1” (sometimes called “�”
and “C” or seen as two colors) to the vertices

of G. Let A D
�
A0;0 A0;1

A1;0 A1;1


be a nonnegative

symmetric matrix which specifies the local inter-

actions between adjacent vertices and b D
�
b0

b1



a nonnegative vector which specifies preferences
of individual vertices over the two spin states. For
each configuration � 2 f0; 1gV , its weight is then
given by the following product:

w.�/ D
Y

fu;vg2E

A�.u/;�.v/

Y

v2V

b�.v/:

The partition functionZA;b.G/ of a two-spin sys-
tem on G is defined to be the following exponen-
tial summation over all possible configurations:

ZA;b.G/ D
X

�2f0;1gV

w.�/:

Up to normalization, A and b can be described
by three parameters, so that one can assume that

A D
�
ˇ 1

1 �


and b D

�
�

1


, where ˇ; � � 0

are the edge activities and � > 0 is the external
field. Since the roles of the two spin states are
symmetric, it can be further assumed that ˇ �

� without loss of generality. Therefore, a two-
spin system is completely specified by the three
parameters .ˇ; �; �/ where it holds that 0 � ˇ �
� and � > 0. The resulting partition function is
written as Z.ˇ;�;�/.G/ D ZA;b.G/ and as Z.G/
for short if the parameters are clear from the
context.

The two-spin systems are classified according
to their parameters into two families with dis-
tinct physical and computational properties: the
ferromagnetic two-spin systems (ˇ� > 1) in
which neighbors favor agreeing spin states and
the antiferromagnetic two-spin systems (ˇ� < 1)
in which neighbors favor disagreeing spin states.
Two-spin systems with ˇ� D 1 are trivial in
both physical and computational senses and thus
are usually not considered. The model of two-
spin systems covers some of the most exten-
sively studied statistical physics models as spe-
cial cases, as well as being accepted in computer
science as a framework for counting problems,
for examples:

• When ˇ D 0, � D 1, and � D 1, the
Z.ˇ;�;�/.G/ gives the number of independent
sets (or vertex covers) of G.

• When ˇ D 0 and � D 1, theZ.ˇ;�;�/.G/ is the
partition function of the hardcore model with
fugacity � on G.

• When ˇ D � , the Z.ˇ;�;�/.G/ is the partition
function of the Ising model with edge activity
ˇ and external field � on G.

Given a set of parameters .ˇ; �; �/, the
computational problem TWO-SPIN.ˇ; �; �/ is
the problem of computing the value of the
partition function Z.ˇ;�;�/.G/ when the graph
G is given as input. This problem is known to
be #P-hard except for the trivial cases where
ˇ� D 1 or ˇ D � D 0 [1]. Therefore, the
main focus here is the efficient approximation
algorithms for TWO-SPIN.ˇ; �; �/. Formally,
a fully polynomial-time approximation scheme
(FPTAS) is an algorithm which takes G and
any " > 0 as input and outputs a number OZ
satisfying Z.G/ exp.�"/ � OZ � Z.G/ exp."/
within time polynomial in n and 1="; and a fully



Approximating the Partition Function of Two-Spin Systems 119

A

polynomial-time randomized approximation
scheme (FPRAS) is its randomized relaxation
in which randomness is allowed and the above
accuracy of approximation is required to be
satisfied with high probability.

For many important two-spin systems (e.g., in-
dependent sets, antiferromagnetic Ising model), it
is NP-hard to approximate the partition function
on graphs of unbounded degrees. In these cases,
the problem is further refined to consider the
approximation algorithms for TWO-SPIN.ˇ; �; �/

on graphs with bounded maximum degree. In
addition, in order to study the approximation
algorithms on graphs which has bounded average
degree or on special classes of lattice graphs, the
approximation of partition function is studied on
classes of graphs with bounded connective con-
stant, a natural and well-studied notion of average
degree originated from statistical physics.

Therefore, the main problem of interest is to
characterize the regimes of parameters .ˇ; �; �/
for which there exist efficient approximation al-
gorithms for TWO-SPIN.ˇ; �; �/ on classes of
graphs with bounded maximum degree �max, or
on classes of graphs with bounded connective
constant �, or on all graphs.

Key Results

Given a two-spin system on graph G D .V;E/, a
natural probability distribution � over all config-
urations � 2 f0; 1gV , called the Gibbs measure,
can be defined by �.�/ D w.�/

Z.G/
, where w.�/ DQ

fu;vg2E A�u;�v

Q
v2V b�v

is the weight of �
and the normalizing factor Z.G/ is the partition
function.

The Gibbs measure defines a marginal distri-
bution at each vertex. Suppose that a configura-
tion � is sampled according to the Gibbs measure
�. Let pv denote the probability of vertex v

having spin state “0” in � ; and for a fixed con-
figuration 

 2 f0; 1g


 partially specified over
vertices in� � V , let p��

v denote the probability
of vertex v having spin state “0” conditioning on
that the configuration of vertices in � in � is as
specified by 

.

The marginal probability plays a key role in
computing the partition function. Indeed, the
marginal probability p

��
v itself is a quantity

of main interest in many applications such as
probabilistic inference. In addition, due to the
standard procedure of self-reduction, an FPTAS
for the partition functionZ.G/ can be obtained if
the value of p��

v can be approximately computed
with an additive error " in time polynomial
in both n and 1=". This reduces the problem
of approximating the partition function (with
multiplicative errors) to approximating the
marginal probability (with additive errors), which
is achieved either by rapidly mixing random
walks or by recursions exhibiting a decay of
correlation.

Ferromagnetic Two-Spin Systems
For the ferromagnetic case, the problem
TWO-SPIN.ˇ; �; �/ is considered for ˇ� > 1

and without loss of generality for ˇ � � .
In a seminal work [3], Jerrum and Sinclair

gave an FPRAS for approximately computing
the partition function of the ferromagnetic Ising
model, which is the TWO-SPIN.ˇ; �; �/ problem
with ˇ D � > 1.

The algorithm uses the Markov chain Monte
Carlo (MCMC) method; however very interest-
ingly, it does not directly apply the random walk
over configurations of two-spin system since such
random walk might have a slow mixing time.
Instead, it first transforms the two-spin system
into configurations of the so-called “subgraphs
world”: each such configuration is a subgraph of
G. A random walk over the subgraph configura-
tions is applied and proved to be rapidly mixing
for computing the new partition function defined
over subgraphs, which is shown to be equal to the
partition function Z.G/ of the two-spin system.
This equivalence is due to that this transformation
between the “spins world” and the “subgraphs
world” is actually a holographic transformation,
which is guaranteed to preserve the value of the
partition function.

The result of [3] can be stated as the following
theorem.
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Theorem 1 If ˇ D � > 1 and � > 0, then there
is an FPRAS for TWO-SPIN.ˇ; �; �/.

The algorithm actually works for a stronger
setting where the external fields are local (vertices
have different external fields) as long as the ex-
ternal fields are homogeneous (all have the same
preference over spin states).

For the two-spin system with general ˇ and
� , one can translate it to the Ising model where
ˇ D � by delegating the effect of the general ˇ; �
to the degree-dependent effective external fields.
This extends the FPRAS for the ferromagnetic
Ising model to certain regime of ferromagnetic
two-spin systems, stated as follows.

Theorem 2 ([2, 6]) If ˇ < � , ˇ� > 1,
and � � �=ˇ, then there is an FPRAS for
TWO-SPIN.ˇ; �; �/.

If one is restricted to the deterministic algo-
rithms for approximating the partition function,
then a deterministic FPTAS is known for a strictly
smaller regime, implicitly stated in the following
theorem.

Theorem 3 ([7]) There is a continuous mono-
tonically increasing function � .�/ defined
on Œ1;C1/ satisfying (1) � .1/ D 1, (2)
1 < � .�/ < � for all � > 1, and (3)
lim�!C1

� .�/
�
D 1, such that there is an FPTAS

for TWO-SPIN.ˇ; �; �/ if ˇ� > 1, ˇ � � .�/,
and � � 1.

This deterministic FPTAS uses the same holo-
graphic transformation from two-spin systems
to the “subgraphs world” as in [3], and it ap-
proximately computes the marginal probability
defined in the subgraphs world by a recursion.
The accuracy of the approximation is guaranteed
by the decay of correlation. This technique is
more extensively and successfully used for the
antiferromagnetic two-spin systems.

On the other hand, assuming certain complex-
ity assumptions, it is unlikely that for every ferro-
magnetic two-spin system its partition function is
easy to approximate.

Theorem 4 ([6]) For any ˇ < � with ˇ� > 1,
there is a �0 such that TWO-SPIN.ˇ; �; �/ is
#BIS-hard for all � � �0.

Antiferromagnetic Two-Spin Systems
For the antiferromagnetic case, the problem
TWO-SPIN.ˇ; �; �/ is considered for ˇ� < 1

and without loss of generality for ˇ � � .
In [2], a heatbath random walk over spin

configurations is applied to obtain an FPRAS for
TWO-SPIN.ˇ; �; �/ for a regime of antiferromag-
netic two-spin systems.

The regime of antiferromagnetic two-spin sys-
tems whose partition function is efficiently ap-
proximable is characterized by the uniqueness
condition.

Given parameters .ˇ; �; �/ and d � 1, the tree
recursion f .x/ is given by

f .x/ D �

�
ˇx C 1

x C �

�d

: (1)

For antiferromagnetic .ˇ; �; �/, the function f .x/
is decreasing in x; thus, there is a unique positive
fixed point Ox satisfying Ox D f . Ox/. Consider the
absolute derivative of f .x/ at the fixed point:

ˇ̌
f 0. Ox/

ˇ̌
D

d.1 � ˇ�/ Ox

.ˇ Ox C 1/. Ox C �/
:

Definition 1 Let 0 � ˇ � � , ˇ� < 1,
and d � 1. The uniqueness condition
UNIQUE.ˇ; �; �; d/ is satisfied if jf 0. Ox/j < 1;
and the condition NON-UNIQUE.ˇ; �; �; d/ is
satisfied if jf 0. Ox/j > 1.

The condition UNIQUE.ˇ; �; �; d/ holds if
and only if the dynamical system (1) converges
to its unique fixed point Ox at an exponential rate.
The name uniqueness condition is due to that
UNIQUE.ˇ; �; �; d/ implies the uniqueness of the
Gibbs measure of two-spin system of parameters
.ˇ; �; �/ on the Bethe lattice (i.e., the infinite
d -regular tree) and NON-UNIQUE.ˇ; �; �; d/

implies that there are more than one such
measures (Fig. 1).

Efficient approximation algorithms for
TWO-SPIN.ˇ; �; �/ are discovered for special
cases of antiferromagnetic two-spin systems
within the uniqueness regime, including the
hardcore model [12], the antiferromagnetic Ising
model [8], and the antiferromagnetic two-spin
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Approximating the Partition Function of Two-Spin Systems, Fig. 1 The regime of .ˇ; �/ for which the unique-
ness condition UNIQUE.ˇ; �; �; d/ holds for � D 1 and for all integer d � 1

systems without external field [4], and finally for
all antiferromagnetic two-spin systems within the
uniqueness regime [5].

Theorem 5 ([5]) For 0 � ˇ � � and ˇ� <

1, there is an FPTAS for TWO-SPIN.ˇ; �; �/

on graphs of maximum degree at most �max if
UNIQUE.ˇ; �; �; d/ holds for all integer 1 �
d � �max � 1.

This algorithmic result for graphs of bounded
maximum degree can be extended to graphs of
unbounded degrees.

Theorem 6 ([4, 5]) For 0 � ˇ � � and ˇ� <
1, there is an FPTAS for TWO-SPIN.ˇ; �; �/ if
UNIQUE.ˇ; �; �; d/ holds for all integer d � 1.

All these algorithms follow the framework
introduced by Weitz in his seminal work [12].
In this framework, the marginal probability p��

v

is computed by applying the tree recursion (1)
on the tree of self-avoiding walks, (In fact, (1)
is the recursion for the ratio p��

v =.1 � p
��
v / of

marginal probabilities.) which enumerates all
paths originated from vertex v. Then, a decay
of correlation, also called the spatial mixing
property, is verified, so that a truncated recursion
tree of polynomial size is sufficient to provide
the required accuracy for the estimation of the
marginal probability. For graphs of unbounded
degrees, a stronger notion of decay of correlation,
called the computationally efficient correlation
decay [4], is verified to enforce the same cost and
accuracy even when the branching number of the
recursion tree is unbounded.

On the other hand, for antiferromagnetic two-
spin systems in the nonuniqueness regime, the
partition function is hard to approximate.

Theorem 7 ([11]) Let 0 � ˇ � � and ˇ� < 1.
For any �max � 3, unless NP D RP , there
does not exist an FPRAS for TWO-SPIN.ˇ; �; �/

on graphs of maximum degree at most �max if
NON-UNIQUE.ˇ; �; �; d/ holds for some integer
1 � d � �max � 1.
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Altogether, this gives a complete classification
of the approximability of partition function of
antiferromagnetic two-spin systems except for
the uniqueness threshold.

Algorithms for Graphs with Bounded
Connective Constant
The connective constant is a natural and well-
studied notion of the average degree of a graph,
which, roughly speaking, measures the growth
rate of the number of self-avoiding walks in
the graph as their length grows. As a quantity
originated from statistical physics, the connec-
tive constant has been especially well studied
for various infinite regular lattices. In order to
suit the algorithmic applications, the definition
of connective constant was extended in [9] to
families of finite graphs.

Given a vertex v in a graph G, let N.v; l/ de-
note the number of self-avoiding walks of length
` in G which start at v.

Definition 2 ([9]) Let G be a family of finite
graphs. The connective constant of G is at most
� if there exist constants a and c such that for
any graph G D .V;E/ in G and any vertex v
in G, it holds that

P`
iD1N.v; i/ � c�` for all

` � a log jV j.

The connective constant has a natural interpre-
tation as the “average arity” of the tree of self-
avoiding walks.

For certain antiferromagnetic two-spin sys-
tems, it is possible to establish the desirable decay
of correlation on the tree of self-avoiding walks
with bounded average arity instead of maximum
arity, and hence the arity d in the uniqueness
condition UNIQUE.ˇ; �; �; d/ can be replaced
with the connective constant �. The algorithmic
implication of this is stated as the following
theorem.

Theorem 8 ([10]) For the following two
cases:

• (The hardcore model) ˇ D 0 and � D 1;
• (The antiferromagnetic Ising model with zero

field) ˇ D � < 1 and � D 1;

there exists an FPTAS for TWO-SPIN.ˇ; �; �/

on graphs of connective constant at most � if
UNIQUE.ˇ; �; �;�/ holds.

For the two-spin systems considered by this the-
orem, it holds that UNIQUE.ˇ; �; �;�/ implies
UNIQUE.ˇ; �; �; d/ for all 1 � d � �.

The connective constant of a graph of max-
imum degree �max is at most �max � 1, but
the connective constant of a family of graphs
can be much smaller than this crude bound. For
example, though the maximum degree of a graph
drawn from the Erdös-Rényi model G.n; d=n/
is 	.logn= log logn/ with high probability, the
connective constant of such a graph is at most
d.1 C "/ with high probability for any fixed
" > 0. Therefore, for the considered two-spin
systems, the algorithm in Theorem 8 works on
strictly more general families of graphs than that
of Theorem 5.
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Problem Definition

In the bin-packing problem, the input consists
of a collection of items specified by their sizes.
There are also identical bins, which without loss
of generality can be assumed to be of size 1, and
the goal is to pack these items using the minimum
possible number of bins.

Bin packing is a classic optimization problem,
and hundreds of its variants have been defined
and studied under various settings such as av-
erage case analysis, worst-case off-line analysis,

and worst-case online analysis. This note consid-
ers the most basic variant mentioned above under
the off line model where all the items are given
in advance. The problem is easily seen to be NP-
hard by a reduction from the partition problem.
In fact, this reduction implies that unless P = NP,
it is impossible to determine in polynomial time
whether the items can be packed into two bins or
whether they need three bins.

Notations
The input to the bin-packing problem is a set of n
items I specified by their sizes s1; : : : ; sn, where
each si is a real number in the range (0,1]. A
subset of items S � I can be packed feasibly in a
bin if the total size of items in S is at most 1. The
goal is to pack all items in I into the minimum
number of bins. Let OPT.I / denote the value of
the optimum solution and Size(I ) the total size of
all items in I . Clearly, OPT.I / � d Size.I /e.

Strictly speaking, the problem does not admit
a polynomial-time algorithm with an approxi-
mation guarantee better than 3/2. Interestingly,
however, this does not rule out an algorithm that
requires, say, OPT.I / C 1 bins (unlike other
optimization problems, making several copies of
a small hard instance to obtain a larger hard in-
stance does not work for bin packing). It is more
meaningful to consider approximation guarantees
in an asymptotic sense. An algorithm is called an
asymptotic  approximation if the number of bins
required by it is  � OPT.I /CO(1).

Key Results

During the 1960s and 1970s, several algorithms
with constant factor asymptotic and absolute ap-
proximation guarantees and very efficient run-
ning times were designed (see [1] for a survey). A
breakthrough was achieved in 1981 by de la Vega
and Lueker [3], who gave the first polynomial-
time asymptotic approximation scheme.

Theorem 1 ([3]) Given any arbitrary parameter
� > 0, there is an algorithm that uses .1 C
�/OPT.I / C O.1/ bins to pack I . The running
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time of this algorithm is O.n logn/ C .1 C

�/O.1=�/.

The main insight of de la Vega and Lueker
[3] was to give a technique for approximating
the original instance by a simpler instance where
large items have only O(1) distinct sizes. Their
idea was simple. First, it suffices to restrict at-
tention to large items, say, with size greater than
". These can be called Ib . Given an (almost)
optimum packing of Ib , consider the solution
obtained by greedily filling up the bins with
remaining small items, opening new bins only
if needed. Indeed, if no new bins are needed,
then the solution is still almost optimum since the
packing for Ib was almost optimum. If additional
bins are needed, then each bin, except possibly
one, must be filled to an extent .1 � �/, which
gives a packing using Size.I /=.1 � �/ C 1 �

OPT.I /=.1 � �/C 1 bins. So it suffices to focus
on solving Ib almost optimally. To do this, the
authors show how to obtain another instance
I 0 with the following properties. First, I 0 has
only O.1=�2/ distinct sizes, and second, I 0 is an
approximation of Ib in the sense that OPT.Ib/ �

OPT.I 0/, and moreover, any solution of I 0 im-
plies another solution of Ib using O.� � OPT.I //
additional bins. As I 0 has only 1=�2 distinct item
sizes, and any bin can obtain at most 1=� such

items, there are at most O
�
1=�2

�1=�
ways to

pack a bin. Thus, I 0 can be solved optimally by
exhaustive enumeration (or more efficiently using
an integer programming formulation described
below).

Later, Karmarkar, and Karp [4] proved a sub-
stantially stronger guarantee.

Theorem 2 ([4]) Given an instance I , there is
an algorithm that produces a packing of I using
OPT.I / C O.log2 OPT.I // bins. The running
time of this algorithm is O.n8/.

Observe that this guarantee is significantly
stronger than that of [3] as the additive term
is O.log2OPT/ as opposed to o .� � OPT/. Their
algorithm also uses the ideas of reducing the
number of distinct item sizes and ignoring small
items, but in a much more refined way. In par-
ticular, instead of obtaining a rounded instance

in a single step, their algorithm consists of a
logarithmic number of steps where in each step
they round the instance “mildly” and then solve it
partially.

The starting point is an exponentially large
linear programming (LP) relaxation of the prob-
lem commonly referred to as the configuration
LP. Here, there is a variable xS corresponding
to each subset of items S that can be packed
feasibly in a bin. The objective is to minimizeP
S

xS subject to the constraint that for each item

i , the sum of xS over all subsets S that contain
i is at least 1. Clearly, this is a relaxation as
setting xS D 1 for each set S corresponding to a
bin in the optimum solution is a feasible integral
solution to the LP. Even though this formulation
has exponential size, the separation problem for
the dual is a knapsack problem, and hence the LP
can be solved in polynomial time to any accuracy
(in particular within an accuracy of 1) using the
ellipsoid method. Such a solution is called a
fractional packing. Observe that if there are ni

items each of size exactly si , then the constraints
corresponding to i can be “combined” to obtain
the following LP:

min
P
S

xS

s.t.
P
S

aS;ixS � ni 8item sizes i

xS � 0 8 feasible setsS:

Here, aS;i is the number of items of size si in the
feasible S . Let q.I / denote the number of distinct
sizes in I . The number of nontrivial constraints
in LP is equal to q.I /, which implies that there is
a basic optimal solution to this LP that has only
q.I / variables set nonintegrally. Karmarkar and
Karp exploit this observation in a very clever way.
The following lemma describes the main idea.

Lemma 1 Given any instance J , suppose there
is an algorithmic rounding procedure to obtain
another instance J 0 such that J 0 has Size.J /=2
distinct item sizes and J and J 0 are related in the
following sense: given any fractional packing of
J using ` bins gives a fractional packing of J 0

with at most ` bins, and given any packing of J 0

using `0 bins gives a packing of J using `0 C c
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bins, where c is some fixed parameter. Then, J
can be packed using OPT.J /C c � log.OPT.J //
bins.

Proof Let I0 D I and let I1 be the instance
obtained by applying the rounding procedure to
I0. By the property of the rounding procedure,
OPT.I / � OPT.I1/Cc and LP.I1/ � LP.I /. As
I1 has Size.I0/=2 distinct sizes, the LP solution
for I1 has at most Size.I0/=2 fractionally set vari-
ables. Remove the items packed integrally in the
LP solution, and consider the residual instance
I 01. Note that Size.I 01/ � Size.I0/=2. Now, again
apply the rounding procedure to I 01 to obtain I2

and solve the LP for I2. Again, this solution has
at most Size.I 01/=2 � Size.I0/=4 fractionally
set variables and OPT.I 01/ � OPT.I2/ C c and
LP.I2/ � LP.I 01/. The above process is repeated
for a few steps. At each step, the size of the
residual instance decreases by a factor of at least
two, and the number of bins required to pack I0

increases by additive c. After log.Size.I0//.


log.OPT.I /// steps, the residual instance has size
O(1) and can be packed into O(1) additional
bins. ut

It remains to describe the rounding procedure.
Consider the items in nondecreasing order s1 �
s2 � � � � � sn and group them as follows.
Add items to current group until its size first
exceeds 2. At this point, close the group and start
a new group. Let G1; : : : ; Gk denote the groups
formed and let ni D jGi j, setting n0 D 0 for
convenience. Define I 0 as the instance obtained
by rounding the size of ni�1 largest items in Gi

to the size of the largest item in Gi for i D
1; : : : ; k. The procedure satisfies the properties of
Lemma 1 with c D O.lognk/ (left as an exercise
to the reader). To prove Theorem 2, it suffices to
show that nk D O.Size.I //. This is done easily
by ignoring all items smaller than 1=Size.I / and
filling them in only in the end (as in the algorithm
of de la Vega and Lueker).

In the case when the item sizes are not too
small, the following corollary is obtained.

Corollary 1 If all the item sizes are at least
ı, it is easily seen that c D O.log1=ı/,
and the above algorithm implies a guarantee

of OPT C O.log.1=ı/ � log OPT/, which is
OPTCO.log OPT/ if ı is a constant.

Recently, Rothvoss gave the first improve-
ment to the result of Karmarkar and Karp and im-
prove their additive guarantee from O.log2Opt/
to O(log Opt log log Opt). His algorithm also
uses the configuration LP solution and is based on
several new ideas and recent developments. First
is the connection of bin packing to a problem in
discrepancy theory known as the k-permutation
problem. Second are the recently developed al-
gorithmic approaches for addressing discrepancy
minimization problems.

In addition to these, a key idea in Rothvoss’
algorithm is to glue several small items contained
in a configuration into a new large item. For more
details, we refer the reader to [5].

Applications

The bin-packing problem is directly motivated
from practice and has many natural applications
such as packing items into boxes subject to
weight constraints, packing files into CDs,
packing television commercials into station
breaks, and so on. It is widely studied in
operations research and computer science. Other
applications include the so-called cutting-stock
problems where some material such as cloth or
lumber is given in blocks of standard size from
which items of certain specified size must be
cut. Several variations of bin packing, such as
generalizations to higher dimensions, imposing
additional constraints on the algorithm and
different optimization criteria, have also been
extensively studied. The reader is referred to
[1, 2] for excellent surveys.

Open Problems

Except for the NP-hardness, no other hardness
results are known, and it is possible that a
polynomial-time algorithm with guarantee OPT
C 1 exists for the problem. Resolving this is a key
open question. A promising approach seems to
be via the configuration LP (considered above).
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In fact, no instance is known for which the
additive gap between the optimum configuration
LP solution and the optimum integral solution
is more than 1. It would be very interesting to
design an instance that has an additive integrality
gap of two or more.
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Problem Definition

Geometric network optimization is the problem
of computing a network in a geometric space
(e.g., the Euclidean plane), based on an
input of geometric data (e.g., points, disks,
polygons/polyhedra) that is optimal according
to an objective function that typically involves
geometric measures, such as Euclidean length,
perhaps in addition to combinatorial metrics,
such as the number of edges in the network.
The desired network is required to have certain
properties, such as being connected (or k-
connected), having a specific topology (e.g.,
forming a path/cycle), spanning at least a certain
number of input objects, etc.

One of the most widely studied optimization
problems is the traveling salesperson problem
(TSP): given a set S of n sites (e.g., cities), and
distances between each pair of sites, determine a
route or tour of minimum length that visits every
member of S . The (symmetric) TSP is often for-
mulated in terms of a graph optimization problem
on an edge-weighted complete graphKn, and the
goal is to determine a Hamiltonian cycle (a cycle
visiting each vertex exactly once), or a tour, of
minimum total weight. In geometric settings, the
sites are often points in the plane with distances
measured according to the Euclidean metric.

The TSP is known to be NP-complete in
graphs and NP-hard in the Euclidean plane. Many
methods of combinatorial optimization, as well
as heuristics, have been developed and applied
successfully to solving to optimality instances of
TSP; see Cook [7]. Our focus here is on provable
approximation algorithms.
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In the context of the TSP, a minimization prob-
lem, a c-approximation algorithm is an algorithm
guaranteed to yield a solution whose objective
function value (length) is guaranteed to be at most
c times that of an optimal solution. A polynomial-
time approximation scheme (PTAS) is a family of
c-approximation algorithms, with c D 1C ", that
runs in polynomial (in input size) time for any
fixed " > 0. A quasi-polynomial-time approx-
imation scheme (QPTAS) is an approximation
scheme, with factor c D 1 C " for any fixed
" > 0, whose running time is quasi-polynomial,
2O..log n/C /, for some C .

In the Euclidean Steiner minimum spanning
tree (SMST) problem, the objective is to compute
a minimum total length tree that spans all of the
input points S , allowing nodes of the tree to be
at points of the Euclidean space other than S

(such points are known as Steiner points). The
Euclidean SMST is known to be NP-hard, even
in the plane.

Key Results

A simple 2-approximation algorithm for TSP
follows from a “doubling” of a minimum
spanning tree, assuming that the distances
obey the triangle inequality. By augmenting the
minimum spanning tree with a minimum-weight
matching on the odd-degree nodes of the tree,
Christofides obtained a 1.5-approximation for
TSP with triangle inequality. This is the currently
best-known approximation for general metric
spaces; an outstanding open conjecture is that a
4/3-approximation (or better) may be possible. It
is known that the TSP in a general metric space
is APX-complete, implying that, unless P D NP,
no PTAS exists, in general.

Research has shown that “geometry helps” in
network optimization problems. Geometric struc-
ture has played a key role in solving combinato-
rial optimization problems. There are problems
that are NP-hard in their abstract generality, yet
are solvable exactly in polynomial time in geo-
metric settings (e.g., maximum TSP in polyhe-
dral metrics), and there are problems for which
we have substantially better, or more efficient,

approximation algorithms in geometric settings
(e.g., TSP).

As shown by Arora [1] and Mitchell [10] in
papers originally appearing in 1996, geometric
instances of TSP and SMST have special
structure that allows for the existence of a
PTAS. Arora [1] gives a randomized algorithm
that, with probability 1/2, yields a .1 C "/-
approximate tour in time n.logn/O.

p
d="/d�1

in Euclidean d -space. Rao and Smith [14]
obtain a deterministic algorithm with running
time 2.d="/O.d/

n C .d="/O.d/n logn. This
O.n logn/ bound (for fixed d; ") matches the
˝.n log n/ lower bound in the decision tree
bound. In the real RAM model, with atomic
floor or mod function, Bartal and Gottlieb [3]
give a randomized linear-time PTAS that,
with probability 1 � e�O.n1=3d /, computes a
.1C "/-approximation to an optimal tour in time
2.d="/O.d/

n. The exponential dependence on d

in the PTAS bounds is essentially best possible,
since Trevisan has shown that if d � logn, it is
NP-hard to obtain a .1C "/-approximation.

A key insight of Rao and Smith is the applica-
tion of the concept of “spanners” to the approx-
imation schemes. A connected subgraph G of
the complete Euclidean graph, joining every pair
of points in S (within Euclidean d -dimensional
space), is said to be a t -spanner for S if all points
of S are nodes of G and, for any points u; v 2 S ,
the length of a shortest path in G from u to v is
at most t times the Euclidean distance, d2.u; v/.
It is known that for any point set S and t > 1,
t -spanners exist and can be calculated in time
O.n logn/, with the property that the t -spanner
is lightweight, meaning that the sum of its edge
lengths is at most a constant factor (depending on
d and t ) greater than the Euclidean length of a
minimum spanning tree on S .

Overview of Methods
The PTAS techniques are based on structure the-
orems showing that an optimal solution can be
“rounded” to a “nearby” solution, of length at
most a factor .1 C "/ longer, that falls within a
special class of recursively “nice” solutions for
which optimization via dynamic programming
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can be done efficiently, because the interface
between adjacent subproblems is “small” com-
binatorially. Arora’s algorithm [1] is random-
ized, as is that of Rao and Smith [14]; both
can be derandomized. The m-guillotine method
(Mitchell [10]) is directly a deterministic method;
however, the proof of its structure theorem is
effectively an averaging argument.

Arora’s Dissection Method
Arora [1, 2] gives a method based on geomet-
ric dissection using a quadtree (or its octtree
analogue in d dimensions). On the boundary
of each quadtree square are m equally spaced
points (“portals”); a portal-respecting tour is one
that crosses the boundaries of squares only at
portals. Using an averaging argument based on
a randomly shifted quadtree that contains the
bounding square of S , Arora proves structure
theorems, the simplest of which shows that, when
m > .logn/=�, the expected length of a shortest
portal-respecting tour, T , is at most .1C �/ times
the length of an optimal tour. Within a quadtree
square, T consists of at mostm disjoint paths that
together visit all sites within the square. Since
the interface data specifying a subproblem has
size 2O.m/, dynamic programming computes a
shortest portal-respecting tour in time 2.O.m/ per
quadtree square, for overall time 2O..log n/=�/ D

nO.1=�/. An improved, near-linear (randomized)
running time is obtained via a stronger structure
theorem, based on “.m; k/-light” tours, which
are portal respecting and enter/leave each square
at most k times (with k D O.1="/). Rao and
Smith’s improvement uses the observation that it
suffices to restrict the algorithm to use edges of a
.1C "/-spanner.

Them-Guillotine Method
The m-guillotine method of Mitchell [10] is
based on the notion of an m-guillotine structure.
A geometric graph G in the plane has the m-
guillotine structure if the following holds: either
(1) G has O.m/ edges or (2) there exists a cut by
an axis-parallel line ` such that the intersection
of ` with the edge set of G has O.m/ connected
components and the subgraphs of G on each side
of the cut recursively also have the m-guillotine

structure. The m-guillotine structure is defined in
dimensions d > 2 as well, using hyperplane cuts
orthogonal to the coordinate axes.

The m-guillotine structure theorem in 2 di-
mensions states that, for any positive integer m,
a set E of straight line segments in the plane is
either m-guillotine already or is “close” to being
m-guillotine, in that there exists a superset,Em �

E that has m-guillotine structure, where Em is
obtained from E by adding a set of axis-parallel
segments (bridges, or m-spans) of total length at
most O."jEj/. The proof uses a simple charging
scheme.

The m-guillotine method originally (1996)
yielded a PTAS for TSP and related problems in
the plane, with running time nO.1=�/; this was
improved (1997) to nO.1/. With the injection
of the idea of Rao and Smith [14] to employ
spanners, the m-guillotine method yields a
simple, deterministic O.n logn/ time PTAS for
TSP and related problems in fixed dimension
d � 2. The steps are the following: (a) construct
(in O.n logn/ time) a spanner, T ; (b) compute
its m-guillotine superset, Tm, by standard sweep
techniques (in time O.n logn/); and (c) use
dynamic programming (time O.n/) applied to
the recursive tree associated with Tm, to optimize
over spanning subgraphs of Tm.

Generalizations to Other Metrics
The PTAS techniques described above have
been significantly extended to variants of the
Euclidean TSP. While we do not expect that a
PTAS exists for general metric spaces (because
of APX-hardness), the methods can be extended
to a very broad class of “geometric” metrics
known as doubling metrics, or metric spaces of
bounded doubling dimension. A metric space X
is said to have doubling constant cd if any ball of
radius r can be covered by cd balls of radius r=2;
the logarithm of cd is the doubling dimension of
X . Euclidean d -space has doubling dimension
O.d/. Bartal, Gottlieb, and Krauthgamer [4]
have given a PTAS for TSP in doubling metrics,
improving on a prior QPTAS.

For the discrete metric space induced by an
edge-weighted planar graph, the TSP has a linear-
time PTAS. The subset TSP for edge-weighted
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planar graphs, in which there is a subset S � V

of the vertex set V that must be visited, also has
an efficient (O.n logn/ time) PTAS; this implies
a PTAS for the geodesic metric for TSP on a set
S of sites in a polygonal domain in the plane,
with distances given by the (Euclidean) lengths
of geodesic shortest paths between pairs of
sites.

Applications to Network Optimization
The approximation schemes we describe above
have been applied to numerous geometric net-
work optimization problems, including the list
below. We do not give references for most of the
results summarized below; see the surveys [2,11,
12] and Har-Peled [9].

1. A PTAS for the Euclidean Steiner minimum
spanning tree (SMST) problem.

2. A PTAS for the Euclidean minimum Steiner
forest problem, in which one is to compute
a minimum-weight forest whose connected
components (Steiner trees) span given (dis-
joint) subsets S1; : : : ; SK � S of the sites,
allowing Steiner points.

3. A PTAS for computing a minimum-weight
k-connected spanning graph of S in Eu-
clidean d -space.

4. A PTAS for the k-median problem, in which
one is to determine k centers, among S ,
in order to minimize the sum of the dis-
tances from the sites S to their nearest center
points.

5. A PTAS for the minimum latency problem
(MLP), also known as the deliveryman prob-
lem or the traveling repairman problem, in
which one is to compute a tour on S that
minimizes the sum of the “latencies” of all
points, where the latency of a point p is the
length of the tour from a given starting point
to the point p. The PTAS of Sitters [15]
runs in time nO.1=�/, improving the prior
QPTAS.

6. A PTAS for the k-TSP (and k-MST), in
which one is to compute a shortest tour (tree)
spanning at least k of the n sites of S .

7. A QPTAS for degree-bounded spanning trees
in the plane.

8. A QPTAS for the capacitated vehicle routing
problem (VRP) [8], in which one is to com-
pute a minimum-length collection of tours,
each visiting at most k sites of S . A PTAS is
known for some values of k.

9. A PTAS for the orienteering problem, in
which the goal is to maximize the number
of sites visited by a length-bounded tour
[6].

10. A PTAS for TSP with Neighborhoods
(TSPN), in which each site of the input set S
is a connected region of d -space (rather than
a point), and the goal is to compute a tour that
visits each region. The TSPN has a PTAS for
regions in the plane that are “fat” and are
weakly disjoint (no point lies in more than
a constant number of regions) [13]. Chan
and Elbassioni [5] give a QPTAS for fat,
weakly disjoint regions in doubling metrics.
For TSPN with disconnected regions, the
problem is that of the “group TSP” (also
known as “generalized TSP” or “one-of-a-
set TSP”), which, in general metrics, is much
harder than TSP; even in the Euclidean plane,
the problem is NP-hard to approximate to
within any constant factor for finite point
sets and is NP-hard to approximate better
than a fixed constant for visiting point
pairs.

11. A PTAS for the milling and lawnmowing
problems, in which one is to compute a
shortest path/tour for a specified cutter so
that all points of a given region R in the
plane is swept over by the cutter head
while keeping the cutter fully within the
region R (milling), or allowing the cutter
to sweep over points outside of region R

(lawnmowing).
12. A PTAS for computing a minimum-length

cycle that separates a given set of “red”
points from a given set of “blue” points in
the Euclidean plane.

13. A QPTAS for the minimum-weight trian-
gulation (MWT) problem of computing
a triangulation of the planar point set S
in order to minimize the sum of the edge
lengths. The MWT has been shown to be
NP-hard.
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14. A PTAS for the minimum-weight Steiner
convex partition problem in the plane, in
which one is to compute an embedded planar
straight-line graph with convex faces whose
vertex set contains the input set S .

Open Problems

A prominent open problem in approximation al-
gorithms for network optimization is to deter-
mine if approximations better than factor 3/2
can be achieved for the TSP in general metric
spaces.

Specific open problems for geometric network
optimization problems include:

1. Is there a PTAS for minimum-weight trian-
gulation (MWT) in the plane? (A QPTAS is
known.)

2. Is there a PTAS for capacitated vehicle rout-
ing, for all k?

3. Is there a PTAS for Euclidean minimum span-
ning trees of bounded degree (3 or 4)? (A
QPTAS is known for degree-3 trees.)

4. Is there a PTAS for TSP with Neighborhoods
(TSPN) for connected disjoint regions in the
plane?

5. Is there a PTAS for computing a minimum-
weight t -spanner of a set of points in a Eu-
clidean space?

Finally, can PTAS techniques be implemented
to be competitive with other practical methods
for TSP or related network optimization
problems?
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Problem Definition

Non-preemptive makespan minimization on m

uniformly related machines is defined as follows.
We are given a set M D f1; 2; : : : ; mg of m
machines where each machine i has a speed si
such that si > 0. In addition we are given a set
of jobs J D f1; 2; : : : ; ng, where each job j has
a positive size pj and all jobs are available for
processing at time 0. The jobs need to be parti-
tioned into m subsets S1; : : : ; Sm, with Si being
the subset of jobs assigned to machine i , and each
such (ordered) partition is a feasible solution to
the problem. Processing job j on machine i takes
pj

si
time units. For such a solution (also known

as a schedule), we let Li D .
P

j2Si
pj /=si be

the completion time or load of machine i . The
work of machine i is Wi D

P
j2Si

pj D Li � si ,
that is, the total size of the jobs assigned to
i . The makespan of the schedule is defined as
maxfL1; L2; : : : ; Lmg, and the goal is to find a
schedule that minimizes the makespan. We also
consider the problem on identical machines, that
is, the special case of the above problem in which
si D 1 for all i (in this special case, the work
and the load of a given machine are always the
same).

Key Results

A PTAS (polynomial-time approximation
scheme) is a family of polynomial-time
algorithms such that for all � > 0, the family
has an algorithm such that for every instance of
the makespan minimization problem, it returns
a feasible solution whose makespan is at most
1C � times the makespan of an optimal solution
to the same instance. Without loss of generality,
we can assume that � < 1

5
.

The Dual Approximation Framework and
Common Preprocessing Steps
Using a guessing step of the optimal makespan,
and scaling the sizes of all jobs by the value of
the optimal makespan, we can assume that the
optimal makespan is in the interval Œ1; 1C �/ and
it suffices to construct a feasible solution whose
makespan is at most 1C c� for a constant c (then
scaling � before applying the algorithm will give
the claimed result). This assumption can be made
since we can find in polynomial time two values
LB and UB such that the optimal makespan is
in the interval ŒLB;UB� and UB

LB
is at most some

constant (or even at most an exponential function
of the length of the binary encoding of the input),
then using a constant (or polynomial) number
of iterations, we can find the minimum integer
power of 1 C � for which the algorithm below
will succeed to find a schedule with makespan at
most 1 C c� times the optimal makespan. This
approach is referred to as the dual approximation
method [7, 8].

From now on, we assume that the optimal
makespan is in the interval Œ1; 1 C �/. The next
step is to round up the size of each job to the
next integer power of 1 C � and to round down
the speed of each machine to the next integer
power of 1 C �. That is, the rounded size of job
j is p0j D .1 C �/dlog1C� pj e and the rounded

speed of machine i is s0i D .1 C �/blog1C� si c.
Note that this rounding does not decrease the
makespan of any feasible solution and increase
the optimal makespan by a multiplicative factor
of at most .1 C �/2. Thus, in the new instance
that we call the rounded instance, the makespan
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of an optimal solution is in the interval Œ1; .1 C
�/3/. We observe that if the original instance to
the makespan minimization problem was for the
special case of identical machines, so does the
rounded instance. The next steps differ between
the PTAS for identical machines and its general-
ization for related machines.

The Case of Identical Machines
We define a job to be small if its rounded size
is at most �, and otherwise it is large. The large
jobs instance is the instance we obtain from the
rounded instance by removing all small jobs. The
first observation is that it is sufficient to design
an algorithm for finding a feasible solution to the
large jobs instance whose makespan is at most
1 C c� where c � 5 is some constant. This is
so, because we can apply this algorithm on the
large jobs instance and obtain a schedule of these
large jobs. Later, we add to the schedule the small
jobs one by one using the list scheduling heuristic
[5]. In the analysis, there are two cases. In the
first one, adding the small jobs did not increase
the makespan of the resulting schedule, and in
this case our claim regarding the makespan of
the output of the algorithm clearly holds. In the
second case, the makespan increased by adding
the small jobs, and we consider the last iteration
in which such increase happened. In that last
iteration, the load of one machine was increased
by the size of the job assigned in this iteration,
that is by at most �, and before this iteration

its load was smaller than
P

j p0
j

m
� .1 C �/3,

where the inequality holds because the makespan
of a feasible solution cannot be smaller than the
average load of the machines. The claim now
follows using .1C �/3 C � � 1C 5� as � < 1

5
.

The large jobs instance has a compact
representation. There are m identical machines
and jobs of at most O.log1C�

1
�
/ distinct sizes.

Note that each machine has at most 2
�

large jobs
assigned to it (in any solution with makespan
smaller than 2), and thus there are a constant
number of different schedules of one machine
when we consider jobs of the same size as
identical jobs. A schedule of one machine in
a solution to the large jobs instance is called the

configuration of the machine. Now, we can either
perform a dynamic programming algorithm that
assigns large jobs to one machine after the other
while recalling in each step the number of jobs
of each size that still need to be assigned (as
done in [7]) or use an integer program of fixed
dimension [9] to solve the problem of assigning
all large jobs to configurations of machines while
having at most m machines in the solution and
allowing only configurations corresponding to
machines with load at most .1C �/3 as suggested
by Shmoys (see [6]).

We refer to [1, 2], and [10] for PTASs for
other load balancing problems on identical
machines.

The Case of Related Machines
Here, we still would like to consider separately
the large jobs and the small jobs; however, a given
job j can be large for one machine and small
for another machine (it may even be too large
for other machines, that is, processing it on such
machine may take a period of time that is longer
than the makespan of an optimal solution). Thus,
for a given job j , we say that it is huge for
machine i if pj

si
> .1C�/3, it is large for machine

i if � <
pj

si
� .1 C �/3, and otherwise it is

small for machine i . A configuration of machine
i is the number of large jobs of each rounded
size that are assigned to machine i (observe
that similarly to the case of identical machines,
the number of sizes of large jobs for a given
machine is a constant) as well as approximate
value of the total size of small jobs assigned to
machine i , that is a value �i such that the total
size of small jobs assigned to machine i is in

the interval
�
.�i � 1/� �

1
si
; �i� �

1
si

i
. Note that

the vector of configurations of machines defines
some information about the schedule, but it does
not give a one-to-one assignment of small jobs to
the machines.

Once again, [8] suggested to use dynamic
programming for assigning jobs to the machines
by traversing the machines from the slowest one
to the fastest one and, for each machine, decide
the number of large jobs of each size as well as
an approximate value of the total size of small
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jobs (for that machine) assigned to it. That is, the
dynamic programming decides the configuration
of each machine. To do so, it needs to recall the
number of large jobs (with respect to the current
machine) that are still not assigned, as well as
the total size of small jobs (with respect to the
current machine) that are still not assigned (this
total size is a rounded value). At a postprocessing
step, the jobs assigned as large jobs by the solu-
tion for the dynamic programming are scheduled
accordingly, while the other jobs are assigned as
small jobs as follows.

We assign the small jobs to the machines while
traversing the machines from slowest to fastest
and assigning the small jobs from the smallest
to largest. At each time we consider the current
machine i and the prefix of unassigned small jobs
that are small with respect to the current machine.
Denote by �i the value of this parameter accord-
ing to the solution of the dynamic programming.
Due to the successive rounding of the total size of
unassigned small jobs, we will allow assignments
of a slightly larger total size of small jobs to
machine i . So we will assign the small jobs one
by one as long as their total size is at most
.iC4/�

si
. If at some point there are no further

unassigned small jobs that are small for machine
i , we move to the next machine, otherwise we
assign machine i small jobs (for machine i ) of
total size of at least .iC3/�

si
. This suffices to

guarantee the feasibility of the resulting solution
(i.e., all jobs are assigned) while increasing the
makespan only by a small amount.

We refer to [3] and [4] for PTASs for other
load balancing problems on related machines.
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Problem Definition

Many NP-hard graph problems become easier to
approximate on planar graphs and their general-
izations. (A graph is planar if it can be drawn
in the plane (or the sphere) without crossings.
For definitions of other related graph classes, see
the entry on �Bidimensionality (2004; Demaine,
Fomin, Hajiaghayi, Thilikos).) For example, a
maximum independent set asks to find a maxi-
mum subset of vertices in a graph that induce
no edges. This problem is inapproximable in
general graphs within a factor of n1�� for any
� > 0 unless NPDZPP (and inapproximable
within n1=2�� unless PDNP), while for planar
graphs, there is a 4-approximation (or simple 5-
approximation) by taking the largest color class
in a vertex 4-coloring (or 5-coloring). Another
is minimum dominating set, where the goal is
to find a minimum subset of vertices such that
every vertex is either in or adjacent to the subset.
This problem is inapproximable in general graphs
within � log n for some � > 0 unless PDNP,
but as we will see, for planar graphs, the problem
admits a polynomial-time approximation scheme
(PTAS): a collection of .1 C �/-approximation
algorithms for all � > 0.

There are two main general approaches to
designing PTASs for problems on planar graphs
and their generalizations: the separator approach
and the Baker approach.

Lipton and Tarjan [15, 16] introduced the first
approach, which is based on planar separators.
The first step in this approach is to find a separator
of O.

p
n/ vertices or edges, where n is the size

of the graph, whose removal splits the graph into
two or more pieces each of which is a constant
fraction smaller than the original graph. Then,
recurse in each piece, building a recursion tree of
separators, and stop when the pieces have some
constant size such as 1=�. The problem can be
solved on these pieces by brute force, and then it
remains to combine the solutions up the recursion
tree. The induced error can often be bounded in
terms of the total size of all separators, which
in turn can be bounded by � n. If the optimal
solution is at least some constant factor times n,
this approach often leads to a PTAS.

There are two limitations to this planar-
separator approach. First, it requires that the
optimal solution be at least some constant factor
times n; otherwise, the cost incurred by the
separators can be far larger than the desired
optimal solution. Such a bound is possible in
some problems after some graph pruning (linear
kernelization), e.g., independent set, vertex cover,
and forms of the traveling salesman problem.
But, for example, Grohe [12] states that the
dominating set is a problem “to which the
technique based on the separator theorem does
not apply.” Second, the approximation algorithms
resulting from planar separators are often
impractical because of large constant factors. For
example, to achieve an approximation ratio of
just 2, the base case requires exhaustive solution
of graphs of up to 22;400 vertices.

Baker [1] introduced her approach to address
the second limitation, but it also addresses the
first limitation to a certain extent. This approach
is based on decomposition into overlapping sub-
graphs of bounded outerplanarity, as described in
the next section.

Key Results

Baker’s original result [1] is a PTAS for a
maximum independent set (as defined above)
on planar graphs, as well as the following list
of problems on planar graphs: maximum tile
salvage, partition into triangles, maximum H -
matching, minimum vertex cover, minimum
dominating set, and minimum edge-dominating
set.

Baker’s approach starts with a planar embed-
ding of the planar graph. Then it divides vertices
into layers by iteratively removing vertices on
the outer face of the graph: layer j consists of
the vertices removed at the j th iteration. If one
now removes the layers congruent to i modulo
k, for any choice of i , the graph separates into
connected components each with at most k con-
secutive layers, and hence the graph becomes k-
outerplanar. Many NP-complete problems can be
solved on k-outerplanar graphs for fixed k using
dynamic programming (in particular, such graphs



Approximation Schemes for Planar Graph Problems 135

A

have bounded treewidth). Baker’s approximation
algorithm computes these optimal solutions for
each choice i of the congruence class of layers
to remove and returns the best solution among
these k solutions. The key argument for maxi-
mization problems considers the optimal solution
to the full graph and argues that the removal of
one of the k congruence classes of layers must
remove at most a 1=k fraction of the optimal
solution, so the returned solution must be within
a 1 C 1=k factor of optimal. A more delicate
argument handles minimization problems as well.
For many problems, such as maximum indepen-
dent set, minimum dominating set, and minimum
vertex cover, Baker’s approach obtains a (1C �)-
approximation algorithms with a running time of
2O.1=�/nO.1/ on planar graphs.

Eppstein [10] generalized Baker’s approach
to a broader class of graphs called graphs of
bounded local treewidth, i.e., where the treewidth
of the subgraph induced by the set of vertices at a
distance of at most r from any vertex is bounded
above by some function f .r/ independent of n.
The main differences in Eppstein’s approach are
replacing the concept of bounded outerplanarity
with the concept of bounded treewidth, where
dynamic programming can still solve many prob-
lems, and labeling layers according to a sim-
ple breadth-first search. This approach has led
to PTASs for hereditary maximization problems
such as maximum independent set and maximum
clique, maximum triangle matching, maximum
H -matching, maximum tile salvage, minimum
vertex cover, minimum dominating set, mini-
mum edge-dominating set, minimum color sum,
and subgraph isomorphism for a fixed pattern
[6, 8, 10]. Frick and Grohe [11] also developed a
general framework for deciding any property ex-
pressible in first-order logic in graphs of bounded
local treewidth.

The foundation of these results is Eppstein’s
characterization of minor-closed families of
graphs with bounded local treewidth [10].
Specifically, he showed that a minor-closed
family has bounded local treewidth if and only
if it excludes some apex graph, a graph with
a vertex whose removal leaves a planar graph.
Unfortunately, the initial proof of this result

brought Eppstein’s approach back to the realm
of impracticality, because his bound on local
treewidth in a general apex-minor-free graph is
doubly exponential in r W 22O.r/. Fortunately,
this bound could be improved to 2O.r/ [3] and
even the optimal O.r/ [4]. The latter bound
restores Baker’s 2O.1=�/nO.1/ running time for
(1 C �)-approximation algorithms, now for all
apex-minor-free graphs.

Another way to view the necessary decom-
position of Baker’s and Eppstein’s approaches
is that the vertices or edges of the graph can
be split into any number k of pieces such that
deleting any one of the pieces results in a graph of
bounded treewidth (where the bound depends on
k). Such decompositions in fact exist for arbitrary
graphs excluding any fixed minor H [9], and
they can be found in polynomial time [6]. This
approach generalizes the Baker-Eppstein PTASs
described above to handle general H -minor-free
graphs.

This decomposition approach is effectively
limited to deletion-closed problems, whose
optimal solution only improves when deleting
edges or vertices from the graph. Another
decomposition approach targets contraction-
closed problems, whose optimal solution
only improves when contracting edges. These
problems include classic problems such as
dominating set and its variations, the traveling
salesman problem, subset TSP, minimum Steiner
tree, and minimum-weight c-edge-connected
submultigraph. PTASs have been obtained for
these problems in planar graphs [2, 13, 14] and
in bounded-genus graphs [7] by showing that the
edges can be decomposed into any number k of
pieces such that contracting any one piece results
in a bounded-treewidth graph (where the bound
depends on k).

Applications

Most applications of Baker’s approach have been
limited to optimization problems arising from
“local” properties (such as those definable in first-
order logic). Intuitively, such local properties can
be decided by locally checking every constant-
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size neighborhood. In [5], Baker’s approach
is generalized to obtain PTASs for nonlocal
problems, in particular, connected dominating
set. This generalization requires the use of
two different techniques. The first technique
is to use an "-fraction of a constant-factor (or
even logarithmic-factor) approximation to the
problem as a “backbone” for achieving the
needed nonlocal property. The second technique
is to use subproblems that overlap by ‚.log n/

layers instead of the usual ‚ (1) in Baker’s
approach.

Despite this advance in applying Baker’s
approach to more general problems, the planar-
separator approach can still handle some different
problems. Recall, though, that the planar-
separator approach was limited to problems
in which the optimal solution is at least some
constant factor times n. This limitation has
been overcome for a wide range of problems
[5], in particular obtaining a PTAS for feedback
vertex set, to which neither Baker’s approach nor
the planar-separator approach could previously
apply. This result is based on evenly dividing the
optimum solution instead of the whole graph,
using a relation between treewidth and the
optimal solution value to bound the treewidth
of the graph, thus obtaining an O.

p
OPT/

separator instead of an O.
p
n/ separator. The

O.
p

OPT/ bound on treewidth follows from
the bidimensionality theory described in the
entry on �Bidimensionality (2004; Demaine,
Fomin, Hajiaghayi, Thilikos). We can divide
the optimum solution into roughly even pieces,
without knowing the optimum solution, by using
existing constant-factor (or even logarithmic-
factor) approximations for the problem. At the
base of the recursion, pieces no longer have
bounded size but do have bounded treewidth, so
fast fixed-parameter algorithms can be used to
construct optimal solutions.

Open Problems

An intriguing direction for future research is
to build a general theory for PTASs of subset
problems. Although PTASs for subset TSP and
Steiner tree have recently been obtained for

planar graphs [2, 14], there remain several open
problems of this kind, such as subset feedback
vertex set, group Steiner tree, and directed Steiner
tree.

Another instructive problem is to understand
the extent to which Baker’s approach can be
applied to nonlocal problems. Again there is an
example of how to modify the approach to handle
the nonlocal problem of connected dominating
set [5], but, for example, the only known PTAS
for feedback vertex set in planar graphs follows
the separator approach.
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Problem Definition

Nash [15] introduced the concept of Nash
equilibria in noncooperative games and proved
that any game possesses at least one such
equilibrium. A well-known algorithm for
computing a Nash equilibrium of a 2-player
game is the Lemke-Howson algorithm [13];
however, it has exponential worst-case running
time in the number of available pure strategies
[18].

Daskalakis et al. [5] showed that the problem
of computing a Nash equilibrium in a game with
4 or more players is PPAD-complete; this result
was later extended to games with 3 players [8].
Eventually, Chen and Deng [3] proved that the
problem is PPAD-complete for 2-player games as
well.

This fact emerged the computation of approx-
imate Nash equilibria. There are several versions
of approximate Nash equilibria that have been
defined in the literature; however, the focus of
this entry is on the notions of �-Nash equilibrium
and �-well-supported Nash equilibrium. An �-
Nash equilibrium is a strategy profile such that
no deviating player could achieve a payoff higher
than the one that the specific profile gives her,
plus �. A stronger notion of approximate Nash
equilibria is the �-well-supported Nash equilib-
ria; these are strategy profiles such that each
player plays only approximately best-response
pure strategies with nonzero probability. These
are additive notions of approximate equilibria;
the problem of computing approximate equilibria
of bimatrix games using a relative notion of
approximation is known to be PPAD-hard even
for constant approximations.

Notation
For a n � 1 vector x, denote by x1; : : : ; xn the
components of x and by xT the transpose of x.
Denote by ei the column vector with 1 at the
i th coordinate and 0 elsewhere. For an n � m
matrix A, denote aij the element in the i -th row
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and j -th column of A. Let P
n be the set of

all probability vectors in n dimensions: P
n D


´ 2 R
n
�0 W

nP
iD1

´i D 1

�
.

Bimatrix Games
Bimatrix games [16] are a special case of 2-
player games such that the payoff functions can
be described by two real n � m matrices A and
B . The n rows of A;B represent the action set
of the first player (the row player), and the m
columns represent the action set of the second
player (the column player). Then, when the row
player chooses action i and the column player
chooses action j , the former gets payoff aij ,
while the latter gets payoff bij . Based on this,
bimatrix games are denoted by � D hA;Bi.

A strategy for a player is any probability
distribution on his/her set of actions. Therefore,
a strategy for the row player can be expressed
as a probability vector x 2 P

n, while a strategy
for the column player can be expressed as a
probability vector y 2 P

m. Each extreme point
ei 2 P

n.ej 2 P
m/ that corresponds to the

strategy assigning probability 1 to the i -th row
(j -th column) is called a pure strategy for the
row (column) player. A strategy profile .x; y/ is
a combination of (mixed in general) strategies,
one for each player. In a given strategy profile
.x; y/, the players get expected payoffs xTAy

(row player) and xTBy (column player).
If both payoff matrices belong to Œ0; 1�m�n,

then the game is called a [0,1]-bimatrix (or else,
positively normalized) game. The special case of
bimatrix games in which all elements of the ma-
trices belong to f0; 1g is called a f0; 1g-bimatrix
(or else, win-lose) game. A bimatrix game hA;Bi
is called zero sum if B D �A.

Approximate Nash Equilibria
Definition 1 (�-Nash equilibrium) For any � >
0, a strategy profile .x; y/ is an �-Nash equilib-
rium for the n � m bimatrix game � D hA;Bi
if

1. For all pure strategies i 2 f1; : : : ; ng of the
row player, eT

i Ay � x
TAy C �.

2. For all pure strategies j 2 f1; : : : ; mg of the
column player, xTBej � x

TBy C �.

Definition 2 (�-well-supported Nash equilib-
rium) For any � > 0, a strategy profile .x; y/
is an �-well-supported Nash equilibrium for the
n �m bimatrix game � D hA;Bi if

1. For all pure strategies i 2 f1; : : : ; ng of the
row player,

xi > 0) eT
i Ay � e

T
k Ay�� 8k 2 f1; : : : ; ng

2. For all pure strategies j 2 f1; : : : ; mg of the
column player,

yi > 0) xTBej � x
TBek

� � 8k 2 f1; : : : ; mg:

Note that both notions of approximate equilibria
are defined with respect to an additive error term
�. Although (exact) Nash equilibria are known
not to be affected by any positive scaling, it is
important to mention that approximate notions of
Nash equilibria are indeed affected. Therefore,
the commonly used assumption in the literature
when referring to approximate Nash equilibria is
that the bimatrix game is positively normalized,
and this assumption is adopted in the present
entry.

Key Results

The work of Althöfer [1] shows that, for any
probability vector p, there exists a probability
vector OP with logarithmic supports, so that for a
fixed matrix C , max

j
jpTCej � Op

TCej j � �, for

any constant � > 0. Exploiting this fact, the work
of Lipton, Markakis, and Mehta [14] shows that,
for any bimatrix game and for any constant � >
0, there exists an �-Nash equilibrium with only
logarithmic support (in the number n of available
pure strategies). Consider a bimatrix game � D
hA;Bi, and let .x; y/ be a Nash equilibrium for
� . Fix a positive integer k and form a multiset S1

by sampling k times from the set of pure strate-
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gies of the row player, independently at random
according to the distribution x. Similarly, form a
multiset S2 by sampling k times from set of pure
strategies of the column player according to y.
Let Ox be the mixed strategy for the row player that
assigns probability 1=k to each member of S1

and 0 to all other pure strategies, and let Oy be the
mixed strategy for the column player that assigns
probability 1=k to each member of S2 and 0 to
all other pure strategies. Then, Ox and Oy are called
k-uniform [14], and the following holds:

Theorem 1 ([14]) For any Nash equilibrium
.x; y/ of a n � n bimatrix game and for every
� > 0, there exists, for every k � .12 lnn/=�2, a
pair of k-uniform strategies Ox; Oy such that . Ox; Oy/
is an �-Nash equilibrium.

This result directly yields a quasi-polynomial
.nO.ln n// algorithm for computing such an
approximate equilibrium. Moreover, as pointed
out in [1], no algorithm that examines supports
smaller than about lnn can achieve an
approximation better than 1=4.

Theorem 2 ([4]) The problem of computing a
1=n‚.1/-Nash equilibrium of a n � n bimatrix
game is PPAD-complete.

Theorem 2 asserts that, unless PPAD � P ,
there exists no fully polynomial time approxima-
tion scheme for computing equilibria in bimatrix
games. However, this does not rule out the ex-
istence of a polynomial approximation scheme
for computing an �-Nash equilibrium when � is
an absolute constant, or even when � D ‚.1 �

=poly.lnn//. Furthermore, as observed in [4], if
the problem of finding an �-Nash equilibrium
were PPAD-complete when � is an absolute con-
stant, then, due to Theorem 1, all PPAD problems
would be solved in quasi-polynomial time, which
is unlikely to be the case.

Two concurrent and independent works [6,
11] were the first to make progress in provid-
ing �-Nash equilibria and �-well-supported Nash
equilibria for bimatrix games and some constant
0 < � < 1. In particular, the work of Kontogian-
nis, Panagopoulou, and Spirakis [11] proposes
a simple linear-time algorithm for computing a
3=4-Nash equilibrium for any bimatrix game:

Theorem 3 ([11]) Consider any n �m bimatrix
game � D hA;Bi, and let ai1;j1 D maxi;j aij

and bi2;j 2 D maxi;j bij . Then the pair of strate-
gies . Ox; Oy/ where Oxi1 D Oxi2 D Oyj1

D Oyj2
D 1=2

is a 3=4-Nash equilibrium for � .

The above technique can be extended so as to
obtain a parametrized, stronger approximation:

Theorem 4 ([11]) Consider a n � m bimatrix
game � D hA;Bi. Let �1

�.�2
�/ be the mini-

mum, among all Nash equilibria of � , expected
payoff for the row (column) player, and let � D
maxf�1

�; �2
�g. Then, there exists a .2C �/=4-

Nash equilibrium that can be computed in time
polynomial in n and m.

The work of Daskalakis, Mehta, and Papadim-
itriou [6] provides a simple algorithm for com-
puting a 1=2-Nash equilibrium: Pick an arbitrary
row for the row player, say row i . Let j D
arg max 0j b

0
ij . Let k D arg max 0

k
a0

kj
. Thus, j is

a best-response column for the column player to
the row i , and k is a best-response row for the row
player to the column j . Let Ox D 1=2ei C 1=2ek

and Oy D ej , i.e., the row player plays row i

or row k with probability 1=2 each, while the
column player plays column j with probability
1. Then:

Theorem 5 ([6]) The strategy profile . Ox; Oy/ is a
1=2-Nash equilibrium.

A polynomial construction (based on linear pro-
gramming) of a 0.38-Nash equilibrium is pre-
sented in [7].

For the more demanding notion of well-
supported approximate Nash equilibrium,
Daskalakis, Mehta, and Papadimitriou [6]
propose an algorithm, which, under a quite
interesting and plausible graph theoretic
conjecture, constructs in polynomial time a 5=6-
well-supported Nash equilibrium. However, the
status of this conjecture is still unknown. In [6],
it is also shown how to transform a [0,1]-bimatrix
game to a f0; 1g-bimatrix game of the same size,
so that each �-well-supported Nash equilibrium
of the resulting game is .1C�/=2-well-supported
Nash equilibrium of the original game.



140 Approximations of Bimatrix Nash Equilibria

An algorithm given by Kontogiannis and
Spirakis computes a 2=3-well-supported Nash
equilibrium in polynomial time [12]. Their
methodology for attacking the problem is based
on the solvability of zero-sum bimatrix games
(via its connection to linear programming) and
provides a 0.5-well-supported Nash equilibrium
for win-lose games and a 2=3-well-supported
Nash equilibrium for normalized games. In [9], a
polynomial-time algorithm computes an "-well-
supported Nash equilibrium with " < 2=3, by
extending the 2=3-algorithm of Kontogiannis
and Spirakis. In particular, it is shown that either
the strategies generated by their algorithm can
be tweaked to improve the approximation or
that we can find a sub-game that resembles
matching pennies, which again leads to a better
approximation. This allows to construct a (2/3-
0.004735)-well-supported Nash equilibrium in
polynomial time.

Two new results improved the approximation
status of �-Nash equilibria:

Theorem 6 ([2]) There is a polynomial time al-
gorithm, based on linear programming, that pro-
vides an 0.36392-Nash equilibrium.

The second result below, due to Tsaknakis
and Spirakis, is the best till now. Based on local
search, it establishes that any local minimum of
a very natural map in the space of pairs of mixed
strategies or its dual point in a certain minimax
problem used for finding the local minimum
constitutes a 0.3393-Nash equilibrium.

Theorem 7 ([19]) There exists a polynomial
time algorithm, based on the stationary points of
a natural optimization problem, that provides an
0.3393-Nash Equilibrium.

In [20], it is shown that the problem of com-
puting a Nash equilibrium for 2-person games
can be polynomially reduced to an indefinite
quadratic programming problem involving the
spectrum of the adjacency matrix of a strongly
connected directed graph on n vertices, where n
is the total number of players’ strategies. Based
on that, a new method is presented for com-
puting approximate equilibria, and it is shown
that its complexity is a function of the average

spectral energy of the underlying graph. The
implications of the strong connectedness prop-
erties on the energy and on the complexity of
the method are discussed, and certain classes of
graphs are described for which the method is a
polynomial time approximation scheme (PTAS).
The worst- case complexity is bounded by a
subexponential function in the total number of
strategies n.

Kannan and Theobald [10] investigate a
hierarchy of bimatrix games hA;Bi which
results from restricting the rank of the matrix
A C B to be of fixed rank at most k. They
propose a new model of �-approximation
for games of rank k and, using results from
quadratic optimization, show that approximate
Nash equilibria of constant rank games
can be computed deterministically in time
polynomial in 1=�. Moreover, [10] provides a
randomized approximation algorithm for certain
quadratic optimization problems, which yields
a randomized approximation algorithm for the
Nash equilibrium problem. This randomized
algorithm has similar time complexity as the
deterministic one, but it has the possibility
of finding an exact solution in polynomial
time if a conjecture is valid. Finally, they
present a polynomial time algorithm for relative
approximation (with respect to the payoffs in an
equilibrium) provided that the matrix AC B has
a nonnegative decomposition.

Applications

Noncooperative game theory and its main
solution concept, i.e., the Nash equilibrium,
have been extensively used to understand the
phenomena observed when decision-makers
interact and have been applied in many diverse
academic fields, such as biology, economics,
sociology, and artificial intelligence. Since
however the computation of a Nash equilibrium
is in general PPAD-complete, it is important to
provide efficient algorithms for approximating
a Nash equilibrium; the algorithms discussed
in this entry are a first step towards this
direction.
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Problem Definition

The simultaneous purchase and sale of the same
securities, commodities, or foreign exchange in
order to profit from a differential in the price.
This usually takes place on different exchanges
or marketplaces and is also known as a “riskless
profit.”

Arbitrage is, arguably, the most fundamental
concept in finance. It is a state of the variables
of financial instruments such that a riskless profit
can be made, which is generally believed not
in existence. The economist’s argument for its
nonexistence is that active investment agents will
exploit any arbitrage opportunity in a financial
market and thus will deplete it as soon as it
may arise. Naturally, the speed at which such
an arbitrage opportunity can be located and be
taken advantage of is important for the profit-
seeking investigators, which falls in the realm
of analysis of algorithms and computational
complexity.

The identification of arbitrage states is, at fric-
tionless foreign exchange market (a theoretical
trading environment where all costs and restraints
associated with transactions are nonexistent), not
difficult at all and can be reduced to existence
of arbitrage on three currencies (see [11]). In
reality, friction does exist. Because of friction,
it is possible that there exist arbitrage opportu-
nities in the market but difficult to find it and to
exploit it to eliminate it. Experimental results in
foreign exchange markets showed that arbitrage
does exist in reality. Examination of data from 10
markets over a 12-day period by Mavrides [11]
revealed that a significant arbitrage opportunity
exists. Some opportunities were observed to be
persistent for a long time. The problem becomes
worse at forward and future markets (in which
future contracts in commodities are traded) cou-
pled with covered interest rates, as observed by
Abeysekera and Turtle [1] and Clinton [4]. An
obvious interpretation is that the arbitrage oppor-
tunity was not immediately identified because of
information asymmetry in the market. However,
that is not the only factor. Both the time necessary
to collect the market information (so that an
arbitrage opportunity would be identified) and the

time people (or computer programs) need to find
the arbitrage transactions are important factors
for eliminating arbitrage opportunities.

The computational complexity in identifying
arbitrage, the level in difficulty measured by
arithmetic operations, is different in different
models of exchange systems. Therefore, to
approximate an ideal exchange market, models
with lower complexities should be preferred to
those with higher complexities.

To model an exchange system, consider n
foreign currencies: N D f1; 2; : : : ; ng. For each
ordered pair .i; j /, one may change one unit of
currency i to rij units of currency j . Rate rij
is the exchange rate from i to j . In an ideal
market, the exchange rate holds for any amount
that is exchanged. An arbitrage opportunity is a
set of exchanges between pairs of currencies such
that the net balance for each involved currency
is nonnegative and there is at least one currency
for which the net balance is positive. Under ideal
market conditions, there is no arbitrage if and
only if there is no arbitrage among any three
currencies (see [11]).

Various types of friction can be easily mod-
eled in such a system. Bid-offer spread may
be expressed in the present mathematical for-
mat as rij rj i < 1 for some i; j 2 N . In
addition, usually the traded amount is required
to be in multiples of a fixed integer amount,
hundreds, thousands, or millions. Moreover, dif-
ferent traders may bid or offer at different rates,
and each for a limited amount. A more general
model to describe these market imperfections will
include, for pairs i ¤ j 2 N , lij different rates
rk

ij of exchanges from currency i to j up to bk
ij

units of currency i , k D 1; : : : ; lij , where lij
is the number of different exchange rates from
currency i to j .

A currency exchange market can be repre-
sented by a digraph G D .V;E/ with vertex set
V and arc set E such that each vertex i 2 V

represents currency i and each arc ak
ij 2 E

represents the currency exchange relation from i

to j with rate rk
ij and bound bk

ij . Note that parallel
arcs may occur for different exchange rates. Such
a digraph is called an exchange digraph. Let x D
.xk

ij / denote a currency exchange vector (Fig. 1).
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Arbitrage in Frictional Foreign Exchange Market,
Fig. 1 Digraph G1

Problem 1 The existence of arbitrage in a fric-
tional exchange market can be formulated as
follows:

X

j¤i

ljiX

kD1

brk
jix

k
jic�

X

j¤i

lijX

kD1

xk
ij � 0; i D 1; : : : ; n;

(1)
at least one strict inequality holds

0 � xk
ij � b

k
ij ; 1 � k � lij ; 1 � i ¤ j � n;

(2)

xk
ij is integer; 1 � k � lij ; 1 � i ¤ j � n:

(3)

Note that the first term in the right-hand side
of (1) is the revenue at currency i by selling other
currencies and the second term is the expense at
currency i by buying other currencies.

The corresponding optimization problem is

Problem 2 The maximum arbitrage problem in
a frictional foreign exchange market with bid-ask
spreads, bound, and integrality constraints is the
following integer linear programming .P /:

maximize
nX

iD1

wi

X

j¤i

0

@
ljiX

kD1

brk
jix

k
jic �

lijX

kD1

xk
ij

1

A

subject to

X

j¤i

0

@
ljiX

kD1

brk
jix

k
jic �

lijX

kD1

xk
ij

1

A� 0; iD1; : : : ; n;

(4)

0 � xk
ij � b

k
ij ; 1 � k � lij ; 1 � i ¤ j � n;

(5)

xk
ij is integer; 1 � k � lij ; 1 � i ¤ j � n;

(6)

where wi � 0 is a given weight for currency
i; i D 1; 2; : : : ; n, with at least one wi > 0.

Finally, consider another

Problem 3 In order to eliminate arbitrage, how
many transactions and arcs in a exchange digraph
have to be used for the currency exchange sys-
tem?

Key Results

A decision problem is called nondeterministic
polynomial (NP for short) if its solution (if one
exists) can be guessed and verified in polynomial
time; nondeterministic means that no particular
rule is followed to make the guess. If a problem
is NP and all other NP problems are polynomial-
time reducible to it, the problem is NP-complete.
And a problem is called NP-hard if every other
problem in NP is polynomial-time reducible to it
(Fig. 2).

Theorem 1 It is NP-complete to determine
whether there exists arbitrage in a frictional
foreign exchange market with bid-ask spreads,
bound, and integrality constraints even if all
lij D 1.

Then, a further inapproximability result is ob-
tained.

Theorem 2 There exists fixed � > 0 such that
approximating .P / within a factor of n� is NP-
hard even for any of the following two special
cases:

.P1/ all lij D 1 and wi D 1.

.P2/ all lij D 1 and all but one wi D 0.



144 Arbitrage in Frictional Foreign Exchange Market

Arbitrage in Frictional Foreign Exchange Market, Fig. 2 Digraph G2

Now, consider two polynomially solvable spe-
cial cases when the number of currencies is con-
stant or the exchange digraph is star shaped (a
digraph is star shaped if all arcs have a common
vertex).

Theorem 3 There are polynomial time algo-
rithms for .P / when the number of currencies is
constant.

Theorem 4 It is polynomially solvable to find
the maximum revenue at the center currency of
arbitrage in a frictional foreign exchange mar-
ket with bid-ask spread, bound, and integrality
constraints when the exchange digraph is star
shaped.

However, if the exchange digraph is the coa-
lescence of a star-shaped exchange digraph and
its copy, shown by Digraph G1, then the problem
becomes NP-complete.

Theorem 5 It is NP-complete to decide whether
there exists arbitrage in a frictional foreign ex-
change market with bid-ask spreads, bound, and
integrality constraints even if its exchange di-
graph is coalescent.

Finally, an answer to Problem 3 is as follows

Theorem 6 There is an exchange digraph of
order n such that at least bn=2cdn=2e � 1 trans-
actions and at least n2=4 C n � 3 arcs are in
need to bring the system back to non-arbitrage
states.

For instance, consider the currency exchange
market corresponding to digraph G2 D .V;E/,
where the number of currencies is n D jV j, p D
bn=c, and K D n2.

Set

C D faij 2 Ej1 � i � p; p C 1 � j � ng

[ fa1.pC1/gnfa.pC1/1g [ fai.i�1/j2 � i � pg

[ fai.iC1/jp C 1 � i � n � 1g:

Then, jC j D bn=2cdn=2e C n � 2 D jEj= >

n2=4C n� 3. It follows easily from the rates and
bounds that each arc in C has to be used to elim-
inate arbitrage. And bn=2cdn=2e� 1 transactions
corresponding to faij 2 Ej1 � i � p; p C 1 �

j � ngnfa.pC1/1g are in need to bring the system
back to non-arbitrage states.

Applications

The present results show that different foreign
exchange systems exhibit quite different compu-
tational complexities. They may shed new light
on how monetary system models are adopted and
evolved in reality. In addition, it provides with
a computational complexity point of view to the
understanding of the now fast growing Internet
electronic exchange markets.
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Open Problems

The dynamic models involving in both spot mar-
kets (in which goods are sold for cash and de-
livered immediately) and futures markets are the
most interesting ones. To develop good approxi-
mation algorithms for such general models would
be important. In addition, it is also important to
identify special market models for which poly-
nomial time algorithms are possible even with
future markets. Another interesting paradox in
this line of study is why friction constraints that
make arbitrage difficult are not always eliminated
in reality.
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Problem Definition

Often it is desirable to encode a sequence of
data efficiently to minimize the number of bits
required to transmit or store the sequence. The
sequence may be a file or message consisting of
symbols (or letters or characters) taken from a
fixed input alphabet, but more generally the se-
quence can be thought of as consisting of events,
each taken from its own input set. Statistical data
compression is concerned with encoding the data
in a way that makes use of probability estimates
of the events. Lossless compression has the prop-
erty that the input sequence can be reconstructed
exactly from the encoded sequence. Arithmetic



146 Arithmetic Coding for Data Compression

Arithmetic Coding for Data Compression, Table 1 Comparison of codes for Huffman coding, Hu-Tucker coding,
and arithmetic coding for a sample 5-symbol alphabet

Symbol e k

Prob. Huffman Hu-Tucker Arithmetic

p k �log 2pk Code Length Code Length Length

a 0.04 4.644 1111 4 000 3 4.644

b 0.18 2.474 110 3 001 3 2.474

c 0.43 1.218 0 1 01 2 1.218

d 0.15 2.737 1110 4 10 2 2.737

e 0.20 2.322 10 2 11 2 2.322

coding is a nearly optimal statistical coding tech-
nique that can produce a lossless encoding.

Problem (statistical data compression) INPUT:
A sequence of m events a1, a2; : : : ; am. The i th
event ai is taken from a set of n distinct pos-
sible events ei;1, ei;2; : : : ; ei;n, with an accurate
assessment of the probability distribution Pi of
the events. The distributions Pi need not be the
same for each event ai .

OUTPUT: A succinct encoding of the events
that can be decoded to recover exactly the origi-
nal sequence of events.

The goal is to achieve optimal or near-optimal
encoding length. Shannon [10] proved that the
smallest possible expected number of bits needed
to encode the i th event is the entropy of Pi ,
denoted by

H.Pi / D

nX

kD1

�pi;k log2 pi;k

where pi;k is the probability that ek occurs as
the i th event. An optimal code outputs – log 2p

bits to encode an event whose probability of
occurrence is p.

The well-known Huffman codes [6] are opti-
mal only among prefix (or instantaneous) codes,
that is, those in which the encoding of one event
can be decoded before encoding has begun for
the next event. Hu-Tucker codes are prefix codes
similar to Huffman codes and are derived using a
similar algorithm, with the added constraint that
coded messages preserve the ordering of original
messages.

When an instantaneous code is not needed,
as is often the case, arithmetic coding provides

a number of benefits, primarily by relaxing the
constraint that the code lengths must be integers:
(1) The code length is optimal (�log 2p bits for
an event with probability p/, even when prob-
abilities are not integer powers of 1

2
. (2) There

is no loss of coding efficiency even for events
with probability close to 1. (3) It is trivial to
handle probability distributions that change from
event to event. (4) The input message to output
message ordering correspondence of Hu-Tucker
coding can be obtained with minimal extra effort.

As an example, consider a 5-symbol input
alphabet. Symbol probabilities, codes, and code
lengths are given in Table 1.

The average code length is 2.13 bits per in-
put symbol for the Huffman code, 2.22 bits per
symbol for the Hu-Tucker code, and 2.03 bits per
symbol for arithmetic coding.

Key Results

In theory, arithmetic codes assign one “code-
word” to each possible input sequence. The code-
words consist of half-open subintervals of the
half-open unit interval [0,1) and are expressed by
specifying enough bits to distinguish the subinter-
val corresponding to the actual sequence from all
other possible subintervals. Shorter codes corre-
spond to larger subintervals and thus more prob-
able input sequences. In practice, the subinterval
is refined incrementally using the probabilities of
the individual events, with bits being output as
soon as they are known. Arithmetic codes almost
always give better compression than prefix codes,
but they lack the direct correspondence between
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the events in the input sequence and bits or groups
of bits in the coded output file.

The algorithm for encoding a file using arith-
metic coding works conceptually as follows:

1. The “current interval” [L;H ) is initialized to
[0,1).

2. For each event in the file, two steps are per-
formed:

(a) Subdivide the current interval into subinter-
vals, one for each possible event. The size
of an event’s subinterval is proportional to
the estimated probability that the event will
be the next event in the file, according to
the model of the input.

(b) Select the subinterval corresponding to the
event that actually occurs next and make it
the new current interval.

3. Output enough bits to distinguish the final
current interval from all other possible final
intervals.

The length of the final subinterval is clearly
equal to the product of the probabilities of the
individual events, which is the probability p of
the particular overall sequence of events. It can
be shown that b � log 2pc + 2 bits are enough
to distinguish the file from all other possible
files.

For finite-length files, it is necessary to in-
dicate the end of the file. In arithmetic coding,
this can be done easily by introducing a special
low-probability event that can be injected into
the input stream at any point. This adds only
O(log m) bits to the encoded length of an m-
symbol file.

In step 2, one needs to compute only the
subinterval corresponding to the event ai that
actually occurs. To do this, it is convenient to
use two “cumulative” probabilities: the cumula-

tive probability PC D
i �1P
kD1

pk and the next-

cumulative probability PN D PC C pi D
i �1P
kD1

pk . The new subinterval is [L C PC .H �

L/,L + PN .H � L//. The need to maintain
and supply cumulative probabilities requires the
model to have a sophisticated data structure, such

as that of Moffat [7], especially when many more
than two events are possible.

Modeling
The goal of modeling for statistical data
compression is to provide probability infor-
mation to the coder. The modeling process
consists of structural and probability estimation
components; each may be adaptive (starting
from a neutral model, gradually build up the
structure and probabilities based on the events
encountered), semi-adaptive (specify an initial
model that describes the events to be encountered
in the data and then modify the model during
coding so that it describes only the events yet to
be coded), or static (specify an initial model and
use it without modification during coding).

In addition there are two strategies for prob-
ability estimation. The first is to estimate each
event’s probability individually based on its fre-
quency within the input sequence. The second is
to estimate the probabilities collectively, assum-
ing a probability distribution of a particular form
and estimating the parameters of the distribution,
either directly or indirectly. For direct estimation,
the data can yield an estimate of the parameter
(the variance, for instance). For indirect esti-
mation [4], one can start with a small number
of possible distributions and compute the code
length that would be obtained with each; the one
with the smallest code length is selected. This
method is very general and can be used even
for distributions from different families, without
common parameters.

Arithmetic coding is often applied to text com-
pression. The events are the symbols in the text
file, and the model consists of the probabilities
of the symbols considered in some context. The
simplest model uses the overall frequencies of
the symbols in the file as the probabilities; this
is a zero-order Markov model, and its entropy
is denoted H0. The probabilities can be esti-
mated adaptively starting with counts of 1 for all
symbols and incrementing after each symbol is
coded, or the symbol counts can be coded before
coding the file itself and either modified during
coding (a decrementing semi-adaptive code) or
left unchanged (a static code). In all cases, the
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code length is independent of the order of the
symbols in the file.

Theorem 1 For all input files, the code length
LA of an adaptive code with initial 1-weights is
the same as the code length LSD of the semi-
adaptive decrementing code plus the code length
LM of the input model encoded assuming that
all symbol distributions are equally likely. This
code length is less than LS = mH0 + LM , the
code length of a static code with the same input
model. In other words, LA = LSD + LM <

mH0 + LM = LS .

It is possible to obtain considerably better
text compression by using higher-order Markov
models. Cleary and Witten [2] were the first to
do this with their PPM method. PPM requires
adaptive modeling and coding of probabilities
close to 1 and makes heavy use of arithmetic
coding.

Implementation Issues

Incremental Output
The basic implementation of arithmetic coding
described above has two major difficulties: the
shrinking current interval requires the use of
high-precision arithmetic, and no output is pro-
duced until the entire file has been read. The
most straightforward solution to both of these
problems is to output each leading bit as soon
as it is known and then to double the length
of the current interval so that it reflects only
the unknown part of the final interval. Witten,
Neal, and Cleary [11] add a clever mechanism
for preventing the current interval from shrinking
too much when the endpoints are close to 1

2

but straddle 1
2

. In that case, one does not yet
know the next output bit, but whatever it is, the
following bit will have the opposite value; one
can merely keep track of that fact and expand
the current interval symmetrically about 1

2
. This

follow-on procedure may be repeated any number
of times, so the current interval size is always
strictly longer than 1

4
.

Before [11] other mechanisms for incremental
transmission and fixed precision arithmetic were
developed through the years by a number of

researchers beginning with Pasco [8]. The bit-
stuffing idea of Langdon and others at IBM [9]
that limits the propagation of carries in the ad-
ditions serves a function similar to that of the
follow-on procedure described above.

Use of Integer Arithmetic
In practice, the arithmetic can be done by storing
the endpoints of the current interval as suffi-
ciently large integers rather than in floating point
or exact rational numbers. Instead of starting
with the real interval [0,1), start with the integer
interval [0,N ), N invariably being a power of 2.
The subdivision process involves selecting non-
overlapping integer intervals (of length at least
1) with lengths approximately proportional to the
counts.

Limited-Precision Arithmetic Coding
Arithmetic coding as it is usually implemented is
slow because of the multiplications (and in some
implementations, divisions) required in subdivid-
ing the current interval according to the prob-
ability information. Since small errors in prob-
ability estimates cause very small increases in
code length, introducing approximations into the
arithmetic coding process in a controlled way
can improve coding speed without significantly
degrading compression performance. In the Q-
Coder work at IBM [9], the time-consuming mul-
tiplications are replaced by additions and shifts,
and low-order bits are ignored.

Howard and Vitter [3] describe a different
approach to approximate arithmetic coding. The
fractional bits characteristic of arithmetic coding
are stored as state information in the coder. The
idea, called quasi-arithmetic coding, is to reduce
the number of possible states and replace arith-
metic operations by table lookups; the lookup
tables can be precomputed.

The number of possible states (after applying
the interval expansion procedure) of an arithmetic
coder using the integer interval [0,N/ is 3N
2/16. The obvious way to reduce the number of
states in order to make lookup tables practicable
is to reduce N . Binary quasi-arithmetic coding
causes an insignificant increase in the code length
compared with pure arithmetic coding.
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Theorem 2 In a quasi-arithmetic coder based
on full interval [0,N/, using correct probability
estimates, and excluding very large and very
small probabilities, the number of bits per input
event by which the average code length obtained
by the quasi-arithmetic coder exceeds that of an
exact arithmetic coder is at most

4

ln 2

�
log2

2

e ln 2

�
1

N
C O

�
1

N 2

�



0:497

N
C O

�
1

N 2

�
;

and the fraction by which the average code length
obtained by the quasi-arithmetic coder exceeds
that of an exact arithmetic coder is at most

�
log2

2
e ln 2

�
1

log2 N
C O

�
1

.log N /2

�


 0:0861
log2 N

C O
�

1
.log N /2

�
:

General-purpose algorithms for parallel encod-
ing and decoding using both Huffman and quasi-
arithmetic coding are given in [5].

Applications

Arithmetic coding can be used in most applica-
tions of data compression. Its main usefulness is
in obtaining maximum compression in conjunc-
tion with an adaptive model or when the probabil-
ity of one event is close to 1. Arithmetic coding
has been used heavily in text compression. It has
also been used in image compression in the JPEG
international standards for image compression
and is an essential part of the JBIG international
standards for bilevel image compression. Many
fast implementations of arithmetic coding, espe-
cially for a two-symbol alphabet, are covered by
patents; considerable effort has been expended in
adjusting the basic algorithm to avoid infringing
those patents.

Open Problems

The technical problems with arithmetic coding it-
self have been completely solved. The remaining
unresolved issues are concerned with modeling,
in which the issue is how to decompose an input
data set into a sequence of events, so that the set
of events possible at each point in the data set can
be described by a probability distribution suitable
for input into the coder. The modeling issues are
entirely application-specific.

Experimental Results

Some experimental results for the Calgary and
Canterbury corpora are summarized in a report
by Arnold and Bell [1].

Data Sets

Among the most widely used data sets suitable
for research in arithmetic coding are the
Calgary Corpus and Canterbury Corpus (corpus.
canterbury.ac.nz) and the Pizza&Chili Corpus
(pizzachili.dcc.uchile.cl or http://pizzachili.di.
unipi.it).

URL to Code

A number of implementations of arithmetic cod-
ing are available on The Data Compression Re-
source on the Internet, www.data-compression.
info/Algorithms/AC/.
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Problem Definition

Assume that a complete bipartite graph,
G.X; Y;X � Y /, with weights w.x; y/ assigned
to every edge (x; y) is given. A matching M

is a subset of edges so that no two edges in
M have a common vertex. A perfect matching
is one in which all the nodes are matched.
Assume that jX j D jY j D n. The weighted
matching problem is to find a matching with the
greatest total weight, where w .M/ D

P
e2M

w .e/.

Since G is a complete bipartite graph, it has a
perfect matching. An algorithm that solves the
weighted matching problem is due to Kuhn [4]
and Munkres [6]. Assume that all edge weights
are non-negative.

Key Results

Define a feasible vertex labeling ` as a mapping
from the set of vertices in G to the reals, where

` .x/C ` .y/ � w .x; y/ :

Call `.x/ the label of vertex x. It is easy to
compute a feasible vertex labeling as follows:

8y 2 Y ` .y/ D 0

and

8x 2 X ` .x/ D max
y2Y

w .x; y/ :

Define the equality subgraph, G`, to be the
spanning subgraph of G, which includes all ver-
tices of G but only those edges (x; y) that have
weights such that

w .x; y/ D ` .x/C ` .y/ :

The connection between equality subgraphs and
maximum-weighted matchings is provided by the
following theorem:

Theorem 1 If the equality subgraph, G`, has a
perfect matching, M �, then M � is a maximum-
weighted matching in G.

In fact, note that the sum of the labels is an
upper bound on the weight of the maximum-
weighted perfect matching. The algorithm even-
tually finds a matching and a feasible labeling
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such that the weight of the matching is equal to
the sum of all the labels.

High-Level Description
The above theorem is the basis of an algorithm
for finding a maximum-weighted matching in a
complete bipartite graph. Starting with a feasible
labeling, compute the equality subgraph, and then
find a maximum matching in this subgraph (here,
one can ignore weights on edges). If the matching
found is perfect, the process is done. If it is not
perfect, more edges are added to the equality
subgraph by revising the vertex labels. After
adding edges to the equality subgraph, either the
size of the matching goes up (an augmenting path
is found) or the Hungarian tree continues to grow.
(This is the structure of explored edges when one
starts BFS simultaneously from all free nodes
in S . When one reaches a matched node in T ,
one only explores the matched edge; however, all
edges incident to nodes in S are explored.) In
the former case, the phase terminates, and a new
phase starts (since the matching size has gone
up). In the latter case, the Hungarian tree grows
by adding new nodes to it, and clearly, this cannot
happen more than n times.

Let S be the set of free nodes in X . Grow
Hungarian trees from each node in S . Let T be
the nodes in Y encountered in the search for an
augmenting path from nodes in S . Add all nodes
from X that are encountered in the search to S .

Note the following about this algorithm:

S D XnS:

T D Y nT:

jS j > jT j :

There are no edges from S to T since this would
imply that one did not grow the Hungarian trees
completely. As the Hungarian trees are grown in
G`, alternate nodes in the search are placed into
S and T . To revise the labels, take the labels in S ,
and start decreasing them uniformly (say, by �),
and at the same time, increase the labels in T by
�. This ensures that the edges from S to T do not
leave the equality subgraph (Fig. 1).

Assignment Problem, Fig. 1 Sets S and T as main-
tained by the algorithm

As the labels in S are decreased, edges (in G)
from S to T will potentially enter the equality
subgraph, G`. As we increase �, at some point in
time, an edge enters the equality subgraph. This
is when one stops and updates the Hungarian tree.
If the node from T added to T is matched to a
node in S , both these nodes are moved to S and
T , which yields a larger Hungarian tree. If the
node from T is free, an augmenting path is found,
and the phase is complete. One phase consists of
those steps taken between increases in the size of
the matching. There are at most n phases, where
n is the number of vertices in G (since in each
phase the size of the matching increases by 1).
Within each phase, the size of the Hungarian tree
is increased at most n times. It is clear that in
O.n2/ time, one can figure out which edge from
S to T is the first to enter the equality subgraph
(one simply scans all the edges). This yields an
O.n4/ bound on the total running time. How to
implement it in O.n3/ time is now shown.
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More Efficient Implementation
Define the slack of an edge as follows:

slack .x; y/ D ` .x/C ` .y/ � w .x; y/ :

Then,
� D min

x2S;y2T

slack .x; y/ :

Naively, the calculation of � requiresO.n2/ time.
For every vertex y 2 T , keep track of the edge
with the smallest slack, i.e.,

slack Œy� D min
x2S

slack .x; y/ :

The computation of slack[y] (for all y 2 T )
requiresO.n2/ time at the start of a phase. As the
phase progresses, it is easy to update all the slack
values in O.n/ time since all of them change by
the same amount (the labels of the vertices in S
are going down uniformly). Whenever a node u
is moved from S to S , one must recompute the
slacks of the nodes in T , requiring O.n/ time.
But a node can be moved from S to S at most n
times.

Thus, each phase can be implemented in
O.n2/ time. Since there are n phases, this gives
a running time of O.n3/. For sparse graphs,
there is a way to implement the algorithm in
O.n.m C n log n// time using min cost flows
[1], where m is the number of edges.

Applications

There are numerous applications of biparitite
matching, for example, scheduling unit-length
jobs with integer release times and deadlines even
with time-dependent penalties.

Open Problems

Obtaining a linear, or close to linear, time algo-
rithm.

Recommended Reading

Several books on combinatorial optimization de-
scribe algorithms for weighted bipartite matching
(see [2, 5]). See also Gabow’s paper [3].
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Problem Definition

Consider a distributed system consisting of a set
of processes that communicate by sending and
receiving messages. The network is a multiset of
messages, where each message is addressed to
some process. A process is a state machine that
can take three kinds of steps.



Asynchronous Consensus Impossibility 153

A

• In a send step, a process places a message in
the network.

• In a receive step, a process A either reads
and removes from the network a message
addressed to A, or it reads a distinguished
null value, leaving the network unchanged.
If a message addressed to A is placed in the
network, and if A subsequently performs an
infinite number of receive steps, then A will
eventually receive that message.

• In a computation state, a process changes
state without communicating with any other
process.

Processes are asynchronous: there is no bound on
their relative speeds. Processes can crash: they
can simply halt and take no more steps. This
article considers executions in which at most one
process crashes.

In the consensus problem, each process starts
with a private input value, communicates with the
others, and then halts with a decision value. These
values must satisfy the following properties:

• Agreement: all processes’ decision values
must agree.

• Validity: every decision value must be some
process’ input.

• Termination: every non-fault process must de-
cide in a finite number of steps.

Fischer, Lynch, and Paterson showed that there
is no protocol that solves consensus in any asyn-
chronous message-passing system where even
a single process can fail. This result is one of
the most influential results in Distributed Com-
puting, laying the foundations for a number of
subsequent research efforts.

Terminology
Without loss of generality, one can restrict atten-
tion to binary consensus, where the inputs are
0 or 1. A protocol state consists of the states of the
processes and the multiset of messages in transit
in the network. An initial state is a protocol state
before any process has moved, and a final state is
a protocol state after all processes have finished.

The decision value of any final state is the value
decided by all processes in that state.

Any terminating protocol’s set of possible
states forms a tree, where each node represents
a possible protocol state, and each edge
represents a possible step by some process.
Because the protocol must terminate, the tree is
finite. Each leaf node represents a final protocol
state with decision value either 0 or 1.

A bivalent protocol state is one in which the
eventual decision value is not yet fixed. From any
bivalent state, there is an execution in which the
eventual decision value is 0, and another in which
it is 1. A univalent protocol state is one in which
the outcome is fixed. Every execution starting
from a univalent state decides the same value.
A 1-valent protocol state is univalent with even-
tual decision value 1, and similarly for a 0-valent
state.

A protocol state is critical if

• it is bivalent, and
• if any process takes a step, the protocol state

becomes univalent.

Key Results

Lemma 1 Every consensus protocol has a biva-
lent initial state.

Proof Assume, by way of contradiction, that
there exists a consensus protocol for (nC 1)
threads A0; � � � ; An in which every initial state
is univalent. Let si be the initial state where pro-
cessesAi ; � � � ; An have input 0 andA0; : : : ; Ai�1

have input 1. Clearly, s0 is 0-valent: all processes
have input 0, so all must decide 0 by the validity
condition. If si is 0-valent, so is siC1. These states
differ only in the input to process Ai W 0 in si,
and 1 in siC1. Any execution starting from si in
which Ai halts before taking any steps is indistin-
guishable from an execution starting from siC1

in which Ai halts before taking any steps. Since
processes must decide 0 in the first execution,
they must decide 1 in the second. Since there
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is one execution starting from siC1 that decides
0, and since siC1 is univalent by hypothesis,
siC1 is 0-valent. It follows that the state snC1, in
which all processes start with input 1, is 0-valent,
a contradiction. �

Lemma 2 Every consensus protocol has a criti-
cal state.

Proof by contradiction. By Lemma 1, the proto-
col has a bivalent initial state. Start the protocol
in this state. Repeatedly choose a process whose
next step leaves the protocol in a bivalent state,
and let that process take a step. Either the protocol
runs forever, violating the termination condition,
or the protocol eventually enters a critical state.�

Theorem 1 There is no consensus protocol for
an asynchronous message-passing system where
a single process can crash.

Proof Assume by way of contradiction that such
a protocol exists. Run the protocol until it reaches
a critical state s. There must be two processes A
and B such that A’s next step carries the protocol
to a 0-valent state, and B’s next step carries the
protocol to a 1-valent state.

Starting from s, let sA be the state reached if
A takes the first step, sB if B takes the first step,
sAB if A takes a step followed by B, and so on.
States sA and sAB are 0-valent, while sB and sBA

are 1-valent. The rest is a case analysis.
Of all the possible pairs of steps A and B could

be about to execute, most of them commute: states
sAB and sBA are identical, which is a contradiction
because they have different valences.

The only pair of steps that do not commute
occurs when A is about to send a message to B
(or vice versa). Let sAB be the state resulting if
A sends a message to B and B then receives it,
and let sBA be the state resulting if B receives
a different message (or null) and then A sends
its message to B. Note that every process other
than B has the same local state in sAB and sBA.
Consider an execution starting from sAB in which
every process other than B takes steps in round-
robin order. Because sAB is 0-valent, they will
eventually decide 0. Next, consider an execution

starting from sBA in which every process other
than B takes steps in round-robin order. Because
sBA is 1-valent, they will eventually decide 1. But
all processes other than B have the same local
states at the end of each execution, so they cannot
decide different values, a contradiction. �

In the proof of this theorem, and in the proofs
of the preceding lemmas, we construct scenarios
where at most a single process is delayed. As a re-
sult, this impossibility result holds for any system
where a single process can fail undetectably.

Applications

The consensus problem is a key tool for un-
derstanding the power of various asynchronous
models of computation.

Open Problems

There are many open problems concerning the
solvability of consensus in other models, or with
restrictions on inputs.

Related Work

The original paper by Fischer, Lynch, and Pater-
son [8] is still a model of clarity.

Many researchers have examined alternative
models of computation in which consensus can
be solved. Dolev, Dwork, and Stockmeyer [5]
examine a variety of alternative message-passing
models, identifying the precise assumptions
needed to make consensus possible. Dwork,
Lynch, and Stockmeyer [6] derive upper and
lower bounds for a semi-synchronous model
where there is an upper and lower bound on
message delivery time. Ben-Or [1] showed that
introducing randomization makes consensus
possible in an asynchronous message-passing
system. Chandra and Toueg [3] showed that
consensus becomes possible if in the presence
of an oracle that can (unreliably) detect when
a process has crashed. Each of the papers cited
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here has inspired many follow-up papers. A good
place to start is the excellent survey by Fich and
Ruppert [7].

A protocol is wait-free if it tolerates failures
by all but one of the participants. A concur-
rent object implementation is linearizable if each
method call seems to take effect instantaneously
at some point between the method’s invocation
and response. Herlihy [9] showed that shared-
memory objects can each be assigned a consensus
number, which is the maximum number of pro-
cesses for which there exists a wait-free consen-
sus protocol using a combination of read-write
memory and the objects in question. Consensus
numbers induce an infinite hierarchy on objects,
where (simplifying somewhat) higher objects are
more powerful than lower objects. In a system of
n or more concurrent processes, it is impossible
to construct a lock-free implementation of an
object with consensus number n from an object
with a lower consensus number. On the other
hand, any object with consensus number n is
universal in a system of n or fewer processes: it
can be used to construct a wait-free linearizable
implementation of any object.

In 1990, Chaudhuri [4] introduced the k-set
agreement problem (sometimes called k-set con-
sensus, which generalizes consensus by allowing
k or fewer distinct decision values to be chosen.
In particular, 1-set agreement is consensus. The
question whether k-set agreement can be solved
in asynchronous message-passing models was
open for several years, until three independent
groups [2, 10, 11] showed that no protocol exists.
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Problem Definition

The problem is concerned with allowing a set
of processes to concurrently broadcast messages
while ensuring that all destinations consistently
deliver them in the exact same sequence, in spite
of the possible presence of a number of faulty
processes.

The work of Cristian, Aghili, Strong, and
Dolev [7] considers the problem of atomic broad-
cast in a system with approximately synchronized
clocks and bounded transmission and processing
delays. They present successive extensions of an
algorithm to tolerate a bounded number of omis-
sion, timing, or Byzantine failures, respectively.

Related Work
The work presented in this entry originally ap-
peared as a widely distributed conference contri-
bution [6], over a decade before being published
in a journal [7], at which time the work was well-
known in the research community. Since there
was no significant change in the algorithms, the
historical context considered here is hence with
respect to the earlier version.

Lamport [11] proposed one of the first pub-
lished algorithms to solve the problem of order-
ing broadcast messages in a distributed systems.
That algorithm, presented as the core of a mutual
exclusion algorithm, operates in a fully asyn-
chronous system (i.e., a system in which there
are no bounds on processor speed or commu-
nication delays), but does not tolerate failures.
Although the algorithms presented here rely on
physical clocks rather than Lamport’s logical
clocks, the principle used for ordering messages
is essentially the same: message carry a times-
tamp of their sending time; messages are deliv-
ered in increasing order of the timestamp, using
the sending processor name for messages with
equal timestamps.

At roughly the same period as the initial publi-
cation of the work of Cristian et al. [6], Chang and
Maxemchuck [3] proposed an atomic broadcast
protocol based on a token passing protocol, and
tolerant to crash failures of processors. Also,

Carr [1] proposed the Tandem global update pro-
tocol, tolerant to crash failures of processors.

Cristian [5] later proposed an extension to
the omission-tolerant algorithm presented here,
under the assumption that the communication
system consists of f C 1 independent broad-
cast channels (where f is the maximal number
of faulty processors). Compared with the more
general protocol presented here, its extension
generates considerably fewer messages.

Since the work of Cristian, Aghili, Strong,
and Dolev [7], much has been published on the
problem of atomic broadcast (and its numerous
variants). For further reading, Défago, Schiper,
and Urbán [8] surveyed more than sixty different
algorithms to solve the problem, classifying them
into five different classes and twelve variants.
That survey also reviews many alternative defi-
nitions and references about two hundred articles
related to this subject. This is still a very active
research area, with many new results being pub-
lished each year.

Hadzilacos and Toueg [10] provide a system-
atic classification of specifications for variants of
atomic broadcast as well as other broadcast prob-
lems, such as reliable broadcast, FIFO broadcast,
or causal broadcast.

Chandra and Toueg [2] proved the equiva-
lence between atomic broadcast and the con-
sensus problem. Thus, any application solved
by a consensus can also be solved by atomic
broadcast and vice-versa. Similarly, impossibil-
ity results apply equally to both problems. For
instance, it is well-known that consensus, thus
atomic broadcast, cannot be solved deterministi-
cally in an asynchronous system with the pres-
ence of a faulty process [9].

Notations and Assumptions
The system G consists of n distributed processors
and m point-to-point communication links. A link
does not necessarily exists between every pair
of processors, but it is assumed that the com-
munication network remains connected even in
the face of faults (whether processors or links).
All processors have distinct names and there
exists a total order on them (e.g., lexicographic
order).
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A component (link or processor) is said to
be correct if its behavior is consistent with
its specification, and faulty otherwise. The
paper considers three classes of component
failures, namely, omission, timing, and Byzantine
failures.

• An omission failure occurs when the faulty
component fails to provide the specified out-
put (e.g., loss of a message).

• A timing failure occurs when the faulty com-
ponent omits a specified output, or provides it
either too early or too late.

• A Byzantine failure [12] occurs when the com-
ponent does not behave according to its spec-
ification, for instance, by providing output
different from the one specified. In particular,
the paper considers authentication-detectable
Byzantine failures, that is, ones that are de-
tectable using a message authentication pro-
tocol, such as error correction codes or digital
signatures.

Each processor p has access to a local clock Cp

with the properties that (1) two separate clock
readings yield different values, and (2) clocks are
"-synchronized, meaning that, at any real time t,
the deviation in readings of the clocks of any two
processors p and q is at most ".

In addition, transmission and processing de-
lays, as measured on the clock of a correct pro-
cessor, are bounded by a known constant •. This
bound accounts not only for delays in transmis-
sion and processing, but also for delays due to
scheduling, overload, clock drift or adjustments.
This is called a synchronous system model.

The diffusion time dı is the time necessary
to propagate information to all correct processes,
in a surviving network of diameter d with the
presence of a most   processor failures and œ link
failures.

Problem Definition
The problem of atomic broadcast is defined in
a synchronous system model as a broadcast prim-
itive which satisfies the following three proper-
ties: atomicity, order, and termination.

Problem 1 (Atomic broadcast)
INPUT: A stream of messages broadcast by
n concurrent processors, some of which may be
faulty.
OUTPUT: The messages delivered in sequence,
with the following properties:

1. Atomicity: if any correct processor delivers
an update at time U on its clock, then that
update was initiated by some processor and is
delivered by each correct processor at time U
on its clock.

2. Order: all updates delivered by correct proces-
sors are delivered in the same order by each
correct processor.

3. Termination: every update whose broadcast is
initiated by a correct processor at time T on its
clock is delivered at all correct processors at
time T C� on their clock.

Nowadays, problem definitions for atomic
broadcast that do not explicitly refer to physical
time are often preferred. Many variants of time-
free definitions are reviewed by Hadzilacos and
Toueg [10] and Défago et al. [8]. One such
alternate definition is presented below, with
the terminology adapted to the context of this
entry.

Problem 2 (Total order broadcast)
INPUT: A stream of messages broadcast by n con-
current processors, some of which may be faulty.
OUTPUT: The messages delivered in sequence,
with the following properties:

1. Validity: if a correct processor broadcasts
a message m, then it eventually delivers m.

2. Uniform agreement: if a processor delivers
a message m, then all correct processors even-
tually deliver m.

3. Uniform integrity: for any message m, every
processor delivers m at most once, and only
if m was previously broadcast by its sending
processor.

4. Gap-free uniform total order: if some pro-
cessor delivers message m0 after message m,
then a processor delivers m0 only after it has
delivered m.
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Key Results

The paper presents three algorithms for solving
the problem of atomic broadcast, each under an
increasingly demanding failure model, namely,
omission, timing, and Byzantine failures. Each
protocol is actually an extension of the previous
one.

All three protocols are based on a clas-
sical flooding, or information diffusion,
algorithm [14]. Every message carries its
initiation timestamp T, the name of the initiating
processor s, and an update � . A message is then
uniquely identified by (s, T). Then, the basic
protocol is simple. Each processor logs every
message it receives until it is delivered. When it
receives a message that was never seen before,
it forwards that message to all other neighbor
processors.

Atomic Broadcast for Omission Failures
The first atomic broadcast protocol, supporting
omission failures, considers a termination
time �o as follows.

�o D �ı C dı C " : (1)

The delivery deadline T C�o is the time by
which a processor can be sure that it has received
copies of every message with timestamp T (or
earlier) that could have been received by some
correct process.

The protocol then works as follows. When
a processor initiates an atomic broadcast, it prop-
agates that message, similar to the diffusion al-
gorithm described above. The main exception is
that every message received after the local clock
exceeds the delivery deadline of that message,
is discarded. Then, at local time T C�o, a pro-
cessor delivers all messages timestamped with T,
in order of the name of the sending processor.
Finally, it discards all copies of the messages
from its logs.

Atomic Broadcast for Timing Failures
The second protocol extends the first one by in-
troducing a hop count (i.e., a counter incremented
each time a message is relayed) to the messages.

With this information, each relaying processor
can determine when a message is timely, that is,
if a message timestamped T with hop count h is
received at time U then the following condition
must hold.

T � h" < U < T C h.ı C "/ : (2)

Before relaying a message, each processor checks
the acceptance test above and discard the message
if it does not satisfy it. The termination time�t of
the protocol for timing failures is as follows.

�t D �.ı C "/C dı C " : (3)

The authors point out that discarding early mes-
sages is not necessary for correctness, but ensures
that correct processors keep messages in their log
for a bounded amount of time.

Atomic Broadcast for Byzantine Failures
Given some text, every processor is assumed to
be able to generate a signature for it, that cannot
be faked by other processors. Furthermore, every
processor knows the name of every other proces-
sors in the network, and has the ability to verify
the authenticity of their signature.

Under the above assumptions, the third pro-
tocol extends the second one by adding signa-
tures to the messages. To prevent a Byzantine
processor (or link) from tampering with the hop
count, a message is co-signed by every processor
that relays it. For instance, a message signed by
k processors p1; : : : ; pk is as follows.

.relayed; : : :.relayed; .first; T;�; p1; s1/; p2; s2/ ;

: : : pk ; sk/

Where ¢ is the update, T the timestamp, p1 the
message source, and si the signature generated
by processor pi. Any message for which one of
the signature cannot be authenticated is simply
discarded. Also, if several updates initiated by
the same processor p carry the same timestamp,
this indicates that p is faulty and the correspond-
ing updates are discarded. The remainder of the
protocol is the same as the second one, where
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the number of hops is given by the number of
signatures. The termination time �b is also as
follows.

�b D �.ı C "/C dı C " : (4)

The authors insist however that, in this case, the
transmission time • must be considerably larger
than in the previous case, since it must account
for the time spent in generating and verifying the
digital signatures; usually a costly operation.

Bounds
In addition to the three protocols presented above
and their correctness, Cristian et al. [7] prove the
following two lower bounds on the termination
time of atomic broadcast protocols.

Theorem 1 If the communication network G
requires x steps, then any atomic broadcast pro-
tocol tolerant of up to � processor and � link
omission failures has a termination time of at
least xı C ".

Theorem 2 Any atomic broadcast protocol for
a Hamiltonian network with n processors that tol-
erate n � 2 authentication-detectable Byzantine
processor failures cannot have a termination time
smaller than .n � 1/.ı C "/.

Applications

The main motivation for considering this problem
is its use as the cornerstone for ensuring fault-
tolerance through process replication. In particu-
lar, the authors consider a synchronous replicated
storage, which they define as a distributed and
resilient storage system that displays the same
content at every correct physical processor at any
clock time. Using atomic broadcast to deliver
updates ensures that all updates are applied at
all correct processors in the same order. Thus,
provided that the replicas are initially consis-
tent, they will remain consistent. This technique,
called state-machine replication [11, 13] or also
active replication, is widely used in practice as

a means of supporting fault-tolerance in dis-
tributed systems.

In contrast, Cristian et al. [7] consider atomic
broadcast in a synchronous system with bounded
transmission and processing delays. Their work
was motivated by the implementation of a highly-
available replicated storage system, with tightly
coupled processors running a real-time operating
system.

Atomic broadcast has been used as a support
for the replication of running processes in real-
time systems or, with the problem reformulated
to isolate explicit timing requirements, has also
been used as a support for fault-tolerance and
replication in many group communication toolk-
its (see survey of Chockler et al. [4]).

In addition, atomic broadcast has been
used for the replication of database systems,
as a means to reduce the synchronization
between the replicas. Wiesmann and Schiper [15]
have compared different database replication
and transaction processing approaches based
on atomic broadcast, showing interesting
performance gains.
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Problem Definition

Given here is a basic formulation using the online
mistake-bound model, which was used by Little-
stone [9] in his seminal work.

Fix a class C of Boolean functions over n
variables. To start a learning scenario, a target
function f� 2 C is chosen but not revealed to the
learning algorithm. Learning then proceeds in a
sequence of trials. At trial t , an input xt 2 f0; 1g

n

is first given to the learning algorithm. The learn-
ing algorithm then produces its prediction Oyt ,
which is its guess as to the unknown value f�.xt /.
The correct value yt D f�.xt / is then revealed to
the learner. If yt ¤ Oyt , the learning algorithm
made a mistake. The learning algorithm learns C
with mistake-bound m, if the number of mistakes
never exceeds m, no matter how many trials are
made and how f� and x1;x2; : : : are chosen.

Variable (or attribute) Xi is relevant
for function f W f0; 1gn ! f0; 1g if
f .x1; : : : ; xi ; : : : ; xn/ ¤ f .x1; : : : ; 1 �

xi ; : : : ; xn/ holds for some Ex 2 f0; 1gn. Suppose
now that for some k � n, every function f 2 C
has at most k relevant variables. It is said that
a learning algorithm learns class C attribute-
efficiently, if it learns C with a mistake-bound
polynomial in k and logn. Additionally, the
computation time for each trial is usually required
to be polynomial in n.

Key Results

The main part of current research of attribute-
efficient learning stems from Littlestone’s
Winnow algorithm [9]. The basic version of
Winnow maintains a weight vector wt D

.wt;1; : : : ;wt;n/ 2 R
n. The prediction for input

xt 2 f0; 1g
n is given by

Oyt D sign

 
nX

iD1

wt;ixt;i � �

!

where � is a parameter of the algorithm. Initially
w1 D .1; : : : ; 1/, and after trial t , each compo-
nent wt; i is updated according to
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wtC1;iD

8
<

:

˛wt;i if yt D 1; Oyt D 0 and xt;iD 1

wt;i=˛ if yt D 0; Oyt D 1 and xt;iD 1

wt;i otherwise
(1)

where ˛ > 1 is a learning rate parameter.
Littlestone’s basic result is that with a suitable

choice of � and ˛, Winnow learns the class
of monotone k-literal disjunctions with mistake-
bound O.k logn/. Since the algorithm changes
its weights only when a mistake occurs, this
bound also guarantees that the weights remain
small enough for computation times to remain
polynomial in n. With simple transformations,
Winnow also yields attribute-efficient learning
algorithms for general disjunctions and conjunc-
tions. Various subclasses of DNF formulas and
decision lists [8] can be learned, too.

Winnow is quite robust against noise, i.e.,
errors in input data. This is extremely impor-
tant for practical applications. Remove now the
assumption about a target function f� 2 C

satisfying yt D f�.xt / for all t . Define attribute
error of a pair .x; y/ with respect to a function
f as the minimum Hamming distance between
x and x0 such that f .x0/ D y. The attribute
error of a sequence of trials with respect to f
is the sum of attribute errors of the individual
pairs .xt ; yt /. Assuming the sequence of trials
has attribute error at most A with respect to some
k-literal disjunction, Auer and Warmuth [1] show
that Winnow makesO.ACk logn/mistakes. The
noisy scenario can also be analyzed in terms of
hinge loss [5].

The update rule (1) has served as a model
for a whole family of multiplicative update al-
gorithms. For example, Kivinen and Warmuth
[7] introduce the exponentiated gradient algo-
rithm, which is essentially Winnow modified for
continuous-valued prediction, and show how it
can be motivated by a relative entropy minimiza-
tion principle.

Consider a function class C where each func-
tion can be encoded using O.p.k/ logn/ bits
for some polynomial p. An example would be
Boolean formulas with k relevant variables, when
the size of the formula is restricted to p.k/

ignoring the size taken by the variables. The
cardinality of C is then jC j D 2O.p.k/ log n/. The
classical halving algorithm (see [9] for discussion
and references) learns any class consisting of
m Boolean functions with mistake-bound log2m

and would thus provide an attribute-efficient al-
gorithm for such a class C . However, the running
time would not be polynomial. Another serious
drawback would be that the halving algorithm
does not tolerate any noise. Interestingly, a mul-
tiplicative update similar to (1) has been used
in Littlestone and Warmuth’s weighted majority
algorithm [10], and also Vovk’s aggregating al-
gorithm [14], to produce a noise-tolerant general-
ization of the halving algorithm.

Attribute-efficient learning has also been stud-
ied in other learning models than the mistake-
bound model, such as Probably Approximately
Correct learning [4], learning with uniform dis-
tribution [12], and learning with membership
queries [3]. The idea has been further developed
into learning with a potentially infinite number of
attributes [2].

Applications

Attribute-efficient algorithms for simple function
classes have a potentially interesting application
as a component in learning more complex func-
tion classes. For example, any monotone k-term
DNF formula over variables x1; : : : ; xn can be
represented as a monotone k-literal disjunction
over 2n variables ´A, where ´A is defined as
´A D

Q
i2A

xi for A � f1; : : : ; ng. Running

Winnow with the transformed inputs ´ 2 f0; 1g2
n

would give a mistake-bound O.k log 2n/ D

O(kn). Unfortunately the running time would
be linear in 2n, at least for a naive implemen-
tation. Khardon et al. [6] provide discouraging
computational hardness results for this potential
application.

Online learning algorithms have a natural ap-
plication domain in signal processing. In this
setting, the sender emits a true signal yt at time
t , for t D 1; 2; 3; : : :. At some later time .t C d/,
a receiver receives a signal ´t , which is a sum
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of the original signal yt and various echoes of
earlier signals yt 0 , t 0 < t , all distorted by random
noise. The task is to recover the true signal yt

based on received signals ´t ; ´t�1; : : : ; ´t�l over
some time window l . Currently attribute-efficient
algorithms are not used for such tasks, but see
[11] for preliminary results.

Attribute-efficient learning algorithms are
similar in spirit to statistical methods that find
sparse models. In particular, statistical algorithms
that use L1 regularization are closely related
to multiplicative algorithms such as winnow
and exponentiated gradient. In contrast, more
classical L2 regularization leads to algorithms
that are not attribute-efficient [13].
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Problem Definition

This problem is concerned with the automated
development and analysis of search tree algo-
rithms. Search tree algorithms are a popular way
to find optimal solutions to NP-complete prob-
lems. (For ease of presentation, only decision
problems are considered; adaption to optimiza-
tion problems is straightforward.) The idea is
to recursively solve several smaller instances in
such a way that at least one branch is a yes-
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instance if and only if the original instance is.
Typically, this is done by trying all possibilities to
contribute to a solution certificate for a small part
of the input, yielding a small local modification
of the instance in each branch.

For example, consider the NP-complete
CLUSTER EDITING problem: can a given graph
be modified by adding or deleting up to k edges
such that the resulting graph is a cluster graph,
that is, a graph that is a disjoint union of cliques?
To give a search tree algorithm for CLUSTER

EDITING, one can use the fact that cluster graphs
are exactly the graphs that do not contain a P3

(a path of 3 vertices) as an induced subgraph. One
can thus solve CLUSTER EDITING by finding
a P3 and splitting it into 3 branches: delete the
first edge, delete the second edge, or add the
missing edge. By this characterization, whenever
there is no P3 found, one already has a cluster
graph. The original instance has a solution with
k modifications if and only if at least one of the
branches has a solution with k � 1modifications.

Analysis
For NP-complete problems, the running time of
a search tree algorithm only depends on the size
of the search tree up to a polynomial factor ,
which depends on the number of branches and the
reduction in size of each branch. If the algorithm
solves a problem of size s and calls itself recur-
sively for problems of sizes s � d1; : : : ; s � di ,
then .d1; : : : ; di / is called the branching vector
of this recursion. It is known that the size of the
search tree is then O(’s), where the branching
number ’ is the only positive real root of the
characteristic polynomial

´d � ´d�d1 � � � � � ´d�di ; (1)

where d D maxfd1; : : : ; dig. For the simple
CLUSTER EDITING search tree algorithm and the
size measure k, the branching vector is (1, 1, 1)
and the branching number is 3, meaning that the
running time is up to a polynomial factor O(3k).

Case Distinction
Often, one can obtain better running times by
distinguishing a number of cases of instances,

and giving a specialized branching for each case.
The overall running time is then determined by
the branching number of the worst case. Several
publications obtain such algorithms by hand (e.g.,
a search tree of size O(2.27k) for CLUSTER EDIT-
ING [4]); the topic of this work is how to automate
this. That is, the problem is the following:

Problem 1 (Fast Search Tree Algorithm)
INPUT: An NP-hard problem P and a size mea-
sure s(I) of an instance I of P where instances I
with s.I / D 0 can be solved in polynomial time.
OUTPUT: A partition of the instance set of P into
cases, and for each case a branching such that the
maximum branching number over all branchings
is as small as possible.

Note that this problem definition is somewhat
vague; in particular, to be useful, the case an
instance belongs to must be recognizable quickly.
It is also not clear whether an optimal search
tree algorithm exists; conceivably, the branching
number can be continuously reduced by increas-
ingly complicated case distinctions.

Key Results

Gramm et al. [3] describe a method to obtain fast
search tree algorithms for CLUSTER EDITING

and related problems, where the size measure is
the number of editing operations k. To get a case
distinction, a number of subgraphs are enumer-
ated such that each instance is known to contain at
least one of these subgraphs. It is next described
how to obtain a branching for a particular case.

A standard way of systematically obtaining
specialized branchings for instance cases is to use
a combination of basic branching and data re-
duction rules. Basic branching is typically a very
simple branching technique, and data reduction
rules replace an instance with a smaller, solution-
equivalent instance in polynomial time. Applying
this to CLUSTER EDITING first requires a small
modification of the problem: one considers an
annotated version, where an edge can be marked
as permanent and a non-edge can be marked as
forbidden. Any such annotated vertex pair cannot
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Automated Search Tree
Generation, Fig. 1
Branching for a CLUSTER

EDITING case using only
basic branching on vertex
pairs (double circles), and
applications of the
reduction rules (asterisks).
Permanent edges are
marked bold, forbidden
edges dashed. The numbers
next to the subgraphs state
the change of the problem
size k. The branching
vector is (1, 2, 3, 3, 2),
corresponding to a search
tree size of O(2.27k)
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be edited anymore. For a pair of vertices, the
basic branching then branches into two cases:
permanent or forbidden (one of these options will
require an editing operation). The reduction rules
are: if two permanent edges are adjacent, the third
edge of the triangle they induce must also be
permanent; and if a permanent and a forbidden
edge are adjacent, the third edge of the triangle
they induce must be forbidden.

Figure 1 shows an example branching derived
in this way.

Using a refined method of searching the
space for all possible cases and to distinguish
all branchings for a case, Gramm et al. [3] derive
a number of search tree algorithms for graph
modification problems.

Applications

Gramm et al. [3] apply the automated genera-
tion of search tree algorithms to several graph
modification problems (see also Table 1). Fur-
ther, Hüffner [5] demonstrates an application of
DOMINATING SET on graphs with maximum
degree 4, where the size measure is the size of
the dominating set.

Fedin and Kulikov [2] examine variants of
SAT; however, their framework is limited in that

it only proves upper bounds for a fixed algorithm
instead of generating algorithms.

Skjernaa [6] also presents results on variants
of SAT. His framework does not require user-
provided data reduction rules, but determines
reductions automatically.

Open Problems

The analysis of search tree algorithms can be
much improved by describing the “size” of an
instance by more than one variable, resulting in
multivariate recurrences [1]. It is open to intro-
duce this technique into an automation frame-
work.

It has frequently been reported that better
running time bounds obtained by distinguish-
ing a large number of cases do not necessarily
speed up, but in fact can slow down, a program.
A careful investigation of the tradeoffs involved
and a corresponding adaption of the automation
frameworks is an open task.

Experimental Results

Gramm et al. [3] and Hüffner [5] report search
tree sizes for several NP-complete problems. Fur-
ther, Fedin and Kulikov [2] and Skjernaa [6]
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Automated Search Tree Generation, Table 1
Summary of search tree sizes where automation gave
improvements. “Known” is the size of the best previously
published “hand-made” search tree. For the satisfiability
problems, m is the number of clauses and l is the length
of the formula

Problem Trivial Known New

CLUSTER EDITING 3 2.27 1.92 [3]

CLUSTER DELETION 2 1.77 1.53 [3]

CLUSTER VERTEX

DELETION

3 2.27 2.26 [3]

BOUNDED DEGREE

DOMINATING SET

4 3.71 [5]

X3SAT, size measure m 3 1.1939 1.1586 [6]

(n, 3)-MAXSAT, size
measure m

2 1.341 1.2366 [2]

(n, 3)-MAXSAT, size
measure l

2 1.1058 1.0983 [2]

report on variants of satisfiability. Table 1 sum-
marizes the results.
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Problem Definition

In the satisfiability problem (SAT), the input is
a Boolean formula in conjunctive normal form
(CNF), and the question is whether the formula
is satisfiable, that is, whether there exists an
assignment of truth values to the variables such
that the formula evaluates to true. For example,
the formula

.x _ :y/ ^ .:x _ y _ ´/ ^ .x _ :´/

^ .:x _ y _ ´/

is satisfiable since it evaluates to true if we set x,
y, and ´ to true.

Several classes of CNF formulas are known
for which SAT can be solved in polynomial
time – so-called islands of tractability. For a given
island of tractability C , a C -backdoor is a set of
variables of a formula such that assigning truth
values to these variables gives a formula in C .

Formally, let C be a class of formulas for
which the recognition problem and the satisfia-
bility problem can be solved in polynomial time.
For a subset of variables X � var.F / of a
CNF formula F , and an assignment ˛ W X !

ftrue; falseg of truth values to these variables, the
reduced formula F Œ˛� is obtained from F by
removing all the clauses containing a true literal
under ˛ and removing all false literals from the
remaining clauses. The notion of backdoors was
introduced by Williams et al. [15], and they come
in two variants:

Definition 1 ([15]) A weak C -backdoor of a
CNF formula F is a set of variables X � var.F /

such that there exists an assignment ˛ to X such
that F Œ˛� 2 C and F Œ˛� is satisfiable.

Definition 2 ([15]) A strong C -backdoor of a
CNF formula F is a set of variables X � var.F /

such that for each assignment ˛ to X , we have
that F Œ˛� 2 C .

There are two main computational problems
associated with backdoors. In the detection prob-
lem, the input is a CNF formula F and an in-
teger k, and the question is whether F has a

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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weak/strong C -backdoor of size k. In the evalu-
ation problem, the input is a CNF formula F and
a weak/strong C -backdoor X , and the question
is whether F is satisfiable. (In the case of weak
C -backdoors, one usually requires to find a sat-
isfying assignment since every formula that has a
weak C -backdoor is satisfiable.)

The size of a smallest weak/strong C -
backdoor of a CNF formula F naturally defines
the distance of F to C . The size of the backdoor
then becomes a very relevant parameter in
studying the parameterized complexity [1] of
backdoor detection and backdoor evaluation.

For a base class C where #SAT (determine the
number of satisfying assignments) or Max-SAT
(find an assignment that maximizes the number
or weight of satisfied clauses) can be solved in
polynomial time, strong C -backdoors can also be
used to solve these generalizations of SAT.

Key Results

While backdoor evaluation problems are fixed-
parameter tractable for SAT, the parameterized

complexity of backdoor detection depends on the
particular island of tractability C that is con-
sidered. If weak (resp., strong) C -backdoor de-
tection is fixed-parameter tractable parameter-
ized by backdoor size, SAT is fixed-parameter
tractable parameterized by the size of the small-
est weak (resp., strong) C -backdoor. A sample
of results for the parameterized complexity of
backdoor detection is presented in Table 1. The
considered islands of tractability are defined in
Table 2.

It can be observed that restricting the input
formulas to have bounded clause length can make
backdoor detection more tractable. Also, weak
backdoor detection is often no more tractable
than strong backdoor detection; the outlier here
is FOREST-backdoor detection for general CNF
formulas, where the weak version is known to be
W[2]-hard but the parameterized complexity of
the strong variant is still open. A CNF formula
belongs to the island of tractability Forest if its
incidence graph is acyclic. Here, the incidence
graph of a CNF formula F is the bipartite graph
on the variables and clauses of F where a clause
is incident to the variables it contains.

Backdoors to SAT, Table 1 The parameterized complexity of finding weak and strong backdoors of CNF formulas
and r-CNF formulas, where r � 3 is a fixed integer

Weak Strong

Island CNF r-CNF CNF r-CNF

HORN W[2]-h [10] FPT [7] FPT [10] FPT [10]

2CNF W[2]-h [10] FPT [7] FPT [10] FPT [10]

UP W[P]-c [14] W[P]-c [14] W[P]-c [14] W[P]-c [14]

FOREST W[2]-h [6] FPT [6] Open Open

RHORN W[2]-h [7] W[2]-h [7] W[2]-h [7] Open

CLU W[2]-h [11] FPT [7] W[2]-h [11] FPT [11]

Backdoors to SAT, Table 2 Some islands of tractability

Island Description

HORN Horn formulas, i.e., CNF formulas where each clause contains at most one positive literal

2CNF Krom formulas, i.e., CNF formulas where each clause contains at most two literals

UP CNF formulas from which the empty formula or an empty clause can be derived by unit propagation
(setting the literals in unit length clauses to true)

FOREST Acyclic formulas, i.e., CNF formulas whose incidence graphs are forests

RHORN Renamable Horn formulas, i.e., CNF formulas that can be made Horn by flipping literals

CLU Cluster formulas, i.e., CNF formulas that are variable disjoint unions of hitting formulas. A formula
is hitting if every two of its clauses have at least one variable occurring positively in one clause and
negatively in the other
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The width of graph decompositions consti-
tutes another measure for the tractability of
CNF formulas that is orthogonal to backdoors.
For example, Fischer et al. [2] and Samer and
Szeider [12] give linear-time algorithms solving
#SAT for CNF formulas in W�t .

Definition 3 For every integer t � 0, W�t is the
class of CNF formulas whose incidence graph has
treewidth at most t .

Combining backdoor and graph decompo-
sition methods, let us now consider backdoors
to W�t . Since FOREST D W�1, weak W�t -
backdoor detection is already W[2]-hard for
t D 1. Fomin et al. [3] give parameterized
algorithms for weak W�t -backdoor detection
when the input formula has bounded clause
length. Concerning strong W�t -backdoor
detection for formulas with bounded clause
length, Fomin et al. [3] sidestep the issue
of computing a backdoor by giving a fixed-
parameter algorithm, where the parameter is the
size of the smallest W�t -backdoor, that directly
solves r-SAT. The parameterized complexity of
strong W�t -backdoor detection remains open,
even for t D 1. However, a fixed-parameter
approximation algorithm was designed by
Gaspers and Szeider.

Theorem 1 ([8]) There is a cubic-time algo-
rithm that, given a CNF formula F and two
constants k; t � 0, either finds a strong W�t -
backdoor of size at most 2k or concludes that F

has no strong W�t -backdoor set of size at most k.

Using one of the #SAT algorithms for W�t [2,
12], one can use Theorem 1 to obtain a fixed-
parameter algorithm for #SAT parameterized by
the size of the smallest strong backdoor to W�t .

Corollary 1 ([8]) There is a cubic-time algo-
rithm that, given a CNF formula F , computes
the number of satisfying assignments of F or
concludes that F has no strong W�t -backdoor
of size k for any pair of constants k; t � 0.

In general, a fixed-parameter approximation
algorithm for weak/strong C -backdoor detection
is sufficient to make SAT fixed-parameter
tractable parameterized by the size of a smallest
weak/strong C -backdoor.

Backdoors for SAT have been considered
for combinations of base classes [4, 9], and
the notion of backdoors has been extended to
other computational reasoning problems such
as constraint satisfaction, quantified Boolean
formulas, planning, abstract argumentation, and
nonmonotonic reasoning; see [7]. Other variants
of the notion of backdoors include deletion
backdoors where variables are deleted instead
of instantiated, backdoors that are sensitive to
clause-learning, pseudo-backdoors that relax the
requirement that the satisfiability problem for
an island of tractability be solved in polynomial
time, and backdoor trees; see [5].

Applications

SAT is an NP-complete problem, but modern
SAT solvers perform extremely well, especially
on structured and industrial instances [13].

The study of backdoors, and especially the
parameterized complexity of backdoor detection
problems, is one nascent approach to try and
explain the empirically observed running times of
SAT solvers.

Open Problems

Major open problems in the area include to deter-
mine whether

• strong FOREST-backdoor detection is fixed-
parameter tractable, and whether

• strong RHORN-backdoor detection is fixed-
parameter tractable for 3-CNF formulas.

Experimental Results

Experimental results evaluate running times
of algorithms to find backdoors in benchmark
instances, evaluate the size of backdoors of
known SAT benchmark instances, compare
backdoor sizes for various islands of tractability,
compare backdoor sizes for various notions of
backdoors, evaluate what effect preprocessing
has on backdoor size, compare how backdoor
sizes of random instances compare to backdoor
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sizes of real-world industrial instances, and
evaluate how SAT solver running times change
if we force the solver to branch only on the
variables of a given backdoor. The main messages
are that the islands of tractability with the
smallest backdoors are also those for which
the backdoor detection problems are the most
intractable and that existing SAT solvers can
be significantly sped up on many real-world
SAT instances if we feed them small backdoors.
The issue is, of course, to compute these
backdoors, and knowledge of the application
domain, or specific SAT translations might help
significantly with this task in practice. See [5] for
a survey.
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Problem Definition

Determination of the complexity of k-CNF sat-
isfiability is a celebrated open problem: given a
Boolean formula in conjunctive normal form with
at most k literals per clause, find an assignment
to the variables that satisfies each of the clauses
or declare none exists. It is well known that the
decision problem of k-CNF satisfiability is NP-
complete for k � 3. This entry is concerned with
algorithms that significantly improve the worst-
case running time of the naive exhaustive search
algorithm, which is poly.n/2n for a formula on
n variables. Monien and Speckenmeyer [8] gave
the first real improvement by giving a simple
algorithm whose running time is O.2

.1�©/n

k
/, with

©k > 0 for all k. In a sequence of results
[1, 3, 5–7, 9–12], algorithms with increasingly
better running times (larger values of ©k) have
been proposed and analyzed.

These algorithms usually follow one of two
lines of attack to find a satisfying solution. Back-
track search algorithms make up one class of al-
gorithms. These algorithms were originally pro-
posed by Davis, Logemann, and Loveland [4] and
are sometimes called Davis-Putnam procedures.
Such algorithms search for a satisfying assign-
ment by assigning values to variables one by one
(in some order), backtracking if a clause is made
false. The other class of algorithms is based on
local searches (the first guaranteed performance
results were obtained by Schöning [12]). One
starts with a randomly (or strategically) selected
assignment and searches locally for a satisfying
assignment guided by the unsatisfied clauses.

This entry presents ResolveSat, a random-
ized algorithm for k-CNF satisfiability which
achieves some of the best known upper bounds.
ResolveSat is based on an earlier algorithm of
Paturi, Pudlák, and Zane [10], which is essen-
tially a backtrack search algorithm where the
variables are examined in a randomly chosen
order. An analysis of the algorithm is based on

the observation that as long as the formula has
a satisfying assignment which is isolated from
other satisfying assignments, a third of the vari-
ables are expected to occur as unit clauses as the
variables are assigned in a random order. Thus,
the algorithm needs to correctly guess the values
of at most 2/3 of the variables. This analysis is
extended to the general case by observing that ei-
ther there exists an isolated satisfying assignment
or there are many solutions, so the probability of
guessing one correctly is sufficiently high.

ResolveSat combines these ideas with reso-
lution to obtain significantly improved bounds
[9]. In fact, ResolveSat obtains the best known
upper bounds for k-CNF satisfiability for all k �

5. For k D 3 and 4, Iwama and Takami [6]
obtained the best known upper bound with their
randomized algorithm which combines the ideas
from Schöning’s local search algorithm and Re-
solveSat. Furthermore, for the promise problem
of unique k-CNF satisfiability whose instances
are conjectured to be among the hardest instances
of k-CNF satisfiability [2], ResolveSat holds the
best record for all k � 3. Bounds obtained by
ResolveSat for unique k-SAT and k-SAT for k D

3; 4; 5; 6 are shown in Table 1. Here, these bounds
are compared with those of Schöning [12], sub-
sequently improved results based on local search
[1, 5, 11], and the most recent improvements due
to Iwama and Takami [6]. The upper bounds
obtained by these algorithms are expressed in
the form 2cn�o.n/ and the numbers in the table
represent the exponent c. This comparison fo-
cuses only on the best bounds irrespective of
the type of the algorithm (randomized versus
deterministic).

Backtracking Based k-SAT Algorithms, Table 1 This
table shows the exponent c in the bound 2cn�o.n/ for the
unique k-SAT and k-SAT from the ResolveSat algorithm,
the bounds for k-SAT from Schöning’s algorithm [12],
its improved versions for 3-SAT [1, 5, 11], and the hybrid
version of [6]

k
unique
k-SAT[9] k-SAT[9] k-SAT[12]

k-SAT
[1,5,11] k-SAT[6]

3 0.386 . . . 0.521 . . . 0.415 . . . 0.409 . . . 0.404 . . .

4 0.554 . . . 0.562 . . . 0.584 . . . 0.559 . . .

5 0.650 . . . 0.678 . . .

6 0.711 . . . 0.736 . . .
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Notation
In this entry, a CNF Boolean formula
F.x1; x2; : : : ; xn/ is viewed as both a Boolean
function and a set of clauses. A Boolean formula
F is a k-CNF if all the clauses have size at
most k. For a clause C , write var.C / for the
set of variables appearing in C . If v 2 var.C /,
the orientation of v is positive if the literal v

is in C and is negative if Nv is in C . Recall that
if F is a CNF Boolean formula on variables
.x1; x2; : : : ; xn/ and a is a partial assignment
of the variables, the restriction of F by a is
defined to be the formula F 0 D F da on the set
of variables that are not set by a, obtained by
treating each clause C of F as follows: if C is set
to 1 by a, then delete C and otherwise replace C

by the clause C 0 obtained by deleting any literals
of C that are set to 0 by a. Finally, a unit clause
is a clause that contains exactly one literal.

Key Results

ResolveSat Algorithm
The ResolveSat algorithm is very simple. Given
a k-CNF formula, it first generates clauses that
can be obtained by resolution without exceeding
a certain clause length. Then it takes a random
order of variables and gradually assigns values
to them in this order. If the currently considered
variable occurs in a unit clause, it is assigned
as the only value that satisfies the clause. If it
occurs in contradictory unit clauses, the algo-
rithm starts over. At each step, the algorithm
also checks if the formula is satisfied. If the
formula is satisfied, then the input is accepted.
This subroutine is repeated until either a satisfy-
ing assignment is found or a given time limit is
exceeded.

The ResolveSat algorithm uses the follow-
ing subroutine, which takes an arbitrary assign-
ment y, a CNF formula F , and a permutation
  as input, and produces an assignment u. The
assignment u is obtained by considering the vari-
ables of y in the order given by   and modifying
their values in an attempt to satisfy F .

Function Modify(CNF formula G.x1; x2; : : : ;

xn/, permutation   of f1; 2; : : : ; ng, assignment

y/ ! (assignment u) G0 D G.for i D 1 to
n if Gi�1 contains the unit clause x .i/ then
u .i/ D 1 else if Gi�1 contains the unit clause
Nx .i/ then u .i/ D 0 else u .i/ D y .i/ Gi D

Gi�1dx .i/Du�.i/ end /� end for loop �/return u;
The algorithm Search is obtained by running

Modify .G;  ; y/ on many pairs . ; y/, where
  is a random permutation and y is a random
assignment.

Search(CNF-formula F , integer I )repeat
I times   D uniformly random permutation
of 1; : : : ; n y D uniformly random vector
2 f0; 1gn u D Modify .F;  ; y/; if u satisfies
F then output.u/; exit;end/� end repeat loop
�/output(‘Unsatisfiable’);

The ResolveSat algorithm is obtained by com-
bining Search with a preprocessing step consist-
ing of bounded resolution. For the clauses C1 and
C2, C1 and C2 conflict on variable v if one of
them contains v and the other contains Nv. C1 and
C2 is a resolvable pair if they conflict on exactly
one variable v. For such a pair, their resolvent,
denoted R.C1; C2/, is the clause C D D1 _D2

where D1 and D2 are obtained by deleting v

and Nv from C1 and C2. It is easy to see that any
assignment satisfying C1 and C2 also satisfies C .
Hence, if F is a satisfiable CNF formula contain-
ing the resolvable pair C1; C2 then the formula
F 0 D F ^ R.C1; C2/ has the same satisfying
assignments as F . The resolvable pair C1; C2 is
s-bounded if jC1j; jC2j � s and jR.C1; C2/j � s.
The following subroutine extends a formula F

to a formula Fs by applying as many steps of s-
bounded resolution as possible.

Resolve(CNF Formula F , integer s)Fs D

F .while Fs has an s-bounded resolvable pair
C1; C2 with R.C1; C2/ … Fs Fs D Fs ^

R.C1; C2/.return (Fs).
The algorithm for k-SAT is the following

simple combination of Resolve and Search:
ResolveSat(CNF-formula F , integer s,

positive integer I /Fs D Resolve .F; s/.Search
.Fs; I /.

Analysis of ResolveSat
The running time of ResolveSat .F; s; I / can
be bounded as follows. Resolve .F; s/ adds at
most O.ns/ clauses to F by comparing pairs
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of clauses, so a naive implementation runs in
time n3spoly.n/ (this time bound can be im-
proved, but this will not affect the asymptotics
of the main results). Search .Fs; I / runs in time
I.jF j C ns/poly.n/. Hence, the overall running
time of ResolveSat .F; s; I / is crudely bounded
from above by .n3s C I.jF j C ns//poly.n/. If
s D O.n= log n/, the overall running time can
be bounded by I jF j2O.n/ since ns D 2O.n/. It
will be sufficient to choose s either to be some
large constant or to be a slowly growing function
of n. That is, s.n/ tends to infinity with n but is
O.log n/.

The algorithm Search .F; I / always answers
“unsatisfiable” if F is unsatisfiable. Thus, the
only problem is to place an upper bound on the
error probability in the case that F is satisfiable.
Define £.F / to be the probability that Modify
.F;  ; y/ finds some satisfying assignment. Then
for a satisfiable F , the error probability of Search
.F; I / is equal to .1 � �.F //I � e�I�.F /, which
is at most e�n provided that I � n=£.F /. Hence,
it suffices to give good upper bounds on £.F /.

Complexity analysis of ResolveSat requires
certain constants �k for k � 2:

�k D

1X

jD1

1

j
�
j C 1

k�1

� :

It is straightforward to show that �3 D 4 �

4 ln 2 > 1:226 using Taylor’s series expansion of
ln 2. Using standard facts, it is easy to show that
�k is an increasing function of k with the limit

1X

jD1

.1=j 2/ D .�2=6/ D 1:644 : : :

The results on the algorithm ResolveSat are sum-
marized in the following three theorems.

Theorem 1

(i) Let k � 5, and let s.n/ be a function going
to infinity. Then for any satisfiable k-CNF
formula F on n variables,

�.Fs/ � 2
�

�
1�

�k
k�1

�
n�o.n/

:

Hence, ResolveSat .F; s; I / with I D

2.1��k=.k�1//nCO.n/ has error probability
O.1/ and running time 2.1��k=.k�1//nCO.n/

on any satisfiable k-CNF formula, provided
that s.n/ goes to infinity sufficiently slowly.

(ii) For k � 3, the same bounds are obtained
provided that F is uniquely satisfiable.

Theorem 1 is proved by first considering the
uniquely satisfiable case and then relating the
general case to the uniquely satisfiable case.
When k � 5, the analysis reveals that the
asymptotics of the general case is no worse than
that of the uniquely satisfiable case. When k D 3

or k D 4, it gives somewhat worse bounds for the
general case than for the uniquely satisfiable case.

Theorem 2 Let s D s.n/ be a slowly growing
function. For any satisfiable n-variable 3-CNF
formula, £.Fs/ � 2�0:521n, and so ResolveSat
.F; s; I / with I D n20:521n has error probability
O.1/ and running time 20:521nCO.n/.

Theorem 3 Let s D s.n/ be a slowly growing
function. For any satisfiable n-variable 4-CNF
formula, £.Fs/ � 2�0:5625n, and so ResolveSat
.F; s; I / with I D n20:5625n has error probabil-
ity O.1/ and running time 20:5625nCO.n/.

Applications

Various heuristics have been employed to
produce implementations of 3-CNF satisfiability
algorithms which are considerably more
efficient than exhaustive search algorithms. The
ResolveSat algorithm and its analysis provide
a rigorous explanation for this efficiency and
identify the structural parameters (e.g., the
width of clauses and the number of solutions),
influencing the complexity.

Open Problems

The gap between the bounds for the general
case and the uniquely satisfiable case when k 2

f3; 4g is due to a weakness in analysis, and it
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is conjectured that the asymptotic bounds for
the uniquely satisfiable case hold in general for
all k. If true, the conjecture would imply that
ResolveSat is also faster than any other known
algorithm in the k D 3 case.

Another interesting problem is to better under-
stand the connection between the number of satis-
fying assignments and the complexity of finding
a satisfying assignment [2]. A strong conjec-
ture is that satisfiability for formulas with many
satisfying assignments is strictly easier than for
formulas with fewer solutions.

Finally, an important open problem is to de-
sign an improved k-SAT algorithm which runs
faster than the bounds presented in here for the
unique k-SAT case.
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Problem Definition

A network bargaining game can be represented
by a graph G D .V; E/ along with a set of node
capacities fci ji 2 V g and a set of edge weights
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fwijj.i; j / 2 Eg, where V is a set of n agents, E

is the set of all possible contracts, each agent i 2

V has a capacity ci which the maximum number
of contracts in which agent i may participate, and
each edge .i; j / 2 E has a weight wij which rep-
resents the surplus of a possible contract between
agent i and agent j which should be divided
between agents i and j upon an agreement. The
main goal is to find the outcome of bargaining
among agents which is a set of contracts M � E

and the division of surplus f´ijg for all contracts
in M .

Problem 1 (Computing the Final Outcome)

INPUT: A network bargaining game G D

.V; E/ along with capacities fci ji 2 V g and
weights fwijj.i; j / 2 Eg.

OUTPUT: The final outcome of bargaining
among agents.

Solution Concept

Feasible Solution
The final outcome of the bargaining process
might have many properties. The main one is the
feasibility. A solution .M; f´ijg/ is feasible if and
only if it has the following properties:

• The degree of each node i should be at most
ci in set M .

• For each edge .i; j / 2 M , we should have
´ijC´ji D wij. This means if there is a contract
between agents i and j , the surplus should be
divided between these two agents.

• For each edge .i; j / 62 M , we should have
´ij D ´ji D 0.

Outside Option
Given a feasible solution .M; f´ijg/, the outside
option of agent is the best deal she can make
outside of set M . For each edge .i; k/ 2 E �M ,
agent i has an outside option by offering agent
k her current worst offer. In particular, if k has
less than ck contracts in M , agent i can offer
agent k exactly 0, and thus the outside option
of agent i regarding agent k would be wik. On
the other hand, if k has exactly ck contracts in
M , agent i may offer agent k the minimum of

´kj for all .k; j / 2 M , and thus the outside
option of agent i regarding agent k would be
wik � min.k;j /2M f´kjg. Therefore, the outside
option ˛i of agent i regarding solution .M; f´ijg/

is defined as ˛i D max.i;k/2E�M fwik � �ikg

where

�ik D

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

0 if k has less than

ci contracts in M

min.k;j /2M f´kjg if k has exactly

ci contracts in M

Stable Solution
A solution .M; f´ijg/ is stable if for each contract
.i; j / 2 M , we have ´ij � ˛i and for each agent
i with less than ci contracts in M , we have ˛i D

0. Otherwise, agent i has an incentive to deviate
from M and makes a contract with agent k such
that .i; k/ 62M .

Balanced Solution
John Nash [6] proposed a solution for the out-
come of bargaining process between two agents.
In his solution, known as the Nash bargaining
solution, both agents will enjoy their outside op-
tions and then divide the surplus equally. One can
leverage the intuition behind the Nash bargaining
solution and defines the balanced solution in the
network bargaining game. A feasible solution
.M; f´ijg/ is balanced if for each contract .i; j / in
M , the participants divide the net surplus equally,
i.e., ´ik D ˛i C

wik�˛i�˛j

2
.

Problem 2 (Computing a Stable Solution)

INPUT: A network bargaining game G D

.V; E/ along with capacities fci ji 2 V g and
weights fwijj.i; j / 2 Eg.

OUTPUT: A stable solution.

Problem 3 (Computing a Balanced Solution)

INPUT: A network bargaining game G D

.V; E/ along with capacities fci ji 2 V g and
weights fwijj.i; j / 2 Eg.

OUTPUT: A balanced solution.
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Key Results

The main goal of studying the network bargaining
games is to find the right outcome of the game.
Stable and balanced solutions are known to be
good candidates. However, they might be too
large, and moreover, some network bargaining
games do not have stable and balanced solu-
tions.

Existence of Stable and Balanced Solutions
It has been proved that a network bargaining
game G D .V; E/ with set of weights
fwijj.i; j / 2 Eg has at least one stable solution
if and only if the following linear program for
the corresponding maximum weighted matching
problem has an integral optimum solution [4, 5]:

maximize
P

.i;j /2E xijwij

subject to
P

.i;j /2E xij � ci ; 8i 2 V

xij � 1; 8.i; j / 2 E
(LP1)

Kleinberg and Tardös [5] also study network
bargaining games with unit capacities, i.e., ci D

1 for each agent i , and show these games have
at least one balanced solution if and only if
they have a stable solution. Farczadi et al. [3]
generalize this result and prove the same result
for network bargaining games with general ca-
pacities.

Cooperative Game Theory Perspective
One can study network bargaining games from
cooperative game theory perspective. A cooper-
ative game is defined by a set of agents V and
a value function 	 W 2V ! R, where 	.S/

represents the surplus that all agents in S alone
can generate. In order to consider our bargaining
game as a cooperative game, we should first
define a value function for our bargaining game.
The value function 	.S/ can be defined as the size
of the maximum weighted c-matching of S .

Core
An outcome fxi ji 2 V g is in core if for each
subset of agents S , we have

P
i2S xi � 	.S/ and

for set V we have
P

i2V xi D 	.V /. This means
the agents should divide the total surplus 	.V /

such that each subset of agents earns at least as
much as they alone can generate.

Prekernel
Consider an outcome fxi ji 2 V g. The power
of agent i over agent j regarding outcome
fxi ji 2 V g is defined as sij.x/ D maxf	.S/ �P

i2S xi jS � V; i 2 S; j 2 V �Sg. An outcome
fxi ji 2 V g is in prekernel if for every two agents
i and j , we have sij.x/ D sji.x/.

Nucleolus
Consider an outcome fxi ji 2 V g. The excess of
set S is defined as 
.S/ D 	.S/ �

P
i2S xi .

Let 
 be the vector of all possible 2jV j excesses
which are sorted in nondecreasing order. The
nucleolus is the outcome which lexicographically
maximizes vector 
.

There is a nice connection between stable and
balanced solutions in network bargaining games
and core and prekernel outcomes in cooperative
games [1, 2]. Bateni et al. [2] prove in a bipartite
network where all nodes on one side have unit
capacity, the set of stable solutions and the core
coincide. Moreover, they map the set of balanced
solutions to the prekernel in the same setting.
Note that it is shown that this equivalence cannot
be extended to a general bipartite network where
nodes on both sides have general capacities [2,3].

The set of stable and balanced solutions are
quite large for many instances and thus may
not be used for predicting the outcome of the
game. Both Azar et al. [1] and Bateni et al. [2]
leverage the connection between network bar-
gaining games and cooperative games and sug-
gest the nucleolus as a symmetric and unique
solution for the outcome of a network bargaining
game [1, 2]. Bateni et al. [2] also propose a
polynomial-time algorithm for finding nucleolus
in bipartite networks with unit capacities on one
side.

Finding Stable and Balanced Solutions
Designing a polynomial-time algorithm for find-
ing stable and balanced solutions of a network
bargaining game is a well-known problem. Klein-
berg and Tardös [5] were the first who studied
this problem and proposed a polynomial-time
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algorithm which characterizes stable and bal-
anced solutions when all agents have unit ca-
pacities. Their solution draws connection to the
structure of matchings and the Edmonds-Gallai
decomposition. Bateni et al. [2] generalize this
results and design a polynomial-time algorithm
for bipartite graphs where all agents on one side
have general capacities and the other ones have
unit capacities. They leverage the correspondence
between the set of balanced solutions and the
intersection of the core and prekernel and use
known algorithms for finding a point in prekernel
to solve the problem. Last but not least, Farczadi
et al. [3] propose an algorithm for computing
a balanced solution for general capacities. The
main idea of their solution is to reduce an instance
with general capacities to a network bargaining
game with unit capacities.

Open Problems

- What is the right outcome of a network bargain-
ing game on a general graph?

- How can we compute a proper outcome of a
network bargaining game on a general graph
in a polynomial time?
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Problem Definition

A drawing of a graph G D .V; E/ maps each
vertex v 2 V to a distinct point of the plane and
each edge e 2 E to a simple open Jordan curve
joining its end vertices. A drawing is planar if
the edges do not intersect. A graph is planar if it
admits a planar drawing. A planar drawing of a
graph partitions the plane into connected regions
called faces. The unbounded face is called exter-
nal face. Two drawings of G are equivalent if
they induce the same circular order of the edges
incident to the vertices. A planar embedding of G

is an equivalence class of such drawings. A plane
graph is a planar graph together with a planar
embedding and the specification of the external
face.

A drawing of a graph is orthogonal if each
edge is a sequence of alternate horizontal and ver-
tical segments. Only planar graphs of maximum
degree four admit planar orthogonal drawings.
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Bend Minimization for
Orthogonal Drawings of
Plane Graphs, Fig. 1 (a)
An orthogonal drawing of
a graph. (b) An orthogonal
drawing of the same graph
with the minimum number
of bends
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The points in common between two subsequent
segments of the same edge are called bends.
Figure 1 shows two orthogonal drawings of the
same plane graph with seven bends and one bend,
respectively.

Bend Minimization Problem
Formally, the main research problem can be de-
fined as follows.

INPUT: A plane graph G D .V; E/ of maximum
degree four.

OUTPUT: An orthogonal drawing of G with the
minimum number of bends.

Since, given the shape of the faces, an or-
thogonal drawing of G with integer coordinates
for vertices and bends can be computed in linear
time, this problem may be alternatively viewed
as that of embedding a 4-plane graph in the
orthogonal grid with the minimum number of
bends. Observe that if the planar embedding of
the graph is not fixed, the problem of finding a
minimum-bend orthogonal drawing is known to
be NP-complete [9], unless the input graph has
maximum degree three [5].

Key Results

The bend minimization problem can be solved in
polynomial time by reducing it to that of finding a
minimum-cost integer flow of a suitable network.
Here, rather than describing the original model
of [11], we describe the more intuitive model
of [6].

Any orthogonal drawing of a maximum degree
four plane graph G D .V; E/ corresponds to an
integer flow in a network N .G/ with value 4�n,
with n D jV j, where:

1. For each vertex v 2 V , N .G/ has a node nv

which is a source of 4 units of flow.
2. For each face f of G, N .G/ has a node nf

which is a sink of 2 deg.f / � 4 units if f

is an internal face, or 2 deg.f / C 4, other-
wise, where deg.f / is the number of vertices
encountered while traversing the boundary of
face f (the same vertex may be counted mul-
tiple times).

3. For each edge e 2 E, with adjacent faces
f and g, N .G/ has two arcs .nf ; ng/ and
.ng ; nf /, both with cost 1 and lower bound 0.

4. For each vertex v 2 V incident to a face f

of G, N .G/ has an arc .nv; nf / with cost 0

and lower bound 1. Multiple incidences of the
same vertex to the same face yield multiple
arcs of N .G/.

Figure 2 shows the two flows of cost 7 and
1, respectively, corresponding to the orthogonal
drawings of Fig. 1. Intuitively, a flow of N .G/

describes how 90ı angles are distributed in the
orthogonal drawing of G. Namely, each vertex
has four 90ı angles around it, hence “producing”
four units of flow. The number of 90ı angles
needed to close a face f is given by the for-
mula in [12], that is, 2 deg.f / � 4 units if f is
an internal face, and 2 deg.f / C 4, otherwise.
Finally, the flows traversing the edges account
for their bends, where each bend allows a face
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Bend Minimization for Orthogonal Drawings of Plane Graphs, Fig. 2 (a) The flow associated with the drawing
of Fig. 1a has cost 7. (b) The flow associated with the drawing of Fig. 1b has cost 1

to “lose” a 90ı angle and the adjacent face to
“gain” it. More formally, we have the following
theorem.

Theorem 1 Let G D .V; E/ be a four-plane
graph. For each orthogonal drawing of G with b

bends, there exists an integer flow in N .G/ whose
value is 4 � jV j and whose cost is b.

Although several orthogonal drawings of G

(e.g., with the order of the bends along edges
permuted) may correspond to the same flow of
N .G/, starting from any flow, one of such draw-
ings may be obtained in linear time. Namely, once
the orthogonal shape of each face is fixed, it is
possible to greedily add as many dummy edges
and nodes as are needed to split the face into
rectangular faces (the external face may require
the addition of dummy vertices in the corners).
Integer edge lengths can be consistently assigned
to the sides of these rectangular faces, obtaining
a grid embedding (a linear-time algorithm for
doing this is described in [6]). The removal of
dummy nodes and edges yields the desired or-
thogonal drawing. Hence, we have the following
theorem.

Theorem 2 Let G D .V; E/ be a four-plane
graph. Given an integer flow in N .G/ whose
value is 4�jV j and whose cost is b, an orthogonal

drawing of G with b bends can be found in linear
time.

Since each bend of the drawing corresponds
to a unit of cost for the flow, when the total cost
of the flow is minimum, any orthogonal drawing
that can be obtained from it has the minimum
number of bends [11].

Hence, given a plane graph G D .V; E/ of
maximum degree four, an orthogonal drawing of
G with the minimum number of bends can be
computed with the same asymptotic complex-
ity of finding a minimum-cost integer flow of
N .G/. The solution to this problem proposed
in [11] is based on an iterative augmentation
algorithm. Namely, starting from the initial zero
flow, the final 4 � n flow is computed by aug-
menting the flow at each of the O.n/ steps along
a minimum-cost path. Such a path can be found
with the O.n log n/-implementation of Dijkstra’s
algorithm that exploits a priority queue. The over-
all O.n2 log n/ time complexity was lowered
first to O.n7=4

p
log n/ [8] and then to O.n3=2/,

exploiting the planarity of the flow network [4].
However, the latter time bound is increased by an
additional logarithmic factor if some edges have
constraints on the number of allowed bends [4]
or if the Dijkstra’s algorithm for the shortest path
computation is preferred with respect to the rather
theoretical algorithm in [10].
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Bend Minimization for
Orthogonal Drawings of
Plane Graphs, Fig. 3 (a)
A drawing on the
hexagonal grid. (b) A
drawing of the same graph
in the Kandinsky model
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Applications

Orthogonal drawings with the minimum number
of bends are of interest to VLSI circuit design, ar-
chitectural floor plan layout, and aesthetic layout
of diagrams used in information systems design.
In particular, the orthogonal drawing standard is
adopted for a wide range of diagrams, including
entity-relationship diagrams, relational schemes,
data-flow diagrams, flow charts, UML class dia-
grams, etc.

Open Problems

Several generalizations of the model have been
proposed in order to deal with graphs of degree
greater than four. The hexagonal grid, for exam-
ple, would allow for vertices of maximum degree
six (see Fig. 3a. Although the bend minimization
problem is polynomial on such a grid [11], decid-
ing edge lengths becomes NP-hard [2].

One of the most popular generalizations is
the Kandinsky orthogonal drawing standard [7]
where vertices of arbitrary degree are represented
as small squares or circles of the same dimen-
sions, while the first segments of the edges that
leave a vertex in the same direction run very
close together (see, e.g., Fig. 3b). Although the
bend minimization problem in the Kandinsky
orthogonal drawing standard has been shown to
be NP-hard [3], this model is of great interest
for applications. An extension of the flow model
that makes it possible to solve this problem in
polynomial time for a meaningful subfamily of
Kandinsky orthogonal drawings has been pro-
posed in [1]. Namely, in addition to the drawing

conventions of the Kandinsky model, each vertex
with degree greater than four has at least one
incident edge on each side, and each edge leaving
a vertex either has no bend or has its first bend on
the right.
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Problem Definition

A setting is assumed in which n selfish users
compete for routing their loads in a network. The
network is an s � t directed graph with a single
source vertex s and a single destination vertex t.
The users are ordered sequentially. It is assumed
that each user plays after the user before her in the

ordering, and the desired end result is a Pure Nash
Equilibrium (PNE for short). It is assumed that,
when a user plays (i.e., when she selects an s � t

path to route her load), the play is a best response
(i.e., minimum delay), given the paths and loads
of users currently in the net. The problem then is
to find the class of directed graphs for which such
an ordering exists so that the implied sequence
of best responses leads indeed to a Pure Nash
Equilibrium.

The Model
A network congestion game is a tuple
..wi /i2N ; G; .de/e2E / where N D f1; : : : ; ng

is the set of users where user i controls wi units of
traffic demand. In unweighted congestion games
wi D 1 for i D 1; : : : ; n. G(V,E) is a directed
graph representing the communications network
and de is the latency function associated with
edge e 2 E. It is assumed that the de’s are
non-negative and non-decreasing functions
of the edge loads. The edges are called
identical if de.x/ D x; 8e 2 E. The model is
further restricted to single-commodity network
congestion games, where G has a single source s
and destination t and the set of users’ strategies
is the set of s � t paths, denoted P. Without loss
of generality it is assumed that G is connected
and that every vertex of G lies on a directed s � t

path.
A vector P D .p1; : : : ; pn/ consisting of an

s � t path pi for each user i is a pure strategies
profile. Let le.P / D

P
i We2pi

wi be the load of
edge e in P. The authors define the cost �i

p.P /

for user i routing her demand on path p in the
profile P to be

�i
p.P / D

X

e2p\pi

de .le.P //

C
X

e2pXpi

de .le.P /C wi / :

The cost �i .P / of user i in P is just �i
pi

.P /,
i.e., the total delay along her path.

A pure strategies profile P is a Pure Nash Equi-
librium (PNE) iff no user can reduce her total
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delay by unilaterally deviating i.e., by selecting
another s � t path for her load, while all other
users keep their paths.

Best Response
Let pi be the path of user i and P i D .p1; : : : ; pi /

be the pure strategies profile for users 1; : : : ; i .
Then the best response of user i C 1 is a path
piC1 so that

piC1 D avg min
p2P i

(
X

e2p

�
de

�
le

�
P i

�
C wiC1

��
)
:

Flows and Common Best Response
A (feasible) flow on the set P of s � t paths of G
is a function f W P ! <�0 so that

X

p2P

fp D

nX

iD1

wi :

The single-commodity network congestion game
..wi /i2N ; G; .de/e2E / has the Common Best Re-
sponse property if for every initial flow f (not
necessarily feasible), all users have the same set
of best responses with respect to f . That is,
if a path p is a best response with respect to
f for some user, then for all users j and all
paths p0

X

e2p0

de

�
fe C wj

�
�

X

e2p

de

�
fe C wj

�
:

Furthermore, every segment   of a best re-
sponse path p is a best response for routing the
demand of any user between  ’s endpoints. It is
allowed here that some users may already have
contributed to the initial flow f .

Layered and Series-Parallel Graphs
A directed (multi)graph G(V, E) with a distin-
guished source s and destination t is layered iff
all directed s � t paths have exactly the same
length and each vertex lies on some directed
s � t path.

A multigraph is series-parallel with terminals
(s, t) if

1. it is a single edge (s, t) or
2. it is obtained from two series-parallel graphs

G1; G2 with terminals .s1; t1/ and .s2; t2/ by
connecting them either in series or in parallel.
In a series connection, t1 is identified with s2

and s1 becomes s and t2 becomes t. In a paral-
lel connection, s1 D s2 D s and t1 D t2 D t .

Key Results

The Greedy Best Response Algorithm (GBR)
GBR considers the users one-by-one in non-
increasing order of weight (i.e., w1 � w2 �

� � � � wn). Each user adopts her best response
strategy on the set of (already adopted in the net)
best responses of previous users. No user can
change her strategy in the future. Formally, GBR
succeeds if the eventual profile P is a Pure Nash
Equilibrium (PNE).

The Characterization
In [3] it is shown:

Theorem 1 If G is an .s � t / series-parallel
graph and the game ..wi /i2N ; G; .de/e2E / has
the common best response property, then GBR
succeeds.

Theorem 2 A weighted single-commodity net-
work congestion game in a layered network with
identical edges has the common best response
property for any set of user weights.

Theorem 3 For any single-commodity network
congestion game in series-parallel networks,
GBR succeeds if

1. The users are identical (if wi D 1 for all i)
and the edge-delays are arbitrary but non-
decreasing or

2. The graph is layered and the edges are identi-
cal (for arbitrary user weights)

Theorem 4 If the network consists of bunches
of parallel-links connected in series, then
a PNE is obtained by applying GBR to each
bunch.
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Theorem 5

1. If the network is not series-parallel then there
exist games where GBR fails, even for 2 iden-
tical users and identical edges.

2. If the network does not have the common best
response property (and is not a sequence of
parallel links graphs connected in series) then
there exist games where GBR fails, even for 2-
layered series-parallel graphs.

Examples of such games are provided in [3].

Applications

GBR has a natural distributed implementation
based on a leader election algorithm. Each player
is now represented by a process. It is assumed
that processes know the network and the edge
latency functions. The existence of a message
passing subsystem and an underlying synchro-
nization mechanism (e.g., logical timestamps) is
assumed, that allows a distributed protocol to
proceed in logical rounds.

Initially all processes are active. In each round
they run a leader election algorithm and deter-
mine the process of largest weight (among the
active ones). This process routes its demand on
its best response path, announces its strategy to
all active processes, and becomes passive. Notice
that each process can compute its best response
locally.

Open Problems

What is the class of networks where (identical)
users can achieve a PNE by a k-round repetition
of a best responses sequence? What happens to
weighted users? In general, how the network
topology affects best response sequences? Such
open problems are a subject of current research.
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Problem Definition

Recent developments in phylogenetics have
provided evidences that evolutionary histories
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cannot always be represented as a single tree;
thus, more sophisticated representations are
needed. Phylogenetic networks are natural
extensions of phylogenetic trees that recently
gathered general consensus in literature. Let
� be a finite set of labels, representing a set
of extant species (taxa). A rooted phylogenetic
N over � (or, simply, phylogenetic network
or network) is a directed acyclic connected
graph N D hV.N /; A.N /i containing a unique
vertex with no incoming arcs, called root of
N , and a labeling function from the set L.N /

of leaves of N to the set of labels �. The set
of labels associated with the leaves of N is
denoted by �.N /; and phylogenetic networks
whose leaves are in bijection with the set of
labels are called uniquely labeled. The undirected
edges underlying the set A.N / are denoted with
E.N /.

We will discuss two important families of
problems where phylogenetic networks have
been introduced: consensus network computation
and tree reconciliation. Other models (and the
related problems) for representing and recon-
structing non-treelike evolutionary scenarios are
presented in [7]. The family of the consensus
network computation problems asks for a single
phylogenetic network (called consensus network)
that best summarizes all the information provided
by a collection of “structures” representing the
evolutionary relationships among the set of taxa
�. The family of tree reconciliation problems,
instead, analyzes the evolution of a gene in order
to either reconstruct the evolution of a set of
species or infer the evolutionary scenario of the
considered gene.

Observe that it is possible to topologically sort
the vertices of a phylogenetic network, so that
each vertex always appears after all its predeces-
sors; hence, it is possible to define the children,
parents, ancestors, and descendants of a given
vertex, as usual for trees. Furthermore, as for
trees, we can define the least common ancestor
of a set of nodes. Given a subset A of nodes
of a phylogenetic network N , then the least
common ancestor (or, shortly, lca) of A in N

is a node x of N that is an ancestor of each
node in A and that is the furthest such node from
the root.

Consensus Network Reconstruction
The aim of consensus network reconstruction
problems is computing a unique phylogenetic
network (called consensus network) that best
summarizes all the information provided by
a collection of “structures” representing the
evolutionary relationships among the set of taxa
�. Different specific computational problems
have been defined in the literature depending (i)
on the kind of input structures considered and (ii)
on the definition of the optimality criterion used
to choose the best consensus network. Simple
formulations (such as maximum agreement
subtree (MAST), maximum compatible tree
(MCT), maximum agreement supertree (MASP))
compute a consensus network which is actually
a phylogenetic tree. However, trees are not
always sufficient for describing conflicting
information and real evolutionary scenarios;
hence, formulations which attempt to reconstruct
phylogenetic networks have been proposed.

In terms of optimality criterion, two aims can
be pursued: either finding the largest set of taxa
that “share” (as defined below) a common sub-
structure or finding the “simplest” network that
represents all taxa. For measuring the complexity
of a network, two natural parameters are consid-
ered: the reticulation number and the level of the
network. Reticulation (or hybrid) nodes are nodes
of the network with more than one parent. The
reticulation number of a network N is defined as
jE.N /j�jV.N /jC1 and represents how “far” the
network is from a phylogenetic tree (which has
reticulation number 0). If all reticulation nodes
have indegree 2 (which is often assumed in the
literature), then the reticulation number is equal
to the number of reticulation nodes. The level of
a network N is defined as the maximum number
of reticulation nodes in a biconnected component
of hV.N /; E.N /i (i.e., the undirected graph ob-
tained from the network) [6]. Phylogenetic trees
are level-0 networks, while level-1 networks are
often called galled trees [13].

In terms of kinds of input structures, several
options have been studied, and, among them,
the most important ones are phylogenetic net-
works, triplets/quartets, and clusters. When input
structures are phylogenetic networks, the usual
aim is to reconstruct their maximum agreement
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subnetwork (MASN) [6], that is, a level-k phy-
logenetic network A (for some fixed k) uniquely
labeled with a set �0 � � of maximum cardi-
nality such that A is a subgraph of the topolog-
ical restriction of each input network w.r.t. �0.
The topological restriction of a uniquely labeled
network N to a subset �0 � � of labels is
defined as the network obtained by first deleting
all nodes which are not on any directed path from
the root to one of the leaves labeled in �0 along
with their incident edges, and then, for every
node with outdegree 1 and indegree less than 2,
contracting its outgoing edges. (Notice that the
MAST problem is a special case of the MASN
problem when k D 0.)

Triplets are rooted binary phylogenetic trees
on exactly three species/leaves. They are gen-
erally represented as xyj´, indicating that the
parent of x and y is a child of the parent of ´.
The consensus network reconstruction problem
from triplets is the problem of finding, if possible,
a phylogenetic network N consistent with each
triplet given as input (or with the maximum num-
ber of them). A phylogenetic network N is said
to be consistent with a triplet xyj´ if N contains
two distinct vertices u, v and the four pairwise
internally vertex-disjoint paths u ! x, u ! y,
v ! u, v ! ´. The resulting phylogenetic
network is required to either have minimum level
or have fixed level (possibly with minimum retic-
ulation number) [18,26,27]. The related problem
on quartets (i.e., unrooted phylogenetic trees on
four species) has been also proposed [8].

Clusters are (strict) subsets of �. The consen-
sus network reconstruction problem from clusters
is the problems of finding a phylogenetic network
N that represents all clusters given as input.
There exist two main definitions for “represents,”
commonly referred to as the “hardwired” and the
“softwired” definitions. A network N represents
a cluster �0 � � in the hardwired sense if
there exists an arc .u; v/ 2 A.N / such that
�0 is exactly the set of labels associated with
the leaves of a subnetwork rooted in v [16].
Instead, a network N represents a cluster �0 �

� in the softwired sense if there exists an arc
.u; v/ 2 A.N / such that �0 is the set of labels
associated with the leaves of a subtree rooted
in v obtained by removing, for each reticulation

node, all edges but one directed to that node [15].
In both cases, the computational problems fo-
cus on reconstructing networks with minimum
level [29].

Reconciliation of Gene Trees and Species
Trees
The evolution of a family of homologous genes
in a given set of species is usually represented
as a phylogenetic tree, called a gene tree, where
each label can be associated with more than one
leaf, while the evolution of the considered set
of species is called a species tree, which is a
uniquely labeled tree. Due to different evolution-
ary events that affect gene evolution (duplica-
tions, losses, lateral gene transfer), the evolution
represented by a gene tree and a species tree (or
by two different gene trees) can be different.

Two fundamental combinatorial problems
have been studied in this field: the reconstruc-
tion of the species tree associated with the
homologous genes considered [5, 12, 21] and
the reconciliation of a gene tree with a given
species tree [3, 4, 9, 21, 23], whose goal is the
inference of the evolutionary events that occurred
in the genes evolution. Here, we consider only
the latter problem; hence, we assume that a gene
tree (or a set of gene trees) and a (correct) species
tree are given.

Given a set S of taxa, a species tree TS and
a gene tree TG are two rooted binary trees, leaf-
labeled by S , with �.TG/ � �.TS /. Two nodes
of a tree T are comparable when one is an
ancestor of the other. TG and TS are compared in-
troducing a mapping � W V.TG/! V.TS /, which
usually corresponds to the least common ancestor
mapping. Three biological events are considered
for gene families’ evolution: duplications, losses,
and lateral gene transfers.

A duplication is a copy of a given gene, after
which the two copies evolve independently. A
duplication occurs in an internal node g of TG

if and only if �.f .g// D �.g/, for a child
f .g/ of g. A loss of a gene in some species
consists in a copy of a gene disappearing during
the evolution of a given gene family. The losses
can be computed from the mapping � between
TG and TS [21].
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When duplications and losses are the only
evolutionary events considered, a gene tree and a
species tree are compared with a reconciled tree
R.TG ; TS / [2,5,9–11,21,23]. The reconciled tree
is a binary tree that represents an embedding of
a gene tree inside a species tree, and it allows
to identify when duplications and losses occur.
However, when considering also lateral gene
transfers (also called horizontal gene transfers),
the scenario changes, and the evolutionary history
of a gene family must be represented by a phy-
logenetic network. A lateral gene transfer occurs
when some genetic material is transferred from a
taxon to another taxon which is not a descendant
of the first taxon.

In order to represent a reconciliation of a gene
tree TG and a species tree TS considering as
evolutionary events, duplications, losses, and lat-
eral gene transfers, the definition of duplication-
transfer-loss scenario (DTL-scenario) has been
introduced [25]. Notice that other models of rec-
onciliation have been proposed, notably [10].

Definition 1 A DTL-scenario is a tuple S D
.TS ; TG ; ; ��; ˙; �; �; �/ where TS is a species
tree; TG is gene tree;  maps each leaf of TG

with the corresponding leaf of TS ; �� maps each
node of TG in a node of TS (�� can be considered
as a generalization of the least common ancestor
mapping �); f˙; �; � g is a tripartition of the
internal nodes of TG in speciation nodes, duplica-
tion nodes, transfer nodes, respectively, while �

is a subset of the edges of TG ; and the following
properties hold:

1. For each leaf of TG , ��.u/ D .u/.
2. Consider a node x with children xl and xr ,

then ��.x/ is not a proper descendant of one
of ��.xr /, ��.xl /, and one of ��.xr /, ��.xl /

is a descendant of ��.x/.
3. Given an edge .x; y/ of TG , then .x; y/ 2 �

if and only if x is not comparable with y.
4. Given nodes x of TG with children xr and xl ,

then:
(a) x 2 � if and only if .x; xl / 2 � or

.x; xr / 2 �.
(b) x 2 ˙ only if ��.x/ is the least common

ancestor of ��.xl / and ��.xr /, and ��.xl /

and ��.xr / are not comparable.

(c) x 2 � only if ��.x/ is an ancestor of
the least common ancestor of ��.xl / and
��.xr /, and ��.xl / and ��.xr / are compa-
rable.

5. Consider two edges .x; x0/ 2 � and .y; y0/ 2

�, with x0 an ancestor of y0, then ��.x0/ is an
ancestor of ��.y/.

The number of losses is directly inferred from
a given scenario S [1, 25].

Now, we briefly discuss the biological moti-
vations for the conditions introduced. Condition
1 guarantees the correspondence of each leaf TG

with the corresponding species (leaf) of TS . Con-
dition 2 guarantees that the order on the nodes of
TG is preserved by the mapping ��. Condition 3

defines the edges associated with a lateral gene
transfer. Condition 4 establishes that the nodes of
TG can be either associated with a lateral gene
transfer (condition 4.a), with a speciation (con-
dition 4.b, then each node x and its two children
must be mapped in different nodes of TS ), or with
a duplication (condition 4.c, then each node x and
at least one of its two children must be mapped
in the same node of TS ). The last condition
(condition 5) is introduced to ensure that different
lateral gene transfers are biologically meaningful,
that is, those events relate coexisting species, and
that if .x; x0/ is lateral gene transfer, then there
is no lateral gene transfer .y; y0/, where y is a
proper ancestor of x and y0 is a proper descendant
of x0.

Key Results

Consensus Networks
The maximum agreement subnetwork (MASN)
problem is NP-hard even if the input is com-
posed of a binary tree and an unbounded-level
network [17]. If the input is composed of two
level-1 networks, the problem can be solved in
time O.n2/, and it is fixed-parameter tractable if
the input is composed of two level-k networks
(where k is the parameter) [6].

Given a set of triplets, constructing a level-k
phylogenetic network consistent with all of them
is NP-hard for all k � 1, while it is NP-hard
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for all k � 0 if we want to construct a level-k
network consistent with the maximum number of
them [28]. If the input set T of triplets is dense
(i.e., it contains a triplet for each cardinality three
subset of taxa), then a level-k network consistent
with all triplets can be found (if any) in time
O.T / for k D 1 [18], in time O.T 3/ for k D

2 [27], and in polynomial time for any fixed
k [24]. Recently, these results have been extended
in order to minimize the reticulation number of
the computed network [14, 26].

The reconstruction of a consensus network
from a set of clusters in the hardwired sense
has been tackled in [16], where an algorithm
for reconstructing a phylogenetic network that
represents a set C of clusters (and only C) with
O.jCj/ nodes and O.jCj2/ edges is presented.
An algorithm for reconstructing a level-1 net-
work from clusters in the softwired sense has
been shown in [15], which has been later ex-
tended in order to compute in polynomial time
a level-k network or a network with reticula-
tion number k for every fixed k [19]. An effi-
cient algorithm for computing a level-k network
(with k 2 f1; 2g) representing a set of cluster
in the softwired sense which also attempts to
minimize the reticulation number has also been
presented [29].

Reconciliation
The main combinatorial problem related to rec-
onciliation is, given a species tree and a gene tree,
the computation of a DTL-scenario of minimum
cost, for some function that assigns positive cost
to duplications, losses, and lateral gene transfers.
The problem is known to be NP-hard [22, 25].
However, two tractable variants of the problem
have been considered.

A first variant, called cyclic DTL-scenario,
does not consider condition 5 of Definition 1.
Computing a cyclic DTL-scenario of minimum
cost is polynomial time solvable. First, an algo-
rithm for cost function that assigns positive cost
only to duplications and lateral gene transfers was
presented [25]. Later a linear time algorithm for
a general cost function (hence losses are assigned
a positive cost) was given [1].

A second variant considered is the dated ver-
sion, where nodes of the species are associated
with labels that represent the divergence time and
a lateral gene transfer is possible only between
coexisting species. In this case, computing an
acyclic DTL-scenario of minimum cost is poly-
nomial time solvable [20].

Open Problems

The fixed parameter tractability of computing a
minimum reticulation-number phylogenetic net-
work that combines a set of nonbinary trees has
not yet be assessed, and only a few attempts
focus on approximate solutions. Answers to both
questions could be of interest.

An interesting open problem related to the
computation of a DTL-scenario of minimum cost
is the investigation of the parameterized complex-
ity for acyclic DTL-scenarios, when parameter-
ized by the cost of the solution or by the num-
ber of lateral gene transfers. Another interesting
direction for this problem is to investigate its
approximation complexity.
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Problem Definition

This problem concerns hypergraph dualization
and generalization to poset dualization.

A hypergraph H D .V; E/ consists of a finite
collection E of sets over a finite set V , i.e., E �
P.V / (the powerset of V ). The elements of E are
called hyperedges, or simply edges. A hypergraph
is said simple if none of its edges is contained
within another. A transversal (or hitting set) of
H is a set T � V that intersects every edge
of E . A transversal is minimal if it does not
contain any other transversal as a subset. The
set of all minimal transversal of H is denoted
by T r.H/. The hypergraph .V; T r.H// is called
the transversal hypergraph of H. Given a sim-
ple hypergraph H, the hypergraph dualization

problem (TRANS-ENUM for short) concerns the
enumeration without repetitions of T r.H/.

The TRANS-ENUM problem can also be for-
mulated as a dualization problem in posets. Let
.P;�/ be a poset (i.e., � is a reflexive, anti-
symmetric, and transitive relation on the set P ).
For A � P , # A (resp. " A) is the downward
(resp. upward) closure of A under the relation
� (i.e., # A is an ideal and " A a filter of
.P;�/). Two antichains .BC;B�/ of P are said
to be dual if # BC[ " B� D P and #
BC\ " B� D ;. Given an implicit description
of a poset P and an antichain BC (resp. B�) of
P , the poset dualization problem (DUAL-ENUM

for short) enumerates the set B� (resp. BC),
denoted by Dual.BC/ D B� (resp. Dual.B�/ D

BC). Notice that the function dual is self-dual or
idempotent, i.e., Dual.Dual.B// D B.

TRANS-ENUM is a particular case of DUAL-
ENUM. Indeed, consider P the poset .P.V /;�/

for some set V . Then for every dual set .BC;B�/

of P , we have B� D T r.BC/ D Dual.BC/, or
equivalently BC D T r.B�/ D Dual.B�/ with
E D fV nE jE 2 Eg where E � P.V /.

Now we ask the following question: Which
posets DUAL-ENUM can be reduced to TRANS-
ENUM? To do so, we introduce the notions
of duality gap, convex embedding, and poset
reflexion.

Let .P;� P / and .Q;�Q/ be two posets and
f W P ! Q an injective reflection, i.e., for
all x; y 2 P; f .x/ �Q f .y/ implies x �P

y. Notice that the reflection f preserves in-
comparability, i.e., if x and y are incomparable
in P , then f .x/ and f .y/ are incomparable
in Q. Therefore, for every dual set .BC;B�/

of P , Dual.f .BC// contains f .B�/. The dif-
ference between the size of Dual.f .BC// and
the size of f .B�/ is a positive integer, called
the duality gap. We speak about weak duality
when the gap is strictly positive, strong duality
otherwise.

Duality gaps are important in enumeration
problems because they provide an upper bound
on the difference between the number of enumer-
ated solutions and the number of solutions of the
original problem.
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Key Results

TRANS-ENUM has been intensively studied in the
last two decades, and several results show that
it is equivalent to many problems in computer
science area (see the paper by Eiter and Got-
tlob [3]). The question whether TRANS-ENUM

admits an output-polynomial time algorithm is
still open. In fact, despite the number of papers
on TRANS-ENUM, the best known algorithm is
the one by Fredman and Khachiyan [8] which
runs in time O.nlog.n// where n is the size of the
hypergraph plus the number of minimal transver-
sals. Other results on complexity can be found in
[5, 6, 11, 12, 14]. For general posets, it is shown in
[7] that the dualization over the products of some
posets can be done with the same complexity as
TRANS-ENUM. Recently, Nourine and Petit [16]
have investigated dualization problems in general
posets for which the duality gap is bounded by a
polynomial.

Strong Duality
The following characterization theorem of the
zero gap is a reformulation of a known result in
[10, 15], where the poset Q is the powerset for
some set.

Theorem 1 Let .P;�P / and .Q;�Q/ be two
posets. Then the duality gap is zero iff there exists
a map f W P ! Q such that f is a bijective
embedding, i.e., for all x; y 2 P f .x/ �Q f .y/

iff x �P y.

Many instances of problems have such a prop-
erty, for example, frequent itemsets, monotone
Boolean functions, minimal keys, inclusion de-
pendencies, or minimal dominating sets [10, 13,
15]. Nevertheless, the bijective embedding be-
tween two posets does not always exist. In the
following we give a relaxation of the bijection
embedding in order to capture some polynomial
reductions between enumeration problems.

Weak Duality
Let .P;�P / and .Q;�Q/ be posets. A function
f W P ! Q is a convex embedding if for all
x; y 2 P and ´ 2 Q, x �P y iff f .x/ �Q f .y/

and f .x/ �Q ´ �Q f .y/ implies there exists
t 2 P such that f .t/ D ´.

The following result can be seen as a
relaxation of the bijective embedding given in
Theorem 1.

Proposition 1 Let .P;�P / and .Q;�Q/ be
two posets and f W P ! Q a convex
embedding. Then there exist two antichains BC0 ,
B�0 of Q such that P n f?P g is isomorphic to
Q n .# BC0 [ " B�0 /, where ?P is the bottom of
P if it exists. Furthermore, the duality gap is
bounded by j BC0 j C j B�0 j.

Complexity
For strong duality, [10, 15] points out how
the result of Fredman and Khachiyan [8] can
be reused to devise an incremental quasi-
polynomial time algorithm, called Dualize
and Advance, for some pattern mining
problems. For weak duality, whenever the duality
gap remains polynomial in the size of the problem
and .Q;�Q/ isomorphic to .P.E/;�/ for some
set E, the Dualize and Advance algorithm
can be reused with the same complexity if the
following assumptions hold:

1. The reflexion f of .P;�/ to .P.E/;�/ and
its inverse is computable in polynomial time.

2. Given two elements x; y 2 P , checking x �

y is polynomial time.

Applications

The hypergraph dualization is a crucial step in
many applications in logics, databases, artificial
intelligence, and pattern mining [3, 4, 8, 11, 15],
especially for hypergraphs, i.e., Boolean lattices.
The main application domain concerns pattern
mining problems, i.e., the identification of max-
imal interesting patterns in database by asking
membership queries (predicate) to a database. In
the rest of this section, we give two examples of
pattern mining problems related to DUAL-ENUM

and weak duality.

Frequent Conjunctive Queries
We consider the problem statement defined in [9].
Let R D fR1; : : : ; Rng be a database schema,
D the domain of R and sch.R/ D fRi :AjRi 2

R; A 2 Rig. A (simple) conjunctive query Q
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over R is of the form �X .F .R1 � : : : � Rn//

(�X .F / for short) where X � sch.R/ and F

a conjunction of equalities of the form Ri :A D

Rj :B or Ri :A D c with Ri :A; Rj :B 2 sch.R/

and c 2 D. Let Qr be the set of all possible
conjunctive queries over R. For a given database
d over R, we note Adom.d/ � D is the active
domain of d and Q.d/ the result of the evaluation
of Q against d . We note F is the finite set of all
possible selection formula over R and Adom.d/,
i.e., F D ffA; Bg j A 6D B; A 2 R; B 2

R [ Adom.d/g.
Let Q1; Q2 be two conjunctive queries over

R. Q1 is contained in Q2, denoted by Q1 �

Q2, if for every database d over R, Q1.d/ �

Q2.d/. Q1 is diagonally contained in Q2, de-
noted Q1 �

� Q2, if Q1 is contained in a projec-
tion of Q2, i.e., Q1 � �X .Q2/. The frequency
of �X .F / in d is defined by j�X .F /.d/j.
A query �X .F / is frequent in d with respect
to a given threshold 
 if j�X .F /.d/j � 
.
The frequency is anti-monotonic with respect
to �� [9].

Proposition 2 Let Q1 D �X1
.F1

/ and Q2 D

�X2
.F2

/ be two queries of Qr . Then Q1 �
� Q2

iff X1 � X2 and F2 � F1. Equivalently, Q1 �
�

Q2 iff X1 [ .F n F1/ � X2 [ .F n F2/.

From Proposition 2, f W Qr ! P.R [ F/

with f .�X .F // D X [ .F n F / is a bijective
embedding. Thus Qr ordered under �� is a
Boolean lattice and Theorem 1 can be applied.
It is interesting to consider the subclass of Qr

restricted to consistent queries, i.e., queries for
which there exists at least one database such
that their evaluations return values different from
zero. For instance, .B D 1 ^ B D 2/ and
.A D B ^ A D 1 ^ B D 2/ are not consistent.
Let us consider the set QC � Qr of all consistent
queries.

Lemma 1 Let Q1 D �X1
.F1

/ and Q2 D

�X2
.F2

/ be two queries of Qr such that Q1 �
�

Q2. Then if Q2 is consistent, it implies Q1 is
consistent.

Notice that the restriction of f to QC is still a
convex embedding, but no longer bijective. More
interestingly, the associated duality gap is not
polynomial. Indeed, BC0 D ; but B�0 has a size

exponential in the size of R [ Adom.d/ since
the number of selections of the form .A1 D

A2 ^ : : : ^ An�1 D An ^ A1 D v ^ An D v0/ is
exponential in the number of attributes.

Rigid Sequences
Let us consider sequences with or without wild-
card (denoted ?); see, e.g., [1]. Let ˙ be an
alphabet and ? … ˙ . A rigid sequence sŒn� is a
word of size n of .˙ [ f?g/� such that sŒ1� 6D ?

and sŒn� 6D ?. The set of all rigid sequences of
size at most n are denoted by ˙n

R and the empty
sequence by 
. Let sŒl�; t Œk� 2 ˙n

R. We consider
the following classical (prefix and factor) partial
orders on rigid sequences:

• s vf t , if there exists j 2 Œ1 : : : k� such that
for every i 2 Œ1 : : : l �, either sŒi � D t ŒjCi�1�

or sŒi � D ? (factor).
• s vp t , if for every i 2 Œ1 : : : l �, either sŒi � D

t Œi � or sŒi � D ? (prefix).

The following theorem shows that the duality
gap between the dualization in prefix posets of
rigid sequences and TRANS-ENUM is bounded by
a polynomial in n and j ˙ j.

Theorem 2 ([16]) Let f W .˙n
R n f
g;vp/ !

.P.f1; : : : ; ng � ˙/;�/ be a function defined by
f .s/ D f.i; sŒi �/ j sŒi � 6D ?; i � ng. Then f is
a convex embedding with BC0 D ff.i; x/ j x 2

˙; i 2 Œ2 : : : n�gg and B�0 D ff.1; x/; .1; y/g j

x; y 2 ˙; x 6D yg [ ff.1; x/; .i; y/; .i; ´/g j

x; y; ´ 2 ˙; y 6D ´; i 2 Œ2 : : : n�g.

Proposition 3 ([16]) There is a poset reflection
f W .˙n

R;vf / ! .˙n
R;vp/ with a duality gap

bounded by a polynomial in n.

Using Theorem 2 and Proposition 3, we con-
clude that the duality gap between the dualization
in factor posets of rigid sequences and TRANS-
ENUM is bounded by a polynomial the size of ˙

and n [16].

Open Problems

1. The challenging question is to find an output-
polynomial time algorithm for TRANS-ENUM.
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2. Lattices are a particular class of posets. For ex-
ample, the dualization over product of chains
can be done with the same complexity as
TRANS-ENUM which is equivalent to dualiza-
tion in Boolean lattices. For distributive lat-
tices class which contains Boolean lattice and
the product of chains, the dualization is open.

3. Many connections have to be done between
TRANS-ENUM and graph theory problems,
such as minimal dominating sets [13].

4. Many problems in data mining can be formu-
lated as dualization in posets, e.g., frequent
subgraphs or frequent subtrees. An interesting
direction is to identify posets for which the
dualization is equivalent to TRANS-ENUM.

URLs to Code and Data Sets

Program Codes and Instances for Hypergraph
Dualization can be found on the Takeaki
Uno’s webpage at http://research.nii.ac.jp/~uno/
dualization.html. Some pattern mining problems,
reducible to TRANS-ENUM with strong duality,
can be found on the iZi webpage at http://liris.
cnrs.fr/izi/.
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Problem Definition

Over the last few years, differential privacy [5, 6]
has emerged as one of the most accepted no-
tions of statistical data privacy. At a high level
differential privacy ensures that from the output
of an algorithm executed on a data set of po-
tentially sensitive records, an adversary learns
“almost” the same thing about an individual irre-
spective of his presence or absence in the data set.
Formally, differential privacy is defined below
(Definition 1). Setting the privacy parameters

 < 1 and ı 	 1

n2 ensures semantically
meaningful privacy guarantees. For a detailed
survey on the semantics of differential privacy,
see [2, 3, 8, 9].

Definition 1 (.
; ı/-differential privacy [5, 6])
We call two data sets D and D0 (with n records
from a fixed domain � ) neighboring if they differ
in exactly one entry, i.e., jD4D0j D 2. An
algorithm A is .
; ı/-differentially private if, for
all neighboring data sets D and D0 and for all
measurable events S in the range space of A, we
have

PrŒA.D/ 2 S� � e� PrŒA.D0/ 2 S�C ı:

Initial efforts towards designing differentially
private algorithms have concentrated on settings
where the algorithms enjoy the same utility guar-
antees for any data set from the domain �n. (See
[3] for a survey on these efforts.) However, due to
the pessimistic nature of these algorithms, some
perform poorly in non-worst-case scenarios. With
the seminal work of [11], and followed by a
series of results [4, 7, 10, 12, 13], the commu-
nity started focusing on designing differentially

private algorithms which are more useful in non-
worst-case settings, but in pessimistic scenarios
may only perform as poorly as the worst case
algorithms. In this entry, we provide an overview
of some of the recent efforts in this line of
research.

Computing the Median: A Motivating
Example
To provide a flavor of the nature of these al-
gorithms, we start with the following simple
example: Given a data set D D fd1; : : : ; dng of
n real numbers in Œ0; R� (with R 2 R

C and n

being odd), the task is to compute the median of
D while preserving differential privacy. Notice
that in the worst case, changing one entry in D

can change the median by R. So intuitively, any
algorithm that does not distinguish between worst
case and non-worst-case scenario will introduce
an error ˝.R/ in the output.

Without loss of generality, assume that d1 �

� � � � dn and let m D nC1
2

. Now it is not
hard to observe that by changing one data entry
in D, the median dm can change by at most
maxfdm � dm�1; dmC1 � dmg, which can be
potentially much smaller than R. An algorithm
that takes advantage of this observation can be
much more useful in non-worst-case settings as
compared to an algorithm that always introduces
an error of �.R/. With this example in mind,
in the following section, we define some of the
notions in the differential privacy literature that
capture the non-worst-case change in the output
of a given computation task on neighboring data
sets.

Although the median might seem to be a very
simple example, but interestingly, this intuition
of capturing non-worst-case change extends to
a large class of problems. Especially in many
machine learning settings, where even for the
non-private algorithms the error guarantees are
over distributional assumptions on the data [1],
this intuition is very helpful in designing effective
differentially private variants.

N.B. Notice that in the case of computing the
average, there is no distinction between worst
case and non-worst change. Hence it is not a good
example for the scenarios we address in this entry.
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Notions of Sensitivity

We describe some of the concepts which help
us capture non-worst-case changes in the output
of a given function f W �n ! R on pairs of
neighboring data sets D and D0. Later we use
them to design differentially private algorithms
which capture non-worst-case behavior of the
data sets.

Global Sensitivity [6]
This notion of sensitivity refers to the maximum
change the function f can have on any pair of
neighboring data sets from the domain. Formally,

GS.f / D max
D;D02�n;jD4D0jD2

jf .D/ � f .D0/j:

(1)

The following algorithm in (2) is .
; 0/-
differentially private. In the literature this is also
called the Laplace mechanism [6]. Here Lap.�/

refers to the Laplace distribution with standard
deviation

p
2�.

Output: f .D/C Lap
�

GS.f /




�
: (2)

Notice that in (2) the distribution on the
noise that is added is the same for all data
sets. In general these style of algorithms that
introduce data independent randomness have
weaker utility guarantees in non-worst-case
scenarios.

Local Sensitivity
While global sensitivity captures the maximum
change in the output of f for any pairs of neigh-
boring data sets, local sensitivity relaxes this
notion to capture the maximum change in the
output of f for any neighboring data set of a
given data set D. Formally,

LS.f; D/ D max
D02�n;jD4D0jD2

jf .D/ � f .D0/j:

(3)

With the similarity between the definitions
of local sensitivity and global sensitivity, it
might be tempting to use the same algorithm

as (2), with the GS replaced by LS. A careful
observation indicates that this algorithm cannot
be .
; ı/-differentially private for any non-trivial
choices of 
 and ı. Consider the following setting
where the data domain is f0; 1gn, and the function
f is the median value of D. Let D be a data set
with bn

2
� 1c entries as zero, and the rest as one.

When n is odd, clearly LS.D/ equals zero. But
for a data set D0 formed by changing one of the
zeros in D to one, LS.D0/ equals one. So, if
we replace GS by LS in (2), then for D there
will be zero noise added, and for D0 the noise
will be ˝.1=
/. Differential privacy prohibits
this.

The counterexample above might give an im-
pression that local sensitivity may not be a useful
concept. However, in the following and in Al-
gorithm 2, we show that one can use local sen-
sitivity to obtain effective differentially private
algorithms which are more useful in non-worst-
case scenarios.

Smooth Sensitivity [11]
In the above example, we noticed that a direct use
of local sensitivity in noise addition can result in
trouble. However, using a related notion called
smooth sensitivity, one can obtain a variant of
the algorithm in (2) which is both differentially
private and respects local properties of a given
data set. At a high level, smooth sensitivity is an
envelope over the local sensitivity which helps
avoid abrupt change in the variance of the noise
on neighboring data sets. Formally,

SS.f; D; ˇ/ D max
D02�n

LS.f; D/e�ˇ �dist.D;D0/=2:

(4)

Here dist is the symmetric difference between
the two data sets D and D0 and ˇ > 0 is the
smoothness parameter. Following observations
on smooth sensitivity will be useful for designing
differentially private algorithms.

1. Observation 1 (Envelope on LS): 8D; ˇ >

0, SS.f; D; ˇ/ � LS.f; D/.
2. Observation 2 (Smaller than GS): 8ˇ >

0; D 2 �n, SS.f; D; ˇ/ � GS.f /.
3. Observation 3 (Smoothness): For all neigh-

bors D; D0, SS.f; D; ˇ/ � eˇ SS.f; D0; ˇ/.
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Key Results

Using the concepts of local sensitivity and
smooth sensitivity defined in the previous section,
we provide two differentially private algorithmic
frameworks which respect local (non-worst-
case) properties of a given data set. Later in
Applications 1 and 2, we instantiate them with
specific problems.

Algorithm 1: Smooth Sensitivity Based
In order to use the notion of smooth sensitivity
to design a differentially private algorithm anal-
ogous to (2), we need the following properties
from the noise distribution to be added to f .D/.
Let us define the following notation: For a subset
S of R, the set S C � defines f´C � W ´ 2 Sg,
and the set e	 � S defines the set fe	 � ´ W ´ 2 Sg.

Definition 2 (Admissible noise distribution
[11]) A probability distribution h on R is .˛; ˇ/-
admissible if, for ˛ D ˛.
; ı/; ˇ D ˇ.
; ı/, the
following conditions hold for all j�j � ˛ and
j�j � ˇ, and for all subsets S � R.

1. Sliding property: Pr
Z�h

ŒZ 2 S� �

e�=2 Pr
Z�h

ŒZ 2 S C��C ı
2

.

2. Dialation property: Pr
Z�h

ŒZ 2 S� �

e�=2 Pr
Z�h

�
Z 2 e	 � S

	
C ı

2
.

With Definition 2 in hand, now we can define an
algorithm which is analogous to (2). Let h be an
.˛; ˇ/-admissible noise distribution and let Z be
an independent sample from h. For a given data
set D, the algorithm is as follows:

Output: f .D/C
SS.f; D; ˇ/

˛
�Z: (5)

One can show that the above algorithm is
.
; ı/-differentially private [11]. An immediate
question that arises: Which natural distributions
satisfy this property? [11] showed that Laplace

distribution 1
2
e�j´j is

�

=2; �

2 ln.1=ı/

�
-admissible,

and N .0; 1/ is
�

=

p
ln.1=ı/; �

2 ln.1=ı/

�
-admissible.

Later we will see a concrete instantiation of (5)
for the median problem.

Algorithm 2: Propose-Test-Release (PTR)
Framework
In the previous section we saw a “noise-
addition”-based algorithm that exploited the
smooth upper bound on the local sensitivity
to ensure differentially privacy. In this section,
instead of obtaining a smooth bound on the local
sensitivity, we seek an answer to the following
question: Given a proposed upper bound � on the
local sensitivity of f .D/, how many data points
(k) in D need to be changed to increase the local
sensitivity beyond �? If k is sufficiently large,
then the algorithm uses the proposed bound � in
(2) instead of GS.f /; otherwise the algorithm
outputs a ? and fails. Once formalized, this
algorithmic paradigm can be shown to be .
; ı/-
differentially private. A major component in the
design of algorithms using this paradigm is to
come up with tight upper bounds on the local
sensitivity. In Applications 1 and 2 we state two
approaches for getting such bounds.

In the following, we formally introduce the
propose-test-release framework. The version in
Algorithm 1 is a variant of the ones appeared in
[4] and [13].

Algorithm 1 Propose-test-release (PTR) frame-
work
Input: Data set: D 2 �n, function f W �n ! R, pro-

posed local sensitivity bound: 
, privacy parameters:
.�; ı/.

1: Distance to instability: dist  Minimum k 2 Œn�

for which



max

D0;D4D0

D2k
LS.f; D0/

�
> 
.

2: Noisy distance to instability: fdist  dist C
Lap

�
1
�

�
.

3: Test and release: If fdist > 1
�

log.1=ı/, then output

, else output?.

One can show that Algorithm 1 is .
; ı/-
differentially private. (See [13] for more details.)
Additionally, by the tail properties of Laplace
distribution, it is not hard to show that if
dist > 2

�
log.1=ı/, then with probability at least

1 � ı, the algorithm outputs �. In (6) we
fit Algorithm 1 with the Laplace mechanism
from (2) to obtain a differentially private
estimate of f .D/. By the composition property
of differential privacy [4, 5], the algorithm
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(PTR+Laplace mechanism) in (6) is .2
; ı/-
differentially private.

If PTR.f; D; �; 
; ı/ ¤ ?, then output

f .D/C Lap
�

�




�
; else fail. (6)

One can notice that if the proposed bound
� is much smaller than GS.f /, then whenever
the algorithm succeeds, it would add much lesser
noise to f .D/ as compared to (2). In Application
1 we will do a comparison between the global
sensitivity based, the smooth sensitivity based,
and the PTR-based algorithm for the problem of
computing the median.

Application 1: Computing the Median

With the smooth sensitivity-based and the PTR-
based algorithmic frameworks from the previ-
ous section in hand, we revisit the problem of
computing the median. Let the data set D D

fd1; : : : ; dng 2 Œ0; R�n with n being odd and
R 2 R being the range. W.l.o.g., assume that the
entries in D are sorted in ascending order.

Smooth sensitivity-based algorithm for me-
dian computation. In order to use (5), we need
to be able to efficiently compute the smooth
sensitivity (4) of the median function for D with
a given smoothness parameter ˇ. The follow-
ing theorem implies an O.n log n/ algorithm for
computing the smooth sensitivity.

Theorem 1 ([11]) Let m D nC1
2

. The smooth
sensitivity of the median function with the
smoothness parameter ˇ is given by the
following.

SS.Median; D; ˇ/ D max
kD0;:::;n

�

�
e�kˇ max

tD0;:::;kC1
.dmCt � dmCt�k�1/

�
:

It can be computed in time O.n log n/.

Once the smooth sensitivity bound is obtained,
one can use it in (5) to obtain a differentially
private approximation to the median of D. If
Laplace distribution ( 1

2
e�j´j) is used as the noise,

then set the admissible parameters ˛ D 
=2

and ˇ D �
2 ln.1=ı/

. An immediate question that
arises is how does the noise added by the smooth
sensitivity-based algorithm compare to the global
sensitivity-based algorithm in (1). First notice
that since global sensitivity is always an upper
bound on smooth sensitivity, the noise added via
smooth sensitivity can never be more than that via
global sensitivity. Next we present a setting of the
data set D where in fact the smooth sensitivity-
based algorithm adds much lesser noise (and
hence more accurate).

Consider the data set D where each di D
R�i
n

for all i 2 Œn�. In this case the term Ak D

max
tD0;:::;kC1

.dmCt � dmCt�k�1/ D .kC1/R
n

. Thus

the term e�kˇ Ak is maximized when k D 1
ˇ
� 1.

Assuming ˇ < 1, the smooth sensitivity
SS.Median; D; ˇ/ is bounded by R

ˇn
. If we

use Laplace distribution in (5) to ensure .
; ı/-
differential privacy, then the noise that gets added

to Median.D/ is O
�

R log.1=ı/

�2n

�
. In comparison,

the global sensitivity-based algorithm in (2) will
add noise O

�
R
�

�
, which is much higher.

One might argue that the global sensitivity-
based algorithm guarantees stronger differential
privacy (.
; 0/ as opposed to .
; ı/) and hence it
is not a fair comparison. Even when one uses a
more concentrated noise distribution like Gaus-
sian distribution (which ensures .
; ı/-differential
privacy) instead of Laplace distribution in (2), the
error still remains the same.

PTR-based algorithm for computing the me-
dian. We now instantiate the PTR-based algo-
rithm for the same problem of computing the
median. In order to do so, we first partition the
real line R into bins of width h D R

n1=3 (or any

width R

n1=2C� for any � > 0). Call this set of bins
B. Additionally consider the set B.Ch=2/, which
is the set of bins shifted by h=2.

In Algorithm 1 we set the proposed sensitivity
bound � D h. We compute the distance to
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instability in Line 1 of Algorithm 1 by the follow-
ing technique. Let k1 be the minimum number
of entries in D that needs to be changed to
move the median from its bin in the set B, and
let k2 be the corresponding minimum number
for the set B.Ch=2/. The distance to instabil-
ity is dist  maxfk1; k2g. Now the rest of
the algorithm follows as described for the PTR
framework. The two sets of shifted bins B and
B.Ch=2/ were needed because the median might
fall at the partition boundary of the bins. Notice
that computing dist takes O.n/ time.

In terms of the utility guarantee for this algo-
rithm, we have the following:

Theorem 2 ([4]) Let the data set D be drawn
i.i.d. from some fixed distribution P , where the
cumulative distribution function of P is differ-
entiable with positive derivative at the median.
Assuming the privacy parameter ı D 1=poly .n/,
we have the following utility guarantees for the
PTR-based median computation.

PrŒPTR.D/ D ?� D O.e�� log n/

and PTR.D/ converges in probability to the
median of P as n!1.

Application 2: Selection from
a Discrete Set

In this section we will see another application of
the PTR framework. Although the exposition is
fairly abstract, we will see that this tool is useful
for a variety of machine learning problems, where
we assume “very little” about the underlying
learning algorithm. Some of the examples being
sparse estimation, parameter tuning, and non-
convex learning.

Given a data set D 2 �n, and a choice function
f W �n ! fS1; : : : ; Skg, the objective is to
compute a differentially private approximation
to f .D/. Here fS1; : : : ; Skg form a discrete set
of choices. In order to design the private al-
gorithm, we instantiate the PTR framework in
Algorithm 1, with � D 0 and f being the choice

function. (Notice that � D 0 means that the
output of the function does not change at all
by changing any one entry in the data set.) If
the output of the PTR framework is not equal
to ?, then output f .D/ exactly, and output ?
otherwise. From the privacy property of the PTR
framework, it follows that the above algorithm is
.
; ı/-differentially private. In terms of utility one
can show the following.

Theorem 3 ([13]) If the distance to instability of
the choice function (Line 1 of Algorithm 1) is
at least 2 log.1=ı/, then with probability at least
1 � ı, the above PTR instantiation outputs f .D/

exactly.

At a high level, Theorem 3 says that if one
needs to change sufficient number of entries
(2 log.1=ı/) in the data set D to change f .D/,
then with high probability the PTR framework
will output f .D/ exactly. One issue with the
current instantiation of the PTR framework is
that it is not clear a priori how to efficiently
compute the distance to instability in Line 1 of
Algorithm 1. In the following we circumvent
this problem by instantiating the PTR framework
with a proxy function Of instead of f , for which
the distance to instability is always efficiently
computable. Moreover, if on a (sufficiently large)
random subset Dsub of D, with probability at
least 3=4 one can guarantee f .Dsub/ D f .D/,
then the PTR framework outputs f .D/ exactly
with high probability.

Subsample and aggregate framework. The
basic idea of subsample aggregate framework
first appeared in [11] and the current version
is from [13]. Here we use a variant of that
framework for instantiating the proxy function
Of corresponding to f .

Let q D �
32 log.1=ı/

and m D log.n=ı/

q2 . Sample
data sets D1; : : : ; Dm, where each Di is gener-
ated from D by sampling each entry in D with
probability q, and Di ’s are i.i.d. Let Sfirst be the
choice which appears maximum number of times
in F D ff .D1/; : : : ; f .Dm/g, and let Ssecond be
the corresponding second. Let the proxy function
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Of .D/ equal Sfirst. Let count.S/ be the number
of times the choice S appears in F . One can
show that with probability at least 1 � ı, the
distance to instability of Of .D/ equals dist  
count.Sfirst/�count.Ssecond/

4mq
� 1. From this, one can

conclude that using Of as the proxy for the choice
function f in the PTR framework ensures .
; 2ı/-
differential privacy. In terms of utility, for this
“proxy” instantiation of the PTR one can show
the following. Notice that in both Theorems 3
and 4, there is no dependence on the number of
possible choices (k).

Theorem 4 ([13]) If for each Di (defined above)
f .Di / D f .D/ with probability at least 3=4,
then with probability at least 1 � 2ı, the above
instantiation of the PTR framework outputs f .D/

exactly.

One of the classic setting where the above algo-
rithms can be used in the case of model or feature
selection in machine learning. A specific example
is the LASSO estimator, where the PTR-based al-
gorithm achieves the optimal sample complexity
even under the constraint of differential privacy.
(See [13] for details.) Another example is in
finding the best regularization parameter for a
given regression problem (Dwork and Thakurta,
Differentially private parameter tuning using sub-
sample and aggregate framework. Personal com-
munication, 2014). Let � D f�1; : : : ; �kg be a
candidate set of regularization parameters, with
each �i 2 R. The idea is to estimate the best
regularization parameter from the set � for each
of the sampled data sets D1; : : : ; Dm, and use the
estimation algorithm itself as the choice function
f in the PTR framework.

Notice that we almost assumed nothing about
the regularization parameter selection algorithm,
apart from the fact that on random subsamples
of the original data set D, the algorithm selects
the same regularization parameter most of the
times. The subsampling-based algorithm can also
be used in the context of learning non-convex
models while preserving differential privacy
(Bilenko et al., Private and robust non-convex
learning. Personal communication, 2014). For

the purpose of brevity, we defer the exposition for
differentially private learning with non-convex
models.
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Problem Definition

How to effectively translate an algorithm from a
distributed system model to another one?

Distributed systems come in diverse settings
that are modeled by different assumptions (1)
on the way processes communicate, e.g., using
shared memory or messages, (2) on the fault
model, (3) on synchrony assumptions, etc. Each
of these parameters has a dramatic impact on the
computing power of the model, and in practice,
an algorithm or an impossibility result is usually

tailored to a particular model and cannot be
directly reused in another model.

This wide variety of models has given rise to
many different impossibility theorems and nu-
merous algorithms for many of the possible com-
binations of parameters that characterize them.
Thus, a crucial question is the following: are there
bridges between some models, i.e., is it possible
to transfer an impossibility result or an algorithm
from one model to another?

The Borowsky-Gafni simulation algorithm, or
BG simulation, is one of the first steps toward
direct translations of algorithms or impossibil-
ity results from one model to another. The BG
simulation considers distributed systems made
of asynchronous processes that communicate us-
ing a shared memory array. In a nutshell, this
simulation allows a set of t C 1 asynchronous
sequential processes, where up to t of them can
stop during their execution, to simulate any set
of n � t C 1 processes executing an algorithm
that is designed to tolerate to up to t fail-stop
failures.

The BG simulation has been used to prove
solvability and unsolvability results for crash-
prone asynchronous shared memory systems,
paving the way for a more generic formal theory
of reduction between problems in different
models of distributed computing.

The BG-simulation algorithm is named after
its authors, Elizabeth Borowsky and Eli Gafni,
that introduced it as a side tool [3] in order to
generalize the impossibility result of solving a
weakened version of consensus, namely, k-set
agreement [6]. It has been later on formalized
and proven correct [4, 18] using the I/O automata
formalism [17].

System Model

Processes
The simulation considers a system made of up to
n asynchronous sequential processes that execute
a distributed algorithm to solve a given colorless
decision task, as defined below.
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Failure Model
Processes may fail by stopping (crash failure).
The simulation assumes that up to t processes
can stop during the execution; t < n is known
before the execution, but the identity of processes
that may crash is unknown to the simulation. This
model of computation is referred to as the t -
resilient model. A corner case of this model is the
wait-free model where t C 1 processes execute
concurrently and at most t of them may crash.

Communication
Processes communicate and coordinate using a
reliable shared memory composed of n multiple-
reader single-writer registers. Each process has
the exclusive write access to one of these n

registers, and processes can read all entries by
invoking a snapshot operation, with the seman-
tics that write and snapshot operations appear
as if they are executed atomically. While using
the snapshot abstraction eases the presentation
of the algorithm, it has no impact on the power
of the underlying computing model, since the
snapshot/write model can be implemented wait-
free using read/write registers [1].

Tasks
A colorless task is a distributed coordination
problem in which every process pi starts with a
value, communicates with other processes, and
has to decide eventually on a output value. Col-
orless tasks, or convergence tasks [12], are a
restricted version of tasks in which a deciding
process may adopt the decision value of any pro-
cess, i.e., two participating processes may decide
the same value. For more formal definitions of
tasks using tools from algebraic topology, the
reader should refer to [11].

Simulation
The simulation proceeds by executing concur-
rently, using t C 1 simulators s1; : : : ; stC1, the
code of n > t processes that collaboratively
solve a distributed colorless task. Hence, each
simulator si is given the code of all simulated
processes and handles the execution of n threads.

Key Results

Simulation of Memory
Each one of the t C 1 simulators si executes
the sequential code of the n simulated processes
pj in parallel. By assumption, every simulated
code is a sequence of instructions that are either
(1) local processing, (2) a write operation into
memory, or (3) a snapshot of the shared memory.

Every simulator si maintains its local view of
the simulated memory for all simulated threads.
These local views are synchronized between sim-
ulators by writing and reading (using snapshots)
in a shared memory matrix array MEM that has
one column per simulated thread and one row per
snapshot instance.

To ensure global consistency between sim-
ulators that simulate concurrently all threads,
operations on the memory must be coordinated
between different simulators. This is achieved by
ensuring that, for a given simulated thread, the
sequence of snapshots of the memory as com-
puted by all simulators is identical. As consensus
cannot be implemented wait-free, the simulation
coordinates snapshots using of a weaker form of
agreement, the safe agreement.

The Safe-Agreement Object
Safe agreement is the most important building
block of the simulation. First introduced as the
non-blocking busy-wait agreement protocol [3],
it has been further refined as safe agreement,
with several blocking or non-blocking/wait-free
implementations [2, 11, 14].

This weak form of agreement provides two
methods to processes: propose.v/ and resolve./.
A participating process that proposes a value v

first calls propose.v/ once and is then allowed to
make calls to resolve./ that may return ? if safe
agreement is not resolved yet or a value. In this
later case, safe agreement is said to be resolved
and the value returned is the decided value by the
process. Formally, safe agreement is defined by
three properties:

Termination: If no process crashes during the
execution of propose./, then all processes de-
cide, i.e., eventually all calls to resolve./ re-
turn a non-? value,
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Validity: All processes that decide must decide a
proposed value,

Agreement: All processes that decide must de-
cide the same value.

The specification is almost identical to the
one of consensus, apart from the weakened ter-
mination property. Safe agreement is wait-free
solvable and thus solvable in t -resilient systems.

The crucial point of the BG simulation lies in
the termination property of safe agreement: if a
safe-agreement protocol cannot be resolved, i.e.,
if no process decides, then at least one process
crashed during the call to propose./. Thus, a
given safe-agreement instance can “capture” a
calling process that crashed during the propose
invocation.

Overview of the Simulation
The current state of the simulation and its
history is thus represented by two twin data
structures: (1) the shared memory matrix
MEM that contains the consecutive memory
status of all simulated threads, as seen by
simulators, and (2) a matrix of safe-agreement
objects SafeAgreementŒ0 : : :�Œ1 : : : n� with n

columns, each column representing the execution
advancement of one of the simulated processes,
as shown in Fig. 1.

In this view, the entry at row ` and column
i corresponds to the state of the `th snapshot
for simulated process pj . Hence, the “program
counter” of a simulated thread pi is the greatest
row of column i that is either unresolved or
resolved. In this example, simulations of threads
p2, p4, and p6 are stopped with unresolved safe
agreement that are due to (at least) one simulator
stuck in the associated propose() methods. The
program counter of all other threads is 9.

Each simulator si is given the code of the n

threads it has to simulate, as well as an input value
of one of the threads. Conceptually, the algorithm
run by simulator si is as follows:

In the simulation, each snapshot invocation
is mediated through a SafeAgreement object,
lines 6 and 1. The only reason that could block the
simulation of a given thread pi is when the call to
resolve, line 6, always returns ?. By definition
of the safe-agreement object, this situation can
happen only when a simulator crashed during
the call to propose() on the same safe-agreement
instance: the crash of a simulator can block the
simulation of at most one simulated thread.

Applications

The BG-simulation algorithm has been primarily
used to reduce t -resilient solvability to wait-free

Algorithm 1 BG-simulation: code for a simulator sj starting with input v

1: procedure BG-SIMULATION(v)
2: 8i D 1 : : : n; SafeAgreementŒ0�Œi�:propose.v/

F Initialization
3: loop
4: for i  1; n do F Simulate threads in round-robin
5: ` current program counter of pi

6: snap SafeAgreementŒ`�Œi�:resolve./
7: if snap ¤ ? then F safe agreement is resolved
8: perform local computation using snap, write operations in local memory
9: execute write on behalf of pi in MEMŒ`�Œi�

10: if thread pi is terminated then
11: return value and stop its simulation
12: else if at least .n� t/ threads have program counter � ` then
13: snap snapshot.MEMŒ`�/
14: SafeAgreementŒ`C 1�Œi�:propose.snap/
15: end if
16: end if
17: end for
18: end loop
19: end procedure
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BG Distributed Simulation Algorithm, Fig. 1 Conceptual view of advancement for snapshots of all simulated
process with n D 8 and t D 3

solvability for colorless tasks, that is, tasks that
are agnostic on process identities. The initial
application has been made to the k-set agreement
problem, in which all processes have to agree on
a final set of values of size at most k. If k-set
agreement was solvable in a k-resilient system of
n > k C 1 processes, then the BG simulation
of this algorithm with k C 1 simulators would
produce a wait-free solution to k-set agreement.
Since k-set agreement is not wait-free solvable
for k C 1 processes [13, 19], it follows a contra-
diction.

The BG simulation presented here only ap-
plies to colorless tasks. Gafni [8] extended further
to more general classes of tasks and provided
the general characterization of t -resilient solvable
tasks, similarly to the Herlihy-Shavit conditions
for wait-free computability [13]. This extension
has been also studied in [14, 16].

In order to study the relationship between
wait-freedom and t -resilience, [5] uses objects
of type S in addition to read/write registers
and shows that for any t < k, t -resilient k-
process consensus can be implemented with
objects of type S and registers if and only if
wait-free .t C 1/-process consensus can be
implemented with objects of type S and registers.

Imbs and Raynal [15] consider models equipped
with registers and consensus objects and
extend the results provided by BG simulation,
showing equivalences between models based
on the ratio between the maximum number of
failures and the consensus number of consensus
objects.

Chaudhuri and Reiners [7] use BG simula-
tion to provide a characterization of the set con-
sensus partial order, a refinement of Herlihy’s
consensus-based wait-free hierarchy [10]; a for-
mal definition of set consensus number and a
study of associated respective computing power
have been later provided in [9].
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Problem Definition

The theory of bidimensionality provides
general techniques for designing efficient
fixed-parameter algorithms and approximation
algorithms for a broad range of NP-hard graph
problems in a broad range of graphs. This
theory applies to graph problems that are
“bidimensional” in the sense that (1) the solution
value for the k � k grid graph and similar graphs
grows with k, typically as �.k2/, and (2) the
solution value goes down when contracting edges
and optionally when deleting edges in the graph.
Many problems are bidimensional; a few classic
examples are vertex cover, dominating set, and
feedback vertex set.

Graph Classes
Results about bidimensional problems have been
developed for increasingly general families of
graphs, all generalizing planar graphs.

The first two classes of graphs relate to em-
beddings on surfaces. A graph is planar if it can
be drawn in the plane (or the sphere) without
crossings. A graph has (Euler) genus at most g

if it can be drawn in a surface of Euler charac-
teristic g. A class of graphs has bounded genus if
every graph in the class has genus at most g for a
fixed g.

The next three classes of graphs relate to
excluding minors. Given an edge e D fv; wg in a
graph G, the contraction of e in G is the result of
identifying vertices v and w in G and removing all
loops and duplicate edges. A graph H obtained
by a sequence of such edge contractions starting
from G is said to be a contraction of G. A
graph H is a minor of G if H is a subgraph of
some contraction of G. A graph class C is minor
closed if any minor of any graph in C is also
a member of C . A minor-closed graph class C

is H-minor-free if H … C . More generally, the
term “H -minor-free” refers to any minor-closed
graph class that excludes some fixed graph H . A
single-crossing graph is a minor of a graph that
can be drawn in the plane with at most one pair

of edges crossing. A minor-closed graph class is
single-crossing-minor-free if it excludes a fixed
single-crossing graph. An apex graph is a graph
in which the removal of some vertex leaves a
planar graph. A graph class is apex-minor-free if
it excludes some fixed apex graph.

Bidimensional Parameters
Although implicitly hinted at in [2, 5, 10, 11], the
first use of the term “bidimensional” was in [3].

First, “parameters” are an alternative view
on optimization problems. A parameter P is a
function mapping graphs to nonnegative integers.
The decision problem associated with P asks,
for a given graph G and nonnegative integer k,
whether P.G/ � k. Many optimization problems
can be phrased as such a decision problem about
a graph parameter P .

Now, a parameter is g.r/-bidimensional (or
just bidimensional) if it is at least g.r/ in an
r � r “grid-like graph” and if the parameter does
not increase when taking either minors (g.r/-
minor-bidimensional) or contractions (g.r/-
contraction-bidimensional). The exact definition
of “grid-like graph” depends on the class of
graphs allowed and whether one considers
minor or contraction bidimensionality. For minor
bidimensionality and for any H -minor-free graph
class, the notion of a “grid-like graph” is defined
to be the r � rgrid, i.e., the planar graph with r2

vertices arranged on a square grid and with edges
connecting horizontally and vertically adjacent
vertices. For contraction bidimensionality, the
notion of a “grid-like graph” is as follows:

1. For planar graphs and single-crossing-minor-
free graphs, a “grid-like graph” is an r�r grid
partially triangulated by additional edges that
preserve planarity.

2. For bounded-genus graphs, a “grid-like graph”
is such a partially triangulated r � r grid with
up to genus .G/ additional edges (“handles”).

3. For apex-minor-free graphs, a “grid-like
graph” is an r � r grid augmented with
additional edges such that each vertex is
incident to O.1/ edges to nonboundary
vertices of the grid. (Here O.1/ depends on
the excluded apex graph.)
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Contraction bidimensionality is so far undefined
for H -minor-free graphs (or general graphs).

Examples of bidimensional parameters
include the number of vertices, the diameter, and
the size of various structures such as feedback
vertex set, vertex cover, minimum maximal
matching, face cover, a series of vertex-removal
parameters, dominating set, edge dominating
set, R-dominating set, connected dominating set,
connected edge dominating set, connected R-
dominating set, unweighted TSP tour (a walk
in the graph visiting all vertices), and chordal
completion (fill-in). For example, feedback
vertex set is �.r2/-minor-bidimensional (and
thus also contraction-bidimensional) because (1)
deleting or contracting an edge preserves existing
feedback vertex sets and (2) any vertex in the
feedback vertex set destroys at most four squares
in the r�r grid, and there are .r�1/2 squares, so
any feedback vertex set must have �.r2/ vertices.
See [1, 3] for arguments of either contraction
or minor bidimensionality for the other
parameters.

Key Results

Bidimensionality builds on the seminal graph
minor theory of Robertson and Seymour, by ex-
tending some mathematical results and building
new algorithmic tools. The foundation for sev-
eral results in bidimensionality is the following
two combinatorial results. The first relates any
bidimensional parameter to treewidth, while the
second relates treewidth to grid minors.

Theorem 1 ([1, 8]) If the parameter P is g.r/-
bidimensional, then for every graph G in the fam-
ily associated with the parameter P , tw.G/ D

O.g�1.P.G///. In particular, if g.r/ D ‚.r2/,
then the bound becomes tw.G/ D O.

p
P.G//.

Theorem 2 ([8]) For any fixed graph H , ev-
ery H -minor-free graph of treewidth w has an
�.w/ ��.w/ grid as a minor.

The two major algorithmic results in
bidimensionality are general subexponen-
tial fixed-parameter algorithm and general
polynomial-time approximation scheme (PTASs).

Theorem 3 ([1, 8]) Consider a g.r/-bidimen-
sional parameter P that can be computed on a
graph G in h.w/nO.1/ time given a tree decom-
position of G of width at most w. Then there is
an algorithm computing P on any graph G in
P ’s corresponding graph class, with running
time

�
h.O.g�1.k///C 2O.g�1.k//

	
nO.1/. In

particular, if g.r/ D ‚.r2/ and h.w/ D 2 O.w2/,
then this running time is subexponential in k.

Theorem 4 ([7]) Consider a bidimensional
problem satisfying the “separation property”
defined in [4, 7].

Suppose that the problem can be solved
on a graph G with n vertices in f .n; tw.G//

time. Suppose also that the problem can be
approximated within a factor of ’ in g.n/

time. For contraction-bidimensional problems,
suppose further that both of these algorithms
also apply to the “generalized form” of the
problem defined in [4, 7]. Then there is a
.1C2/-approximation algorithm whose running
time is O.nf .n; O.O2=2// C n3g.n// for the
corresponding graph class of the bidimensional
problem.

Applications

The theorems above have many combinatorial
and algorithmic applications.

Applying the parameter-treewidth bound of
Theorem 1 to the parameter of the number of
vertices in the graph proves that every H -minor-
free graph on n vertices has treewidth O.

p
n/,

thus (re)proving the separator theorem for H -
minor-free graphs. Applying the parameter-
treewidth bound of Theorem 1 to the parameter
of the diameter of the graph proves a stronger
form of Eppstein’s diameter-treewidth relation
for apex-minor-free graphs. (Further work
shows how to further strengthen the diameter-
treewidth relation to linear [6].) The treewidth-
grid relation of Theorem 2 can be used to bound
the gap between half-integral multicommodity
flow and fractional multicommodity flow in
H -minor-free graphs. It also yields an O(1)-
approximation for treewidth in H -minor-



206 Bidimensionality

free graphs. The subexponential fixed-parameter
algorithms of Theorem 3 subsume or strengthen
all previous such results. These results can also be
generalized to obtain fixed-parameter algorithms
in arbitrary graphs. The PTASs of Theorem 4 in
particular establish the first PTASs for connected
dominating set and feedback vertex set even for
planar graphs. For details of all of these results,
see [4].

Open Problems

Several combinatorial and algorithmic open prob-
lems remain in the theory of bidimensionality and
related concepts.

Can the grid-minor theorem for H -minor-free
graphs, Theorem 2, be generalized to arbitrary
graphs with a polynomial relation between
treewidth and the largest grid minor? (The best
relation so far is exponential.) Such polynomial
generalizations have been obtained for the
cases of “map graphs” and “power graphs” [9].
Good grid-treewidth bounds have applications to
minor-bidimensional problems.

Can the algorithmic results (Theorems 3
and 4) be generalized to solve contraction-
bidimensional problems beyond apex-minor-free
graphs? It is known that the basis for these results,
Theorem 1, does not generalize [1]. Nonetheless,
Theorem 3 has been generalized for one specific
contraction-bidimensional problem, dominating
set [3].

Can the polynomial-time approximation
schemes of Theorem 4 be generalized to
more general algorithmic problems that do not
correspond directly to bidimensional parameters?
One general family of such problems arises when
adding weights to vertices and/or edges, and
the goal is, e.g., to find the minimum-weight
dominating set. Another family of such problems
arises when placing constraints (e.g., on coverage
or domination) only on subsets of vertices and/or
edges. Examples of such problems include
Steiner tree and subset feedback vertex set.

For additional open problems and details
about the problems above, see [4].
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Problem Definition

In the one-dimensional bin packing problem, one
is given a list L D .a1; a2; : : : ; an/ of items, each
item ai having a size s.ai / 2 .0; 1�. The goal is
to pack the items into a minimum number of
unit-capacity bins, that is, to partition the items
into a minimum number of sets, each having total
size of at most 1. This problem is NP-hard, and
so much of the research on it has concerned the
design and analysis of approximation algorithms,
which will be the subject of this article.

Although bin packing has many applications,
it is perhaps most important for the role it has
played as a proving ground for new algorithmic
and analytical techniques. Some of the first worst-
and average-case results for approximation algo-
rithms were proved in this domain, as well as the

first lower bounds on the competitive ratios of
online algorithms. Readers interested in a more
detailed coverage than is possible here are di-
rected to two relatively recent surveys [4, 11].

Key Results

Worst-Case Behavior

Asymptotic Worst-Case Ratios
For most minimization problems, the standard
worst-case metric for an approximation algorithm
A is the maximum, over all instances I, of the
ratio A.I /=OPT.I /, where A(I) is the value of the
solution generated by A and OPT(I) is the optimal
solution value. In the case of bin packing, how-
ever, there are limitations to this “absolute worst-
case ratio” metric. Here it is already NP-hard
to determine whether OPT.I / D 2, and hence
no polynomial-time approximation algorithm can
have an absolute worst-case ratio better than 1.5
unless PD NP. To better understand the behavior
of bin packing algorithms in the typical situation
where the given list L requires a large number of
bins, researchers thus use a more refined metric
for bin packing, the asymptotic worst-case ratio
R1A . This is defined in two steps as follows.

Rn
A D max fA.L/=OPT.L/ W

L is a list with OPT.L/ D ng

R1A D lim sup
n!1

Rn
A

The first algorithm whose behavior was ana-
lyzed in these terms was First Fit (FF). This
algorithm envisions an infinite sequence of empty
bins B1; B2; : : : and, starting with the first item in
the input list L, places each item in turn into the
first bin which still has room for it. In a technical
report from 1971 which was one of the very first
papers in which worst-case performance ratios
were studied, Ullman [22] proved the following.

Theorem 1 ([22]) R1FF D 17=10.

In addition to FF, five other simple heuristics
received early study and have served as the in-



208 Bin Packing

spiration for later research. Best Fit (BF) is the
variant of FF in which each item is placed in
the bin into which it will fit with the least space
left over, with ties broken in favor of the earliest
such bin. Both FF and BF can be implemented
to run in time O.n log n/ [12]. Next Fit (NF)
is a still simpler and linear-time algorithm in
which the first item is placed in the first bin,
and thereafter each item is placed in the last
nonempty bin if it will fit, otherwise a new bin
is started. First Fit Decreasing (FFD) and Best
Fit Decreasing (BFD) are the variants of those
algorithms in which the input list is first sorted
into nonincreasing order by size and then the
corresponding packing rule is applied. The results
for these algorithms are as follows.

Theorem 2 ([12]) R1NF D 2.

Theorem 3 ([13]) R1BF D 17=10.

Theorem 4 ([12, 13]) R1FFD D R1BFD D 11=9

D 1:222 : : :

The above mentioned algorithms are relatively
simple and intuitive. If one is willing to con-
sider more complicated algorithms, one can do
substantially better. The current best polynomial-
time bin packing algorithm is very good indeed.
This is the 1982 algorithm of Karmarkar and
Karp [15], denoted here as “KK.” It exploits the
ellipsoid algorithm, approximation algorithms for
the knapsack problem, and a clever rounding
scheme to obtain the following guarantees.

Theorem 5 ([15]) R1KK D 1 and there is a con-
stant c such that for all lists L,

KK.L/ � OPT.L/C c log2.OPT.L//:

Unfortunately, the running time for KK appears
to be worse than O(n8), and BFD and FFD remain
much more practical alternatives.

Online Algorithms
Three of the abovementioned algorithms (FF, BF,
and NF) are online algorithms, in that they pack
items in the order given, without reference to the

sizes or number of later items. As was subse-
quently observed in many contexts, the online
restriction can seriously limit the ability of an
algorithm to produce good solutions. Perhaps the
first limitation of this type to be proved was Yao’s
theorem [24] that no online algorithm A for bin
packing can have R1A < 1:5. The bound has since
been improved to the following.

Theorem 6 ([23]) If A is an online algorithm for
bin packing, then R1A � 1:540 : : :

Here the exact value of the lower bound is the
solution to a complicated linear program.

Yao’s paper also presented an online
algorithm Revised First Fit (RFF) that had
R1RFF D 5=3 D 1:666 : : : and hence got closer
to this lower bound than FF and BF. This
algorithm worked by dividing the items into four
classes based on size and index, and then using
different packing rules (and packings) for each
class. Subsequent algorithms improved on this
by going to more and more classes. The current
champion is the online HarmonicCC algorithm
(HCC) of [21]:

Theorem 7 ([21]) R1HCC � 1:58889.

Bounded-Space Algorithms
The NF algorithm, in addition to being online,
has another property worth noting: no more than
a constant number of partially filled bins remain
open to receive additional items at any given time.
In the case of NF, the constant is 1 – only the last
partially filled bin can receive additional items.
Bounding the number of open bins may be neces-
sary in some applications, such as packing trucks
on loading docks. The bounded-space constraint
imposes additional limits on algorithmic behavior
however.

Theorem 8 ([17]) For any online bounded-
space algorithm A, R1A � 1:691 : : :.

The constant 1:691 : : : arises in many other bin
packing contexts. It is commonly denoted by h1
and equals

P1
iD1.1=ti /, where t1 D 1 and, for

i > 1, ti D ti�1.ti�1 C 1/.
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The lower bound in Theorem 8 is tight, owing
to the existence of the Harmonick algorithms (Hk)
of [17]. Hk is a class-based algorithm in which
the items are divided into classes Ch, 1 � h � k,
with Ck consisting of all items with size 1/k or
smaller, and Ch, 1 � h < k, consisting of all
ai with 1=.hC 1/ < s.ai / � 1=h. The items in
each class are then packed by NF into a separate
packing devoted just to that class. Thus, at most
k bins are open at any time. In [17] it was
shown that limk!1R1Hk

D h1 D 1:691 : : :.
This is even better than the asymptotic worst-case
ratio of 1.7 for the unbounded-space algorithms
FF and BF, although it should be noted that
the bounded-space variant of BF in which all
but the two most-full bins are closed also has
R1A D 1:7 [8].

Average-Case Behavior

Continuous Distributions
Bin packing also served as an early test
bed for studying the average-case behavior
of approximation algorithms. Suppose F is
a distribution on .0; 1� and Ln is a list of n items
with item sizes chosen independently according
to F. For any list L, let s(L) denote the lower
bound on OPT(L) obtained by summing the sizes
of all the items in L. Then define

ERn
A.F / D E ŒA.Ln/=OPT.Ln/� ;

ER1A .F / D lim sup
n!1

ERn
A

EWn
A.F / D E ŒA.Ln/ � s.Ln/�

The last definition is included since ER1A .F / D 1

occurs frequently enough that finer distinctions
are meaningful. For example, in the early
1980s, it was observed that for the distribution
F D U.0; 1� in which item sizes are uniformly
distributed on the interval .0; 1�, ER1FFD.F / D

ER1BFD.F / D 1, as a consequence of the
following more-detailed results.

Theorem 9 ([16, 20]) For A2fFFD; BFD; OPTg,
EWn

A.U.0; 1�/ D �.
p

n/.

Somewhat surprisingly, it was later discovered
that the online FF and BF algorithms also
had sublinear expected waste, and hence
ER1A .U.0; 1�/ D 1.

Theorem 10 ([5, 19])

EWn
FF .U.0; 1�/ D �.n2=3/

EWn
BF .U.0; 1�/ D �.n1=2 log3=4 n/

This good behavior does not, however, extend to
the bounded-space algorithms NF and Hk:

Theorem 11 ([6, 18])

ER1NF .U.0; 1�/ D 4=3 D 1:333 : : :

lim
k!1

ERHk
.U.0; 1�/ D �2=3 � 2 D 1:2899 : : :

All the above results except the last two exploit
the fact that the distribution U.0; 1� is symmetric
about 1=2; and hence an optimal packing consists
primarily of two-item bins, with items of size
s > 1=2 matched with smaller items of size
very close to 1 � s. The proofs essentially show
that the algorithms in question do good jobs
of constructing such matchings. In practice,
however, there will clearly be situations where
more than matching is required. To model
such situations, researchers first turned to the
distributions U.0; b�, 0 < b < 1, where item
sizes are chosen uniformly from the interval
.0; b�. Simulations suggest that such distributions
make things worse for the online algorithms FF
and BF, which appear to have ER1A .U.0; b�/ > 1

for all b 2 .0; 1/. Surprisingly, they make things
better for FFD and BFD (and the optimal
packing).

Theorem 12 ([2, 14])

1. For 0 < b � 1=2 and A 2 fFFD; BFDg,
EWn

A.U.0; b�/ D O.1/.
2. For 1=2 < b < 1 and A 2 fFFD; BFDg,

EWn
A.U.0; b�/ D �.n1=3/.

3. For 0 < b < 1, EWn
OPT.U.0; b�/ D O.1/.
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Discrete Distributions
In many applications, the item sizes come from
a finite set, rather than a continuous distribution
like those discussed above. Thus, recently the
study of average-case behavior for bin packing
has turned to discrete distributions. Such a distri-
bution is specified by a finite list s1; s2; : : : ; sd of
rational sizes and for each si a corresponding
rational probability pi. A remarkable result
of Courcoubetis and Weber [7] says the
following.

Theorem 13 ([7]) For any discrete distribution
F, EWn

OPT.F / is either �.n/, �.
p

n/, or O(1).

The discrete analogue of the continuous distri-
bution U.0; b� is the distribution U fj; kg, where
the sizes are 1=k; 2=k; : : : ; j=k and all the prob-
abilities equal 1/j. Simulations suggest that the
behavior of FF and BF in the discrete case are
qualitatively similar to the behavior in the contin-
uous case, whereas the behavior of FFD and BFD
is considerably more bizarre [3]. Of particular
note is the distribution F D U f6; 13g, for which
ER1FFD.F / is strictly greater than ER1FF .F /, in
contrast to all the previously implied comparisons
between the two algorithms.

For discrete distributions, however, the stan-
dard algorithms are all dominated by a new on-
line algorithm called the Sum-of-Squares (SS)
algorithm. Note that since the item sizes are all
rational, they can be scaled so that they (and
the bin size B) are all integral. Then at any
given point in the operation of an online al-
gorithm, the current packing can be summa-
rized by giving, for each h, 1 � h � B , the num-
ber nh of bins containing items of total size h.
In SS, one packs each item so as to minimizePB�1

hD1 n2
h
.

Theorem 14 ([9]) For any discrete distribution
F, the following hold.

1. If EWn
OPT.F / D �.

p
n/, then

EWn
SS .F / D �.

p
n/.

2. If EWn
OPT.F / D O.1/, then

EWn
SS .F / 2 fO.1/; �.log n/g.

In addition, a simple modification to SS can
eliminate the �.log n/ case of condition 2.

Applications

There are many potential applications of one-
dimensional bin packing, from packing band-
width requests into fixed-capacity channels to
packing commercials into station breaks. In prac-
tice, simple heuristics like FFD and BFD are
commonly used.

Open Problems

Perhaps the most fundamental open problem
related to bin packing is the following. As
observed above, there is a polynomial-time
algorithm (KK) whose packings are within
O.log2.OPT// bins of optimal. Is it possible
to do better? As far as is currently known, there
could still be a polynomial-time algorithm that
always gets within one bin of optimal, even if P
¤ NP.

Experimental Results

Bin packing has been a fertile ground for ex-
perimental analysis, and many of the theorems
mentioned above were first conjectured on the
basis of experimental results. For example, the
experiments reported in [1] inspired Theorem 10
and 12, and the experiments in [10] inspired
Theorem 14.
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Problem Definition

In the bin packing problem, one is given a se-
quence of items, each of size in the range .0; 1�,
and an infinite number of bins. The goal is to
pack each item into some bin using as few bins
as possible, under the constraint that the sum of
sizes of items in each bin is at most one. In the
bin packing problem with cardinality constraints,
an additional constraint is imposed that each bin
can contain at most k items.

This problem for k D 2 is solvable in poly-
nomial time by reducing it to the cardinality
matching problem. Nevertheless, this problem for
k � 3 is NP-hard, since one can reduce 3-
PARTITION to it. Therefore, much work has been
done on approximation algorithms. We remark
that, in particular, it has also been of interest
to design online algorithms that pack each item
upon its arrival.

The standard performance measure of an ap-
proximation algorithm for this problem is the
asymptotic performance ratio. For a sequence of
items L and an approximation algorithm A, let
A.L/ denote the value of the solution generated
by A for L, and let OP T .L/ denote the value
of the optimal solution for L. The asymptotic
performance ratio of A is defined as

R1A D lim sup
n!1

sup
L

n A.L/

OP T .L/

ˇ̌
ˇ OP T .L/ D n

o
:

The bin packing problem with cardinality con-
straints is formally defined as follows:

Problem 1 (Bin Packing with Cardinality
Constraints)
Input: A sequence L D .a1; a2; : : : ; an/ 2 .0; 1�n

and an integer k � 2. Output: An integer m �

1 and a partition of f1; 2; : : : ; ng into disjoint
subsets S1; S2; : : : ; Sm such that (1) m is mini-
mum, (2)

P
i2Sj

ai � 1 for all 1 � j � m,
and (3) jSj j � k for all 1 � j � m.

Key Results

Approximation Algorithms
Krause et al. [9, 10] gave approximation algo-
rithms whose asymptotic performance ratios are
all two. Kellerer and Pferschy [8] presented an
improved approximation algorithm with asymp-
totic performance ratio 3

2
. Caprara et al. [3] pro-

vided an APTAS (asymptotic polynomial-time
approximation scheme): a collection of approx-
imation algorithms that, for any parameter " > 0,
guarantees an asymptotic performance ratio of
1 C ". Finally, a better polynomial-time scheme
was developed:

Theorem 1 ([6]) There exists an AFPTAS
(asymptotic fully polynomial-time approximation
scheme) for the bin packing problem with cardi-
nality constraints, that is, an APTAS whose run-
ning time is polynomial in the input size and 1

"
.

Online Algorithms
An online algorithm is an approximation algo-
rithm which, for each i D 1; 2; : : : ; n, decides
into which bin to place the i th item without
information on the sizes of later items or the
value of n. The First-Fit, Best-Fit, and Next-
Fit algorithms may be the most common online
algorithms for the bin packing problem without
cardinality constraints.

Krause et al. [9,10] adapted the First-Fit algo-
rithm to the problem with cardinality constraints
and showed that its asymptotic performance ratio
is at most 2:7� 12

5k
. The result was later improved.

Some work was done for individual values of k.
We thus summarize best known upper and lower
bounds on the asymptotic performance ratio for
each 2 � k � 6 in Table 1. We say here that
u is an upper bound on the asymptotic perfor-
mance ratio if there exists an online algorithm
A such that R1A D u. On the other hand, we
say that l is a lower bound on the asymptotic
performance ratio if R1A � l holds for any online
algorithm A.

Babel et al. [1] designed an online algorithm,
denoted here by BCKK, which guarantees an
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asymptotic performance ratio regardless of the
value of k. For k � 7, BCKK is the best so
far.

Theorem 2 ([1]) For any k, R1BCKK D 2.

Recently, Dósa and Epstein [4] showed a
lower bound on the asymptotic performance ratio
for each 7 � k � 11. Fujiwara and Kobayashi [7]
established a lower bound for each 12 � k � 41.
Some results on the bin packing problem without
cardinality constraints can be interpreted as lower
bounds on the asymptotic performance ratio for
large k: a lower bound of 217

141
.
1:53900/ for

42 � k � 293 [11] and 10;633
6;903

.
1:54034/ for
294 � k � 2;057 [2].

Bounded-Space Online Algorithms
A bounded-space online algorithm is an online
algorithm which has only a constant number of
bins available to accept given items at any time
point. For example, the Next-Fit algorithm is
a bounded-space online algorithm for the bin
packing problem without cardinality constraints,
since for the arrival of each new item, the
algorithm always keeps a single bin which
contains some item(s). All algorithms that
appeared in the previous section, except Next-
Fit, do not satisfy this property; such algorithms
are sometimes called unbounded-space online
algorithms.

For the bin packing problem with cardinality
constraints, a bounded-space online algorithm
called CCHk [5] is known to be optimal,
which is based on the Harmonic algorithm.
Its asymptotic performance ratio is Rk D

Bin Packing with Cardinality Constraints, Table 1
Best known upper and lower bounds on the asymptotic
performance ratio of online algorithms for 2 � k � 6

k Upper bound Lower bound

2 1C
p

5

5
.�1:44721/ [1] 1:42764 [7]

3 1:75 [5] 1:5 [1]

4 71
38

.�1:86843/ [5] 1:5 [7]

5 771
398

.�1:93719/ [5] 1:5 [4]

6 287
144

.�1:99306/ [5] 1:5 [12]

Pk
iD1 max

n
1

ti�1
; 1

k

o
, where ti is the sequence

defined by t1 D 2, tiC1 D ti .ti � 1/ C 1 for
i � 1. For example, we have R2 D

3
2
D 1:5,

R3 D
11
6

 1:83333, R4 D 2, R5 D 2:1,

and R6 D 13
6

 2:16667. The value of

Rk increases as k grows and approaches
1C

P1
iD1

1
ti�1

 2:69103.

Theorem 3 ([5]) For every k, R1CCHk
D Rk .

Besides, R1A � Rk holds for any bounded-space
online algorithm A.

Applications

In the paper by Krause et al. [9, 10], the aim
was to analyze task scheduling algorithms for
multiprocessor systems. Not only this but a con-
straint on the number of objects in a container
is important in application, such as a limit to the
number of files on a hard disk drive or a limit to
the number of requests assigned to each node in
a distributed system.

Open Problems

Many problems concerning (unbounded-space)
online algorithms remain open. Even for small
values of k, an optimal online algorithm has yet
to be found. It is also interesting whether, for
general k, there is an online algorithm whose
asymptotic performance ratio is strictly smaller
than two.
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Problem Definition

The well-known bin packing problem [3, 8] has
numerous variants [4]. Here, we consider one
natural variant, called the bin packing problem
with general cost structures (GCBP) [1, 2, 6]. In
this problem, the action of an algorithm remains
as in standard bin packing. We are given n items
of rational sizes in .0; 1�. These items are to
be assigned into unit size bins. Each bin may
contain items of total size at most 1. While in
the standard problem the goal is to minimize
the number of used bins, the goal in GCBP is
different; the cost of a bin is not 1, but it depends
on the number of items actually packed into this
bin. This last function is a concave function of
the number of packed items, where the cost of
an empty bin is zero. More precisely, the input
consists of n items I D f1; 2; : : : ; ng with sizes
1 � s1 � s2 � � � � � sn � 0 and a
function f W f0; 1; 2; : : : ; ng ! R

C
0 , where f is

a monotonically nondecreasing concave function,
satisfying f .0/ D 0. The goal is to partition I

into some number of sets S1; : : : ; S�, called bins,
such that

P
j2Si

sj � 1 for any 1 � i � �,
and so that

P�
iD1 f .jSi j/ is minimized (where

jSi j denotes the cardinality of the set Si ). An
instance of GCBP is defined not only by its input
item sizes but also using the function f . It can
be assumed that f .1/ D 1 (by possible scaling of
the cost function f ). The problem is strongly NP-
hard for multiple functions f , and as standard
bin packing, it was studied using the asymptotic
approximation ratio.

Key Results

There are two kinds of results for the problem.
The first kind of results is algorithms that do not
take f into account. The second kind is those that
base their action on the values of f .

A class of (concave and monotonically nonde-
creasing) functions ffqgq2N, which was consid-
ered in [1], is the following. These are functions
that grow linearly (with a slope of 1) up to
an integer point q, and then, they are constant
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(starting from that point). Specifically, fq.t/ D t

for t � q and fq.t/ D q for t > q. It was shown
in [1] that focusing on such functions is sufficient
when computing upper bounds on algorithms that
act independently of the cost function. Note that
f1 � 1, and thus GCBP with the cost function f1

is equivalent to standard bin packing.
Before describing the results, we present a

simple example showing the crucial differences
between GCBP and standard bin packing. Con-
sider the function f D f3 (where f .1/ D 1,
f .2/ D 2, and f .k/ D 3 for k � 3). Given
an integer N � 1, consider an input consisting
of 3N items, each of size 2

3
, called large items,

and 6N items, each of size 1
6

, called small items.
An optimal solution for this input with respect
to standard bin packing uses 3N bins, each con-
taining one large item and two small items. This
is the unique optimal solution (up to swapping
positions of identical items). The cost of this
solution for GCBP with the function f D f3

is 9N . Consider a solution that uses 4N bins,
the first N bins receive six small items each, and
each additional bin receives one large item. This
solution is not optimal for standard bin packing,
but its cost for GCBP with f D f3 is 6N .

Anily, Bramel, and Simchi-Levi [1] analyzed
the worst-case performance of some natural bin
packing heuristics [8], when they are applied to
GCBP. They showed that many common heuris-
tics for bin packing, such as First Fit, Best Fit,
and Next Fit, do not have a finite asymptotic
approximation ratio. Moreover, running the mod-
ifications of the first two heuristics after sorting
the lists of items (in a nonincreasing order),
i.e., applying the algorithms First Fit Decreasing
and Best Fit Decreasing, leads to similar results.
However, Next Fit Decreasing was shown to have
an asymptotic approximation ratio of exactly 2.
The algorithm Next Fit packs items into its last
bin as long as this is possible and opens a new bin
when necessary. Sorting the items in nondecreas-
ing order gives a better asymptotic approximation
ratio of approximately 1.691 (in this case, the
three algorithms, First Fit Increasing, Best Fit
Increasing, and Next Fit Increasing, are the same
algorithm). It is stated in [1] that any heuristic that

is independent of f has an asymptotic approxi-
mation ratio of at least 4

3
. An improved approx-

imation algorithm, called MatchHalf (MH), was
developed in [6]. The asymptotic approximation
ratio of this algorithm does not exceed 1:5. The
idea of MH is to create bins containing pairs
of items. The candidate items to be packed into
those bins are half of the items of size above 1

2

(large items), but they can only be packed with
smaller items. Naturally, the smallest large items
are selected, and the algorithm tries to match
them with smaller items. The remaining items
and unmatched items are packed using Next Fit
Increasing. Interestingly, it was shown [6] that
matching a larger fraction of large items can harm
the asymptotic approximation ratio.

A fully polynomial approximation scheme
(asymptotic FPTAS or AFPTAS) for GCBP was
given in [6]. This is a family of approximation
algorithms that contains, for any " > 0, an
approximation algorithm whose asymptotic
approximation ratio is at most 1C ". The running
time must be polynomial in the input and in 1

"
.

An AFPTAS for GCBP must use the function
f in its calculations (this can be shown using
the example above and similar examples and
can also be deduced from the lower bound of
4
3

on the asymptotic approximation ratio of an
algorithm that is oblivious of f [1]). An AFPTAS
for GCBP is presented in [6]. One difficulty
in designing such a scheme is that the nature
of packing of small items is important, unlike
approximation schemes for standard bin packing,
where small items can be added greedily [7, 9].
While in our problem we can impose cardinality
constraints on bins (upper bounds on numbers
of packed items) as in [5], still the cost function
introduces major difficulties. Another ingredient
of the scheme is preprocessing where some very
small items are packed into relatively full bins. It
is impossible to do this for all very small items
as bins consisting of only such items will have a
relatively large cost (as each such bin will contain
a very large number of items). This AFPTAS and
those of [5] require column generation as in
[9] but require fairly complicated configuration
linear programs.
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Problem Definition

Boolean Functions
The concept of a Boolean function – a function
whose domain is f0; 1gn and range is f0; 1g – is
central to computing. Boolean functions are used
in foundational studies of complexity [7, 9] as
well as the design and analysis of logic circuits
[4, 13], A Boolean function can be represented
using a truth table – an enumeration of the
values taken by the function on each element
of f0; 1gn. Since the truth table representation
requires memory exponential in n, it is imprac-
tical for most applications. Consequently, there
is a need for data structures and associated algo-
rithms for efficiently representing and manipulat-
ing Boolean functions.

Boolean Circuits
Boolean functions can be represented in many
ways. One natural representation is a Boolean
combinational circuit, or circuit for short [6,
Chapter 34]. A circuit consists of Boolean
combinational elements connected by wires.
The Boolean combinational elements are gates
and primary inputs. Gates come in three types:
NOT, AND, and OR. The NOT gate functions as
follows: it takes a single Boolean-valued input
and produces a single Boolean-valued output
which takes value 0 if the input is 1, and 1 if the
input is 0. The AND gate takes two Boolean-
valued inputs and produces a single output; the
output is 1 if both inputs are 1, and 0 otherwise.
The OR gate is similar to AND, except that its
output is 1 if one or both inputs are 1, and 0
otherwise.

Circuits are required to be acyclic. The ab-
sence of cycles implies that a Boolean assignment
to the primary inputs can be unambiguously prop-
agated through the gates in topological order. It
follows that a circuit on n ordered primary inputs
with a designated gate called the primary output
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corresponds to a Boolean function on f0; 1gn.
Every Boolean function can be represented by a
circuit, e.g., by building a circuit that mimics the
truth table.

The circuit representation is very general – any
decision problem that is computable in polyno-
mial time on a Turing machine can be computed
by circuit polynomial in the instance size, and the
circuits can be constructed efficiently from the
Turing machine program [15]. However, the key
analysis problems on circuits, namely, satisfiabil-
ity and equivalence, are NP-hard [7].

Boolean Formulas
A Boolean formula is defined recursively: a
Boolean variable xi is a Boolean formula, and
if ® and § are Boolean formulas, then so are
.:¥/; .¥ ^§/; .¥ _§/; .¥! §/, and .¥$ §/.
The operators :;_;^;!;$ are referred to
as connectives; parentheses are often dropped
for notational convenience. Boolean formulas
also can be used to represent arbitrary Boolean
functions; however, formula satisfiability and
equivalence are also NP-hard. Boolean formulas
are not as succinct as Boolean circuits: for
example, the parity function has linear sized
circuits, but formula representations of parity
are super-polynomial. More precisely, XORn W

f0; 1gn ! f0; 1g is defined to take the value 1 on
exactly those elements of f0; 1gn which contain
an odd number of 1s. Define the size of a formula
to be the number of connectives appearing in
it. Then for any sequence of formulas ™1; ™2; : : :

such that ™k represents XORk , the size of ™k is
�.kc/ for all c 2 ZC [14, Chapters 11, 12].

A disjunct is a Boolean formula in which ^
and : are the only connectives, and : is applied
only to variables; for example, x1 ^ :x3 ^ :x5

is a disjunct. A Boolean formula is said to be
in Disjunctive Normal Form (DNF) if it is of
the form D0 _ D1 _ � � � _ Dk�1, where each
Di is a disjunct. DNF formulas can represent
arbitrary Boolean functions, e.g., by identifying
each input on which the formula takes the value
1 with a disjunct. DNF formulas are useful in
logic design, because it can be translated directly
into a PLA implementation [4]. While satisfia-
bility of DNF formulas is trivial, equivalence is

NP-hard. In addition, given DNF formulas ® and
§, the formulas :¥ and ¥ ^ § are not DNF
formulas, and the translation of these formulas
to DNF formulas representing the same function
can lead to exponential growth in the size of the
formula.

Shannon Trees
Let f be a Boolean function on domain f0; 1gn.
Associate the n dimensions with variables
x0; : : : ; xn�1. Then the positive cofactor of f

with respect to xi , denoted by fxi
, is the function

on domain f0; 1gn, which is defined by

fxi
.˛0; : : : ; ˛i�1; ai ; ˛iC1; : : : ; ˛n�1/

D f .˛0; : : : ; ˛i�1; 1; ˛iC1; : : : ; ˛n�1/:

The negative cofactor of f with respect to xi ,
denoted by fx0

i
, is defined similarly, with 0 taking

the place of 1 in the right-hand side.
Every Boolean function can be decomposed

using Shannon’s expansion theorem:

f .x1; : : : ; xn/ D xi � fxi
C x0i � fx0

i
:

This observation can be used to represent f

by a Shannon tree – a kill binary tree [6, Ap-
pendix B.5] of height n, where each path to a
leaf node defines a complete assignment to the n

variables that f is defined over, and the leaf node
holds a 0 or a 1, based on the value f takes for
the assignment.

The Shannon tree is not a particularly use-
ful representation, since the height of the tree
representing every Boolean function on f0; 1gn

is n, and the tree has 2n leaves. The Shannon
tree can be made smaller by merging isomor-
phic subtrees and bypassing nodes which have
identical children. At first glance the reduced
Shannon tree representation is not particularly
useful, since it entails creating the full binary
tree in the first place. Furthermore, it is not
clear how to efficiently perform computations on
the reduced Shannon tree representation, such as
equivalence checking or computing the conjunc-
tion of functions presented as reduced Shannon
trees.
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Bryant [5] recognized that adding the restric-
tion that variables appear in fixed order from root
to leaves greatly reduced the complexity of ma-
nipulating reduced Shannon trees. He referred to
this representation as a binary decision diagram
(BDD).

Key Results

Definitions
Technically, a BDD is a directed acyclic graph
(DAG), with a designated root, and at most two
sinks – one labeled 0, the other labeled 1. Non-
sink nodes are labeled with a variable. Each
nonsink node has two outgoing edges – one
labeled with a 1 leading to the 1-child, the other
is a 0, leading to the 0-child. Variables must be
ordered – that is, if the variable label xi appears
before the label xj on some path from the root
to a sink, then the label xj is precluded from
appearing before xi on any path from the root to a
sink. Two nodes are isomorphic if both are equi-
labeled sinks, or they are both nonsink nodes,
with the same variable label, and their 0- and
1-children are isomorphic. For the DAG to be
a valid BDD, it is required that there are no
isomorphic nodes, and for no nodes are its 0- and
1-children the same.

A key result in the theory of BDDs is that
given a fixed variable ordering, the representation
is unique up to isomorphism, i.e., if F and G are
both BDDs representing f W f0; 1gn ! f0; 1g

under the variable ordering x1 � x2 � : : : xn,
then F and G are isomorphic.

The definition of isomorphism directly yields
a recursive algorithm for checking isomorphism.
However, the resulting complexity is exponential
in the number of nodes – this is illustrated,
for example, by checking the isomorphism of
the BDD for the parity function against itself
on inspection, the exponential complexity arises
from repeated checking of isomorphism between
pairs of nodes – this naturally suggest dynamic
programming. Caching isomorphism checks re-
duces the complexity of isomorphism checking
to O.jF j � jGj/, where jBj denotes the number of
nodes in the BDD B .

BDD Operations
Many logical operations can be implemented
in polynomial time using BDDs: bdd_and
which computes a BDD representing the logical
AND of the functions represented by two
BDDs, bdd_or and bdd_not which are defined
similarly, and bdd_compose which takes a BDD
representing a function f , a variable v, and a
BDD representing a function g and returns the
BDD for f where v is substituted by g are
examples.

The example of bdd_and is instructive – it is
based on the identity f � g D x � .fx � gx/ C

x0 � .fx0 �gx0/. The recursion can be implemented
directly: the base cases are when either f or g

are 0 and when one or both are 1. The recursion
chooses the variable v labeling either the root
of the BDD for f or g, depending on which is
earlier in the variable ordering, and recursively
computes BDDs for fv � gv and fv0 � gv0 ; these
are merged if isomorphic. Given a BDD F for
f , if v is the variable labeling the root of F , the
BDDs for fv0 and fv , respectively, are simply the
0-child and 1-child of F 0s root.

The implementation of bdd_and as described
has exponential complexity because of repeated
subproblems arising. Dynamic programming
again provides a solution – caching the
intermediate results of bdd_and reduced the
complexity to O.jF j � jGj/.

Variable Ordering
All symmetric functions on f0; 1gn have a
BDD that is polynomial in n, independent of
the variable ordering. Other useful functions
such as comparators, multiplexers, adders, and
subtracters can also be efficiently represented,
if the variable ordering is selected correctly.
Heuristics for ordering selection are presented
in [1, 2, 11]. There are functions which do
not have a polynomial-sized BDD under any
variable ordering – the Unction representing
the n-th bit of the output of a multiplier
taking two n-bit unsigned integer inputs is
an example [5]. Wegener [17] presents many
more examples of the impact of variable
ordering.
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Applications

BDDs have been most commonly applied in the
context of formal verification of digital hardware
[8]. Digital hardware extends the notion of circuit
described above by adding state elements which
hold a Boolean value between updates and are
updated on a clock signal.

The gates comprising a design are often up-
dated based on performance requirements; these
changes typically are not supposed to change
the logical functionality of the design. BDD-
based approaches have been used for checking
the equivalence of digital hardware designs [10].

BDDs have also been used for checking prop-
erties of digital hardware. A typical formulation
is that a set of “good” states and a set of “initial”
states are specified using Boolean formulas over
the state elements; the property holds iff there
is no sequence of inputs which leads a state in
the initial state to a state not in the set of good
states. Given a design with n registers, a set
of states A in the design can be characterized
by a formula ®A over n Boolean variables: ®A

evaluates to true on an assignment to the vari-
ables iff the corresponding state is in A. The
formula ®A represents a Boolean function, and
so BDDs can be used to represent sets of states.
The key operation of computing the image of
a set of states A, i.e., the set of states that
can be reached on application of a single input
from states in A, can also be implemented using
BDDs [12].

BDDs have been used for test generation.
One approach to test generation is to specify
legal inputs using constraints, in essence Boolean
formulas over the primary input and state vari-
ables. Yuan et al. [18] have demonstrated that
BDDs can be used to solve these constraints very
efficiently.

Logic synthesis is the discipline of realizing
hardware designs specified as logic equations us-
ing gates. Mapping equations to gates is straight-
forward; however, in practice a direct mapping
leads to implementations that are not acceptable
from a performance perspective, where perfor-
mance is measured by gate area or timing delay.

Manipulating logic equations in order to reduce
area (e.g., through constant propagation, identi-
fying common sub-expressions, etc.), and delay
(e.g., through propagating late arriving signals
closer to the outputs), is conveniently done using
BDDs.

Experimental Results

Bryant reported results on verifying two qual-
itatively distinct circuits for addition. He was
able to verify on a VAX 11/780 (a 1 MIP ma-
chine) that two 64-bit adders were equivalent in
95.8 min. He used an ordering that he derived
manually.

Normalizing for technology, modern BDD
packages are two orders of magnitude faster
than Bryant’s original implementation. A large
source the improvement comes from the use
of the strong canonical form, wherein a global
database of BDD nodes is maintained, and no
new node is added without checking to see if a
node with the same label and 0- and 1-children
exists in the database [3]. (For this approach
to work, it is also required that the children of
any node being added be in strong canonical
form.) Other improvements stem from the use of
complement pointers (if a pointer has its least-
significant bit set, it refers to the complement
of the function), better memory management
(garbage collection based on reference counts,
keeping nodes that are commonly accessed
together close in memory), better hash functions,
and better organization of the computed table
(which keeps track of subproblems that have
already been encountered) [16].

Data Sets

The SIS (http://embedded.eecs.berkeley.edu/
pubs/downloads/sis/) system from UC Berkeley
is used for logic synthesis. It comes with a
number of combinational and sequential circuits
that have been used for benchmarking BDD
packages.
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The VIS (http://embedded.eecs.berkeley.edu/
pubs/downloads/vis) system from UC Berkeley
and UC Boulder is used for design verification;
it uses BDDs to perform checks. The distribution
includes a large collection of verification prob-
lems, ranging from simple hardware circuits to
complex multiprocessor cache systems.

URL to Code

A number of BDD packages exist today, but the
package of choice is CUDD (http://vlsi.colorado.
edu/~fabio/CUDD/). CUDD implements all the
core features for manipulating BDDs, as well as
variants. It is written in CCC and has extensive
user and programmer documentation.
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Problem Definition

The binary space partition (for short, BSP) is
a scheme for subdividing the ambient space R

d
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Binary Space Partitions, Fig. 1 Three 2-dimensional convex objects and a line segment (left), a binary space partition
with five partition lines H1; : : : ; H5 (center), and the corresponding BSP tree (right)

into open convex sets (called cells) by hyper-
planes in a recursive fashion. Each subdivision
step for a cell results in two cells, in which
the process may continue, independently of other
cells, until a stopping criterion is met. The binary
recursion tree, also called BSP-tree, is tradition-
ally used as a data structure in computer graphics
for efficient rendering of polyhedral scenes. Each
node v of the BSP-tree, except for the leaves,
corresponds to a cell Cv � R

d and a partitioning
hyperplane Hv . The cell of the root r is Cr D R

d ,
and the two children of a node v correspond
to Cv \ H�v and Cv \ HCv , where H�v and
HCv denote the open half-spaces bounded by Hv .
Refer to Fig. 1.

A binary space partition for a set of n pairwise
disjoint (typically polyhedral) objects in R

d is a
BSP where the space is recursively partitioned
until each cell intersects at most one object. When
the BSP-tree is used as a data structure, every
leaf v stores the fragment of at most one object
clipped in the cell Cv , and every interior node
v stores the fragments of any lower-dimensional
objects that lie in Cv \Hv .

A BSP for a set of objects has two param-
eters of interest: the size and the height of the
corresponding BSP-tree. Ideally, a BSP parti-
tions space so that each object lies entirely in a
single cell or in a cutting hyperplane, yielding
a so-called perfect BSP [4]. However, in most
cases this is impossible, and the hyperplanes Hv

partition some of the input objects into frag-
ments. Assuming that the input objects are k-
dimensional, for some k � d , the BSP typically
stores only k-dimensional fragments, i.e., object

parts clipped in leaf cells Cv or in Cv \ Hv at
interior nodes.

The size of the BSP-tree is typically propor-
tional to the number of k-dimensional fragments
that the input objects are partitioned into, or the
number of nodes in the tree. Given a set S of
objects in R

d , one would like to find a BSP for
S with small size and/or height. The partition
complexity of a set of objects S is defined as the
minimum size of a BSP for S .

Glossary

• Autopartition: a class of BSPs obtained by
imposing the constraint that each cut is along
a hyperplane containing a facet of one of the
input objects.

• Axis-aligned BSP: a class of BSPs obtained
by imposing the constraint that each cut is
orthogonal to a coordinate axis.

• Round-robin BSP: An axis-aligned BSP in
R

d where any d consecutive recursive cuts
are along hyperplanes orthogonal to the d

coordinate axes.
• Tiling in R

d : a set of interior-disjoint polyhe-
dra that partition R

d .
• Axis-aligned tiling: a set of full-dimensional

boxes that partition R
d .

• d -dimensional box: the cross product of d

real-valued intervals.

Key Results

The theoretical study of BSPs was initiated by
Paterson and Yao [10, 11].
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Line Segments in the Plane
A classical result of Paterson and Yao [10] is a
simple and elegant randomized algorithm, which,
given n disjoint segments, produces a BSP whose
expected size is O.n log n/; see also [3, Ch. 12].
It was widely believed for decades that every set
of n disjoint line segments in the plane admits
a BSP of size O.n/; see e.g., [10, p. 502]; this
was until Tóth proved a tight super-linear bound
for this problem, first by constructing a set of
segments for which any BSP must have size
˝.n log n= log log n/ and later by matching this
bound algorithmically:

Theorem 1 ([12, 15]) Every set of n disjoint
line segments in the plane admits a BSP of
size O.n log n= log log n/. This bound is the best
possible, and a BSP of this size can be computed
in O.n log2 n/ time.

Simplices in R
d

The randomized partition technique of Paterson
and Yao generalizes to higher dimensions yield-
ing the following.

Theorem 2 ([10]) Every set of n .d � 1/-
dimensional simplices in R

d , where d � 3 admits
a BSP of size O.nd�1/.

While there exist n disjoint triangles in R
3 that

require a BSP of size ˝.n2/, no super-quadratic
lower bound is known in any dimension d . Near-
linear upper bounds are known for “realistic”
input models in R

3 such as uncluttered scenes [5]
or fat axis-aligned rectangles [14].

Axis-Parallel Segments, Rectangles, and
Hyperrectangles
Theorem 3 ([1, 7, 10]) Every set of n pairwise
disjoint axis-parallel line segments in the plane
admits an auto-partition of size at most 2n � 1.
Such a BSP can be computed using O.n log n/

time and space and has the additional property
that no input segment is cut more than once. The
upper bound on the size is the best possible apart
from lower-order terms.

Theorem 4 ([7, 11]) Let � be a collection of n

line segments in R
d , where d � 3, consisting

of ni segments parallel to the xi -axis, for i D

1; : : : ; d . Then � admits a BSP of size at most

41=.d�1/.d � 1/.n1n2 : : : nd /1=.d�1/ C 2n:

Theorem 5 ([7]) For constants 1 � k � d � 1,
every set of n axis-parallel k-rectangles in
d -space admits an axis-aligned BSP of size
O.nd=.d�k//. This bound is the best possible
for k < d=2 apart from the constant factor.

For k � d=2, the best known upper and lower
bounds do not match. No super-quadratic lower
bound is known in any dimension d . In R

4,
Dumitrescu et al. [7] constructed n 2-dimensional
disjoint rectangles whose partition complexity is
˝.n5=3/.

Tilings
Already in the plane, the worst-case partition
complexity of axis-aligned tilings is smaller
than that for disjoint boxes. Berman, DasGupta,
and Muthukrishnan [6] showed that every axis-
aligned tiling of size n admits an axis-aligned
BSP of size at most 2n; apart from lower-order
terms, this bound is the best possible. For higher
dimensions, Hershberger, Suri, and Tóth obtained
the following result.

Theorem 6 ([9]) Every axis-aligned tiling of
size n in R

d , where d � 2, admits a round-robin
BSP of size O.n.dC1/=3/. On the other hand,
there exist tilings of size n in R

d for which every
BSP has size ˝.nˇ.d//, where ˇ.3/ D 4=3, and
limd!1 ˇ.d/ D .1C

p
5/=2 
 1:618.

In dimensions d D 3, the partition complexity of
axis-aligned tilings of size n is O.n4=3/, which
is tight by a construction of Hershberger and
Suri [8].

Applications

The initial and most prominent applications are
in computer graphics: BSPs support fast hidden-
surface removal and ray tracing for moving view-
points [10]. Rendering is used for visualizing
spatial opaque surfaces on the screen. A com-
mon and efficient rendering technique is the so-
called painter’s algorithm. Every object is drawn
sequentially according to the back-to-front order,
starting with the deepest object and continuing
with the objects closer to the viewpoint. When
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all the objects have been drawn, every pixel rep-
resents the color of the object closest to the view-
point. Further computer graphics applications in-
clude constructive solid geometry and shadow
generation. Other applications of BSP trees in-
clude range counting, point location, collision
detection, robotics, graph drawing, and network
design; see, for instance, [13] and the references
therein.

In the original setting, the input objects of
the BSP were assumed to be static. Recent re-
search on BSPs for moving objects can be seen
in the context of kinetic data structures (KDS)
of Basch, Guibas, and Hershberger [2]. In this
model, objects move continuously along a given
trajectory (flight plan), typically along a line or a
low-degree algebraic curve. The splitting hyper-
planes are defined by faces of the input objects,
and so they move continuously, too. The BSP is
updated only at discrete events, though, when the
combinatorial structure of the BSP changes.

Open Problems

• What is the maximum partition complexity of
n disjoint .d�1/-dimensional simplices in R

d

for d � 3?
• What is the maximum partition complexity

of n disjoint (axis-aligned) boxes in R
d for

d � 3?
• What is the maximum (axis-aligned) partition

complexity of a tiling of n axis-aligned boxes
in R

d for d � 4?
• Are there families of n disjoint objects in R

d

whose partition complexity is super-quadratic
in n?

• How many combinatorial changes can occur
in the kinetic BSP of n points moving with
constant velocities in the plane?

In all five open problems, the dimension d 2 N

of the ambient space R
d is constant, and asymp-

totically tight bounds in terms of n are sought.
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Problem Definition

Floorplanning is an early stage of the very-large-
scale integration (VLSI) design process in which
a coarse layout of a set of rectangular circuit
blocks is determined. A floorplan enables de-
signers to quickly estimate circuit performance,
routing congestion, etc., of the circuit. In modern
VLSI design flow, a fixed outline of the floorplan-
ning region is given. On the other hand, many
circuit blocks do not have a fixed shape during
floorplanning as their internal circuitries have not
yet been laid out. Those blocks are called soft
blocks. Others blocks with predetermined shapes
are called hard blocks. Given the geometric (i.e.,
left-right and above-below) relationship among
the blocks, the block shaping problem is to de-
termine the shapes of the soft blocks such that
all blocks can be packed without overlap into the
fixed-outline region.

To handle the block shaping problem in fixed-
outline floorplanning, Yan and Chu [1,2] provide
a problem formulation in which the floorplan
height is minimized, while the width is upper
bounded. The formulation is described below.
Let W be the upper bound on the width of the
floorplanning region. Given a set of n blocks,
each block i has area Ai , width wi , and height hi .
Ai is fixed, while wi and hi may vary as long as
they satisfy wi � hi D Ai , W min

i � wi � W max
i ,

and H min
i � hi � H max

i . If W min
i D W max

i and
H min

i D H max
i , then block i is a hard block. Two

constraint graphs GH and GV [3, Chapter 10]
are given to specify the geometric relationship
among the blocks. GH and GV consist of n C 2

vertices. Vertices 1 to n represent the n blocks. In
addition, dummy vertices 0 (called source) and
n C 1 (called sink) are added. In GH , vertices 0

and n C 1 represent the leftmost and rightmost
boundaries of the floorplanning region, respec-
tively. In GV , vertices 0 and n C 1 represent

the bottommost and topmost boundaries of the
floorplanning region, respectively. A0, w0, h0,
AnC1, wnC1, and hnC1 are all set to 0. If block
i is on the left of block j , .i; j / 2 GH . If block i

is below block j , .i; j / 2 GV .
Let xi and yi be the x- and y-coordinates of

the bottom-left corner of block i in the floorplan.
Then, the block shaping problem formulation in
[1, 2] can be written as the following geometric
program:

Minimize ynC1

subject to xnC1 � W

xi C wi � wj 8.i; j / 2 GH

yi C hi � yj 8.i; j / 2 GV

wi � hi D Ai 1 � i � n

W min
i � wi � W max

i 1 � i � n

H min
i � hi � H max

i 1 � i � n

x0 D y0 D 0

To solve the original problem of packing all
blocks into a fixed-outline region, we can take
any feasible solution of the geometric program in
which ynC1 is less than or equal to the height of
the region.

Key Results

Almost all previous works target the classical
floorplanning formulation, which minimizes
the floorplan area. Such a formulation is not
compatible with modern design methodologies
[4], but those works may be modified to help
fixed-outline floorplanning to various extents.
For the special case of slicing floorplan [5],
the block shaping problem can be solved by
the elegant shape curve idea [6]. For a general
floorplan which may not have a slicing structure,
various heuristics have been proposed [7–9]. Moh
et al. [10] formulated the shaping problem as a
geometric program and optimally solved it using
standard convex optimization. Young et al. [11]
solved the geometric program formulation by
Lagrangian relaxation. Lin et al. [12] minimized
the floorplan area indirectly by minimizing its
perimeter optimally using min-cost flow and
trust region method. For previous works which
directly tackled the block shaping problem in
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fixed-outline floorplanning, Adya and Markov
[13] proposed a simple greedy heuristic, and
Lin and Hung [14] used second-order cone
programming. Previous works are either non-
optimal or time-consuming.

Yan and Chu [1, 2] presented a simple and
optimal algorithm called slack-driven shaping
(SDS). SDS iteratively shapes the soft blocks to
reduce the floorplan height while not exceeding
the floorplan width bound. We first present a sim-
plified version called basic slack-driven shaping
(basic SDS), which almost always produces an
optimal solution. Then, we present its extension
to the SDS algorithm.

Given some initial block shapes, the blocks
can be packed to the four boundaries of the
floorplanning region. For block i (1 � i � n),
let �xi

be the difference in xi between the two
layouts generated by packing all blocks to x D

W and to x D 0, respectively. Similarly, let �yi

be the difference in yi between the two layouts
generated by packing all blocks to y D ynC1 and
to y D 0, respectively. The horizontal slack sH

i

and vertical slack sV
i are defined as follows:

sH
i D max.0; �xi

/; sV
i D max.0; �yi

/:

Horizontal critical path (HCP) is defined as a path
in GH from source to sink such that all blocks
along the path have zero horizontal slack. Vertical
critical path (VCP) is similarly defined. We also
define two subsets of blocks:

SH D fi is softg \ fsH
i > 0; sV

i D 0g

\fwi < W max
i g

SV D fi is softg \ fsH
i D 0; sV

i > 0g

\fhi < H max
i g

Note that ynC1 can be reduced by decreasing the
height (i.e., increasing the width) of the blocks in
SH, and xnC1 can be reduced by decreasing the
width (i.e., increasing the height) of the blocks
in SV. We call the blocks in the sets SH and SV
target soft blocks. In each iteration of basic SDS,
we would like to increase the width wi of each
block i 2 SH by ıH

i and the height hi of each
block i 2 SV by ıV

i . The basic SDS algorithm is
shown below:

Basic Slack-Driven Shaping Algorithm
Input: A set of n blocks, upper-bound width W , GH and GV .
Output: Optimized ynC1, wi and hi for all i .
Begin
1. Set wi to W min

i for all i .
2. Pack blocks to x D 0 and compute xnC1.
3. If xnC1 > W ,
4. Return no feasible solution.
5. Else,
6. Repeat
7. Pack blocks to y D 0, y D ynC1, x D 0, and x D W .
8. Calculate sH

i and sV
i for all i .

9. Identify target soft blocks in SH and SV.

10. 8i 2 SH, increase wi by ıH
i D

.W max
i � wi /

MAXp2P H
i

�P
k2p.W max

k
� wk/

�sH
i ,

where P H
i is the set of paths in GH passing through block i .

11. 8i 2 SV, increase hi by ıV
i D ˇ �

.H max
i � hi /

MAXp2P V
i

�P
k2p.H max

k
� hk/

�sV
i ,

where P V
i is the set of paths in GV passing through block i .

12. Until there is no target soft block.
End
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Note that all ıH
i and ıV

i in Lines 10 and 11
can be computed using dynamic programming in
linear time. Packing of blocks can also be done
in linear time by longest path algorithm on a
directed acyclic graph. Hence, each iteration of
basic SDS takes linear time. The way ıH

i and
ıV

i are set in Lines 10 and 11 is the key to the
convergence of the algorithm.

Lemma 1 For any path p from source to sink in
GH , we have

P
i2p ıH

i � s
p
max _H , where s

p
max _H

is the maximum horizontal slack over all blocks
along p.

Basically, s
p
max _H gives us a budget on the total

amount of increase in the block width along path
p. Hence, Lemma 1 implies that the width of the
floorplan will not be more than W after shaping
of the blocks in SH at Line 10. The shaping of
blocks in SV is done similarly, but a factor ˇ is
introduced in Line 11.

Lemma 2 For any path p from source to sink
in GV , we have

P
i2p ıV

i � ˇ � s
p
max _V , where

s
p
max _V is the maximum vertical slack over all

blocks along p.

Lemma 2 guarantees that by setting ˇ �

1, ynC1 will not increase after each iteration.
In other words, the height of the floorplan will
monotonically decrease during the whole shaping
process. ˇ is almost always set to 1. However, if
ˇ D 1, it is possible that the floorplan height may
remain the same after one iteration even when the
solution is not yet optimal. To avoid getting stuck
at a local minimum, if the floorplan height does

not decrease for two consecutive iterations, ˇ is
set to 0.9 for the next iteration.

Consider a shaping solution L generated by
basic SDS (i.e., without any target soft block).
Blocks at the intersection of some HCP and some
VCP are called intersection blocks. The follow-
ing optimality conditions were derived in [1, 2].

Lemma 3 If L contains one VCP in which
all intersection blocks are hard, then L is
optimal.

Lemma 4 If L contains at most one HCP in
which some intersection blocks are soft, then
L is optimal.

Lemma 5 If L contains at most one VCP in
which some intersection blocks are soft, then
L is optimal.

In practice, it is very rare for a shaping solu-
tion generated by basic SDS to satisfy none of
the three optimality conditions. According to the
experiments in [1, 2], all solutions by basic SDS
satisfy at least one of the optimality conditions,
i.e., are optimal. However, [1, 2] showed that it
is possible for basic SDS to converge to non-
optimal solutions. If a non-optimal solution is
produced by basic SDS, it can be used as a
starting solution to the geometric program above
and then be improved by a single step of any
descent-based optimization technique (e.g., deep-
est descent). This perturbed and improved solu-
tion can be fed to basic SDS again to be further
improved. The resulting SDS algorithm, which is
guaranteed optimal, is shown below:

Slack-Driven Shaping Algorithm
Input: A set of n blocks, upper-bound width W , GH and GV .
Output: Optimal ynC1, wi and hi for all i .
Begin
1. Run basic SDS to generate shaping solution L.
2. If Lemma 3 or Lemma 4 or Lemma 5 is satisfied,
3. L is optimal. Exit.
4. Else,
5. Improve L by a single step of geometric programming.
6. Go to Line 1.
End



Block Shaping in Floorplan 227

B

Applications

Floorplanning is a very important step in modern
VLSI design. It enables designers to explore dif-
ferent alternatives in the design space and make
critical decisions early in the design process.
Typically, a huge number of alternatives need
to be evaluated during the floorplanning stage.
Hence, an efficient block shaping algorithm is a
crucial component of a floorplanning tool. SDS
is tens to hundreds of times faster than previous
algorithms in practice. It also directly handles
a fixed-outline floorplanning formulation, which
is the standard in modern design methodologies.
Hence, SDS should be able to improve the qual-
ity while also reduce the design time of VLSI
circuits.

Open Problems

An interesting open problem is to derive a the-
oretical bound on the number of iterations for
SDS to converge to an optimal solution. Although
experimental results have shown that the number
of iterations is small in practice, no theoretical
bound is known.

Another interesting problem is to design an
algorithm to achieve optimal block shaping en-
tirely by simple slack-driven operations without
resorting to geometric programming.

Besides, because of the similarity of the con-
cept of slack in floorplanning and in circuit tim-
ing analysis, it would be interesting to see if a
slack-driven approach similar to that in SDS can
be applied to buffer and wire sizing for timing
optimization.
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Problem Definition

Informally, a boosting technique is a method that,
when applied to a particular class of algorithms,
yields improved algorithms. The improvement
must be provable and well defined in terms of
one or more of the parameters characterizing the
algorithmic performance. Examples of boosters
can be found in the context of randomized algo-
rithms (here, a booster allows one to turn a BPP
algorithm into an RP one [6]) and computational
learning theory (here, a booster allows one to
improve the prediction accuracy of a weak learn-
ing algorithm [10]). The problem of compression
boosting consists of designing a technique that
improves the compression performance of a wide
class of algorithms. In particular, the results of
Ferragina et al. provide a general technique for
turning a compressor that uses no context infor-
mation into one that always uses the best possible
context.

The classic Huffman and arithmetic coding
algorithms [1] are examples of statistical com-
pressors which typically encode an input symbol

according to its overall frequency in the data to
be compressed. (In their dynamic versions these
algorithms consider the frequency of a symbol
in the already scanned portion of the input.)
This approach is efficient and easy to implement
but achieves poor compression. The compres-
sion performance of statistical compressors can
be improved by adopting higher-order models
that obtain better estimates for the frequencies
of the input symbols. The PPM compressor [9]
implements this idea by collecting (the frequency
of) all symbols which follow any k-long context
and by compressing them via arithmetic cod-
ing. The length k of the context is a parameter
of the algorithm that depends on the data to
be compressed: it is different if one is com-
pressing English text, a DNA sequence, or an
XML document. There exist other examples of
sophisticated compressors that use context infor-
mation in an implicit way, such as Lempel-Ziv
and Burrows-Wheeler compressors [9]. All these
context-aware algorithms are effective in terms of
compression performance, but are usually rather
complex to implement and difficult to analyze.

Applying the boosting technique of Ferragina
et al. to Huffman or arithmetic coding yields a
new compression algorithm with the following
features: (i) the new algorithm uses the boosted
compressor as a black box; (ii) the new algorithm
compresses in a PPM-like style, automatically
choosing the optimal value of k; and (iii) the new
algorithm has essentially the same time/space
asymptotic performance of the boosted compres-
sor. The following sections give a precise and
formal treatment of the three properties (i)–(iii)
outlined above.

Key Results

Notation: The Empirical Entropy
Let s be a string over the alphabet † D

fa1; : : : ; ahg, and for each ai 2 †, let ni be
the number of occurrences of ai in s. The 0th
order empirical entropy of the string s is defined

as H0.s/ D �
hP

iD1

.ni =jsj/ log.ni =jsj/, where it

is assumed that all logarithms are taken to the
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base 2 and 0log 0 D 0. It is well known that H0

is the maximum compression one can achieve
using a uniquely decodable code in which a
fixed codeword is assigned to each alphabet
symbol. Greater compression is achievable if
the codeword of a symbol depends on the k

symbols following it (namely, its context). (In
data compression it is customary to define
the context looking at the symbols preceding
the one to be encoded. The present entry
uses the nonstandard “forward” contexts to
simplify the notation of the following sections.
Note that working with “forward” contexts
is equivalent to working with the traditional
“backward” contexts on the string s reversed
(see [3] for details).) Let us define ws as the
string of single symbols immediately preceding
the occurrences of w in s. For example, for
s D bcabcabdca, it is cas D bbd. The
value

Hk.s/ D
1

jsj

X

w2
Pk

jwsjH0.ws/ (1)

is the k-th order empirical entropy of s and is a
lower bound to the compression one can achieve
using codewords which only depend on the k

symbols immediately following the one to be
encoded.

Example 1 Let s D mississippi. For k D 1,
it is is D mssp, ss D isis, ps D ip. Hence,

H1.s/ D
4

11
H0.mssp/C

4

11
H0.isis/

C
2

11
H0.ip/

D
6

11
C

4

11
C

2

11
D

12

11
:

Note that the empirical entropy is defined for
any string and can be used to measure the per-
formance of compression algorithms without any
assumption on the input source. Unfortunately,
for some (highly compressible) strings, the em-
pirical entropy provides a lower bound that is
too conservative. For example, for s D an, it is
jsjHk.s/ D 0 for any k � 0. To better deal with

highly compressible strings, [7] introduced the
notion of 0th order modified empirical entropy
H0
� .s/ whose property is that jsjH0

� .s/ is at
least equal to the number of bits needed to write
down the length of s in binary. The kth order
modified empirical entropy Hk

� is then defined in
terms of H0

� as the maximum compression one
can achieve by looking at no more than k symbols
following the one to be encoded.

The Burrows-Wheeler Transform
Given a string s, the Burrows-Wheeler transform
[2] (bwt) consists of three basic steps: (1) append
to the end of s a special symbol $ smaller than
any other symbol in †; (2) form a conceptual
matrix M whose rows are the cyclic shifts of
the string s$, sorted in lexicographic order; and
(3) construct the transformed text Os D bwt.s/

by taking the last column of M (see Fig. 1).
In [2] Burrows and Wheeler proved that Os is a
permutation of s, and that from Os it is possible to
recover s in O.jsj/ time.

To see the power of the bwt, the reader should
reason in terms of empirical entropy. Fix a posi-
tive integer k. The first k columns of the bwt ma-
trix contain, lexicographically ordered, all length-
k substrings of s (and k substrings containing
the symbol $). For any length-k substring w
of s, the symbols immediately preceding every
occurrence of w in s are grouped together in
a set of consecutive positions of Os since they
are the last symbols of the rows of M pre-
fixed by w. Using the notation introduced for
defining Hk , it is possible to rephrase this prop-
erty by saying that the symbols of ws are con-
secutive within Os or, equivalently, that Os con-
tains, as a substring, a permutation �w.ws/ of the
string ws .

Example 2 Let s D mississippi and k D

1. Figure 1 shows that OsŒ1; 4� D pssm is a
permutation of is D mssp. In addition, OsŒ6; 7� D

pi is a permutation of ps D ip, and OsŒ8; 11� D

ssii is a permutation of ss D isis.
Since permuting a string does not change its

(modified) 0th order empirical entropy (that is,
H0.�w.ws// D H0.ws/), the Burrows-Wheeler
transform can be seen as a tool for reducing the
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Boosting Textual Compression, Fig. 1 The bwt matrix (left) and the suffix tree (right) for the string s D
mississippi$. The output of the bwt is the last column of the bwt matrix, i.e., Os D bwt.s/ D ipssm$pissii

problem of compressing s up to its kth order
entropy to the problem of compressing distinct
portions of Os up to their 0th order entropy. To see
this, assume partitioning of Os into the substrings
�w.ws/ by varying w over †k . It follows that
Os D

F

w2†k

�w.ws/ where
F

denotes the con-

catenation operator among strings. (In addition toF
w2†k�w.ws/, the string Os also contains the last

k symbols of s (which do not belong to any ws)
and the special symbol $. For simplicity these
symbols will be ignored in the following part of
the entry.) By (1) it follows that

X

w2†k

j�w.ws/jH0.�w.ws//

D
X

w2†k

jwsjH0.ws/ D jsjHk.s/:

Hence, to compress s up to jsjHk.s/, it suffices
to compress each substring �w.ws/ up to its 0th
order empirical entropy. Note, however, that in
the above scheme the parameter k must be chosen
in advance. Moreover, a similar scheme cannot
be applied to Hk

� which is defined in terms
of contexts of length at most k. As a result,
no efficient procedure is known for computing
the partition of Os corresponding to Hk

�.s/. The
compression booster [3] is a natural complement
to the bwt and allows one to compress any string

s up to Hk.s/ (or Hk
�.s/) simultaneously for all

k � 0.

The Compression Boosting Algorithm
A crucial ingredient of compression boosting is
the relationship between the bwt matrix and the
suffix tree data structure. Let T denote the suffix
tree of the string s$. T has jsjC 1 leaves, one per
suffix of s$, and edges labeled with substrings of
s$ (see Fig. 1). Any node u of T has implicitly
associated a substring of s$, given by the con-
catenation of the edge labels on the downward
path from the root of T to u. In that implicit
association, the leaves of T correspond to the
suffixes of s$. Assume that the suffix tree edges
are sorted lexicographically. Since each row of
the bwt matrix is prefixed by one suffix of s$
and rows are lexicographically sorted, the i th
leaf (counting from the left) of the suffix tree
corresponds to the i th row of the bwt matrix.
Associate to the i th leaf of T the i th symbol
of Os D bwt.s/. In Fig. 1 these symbols are
represented inside circles.

For any suffix tree node u, let Oshui denote the
substring of Os obtained by concatenating, from
left to right, the symbols associated to the leaves
descending from node u. Of course Oshroot.T /i D

Os. A subset L of T ’s nodes is called a leaf
cover if every leaf of the suffix tree has a unique
ancestor in T . Any leaf cover L D fu1; : : : ; upg

naturally induces a partition of the leaves of T .
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Because of the relationship between T and the
bwt matrix, this is also a partition of Os, namely,
fOshu1i; : : : ; Oshupig.

Example 3 Consider the suffix tree in Fig. 1. A
leaf cover consists of all nodes of depth one.
The partition of Os induced by this leaf cover is
fi,pssm,$,pi,ssiig.

Let C denote a function that associates to
every string x over †[{$} a positive real value
C.x/. For any leaf cover L, define its cost as
C.L/ D

P
u2L

C.Oshui/. In other words, the cost of

the leaf cover L is equal to the sum of the costs
of the strings in the partition induced by L. A leaf
cover Lmin is called optimal with respect to C if
C.Lmin/ � C.L/, for any leaf cover L.

Let A be a compressor such that, for any string
x, its output size is bounded by jxjH0.x/C˜jxjC

� bits, where ˜ and � are constants. Define the
cost function CA.x/ D jxjH0.x/C �jxj C �. In
[3] Ferragina et al. exhibit a linear-time greedy
algorithm that computes the optimal leaf cover
Lmin with respect to CA. The authors of [3] also
show that, for any k � 0, there exists a leaf cover
Lk of cost CA.Lk/ D jsjHk.s/C�jsjCO.j†jk/.
These two crucial observations show that, if one
uses A to compress each substring in the partition
induced by the optimal leaf cover Lmin, the total
output size is bounded in terms of jsjHk.s/, for
any k � 0. In fact,

X

u2Lmin

CA.Oshui/ D CA.Lmin/ � CA.Lk/

D jsjHk.s/C �jsj CO.j†jk/

In summary, boosting the compressor A over the
string s consists of three main steps:

1. Compute Os D bwt.s/.
2. Compute the optimal leaf cover Lmin with

respect to CA and partition Os according to Lmin.
3. Compress each substring of the partition using

the algorithm A.

So the boosting paradigm reduces the design of
effective compressors that use context informa-
tion, to the (usually easier) design of 0th order

compressors. The performance of this paradigm
is summarized by the following theorem.

Theorem 1 ([3]) Let A be a compressor that
squeezes any string x in at most jxjH0.x/ C

�jxj C � bits. The compression booster applied
to A produces an output whose size is bounded
by jsjHk.s/ C log jsj C �jsj C O.j†jk/ bits
simultaneously for all k � 0. With respect to
A, the booster introduces a space overhead of
O.jsj log jsj/ bits and no asymptotic time over-
head in the compression process. �

A similar result holds for the modified entropy
Hk
� as well (but it is much harder to prove):

given a compressor A that squeezes any string x

in at most �jxjH�0 .x/C � bits, the compression
booster produces an output whose size is bounded
by �js H�

k
.s/ C log jsj C O.j†jk/ bits, simulta-

neously for all k � 0. In [3] the authors also
show that no compression algorithm, satisfying
some mild assumptions on its inner working,
can achieve a similar bound in which both the
multiplicative factor � and the additive logarith-
mic term are dropped simultaneously. Further-
more [3] proposes an instantiation of the booster
which compresses any string s in at most 2.5
jsjHk

�.s/C log jsjCO.j†jk/ bits. This bound is
analytically superior to the bounds proven for the
best existing compressors including Lempel-Ziv,
Burrows-Wheeler, and PPM compressors.

Applications

Apart from the natural application in data com-
pression, compressor boosting has been used also
to design compressed full-text indexes [8].

Open Problems

The boosting paradigm may be generalized as
follows: given a compressor A, find a permu-
tation P for the symbols of the string s and
a partitioning strategy such that the boosting
approach, applied to them, minimizes the output
size. These pages have provided convincing evi-
dence that the Burrows-Wheeler transform is an
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elegant and efficient permutation P . Surprisingly
enough, other classic data compression problems
fall into this framework: shortest common super-
string (which is MAX-SNP hard), run length en-
coding for a set of strings (which is polynomially
solvable), LZ77, and minimum number of phrases
(which is MAX-SNP hard). Therefore, the boost-
ing approach is general enough to deserve further
theoretical and practical attention [5].

Experimental Results

An investigation of several compression algo-
rithms based on boosting and a comparison with
other state-of-the-art compressors are presented
in [4]. The experiments show that the boosting
technique is more robust than other bwt-based ap-
proaches and works well even with less effective
0th order compressors. However, these positive
features are achieved using more (time and space)
resources.

Data Sets

The data sets used in [4] are available from http://
people.unipmn.it/manzini/boosting. Other data
sets for compression and indexing are available
at the Pizza&Chili site http://pizzachili.di.
unipi.it/.

URL to Code

The compression boosting page (http://people.
unipmn.it/manzini/boosting) contains the source
code of all the algorithms tested in [4]. The code
is organized in a highly modular library that can
be used to boost any compressor even without
knowing the bwt or the boosting procedure.
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Problem Definition

Branchwidth, along with its better-known coun-
terpart, treewidth, are measures of the “global
connectivity” of a graph.

Definition
Let G be a graph on n vertices. A branch decom-
position of G is a pair .T; �/, where T is a tree
with vertices of degree 1 or 3 and £ is a bijection
from the set of leaves of T to the edges of G.
The order, we denote it as ’(e), of an edge e
in T is the number of vertices v of G such that
there are leaves t1; t2 in T in different components
of T .V.T /; E.T / � e/ with �.t1/ and �.t2/ both
containing v as an endpoint.

The width of .T; �/ is equal to maxe2E.T /

f˛.e/g, i.e., is the maximum order over all edges
of T. The branchwidth of G is the minimum
width over all the branch decompositions of G
(in the case where jE.G/j � 1, then we define
the branchwidth to be 0; if jE.G/j D 0, then
G has no branch decomposition; if jE.G/j D 1,
then G has a branch decomposition consisting of
a tree with one vertex – the width of this branch
decomposition is considered to be 0).

The above definition can be directly extended
to hypergraphs where £ is a bijection from the
leaves of T to the hyperedges of G. The same
definition can easily be extended to matroids.

Branchwidth was first defined by Robertson
and Seymour in [25] and served as a main tool
for their proof of Wagner’s Conjecture in their
Graph Minors series of papers. There, branch-
width was used as an alternative to the parameter
of treewidth as it appeared easier to handle for
the purposes of the proof. The relation between
branchwidth and treewidth is given by the follow-
ing result.

Theorem 1 ([25]) If G is a graph, then
branchwidth(G) � treewidth(G) C 1 � b 3/2
branchwidth(G)c.

The algorithmic problems related to branchwidth
are of two kinds: first find fast algorithms com-
puting its value and, second, use it in order to
design fast dynamic programming algorithms for
other problems.

Key Results

Algorithms for Branchwidth
Computing branchwidth is an NP-hard problem
([29]). Moreover, the problem remains NP-hard
even if we restrict its input graphs to the class of
split graphs or bipartite graphs [20].

On the positive side, branchwidth is
computable in polynomial time on interval
graphs [20, 24], and circular arc graphs [21].
Perhaps the most celebrated positive result on
branchwidth is an O.n2/ algorithm for the
branchwidth of planar graphs, given by Seymour
and Thomas in [29]. In the same paper they also
give an O.n4/ algorithm to compute an optimal
branch decomposition. (The running time of this
algorithm has been improved to O.n3/ in [18].)
The algorithm in [29] is basically an algorithm
for a parameter called carving width, related to
telephone routing and the result for branchwidth
follows from the fact that the branch width of
a planar graph is half of the carving-width of its
medial graph.

The algorithm for planar graphs [29] can be
used to construct an approximation algorithm
for branchwidth of some non-planar graphs. On
graph classes excluding a single crossing graph as
a minor branchwidth can be approximated within
a factor of 2.25 [7] (a graph H is a minor of
a graph G if H can be obtained by a subgraph
of G after applying edge contractions). Finally,
it follows from [13] that for every minor closed
graph class, branchwidth can be approximated by
a constant factor.

Branchwidth cannot increase when applying
edge contractions or removals. According to
the Graph Minors theory, this implies that, for
any fixed k, there is a finite number of minor
minimal graphs of branchwidth more than k and
we denote this set of graphs by Bk . Checking
whether a graph G contains a fixed graph as
a minor can be done in polynomial time [27].
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Branchwidth of Graphs, Fig. 1 Example of a graph and its branch decomposition of width 3

Therefore, the knowledge of Bk implies the
construction of a polynomial time algorithm
for deciding whether branchwidth.G/ � k,
for any fixed k. Unfortunately Bk is known
only for small values of k. In particular,
B0 D fP2g; B1 D fP4; K3g;B2 D fK4g and
B3 D fK5; V8; M6; Q3g (here Kr is a clique on r
vertices, Pr is a path on r edges, V8 is the graph
obtained by a cycle on 8 vertices if we connect
all pairs of vertices with cyclic distance 4, M6

is the octahedron, and Q3 is the 3-dimensional
cube). However, for any fixed k, one can construct
a linear, on n D jV.G/j, algorithm that decides
whether an input graph G has branchwidth � k

and, if so, outputs the corresponding branch
decomposition (see [3]). In technical terms,
this implies that the problem of asking, for
a given graph G, whether branchwidth.G/ � k,
parameterized by k is fixed parameter tractable
(i.e., belongs in the parameterized complexity
class FPT). (See [12] for further references on
parameterized algorithms and complexity.) The
algorithm in [3] is complicated and uses the
technique of characteristic sequences, which was
also used in order to prove the analogous result
for treewidth. For the particular cases where
k � 3, simpler algorithms exist that use the
“reduction rule” technique (see [4]). We stress
that B4 remains unknown while several elements
of it have been detected so far (including the

dodecahedron and the icosahedron graphs).
There is a number of algorithms that for a given
k in time 2O.k/ � nO.1/ either decide that the
branchwidth of a given graph is at least k, or
construct a branch decomposition of width O(k)
(see [26]). These results can be generalized to
compute the branchwidth of matroids and even
more general parameters.

An exact algorithm for branchwidth appeared
in [14]. Its complexity is O..2 �

p
3/n � nO.1//.

The algorithm exploits special properties of
branchwidth (see also [24]).

In contrast to treewidth, edge maximal graphs
of given branchwidth are not so easy to charac-
terize (for treewidth there are just k-trees, i.e.,
chordal graphs with all maximal cliques of size
k C 1). An algorithm for generating such graphs
has been given in [23] and reveals several struc-
tural issues on this parameter.

It is known that a large number of graph
theoretical problems can be solved in linear
time when their inputs are restricted to graphs
of small (i.e., fixed) treewidth or branchwidth
(see [2]).

Branchwidth appeared to be a useful tool in
the design of exact subexponential algorithms on
planar graphs and their generalizations. The basic
idea behind this approach is very simple: LetP be
a problem on graphs and G be a class of graphs
such that
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• for every graph G 2 G of branchwidth at
most `, the problem P can be solved in time
2c�` � nO.1/, where c is a constant, and;

• for every graph G 2 G on n vertices a branch
decomposition (not necessarily optimal) of G
of width at most h(n) can be constructed in
polynomial time, where h(n) is a function.

Then for every graph G 2 G, the problem
P can be solved in time 2c�h.n/ � nO.1/. Thus,
everything boils down to computations of con-
stants c and functions h(n). These computations
can be quite involved. For example, as was shown
in [17], for every planar graph G on n vertices, the
branchwidth of G is at most

p
4:5n < 2:1214

p
n.

For extensions of this bound to graphs embed-
dable on a surface of genus g, see [15].

Dorn [9] used fast matrix multiplication
in dynamic programming to estimate the
constants c for a number of problems. For
example, for the MAXIMUM INDEPENDENT

SET problem, c � !=2, where ! < 2:376

is the matrix product exponent over a ring,
which implies that the INDEPENDENT SET

problem on planar graphs is solvable in time
O.22:52

p
n/. For the MINIMUM DOMINATING

SET problem, c � 4, thus implying that the
branch decomposition method runs in time
O.23:99

p
n/. It appears that algorithms of

running time 2O.
p

n/ can be designed even
for some of the “non-local” problems, such
as the HAMILTONIAN CYCLE, CONNECTED

DOMINATING SET, and STEINER TREE, for
which no time 2O.`/ � nO.1/ algorithm on general
graphs of branchwidth ` is known [11]. Here
one needs special properties of some optimal
planar branch decompositions, roughly speaking
that every edge of T corresponds to a disk on
a plane such that all edges of G corresponding
to one component of T � e are inside the disk
and all other edges are outside. Some of the
subexponential algorithms on planar graphs
can be generalized for graphs embedded on
surfaces [10] and, more generally, to graph
classes that are closed under taking of minors [8].

A similar approach can be used for parame-
terized problems on planar graphs. For example,

a parameterized algorithm that finds a dominating
set of size � k (or reports that no such set exists)

in time 2O.
p

k/nO.1/ can be obtained based on
the following observations: there is a constant c
such that every planar graph of branchwidth at
least c

p
k does not contain a dominating set of

size at most k. Then for a given k the algorithm
computes an optimal branch decomposition of
a palanar graph G and if its width is more than
c
p

k concludes that G has no dominating set of
size k. Otherwise, find an optimal dominating
set by performing dynamic programming in time
2O.
p

k/nO.1/. There are several ways of bounding
a parameter of a planar graph in terms of its
branchwidth or treewidth including techniques
similar to Baker’s approach from approximation
algorithms [1], the use of separators, or by some
combinatorial arguments, as shown in [16]. An-
other general approach of bounding the branch-
width of a planar graph by parameters, is based
on the results of Robertson et al. [28] regarding
quickly excluding a planar graph. This brings us
to the notion of bidimensionality [6]. Parameter-
ized algorithms based on branch decompositions
can be generalized from planar graphs to graphs
embedded on surfaces and to graphs excluding
a fixed graph as a minor.

Applications

See [5] for using branchwidth for solving TSP.

Open Problems

1. It is known that any planar graph G has
branchwidth at most

p
4:5 �

p
jV.G/j (or at

most 3
2
�

p
jE.G/j C 2) [17]. Is it possible

to improver this upper bound? Any possible
improvement would accelerate many of the
known exact or parameterized algorithms on
planar graphs that use dynamic programming
on branch decompositions.

2. In contrast to treewidth, very few graph
classes are known where branchwidth is
computable in polynomial time. Find graphs
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classes where branchwidth can be computed
or approximated in polynomial time.

3. FindBk for values of k bigger than 3. The only
structural result on Bk is that its planar ele-
ments will be either self-dual or pairwise-dual.
This follows from the fact that dual planar
graphs have the same branchwidth [29, 16].

4. Find an exact algorithm for branchwidth of
complexity O�.2n/ (the notation O�./ as-
sumes that we drop the non-exponential terms
in the classic O./ notation).

5. The dependence on k of the linear time algo-
rithm for branchwidth in [3] is huge. Find an
2O.k/ � nO.1/ step algorithm, deciding whether
the branchwidth of an n-vertex input graph is
at most k.
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Problem Definition

In this entry, we consider the classical broadcast
scheduling problem and discuss some recent ad-
vances on this problem. The problem is formal-
ized as follows: there is a server which has a
collection of unit-sized pages P D f1; : : :; ng.
The server can broadcast pages in integer time
slots in response to requests, which are given
as the following sequence: at time t , the server
receives wp.t/ 2 Z�0 requests for each page
p 2 P . We say that a request � for page p

that arrives at time t is satisfied at time cp.t/ if
cp.t/ is the first time after t by which the server
has completely transmitted page p. The response
time of the request � is defined to be cp.t/ � t ,
i.e., the time that elapses from its arrival till
the time it is satisfied. Notice that by definition,
the response time for any request is at least 1.
The goal is to find a schedule for broadcasting
pages to minimize the average response time, i.e.,
.
P

t;p wp.t/.cp.t/�t //=
P

t;p wp.t/. Recall that
the problem we discuss here is an offline problem,
where the entire request sequence is specified
as part of the input. There has also been much
research on the online version of the problem, and
we briefly discuss this toward the end of the entry.

Key Results

Erlebach and Hall [5] were the first to show
complexity theoretic hardness for this problem by
showing that it is NP complete. The techniques
we describe below were introduced in [1, 3]. By
fine-tuning these ideas, [2] shows the following
result on the approximability of the offline prob-
lem, which will be the main result we will build
toward this entry.

Theorem 1 ([2]) Let � > 0 be any arbitrary
parameter. There is a polynomial time algorithm
that finds a schedule with average response time
.2C�/�OP TCO..

p
log1C� n � log log n/ log n/,

where OPT denotes the value of the average
response time in the optimum solution.

By setting � D �.log n/ above, we can get
an approximation guarantee of O.log1:5 n/. Also
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note that the O.log1:5 n/ term in Theorem 1 is
additive. As a result, for instance, where OPT is
large (say ˝.log1:5C� n/ for some 
 > 0), we
can set � arbitrarily small to get an approximation
ratio arbitrarily close to 2.

Linear Programming Formulation

All of the algorithmic results in [1–3] are based
on rounding the following natural LP relaxation
for the problem. For each page p 2 Œn� and each
time t , there is a variable ypt which indicates
whether page p was transmitted at time t . We
have another set of variables xptt 0 s.t t 0 > t ,
which indicates whether a request for page p

which arrives at time t is satisfied at t 0. Let wp.t/

denote the total weight of requests for page p that
arrive at time t .

min
X

p;t;t 0>t

.t 0 � t / � !p.t/ � xptt 0 (1)

s.t.
P
p

ypt � 1 8t

(2)
P

t 0>t

xptt 0 � 1 8p; t

(3)

xptt 0 � ypt 0 8p; t; t 0 � t

(4)

xptt 0 ; ypt 0 2 Œ0; 1� 8p; t; t 0

(5)

Constraint (2) ensures that only one page is
transmitted in each time, (3) ensures that each
request must be satisfied, and (4) ensures that
a request for page p can be satisfied at time
t only if p is transmitted at time t . Finally,
a request arriving at time t that is satisfied at
time t 0 contributes .t 0 � t / to the objective. Now
consider the linear program obtained by relaxing
the integrality constraints on xptt 0 and ypt .

Rounding Techniques

The following points illustrate the main ideas
that form the building blocks of the rounding
algorithms in [1–3].

The Half-Integrality Assumption
In what follows, we discuss the techniques in the
special case that the LP solution is half-integral,
i.e., where all the xptt 0 2 f0; 1

2
g. The general case

essentially builds upon this intuition, and all main
technical ingredients are contained in this special
case.

Viewing the LP Solution as a Convex
Combination of Blocks
In half-integral solutions, note that every request
is satisfied by the two earliest half broadcasts
of the corresponding page. For any page p, let
�p D ftp;1; tp;2; : : :g denote the times when the
fractional solution broadcasts 1

2
units of page

p. Notice that the fractional solution can be
entirely characterized by these sets � for all
pages p. The main intuition now is to view
the fractional broadcast of each page as a con-
vex combination of two different solutions, one
which broadcasts the page p integrally at the odd
times ftp;1; tp;3; : : :g and another which broad-
casts the page p integrally at the even times
ftp;2; tp;4; : : :g. We call these the odd schedule
and even schedule for page p.

Rounding the Solution to Minimize
Backlog: Attempt 1 [1]
Our first and most natural rounding idea is to
round the convex combination for each page
into one of the odd or even schedules, each
with probability 1=2. Let us call this the tenta-
tive schedule. Note that on average, the tentative
schedule broadcasts one page per time slot, and
moreover, the expected response time of any
request is equal to its fractional response time.
The only issue, however, is that different pages
may broadcast at the same time slots. Indeed,
there could some time interval [t1,t2/ where the
tentative schedule makes many more than t2 �

t1 broadcasts! A natural manner to resolve this
issue is to broadcast conflicting pages in a first-
come first-serve manner, breaking ties arbitrarily.
Now, the typical request waits for at most its
fractional cost (on average), plus the backlog due
to conflicting broadcasts. Formally, the backlog is
defined as maxt1;t2>t1 NA.t1; t2/�.t2�t1/, where
NA.t1; t2/ is the number of broadcasts made in
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the interval Œt1; t2/ by the tentative schedule. For
this simple randomized algorithm, note that the
backlog of any interval Œt1; t2/ is at most QO.

p
n/

w.h.p by a standard concentration bound. This
can be formalized to give us the QO.

p
n/ approxi-

mation algorithm of [1].

Rounding the Solution to Minimize
Backlog: Attempt 2 [3]
Our next attempt involves controlling the
backlog by explicitly enforcing constraints
which periodically reset the backlog to 0. For
this, we write an auxiliary LP as follows:
we divide the set �p for each page p into
blocks of size B D �.log n/ units each and
have a variable for choosing the odd schedule
or even schedule within each block. (If the
first block chooses an odd schedule and the
second block chooses an even schedule, then
the requests which arrived at the boundary
may incur greater costs, but [3] argues that
these can be bounded for B � ˝.log n/.)
Since each block has B=2 units of fractional
transmission (recall that the LP is half-integral),
the total number of blocks is at most 2T=B ,
where T is the time horizon of all broadcasts
made by the LP solution. Therefore, the total
number of variables is at most 4T=B (each
block chooses either an odd schedule or even
schedule). Now, instead of asking for the LP to
choose schedules such that each time has at most
one transmission, suppose we group the time
slots into intervals of size B and ask for the LP
to choose schedules such that each interval has
at most B transmissions. Now, there are T=B

such constraints, and there are 2T=B constraints
which enforce that we pick one schedule for each
block.

Therefore, in this relaxed LP, we start with a
solution that has 4T=B variables each set to 1=2

and a total of 3T=B constraints. But now, we can
convert this into an optimal basic feasible solu-
tion (where the number of nonzero variables is at
most the number of constraints). This implies that
at least a constant fraction of the blocks chooses
either the odd or even schedules integrally. It
is easy to see that the backlog incurred in any
time interval Œt1; t2/ is at most O.B/ since we

explicitly enforce 0 backlog for consecutive in-
tervals of size B . Therefore, by repeating this
process O.log T / time, we get a fully integral
schedule with backlog O.log TB/ D O.log2 n/.
This then gives us the 2 � OPT C O.log2 n/

approximation guarantee of [3].

Rounding the Solution to Minimize
Backlog: Attempt 3 [2]
Our final attempt involves combining the ideas
of attempts 1 and 2. Indeed, the main issue
with approach 2 is that, when we solve for a
basic feasible solution, we lose all control over
how the solution looks! Therefore, we would
ideally like for a rounding which enforces
the constraints on time intervals of size B ,
but still randomly selects the schedules within
each block. This way, we’ll be able to argue
that within each time interval of size B , the
maximum backlog is O.

p
B/. Moreover, if

we look at a larger time interval I , we can
decompose this into intervals of size B for
which we have constraints in the LP, and a
prefix and suffix of size at most B . Therefore,
the backlog is constrained to be 0 by the LP
for all intermediate intervals except the prefix
and suffix which can have a backlog of O.

p
B/.

This will immediately give us the O.log1:5 n/

approximation of [2].
Indeed, the main tool which lets us achieve

this comes from a recent rounding technique of
Lovett and Meka [7]. They prove the following
result which they used as a subroutine for mini-
mizing discrepancy of set systems, but it turns out
to be a general result applicable in our setting as
well [2].

Theorem 2 (Constructive partial coloring
theorem [7]) Let y 2 Œ0; 1�m be any starting
point, ı > 0 be an arbitrary error parameter,
v1; : : : ; vn 2 Rn vectors, and �1; : : : ; �n � 0

parameters with

nX

iD1

e�	2
i

=16 �
m

16
: (6)

Then, there is a randomized QO..mCn/3=ı2/-time
algorithm to compute a vector z 2 Œ0; 1�m with
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(i) ´j 2 Œ0; ı� [ Œ1 � ı; 1� for at least m=32 of
the indices j 2 Œm�.

(ii) jvi ; �z � vi � yj � �i kvik2, for each i 2 Œn�.

Hardness Results

The authors [2] also complement the above algo-
rithmic result with the following negative results.

Theorem 3 The natural LP relaxation for the
broadcast problem has an integrality gap of
˝.log n/.

Interestingly, Theorem 3 is based on
establishing a new connection with the problem
of minimizing the discrepancy of 3 permutations.
In the 3-permutation problem, we are given
3 permutations �1, �2, �3 of [n]. The goal
of the problem is to find a coloring � that
minimizes the discrepancy. The discrepancy of
˘ D .�1; �2; �3/ w.r.t a ˙1 coloring � is the
worst case discrepancy of all prefixes. That is,

max3
iD1 maxn

kD1

ˇ̌
ˇ
Pk

jD1 �.�i;j /
ˇ̌
ˇ, where �i;j is

the j th element in �i . Newman and Nikolov
[8] showed a tight ˝.log n/ lower bound on
the discrepancy of 3 permutations, resolving a
long-standing conjecture. The authors [2] note
that this can be used to give an integrality gap
for the broadcast scheduling problem as well.
Then, by generalizing the connection to the
discrepancy of ` permutations, [2] shows the
following hardness results (prior to this, only NP
hardness was known).

Theorem 4 There is no O.log1=2�� n/ approxi-
mation algorithm for the problem of minimizing
average response time, for any 
 > 0, unless
NP � [t>0BPTIME.2logt n/. Moreover, for any
sufficiently large `, there is no O.`1=2/ approxi-
mation algorithm for the `-permutation problem,
unless NP D RP.

Online Broadcast Scheduling

The broadcast scheduling problem has also been
studied in the online scheduling model, where the
algorithm is made aware of requests only when

they arrive, and it has to make the broadcast
choices without knowledge of the future requests.
Naturally, the performance of our algorithms de-
grade when compared to the offline model, but re-
markably, we can get nontrivial algorithms even
in the online model! The only additional assump-
tion we need in the online model is that our
scheduling algorithm may broadcast two pages
(instead of one) every 1=
 time slots, in order to
get approximation ratios that depend on 1=
. In
particular, several .1 C 
/-speed, O.poly.1=
//

are now known [4, 6], and it is also known that
extra speed is necessary to obtain no.1/ competi-
tive algorithms.
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Problem Definition

The Model Overview
Consider a set of stations (nodes) modeled as
points in the plane, labeled by natural numbers,
and equipped with transmitting and receiving ca-
pabilities. Every node u has a range ru depending
on the power of its transmitter, and it can reach
all nodes at distance at most ru from it. The
collection of nodes equipped with ranges deter-
mines a directed graph on the set of nodes, called
a geometric radio network (GRN), in which a
directed edge .uv/ exists if node v can be reached
from u. In this case u is called a neighbor of v. If
the power of all transmitters is the same, then all
ranges are equal and the corresponding GRN is
symmetric.

Research partially supported by NSERC discovery grant
and by the Research Chair in Distributed Computing at
the Université du Québec en Outaouais.

Nodes send messages in synchronous rounds.
In every round, every node acts either as a trans-
mitter or as a receiver. A node gets a message in
a given round, if and only if it acts as a receiver
and exactly one of its neighbors transmits in this
round. The message received in this case is the
one that was transmitted. If at least two neighbors
of a receiving node u transmit simultaneously in
a given round, none of the messages is received
by u in this round. In this case, it is said that a
collision occurred at u.

The Problem
Broadcasting is one of the fundamental network
communication primitives. One node of the net-
work, called the source, has to transmit a message
to all other nodes. Remote nodes are informed via
intermediate nodes, along directed paths in the
network. One of the basic performance measures
of a broadcasting scheme is the total time, i.e., the
number of rounds it uses to inform all the nodes
of the network.

For a fixed real s � 0, called the knowledge
radius, it is assumed that each node knows the
part of the network within the circle of radius s

centered at it, i.e., it knows the positions, labels,
and ranges of all nodes at distance at most s. The
following problem is considered:

How does the size of the knowledge radius in-
fluence deterministic broadcasting time in GRN?

Terminology and Notation
Fix a finite set R D fr1; : : : ; rg of positive reals
such that r1 < � � � < r. Reals ri are called
ranges. A node v is a triple Œl; .x; y/; ri �, where l

is a binary sequence called the label of v; .x; y/

are coordinates of a point in the plane, called the
position of v; and ri 2 R is called the range
of v. It is assumed that labels are consecutive
integers 1 to n, where n is the number of nodes,
but all the results hold if labels are integers in the
set f1; : : : ; M g, where M 2 O.n/. Moreover, it
is assumed that all nodes know an upper bound
� on n, where � is polynomial in n. One of
the nodes is distinguished and called the source.
Any set of nodes C with a distinguished source,
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such that positions and labels of distinct nodes are
different, is called a configuration.

With any configuration C , the following di-
rected graph G.C / is associated. Nodes of the
graph are nodes of the configuration and a di-
rected edge .uv/ exists in the graph, if and only
if the distance between u and v does not exceed
the range of u. (The word “distance” always
means the geometric distance in the plane and
not the distance in a graph.) In this case u is
called a neighbor of v. Graphs of the form G.C /

for some configuration C are called geometric
radio networks (GRN). In what follows, only
configurations C such that in G.C / there exists
a directed path from the source to any other node
are considered. If the size of the set R of ranges is
�, a resulting configuration and the corresponding
GRN are called a �-configuration and �-GRN,
respectively. Clearly, all 1-GRN are symmetric
graphs. D denotes the eccentricity of the source
in a GRN, i.e., the maximum length of all shortest
paths in this graph from the source to all other
nodes. D is of order of the diameter if the graph
is symmetric but may be much smaller in general.
�.D/ is an obvious lower bound on broadcasting
time.

Given any configuration, fix a nonnegative real
s, called the knowledge radius, and assume that
every node of C has initial input consisting of all
nodes whose positions are at distance at most s

from its own. Thus, it is assumed that every node
knows a priori labels, positions, and ranges of all
nodes within a circle of radius s centered at it. All
nodes also know the set R of available ranges.

It is not assumed that nodes know any global
parameters of the network, such as its size or
diameter. The only global information that nodes
have about the network is a polynomial upper
bound on its size. Consequently, the broadcast
process may be finished but no node needs to be
aware of this fact. Hence, the adopted definition
of broadcasting time is the same as in [3]. An
algorithm accomplishes broadcasting in t rounds,
if all nodes know the source message after round
t , and no messages are sent after round t .

Only deterministic algorithms are considered.
Nodes can transmit messages even before getting
the source message, which enables preprocessing
in some cases. The algorithms are adaptive, i.e.,

nodes can schedule their actions based on their
local history. A node can obviously gain knowl-
edge from previously obtained messages. There
is, however, another potential way of acquiring
information during the communication process.
The availability of this method depends on what
happens during a collision, i.e., when u acts as a
receiver and two or more neighbors of u transmit
simultaneously. As mentioned above, u does not
get any of the messages in this case. However,
two scenarios are possible. Node u may either
hear nothing (except for the background noise),
or it may receive interference noise different from
any message received properly but also different
from background noise. In the first case, it is said
that there is no collision detection, and in the
second case – that collision detection is available
(cf., e.g., [1]). A discussion justifying both sce-
narios can be found in [1, 7].

Related Work
Broadcasting in geometric radio networks and
some of their variations was considered, e.g.,
in [6, 8, 9, 11, 12]. In [12] the authors proved
that scheduling optimal broadcasting is NP hard
even when restricted to such graphs and gave
an O.n log n/ algorithm to schedule an optimal
broadcast when nodes are situated on a line. In
[11] broadcasting was considered in networks
with nodes randomly placed on a line. In [9]
the authors discussed fault-tolerant broadcasting
in radio networks arising from regular locations
of nodes on the line and in the plane, with
reachability regions being squares and hexagons,
rather than circles. Finally, in [6] broadcasting
with restricted knowledge was considered but the
authors studied only the special case of nodes
situated on the line.

Key Results

The results summarized below are based on the
paper [5], of which [4] is a preliminary version.

Arbitrary GRN in the Model Without
Collision Detection
Clearly all upper bounds and algorithms are valid
in the model with collision detection as well.
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Large Knowledge Radius
Theorem 1 The minimum time to perform
broadcasting in an arbitrary GRN with source
eccentricity D and knowledge radius s > r (or
with global knowledge of the network) is ‚.D/.

This result yields a centralized O.D/ broad-
casting algorithm when global knowledge of the
GRN is available. This is in sharp contrast with
broadcasting in arbitrary graphs, as witnessed by
the graph from [10] which has bounded diameter
but requires time �.log n/ for broadcasting.

Knowledge Radius Zero
Next consider the case when knowledge radius
s D 0, i.e., when every node knows only its
own label, position, and range. In this case, it is
possible to broadcast in time O.n/ for arbitrary
GRN. It should be stressed that this upper bound
is valid for arbitrary GRN, not only symmetric,
unlike the algorithm from [3] designed for arbi-
trary symmetric graphs.

Theorem 2 It is possible to broadcast in arbi-
trary n-node GRN with knowledge radius zero in
time O.n/.

The above upper bound for GRN should be
contrasted with the lower bound from [2,3] show-
ing that some graphs require broadcasting time
�.n log n/. Indeed, the graphs constructed in
[2, 3] and witnessing to this lower bound are not
GRN. Surprisingly, this sharper lower bound does
not require very unusual graphs. While coun-
terexamples from [2, 3] are not GRN, it turns
out that the reason for a longer broadcasting
time is really not the topology of the graph but
the difference in knowledge available to nodes.
Recall that in GRN with knowledge radius 0,
it is assumed that each node knows its own
position (apart from its label and range): the up-
per bound O.n/ uses this geometric information
extensively.

If this knowledge is not available to nodes (i.e.,
each node knows only its label and range), then
there exists a family of GRN requiring broad-
casting time �.n log n/. Moreover, it is possible
to show such GRN resulting from configurations
with only 2 distinct ranges. (Obviously for 1
configurations, this lower bound does not hold, as

these configurations yield symmetric GRN, and
in [3], the authors showed an O.n/ algorithm
working for arbitrary symmetric graphs).

Theorem 3 If every node knows only its own
label and range (and does not know its position),
then there exist n-node GRN requiring broadcast-
ing time �.n log n/.

Symmetric GRN

The Model with Collision Detection
In the model with collision detection and knowl-
edge radius zero, optimal broadcast time is estab-
lished by the following pair of results.

Theorem 4 In the model with collision detec-
tion and knowledge radius zero, it is possible
to broadcast in any n-node symmetric GRN of
diameter D in time O.D C log n/.

The next result is the lower bound �.log n/

for broadcasting time, holding for some GRN
of diameter 2. Together with the obvious bound,
�.D/ this matches the upper bound from Theo-
rem 4.

Theorem 5 For any broadcasting algorithm
with collision detection and knowledge radius
zero, there exist n-node symmetric GRN of
diameter 2 for which this algorithm requires
time �.log n/.

The Model Without Collision Detection
For the model without collision detection, it is
possible to maintain complexity O.D C log n/

of broadcasting. However, we need a stronger
assumption concerning knowledge radius: it is no
longer 0, but positive, although arbitrarily small.

Theorem 6 In the model without collision detec-
tion, it is possible to broadcast in any n-node
symmetric GRN of diameter D in time O.D C

log n/, for any positive knowledge radius.

Applications

The radio network model is applicable to wireless
networks using a single frequency. The specific
model of geometric radio networks described
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in section “Problem Definition” is applicable to
wireless networks where stations are located in a
relatively flat region without large obstacles (nat-
ural or human made), e.g., in the sea or a desert,
as opposed to a large city or a mountain region. In
such a terrain, the signal of a transmitter reaches
receivers at the same distance in all directions,
i.e., the set of potential receivers of a transmitter
is a disc.

Open Problems

1. Is it possible to broadcast in time o.n/ in
arbitrary n-node GRN with eccentricity D

sublinear in n for knowledge radius zero?
Note: In view of Theorem 2, it is possible to
broadcast in time O.n/.

2. Is it possible to broadcast in time O.DClog n/

in all symmetric n-node GRN with eccen-
tricity D, without collision detection, when
knowledge radius is zero?
Note: In view of Theorems 4 and 6, the answer
is positive if either collision detection or a
positive (even arbitrarily small) knowledge
radius is assumed.
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Problem Definition

This problem is concerned with storing a linearly
ordered set of elements such that the DICTIO-
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NARY operations FIND, INSERT, and DELETE

can be performed efficiently.
In 1972, Bayer and McCreight introduced the

class of B-trees as a possible way of implement-
ing an “index for a dynamically changing random
access file” [7, p. 173]. B-trees have received
considerable attention both in the database and in
the algorithms community ever since; a promi-
nent witness to their immediate and widespread
acceptance is the fact that the authoritative survey
on B-trees authored by Comer [10] appeared as
soon as 1979 and, already at that time, referred
to the B-tree data structure as the “ubiquitous
B-tree.”

Notations
A B-tree is a multiway search tree defined as fol-
lows (the definition of Bayer and McCreight [7]
is restated according to Knuth [19, Sec. 6.2.4] and
Cormen et al. [11, Ch. 18.1]):

Definition 1 Let m � 3 be a positive integer. A
tree T is a B-tree of degree m if it is either empty
or fulfills the following properties:

1. All leaves of T appear on the same level of T .
2. Every node of T has at most m children.
3. Every node of T , except for the root and the

leaves, has at least m=2 children.
4. The root of T is either a leaf or has at least two

children.
5. An internal node with k children c1Œ	�; : : : ;

ckŒ	� stores k � 1 keys, and a leaf stores
between m=2 � 1 and m � 1 keys. The keys
keyi Œ	�, 1 � i � k � 1, of a node 	 2 T

are maintained in sorted order, i.e., key1Œ	� �

: : : � keyk�1Œ	�.
6. If 	 is an internal node of T with k

children c1Œ	�; : : : ; ck Œ	�, the k � 1 keys
key1Œ	�; : : : ; keyk�1Œ	� of 	 separate the range
of keys stored in the subtrees rooted at the
children of 	. If xi is any key stored in the
subtree rooted at ci Œ	�, the following holds:

x1 � key1Œ	� � x2 � key2Œ	� � � � � � xk�1

� keyk�1Œ	� � xk

To search a B-tree for a given key x, the
algorithm starts with the root of the tree being
the current node. If x matches one of the current
node’s keys, the search terminates successfully.
Otherwise, if the current node is a leaf, the search
terminates unsuccessfully. If the current node’s
key does not contain x and if the current node
is not a leaf, the algorithm identifies the unique
subtree rooted at the child of the current node that
may contain x and recurses on this subtree. Since
the keys of a node guide the search process, they
are also referred to as routing elements.

Variants and Extensions
Knuth [19] defines a B�-tree to be a B-tree where
Property 3 in Definition 1 is modified such that
every node (except for the root) contains at least
2m=3 keys.

A BC-tree is a leaf-oriented B-tree, i.e., a
B-tree that stores the keys in the leaves only.
Additionally, the leaves are linked in left-to-right
order to allow for fast sequential traversal of the
keys stored in the tree. In a leaf-oriented tree,
the routing elements usually are copies of certain
keys stored in the leaves (keyi Œ	� can be set to
be the largest key stored in the subtree rooted at
ci Œ	�), but any set of routing elements that fulfills
Properties 5 and 6 of Definition 1 can do as well.

Huddleston and Mehlhorn [16] extended Def-
inition 1 to describe a more general class of
multiway search trees that includes the class of
B-trees as a special case. Their class of so-called
.a; b/-trees is parameterized by two integers a

and b with a � 2 and 2a � 1 � b. Property 2
of Definition 1 is modified to allow each node to
have up to b children, and Property 3 is modified
to require that, except for the root and the leaves,
every node of an .a; b/-tree has at least a chil-
dren. All other properties of Definition 1 remain
unchanged for .a; b/-trees. Usually, .a; b/-trees
are implemented as leaf-oriented trees.

By the above definitions, a B-tree is a
.b=2; b/-tree (if b is even) or an .a; 2a � 1/-tree
(if b is odd). The subtle difference between even
and odd maximum degree becomes relevant in an
important amortization argument of Huddleston
and Mehlhorn (see below) where the inequality
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b � 2a is required to hold. This amortization
argument actually caused .a; b/-trees with
b � 2a to be given a special name: weak B-
trees [16].

Update Operations
An INSERT operation on an .a; b/-tree first tries
to locate the key x to be inserted. After an
unsuccessful search that stops at some leaf `,
x is inserted into `’s set of keys. If ` becomes
too full, i.e., contains more than b elements, two
approaches are possible to resolve this overflow
situation: (1) the node ` can be split around its
median key into two nodes with at least a keys
each, or (2) the node ` can have some of its keys
be distributed to its left or right siblings (if this
sibling has enough space to accommodate the
new keys). In the first case, a new routing element
separating the keys in the two new subtrees of `’s
parent � has to be inserted into the key set of
�, and in the second case, the routing element
in � separating the keys in the subtree rooted
at ` from the keys rooted at `’s relevant sibling
needs to be updated. If ` was split, the node �

needs to be checked for a potential overflow due
to the insertion of a new routing element, and
the split may propagate all the way up to the
root.

A DELETE operation also first locates the key
x to be deleted. If (in a non-leaf-oriented tree)
x resides in an internal node, x is replaced by
the largest key in the left subtree of x (or the
smallest key in the right subtree of x) which
resides in a leaf and is deleted from there. In a
leaf-oriented tree, keys are deleted from leaves
only (the correctness of a routing element on a
higher levels is not affected by this deletion).
In any case, a DELETE operation may result in
a leaf node ` containing less than a elements.
Again, there are two approaches to resolve this
underflow situation: (1) the node ` is merged
with its left or right sibling node or (2) keys
from `’s left or right sibling node are moved to
` (unless the sibling node would underflow as a
result of this). Both underflow handling strategies
require updating the routing information stored
in the parent of ` which (in the case of merging)

may underflow itself. As with overflow handling,
this process may propagate up to the root of the
tree.

Note that the root of the tree can be split as
a result of an INSERT operation and that it may
disappear if the only two children of the root are
merged to form the new root. This implies that
B-trees grow and shrink at the top, and thus all
leaves are guaranteed to appear on the same level
of the tree (Property 1 of Definition 1).

Key Results

Since B-trees are a premier index structure for
external storage, the results given in this section
are stated not only in the RAM-model of compu-
tation but also in the I/O-model of computation
introduced by Aggarwal and Vitter [2]. In the
I/O-model, not only the number N of elements
in the problem instance but also the number M

of elements that simultaneously can be kept in
main memory and the number B of elements
that fit into one disk block are (nonconstant)
parameters, and the complexity measure is the
number of I/O-operations needed to solve a given
problem instance. If B-trees are used in an ex-
ternal memory setting, the degree m of the B-
tree is usually chosen such that one node fits
into one disk block, i.e., m 2 �.B/, and this is
assumed implicitly whenever the I/O-complexity
of B-trees is discussed.

Theorem 1 The height of an N -key B-tree of
degree m � 3 is bounded by logdm=2e.N C 1/=2.

Theorem 2 ([22]) The storage utilization for B-
trees of high order under random insertions and
deletions is approximately ln 2 
 69 %.

Theorem 3 A B-tree may be used to implement
the abstract data type DICTIONARY such that
the operations FIND, INSERT, and DELETE on
a set of N elements from a linearly ordered
domain can be performed in O.log N / time (with
O.logB N / I/O-operations) in the worst case.

Remark 1 By threading the nodes of a B-tree,
i.e., by linking the nodes according to their in-
order traversal number, the operations PREV and
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NEXT can be performed in constant time (with a
constant number of I/O-operations).

A (one-dimensional) range query asks for all
keys that fall within a given query range (inter-
val).

Lemma 1 A B-tree supports (one-dimensional)
range queries with O.log N CK/ time complex-
ity (O.logB N CK=B/ I/O-complexity) in the
worst case where K is the number of keys re-
ported.

Under the convention that each update to a
B-tree results in a new “version” of the B-tree,
a multiversion B-tree is a B-tree that allows for
updates of the current version but also supports
queries in earlier versions.

Theorem 4 ([9]) A multiversion B-tree can be
constructed from a B-tree such that it is optimal
with respect to the worst-case complexity of the
FIND, INSERT, and DELETE operations as well
as to the worst-case complexity of answering
range queries.

Applications

Databases
One of the main reasons for the success of the B-
tree lies in its close connection to databases: any
implementation of Codd’s relational data model
(introduced incidentally in the same year as B-
trees were invented) requires an efficient indexing
mechanism to search and traverse relations that
are kept on secondary storage. If this index is
realized as a BC-tree, all keys are stored in a
linked list of leaves which is indexed by the
top levels of the BC-tree, and thus both efficient
logarithmic searching and sequential scanning of
the set of keys is possible.

Due to the importance of this indexing mech-
anism, a wide number of results on how to in-
corporate B-trees and their variants into database
systems and how to formulate algorithms us-
ing these structures have been published in the
database community. Comer [10] and Graefe [14]
summarize early and recent results, but due to
the bulk of results, even these summaries cannot

be fully comprehensive. Also, B-trees have been
shown to work well in the presence of concurrent
operations [8], and Mehlhorn [20, p. 212] notes
that they perform especially well if a top-down
splitting approach is used. The details of this
splitting approach may be found, e.g., in the
textbook of Cormen et al. [11, Ch. 18.2].

Priority Queues
A B-tree may be used to serve as an implemen-
tation of the abstract data type PRIORITYQUEUE

since the smallest key always resides in the first
slot of the leftmost leaf.

Lemma 2 An implementation of a priority queue
that uses a B-tree supports the MIN operation
in O.1/ time (with O.1/ I/O-operations). All
other operations (including DECREASEKEY)
have a time complexity of O.log N / (an
I/O-complexity of O.logB N /) in the worst
case.

Mehlhorn [20, Sec. III, 5.3.1] examined B-
trees (and, more general, .a; b/-trees with a � 2

and b � 2a � 1) in the context of mergeable
priority queues. Mergeable priority queues are
priority queues that additionally allow for con-
catenating and splitting priority queues. Concate-
nating priority queues for a set S1 ¤ ; and a set
S2 ¤ ; is only defined if maxfx j x 2 S1g <

minfx j x 2 S2g and results in a single priority
queue for S1 [ S2. Splitting a priority queue for
a set S3 ¤ ; according to some y 2 dom.S3/

results in a priority queue for the set S4 WD fx 2

S3 j x � yg and a priority queue for the set
S5 WD fx 2 S3 j x > yg (one of these sets
may be empty). Mehlhorn’s result restated in the
context of B-trees is as follows:

Theorem 5 (Theorem 6 in [20, Sec. III,
5.3.1]) If sets S1 ¤ ; and S2 ¤ ;

are represented by a B-tree each, then
operation CONCATENATE.S1; S2/ takes time
O.log maxfjS1j; jS2jg/ (has an I/O-complexity
of O.logB maxfjS1j; jS2jg/) and operation
SPLIT.S1; y/ takes time O.log jS1j/ (has an
I/O-complexity of O.logB jS1j/). All bounds hold
in the worst case.
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Buffered Data Structures
Many applications (including sorting) that in-
volve massive data sets allow for batched data
processing. A variant of B-trees that exploits this
relaxed problem setting is the so-called buffer tree
proposed by Arge [4]. A buffer tree is a B-trees of
degree m 2 �.M=B/ (instead of m 2 �.B/)
where each node is assigned a buffer of size
�.M/. These buffers are used to collect updates
and query requests that are passed further down
the tree only if the buffer gets full enough to allow
for cost amortization.

Theorem 6 (Theorem 1 in [4]) The total cost
of an arbitrary sequence of N intermixed IN-
SERT and DELETE operations on an initially
empty buffer tree is O.N=B logM=B N=B/ I/O
operations, that is, the amortized I/O-cost of an
operation is O.1=B logM=B N=B/.

As a consequence, N elements can be sorted
spending an optimal number of O.N=B logM=B

N=B/ I/O-operations by inserting them into a
(leaf-oriented) buffer tree in a batched manner
and then traversing the leaves. By the preceding
discussion, buffer trees can also be used to im-
plement (batched) priority queues in the external
memory setting. Arge [4] extended his analysis
of buffer trees to show that they also support
DELETEMIN operations with an amortized I/O-
cost of O.1=B logM=B N=B/.

Since the degree of a buffer tree is too large
to allow for efficient Single shot, i.e., non-
batched operations, Arge et al. [6] discussed
how buffers can be attached to (and later
detached from) a multiway tree while at
the same time keeping the degree of the
base structure in �.B/. Their discussion
uses the R-tree index structure as a running
example; the techniques presented, however,
carry over to the B-tree. The resulting data
structure is accessed through standard methods
and additionally allows for batched update
operations, e.g., bulk loading, and queries. The
amortized I/O-complexity of all operations is
analogous to the complexity of the buffer tree
operations.

Using this buffering technique along with
weight balancing [5], Achakeev and Seeger [1]

showed how to efficiently bulk load and bulk
update partially persistent data structures such as
the multiversion B-tree.

Variants of the B-tree base structure that sup-
port modern architectures such as many-core pro-
cessors and that can be updated efficiently have
also been proposed by Sewall et al. [21], Graefe
et al. [15], and Erb et al. [12].

B-trees as Base Structures
Several external memory data structures are de-
rived from B-trees or use a B-tree as their base
structure – see the survey by Arge [3] for a
detailed discussion. One of these structures, the
so-called weight-balanced B-tree is particularly
useful as a base tree for building dynamic exter-
nal data structures that have secondary structures
attached to all (or some) of their nodes. The
weight-balanced B-tree, developed by Arge and
Vitter [5], is a variant of the B-tree that requires
all subtrees of a node to have approximately, i.e.,
up to a small constant factor, the same number of
leaves. Weight-balanced B-trees can be shown to
have the following property:

Theorem 7 ([5]) In a weight-balanced B-tree,
rebalancing after an update operation is per-
formed by splitting or merging nodes. When a
rebalancing operation involves a node 	 that
is the root of a subtree with w.	/ leaves, at
least �.w.	// update operations involving leaves
below 	 have to be performed before 	 itself has
to be rebalanced again.

Using the above theorem, amortized bounds
for maintaining secondary data structures
attached to nodes of the base tree can be obtained
– as long as each such structure can be updated
with an I/O-complexity linear in the number of
elements stored below the node it is attached
to [3, 5].

Amortized Analysis
Most of the amortization arguments used for
.a; b/-trees, buffer trees, and their relatives are
based upon a theorem due to Huddleston and
Mehlhorn [16, Theorem 3]. This theorem states
that the total number of rebalancing operations in
any sequence of N intermixed insert and delete
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operations performed on an initially empty weak
B-tree, i.e., an .a; b/-tree with b � 2a, is at
most linear in N . This result carries over to buffer
trees since they are .M=4B; M=B/-trees. Since
B-trees are .a; b/-trees with b D 2a � 1 (if b is
odd), the result in its full generality is not valid for
B-trees, and Huddleston and Mehlhorn present a
simple counterexample for .2; 3/-trees.

A crucial fact used in the proof of the above
amortization argument is that the sequence of
operations to be analyzed is performed on an
initially empty data structure. Jacobsen et al. [17]
proved the existence of non-extreme .a; b/-trees,
i.e., .a; b/-trees where only few nodes have a
degree of a or b. Based upon this, they re-
established the above result that the rebalancing
cost in a sequence of operations is amortized
constant (and thus the related result for buffer
trees) also for operations on initially nonempty
data structures.

In connection with concurrent operations in
database systems, it should be noted that the
analysis of Huddleston and Mehlhorn actually
requires b � 2a C 2 if a top-down splitting
approach is used. In can be shown, though, that
even in the general case, few node splits (in an
amortized sense) happen close to the root.

URLs to Code and Data Sets

There is a variety of (commercial and free) imple-
mentations of B-trees and .a; b/-trees available
for download. Representatives are the C++-based
implementations that are part of the LEDA-
library (http://www.algorithmic-solutions.com),
the STXXL-library (http://stxxl.sourceforge.net),
and the TPIE-library (http://www.madalgo.au.dk/
tpie/) as well as the Java-based implementation
that is part of the javaxxl-library (http://xxl.
googlecode.com). Furthermore, (pseudo-code)
implementations can be found in almost every
textbook on database systems or on algorithms
and data structures – see, e.g., [11, 13]. Since
textbooks almost always leave developing the
implementation details of the DELETE operation
as an exercise to the reader, the discussion by
Jannink [18] is especially helpful.
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Problem Definition

The Burrows-Wheeler transform is a technique
used for the lossless compression of data. It is the
algorithmic core of the tool bzip2 which has be-
come a standard for the creation and distribution
of compressed archives.

Before the introduction of the Burrows-
Wheeler transform, the field of lossless data
compression was dominated by two approaches

(see [2, 21] for comprehensive surveys). The first
approach dates back to the pioneering works of
Shannon and Huffman, and it is based on the idea
of using shorter codewords for the more frequent
symbols. This idea has originated the techniques
of Huffman and arithmetic coding and, more
recently, the PPM (prediction by partial
matching) family of compression algorithms.
The second approach originated from the works
of Lempel and Ziv and is based on the idea of
adaptively building a dictionary and representing
the input string as a concatenation of dictionary
words. The best-known compressors based on
this approach form the so-called ZIP-family;
they have been the standard for several years
and are available on essentially any computing
platform (e.g., gzip, zip, winzip, just to cite
a few).

The Burrows-Wheeler transform introduced
a completely new approach to lossless data
compression based on the idea of transforming
the input to make it easier to compress. In the
authors’ words: “(this) technique [. . . ] works by
applying a reversible transformation to a block
of text to make redundancy in the input more ac-
cessible to simple coding schemes” [5, Sect. 7].
Not only has this technique produced some state-
of-the-art compressors, but it also originated
the field of compressed indexes [20] and it has
been successfully extended to compress (and
index) structured data such as XML files [11] and
tables [22].

Key Results

Notation
Let s be a string of length n drawn from an
alphabet †. For i = 0,. . . , n � 1, s[i ] denotes
the i -th character of s and sŒi; n � 1� denotes
the suffix of s starting at position i (i.e., starting
with the character sŒi �). Given two strings s and
t , the notation s � t is used to denote that s

lexicographically precedes t .

The Burrows-Wheeler Transform
In [5] Burrows and Wheeler introduced a new
compression algorithm based on a reversible
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transformation, now called the Burrows-
Wheeler transform (bwt). Given a string s, the
computation of bwt(s) consists of three basic
steps (see Fig. 1):

1. Append to the end of s a special symbol $
smaller than any other symbol in †.

2. Form a conceptual matrix M whose rows are
the cyclic shifts of the string s$ sorted in
lexicographic order.

3. Construct the transformed text Os D bwt .s/ by
taking the last column of M.

Notice that every column of M, hence also the
transformed text Os, is a permutation of s$. As an
example F , the first column of the bwt matrix
M consists of all characters of s alphabetically
sorted. In Fig. 1 it is F = $iiiimppssss.

Although it is not obvious from its definition,
the bwt is an invertible transformation, and both
the bwt and its inverse can be computed in O.n/

optimal time. To be consistent with the more
recent literature, the following notation and proof
techniques will be slightly different from the ones
in [5].

Definition 1 For 1� i � n, let sŒki , n�1� denote
the suffix of s prefixing row i of M, and define
‰.i/ as the index of the row prefixed by s[ki + 1,
n � 1].

For example, in Fig. 1 it is ‰(2) = 7 since row
2 of M is prefixed by ippi and row 7 is prefixed

by ppi. Note that ‰.i/ is not defined for i = 0
since row 0 is not prefixed by a proper suffix of s.
(In [5] instead of ‰ the authors make use of a
map which is essentially the inverse of ‰. The
use of ‰ has been introduced in the literature of
compressed indexes where ‰ and its inverse play
an important role (see [20]).)

Lemma 1 For i D 1; : : : ; n, it is F Œi� D

OsŒ‰.i/�.

Proof Since each row contains a cyclic shift of
s$, the last character of the row prefixed by
s[ki C1; n�1] is s[ki ]. Definition 1 then implies
OsŒ‰.i/� D sŒki � D F Œi� as claimed. �

Lemma 2 If 1� i < j � n and F Œi� D F Œj �,
then ‰.i/ < ‰.j /.

Proof Let s[ki , n� 1] (resp. s[kj , n� 1]) denote
the suffix of s prefixing row i (resp. row j ).
The hypothesis i < j implies that sŒki ; n �

1� � sŒkj ; n � 1�. The hypothesis F Œi� D

F Œj � implies sŒki � D sŒkj �; hence, it must be
sŒki C 1; n � 1� � sŒkj C 1; n � 1�. The thesis
follows since by construction ‰.i/ (resp. ‰.j //

is the lexicographic position of the row prefixed
by s[ki + 1, n � 1] (resp. s[kj + 1, n � 1]). �

Lemma 3 For any character c 2 †, if F Œj � is
the `-th occurrence of c in F , then OsŒ‰.j /� is the
`-th occurrence of c in Os.

Proof Take an index h such that h < j and
F Œh� D F Œj � D c(the case h > j is symmetric).

Burrows-Wheeler
Transform, Fig. 1
Example of
Burrows-Wheeler
transform for the string
s = mississippi. The matrix
on the right has the rows
sorted in lexicographic
order. The output of the
bwt is the last column of
the sorted matrix; in this
example, the output is Os D
bwt.s/ D ipssm$pissii

mississippi$
ississippi$m
ssissippi$mi
sissippi$mis
issippi$miss
ssippi$missi
sippi$missis
ippi$mississ
ppi$mississi
pi$mississip
i$mississipp
$mississippi

$ mississipp i
i $mississip p
i ppi$missis s
i ssippi$mis s
i ssissippi$ m
m ississippi $
p i$mississi p
p pi$mississ i
s ippi$missi s
s issippi$mi s
s sippi$miss i
s sissippi$m i
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Lemma 2 implies ‰.h/ < ‰.j / and Lemma 1
implies OsŒ‰.h/� D OsŒ‰.j /� D c. Consequently,
the number of c’s preceding (resp. following)
F [j ] in F coincides with the number of c’s
preceding (resp. following) OsŒ‰.j /� in Os and the
lemma follows. �

In Fig. 1 it is ‰.2/ D 7 and both F [2] and
Os[7] are the second i in their respective strings.
This property is usually expressed by saying
that corresponding characters maintain the same
relative order in both strings F and Os.

Lemma 4 For any i , ‰.i/ can be computed from
Os D bwt .s/.

Proof Retrieve F simply by sorting alphabeti-
cally the symbols of Os. Then compute ‰.i/ as
follows: (1) set c D F.i/, (2) compute ` such
that F [i ] is the `-th occurrence of c in F , and
(3) return the index of the `-th occurrence of c

in Os. �

Referring again to Fig. 1, to compute ‰(10) it
suffices to set c D F Œ10� D s and observe that
F [10] is the second s in F . Then it suffices to
locate the index j of the second s in Os, namely,
j D 4. Hence, ‰.10/ D 4, and in fact row 10
is prefixed by sissippi and row 4 is prefixed by
issippi.

Theorem 1 The original string s can be recov-
ered from bwt(s/.

Proof Lemma 4 implies that the column F and
the map ‰ can be retrieved from bwt(s/. Let j0

denote the index of the special character $ in Os.
By construction, the row j0 of the bwt matrix is
prefixed by s[0,n � 1]; hence, sŒ0� D F Œj0�. Let
j1 = ‰.j0/. By Definition 1 row j1 is prefixed
by s[1, n � 1]; hence, sŒ1� D F Œj1�. Continuing
in this way, it is straightforward to prove by
induction that sŒi � D F Œ‰i .j0/�, for i = 1,. . . ,
n � 1. �

Algorithmic Issues
A remarkable property of the bwt is that both the
direct and the inverse transform admit efficient
algorithms that are extremely simple and elegant.

Theorem 2 Let s[1,n] be a string over a con-
stant size alphabet †. String Os D bwt .s/ can be
computed in O.n/ time using O.nlog n/ bits of
working space.

Proof The suffix array of s can be computed in
O.n/ time and O.nlog n/ bits of working space
by using, for example, the algorithm in [17].
The suffix array is an array of integers saŒ1; n�

such that for i D 1; : : : ; n; sŒsaŒi �; n � 1� is
the i -th suffix of s in the lexicographic order.
Since each row of M is prefixed by a unique
suffix of s followed by the special symbol $, the
suffix array provides the ordering of the rows in
M. Consequently, bwt(s/ can be computed from
sa in linear time using the procedure sa2bwt of
Fig. 2. �

Theorem 3 Let s[1,n] be a string over a con-
stant size alphabet †. Given bwt(s/, the string s

can be retrieved in O.n/ time using O.nlog n/

bits of working space.

Proof The algorithm for retrieving s follows al-
most verbatim the procedure outlined in the proof
of Theorem 1. The only difference is that, for
efficiency reasons, all the values of the map ‰

are computed in one shot. This is done by the
procedure bwt2psi in Fig. 2. In bwt2psi instead
of working with the column F , it uses the array
count which is a “compact” representation of
F . At the beginning of the procedure, for any
character c 2 †; countŒc� provides the index of
the first row of M prefixed by c. For example,
in Fig. 1 countŒi � D 1, countŒm� D 5, and so
on. In the main for loop of bwt2psi, the array bwt
is scanned and count[c] is increased every time
an occurrence of character c is encountered (line
6). Line 6 also assigns to h the index of the `-th
occurrence of c in F . By Lemma 3, line 7 stores
correctly in psi[h] the value i D ‰.h/. After
the computation of array psi, s is retrieved by
using the procedure psi2text of Fig. 2, whose cor-
rectness immediately follows from Theorem 1.
Clearly, the procedures bwt2psi and psi2text in
Fig. 2 run in O.n/ time. Their working space is
dominated by the cost of storing the array psi
which takes O.nlog n/ bits. �
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Procedure sa2bwt

1. bwt[0]=s[n-1];
2. for(i=1;i<=n;i++)
3. if(sa[i] == 1)
4. bwt[i]=’$’;
5. else
6. bwt[i]=s[sa[i]-1];

Procedure bwt2psi

71. for(i=0;i<=n;i++)
2. c = bwt[i];
3. if(c == ’$’)
4. j0 = i;
5. else
6. h = count[c]++;
7. psi[h]=i;

Procedure psi2text

891. k = j0; i=0;
2.  do
3.  k = psi[k];
4.  s[i++] = bwt[k];
   while(i<n);

Burrows-Wheeler Transform, Fig. 2 Algorithms for
computing and inverting the Burrows-Wheeler transform.
Procedure sa2bwt computes bwt(s) given s and its suf-
fix array sa. Procedure bwt2psi takes bwt(s) as input
and computes the ‰ map storing it in the array psi.
bwt2psi also stores in j0 the index of the row prefixed

by s[0, n� 1]. bwt2psi uses the auxiliary array count [1,
j†j ] which initially contains in count[i] the number of
occurrences in bwt(s/ of the symbols 1,. . . , i �1. Finally,
procedure psi2text recovers the string s given bwt(s), the
array psi, and the value j0

The Burrows-Wheeler Compression
Algorithm
The rationale for using the bwt for data compres-
sion is the following. Consider a string w that
appears k times within s. In the bwt matrix of s,
there will be k consecutive rows prefixed by w,
say rows rw C 1, rw C 2; : : : ; rw C k. Hence, the
positions rwC 1; : : : ; rwC k of Os D bwt .s/s will
contain precisely the symbols that immediately
precede w in s. If in s certain patterns are more
frequent than others, then for many substrings w,
the corresponding positions rw + 1,. . . , rw + k

of Os will contain only a few distinct symbols.
For example, if s is an English text and w is
the string his, the corresponding portion of Os will
likely contain many t ’s and blanks and only a
few other symbols. Hence, Os is a permutation
of s that is usually locally homogeneous, in that
its “short” substrings usually contain only a few
distinct symbols. (Obviously this is true only if s

has some regularity: if s is a random string Os will
be random as well!)

To take advantage of this property, Burrows
and Wheeler proposed to process the string Os us-
ing move-to-front encoding [4] (mtf). mtf encodes
each symbol with the number of distinct symbols
encountered since its previous occurrence. To this
end, mtf maintains a list of the symbols ordered
by recency of occurrence; when the next symbol
arrives, the encoder outputs its current rank and
moves it to the front of the list. Note that mtf
produces a string which has the same length as

Os and, if Os is locally homogeneous, the string
mtf .Os/ will mainly consist of small integers.
(If s is an English text, mtf .Os/ usually con-
tains more that 50 % zeroes.) Given this skewed
distribution, mtf .Os/can be easily compressed:
Burrows and Wheeler proposed to compress it
using Huffman or Arithmetic coding, possibly
preceded by the run-length encoding of runs of
equal integers.

Burrows and Wheeler were mainly interested
in proposing an algorithm with good practical
performance. Indeed their simple implementation
outperformed, in terms of compression ratio, the
tool gzip that was the current standard for lossless
compression. A few years after the introduction
of the bwt, [14,18] have shown that the compres-
sion ratio of the Burrows-Wheeler compression
algorithm can be bounded in terms of the k-th
order empirical entropy of the input string for any
k � 0. For example, Kaplan et al. [14] showed
that for any input string s and real � > 1, the
length of the compressed string is bounded by
�nHk.s/ + nlog(�.�// + �gk + O(log n/ bits,
where �.�/ is the standard Zeta function and gk

is a function depending only on k and the size
of †. This bound holds pointwise for any string
s, simultaneously for any k �0 and � > 1,
and it is remarkable since similar bounds have
not been proven for any other known compressor.
The theoretical study on the performance of bwt-
based compressors is an active area of research.
For more recent results, see [6, 12].
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Applications

After the seminal paper of Burrows and Wheeler,
many researchers have proposed compression
algorithms based on the bwt (see [8, 9] and
references therein). Of particular theoretical
interest are the results in [10] showing that
the bwt can be used to design a “compression
booster,” that is, a tool for improving the
performance of other compressors in a well-
defined and measurable way.

Today the main area of application of the
bwt is the design of Compressed Full-text
Indexes [20]. These indexes take advantage of
the relationship between the bwt and the suffix
array to provide a compressed representation
of a string supporting the efficient search and
retrieval of the occurrences of an arbitrary
pattern.

Open Problems

In addition to the investigation on the perfor-
mance of bwt-based compressors, an open prob-
lem of great practical significance is the space-
efficient computation of the bwt. Given a string s

of length n over an alphabet †, both s and Os D
bwt .s/ take O.nlog j†j) bits. Unfortunately,
the linear time algorithms shown in Fig. 2 make
use of auxiliary arrays (i.e., sa and ‰) whose
storage takes ‚.nlog n/ bits. This poses a serious
limitation to the size of the largest bwt that
can be computed in main memory. The problem
of space- and time-efficient computation of the
bwt is still open, even if interesting results are
reported in [1, 3, 7, 13, 15, 19]. The problem of
designing space-efficient algorithms for inverting
the bwt is also open; see [7,16,20] and references
therein for further details.

Experimental Results

An experimental study of the performance of
several compression algorithms based on the bwt

and a comparison with other state-of-the-art com-
pressors is presented in [8].

Data Sets

The data sets used in [8] are available from http://
people.unipmn.it/manzini/boosting. Other data
sets relevant for compression and compressed
indexing are available at the Pizza&Chili site
http://pizzachili.di.unipi.it/.

URL to Code

The compression boosting page (http://people.
unipmn.it/manzini/boosting) contains the source
code of the algorithms tested in [8]. An
extremely efficient code for the computation
of the suffix array and the bwt (without
compression) is available at http://code.google.
com/p/libdivsufsort. The code of bzip2 is
available at http://www.bzip.org.
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Problem Definition

The study of Pease, Shostak and Lamport was
among the first to consider the problem of achiev-
ing a coordinated behavior between processors
of a distributed system in the presence of fail-
ures [21]. Since the paper was published, this
subject has grown into an extensive research
area. Below is a presentation of the main find-
ings regarding the specific questions addressed
in their paper. In some cases this entry uses the
currently accepted terminology in this subject,
rather than the original terminology used by the
authors.

System Model
A distributed system is considered to have n
independent processors, p1, ... ,pn, each modeled
as a (possibly infinite) state machine. The proces-
sors are linked by a communication network that
supports direct communication between every
pair of processors. The processors can commu-
nicate only by exchanging messages, where the
sender of every message can be identified by the
receiver. While the processors may fail, it is as-
sumed that the communication subsystem is fail-
safe. It is not known in advance which processors
will not fail (remain correct) and which ones will
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fail. The types of processor failures are classified
according to the following hierarchy.

Crash failure A crash failure means that the
processor no longer operates (ad infinitum,
starting from the failure point). In particular,
other processors will not receive messages
from a faulty processor after it crashes.

Omission failure A processor fails to send and
receive an arbitrary subset of its messages.

Byzantine failure A faulty processor behaves
arbitrarily.

The Byzantine failure is further subdivided
into two cases, according to the ability of the
processors to create unfalsifiable signatures for
their messages. In the authenticated Byzantine
failure model it is assumed that each message is
signed by its sender and that no other processor
can fake a signature of a correct processor. Thus,
even if such a message is forwarded by other
processors, its authenticity can be verified. If the
processors represent malevolent (human) users of
a distributed system, a Public Key Infrastructure
(PKI) is typically used to sign the messages
(which involves cryptography related issues [17],
not discussed here). Practically, in systems where
processors are just “processors”, a simple sig-
nature, such as CRC (cyclic redundancy check),
might be sufficient [13]. In the unauthenticated
Byzantine failure model there are no message
signatures.

Definition of the Byzantine Agreement
Problem
In the beginning, each processor pi has an exter-
nally provided input value vi, from some set V (of
at least size 2). In the Byzantine Agreement (BA)
problem, every correct processor pi is required to
decide on an output value di 2 V such that the
following conditions hold:

Termination Eventually, pi decides, i.e., the al-
gorithm cannot run indefinitely.

Validity If the input value of all the processors
is v, then the correct processors decide v.

Agreement All the correct processors decide on
the same value.

For crash failures and omission failures there
exists a stronger agreement condition:

Uniform Agreement No two processors (either
correct or faulty) decide differently.

The termination condition has the following
stronger version.

Simultaneous Termination All the correct pro-
cessors decide in the same round (see defini-
tion below).

Timing Model
The BA problem was originally defined for syn-
chronous distributed systems [18, 21]. In this tim-
ing model the processors are assumed to operate
in lockstep, which allows to partition the execu-
tion of a protocol to rounds. Each round consists
of a send phase, during which a processor can
send a (different) message to each processor
directly connected to it, followed by a receive
phase, in which it receives messages sent by these
processors in the current round. Unlimited local
computations (state transitions) are allowed in
both phases, which models the typical situation
in real distributed systems, where computation
steps are faster than the communication steps by
several orders of magnitude.

Overview
This entry deals only with deterministic algo-
rithms for the BA problem in the synchronous
model. For algorithms involving randomization
see the �Optimal Probabilistic Synchronous
Byzantine Agreement entry in this volume. For
results on BA in other models of synchrony,
see �Asynchronous Consensus Impossibility,
� Failure Detectors, �Consensus with Partial
Synchrony entries in this volume.

Key Results

The maximum possible number of faulty pro-
cessors is assumed to be bounded by an a pri-
ori specified number t (e.g., estimated from the
failure probability of individual processor and
the requirements on the failure probability of the
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system as a whole). The number of processors
that actually become faulty in a given execution
is denoted by f, where f � t.

The complexity of synchronous distributed
algorithms is measured by three complementary
parameters. The first is the round complexity,
which measures the number of rounds required
by the algorithm. The second is the message
complexity, i.e., the total number of messages
(and sometimes also their size in bits) sent by all
the processors (in case of Byzantine failures, only
messages sent by correct processors are counted).
The third complexity parameter measures the
number of local operations, as in sequential al-
gorithms.

All the algorithms presented bellow are ef-
ficient, i.e., the number of rounds, the number
of messages and their size, and the local oper-
ations performed by each processor are polyno-
mial in n. In most of the algorithms, both the
exchanged messages and the local computations
involve only the basic data structures (e.g., arrays,
lists, queues). Thus, the discussion is restricted
only to the round and the message complexities
of the algorithms.

The network is assumed to be fully connected,
unless explicitly stated otherwise.

Crash Failures
A simple BA algorithm which runs in t C 1

rounds and sends O.n2/ messages, together with
a proof that this number of rounds is optimal,
can be found in textbooks on distributed com-
puting [19]. Algorithms for deciding in f C 1

rounds, which is the best possible, are presented
in [7, 23] (one additional round is necessary be-
fore the processors can stop [11]). Simultaneous
termination requires t C 1 rounds, even if no fail-
ures actually occur [11], however there exists an
algorithm that in any given execution stops in the
earliest possible round [14]. For uniform agree-
ment, decision can be made in min.f C 2; t C 1/

rounds, which is tight [7].
In case of crash failures it is possible to

solve the BA problem with O(n) messages,
which is also the lower bound. However, all
known message-optimal BA algorithms require
a superlinear time. An algorithm that runs in

O.f C 1/ rounds and uses only O.n polylog
n/ messages, is presented in [8], along with
an overview of other results on BA message
complexity.

Omission Failures
The basic algorithm used to solve the crash
failure BA problem works for omission failures
as well, which allows to solve the problem
in t C 1 rounds [23]. An algorithm which
terminates in min.f C 2; t C 1) rounds was
presented in [22]. Uniform agreement is
impossible for t � n=2 [23]. For t < n=2, there
is an algorithm that achieves uniform agreement
in min .f C 2; t C 1) rounds (and O.n2f /

message complexity) [20].

Byzantine Failures with Authentication
A (t C 1)-round BA algorithm is presented
in [12]. An algorithm which terminates in
min.f C 2; t C 1) rounds can be found in [24].
The message complexity of the problem is
analyzed in [10], where it is shown that
the number of signatures and the number of
messages in any authenticated BA algorithm
are ˝.nt/ and ˝.nC t2/, respectively. In
addition, it is shown that ˝.nt/ is the
bound on the number of messages for the
unauthenticated BA.

Byzantine Failures Without Authentication
In the unauthenticated case, the BA problem
can be solved if and only if n > 3t . The
proof can be found in [1, 19]. An algorithm
that decides in min.f C 3; t C 1) rounds (it
might require two additional rounds to stop) is
presented in [16]. Unfortunately, this algorithm
is complicated. Simpler algorithms, that run in
min.2f C 4; 2t C 1/ and 3 min.f C 2; t C 1/

rounds, are presented in [24] and [5], respec-
tively. In these algorithms the number of sent
messages is O.n3/, moreover, in the latter
algorithm the messages are of constant size (2
bits). Both algorithms assume V D f0; 1g. To
solve the BA problem for a larger V, several
instances of a binary algorithm can be run in
parallel. Alternatively, there exists a simple 2-
round protocol that reduces a BA problem with
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arbitrary initial values to the binary case, e.g., see
Sect. 6.3.3 in [19]. For algorithms with optimal
O(nt) message complexity and t C o.t/ round
complexity see [4, 9].

Arbitrary Network Topologies
When the network is not fully connected, BA can
be solved for crash, omission and authenticated
Byzantine failures if and only if it is (t C 1)-
connected [12]. In case of Byzantine failures
without authentication, BA has a solution if and
only if the network is .2t C 1/-connected and
n > 3t [19]. In both cases the BA problem can
be solved by simulating the algorithms for the
fully connected network, using the fact that the
number of disjoint communication paths between
any pair of non-adjacent processors exceeds the
number of faulty nodes by an amount that is
sufficient for reliable communication.

Interactive Consistency and Byzantine
Generals
The BA (consensus) problem can be stated in
several similar ways. Two widely used variants
are the Byzantine Generals (BG) problem and
the Interactive Consistency (IC) problem. In the
BG case there is a designated processor, say p1,
which is the only one to have an input value.
The termination and agreement requirements of
the BG problem are exactly as in BA, while the
validity condition requires that if the input value
of p1 is v and p1 is correct, then the correct pro-
cessors decide v. The IC problem is an extension
of BG, where every processor is “designated”, so
that each processor has to decide on a vector of n
values, where the conditions for the i-th entry are
as in BG, with pi as the designated processor. For
deterministic synchronous algorithms BA, BG
and IC problems are essentially equivalent, e.g.,
see the discussion in [15].

Firing Squad
The above algorithms assume that the processors
share a “global time”, i.e., all the processors start
in the same (first) round, so that their round
counters are equal throughout the execution of
the algorithm. However, there are cases in which
the processors run in a synchronous network, yet

each processor has its own notion of time (e.g.,
when each processor starts on its own, the round
counter values are distinct among the processors).
In these cases, it is desirable to have a proto-
col that allows the processors to agree on some
specific round, thus creating a common round
which synchronizes all the correct processors.
This synchronization task, known as the Byzan-
tine firing squad problem [6], is tightly realted
to BA.

General Translation Techniques
One particular direction that was pursued as part
of the research on the BA problem is the devel-
opment of methods that automatically translate
any protocol that tolerates a more benign failure
type into one which tolerates more severe fail-
ures [24]. Efficient translations spanning the en-
tire failure hierarchy, starting from crash failures
all the way to unauthenticated Byzantine failures,
can be found in [3] and in Ch. 12 of [1].

Applications

Due to the very tight synchronization assump-
tions made in the algorithms presented above,
they are used mainly in real-time, safety-critical
systems, e.g., aircraft control [13]. In fact, the
original interest of Pease, Shostak and Lamport
in this problem was raised by such an appli-
cation [21]. In addition, BA protocols for the
Byzantine failure case serve as a basic building
block in many cryptographic protocols, e.g., se-
cure multi-party computation [17], by providing
a broadcast channel on top of pairwise communi-
cation channels.
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Problem Definition

Computers contain a hierarchy of memory levels,
with vastly differing access times. Hence, the
time for a memory access depends strongly on
what is the innermost level containing the data
accessed. In analysis of algorithms, the standard
RAM (or von Neumann) model cannot capture
this effect, and external memory models were
introduced to better model the situation. The most
widely used of these models is the two-level

Research supported by Danish Council for Independent
Research, Natural Sciences.

I/O-model [4], also called the external memory
model or the disk access model. The I/O-model
approximates the memory hierarchy by modeling
two levels, with the inner level having size M ,
the outer level having infinite size, and transfers
between the levels taking place in blocks of
B consecutive elements. The cost of an algorithm
is the number of such transfers it makes.

The cache-oblivious model, introduced by
Frigo et al. [26], elegantly generalizes the I/O-
model to a multilevel memory model by a simple
measure: the algorithm is not allowed to know
the value of B and M . More precisely, a cache-
oblivious algorithm is an algorithm formulated
in the RAM model, but analyzed in the I/O-
model, with an analysis valid for any value of
B and M . Cache replacement is assumed to
take place automatically by an optimal off-line
cache replacement strategy. Since the analysis
holds for any B and M , it holds for all levels
simultaneously (for a detailed version of this
statement, see [26]).

The subject of the present chapter is that
of efficient dictionary structures for the cache-
oblivious model.

Key Results

The first cache-oblivious dictionary was given
by Prokop [32], who showed how to lay
out a static binary tree in memory such that
searches take O.logB n/ memory transfers.
This layout, often called the van Emde Boas

© Springer Science+Business Media New York 2016
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layout because it is reminiscent of the classic
van Emde Boas data structure, also ensures that
range searches take O.logB n C k=B/ memory
transfers [8], where k is the size of the output.
Both bounds are optimal for comparison-based
searching.

The first dynamic, cache-oblivious dictionary
was given by Bender et al. [13]. Making use of a
variant of the van Emde Boas layout, a density
maintenance algorithm of the type invented by
Itai et al. [28], and weight-balanced B-trees [5],
they arrived at the following results:

Theorem 1 ([13]) There is a cache-oblivious
dictionary structure supporting searches in
O.logB n/ memory transfers and insertions
and deletions in amortized O.logB n/ memory
transfers.

Theorem 2 ([13]) There is a cache-oblivious
dictionary structure supporting searches in
O.logB n/ memory transfers, insertions and
deletions in amortized O.logB n C .log2 n/=B/

memory transfers, and range searches in
O.logB n C k=B/ memory transfers, where k
is the size of the output.

Later, Bender et al. [10] developed a cache-
oblivious structure for maintaining linked lists
which supports insertion and deletion of elements
inO.1/memory transfers and scanning of k con-
secutive elements in amortized O.k=B/ mem-
ory transfers. Combining this structure with the
structure of the first theorem above, the following
result can be achieved.

Theorem 3 ([10,13]) There is a cache-oblivious
dictionary structure supporting searches in
O.logB n/ memory transfers, insertions and
deletions in amortized O.logB n/ memory
transfers, and range searches in amortized
O.logB n C k=B/ memory transfers, where k
is the size of the output.

A long list of extensions of these basic cache-
oblivious dictionary results has been given. We
now survey these.

Bender et al. [12] and Brodal et al. [20] gave
very similar proposals for reproducing the result
of Theorem 2 but with simpler structures (avoid-
ing the use of weight-balanced B-trees). Based

on exponential trees, Bender et al. [11] gave a
proposal with O.logB n/ worst-case queries and
updates. They also gave a solution with partial
persistence, where searches (in all versions of
the structure) and updates (in latest version of
the structure) require amortized O.logB.mCn//

memory transfers, where m is the number of
versions and n is the number of elements in the
version operated on. Bender et al. [14] extended
the cache-oblivious model to a concurrent set-
ting and gave three proposals for cache-oblivious
B-trees in this setting. Bender et al. [16] pre-
sented cache-oblivious dictionary structures ex-
ploring trade-offs between faster insertion costs
and slower search cost, and Brodal et al. [21]
later gave improved structures meeting lower
bounds. Franceschini and Grossi [25] showed
how to achieveO.logB n/worst-case queries and
updates while usingO.1/ space besides the space
for the n elements stored. Brodal and Kejlberg-
Rasmussen [19] extended this to structures adap-
tive to the working set bound and allowing prede-
cessor queries. Cache-oblivious dictionaries for
other data types such as strings [15, 18, 22–24,
27] and geometric data [1, 2, 6, 7, 9] have been
given. The expected number of I/Os for hash-
ing was studied in the cache-oblivious model
in [31].

It has been shown [17] that the best possible
multiplicative constant in the �.logB n/ search
bound for comparison-based searching is differ-
ent in the I/O-model and in the cache-oblivious
model. It has also been shown [1,3] that for three-
sided range reporting in 2D, the best possible
space bound for structures with worst-case opti-
mal query times is different in the two models.
The latter result implies that linear space cache-
oblivious persistent B-trees with optimal worst-
case bounds for (1D) range reporting are not
possible.

Applications

Dictionaries solve a fundamental data structuring
problem which is part of solutions for a very high
number of computational problems. Dictionaries
for external memory are useful in settings
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where memory accesses are dominating the
running time, and cache-oblivious dictionaries
in particular stand out by their ability to
optimize the access to all levels of an unknown
memory hierarchy. This is an asset, e.g., when
developing programs to be run on diverse or
unknown architectures (such as software libraries
or programs for heterogeneous distributed
computing like grid computing and projects
such as SETI@home). Even on a single, known
architecture, the memory parameters available to
a computational process may be nonconstant if
several processes compete for the same memory
resources. Since cache-oblivious algorithms are
optimized for all parameter values, they have the
potential to adapt more graceful to these changes
and also to varying input sizes forcing different
memory levels to be in use.

Open Problems

It is an open problem to find a data structure
achieving worst-case versions of all of the bounds
in Theorem 3.

Experimental Results

Cache-oblivious dictionaries have been studied
empirically in [12, 15, 20, 29, 30, 33]. The overall
conclusion of these investigations is that cache-
oblivious methods easily can outperform RAM
algorithms, although sometimes not as much as
algorithms tuned to the specific memory hierar-
chy and problem size at hand. On the other hand,
cache-oblivious algorithms seem to perform well
on all levels of the memory hierarchy and to be
more robust to changing problem sizes.
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each level acting as a cache for the next; a typical
hierarchy consists of registers, level 1 cache,
level 2 cache, level 3 cache, main memory, and
disk (Fig. 1). One characteristics of the hierarchy
is that the memory levels get larger and slower the
further they get from the processor, with the ac-
cess time increasing most dramatically between
RAM memory and disk. Another characteristics
is that data is moved between levels in blocks of
consecutive elements.

As a consequence of the differences in
access time between the levels, the cost of a
memory access depends highly on what is the
current lowest memory level holding the element
accessed. Hence, the memory access pattern of an
algorithm has a major influence on its practical
running time. Unfortunately, the RAM model
(Fig. 2) traditionally used to design and analyze
algorithms is not capable of capturing this, as
it assumes that all memory accesses take equal
time.

To better account for the effects of the
memory hierarchy, a number of computational
models have been proposed. The simplest and
most successful is the two-level I/O-model
introduced by Aggarwal and Vitter [3] (Fig. 3).
In this model a two-level memory hierarchy is
assumed, consisting of a fast memory of size
M and a slower memory of infinite size, with

CPU

Memory

Cache-Oblivious Model, Fig. 2 The RAM model

data transferred between the levels in blocks
of B consecutive elements. Computation can
only be performed on data in the fast memory,
and algorithms are assumed to have complete
control over transfers of blocks between the
two levels. Such a block transfer is denoted a
memory transfer. The complexity measure is the
number of memory transfers performed. The
strength of the I/O-model is that it captures
part of the memory hierarchy while being
sufficiently simple to make design and analysis
of algorithms feasible. Over the last two decades,
a large body of results for the I/O-model
has been produced, covering most areas of
algorithmics. For an overview, see the surveys
[5, 32, 34–36].
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More elaborate models of multilevel memory
have been proposed (see e.g., [34] for an
overview) but these models have been less
successful than the I/O-model, mainly because
of their complexity which makes analysis of
algorithms harder. All these models, including
the I/O-model, assume that the characteristics of
the memory hierarchy (the level and block sizes)
are known.

In 1999 the cache-oblivious model (Fig. 4) was
introduced by Frigo et al. [30]. In short, a cache-
oblivious algorithm is an algorithm formulated in
the RAM model but analyzed in the I/O-model,
with the analysis required to hold for any block
size B and memory size M . Memory transfers
are assumed to take place automatically by an
optimal off-line cache replacement strategy.

The crux of the cache-oblivious model is that
because the I/O-model analysis holds for any

block and memory size, it holds for all levels of
a multilevel memory hierarchy (see [30] for a de-
tailed version of this statement). Put differently,
by optimizing an algorithm to one unknown level
of the memory hierarchy, it is optimized to all
levels simultaneously. Thus, the cache-oblivious
model elegantly generalizes the I/O-model to a
multilevel memory model by one simple mea-
sure: the algorithm is not allowed to know the
value of B andM . The challenge, of course, is to
develop algorithms having good memory transfer
analyses under these conditions.

Besides capturing the entire memory hierar-
chy in a conceptually simple way, the cache-
oblivious model has other benefits: Algorithms
developed in the model do not rely on know-
ing the parameters of the memory hierarchy,
which is an asset when developing programs
to be run on diverse or unknown architectures
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(e.g., software libraries or programs for hetero-
geneous distributed computing such as grid com-
puting and projects like SETI@home). Even on a
single, known architecture, the memory parame-
ters available to a computational process may be
nonconstant if several processes compete for the
same memory resources. Since cache-oblivious
algorithms are optimized for all parameter values,
they have the potential to adapt more graceful to
these changes. Also, the same code will adapt
to varying input sizes forcing different memory
levels to be in use. Finally, cache-oblivious al-
gorithms automatically are optimizing the use
of translation lookaside buffers (a cache holding
recently accessed parts of the page table used for
virtual memory) of the CPU, which may be seen
as second memory hierarchy parallel to the one
mentioned in the introduction.

Possible weak points of the cache-oblivious
model are the assumption of optimal off-line
cache replacement and the lack of modeling of
the limited associativity of many of the levels
of the hierarchy. The first point is mitigated by
the fact that normally, the provided analysis of
a proposed cache-oblivious algorithm will work
just as well assuming a least recently used cache
replacement policy, which is closer to actual
replacement strategies of computers. The second
point is also a weak point of most other memory
models.

Key Results

This section surveys a number of the known re-
sults in the cache-oblivious model. Other surveys
available include [6, 15, 26, 32].

First of all, note that scanning an array of N
elements takes O.N=B/ memory transfers for
any values of B and M and hence is an optimal
cache-oblivious algorithm. Thus, standard RAM
algorithms based on scanning may already posses
good analysis in the cache-oblivious model – for
instance, the classic deterministic linear time se-
lection algorithm has complexity O.N=B/ [26].

For sorting, a fundamental fact in the I/O-
model is that comparison-based sorting of N el-
ements takes �.Sort.N // memory transfers [3],

where Sort.N / D N
B

logM=B
N
M

. Also in the
cache-oblivious model, sorting can be carried out
in �.Sort.N // memory transfer, if one makes
the so-called tall cache assumption M � B1C"

[16, 30]. Such an assumption has been shown to
be necessary [18], which proves a separation in
power between cache-oblivious algorithms and
algorithms in the I/O-model (where this assump-
tion is not needed for the sorting bound).

For searching, B-trees have cost O.logB N/,
which is optimal in the I/O-model for comparison-
based searching. This cost is also attainable in the
cache-oblivious model, as shown for the static
case in [33] and for the dynamic case in [12].
Also for searching, a separation between cache-
oblivious algorithms and algorithms in the I/O-
model has been shown [13] in the sense that the
constants attainable in the O.logB N/ bound are
provably different.

By now, a large number of cache-oblivious
algorithms and data structures in many areas
have been given. These include priority queues
[7, 17]; many dictionaries for standard data, string
data, and geometric data (see survey in section
on cache-oblivious B-trees); and algorithms for
other problems in computational geometry [8,
16, 22], for graph problems [4, 7, 19, 23, 31], for
scanning dynamic sets [9], for layout of static
trees [11], for search problems on multi-sets [28],
for dynamic programming [14, 24], for adaptive
sorting [20], for inplace sorting [29], for sorting
of strings [27], for partial persistence [10], for
matrix operations [30], and for the fast Fourier
transform [30].

In the negative direction, a few further sep-
arations in power between cache-oblivious al-
gorithms and algorithms in the I/O-model are
known. Permuting in the I/O-model has complex-
ity�.minfSort.N /;N g/, assuming that elements
are indivisible [3]. It has been proven [18] that
this asymptotic complexity cannot be attained in
the cache-oblivious model. A separation with re-
spect to space complexity has been proven [2] for
three-sided range reporting in 2D where the best
possible space bound for structures with worst-
case optimal query times is different in the two
models. This result also implies that linear space
cache-oblivious persistent B-trees with optimal
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worst-case bounds for (1D) range reporting are
not possible.

Applications

The cache-oblivious model is a means for design
and analysis of algorithms that use the memory
hierarchy of computers efficiently.

Experimental Results

Cache-oblivious algorithms have been evaluated
empirically in a number of areas, including
sorting [21], searching (see survey in section
on cache-oblivious B-trees), matrix algorithms
[1, 30, 37], and dynamic programming [24, 25].

The overall conclusion of these investigations
is that cache-oblivious methods often outperform
RAM algorithms but not always exactly as much
as do algorithms tuned to the specific memory
hierarchy and problem size. On the other hand,
cache-oblivious algorithms seem to perform well
on all levels of the memory hierarchy and to
be more robust to changing problem sizes than
cache-aware algorithms.
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Problem Definition

Sorting a set of elements is one of the most
well-studied computational problems. In the
cache-oblivious setting, the first study of sorting
was presented in 1999 in the seminal paper
by Frigo et al. [8] that introduced the cache-
oblivious framework for developing algorithms
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aimed at machines with (unknown) hierarchical
memory.

Model
In the cache-oblivious setting, the computational
model is a machine with two levels of memory:
a cache of limited capacity and a secondary
memory of infinite capacity. The capacity of the
cache is assumed to be M elements, and data
is moved between the two levels of memory in
blocks of B consecutive elements. Computations
can only be performed on elements stored in
cache, i.e., elements from secondary memory
need to be moved to the cache before operations
can access the elements. Programs are written
as acting directly on one unbounded memory,
i.e., programs are like standard RAM programs.
The necessary block transfers between cache and
secondary memory are handled automatically by
the model, assuming an optimal offline cache
replacement strategy. The core assumption of
the cache-oblivious model is that M and B are
unknown to the algorithm, whereas in the related
I/O model introduced by Aggarwal and Vitter [1],
the algorithms know M and B , and the algo-
rithms perform the block transfers explicitly. A
thorough discussion of the cache-oblivious model
and its relation to multilevel memory hierarchies
is given in [8].

Sorting
For the sorting problem, the input is an array of
N elements residing in secondary memory, and
the output is required to be an array in secondary
memory, storing the input elements in sorted
order.

Key Results

In the I/O model, tight upper and lower bounds
were proved for the sorting problem and
the problem of permuting an array [1]. In
particular it was proved that sorting requires
Ω
�

N
B

logM=B
N
B

�
block transfers and permuting

an array requires Ω
�
min

˚
N; N

B
logM=B

N
B

��

block transfers. Since lower bounds for the

I/O model also hold for the cache-oblivious
model, the lower bounds from [1] immediately
give a lower bound of Ω

�
N
B

logM=B
N
B

�

block transfers for cache-oblivious sorting and
Ω
�
min

˚
N; N

B
logM=B

N
B

��
block transfers for

cache-oblivious permuting. The upper bounds
from [1] cannot be applied to the cache-oblivious
setting since these algorithms make explicit use
of B and M .

Binary mergesort performs O.N log2N/

comparisons, but analyzed in the cache-oblivious
model, it performsO

�
N
B

log2
N
M

�
block transfers

which is a factor Θ
�
log M

B

�
from the lower

bound (assuming a recursive implementation
of binary mergesort, in order to get M in the
denominator in the logN=M part of the bound
on the block transfers). Another comparison-
based sorting algorithm is the classical quicksort
sorting algorithm from 1962 by Hoare [9] that
performs expected O.N log2N/ comparisons
and expected O

�
N
B

log2
N
M

�
block transfers.

Both these algorithms achieve their relatively
good performance for the number of block
transfers from the fact that they are based
on repeated scanning of arrays – a property
not shared with, e.g., heapsort [10] that has
a very poor performance of Θ

�
N
B

logM=B
N
B

�

block transfers. In the I/O model, the optimal
performance of O

�
M
B

logM=B
N
B

�
is achieved

by generalizing binary mergesort to Θ
�

M
B

�
-way

mergesort [1].
Frigo et al. in [8] presented two cache-

oblivious sorting algorithms (which can also
be used to permute an array of elements).
The first algorithm [8, Section 4] is denoted
as funnelsort and is a reminiscent of classical
binary mergesort, whereas the second algorithm
[8, Section 5] is a distribution-based sorting
algorithm. Both algorithms perform optimal
O
�

N
B

logM=B
N
B

�
block transfers – provided a

tall cache assumption M D Ω.B2/ is satisfied.

Funnelsort
The basic idea of funnelsort is to rearrange the
sorting process performed by binary mergesort,
such that the processed data is stored “locally.”
This is achieved by two basic ideas: (1) a
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N 1/3 -merger

Cache-Oblivious Sorting, Fig. 1 The overall recursion of funnelsort (left) and a 16-merger (right)

top-level recursion that partitions the input into
N 1=3 sequences of size N 2=3 funnelsorts these
sequences recursively and merges the resulting
sorted subsequences using an N 1=3-merger. (2)
A k-merger is recursively defined to perform
binary merging of k input sequences in a clever
schedule with an appropriate recursive layout of
data in memory using buffers to hold suspended
merging processes (see Fig. 1). Subsequently two
simplifications were made, without sacrificing
the asymptotic number of block transfers
performed. In [3], it was proved that the binary
merging could be performed lazily, simplifying
the scheduling of merging. In [5], it was further
observed that the recursive layout of k-mergers
is not necessary. It is sufficient that a k-merger is
stored in a consecutive array, i.e., the buffers can
be laid out in an arbitrary order which simplifies
the construction algorithm for the k-merger.

Implicit Cache-Oblivious Sorting
Franceschini in [7] showed how to perform opti-
mal cache-oblivious sorting implicitly using only
O(1) space, i.e., all data is stored in the input
array except for O(1) additional words of infor-
mation. In particular the output array is just a
permutation of the input array.

The Role of the Tall Cache Assumption
The role of the tall cache assumption on cache-
oblivious sorting was studied by Brodal and

Fagerberg in [4]. If no tall cache assumption is
made, they proved the following theorem:

Theorem 1 ([4], Corollary 3) Let B1 D 1

and B2 D M=2. For any cache-oblivious
comparison-based sorting algorithm, let t1 and t2
be upper bounds on the number of I/Os performed
for block sizes B1 and B2. If for a real number
d � 0, it is satisfied that t2 D d �

N
B2

logM=B2

N
B2

then t1 > 1=8 �N log2N=M .

The theorem shows that cache-oblivious
comparison-based sorting without a tall cache
assumption cannot match the performance of
algorithms in the I/O model where M and B

are known to the algorithm. It also has the
natural interpretation that if a cache-oblivious
algorithm is required to be I/O optimal for the
case B D M=2, then binary mergesort is best
possible – any other algorithm will be the same
factor of Θ.logM/ worse than the optimal block
transfer bound for the case M >> D.

For the related problem of permuting an array,
the following theorem states that for all possible
tall cache assumptions B � M ı , no cache-
oblivious permuting algorithm exists with a block
transfer bound (even only in the average case
sense), matching the worst case bound in the I/O
model.

Theorem 2 ([4], Theorem 2) For all ı > 0,
there exists no cache-oblivious algorithm for
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permuting that for all M � 2B and 1 �

B � M ı achieves O
�
min

˚
N; N

B
logM=B

N
B

��

I/Os averaged over all possible permutations of
size N .

Applications

Many problems can be reduced to cache-
oblivious sorting. In particular Arge et al. [2]
developed a cache-oblivious priority queue based
on a reduction to sorting. They furthermore
showed how a cache-oblivious priority queue can
be applied to solve a sequence of graph problems,
including list ranking, BFS, DFS, and minimum
spanning trees.

Brodal and Fagerberg in [3] showed how to
modify the cache-oblivious lazy funnelsort al-
gorithm to solve several problems within com-
putational geometry, including orthogonal line
segment intersection reporting, all the nearest
neighbors, 3D maxima problem, and batched
orthogonal range queries. All these problems can
be solved by a computation process very similarly
to binary mergesort with an additional problem-
dependent twist. This general framework to solve
computational geometry problems is denoted as
distribution sweeping.

Open Problems

Since the seminal paper by Frigo et al. [8] intro-
ducing the cache-oblivious framework, there has
been a lot of work on developing algorithms with
a good theoretical performance, but only a limited
amount of work has been done on implementing
these algorithms. An important issue for future
work is to get further experimental results con-
solidating the cache-oblivious model as a relevant
model for dealing efficiently with hierarchical
memory.

Experimental Results

A detailed experimental study of the cache-
oblivious sorting algorithm funnelsort was

performed in [5]. The main result of [5] is
that a carefully implemented cache-oblivious
sorting algorithm can be faster than a tuned
implementation of quicksort already for input
sizes well within the limits of RAM. The
implementation is also at least as fast as the
recent cache-aware implementations included
in the test. On disk, the difference is even
more pronounced regarding quicksort and the
cache-aware algorithms, whereas the algorithm is
slower than a careful implementation of multiway
mergesort optimized for external memory such
as in TPIE [6].

URL to Code

http://kristoffer.vinther.name/projects/funnelsort/
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Background

In scientific computing and related fields, math-
ematical functions are often approximated on
meshes where each mesh cell contains a local
approximation (e.g., using polynomials) of the
represented quantity (density functions, physical
quantities such as temperature or pressure, etc.).
The grid cells may adaptively refine within ar-
eas of high interest or where the applied nu-
merical algorithms demand improved resolution.

The resolution even may dynamically change
throughout the computation.

In this context, we consider tree-structured
adaptive meshes, i.e., meshes that result from a
recursive subdivision of grid cells. They can be
represented via trees – quadtrees or octrees being
the most prominent examples. In typical problem
settings, quantities are stored on entities (vertices,
edges, faces, cells) of the grid. The computation
of these variables is usually characterized by
local interaction rules and involves variables of
adjacent grid cells only. Hence, efficient algo-
rithms are required for the (parallel) traversal
of such tree-structured grids and their associated
variables.

Problem Definition

Consider a hierarchical mesh of grid cells (trian-
gles, squares, tetrahedra, cubes, etc.), in which
all grid cells result from recursively splitting
an existing grid cell into a fixed number k of
geometrically similar child cells. The resulting
grid is equivalent to a tree with uniform degree k.
We refer to it as a spacetree. Special cases are
quadtrees (based upon squares, i.e., dimension
d D 2, and k D 4) and octrees (cubes, d D 3,
and k D 8). Depending on the problem, only the
mesh defined by the leaves of the tree may be of
interest, or a multilevel grid may be considered.
The latter also includes all cells corresponding
to interior nodes of the tree. Also, meshes re-
sulting from a collection of spacetrees may be
considered. Such a generalized data structure is
called a forest of spacetrees. A mathematical
function shall be defined on such a mesh via
coefficients that are associated with entities (ver-
tices, edges, faces, cells) of the grid cells. Each
coefficient contributes to the representation of the
mathematical function in the grid cells adjacent
to its entity. For typical computations, we then
require efficient algorithms for mesh traversals
processing all unknowns on entities.

Mesh traversal (definition): Run through all
leaf, i.e., unrefined, grid cells and process all
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function coefficients associated to each cell or
to entities adjacent to it.

Multiscale traversal (definition): Perform one
mesh traversal including all (or a certain
subset of the) grid cells (tree-interior and leaf
cells), thus processing the coarse-grid cells of
the grid hierarchy as well.

Mesh traversals may be used to define a se-
quential order (linearization) on the mesh cells
or coefficients. Sequential orders that preserve
locality may be used to define partitions for
parallel processing and load balancing. Of special
interest are algorithms that minimize the memory
accesses during traversals as well as the memory
required to store the tree-structured grids.

Key Results

Space-Filling Curve Orders on
Tree-Structured Grids
Space-filling curves (SFCs) [1, 5] are continuous
surjective mappings from a one-dimensional in-
terval to a higher-dimensional target domain (typ-
ically squares, cubes, etc.). They are constructed

via an “infinite” recursion process analogous to
the generation of tree-structured meshes. Space-
filling curves thus induce a sequential order on a
corresponding tree-structured grid (an example is
given in Fig. 1).

The construction of the curve may be de-
scribed via a grammar, in which the nonterminals
reflect the local orientation of the curve within
a grid cell (e.g., Fig. 2). Terminals are used to
indicate transfers between grid cells or levels.

Together with this grammar, a bitstream
encoding of the refinement information (as in
Fig. 1) provides a minimal-memory data structure
to encode a given tree-structured grid. Using
Hilbert or Lebesgue (Morton order) SFCs, for
example, respective algorithms can be formulated
for quadtrees and octrees. Peano curves lead to
traversals for (hyper)cube-based spacetrees with
3-refinement along each dimension.

Space-Filling-Curve Traversals
Depth-first traversals of the SFC/bitstream-
encoded tree visit all leaf cells of the tree-
structured grid in space-filling order (SFC
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Recursively structured triangular mesh and corresponding
binary tree with bitstream encoding. The illustrated
iteration of a Sierpinski SFC defines a sequential order

on the leaf cells (equivalent to a depth-first traversal of the
tree) and classifies vertices into groups left (�) and right
(�) of the curve. Vertices A, B, C, and D are visited in
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traversal) sequentially. Cell-local data can be
held in a stream. All other entities (in 2D: vertices
and edges) are to be processed by all adjacent
grid cells, i.e., are processed multiple times. For
them, a storage scheme for intermediate values
or repeated access is required. Figure 1 illustrates
that the SFC induces a left/right classification
of these entities. During SFC traversals, these
entities are accessed in a LIFO fashion, such that
intermediate values can be stored on two stacks
(left vs. right). Local access rules may be inferred
from an augmented grammar (as in Fig. 2).
While the left/right classification determines
the involved stack, the old/new classification
determines whether entities are accessed for the
first time during traversal (first touch) or have
been processed by all adjacent cells (last touch).
First and last touch trigger loading and storing
the respective variables from/onto data streams.
These stack properties hold for several space-
filling curves.

SFC Traversals in the Cache-Oblivious
Model
Memory access in SFC traversals is restricted
to stack and stream accesses. Random access to
memory is entirely avoided. Thus, the number
of cache and memory accesses can be accurately
described by the I/O or cache-oblivious model
(see Cross-References). For the 2D case, assume
that for a subtree withK grid cells, the number of
edges on the boundary of the respective subgrid is
O.
p
K/ – which is always satisfied by regularly

refined meshes. It can be shown that if we choose
K such that all boundary elements fit into cache
(size: M words), only boundary edges will cause
non-compulsory cache misses [2]. For an entire
SFC traversal, the number of cache misses is
O
�

N
MB

�
, which is asymptotically optimal (B is

the number of words per cache line). For adap-
tively refined meshes, it is an open question what
kind of restrictions are posed on the mesh by the
O.
p
K/ criterion. While it is easy to construct

degenerate grids that violate the condition, it is
interesting whether grids that result from useful
refinement processes (with physically motivated
refinement criteria) tend to satisfy the O.

p
K/

requirement.

Multiscale Depth-First and Breadth-First
Traversals
Multiscale traversals find applications in mul-
tiphysics simulations, where different physical
models are used on the different levels, as well as
in (additive) multigrid methods or data analysis,
where the different grid levels hold data in differ-
ent resolutions. If algorithms compute not only
results on one level, it is typically sufficient to
have two levels available throughout the traversal
at one time. Multiscale algorithms then can be
constructed recursively.

As variables exist on multiple levels, their
(intermediate) access scheme is more elaborate
than for a pure SFC traversal. A stack-based
management is trivial if we apply one set of
stacks per resolution level. Statements on cache
obliviousness then have to be weakened, as the
maximum number of stacks is not resolution in-
dependent anymore. They depend on the number
of refinement levels. For depth-first and Peano,
2d C 2 stacks have been proven to be suffi-
cient (d the spatial dimension). Such a multiscale
scheme remains cache oblivious independent of
the refinement. It is unknown though doubtful
whether schemes for other curves and depth-first
traversal exist that allow accesses to unknowns
using a resolution-independent number of stacks
for arbitrary d .

Toward Parallel Tree Traversals
Data decomposition is the predominant paral-
lelization paradigm in scientific computing: op-
erations are executed on different sets of data
in parallel. For distinct sets, the parallelization
does not require any synchronization mechanism.
For spacetree data structures, distinct pieces of
data are given by spacetree cells that do not
share a vertex. A parallel data traversal then can
be rewritten as a mesh traversal where (in the
parallel traversal phases) succeeding cells along
the traversal do not share grid entities – a con-
tradiction to connected space-filling curves. For
three-partitioning in 2D, such a reordering allows
a maximum concurrency level of four (see Fig. 3).

For breadth-first traversals, a reordering is
trivial if we drop the space-filling curve ordering
and instead reorder all leaves of one level to ob-
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Cache-Oblivious Spacetree Traversals, Fig. 3 Peano space-filling curve with numbering on a level nC1 (left). The
ordering then is rearranged to have a concurrency level of four (right) illustrated via different shades of gray

tain the highest concurrency level. For depth-first
traversals, in contrast, the maximum concurrency
level is strictly bounded, even if we drop the SFC
paradigm. It remains one for all bipartitioning
schemes, is at most 2d for three-partitioning, and
is at most .bk=2c/d for k-partitioning.

Recursion Unrolling and Parallelism
As concurrency on the cell level is important for
many applications, recursion unrolling becomes
an important technique: (Regular) Subtrees or,
more general, fragments along the space-filling
curve’s depth-first ordering are identified and
locally replaced by a breadth-first traversal. This
can be done without modifying any data ac-
cess order on the surfaces of the cut-out curve
fragment if the data load and store sequence
is preserved along the fragment throughout the
unrolling while only computations are reordered.
Recursion unrolling then has an impact on the ex-
ecution overhead as it eliminates recursive func-
tion calls and it improves the concurrency of
the computations. It can be controlled by an on-
the-fly analysis of the tree structure and thus
seamlessly integrates into changing grids.

Other Tree-Structured Meshes and
Space-Filling Curves
Traversals and stacks can team up only for certain
space-filling curves and dimensions:

• In 2D, the stack property is apparently satis-
fied by all connected space-filling curves (for
connected SFCs, two contiguous subdomains
share an edge). SFC traversals are induced by
a grammar that allows a left/right classifica-
tion. However, no formal proof for this claim
has been given yet.

• In 3D and all higher dimensions, the Peano
curve is the only connected curve that has been
found to satisfy all required properties [6].

• For octree meshes (in 3D), it is an open prob-
lem whether SFC traversals exist that can
exploit stack properties. Hilbert curves and
Lebesgue curves yield data access patterns
with spatial and temporal locality but do not
provide a stack property.

Applications

Practical applications comprise (parallel) numer-
ical simulations on spacetree meshes that require
adaptive refinement and coarsening in each time
step or after each iteration [3,4,6]. SFC traversals
on spacetrees induce sequential orders that may
be exploited to create balanced partitions with
favorable quality (due to SFCs being Hölder con-
tinuous). Using spacetrees as helper data struc-
tures, respective SFC orders can be defined also
for entirely unstructured meshes or particle sets.
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Space-filling curves are thus a frequently used
tool to define parallel partitions.
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Problem Definition

Every planar graph has a crossings-free drawing
in the plane. Formally, a straight-line drawing
of a planar graph G is one where each vertex is
placed at a point in the plane and each edge is rep-
resented by a straight-line segment between the
two corresponding points such that no two edges
cross each other, except possibly at their common
end points. A straight-line grid drawing of G is
a straight-line drawing of G where each vertex
of G is placed on an integer grid point. The area
for such a drawing is defined by the minimum-
area axis-aligned rectangle, or bounding box, that
contains the drawing.

Wagner in 1936 [12], Fáry in 1948 [5], and
Stein in 1951 [10] proved independently that
every planar graph has a straight-line drawing. It
was not until 1990 that the first algorithms for
drawing a planar graph on a grid of polynomial
area were developed. The concepts of canoni-
cal orders [4] and Schnyder realizers [9] were
independently introduced for the purpose of effi-
ciently computing straight-line grid drawings on
the O.n/�O.n/ grid. These two seemingly very
different combinatorial structures turn out to be
closely related and have since been used in many
different problems and in many applications.

Key Results

We first describe canonical orders for planar
graphs and a linear time procedure to construct
them. Then we describe Schnyder realizers and a
linear time procedure to compute them. Finally,
we show how they can be used to compute
straight-line grid drawings for planar graph.

Canonical Order
A planar graph G along with a planar embedding
(a cyclic order of the neighbors for each vertex) is
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called a plane graph. Given a graphG, testing for
planarity and computing a planar embedding can
be done in linear time [6]. Let G be a maximal
plane graph with outer vertices u; v;w in coun-
terclockwise order. Then a canonical order or
shelling order of G is a total order of the vertices
v1 D u; v2 D v; v3; : : : ; vn D w that meets the
following criteria for every 4 � i � n:

(a) The subgraph Gi�1 � G induced by
v1; v2; : : : ; vi�1 is 2-connected, and the
boundary of its outerface is a cycle Ci�1

containing the edge .v1; v2/.
(b) The vertex vi is in the outerface of Gi�1,

and its neighbors in Gi�1 form a subinterval
of the path Ci�1 � .u; v/ with at least two
vertices; see Fig. 1a–1b.

Every maximal plane graphG admits a canon-
ical order; see Fig. 1a–1b. Moreover, computing
such an order can be done in O.n/ time where
n is the number of vertices in G. Before proving
these claims, we need a simple lemma.

Lemma 1 Let G be a maximal plane graph with
canonical order v1; v2 D v; v3; : : : ; vn. Then for
i 2 f3; : : : ; n � 1g, any separating pair fx; yg of
Gi is a chord of Ci .

The proof of the lemma is simple. Recall
that a chord of a cycle C is an edge between
nonadjacent vertices of C. Since G is a maxi-
mal plane graph and since each vertex vj ; j 2

fn; : : : ; i C 1g is in the outerface of Gj , all
the internal faces of Gi are triangles. Adding

a dummy vertex d along with edges from d

to each vertex on the outerface of Gi yields a
maximal plane graphG0. ThenG0 is 3-connected,
and for each separation pair fx; yg of G, the set
T D fx; y; dg is a separating set of G0 since
G D G0 n d . The set T is a separating triangle in
G0 [1], and therefore, the edge .x; y/ is a chord
on Ci .

Theorem 1 A canonical order of a maximal
plane graph G can be computed in linear time.

This is also easy to prove. If the number of
vertices n in G is 3, then the canonical ordering
of G is trivially defined. Let n > 3 and choose
the vertices vn D w; vn�1; : : : ; v3 in this order
so that conditions (a)–(b) of the definition are
satisfied. Since G is a maximal plane graph,
G is 3-connected, and hence, Gn�1 D G n w
is 2-connected. Furthermore, the set of vertices
adjacent to vn D w forms a cycle Cn�1, which
is the boundary of the outerface of Gn�1. Thus,
conditions (a)–(b) hold for k D n.

Assume by induction hypothesis that the ver-
tices vn; vn�1; : : : ; viC1; i � 3 have been appro-
priately chosen. We now find the next vertex vi .
If we can find a vertex x on Ci , which is not
an end vertex of a chord, then we can choose
vk D x. Indeed, if deleting x from Gi violated
the 2-connectivity, then the cut vertex y ofGi�x,
together with x, would form a separating pair for
Gi , and hence, .x; y/ would be a chord in Gi

(from the lemma above). We now show that we
can find a vertex vi on Ci which is not an end
vertex of a chord.
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If there is no chord of Ci , then we can choose
any vertex of Ci other than u and v as vk .
Otherwise, label the vertices of Ci � f.u; v/g by
p1 D u; p2; : : : ; pt D v consecutively from u to
v. By definition, any chord .pk ; pl /; k < l must
have k < l�1. We say that a chord .pk ; pl /; k <

l , includes another chord .pk0 ; pl 0/; k0 < l 0, if
k � k0 < l 0 � l . Then take an inclusion-minimal
chord .pk ; pl / and any vertex pj for k < j < l

can be chosen as vi . Since vi is not an end vertex
of a chord for Ci�1; Gi�1 D Gi n vi remains
2-connected. Furthermore, due to the maximal
planarity of G, the neighborhood of vi on Ci�1

forms a subinterval for Ci�1 � .u; v/.
The algorithm, implicit in the above argument,

can be implemented to run in linear time by
keeping a variable for each vertex x on Ci ,
counting the number of chords x is incident to.
After each vertex vi is chosen, the variables for
all its neighbors can be updated in O.deg.vi //

time. Summing over all vertices in the graph leads
to an overall linear running time [2], and this
concludes the proof of the theorem.

Schnyder Realizer
Let G be a maximal plane graph. A Schnyder
realizer S of G is a partition of the internal edges
of G into three sets T1; T2, and T3 of directed
edges, so that for each interior vertex v, the
following conditions hold:

(a) v has outdegree exactly one in each of T1; T2,
and T3.

(b) The clockwise order of edges incident to v
is outgoing T1, incoming T2, outgoing T3,
incoming T1, outgoing T2, and incoming T3;
see Fig. 1c.

Since a maximal plane graph has exactly n �
3 internal vertices and exactly 3n � 9 internal
edges, the three outgoing edges for each internal
vertex imply that all the edges incident to the
outer vertices are incoming. In fact, these two
conditions imply that for each outer vertex ri ; i D
1; 2; 3, the incident edges belong to the same set,
say Ti , where r1; r2; r3 are in counterclockwise
order around the outerface and each set of edges
Ti forms a directed tree, spanning all the internal

vertices and one external vertex ri , oriented to-
wards ri [3]; see Fig. 1c. Call ri the root of Ti for
i D 1; 2; 3.

Note that the existence of a decomposition
of a maximal planar graph G into three trees
was proved earlier by Nash-Williams [8] and by
Tutte [11]. Kampen [7] showed that these three
trees can be oriented towards any three specified
root vertices r1; r2; r3 of G so that each vertex
other than these roots has exactly one outgoing
edges in each tree. Schnyder [9] proved the exis-
tence of the special decomposition defined above,
along with a linear time algorithm to compute
it. Before we describe the algorithm, we need to
define the operation of edge contraction. Let G
be a graph and e D .x; y/ be an edge of G. Then
we denote by G=e, the simple graph obtained by
deleting x; y and all their incident edges from G,
adding a new vertex ´ and inserting an edge .´; v/
for each vertex v that is adjacent to either x or
y in G. Note that for a maximal plane graph G,
contracting an edge e D .x; y/ yields a maximal
plane graph if and only if there are exactly two
common neighbors of x and y. Two end vertices
of an edge e D .x; y/ have exactly two common
neighbors if and only if the edge e is not on the
boundary of a separating triangle.

Lemma 2 Let G be a maximal plane graph with
at least 4 vertices, where u is an outer vertex ofG.
Then there exists an internal vertex v of G such
that .u; v/ is an edge in G and vertices u and v
have exactly two common neighbors.

This is easy to prove. If G has exactly 4 vertices,
then it is K4 and the internal vertex of G has
exactly two common neighbors. Consider graph
G with more than 4 vertices. If u is not on the
boundary of any separating triangle, then taking
any neighbor of u as v is sufficient. Else, if u is
on the boundary of a separating triangle �, we
can find a desired vertex v by induction on the
subgraph of G inside �.

Theorem 2 A Schnyder realizer of a maximal
plane graph G can be computed in linear time.

The proof of the theorem is by induction. If
G has exactly 3 vertices, its Schnyder realizer
is computed trivially. Consider graph G with
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Canonical Orders and Schnyder Realizers, Fig. 2 Computing a Schnyder realizer of a maximal plane graph G from
that of G=e

more than 3 vertices. Let r1; r2, and r3 be the
three outer vertices in counterclockwise order.
Then by the above lemma, there is an internal
vertex x in G and edge e D .r3; x/ so that
r3 and x have exactly two common neighbors.
Let G0 D G=e. Then by the induction hy-
pothesis, G0 has a Schnyder realizer with the
three trees T1; T2, and T3, rooted at r1; r2, and
r3. We now modify this to find a Schnyder re-
alizer for G. The orientation and partitioning
of all the edges not incident to x remain un-
changed from G=e. Among the edges incident
to x, we add e to T3, oriented towards r3. We
add the two edges that are just counterclock-
wise of e and just clockwise of e in the order-
ing around x, to T1 and T2, respectively, both
oriented away from x. Finally we put all the
remaining edges in T3, oriented towards x; see
Fig. 2. It is now straightforward to check that
these assignment of edges to the trees satisfy
the two conditions. The algorithm implicit in the
proof can be implemented in linear time, given
the edge contraction sequence. The edge contrac-
tion sequence itself can be computed in linear
time by taking the reverse order of a canonical
order of the vertices and in every step contracting
the edge between r3 and the current vertex in
this order.

Drawing Planar Graphs
We now show how canonical orders and Schny-
der realizers can be used to compute straight-line
grid drawings of maximal plane graphs.

Theorem 3 Let G be a maximal plane graph
with n vertices. A straight-line grid drawing of
G on the .2n�4/� .n�2/ grid can be computed
in linear time.

This is a constructive proof. Let O D v1; : : : ; vn

be a canonical order of G;Gi , the subgraph of
G induced by the vertices v1; : : : ; vi , and Ci the
boundary of the outerface of Gi ; i D 3; 4; : : : ; n.
We incrementally obtain straight-line drawing �i

of Gi for i D 3; 4; : : : ; n. We also maintain the
following invariants for �i :

(i) The x-coordinates of the vertices on the path
Ci n f.v1; v2/g are monotonically increasing
as we go from v1 to v2.

(ii) Each edge of the pathCi�f.v1; v2/g is drawn
with slope 1 or �1.

We begin with G3, giving v1; v2, and v3 co-
ordinates .0; 0/; .2; 0/, and .1; 1/; the drawing �3

satisfies conditions (i)–(ii); see Fig. 3a. Suppose
the drawing for �i�1 for some i > 3 has already
been computed; we now show how to obtain �i .
We need to add vertex vi and its incident edges
in Gi to �i�1. Let w1 D v1; : : : ;wt D v2 be the
vertices on Ci�1 n f.v1; v2/g in this order from
v1 to v2. By the property of canonical orders,
vi is adjacent to a subinterval of this path. Let
wl ; : : : ;wr ; 1 � l < r � t , be the vertices
adjacent to vi , in this order. We want to place vi at
the intersection point p between the straight line
from wl with slope 1 and the straight line from
wr with slope �1. Note that by condition (ii),
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Canonical Orders and Schnyder Realizers, Fig. 3 Illustration for the straight-line drawing algorithm using canonical
order

the two vertices wl and wr are at even Manhattan
distance in � , and hence, point p is a grid point.
However, if we place vi at p, then the edges vi wl

and vi wr might overlap with the edges wl wlC1

and wr�1wr , since they are drawn with slopes 1
or �1. We thus shift all the vertices to the left of
wl in �i�1 (including wl ) one unit to the left at all
the vertices to the right of wr in �i�1 (including
wr ) one unit to the right; see Fig. 3.

Consider a rooted tree T , spanning all the in-
ternal vertex of G along with one external vertex
vn, where vn is the root of T and for each internal
vertex x, the parent of x is the highest numbered
successor in G. (Later we see that T can be one
of the three trees in a Schnyder realizer of G.)

For any internal vertex x of G, denote by U.x/
the set of vertices that are in the subtree of T
rooted at v (including v itself). Then the shifting
of the vertices above can be obtained by shifting
the vertices in U.wi /; i D 1; : : : ; l one unit to
the left and the vertices in U.wi /; i D r; : : : ; t

one unit to the right. After these shifts, vi can be
safely placed at the intersection of the line with
slope 1 from wl and the line with slope �1 from
wr . Note that this drawing satisfies conditions (i)–
(ii). This algorithm can be implemented in linear
time, even though the efficient vertex shifting
requires careful relative offset computation [2].

The next theorem shows how Schnyder real-
izers can be used to compute a straight-line grid
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drawing of a plane graph. Let T1; T2, and T3 be
the trees in a Schnyder realizer of G, rooted at
outer vertices r1; r2, and r3. Since each internal
vertex v of G has exactly one outgoing edge
in each of the trees, there is a directed path
Pi .v/ in each of the three trees Ti from v to
ri . These three paths P1.v/; P2.v/, and P3.v/

are vertex disjoint except for v, and they define
three regions R1.v/; R2.v/, and R3.v/ for v.
Here Ri .v/ is the region between the two paths
Pi�1.v/ and PiC1.v/, where the addition and
subtraction are modulo 3. Let �i .v/ denote the
number of vertices inRi .v/nPi�1.v/, where i D
1; 2; 3 and the subtraction is modulo 3. Extend
these definitions to the outer vertices as follows:
�i .ri / D n � 2; �iC1.ri / D 1; �i�1.ri / D 0.

Theorem 4 The coordinates (.�1.v/; �2.v//) for
each vertex v inG give a straight-line drawing �
of G on a grid of size .n � 2/ � .n � 2/.

Place each vertex v at the point with coordi-
nates .�1.v/; �2.v/, and �3.v//. Since �.v/ D
�1.v/ C �2.v/ C �3.v/ counts the number of
vertices in all the three regions of v, each vertex
of G except v is counted exactly once in �.v/.
Thus, �1.v/ C �2.v/ C �3.v/ D n � 1 for
each vertex v. Thus, the drawing � 0 obtained
by these coordinates .�1.v/; �2.v/; �3.v// lies on
the plane x C y C ´ D n � 1. Furthermore,
the drawing does not induce any edge crossings;
see [9]. Thus, � 0 is a straight-line drawing of G
on the plane x C y C ´ D n � 1. Then � is just
a projection of � 0 on the plane ´ D 0 and hence
is planar. Since each coordinate in the drawing is

bounded between 0 and n� 1, the area is at most
.n � 2/ � .n � 2/; see Fig. 4a.

Equivalency of Canonical Orders and
Schnyder Realizers
Here we show that canonical orders and Schnyder
realizers are in fact equivalent in the sense that
a canonical order of a graph defines a Schnyder
realizer and vice versa [3].

Lemma 3 A canonical order for a maximal
plane graphG defines a unique Schnyder realizer
where the three parents for each vertex v of
G are its leftmost predecessor, its rightmost
predecessor, and its highest-labeled successor.

See Fig. 1a, 1c for a canonical order O and the
corresponding Schnyder realizer S defined by O
for a maximal plane graph. One can easily verify
that this definition of S satisfies the two condi-
tions for each internal vertex for a maximal plane
graph. A canonical order O and the Schnyder
realizer S obtained from O for a maximal plane
graph are said to be compatible.

We now describe two ways to obtain a canon-
ical order from a Schnyder realizer S. In both
cases, we obtain a canonical order which is com-
patible with S.

Lemma 4 Let G be a maximal plane graph with
outer vertices r1; r2, and r3 in counterclockwise
order and let T1; T2, and T3 be the three trees in
a Schnyder realizer of G rooted at r1; r2, and r3.
Then a compatible canonical order of G can be
obtained as follows:
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1. By taking the counterclockwise depth-first
traversal order of the vertices in the graph
T1 [ f.r2; r1/; .r3; r1/g; see Fig. 4b.

2. By taking the topological order of the directed
acyclic graph T �1

1 [T
�1
2 [T3, where T �1

i ; i D

1; 2 is the Schnyder tree Ti with reversed edge
directions; see Fig. 4c.

It is not difficult to show that the directed
graph T �1

1 [ T �1
2 [ T3 is in fact acyclic [3, 9].

Then it is easy to verify that the canonical orders
obtained from a Schnyder realizer S are compati-
ble with S; i.e., defining a Schnyder realizer from
them by Lemma 3 produces the original Schnyder
realizer S.
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Problem Definition

This entry covers several problems, related with
each other. The first problem is concerned with
maintaining the causal relationship between
events in a distributed system. The motivation
is to allow distributed systems to reason about
time with no explicit access to a physical clock.
Lamport [5] defines a notion of logical clocks
that can be used to generate timestamps that
are consistent with causal relationships (in
a conservative sense). He illustrates logical
clocks (also called Lamport clocks) with
a distributed mutual exclusion algorithm. The
algorithm turns out to be an illustration of state-
machine replication. Basically, the algorithm
generates a total ordering of the events that is
consistent across processes. With all processes
starting in the same state, they evolve consistently
with no need for further synchronization.

System Model
The system consists of a collection of processes.
Each process consists of a sequence of events.
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Processes have no shared memory and commu-
nicate only by exchanging messages. The exact
definition of an event depends on the system
actually considered and the abstraction level at
which it is considered. One distinguishes between
three kinds of events: internal (affects only the
process executing it), send, and receive events.

Causal Order
Causal order is concerned with the problem that
the occurrence of some events may affect other
events in the future, while other events may not
influence each other. With processes that do not
measure time, the notion of simultaneity must be
redefined in such a way that simultaneous events
are those that cannot possibly affect each other.
For this reason, it is necessary to define what
it means for an event to happen before another
event.

The following “happened before” relation is
defined as an irreflexive partial ordering on the
set of all events in the system [5].

Definition 1 The relation “!” on the set of
events of a system is the smallest relation satis-
fying the following three conditions:

1. If a and b are events in the same process, and
a comes before b, then a! b.

2. If a is the sending of a message by one process
and b is the receipt of the same message by
another process, then a! b.

3. If a! b and b ! c then a! c.

Definition 2 Two distinct events a and b are said
to be concurrent if a 6! b and b 6! a.

Logical Clocks
Lamport also defines clocks in a generic way, as
follows.

Definition 3 A clock Ci for a process pi is
a function which assigns a number Ci hai to
any event a on that process. The entire system
of clocks is represented by the function C which
assigns to any event b the number C hbi, where
C hbi D Cj hbi if b is an event in process pj. The
system of clocks must meet the following clock
condition.

• For any events a and b, if a! b then
C hai < C hbi.

Assuming that there is some arbitrary total
ordering � of the processes (e.g., unique names
ordered lexicographically), Lamport extends the
“happened before” relation and defines a rela-
tion “)” as a total ordering on the set of all
events in the system.

Definition 4 The total order relation ) is de-
fined as follows. If a is an event in process pi

and b is an event in process pj, then a) b if and
only if either one of the following conditions is
satisfied.

1. Ci hai < Cj hbi

2. Ci hai D Cj hbi and pi � pj .

In fact, Lamport [5] also discusses an adap-
tation of these conditions to physical clocks,
and provides a simple clock synchronization al-
gorithm. This is however not discussed further
here.

State Machine Replication
The problem of state-machine replication was
originally presented by Lamport [4, 5]. In a later
review of the problem, Schneider [8] defines the
problem as follows (formulation adapted to the
context of the entry).

Problem 1 (State-machine replication)
INPUT: A set of concurrent requests.
OUTPUT: A sequence of the requests processed
at each process, such that:

1. Replica coordination: all replicas receive and
process the same sequence of requests.

2. Agreement: every non-faulty state-machine
replica receives every request.

3. Order: every non-faulty state-machine replica
processes the requests it receives in the same
relative order.

In his paper on logical time [5] and discussed in
this entry, Lamport does not consider failures. He
does however consider them in another paper on
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state-machine replication for fault-tolerance [4],
which he published the same year.

Key Results

Lamport [5] proposed many key results related to
the problems described above.

Logical Clocks
Lamport [5] defines an elegant system of logical
clocks that meets the clock condition presented
in Definition 3. The clock of a process pi is
represented by a register Ci, such that Ci hai

is the value held by Ci when a occurs. Each
message m carries a timestamp Tm, which equals
the time at which m was sent. The clock sys-
tem can be described in terms of the following
rules.

1. Each process pi increments Ci between any
two successive events.

2. If event a is the sending of a message m
by process pi, then the message m contains
a timestamp Tm D Ci hai.

3. Upon receiving a message m, process pj sets
Cj to max.Cj ; Tm C 1/ (before actually exe-
cuting the receive event).

State Machine Replication
As an illustration for the use of logical clocks,
Lamport [5] describes a mutual exclusion algo-
rithm. He also mentions that the approach is
more general and discusses the concept of state-
machine replication that he refines in a different
paper [4].

The mutual exclusion algorithm is based on
the idea that every process maintains a copy of
a request queue, and the algorithm ensures that
the copies remain consistent across the processes.
This is done by generating a total ordering of
the request messages, according to timestamps
obtained from the logical clocks of the sending
processes.

The algorithm described works under the fol-
lowing simplifying assumptions:

• Every message that is sent is eventually re-
ceived.

• For any processes pi and pj, messages from pi

to pj are received in the same order as they are
sent.

• A process can send messages directly to every
other processes.

The algorithm requires that each process
maintains its own request queue, and ensures that
the request queues of different processes always
remain consistent. Initially, request queues
contain a single message .T0; p0; request/, where
p0 is the process that holds the resource and the
timestamp T0 is smaller than the initial value
of every clock. Then, the algorithm works as
follows.

1. When a process pi requests the resource, it
sends a request message .Tm; pi ; request/ to
all other processes and puts the message in its
request queue.

2. When a process pj receives a message
.Tm; pi ; request/, it puts that message in its
request queue and sends an acknowledgment
.Tm0; pj ; ack/ to pi.

3. When a process pi releases the resource,
it removes all instances of messages
.�; pi ; request/ from its queue, and sends
a message .Tm0; pi ; release/ to all other
processes.

4. When a process pj receives a release message
from process pi, it removes all instances of
messages .�; pi ; request/ from its queue, and
sends a timestamped acknowledgment to pi.

5. Messages in the queue are sorted according to
the total order relation ) of Definition 4.
A process pi can use the resource when
(a) a message .Tm; pi ; request/ appears first
in the queue, and (b) pi has received from all
other processes a message with a timestamp
greater than Tm (or equal from any process pj

where pi � pj ).

Applications

A brief overview of some applications of the con-
cepts presented in this entry has been provided.

First of all, the notion of causality in
distributed systems (or lack thereof) leads
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to a famous problem in which a user may
potentially see an answer before she can see
the relevant question. The time-independent
characterization of causality of Lamport lead
to the development of efficient solutions to
enforce causal order in communication. In his
later work, Lamport [3] gives a more general
definition to the “happened before” relation, so
that a system can be characterized at various
abstraction levels.

About a decade after Lamport’s work on
logical clock, Fidge [2] and Mattern [6] have
developed the notion of vector clocks, with
the advantage of a complete characterization of
causal order. Indeed, the clock condition enforced
by Lamport’s logical clocks is only a one-
way implication (see Definition 3). In contrast,
vector clocks extend Lamport clocks by ensuring
that, for any events a and b, if C hai < C hbi,
then a! b. This is for instance useful for
choosing a set of checkpoints after recovery of
a distributed system, for distributed debugging,
or for deadlock detection. Other extensions of
logical time have been proposed, that have been
surveyed by Raynal and Singhal [7].

The state-machine replication also has many
applications. In particular, it is often used for
replicating a distributed service over several pro-
cessors, so that the service can continue to op-
erate even in spite of the failure of some of
the processors. State-machine replication ensures
that the different replicas remain consistent.

The mutual exclusion algorithm proposed by
Lamport [5] and described in this entry is actually
one of the first known solution to the atomic
broadcast problem (see relevant entry). Briefly,
in a system with several processes that broadcast
messages concurrently, the problem requires that
all processes deliver (and process) all message
in the same order. Nowadays, there exist several
approaches to solving the problem. Surveying
many algorithms, Défago et al. [1] have classified
Lamport’s algorithm as communication history
algorithms, because of the way the ordering is
generated.
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Problem Definition

This problem concerns the query complexity
of proper learning in a widely studied learning
model: exact learning with membership and
equivalence queries. Hellerstein et al. [10]
showed that the number of (polynomially
sized) queries required to learn a concept
class in this model is closely related to the
size of certain certificates associated with that
class. This relationship gives a combinatorial
characterization of the concept classes that can
be learned with polynomial query complexity.
Similar results were shown by Hegedüs based on
the work of Moshkov [8, 13].

The Exact Learning Model
Concepts are functions f W X ! f0; 1g where
X is an arbitrary domain. In exact learning, there
is a hidden concept f from a known class of
concepts C , and the problem is to exactly identify
the concept f .

Algorithms in the exact learning model ob-
tain information about f , the target concept,
by querying two oracles, a membership oracle
and an equivalence oracle. A membership oracle
for f answers membership queries (i.e., point
evaluation queries), which are of the form “What
is f .x/?” where x 2 X . The membership oracle
responds with the value f .x/. An equivalence
oracle for f answers equivalence queries, which
are of the form “Is h 	 f ?” where h is a
representation of a concept defined on the domain
X . Representation h is called a hypothesis. The
equivalence oracle responds “yes” if h.x/ D
f .x/ for all x 2 X . Otherwise, it returns a
counterexample, a value x 2 X such that f .x/ ¤
h.x/.

The exact learning model is due to Angluin
[2]. Angluin viewed the combination of mem-
bership and equivalence oracles as constituting
a “minimally adequate teacher.” Equivalence
queries can be simulated both in Valiant’s well-
known PAC model, and in the online mistake-
bound learning model.

Let R be a set of representations of concepts,
and let CR be the associated set of concepts. For
example, if R were a set of DNF formulas, then
CR would be the set of Boolean functions (con-
cepts) represented by those formulas. An exact
learning algorithm is said to learn R if, given
access to membership and equivalence oracles for
any f in CR, it ends by outputting a hypothesis h
that is a representation of f .

Query Complexity of Exact Learning
There are two aspects to the complexity of exact
learning: query complexity and computational
complexity. The results of Hellerstein et al. con-
cern query complexity.

The query complexity of an exact learning
algorithm measures the number of queries it asks
and the size of the hypotheses it uses in those
queries (and as the final output). We assume that
each representation classR has an associated size
function that assigns a nonnegative number to
each r 2 R. The size of a concept c with respect
to R, denoted by jcjR, is the size of the smallest
representation of c in R; if c … CR, jcjR D
1. Ideally, the query complexity of an exact
learning algorithm will be polynomial in the size
of the target and other relevant parameters of the
problem.

Many exact learning results concern learning
classes of representations of Boolean functions.
Algorithms for learning such classesR are said to
have polynomial query complexity if the number
of hypotheses used, and the size of those hypothe-
ses, is bounded by some polynomial p.m; n/,
where n is the number of variables on which the
target f is defined, and m D jf jR. We assume
that algorithms for learning Boolean representa-
tion classes are given the value of n as input.
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Since the number and size of queries used
by an algorithm are a lower bound on the time
taken by that algorithm, query complexity lower
bounds imply computational complexity lower
bounds.

Improper Learning and the Halving
Algorithm
An algorithm for learning a representation class
R is said to be proper if all hypotheses used in its
equivalence queries are from R, and it outputs a
representation from R. Otherwise, the algorithm
is said to be improper.

When CR is a finite concept class, defined
on a finite domain X , a simple, generic algo-
rithm called the halving algorithm can be used
to exactly learn R using log jCRj equivalence
queries and no membership queries. The halving
algorithm is based on the following idea. For any
V � CR, define the majority hypothesis MAJV

to be the concept defined on X such that for all
x 2 X , MAJV .x/ D 1 if g.x/ D 1 for more
than half the concepts g in V , and MAJV .x/ D

0 otherwise. The halving algorithm begins by
setting V D CR. It then repeats the following:

1. Ask an equivalence query with the hypothesis
MAJV .

2. If the answer is yes, then output MAJV .
3. Otherwise, the answer is a counterexample
x. Remove from V all g such that g.x/ D
MAJV .x/.

Each counterexample eliminates the majority of
the elements currently in V , so the size of V
is reduced by a factor of at least 2 with each
equivalence query. It follows that the algorithm
cannot ask more than log2 jCRj queries.

The halving algorithm cannot necessarily be
implemented as a proper algorithm, since the
majority of hypotheses may not be representable
in CR. Even when they are representable in CR,
the representations may be exponentially larger
than the target concept.

Proper Learning and Certificates
In the exact model, the query complexity of
proper learning is closely related to the size of
certain certificates.

For any concept f defined on a domain X , a
certificate that f has property P is a subset S �
X such that for all concepts g defined on X , if
g.x/ D f .x/ for all x 2 S , then g has property
P . The size of the certificate S is jS j, the number
of elements in it.

We are interested in properties of the form “g
is not a member of the concept class C .” To take
a simple example, let D be the class of constant-
valued n-variable Boolean functions, i.e., D con-
sists of the two functions f1.x1; : : : ; xn/ D 1 and
f2.x1; : : : ; xn/ D 0. Then if g is an n-variable
Boolean function that is not a member of D, a
certificate that g is not in C could be just a pair
a 2 f0; 1gn and b 2 f0; 1gn such that g.a/ D 1

and g.b/ D 0.
For C a class of concepts defined on X define

the exclusion dimension of C to be the maxi-
mum, over all concepts g not in C , of the size
of the smallest certificate that g is not in C . Let
XD.C / denote the exclusion dimension of C . In
the above example, XD.C / D 2.

Key Results

Theorem 1 Let R be a finite class of repre-
sentations. Then there exists a proper learning
algorithm in the exact model that learns C us-
ing at most XD.C / log jC j queries. Further, any
such algorithm for C must make at least XD.C /
queries.

Independently, Hegedüs proved a theorem that
is essentially identical to the above theorem. The
algorithm in the theorem is a variant of the or-
dinary halving algorithm. As noted by Hegedüs,
a similar result to Theorem 1 was proved earlier
by Moshkov, and Moshkov’s techniques can be
used to improve the upper bound by a factor of

2

log2XD.C/
.

An extension of the above result character-
izes the representation classes that have polyno-
mial query complexity. The following theorem
presents the extended result as it applies to rep-
resentation classes of Boolean functions.

Theorem 2 Let R be a class of representations
of Boolean functions. Then there exists a proper
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learning algorithm in the exact model that learns
R with polynomial query complexity iff there
exists a polynomial p.m; n/ such that for all
m; n > 0, and all n-variable Boolean functions
g, if jgjR > m, then there exists a certificate of
size at most p.m; n/ proving that jgjR > m.

A concept class having certificates of the type
specified in this theorem is said to have polyno-
mial certificates.

The algorithm in the above theorem does not
run in polynomial time. Hellerstein et al. give a
more complex algorithm that runs in polynomial
time using a Σ4

P oracle, provided R satisfies
certain technical conditions. Köbler and Lindner
subsequently gave an algorithm using a Σ2

P

oracle [12].
Theorem 2 and its generalization give a tech-

nique for proving bounds on proper learning in
the exact model. Proving upper bounds on the
size of the appropriate certificates yields up-
per bounds on query complexity. Proving lower
bounds on the size of appropriate certificates
yields lower bounds on query complexity and
hence also on time complexity. Moreover, unlike
many computational hardness results in learning,
computational hardness results achieved in this
way do not rely on any unproven complexity
theoretic or cryptographic hardness assumptions.

One of the most widely studied problems in
computational learning theory has been the ques-
tion of whether DNF formulas can be learned
in polynomial time in common learning models.
The following result on learning DNF formulas
was proved using Theorem 2, by bounding the
size of the relevant certificates.

Theorem 3 There is a proper algorithm that
learns DNF formulas in the exact model with
query complexity bounded above by a polynomial
p.m; r; n/, where m is the size of the smallest
DNF representing the target function f , n is the
number of variables on which f is defined, and r
is the size of the smallest CNF representing f .

The size of a DNF is the number of its terms;
the size of a CNF is the number of its clauses. The
above theorem does not imply polynomial-time
learnability of arbitrary DNF formulas, since the
running time of the algorithm depends not just

on the size of the smallest DNF representing the
target but also on the size of the smallest CNF.

Building on results of Alekhnovich et al.,
Feldman showed that if NP¤ RP, DNF formulas
cannot be properly learned in polynomial time
in the PAC model augmented with membership
queries. The same negative result then follows
immediately for the exact model [1, 7]. Heller-
stein and Raghavan used certificate size lower
bounds and Theorem 1 to prove that DNF for-
mulas cannot be learned by a proper exact algo-
rithm with polynomial query complexity, if the
algorithm is restricted to using DNF hypotheses
that are only slightly larger than the target [9].

The main results of Hellerstein et al. apply
to learning with membership and equivalence
queries. Hellerstein et al. also considered the
model of exact learning with membership queries
alone and showed that in this model, a projection-
closed Boolean function class is polynomial
query learnable iff it has polynomial teaching
dimension. Teaching dimension was previously
defined by Goldman and Kearns. Hegedüs
defined the extended teaching dimension and
showed that all classes are polynomially query
learnable with membership queries alone iff they
have polynomial extended teaching dimension.

Balcázar et al. introduced the general dimen-
sion, which generalizes the combinatorial dimen-
sions discussed above [5]. It can be used to
characterize polynomial query learnability for
a wide range of different queries. Balcan and
Hanneke have investigated related combinatorial
dimensions in the active learning setting [4].

Open Problems

It remains open whether DNF formulas can be
learned in polynomial time in the exact model,
using hypotheses that are not DNF formulas.

Feldman’s results show the computational
hardness of proper learning of DNF in the
exact learning model based on complexity-
theoretic assumptions. However, it is unclear
whether query complexity is also a barrier to
efficient learning of DNF formulas. It is still
open whether the class of DNF formulas has
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polynomial certificates; showing they do not have
polynomial certificates would give a hardness
result for proper learning of DNF based only on
query complexity, with no complexity-theoretic
assumptions (and without the hypothesis-size
restrictions used by Hellerstein and Raghavan).
DNF formulas do have certain sub-exponential
certificates [11].

It is open whether decision trees have polyno-
mial certificates.

Certificate techniques are used to prove lower
bounds on learning when we restrict the type
of hypotheses used by the learning algorithm.
These types of results are called representation
dependent, since they depend on the restriction
of the representations used as hypotheses.
Although there are some techniques for proving
representation-independent hardness results,
there is a need for more powerful techniques.
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Problem Definition

One of the major problems facing wireless net-
works is the capacity reduction due to inter-
ference among multiple simultaneous transmis-
sions. In wireless mesh networks providing mesh
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routers with multiple-radios can greatly allevi-
ate this problem. With multiple-radios, nodes
can transmit and receive simultaneously or can
transmit on multiple channels simultaneously.
However, due to the limited number of channels
available the interference cannot be completely
eliminated and in addition careful channel assign-
ment must be carried out to mitigate the effects
of interference. Channel assignment and routing
are inter-dependent. This is because channel as-
signments have an impact on link bandwidths and
the extent to which link transmissions interfere.
This clearly impacts the routing used to satisfy
traffic demands. In the same way traffic routing
determines the traffic flows for each link which
certainly affects channel assignments. Channel
assignments need to be done in a way such that
the communication requirements for the links
can be met. Thus, the problem of throughput
maximization of wireless mesh networks must be
solved through channel assignment, routing, and
scheduling.

Formally, given a wireless mesh backbone
network modeled as a graph (V, E): The node
t 2 V represents the wired network. An edge
e D .u; v/ exists in E iff u and v are within
communication range RT. The set VG � V

represents the set of gateway nodes. The system
has a total of K channels. Each node u 2 V
has I(u) network interface cards, and has an
aggregated demand l(u) from its associated users.
For each edge e the set I.e/ 
 E denotes the
set of edges that it interferes with. A pair of
nodes that use the same channel and are within
interference range RIx may interfere with each
other’s communication, even if they cannot
directly communicate. Node pairs using different
channels can transmit packets simultaneously
without interference. The problem is to maximize
œ where at least �l.u/ amount of throughput
can be routed from each node u to the Internet
(represented by a node t). The �l.u/ throughput
for each node u is achieved by computing
g(1) a network flow that associates with each
edge e D .u; v/ values f .e.i//; 1 � i � K

where f .e.i// is the rate at which traffic is
transmitted by node u for node v on channel i;
(2) a feasible channel assignment F(u) (F(u)

is an ordered set where the ith interface of u
operates on the ith channel in F(u)) such that,
whenever f .e.i// > 0, i 2 F.u/ \ F.v/; (3)
a feasible schedule S that decides the set of
edge channel pair (e, i) (edge e using channel,
i.e., f .e.i// > 0 scheduled at time slot £, for
� D 1; 2; : : : ; T where T is the period of the
schedule. A schedule is feasible if the edges of
no two edge pairs (e1; i /; .e2; i / scheduled in the
same time slot for a common channel i interfere
with each other (e1 … I.e2/ and e2 … I.e1/).
Thus, a feasible schedule is also referred to
as an interference free edge schedule. An
indicator variable Xe;i;� ; e 2 E; i 2 F.e/; � � 1

is used. It is assigned 1 if and only if
link e is active in slot £ on channel i.
Note that 1=T

P
1���T Xe;i;�c.e/ D f .e.i//.

This is because communication at rate c(e)
happens in every slot that link e is active on
channel i and since f .e.i// is the average rate
attained on link e for channel i. This implies
1=T

P
1���T Xe;i;� D

f .e.i//
c.e/

.

Joint Routing, Channel Assignment,
and Link Scheduling Algorithm

Even the interference free edge scheduling sub-
problem given the edge flows is NP-hard [5]. An
approximation algorithm called RCL for the joint
routing, channel assignment, and link scheduling
problem has been developed. The algorithm
performs the following steps in the given
order:

1. Solve LP: First optimally solve a LP relax-
ation of the problem. This results in a flow
on the flow graph along with a not necessar-
ily feasible channel assignment for the node
radios. Specifically, a node may be assigned
more channels than the number of its radios.
However, this channel assignment is “opti-
mal” in terms of ensuring that the interference
for each channel is minimum. This step also
yields a lower bound on the œ value which
is used in establishing the worst case perfor-
mance guarantee of the overall algorithm.
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2. Channel Assignment: This step presents
a channel assignment algorithm which is
used to adjust the flow on the flow graph
(routing changes) to ensure a feasible channel
assignment. This flow adjustment also strives
to keep the increase in interference for each
channel to a minimum.

3. Interference Free Link Scheduling: This
step obtains an interference free link schedule
for the edge flows corresponding to the flow
on the flow graph.

Each of these steps is described in the following
subsections.

A Linear Programming-Based Routing
Algorithm
A linear program LP (1) to find a flow that
maximizes œ is given below:

max� (1)

Subject to

�l.v/C
X

eD.u;v/2E

KX

iD1

f .e.i//

D
X

eD.v;u/2E

KX

iD1

f .e.i// ;8v 2 V � VG

(2)

f .e.i// � c.e/ ; 8e 2 E (3)

X

1�i�K

0

@
X

eD.u;v/2E

f .e.i//

c.e/
C

X

eD.v;u/2E

f .e.i//

c.e/

1

A

� I.v/ ; v 2 V

(4)

f .e.i//

c.e/
C

X

e02I.e/

f .e0.i//

c.e0/
� c.q/ ;

8e 2 E; 1 � i � K: (5)

The first two constraints are flow constraints.
The first one is the flow conservation constraint;
the second one ensures no link capacity is
violated. The third constraint is the node radio
constraints. Recall that a IWMN node v 2 V has
I(v) radios and hence can be assigned at most I(v)
channels from 1 � i � K. One way to model this
constraint is to observe that due to interference
constraints v can be involved in at most I(v)
simultaneous communications (with different
one hop neighbors). In other words this constraint
follows from

P
1�i�K

P
eD.u;v/2E Xe;i;� CP

1�i�K

P
eD.v;u/2E Xe;i;� � I.v/: The fourth

constraint is the link congestion constraints
which are discussed in detail in section “Link
Flow Scheduling”. Note that all the constraints
listed above are necessary conditions for any
feasible solution. However, these constraints are
not necessarily sufficient. Hence if a solution is
found that satisfies these constraints it may not be
a feasible solution. The approach is to start with
a “good” but not necessarily feasible solution
that satisfies all of these constraints and use it to
construct a feasible solution without impacting
the quality of the solution.

A solution to this LP can be viewed as a flow
on a flow graph H D .V;EH / where EH D

fe.i/j8e 2 E; 1 � i � Kg. Although the optimal
solution to this LP yields the best possible œ
(say ��) from a practical point of view more
improvements may be possible:

• The flow may have directed cycles. This may
be the case since the LP does not try to min-
imize the amount of interference directly. By
removing the flow on the directed cycle (equal
amount off each edge) flow conservation is
maintained and in addition since there are
fewer transmissions the amount of interfer-
ence is reduced.

• The flow may be using a long path when
shorter paths are available. Note that longer
paths imply more link transmissions. In this
case it is often the case that by moving the
flow to shorter paths, system interference may
be reduced.

The above arguments suggest that it would be
practical to find among all solutions that attain the
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optimal œ value of �� the one for which the total
value of the following quantity is minimized:

X

1�i�K

X

eD.v;u/2E

f .e.i//

c.e/
:

The LP is then re-solved with this objective
function and with œ fixed at ��.

Channel Assignment
The solution to the LP (1) is a set of flow values
f .e.i// for edge e and channel i that maximize
the value œ. Let �� denote the optimal value of œ.
The flow f .e.i// implies a channel assignment
where the two end nodes of edge e are both
assigned channel i if and only if f .e.i// > 0.
Note that for the flow f .e.i// the implied channel
assignment may not be feasible (it may require
more than I(v) channels at node v). The channel
assignment algorithm transforms the given flow
to fix this infeasibility. Below only a sketch of
the algorithm is given. More details can be found
in [1].

First observe that in an idle scenario, where all
nodes v have the same number of interfaces I (i.e.,
I D I.v/) and where the number of available
channels K is also I, the channel assignment
implied by the LP (1) is feasible. This is because
even the trivial channel assignment where all
nodes are assigned all the channels 1 to I is
feasible. The main idea behind the algorithm is to
first transform the LP (1) solution to a new flow
in which every edge e has flow f .e.i// > 0 only
for the channels 1 � i � I . The basic operation
that the algorithm uses for this is to equally
distribute, for every edge e, the flow f .e.i//, for
I < i � K to the edges e(j), for 1 � i � I . This
ensures that all f .e.i// D 0, for I < i � K after
the operation. This operation is called Phase I of
the Algorithm. Note that the Phase I operation
does not violate the flow conservation constraints
or the node radio constraints (5) in the LP (1).
It can be shown that in the resulting solution the
flow f .e.i// may exceed the capacity of edge e
by at most a factor � D K=I . This is called the
“inflation factor” of Phase I. Likewise in the new
flow, the link congestion constraints (5) may also
be violated for edge e and channel i by no more

than the inflation factor ®. In other words in the
resulting flow

f .e.i//

c.e/
C

X

e02I.e/

f .e0.i//

c.e0/
� �c.q/ :

This implies that if the new flow is scaled by
a fraction 1=� than it is feasible for the LP (1).
Note that the implied channel assignment (assign
channels 1 to I to every node) is also feasi-
ble. Thus, the above algorithm finds a feasible
channel assignment with a œ value of at least
��=�.

One shortcoming of the channel assignment
algorithm (Phase I) described so far is that it only
uses I of the K available channels. By using more
channels the interference may be further reduced
thus allowing for more flow to be pushed in the
system. The channel assignment algorithm uses
an additional heuristic for this improvement. This
is called Phase II of the algorithm.

Now define an operation called “channel
switch operation.” Let A be a maximal connected
component (the vertices in A are not connected
to vertices outside A) in the graph formed by
the edges e for a given channel i for which
f .e.i// > 0. The main observation to use is that
for a given channel j, the operation of completely
moving flow f .e.i// to flow f .e.j // for every
edge e in A, does not impact the feasibility of
the implied channel assignment. This is because
there is no increase in the number of channels
assigned per node after the flow transformation:
the end nodes of edges e in A which were earlier
assigned channel i are now assigned channel j
instead. Thus, the transformation is equivalent to
switching the channel assignment of nodes in A
so that channel i is discarded and channel j is
gained if not already assigned.

The Phase II heuristic attempts to re-transform
the unscaled Phase I flows f .e.i// so that
there are multiple connected components in the
graphs G(e, i) formed by the edges e for each
channel 1 � i � I . This re-transformation is
done so that the LP constraints are kept satisfied
with an inflation factor of at most ®, as is the
case for the unscaled flow after Phase I of the
algorithm.
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Next in Phase III of the algorithm the con-
nected components within each graph G(e, i)
are grouped such that there are as close to K
(but no more than) groups overall and such that
the maximum interference within each group is
minimized. Next the nodes within the lth group
are assigned channel l, by using the channel
switch operation to do the corresponding flow
transformation. It can be shown that the channel
assignment implied by the flow in Phase III is
feasible. In addition the underlying flows f .e.i//
satisfy the LP (1) constraints with an inflation
factor of at most � D K=I .

Next the algorithm scales the flow by the
largest possible fraction (at least 1=�) such
that the resulting flow is a feasible solution
to the LP (1) and also implies a feasible
channel assignment solution to the channel
assignment. Thus, the overall algorithm finds
a feasible channel assignment (by not necessarily
restricting to channels 1 to I only) with a œ value
of at least ��=�.

Link Flow Scheduling
The results in this section are obtained by ex-
tending those of [4] for the single channel case
and for the Protocol Model of interference [2].
Recall that the time slotted schedule S is assumed
to be periodic (with period T) where the indicator
variable Xe;i;� ; e 2 E; i 2 F.e/; � � 1 is 1 if and
only if link e is active in slot £ on channel i and i is
a channel in common among the set of channels
assigned to the end-nodes of edge e.

Directly applying the result (Claim 2) in [4]
it follows that a necessary condition for interfer-
ence free link scheduling is that for every e 2
E; i 2 F.e/; � � 1WXe;i;� C

P
e02I.e/Xe0;i;� �

c.q/. Here c(q) is a constant that only depends
on the interference model. In the interference
model this constant is a function of the fixed
value q, the ratio of the interference range RI to
the transmission range RT, and an intuition for its
derivation for a particular value q D 2 is given
below.

Lemma 1 c.q/ D 8 for q D 2.

Proof Recall that an edge e0 2 I.e/ if there exist
two nodes x; y 2 V which are at most 2RT apart

and such that edge e is incident on node x and
edge e0 is incident on node y. Let e D .u; v/. Note
that u and v are at most RT apart. Consider the
region C formed by the union of two circles Cu

and Cv of radius 2RT each, centered at node u and
node v, respectively. Then e0 D .u0; v0/ 2 I.e/ if
an only if at least one of the two nodes u0; v0

is in C; Denote such a node by C.e0/. Given
two edges e1; e2 2 I.e/ that do not interfere with
each other it must be the case that the nodes
C.e1/ and C.e2/ are at least 2RT apart. Thus,
an upper bound on how many edges in I(e) do
not pair-wise interfere with each other can be
obtained by computing how may nodes can be
put in C that are pair-wise at least 2RT apart. It
can be shown [1] that this number is at most 8.
Thus, in schedule S in a given slot only one of the
two possibilities exist: either edge e is scheduled
or an “independent” set of edges in I(e) of size
at most 8 is scheduled implying the claimed
bound. �

A necessary condition: (Link Congestion Con-
straint) Recall that 1

T

P
1���T Xe;i;� D

f .e.i//
c.e/

.
Thus: Any valid “interference free” edge flows
must satisfy for every link e and every channel i
the Link Congestion Constraint:

f .e.i//

c.e/
C

X

e02I.e/

f .e0.i//

c.e0/
� c.q/: (6)

A matching sufficient condition can also estab-
lished [1].

A sufficient condition: (Link Congestion
Constraint) If the edge flows satisfy for every
link e and every channel i the following Link
Schedulability Constraint than an interference
free edge communication schedule can be found
using an algorithm given in [1].

f .e.i//

c.e/
C

X

e02I.e/

f .e0.i//

c.e0/
� 1: (7)

The above implies that if a flow f .e.i// sat-
isfies the Link Congestion Constraint then by
scaling the flow by a fraction 1=c.q/ it can be
scheduled free of interference.
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Key Results

Theorem The RCL algorithm is a Kc.q/=I ap-
proximation algorithm for the Joint Routing and
Channel Assignment with Interference Free Edge
Scheduling problem.

Proof Note that the flow f .e.i// returned by the
channel assignment algorithm in Sect. “Channel
Assignment” satisfies the Link Congestion Con-
straint. Thus, from the result of Sect. “Link Flow
Scheduling” it follows that by scaling the flow by
an additional factor of 1=c.q/ the flow can be re-
alized by an interference free link schedule. This
implies a feasible solution to the joint routing,
channel assignment and scheduling problem with
a œ value of at least ��=�c.q/. Thus, the RCL
algorithm is a �c.q/ D Kc.q/=I approximation
algorithm. �

Applications

Infrastructure mesh networks are increasingly
been deployed for commercial use and law
enforcement. These deployment settings place
stringent requirements on the performance of
the underlying IWMNs. Bandwidth guarantee
is one of the most important requirements of
applications in these settings. For these IWMNs,
topology change is infrequent and the variability
of aggregate traffic demand from each mesh
router (client traffic aggregation point) is small.
These characteristics admit periodic optimization
of the network which may be done by a system
management software based on traffic demand
estimation. This work can be directly applied to
IWMNs. It can also be used as a benchmark to
compare against heuristic algorithms in multi-
hop wireless networks.

Open Problems

For future work, it will be interesting to inves-
tigate the problem when routing solutions can
be enforced by changing link weights of a dis-
tributed routing protocol such as OSPF. Also, can

the worst case bounds of the algorithm be im-
proved (e.g., a constant factor independent of K
and I)?

Cross-References

�Graph Coloring
� Stochastic Scheduling

Recommended Reading

1. Alicherry M, Bhatia R, Li LE (2005) Joint channel
assignment and routing for throughput optimization in
multi-radio wireless mesh networks. In: Proceedings
of the ACM MOBICOM, pp 58–72

2. Gupta P, Kumar PR (2000) The capacity of wireless
networks. IEEE Trans Inf Theory IT-46(2):388–404

3. Jain K, Padhye J, Padmanabhan VN, Qiu L (2003)
Impact of interference on multi-hop wireless network
performance. In: Proceedings of the ACM MOBI-
COM, pp 66–80

4. Kumar VSA, Marathe MV, Parthasarathy S, Srinivasan
A (2004) End-to-end packet-scheduling in wireless
ad-hoc networks. In: Proceedings of the ACM-SIAM
symposium on discrete algorithms, pp 1021–1030

5. Kumar VSA, Marathe MV, Parthasarathy S, Srinivasan
A (2005) Algorithmic aspects of capacity in wireless
networks. In: Proceedings of the ACM SIGMETRICS,
pp 133–144

6. Kyasanur P, Vaidya N (2005) Capacity of multi-
channel wireless networks: impact of number of chan-
nels and interfaces. In: Proceedings of the ACM MO-
BICOM, pp 43–57

Circuit Partitioning: A
Network-Flow-Based Balanced
Min-Cut Approach

Martin D.F. Wong1 and Honghua Hannah Yang2

1Department of Electrical and Computer
Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL, USA
2Strategic CAD Laboratories, Intel Corporation,
Hillsboro, OR, USA

Keywords

Hypergraph partitioning; Netlist partitioning



296 Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach

Years and Authors of Summarized
Original Work

1994; Yang, Wong

Problem Definition

Circuit partitioning is a fundamental problem
in many areas of VLSI layout and design.
Min-cut balanced bipartition is the problem
of partitioning a circuit into two disjoint
components with equal weights such that the
number of nets connecting the two components
is minimized. The min-cut balanced bipartition
problem was shown to be NP-complete [5].
The problem has been solved by heuristic
algorithms, e.g., Kernighan and Lin type
(K&L) iterative improvement methods [4, 11],
simulated annealing approaches [10], and
analytical methods for the ratio-cut objective
[2, 7, 13, 15]. Although it is a natural method
for finding a min-cut, the network max-flow
min-cut technique [6, 8] has been overlooked
as a viable approach for circuit partitioning.
In [16], a method was proposed for exactly
modeling a circuit netlist (or, equivalently, a
hypergraph) by a flow network, and an algorithm
for balanced bipartition based on repeated
applications of the max-flow min-cut technique

was proposed as well. Our algorithm has the same
asymptotic time complexity as one max-flow
computation.

A circuit netlist is defined as a digraph N D
.V;E/, where V is a set of nodes representing
logic gates and registers and E is a set of edges
representing wires between gates and registers.
Each node v 2 V has a weight w.v/ 2 RC. The
total weight of a subset U � V is denoted by
w.U / D Σv2U w.v/.W D w.V / denotes the total
weight of the circuit. A net n D .vI v1; : : : ; vl /

is a set of outgoing edges from node v in N .
Given two nodes s and t in N , an s � t cut (or
cut for short)

�
X; NX

�
of N is a bipartition of the

nodes in V such that s 2 X and t 2 NX . The
net-cut net

�
X; NX

�
of the cut is the set of nets in

N that are incident to nodes in both X and NX .
A cut

�
X; NX

�
is a min-net-cut if

ˇ
ˇnet

�
X; NX

�ˇˇ is
minimum among all s� t cuts of N: In Fig. 1, net
a D Œr1Ig1; g2/, net cuts net

�
X; NX

�
D fb; eg

and net
�
Y; NY

�
D fc; a; b; eg, and

�
X; NX

�
is a

min-net-cut.
Formally, given an aspect ratio r and a devi-

ation factor ©, min-cut r-balanced bipartition is
the problem of finding a bipartition

�
X; NX

�
of the

netlist N such that (1) .1 � 	/rW � W.X/ �

.1C 	/rW and (2) the size of the cut net
�
X; NX

�

is minimum among all bipartitions satisfying (1).
When r D 1=2, this becomes a min-cut balanced-
bipartition problem.

X
r3

r2

r1

g1

g2

g3

X

a
c

Y Y

d

t
e

s

b

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach, Fig. 1 A circuit netlist with two
net-cuts
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C

Circuit Partitioning: A
Network-Flow-Based
Balanced Min-Cut
Approach, Fig. 2
Modeling a net in N in the
flow network N 0

A net n in circuit N The nodes and edges correspond to net n in N’

v n1 n1

v1

v2

1

∞

∞

∞

∞
∞v

v1

v2

n

∞

Circuit Partitioning: A
Network-Flow-Based
Balanced Min-Cut
Approach, Fig. 3 The
flow network for Fig. 1

r1X’

Y’

X’
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b1

a2
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r3

c1 c2

d1 d2

e1

t

e2

g1

g2

g3

b2

Y’

A bridging edge with unit capacity An ordinary edge with infinite capacity

1

Key Results

Optimal-Network-Flow-Based Min-Net-Cut
Bipartition
The problem of finding a min-net-cut in N D

.V;E/ is reduced to the problem of finding a cut
of minimum capacity. Then the latter problem is
solved using the max-flow min-cut technique. A
flow network N 0 D .V 0; E 0/ is constructed from
N D .V;E/ as follows (see Figs. 2 and 3):

1. V 0 contains all nodes in V .
2. For each net n D .vI v1; : : : ; vl / in N , add

two nodes n1 and n2 in V 0 and a bridging edge
bridge.n/ D .n1; n2/ in E 0.

3. For each node u 2 fv; v1; : : : ; vlg incident on
net n, add two edges .u; n1/ and .n2; u/ in E 0.

4. Let s be the source of N 0 and t the sink of N 0.
5. Assign unit capacity to all bridging edges and

infinite capacity to all other edges in E 0.
6. For a node v 2 V 0 corresponding to a node in
V , w.v/ is the weight of v in N . For a node
u 2 V 0 split from a net, w.u/ D 0.

Note that all nodes incident on net n are
connected to n1 and are connected from n2

in N 0. Hence, the flow network construction
is symmetric with respect to all nodes
incident on a net. This construction also
works when the netlist is represented as a
hypergraph.

It is clear that N 0 is a strongly connected
digraph. This property is the key to reduc-
ing the bidirectional min-net-cut problem
to a minimum-capacity cut problem that
counts the capacity of the forward edges
only.

Theorem 1 N has a cut of net-cut size at most
C if and only if N 0 has a cut of capacity at
most C .

Corollary 1 Let
�
X 0; NX 0

�
be a cut of minimum

capacity C in N 0. Let Ncut D
˚
n j bridge.n/ 2�

X 0; NX 0
� �

. Then Ncut D
�
X; NX

�
is a min-net-cut

in N and jNcut j D C .

Corollary 2 A min-net-cut in a circuit N D

.V;E/ can be found in O.jV jjEj/ time.
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Min-Cut Balanced-Bipartition
Heuristic

First, a repeated max-flow min-cut heuristic al-
gorithm, flow-balanced bipartition (FBB), is de-
veloped for finding an r-balanced bipartition that
minimizes the number of crossing nets. Then, an
efficient implementation of FBB is developed that
has the same asymptotic time complexity as one
max-flow computation. For ease of presentation,
the FBB algorithm is described on the original
circuit rather than the flow network constructed
from the circuit. The heuristic algorithm is de-
scribed in Fig. 4. Figure 5 shows an example.

Table 1 compares the best bipartition net-
cut sizes of FBB with those produced by the
analytical-method-based partitioners EIG1 [7]
and PARABOLI (PB) [13]. The results produced
by PARABOLI were the best previously known
results reported on the benchmark circuits. The
results for FBB were the best of ten runs.
On average, FBB outperformed EIG1 and
PARABOLI by 58.1 and 11.3 %, respectively.
For circuit S38417, the suboptimal result from
FBB can be improved by (1) running more times
and (2) applying clustering techniques to the
circuit based on connectivity before partitioning.

In the FBB algorithm, the node-collapsing
method is chosen instead of a more gradual
method (e.g., [9]) to ensure that the capacity
of a cut always reflects the real net-cut size. To
pick a node at steps 4.2 and 5.2, a threshold R is
given for the number of nodes in the uncollapsed
subcircuit. A node is randomly picked if the
number of nodes is larger than R. Otherwise,
all nodes adjacent to C are tried and the one
whose collapse induces a min-net-cut with the
smallest size is picked. A naive implementation
of step 2 by computing the max-flow from the
zero flow would incur a high time complexity.
Instead, the flow value in the flow network
is retained, and additional flow is explored to
saturate the bridging edges of the min-net-cut
from one iteration to the next. The procedure is
shown in Fig. 6. Initially, the flow network retains
the flow function computed in the previous
iteration. Since the max-flow computation using
the augmenting-path method is insensitive to
the initial flow values in the flow network and
the order in which the augmenting paths are
found, the above procedure correctly finds a
max-flow with the same flow value as a max-flow
computed in the collapsed flow network from the
zero flow.

Circuit Partitioning: A
Network-Flow-Based
Balanced Min-Cut
Approach, Fig. 4 FBB
algorithm

Algorithm: Flow-Balanced-Bipartition (FBB)
1. Pick a pair of nodes s and t in N;
2. Find a min-net-cut C in N; 
    Let X be the subcircuit reachable from s through
    augmenting paths in the flow network, and X
    the rest;
3. if (1− Œ)rW ≤ w(X) ≤ (1+ Œ)rW
   return C as the answer;
4. if w(X) < (1− Œ)rW 
4.1. Collapse all nodes in X to s;
4.2. Pick a node n ∈X adjacent to C and collapse it to s;
4.3. Goto 1;
5. if w(X) > (1+ Œ)rW 
5.1. Collapse all nodes in X to t; 
5.2. Pick a node n ∈X adjacent to C and collapse it to t; 
5.3. Goto 1;
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Circuit Partitioning: A Network-Flow-Based Bal-
anced Min-Cut Approach, Fig. 5 FBB on the example
in Fig. 3 for r D 1=2; � D 0:15 and unit weight

for each node. The algorithm terminates after finding cut�
X2; NX2

�
. A small solid node indicates that the bridging

edge corresponding to the net is saturated with flow

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach, Table 1 Comparison of EIG1, PB,
and FBB .r D 1=2; � D 0:1/. All allow �10 % deviation

Circuit Best net-cut size Improve. % over

Name Gates and latches Nets Avg. deg EIG1 PB FBB EIG1 PB FBB elaps. sec.

S1423 731 743 2.7 23 16 13 43.5 18:8 1:7

S9234 5;808 5;805 2.4 227 74 70 69.2 5:4 55:7

S13207 8;696 8;606 2.4 241 91 74 69.3 18:9 100:0

S15850 10;310 10;310 2.4 215 91 67 68.8 26:4 96:5

S35932 18;081 17;796 2.7 105 62 49 53.3 21:0 2;808

S38584 20;859 20;593 2.7 76 55 47 38.2 14:5 1;130

S38417 24;033 23;955 2.4 121 49 58 52.1 �18:4 2;736

Average 58.5 11:3

Circuit Partitioning: A
Network-Flow-Based
Balanced Min-Cut
Approach, Fig. 6
Incremental max-flow
computation

Procedure: Incremental Flow Computation

1. while ∃ an additional augmenting path from s to t
  increase flow value along the augmenting

  path;

2. Mark all nodes u s.t.∃ an augmenting path from s 
    to u;
3. Let C′ be the set of bridging edges whose starting

    nodes are marked and ending nodes are not

    marked;

4. Return the nets corresponding to the bridging edges

    in C′as the min-net-cut C, and the marked

    nodes as X.  
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Theorem 2 FBB has time complexityO.jV jjEj/
for a connected circuit N D .V;E/.

Theorem 3 The number of iterations and the fi-
nal net-cut size are nonincreasing functions of 2.

In practice, FBB terminates much faster than this
worst-case time complexity as shown in the sec-
tion “Experimental Results.” Theorem 3 allows
us to improve the efficiency of FBB and the
partition quality for a larger 2. This is not true for
other partitioning approaches such as the K&L
heuristics.

Applications

Circuit partitioning is a fundamental problem
in many areas of VLSI layout and design
automation. The FBB algorithm provides the
first efficient predictable solution to the min-
cut balanced-circuit-partitioning problem. It
directly relates the efficiency and the quality
of the solution produced by the algorithm to
the deviation factor 2. The algorithm can be
easily extended to handle nets with different
weights by simply assigning the weight of a
net to its bridging edge in the flow network.
K-way min-cut partitioning for K > 2 can be
accomplished by recursively applying FBB or
by setting r D 1=K and then using FBB to find
one partition at a time. A flow-based method
for directly solving the problem can be found in
[12]. Prepartitioning circuit clustering according
to the connectivity or the timing information of
the circuit can be easily incorporated into FBB

by treating a cluster as a node. Heuristic solutions
based on K&L heuristics or simulated annealing
with low temperature can be used to further fine-
tune the solution.

Experimental Results

The FBB algorithm was implemented in
SIS/MISII [1] and tested on a set of large ISCAS
and MCNC benchmark circuits on a SPARC
10 workstation with 36-MHz CPU and 32 MB
memory.

Table 2 compares the average bipartition re-
sults of FBB with those reported by Dasdan and
Aykanat in [3]. SN is based on the K&L heuristic
algorithm in Sanchis [14]. PFM3 is based on
the K&L heuristic with free moves as described
in [3]. For each circuit, SN was run 20 times
and PFM3 10 times from different randomly
generated initial partitions. FBB was run 10 times
from different randomly selected s and t . With
only one exception, FBB outperformed both SN
and PFM3 on the five circuits. On average, FBB
found a bipartition with 24.5 and 19.0 % fewer
crossing nets than SN and PFM3, respectively.
The runtimes of SN, PFM3, and FBB were not
compared since they were run on different work-
stations.

Cross-References

�Circuit Placement
�Circuit Retiming

Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach, Table 2 Comparison of SN. PFM3.
and FBB .r D 1=2; � D 0:1/

Circuit Avg. net-cut size FBB
bipart.
ratio

Improve. %

Name Gates and latches Nets Avg. deg SN PFM3 FBB Over SN Over PFM3

C1355 514 523 3.0 38.9 29.1 26.0 1:1.08 33.2 10.7

C2670 1;161 1,254 2.6 51.9 46.0 37.1 1:1.15 28.5 19.3

C3540 1;667 1,695 2.7 90.3 71.0 79.8 1:1.11 11.6 –12.4

C7552 3;466 3,565 2.7 44.3 81.8 42.9 1:1.08 3.2 47.6

S838 478 511 2.6 27.1 21.0 14.7 1:1.04 45.8 30.0

Ave 1:1.10 24.5 19.0



Circuit Placement 301

C

Recommended Reading

1. Brayton RK, Rudell R, Sangiovanni-Vincentelli AL
(1987) MIS: a multiple-level logic optimization.
IEEE Trans CAD 6(6):1061–1081

2. Cong J, Hagen L, Kahng A (1992) Net partitions
yield better module partitions. In: Proceedings of
the 29th ACM/IEEE design automation conference,
Anaheim, pp 47–52

3. Dasdan A, Aykanat C (1994) Improved multiple-
way circuit partitioning algorithms. In: International
ACM/SIGDA workshop on field programmable gate
arrays, Berkeley

4. Fiduccia CM, Mattheyses RM (1982) A linear time
heuristic for improving network partitions. In: Pro-
ceedings of the ACM/IEEE design automation con-
ference, Las Vegas, pp 175–181

5. Garey M, Johnson DS (1979) Computers and in-
tractability: a guide to the theory of NP-completeness.
Freeman, Gordonsville

6. Goldberg AW, Tarjan RE (1988) A new ap-
proach to the maximum flow problem. J SIAM 35:
921–940

7. Hagen L, Kahng AB (1991) Fast spectral methods for
ratio cut partitioning and clustering. In: Proceedings
of the IEEE international conference on computer-
aided design, Santa Clara, pp 10–13

8. Hu TC, Moerder K (1985) Multiterminal flows in a
hypergraph. In: Hu TC, Kuh ES (eds) VLSI circuit
layout: theory and design. IEEE, New York, pp 87–93

9. Iman S, Pedram M, Fabian C, Cong J (1993) Finding
uni-directional cuts based on physical partitioning
and logic restructuring. In: 4th ACM/SIGDA physical
design workshop, Lake Arrowhead

10. Kirkpatrick S, Gelatt CD, Vecchi MP (1983)
Optimization by simulated annealing. Science
4598:671–680

11. Kernighan B, Lin S (1970) An efficient heuristic
procedure for partitioning of electrical circuits. Bell
Syst Tech J 49:291–307

12. Liu H, Wong DF (1998) Network-flow-based mul-
tiway partitioning with area and pin constraints.
IEEE Trans CAD Integr Circuits Syst 17(1):
50–59

13. Riess BM, Doll K, Frank MJ (1994) Partitioning very
large circuits using analytical placement techniques.
In: Proceedings of the 31th ACM/IEEE design au-
tomation conference, San Diego, pp 646–651

14. Sanchis LA (1989) Multiway network partitioning.
IEEE Trans Comput 38(1):62–81

15. Wei YC, Cheng CK (1989) Towards efficient
hierarchical designs by ratio cut partitioning.
In: Proceedings of the IEEE international
conference on computer-aided design, Santa Clara,
pp 298–301

16. Yang H, Wong DF (1994) Efficient network flow
based min-cut balanced partitioning. In: Proceedings
of the IEEE international conference on computer-
aided design, San Jose, pp 50–55

Circuit Placement

Andrew A. Kennings1 and Igor L. Markov2

1Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo,
ON, Canada
2Department of Electrical Engineering and
Computer Science, University of Michigan,
Ann Arbor, MI, USA

Keywords

Algorithm; Circuit; Combinatorial optimization;
Hypergraph; Large-scale optimization; Lin-
ear programming; Network flow; Nonlinear
optimization; Partitioning; Physical design;
Placement; VLSI CAD

Synonyms

Analytical placement; EDA; Layout; Mathemat-
ical programming; Min-cost max-flow; Min-cut
placement; Netlist

Years and Authors of Summarized
Original Work

2000; Caldwell, Kahng, Markov
2006; Kennings, Vorwerk
2012; Kim, Lee, Markov

Problem Definition

This problem is concerned with determining con-
strained positions of objects while minimizing
a measure of interconnect between the objects,
as in physical layout of integrated circuits, com-
monly done in 2 dimensions. While most formu-
lations are NP-hard, modern circuits are so large
that practical placement algorithms must have
near-linear run time and memory requirements,
but not necessarily produce optimal solutions.
Research in placement algorithms has identified
scalable techniques which are now being adopted
in the electronic design automation industry.
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One models a circuit by a hypergraph
Gh.Vh; Eh/ with (i) vertices Vh D fv1; : : : ; vng

representing logic gates, standard cells, larger
modules, or fixed I/O pads and (ii) hyperedges
Eh D fe1; : : : ; emg representing connections
between modules. Vertices and hyperedges
connect through pins for a total of P pins in
the hypergraph. Each vertex vi 2 Vh has width
wi , height hi , and area Ai . Hyperedges may
also be weighted. Circuit placement seeks center
positions .xi ; yi / for vertices that optimize a
hypergraph-based objective subject to constraints
(see below). A placement is captured by x D
.x1; � � � ; xn/ and y D .y1; � � � ; yn/.

Objective: Let Ck be the index set of the
hypergraph vertices incident to hyperedge
ek . The total half-perimeter wire length
(HPWL) of the circuit hypergraph is given by
HPWL.Gh/ D

P
ek2Eh

HPWL.ek/ D
P

ek2Eh�
maxi;j 2Ck

jxi � xj j C maxi;j 2Ck
jyi � yj j

�
.

HPWL is piecewise linear, separable in the x
and y directions, convex, but not strictly convex.
Among many objectives for circuit placement, it
is the simplest and most common.

Constraints:

1. No overlap. The area occupied by any two
vertices cannot overlap; i.e., either jxi �xj j �
1
2
.wi C wj / or jyi � yj j �

1
2
.hi C hj /,

8vi ; vj 2 Vh.
2. Fixed outline. Each vertex vi 2 Vh must be

placed entirely within a specified rectangular
region bounded by xmin .ymin/ and xmax .ymax/

which denote the left (bottom) and right (top)
boundaries of the specified region.

3. Discrete slots. There is only a finite num-
ber of discrete positions, typically on a grid.
However, in large-scale circuit layout, slot
constraints are often ignored during global
placement and enforced only during legaliza-
tion and detail placement.

Other constraints may include alignment, mini-
mum and maximum spacing, etc. Many place-
ment techniques temporarily relax overlap con-
straints into density constraints to avoid vertices
clustered in small regions. A m � n regular

bin structure B is superimposed over the fixed
outline and vertex area is assigned to bins based
on the positions of vertices. Let Dij denote the
density of bin Bij 2 B , defined as the total cell
area assigned to bin Bij divided by its capacity.
Vertex overlap is limited implicitly by satisfying
Dij � K; 8Bij 2 B; for some K � 1 (density
target).

Problem 1 (Circuit Placement) INPUT: Circuit
hypergraph Gh.Vh; Eh/ and a fixed outline for
the placement area.
OUTPUT: Positions for each vertex vi 2 Vh such
that (1) wire length is minimized and (2) the area-
density constraints Dij � K are satisfied for all
Bij 2 B .

Key Results

An unconstrained optimal position of a single
placeable vertex connected to fixed vertices can
be found in linear time as the median of adja-
cent positions [7]. Unconstrained HPWL mini-
mization for multiple placeable vertices can be
formulated as a linear program [6, 11]. For each
ek 2 Eh, upper and lower bound variables Uk

and Lk are added. The cost of ek (x-direction
only) is the difference between Uk and Lk . Each
Uk.Lk/ comes with pk inequality constraints that
restrict its value to be larger (smaller) than the
position of every vertex i 2 Ck .

Linear programming has poor scalability and
integrating constraint-tracking into optimization
is difficult. Other approaches include nonlinear
optimization and partitioning-based methods.

Combinatorial Techniques for Wire Length
Minimization
The no-overlap constraints are not convex and
cannot be directly added to the linear program
for HPWL minimization. Vertices often cluster
in small regions of high density. One can lower
bound the distance between closely placed ver-
tices with a single linear constraint that depends
on the relative placement of these vertices [11].
The resulting optimization problem is incremen-
tally resolved, and the process repeats until the
desired density is achieved.



Circuit Placement 303

C

The min-cut placement technique is based
on balanced min-cut partitioning of hypergraphs
and is more focused on density constraints [12].
Vertices of the initial hypergraph are first parti-
tioned in two similar-sized groups. One of them
is assigned to the left half of the placement
region, and the other one to the right half. Parti-
tioning is performed by the Multilevel Fiduccia-
Mattheyses (MLFM) heuristic [10] to minimize
connections between the two groups of vertices
(the net-cut objective). Each half is partitioned
again but takes into account the connections to
the other half [12]. At the large scale, ensuring
the similar sizes of bipartitions corresponds to
density constraints, and cut minimization corre-
sponds to HPWL minimization. When regions
become small and contain <10 vertices, optimal
positions can be found with respect to discrete
slot constraints by branch-and-bound [2]. Bal-
anced hypergraph partitioning is NP-hard [4], but
the MLFM heuristic takes O..V C E/ logV /
time. The entire min-cut placement procedure
takes O..V C E/.logV /2/ time and can process
hypergraphs with millions of vertices in several
hours.

A special case of interest is that of one-
dimensional placement. When all vertices
have identical width and none of them are
fixed, one obtains the NP-hard MINIMUM

LINEAR ARRANGEMENT problem [4] which
can be approximated in polynomial time within
O.logV / and solved exactly for trees in O.V 3/

time as shown by Yannakakis. The min-cut
technique described above also works well for
the related NP-hard MINIMUM-CUT LINEAR

ARRANGEMENT problem [4].

Quadratic and Nonlinear Wire Length
Approximations
Quadratic and generic nonlinear optimization
may be faster than linear programming
while reasonably approximating the original
formulation.

Quadratic, Linearized Quadratic, and
Bound-to-Bound Placement
The hypergraph is represented by a weighted
graph where wij represents the weight on the

2-pin edge connecting vertices vi and vj in the
weighted graph. When an edge is absent, wij D

0, and in general wi i D �Σi¤j wij . A quadratic
placement (x-direction only) is given by

Φ.x/ D
X

i;j

wij

�
.xi � xj /

2
�

D
1

2
xT QxC cT xC const: (1)

The global minimum of Φ.x/ is found by solving
QxCc D 0 which is a sparse, symmetric positive
definite system of linear equations (assuming �1
fixed vertex), efficiently solved using any number
of iterative solvers. Quadratic placement may
have different optima depending on the model
(clique or star) used to represent hyperedges.
However, for a k-pin hyperedge, if wij D Wc in
a clique model and wij D kWc is a star model,
then the models are equivalent in quadratic place-
ment [6].

Quadratic placement can produce lower
quality placements. To approximate a linear
objective, one can iteratively solve Eq. 1
with wij D 1=jxi � xj j computed at every
iteration. Alternatively, one can solve a single
ˇ-regularized optimization problem given by

Φˇ .x/ D minx

P
i;j wij

q
.xi � xj /

2 C ˇ; ˇ >

0, e.g., using a Primal-Dual Newton method [1].
In bound-to-bound placement, instead of a

clique or star model, hyperedges are decomposed
based on the relative placement of vertices. For
a k-pin hyperedge, the extreme vertices (min
and max) are connected to each other and to
each internal vertex with weights wij D 1=.k �

1/jxi � xj j. With these weights, the quadratic
objective captures HPWL exactly, but only for the
given placement. As placement changes, updates
to the quadratic placement objective are required
to reduce discrepancies [8].

Half-perimeter Wire Length Placement:
HPWL can be provably approximated by strictly
convex and differentiable functions. For 2-pin
hyperedges, ˇ-regularization can be used [1].
For an k-pin hyperedge .k � 3/, one can
rewrite HPWL as the maximum (l1-norm) of
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all k.k � 1/=2 pairwise distances jxi � xj j and
approximate the l1-norm by the lp-norm. This
removes all non-differentiabilities except at 0
which is then removed with ˇ-regularization.
The resulting HPWL approximation is given by

HPWLREG.Gh/D
X

ek2Eh

0

@
X

i;j 2Ck

jxi�xj j
pCˇ

1

A

1=p

(2)

which overestimates HPWL with arbitrarily
small relative error as p ! 1 and ˇ ! 0 [6].
Alternatively, HPWL can be approximated via
the log-sum-exp (LSE) formula given by

HPWLLSE.Gh/ D ˛
X

ek2Eh

2

4ln

0

@
X

i2Ck

exp
�xi

˛

�
1

A

C ln

0

@
X

vi 2Ck

exp
��xi

˛

�
1

A

3

5

(3)

where ˛ > 0 is a smoothing parameter [5]. Both
approximations can be optimized using conjugate
gradient methods. Other convex and differen-
tiable HPWL approximations exist.

Analytic Techniques for Target Density
Constraints
The target density constraints are non-differentiable
and are typically handled by approximation.

Force-Based Spreading
The key idea is to add constant forces f that pull
vertices always from overlaps, and recompute the
forces over multiple iterations to reflect changes
in vertex distribution. For quadratic placement,
the new optimality conditions are QxC cC f D
0 [7]. The constant force can perturb a placement
in any number of ways to satisfy the target density

constraints. The force f is computed using a
discrete version of Poisson’s equation.

Fixed-Point Spreading
A fixed point f is a pseudo-vertex with zero
area, fixed at .xf ; yf /, and connected to one
vertex H.f / in the hypergraph through the use
of a pseudo-edge with weight wf;H.f /. Each
fixed point introduces a single quadratic term into
the objective function; quadratic placement with
fixed points is given by Φ.x/ D

P
i;j wi;j .xi �

xj /
2 C

P
f wf;H.f /.xH.f / � xf /

2: By manip-
ulating the positions of fixed points, one can
perturb a placement to satisfy the target density
constraints. Fixed points improve the controlla-
bility and stability of placement iterations, in
particular by improving the conditioning number
of resulting numerical problem instances. A par-
ticularly effective approach to find fixed points is
through the use of fast LookAhead Legalization
(LAL) [8, 9]. Given locations found by quadratic
placement, LAL gradually modifies them into
a relatively overlap-free placement that satisfies
density constraints and seeks to preserve the
ordering of x and y positions, while avoiding
unnecessary movement. The resulting locations
are used as fixed target points. LAL can be
performed by top-down geometric partitioning
with nonlinear scaling between partitions. As
described in [8, 9], this approach is particularly
effective at handling rectilinear obstacles. Sub-
sequent work developed extensions to account
for routing congestion and other considerations
arising in global placement. At the most recent
(ISPD 2014) placement contest, the contestants
ranked in top three used the framework outlined
in [8].

Generalized Force-Directed Spreading
The Helmholtz equation models a diffusion pro-
cess and makes it ideal for spreading vertices [3].
The Helmholtz equation is given by

@2�.x;y/

@x2 C @2�.x;y/

@y2 � 	�.x; y/ D D.x; y/; .x; y/ 2 R
@�
@v
D 0; .x; y/ on the boundary of R

(4)
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where 	 > 0, v is an outer unit normal, R rep-
resents the fixed outline, and D.x; y/ represents
the continuous density function. The boundary
conditions, @�

@v
D 0, specify that forces pointing

outside of the fixed outline be set to zero – this is
a key difference with the Poisson method which
assumes that forces become zero at infinity. The
value �ij at the center of each bin Bij is found
by discretization of Eq. 4 using finite differences.
The density constraints are replaced by �ij D
OK;8Bij 2 B where OK is a scaled representative

of the density targetK. Wire length minimization
subject to the smoothed density constraints can be
solved via Uzawa’s algorithm. For quadratic wire
length, this algorithm is a generalization of force-
based spreading.

Potential Function Spreading
Target density constraints can also be satisfied
via a penalty function. The area assigned
to bin Bij by vertex vi is represented by
Potential.vi ; Bij / which is a bell-shaped
function. The use of piecewise quadratic
functions makes the potential function non-
convex but smooth and differentiable [5]. The
wire length approximation can be combined
together with a penalty term given by Penalty D
P

Bij 2B

�P
vi 2Vh

Potential.vi ; Bij / �K
�2

to

arrive at an unconstrained optimization problem
which is solved using a conjugate gradient
method [5].

Applications

Practical applications involve more sophisticated
interconnect objectives, such as circuit delay,
routing congestion, power dissipation, power
density, and maximum thermal gradient. The
above techniques are adapted to handle multiob-
jective optimization. Many such extensions are
based on heuristic assignment of net weights that
encourage the shortening of some (e.g., timing
critical and frequently switching) connections at
the expense of other connections. To moderate
routing congestion, predictive congestion maps
are used to decrease the maximal density
constraint for placement in congested regions.

Another application is in physical synthesis,
where incremental placement is used to evaluate
changes in circuit topology.

Experimental Results and Data Sets

Circuit placement has been actively studied for
the past 30 years, and a wealth of experimental
results have been reported. A 2003 result showed
that placement tools could produce results as
much as 1:41� to 2:09� known optimal wire
lengths on average. In a 2006 placement con-
test, academic software for placement produced
results that differed by as much as 1:39� on
average when the objective was the simultaneous
minimization of wire length, routability, and run
time. Placement run times for instances with
2M movable objects ranged into hours. More
recently, the gap in wire length between dif-
ferent tools has decreased, and run times have
improved, in part due to the use of multicore
CPUs and vectorized arithmetics. Over the last
10 years, wire length has improved by 20–25 %
and run time by 15–20 times [8, 9]. More recent
work in circuit placement has focused on other
objectives such as routability in addition to wire
length minimization.

Modern benchmark suites include the ISPD05,
ISPD06, ISPD11, and ISPD14 suites (http://
www.ispd.cc). Additional benchmark suites
include the ICCAD12 (http://cad_contest.
cs.nctu.edu.tw/CAD-contest-at-ICCAD2012),
ICCAD13 (http://cad_contest.cs.nctu.edu.tw/
CAD-contest-at-ICCAD2013), and ICCAD14
(http://cad_contest.ee.ncu.edu.tw/CAD-contest-
at-ICCAD2014) suites. Instances in these
benchmark suites contain between several
hundred thousand to several million placeable
objects. Additional benchmark suites also exist.
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Problem Definition

Circuit retiming is one of the most effective
structural optimization techniques for sequential
circuits. It moves the registers within a circuit
without changing its function. Besides clock pe-
riod, retiming can be used to minimize the num-
ber of registers in the circuit. It is also called
minimum area retiming problem Leiserson and
Saxe [3] started the research on retiming and pro-
posed algorithms for both minimum period and
minimum area retiming. Both their algorithms
for minimum area and minimum period will be
presented here.

The problems can be formally described as
follows. Given a directed graph G D .V;E/

representing a circuit – each node v 2 V rep-
resents a gate and each edge e 2 E represents
a signal passing from one gate to another – with
gate delays d W V ! R

C and register numbers
w W E ! N, the minimum area problem asks
for a relocation of registers w0 W E ! N

such that the number of registers in the circuit
is minimum under a given clock period ®. The
minimum period problem asks for a solution with
the minimum clock period.

Notations

To guarantee that the new registers are actually a
relocation of the old ones, a label r W V ! Z is
used to represent how many registers are moved
from the outgoing edges to the incoming edges of
each node. Using this notation, the new number
of registers on an edge .u; v/ can be computed as

w0Œu; v
 D wŒu; v
C rŒv
 � rŒu
:

The same notation can be extended from edges to
paths. However, between any two nodes u and v,
there may be more than one path. Among these
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paths, the ones with the minimum number of
registers will decide how many registers can be
moved outside of u and v. The number is denoted
by W Œu; v
 for any u; v 2 V , that is,

W Œu; v

Δ
D min

pWu v

X

.x;y/2p

wŒx; y


The maximal delay among all the paths from u to
v with the minimum number of registers is also
denoted by DŒu; v
, that is,

DŒu; v

Δ
D max

wŒpWu v�DW Œu;v�

X

x2p

dŒx


Constraints

Based on the notations, a valid retiming r should
not have any negative number of registers on any
edge. Such a validity condition is given as

P0.r/
Δ
D 8.u; v/ 2 E W wŒu; v
C rŒv
� rŒu
 � 0

On the other hand, given a retiming r , the mini-
mum number of registers between any two nodes
u and v is W Œu; v
 � rŒu
 C rŒv
. This number
will not be negative because of the previous
constraint. However, when it is zero, there will be
a path of delay DŒu; v
 without any register on it.
Therefore, to have a retimed circuit working for
clock period ®, the following constraint must be
satisfied.

P1.r/
Δ
D 8u; v 2 V W DŒu; v
 > �

) W Œu; v
C rŒv
 � rŒu
 � 1

Key Results

The object of the minimum area retiming is to
minimize the total number of registers in the cir-
cuit, which is given by

P

.u;v/2E

w0Œu; v
. Express-

ing w0Œu; v
 in terms of r , the objective becomes

X

v2V

.inŒv
 � outŒv
/ � rŒv
C
X

.u;v/2E

wŒu; v


where inŒv
 is the in-degree and outŒv
 is the out-
degree of node v. Since the second term is a
constant, the problem can be formulated as the
following integer linear program.

Minimize
X

v2V

.inŒv
 � outŒv
/ � rŒv


s:t: wŒu; v
CrŒv
�rŒu
�0 8.u; v/2E

W Œu; v
CrŒv
�rŒu
�1 8u; v2V WDŒu; v
>�

rŒv
 2 Z 8v 2 V

Since the constraints have only difference in-
equalities with integer-constant terms, solving
the relaxed linear program (without the integer
constraint) will only give integer solutions. Even
better, it can be shown that the problem is the dual
of a minimum cost network flow problem and,
thus, can be solved efficiently.

Theorem 1 The integer linear program for the
minimum area retiming problem is the dual of the
following minimum cost network flow problem.

Minimize
X

.u;v/2E

wŒu; v
 � f Œu; v


C
X

DŒu;v�>�

.W Œu; v
 � 1/ � f Œu; v


s:t: inŒv
C
X

.v;w/2E_DŒv;w�>�

f Œv;w
 D outŒv


C
X

.u;v/2EDŒu;v�>�

f Œu; v
 8v 2 V

f Œu; v
 � 0 8.u; v/ 2 EDŒu; v
 > �

From the theorem, it can be seen that the network
graph is a dense graph where a new edge .u; v/
needs to be introduced for any node pair u; v
such that DŒu; v
 > �. There may be redundant
constraints in the system.

For example, if W Œu;w
 D W Œu; v
C wŒv;w

and DŒu; v
 > � then the constraint W Œu;w
 C
rŒw
 � rŒu
 � 1 is redundant, since there are
already W Œu; v
C rŒv
 � rŒu
 � 1 and wŒv;w
C
rŒw
 � rŒv
 � 0. However, it may not be easy
to check and remove all redundancy in the con-
straints.
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In order to build the minimum cost flow net-
work, it is needed to first compute both matrices
W andD. SinceW Œu; v
 is the shortest path from
u to v in terms of w, the computation ofW can be
done by an all-pair shortest paths algorithm such
as Floyd-Warshall’s algorithm [1]. Furthermore,
if the ordered pair (wŒx; y
;�dŒx
) is used as
the edge weight for each .x; y/ 2 E, an all-
pair shortest paths algorithm can also be used
to compute both W and D. The algorithm will
add weights by component-wise addition and will
compare weights by lexicographic ordering.

Leiserson and Saxe’s [3] first algorithm for the
minimum period retiming was also based on the
matrices W and D. The idea was that the con-
straints in the integer linear program for the min-
imum area retiming can be checked efficiently
by Bellman-Ford’s shortest paths algorithm [1],
since they are just difference inequalities. This
gives a feasibility checking for any given clock
period ®. Then the optimal clock period can be
found by a binary search on a range of possible
periods. The feasibility checking can be done
in O.jV j3/ time, thus the runtime of such an
algorithm is O.jV j3 log jV j/.

Their second algorithm got rid of the con-
struction of the matrices W and D. It still used
a clock period feasibility checking within a bi-
nary search. However, the feasibility checking
was done by incremental retiming. It works as
follows: Starting with r D 0, the algorithm
computes the arrival time of each node by the
longest paths computation on a DAG (Directed
Acyclic Graph). For each node v with an arrival
time larger than the given period ®, the rŒv


will be increased by one. The process of the
arrival time computation and r increasing will be
repeated jV j � 1 times. After that, if there is still
arrival time that is larger than ®, then the period is
infeasible. Since the feasibility checking is done
in O.jV jjEj/ time, the runtime for the minimum
period retiming is O.jV jEj log jV j/.

Applications

Shenoy and Rudell [7] implemented Leiserson
and Saxe’s minimum period and minimum area

retiming algorithms with some efficiency im-
provements. For minimum period retiming, they
implemented the second algorithm and, in order
to find out infeasibility earlier, they introduced a
pointer from one node to another where at least
one register is required between them. A cycle
formed by the pointers indicates the feasibility
of the given period. For minimum area retiming,
they removed some of the redundancy in the
constraints and used the cost-scaling algorithm
of Goldberg and Tarjan [2] for the minimum cost
flow computation.

As can be seen from the second minimum
period retiming algorithm here and Zhou’s algo-
rithm [9] in another entry (�Circuit Retiming:
An Incremental Approach), incremental compu-
tation of the longest combinational paths (i.e.,
those without register on them) is more efficient
than constructing the dense graph (via matri-
ces W and D). However, the minimum area
retiming algorithm is still based on a minimum
cost network flow on the dense graph. A more
efficient algorithm based on incremental retiming
has recently been designed for the minimum area
problem by Wang and Zhou [8].

Experimental Results

Sapatnekar and Deokar [6] and Pan [5] proposed
continuous retiming as an efficient approximation
for minimum period retiming and reported the ex-
perimental results. Maheshwari and Sapatnekar
[4] also proposed some efficiency improvements
to the minimum area retiming algorithm and
reported their experimental results.
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Problem Definition

Circuit retiming is one of the most effective
structural optimization techniques for sequential

circuits. It moves the registers within a circuit
without changing its function. The minimal pe-
riod retiming problem needs to minimize the
longest delay between any two consecutive reg-
isters, which decides the clock period.

The problem can be formally described as
follows. Given a directed graph G D .V;E/

representing a circuit – each node v 2 V rep-
resents a gate and each edge e 2 E represents
a signal passing from one gate to another – with
gate delays d W V ! R

C and register numbers
w W E ! N , it asks for a relocation of registers
w0 W E ! N such that the maximal delay between
two consecutive registers is minimized.

Notations To guarantee that the new registers
are actually a relocation of the old ones, a label
r W V ! Z is used to represent how many
registers are moved from the outgoing edges to
the incoming edges of each node. Using this
notation, the new number of registers on an edge
.u; v/ can be computed as

w0Œu; v
 D wŒu; v
C rŒv
 � rŒu
:

Furthermore, to avoid explicitly enumerating the
paths in finding the longest path, another label
t W V ! R

C is introduced to represent the output
arrival time of each gate, that is, the maximal
delay of a gate from any preceding register. The
condition for t to be at least the combinational
delays is

8Œu; v
 2 E W w0Œu; v
 D 0) t Œv
 � t Œu
C dŒu
:

Constraints and Objective Based on the no-
tations, a valid retiming r should not have any
negative number of registers on any edge. Such a
validity condition is given as

P0.r/
Δ
D 8.u; v/ 2 E W wŒu; v
CrŒv
�rŒu
 � 0:

As already stated, the conditions for t to be
valid arrival time is given by the following two
predicates:
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P1.t/
Δ
D 8v 2 V W t Œv
 � dŒv


P 2.r; t/
Δ
D 8.u; v/ 2 E W rŒu
 � rŒv
 D wŒu; v


) t Œv
 � t Œu
�dŒv
:

A predicate P is used to denote the conjunction
of the above conditions:

P.r; t/
Δ
D P0.r/ ^ P1.t/ ^ P2.r; t/:

A minimal period retiming is a solution r; t satis-
fying the following optimality condition:

P3
Δ
D 8r 0; t 0 W P.r 0; t 0/) max .t/ � max .t 0/

where
max.t/

Δ
D max

v2V
Œv
:

Since only a valid retiming .r 0; t 0/ will be dis-
cussed in the sequel, to simplify the presentation,
the range condition P.r 0; t 0/ will often be omit-
ted; the meaning shall be clear from the context.

Key Results

This section will show how an efficient algorithm
is designed for the minimal period retiming prob-
lem. Contrary to the usual way of only presenting
the final product, i.e., the algorithm, but not the
ideas on its design, a step-by-step design process
will be shown to finally arrive at the algorithm.

To design an algorithm is to construct a proce-
dure such that it will terminate in finite steps and
will satisfy a given predicate when it terminates.
In the minimal period retiming problem, the pred-
icate to be satisfied is P0 ^ P1 ^ P2 ^ P3. The
predicate is also called the post-condition. It can
be argued that any nontrivial algorithm will have
at least one loop; otherwise, the processing length
is only proportional to the text length. Therefore,
some part of the post-condition will be iteratively
satisfied by the loop, while the remaining part
will be initially satisfied by an initialization and
made invariant during the loop.

The first decision needed to make is to par-
tition the post-condition into possible invariant
and loop goal. Among the four conjuncts, the

predicate P3 gives the optimality condition and
is the most complex one. Therefore, it will be
used as a loop goal. On the other hand, the
predicates P0 and P1 can be easily satisfied by
the following simple initialization:

r; t WD 0; d:

Based on these, the plan is to design an algorithm
with the following scheme:

r; t WD 0; d

dofP0 ^ P1g
:P2! update t
:P3! update r

odfP0 ^ P1 ^ P2 ^ P3g:

The first command in the loop can be refined as

9.u; v/2E W rŒu
 � rŒv
 D wŒu; v
 ^ t Œv


� t Œu
 < dŒv
! t Œv


WD t Œu
C dŒv
:

This is simply the Bellman-Ford relaxations for
computing the longest paths.

The second command is more difficult to re-
fine. If :P3, that is, there exists another valid
retiming r 0; t 0 such that max.t/ > max.t 0/, then
on any node v such that t Œv
 D max.t/ it must
have t 0Œv
 < tŒv
. One property known on these
nodes is

8v 2 V W t 0Œv
 < tŒv


) .9u 2 V W rŒu
 � rŒv
 > r 0Œu
 � r 0Œv
/;

which means that if the arrival time of v is smaller
in another retiming r 0; t 0, then there must be a
node u such that r 0 gives more registers between
u and v. In fact, one such a u is the starting node
of the longest combinational path to v that gives
the delay of t Œv
.

To reduce the clock period, the variable r

needs to be updated to make it closer to r 0. It
should be noted that it is not the absolute values
of r but their differences that are relevant in
the retiming. If r; t is a solution to a retiming
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problem, then rCc; t , where c 2 Z is an arbitrary
constant, is also a solution. Therefore r can be
made “closer” to r 0 by allocating more registers
between u and v, that is, by either decreasing rŒu

or increasing rŒv
. Notice that v can be easily
identified by t Œv
 D max.t/. No matter whether
rŒv
 or rŒu
 is selected to change, the amount of
change should be only one since r should not
be overadjusted. Thus, after the adjustment, it
is still true that rŒv
 � rŒu
 � r 0Œv
 � r 0Œu
 or
equivalently rŒv
 � r 0Œv
 � rŒu
 � r 0Œu
. Since
v is easy to identify, rŒv
 is selected to increase.
The arrival time t Œv
 can be immediately reduced
to dŒv
. This gives a refinement of the second
command:

:P3 ^ P2 ^ 9v 2 V W t Œv
 D max .t/
! rŒv
; t Œv
 WD rŒv
C 1; d Œv
:

Since registers are moved in the above operation,
the predicate P2 may be violated. However,
the first command will take care of it. That
command will increase t on some nodes;
some may even become larger than max.t/
before the register move. The same reasoning
using r 0; t 0 shows that their r values shall
be increased, too. Therefore, to implement
this as-soon-as-possible (ASAP) increase of
r , a snapshot of max.t/ needs to be taken
when P2 is valid. Physically, such a snapshot
records one feasible clock period � and can be
implemented by adding one more command in
the loop:

P2 ^ � > max .t/! � WD max .t/:

However, such an ASAP operation may increase
rŒu
 even when wŒu; v
 � rŒu
 C rŒv
 D 0 for
an edge .u; v/. It means that P0 may no longer
be an invariant. But moving P0 from invariant
to loop goal will not cause a problem since one
more command can be added in the loop to take
care of it:

9.u; v/ 2 E W rŒu
 � rŒv
 > wŒu; v

! rŒv
 WD rŒu
 � wŒu; v
:

Putting all things together, the algorithm now has
the following form:

r; t; � WD 0; d;1I

dofP1g
9.u; v/ 2 E W rŒu
 � rŒv
 D wŒu; v

^t Œv
 � t Œu
 < dŒv
! t Œv
 WD t Œu
C dŒv

:P3 ^ 9v 2 V W t Œv
 � �

! rŒv
; t Œv
 WD rŒv
C 1; d Œv


P 0 ^ P2 ^ � > max.t/! � WD max.t/
9.u; v/ 2 E W rŒu
 � rŒv
 > wŒu; v

! rŒv
 WD rŒu
 � wŒu; v


odfP0 ^ P1 ^ P2 ^ P3g:

The remaining task to complete the algorithm
is how to check :P3. From previous discussion,
it is already known that :P3 implies that there
is a node u such that rŒu
 � r 0Œu
 � r 0Œv
 � r 0Œv


every time after rŒv
 is increased. This means that
maxv2V rŒv
 � r

0Œv
 will not increase. In other
words, there is at least one node v whose rŒv

will not change. Before rŒv
 is increased, it also
has wu v � rŒu
C rŒv
 � 0, where wu v � 0 is
the original number of registers on one path from
u to v, which gives rŒv
 � rŒu
 � 1 even after the
increase of rŒv
. This implies that there will be at
least i C 1 nodes whose r is at most i for 0 �
i < jV j. In other words, the algorithm can keep
increasing r and when there is any r reaching
jV j it shows that P3 is satisfied. Therefore, the
complete algorithm will have the following form:

r; t; � WD 0; d;1I

dofP1g
9.u; v/ 2 E W rŒu
 � rŒv
 D wŒu; v

^t Œv
 � t Œu
 < dŒv
! t Œv
 WD t Œu
C dŒv

.8v 2 V W rŒv
 < jV j/

^9v2V W t Œv
��!rŒv
; t Œv
WDrŒv
C1; d Œv


.9v 2 V W rŒv
 � jV j/

^9v2V W t Œv
��!rŒv
; t Œv
WDrŒv
C1; d Œv


P 0 ^ P2 ^ � > max.t/! � WD max.t/
9.u; v/ 2 E W rŒu
 � rŒv
 > wŒu; v

! rŒv
 WD rŒu
 � wŒu; v


odfP0 ^ P1 ^ P2 ^ P3g:

The correctness of the algorithm can be proved
easily by showing that the invariant P1 is main-
tained and the negation of the guards implies
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P0 ^ P2 ^ P3. The termination is guaranteed
by the monotonic increase of r and an upper
bound on it. In fact, the following theorem gives
its worst-case runtime.

Theorem 1 The worst-case running time of the
given retiming algorithm is upper bounded by
O.jV j2jEj/.

The runtime bound of the retiming algorithm
is got under the worst-case assumption that each
increase on r will trigger a timing propagation on
the whole circuit (jEj edges). This is only true
when the r increase moves all registers in the
circuit. However, in such a case, the r is upper
bounded by 1, thus the running time is not larger
than O.jV jjEj/. On the other hand, when the r
value is large, the circuit is partitioned by the
registers into many small parts, thus the timing
propagation triggered by one r increase is limited
within a small tree.

Applications

In the basic algorithm, the optimality P3 is ver-
ified by an rŒv
 � jV j. However, in most cases,
the optimality condition can be discovered much
earlier. Since each time rŒv
 is increased, there
must be a “safeguard” node u such that rŒu
 �
r 0Œu
 � rŒv
�r 0Œv
 after the operation. Therefore,
if a pointer is introduced from v to u when rŒv

is increased, the pointers cannot form a cycle
under:P3. In fact, the pointers will form a forest

where the roots have r D 0 and a child can have
an r at most one larger than its parent. Using
a cycle by the pointers as an indication of P3,
instead of an rŒv
 � jV j, the algorithm can have
much better practical performance.

Retiming is usually used to optimize either the
clock period or the number of registers in the
circuit. The discussed algorithm solves only the
minimal period retiming problem. The retiming
problem for minimizing the number of registers
under a given period has been solved by Leiser-
son and Saxe [1] and is presented in another entry
in this encyclopedia. Their algorithm reduces the
problem to the dual of a minimal cost network
problem on a denser graph. An efficient itera-
tive algorithm similar to Zhou’s algorithm has
been designed for the minimal register problem
recently [3].

Experimental Results

Experimental results are reported by Zhou [4]
which compared the runtime of the algorithm
with an efficient heuristic called ASTRA [2]. The
results on the ISCAS89 benchmarks are repro-
duced here in Table 1 from [4], where columns
A and B are the running time of the two stages in
ASTRA.

Cross-References
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Circuit Retiming: An Incremental Approach, Table 1 Experimental results

Name #gates Clock period
P

r #updates Time(s) ASTRA

Before After A(s) B(s)

s1423 490 166 127 808 7;619 0:02 0:03 0:02

s1494 558 89 88 628 7;765 0:02 0:01 0:01

s9234 2;027 89 81 2;215 76;943 0:12 0:11 0:09

s9234.1 2;027 89 81 2;164 77;644 0:16 0:11 0:10

s13207 2;573 143 82 4;086 28;395 0:12 0:38 0:12

s15850 3;448 186 77 12;038 99;314 0:36 0:43 0:17

s35932 12;204 109 100 16;373 108;459 0:28 0:24 0:65

s38417 8;709 110 56 9;834 155;489 0:58 0:89 0:64

s38584 11;448 191 163 19;692 155;637 0:41 0:50 0:67

s38584.1 11;448 191 183 9;416 114;940 0:48 0:55 0:78
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Problem Definition

We discuss a simple undirected and connected
graph G D .V;E/ with a finite set V of vertices
and a finite set E � V � V of edges. A pair of
vertices v and w is said to be adjacent if .v;w/ 2
E. For a subset R � V of vertices, G.R/ D
.R;E \ .R � R// is an induced subgraph. An
induced subgraph G.Q/ is said to be a clique
if .v;w/ 2 E for all v;w 2 Q � V with
v ¤ w. In this case, we may simply state that
Q is a clique. In particular, a clique that is not

properly contained in any other clique is called
maximal. An induced subgraph G.S/ is said to
be an independent set if .v;w/ … E for all v;w 2
S � V . For a vertex v 2 V , let Γ.v/ D fw 2
V j.v;w/ 2 Eg. We call j� .v/j the degree of v.

The problem is to enumerate all maximal
cliques of the given graph G D .V;E/. It is
equivalent to enumerate all maximal independent
sets of the complementary graph NG D

�
V; NE

�
,

where NE D f.v;w/ 2 V �V j.v;w/ … E; v ¤ wg.

Key Results

Efficient Algorithms for Clique
Enumeration
Efficient algorithms to solve the problem can be
found in the following approaches (1) and (2).

(1) Clique Enumeration by Depth-First
Search with Pivoting Strategy

The basis of the first approach is a simple depth-
first search. It begins with a clique of size 0 and
continues with finding all of the progressively
larger cliques until they can be verified as max-
imal. Formally, this approach maintains a global
variable Q D fp1; p2; : : : ; pd g that consists of
vertices of a current clique found so far. Let

SUBG D V \ Γ .p1/ \ Γ .p2/ \ � � � \ Γ .pd / :

We begin the algorithm by letting Q D ¿
and SUBG WD V (the set of all vertices). We
select a certain vertex p from SUBG and add
p to Q.Q WD Q [ fpg/. Then we compute
SUBGp WD SUBG\Γ.p/ as the new set of ver-
tices in question. In particular, the first selected
vertex u 2 SUBG is called a pivot. This pro-
cedure (EXPAND()) is applied recursively while
SUBGp ¤ ¿.

When SUBGp D ¿ is reached, Q constitutes
a maximal clique. We then backtrack by remov-
ing the lastly inserted vertex from Q and SUBG.
We select a new vertex p from the resulting
SUBG and continue the same procedure until
SUBG D ;. This process can be represented
by a depth-first search forest. See Fig. 2b as an
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begin
procedure CLIQUES(G)

/∗ Q := ∅ /
1 : EXPAND(V ,V )
end of CLIQUES

procedure EXPAND(SUBG, CAND )
begin

if SUBG = ∅
then  print(“clique,”) /∗ Q is a maximal clique ∗/
else u := a vertex u in SUBG that maximizes | CAND ∩ Γ (u) |; /∗ pivot ∗/

while CAND − Γ (u) = ∅
do q := a vertex in (CAND − Γ (u));

print (q,“,”); /∗ Q := Q ∪{ q } ∗/
SUBGq := SUBG ∩ Γ (q);
CAND q := CAND ∩ Γ (q);
EXPAND(SUBGq, CAND q);
CAND := CAND −{ q};
print (“back,”) /∗ Q := Q −{ q} ∗/

od
fi

end of EXPAND

∗

2 :
3 :
4 :
5 :
6 :
7 :
8 :
9 :

10:
11:
12:

Clique Enumeration, Fig. 1 Algorithm CLIQUES

example of an essential part of a search forest.
It clearly generates all maximal cliques.

The above-generated maximal cliques, how-
ever, could contain duplications or nonmaximal
ones, so we prune unnecessary parts of the search
forest as in the Bron-Kerbosch algorithm [3].

First, let FINI be a subset of vertices of SUBG
that have already been processed by the algo-
rithm. (FINI is short for finished.) Then we denote
by CAND the set of remaining candidates for ex-
pansion: CAND WD SUBG�FINI, where for two
setsX and Y ,X�Y D fvjv 2 X and v … Y g. At
the beginning, FINI WD ¿ and CAND WD SUBG.
In the subgraph G.SUBGq/ with SUBGq W D

SUBG \ Γ.q/, let

FINIq WD SUBGq \ FINI;

CANDq WD SUBGq � FINIq :

Then only the vertices in CANDq can be candi-
dates for expanding the clique Q [ fqg to find
new larger cliques.

Second, for the first selected pivot u in SUBG,
any maximal clique R in G.SUBG \ Γ.u// is
not maximal in G.SUBG/, since R [ fug is a
larger clique in G.SUBG/. Therefore, searching
for maximal cliques from SUBG \ Γ.u/ should
be excluded.

When the previously described pruning
method is also taken into consideration, we find
that the only search subtrees to be expanded are
from the vertices in .SUBG � SUBG \ Γ.u// �
FINI D CAND�Γ.u/. Here, in order to minimize
jCAND � Γ.u/j, we choose the pivot u 2 SUBG
to be the one that maximizes jCAND\Γ.u/j. This
is crucial to establish the optimality of the worst-
case time complexity of the algorithm. This kind
of pivoting strategy was proposed by Tomita et al.
[11]. (Recommended Reading [11] was reviewed
by Pardalos and Xue [10] and Bomze et al. [2].)

The algorithm CLIQUES by Tomita et al. [12]
is shown in Fig. 1. It enumerates all maximal
cliques based upon the above approach, but all
maximal cliques enumerated are presented in a
tree-like form. Here, ifQ is a maximal clique that
is found at statement 2, then the algorithm only
prints out a string of characters clique instead of
Q itself at statement 3. Otherwise, it is impos-
sible to achieve the optimal worst-case running
time. Instead, in addition to printing clique at
statement 3, we print out q followed by a comma
at statement 7 every time q is picked out as a
new element of a larger clique, and we print out
a string of characters back at statement 12 after
q is moved from CAND to FINI at statement 11.
We can easily obtain a tree representation of all
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a b c

Clique Enumeration, Fig. 2 An example run of CLIQUES [12]. (a) A graph G. (b) A search forest. (c) The output
in tree-like form

the maximal cliques from the sequence printed
by statements 3, 7, and 12. The output in a tree-
like format is also important practically since it
saves space in the output file. An example run of
CLIQUES to Fig. 2a is shown in Fig. 2b, c with
appropriate indentations.

The worst-case time complexity of CLIQUES
was proved to be O.3n=3/ for an n-vertex graph
[11, 12]. This is optimal as a function of n since
there exist up to 3n=3 cliques in an n-vertex graph
[9].

Eppstein et al. [5] used this approach and pro-
posed an algorithm for enumerating all maximal
cliques that runs in time O.dn3d=3/ for an n-
vertex graph G, where d is the degeneracy of G
that is defined to be the smallest number such that
every subgraph of G contains a vertex of degree
at most d . If graph G is sparse, d can be much
smaller than n and henceO.dn3d=3/ can be much
smaller than O.3n=3/.

(2) Clique Enumeration by Reverse Search

The second approach is regarded to be based
upon the reverse search that was introduced by
Avis and Fukuda [1] to solve enumeration prob-
lems efficiently.

Given the graph G D .V;E/ with V D

fv1; v2; : : : ; vng where n D jV j, let Vi D

fv1; v2; : : : ; vig. Then fv1g is simply a maximal
clique in G.V1/. All the maximal cliques in
G.Vi / are enumerated based on those in G.Vi�1/

step by step for i D 2; 3; : : : ; n. The process
forms an enumeration tree whose root is fv1g,
where the root is considered at depth 1 of the
enumeration tree for the sake of simplicity.
The children at depth i are all the maximal
cliques in G.Vi / for i D 2; 3; : : : ; n. For two
subsets X; Y � V , we say that X precedes Y in
lexicographic order if for vi 2 .X�Y /[.Y �X/

with the minimum index i it holds that vi 2 X .
LetQ be a maximal clique inG.Vi�1/. If vi is

adjacent to all vertices in Q, then Q [ fvig is the
only child of Q at depth i . Otherwise, Q itself
is the first child of Q at depth i . In addition, if
Q \ Γ.vi / [ fvig is a maximal clique in G.Vi /,
then it is a candidate for the second child of Q at
depth i . The unique parent ofQ\ Γ.vi /[fvig is
defined to be the lexicographically first maximal
clique in G.Vi�1/ that contains Q \ Γ.vi /. (In
general, there exist multiple numbers of distinct
maximal cliques that contain Q \ Γ.vi / at depth
i � 1.)

The algorithm of Tsukiyama et al. [14] tra-
verses the above enumeration tree in a depth-first
way. Such a traversal is considered to be reverse
search [8]. To be more precise, the algorithm MIS
in [14] is to enumerate all maximal independent
sets, and we are concerned here with its com-
plementary algorithm in [8] that enumerates all
maximal cliques, which we call here MIS. An
example run of MIS to Fig. 2a is shown in Fig. 3a.
Algorithms MIS and MIS run in timeO.m0n/ and
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a b

Clique Enumeration, Fig. 3 Enumeration trees for Fig. 2a in reverse search. (a) By MIS [14, 8]. (b) By AMC [8]

O.mn/ per maximal clique, respectively, where
n D jV j; m D jEj, and m0 D

ˇ
ˇ NE
ˇ
ˇ [8, 14].

Chiba and Nishizeki [4] reduced the time com-
plexity of MIS toO.a.G/m/ per maximal clique,
where a.G/ is the arboricity of G with m=.n �
1/ � a.G/ � O.m1=2/ for a connected graph
G. Johnson et al. [7] presented an algorithm that
enumerates all maximal cliques in lexicographic
order in time O.mn/ per maximal clique [7, 8].

Makino and Uno [8] proposed new algorithms
that are based on the algorithm of Tsukiyama et
al. [14]. Let C.Q/ denote the lexicographically
first maximal clique containing Q in graph G.
The root of their enumeration tree is the lexico-
graphically first maximal clique Q0 in G. For a
maximal cliqueQ ¤ Q0 in the enumeration tree,
define the parent of Q to be C.Q \ Vi / where i
is the maximum index such that C.Q\Vi / ¤ Q.
Such a parent uniquely exists for every Q ¤ Q0.
In the enumeration tree, Q0 D C.Q \ Vj \

Γ.vj /[fvj g/ is a child ofQ if and only ifQ is a
parent ofQ0. (In general, a parent has at most jV j
children.) This concludes the description of the
enumeration tree of ALLMAXCLIQUES (AMC
for short) in [8]. An example run to Fig. 2a is
shown in Fig. 3b, where the bold-faced vertex is
the minimum i such that Q \ Vi D Q. Algo-
rithm AMC runs in time O.M.n// per maximal
clique, where M.n/ denotes the time required to
multiply two n � n matrices. Another algorithm
in [8] runs in time O.�4/ per maximal clique,
where � is the maximum degree of G. Here, if
G is sparse, then � can be small. In addition,
they presented an algorithm that enumerates all

maximal bipartite cliques in a bipartite graph in
time O.�3/ per maximal bipartite clique.

Applications

Clique enumeration has diverse applications in
clustering, data mining, information retrieval,
bioinformatics, computer vision, wireless
networking, computational topology, and many
other areas. Here, one of Makino and Uno’s
algorithms [8] was successfully applied for
enumerating frequent closed itemsets [16]. See
Recommended Reading [2, 5, 6, 8, 10, 12, 13, 16]
for details. For practical applications, enumer-
ation of pseudo cliques is sometimes more
important [15].

Experimental Results

Experimental Results are shown in Recom-
mended Reading [12, 6, 14, 8]. Tomita et al.’s
algorithm CLIQUES [12] is fast especially for
graphs with high and medium density. Eppstein
et al.’s algorithm [5] is effective for very large and
sparse graphs [6]. Makino and Uno’s algorithms
[8] can be fast for sparse graphs especially when
they have a small number of maximal cliques.
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Problem Definition

Background and Overview
Coordinating processors located in different
places is one of the fundamental problems in
distributed computing. In his seminal work,
Lamport [4, 5] studied the model where the
only source of coordination is message exchange
between the processors; the time that elapses
between successive steps at the same processor,
as well as the time spent by a message in
transit, may be arbitrarily large or small.
Lamport observed that in this model, called the
asynchronous model, temporal concepts such
as “past” and “future” are derivatives of causal
dependence, a notion with a simple algorithmic
interpretation. The work of Patt-Shamir and
Rajsbaum [10] can be viewed as extending
Lamport’s qualitative treatment with quantitative
concepts. For example, a statement like “event
a happened before event b” may be refined to
a statement like “event a happened at least 2 time
units and at most 5 time units before event b”.
This is in contrast to most previous theoretical
work, which focused on the linear-programming
aspects of clock synchronization (see below).

The basic idea in [10] is as follows. First,
the framework is extended to allow for upper
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and lower bounds on the time that elapses
between pairs of events, using the system’s
real-time specification. The notion of real-time
specification is a very natural one. For example,
most processors have local clocks, whose rate
of progress is typically bounded with respect to
real time (these bounds are usually referred to
as the clock’s “drift bounds”). Another example
is send and receive events of a given message:
It is always true that the receive event occurs
before the send event, and in many cases, tighter
lower and upper bounds are available. Having
defined real-time specification, [10] proceeds to
show how to combine these local bounds global
bounds in the best possible way using simple
graph-theoretic concepts. This allows one to
derive optimal protocols that say, for example,
what is the current reading of a remote clock.
If that remote clock is the standard clock, then
the result is optimal clock synchronization in the
common sense (this concept is called “external
synchronization” below).

Formal Model
The system consists of a fixed set of intercon-
nected processors. Each processor has a local
clock. An execution of the system is a sequence
of events, where each event is either a send
event, a receive event, or an internal event. Re-
garding communication, it is only assumed that
each receive event of a message m has a unique
corresponding send event of m. This means that
messages may be arbitrarily lost, duplicated or
reordered, but not corrupted. Each event e oc-
curs at a single specified processor, and has two
real numbers associated with it: its local time,
denoted LT.e/, and its real time, denoted RT.e/.
The local time of an event models the reading
of the local clock when that event occurs, and
the local processor may use this value, e.g., for
calculations, or by sending it over to another
processor. By contrast, the real time of an event
is not observable by processors: it is an abstract
concept that exists only in the analysis.

Finally, the real-time properties of the system
are modeled by a pair of functions that map
each pair of events to R [ f�1;1g: given
two events e and e0, L.e; e0/ D ` means that

RT.e0/ � RT.e/ � `, and H.e; e0/ D h means
that RT.e0/ � RT.e/ � h, i.e., that the number
of (real) time units since the occurrence of event
e until the occurrence of e0 is at least ` and at
most h. Without loss of generality, it is assumed
that L.e; e0/ D �H.e0; e/ for all events e; e0 (just
use the smaller of them). Henceforth, only the
upper bounds function H is used to represent the
real-time specification.

Some special cases of real time properties
are particularly important. In a completely asyn-
chronous system, H.e0; e/ D 0 if either e occurs
before e0 in the same processor, or if e and e0 are
the send and receive events, respectively, of the
same message. (For simplicity, it is assumed that
two ordered events may have the same real time
of occurrence.) In all other cases H.e; e0/ D1.
On the other extreme of the model spectrum,
there is the drift-free clocks model, where all
local clocks run at exactly the rate of real time.
Formally, in this caseH.e; e0/ D LT.e0/ � LT.e/
for any two events e and e0 occurring at the
same processor. Obviously, it may be the case
that only some of the clocks in the system are
drift-free.

Algorithms
In this work, message generation and delivery is
completely decoupled from message information.
Formally, messages are assumed to be generated
by some “send module”, and delivered by the
“communication system”. The task of algorithms
is to add contents in messages and state variables
in each node. (The idea of decoupling synchro-
nization information from message generation
was introduced in [1].) The algorithm only has
local information, i.e., contents of the local state
variables and the local clock, as well as the con-
tents of the incoming message, if we are dealing
with a receive event. It is also assumed that the
real time specification is known to the algorithm.
The conjunction of the events, their and their
local times (but not their real times) is called
as the view of the given execution. Algorithms,
therefore, can only use as input the view of an
execution and its real time specification.
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Problem Statement
The simplest variant of clock synchronization
is external synchronization, where one of the
processors, called the source, has a drift-free
clock, and the task of all processors is to maintain
the tightest possible estimate on the current
reading of the source clock. This formulation
corresponds to the Newtonian model, where
the processors reside in a well-defined time
coordinate system, and the source clock is
reading the standard time. Formally, in external
synchronization each processor v has two output
variables �v and "v; the estimate of v of the
source time at a given state is LTv C�v , where
LTv is the current local time at v. The algorithm is
required to guarantee that the difference between
the source time and it estimate is at most "v (note
that �v, as well as "v , may change dynamically
during the execution). The performance of the
algorithm is judged by the value of the "v

variables: the smaller, the better.
In another variant of the problem, called in-

ternal synchronization, there is no distinguished
processor, and the requirement is essentially that
all clocks will have values which are close to
each other. Defining this variant is not as straight-
forward, because trivial solutions (e.g., “set all
clocks to 0 all the time”) must be disqualified.

Key Results

The key construct used in [10] is the synchroniza-
tion graph of an execution, defined by combining
the concepts of local times and real-time specifi-
cation as follows.

Definition 1 Let “ be a view of an execution
of the system, and let H be a real time specifi-
cation for “. The synchronization graph gener-
ated by “ and H is a directed weighted graph
�ˇH D .V;E;w/, where V is the set of events
in “, and for each ordered pair of events p q
in “ such that H.p; q/ <1, there is a directed
edge .p; q/ 2 E. The weight of an edge (p, q) is

w.p; q/
def
D H.p; q/ � LT.p/C LT.q/.

The natural concept of distance from an event
p to an event q in a synchronization graph � ,
denoted d� .p; q/, is defined by the length of the
shortest weight path from p to q, or infinity if
q is not reachable from p. Since weights may
be negative, one has to prove that the concept
is well defined: indeed, it is shown that if �ˇH

is derived from an execution with view “ that
satisfies real time specification H, then �ˇH

does not contain directed cycles of negative
weight.

The main algorithmic result concerning syn-
chronization graphs is summarized in the follow-
ing theorem.

Theorem 1 Let ˛ be an execution with view
ˇ. Then ˛ satisfies the real time specification H
if and only if RT.p/ � RT.q/ � d� .p; q/ C

LT.p/�LT.q/ for any two events p and q in �ˇH .

Note that all quantities in the r.h.s. of the inequal-
ity are available to the synchronization algorithm,
which can therefore determine upper bounds on
the real time that elapses between events. More-
over, these bounds are the best possible, as im-
plied by the next theorem.

Theorem 2 Let �ˇH D .V;E;w/ be a synchro-
nization graph obtained from a view ˇ satisfying
real time specification H. Then for any given
event p0 2 V , and for any finite number N > 0,
there exist executions ˛0 and ˛1 with view ˇ, both
satisfying H, and such that the following real time
assignments hold.

• In ˛0, for all q 2 V with d� .q; p0/ <

1,RT˛0
.q/ D LT.q/ C d� .q; p0/, and for

all q 2 V with d� .q; p0/ D 1,RT˛0
.q/ >

LT.q/CN .
• In ˛1, for all q 2 V with d� .p0; q/ <

1,RT˛1
.q/ D LT.q/ � d� .p0; q/, and for

all q 2 V with d� .p0; q/ D 1,RT˛1
.q/ <

LT.q/ �N .

From the algorithmic viewpoint, one important
drawback of results of Theorems 1 and 2 is that
they depend on the view of an execution, which
may grow without bound. Is it really necessary?



320 Clock Synchronization

The last general result in [10] answers this ques-
tion in the affirmative. Specifically, it is shown
that in some variant of the branching program
computational model, the space complexity
of any synchronization algorithm that works
with arbitrary real time specifications cannot
be bounded by a function of the system size. The
result is proved by considering multiple scenarios
on a simple system of four processors on a line.

Later Developments
Based on the concept of synchronization graph,
Ostrovsky and Patt-Shamir present a refined gen-
eral optimal algorithm for clock synchroniza-
tion [9]. The idea in [9] is to discard parts of
the synchronization graphs that are no longer
relevant. Roughly speaking, the complexity of
the algorithm is bounded by a polynomial in the
system size and the ratio of processors speeds.

Much theoretical work was invested in the
internal synchronization variant of the problem.
For example, Lundelius and Lynch [7] proved
that in a system of n processors with full con-
nectivity, if message delays can take arbitrary
values in Œ0; 1
 and local clocks are drift-free, then
the best synchronization that can be guaranteed
is 1 � 1

n
. Helpern et al. [3] extended their re-

sult to general graphs using linear-programming
techniques. This work, in turn, was extended by
Attiya et al. [1] to analyze any given execution
(rather than only the worst case for a given topol-
ogy), but the analysis is performed off-line and
in a centralized fashion. The work of Patt-Shamir
and Rajsbaum [10] extended the “per execution”
viewpoint to on-line distributed algorithms, and
shifted the focus of the problem to external syn-
chronization.

Recently, Fan and Lynch [2] proved that in
a line of n processors whose clocks may drift,
no algorithm can guarantee that the difference be-
tween the clock readings of all pairs of neighbors
is o.logn= log log n/.

Clock synchronization is very useful in
practice. See, for example, Liskov [6] for
some motivation. It is worth noting that the
Internet provides a protocol for external clock
synchronization called NTP [8].

Applications

Theorem 1 immediately gives rise to an algo-
rithm for clock synchronization: every processor
maintains a representation of the synchronization
graph portion known to it. This can be done
using a full information protocol: In each out-
going message this graph is sent, and whenever
a message arrives, the graph is extended to in-
clude the new information from the graph in the
arriving message. By Theorem 2, the synchro-
nization graph obtained this way represents at
any point in time all information available re-
quired for optimal synchronization. For example,
consider external synchronization. Directly from
definitions it follows that all events associated
with a drift-free clock (such as events in the
source node) are at distance 0 from each other in
the synchronization graph, and can therefore be
considered, for distance computations, as a single
node s. Now, assuming that the source clock
actually shows real time, it is easy to see that for
any event p,

RT.p/ 2 ŒLT.p/ � d.s; p/;LT.p/C d.p; s/
;

and furthermore, no better bounds can be ob-
tained by any correct algorithm.

The general algorithm described above
(maintaining the complete synchronization
graph) can be used also to obtain optimal
results for internal synchronization; details are
omitted.

An interesting special case is where all clocks
are drift free. In this case, the size of the
synchronization graph remains fixed: similarly
to a source node in external synchronization,
all events occurring at the same processor can
be mapped to a single node; parallel edges
can be replaced by a single new edge whose
weight is minimal among all old edges. This
way one can obtain a particularly efficient
distributed algorithm solving external clock
synchronization, based on the distributed
Bellman�Ford algorithm for distance compu-
tation.
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Finally, note that the asynchronous model may
also be viewed as a special case of this general
theory, where an event p “happens before” an
event q if and only if d.p; q/ � 0.

Open Problems

One central issue in clock synchronization is
faulty executions, where the real time specifica-
tion is violated. Synchronization graphs detect
any detectable error: views which do not have
an execution that conforms with the real time
specification will result in synchronization graphs
with negative cycles. However, it is desirable to
overcome such faults, say by removing from the
synchronization graph some edges so as to break
all negative-weight cycles. The natural objective
in this case is to remove the least number of
edges. This problem is APX-hard as it generalizes
the Feedback Arc Set problem. Unfortunately, no
non-trivial approximation algorithms for it are
known.
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Problem Definition

The problem of finding a center string that is
“close” to every given string arises and has
applications in computational molecular biol-
ogy [4,5,9–11,18,19] and coding theory [1,6,7].

This problem has two versions: The first prob-
lem comes from coding theory when we are
looking for a code not too far away from a given
set of codes.

Problem 1 (The closest string problem) Input:
a set of strings S D fs1; s2; : : : ; sng, each of
length m.

Output: the smallest d and a string s of length
m which is within Hamming distance d to each
si 2 S.

The second problem is much more elusive
than the closest string problem. The problem
is formulated from applications in finding con-
served regions, genetic drug target identification,
and genetic probes in molecular biology.

Problem 2 (The closest substring problem)
Input: an integer L and a set of strings S D
fs1; s2; : : : ; sng, each of length m.

Output: the smallest d and a string s, of length
L, which is within Hamming distance d away
from a length L substring ti of si for i D
1; 2; : : : ; n.

The following results on approximation algo-
rithms are from [12–15].

Theorem 1 There is a polynomial time approxi-
mation scheme for the closest string problem.

Theorem 2 There is a polynomial time approxi-
mation scheme for the closest substring problem.

A faster approximation algorithm for the clos-
est string problem was given in [16].

Lots of results have been obtained in terms of
parameterized complexity and fixed-parameter
algorithms. In 2005, Marx showed that the
closest substring problem is W[1]-hard even
if both d and n are parameters [17]. Two
algorithms for the closest substring problem
have been developed [17] for the cases where
d and n are small. The running times for

the two algorithms are f .d/ � mO.logd/ and
g.d; n/ � nO.log logn/ for some functions f

and g, respectively. The first fixed-parameter
algorithm for closest string problem has a
running time complexity O.nddC1/ [8]. Ma
and Sun designed a fixed-parameter algorithm
with running time O.nm C nd � .16j˙ j/d /

for the closest string problem [16]. Extending
the algorithm for the closest string problem,
an O.nL C nd � 24d j˙ jd � mdlogdeC1/ time
algorithm was given for the closest substring
problem [16].

Since then, a series of improved algorithms
have been obtained. Wang and Zhu gave an
O.nL C nd � .23:25.j˙ j � 1//d / algorithm
for the closest string problem [20]. Chen and
Wang gave an algorithm with running times
O.nLC nd � 47:21d / for protein with j˙ j D 20
andO.nLCnd �13:92d / for DNA with j˙ j D 4,
respectively [2]. They also developed a software
package for the .L; d/ motif model. Currently
the fastest fixed-parameter algorithm for the
closest string problem was given by Chen,
Ma, and Wang. They developed a three-string
approach and the running time of the algorithm
is O.nLC nd3 � d6:731/ for binary strings [3].

Results for other measures with applications
in computational biology can be found in [5, 9,
18, 19].

Applications

Many problems in molecular biology involve
finding similar regions common to each sequence
in a given set of DNA, RNA, or protein
sequences. These problems find applications
in locating binding sites and finding conserved
regions in unaligned sequences [5, 9, 18, 19],
genetic drug target identification [10], designing
genetic probes [10], universal PCR primer de-
sign [5, 10], and, outside computational biology,
in coding theory [1, 6, 7]. Such problems may
be considered to be various generalizations of
the common substring problem, allowing errors.
Many measures have been proposed for finding
such regions common to every given string.
A popular and one of the most fundamental
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measures is the Hamming distance. Moreover,
two popular objective functions are used in these
areas. One is the total sum of distances between
the center string (common substring) and each
of the given strings. The other is the maximum
distance between the center string and a given
string. For more details, see [10].

A More General Problem

The distinguishing substring selection problem
has as input two sets of strings, B and G. It is
required to find a substring of unspecified length
(denoted by L) such that it is, informally, close to
a substring of every string in B and far away from
every lengthL substring of strings in G. However,
we can go through all the possible length L

substrings of strings in G, and we may assume
that every string in G has the same length L since
G can be reconstructed to contain all substrings
of length L in each of the good strings.

The problem is formally defined as follows:
Given a set B D fs1; s2; : : : ; sng of n1 (bad)
strings of length at least L, and a set G D

fg1; g2; : : : gn2
g of n2 (good) strings of length

exactly L, as well as two integers db and dg

(db � dg ), the distinguishing substring selection
problem (DSSP) is to find a string s such that
for each string, there exists a length L substring
ti of si with d.s; ti / � db and for any string
gi 2 G, d.s; gi / � dg . Here d.; / represents
the Hamming distance between two strings. If
all strings in B are also of the same length L,
the problem is called the distinguishing string
problem (DSP).

The distinguishing string problem was first
proposed in [10] for generic drug target design.
The following results are from [4].

Theorem 3 There is a polynomial time
approximation scheme for the distinguishing
substring selection problem. That is, for
any constant 	 > 0, the algorithm finds
a string s of length L such that for every
si 2 B, there is a length L substring ti of
si with d.ti ; s/ � .1 C 	/db and for every
substring ui of length L of every gi 2 G,

d.ui ; s/ � .1 � 	/dg , if a solution to
the original pair (db � dg ) exists. Since
there are a polynomial number of such pairs
(db,dg), we can exhaust all the possibilities in
polynomial time to find a good approximation
required by the corresponding application
problems.

Open Problems

The PTASs designed here use linear program-
ming and randomized rounding technique to
solve some cases for the problem. Thus, the
running time complexity of the algorithms for
both the closest string and closest substring is
very high. An interesting open problem is to
design more efficient PTASs for both problems.
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Problem Definition

CLOSEST SUBSTRING is a core problem in the
field of consensus string analysis with, in par-
ticular, applications in computational biology. Its
decision version is defined as follows.

CLOSEST SUBSTRING

Input: k strings s1; s2; : : : ; sk over alphabet ˙
and non-negative integers d and L.
Question: Is there a string s of length L and, for
all i D 1; : : : ; k, a length-L substring s0

i of si such
that dH .s; s

0
i / � d?

Here dH .s; s
0
i / denotes the Hamming distance

between s and si
0, i.e., the number of positions in

which s and si
0 differ. Following the notation used

in [7], m is used to denote the average length of
the input strings and n to denote the total size of
the problem input.

The optimization version of CLOSEST SUB-
STRING asks for the minimum value of the dis-
tance parameter d for which the input strings still
allow a solution.

Key Results

The classical complexity of CLOSEST SUB-
STRING is given by

Theorem 1 ([4, 5]) CLOSEST SUBSTRING is
NP-complete, and remains so for the special case
of the CLOSEST STRING problem, where the
requested solution string s has to be of same
length as the input strings. CLOSEST STRING is
NP-complete even for the further restriction to
a binary alphabet.

The following theorem gives the central state-
ment concerning the problem’s approximability:

Theorem 2 ([6]) CLOSEST SUBSTRING (as well
as CLOSEST STRING) admit polynomial time
approximation schemes (PTAS’s), where the ob-
jective function is the minimum Hamming dis-
tance d.

In its randomized version, the PTAS cited by
Theorem 2 computes, with high probability,
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a solution with Hamming distance .1C 	/dopt

for an optimum value dopt in .k2m/O.log j˙ j=�4/

running time. With additional overhead, this ran-
domized PTAS can be derandomized. A straight-
forward and efficient factor-2 approximation
for CLOSEST STRING is obtained by trying
all length-L substrings of one of the input
strings.

The following two statements address the
problem’s parametrized complexity, with respect
to both obvious problem parameters d and k:

Theorem 3 ([3]) CLOSEST SUBSTRING is
W[1]-hard with respect to the parameter k, even
for binary alphabet.

Theorem 4 ([7]) CLOSEST SUBSTRING is
W[1]-hard with respect to the parameter d, even
for binary alphabet.

For non-binary alphabet the statement of Theo-
rem 3 has been shown independently by Evans
et al. [2]. Theorem 3 and Theorem 4 show that an
exact algorithm for CLOSEST SUBSTRING with
polynomial running time is unlikely for a con-
stant value of d as well as for a constant value
of k, i.e., such an algorithm does not exist unless
3-SAT can be solved in subexponential time.

Theorem 4 also allows additional insights into
the problem’s approximability: In the PTAS for
CLOSEST SUBSTRING, the exponent of the poly-
nomial bounding the running time depends on the
approximation factor. These are not “efficient”
PTAS’s (EPTAS’s), i.e., PTAS’s with a f .	/ � nc

running time for some function f and some con-
stant c, and therefore are probably not useful in
practice. Theorem 4 implies that most likely the
PTAS with the nO.1=�4/ running time presented
in [6] cannot be improved to an EPTAS. More
precisely, there is no f .	/ � no.log 1=�/ time PTAS
for CLOSEST SUBSTRING unless 3-SAT can be
solved in subexponential time. Moreover, the
proof of Theorem 4 also yields.

Theorem 5 ([7]) There are no f .d; k/ � no.log d/

time and no g.d; k/ � no.log log k/ exact algorithms
solving CLOSEST SUBSTRING for some functions
f and g unless 3-SAT can be solved in subexpo-
nential time.

For unbounded alphabet the bounds have
been strengthened by showing that Closest
Substring has no PTAS with running time
f .	/ � no.1=�/ for any function f unless 3-SAT
can be solved in subexponential time [10]. The
following statements provide exact algorithms
for CLOSEST SUBSTRING with small fixed
values of d and k, matching the bounds given
in Theorem 5:

Theorem 6 ([7]) CLOSEST SUBSTRING can be
solved in time f .d/ � nO.log d/ for some function
f, where, more precisely, f .d/ D j˙ jd.log dC2/.

Theorem 7 ([7]) CLOSEST SUBSTRING

can be solved in time g.d; k/ � nO.log log k/

for some function g, where, more precisely,
g.d; k/ D .j˙ jd/O.kd/.

With regard to problem parameter L, CLOS-
EST SUBSTRING can be trivially solved in
O.j˙ jL � n/ time by trying all possible strings
over alphabet ˙ .

Applications

An application of CLOSEST SUBSTRING lies in
the analysis of biological sequences. In motif
discovery, a goal is to search “signals” common
to a set of selected strings representing DNA or
protein sequences. One way to represent these
signals are approximately preserved substrings
occurring in each of the input strings. Employing
Hamming distance as a biologically meaningful
distance measure results in the problem formula-
tion of CLOSEST SUBSTRING.

For example, Sagot [9] studies motif
discovery by solving CLOSEST SUBSTRING

(and generalizations thereof) using suffix
trees; this approach has a worst-case running
time of O.k2m � Ld � j˙ jd /. In the context
of motif discovery, also heuristics applicable
to CLOSEST SUBSTRING were proposed,
e.g., Pevzner and Sze [8] present an algo-
rithm called WINNOWER and Buhler and
Tompa [1] use a technique called random
projections.
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Open Problems

It is open [7] whether the nO.1=�4/ running time
of the approximation scheme presented in [6] can
be improved to nO.log 1=�/, matching the bound
derived from Theorem 4.

Cross-References

The following problems are close relatives of
CLOSEST SUBSTRING:

•
�Closest String and Substring Problems is
the special case of CLOSEST SUBSTRING,
where the requested solution string s has to
be of same length as the input strings.

• Distinguishing Substring Selection is the gen-
eralization of CLOSEST SUBSTRING, where
a second set of input strings and an addi-
tional integer d0 are given and where the
requested solution string s has – in addition
to the requirements posed by CLOSEST SUB-
STRING – Hamming distance at least d0 with
every length-L substring from the second set
of strings.

• Consensus Patterns is the problem obtained
by replacing, in the definition of CLOSEST

SUBSTRING, the maximum of Hamming dis-
tances by the sum of Hamming distances. The
resulting modified question of CONSENSUS

PATTERNS is: Is there a string s of length L
with

X

iD1;:::;m

dH .s; s
0
i / � d‹

CONSENSUS PATTERNS is the special case
of SUBSTRING PARSIMONY in which the
phylogenetic tree provided in the definition of
SUBSTRING PARSIMONY is a star phylogeny.
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Problem Definition

A clustered graph C.G; T / consists of a graph
G, called underlying graph, and of a rooted tree
T , called inclusion tree. The leaves of T are
the vertices of G; each internal node � of T
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Clustered Graph Drawing, Fig. 1 A clustered graph C.G; T / (left) and its inclusion tree (right)

Clustered Graph
Drawing, Fig. 2 Types of
crossings in a drawing of a
clustered graph

represents a cluster, that is, the set of vertices of
G that are the leaves of the subtree of T rooted
at �. Figure 1 shows a clustered graph and its
inclusion tree.

Clustered graphs are widely used in applica-
tions where it is needed at the same time to rep-
resent relationships between entities and to group
entities with semantic affinities. For example, in
the Internet network, the routers and the links
between them are the vertices and edges of a
graph, respectively; geographically close routers
are grouped into areas that are hence associ-
ated with clusters of vertices. In turn, areas are
grouped into autonomous systems that are hence
associated with clusters of vertices.

Visualizing clustered graphs is a difficult prob-
lem, due to the simultaneous need for a readable
drawing of the underlying structure and of the
clustering relationship. As for the visualization
of graphs, the most important aesthetic criterion
for the readability of a drawing of a clustered
graph is the planarity, whose definition needs a
refinement in the context of clustered graphs, in
order to deal with the clustering structure.

In a drawing of a clustered graph C.G; T /;
vertices and edges of G are drawn as points and
open curves, respectively, and each cluster � is
represented by a simple closed region R� con-
taining all and only the vertices of �. A drawing
ofC can have three types of crossings. Edge-edge

crossings are crossings between edges of G (see
Fig. 2, left). Consider an edge e ofG and a cluster
� in T . If e intersects the boundary of R� more
than once, we have an edge-region crossing (see
Fig. 2, middle). Finally, consider two clusters �
and  in T ; if the boundary of R� intersects the
boundary ofR� , we have a region-region crossing
(see Fig. 2, right). A drawing of a clustered graph
is c-planar (short for clustered planar) if it does
not have any edge-edge, edge-region, or region-
region crossing. A clustered graph is c-planar
if it admits a c-planar drawing. A drawing of a
clustered graph is straight line if each edge is
represented by a straight-line segment; also, it is
convex if each cluster is represented by a convex
region.

The notion of c-planarity was first introduced
by Feng, Cohen, and Eades in 1995 [10, 11].
The graph drawing community has subsequently
adopted this definition as a standard, and the
topological and geometric properties of c-planar
drawings of clustered graphs have been investi-
gated in tens of papers. The two main questions
raised by Feng, Cohen, and Eades were the fol-
lowing.

Problem 1 (C-Planarity Testing)

QUESTION: What’s the time complexity of test-
ing the c-planarity of a clustered graph?
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Problem 2 (Straight-Line Convex C-Planar
Drawability)

QUESTION: Does every c-planar-clustered
graph admit a straight-line convex c-planar
drawing?

Key Results

Almost 20 years after the publication of the
seminal papers by Feng et al. [10, 11], a solution
for Problem 1 remains an elusive goal, arguably
the most intriguing and well-studied algorithmic
problem in the graph drawing research area (see,
e.g., [3, 4, 7, 12, 13, 15–17]).

Polynomial-time algorithms have been pre-
sented to test the c-planarity of a large number of
classes of clustered graphs. A particular attention
has been devoted to c-connected clustered graphs
that are clustered graphs C.G; T / such that each
cluster � 2 T induces a connected component
G� of G. The following theorem reveals the
importance of c-connected clustered graphs.

Theorem 1 (Feng, Cohen, and Eades [11]) A
clustered graph is c-planar if and only if it is
a subgraph of a c-planar c-connected clustered
graph.

Feng, Cohen, and Eades provided in [11] a
nice and simple quadratic-time testing algorithm,
which is described in the following.

Theorem 2 (Feng, Cohen, and Eades [11])
The c-planarity of an n-vertex c-connected
clustered graph can be tested in O.n2/ time.

The starting point of Feng et al. result is a
characterization of c-planar drawings.

Theorem 3 (Feng, Cohen, and Eades [11])
A drawing of a c-connected clustered graph
C.G; T / is c-planar if and only if it is planar,
and, for each cluster �, all the vertices and edges
of G �G� are in the outer face of the drawing of
G�.

The algorithm of Feng et al. [11] performs a
bottom-up traversal of T .

When a node � 2 T is considered, the
algorithm tests whether a drawing of G� exists

such that (P1) for each descendant  of �, all
the vertices and edges of G� � G� are in the
outer face of the drawing of G� in �� and
(P2) all the vertices of G� having neighbors in
G � G� are incident to the outer face of G� in
��. Feng et al. show how a PQ-tree P� [2] can
be used to efficiently represent all the (possibly
exponentially many) orderings in which the edges
incident to � can cross the boundary ofR� in any
planar drawing �� ofG� satisfying properties P1
and P2 (see Fig. 3, left and middle).

PQ-tree P� can be easily computed for each
leaf � 2 T . Consider an internal node � 2
T and assume that PQ-trees P�1

; : : : ; P�k
have

been associated to the children �1; : : : ; �k of
�. Representative graphsH�1

; : : : ;H�k
are con-

structed from P�1
; : : : ; P�k

; the embeddings of
H�i

are in bijection with the embeddings of
G�i

satisfying properties P1 and P2 (see Fig. 3,
left and right). Then, a graph G0

� is constructed
composed of H�1

; : : : ;H�k
, of a dummy vertex

v�, and of length-2 paths connecting v� with
every vertex ofH�1

; : : : ;H�k
that has a neighbor

in G �G�. Feng et al. argue that the embeddings
of G� satisfying properties P1 and P2 are in
bijection with the embeddings ofG0

� in which v�

is incident to the outer face. Hence, a planarity
testing for G0

� is performed. This allows to deter-
mine P�, thus allowing the visit of T to go on.

If no planarity test fails, the algorithm com-
pletes the visit of T . Top-down traversing T and
fixing an embedding for the PQ-tree associated to
each node of T determines a c-planar drawing of
C.G; T /.

Involved linear-time algorithms to test the
c-planarity of c-connected clustered graphs are
known nowadays [5, 6]. The algorithm in [5]
relies on a structural characterization of the
c-planarity of a c-connected clustered graph
C.G; T / based on the decomposition of G into
triconnected components. The characterization
allows one to test in linear time the c-planarity
of C.G; T / via a bottom-up visit of the SPQR-
tree [8] of G, which is a data structure efficiently
representing the planar embeddings of G.

Problem 1 is fundamental for the graph draw-
ing research area. However, no less importance
has to be attributed to the task of designing
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μ

Clustered Graph Drawing, Fig. 3 Left: Graph G� and
the edges incident to �. Middle: The PQ-tree representing
the possible orderings in which the edges incident to �

can cross the boundary of R� in a planar drawing of G�

satisfying properties P1 and P2. Right: The representative
graph H� for G�

algorithms for constructing geometric represen-
tations of clustered graphs. The milestones in
this research direction have been established by
Feng et al., who provided in [10] a full answer to
Problem 2.

Theorem 4 (Feng, Cohen, and Eades [10]) Ev-
ery c-planar clustered graph admits a straight-
line convex c-planar drawing.

The proof of Theorem 4 relies on a positive an-
swer for the following question: Does every pla-
nar hierarchical graph admit a planar straight-
line hierarchical drawing? A hierarchical graph
is a graph with an assignment of its vertices
to k layers l1; : : : ; lk . A hierarchical drawing
maps each vertex assigned to layer li to a point
on the horizontal line y D i and each edge
to a y-monotone curve between the correspond-
ing endpoints. A hierarchical graph is planar
if it admits a planar hierarchical drawing. Feng
et al. [10] showed an algorithm to construct a pla-
nar straight-line hierarchical drawing of any pla-
nar hierarchical graph H . Their algorithm splits
H into some subgraphs, inductively constructs
planar straight-line hierarchical drawings of such
subgraphs, and glues these drawings together to
obtain a planar straight-line hierarchical drawing
of H .

Feng et al. also showed how the result on
hierarchical graphs leads to a proof of Theorem 4,
namely:

1. Starting from any c-planar clustered graph
C.G; T /, construct a hierarchical graph H

by assigning the vertices of G to n layers,
in the same order as in an st -numbering of
G in which vertices of the same cluster are
numbered consecutively.

2. Construct a planar straight-line hierarchical
drawing �H of H .

3. Construct a straight-line convex c-planar
drawing of C.G; T / starting from �H by
drawing each cluster as a convex region
slightly surrounding the convex hull of its
vertices.

Angelini, Frati, and Kaufmann [1] recently
strengthened Theorem 4 by proving that every
c-planar clustered graph admits a straight-line c-
planar drawing in which each cluster is repre-
sented by a scaled copy of an arbitrary convex
shape.

Hong and Nagamochi [14] studied straight-
line convex c-planar drawings in which the faces
of the underlying graph are delimited by con-
vex polygons. They proved that a c-connected
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clustered graph admits such a drawing if and
only if it is c-planar, completely connected (i.e.,
for every cluster �, both G� and G � G� are
connected), and internally triconnected (i.e., for
every separation pair fu; vg, vertices u and v are
incident to the outer face ofG and each connected
component of G � fu; vg contains vertices inci-
dent to the outer face of G).

The drawings constructed by the algorithm
in [10] use real coordinates. Hence, when dis-
playing these drawings on a screen with a fi-
nite resolution rule, exponential area might be
required for the visualization. This drawback is
however unavoidable. Namely, Feng et al. proved
in [10] that there exist clustered graphs requiring
exponential area in any straight-line convex c-
planar drawing with a finite resolution rule. This
harshly differentiates c-planar clustered graphs
from planar graphs, as straight-line convex planar
drawings of planar graphs can be constructed in
polynomial area.

Theorem 5 (Feng, Cohen, and Eades [10])
There exist n-vertex c-planar clustered graphs
requiring 2˝.n/ area in any straight-line convex
c-planar drawing.

The proof of Theorem 5 adapts techniques
introduced by Di Battista et al. [9] to prove area
lower bounds for straight-line upward planar
drawings of directed graphs.

Open Problems

After almost 20 years since it was first posed by
Feng, Cohen, and Eades, Problem 1 still repre-
sents a terrific challenge for researchers working
in graph drawing.

A key result of Feng, Cohen, and Eades [11]
shows that testing the c-planarity of a clustered
graph C.G; T / is a polynomial-time solvable
problem if C.G; T / is c-connected – see Theo-
rem 2. Moreover, a clustered graph is c-planar
if and only if it is a subgraph of a c-planar
c-connected clustered graph – see Theorem 1.
Hence, the core of testing the c-planarity of a
non-c-connected clustered graph C.G; T / is an

augmentation problem, asking whether C.G; T /
can be augmented to a c-connected c-planar clus-
tered graph C 0.G0; T / by inserting edges in G.

This augmentation problem seems far from
being solved. A particular attention [3,4,7,15,16]
has been devoted to the case in which a planar
embedding for G is prescribed as part of the in-
put. In this case, edges might only be inserted in-
side faces ofG, in order to guarantee the planarity
of G0. Thus, the problem becomes equivalent to
the one selecting a set S of edges into a set M of
topological embedded multigraphs, where each
cluster � defines a multigraph M� in M con-
sisting of all the edges that can be inserted inside
faces of G in order to connect distinct connected
components ofG�. Then the edges in S are those
that are selected to augment G to G0 – hence
no two edges in S are allowed to cross. Even
in this prescribed-embedding version, only partial
results are known. For example, polynomial-time
algorithms to test the c-planarity of C.G; T / are
known if the faces ofG have at most five incident
vertices [7], or if each cluster induces at most
two connected components [15], or if each cluster
has at most two incident vertices on each face of
G [3].
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�Upward Graph Drawing
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Problem Definition

The problem of clustering consists of partitioning
a set of objects such as images, text documents,
etc. into groups of related items. The information
available to the clustering algorithm consists of
pairwise similarity information between objects.
One of the most popular approaches to clustering
is to map the objects into data points in a metric
space, define an objective function over the data
points, and find a partitioning which achieves the
optimal solution, or an approximately optimal
solution to the given objective function. In this
entry, we will focus on two of the most widely
studied objective functions for clustering: the k-
median objective and the k-means objective.

In k-median clustering, the input is a set P of
n points in a metric space .X; d/, where d.�/ is
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the distance function. The objective is to find k
center points c1; c2; � � � ck . The clustering is then
formed by assigning each data point to the closest
center point. If a point x is assigned to center
c.x/, then the cost incurred is d.x; c.x//. The
goal is to find center points and a partitioning
of the data so as to minimize the total cost
˚ D minc1;c2;:::ck

P
x mini d.x; ci /. This objec-

tive is closely related to the well-studied facility
location problem [1, 9] in theoretical computer
science.

Similarly, for the k-means objective, the goal
is to find k center points. However, the cost
incurred by a point x is the distance squared
to its center. Hence, the goal is to minimize
˚ D minc1;c2;:::ck

P
x mini d

2.x; ci /. A special
case of the k-means objective which is of
particular interest is the Euclidean k-means
problem where the points are in <m and the
distance function is the squared Euclidean
distance. Again, the goal is to choose k

center points and assign each point to the
closest center while minimizing the total cost.
However, unlike k-median and k-means in metric
spaces, the center points do not necessarily
have to belong to the data set P and can be
arbitrarily chosen from <m. Unfortunately,
optimizing both these objectives turns out to
be NP -hard. Hence, a lot of the work in the
theoretical computer science community focuses
on designing good approximation algorithms
for these problems[1, 8–10, 12] with formal
guarantees on worst-case instances.

However, in most practical scenarios, the
clustering instances which one encounters are
not worst case but instead have additional
structure/stability associated with them. In such
cases, it is natural to ask if one can abstract
out this structure in the form of a stability
notion, formally study it, and exploit this
additional structure in order to obtain optimal
or nearly optimal solutions and bypass NP-
hardness which only applies to worst-case
instances. This modern take on clustering
research has, in recent years, produced new
insights and deeper understanding of what we
know about clustering. In this entry, we will
survey some key results on clustering under
stability assumptions.

Key Results

	-separability:

This notion of stability was proposed by Ostro-
vsky et al. [15]. The motivation comes from the
fact that in practice, when solving a clustering
instance, one typically has to decide how many
clusters to partition the data into, i.e., the value
of k. If the k-means objective is the underlying
criteria being used to judge the quality of a clus-
tering, and the optimal .k � 1/-means clustering
is comparable to the optimal k-means clustering;
then, one can in principle also use .k�1/ clusters
to describe the data set. Hence, the particular
clustering instance is not well behaved or not
stable. In fact this particular method is a very
popular heuristic to find out the number of hidden
clusters in the data set suggesting that real-world
instances have this property.

Definition 1 (	-Separability) Given an instance
of Euclidean k-means clustering, let OPT.k/ de-
note the cost of the optimal k-means solution.
We can also decompose OPT.k/ as OPT DPk

iD1 OPTi , where OPTi denotes the 1-means
cost of cluster Ci, i.e.,

P
x2Ci

d.x; ci /
2. Such

an instance is called 	-separable if it satisfies
OPT.k � 1/ > 1

�2 OPT.k/.

It was shown by Ostrovsky et al. [15] that one can
design much better approximation algorithms for
such instances. The algorithm is based on over
samplingO.k/ candidate centers using a distance
weighted sampling scheme, followed by a greedy
deletion strategy to reduce the k centers without
incurring too much increase in the k-means cost.

Theorem 1 ([15]) There is a polynomial time al-
gorithm which given any 	-separable Euclidean
k-means instance, outputs a clustering of cost at
most OPT

1�	
with probability 1 � O..�/1=4/ where

� D �.	2/.

.1C ˛; 	/-Approximation-Stability:

Balcan et al. [5] introduced and analyzed a class
of approximation stable instances for which one
can find near optimal clusterings in polynomial
time. The motivation comes from the fact that for
many problems of interest to machine learning,
there is an unknown underlying correct “target”
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C

clustering. In such cases, the implicit hope when
pursuing an objective-based clustering approach
(k-means or k-median) is that approximately
optimizing the objective function will in fact
produce a clustering of low clustering error, i.e.,
a clustering that is point wise close to the target
clustering. Balcan et al. showed that by making
this implicit assumption explicit, one can effi-
ciently compute a low-error clustering even in
cases when the approximation problem of the
objective function is NP-hard!

Definition 2 (.1 C ˛; 	/-approximation-
stability) Let P be a set of n points residing
in a metric space .M; d/. Given an objective
function ˚ (such as k-median, k-means), we
say that instance .M;P / satisfies .1 C ˛; 	/-
approximation-stability for ˚ if all clusterings C
with ˚.C/ � .1 C ˛/ � OPT.k/ are point-wise
	-close to the target clustering T for .M;P /.

Here, the term “target” clustering refers to the
ground truth clustering of P which one is trying
to approximate. The distance between any two
k clusterings C and C� of n points is measured
as dist.C; C�/ D min
2Sk

1
n

Pk
iD1 jCi n C�


.i/j.
Interestingly, this approximation stability condi-
tion implies a lot of structure about the problem
instance which could be exploited algorithmi-
cally. For example, one can show the following:

Theorem 2 ( [5]) If the given instance .M;P /
satisfies .1C˛; 	/-approximation-stability for the
k-median or the k-means objective, then we can
efficiently produce a clustering that is O.	 C
	=˛/-close to the target clustering T .

As mentioned above, this theorem is valid even
for values of ˛ for which getting a .1 C ˛/-
approximation to k-median and k-means is NP -
hard! The algorithm first creates a graph over data
points by connecting points which are within a
certain distance threshold. The next step involves
iteratively peeling off connected components
in the graph and simultaneously de-noising the
instance.

Related Notions
The notion of 	-separability and .1 C ˛; 	/-
approximation-stability are related to each other.
For example, Theorem 5.1 in [15] shows that

	-separability implies that any near-optimal
solution to k-means is O.	2/-close to the
k-means optimal clustering. However, the
converse is not necessarily the case; an instance
could satisfy approximation-stability without
being 	-separated. In [6], Balcan et al. present
a specific example of points in Euclidean space
with ˛ D 1. In fact, when k is much larger than
1=	, the difference between the two properties
can be more substantial.

The notion of separability and approximation
stability was generalized in [2] where the authors
study a notion of stability called ˛-weak deletion
stability. A clustering instance is stable under
this notion if in the optimal clustering merging
any two clusters into one increases the cost by a
multiplicative factor of .1 C ˛/. This definition
captures both 	-separability and approximation
stability in the case of large cluster sizes. Re-
markably, [2] show that for such instances of k-
median and Euclidean k-means, one can design a
.1C 	/ approximation algorithm for any constant
	 > 0. This leads to immediate improvements
over the works of [5] (for the case of large
clusters) and of [15]. However, the run time of
the resulting algorithm depends polynomially in
n and k and exponentially in the parameters 1=˛
and 1=	, so the simpler algorithms of [2] and [5]
are more suitable for scenarios where one expects
the stronger properties to hold.

Kumar and Kannan [11] study a separation
condition motivated by the k-means objective and
the kind of instances produced by Gaussian and
related mixture models. They consider the setting
of points in Euclidean space and show that if the
projection of any data point onto the line joining
the mean of its cluster in the target clustering to
the mean of any other cluster of the target is˝.k/
standard deviations closer to its own mean than
the other mean, then they can recover the target
clusters in polynomial time. This condition was
further analyzed and reduced by work of [3].

Bilu and Linial [7] study clustering instances
which are perturbation resilient. An instance is
c-perturbation resilient if it has the property that
the optimal solution to the objective remains
optimal even after bounded perturbations (up to
factor c) to the input weight matrix. They give
an algorithm for maxcut (which can be viewed
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as a 2-clustering problem) under the assumption
that the optimal solution is stable to (roughly)
O.n2=3/-factor multiplicative perturbations to
the edge weights. This was improved by [14].
Awasthi et al. [3] study perturbation resilience
for center-based clustering objectives such as
k-median and k-means and give an algorithm
that finds the optimal solution when the input is
stable to only factor-3 perturbations. This factor
is improved to 1 C

p
2 by [4], who also design

algorithms under a relaxed .c; 	/-stability to per-
turbation condition in which the optimal solution
need not be identical on the c-perturbed instance,
but may change on an 	 fraction of the points (in
this case, the algorithms require c D 2C

p
3).

For the k-median objective, .c; 	/-approx-
imation-stability with respect to C� implies
.c; 	/-stability to perturbations because an
optimal solution in a c-perturbed instance is
guaranteed to be a c-approximation on the
original instance. Similarly, for k-means, .c; 	/-
stability to perturbations is implied by .c2; 	/-
approximation-stability. However, as noted
above, the values of c known to lead to efficient
clustering in the case of stability to perturbations
are larger than for approximation-stability, where
any constant c > 1 suffices.

Open Problems

The algorithm proposed in [15] for 	-separability
is a variant of the popular Lloyd’s heuristic for k-
means [13]. Hence, the result can also be viewed
as a characterization of when such heuristics
work in practice. It would be interesting to
establish weaker sufficient conditions for such
heuristics. For instance, is it possible that weak-
deletion stability is sufficient for a version of
the Lloyd’s heuristic to converge to the optimal
clustering? Another open direction concerns the
notion of perturbation resilience. Can one reduce
the perturbation factor c needed for efficient
clustering? Alternatively, if one cannot find
the optimal clustering for small values of c,
can one still find a near-optimal clustering, of
approximation ratio better than what is possible
on worst-case instances?

In a different direction, one can also consider
relaxations of the perturbation-resilience
condition. For example, Balcan et al. [4] also
consider instances that are “mostly resilient” to
c-perturbations; under any c-perturbation of the
underlying metric, no more than an 	-fraction
of the points gets mislabeled under the optimal
solution. For sufficiently large constant c and suf-
ficiently small constant 	, they present algorithms
that get good approximations to the objective un-
der this condition. A different kind of relaxation
would be to consider a notion of resilience to
perturbations on average: a clustering instance
whose optimal clustering is likely not to change,
assuming the perturbation is random from a
suitable distribution. Can this weaker notion be
used to still achieve positive guarantees?

Finally, the notion of stability can also shed
light on practically interesting instances of many
other important problems. Can stability assump-
tions, preferably ones of a mild nature, allow us
to bypass NP-hardness results of other problems?
One particularly intriguing direction is the prob-
lem of Sparsest-Cut, for which no PTAS or
constant-approximation algorithm is known, yet a
powerful heuristics based on spectral techniques
work remarkably well in practice.
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Problem Definition

Color coding [2] is a novel method used for
solving, in polynomial time, various subcases
of the generally NP-Hard subgraph isomorphism
problem. The input for the subgraph isomorphism
problem is an ordered pair of (possibly
directed) graphs (G, H). The output is either
a mapping showing that H is isomorphic to
a (possibly induced) subgraph of G, or false
if no such subgraph exists. The subgraph
isomorphism problem includes, as special
cases, the HAMILTON-PATH, CLIQUE, and
INDEPENDENT SET problems, as well as
many others. The problem is also interesting
when H is fixed. The goal, in this case, is
to design algorithms whose running times are
significantly better than the running time of the
naïve algorithm.

Method Description
The color coding method is a randomized
method. The vertices of the graph G D .V;E/ in
which a subgraph isomorphic to H D .VH ; EH /

is sought are randomly colored by k D jVH j

colors. If jVH j D O.log jV j/, then with a small
probability, but only polynomially small (i.e., one
over a polynomial), all the vertices of a subgraph
of G which is isomorphic to H, if there is such
a subgraph, will be colored by distinct colors.
Such a subgraph is called color coded. The color
coding method exploits the fact that, in many
cases, it is easier to detect color coded subgraphs
than uncolored ones.

Perhaps the simplest interesting subcases
of the subgraph isomorphism problem are the
following: Given a directed or undirected graph
G D .V;E/ and a number k, does G contain
a simple (directed) path of length k? Does
G contain a simple (directed) cycle of length
exactly k? The following describes a 2O.k/ � jEj
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time algorithm that receives as input the graph
G D .V;E/, a coloring cWV ! f1; : : : ; kg and
a vertex s 2 V , and finds a colorful path of
length k � 1 that starts at s, if one exists. To
find a colorful path of length k � 1 in G that
starts somewhere, just add a new vertex s0

to V, color it with a new color 0 and connect
it with edges to all the vertices of V. Now
look for a colorful path of length k that starts
at s0.

A colorful path of length k � 1 that starts at
some specified vertex s is found using a dynamic
programming approach. Suppose one is already
given, for each vertex v 2 V , the possible sets of
colors on colorful paths of length i that connect s
and v. Note that there is no need to record
all colorful paths connecting s and v. Instead,
record the color sets appearing on such paths.
For each vertex v there is a collection of at most�

k
i

�
color sets. Now, inspect every subset C that

belongs to the collection of v, and every edge
.v; u/ 2 E. If c.u/ 62 C , add the set C [ fc.u/g
to the collection of u that corresponds to colorful
paths of length i C 1. The graph G contains
a colorful path of length k � 1 with respect to
the coloring c if and only if the final collection,
that corresponding to paths of length k � 1, of
at least one vertex is non-empty. The number of
operations performed by the algorithm outlined
is at most O.

Pk
iD0 i

�
k
i

�
� jEj/ which is clearly

O.k2k � jEj/.

Derandomization
The randomized algorithms obtained using the
color coding method are derandomized with only
a small loss in efficiency. All that is needed
to derandomize them is a family of colorings
of G D .V;E/ so that every subset of k ver-
tices of G is assigned distinct colors by at least
one of these colorings. Such a family is also
called a family of perfect hash functions from
f1; 2; : : : ; jV jg to f1; 2; : : : ; kg. Such a family is
explicitly constructed by combining the meth-
ods of [1, 9, 12, 16]. For a derandomization
technique yielding a constant factor improvement
see [5].

Key Results

Lemma 1 Let G D .V;E/ be a directed or
undirected graph and let cWV ! f1; : : : ; kg be
a coloring of its vertices with k colors. A colorful
path of length k � 1 in G, if one exists, can be
found in 2O.k/ � jEj worst-case time.

Lemma 2 Let G D .V;E/ be a directed or
undirected graph and let cWV ! f1; : : : ; kg

be a coloring of its vertices with k colors.
All pairs of vertices connected by colorful
paths of length k � 1 in G can be found in
either 2O.k/ � jV jjEj or2O.k/ � jV j! worst-
case time (here ! < 2:376 denotes the matrix
multiplication exponent).

Using the above lemmata the following results
are obtained.

Theorem 3 A simple directed or undirected path
of length k � 1 in a (directed or undirected)
graph G D .V;E/ that contains such a path
can be found in 2O.k/ � jV j expected time in the
undirected case and in 2O.k/ � jEj expected time
in the directed case.

Theorem 4 A simple directed or undirected
cycle of size k in a (directed or undirected)
graph G D .V;E/ that contains such a cycle can
be found in either 2O.k/ � jV jjEj or 2O.k/ � jV j!

expected time.

A cycle of length k in minor-closed families of
graphs can be found, using color coding, even
faster (for planar graphs, a slightly faster algo-
rithm appears in [6]).

Theorem 5 Let C be a non-trivial minor-closed
family of graphs and let k � 3 be a fixed integer.
Then, there exists a randomized algorithm that
given a graphG D .V;E/ from C, finds a Ck

(a simple cycle of size k) in G, if one exists, in
O(jVj) expected time.

As mentioned above, all these theorems can be
derandomized at the price of a log jVj factor. The
algorithms are also easily to parallelize.
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Applications

The initial goal was to obtain efficient algorithms
for finding simple paths and cycles in graphs.
The color coding method turned out, however,
to have a much wider range of applicability.
The linear time (i.e., 2O.k/ � jEj for directed
graphs and 2O.k/ � jV j for undirected graphs)
bounds for simple paths apply in fact to any
forest on k vertices. The 2O.k/ � jV j! bound
for simple cycles applies in fact to any series-
parallel graph on k vertices. More generally,
if G D .V;E/ contains a subgraph isomorphic
to a graph H D .VH ; EH / whose tree-width
is at most t, then such a subgraph can be
found in 2O.k/ � jV jtC1 expected time, where
k D jVH j. This improves an algorithm of
Plehn and Voigt [14] that has a running time
of kO.k/ � jV jtC1. As a very special case,
it follows that the LOG PATH problem is
in P. This resolves in the affirmative a con-
jecture of Papadimitriou and Yannakakis [13].
The exponential dependence on k in the
above bounds is probably unavoidable as the
problem is NP-complete if k is part of the
input.

The color coding method has been a fruitful
method in the study of parametrized algorithms
and parametrized complexity [7, 8]. Recently,
the method has found interesting applications in
computational biology, specifically in detecting
signaling pathways within protein interaction net-
works, see [10, 17, 18, 19].

Open Problems

Several problems, listed below, remain open.

• Is there a polynomial time (deterministic or
randomized) algorithm for deciding if a given
graph G D .V;E/ contains a path of length,
say, log2 jV j? (This is unlikely, as it will imply
the existence of an algorithm that decides
in time 2O.

p
n/ whether a given graph on n

vertices is Hamiltonian.)

• Can the log jV j factor appearing in the deran-
domization be omitted?

• Is the problem of deciding whether a given
graph G D .V;E/ contains a triangle as dif-
ficult as the Boolean multiplication of two
jV j � jV j matrices?

Experimental Results

Results of running the basic algorithm on biolog-
ical data have been reported in [17, 19].
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Problem Definition

A proper coloring of a graph G D .V;E/ is an
assignment of colors to all vertices in V in such a
way that no two adjacent vertices have the same
color. A k-coloring of G is a coloring that uses
k colors. The minimum number of colors that
can be used to properly color G is the (vertex)
chromatic number of G and is denoted by �.G/.

Deciding whether a given graph admits a k-
coloring for a given k � 3 is well known to be
NP complete. In particular, it is NP hard to com-
pute the chromatic number [5]. The best known
approximation algorithm computes a coloring of

size at most within a factor O
�

n.log log n/2

.log n/3

�
of

the chromatic number [6]. Furthermore, for any
constant 	 > 0, it is NP hard to approximate the
chromatic number within a factor n1�� [14].

The intractability of the vertex coloring prob-
lem for arbitrary graphs leads researchers to the
study of the problem for appropriately generated
random graphs. In the current entry, we con-
sider coloring random instances of the random
intersection graphs model, which is defined as
follows:

Definition 1 (Random Intersection Graph –
Gn;m;p [9, 13]) Consider a universe M D

f1; 2; : : : ; mg of elements and a set of n vertices
V . Assign independently to each vertex v 2 V a
subset Sv of M, choosing each element i 2 M
independently with probability p, and draw an
edge between two vertices v ¤ u if and only if
Sv \ Su ¤ ;. The resulting graph is an instance
Gn;m;p of the random intersection graphs model.

We will say that a property holds in Gn;m;p

with high probability (whp) if the probability that
a random instance of the Gn;m;p model has the
property is at least 1 � o.1/.

In this model, we will refer to the elements in
the universe M as labels. We also denote by Li

the set of vertices that have chosen label i 2 M .
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GivenGn;m;p , we will refer to fLi ; i 2Mg as its
label representation. Consider the bipartite graph
with vertex set V [M and edge set f.v; i/ W
i 2 Svg D f.v; i/ W v 2 Lig. We will refer to
this graph as the bipartite random graph Bn;m;p

associated to Gn;m;p . Notice that the associated
bipartite graph is uniquely defined by the label
representation.

It follows from the definition of the model
that the edges in Gn;m;p are not independent.
This dependence becomes stronger as the number
of labels decreases. In fact, the authors in [3]
prove the equivalence (measured in terms of total
variation distance) of the random intersection
graphs model Gn;m;p and the Erdős-Rényi ran-
dom graphs model Gn; Op , for Op D 1 � .1 �

p2/m, when m D n˛; ˛ > 6. This bound on
the number of labels was improved in [12], by
showing equivalence of sharp threshold functions
among the two models for ˛ � 3. We note that
1 � .1 � p2/m is in fact the (unconditioned)
probability that a specific edge exists in Gn;m;p .
In view of this equivalence, in this entry, we
consider the interesting range of values m D

n˛; ˛ < 1, where random intersection graphs
seem to differ the most from Erdős-Rényi random
graphs.

In [1] the authors propose algorithms that whp
probability color sparse instances of Gn;m;p . In
particular, for m D n˛; ˛ > 0 and p D

o

	q
1

nm



, they show that Gn;m;p can be col-

ored optimally. Also, in the case where m D
n˛; ˛ < 1 and p D o

�
1

m ln n

�
, they show that

�.Gn;m;p/ � np whp. To do this, they prove
that Gn;m;p is chordal whp (or equivalently, the
associated bipartite graph does not contain cy-
cles), and so a perfect elimination scheme can
be used to find a coloring in polynomial time.
The range of values we consider here is different
than the one needed for the algorithms in [1]
to work. In particular, we study coloring Gn;m;p

for the wider range mp � .1 � ˛/ lnn, as well
as the denser range mp � ln2 n. We have to
note also that the proof techniques used in [1]
cannot be used in the range we consider, since the
properties that they examine do not hold in our
case. Therefore, a completely different approach
is required.

Key Results

In this entry, we initially considered the problem
of properly coloring almost all vertices inGn;m;p .
In particular, we proved the following:

Theorem 1 Let m D n˛; ˛ < 1 and mp �
ˇ lnn, for any constant ˇ < 1�˛. Then a random
instance of the random intersection graphs model
Gn;m;p contains a subset of at least n � o.n/
vertices that can be colored using np colors, with
probability at least 1 � e�n0:99

.

Note that the range of values of m;p considered
in the above Theorem is quite wider than the
one studied in [1]. For the proof, we combine
ideas from [4] (see also [7]) and [10]. In
particular, we define a Doob martingale as
follows: Let v1; v2; : : : ; vn be an arbitrary
ordering of the vertices of Gn;m;p . For i D
1; 2; : : : ; n, let Bi be the subgraph of the
associated bipartite graph for Gn;m;p (namely,
Bn;m;p) induced by [i

j D1vj

S
M. We denote

by Hi the intersection graph whose bipartite
graph has vertex set V

S
M and edge set that

is exactly as Bi between [i
j D1vj and M,

whereas every other edge (i.e., the ones between
[n

j DiC1vj and M) appears independently with
probability p.

Let also X denote the size of the largest np-
colorable subset of vertices in Gn;m;p , and let Xi

denote the expectation of the largest np-colorable
subset in Hi . Notice that Xi is a random variable
depending on the overlap between Gn;m;p and
Hi . Obviously, X D Xn and setting X0 D EŒX
,
we have jXi �XiC1j � 1, for all i D 1; 2; : : : ; n.
It is straightforward to verify that the sequence
X0; X1; : : : ; Xn is a Doob martingale, and thus
we can use Azuma’s inequality to prove concen-
tration ofXn around its mean value. However, the
exact value of EŒX
 is unknown. Nevertheless,
we could prove a lower bound on EŒX
 by
providing a lower bound on the probability that
X takes sufficiently large values. In particular, we
showed that, for any positive constant 	 > 0, the
probability that X takes values at least .1 � 	/n
is larger than the upper bound given by Azuma’s
inequality, implying that EŒX
 � n � o.n/.

It is worth noting here that the proof of The-
orem 1 can also be used to prove that �.np/
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colors are enough to color n � o.n/ vertices,
even in the case where mp D ˇ lnn, for any
constant ˇ > 0. However, finding the exact con-
stant multiplying np is technically more difficult.
Finally, note that Theorem 1 does not provide any
direct information for the chromatic number of
Gn;m;p , because the vertices that remain uncol-
ored could induce a clique in Gn;m;p in the worst
case.

An Efficient Algorithm
Following our existential result of Theorem 1,
we also proposed and analyzed an algorithm
CliqueColor for finding a proper coloring of
a random instance of Gn;m;p , for any mp �

ln2 n, where m D n˛; ˛ < 1. The algorithm
uses information of the label sets assigned to the

vertices of Gn;m;p , and it runs in O
�

n2mp2

ln n

�

time whp (i.e., polynomial in n and m). In the
algorithm, every vertex initially chooses indepen-
dently uniformly at random a preference in colors
from a set C, denoted by shade.�/, and every
label l chooses a preference in the colors of the
vertices inLl , denoted by cl .�/. Subsequently, the
algorithm visits every label clique and fixes the
color (according to preference lists) for as many
vertices as possible without causing collisions
with already-colored vertices. Finally, it finds
a proper coloring to the remaining uncolored
vertices, using a new set of colors C0. Algorithm
CliqueColor is described below:

It is evident that algorithm CliqueColor
always finds a proper coloring of Gn;m;p , but
its efficiency depends on the number of colors
included in C and C0. The main idea is that if
we have enough colors in the initial color set
C, then the subgraph H containing uncolored
vertices will have sufficiently small maximum
degree �.H/, so that we can easily color it using
�.H/ extra colors. More specifically, we prove
the following:

Theorem 2 (Efficiency) Let m D n˛; ˛ < 1

and mp � ln2 n; p D o
�

1p
m

�
. Then algorithm

CliqueColor succeeds in finding a proper

�
�

nmp2

ln n

�
-coloring using for Gn;m;p in polyno-

mial time whp.

Algorithm CliqueColor:

Input: An instance Gn;m;p of Gn;m;p and its associated
bipartite Bn;m;p .
Output: A proper coloring of Gn;m;p .

1. for every v 2 V choose a color denoted by shade.v/
independently, uniformly at random among those in C;

2. for every l 2 M, choose a coloring of the vertices
in Ll such that, for every color in fc 2 C W 9v 2
Ll with shade.v/ D cg, there is exactly one vertex
in the set fu 2 Ll W shade.u/ D cg having cl .u/ D
c, while the rest remain uncolored;

3. set U D ; and C D ;;
4. for l D 1 to m do {
5. color every vertex in Ll n.U [ C / according to cl .�/

iff there is no collision with the color of a vertex in
Ll \ C ;

6. include every vertex in Ll colored that way in C and
the rest in U ; } enddo

7. let H denote the (intersection) subgraph of Gn;m;p

induced by the vertices in U and let �.H/ be its
maximum degree;

8. give a proper �.H/-coloring of H using a new set of
colors C0 of cardinality �.H/;

9. output a coloring of Gn;m;p using jC [ C0j colors;

It is worth noting that the number of colors
used by algorithm CliqueColor in the case

mp � ln2 n; p D O
�

1
4
p

m

�
and m D n˛; ˛ < 1

is of the correct order of magnitude (i.e., it is
optimal up to constant factors). Indeed, by the
concentration of the values of jSvj aroundmp for
any vertex v with high probability, we can use
the results of [11] on the independence number
of the uniform random intersection graphs model
Gn;m;�, with � � mp, to provide a lower bound
on the chromatic number. Indeed, it can be easily
verified that the independence number of Gn;m;�

for � D mp � ln2 n is at most �
�

ln n
mp2

�
, which

implies that the chromatic number of Gn;m;�

(hence also of the Gn;m;p because of the concen-

tration of the values of jSvj) is at least˝
�

nmp2

ln n

�
.

Coloring Random Hypergraphs
The model of random intersection graphs Gn;m;p

could also be thought of as generating random
hypergraphs. The hypergraphs generated have
vertex set V and edge set M. There is a huge
amount of literature concerning coloring hyper-
graphs. However, the question about coloring
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C

there seems to be different from the one we con-
sidered here. More specifically, a proper coloring
of a hypergraph is any assignment of colors to the
vertices, so that no monochromatic edge exists.
This of course implies that fewer colors than
the chromatic number (studied in this entry) are
needed in order to achieve this goal.

In Gn;m;p , the problem of finding a coloring
such that no label is monochromatic seems to be
quite easier when p is not too small. The proof of
the following Theorem is based on the method of
conditional expectations (see [2, 8]).

Theorem 3 Let Gn;m;p be a random instance of
the model Gn;m;p , for p D !

�
ln m

n

�
and m D n˛ ,

for any fixed ˛ > 0. Then with high probability,
there is a polynomial time algorithm that finds a
k-coloring of the vertices such that no label is
monochromatic, for any fixed integer k � 2.

Applications

Graph coloring enjoys many practical applica-
tions as well as theoretical challenges. Beside the
classical types of problems, different limitations
can also be set on the graph, or on the way a
color is assigned, or even on the color itself.
Some of the many applications of graph coloring
include modeling scheduling problems, register
allocation, pattern matching, etc.

Random intersection graphs are relevant to
and capture quite nicely social networking. In-
deed, a social network is a structure made of
nodes (individuals or organizations) tied by one
or more specific types of interdependency, such
as values, visions, financial exchange, friends,
conflicts, web links, etc. Social network analysis
views social relationships in terms of nodes and
ties. Nodes are the individual actors within the
networks and ties are the relationships between
the actors. Other applications include oblivious
resource sharing in a (general) distributed setting,
efficient and secure communication in sensor net-
works, interactions of mobile agents traversing
the web, etc. Even epidemiological phenomena
(like spread of disease) tend to be more accurately

captured by this “interaction-sensitive” random
graphs model.

Open Problems

In [1], the authors present (among other
results) an algorithm for coloring Gn;m;p in
the case where m D n˛; ˛ < 1 and mp D

o
�

1
log n

�
. In contrast, we presented algorithm

CliqueColor, which finds a proper coloring
of Gn;m;p using �.�.Gn;m;p// whp, in the
case m D n˛; ˛ < 1 and mp � ln2 n. It
remains open whether we can construct efficient
algorithms (both in terms of the running time and
the number of colors used) for finding proper
colorings of Gn;m;p for the range of values

˝
�

1
log n

�
� mp � ln2 n.

Recommended Reading

1. Behrisch M, Taraz A, Ueckerdt M (2009) Colouring
random intersection graphs and complex networks.
SIAM J Discret Math 23(1):288–299
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Problem Definition

In the field of combinatorial generation, the goal
is to have fast elegant algorithms and code for
exhaustively listing the elements of various com-
binatorial classes such as permutations, combina-
tions, partitions, trees, graphs, and so on. Often
it is desirable that successive objects in the list-
ing satisfy some closeness condition, particularly
conditions where successive objects differ only
by a constant amount. Such listings are called
combinatorial Gray codes; thus the study of com-
binatorial Gray codes is an important subfield of
combinatorial generation.

There are a variety of applications of combina-
torial objects where there is an inherent closeness
operation that takes one object to another object
and vice versa. There is a natural closeness graph
G D .V;E/ that is associated with this setting.
The vertices, V , of this graph are the combina-
torial objects and edges, E, are between objects
that are close. A combinatorial Gray code then
becomes a Hamilton path in G and a Gray cycle
is a Hamilton cycle in G.

The term Combinatorial Gray Code seems to
have first appeared in print in Joichi, White,
and Williamson [4]. An excellent survey up
to 1997 was provided by Savage [10], and
many examples of combinatorial Gray codes
may be found in Knuth [5]. There are literally
thousands of papers and patents on Gray
codes in general, and although fewer about
combinatorial Gray codes, this article can
only scratch the surface and will focus on
fundamental concepts, generalized settings, and
recent results.

The Binary Reflected Gray Codes
The binary reflected Gray code (BRGC) is a
well-known circular listing of the bit strings of a
fixed length in which successive bit strings differ
by a single bit. (The word bit string is used in
this article instead of “binary string.”) Let Bn

be the Gray code list of all bit strings of length
n. The list is defined by the following simple
recursion:

B0 D "; and for n > 0 BnC1 D 0Bn; 1B
R
n :

(1)

In this definition, " is the empty string,
the comma represents concatenation of lists,
the symbol x preceding a list indicates that
an x is to be prepended to every string
in list, and the superscript R indicates that
the list is reversed. For example, B1 D

0; 1, B1 D 00; 01; 11; 10, and B3 D

000; 001; 011; 010; 110; 111; 101; 100.
Figure 1 illustrates one of the most useful

applications of the BRGC. Imagine a rotating
“shaft,” like a photocopier drum or a shutoff valve
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Combinatorial Gray Code, Fig. 1 Applications of the binary reflected Gray code (a, b, c: see explanation in the text)

on a pipeline, in which the amount of rotation
is to be determined by reading n “bits” from
a sensor (c). If the sensor position is between
two adjacent binary strings, then the result is
indeterminate; so, for example, if the sensor fell
between 0110 and 1100, then it could return
either of these, but also 0100 or 1110 could be
returned. If the bits are encoded around the shaft
as a sequence of bit strings in lexicographic order,
as shown in (a), and the sensor falls between 0000
and 1111, then any bit string might be returned!
This problem is entirely mitigated by using a
Gray code, such as the BRGC (b), since then only
one of the two bit strings that lay under the sensor
will be returned.

The term “Gray” comes from Frank Gray and
engineer at Bell Labs who was issued a patent
that uses the BRGC (Pulse code communica-
tion, March 17, 1953. U.S. patent no. 2,632,058).
However, the BRGC was known much earlier; in
particular it occurs in solutions to the Chinese
rings puzzle and was used to list diagrams in
the I Ching. See Knuth [5] for further historical
background.

Surprisingly, new things are yet being proved
about the BRGC; e.g., Williams [15] shows that
the BRGC is generated by the following itera-
tive “greedy” rule: Starting with the all 0s bit
string, flip the rightmost bit that yields a bit
string that has not already been generated. There
are many other useful Gray code listings of bit
strings known, for example, where the bit flips are
equally distributed over the indexing positions or
where all bit strings of density k (i.e., having k
1s) are listed before any of those of density kC2.

Combinations as Represented by Bit Strings
Many other simple Gray codes can be described
using rules in the style of (1). For example,
Bn;k D 0Bn�1;k ; 1B

R
n�1;k�1

gives a Gray code of
all bit strings of length n with exactly k 1s. It has
the property that successive bit strings differ by
the transposition of two (possibly nonadjacent)
bits. Observe also that this is the list obtained
from the BRGC by deleting all bit strings that do
not contain k 1s.

A more restrictive Gray code for combinations
is that of Eades and McKay [1]. Here the re-
cursive construction (1 < k < n) is En;k D

0En�1;k�1; 10E
R
n�2;k�1

; 11En�2;k�2. This Gray
code has the nice property that successive bit
strings differ by a transposition of two bits and
only 0s lie between the two transposed bits.
It is worth noting that there is no Gray code
for combinations by transpositions in which the
transposed bits are always adjacent (unless n is
even and k is odd).

Generating Permutations via Plain
Changes
The second most well-known combinatorial Gray
code lists all nŠ permutations of f1; 2; : : : ; ng in
one-line notation in such a way that successive
permutations differ by the transposition of two
adjacent elements. In its algorithmic form it is
usually attributed to Johnson [3] and Trotter [13]
although it has been used for centuries by cam-
panologists [5], who refer to it as plain changes.
Given such a list Ln�1 for f1; 2; : : : ; n � 1g, the
list Ln can be created by successively sweeping
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the n back-and-forth through each permutation
in Ln�1. For example, if L3 is 123, 132, 312,
321, 231, 213, then the first 8 permutations of
L4 are 1234, 1243, 1423, 4123, 4132, 1432,

1342, 1324. The “weave” below illustrates plane
changes for n D 5, where the permutations occur
as columns and the leftmost column corresponds
to the permutation 12345, read top to bottom.

Hamiltonicity
In our BRGC example above, the closeness op-
eration is the flipping of a bit, and the close-
ness graph is the hypercube. In a Gray code
for permutations, a natural closeness operation is
the transposing of two adjacent elements; in this
case the closeness graph is sometimes called the
permutohedron.

Sometimes it happens that the closeness graph
G has no Hamilton path. If it is not connected,
then there is no hope of finding a Gray code,
but if it is connected, then there are several
approaches that have proved successful in finding
a Gray code in a related graph; the result is a
weaker Gray code that permits 2 or 3 applications
of the closeness operation. One approach is to
consider the prism G � e [7]. If G is bipartite
and Hamiltonian, then the Gray code consists of
every other vertex along the Hamilton cycle. As
a last resort the result of Sekanina below [12] can
be used. An implementation of Sekanina’s proof,
called prepostorder, is given by Knuth [5].

Theorem 1 (Sekanina) If G is connected, then
G3 is Hamiltonian.

At this point the reader may be wondering:
“What distinguishes the study of Gray codes from
the study of Hamiltonicity of graphs?” The un-
derlying motivation for most combinatorial Gray
codes is algorithmic; proving the existence of the
Hamilton cycle is only the first step; one then tries
to get an efficient implementation according to
the criteria discussed in the next section (e.g., the
recent “middle-level” result gives an existence
proof via a complex construction – but it lacks the
nice construction that one would strive for when
thinking about a Gray code). Another difference
is that the graphs studied usually have a very
specific underlying structure; often this structure

is recursive and is exploited in the development
of efficient algorithms.

The Representation Issue
Many combinatorial structures exhibit a
chameleonic nature. The canonical example
of this is the objects counted by the Catalan
numbers, Cn, of which there are hundreds. For
example, they count the well-formed parentheses
strings with n left and n right parentheses but
also count the binary trees with n nodes. The
most natural ways of representing these are very
different; well-formed parentheses are naturally
represented by bit strings of length 2n, whereas
binary trees are naturally represented using a
linked structure with two pointers per cell.
Furthermore, the natural closeness conditions
are also different; for parentheses, a swap of two
parentheses is natural, and for binary trees, the
class rotation operation is most natural. When
discussing Gray codes it is imperative to know
precisely what representation is being used (and
then what closeness operation is being used).

Algorithmic Issues
For the vast majority of combinatorial Gray
codes, space is the main enemy. The first task
of the algorithm designer is to make sure that
their algorithm uses an amount of space that is
a small polynomial of the input size; algorithms
that rely on sublists of the objects being listed are
doomed even though many Hamiltonicity proofs
naïvely lead to such algorithms. For example,
an efficient algorithm for generating the BRGC
cannot directly use (1) since that would require
exponential space.

CAT Algorithms, Loopless Algorithms
From the global point of view, the best possible
algorithms are those that output the objects (V )
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in time that is proportional to the number of
objects (jV j). Such algorithms are said to be CAT,
standing for constant amortized time.

From a more local point of view, the best pos-
sible algorithms are those that output successive
objects so that the amount of work between suc-
cessive objects is constant. Such algorithms are
said to be loopless, a term introduced by Ehrlich
[2]. Both the BRGC and the plain changes algo-
rithm for permutations mentioned above can be
implemented as loopless algorithms.

Note that in both of these definitions we ignore
the time that it would take to actually output the
objects; what is being measured is the amount
of data structure change that is occurring. This
measure is the correct one to use because in
many applications it is only the part of the data
structure that changes that is really needed by the
application (e.g., to update an objective function).

Key Results

Below are listed some combinatorial Gray codes,
focusing on those that are representative, are very
general, or are recent breakthroughs.

Numerical Partitions [5, 9]
Objects: All numerical partitions of an integer n.
Representation: Sequence of positive integers
a1 � a2 � � � � such that a1 C a2 � � � D n.

Closeness operation: Two partitions a and a0 are
close if there are two indices i and j such that
a0

i D ai C 1 and a0
j D aj � 1.

Efficiency: CAT.
Comments: Results have been extended to the

case where all parts are distinct and where the
number of parts or the largest part is fixed.

Spanning Trees
Objects: Spanning trees of connected unlabeled

graphs.
Representation: List of edges in the graph.
Closeness operation: Successive trees differ by a

single edge replacement.
Efficiency: CAT.
References: University of Victoria MSc thesis of

Malcolm Smith. Knuth 4A, [5], pages 468–

469. Knuth has an implementation of the
Smith algorithm on his website mentioned
below; see the programs *SPAN.

Basic Words of Antimatroids [7]
Objects: Let A be a set system over Œn
 WD
f1; 2; : : : ; ng that (a) is closed under union
(S [ T 2 A for all S; T 2 A) and (b) is
accessible (for all S 2 A with S ¤ ;, there
is an x 2 S such that S n fxg 2 A). Such
a set system A is an antimatroid. Repeated
application of (b) starting with the set Œn
 and
ending with ; gives a permutation of Œn
 called
a basic word.

Representation: A permutation of Œn
 in one-line
notation.

Closeness operation: Successive permutations
differ by the transposition of one or two
adjacent elements.

Efficiency: CAT if there is an O.1/ “oracle” for
determining whether the closeness operation
applied to a basic word gives another basic
word of A; loopless if the antimatroid is the
set of ideals of a poset.

Important special cases: Linear extensions
of posets (partially ordered sets), convex
shellings of finite point sets, and perfect elim-
ination orderings of chordal graphs. Linear
extensions have as special cases permutations
(of a multiset), k-ary trees, standard young
tableau, alternating permutations, etc.

Additional notes: If G is the cover graph of an
antimatroid A where the sets are ordered by
set inclusion, then the prism of G is Hamil-
tonian. Thus there is a Gray code for the
elements of A. No CAT algorithm is known
for this Gray code, even in the case where the
antimatroid consists of the ideals of a poset.

Words in a Bubble Language [8, 11]
Objects: A language L over alphabet f0; 1g is

a bubble language if it is closed under the
operation of changing the rightmost 01 to a 10.

Representation: Bit strings of length n (i.e., ele-
ments of f0; 1gn).

Closeness operation: Two 01 $ 10 swaps, or
(equivalently) one rotation of a prefix.
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Important special cases: Combinations, well-
formed parentheses, necklaces, and prefix
normal words.

Efficiency: CAT if there is an O.1/ oracle for
determining membership under the operation.

Permutations via � and � [16]
Objects: Permutations of Œn
.
Representation: One-line notation.
Closeness operation: Successive permutations

differ by the rotation � D .1 2 � � � n/ or
the transposition � D .1 2/ as applied to the
indices of the representation.

Efficiency: CAT, but has a loopless implementa-
tion if only the successive � or � generators
are output or if the permutation is represented
using linked lists.

Comments: This is known as Wilf’s (directed)
� � � problem.

Middle Two Levels of the Boolean
Lattice [6]
Objects: All subsets S of B2nC1 of density n or
nC 1.

Representation: Characteristic bit strings (bi D

1 if and only if i 2 S ).
Closeness operation: Bit strings differ by a trans-

position of adjacent bits.
Efficiency: Unknown. A good open problem.
Comments: This is famously known as the “mid-

dle two-level problem.”

URLs to Code and Data Sets

Don Knuth maintains a web page which contains
some implementations of combinatorial Gray
codes at http://www-cs-faculty.stanford.edu/~
uno/programs.html. See, in particular, the pro-
grams GRAYSPAN, SPSPAN, GRAYSPSPAN,
KODA-RUSKEY, and SPIDERS.

Jeorg Arndt maintains a website (http://www.
jjj.de/fxt/) and book with many C programs for
generating combinatorial objects, some of which
are combinatorial Gray codes. The book may be
freely downloaded. Chapter 14, entitled “Gray
codes for strings with restrictions”, is devoted to
combinatorial Gray codes, but they can also be

found in other chapters; e.g., 15.2 and 15.3 both
contain Gray codes for well-formed parentheses
strings.

The “Combinatorial Object Server” at http://
www.theory.cs.uvic.ca/~cos/ allows you to pro-
duce small lists of combinatorial objects, often in
various Gray code orders.

Cross-References

Entries relevant to combinatorial generation (not
necessarily Gray codes):

�Enumeration of Non-crossing Geometric
Graphs

�Enumeration of Paths, Cycles, and Spanning
Trees

�Geometric Object Enumeration
� Permutation Enumeration
�Tree Enumeration
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Problem Definition

Tile Assembly Models
Two of the most studied tile self-assembly models
in the literature are the abstract Tile Assembly
Model (aTAM) [7] and the Two-Handed Tile
Assembly Model (2HAM) [4]. Both models con-
stitute a mathematical model of self-assembly in
which system components are four-sided Wang
tiles with glue types assigned to each tile edge.
Any pair of glue types are assigned some nonneg-

ative interaction strength denoting how strongly
the pair of glues bind. The models differ in their
rules for growth in that the aTAM allows single-
ton tiles to attach one at a time to a growing seed,
whereas the 2HAM permits any two previously
built assemblies to combine given enough affinity
for attachment.

In more detail, an aTAM system is an ordered
triplet .T; �; �/ consisting of a set of tiles T , a
positive integer threshold parameter � called the
system’s temperature, and a special tile � 2 T
denoted as the seed tile. Assembly proceeds by
attaching copies of tiles from T to a growing seed
assembly whenever the placement of a tile on the
2D grid achieves a total strength of attachment
from abutting edges, determined by the sum of
pairwise glue interactions, that meets or exceeds
the temperature parameter � . An additional twist
that is often considered is the ability to specify
a relative concentration distribution on the tiles
in T . The growth from the initial seed then
proceeds randomly with higher concentrated tile
types attaching more quickly than lower con-
centrated types. Even when the final assembly
is deterministic, adjusting concentration profiles
may substantially alter the expected time to reach
the unique terminal state.

The Two-Handed Tile Assembly Model
(2HAM) [4] is similar to the aTAM, but removes
the concept of a seed tile. Instead, a 2HAM
system .T; �/ produces a new assembly whenever
any two previously built (and potentially large)
assemblies may translate together into a new
stable assembly based on glue interactions and
temperature. The distinction between the 2HAM
and the aTAM is that the 2HAM allows large
assemblies to grow independently and attach
as large, pre-built assemblies, while the aTAM
grows through the step-by-step attachment of
singleton tiles to a growing seed.

A typical goal in tile self-assembly is to design
an efficient tile system that uniquely assembles a
target shape. Two primary efficiency metrics are
(1) the number of distinct tile types used to self-
assemble the target shape and (2) the expected
time the system takes to self-assemble the target
shape. Toward minimizing the number of tiles
used to build a shape, the Minimum Tile Set
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Problem is considered. Toward the goal of min-
imizing assembly time, the problem of selecting
an optimal concentration distribution over the
tiles of a given set is considered in the Tile Con-
centration Problem. Finally, the computational
problem of simply verifying whether a given
system correctly and uniquely self-assembles a
target shape is considered in the Unique Assem-
bly Verification Problem. Formally, the problems
are as follows:

Problem 1 (The Minimum Tile Set Prob-
lem [2]) Given a shape, find the tile system with
the minimum number of tile types that uniquely
self-assembles into this shape.

Problem 2 (The Tile Concentration Prob-
lem [2]) Given a shape and a tile system
that uniquely produces the given shape, assign
concentrations to each tile type so that the
expected assembly time for the shape is
minimized.

Problem 3 (The Unique Assembly Verification
Problem [2, 4]) Given a tile system and an as-
sembly, determine if the tile system uniquely self-
assembles into the assembly.

Key Results

Minimum Tile Set Problem
The NP-completeness of the Minimum Tile Set
Problem within the aTAM is proven in [2] by a
reduction from 3CNF-SAT. The proof is notable
in that the polynomial time reduction relies on the
polynomial time solution of the Minimum Tile
Set Problem for tree shapes, which the authors
show is polynomial time solvable. The authors
also show that the Minimum Tile Set Problem
is polynomial time solvable for n � n squares
by noting that since the optimal solution has at
most O.logn/ tile types [7], a brute force search
of candidate tile sets finishes in polynomial time
as long as the temperatures of the systems under
consideration are all a fixed constant. Extending
the polynomial time solution to find the mini-
mum tile system over any temperature is achieved
in [5].

Theorem 1 The Minimum Tile Set Problem is
NP-complete within the aTAM. For the restricted
classes of shapes consisting of squares and trees,
the Minimum Tile Set Problem is polynomial time
solvable.

Concentration Optimization
The next result provides an approximation algo-
rithm for the Tile Concentration Problem for a
restricted class of aTAM tile system called partial
order systems. Partial order systems are systems
in which a unique assembly is constructed, and
for any pair of adjacent tiles in the final assembly
which have positive bonding strength, there is
a strict order in which the two tiles are placed
with respect to each other for all possible as-
sembly sequences. For such systems, a O.logn/-
approximation algorithm is presented [2].

Theorem 2 For any partial order aTAM system
.T; �; �/ that uniquely self-assembles a size-n as-
sembly, there exists a polynomial time O.logn/-
approximation algorithm for the Tile Concentra-
tion Problem.

Assembly Verification
The next result provides an important distinction
in verification complexity between the aTAM and
the 2HAM. In [2] a straightforward quadratic
time algorithm for assembly verification is pre-
sented. In contrast, the problem is shown to be
co-NP-complete in [4] through a reduction from
3CNF-SAT. The hardness holds for a 3D general-
ization of the 2HAM, but requires only 1 step into
the third dimension. To achieve this reduction,
the exponentially many candidate 3CNF-SAT so-
lutions are engineered into the order in which
the system might grow while maintaining that
these candidate paths all collapse into a single
polynomial-sized final assembly in the case that
no satisfying solution exists. This reduction fun-
damentally relies on the third dimension and thus
leaves open the complexity of 2D verification in
the 2HAM.

Theorem 3 The Unique Assembly Verification
Problem is co-NP-complete for the 3D 2HAM
and solvable in polynomial timeO.jAj2CjAjjT j/
in the aTAM.
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Open Problems

A few open problems in this area are as fol-
lows. The Minimum Tile Set Problem has an
efficient solution for squares which stems from
a logarithmic upper bound on the complexity of
assembling such shapes. This holds more gen-
erally for thick rectangles, but this ceases to be
true when the width of the rectangle becomes
sufficiently thin [3]. The complexity of the Min-
imum Tile Set Problem is open for this class of
simple geometric shapes. For the Tile Concen-
tration Problem, an exact solution is conjectured
to be #P-hard for partial order systems [2], but
this has not been proven. More generally, little
is known about the Tile Concentration Problem
for non-partial order systems. Another direction
within the scope of minimizing assembly time
is to consider optimizing over the tiles used, as
well as the concentration distribution over the
tile set. Some work along these lines has been
done with respect to the fast assembly of n �
n squares [1] and the fast implementation of
basic arithmetic primitives in self-assembly [6].
In the case of the Unique Assembly Verifica-
tion Problem, the complexity of the problem
for the 2HAM in 2D is still unknown. For the
aTAM, it is an open question as to whether the
quadratic run time of verification can be im-
proved.
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Problem Definition

Two players – Alice and Bob – are playing a
game in which their shared goal is to compute
a function f W X � Y ! Z efficiently. The
game starts with Alice holding a value x 2 X
and Bob holding y 2 Y . They then communicate
by sending each other messages according to
a predetermined protocol, at the end of which
they must both arrive at some output ´ 2 Z .
The protocol is deemed correct if ´ D f .x; y/

for all inputs .x; y/. Each message from Alice
(resp. Bob) is an arbitrary binary-string-valued
function of x (resp. y) and all previous messages
received during the protocol’s execution. The cost
of the protocol is the maximum total length of all
such messages, over all possible inputs, and is the
basic measure of efficiency of the protocol. The
central goals in communication complexity [23]
are (i) to design protocols with low cost for
given problems of interest, and (ii) to prove lower
bounds on the cost that must be paid to solve a

given problem. The minimum possible such cost
is a natural measure of complexity of the function
f and is denoted D.f /.

Notably, the “message functions” in the above
definition are not required to be efficiently
computable. Thus, communication complexity
focuses on certain basic information theoretic
aspects of computation, abstracting away messier
and potentially unmanageable lower-level details.
Arguably, it is this aspect of communication
complexity that has made it such a successful
paradigm for proving lower bounds in a wide
range of areas in computer science.

Most work in communication complexity fo-
cuses on randomized protocols, wherein random
coin tosses (equivalently, a single random binary
string) may be used to determine the messages
sent. These coin tosses may be performed either
in private by each player or in public: the result-
ing protocols are called private coin and public
coin, respectively. A randomized protocol is said
to compute f with error bounded by " � 0 if,
for all inputs .x; y/, its output on .x; y/ differs
from f .x; y/ with probability at most ". With
this notion in place, one can then define the "-
error randomized communication complexity of
f , denoted R".f /, analogously to the determin-
istic one. By convention, this notation assumes
private coins; the analogous public-coin variant
is denoted Rpub

" .f /. Further, when f has Boolean
output, it is convenient to put R.f / D R1=3.f /.
Clearly, one always has Rpub.f / � R.f / �
D.f /.

Consider a probability distribution � on the
input domain X � Y . A protocol’s error un-
der � is the probability that it errs when given
a random input .X; Y / � �. The "-error �-
distributional complexity of f , denoted D�

" .f /,
is then the minimum cost of a deterministic pro-
tocol for f whose error, under �, is at most
"; an easy averaging argument shows that the
restriction of determinism incurs no loss of gen-
erality. The fundamental minimax principle of
Yao [22] says that R".f / D max� D�

" .f /. In
particular, exhibiting a lower bound on D�

" .f /

for a wisely chosen � lower bounds R".f /;
this is a key lower-bounding technique in the
area.
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Let ˘ be a protocol that uses a public random
string R as well as private random strings: RA

for Alice, RB for Bob. Let ˘.x; y;R;RA; RB/

denote the transcript of conversation between
Alice and Bob, on input .x; y/. The internal and
external information costs of ˘ with respect to
the distribution � are then defined as follows:

icost.˘/ D I.˘.X; Y;R;RA; RB/ W X j Y;R/

C I.˘.X; Y;R;RA; RB/WY jX;R/;

icostext.˘/ D I.˘.X; Y;R;RA; RB/ W X; Y jR/;

where .X; Y / � � and I denotes mutual in-
formation. These definitions capture the amount
of information learned by each player about the
other’s input (in the internal case) and by an
external observer about the total input (in the
external case) when ˘ is run on a random �-
distributed input. It is elementary to show that
these quantities lower bound the actual com-
munication cost of the protocol. Therefore, the
corresponding information complexity [3,9] mea-
sures – denoted IC�

" .f / and IC�;ext
" .f / – defined

as the infima of these costs over all worst-case
"-error protocols for f , naturally lower bound
R".f /. This is another important lower-bounding
technique.

Key Results

In a number of basic communication problems,
Alice’s and Bob’s inputs are n-bit strings, de-
noted x and y, respectively, and the goal is to
compute a Boolean function f .x; y/. We shall
denote the i th bit of x as xi . The bound D.f / �
nC1 is then trivial, because Alice can always just
sent Bob her input, for a cost of n.

The textbook by Kushilevitz and Nisan [14]
gives a thorough introduction to the subject and
contains detailed proofs of several of the results
summarized below. We first present results about
specific communication problems, then move on
to more abstract results about general problems,
and close with a few applications of these results
and ideas.

Problem-Specific Results

Equality Testing
This problem is defined by the equality func-
tion, given by EQn.x; y/ D 1 if x D y and
EQn.x; y/ D 0 otherwise. This can be solved
nontrivially by a randomized protocol wherein
Alice sends Bob a fingerprint of x, which Bob
can compare with the corresponding fingerprint
of y generated using the same random seed.
Using public coins, a random n-bit string r can
be used as a seed to generate the fingerprint
hx; ri D

Pn
iD1 xiri mod 2. One can readily

check that this yields Rpub.EQn/ D O.1/ and,
more generally, Rpub

" .EQn/ D O.log.1="//. In
the private coin setting, one can use a different
kind of fingerprinting, e.g., by treating the bits
of x as the coefficients of a degree-n polynomial
and evaluating it at a random element of Fq (for
a large enough prime q) to obtain a fingerprint.
This idea leads to the bound R.EQn/ D O.logn/.

Randomization is essential for the above re-
sults: it can be shown that D.EQn/ � n. The
argument relies on the fundamental rectangle
property of deterministic protocols, which states
that the set of inputs .x; y/ that lead to the
same transcript must form a combinatorial rect-
angle inside the input space X � Y . This can
be proved by induction on the length of the
transcript. This rectangle property then implies
that if u ¤ v 2 f0; 1gn, then a correct protocol
for EQn cannot have the same transcript on inputs
.u; u/ and .v; v/; otherwise, it would have the
same transcript of .u; v/ as well, and therefore
err, because EQn.u; u/ ¤ EQn.u; v/. It follows
that the protocol must have at least 2n distinct
transcripts, whence one of them must have length
at least n.

It can also be shown that the upper bounds
above are optimal [14]. The lower bound
R.EQn/ D ˝.logn/ is a consequence of the
more general result that D.f / D 2O.R.f // for
every Boolean function f . The lower bound
Rpub

" .EQn/ D ˝.log.1="// follows from Yao’s
minimax principle and a version of the above
rectangle-property argument.

More refined results can be obtained by con-
sidering the expected (rather than worst case) cost
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of an r-round protocol, i.e., a protocol in which a
total of r are sent: in this case, Rpub;.r/

" .EQn/ D

�.log log � � � log.minfn; log.1="/g// with the
outer chain of logarithms iterated .r � 1/ times.
This is tight [7]. Another, incomparable, result
is that EQn has a zero-error randomized protocol
with information cost only O.1/, regardless of
the joint distribution from which the inputs are
drawn [5].

Comparison
This problem is defined by the greater-than func-
tion, given by GTn.x; y/ D 1 if x > y and
GTn.x; y/ D 0 otherwise, where we treat x and
y as integers written in binary. Like EQn, it has
no nontrivial deterministic protocol, for much the
same reason. As before, this implies R.GTn/ D

˝.logn/.
In fact the tight bound R.GTn/ D �.logn/

holds, but the proof requires a subtle argument.
Binary search based on equality testing on sub-
strings of x and y allows one to zoom in, in
O.logn/ rounds, on the most significant bit po-
sition where x differs from y. If each equality
test is allowed O.1= log n/ probability of error,
a straightforward union bound gives an O.1/

overall error rate, but this uses �.log log n/ com-
munication per round. The improvement to an
overall O.logn/ bound is obtained by preceding
each binary search step with an extra “sanity
check” equality test on prefixes of x and y and
backtracking to the previous level of the binary
search if the check fails: this allows one to use
only O.1/ communication per round.

The bounded-round complexity of GTn is
also fairly well understood. Replacing the binary
search above with an n1=r -ary search leads to the
r-round bound R.r/

" .GTn/ D O.n1=r logn/. A
lower bound of ˝.n1=r=r2/ can be proven by
carefully analyzing information cost.

Indexing and Bipartite Pointer Jumping
The indexing or index problem is defined by the
Boolean function INDEXn.x; k/ D xk , where
x 2 f0; 1gn as usual, but Bob’s input k 2 Œn
,
where Œn
 D f1; 2; : : : ; ng. Straightforward
information-theoretic arguments show that the
one-round complexity R.1/.INDEXn/ D ˝.n/,

where the single message must go from
Alice to Bob. Without this restriction, clearly
R.INDEXn/ D O.logn/. A more delicate
result [17] is that in a .1=3/-error protocol for
INDEXn, for any b 2 Œ1; log n
, either Bob must
send b bits or Alice must send n=2O.b/ bits; an
easy 2-round protocol shows that this trade-off
is optimal. Even more delicate results, involving
information cost, are known, and these are useful
in certain applications (see below).

The indexing problem illustrates that inter-
action can improve communication cost expo-
nentially. This can be generalized to show that
r C 1 rounds can be exponentially more pow-
erful than r rounds. For this, one considers the
bipartite pointer jumping problem, where Al-
ice and Bob receive functions f; g W Œn
 !
Œn
, respectively, and Bob also receives y 2
Œn
. Their goal is to compute PJr;n.f; g; y/ D

hr .� � � h2.h1.y// � � � / mod 2, where hi D f for
odd i and hi D g for even i . Notice that
PJ1;n is essentially the same as INDEXn and
that R.rC1/.PJr;n/ D O.r logn/. Suitably gen-
eralizing the information-theoretic arguments for
INDEXn shows that R.r/.PJr;n/ D ˝.n=r

2/.

Inner Product Parity
The Boolean function IPn.x; y/ D hx; yi, which
is the parity of the inner product

Pn
iD1 xiyi , is

the most basic very hard communication prob-
lem: solving it to error 1

2
� ı (for constant ı)

requires n � O.log.1=ı// communication. This
is proved by considering the distributional com-
plexity D�

" .IPn/, where � is the uniform distribu-
tion and lower bounding it using the discrepancy
method. Observe that a deterministic protocol
˘ with cost C induces a partition of the input
domain into 2C combinatorial rectangles, on each
of which ˘ has the same transcript, hence the
same output. If˘ has error at most 1

2
�ı under �,

then the�-discrepancies of these rectangles – i.e.,
the differences between the �-measures of the 0s
and 1s within them – must sum up to at least 2ı.
Letting disc�.f / denote the maximum over all
rectanglesR in X �Y of the �- discrepancy ofR,
we then obtain 2C disc�.f / � 2ı, which allows
us to lower bound C if we can upper bound the
discrepancy disc�.f /.



Communication Complexity 353

C

For the function IP, the matrix
.IP.x; y//x2f0;1gn;y2f0;1gn is easily seen to be
a Hadamard matrix, whose spectrum is well
understood. With a bit of matrix analysis, this
enables the discrepancy of IP under a uniform
� to be computed very accurately. This in turn
yields the claimed communication complexity
lower bound.

Set Disjointness
The problem of determining whether Alice’s set
x � Œn
 is disjoint from Bob’s set y � Œn
, de-
noted DISJn.x; y/, is, along with its natural gen-
eralizations, the most studied and widely useful
problem in communication complexity. It is easy
to prove, from first principles, the strong lower
bound D.DISJn.x; y// D n � o.n/. Obtaining
a similarly strong lower bound for randomized
complexity turns out to be quite a challenge, one
that has driven a number of theoretical innova-
tions.

The discrepancy method outlined above is
provably very weak at lower bounding R.DISJn/.
Instead, one considers a refinement called the
corruption technique: it consists of showing that
“large” rectangles in the matrix for DISJn cannot
come close to consisting purely of 1-inputs (i.e.,
disjoint pairs .x; y/) but must be corrupted by
a “significant” fraction of 0-inputs. On the other
hand, a sufficiently low-cost communication pro-
tocol for DISJn would imply that at least one such
large rectangle must exist. The tension between
these two facts gives rise to a lower bound on
D�

" .DISJn/, where � and " figure in the quantifi-
cation of “large” and “significant” above. Follow-
ing this outline, Babai et al. [2] proved an˝.

p
n/

lower bound using the uniform distribution. This
was then improved by using a certain non-product
input distribution, i.e., one where the inputs x
and y are correlated – a provably necessary
complication – to the optimal˝.n/, initially via a
complicated Kolmogorov complexity technique,
but eventually via elementary (though ingenious)
combinatorics by Razborov [20]. Subsequently,
Bar-Yossef et al. [4] re-proved the ˝.n/ bound
via a novel notion of conditional information
complexity, a proof that has since been reworked

to use the more natural internal information com-
plexity [5].

Disjointness is also interesting and natural as
a multiparty problem, where each of t players
holds a subset of Œn
 and they wish to determine if
these are disjoint. An important result with many
applications (see below) is that under a promise
that the sets are pairwise disjoint except perhaps
at one element, this requires ˝.n=t/ commu-
nication, even if the players communicate via
broadcast; this bound is essentially tight. Without
this promise, and with only private message chan-
nels between the t players, disjointness requires
˝.tn/ communication.

Gap Hamming Distance
This problem is defined by the partial Boolean
function on f0; 1gn�f0; 1gn given by GHDn.x; y/ D

0 if kx � yk1 � 1
2
n �
p
n; GHDn.x; y/ D 1 if

kx � yk � 1
2
n C
p
n; and GHDn.x; y/ D ?

otherwise. Correctness and error probability for
protocols for GHDn are based only on inputs
not mapped to ?. After several efforts giving
special-case lower bounds, it was eventually
proved [8] that R.GHDn/ D ˝.n/ and in
particular D�

" .GHDn/ D ˝.n/ with � being
uniform and " D �.1/ being sufficiently small.
This bound provably does not follow from the
corruption method because of the presence of
large barely-corrupted rectangles in the matrix
for GHDn; instead it was proved using the so-
called smooth corruption technique [12].

General Complexity-Theoretic Results
There is a vast literature on general results con-
necting various notions of complexity for com-
munication problems. As before, we survey some
highlights. Throughout, we consider a general
function f W f0; 1gn � f0; 1gn ! f0; 1g.

Determinism vs. Public vs. Private Randomness
A private-coin protocol can be deterministically
simulated by direct estimation of the probabil-
ity of generating each possible transcript. This
leads to the relation R.f / D ˝.log D.f //.
This separation is the best possible, as witnessed
by EQn. Further, a public-coin protocol can be
restricted to draw its random string – no matter
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how long – from a fixed set S consisting of
O.n/ strings, for a constant additive increase in
error probability [18]. This implies that it can be
simulated using a private coin (which is used only
to draw a random element of S ) at an additional
communication cost of lognC O.1/. Therefore,
R.f / � Rpub.f / C logn C O.1/. Again the
EQn function shows that this separation is the best
possible.

The Log-Rank Conjecture and Further Matrix
Analysis
The rectangle property of communication
protocols readily implies that D.f / �

log2 rkf , where rk f is the rank of the
matrix .f .x; y//f0;1gn�f0;1gn . It has long been
conjectured that D.f / D poly.log rkf /. This
famous conjecture remains wide open; the
best-known relevant upper bound is D.f / �
O.
p

rkf log rk f / [16].
Other, more sophisticated, matrix analysis

techniques can be used to establish lower bounds
on R.f / by going through the approximate
rank and factorization norms. The survey by
Lee and Shraibman [15] has a strong focus on
such techniques and provides a comprehensive
coverage of results.

Direct Sum, Direct Product, and Amortization
Does the complexity of f grow n-fold, or even
˝.n/-fold, if we have to compute f on n

independent instances? This is called a direct
sum question. Attempts to answer it and its
variants, for general, as well as specific functions
f have spurred a number of developments. Let
f k denote the (non-Boolean) function that,
on input ..x.1/; : : : ; x.k//; .y.1/; : : : ; y.k///,
outputs .f .x.1/; y.1//; : : : ; f .x.k/; y.k///. Let
Rk

" .f
k/ denote the cost of the best randomized

protocol that computes each entry of the k-
tuple of of values of f k up to error ". This
is in contrast to the usual R".f

k/, which is
concerned with getting the entire k-tuple correct
except with probability ". An alternate way
of posing the direct sum question is to ask
how the amortized randomized complexity
R".f / D limk!1 Rk

" .f
k/=k compares with

R".f /.

An early result along these lines shows that
R.EQn/ D O.1/ [10]. Recalling that R.EQn/ D

˝.logn/, this shows that (in the private-coin
setting) EQn exhibits economy of scale; we say
that it does not satisfy the direct sum property. It
had long been conjectured that no such economy
of scale is possible in a public-coin setting; in
fact information complexity rose to prominence
as a technique precisely because in the informa-
tional setting, the direct sum property is easy to
prove [9]. Thus, IC�.f /, for every distribution �,
lower bounds not just R.f / but also R.f /. More
interestingly, the opposite inequality also holds,
so that information and amortized randomized
complexities are in fact equal; the proof uses
a sophisticated interactive protocol compression
technique [6] that should be seen as an analog
of classical information theoretic results about
single-message compression, e.g., via Huffman
coding.

Thus, proving a general direct sum theorem
for randomized communication is equivalent to
compressing a protocol with information cost I
down to O.I / bits of communication. However,
the best-known compression uses 2O.I/ bits [5],
and this is optimal [11]. The proof of optimality
– despite showing that a fully general direct sum
theorem is impossible – is such that a slightly
weakened direct sum result, such as Rk.f k/ D

˝.k/R.f / � O.logn/, remains possible and
open. Meanwhile, fully general and strong direct
sum theorems can be proven by restricting the
model to bounded-round communication, or re-
stricting the function to those whose complexity
is captured by the smooth corruption bound.

Round Elimination
For problems that are hard only under a limitation
on the number of rounds – e.g., GTn, discussed
above – strong bounded-round lower bounds are
proved using the round elimination technique.
Here, one shows that if an r-round protocol for
f starts with a short enough first message, then
this message can be eliminated altogether, and
the resulting .r � 1/-round protocol will solve a
“subproblem” of f . Repeating this operation r
times results in a 0-round protocol that, hopefully,
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solves a nontrivial subproblem, giving a contra-
diction.

To make this useful, one then has to identify a
reasonable notion of subproblem. It is especially
useful to have this subproblem be a smaller in-
stance of f itself. This does happen in several
cases and can be illustrated by looking at GTn:
restricting n-length strings to indices in Œ`; h


and forcing agreement at indices in Œ1; ` � 1


shows that GTn contains GTh�` as a subproblem.
The proof of the aforementioned lower bound
R.r/.GTn/ D ˝.n1=r=r2/ uses exactly this ob-
servation. The pointer jumping lower bound, also
mentioned before, proceeds along similar lines.

Applications

Data Stream Algorithms
Consider a data stream algorithm using s bits of
working memory and p passes over its input.
Splitting the stream into two pieces, giving the
first to Alice and the second to Bob, creates a
communication problem and a .2p � 1/-round
protocol for it, using s bits of communication per
round. A generalization to multiplayer communi-
cation is immediate. These observations [1] allow
us to infer several space (or pass/space trade-off)
lower bounds for data stream algorithms from
suitable communication lower bounds, often after
a suitable reduction.

For instance, the problem of approximating
the number of distinct items in a stream and its
generalization to the problem of approximating
frequency moments are almost fully understood,
based on lower bounds for EQn, GHDn, DISJn,
and its generalization to multiple players,
under the unique intersection restriction noted
above. A large number of graph-theoretic
problems can be shown to require ˝.n/ space, n
being the number of vertices, based on lower
bounds for INDEXn, PJn and variants, and
again DISJn. For several other data streaming
problems – e.g., approximating `1 and cascaded
norms and approximating a maximum cut or
maximum matching – a reduction using an
off-the-shelf communication lower bound is
not known, but one can still obtain strong

space lower bounds by considering a tailor-
made communication problem in each case and
applying the familiar lower-bounding techniques
outlined above.

Data Structures
The cell-probe model of Yao is designed to cap-
ture all conceivable data structures on a modern
computer: it models the query/update process as
a sequence of probes into the entries (memory
words) of a table containing the data structure.
Focusing on static data structures for the mo-
ment, note that a t -probe algorithm using an s-
word table with w-bit words directly leads to
a 2t-round communication protocol in which
Alice (the querier) sends .log2 s/-bit messages
and Bob (the table holder) sends w-bit mes-
sages. Lower bounds trading off t against w
and s are therefore implied by suitable asymmet-
ric communication lower bounds, where Alice’s
messages need to be much shorter than Bob’s
and Alice also has a correspondingly smaller
input.

The study of these kinds of lower bounds was
systematized by Miltersen et al. [17], who used
round elimination as well as corruption-style
techniques to obtain cell-probe lower bounds
for set membership, predecessor search, range
query, and further static data structure problems.
Pǎtraşcu [19] derived an impressive number of
cell-probe lower bounds – for problems ranging
from union-find to dynamic stabbing and range
reporting (in low dimension) to approximate near
neighbor searching – by a tree of reductions
starting from the lopsided set disjointness
problem. This latter problem, denoted LSDk;n,
gives Alice a set x � Œkn
 with jxj � k and Bob
a set y � Œkn
. Using information complexity
techniques and a direct sum result for the basic
INDEX problem, one can use the Alice/Bob trade-
off result for INDEX discussed earlier to establish
the nearly optimal trade-off that, for each ı > 0,
solving LSDk;n to 1

3
error (say) requires either

Alice to send at least ın log k bits or Bob to send
nk1�O.ı/ bits.
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Circuit Complexity
Early work in circuit complexity had identified
certain conjectured communication complexity
lower bounds as a route towards strong lower
bounds for circuit size and depth and related
complexity measures for Boolean formulas and
branching programs. Several of these conjectures
remain unproven, especially ones involving the
number-on-the-forehead (NOF) communication
model, where the input is “written on the fore-
heads” of a large number, t , of players. The
resulting high degree of input sharing allows for
some rather novel nontrivial protocols, making
lower bounds very hard to prove. Nevertheless,
the discrepancy technique has been extended to
NOF communication, and some of the technically
hardest work in communication complexity has
gone towards using it effectively for concrete
problems, such as set disjointness [21]. While
NOF lower bounds strong enough to imply cir-
cuit lower bounds remain elusive, certain other
communication lower bounds, such as two-party
bounds for computing relations, have had more
success. In particular, monotone circuits for di-
rected and undirected graph connectivity have
been shown to require super-logarithmic depth,
via the influential idea of Karchmer-Wigderson
games [13].

Further Applications
We note in passing that there are plenty more
applications of communication complexity than
are possible to even outline in this short article.
These touch upon such diverse areas as proof
complexity; extension complexity for linear and
semidefinite programming; AT 2 lower bounds
in VLSI design; query complexity in the classi-
cal and quantum models; and time complexity
on classical Turing machines. Kushilevitz and
Nisan [14] remains the best starting point for fur-
ther reading about these and more applications.
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Problem Definition

A mobile ad hoc network is a temporary dy-
namic interconnection network of wireless mo-
bile nodes without any established infrastructure
or centralized administration. A basic communi-
cation problem, in ad hoc mobile networks, is
to send information from a sender node, A, to
another designated receiver node, B. If mobile
nodes A and B come within wireless range of
each other, then they are able to communicate.
However, if they do not, they can communicate
if other network nodes of the network are willing
to forward their packets. One way to solve this
problem is the protocol of notifying every node
that the sender A meets and provide it with all
the information hoping that some of them will
eventually meet the receiver B.

Is there a more efficient technique (other than
notifying every node that the sender meets, in the
hope that some of them will then eventually meet
the receiver) that will effectively solve the commu-
nication establishment problem without flooding
the network and exhausting the battery and com-
putational power of the nodes?

The problem of communication among mobile
nodes is one of the most fundamental problems in
ad hoc mobile networks and is at the core of many
algorithms, such as for counting the number of
nodes, electing a leader, data processing etc.
For an exposition of several important problems
in ad hoc mobile networks see [13]. The work
of Chatzigiannakis, Nikoletseas and Spirakis [5]
focuses on wireless mobile networks that are
subject to highly dynamic structural changes cre-
ated by mobility, channel fluctuations and de-
vice failures. These changes affect topological
connectivity, occur with high frequency and may
not be predictable in advance. Therefore, the
environment where the nodes move (in three-
dimensional space with possible obstacles) as
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well as the motion that the nodes perform are
input to any distributed algorithm.

The Motion Space
The space of possible motions of the mobile
nodes is combinatorially abstracted by a motion-
graph, i.e., the detailed geometric characteristics
of the motion are neglected. Each mobile node
is assumed to have a transmission range repre-
sented by a sphere tr centered by itself. Any
other node inside tr can receive any message
broadcast by this node. This sphere is approxi-
mated by a cube tc with volume V.tc/, where
V.tc/ < V.t r/. The size of tc can be chosen in
such a way that its volume V.tc/ is the maximum
that preserves V.tc/ < V.t r/, and if a mobile
node inside tc broadcasts a message, this mes-
sage is received by any other node in tc. Given
that the mobile nodes are moving in the space
S; S is divided into consecutive cubes of volume
V.tc/.

Definition 1 The motion graph G.V;E/, (jV j D
n; jEj D m), which corresponds to a quantization
of S is constructed in the following way: a vertex
u 2 G represents a cube of volume V.tc/ and an
edge .u; v/ 2 G exists if the corresponding cubes
are adjacent.

The number of vertices n, actually approximates
the ratio between the volume V.S/ of space S,
and the space occupied by the transmission range
of a mobile node V.t r/. In the extreme case
where V.S/  V.t r/, the transmission range of
the nodes approximates the space where they
are moving and n D 1. Given the transmission
range tr, n depends linearly on the volume
of space S regardless of the choice of tc, and
n D O.V.S/=V .t r//. The ratio V.S/=V .t r/ is
the relative motion space size and is denoted by
¡. Since the edges of G represent neighboring
polyhedra each vertex is connected with
a constant number of neighbors, which yields that
m D �.n/. In this example where tc is a cube,
G has maximum degree of six and m � 6n. Thus
motion graph G is (usually) a bounded degree
graph as it is derived from a regular graph of
small degree by deleting parts of it corresponding

to motion or communication obstacles. Let � be
the maximum vertex degree of G.

The Motion of the Nodes-Adversaries
In the general case, the motions of the nodes are
decided by an oblivious adversary: The adversary
determines motion patterns in any possible way
but independently of the distributed algorithm. In
other words, the case where some of the nodes
are deliberately trying to maliciously affect the
protocol, e.g., avoid certain nodes, are excluded.
This is a pragmatic assumption usually followed
by applications. Such kind of motion adversaries
are called restricted motion adversaries.

For purposes of studying efficiency of dis-
tributed algorithms for ad hoc networks on the
average, the motions of the nodes are modeled
by concurrent and independent random walks.
The assumption that the mobile nodes move ran-
domly, either according to uniformly distributed
changes in their directions and velocities or ac-
cording to the random waypoint mobility model
by picking random destinations, has been used
extensively by other research.

Key Results

The key idea is to take advantage of the mobile
nodes natural movement by exchanging informa-
tion whenever mobile nodes meet incidentally. It
is evident, however, that if the nodes are spread
in remote areas and they do not move beyond
these areas, there is no way for information to
reach them, unless the protocol takes special care
of such situations. The work of Chatzigiannakis,
Nikoletseas and Spirakis [5] proposes the idea
of forcing only a small subset of the deployed
nodes to move as per the needs of the protocol;
they call this subset of nodes the support of
the network. Assuming the availability of such
nodes, they are used to provide a simple, correct
and efficient strategy for communication between
any pair of nodes of the network that avoids
message flooding.

Let k nodes be a predefined set of nodes
that become the nodes of the support. These
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a b c

Communication in Ad Hoc Mobile Networks Using Random Walks, Fig. 1 The original network area S (a), how
it is divided in consecutive cubes of volume V.tc/ (b) and the resulting motion graph G (c)

nodes move randomly and fast enough so that
they visit in sufficiently short time the entire
motion graph. When some node of the support is
within transmission range of a sender, it notifies
the sender that it may send its message(s). The
messages are then stored “somewhere within the
support structure”. When a receiver comes within
transmission range of a node of the support, the
receiver is notified that a message is “waiting”
for him and the message is then forwarded to the
receiver.

Protocol 1 (The “Snake” Support Motion Co-
ordination Protocol) Let S0; S1; : : : ; Sk�1 be
the members of the support and let S0 denote
the leader node (possibly elected). The protocol
forces S0 to perform a random walk on the motion
graph and each of the other nodes Si execute the
simple protocol “move where Si � 1 was before”.
When S0 is about to move, it sends a message to
S1 that states the new direction of movement. S1

will change its direction as per instructions of S0

and will propagate the message to S2. In analogy,
Si will follow the orders of Si � 1 after transmitting
the new directions to Si C 1. Movement orders
received by Si are positioned in a queue Qi for
sequential processing. The very first move of Si,
8i 2 f1; 2; : : : ; k � 1g is delayed by a • period of
time.

The purpose of the random walk of the head
S0 is to ensure a cover, within some finite time,
of the whole graph G without knowledge and
memory, other than local, of topology details.
This memoryless motion also ensures fairness,
low-overhead and inherent robustness to struc-
tural changes.

Consider the case where any sender or receiver
is allowed a general, unknown motion strategy,
but its strategy is provided by a restricted mo-
tion adversary. This means that each node not
in the support either (a) executes a determin-
istic motion which either stops at a vertex or
cycles forever after some initial part or (b) it
executes a stochastic strategy which however is
independent of the motion of the support. The
authors in [5] prove the following correctness
and efficiency results. The reader can refer to
the excellent book by Aldous and Fill [1] for
a nice introduction on Makrov Chains and Ran-
dom Walks.

Theorem 1 The support and the “snake” motion
coordination protocol guarantee reliable commu-
nication between any sender-receiver (A, B) pair
in finite time, whose expected value is bounded
only by a function of the relative motion space
size � and does not depend on the number of
nodes, and is also independent of how MHS,
MHR move, provided that the mobile nodes not
in the support do not deliberately try to avoid the
support.

Theorem 2 The expected communication time of
the support and the “snake” motion coordination
protocol is bounded above by �.

p
mc/ when

the (optimal) support size k D
p
2mc and c is

e=.e � 1/u, u being the “separation threshold
time” of the random walk on G.

Theorem 3 By having the support’s head move
on a regular spanning subgraph of G, there is an
absolute constant � > 0 such that the expected
meeting time of A (or B) and the support is
bounded above by �n2=k. Thus the protocol
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guarantees a total expected communication time
of �(�), independent of the total number of mo-
bile nodes, and their movement.

The analysis assumes that the head S0 moves
according to a continuous time random walk of
total rate 1 (rate of exit out of a node of G). If S0

moves§ times faster than the rest of the nodes, all
the estimated times, except the inter-support time,
will be divided by §. Thus the expected total
communication time can be made to be as small
as�.��=

p
 /where ” is an absolute constant. In

cases where S0 can take advantage of the network
topology, all the estimated times, except the inter-
support time are improved:

Theorem 4 When the support’s head moves on
a regular spanning subgraph of G the expected
meeting time of A (or B) and the support cannot
be less than .n � 1/2=2m. Since m D �.n/, the
lower bound for the expected communication
time is �(n). In this sense, the “snake” proto-
col’s expected communication time is optimal, for
a support size which is �(n).

The “on-the-average” analysis of the time-
efficiency of the protocol assumes that the motion
of the mobile nodes not in the support is a random
walk on the motion graph G. The random walk of
each mobile node is performed independently of
the other nodes.

Theorem 5 The expected communication time of
the support and the “snake” motion coordination
protocol is bounded above by the formula

E.T / �
2

�2.G/
�
�n
k

�
C�.k/ :

The upper bound is minimized when
k D

p
2n=�2.G/, where �2 is the second

eigenvalue of the motion graph’s adjacency
matrix.

The way the support nodes move and commu-
nicate is robust, in the sense that it can tolerate
failures of the support nodes. The types of fail-
ures of nodes considered are permanent, i.e., stop
failures. Once such a fault happens, the support
node of the fault does not participate in the ad

hoc mobile network anymore. A communication
protocol is “-faults tolerant, if it still allows the
members of the network to communicate cor-
rectly, under the presence of at most “ permanent
faults of the nodes in the support (ˇ � 1). [5]
shows that:

Theorem 6 The support and the “snake” motion
coordination protocol is 1-fault tolerant.

Applications

Ad hoc mobile networks are rapidly deployable
and self-configuring networks that have
important applications in many critical areas such
as disaster relief, ambient intelligence, wide area
sensing and surveillance. The ability to network
anywhere, anytime enables teleconferencing,
home networking, sensor networks, personal
area networks, and embedded computing
applications [13].

Related Work
The most common way to establish communica-
tion is to form paths of intermediate nodes that
lie within one another’s transmission range and
can directly communicate with each other. The
mobile nodes act as hosts and routers at the same
time in order to propagate packets along these
paths. This approach of maintaining a global
structure with respect to the temporary network
is a difficult problem. Since nodes are moving,
the underlying communication graph is changing,
and the nodes have to adapt quickly to such
changes and reestablish their routes. Busch and
Tirthapura [2] provide the first analysis of the per-
formance of some characteristic protocols [8, 13]
and show that in some cases they require �(u2)
time, where u is the number of nodes, to stabilize,
i.e., be able to provide communication.

The work of Chatzigiannakis, Nikoletseas and
Spirakis [5] focuses on networks where topo-
logical connectivity is subject to frequent, un-
predictable change and studies the problem of
efficient data delivery in sparse networks where
network partitions can last for a significant pe-
riod of time. In such cases, it is possible to
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have a small team of fast moving and versatile
vehicles, to implement the support. These ve-
hicles can be cars, motorcycles, helicopters or
a collection of independently controlled mobile
modules, i.e., robots. This specific approach is
inspired by the work of Walter, Welch and Am-
ato [14] that study the problem of motion co-
ordination in distributed systems consisting of
such robots, which can connect, disconnect and
move around.

The use of mobility to improve performance
in ad hoc mobile networks has been considered
in different contexts in [6, 9, 11, 15]. The pri-
mary objective has been to provide intermittent
connectivity in a disconnected ad hoc network.
Each solution achieves certain properties of end-
to-end connectivity, such as delay and message
loss among the nodes of the network. Some of
them require long-range wireless transmission,
other require that all nodes move pro-actively
under the control of the protocol and collab-
orate so that they meet more often. The key
idea of forcing only a subset of the nodes to
facilitate communication is used in a similar
way in [10, 15]. However, [15] focuses in cases
where only one node is available. Recently, the
application of mobility to the domain of wireless
sensor networks has been addressed in [3, 10,
12].

Open Problems

A number of problems related to the work of
Chatzigiannakis, Nikoletseas and Spirakis [5] re-
main open. It is clear that the size of the support,
k, the shape and the way the support moves
affects the performance of end-to-end connec-
tivity. An open issue is to investigate alternative
structures for the support, different motion coor-
dination strategies and comparatively study the
corresponding effects on communication times.
To this end, the support idea is extended to
hierarchical and highly changing motion graphs
in [4]. The idea of cooperative routing based on
the existence of support nodes may also improve
security and trust.

An important issue for the case where the
network is sparsely populated or where the rate
of motion is too high is to study the performance
of path construction and maintenance protocols.
Some work has be done in this direction in [2]
that can be also used to investigate the end-to-
end communication in wireless sensor networks.
It is still unknown if there exist impossibility
results for distributed algorithms that attempt to
maintain structural information of the implied
fragile network of virtual links.

Another open research area is to analyze the
properties of end-to-end communication given
certain support motion strategies. There are cases
where the mobile nodes interactions may behave
in a similar way to the Physics paradigm of
interacting particles and their modeling. Studies
of interaction times and propagation times in
various graphs are reported in [7] and are still
important to further research in this direction.

Experimental Results

In [5] an experimental evaluation is conducted via
simulation in order to model the different pos-
sible situations regarding the geographical area
covered by an ad-hoc mobile network. A num-
ber of experiments were carried out for grid-
graphs (2D, 3D), random graphs (Gn, p model),
bipartite multi-stage graphs and two-level motion
graphs. All results verify the theoretical analysis
and provide useful insight on how to further
exploit the support idea. In [4] the model of hi-
erarchical and highly changing ad-hoc networks
is investigated. The experiments indicate that,
the pattern of the “snake” algorithm’s perfor-
mance remains the same even in such type of
networks.

URL to Code

http://ru1.cti.gr

Cross-References

�Mobile Agents and Exploration



362 Compact Routing Schemes

Recommended Reading

1. Aldous D, Fill J (1999) Reversible markov chains and
random walks on graphs. http://stat-www.berkeley.
edu/users/aldous/book.html. Accessed 1999

2. Busch C, Tirthapura S (2005) Analysis of link
reversal routing algorithms. SIAM J Comput
35(2):305–326

3. Chatzigiannakis I, Kinalis A, Nikoletseas S (2006)
Sink mobility protocols for data collection in wireless
sensor networks. In: Zomaya AY, Bononi L (eds) 4th
international mobility and wireless access workshop
(MOBIWAC 2006), Terromolinos, pp 52–59

4. Chatzigiannakis I, Nikoletseas S (2004) Design and
analysis of an efficient communication strategy for
hierarchical and highly changing ad-hoc mobile net-
works. J Mobile Netw Appl 9(4):319–332. Special is-
sue on parallel processing issues in mobile computing

5. Chatzigiannakis I, Nikoletseas S, Spirakis P (2003)
Distributed communication algorithms for ad hoc
mobile networks. J Parallel Distrib Comput 63(1):58–
74. Special issue on wireless and mobile ad-hoc
networking and computing, edited by Boukerche A

6. Diggavi SN, Grossglauser M, Tse DNC (2005)
Even one-dimensional mobility increases the capac-
ity of wireless networks. IEEE Trans Inf Theory
51(11):3947–3954

7. Dimitriou T, Nikoletseas SE, Spirakis PG (2004)
Analysis of the information propagation time among
mobile hosts. In: Nikolaidis I, Barbeau M, Kranakis
E (eds) 3rd international conference on ad-hoc, mo-
bile, and wireless networks (ADHOCNOW 2004).
Lecture notes in computer science (LNCS), vol 3158.
Springer, Berlin, pp 122–134

8. Gafni E, Bertsekas DP (1981) Distributed algorithms
for generating loop-free routes in networks with
frequently changing topology. IEEE Trans Commun
29(1):11–18

9. Grossglauser M, Tse DNC (2002) Mobility increases
the capacity of ad hoc wireless networks. IEEE/ACM
Trans Netw 10(4):477–486

10. Jain S, Shah R, Brunette W, Borriello G, Roy S
(2006) Exploiting mobility for energy efficient data
collection in wireless sensor networks. J Mobile Netw
Appl 11(3):327–339

11. Li Q, Rus D (2003) Communication in disconnected
ad hoc networks using message relay. J Parallel Dis-
trib Comput 63(1):75–86. Special issue on wireless
and mobile ad-hoc networking and computing, edited
by A Boukerche

12. Luo J, Panchard J, Piórkowski M, Grossglauser M,
Hubaux JP (2006) Mobiroute: routing towards a mo-
bile sink for improving lifetime in sensor networks.
In: Gibbons PB, Abdelzaher T, Aspnes J, Rao R
(eds) 2nd IEEE/ACM international conference on
distributed computing in sensor systems (DCOSS
2005). Lecture notes in computer science (LNCS),
vol 4026. Springer, Berlin, pp 480–497

13. Perkins CE (2001) Ad hoc networking. Addison-
Wesley, Boston

14. Walter JE, Welch JL, Amato NM (2004) Distributed
reconfiguration of metamorphic robot chains. J Dis-
trib Comput 17(2):171–189

15. Zhao W, Ammar M, Zegura E (2004) A message
ferrying approach for data delivery in sparse mobile
ad hoc networks. In: Murai J, Perkins C, Tassiulas L
(eds) 5th ACM international symposium on mobile
ad hoc networking and computing (MobiHoc 2004).
ACM, Roppongi Hills, pp 187–198

Compact Routing Schemes

Shiri Chechik
Department of Computer Science, Tel Aviv
University, Tel Aviv, Israel

Keywords

Approximate shortest paths; Compact routing;
Stretch factor

Years and Authors of Summarized
Original Work

2013; Chechik

Problem Definition

Routing is a distributed mechanism that
allows sending messages between any pair of
nodes of the network. As in all distributed
algorithms, a routing scheme runs locally on
every processor/node of the network. Each
node/processor of the network has a routing
daemon running on it whose responsibility is to
forward arriving messages while utilizing local
information that is stored at the node itself. This
local information is usually referred to as the
routing table of the node.

A routing scheme involves two phases, a pre-
processing phase and a routing phase. In the
preprocessing phase, the algorithm assigns every
node of the network a routing table and a small-
size label. The label is used as the address of the
node and therefore is usually expected to be of
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small size – poly-logarithmic in the size of the
network.

In the routing phase, some node of the net-
works wishes to send a message to some other
nodes of the network in a distributed manner.
During the routing phase, each node of the net-
work may receive this message, and it has to
decide whether this message reached its final
destination, and if not, the node needs to decide
to which of its neighbors this message should be
forwarded next. In order to make these decisions,
the node may use its own routing table and the
header of the message that usually contains the
label of the final destination and perhaps some
additional information.

The stretch of a routing scheme is defined
as the worst case ratio between the length of
the path obtained by the routing scheme and the
length of the shortest path between the source and
the destination. There are two main objectives
in designing the routing scheme. The first is to
minimize the stretch of the routing scheme, and
the second is to minimize the size of the routing
tables. Much of the work on designing routing
schemes focuses on the trade-off between these
two objectives.

One extreme case is when it is allowed to
use linear-size routing tables. In this case, one
can store a complete routing table at all nodes,
i.e., for every source node s and every potential
destination node t , store at s the port number
of the neighbor of s on the shortest path from
s to t . In this case, the stretch is 1, i.e., the
algorithm can route on exact shortest paths. How-
ever, a clear drawback is that the size of the
routing tables is large, linear in the size of the
network.

One may wish to use smaller routing tables
at the price of a larger stretch. A routing scheme
is considered to be compact if the size of the
routing tables is sublinear in the number of
nodes.

Key Results

This section presents a survey on compact routing
schemes and a highlight of some recent new
developments.

Many papers focus on the trade-off between
the size of the routing tables and the stretch (e.g.,
[1, 2, 4, 5, 7–9]). The first trade-off was obtained
by Peleg and Upfal [9]. Their scheme considered
unweighted graph and achieved a bound on the
total size of the routing tables.

Later, Awerbuch et al. [1] considered weighted
graphs and achieved a routing scheme with a
guarantee on the maximum table size. Their rout-
ing scheme uses table size of QO.n1=k/ and was
withO.k29k/ stretch. A better trade-off was later
achieved by Awerbuch and Peleg [2].

Until very recently, the best-known trade-off
was due to Thorup and Zwick [10]. They pre-
sented a routing scheme that uses routing tables
of size QO.n1=k/, a stretch of 4k � 5, and label
size of O.k log2 n/. Moreover, they showed that
if a handshaking is allowed, namely, if the source
node and the destination are allowed to exchange
an information of size O.log2 n/ bits, then the
stretch can be improved to 2k � 1. Clearly, in
many cases, it would be desirable to avoid the use
of handshaking, as the overhead of establishing a
handshake can be as high as sending the original
message itself.

A natural question is, what is the best trade-
off between routing table size and stretch one can
hope for with or without a handshake? In fact,
assuming the girth conjecture of Erdős [6], one
can show that with table size of O.n1=k/, the
best stretch possible is 2k � 1 with or without
a handshake. Hence, in the case of a handshake,
Thorup and Zwick’s scheme [10] is essentially
optimal. However, in the case of no handshake,
there is still a gap between the lower and upper
bound. A main open problem in the area of
compact routing schemes is on the gap between
the stretch 4k � 5 and 2k � 1.

Recently, Chechik [3] gave the first evidence
that the asymptotically optimal stretch is less than
4k. Chechik [3] presented the first improvement
to the stretch-space trade-off of compact routing
scheme since the result of Thorup and Zwick
[10]. More specifically, [3] presented a com-
pact routing scheme for weighted general undi-
rected graphs that uses tables of size QO.n1=k/

and has stretch c � k for some absolute constant
c < 4.
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Open Problems

The main question that still remains unresolved
is to prove or disprove the existence of a com-
pact routing scheme that utilizes tables of size
QO
�
n1=k

�
and has stretch of 2k without the use

of a handshake.

Recommended Reading

1. Awerbuch B, Bar-Noy A, Linial N, Peleg D (1990)
Improved routing strategies with succinct tables. J
Algorithms 11(3):307–341

2. Awerbuch B, Peleg D (1990) Sparse partitions. In:
Proceedings of 31st IEEE symposium on foundations
of computer science (FOCS), St. Louis, pp 503–513

3. Chechik S (2013) Compact routing schemes with
improved stretch. In: 32nd ACM symposium on prin-
ciples of distributed computing (PODC), Montreal,
pp 33–41

4. Cowen LJ (2001) Compact routing with minimum
stretch. J Algorithms 38:170–183

5. Eilam T, Gavoille C, Peleg D (2003) Compact
routing schemes with low stretch factor. J Algorithms
46:97–114

6. Erdős P (1964) Extremal problems in graph theory.
In: Theory of graphs and its applications. Methuen,
London, pp 29–36

7. Gavoille C, Peleg D (2003) Compact and local-
ized distributed data structures. Distrib Comput
16:111–120

8. Peleg D (2000) Distributed computing: a locality-
sensitive approach. SIAM, Philadelphia

9. Peleg D, Upfal E (1989) A trade-off between
space and efficiency for routing tables. J ACM
36(3):510–530

10. Thorup M, Zwick U (2001) Compact routing
schemes. In: Proceedings of 13th ACM symposium
on parallel algorithms and architectures (SPAA),
Heraklion, pp 1–10

Competitive Auction

Tian-Ming Bu
Software Engineering Institute, East China
Normal University, Shanghai, China

Keywords

Auction design; Optimal mechanism design

Years and Authors of Summarized
Original Work

2001; Goldberg, Hartline, Wright
2002; Fiat, Goldberg, Hartline, Karlin

Problem Definition

This problem studies the one round, sealed-bid
auction model where an auctioneer would like
to sell an idiosyncratic commodity with unlim-
ited copies to n bidders and each bidder i 2
f1; : : : ; ng will get at most one item.

First, for any i , bidder i bids a value bi

representing the price he is willing to pay for the
item. They submit the bids simultaneously. After
receiving the bidding vector b D .b1; : : : ; bn/,
the auctioneer computes and outputs the alloca-
tion vector x D .x1; : : : ; xn/ 2 f0; 1g

n and the
price vector p D .p1; : : : ; pn/. If for any i , xi D

1, then bidder i gets the item and pays pi for it.
Otherwise, bidder i loses and pays nothing. In the
auction, the auctioneer’s revenue is

Pn
iD1 xpT .

Definition 1 (Optimal Single Price Omniscient
Auction F) Given a bidding vector b sorted in
decreasing order,

F.b/ D max
1�i�n

i � bi

Further,

F .m/.b/ D max
m�i�n

i � bi

Obviously, F maximizes the auctioneer’s rev-
enue if only uniform price is allowed.

However, in this problem, each bidder i is
associated with a private value vi representing
the item’s value in his opinion. So if bidder i
gets the item, his payoff should be vi � pi .
Otherwise, his payoff is 0. So for any bidder i , his
payoff function can be formulated as .vi �pi /xi .
Furthermore, free will is allowed in the model.
In other words, each bidder would bid some bi

different from his true value vi , to maximize his
payoff.
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The objective of the problem is to design a
truthful auction which could still maximize the
auctioneer’s revenue. An auction is truthful if for
every bidder i , bidding his true value would max-
imize his payoff, regardless of the bids submitted
by the other bidders [12, 13].

Definition 2 (Competitive Auctions)

INPUT: the submitted bidding vector b.
OUTPUT: the allocation vector x and the price

vector p.
CONSTRAINTS:

(a) Truthful;
(b) The auctioneer’s revenue is within a con-

stant factor of the optimal single pricing for
all inputs.

Key Results

Let b�i D .b1; : : : ; bi�1; biC1; : : : ; bn/. f is any
function from b�i to the price.

Algorithm 1 Bid-independent auction: Af .b/
1: for i D 1 to n do
2: if f .b�i / � bi then
3: xi D 1 and pi D f .bi /
4: else
5: xi D 0
6: end if
7: end for

Theorem 1 ([6]) An auction is truthful if and
only if it is equivalent to a bid-independent auc-
tion.

Definition 3 A truthful auction A is ˇ-
competitive against F .m/ if for all bidding vectors
b, the expected profit of A on b satisfies

E.A.b// � F .m/.b/
ˇ

Definition 4 (CostShareC [11]) Given bids b,
this mechanism finds the largest k such that the
highest k bidders’ biddings are at least C

k
. Charge

each of such k bidders C
k

.

Algorithm 2 Sampling cost-sharing auction
(SCS)
1: Partition bidding vector b uniformly at random into

two sets b0 and b00.
2: Computer F 0 D F.b0/ and F 00 D F.b00/.
3: Running CostShareF 00 on b0 and CostShareF 0 on b00.

Theorem 2 ([6]) SCS is 4-competitive against
F .2/, and the bound is tight.

SCS could be extended for partitioning into
k parts for any k. In fact, k D 3 is the optimal
partition.

Theorem 3 ([10]) The random three partition-
ing cost sharing auction is 3.25-competitive.

Theorem 4 ([9]) Let A be any truthful random-
ized auction. There exists an input bidding vector

b on which E.A.b// � F.2/.b/
2:42

.

Applications

As the Internet becomes more popular, more and
more auctions are beginning to appear. Further,
the items on sale in the auctions vary from an-
tiques, paintings, and digital goods, for example,
mp3, licenses, network resources, and so on.
Truthful auctions can reduce the bidders’ cost
of investigating the competitors’ strategies, since
truthful auctions encourage bidders to bid their
true values. On the other hand, competitive auc-
tions can also guarantee the auctioneer’s profit.
So this problem is very practical and significant.
These years, designing and analyzing competi-
tive auctions under various auction models has
become a hot topic [1–5, 7, 8].
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Problem Definition

It is well known that if NP ¤ P, there is an
infinite hierarchy of complexity classes between
them [10]. However, for some broad classes of
problems, a complexity dichotomy exists: every
problem in the class is either in polynomial time
or NP-hard. Such results include Schaefer’s the-
orem [13], the dichotomy of Hell and Nešetřil
for H -coloring [9], and some subclasses of the
general constraint satisfaction problem [4]. These
developments lead to the following questions:
How far can we push the envelope and show di-
chotomies for even broader classes of problems?
Given a class of problems, what is the criterion
that distinguishes the tractable problems from the
intractable ones? How does it help in solving the
tractable problems efficiently? Now replacing NP
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with #P [15], all the questions above can be asked
for counting problems.

One family of counting problem concerns
graph homomorphisms. Given two undirected
graphs G and H , a graph homomorphism from
G to H is a map � from the vertex set V.G/
to V.H/ such that .u; v/ is an edge in G if
and only if .�.u/; �.v// is an edge in H . The
counting problem for graph homomorphism
is to compute the number of homomorphisms
from G to H . For a fixed graph H , this
problem is also known as the #H -coloring
problem. In addition to #H -coloring, a more
general family of problems that has been studied
intensively over the years is to count graph
homomorphisms with weights. Formally, we
use A to denote an m�m symmetric matrix with
entries .Ai;j /, i; j 2 Œm
 D f1; : : : ; mg. Given
any undirected graph G D .V;E/, we define
the graph homomorphism function ZA.G/ as
follows:

ZA.G/ D
X

WV !Œm�

Y

.u;v/2E

A.u/;.v/: (1)

This is also called the partition function
from statistical physics. It is clear from the
definition that ZA.G/ is exactly the number of
homomorphisms from G to H , when A is the
f0; 1g adjacency matrix of H .

Graph homomorphism can express many
natural graph properties. For example, if one
takes H to be the graph over two vertices
f0; 1g with an edge .0; 1/ and a self-loop
at 1, then the set of vertices mapped to 1

in a graph homomorphism from G to H

corresponds to a VERTEX COVER of G, and
the counting problem simply counts the number
of vertex covers. As another example, if H is
the complete graph over k vertices (without
self-loops), then the problem is exactly the k-
COLORING problem for G. Many additional
graph invariants can be expressed as ZA.G/

for appropriate A. Consider the Hadamard
matrix

H D
	
1 1

1 �1



; (2)

where we index the rows and columns by f0; 1g.
In ZH.G/, every product

Y

.u;v/2E

H.u/;.v/ 2
˚
1;�1

�

and is �1 precisely when the induced subgraph
of G on ��1.1/ has an odd number of edges.
Thus, .2n � ZH.G//=2 is the number of induced
subgraphs of G with an odd number of edges.
Also expressible as ZA.�/ are S -flows where S
is a subset of a finite Abelian group closed under
inversion [6], and a scaled version of the Tutte
polynomial OT .x; y/ where .x � 1/.y � 1/ is a
positive integer. In [6], Freedman, Lovász, and
Schrijver characterized the graph functions that
can be expressed as ZA.�/.

Key Results

In [5], Dyer and Greenhill first prove a complex-
ity dichotomy theorem for all undirected graphs
H . To state it formally, we give the following
definition of block-rank-1 matrices:

Definition 1 (Block-rank-1 matrices) A
nonnegative (but not necessarily symmetric)
matrix A 2 C

m�n is said to be block-rank-1
if after separate appropriate permutations of its
rows and columns, A becomes a block diagonal
matrix and every block is of rank 1.

It is clear that a nonnegative matrix A is block-
rank-1 iff every 2 � 2 submatrix of A with at
least three positive entries is of rank 1. Here is the
dichotomy theorem of Dyer and Greenhill [5]:

Theorem 1 ([5]) Given any undirected graph
H , the #H -coloring problem is in polynomial
time if its adjacency matrix is block-rank-1 and
is #P-hard otherwise.

For the special case when H has two vertices,
the dichotomy above states that #H -coloring is
in polynomial time if the number of 1s in its
adjacency matrix is 0; 1; 2, or 4 and is #P-hard
otherwise. For the latter case, one of the diagonal
entries is 0 (asH is undirected), and #H -coloring
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is indeed the problem of counting independent
sets [16]. However, proving a dichotomy theorem
for H of arbitrary size is much more challeng-
ing. Besides counting independent sets, the other
starting point used in [5] is the problem of count-
ing proper q-colorings [12]. To show that there
is a reduction from one of these two problems
whenever H violates the block-rank-1 criterion,
Dyer and Greenhill need to define a more gen-
eral counting problem with vertex weights and
employ the technique of interpolation [14,16], as
well as two tools often used with interpolation,
stretching, and thickening.

Later in [1], Bulatov and Grohe give a sweep-
ing complexity dichotomy theorem that general-
izes the result of Dyer and Greenhill to nonnega-
tive symmetric matrices:

Theorem 2 ([1]) Given any symmetric and non-
negative algebraic matrix A, computing ZA.�/ is
in polynomial time if A is block-rank-1 and is #P-
hard otherwise.

This dichotomy theorem has since played an
important role in many of the new developments
in the study of counting graph homomorphisms
as well as counting constraint satisfaction prob-
lem because of its enormous applicability. Many
#P-hardness results are built on top of this di-
chotomy. A proof of the dichotomy theorem with
a few shortcuts can also be found in [8].

Recently in a paper with both exceptional
depth and conceptual vision, Goldberg, Jerrum,
Grohe, and Thurley [7] proved a complexity
dichotomy for all real-valued symmetric
matrices:

Theorem 3 ([7]) Given any symmetric and
real algebraic matrix A, the problem of
computing ZA.�/ is either in polynomial time or
#P-hard.

The exact tractability criterion in the
dichotomy above, however, is much more
technical and involved. Roughly speaking, the
proof of the theorem proceeds by establishing
a sequence of successively more stringent
properties that a tractable A must satisfy.
Ultimately, it arrives at a point where the
satisfaction of these properties together implies

that the computation of ZA.G/ can be reduced to
the following sum:

X

x1;:::;xn2Z2

.�1/fG.x1;:::;xn/ (3)

where fG is a quadratic polynomial over Z2

constructed from the input graph G efficiently.
This sum is known to be computable in
polynomial time in n, the number of variables
(e.g., see [3] and [11, Theorem 6.30]). In
particular, the latter immediately implies that
the following two Hadamard matrices

H2 D

	
1 1

1 �1



and H4 D

0

BB
@

1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

1

CC
A

are both tractable. This can be seen from the
following polynomial view of these two matrices.
If we index the rows and columns of H2 by Z2

and index the rows and columns of H4 by .Z2/
2,

then their .x; y/th entry and ..x1; x2/; .y1; y2//th
entry are

.�1/xy and .�1/x1y2Cx2y1 ;

respectively. From here, it is easy to reduce
ZH2

.�/ and ZH4
.�/ to (3).

Compared with the nonnegative domain [1,5],
there are a lot more interesting tractable cases
over the real numbers, e.g., the two Hadamard
matrices above as well as their arbitrary tensor
products. It is not surprising that the potential
cancelations in the sum ZA.�/ may in fact be
the source of efficient algorithms for comput-
ing ZA.�/ itself. This motivates Cai, Chen, and
Lu to continue to investigate the computational
complexity of ZA.�/ with A being a symmetric
complex matrix [2], because over the complex
domain, there is a significantly richer variety
of possible cancelations with the roots of unit,
and more interesting tractable cases are expected.
This turns out to be the case, and they prove the
following complexity dichotomy:

Theorem 4 ([2]) given any symmetric and alge-
braic complex matrix A 2 C

m�m, the problem of
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computing ZA.�/ is either in polynomial time or
#P-hard.

Applications

None is reported.

Open Problems

The efficient approximation of ZA.�/ remains
widely open even for small nonnegative matri-
ces. See the entry “Approximating the Partition
Function of Two-Spin Systems” for the current
state of the art on this. Two families of counting
problems that generalize ZA.�/ are counting con-
straint satisfaction and Holant problems. Open
problems in these two areas can be found in
the two entries “Complexity Dichotomies for the
Counting Constraint Satisfaction Problem” and
“Holant Problems.”

Experimental Results

None is reported.

URLs to Code and Data Sets

None is reported.
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Problem Definition

In the middle of the last century, Nash [8] studied
general noncooperative games and proved that
there exists a set of mixed strategies, now
commonly referred to as a Nash equilibrium,
one for each player, such that no player can
benefit if he/she changes his/her own strategy
unilaterally. Since the development of Nash’s
theorem, researchers have worked on how to
compute Nash equilibria efficiently. Despite
much effort in the last half century, no significant
progress has been made on characterizing its
algorithmic complexity, though both hardness
results and algorithms have been developed for
various modified versions.

An exciting breakthrough, which shows that
computing Nash equilibria is possibly hard, was
made by Daskalakis, Goldberg, and Papadim-
itriou [5], for games among four players or more.
The problem was proven to be complete in PPAD
(polynomial parity argument, directed version), a
complexity class introduced by Papadimitriou in
[9]. The work of [5] is based on the techniques
developed in [6]. This hardness result was then
improved to the three-player case by Chen and
Deng [1] and Daskalakis and Papadimitriou [4],
independently and with different proofs. Finally,
Chen and Deng [2] proved that NASH, the prob-
lem of finding a Nash equilibrium in a bimatrix
game (or two-player game), is PPAD-complete.

A bimatrix game is a noncooperative game
between two players in which the players have
m and n choices of actions (or pure strategies),
respectively. Such a game can be specified by two
m � n matrices A D .ai;j / and B D .bi;j /.
If the first player chooses action i and the second
player chooses action j , then their payoffs are
ai;j and bi;j , respectively. A mixed strategy of
a player is a probability distribution over his/her
choices. Let Pn denote the set of all probability

vectors in R
n, i.e., nonnegative vectors whose

entries sum to 1. The Nash equilibrium theorem
on noncooperative games, when specialized to
bimatrix games, states that for every bimatrix
game G D .A;B/, there exists a pair of mixed
strategies .x� 2 P

m; y� 2 P
n/, called a Nash

equilibrium, such that for all x 2 P
m and y 2 P

n,
.x�/TAY� � xT Ay� and .X�/TBy� � .x�/TBy.

Computationally, one might settle with an ap-
proximate Nash equilibrium. Let Ai denote the
i th row vector of A and Bi denote the i th column
vector of B. An "-well-supported Nash equilib-
rium of game (A,B) is a pair of mixed strategies
.x�; y�/ such that

Ai y�>Aj y�C	)x�
jD0;8 i; j W1�i; j�mI

.x�/TBi>.x�/TBjC	)y
�
jD0;8 i; j W1�i; j�n:

Definition 1 (2-NASH and NASH) The input
instance of problem 2-NASH is a pair .G; 0k/

where G is a bimatrix game and the output is a
2�k-well-supported Nash equilibrium of G. The
input of problem NASH is a bimatrix game G and
the output is an exact Nash equilibrium of G.

Key Results

A binary relation R 
 f0; 1g� � f0; 1g� is poly-
nomially balanced if there exists a polynomial p
such that for all pairs .x; y/ 2 R, jyj � p.jxj/.
It is a polynomial-time computable relation if for
each pair .x; y/, one can decide whether or not
.x; y/ 2 R in polynomial time in jxj C jyj . The
NP search problem QR specified by R is defined
as follows: given x 2 f0; 1g�, if there exists y
such that .x; y/ 2 R, return y; otherwise, return
a special string “no.”

Relation R is total if for every x 2 f0; 1g�,
there exists a y such that .x; y/ 2 R. Follow-
ing [7], let TFNP denote the class of all NP
search problems specified by total relations. A
search problemQR1

2 TFNP is polynomial-time
reducible to problemQR2

2 TFNP if there exists
a pair of polynomial-time computable functions
.f; g/ such that for every x of R1, if y satisfies
that .f .x/; y/ 2 R2, then .x; g.y// 2 R1.
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Furthermore, QR1 and QR2 are polynomial-time
equivalent if QR2 is also reducible to QR1.

The complexity class PPAD is a subclass of
TFNP, containing all the search problems which
are polynomial-time reducible to:

Definition 2 (Problem LEAFD) The input in-
stance of LEAFD is a pair .M; 0n/, where M
defines a polynomial-time Turing machine satis-
fying:

1. For every v 2 f0; 1gn;M.v/ is an ordered pair
.u1; u2/ with u1; u2 2 f0; 1g

n[ {“no”}.
2. M.0n/ D (“no,” 1n) and the first component

of M.1n/ is 0n.

This instance defines a directed graph G D

.V;E/ with V D f0; 1gn. Edge .u; v/ 2 E iff
v is the second component of M.u/ and u is the
first component of M.v/.

The output of problem LEAFD is a directed
leaf of G other than 0n. Here a vertex is called
a directed leaf if its out-degree plus in-degree
equals one.

A search problem in PPAD is said to be
complete in PPAD (or PPAD-complete) if there
exists a polynomial-time reduction from LEAFD
to it.

Theorem ([2]) 2-Nash and Nash are PPAD-
complete.

Applications

The concept of Nash equilibria has traditionally
been one of the most influential tools in the study
of many disciplines involved with strategies, such
as political science and economic theory. The rise
of the Internet and the study of its anarchical
environment have made the Nash equilibrium an
indispensable part of computer science. Over the
past decades, the computer science community
has contributed a lot to the design of efficient
algorithms for related problems. This sequence
of results [1–6], for the first time, provides some
evidence that the problem of finding a Nash
equilibrium is possibly hard for P. These results

are very important to the emerging discipline,
algorithmic game theory.

Open Problems

This sequence of works shows that .rC1/-player
games are polynomial-time reducible to r-player
games for every r � 2, but the reduction is car-
ried out by first reducing .r C 1/-player games to
a fixed-point problem and then further to r-player
games. Is there a natural reduction that goes
directly from .r C 1/-player games to r-player
games? Such a reduction could provide a better
understanding for the behavior of multiplayer
games. Although many people believe that PPAD
is hard for P, there is no strong evidence for this
belief or intuition. The natural open problem is:
can one rigorously prove that class PPAD is hard,
under one of those generally believed assump-
tions in theoretical computer science, like “NP
is not in P” or “one-way function exists”? Such
a result would be extremely important to both
computational complexity theory and algorithmic
game theory.
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Problem Definition

The core is one of the most important solution
concepts in cooperative game, which is based on
the coalition rationality condition: no subgroup of
the players will do better if they break away from
the joint decision of all players to form their own
coalition. The principle behind this condition can
be seen as an extension to that of the Nash
Equilibrium in noncooperative games. The work
of Fang, Zhu, Cai, and Deng [4] discusses the
computational complexity problems related to the
cores of some cooperative game models arising
from combinatorial optimization problems, such
as flow games and Steiner tree games.

A cooperative game with side payments
is given by the pair .N; v/, where N D

f1; 2; : : : ; ng is the player set and v W 2N ! R

is the characteristic function. For each coalition
S � N , the value v.S/ is interpreted as the
profit or cost achieved by the collective action
of players in S without any assistance of players
in NnS . A game is called a profit (cost) game
if the characteristic function values measure the
profit (cost) achieved by the coalitions. Here,
the definitions are only given for profit games,
symmetric statements hold for cost games.

A vector x D fx1; x2; : : : ; xng is called an
imputation if it satisfies

P

i2N

xi D v.N / and

8i 2 N W xi � v.fig/. The core of the game
.N; v/ is defined as:

C.v/ Dfx 2 Rn W x.N / D v.N /

and x.S/ � v.S/; 8S � N g;

where x.S/ D
P

i2S

xi for S � N . A game

is called balanced, if its core is nonempty, and
totally balanced, if every subgame (i.e., the game
obtained by restricting the player set to a coalition
and the characteristic function to the power set of
that coalition) is balanced.

It is a challenge for the algorithmic study of
the core, since there are an exponential number
of constraints imposed on its definition. The fol-
lowing computational complexity questions have
attracted much attention from researchers:

1. Testing balancedness: Can it be tested in poly-
nomial time whether a given instance of the
game has a nonempty core?

2. Checking membership: Can it be checked in
polynomial time whether a given imputation
belongs to the core?

3. Finding a core member: Is it possible to find
an imputation in the core in polynomial time?

In reality, however, there is an important case
in which the characteristic function value of a
coalition can be evaluated via a combinatorial
optimization problem, subject to constraints of
resources controlled by the players of this coali-
tion. In such circumstances, the input size of a
game is the same as that of the related opti-
mization problem, which is usually polynomial
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in the number of players. Therefore, this class of
games, called combinatorial optimization games,
fits well into the framework of algorithm and
complexity analysis. Flow games and Steiner tree
games discussed in Fang et al. [4] fall within this
scope.

Flow Game Let D D .V;EI¨I s; t/ be a di-
rected flow network, where V is the vertex set,
E is the arc set, ¨:E ! RC is the arc capacity
function, and s and t are the source and the sink
of the network, respectively. Assume that each
player controls one arc in the network. The value
of a maximum flow can be viewed as the profit
achieved by the players in cooperation. The flow
game Γf D .E; / associated with the network
D is defined as follows:

(i) The player set is E.
(ii) 8S � E, .S/ is the value of a maximum

flow from s to t in the subnetwork of D
consisting only of arcs belonging to S .

In Kailai and Zemel [6] and Deng et al. [1], it was
shown that the flow game is totally balanced and
finding a core member can be done in polynomial
time.

Problem 1 (Checking membership for flow
game) INSTANCE: A flow network D D

.V;EI¨I s; t/ and x W E ! RC.
QUESTION: Is it true that x.E/ D .E/ and

x.S/ � .S/ for all subsets S 
 E‹

Steiner Tree Game Let G D .V;EI¨/ be an
edge-weighted graph with V D fv0g [ N [M ,
whereN;M � V nfv0g are disjoint. v0 represents
a central supplier,N represents the consumer set,
M represents the switch set, and¨.e/ denotes the
cost of connecting the two endpoints of edge e di-
rectly. It is required to connect all the consumers
in N to the central supplier v0. The connection
is not limited to using direct links between two
consumers or a consumer and the central sup-
plier; it may pass through some switches in M .
The aim is to construct the cheapest connection
and distribute the connection cost among the
consumers fairly. Then, the associated Steiner
tree game Γs D .N; ”/ is defined as follows:

(i) The player set is N .
(ii) 8 S � N , ”.S/ is the weight of a minimum

Steiner tree on G w.r.t. the set S [ fv0g, that
is, ”.S/ D minf

P

e2ES

¨.e/ W TS D .VS ; ES /

is a subtree of G with VS � S [ fv0gg.

Different from flow games, the core of a Steiner
tree game may be empty. An example with an
empty core was given in Megiddo [9].

Problem 2 (Testing balancedness for a Steiner
tree game) INSTANCE: An edge-weighted
graph G D .V;EI¨/ with V D fv0g [N [M .

QUESTION: Does there exist a vector x W
N ! RC such that x.N / D ”.N / and x.S/ �
”.S/ for all subsets S 
 N‹

Problem 3 (Checking membership for a
Steiner tree game) INSTANCE: An edge-
weighted graph G D .V;EI¨/ with V D

fv0g [N [M and x W N ! RC.
QUESTION: Is it true that x.N / D ”.N / and

x.S/ � ”.S/ for all subsets S 
 N‹

Key Results

Theorem 1 It is NP-complete to show that
given a flow game Γf D .E; / defined on
network D D .V;EI¨I s; t/ and a vector
x W E ! RC with x.E/ D .E/, whether there
exists a coalition S 
 N such that x.S/ < .S/.
That is, checking membership of the core for flow
games is co-NP-complete.

The proof of Theorem 1 yields directly the
same conclusion for linear production games. In
Owen’s linear production game [10], each player
j (j 2 N/ is in possession of an individual
resource vector bj . For a coalition S of players,
the profit obtained by S is the optimum value of
the following linear program:

max

8
<

:
cty W Ay �

X

j 2S

bj ; y � 0

9
=

;
:

That is, the characteristic function value is what
the coalition can achieve in the linear production
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model with the resources under the control of
its players. Owen showed that one imputation
in the core can also be constructed through an
optimal dual solution to the linear program which
determines the value of N . However, in general,
there exist some imputations in the core which
cannot be obtained in this way.

Theorem 2 Checking membership of the core
for linear production games is co- NP-complete.

The problem of finding a minimum Steiner tree in
a network is NP-hard; therefore, in a Steiner tree
game, the value ”.S/ of each coalition S may not
be obtained in polynomial time. It implies that the
complement problem of checking membership of
the core for Steiner tree games may not be in NP .

Theorem 3 It is NP-hard to show that given a
Steiner tree game Γs D .N; ”/ defined on network
G D .V;EI¨/ and a vector x W N ! RC with
x.N / D ”.N /, whether there exists a coalition
S 
 N such that x.S/ > ”.S/. That is, checking
membership of the core for Steiner tree games is
NP-hard.

Theorem 4 Testing balancedness for Steiner
tree games is NP-hard.

Given a Steiner tree game Γs D .N; ”/ defined on
network G D .V;EI¨/ and a subset S � N , in
the subgame (S; ”S /, the value ”.S 0/ (S 0 � S/ is
the weight of a minimum Steiner tree of G w.r.t.
the subset S 0[fv0g, where all the vertices inNnS
are treated as switches but not consumers. It is
further proved in Fang et al. [4] that determining
whether a Steiner tree game is totally balanced is
also NP-hard. This is the first example of NP-
hardness for the totally balanced condition.

Theorem 5 Testing total balancedness for
Steiner tree games is NP-hard.

Applications

The computational complexity results on the
cores of combinatorial optimization games have
been as diverse as the corresponding combinato-
rial optimization problems. For example:

1. In matching games [2], testing balancedness,
checking membership, and finding a core
member can all be done in polynomial time.

2. In both flow games and minimum-cost span-
ning tree games [3, 4], although their cores
are always nonempty and a core member can
be found in polynomial time, the problem of
checking membership is co-NP-complete.

3. In facility location games [5], the problem
of testing balancedness is in general NP-
hard; however, given the information that the
core is nonempty, both finding a core member
and checking membership can be solved effi-
ciently.

4. In a game of sum of edge weight defined on a
graph [1], all the problems of testing balanced-
ness, checking membership, and finding a core
member are NP-hard.

Based on the concept of bounded rationality
[3, 8], it is suggested that computational
complexity be taken as an important factor in
considering rationality and fairness of a solution
concept. That is, the players are not willing to
spend super-polynomial time to search for the
most suitable solution. In the case when the
solutions of a game do not exist or are difficult
to compute or to check, it may not be simple to
dismiss the problem as hopeless, especially when
the game arises from important applications.
Hence, various conceptual approaches are
proposed to resolve this problem.

When the core of a game is empty, it mo-
tivates conditions ensuring nonemptiness of ap-
proximate cores. A natural way to approximate
the core is the least core. Let .N; v/ be a profit
cooperative game. Given a real number ©, the ©-
core is defined to contain the imputations such
that x.S/ � v.S/ � © for each nonempty proper
subset S of N . The least core is the intersection
of all nonempty ©-cores. Let ©� be the minimum
value of © such that the ©-core is empty and then
the least core is the same as the ©�-core.

The concept of the least core poses new chal-
lenges in regard to algorithmic issues. The most
natural problem is how to efficiently compute the
value ©� for a given cooperative game. The catch
is that the computation of ©� requires solving
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of a linear program with an exponential number
of constrains. Though there are cases where this
value can be computed in polynomial time [7],
it is in general very hard. If the value of ©� is
considered to represent some subsidies given by
the central authority to ensure the existence of the
cooperation, then it is significant to give the ap-
proximate value of it even when its computation
is NP-hard.

Another possible approach is to interpret ap-
proximation as bounded rationality. For exam-
ple, it would be interesting to know if there is
any game with a property that for any © > 0,
checking membership in the ©-core can be done
in polynomial time, but it is NP-hard to tell if
an imputation is in the core. In such cases, the
restoration of cooperation would be a result of
bounded rationality. That is to say, the players
would not care an extra gain or loss of © as
the expense of another order of degree of com-
putational resources. This methodology may be
further applied to other solution concepts.

Cross-References

�General Equilibrium
�Nucleolus

Recommended Reading

1. Deng X, Papadimitriou C (1994) On the complexity
of cooperative game solution concepts. Math Oper
Res 19:257–266

2. Deng X, Ibaraki T, Nagamochi H (1999) Algorithmic
aspects of the core of combinatorial optimization
games. Math Oper Res 24:751–766

3. Faigle U, Fekete S, Hochstättler W, Kern W (1997)
On the complexity of testing membership in the core
of min-cost spanning tree games. Int J Game Theory
26:361–366

4. Fang Q, Zhu S, Cai M, Deng X (2001) Membership
for core of LP games and other games. In: COCOON
2001. Lecture notes in computer science, vol 2108.
Springer, Berlin/Heidelberg, pp 247–246

5. Goemans MX, Skutella M (2004) Cooperative facil-
ity location games. J Algorithms 50:194–214

6. Kalai E, Zemel E (1982) Generalized network prob-
lems yielding totally balanced games. Oper Res
30:998–1008

7. Kern W, Paulusma D (2003) Matching games:
the least core and the nucleolus. Math Oper Res
28:294–308

8. Megiddo N (1978) Computational complexity and the
game theory approach to cost allocation for a tree.
Math Oper Res 3:189–196

9. Megiddo N (1978) Cost allocation for steiner trees.
Networks 8:1–6

10. Owen G (1975) On the core of linear production
games. Math Program 9:358–370

Compressed Document Retrieval
on String Collections

Sharma V. Thankachan
School of CSE, Georgia Institute of Technology,
Atlanta, USA

Keywords

Compressed data structures; Document retrieval;
String algorithms; Top-k

Years and Authors of Summarized
Original Work

2009; Hon, Shah, Vitter
2013; Belazzougui, Navarro, Valenzuela
2013; Tsur
2014; Hon, Shah, Thankachan, Vitter
2014; Navarro, Thankachan

Problem Definition

We face the following problem.

Problem 1 (Top-k document retrieval) Let
D D fT1;T2; : : : ;TDg be a collection of D
documents of n characters in total, drawn from
an alphabet set ˙ D Œ�
. The relevance of a
document Td with respect to a patternP , denoted
by w.P; d/ is a function of the set of occurrences
of P in Td . Our task is to index D, such that
whenever a pattern P Œ1; p
 and a parameter
k comes as a query, the k documents with the
highest w.P; �/ values can be reported efficiently.
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Compressed Document Retrieval on String Collections, Table 1 Indexes of space 2jCSAj C D log.n=D/ C
O.D/ C o.n/ bits

Source Report time per document

Hon et al. [3] O.tSA log3C� n/

Gagie et al. [2] O.tSA log D log.D=k/ log1C� n/

Belazzougui et al. [1] O.tSA log k log.D=k/ log� n/

Hon et al. [4] O.tSA log k log� n/

Compressed Document Retrieval on String Collections, Table 2 Indexes of space jCSAj C D log.n=D/ C
O.D/ C o.n/ bits

Source Report time per document

Tsur [12] O.tSA log k log1C� n/

Navarro and Thankachan [8] O.tSA log2 k log� n/

Traditionally, inverted indexes are employed
for this task in Information Retrieval. However,
they are not powerful enough to handle sce-
narios where the documents need to be treated
as general strings over an arbitrary alphabet set
(e.g., genome sequences in bioinformatics, text in
many East-Asian languages) [5]. Hon et al. [3]
proposed the first solution for Problem 1, re-
quiring O.n logn/ bits of space and O.p C

k log k/ query time. Later, optimal O.p C k/

query time indexes were proposed by Navarro
and Nekrich [7], and also by Shah et al. [11].
There also exist compressed/compact space so-
lutions, tailored to specific relevance functions
(mostly term-frequency or PageRank). In this
article, we briefly survey the compressed space
indexes for Problem 1 for the case where the rele-
vance function is term-frequency (i.e., w.P; d/ is
the number of occurrences of P in Td ), which we
call the Compressed Top-k Frequent Document
Retrieval (CTFDR) problem.

Key Results

First we introduce some notations. For conve-
nience, we append a special character $ to every
document. Then, T D T1 ı T2 ı � � � ı TD is
the concatenation of all documents. GST, SA,
and CSA are the suffix tree, suffix array, and a
compressed suffix array of T, respectively. Notice
that both GST and SA take O.n logn/ bits of
space, whereas the space of CSA (jCSAj bits)

can be made as close as the minimum space for
maintaining D (which is not more than n log �
bits) by choosing an appropriate version of CSA
[6]. Using CSA, the suffix range Œsp; ep
 of
P Œ1; p
, as well as any SAŒ�
, can be computed
in times search.p/ and tSA, respectively. Hon
et al. [3] gave the first solution for the CTFDR
Problem, requiring roughly 2jCSAj bits of space,
whereas the first space-optimal index was given
by Tsur [12]. Various improvements on both
results have been proposed and are summarized
in Tables 1 and 2. Notice that the total query
time is search.p/ plus k times per reported
document.

Notations and Basic Framework
The suffix tree GST of T can be considered as a
generalized suffix tree of D, where

• `i is the i th leftmost leaf in GST
• doc.`i / is the document to which the suffix

corresponding to `i belongs
• Leaf.u/ is the set of leaves in the subtree of

node u
• tf.u; d / is the number of leaves in Leaf.u/

with doc.�/ D d
• Top.u; k/ is the set k of document identifiers

with the highest tf.u; �/ value

From now onwards, we assume all solutions
consists of a fully compressed representation of
GST in jCSAj C o.n/ bits [10], and a bitmap
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BŒ1; n
, where BŒi
 D 1 iff TŒi 
 D $. We use
a D log.n=D/ C O.D/ C o.n/ bits representa-
tion of B with constant time rank/select query
support [9]. Therefore, doc.`i / can be computed
as 1 plus the number of 1’s in BŒ1;SAŒi 
 � 1

in time tSA C O.1/. Observe that a CTFDL
query .P; k/ essentially asks to return the set
Top.uP ; k/, where uP is the locus node of P in
GST. Any superset of Top.uP ; k/ be called as a
candidate set of .P; k/. The following lemma is
crucial.

Lemma 1 The set Top.w; k/ [ fdoc.`i /j`i 2

Leaf.uP /nLeaf.w/g is a candidate set of .P; k/,
where w is any node in the subtree of uP .

All query processing algorithms consist of the
following two steps: (i) Generate a candidate set
C of size as close to k as possible. (ii) Compute
tf.uP ; d / of all d 2 C and report those k docu-
ment identifiers with the highest tf.uP ; �/ values
as output.

An Index of Size � 2jCSAj Bits
Queries are categorized into O.logD/ different
types.

Definition 1 A query .P; k/ is of type x if
dlog ke D x.

We start with the description of a structure DSx

(of size jDSxj bits) that along with GST and B
can generate a candidate set of size proportional
to k for any type-x query. The first step is to
identify a set Markg of nodes in GST using the
scheme described in Lemma 2 (parameter g will
be fixed later). Then maintain Top.u0; 2x/ for all
u0 2 Markg .

Lemma 2 ([3]) There exists a scheme to
identify a set Markg of nodes in GST (called
marked nodes) based on a grouping factor g,
where the following conditions are satisfied:
(i) jMarkg j D O.n=g/, (ii) if it exists, the highest
marked node u0 2 Markg in the subtree of any
node u is unique, and Leaf.u/nLeaf.u0/ � 2g.
For example, Markg can be the set of all lowest
common ancestor (LCA) nodes of `i and `iCg ,
where i is an integer multiple of g.

Using DSx , any type-x query .P; k/ can be
processed as follows: find the highest node u0

P

in the subtree of uP and generate the following
candidate set.

Top.u0
P ; 2

x/[fdoc.`i /j`i2Leaf.uP /nLeaf.u0
P /g

From the properties described in Lemma 2, the
cardinality of this set is O.2x C g/ D O.k C g/

and the size of DSx is O..n=g/2x logD/ bits.
By fixing g D 2x log2C� n [3], we can bound
the set cardinality by O.k log2C� n/ and jDSxj

by O.n= log1C� n/ bits. Therefore, we maintain
DSx for x D 1; 2; 3; : : : ; logD in o.n/ bits
overall, and whenever a query comes, generate a
candidate set of size O.k log2C� n/ using appro-
priate structures. The observation by Belazzougui
et al. [1] is that g D x2x log1C� n in the above
analysis yields a candidate set of even lower
cardinality O.k log k log1C� n/, without blowing
up the space.

Later, Hon et al. [4] came up with another
strategy for generating a candidate set of even
smaller size, O.k log k log� n/. They associate
another structure DS�

x (of space jDS�
xj bits)

with each DSx . Essentially, DS�
x maintains

Top.u00; 2x/ of every u00 2 Markh with
h D x2x log� n in an encoded form. Now,
whenever a type-x query .P; k/ comes, we
first find the highest node u00

P in the subtree
of uP that belongs to Markh and generate the
candidate set Top.u00

P ; 2
x/ [ fdoc.`i /j`i 2

Leaf.uP /nLeaf.u00
P /g, whose cardinality is

O.2x C h/ D O.k log k log� n/.
We now describe the scheme for encoding

a particular Top.u00; 2x/. Let u0 be the highest
node in the subtree of u00, that belongs to Markg .
Then, Top.u00; 2x/ � Top.u0; 2x/[fdoc.`i /j`i 2

Leaf.u00/nLeaf.u0/g. Notice that Top.u00; 2x/ is
stored in DSx and any doc.`i / can be decoded in
O.tSA/ time. Therefore, instead of explicitly stor-
ing an entry d within Top.u00; 2x/ in logD bits,
we can refer to the position of d in Top.u0; 2x/

if d 2 Top.u0; 2x/, else refer to the relative
position of a leaf node `i in Leaf.u00/nLeaf.u0/

with doc.`i / D d . Therefore, maintaining the
following two bitmaps is sufficient.
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• FŒ1; 2x 
, where FŒi 
 D 1 iff i th entry in
Top.u0; 2x/ is present in Top.u00; 2x/

• F0Œ1; jLeaf.u00/nLeaf.u0/j
, F0Œi 
 D 1 iff
doc.�/ of i th leaf node in Leaf.u00/nLeaf.u0/ is
present in Top.u00; 2x/, but not in Top.u0; 2x/.

As the total length and the number of 1’s over
F and F0 is O.g C 2x/ and O.2x/, respectively,
we can encode them in O.2x log.g=2x// D

O.2x log logn/ bits. Therefore, jDS�
xj D

O..n=.x2x log� n//2x log logn/ bits and
Plog D

xD1

jDSxj D o.n/ bits.

Lemma 3 By maintaining a jCSAj C o.n/ C

D log.n=D/CO.D/ bits space structure (which
includes the space of CSA and B), a candidate
set of size O.k log k log� n/ can be generated for
any query .P; k/ in time O.tSA � k log k log� n/.

We now turn our attention to Step 2 of the
query algorithm. Let Œsp; ep
 be the suffix range
of P in CSA and Œspd ; epd 
 be the suffix range
of P in CSAd , the compressed suffix array of
Td . Hon et al. [3] showed that by addition-
ally maintaining all CSAd ’s (in space roughly
 jCSAj bits), any Œspd ; epd 
 can be com-
puted in time O.tSA logn/ (and thus tf.P; d/ D
epd � spd C 1). Belazzougui et al. [1] improved
this time to O.tSA log logn/ using o.n/ extra
bits. Combined with Lemma 3, this gives the
following.

Theorem 1 ([4]) Using a 2jCSAj C o.n/ C

D log.n=D/ C O.D/ bits space index, top-
k frequent document retrieval queries can be
answered in O.search.p/C k � tSA log k log� n/

time.

Space-Optimal Index
Space-optimal indexes essentially circumvent the
need of CSAd ’s. We first present a simplified
version of Tsur’s index (with slightly worse query
time). To handle type-x queries, first identify the
set of nodes Markg based on a grouping factor
g (to be fixed later). Tsur proved that each node
u0 2 Markg can be associated with a set Set.u0/

of O.2x C
p
2xg/ document identifiers, such

that Set.u0
P / represents a candidate set, where

u0
P is the highest node in the subtree of uP that

belongs to Markg . Therefore, we can store S.u0/

for every u0 2 Markg along with tf.u0; d / of
every d 2 S.u0/ in O..n=g/.2x C

p
2xg/ logn/

bits. Now a type-x query can be processed as
follows:

1. Find u0
P , the highest node in the subtree of uP

that belongs to Markg .
2. Extract Set.u0

P / and tf.u0
P ; d / of all d 2

Set.u0
P /.

3. Scan the leaves in Leaf.uP /nLeaf.u0
P /,

decode the corresponding doc.�/ values
and compute tf.uP ; d / � tf.u0

P ; d / for all
d 2 Set.u0

P /.
4. Then obtain tf.uP ; d / D tf.u0

P ; d / C

.tf.uP ; d / � tf.u0
P ; d // for all d 2 Set.u0

P /.
5. Report k documents within Set.u0

P / with
highest tf.uP ; �/ values as output.

In summary, an O..n=g/.2x C
p
2xg/ logn/-

bit structure (along with GST and B) can answer
any type-x query inO.search.p/C.jSet.u0

P /jC

jLeaf.uP /nLeaf.u0
P /j/ � tSA/ D O.search.p/C

.2x C
p
2xgC g/ � tSA/ D O.search.p/C .gC

2x/ � tSA/ time. By fixing g D x22x log2C� n, the
query time can be bounded by O.search.p/ C
k � tSA log2 k log2C� n/ and the overall space cor-
responding to x D 1; 2; 3; : : : ; logD is o.n/ bits.
We remark that the index originally proposed by
Tsur is even faster.

Navarro and Thankachan [8] observed that
each document identifier and the associated tf.�; �/
value can be compressed into O.log logn/ bits.
For compressing document identifiers, ideas from
Hon et al. [4] were borrowed. For compress-
ing tf.�; �/ values, they introduced an o.n/-bit
structure, called sampled document array that
can compute an approximate value of any tf.�; �/
(denoted by tf�.�; �/) in time O.log logn/ within
an additive error of at most log2 n. This means
that, instead of storing tf.�; �/, storing tf.�; �/ �
tf�.�; �/ (in just O.log log n/ bits) is sufficient.
In summary, by maintaining an O..n=g/.2x C
p
2xg/ log logn/-bit structure (along with GST,

B and the sampled document array), any type-x
query can be answered in O..gC 2x/ � tSA/ time.
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A similar analysis with g D x22x log� n gives the
following result.

Theorem 2 ([8]) Top-k frequent document re-
trieval queries can be answered inO.search.p/C
k � tSA log2 k log� n/ time using a jCSAjCo.n/C
D log.n=D/CO.D/-bit index.
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Problem Definition

Given a static array A of n totally ordered
objects, the range minimum query problem
(RMQ problem) is to build a data structure D on
A that allows us to answer efficiently subsequent
online queries of the form “what is the position of
a minimum element in the subarray ranging from
i to j ?” (We consider the minimum; all results
hold for maximum as well.) Such queries are
denoted by RMQA.i; j / and are formally defined
by RMQA.i; j / D argmini�k�j

˚
AŒk


�
for an

array AŒ1; n
 and indices 1 � i � j � n. In
the succinct or compressed setting, the goal is
to use as few bits as possible for D, hopefully
sublinear in the space needed for storing A

itself. The space for A is denoted by jAj and
is jAj D �.n logn/ bits if A stores numbers
from a universe of size n�.1/.

Indexing Versus Encoding Model
There are two variations of the problem, depend-
ing on whether the input array A is available
at query time (indexing model) or not (encoding
model). In the indexing model, some space for the
data structure D can in principle be saved, as the
query algorithm can substitute the “missing in-
formation” by consulting A when answering the
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queries, and this is indeed what all indexing data
structures make heavy use of. However, due to
the need to access A at query time, the total space
(which is jAj C jDj bits) will never be sublinear
in the space needed for storing the array A itself.

This is different in the encoding model, where
the data structure D must be built in a way such
that the query algorithm can derive its answers
without consulting A. Such encoding data struc-
tures are important when only the positions of
the minima matter (and not the actual values) or
when the access to A itself is slow.

Any encoding data structure DE is automati-
cally also an indexing data structure; conversely,
an indexing data structure DI can always be “con-
verted” to an encoding data structure by storing
DI plus (a copy of) A. Hence, differentiating
between the two concepts only makes sense if
there are indexing data structures that use less
space than the best encoding data structures and
if there exist encoding data structures which use
space sublinear in jAj. Interestingly, for range
minimum queries, exactly this is the case.

Model of Computation
All results assume the usual word RAM model of
computation with word size ˝.logn/ bits.

Key Results

Table 1 summarizes the key results from [12]
by showing the sizes of data structures for range
minimum queries (left column). The first data
structure is in the indexing model, and the last
two are encoding data structures. The leading
terms (2n=c.n/ bits with O.c.n// query time
in the indexing model and 2n bits for arbitrary
query time in the encoding model) are optimal:
in the encoding model, this is rather easy to see
by establishing a bijection between the class

of binary trees and the class of arrays with
different answers for at least one RMQ [12],
and in the indexing model, Brodal et al. [4] prove
the lower bound. Particular emphasis is placed
on the additional space needed for constructing
the data structure (middle column), where it is
important to use asymptotically less space than
the final data structure.

Extensions

Surpassing the Lower Bound
Attempts have been made to break the lower
bound for special cases. If A is compressible
under the order-k empirical entropy measure
Hk.A/, then also the leading term 2n=c.n/ of
the indexing data structure can be compressed to
nHk.A/ [12]. Other results (in both the indexing
and the encoding model) exist for compressibility
measures based on the number of runs in A [2].
Davoodi et al. [8] show that random input arrays
can be encoded in expected 1:919n C o.n/ bits
for RMQs. All of the above results retain constant
query times.

Top-k Queries
A natural generalization of RMQs is listing the
k smallest (or largest) values in a query range
(k needs only be specified at query time). In
the indexing model, any RMQ structure with
constant query time can be used to answer top-
k queries in O.k/ time [16].

Recently, an increased interest in encoding
data structures for top-k queries can be observed.
For general k, Grossi et al. [15] show that
˝.n log k/ bits are needed for answering top-
k queries. Therefore, interesting encodings can
only exist if an upper limit � on k is given at
construction time. This lower bound is matched

Compressed Range Minimum Queries, Table 1 Data
structures [12] for range minimum queries, where jAj
denotes the space of the (read-only) input array A. Con-

struction space is in addition to the final space of the data
structure. All data structures can be constructed in O.n/
time, and query time is O.1/ unless noted otherwise

Final space (bits) Construction space Comment

jAj C 2n
c.n/

� �
�

n log log n

c.n/ log n

�
O
�
log3 n

�
Query time O.c.n// for c.n/ D O

�
n"
�
, 0 < " < 1

2n C O.n log log n= log n/ jAj C n C O
�

n log log n

log n

�
Construction space improved to jAj C o.n/ [8]

2n C O.n=polylog n/ jAj C O.n/ Using succinct data structures from [23] and [21]
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asymptotically by an encoding data structure
using O.n log �/ bits and O.k/ query time by
Navarro et al. [22]. For the specific case � D 2,
Davoodi et al. [8] provide a lower bound of
2:656n �O.logn/ bits (using computer-assisted
search) and also give an encoding data structure
using at most 3:272nCo.n/ bits supporting top-2
queries in O.1/ time.

Range Selection
Another generalization are queries asking for
the k-th smallest (or largest) value in the
query range (k is again part of the query).
This problem is harder for nonconstant k, as
Jørgensen and Larsen prove a lower bound of
˝.log k= log logn/ on the query time when using
O.npolylogn/ words of space [17]. Also, the
abovementioned space lower bounds on encoding
top-k queries also apply to range selection.
Again, Navarro et al. [22] give a matching upper
bound: O.n log �/ bits suffice to answer queries
asking for the k-largest element in a query range
(k � �) in O.log k= log log n/ time. Note that
this includes queries asking for the median in a
query range.

Higher Dimensions
Indexing and encoding data structures for range
minima also exist for higher-dimensional arrays
(matrices) of total size N . Atallah and Yuan [25]
show an (uncompressed) indexing data structure
of size O.2ddŠN / words with O.3d / query
time, where d is the dimension of the underlying
matrix A.

Tighter results exist in the two-dimensional
case [1], where A is an .m� n/ matrix consisting
of N D m � n elements (w.l.o.g. assume m �
n). In the indexing model, the currently best
solution is a data structure of size jAj CO.N=c/
bits (1 � c � n) that answers queries in
O.c log c log2 log c/ time [3], still leaving a gap
between the highest lower bounds of ˝.c/ query
time for O.N=c/ bits of space [4].

In the encoding model, a lower bound of
˝.N logm/ bits exists [4], but the best data
structure with constant query time achieves only
O.N minfm; logng/ bits of space [4], which
still leaves a gap unless m D n˝.1/. However,

Brodal et al. [5] do show an encoding using
only O.N logm/ bits, but nothing better than the
trivial O.N/ can be said about its query time.
Special cases for small (constant) values of m
(e.g., optimal 5nC o.n/ bits for m D 2) and also
for random input arrays are considered by Golin
et al. [14].

Further Extensions
The indexing technique [12] has been generalized
such that a specific minimum (e.g., the position
of the median of the minima) can be returned if
the minimum in the query range is not unique
[11]. Further generalizations include functions
other than the “minimum” on the query range,
e.g., median [17], mode [6], etc. RMQs have
also been generalized to edge-weighted trees [9],
where now a query specifies two nodes v and w,
and a minimum-weight edge on the path from v

to w is sought.

Applications

Data structures for RMQs have many applica-
tions. Most notably, the problem of preprocessing
a tree for lowest common ancestor (LCA) queries
is equivalent to the RMQ problem. In succinctly
encoded trees (using balanced parentheses),
RMQs can also be used to answer LCA queries
in constant time; in this case, the RMQ structure
is built on the virtual excess sequence of the
parentheses and uses only o.n/ bits in addition to
the parenthesis sequence [24]. Other applications
of RMQs include document retrieval [20],
succinct trees [21], compressed suffix trees [13],
text-index construction [10], Lempel-Ziv text
compression [e.g., 18], orthogonal range search-
ing [19], and other kinds of range queries [7].
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Problem Definition

The problem is to represent a graph of a given
size and type (e.g., an n node planar graph)
in a compressed form while still supporting
efficient navigation operations. More formally,
if G D .V;E/ is a graph of a given type �,
with n nodes and m edges, then represent G
using lg j�j C o.lg j�j/ bits of space, and support
a set of appropriate operations on the graph in
constant time (assuming we can access �.lgn/
consecutive bits in one operation). This may not
be possible; if not, then explore what trade-offs
are possible. Data structures that achieve this
space bound are called succinct [13]. To simplify
the statement of results, we assume the graph G
in question contains no self-loops, and we also
restrict ourselves to the static case.

Key Results

Outerplanar, Planar, and k-Page Graphs
The area of succinct data structures was initiated
by Jacobson [13], who presented a succinct rep-
resentation of planar graphs. His approach was
to decompose the planar graph into at most four
one-page (or outerplanar) graphs by applying a
theorem of Yannikakis [20]. Each one-page graph
is then represented as a sequence of balanced
parentheses: this representation extends naturally
to k-pages for k � 1. Using this representation,
it is straightforward to support the following
operations efficiently:

• Adjacent.x; y/: report whether there is an
edge .x; y/ 2 E.

• Neighbors.x/: report all vertices that are
adjacent to vertex x.

• Degree.x/: report the degree of vertex x.

Munro and Raman [16] improved Jacobson’s
balanced parenthesis representation, thereby im-

proving the constant factor in the space bound
for representing both k-page and planar graphs.
We present Table 1 which compares a represen-
tative selection of the various succinct data struc-
tures for representing planar graphs. Subsequent
simplifications to the representation of balanced
parentheses have been presented; cf., [11, 17].
Barbay et al. [1] present results for larger values
of k, as well as the case where the edges or
vertices of the graph have labels.

The decomposition into four one-page graphs
is not the only approach to representing static
planar graphs. Chuang et al. [7] presented an-
other encoding based on canonical orderings of
a planar graph and represented the graph using
a multiple parentheses sequence (a sequence of
balanced parentheses of more than one type).
Later, Chiang et al. [6] generalized the notion
of canonical orderings to orderly spanning trees,
yielding improved constant factors in terms of
n and m. Gavoille and Hanusse [10] presented
an alternate encoding scheme for k-page graphs
that yields a trade-off based on the number of
isolated nodes (connected components with one
vertex). Further improvements have been pre-
sented by Chuang et al. [7], as well as Castelli
Aleardi et al. [5], for the special case of planar
triangulations.

Blandford et al. [2] considered unlabelled
separable graphs. A separable graph is one
that admits an O.nc/ separator for c < 1.
Their structure occupies O.n/ bits and performs
all three query types optimally. Subsequently,
Blelloch and Farzan [3] made the construction
of Blandford et al. [2] succinct in the sense
that, given a graph G from a separable class
of graphs � (e.g., the class of arbitrary planar
graphs), their data structure represents G using
lg j�j C o.n/ bits. Interestingly, we need not
even know the value of lg j�j in order to use this
representation.

Arbitrary Directed Graphs, DAGs,
Undirected Graphs, and Posets
We consider the problem of designing succinct
data structures for arbitrary digraphs. In a
directed graph, we refer to the set of vertices
fy W .x; y/ 2 Eg as the successors of x and
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Compressed Representations of Graphs, Table 1
Comparison of various succinct planar graph representa-
tions. The second column indicates whether the represen-
tation supports multigraphs. For the entries marked with a
�, the query cost is measured in bit accesses. Notation: n

is the number of vertices in G, m is the number of edges
in G, i is the number of isolated vertices in G, " is an ar-
bitrary positive constant, � D minf lg k= lg lg m; lg lg kg,
and H is the information theoretic lower space bound for
storing a graph G drawn from a class of separable graphs

Type Multi Ref. Space in bits Adjacent.x; y/ Neighbors.x/ Degree.x/

k-page N [13] O.kn/ O.lg n C k/� O.deg.x/ lg n C k/� O.lg n/�

N [10] .2.m C i/ C o.m C i// lg k O.� lg k/ O.deg.x/�/ O.1/

N [1] 2m lg k C n C o.m lg k/ O.lg k lg lg k/ O.deg.x/ lg lg k/ O.1/

N [1] .2 C "/m lg k C n C
o.m lg k/

O.lg k/ O.deg.x// O.1/

Y [16] 2m C 2kn C o.kn/ O.k/ O.deg.x/ C k/ O.1/

Planar N [13] O.n/ O.lg n/� O.deg.x/ lg n/� O.lg n/�

N [10] 12n C 4i C o.n/ O.1/ O.deg.x// O.1/

N [7] 5
3

m C .5 C "/n C o.n/ O.1/ O.deg.x// O.1/

N [6] 2m C 2n C o.m C n/ O.1/ O.deg.x// O.1/

Y [16] 2m C 8n C o.n/ O.1/ O.deg.x// O.1/

Y [7] 2m C .5 C "/n C o.n/ O.1/ O.deg.x// O.1/

Y [6] 2m C 3n C o.m C n/ O.1/ O.deg.x// O.1/

Triangulation N [7] 2m C n C o.n/ O.1/ O.deg.x// O.1/

Y [7] 2m C 2n C o.n/ O.1/ O.deg.x// O.1/

Separable N [2] O.n/ O.1/ O.deg.x// O.1/

N [3] H C o.n/ O.1/ O.deg.x// O.1/

the set of vertices fy W .y; x/ 2 Eg as the
predecessors of x.

It is well known that an arbitrary directed
graph can be represented using n � n bits by
storing its adjacency matrix. This representa-
tion supports the Adjacency.x; y/ operation
by probing a single bit in the table in constant
time. On the other hand, we can represent the
graph using�.m lgn/ bits using an adjacency list
representation, such that the following operations
can be supporting in constant time:

• Successor.x; i/: list the i th successor of
vertex x

• Predecessor.x; i/: list the i th predecessor
of vertex x

The information theoretic lower bound
dictates that essentially lg

�
n2

m

�
bits are necessary

for representing an arbitrary digraph. By repre-
senting each row (resp. column) of the adjacency
matrix using an indexable dictionary [19], we get
a data structure that supports Adjacency and
Successor (resp. Predecessor) queries in

constant time and occupies lg
�

n2

m

�
C o

�
lg
�

n2

m

��

bits of space. Note that we can only support
two of the three operations with this approach.
Farzan and Munro [9] showed that if �.n"/ �

m � �
�
n2�"

�
for some constant " > 0, then

.1 C "0/
�

n2

m

�
bits are sufficient and required to

support all three operations. In a more general
setting, Golynski [12] had proven that the
difficulty in supporting both Successor and
Predecessor queries simultaneously using
succinct space relates to the fact that they have
the so-called reciprocal property. In other words,
if the graph is not extremely sparse or dense, then
it is impossible to support all three operations
succinctly. On the other hand, if m D o.n"/

or m D ˝.n2= lg1�" n/, for some constant
" > 0, then Farzan and Munro [9] showed that
succinctness can be achieved while supporting
the three operations.

Suppose G is a directed acyclic graph instead
of an arbitrary digraph. In this case, one can
exploit the fact that the graph is acyclic by
ordering the vertices topologically. This ordering
induces an adjacency matrix which is upper
triangular. Exploiting this fact, when �.n"/ �
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m � �.n2�"/, the data structure of Farzan and
Munro can support all three operations using

.1 C "/ lg
�.n

2/
m

�
bits, for an arbitrary positive

constant ", which is optimal. If m D o.n"/ or
m D ˝.n2= lg1�" n/, for some constant " > 0,

then they achieve lg
�.n

2/
m

�
.1 C o.1// bits. By

orienting the edges in an undirected graph so
that they are directed toward the vertex with the
with the larger label, this representation can also
be used to support the operations Adjacency
and Neighbors on an arbitrary undirected
graph.

A partial order or poset is a directed acyclic
graph with the additional transitivity constraint
on the set of edges E: if .x; y/ and .y; ´/ are
present in E, then it is implied that .x; ´/ 2 E.
Farzan and Fischer [8] showed that a poset can
be stored using 2nw.1 C o.1// C .1 C "/n lgn
bits of space, where w is the width of the poset
– i.e., the length of the maximum antichain –
and " is an arbitrary positive constant. Their
data structure supports Adjacency queries in
constant time, as well as many other operations
in time proportional to w. This matches a lower
bound of Brightwell and Goodall [4] up to the
additive "n lgn term when n is sufficiently large
relative to w. For an arbitrary poset, Kleitman
and Rothschild showed that n2=4CO.n/ bits are
sufficient and necessary by a constructive count-
ing argument [14]. Munro and Nicholson [15,18]
showed that there is a data structure that occu-
pies n2=4 C o.n2/ bits, such that Adjacency,
Predecessor, and Successor queries can
be supported in constant time.
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Problem Definition

Given a text string T D t1t2 : : : tn over an
alphabet ˙ of size � , the suffix array AŒ1; n


is a permutation of the interval Œ1; n
 that
sorts the suffixes of T . More precisely, it
satisfies T ŒAŒi 
; n
 < T ŒAŒi C 1
; n
 for all
1 � i < n, where “<” between strings is
the lexicographical order. The suffix array is
the canonical full-text index that allows to
efficiently compute basic string matching queries
on T .

The compressed suffix array (CSA) problem
asks to replace A with a space-efficient data
structure that is capable of efficiently computing
AŒi
.

If a CSA does not require T to operate, and is
capable of efficiently answering substring queries
on T , it is called a self-index, as it can be seen as a
replacement of T itself. Typical queries required
from such an index are the following:

• count.P /: count how many times a given
pattern string P D p1p2 : : : pm occurs in T .

• locate.P /: return the locations where P oc-
curs in T .

• display.i; j /: return T Œi; j 
.

Key Results

� -Based CSAs
The first solution to the problem is by Grossi
and Vitter [8], who exploit the regularities of the
suffix array via the � -function:

Definition 1 Given suffix array AŒ1; n
, function
� W Œ1; n
 ! Œ1; n
 is defined so that, for all 1 �
i � n, AŒ�.i/
 D AŒi
 C 1. The exception is
AŒ1
 D n, in which case the requirement is that
AŒ�.1/
 D 1 so that � is a permutation.

The following lemma shows that � is appeal-
ing to compression:

Lemma 1 Given a text T Œ1; n
, its suffix array
AŒ1; n
, and the corresponding function � , it
holds �.i/ < �.i C 1/ whenever TAŒi� D

TAŒiC1�.

Grossi and Vitter used a hierarchical decom-
position of � into h D dlog logne levels. The
piecewise increasing property of � can be used
to represent each level of � in 1

2
n log � bits

[8]. By storing some sampled values of A in
the bottom level, any AŒi
 can be computed by
traversing the hierarchical structure. Other trade-
offs are possible using different amount of levels.
The following one involves the use of a constant
number of levels:

Theorem 1 (inspired from [8]) The Com-
pressed Suffix Array of Grossi and Vitter
supports retrieving AŒi
 in O.log� n/ time using
.1

�
n/ log �CO.n log log �/ bits of space, for any

0 < 	 < 1.
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As a consequence, simulating the classical
binary searches [13] to find the range of suffix
array containing all the occurrences of a pat-
tern P Œ1;m
 in T Œ1; n
, can then be done in
O.m log1C� n/ time.

Sadakane [16] shows how the above com-
pressed suffix array can be converted into a self-
index, and at the same time optimized it in several
ways.

Sadakane represents both A and T using the
full function � , and a few extra structures. Imag-
ine one wishes to compare P against T ŒAŒi 
; n
.
For the binary search, one needs to extract enough
characters from T ŒAŒi 
; n
 so that its lexicograph-
ical relation to P is clear. Retrieving charac-
ter T ŒAŒi 

, given i , is easy. Use a bit vector
F Œ1; n
 marking the suffixes of AŒi
 where the
first character changes from that ofAŒi�1
. After
preprocessing F for rank-queries, computing
j D rank1.F; i/ tells us that T ŒAŒi 

 D cj ,
where cj is the j -th smallest alphabet character.
Once T ŒAŒi 

 D cj is determined this way, one
needs to obtain the next character, T ŒAŒi 
 C 1
.
But T ŒAŒi 
C1
 D T ŒAŒ�.i/

, so one can simply
move to i 0 D �.i/ and keep extracting characters
with the same method, as long as necessary. Note
that at most jP j D m characters suffice to decide
a comparison with P . Thus the binary search is
simulated in O.m logn/ time.

Up to now, the space used is n C o.n/ C

� log � bits for F and ˙ . Sadakane [16] gives an
improved representation for � using O.nH0 C

n log log �/ bits, where H0 is the zeroth order
entropy of T .

Sadakane also shows how AŒi
 can be re-
trieved, by plugging in the hierarchical scheme
of Grossi and Vitter. He adds to the scheme the
retrieval of the inverse A�1Œj 
. This is used in or-
der to retrieve arbitrary text substrings T Œp; r
, by
first applying i D A�1Œp
 and then continuing as
before to retrieve r�pC1 first characters of suffix
T ŒAŒi 
; n
. This capability turns the compressed
suffix array into self-index. The following bound
is a modified version of Sadakane’s CSA taken
from [15]:

Theorem 2 The Compressed Suffix Array of
Sadakane is a self-index occupying 1

�
nH0 C

O.n log log �/ bits, and supporting retrieval
of values AŒi
 and A�1Œj 
 in O.log� n/ time,
counting of pattern occurrences in O.m logn/
time, and displaying any substring of T of length
` in O.` C log� n/ time. Here 0 < 	 � 1 is an
arbitrary constant.

Grossi, Gupta, Vitter, and Foschini [6, 9] have
improved the space requirement of compressed
suffix arrays to depend on the k-th order entropy
Hk of T . The idea behind this improvement is a
more careful analysis of regularities captured by
the � -function when combined with the indexing
capabilities of their new elegant data structure,
wavelet tree. They obtain, among other results,
the following tradeoff:

Theorem 3 (Grossi, Gupta, and Vitter [9])
The Compressed Suffix Array of Grossi, Gupta,
and Vitter is a self-index of size 1

�
nHk C

o.n log �/ bits, that supports AŒi
 and A�1Œj 
 in
O.log1C� n=	/ time, count.P / in O.m log � C
log2C� n=	/ time, and display.i; j / inO..j � i/=
log
 n C log1C� n=	/ time. Here 0 < 	 � 1 is
an arbitrary constant, k � ˛ log
 n for some
constant 0 < ˛ < 1.

They also obtain an interesting special case:

Theorem 4 (Grossi, Gupta, and Vitter [9])
The space optimized Compressed Suffix Array
of Grossi, Gupta, and Vitter is a self-index
of size nHk C o.n log �/ bits, that supports
AŒi
 and A�1Œj 
 in O.log2 n= log logn/ time,
count.P / in O.m logn log � C log3 n= log logn/
time, and display.i; j / in O..j � i/= log � C
log2 n= log logn/ time. Here k � ˛ log
 n for
some constant 0 < ˛ < 1.

In the above results, value k must be fixed
before building the indexes. Later, they notice
that a simple coding of � -values yields an nHk-
dependent bound without the need of fixing k

beforehand [6].

FM-Index
A different solution to the problem (at least
on the surface) is obtained by exploiting the
connection of Burrows-Wheeler Transform
(BWT) [2] and Suffix Array data structure
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[13]. The BWT is formed by a permutation
T bwt of T defined as T bwtŒi 
 D T ŒAŒi 
 �

1
 for AŒi
 > 1 and T bwtŒi 
 D T Œn


for AŒi
 D 1. Without lack of gener-
ality, one can assume that T ends with
T Œn
 D $ with $ being distinct symbol
smaller than other symbols in T . Then
T bwtŒ1
 D T Œn � 1
.

A property of the BWT is that symbols having
the same context (i.e., string following them in
T ) are consecutive in T bwt. This makes it easy
to compress T bwt achieving space close to high-
order empirical entropies [14].

Ferragina and Manzini [3] discovered a way to
combine the compressibility of the BWT and the
indexing properties of the suffix array. The struc-
ture is essentially a compressed representation of
the BWT plus some small additional structures to
make it searchable.

To retrieve the whole text from the structure
(that is, to support display.1; n/), it is enough
to invert the BWT. For this purpose, let
us consider a table LF Œ1; n
 defined such
that if T Œi 
 is permuted to T bwtŒj 
 and
T Œi � 1
 to T bwtŒj 0
 then LF Œj 
 D j 0. It
is then immediate that T can be retrieved
backwards by printing $ � T bwtŒ1
 � T bwtŒLF Œ1

 �

T bwtŒLF ŒLF Œ1


 : : : .
To represent array LF space-efficiently, Fer-

ragina and Manzini noticed that each LF Œi
 can
be expressed as follows:

Lemma 2 (Ferragina and Manzini [3])
LF Œi
 D C.c/ C rankc.i/, where c D T bwtŒi 
,
C.c/ tells how many times symbols smaller than
c appear in T bwt and rankc.i/ tells how many
times symbol c appears in T bwtŒ1; i 
.

It was later observed thatLF is in fact the inverse
of � .

It also happens that the very same two-
part expression of LF Œi
 enables efficient
count.P / queries. The idea is that if one knows
the range of the suffix array, say AŒspi ; epi 
,
such that the suffixes T ŒAŒspi 
; n
; T ŒAŒspi C

1
; n
; : : : ; T ŒAŒepi 
; n
 are the only ones con-
taining P Œi;m
 as a prefix, then one can compute
the new range AŒspi�1; epi�1
 where the suffixes
contain P Œi � 1;m
 as a prefix, as follows:

spi�1 D C.P Œi � 1
/C rankP Œi�1�.spi � 1/C 1

and epi�1 D C.P Œi � 1
/ C rankP Œi�1�.epi /. It
is then enough to scan the pattern backwards and
compute values C./ and rankc./ 2m times to find
out the (possibly empty) range of the suffix array
where all the suffixes start with the complete P .
Returning ep1 � sp1 C 1 solves the count.P /
query without the need of having the suffix array
available at all.

For locating each such occurrence AŒi
,
sp1 � i � ep1, one can compute the
sequence i , LF Œi
, LF ŒLF Œi 

, : : :, until
LF kŒi 
 is a sampled suffix array position;
sampled positions can be marked in a bit
vector B such that BŒLF k Œi 

 D 1 indi-
cates that samplesŒrank1.B;LF

kŒi 
/
 D

AŒLF kŒi 

, where samples is a compact
array storing the sampled suffix array val-
ues. Then AŒi
 D AŒLF kŒi 

 C k D

samplesŒrank1.B;LF
kŒi 
/
 C k. A similar

structure can be used to support display.i; j /.
Values C./ can be stored trivially in a table of

� log2 n bits. T bwtŒi 
 can be computed in O.�/
time by checking for which c is rankc.i/ 6D

rankc.i � 1/. The suffix array sampling rate
can be chosen as s D �.log1C� n/ so that the
samples require o.n/ bits. The real challenge is
to preprocess the text for rankc./ queries. The
original proposal builds several small partial sum
data structures on top of the compressed BWT,
and achieves the following result:

Theorem 5 (Ferragina and Manzini [3])
The FM-Index (FMI) is a self-index of size
5nHk C o.n log �/ bits that supports count.P /
in O.m/ time, locate.P / in O.� log1C� n/ time
per occurrence, and display.i; j / inO.�.j � iC
log1C� n// time. Here � D o.logn= log logn/,
k � log
 .n= logn/ � !.1/, and 	 > 0 is an
arbitrary constant.

The original FM-Index has a severe restriction
on the alphabet size. This has been removed in
follow-up works. Conceptually, the easiest way
to achieve a more alphabet-friendly instance of
the FM-index is to build a wavelet tree [9] on
T bwt. It allows one to simulate a single rankc./

query or to obtain T bwtŒi 
 in O.log �/ time.
Some later enhancements have improved the time
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requirement, so as to obtain, for example, the
following result:

Theorem 6 (Mäkinen and Navarro [11])
The CSA problem can be solved using a so-
called Succinct Suffix Array (SSA), of size
nH0 C o.n log �/ bits that supports count.P /
in O.m.1 C log �= log log n// time, locate.P /
in O.log1C� n .1 C log �= log log n// time per
occurrence, and display.i; j / in O..j � i C

log1C� n/.1 C log �= log logn// time. Here
� D o.n/ and 	 > 0 is an arbitrary constant.

Ferragina et al. [4] developed a technique
called compression boosting that finds an optimal
partitioning of T bwt such that, when one com-
presses each piece separately using its zero-order
model, the result is proportional to the k-th order
entropy. It was observed in [10] that a fixed block
partitioning achieves the same result.

Compression boosting can be combined with
the idea of SSA by building a wavelet tree sep-
arately for each piece and some additional struc-
tures in order to solve global rankc./ queries from
the individual wavelet trees:

Theorem 7 (Ferragina et al. [5]) The CSA
problem can be solved using a so-called
Alphabet-Friendly FM-Index (AF-FMI), of
size nHk C o.n log �/ bits, with the same
time complexities and restrictions of SSA with
k � ˛ log
 n, for any constant 0 < ˛ < 1.

A careful analysis [12] reveals that the space of
the plain SSA is bounded by the same nHk C o

.n log �/ bits, making the boosting approach to
achieve the same result unnecessary in theory.
By plugging a better wavelet tree implementa-
tion [7], the space of Theorem 7 can be improved
to nHk C o.n/ bits.

The wavelet tree is space-efficient, but it can-
not operate in time better than O.1 C log 


log log n
/.

To achieve better performance, some other tech-
niques must be used. One example, is the follow-
ing fastest FM-index with dominant term nHk in
the space.

Theorem 8 (Belazzougui and Navarro [1])
The CSA problem can be solved using an index
of size nHkC o.n log �/, that supports count.P /

in O.m/ time, locate.P / in O.log
 n log logn/
time per occurrence, and display.i; j / in
O..j � i/C log
 n log logn/ with k � ˛ log
 n,
� D O.n/, and ˛ is any constant such that
0 < ˛ < 1.

Cross-References

�Burrows-Wheeler Transform
�Rank and Select Operations on Bit Strings
�Rank and Select Operations on Sequences
� Suffix Trees and Arrays
�Wavelet Trees

Recommended Reading

1. Belazzougui D, Navarro G (2011) Alphabet-
independent compressed text indexing. In: ESA,
Saarbrücken, pp 748–759

2. Burrows M, Wheeler D (1994) A block sorting
lossless data compression algorithm. Technical report
124, Digital Equipment Corporation

3. Ferragina P, Manzini G (2005) Indexing compressed
texts. J ACM 52(4):552–581

4. Ferragina P, Giancarlo R, Manzini G, Sciortino M
(2005) Boosting textual compression in optimal
linear time. J ACM 52(4):688–713

5. Ferragina P, Manzini G, Mäkinen V, Navarro G
(2007) Compressed representations of sequences and
full-text indexes. ACM Trans Algorithms 3(2):20

6. Foschini L, Grossi R, Gupta A, Vitter JS (2006) When
indexing equals compression: experiments with com-
pressing suffix arrays and applications. ACM Trans
Algorithms 2(4):611–639

7. Golynski A, Raman R, Srinivasa Rao S (2008) On
the redundancy of succinct data structures. In: SWAT,
Gothenburg, pp 148–159

8. Grossi R, Vitter J (2006) Compressed suffix arrays
and suffix trees with applications to text indexing and
string matching. SIAM J Comput 35(2):378–407

9. Grossi R, Gupta A, Vitter J (2003) High-order
entropy-compressed text indexes. In: Proceedings of
the 14th annual ACM-SIAM symposium on discrete
algorithms (SODA), Baltimore, pp 841–850

10. Kärkkäinen J, Puglisi SJ (2011) Fixed block com-
pression boosting in fm-indexes. In: SPIRE, Pisa,
pp 174–184

11. Mäkinen V, Navarro G (2005) Succinct suffix arrays
based on run-length encoding. Nord J Comput
12(1):40–66

12. Mäkinen V, Navarro G (2008) Dynamic entropy-
compressed sequences and full-text indexes. ACM
Trans Algorithms 4(3):32



390 Compressed Suffix Trees

13. Manber U, Myers G (1993) Suffix arrays: a new
method for on-line string searches. SIAM J Comput
22(5):935–948

14. Manzini G (2001) An analysis of the Burrows-
Wheeler transform. J ACM 48(3):407–430

15. Navarro G, Mäkinen V (2007) Compressed full-text
indexes. ACM Comput Surv 39(1): Article 2

16. Sadakane K (2003) New text indexing functionali-
ties of the compressed suffix arrays. J Algorithms
48(2):294–313

Compressed Suffix Trees

Luís M.S. Russo
Departamento de Informática, Instituto Superior
Técnico, Universidade de Lisboa, Lisboa,
Portugal
INESC-ID, Lisboa, Portugal

Keywords

Compressed index; Data compression; Enhanced
suffix array; Longest common prefix; Range
minimum query; Succinct data structure; Suffix
link

Years and Authors of Summarized
Original Work

2007; Sadakane
2009; Fischer, Mäkinen, Navarro
2010; Ohlebusch, Fischer, Gog
2011; Russo, Navarro, Oliveira

Problem Definition

The problem consists in representing suffix trees
in main memory. The representation needs to
support operations efficiently, using a reasonable
amount of space.

Suffix trees were proposed by Weiner in
1973 [16]. Donald Knuth called them the
“Algorithm of the Year.” Their ubiquitous nature
was quickly perceived and used to solve a myriad
of string processing problems. The downside

of this flexibility was the notorious amount of
space necessary to keep it in main memory. A
direct implementation is several times larger
than the file it is indexing. Initial research into
this matter discovered smaller data structures,
sometimes by sacrificing functionality, namely,
suffix arrays [6], directed acyclic word graphs [5],
or engineered solutions.

A suffix tree is obtained from a sequence of
characters T by considering all its suffixes. The
suffixes are collated together by their common
prefixes into a labeled tree. This means that
suffixes that share a common prefix are united
by that prefix and split only when the common
prefix ends, i.e., in the first letter where they
mismatch. A special terminator character $ is
placed at the end to force these mismatches for
the small suffixes of T . The string depth of a node
is the number of letters between the node and the
root. Figure 1 shows the suffix tree of the string
abbbab.

A viable representation needs to support sev-
eral operations: tree navigation, such as finding a
parent node, a child node, or a sibling node; label-
ing, such as reading the letters along a branch or
using a letter to choose a child node; and indexing
operations, such as determining a leaf’s index or
a node’s string depth.

$$$$ $ $ $
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Compressed Suffix Trees, Fig. 1 Suffix tree of string
abbbab, with the leaves numbered. The arrow shows the
SLINK between nodes ab and b. Below we show the
suffix array. The portion of the tree corresponding to node
b and respective leaves interval is within a dashed box
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Besides the usual tree topology, suffix trees
contain suffix links. For a given node, the suffix
link points to a second node. The string from
the root to the second node can be obtained by
removing the first letter of the string from the root
to the first node. For example, the suffix link of
node ab is node b. See Fig. 1.

An acceptable lower bound to represent a
DNA sequence is 2n bits, i.e., n log � bits (we
use logarithms in base 2) for a text of size n
with an alphabet of size � . The size of the suffix
array for such a sequence, on a 32-bit machine,
is 16 times bigger than this bound. A space-
engineered suffix tree would be 40 times larger.
Succinct data structures are functional represen-
tations whose space requirements are close to the
space needed to represent the data (i.e., close to
2n bits, in our example). If we consider the order-
k statistical compressibility of the text, then the
information-theory lower bound is even smaller,
nHk C o.n/ bits, where Hk is the empirical
entropy of the text. Such representations require
data compression techniques, which need to be
made functional. The prospect of representing
suffix trees within this space was significant.

Objective
Obtain a representation of a suffix tree that re-
quires n log � C o.n/ bits, or even nHk C o.n/

bits, or close, and that supports all operations
efficiently.

Key Results

Classical Results
Suffix arrays [6] are a common alternative to
suffix trees. They do not provide the same set of
operations or the same time bounds, and still they
require only 5 bytes per text character as opposed
to the >10 bytes of suffix trees.

The suffix array stores the lexicographical or-
der of the suffixes of T . Figure 1 shows the suffix
array SA of our running example, i.e., the suffixes
in the suffix tree are lexicographically ordered.
Suffix arrays lack node information. Still they
can represent nodes as an interval of suffixes, for
example, node b corresponds to the interval Œ3; 6
.

This mapping is injective, i.e., no two nodes
can map to the same interval. Hence, a given
interval corresponds to no more than one node.
Some intervals do not correspond to any node,
for example, Œ4; 6
 does not correspond to a node
on the suffix tree. To determine which intervals
are invalid and speed up navigation operations,
the suffix array can be augmented with longest
common prefix (LCP) information. It is enough
to store the length of the LCP between consecu-
tive suffixes. For an arbitrary pair of suffixes, the
LCP value can be computed as a range minimum
query (RMQ) on the corresponding leaf interval.
For example, LCP.3; 5/ can be computed as the
minimum of 1; 1; 2. The suffix array enhanced
with LCP information [2] can now be used to
emulate several algorithms that required suffix
tree navigation.

Another approach is to reduce suffix tree re-
dundancy, by factoring repeated structures. The
following lemma is used to build directed acyclic
word graphs.

Lemma 1 If the sub-trees rooted at nodes v and
v0, of the suffix tree of T , have the same number
of leaves and v0 is the suffix link of v, then the
sub-trees are isomorphic.

Succinct Results
A fundamental component of compressed suf-
fix trees is the underlying compressed index,
which provides the suffix array information. Ad-
ditionally these indexes provide support for  
and LF, which are used to compute suffix links
and backward search. In fact,  is the equiv-
alent to suffix links over the suffix array, i.e.,
SAŒ .i/
 D SAŒi 
 C 1. Moreover, LF is the
inverse of  , i.e., LF. .i// D  .LF.i// D i .
There is a wide variety of these indexes, depend-
ing on the underlying data compression tech-
nique, namely, the Burrows-Wheeler transform,
ı-coding, or Lempel-Ziv. For a complete survey
on these indexes, consult the survey by Navarro
and Mäkinen [7]. For our purposes, we consider
the following index.

Theorem 1 For a string T , over an alphabet
of size polylogn, there exists a suffix array
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representation that requires nHk C o.n/ bits and
computes  , LF and retrieves letters T ŒSAŒi 


in O.1/ time, while it obtains values SAŒi 
 in
O.logn log logn/ time.

Sadakane was the first to combine a com-
pressed suffix array with a succinct tree and a
succinct representation of string depth informa-
tion. The combination of these three ingredients
leads to the first succinct representation of suffix
trees, which set the basic structure for later devel-
opments.

Theorem 2 ([14]) There is a compressed suffix
tree representation that requires nHkC6nCo.n/

bits and supports child in O.log2 n log logn/,
string depth and edge letters inO.logn log logn/
time, and the remaining operations in O.1/ time.

The 6n term is composed of 4n for the
succinct tree and 2n to store LCP values.
A tree can be represented succinctly as a
sequence of balanced parentheses. A suffix
tree contains at most 2n � 1 nodes; since
each node requires exactly 2 parentheses, this
accounts for the 4n parcel. For example, the
parentheses representation of the tree in Fig. 1
is ((0)((1)(2))((3)(4)((5)(6))));
the numbers correspond to the leaf indexes
and are not part of the representation; only the
parentheses are necessary. These parentheses
are encoded with bits, set to 0 or 1, respec-
tively.

We refer to the position of T in the suffix
array as t , i.e., SAŒt 
 D 0, in our running
example t D 2. A technique used to store the
SA values is to use the relation SAŒ .i/
 D
SAŒi 
 C 1. This means that, if  is supported,
we can store the SAŒ il .t/
 values, with l D
logn log logn, and obtain the missing values in
at most l steps. The resulting SA values re-
quire only n= log logn bits to store. To encode
the LCP of internal nodes, Sadakane used that
LCP. .i/;  .i/C1/ � LCP.i; iC1/�1. Hence
LCP. k.i/;  k.i/C 1/C k forms an increasing
sequence of numbers, which can be encoded in
at most 2n bits such that any element can be
accessed with a “select” operation on the bits

(find the position of the j th 1, which can be
solved in constant time with an o.n/-bit extra
index). Hence computing LCP requires deter-
mining k and subtracting it from the number
in the sequence; this can be achieved with SA.
Subsequent research focused on eliminating the
6n term. Fischer, Mäkinen, and Navarro obtained
a smaller representation.

Theorem 3 ([4]) There is a compressed suffix
tree representation which, for any constant 	 > 0,
requires nHk.2 log.1=Hk/ C .1=	/ C O.1// C

o.n log �/ bits and supports all operations in
O.log� n/ time, except level ancestor queries
(LAQ) which need O.log1C� n/ time.

This bound is obtained by compressing the
differential LCP values in Sadakane’s represen-
tation and discarding the parentheses representa-
tion. Instead it relies exclusively on range min-
imum queries over the LCP values. The next
smaller value (NSV) and previous smaller value
(PSV) operations are presented to replace the
need to find matching closing or opening paren-
theses. Later, Fischer [3] further improved the
speed at which 	 vanishes.

Russo, Navarro, and Oliveira [13] ob-
tained the smallest representation by show-
ing that LCA.SLINK.v/;SLINK.v0// D

SLINK.LCA.v; v0// holds for any nodes v and v0.
LCA.v; v0/ means the lowest common ancestor
of nodes v and v0, and SLINK.v/ means the
suffix link of node v. This relation generalizes
Lemma 1.

Theorem 4 ([13]) There is a compressed suffix
tree representation that requires nHk C o.n/ bits
and supports child in O.logn.log log n/2/ and
the other operations in time O.logn log logn/.

The reduced space requirements are obtained
by storing information about a few sampled
nodes. Information for the remaining nodes is
computed with the property above. Only the
sampled nodes are stored in a parentheses repre-
sentation and moreover string depth is stored only
for these nodes. Although Theorem 4 obtains
optimal space, the logarithmic time is significant,
in theory and in practice. This limitation was
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recently improved by Navarro and Russo [9] with
a new approach to compare sampled nodes. They
obtain O.polyloglog n/ time for all operations
within the same space, except for child, which
retains the previous time bound.

Applications

There is a myriad of practical applications for suf-
fix trees. An extensive description can be found
in the book by Gusfield [5]. Nowadays, most
applications are related to bioinformatics, due to
the string-like nature of DNA sequences. Most of
these problems can be solved with compressed
suffix trees and in fact can only be computed
in reasonable time if the ever-increasing DNA
database can be kept in main memory with suffix
tree functionality.

Experimental Results

The results we have described provided a firm
ground for representing suffix trees efficiently
in compressed space. Still the goal was not a
theoretical endeavor, since these data structures
play a center role in the analysis of genomic
data, among others. In practice, several aspects of
computer architecture come into play, which can
significantly impact the resulting performance.
Different approaches can sacrifice space optimal-
ity to be orders of magnitude faster than the
smaller variants.

Abeliuk, Cánovas, and Navarro [1] presented
an exhaustive experimental analysis of existing
CSTs. They obtained practical CSTs by
implementing the PSV and NSV operations
of Fischer, Mäkinen, and Navarro [4], with a
range min-max tree [10]. Their CSTs covered
a wide range in the space and time spectrum.
Roughly, they need 8–12 bits per character (bpc)
and perform the operations in microseconds.
Further, practical variants considered reducing
the 6n term of Sadakane’s representation by
using a single data structure that simultaneously
provides RMQ/PSV/NSV. Ohlebusch and Gog

[11] used only 2n C o.n/ bits, obtaining around
10–12 bpc and operations in microseconds.
Ohlebusch, Fischer, and Gog [12] also used this
approach to obtain the same time performance of
Theorem 2, within 3n extra bits instead of 6n.
This yields around 16 bpc and operations running
in micro- to nanoseconds. An implementation
of Theorem 4 [13] needed around 4 bpc
but queries required milliseconds, although
better performance is expected for the new
version [9].

The proposal in [1] is also designed to adapt
efficiently to highly repetitive sequence collec-
tions, obtaining 1–2 bpc and operations in mil-
liseconds. Also for repetitive texts, Navarro and
Ordóñez [8] obtained a speedup to microsecond
operations, with a slight space increase, 1–3 bpc,
by representing the parenthesis topology explic-
itly but in grammar-compressed form.

URLs to Code and Data Sets

An implementation of Sadakane’s compressed
suffix tree [14] is available from the SuDS
group at http://www.cs.helsinki.fi/group/suds/
cst/. Implementation details and engineering
decisions are described by Välimäki, Gerlach,
Dixit, and Mäkinen [15]. The compressed suffix
tree of Abeliuk, Cánovas, and Navarro [1] is
available in the libcds library at https://github.
com/fclaude/libcds.

An alternative implementation of Sadakane’s
CST is available in the Succinct Data Structure
Library at https://github.com/simongog/sdsl-lite.
The SDSL also contains an implementation of the
CST++ [12].

The Pizza and Chili site contains a large and
varied dataset to test compressed indexes, http://
pizzachili.dcc.uchile.cl.
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Problem Definition

Given a text string T D t1t2 : : : tn over an al-
phabet † of size ¢ , the compressed text in-
dexing (CTI) problem asks to replace T with
a space-efficient data structure capable of effi-
ciently answering basic string matching and sub-
string queries on T. Typical queries required from
such an index are the following:

• count.P /: count how many times a given
pattern string P D p1p2 : : : pm occurs in T.

• locate.P /: return the locations where P occurs
in T.

• display(i, j): return T Œi; j 
.

Key Results

An elegant solution to the problem is obtained
by exploiting the connection of Burrows-Wheeler
Transform (BWT) [1] and Suffix Array data struc-
ture [9]. The suffix array SAŒ1; n
 of T is the
permutation of text positions .1 : : : n/ listing the
suffixes T Œi; n
 in lexicographic order. That is,
T ŒSAŒi 
; n
 is the ith smallest suffix. The BWT
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is formed by (1) a permutation Tbwt of T defined
as T bwtŒi 
 D T ŒSAŒi 
 � 1
, where T Œ0
 D T Œn
,
and (2) the number i� D SA�1Œ1
.

A property of the BWT is that symbols having
the same context (i.e., string following them in
T) are consecutive in Tbwt. This makes it easy
to compress Tbwt achieving space close to high-
order empirical entropies [10]. On the other hand,
the suffix array is a versatile text index, allowing
for example O.m logn/ time counting queries
(using two binary searches on SA) after which one
can locate the occurrences in optimal time.

Ferragina and Manzini [3] discovered a way to
combine the compressibility of the BWT and the
indexing properties of the suffix array. The struc-
ture is essentially a compressed representation of
the BWT plus some small additional structures to
make it searchable.

We first focus on retrieving arbitrary sub-
strings from this compressed text representation,
and later consider searching capabilities. To re-
trieve the whole text from the structure (that
is, to support display.1; n/), it is enough to in-
vert the BWT. For this purpose, let us consider
a table LF Œ1; n
 defined such that if T Œi 
 is
permuted to T bwtŒj 
 and T Œi � 1
 to T bwtŒj 0


then LF Œj 
 D j 0. It is then immediate that T
can be retrieved backwards by printing T bwtŒi�
 �

T bwtŒLF Œi�

 � T bwtŒLF ŒLF Œi�


 : : : (by defini-
tion T bwtŒi�
 corresponds to T Œn
).

To represent array LF space-efficiently, Fer-
ragina and Manzini noticed that each LF Œi
 can
be expressed as follows:

Lemma 1 (Ferragina and Manzini [3])
LF Œi
 D C.c/ C rankc.i/, where c D T bwtŒi 
,
C(c) tells how many times symbols smaller than c
appear in Tbwt and rankc(i) tells how many times
symbol c appears in T bwtŒ1; i 
.

General display(i, j) queries rely on a regular
sampling of the text. Every text position of the
form j 0 � s, being s the sampling rate, is stored
together with SA�1Œj 0 � s
, the suffix array posi-
tion pointing to it. To solve display(i, j) we start
from the smallest sampled text position j 0 � s > j

and apply the BWT inversion procedure starting
with SA�1Œj 0 � s
 instead of i*. This gives the

characters in reverse order from j 0 � s � 1 to i,
requiring at most j � i C s steps.

It also happens that the very same two-part
expression of LF Œi
 enables efficient count.P /
queries. The idea is that if one knows the
range of the suffix array, say SAŒspi ; epi 
, such
that the suffixes T ŒSAŒspi 
; n
; T ŒSAŒspi C

1
; n
; : : : ; T ŒSAŒepi 
; n
 are the only ones con-
taining P Œi;m
 as a prefix, then one can compute
the new range SAŒspi�1; epi�1
 where the suf-
fixes contain P Œi � 1;m
 as a prefix, as follows:
spi�1 D C.P Œi � 1
/C rankP Œi�1�.spi � 1/C 1

and epi�1 D C.P Œi � 1
/C rankP Œi�1�.epi /. It
is then enough to scan the pattern backwards and
compute valuesC./ and rankc./ 2m times to find
out the (possibly empty) range of the suffix array
where all the suffixes start with the complete P.
Returning ep1 � sp1 C 1 solves the count.P /
query without the need of having the suffix array
available at all.

For locating each such occurrence SAŒi
,
sp1 � i � ep1, one can compute the
sequence i, LF Œi
, LF ŒLF Œi 

, : : :, until
LF kŒi 
 is a sampled suffix array position and
thus it is explicitly stored in the sampling
structure designed for display(i, j) queries. Then
SAŒi
 D SAŒLF kŒi 

C k. As we are virtually
moving sequentially on the text, we cannot do
more than s steps in this process.

Now consider the space requirement.
Values C./ can be stored trivially in a table
of � log2 n bits. T bwtŒi 
 can be computed
in O.�/ time by checking for which c is
rankc.i/ 6D rankc.i � 1/. The sampling rate
can be chosen as s D �.log1C� n/ so that the
samples require o(n) bits. The only real challenge
is to preprocess the text for rankc./ queries. This
has been a subject of intensive research in recent
years and many solutions have been proposed.
The original proposal builds several small partial
sum data structures on top of the compressed
BWT, and achieves the following result:

Theorem 2 (Ferragina and Manzini [3]) The
CTI problem can be solved using a so-called FM-
Index (FMI), of size 5nHk C o.n log �/ bits, that
supports count.P / in O(m) time, locate.P /
in O.� log1C� n/ time per occurrence, and
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display(i, j) in O.�.j � i C log1C� n// time.
Here Hk is the k th order empirical entropy of
T, � D o.logn= log logn/, k � log
 .n= logn/;
�!.1/, and 	 > 0 is an arbitrary constant.

The original FM-Index has a severe restriction
on the alphabet size. This has been removed in
follow-up works. Conceptually, the easiest way
to achieve a more alphabet-friendly instance of
the FM-index is to build a wavelet tree [5] on
Tbwt. This is a binary tree on † such that each
node v handles a subset S(v) of the alphabet,
which is split among its children. The root
handles † and each leaf handles a single symbol.
Each node v encodes those positions i so that
T bwtŒi 
 2 S.v/. For those positions, node v

only stores a bit vector telling which go to the
left, which to the right. The node bit vectors are
preprocessed for constant time rank1./ queries
using o(n)-bit data structures [6, 12]. Grossi
et al. [4] show that the wavelet tree built using
the encoding of [12] occupies nH0 C o.n log �/
bits. It is then easy to simulate a single
rankc./ query by log2 � rank1./ queries. With
the same cost one can obtain T bwtŒi 
. Some
later enhancements have improved the time
requirement, so as to obtain, for example, the
following result:

Theorem 3 (Mäkinen and Navarro [7]) The
CTI problem can be solved using a so-called Suc-
cinct Suffix Array (SSA), of size nH0 C o.n log �/
bits, that supports count.P / in O.m.1C log �=
log log n// time, locate.P / inO.log1C� n log �=
log log n/ time per occurrence, and display(i,
j) inO..j � i C log1C� n/ log �= log logn/ time.
Here H0 is the zero-order entropy of T, � D o.n/,
and 	 > 0 is an arbitrary constant.

Ferragina et al. [2] developed a technique
called compression boosting that finds an
optimal partitioning of Tbwt such that, when one
compresses each piece separately using its zero-
order model, the result is proportional to the kth
order entropy. This can be combined with the
idea of SSA by building a wavelet tree separately
for each piece and some additional structures in
order to solve global rankc./ queries from the
individual wavelet trees:

Theorem 4 (Ferragina et al. [4]) The CTI
problem can be solved using a so-called
Alphabet-Friendly FM-Index (AF-FMI), of
size nHk C o.n log �/ bits, with the same
time complexities and restrictions of SSA with
k � ˛ log
 n, for any constant 0 < ˛ < 1.

A very recent analysis [8] reveals that the space
of the plain SSA is bounded by the same
nHk C o.n log �/ bits, making the boosting
approach to achieve the same result unnecessary
in theory. In practice, implementations of [4, 7]
are superior by far to those building directly on
this simplifying idea.

Applications

Sequence analysis in Bioinformatics, search and
retrieval on oriental and agglutinating languages,
multimedia streams, and even structured and tra-
ditional database scenarios.

URL to Code and Data Sets

Site Pizza-Chili http://pizzachili.dcc.uchile.cl or
http://pizzachili.di.unipi.it contains a collection
of standardized library implementations as well
as data sets and experimental comparisons.
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Problem Definition

The problem is, given a tree, to encode it com-
pactly so that basic operations on the tree are
done quickly, preferably in constant time for
static trees. Here, we consider the most basic
class of trees: rooted ordered unlabeled trees.
The information-theoretic lower bound for rep-
resenting an n-node ordered tree is 2n � o.n/
bits because there are

�
2n�2
n�1

�
=n different trees.

Therefore, the aim is to encode an ordered tree
in 2n C o.n/ bits including auxiliary data struc-
tures so that basic operations are done quickly.
We assume that the computation model is the
�.logn/-bit word RAM, that is, memory access
for consecutive �.logn/ bits and arithmetic and
logical operations on two �.logn/-bit integers
are done in constant time.

Preliminaries
Let X be a string on alphabet A. The number of
occurrences of c 2 A in XŒ1 : : : i 
 is denoted by
rankc.X; i/, and the position of j -th c from the
left is denoted by selectc.j / (with selectc.0/ D
0). For binary strings (jAj D 2) of length n, rank
and select are computed in constant time using
an n C o.n/-bit data structure [4]. Let us define
for simplicity prevc.i/ D selectc.rankc.i � 1//

and nextc.i/ D selectc.rankc.i/C1/ the position
of the c preceding and following, respectively,
position i in X .

Key Results

Basically, there are three representations of or-
dered trees: LOUDS (Level-Order Unary Degree
Sequence) [11], DFUDS (Depth-First Unary De-
gree Sequence) [2], and BP (Balanced Parenthe-
sis sequence) [16]. An example is shown in Fig. 1.
All these representations are succinct, that is, of
2n C o.n/ bits. However, their functionality is
slightly different.
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Compressed Tree Representations, Fig. 1 Succinct
representations of trees

LOUDS
In LOUDS representation, the degree of each
node is encoded by a unary representation, that
is, a node with d children is encoded in d ones,
followed by a zero. Codes for the nodes are stored
in level order: the root node is encoded first, then
its children are encoded from left to right, all the
nodes at depth 2 are encoded next, and so on.
Let L be the LOUDS representation of a tree.
Then L is a 0,1-string of length 2n � 1. Tree
navigation operations are expressed by rank and
select operations. The i -th node in level order is
represented by select0.i � 1/C 1. The operations
isleaf .i/, parent.i/, first_child.i/, last_child.i/,
next_sibling.i/, prev_sibling.i/, degree.i/,
child.i; q/, and child_rank.i/ (see Table 1) are
computed in constant time using rank and select
operations, for example, degree.i/ D next0.i �
1/�i , child.i; q/ D select0.rank1.i�1Cq//C1;

and parent.i/ D prev0.select1.rank0.i�1///C1.
However, because nodes are stored in level
order, other operations cannot be done efficiently,
such as depth.i/, subtree_size.i/, lca.i; j /, etc.
A merit of the LOUDS representation is that
in practice it is fast and simple to implement
because all the operations are done by only rank
and select operations.

BP Representation
In BP representation, the tree is traversed in
depth-first order, appending an open parenthesis
“(” to the sequence when we reach a node and a
closing parenthesis “)” when we leave it. These
parentheses are represented with the bits 1 and 0,
respectively. The result is a sequence of 2n paren-
theses that is balanced: for any open (resp. close)
parenthesis, there is a matching close (resp. open)
parenthesis to the right (resp. left), so that the
areas between two pairs of matching parentheses
either nest or are disjoint. Each node is identified
with the position of its open parenthesis.

Munro and Raman [16] showed how to im-
plement operations findclose.i/, findopen.i/, and
enclose.i/ in constant time and 2nC o.n/ bits in
total. Later, Geary et al. [8] considerably simpli-
fied the solutions. With those operations and rank
and select support, many operations in Table 1 are
possible. For example, pre_rank.i/ D rank1.i/,
pre_select.j / D select1.j /, isleaf .i/ iff there is
a 0 at position i C 1, isancestor.i; j / if i � j �
findclose.i/, depth.i/ D rank1.i/ � rank0.i/,
parent.i/ D enclose.i/, first_child.i/ D

i C 1, next_sibling.i/ D findclose.i/ C 1,
subtree_size.i/ D .findclose.i/ � i C 1/=2, etc.
Operations lca, height.i/; and deepest_node.i/
could be added with additional structures for
range minimum queries, rmqi.i; j /, in o.n/

further bits [20]. Some other operations can
be also supported in constant time by adding
different additional structures. Lu and Yeh [14]
gave o.n/-bit data structures for degree.i/,
child.i; q/, and child_rank.i/. Geary et al. [9]
gave o.n/-bit data structures for LA.i; d/.
However, these extra structures are complicated
and add considerably extra space in practice.

DFUDS
In DFUDS representation, nodes are also en-
coded by a unary representation of their degrees,
but stored in depth-first order. The bits 1 and
0 are interpreted as open parenthesis “(” and
close parenthesis “)”, respectively. By adding a
dummy open parenthesis at the beginning, the
DFUDS sequence becomes balanced. Each node
is identified with the first position of its unary
description.
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Compressed Tree Representations, Table 1
Operations supported by the data structure of [19]. The
time complexities are for the dynamic case; in the static

case, all operations take O.1/ time. The first group, of
basic operations, is used to implement the others, but
could have other uses

Operation Description Time complexity

Variant 1 Variant 2

inspect.i/ P Œi� O.
log n

log log n
/

findclose.i/ / findopen.i/ Position of parenthesis matching P Œi�

enclose.i/ Position of tightest open parent. enclosing i

rmqi.i; j / / RMQi.i; j / Position of min/max excess value in range Œi; j �

pre_rank.i/ / post_rank.i/ Preorder/postorder rank of node i O.
log n

log log n
/

pre_select.i/ / post_select.i/ The node with preorder/postorder i

isleaf .i/ Whether P Œi� is a leaf

isancestor.i; j / Whether i is an ancestor of j

depth.i/ Depth of node i

parent.i/ Parent of node i

first_child.i/ / last_child.i/ First/last child of node i

next_sibling.i/ / prev_sibling.i/ Next/previous sibling of node i

subtree_size.i/ Number of nodes in the subtree of node i

lca.i; j / The lowest common ancestor of two nodes i; j

deepest_node.i/ The (first) deepest node in the subtree of i

height.i/ The height of i (distance to its deepest node)

in_rank.i/ Inorder of node i

in_select.i/ Node with inorder i

leaf _rank.i/ Number of leaves to the left of leaf i

leaf _select.i/ i -th leaf

lmost_leaf .i/ / rmost_leaf .i/ Leftmost/rightmost leaf of node i

LA.i; d/ Ancestor j of i s.t. depth.j / D depth.i/ � d O.log n/

level_next.i/ / level_prev.i/ Next/previous node of i in BFS order

level_lmost.d/ / level_rmost.d/ Leftmost/rightmost node with depth d

degree.i/ q D number of children of node i O.
q log n

log log n
/ O.log n/

child.i; q/ q-th child of node i

child_rank.i/ q D number of siblings to the left of node i

insert.i; j / Insert node given by matching parent at i and j O.
log n

log log n
/ O.log n/

delete.i/ Delete node i

A merit of using DFUDS is that it retains
many operations supported in BP, but degree.i/,
child.i; q/, and child_rank.i/ are done in
constant time by using only the basic operations
supported by Munro and Raman [16]. For
example, degree.i/ D next0.i � 1/ � i ,
child.i; q/ D findclose.i C degree.i/ � q/ C 1,
and parent.i/ D prev0.findopen.i � 1// C 1.
Operation lca.i; j / can also be computed using
rmqi.i; j / [12].

Another important feature of DFUDS is that
some trees can be represented in less than 2n

bits. The number of ordered trees having ni

nodes with degree i (i D 0; 1; : : : ; n � 1) is
1
n

�
n

n0n1���nn�1

�
if
P

i�0 ni .i � 1/ D �1 and 0
otherwise (i.e., there are no trees satisfying the
condition). Jansson et al. [12] proposed a com-
pression algorithm for DFUDS sequences that

achieves the lower bound lg
�

1
n

�
n

n0n1���nn�1

��
C
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o.n/ bits. For example, a full binary tree, that is,
a tree in which all internal nodes have exactly two
children, is encoded in n bits.

A demerit of DUFDS is that computing
depth.i/ and LA.i; d/ is complicated, though
it is possible in constant time [12].

Fully Functional BP Representation
Navarro and Sadakane [19] proposed a data
structure for ordered trees using the BP
representation [16]. The data structure is called
range min-max tree. Let P be the BP sequence.
For each entry P Œi
 of the sequence, we define its
excess value as the number of open parentheses
minus the number of close parentheses in P Œ1; i 
.
If P Œi
 is an open parenthesis, its excess value
is equal to depth.i/. Let EŒi
 denote the excess
value for P Œi
. With the range min-max tree and
small additional data structures, they support in
constant time the operations fwd_search.i; d/ D
minffj > i jEŒj 
 D EŒi
 C dg [ fn C 1gg,
bwd_search.i; d/ D maxffj < i jEŒj 
 D EŒi
C
dg [ f0gg, and rmqi.i; j / D argmini�k�j EŒk
.
Then, the basic operations can be expressed as
findclose.i/ D fwd_search.i;�1/, findopen.i/ D
bwd_search.i; 0/ C 1, and enclose.i/ D

bwd_search.i;�2/ C 1. In addition to those
operations and rank/select, other operations
can be computed, such as LA.i; d/ D

bwd_search.i;�d �1/C1. Operation child.i; q/
and related ones are also done in constant time
using small additional structures. The results are
summarized as follows:

Theorem 1 ([19]) For any ordinal tree with n

nodes, all operations in Table 1 except insert and
delete are carried out in constant time O.c/ with
a data structure using 2n C O.n= logc n/ bits
of space on a �.logn/-bit word RAM, for any
constant c > 0. The data structure can be con-
structed from the balanced parenthesis sequence
of the tree, in O.n/ time using O.n/ bits of space.

Another merit of using the range min-max tree
is that it is easy to dynamize. By using a balanced
tree, we obtain the following:

Theorem 2 ([19]) On a�.logn/-bit word RAM,
all operations on a dynamic ordinal tree with
n nodes can be carried out within the worst-

case complexities given in Table 1, using a data
structure that requires 2nCO.n log logn= logn/
bits. Alternatively, all the operations of the table
can be carried out in O.logn/ time using 2n C
O.n= logn/ bits of space.

The time complexity O.logn= log logn/ is opti-
mal [3].

Other Representations
There are other representations of ordered trees
and other types of trees [6, 7, 10]. The idea is that
the entire tree is partitioned into mini-trees using
the tree cover technique [10], and mini-trees are
again partitioned into micro-trees.

Applications

There are many applications of succinct ordered
trees because trees are fundamental data struc-
tures. A typical application is compressed suf-
fix trees [20]. Balanced parentheses have also
been used to represent planar and k-page graphs
[16]. We also have other applications to encoding
permutations and functions [17], grammar com-
pression [15], compressing BDDs/ZDDs (binary
decision diagrams/zero-suppressed BDDs) [5],
etc.

Open Problems

An open problem is to give a dynamic data
structure supporting all operations in the optimal
O.logn= log logn/ time.

Experimental Results

Arroyuelo et al. [1] implemented LOUDS and the
static version of the fully functional BP repre-
sentation. LOUDS uses little space (as little as
2:1n bits) and solves its operations in half a mi-
crosecond or less, but its functionality is limited.
The range min-max tree [19] requires about 2:4n
bits and can be used to represent both BP and
DFUDS. It solves all the operations within 1–2
microseconds. Previous implementations [8, 18]
require more space and are generally slower.
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Joannou and Raman [13] proposed an ef-
ficient implementation of the dynamic version
using splay trees to represent the range min-max
tree.

URLs to Code and Data Sets

An implementation of the BP representation us-
ing the range min-max tree by the original authors
is available at https://github.com/fclaude/libcds.
Another implementation by Simon Gog is at
https://github.com/simongog/sdsl-lite.
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Problem Definition

Trees are a fundamental structure in computing.
They are used in almost every aspect of mod-
eling and representation for computations like
searching for keys, maintaining directories, and
representations of parsing or execution traces,
to name just a few. One of the latest uses of
trees is XML, the de facto format for data stor-
age, integration, and exchange over the Internet
(see http://www.w3.org/XML/). Explicit storage
of trees, with one pointer per child as well as
other auxiliary information (e.g., label), is often
taken as given but can account for the dominant
storage cost. Just to have an idea, a simple tree en-
coding needs at least 16 bytes per tree node: one
pointer to the auxiliary information (e.g., node
label) plus three node pointers to the parent, the
first child, and the next sibling. This large space
occupancy may even prevent the processing of
medium-sized trees, e.g., XML documents. This
entry surveys the best-known storage solutions
for unlabeled and labeled trees that are space
efficient and support fast navigational and search
operations over the tree structure. In the literature,
they are referred to as succinct/compressed tree-
indexing solutions.

Notation and Basic Facts
The information-theoretic storage cost for any
item of a universe U can be derived via a sim-
ple counting argument: at least log jU j bits
are needed to distinguish any two items of U .
(Throughout the entry, all logarithms are taken
to the base 2, and it is assumed 0 log 0 D 0.)
Now, let T be a rooted tree of arbitrary degree
and shape, and consider the following three main
classes of trees:

Ordinal trees T is unlabeled and its children are
left-to-right ordered. The number of ordinal

trees on t nodes is Ct D

	
2t

t



= .t C 1/

which induces a lower bound of 2t �Θ.log t /
bits

Cardinal k-ary Trees T is labeled on its edges
with symbols drawn from the alphabet Σ D
f1; : : : ; kg. Any node has degree at most k
because the edges outgoing from each node
have distinct labels. Typical examples of car-
dinal trees are the binary tree (k D 2), the
(uncompacted) trie, and the Patricia tree. The
number of k-ary cardinal trees on t nodes is

C k
t D

	
kt C 1

t



= .kt C 1/ which induces

a lower bound of t .log k C log e/�Θ.log kt/
bits, when k is a slowly growing function
of t

(Multi-)labeled trees T is an ordinal tree, labeled
on its nodes with symbols drawn from the
alphabet Σ. In the case of multi-labeled trees,
every node has at least one symbol as its label.
The same symbols may repeat among sibling
nodes, so that the degree of each node is
unbounded, and the same labeled subpath may
occur many times in T , anchored anywhere.
The information-theoretic lower bound on the
storage complexity of this class of trees on t
nodes comes easily from the decoupling of the
tree structure and the storage of tree labels.
For labeled trees, it is logCt C t log jΣj D
t .log jΣj C 2/ �Θ.log t / bits

The following query operations should be sup-
ported over T :

Basic navigational queries They ask for the par-
ent of a given node u, the i th child of u,
and the degree of u. These operations may be
restricted to some label c 2 Σ, if T is labeled

Sophisticated navigational queries They ask for
the j th level-ancestor of u, the depth of u, the
subtree size of u, the lowest common ancestor
of a pair of nodes, and the i th node accord-
ing to some node ordering over T , possibly
restricted to some label c 2 Σ (if T is labeled).
For even more operations, see [2, 14]

Subpath query Given a labeled subpath Π, it asks
for the (number occ of) nodes of T that im-
mediately descend from every occurrence of
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Π in T . Each subpath occurrence may be
anchored anywhere in the tree (i.e., not nec-
essarily in its root)

The elementary solution to the tree-indexing
problem consists of encoding the tree T via a
mixture of pointers and arrays, thus taking a total
of Θ.t log t ) bits. This supports basic naviga-
tional queries in constant time, but it is not space
efficient and requires visiting the whole tree to
implement the subpath query or the more sophis-
ticated navigational queries. Here, the goal is to
design tree storage schemes that are either suc-
cinct, namely, “close to the information-theoretic
lower bound” mentioned before or compressed
in that they achieve “entropy-bounded storage.”
Furthermore, these storage schemes do not re-
quire the whole visit of the tree for most nav-
igational operations. Thus, succinct/compressed
tree-indexing solutions are distinct from simply
compressing the input and then uncompressing it
at query time.

In this entry, it is assumed that t � jΣj. The
model of computation used is the random access
machine (RAM) with word size Θ(log t ), where
one can perform various arithmetic and bit-wise
Boolean operations on single words in constant
time.

Key Results

The notion of succinct data structures was intro-
duced by Jacobson [13] in a seminal work over
25 years ago. He presented a storage scheme for
ordinal trees using 2tCo.t/ bits that supports ba-
sic navigational queries inO(log log t ) time (i.e.,
parent, first child, and next sibling of a node).
Later, Munro and Raman [16] closed the issue
for ordinal trees on basic navigational queries
and the subtree-size query by achieving constant
query time and 2t C o.t/ bits of storage. Their
storage scheme is called balanced parenthesis
(BP) representation (some papers [Chiang et al.,
ACM-SIAM SODA ’01; Sadakane, ISAAC ’01;
Munro et al., J.ALG ’01; Munro and Rao, ICALP
’04] have extended BP to support in constant time
other sophisticated navigational queries like LCA,

node degree, rank/select on leaves and number
of leaves in a subtree, level-ancestor and level-
successor) representation. Subsequently, Benoit
et al. [3] proposed a storage scheme called depth-
first unary degree sequence (shortly, DFUDS)
that still uses 2t C o.t/ bits but performs more
navigational queries like i th child, child rank, and
node degree in constant time. Geary et al. [10]
gave another representation still taking optimal
space that extends DFUDS’s operations with the
level-ancestor query.

Although these three representations achieve
the optimal space occupancy, none of them sup-
ports every existing operation in constant time:
e.g., BP does not support i th child and child rank
and DFUDS and Geary et al.’s representation
do not support LCA. Later, Jansson et al. [14]
extended the DFUDS storage scheme in two
directions: (1) they showed how to implement
in constant time all navigational queries above
and (the BP representation and the one of Geary
et al. [10] have been recently extended to support
further operations-like depth/height of a node,
next node in the same level, rank/select over
various node orders-still in constant time and
2t C o.t/ bits see [11] and references therein)
(2) they showed how to compress the new tree
storage scheme up to H�.T /, which denotes the
entropy of the distribution of node degrees in T .

Theorem 1 (Jansson et al. [14]) For any rooted
(unlabeled) tree T with t nodes, there exists
a tree-indexing scheme that uses tH�.T / C
O.t.log log t /2= log t / bits and supports all nav-
igational queries in constant time.

This improves the standard tree pointer-based
representation, since it needs no more than
H�.T / bits per node and does not compromise
the performance of sophisticated navigational
queries. Since it is H�.T / � 2, this solution
is also never worse than BP or DFUDS, but its
improvement may be significant! This result can
be extended to achieve the kth-order entropy
of the DFUDS sequence, by adopting any
compressed-storage scheme for strings (see, e.g.,
[7] and references therein).

Further work in the area of succinct ordinal
tree representations came in the form of (i) a
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uniform approach to succinct tree representations
[5] that simplified and extended the representa-
tion of Geary et al., (ii) a universal represen-
tation [6] that emulates all three representations
mentioned above, and (iii) a fully functional rep-
resentation [18] that obtains a simplified ordinal
tree encoding with reduced space occupancy.

Benoit et al. [3] extended the use of DFUDS
to cardinal trees and proposed a tree-indexing
scheme whose space occupancy is close to the
information-theoretic lower bound and supports
various navigational queries in constant time.
Raman et al. [19] improved the space by using
a different approach (based on storing the tree as
a set of edges), thus proving the following:

Theorem 2 (Raman et al. [19]) For any k-ary
cardinal tree T with t nodes, there exists a
tree-indexing scheme that uses logC k

t C o.t/ C

O.log log k/ bits and supports in constant time
the following operations: finding the parent, the
degree, the ordinal position among its siblings,
the child with label c, and the i th child of a node.

The subtree-size operation cannot be
supported efficiently using this representation,
so [3] should be resorted to in case this operation
is a primary concern.

Despite this flurry of activity, the fundamental
problem of indexing labeled trees succinctly
has remained mostly unsolved. In fact, the
succinct encoding for ordered trees mentioned
above might be replicated jΣj times (once for
each symbol of Σ), and then the divide-and-
conquer approach of [10] might be applied to
reduce the final space occupancy. However, the
final space bound would be 2t C t log jΣj C
O.t jΣj.log log log t /=.log log t // bits, which is
nonetheless far from the information-theoretic
storage bound even for moderately large Σ. On
the other hand, if subpath queries are of primary
concern (e.g., XML), one can use the approach of
[15] which consists of a variant of the suffix-tree
data structure properly designed to index all T ’s
labeled paths. Subpath queries can be supported
in O.jΠj log jΣj C occ/ time, but the required
space would still be Θ.t log t / bits (with large
hidden constants, due to the use of suffix trees).
Subsequently, some papers [1, 2, 8, 12] addressed

this problem in its whole generality by either
dealing simultaneously with subpath and basic
navigational queries [8] or by considering multi-
labeled trees and a larger set of navigational
operations [1, 2, 12].

In particular, [8] introduced a transform of
the labeled tree T , denoted xbw[T ], which lin-
earizes it into two coordinated arrays hSlast; S˛i:
the former capturing the tree structure and the
latter keeping a permutation of the labels of T .
xbw[T ] has the optimal (up to lower-order terms)
size of 2t C t log jΣj bits and can be built and
inverted in optimal linear time. In designing the
XBW-transform, the authors were inspired by the
elegant Burrows-Wheeler transform for strings
[4]. The power of xbw[T ] relies on the fact
that it allows one to transform compression and
indexing problems on labeled trees into easier
problems over strings. Namely, the following
two string-search primitives are key tools for
indexing xbw[T ]:rankc.S; i/ returns the number
of occurrences of the symbol c in the string
prefix S [1,i ], and selectc.S; j / returns the po-
sition of the j th occurrence of the symbol c in
string S . The literature offers many time-/space-
efficient solutions for these primitives that could
be used as a black box for the compressed index-
ing of xbw[T ] (see, e.g., [2, 17] and references
therein).

Theorem 3 (Ferragina et al. [8]) Consider a
tree T consisting of t nodes labeled with symbols
drawn from alphabet Σ. There exists a com-
pressed tree-indexing scheme that achieves the
following performance:

• If jΣj D O(polylog(t)), the index takes at most
tH0.S˛/ C 2t C o.t/ bits and supports ba-
sic navigational queries in constant time and
(counting) subpath queries in O.jΠj) time.

• For any alphabet Σ, the index takes less than
tHk.S˛/ C 2t C o.t log j

P
j// bits, but

label-based navigational queries and (count-
ing) subpath queries are slowed down by a
factor o..log log jΣj/3/.

Here,Hk.s/ is the kth-order empirical entropy of
string s, with Hk.s/ � Hk�1.s/ for any k > 0.
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Since Hk.S˛/ � H0.S˛/ log j
P
j, the in-

dexing of xbw[T ] takes at most as much space as
its plain representation, up to lower-order terms,
but with the additional feature of being able to
navigate and search T efficiently. This is indeed
a sort of pointerless representation of the labeled
tree T with additional search functionalities (see
[8] for details).

If sophisticated navigational queries over
labeled trees are a primary concern, and subpath
queries are not necessary, then the approach
of Barbay et al. [1, 2] should be followed.
They proposed the novel concept of succinct
index, which is different from the concept of
succinct/compressed encoding implemented
by all the above solutions. A succinct index
does not touch the data to be indexed; it just
accesses the data via basic operations offered
by the underlying abstract data type (ADT)
and requires asymptotically less space than
the information-theoretic lower bound on the
storage of the data itself. The authors reduce
the problem of indexing labeled trees to the one
of indexing ordinal trees and strings and the
problem of indexing multi-labeled trees to the
one of indexing ordinal trees and binary relations.
Then, they provide succinct indexes for strings
and binary relations. In order to present their
result, the following definitions are needed. Let
m be the total number of symbols in T , let tc
be the number of nodes labeled c in T , and let
� c be the maximum number of labels c in any
rooted path of T (called the recursivity of c).
Define � as the average recursivity of T , namely,
� D .1=m/

P

c 2
P
.tc�c/.

Theorem 4 (Barbay et al. [1]) Consider a tree
T consisting of t nodes (multi-)labeled with
possibly many symbols drawn from alphabet
Σ. Let m be the total number of symbols in
T , and assume that the underlying ADT for
T offers basic navigational queries in constant
time and retrieves the i th label of a node in
time f . There is a succinct index for T using
m.log � C o.log.jΣj�/// bits that supports for
a given node u the following operations (where
L D log log j

P
j log log log j

P
j):

• Every c-descendant or c-child of u can be
retrieved in O.L .f C log log j

P
j// time.

• The set A of c-ancestors of u can be retrieved
inO.L .f C log log j

P
j//CjAj.log log �cC

log log log j
P
j.f C log log j

P
j/// time.

More recently, He et al. [12] obtained new repre-
sentations that support a much broader collection
of operations than the ones mentioned above.

Applications

As trees are ubiquitous in many applications, this
section concentrates just on two examples that,
in their simplicity, highlight the flexibility and
power of succinct/compressed tree indexes.

The first example regards suffix trees, which
are a crucial algorithmic block of many string
processing applications – ranging from bioinfor-
matics to data mining, from data compression
to search engines. Standard implementations of
suffix trees take at least 80 bits per node. The
compressed suffix tree of a string S [1,s] consists
of three components: the tree topology, the string
depths stored into the internal suffix-tree nodes,
and the suffix pointers stored in the suffix-tree
leaves (also called suffix array of S ). The succinct
tree representation of [14] can be used to encode
the suffix-tree topology and the string depths
taking 4sCo.s/ bits (assuming w.l.o.g. that jΣj D
2). The suffix array can be compressed up to the
kth-order entropy of S via any solution surveyed
in [17]. The overall result is never worse than 80
bits per node, but can be significantly better for
highly compressible strings.

The second example refers to the XML for-
mat which is often modeled as a labeled tree.
The succinct/compressed indexes in [1, 2, 8] are
theoretical in flavor but turn out to be relevant
for practical XML processing systems. As an
example, [9] has published some encouraging
experimental results that highlight the impact of
the XBW-transform on real XML datasets. The au-
thors show that a proper adaptation of the XBW-
transform allows one to compress XML data up
to state-of-the-art XML-conscious compressors
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and to provide access to its content, navigate up
and down the XML tree structure, and search
for simple path expressions and substrings in a
few milliseconds over MBs of XML data, by
uncompressing only a tiny fraction of them at
each operation. Previous solutions took several
seconds per operation!

Open Problems

For recent results, open problems, and further
directions of research in the general area of suc-
cinct tree representation, the interested reader is
referred to [2, 11, 14, 18] and references therein.
Here, we describe two main problems, which
naturally derive from the discussion above.

Motivated by XML applications, one may like
to extend the subpath search operation to the
efficient search for all leaves of T whose labels
contain a substring ˇ and that descend from a
given subpath Π. The term “efficient” here means
in time proportional to jΠj and to the number of
retrieved occurrences, but independent as much
as possible of T ’s size in the worst case. Cur-
rently, this search operation is possible only for
the leaves which are immediate descendants of Π,
and even for this setting, the solution proposed in
[9] is not optimal.

There are two main encodings for trees which
lead to the results above: ordinal tree representa-
tion (BP, DFUDS or the representation of Geary
et al. [10]) and XBW. The former is at the base
of solutions for sophisticated navigational opera-
tions, and the latter is at the base of solutions for
sophisticated subpath searches. Is it possible to
devise one unique transform for the labeled tree
T which combines the best of the two worlds and
is still compressible?

Experimental Results

See http://mattmahoney.net/dc/text.html and at
the paper [9] for numerous experiments on XML
datasets.

Data Sets

See http://mattmahoney.net/dc/text.html and the
references in [9].

URL to Code

Paper [9] contains a list of software tools for
compression and indexing of XML data.
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Problem Definition

An n-symbol message M D hs0; s1; : : : ; sn�1i

is given, where each symbol si is an integer
in the range 0 � si < U . If the si s are
strictly increasing, then M identifies an n-subset
of f0; 1; : : : ; U � 1g.

Objective To economically encode M as a bi-
nary string over f0;1g.

Constraints

1. Short messages. The message length n may
be small relative to U .

2. Monotonic equivalence. Message M is con-
verted to a strictly increasing messageM 0 over
the alphabet U 0 � Un by taking prefix sums,
s0

i D i C
Pi

j D0 sj and U 0 D s0
n�1 C 1. The

inverse is to “take gaps,” gi D si � si�1 � 1,
with g0 D s0.

3. Combinatorial Limit. If M is monotonic
then

l
log2

�
U
n

�m
� U bits are required in

the worst case. When n � U , log2

�
U
n

�


n.log2.U=n/C log2 e/.

Key Results

Monotonic sequences can be coded in minfU;
n.log2.U=n/ C 2/g bits. Non-monotonic
sequences can be coded in minf

Pn�1
iD0.log2.1 C

si /C o.log si //; n.log2.U
0=n/C 2/g bits.

Unary and Binary Codes
The unary code represents symbol x as x 1-bits
followed by a single 0-bit. The unary code for x
is 1C x bits long; hence, the corresponding ideal
symbol probability distribution (for which this
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pattern of codeword lengths yields the minimal
message length) is given by px D 2�.1Cx/.
Unary is an infinite code, for which knowledge of
U is not required. But unless M is dominated by
small integers, unary is expensive – the represen-
tation of a message M D hs0 : : : sn�1i requires
nC

P
i si D U

0 C 1 bits.
If U � 2k for integer k, then si can be rep-

resented in k bits using the binary code. Binary
is finite, with an ideal probability distribution
given by px D 2�k . When U D 2k , the
ideal probability px D 2� log2 U D 1=U . When
2k�1 < U < 2k , then 2k � U of the codewords
can be shortened to k�1 bits, in a minimal binary
code. It is usual (but not necessary) to assign the
short codewords to 0 : : : 2k � U � 1, leaving the
codewords for 2k � U : : : U � 1 as k bits.

Elias Codes
Peter Elias described a suite of hybrids between
unary and binary in work published in 1975
[7]. This family of codes are defined recursively,
with unary being the base method. To code a
value x, the “predecessor” Elias code is used
to specify x0 D blog2.1 C x/c, followed by
an x0-bit binary code for x � .2x0

� 1/. The
second member of the Elias family is C� and is
a unary-binary code: unary for the prefix part and
then binary to indicate the value of x within the
range it specifies. The first few C� codewords
are 0, 100, 101, 11000, and so on, where
spaces are used to illustrate the split between
the components. The C� codeword for a value x
requires 1Cblog2.1C x/c bits for the unary part
and a further blog2.1Cx/c bits for the binary part.
The ideal probability distribution is thus given
by px  1=.2.1 C x/2/. After C� , the next
member of the Elias family is Cı , in which C�

is used to store x0. The first few codewords are
0, 1000, 1001, and 10100; like unary and
C� , Cı is infinite, but now the codeword for x
requires 1C2blog2.1Cx

0/cCx0 bits, where x0 D

blog2.1 C x/c. Further members of the family
can be generated, but for most practical purposes,
Cı is the last useful one. To see why, note that
jC� .x

0/j � jCı.x
0/j whenever x0 � 30, meaning

that the next Elias code is shorter than Cı only for
values x0 � 31, that is, for x � 231 � 1.

Fibonacci-Based Codes
Another infinite code arises from the Fibonacci
sequence described (for this purpose) as F0 D 1,
F1 D 2, F2 D 3, F3 D 5, F4 D 8, and
in general Fi D Fi�1 C Fi�2. The Zeckendorf
representation of a natural number is a list of
Fibonacci values that add up to it, such that no
two adjacent Fibonacci numbers are used. For
example, 9 is the sum of 1 C 8 D F0 C F4.
The Fibonacci code for x � 0 is derived from the
Zeckendorf representation of x C 1 and consists
of a 1 bit in the i th position (counting from the
left) if Fi appears in the sum and a 0 bit if not.
Because it is not possible for both Fi and FiC1

to be part of the sum, the last 2 bits must be
01; hence, appending a further 1 bit provides
a unique sentinel for the codeword. The code
for x D 0 is 11, and the next few codewords
are 011, 0011, 1011, 00011, and 10011.
Because (for large i ) Fi  �iC2=

p
5, where

� D .1 C
p
5/=2  1:62, the codeword for

x requires approximately blog�

p
5 C log�.1 C

x/
p
5c  b1:67 C 1:44 log2.1 C x/c bits and is

longer than C� only for x D 0 and x D 2. The
Fibonacci code is also as good as, or better than,
Cı between x D 1 and F18� 2 D 6;763. Higher-
order variants are also possible, with increased
minimum codeword lengths and decreased co-
efficients on the logarithmic term. Fenwick [8]
provides coverage of Fibonacci codes.

Byte-Aligned Codes
Extracting bits from bitstrings can slow down
decoding rates, especially if each bit is then tested
in a loop guard. Operations on larger units tend to
be faster. The simplest byte-aligned code is an in-
terleaved 8-bit analog of the EliasC� mechanism.
The top bit in each byte is reserved for a flag that
indicates (when 0) that this is the last byte of the
codeword and (when 1) that the codeword contin-
ues; the other 7 bits in each byte are for data. A
total of 8d.log2 x/=7e bits are used, which makes
it more effective asymptotically than the Elias
C� code or the Fibonacci code. However, the
minimum 8 bits means that byte-aligned codes
are expensive on messages dominated by small
values. A further advantage of byte codes is that
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compressed sequences can be searched, using a
search pattern converted using the same code [5].
The zero top bit in all final bytes means that false
matches can be easily eliminated.

An improvement to the simple byte-aligned
coding mechanism arises from the observation
that different values for the separating value be-
tween the stopper and continuer bytes lead to dif-
ferent trade-offs in overall codeword lengths [3].
In the .S; C /-byte-aligned code, values for S C
C D 256 are chosen, and each codeword consists
of a sequence of zero or more continuer bytes
with values greater than or equal to S , followed
by a stopper byte with a value less than S . Other
variants include methods that use bytes as the
coding units to form Huffman codes, either using
8-bit coding symbols or tagged 7-bit units [5]
and methods that partially permute the alphabet,
but avoid the need for a complete mapping [4].
Culpepper and Moffat [4] also describe a byte-
aligned coding method that creates a set of byte-
based codewords with the property that the first
byte uniquely identifies the length of the code-
word. Similarly, nibble codes can be designed as
a 4-bit analog of the byte-aligned approach, with
1 bit reserved for a stopper-continuer flag, and
3 bits used for data.

Golomb Codes
In 1966 Solomon Golomb observed that the inter-
vals between consecutive members of a random
n-subset of the items 0 : : : U�1 could be modeled
by a geometric probability distribution px D

p.1 � p/x�1, where p D n=U [10]. This proba-
bility distribution implies that in a Golomb code,
the representation for xCb should be 1 bit longer
than the representation for x when .1 � p/b 
0:5, that is, when b D log 0:5= log.1 � p/ 
.ln 2/=p  0:69U=n. Assuming a monotonic
message, each si is converted to a gap; then
gi div b is coded in unary; and finally gi mod b
is coded in minimal binary with respect to b.
Like unary, the Golomb code is infinite. If the
sequence is non-monotonic, then the values si are
coded directly using parameter b D 0:69U 0=n.
Each 1-bit that is part of a unary part spans b
elements of U , meaning that there are at most
bU=bc of them in total; and there are exactly

n 0-bits in the unary parts. The minimal binary
parts, one per symbol, take fewer than ndlog2 be

bits in total. Summing these components, and
maximizing the cost over different values of n
and U by assuming an adversary that forces
the use of the first long minimal binary code-
word whenever possible, yields a total Golomb
code length for a monotonic sequence of at most
n.log2.U=n/ C 2/ bits. The variant in which
b D 2k is used, k D blog2.U=n/c, is called a
Rice code. Note that Golomb and Rice codes are
infinite, but require that a parameter be set and
that one way of estimating the parameter is based
on knowing a value for U .

Other Static Codes
Elias codes and Golomb codes are examples
of methods specified by a set of buckets, with
symbol x coded in two parts: a bucket identifier,
followed by an offset within the bucket, the
latter usually using minimal binary. For example,
the Elias C� code employs a vector of bucket
sizes h20; 21; 22; 23; 24; : : :i. Teuhola (see Moffat
and Turpin [14]) proposed a hybrid in which a
parameter k is chosen, and the vector of bucket
sizes is given by h2k ; 2kC1; 2kC2; 2kC3; : : :i. One
way of setting the parameter k is the length in
bits of the median sequence value, so that the first
bit of each codeword approximately halves the
range of observed symbol values. Another variant
is described by Boldi and Vigna [2], using vector˝
2k�1; .2k�1/2k ; .2k�1/22k ; .2k�1/23k ; : : :

˛
to

obtain a family of codes that are analytically
and empirically well suited to power-law
probability distributions, especially (taking k in
the range 2–4) those associated with web-graph
compression. Fraenkel and Klein [9] observed
that the sequence of symbol magnitudes (i.e., the
sequence of values blog2.1 C si /c) provides a
denser range than the message itself and that it
can be effective to use a principled code for them.
For example, rather than using unary for the
prefix part, a Huffman code can be used. Moffat
and Anh [12] consider other ways in which the
prefix part of each codeword can be reduced; and
Fenwick [8] provides general coverage of other
static coding methods.
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Elias-Fano Codes
In 1974 Elias [6] presented another coding
method, noting that it was described indepen-
dently in 1971 by Robert Fano. The approach is
now known as Elias-Fano coding. For monotonic
sequence M , parameter k D blog2.U=n/c is
used to again break each codeword into quotient
and remainder, without first taking gaps, with
codewords formed relative to a sequence of
buckets each of width b D 2k . The number
of symbols in the buckets is stored in a bitstring
of dU=be < 2n unary codes. The n remainder
parts ri D si mod b are stored as a sequence
of k-bit binary codes. Each symbol contributes
k bits as a binary part and adds 1 bit to one
of the unary parts; plus there are at most
dU=be 0-bits terminating the unary parts. Based
on these relationships, the total length of an
Elias-Fano code can be shown to be at most
n.log2.U=n/C 2/ bits. Vigna [15] has deployed
Elias-Fano codes to good effect.

Packed Codes
If each n-subset of 0 : : : U � 1 is equally likely,
the Golomb code is effective in the average case;
and the Elias-Fano code is effective in the worst
case. But if the elements in the subset are clus-
tered, then it is possible to obtain smaller rep-
resentations, provided that groups of elements
themselves can be employed as part of the pro-
cess of determining the code. The word-aligned
codes of Anh and Moffat [1] fit as many binary
values into each output word as possible. For
example, in their Simple-9 method, 32-bit output
words are used, and the first 4 bits of each word
contain a selector which specifies how to decode
the next 28 bits: one 28-bit binary number, or two
14-bit binary numbers, or three 9-bit numbers,
and so on. Other variants use 64-bit words [1]. In
these codes, clusters of low si (or gi ) values can
be represented more compactly than would occur
with the Golomb code and an all-of-message b
parameter; and decoding is fast because whole
words are expanded without any need for condi-
tionals or branching.

Zukowski et al. [16] describe a different
approach, in which blocks of ´ values from M

are coded in binary using k bits each, where k is

chosen such that 2k is larger than most, but not
necessarily all, of the ´ elements in the block.
Any si ’s in the block that are larger than 2k � 1

are noted as exceptions and handled separately; a
variety of methods for coding the exceptions have
been used in different forms of the pfordelta code.
This mechanism is again fast when decoding, due
to the absence of conditional bit evaluations, and,
for typical values such as ´ D 128, also yields
effective compression. Lemire and Boytsov have
carried out detailed experimentation with packed
codes [11].

Context-Sensitive Codes
If the objective is to create the smallest repre-
sentation, rather than provide a balance between
compression effectiveness and decoding speed,
the nonsequential binary interpolative code of
Moffat and Stuiver [13] can be used. As an exam-
ple, consider message M , shown in Table 1, and
suppose that the decoder is aware that U 0 D 29,
that is, that s0

i < 29. Every item in M is greater
than or equal to lo D 0 and less than hi D 29,
and the mid-value in M , in this example s4 D 6

(it doesn’t matter which mid-value is chosen), can
be transmitted to the decoder using dlog2 29e D

5 bits. Once that middle number is pinned, the
remaining values can be coded recursively within
more precise ranges and might require fewer than
5 bits each.

In fact, there are four distinct values inM that
precede s0

4 and another five that follow it, so a
more restricted range for s0

4 can be inferred: it
must be greater than or equal to lo0 D loC 4 D 4
and less than hi0 D hi � 5 D 24. That is,
s0

4 D 6 can be minimal binary coded as the value
6 � lo0 D 2 within the range Œ0; 20/ using just 4
bits.

It remains to transmit the left part, h0; 3; 4; 5i,
against the knowledge that every value is greater
than or equal to lo D 0 and less than hi D 6,
and the right part, h16; 24; 26; 27; 28i, against
the knowledge that every value is greater than
or equal to lo D 7 and less than hi D 29.
These two sublists are processed recursively in
the order shown in the remainder of Table 1,
with the tighter ranges Œlo0; hi0/ also shown at
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Compressing Integer Sequences, Table 1
Example encodings of message M D
h0; 3; 4; 5; 6; 16; 24; 26; 27; 28i using the interpolative

code. When a minimal binary code is applied to each value
in its corresponding range, a total of 20 bits are required.
No bits are output if lo0 D hi0 � 1

i si s0

i
lo hi lo0 hi0 si � lo0 hi0 � lo0 Binary MinBin

4 0 6 0 29 4 24 2 20 00010 0010

1 2 3 0 6 1 4 2 3 10 11

0 0 0 0 3 0 3 0 3 00 0

2 0 4 4 6 4 5 0 1 -- --

3 0 5 5 6 5 6 0 1 -- --

7 1 26 7 29 9 27 17 18 10001 11111

5 9 16 7 26 7 25 9 18 01001 1001

6 7 24 17 26 17 26 7 9 0111 1110

8 1 27 27 29 27 28 0 1 -- --

9 0 28 28 29 28 29 0 1 -- --

each step. One key feature of the interpolative
code is that the when the range is just one,
codewords of length zero are used. Four of
the symbols in M benefit in this way. The
interpolative code is particularly effective when
the subset contains runs of consecutive items,
or localized regions where there is a high
density.

The final column of Table 1 uses minimal
binary for each value within its bounded range.
A refinement is to use a centered minimal binary
code, so that the short codewords are assigned
in the middle of the range rather than at the
beginning, recognizing that the midpoint of a set
is more likely to be near the middle of the range
spanned by the set than it is to be near the ends
of the range. Adding this enhancement tends to
be beneficial. But improvement is not guaran-
teed, and on M it adds 1 bit to the compressed
representation compared to what is shown in
Table 1.

Applications

Messages in this form are often the output of
a modeling step in a data compression system.
Other examples include recording the hyperlinks
in the graph representation of the World Wide
Web and storing inverted indexes for large doc-
ument collections.
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Problem Definition

Recall that a simple digraph T is a tournament if
for every two vertices u; v 2 V.T /, exactly one

of the arcs .u; v/ and .v; u/ exists in T . If we
relax this condition by allowing both these arcs
to exist at the same time, then we obtain the def-
inition of a semi-complete digraph. We say that a
digraph T contains a digraph H as a topological
minor if one can map vertices of H to different
vertices of T , and arcs of H to directed paths
connecting respective images of the endpoints
that are internally vertex disjoint. By relaxing
vertex disjointness to arc disjointness, we obtain
the definition of an immersion. (For simplicity,
we neglect here the difference between weak
immersions and strong immersions, and we work
with weak immersions only.) Finally, we say that
T contains H as a minor if vertices of H can
be mapped to vertex disjoint strongly connected
subgraphs of T in such a manner that for every
arc .u; v/ of H , there exists a corresponding
arc of T going from a vertex belonging to the
image of u to a vertex belonging to the image
of v.

The topological minor, immersion, and mi-
nor relations form fundamental containment or-
derings on the class of digraphs. Mirroring the
achievements of the graph minors program of
Robertson and Seymour, it is natural to ask what
is the complexity of testing these relations when
the pattern graph H is assumed to be small. For
general digraphs, even very basic problems of
this nature are NP-complete [5]; however, the
structure of semi-complete digraphs allow us to
design efficient algorithms.

On semi-complete digraphs, the considered
containment relations are tightly connected to
digraph parameters cutwidth and pathwidth. For
a digraph T and an ordering .v1; v2; : : : ; vn/

of V.T /, by width of this ordering, we mean
the maximum over 1 � t � n � 1 of the
number of arcs going from fv1; v2; : : : ; vtg to
fvtC1; vtC2; : : : ; vng in T . The cutwidth of a
digraph T , denoted by ctw.T /, is the minimum
width of an ordering of V.T /. A path decom-
position of a digraph T is a sequence P D

.W1;W2; : : : ; Wr / of subsets of vertices, called
bags, such that (i)

Sr
iD1Wi D V.T /, (ii) Wj �

Wi \ Wk for all 1 � i < j < k � r , and
(iii) whenever .u; v/ is an edge of T , then u
and v appear together in some bag of P or all
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the bags in which u appears are placed after all
the bags in which v appears. The width of P is
equal to max1�i�r jWi j � 1. The pathwidth of T ,
denoted by pw.T /, is the minimum width of a
path decomposition of T .

It appears that if a semi-complete digraph
T excludes some digraph H as an immersion,
then its cutwidth is bounded by a constant cH

depending onH only. Similarly, if T excludesH
as a minor or as a topological minor, then its path-
width is bounded by a constant pH depending
on H only. These Erdős-Pósa-style results were
proven by Chudnovsky et al. [2] and Fradkin
and Seymour [7], respectively. Based on this
understanding of the links between containment
relations and width parameters, it has been shown
that immersion and minor relations are well-
quasi-orderings of the class of semi-complete
digraphs [1, 6].

The aforementioned theorems give also raise
to natural algorithms for testing the containment
relations. We try to approximate the appropriate
width measure: If we obtain a guarantee that it
is larger than the respective constant cH or pH ,
then we can conclude that H is contained in T
for sure. Otherwise, we can construct a decom-
position of T of small width on which a dynamic
programming algorithm can be employed. In fact,
the proofs of Chudnovsky et al. [2] and Frad-
kin and Seymour [7] can be turned into (some)
approximation algorithms for cutwidth and path-
width on semi-complete digraphs. Therefore, it is
natural to look for more efficient such algorithms,
both in terms of the running time and the approx-
imation ratio. The efficiency of an approximation
subroutine is, namely, the crucial ingredient of
the overall running time for testing containment
relations.

Key Results

As a by-product of their proof, Chudnovsky
et al. [2] obtained an algorithm that, given
an n-vertex semi-complete digraph T and an
integer k, either finds an ordering of V.T / of
width O.k2/ or concludes that ctw.T / > k by
finding an appropriate combinatorial obstacle

embedded in T . The running time is O.n3/.
Similarly, a by-product of the proof of Fradkin
and Seymour [7] is an algorithm that, for the
same input, either finds a path decomposition of
T of width O.k2/ or concludes that pw.T / > k,
again certifying this by providing an appropriate
obstacle. Unfortunately, here the running time is
O.nO.k//; in other words, the exponent of the
polynomial grows with k.

The proofs of the Erdős-Pósa statements pro-
ceed as follows: One shows that if the found
combinatorial obstacle is large enough, i.e., it
certifies that ctw.T / > k or pw.T / > k for
large enough k, then already inside this obstacle
one can find an embedding of every digraph H
of a fixed size. Of course, the final values of
constants cH and pH depend on how efficiently
we can extract a model of H from an obstacle
and, more precisely, how large k must be in terms
of jH j in order to guarantee that an embedding of
H can be found. (We denote jH j D jV.H/j C
jE.H/j.) Unfortunately, in the proofs of Chud-
novsky et al. [2] and Fradkin and Seymour [7],
this dependency is exponential (even multiple ex-
ponential in the case of pH ) and so is the overall
dependency of constants cH and pH on jH j.
Using the framework presented before, one can
obtain an f .jH j/ � n3-time algorithm for testing
whether H can be immersed into an n-vertex
semi-complete digraph T , as well as similar tests
for the (topological) minor relations with running
time ng.jH j/. Here, f and g are some multiple-
exponential functions.

The running time of the immersion testing al-
gorithm is fixed-parameter tractable (FPT), while
the running time for (topological) minor testing is
only XP. It is natural to ask for an FPT algorithm
also for the latter problem. Fomin and the current
author [3,4,8] approached the issue from a differ-
ent angle, which resulted in reproving the previ-
ous results with better constants, refined running
times, and also in giving FPT algorithms for all
the containment tests. Notably, the framework
seems to be simpler and more uniform compared
to the previous work. We now state the results
of [3, 4, 8] formally, since they constitute the best
known so far algorithms for topological problems
in semi-complete digraphs.
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Theorem 1 ([8]) There exists an algorithm that,
given an n-vertex semi-complete digraph T , runs
in time O.n2/ and returns an ordering of V.T / of
width at most O.ctw.T /2/.

Theorem 2 ([8, 9]) There exists an algorithm
that, given an n-vertex semi-complete digraph T
and an integer k, runs in time O.kn2/ and either
returns a path decomposition of V.T / of width at
most 6k or correctly concludes that pw.T / > k.

Theorem 3 ([4, 8, 9]) There exist algorithms
that, given an n-vertex semi-complete digraph T
and an integer k, determine whether:

• ctw.T / � k in time 2O.
p

k log k/ � n2.
• pw.T / � k in time 2O.k log k/ � n2.

Theorem 4 ([8]) There exist algorithms that,
given a digraph H and an n-vertex semi-
complete digraph T , determine whether:

• H can be immersed in T in time 2O.jH j2 log jH j/�

n2.
• H is a topological minor of T in time
2O.jH j log jH j/ � n2.

• H is a minor of T in time 2O.jH j log jH j/ � n2.

Thus, Theorems 1 and 2 provide approxima-
tion algorithms for cutwidth and pathwidth, The-
orem 3 provides FPT algorithms for computing
the exact values of these parameters, and The-
orem 4 utilizes the approximation algorithms to
give efficient algorithms for containment testing.
We remark that the exact algorithm for cutwidth
(the first bullet of Theorem 3) is a combination of
the results of [8] (which gives a 2O.k/ � n2-time

algorithm) and of [4] (which gives a 2O.
p

k log k/ �

nO.1/-time algorithm). A full exposition of this
algorithm can be found in the PhD thesis of the
current author [9], which contains a compilation
of [3, 4, 8]. Moreover, for Theorem 2 work [8]
claims only a 7-approximation, which has been
consequently improved to a 6-approximation in
the aforementioned PhD thesis [9]. Finally, it
also follows that in the Erdős-Pósa results, one
can take cH D O.jH j2/ and pH D O.jH j/;

this claim is not mentioned explicitly in [8], but
follows easily from the results proven there.

To conclude, let us shortly deliberate on the
approach that led to these results. The key to
the understanding is the work [8]. The main
observation there is that a large cluster of ver-
tices with very similar outdegrees is already an
obstacle for admitting a path decomposition of
small width. More precisely, if one finds 4k C 2
vertices whose outdegrees pairwise differ by at
most k (a so-called .4k C 2; k/-degree tangle),
then this certifies that pw.T / > k; see Lemma 46
of [9]. As it always holds that pw.T / � 2ctw.T /,
this conclusion also implies that ctw.T / > k=2.
Therefore, in semi-complete digraphs of small
pathwidth or cutwidth, the outdegrees of vertices
must be spread evenly; there is no “knot” with a
larger density of vertices around some value of
the outdegree. If we then order the vertices of
T by their outdegrees, then this ordering should
crudely resemble an ordering with the optimal
width, as well as the order in which the ver-
tices appear on an optimal path decomposition
of T . Indeed, it can be shown that any order-
ing of V.T / w.r.t. nondecreasing outdegrees has
width at most O.ctw.T /2/ [8]. Hence, the al-
gorithm of Theorem 1 is, in fact, trivial: We
just sort the vertices by their outdegrees. The
pathwidth approximation algorithm (Theorem 2)
is obtained by performing a left-to-right scan
through the outdegree ordering that constructs
a path decomposition in a greedy manner. For
the exact algorithms (Theorem 3), in the scan
we maintain a dynamic programming table of
size exponential in k, whose entries correspond
to possible endings of partial decompositions for
prefixes of the ordering. The key to improving
the running time for cutwidth to subexponential
in terms of k (shown in [4]) is relating the
states of the dynamic programming algorithm to
partition numbers, a sequence whose subexpo-
nential asymptotics is well understood. Finally,
the obstacles yielded by the approximation al-
gorithms of Theorems 1 and 2 are more useful
for finding embeddings of small digraphs H

than the ones used in the previous works. This
leads to a better dependence on jH j of constants
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cH ; pH in the Erdős-Pósa results, as well as
of the running times of the containment tests
(Theorem 4).
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Problem Definition

This problem concerns the construction of pure
Nash equilibria (PNE) in a special class of atomic
congestion games, known as the Parallel Links
Game (PLG). The purpose of this note is to gather
recent advances in the existence and tractability
of PNE in PLG.

THE PURE PARALLEL LINKS GAME. Let
N 	 Œn
 ( 8k 2 N; Œk
 	 f1; 2; : : : ; kg.) be a set
of (selfish) players, each of them willing to have
her good served by a unique shared resource
(link) of a system. Let E D Œm
 be the set of all
these links. For each link e 2 E, and each player
i 2 N ,let Di;e.�/ W R�0 7! R�0 be the charging
mechanism according to which link e charges
player i for using it. Each player i 2 Œn
 comes
with a service requirement (e.g., traffic demand,
or processing time) W Œi; e
 > 0, if she is to be
served by link e 2 E. A service requirement
W Œi; e
 is allowed to get the value 1, to denote
the fact that player i would never want to be
assigned to link e. The charging mechanisms
are functions of each link’s cumulative
congestion.

Any element � 2 E is called a pure strat-
egy for a player. Then, this player is assumed
to assign her own good to link e. A collection
of pure strategies for all the players is called
a pure strategies profile, or a configuration of
the players, or a state of the game.

The individual cost of player i wrt the profile
¢ is: ICi .�/ D Di;
i

.
P

j 2Œn�W
j D
i
W Œj; �j 
/.

Thus, the Pure Parallel Links Game (PLG)
is the game in strategic form defined as
� D hN; .˙i D E/i2N ; .ICi /i2N i, whose ac-
ceptable solutions are only PNE. Clearly, an arbi-
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trary instance of PLG can be described by the tu-
ple hN;E; .W Œi; e
/i2N;e2E ; .Di;e.�//i2N;e2E i.

DEALING WITH SELFISH BEHAVIOR. The
dominant solution concept for finite games in
strategic form, is the Nash Equlibrium [14]. The
definition of pure Nash Equilibria for PLG is the
following:

Definition 1 (Pure Nash Equilibrium) For any
instance hN;E;.W Œi; e
/i2N;e2E ;.Di;e.�//i2N;e2Ei

of PLG, a pure strategies profile � 2 En is a Pure
Nash Equilibrium (PNE in short), iff: 8i 2

N;8e 2 E;ICi .�/ D Di;
i

�P
j 2Œn�W
j D
i

W Œj; �i 

�
� Di;e

�
W Œi; e
 C

P
j 2Œn�nfigW
j De

W Œj; e

�

.

A refinement of PNE are the k- robust PNE, for
n � k � 1 [9]. These are pure profiles for which
no subset of at most k players may concurrently
change their strategies in such a way that the
worst possible individual cost among the movers
is strictly decreased.

QUALITY OF PURE EQUILIBRIA. In order to
determine the quality of a PNE, a social cost
function that measures it must be specified.
The typical assumption in the literature of
PLG, is that the social cost function is the
worst individual cost paid by the players:
8� 2 En; SC.�/ D maxi2N fICi .�/g and 8p 2
.�m/

n; SC.p/ D
P


2En.
Q

i2N pi .�i // �

maxi2N fICi .�/g. Observe that, for mixed
profiles, the social cost is the expectation of
the maximum individual cost among the players.

The measure of the quality of an instance
of PLG wrt PNE, is measured by the Pure
Price of Anarchy (PPoA in short) [12]:
PPoA D max f.SC.�//=OPT W � 2 En is PNEg
where OPT 	 min
2EnfSC.�/g.

DISCRETE DYNAMICS. Crucial concepts of
strategic games are the best and better responses.
Given a configuration � 2 En, an improvement
step, or selfish step, or better response of
player i 2 N is the choice by i of a pure
strategy ˛ 2 E n f�ig, so that player i would
have a positive gain by this unilateral change
(i.?e., provided that the other players maintain the

same strategies). That is, ICi .�/ > ICi .� ˚i ˛/

where, �˚i ˛ 	 .�1; : : : ; �i�1; ˛; �iC1; : : : ; �n/.
A best response, or greedy selfish step of player
i, is any change from the current link ¢ i to
an element ˛� 2 arg maxa2E fICi .� ˚i ˛/g.
An improvement path (aka a sequence of
selfish steps [6], or an elementary step
system [3]) is a sequence of configurations
� D h�.1/; : : : ; �.k/i such that

82 � r � k; 9ir 2 N; 9˛r 2 EW

Œ�.r/ D �.r � 1/˚ir ˛r 
 ^ ŒICir .�.r//

< ICir .�.r � 1//
 :

A game has the Finite Improvement Property
(FIP) iff any improvement path has finite length.
A game has the Finite Best Response Property
(FBRP) iff any improvement path, each step of
whose is a best response of some player, has finite
length.

An alternative trend is to, rather than consider
sequential improvement paths, let the players
conduct selfish improvement steps concurrently.
Nevertheless, the selfish decisions are no longer
deterministic, but rather distributions over the
links, in order to have some notion of a priori
Nash property that justifies these moves. The
selfish players try to minimize their expected
individual costs this time. Rounds of concurrent
moves occur until a posteriori Nash Property
is achieved. This is called a selfish rerouting
policy [4].

Subclasses of PLG
[PLG1] Monotone PLG: The charging mecha-
nism of each pair of a link and a player, is a non–
decreasing function of the resource’s cumulative
congestion.

[PLG2] Resource Specific Weights PLG
(RSPLG): Each player may have a different
service demand from every link.

[PLG3] Player Specific Delays PLG
(PSPLG): Each link may have a different
charging mechanism for each player. Some
special cases of PSPLG are the following:
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[PLG3:1] Linear Delays PSPLG: Every link
has a (player specific) affine charging mecha-
nism: 8i 2 N;8e 2 E;Di;e.x/ D ai;ex C bi;e

for some ai;e > 0 and bi;e � 0.
[PLG3:1:1 ] Related Delays PSPLG: Every

link has a (player specific) non–uniformly related
charging mechanism: 8i 2 N;8e 2 E;W Œi; e

D wi andDi;e.x/ D ai;ex for some ai;e > 0.

[PLG4] Resource Uniform Weights PLG
(RUPLG): Each player has a unique ser-
vice demand from all the resources. Ie,
8i 2 N;8e 2 E;W Œi; e
 D we > 0. A special
case of RUPLG is:

[PLG4:1] Unweighted PLG: All the players
have identical demands from all the links: 8i 2
N;8e 2 E;W Œi; e
 D 1.

[PLG5] Player Uniform Delays PLG (PU-
PLG): Each resource adopts a unique charging
mechanism, for all the players. That is, 8i 2
N;8e 2 E;Di;e.x/ D de.x/.

[PLG5:1] Unrelated Parallel Machines, or
Load Balancing PLG (LBPLG): The links be-
have as parallel machines. That is, they charge
each of the players for the cumulative load as-
signed to their hosts. One may think (wlog) that
all the machines have as charging mechanisms
the identity function. That is, 8i 2 N;8e 2

E;Di;e.x/ D x.
[PLG5:1:1] Uniformly Related Machines

LBPLG: Each player has the same demand
at every link, and each link serves players at
a fixed rate. That is: 8i 2 N;8e 2 E;W Œi; e
 D
wi and Di;e.x/ D

x
se

. Equivalently, service
demands proportional to the capacities of the
machines are allowed, but the identity function
is required as the charging mechanism: 8i 2
N;8e 2 E;W Œi; e
 D wi

se
andDi;e.x/ D x.

[PLG5:1:1:1] Identical Machines LBPLG:
Each player has the same demand at every
link, and all the delay mechanisms are the
identity function: 8i 2 N;8e 2 E;W Œi; e
 D
wi andDi;e.x/ D x.

[PLG5:1:2] Restricted Assignment LBPLG:
Each traffic demand is either of unit or
infinite size. The machines are identical.
Ie, 8i 2 N;8e 2 E;W Œi; e
 2 f1;1g and
Di;e.x/ D x.

Algorithmic Questions Concerning PLG
The following algorithmic questions are consid-
ered:

Problem 1 (PNEExistsInPLG.E;N;W;D/)
INPUT: An instance hN;E; .W Œi; e
/i2N;e2E ;

.Di;e.�//i2N;e2E i of PLG
OUTPUT: Is there a configuration � 2 En of the
players to the links, which is a PNE?

Problem 2 (PNEConstructionInPLG.E;N;W;D/)
INPUT: An instance hN;E; .W Œi; e
/i2N;e2E ;

.Di;e.�//i2N;e2E i of PLG
OUTPUT: An assignment � 2 En of the players
to the links, which is a PNE.

Problem 3 (BestPNEInPLG.E;N;W;D/)
INPUT: An instance hN;E; .W Œi; e
/i2N;e2E ;

.Di;e.�//i2N;e2E i of PLG. A social cost function
SC W .R�0/

m 7! R�0 that characterizes the
quality of any configuration � 2 EN .
OUTPUT: An assignment � 2 En of the players
to the links, which is a PNE and minimizes the
value of the social cost, compared to other PNE
of PLG.

Problem 4 (WorstPNEInPLG.E;N;W;D/)
INPUT: An instance hN;E; .W Œi; e
/i2N;e2E ;

.Di;e.�//i2N;e2E i of PLG. A social cost function
SC W .R�0/

m 7! R�0 that characterizes the
quality of any configuration � 2 EN .
OUTPUT: An assignment � 2 En of the players
to the links, which is a PNE and maximizes the
value of the social cost, compared to other PNE
of PLG.

Problem 5 (DynamicsConvergeInPLG.E;N;
W;D/)
INPUT: An instance hN;E; .W Œi; e
/i2N;e2E ;

.Di;e.�//i2N;e2E i of PLG
OUTPUT: Does FIP (or FBRP) hold? How long
does it take then to reach a PNE?

Problem 6 (ReroutingConvergeInPLG.E;N;
W;D/)
INPUT: An instance hN;E; .W Œi; e
/i2N;e2E ;

.Di;e.�//i2N;e2E i of PLG
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OUTPUT: Compute (if any) a selfish rerouting
policy that converges to a PNE.

Status of Problem 1
Player uniform, unweighted atomic congestion
games always possess a PNE [15], with no as-
sumption on monotonicity of the charging mech-
anisms. Thus, Problem 1 is already answered
for all unweighted PUPLG. Nevertheless, this is
not necessarily the case for weighted versions of
PLG:

Theorem 1 ([13]) There is an instance of (mono-
tone) PSPLG with only three players and three
strategies per player, possessing no PNE. On the
other hand, any unweighted instance of monotone
PSPLG possesses at least one PNE.

Similar (positive) results were given for LBPLG.
The key observation that lead to these results,
is the fact that the lexicographically minimum
vector of machine loads is always a PNE of the
game.

Theorem 2 There is always a PNE for
any instance of Uniformly Related LB-
PLG [7], and actually for any instance of
LBPLG [3]. Indeed, there is a k�robust
PNE for any instance of LBPLG, and any
1 � k � n [9].

Status of Problem 2, 5 and 6
Milchtaich [13] gave a constructive proof of
existence for PNE in unweighted, monotone
PSPLG, and thus implies a path of length at
most n that leads to a PNE. Although this
is a very efficient construction of PNE, it is
not necessarily an improvement path, when
all players are considered to coexist all the
time, and therefore there is no justification for
the adoption of such a path by the players.
Milchtaich [13] proved that from an arbitrary
initial configuration and allowing only best reply
defections, there is a best reply improvement
path of length at most m �

�
nC1

2

�
. Finally, [11]

proved for unweighted, Related PSPLG that it
possesses FIP. Nevertheless, the convergence
time is poor.

For LBPLG, the implicit connection of PNE
construction to classical scheduling problems,
has lead to quite interesting results.

Theorem 3 ([7]) The LPT algorithm of Graham,
yields a PNE for the case of Uniformly Related
LBPLG, in time O.m logm/.

The drawback of the LPT algorithm is that it is
centralized and not selfishly motivated. An alter-
native approach, called Nashification, is to start
from an arbitrary initial configuration � 2 En

and then try to construct a PNE of at most
the same maximum individual cost among the
players.

Theorem 4 ([6]) There is an O.nm2/ time
Nashification algorithm for any instance of
Uniformly Related PLG.

An alternative style of Nashification, is to let the
players follow an arbitrary improvement path.
Nevertheless, it is not always the case that this
leads to a polynomial time construction of a PNE,
as the following theorem states:

Theorem 5 For Identical Machines LBPLG:

• There exist best response improvement paths

of length ˝
�

max
n
2

p
n;
�

n
m2

�mo�
[3,6].

• Any best response improvement path is of
length O.2n/ [6].

• Any best response improvement path, which
gives priority to players of maximum weight
among those willing to defect in each improve-
ment step, is of length at most n [3].

• If all the service demands are integers, then
any improvement path which gives priority to
unilateral improvement steps, and otherwise
allows only selfish 2-flips (ie, swapping
of hosting machines between two goods)
converges to a 2-robust PNE in at most
1
2
.
P

i2N wi /
2 steps [9].

The following result concerns selfish rerouting
policies:

Theorem 6 ([4])

• For unweighted Identical Machines LBPLG,
a simple policy (BALANCE) forcing all the
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players of overloaded links to migrate to a new
(random) link with probability proportional
to the load of the link, converges to a PNE
in O.log lognC logm/ rounds of concurrent
moves. The same convergence time holds also
for a simple Nash Rerouting Policy, in which
each mover actually has an incentive to move.

• For unweighted Uniformly Related LBPLG,
BALANCE has the same convergence time, but
the Nash Rerouting Policy may converge in
˝
�p
n
�

rounds.

Finally, a generic result of [5] is mentioned, that
computes a PNE for arbitrary unweighted, player
uniform symmetric network congestion games
in polynomial time, by a nice exploitation of
Rosenthal’s potential and the solution of a proper
minimum cost flow problem. Therefore, for PLG
the following result is implied:

Theorem 7 ([5]) For unweighted, monotone PU-
PLG, a PNE can be constructed in polynomial
time.

Of course, this result provides no answer, e.g.,
for Restricted Assignment LBPLG, for which it
is still not known how to efficiently compute
PNE.

Status of Problem 3 and 4
The proposed LPT algorithm of [7] for
constructing PNE in Uniformly Related LBPLG,
actually provides a solution which is at most
1:52 < PPoA.LPT / < 1:67 times worse than
the optimum PNE (which is indeed the allocation
of the goods to the links that minimizes the
make-span). The construction of the optimum,
as well as the worst PNE are hard problems,
which nevertheless admits a PTAS (in some
cases):

Theorem 8 For LBPLG with a social cost func-
tion as defined in the Quality of Pure Equilibria
paragraph:

• For Identical Machines, constructing the opti-
mum or the worst PNE is NP�hard [7].

• For Uniformly Related Machines, there is
a PTAS for the optimum PNE [6].

• For Uniformly Related Machines, it holds
that PPoA D �

�
min

˚
.logm/=.log logm/;

log.smax/=.smin/
��

[2].
• For the Restricted Assignments, PPoA D

˝..logm/=.log logm// [10].
• For a generalization of the Restricted

Assignments, where the players have goods
of any positive, otherwise infinite service
demands from the links (and not only elements
of f1;1g), it holds that m � 1 � PPoA < m
[10].

It is finally mentioned that a recent result [1] for
unweighted, single commodity network conges-
tion games with linear delays, is translated to the
following result for PLG:

Theorem 9 ([1]) For unweighted PUPLG with
linear charging mechanisms for the links, the
worst case PNE may be a factor of PPoA D 5=2
away from the optimum solution, wrt the social
cost defined in the Quality of Pure Equilibria
paragraph.

Key Results

None

Applications

Congestion games in general have attracted much
attention from many disciplines, partly because
they capture a large class of routing and resource
allocation scenarios.

PLG in particular, is the most elementary
(non–trivial) atomic congestion game among
a large number of players. Despite its simplicity,
it was proved ([8] that it is asymptotically the
worst case instance wrt the maximum individual
cost measure, for a large class atomic congestion
games involving the so called layered networks.
Therefore, PLG is considered an excellent
starting point for studying congestion games
in large scale networks.

The importance of seeking for PNE, rather
than arbitrary (mixed in general) NE, is quite
obvious in sciences like the economics, ecology,
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and biology. It is also important for computer
scientists, since it enforces deterministic costs to
the players, and both the players and the network
designer may feel safer in this case about what
they will actually have to pay.

The question whether the Nash Dynamics con-
verge to a PNE in a reasonable amount of time, is
also quite important, since (in case of a positive
answer) it justifies the selfish, decentralized, local
dynamics that appear in large scale communica-
tions systems. Additionally, the selfish rerouting
schemes are of great importance, since this is
what should actually be expected from selfish,
decentralized computing environments.

Open Problems

Open Question 1 Determine the (in)existence of
PNE for all the instances of PLG that do not
belong in LBPLG, or in monotone PSPLG.

Open Question 2 Determine the (in)existence of
k�robust PNE for all the instances of PLG that
do not belong in LBPLG.

Open Question 3 Is there a polynomial time
algorithm for constructing k�robust PNE, even
for the Identical Machines LBPLG and k � 1

being a constant?

Open Question 4 Do the improvement paths of
instances of PLG other than PSPLG and LBPLG
converge to a PNE?

Open Question 5 Are there selfish rerouting
policies of instances of PLG other than Identical
Machines LBPLG converge to a PNE? How long
much time would they need, in case of a positive
answer?
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Problem Definition

Concurrency, Synchronization
and Resource Allocation
A concurrent system is a collection of proces-
sors that communicate by reading and writing
from a shared memory. A distributed system is
a collection of processors that communicate by
sending messages over a communication net-
work. Such systems are used for various reasons:
to allow a large number of processors to solve
a problem together much faster than any proces-
sor can do alone, to allow the distribution of data
in several locations, to allow different processors
to share resources such as data items, printers or
discs, or simply to enable users to send electronic
mail.

A process corresponds to a given computation.
That is, given some program, its execution is
a process. Sometimes, it is convenient to refer

to the program code itself as a process. A pro-
cess runs on a processor, which is the physical
hardware. Several processes can run on the same
processor although in such a case only one of
them may be active at any given time. Real
concurrency is achieved when several processes
are running simultaneously on several processors.

Processes in a concurrent system often need
to synchronize their actions. Synchronization be-
tween processes is classified as either cooperation
or contention. A typical example for cooperation
is the case in which there are two sets of pro-
cesses, called the producers and the consumers,
where the producers produce data items which
the consumers then consume.

Contention arises when several processes
compete for exclusive use of shared resources,
such as data items, files, discs, printers, etc.
For example, the integrity of the data may be
destroyed if two processes update a common
file at the same time, and as a result, deposits and
withdrawals could be lost, confirmed reservations
might have disappeared, etc. In such cases it is
sometimes essential to allow at most one process
to use a given resource at any given time.

Resource allocation is about interactions
between processes that involve contention. The
problem is, how to resolve conflicts resulting
when several processes are trying to use shared
resources. Put another way, how to allocate
shared resources to competing processes.
A special case of a general resource allocation
problem is the mutual exclusion problem where
only a single resource is available.

The Mutual Exclusion Problem
The mutual exclusion problem, which was first
introduced by Edsger W. Dijkstra in 1965, is the
guarantee of mutually exclusive access to a single
shared resource when there are several competing
processes [6]. The problem arises in operating
systems, database systems, parallel supercomput-
ers, and computer networks, where it is neces-
sary to resolve conflicts resulting when several
processes are trying to use shared resources. The
problem is of great significance, since it lies at
the heart of many interprocess synchronization
problems.
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The problem is formally defined as follows: it
is assumed that each process is executing a se-
quence of instructions in an infinite loop. The
instructions are divided into four continuous sec-
tions of code: the remainder, entry, critical sec-
tion and exit. Thus, the structure of a mutual
exclusion solution looks as follows:

loop forever
remainder code;
entry code;
critical section;
exit code

end loop

A process starts by executing the remainder code.
At some point the process might need to execute
some code in its critical section. In order to access
its critical section a process has to go through
an entry code which guarantees that while it is
executing its critical section, no other process is
allowed to execute its critical section. In addition,
once a process finishes its critical section, the
process executes its exit code in which it notifies
other processes that it is no longer in its critical
section. After executing the exit code the process
returns to the remainder.

The Mutual exclusion problem is to write the
code for the entry code and the exit code in such
a way that the following two basic requirements
are satisfied.
Mutual exclusion: No two processes are in their
critical sections at the same time.
Deadlock-freedom: If a process is trying to enter
its critical section, then some process, not neces-
sarily the same one, eventually enters its critical
section.

The deadlock-freedom property guarantees
that the system as a whole can always continue to
make progress. However deadlock-freedom may
still allow “starvation” of individual processes.
That is, a process that is trying to enter its critical
section, may never get to enter its critical section,
and wait forever in its entry code. A stronger
requirement, which does not allow starvation, is
defined as follows.
Starvation-freedom: If a process is trying to
enter its critical section, then this process must
eventually enter its critical section.

Although starvation-freedom is strictly
stronger than deadlock-freedom, it still allows
processes to execute their critical sections
arbitrarily many times before some trying process
can execute its critical section. Such a behavior is
prevented by the following fairness requirement.
First-in-first-out (FIFO): No beginning process
can enter its critical section before a process that
is already waiting for its turn to enter its critical
section.

The first two properties, mutual exclusion and
deadlock freedom, were required in the original
statement of the problem by Dijkstra. They are
the minimal requirements that one might want
to impose. In solving the problem, it is assumed
that once a process starts executing its critical
section the process always finishes it regardless
of the activity of the other processes. Of all
the problems in interprocess synchronization, the
mutual exclusion problem is the one studied most
extensively. This is a deceptive problem, and at
first glance it seems very simple to solve.

Key Results

Numerous solutions for the problem have been
proposed since it was first introduced by Edsger
W. Dijkstra in 1965 [6]. Because of its impor-
tance and as a result of new hardware and soft-
ware developments, new solutions to the problem
are still being designed. Before the results are
discussed, few models for interprocess commu-
nication are mentioned.

Atomic Operations
Most concurrent solutions to the problem
assumes an architecture in which n processes
communicate asynchronously via a shared
objects. All architectures support atomic
registers, which are shared objects that support
atomic reads and writes operations. A weaker
notion than an atomic register, called a safe
register, is also considered in the literature. In
a safe register, a read not concurrent with any
writes must obtain the correct value, however,
a read that is concurrent with some write,
may return an arbitrary value. Most modern
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architectures support also some form of atomicity
which is stronger than simple reads and writes.
Common atomic operations have special names.
Few examples are,

• Test-and-set: takes a shared registers r and
a value val. The value val is assigned to r, and
the old value of r is returned.

• Swap: takes a shared registers r and a local
register `, and atomically exchange their val-
ues.

• Fetch-and-increment: takes a register r. The
value of r is incremented by 1, and the old
value of r is returned.

• Compare-and-swap: takes a register r, and two
values: new and old. If the current value of the
register r is equal to old, then the value of r
is set to new and the value true is returned;
otherwise r is left unchanged and the value
false is returned.

Modern operating systems (such as Unix
and Windows) implement synchronization
mechanisms, such as semaphores, that simplify
the implementation of mutual exclusion locks
and hence the design of concurrent applications.
Also, modern programming languages (such as
Modula and Java) implement the monitor concept
which is a program module that is used to ensure
exclusive access to resources.

Algorithms and Lower Bounds
There are hundreds of beautiful algorithms for
solving the problem some of which are also very
efficient. Only few are mentioned below. First
algorithms that use only atomic registers, or even
safe registers, are discussed.

The Bakery Algorithm. The Bakery algorithm
is one of the most known and elegant mutual
exclusion algorithms using only safe registers [9].
The algorithm satisfies the FIFO requirement,
however it uses unbounded size registers. A mod-
ified version, called the Black-White Bakery al-
gorithm, satisfies FIFO and uses bounded number
of bounded size atomic registers [14].

Lower bounds. A space lower bound for solv-
ing mutual exclusion using only atomic registers

is that: any deadlock-free mutual exclusion algo-
rithm for n processes must use at least n shared
registers [5]. It was also shown in [5] that this
bound is tight. A time lower bound for any mutual
exclusion algorithm using atomic registers is that:
there is no a priori bound on the number of
steps taken by a process in its entry code until
it enters its critical section (counting steps only
when no other process is in its critical section
or exit code) [2]. Many other interesting lower
bounds exist for solving mutual exclusion.

A Fast Algorithm. A fast mutual exclusion
algorithm, is an algorithm in which in the ab-
sence of contention only a constant number of
shared memory accesses to the shared registers
are needed in order to enter and exit a critical
section. In [10], a fast algorithm using atomic
registers is described, however, in the presence
of contention, the winning process may have to
check the status of all other n processes before it
is allowed to enter its critical section. A natural
question to ask is whether this algorithm can be
improved for the case where there is contention.

Adaptive Algorithms. Since the other contend-
ing processes are waiting for the winner, it is
particularly important to speed their entry to the
critical section, by the design of an adaptive
mutual exclusion algorithm in which the time
complexity is independent of the total number
of processes and is governed only by the current
degree of contention. Several (rather complex)
adaptive algorithms using atomic registers are
known [1, 3, 14]. (Notice that, the time lower
bound mention earlier implies that no adaptive
algorithm using only atomic registers exists when
time is measured by counting all steps.)

Local-spinning Algorithms. Many algorithms
include busy-waiting loops. The idea is that in
order to wait, a process spins on a flag register,
until some other process terminates the spin with
a single write operation. Unfortunately, under
contention, such spinning may generate lots of
traffic on the interconnection network between
the process and the memory. An algorithm sat-
isfies local spinning if the only type of spin-
ning required is local spinning. Local Spinning
is the situation where a process is spinning on
locally-accessible registers. Shared registers may
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be locally-accessible as a result of either coherent
caching or when using distributed shared memory
where shared memory is physically distributed
among the processors.

Three local-spinning algorithms are presented
in [4, 8, 11]. These algorithms use strong atomic
operations (i.e., fetch-and-increment, swap,
compare-and-swap), and are also called scalable
algorithms since they are both local-spinning
and adaptive. Performance studies done, have
shown that these algorithms scale very well as
contention increases. Local spinning algorithms
using only atomic registers are presented in
[1, 3, 14].

Only few representative results have been
mentioned. There are dozens of other very
interesting algorithms and lower bounds. All
the results discussed above, and many more,
are described details in [15]. There are also many
results for solving mutual exclusion in distributed
message passing systems [13].

Applications

Synchronization is a fundamental challenge in
computer science. It is fast becoming a major
performance and design issue for concurrent pro-
gramming on modern architectures, and for the
design of distributed and concurrent systems.

Concurrent access to resources shared among
several processes must be synchronized in order
to avoid interference between conflicting opera-
tions. Mutual exclusion locks (i.e., algorithms)
are the de facto mechanism for concurrency
control on concurrent applications: a process
accesses the resource only inside a critical section
code, within which the process is guaranteed
exclusive access. The popularity of this approach
is largely due the apparently simple programming
model of such locks and the availability of
implementations which are efficient and scalable.
Essentially all concurrent programs (including
operating systems) use various types of mutual
exclusion locks for synchronization.

When using locks to protect access to
a resource which is a large data structure (or
a database), the granularity of synchronization
is important. Using a single lock to protect the

whole data structure, allowing only one process
at a time to access it, is an example of coarse-
grained synchronization. In contrast, fine-grained
synchronization enables to lock “small pieces”
of a data structure, allowing several processes
with non-interfering operations to access it
concurrently. Coarse-grained synchronization
is easier to program but is less efficient and is not
fault-tolerant compared to fine-grained synchro-
nization. Using locks may degrade performance
as it enforces processes to wait for a lock to be
released. In few cases of simple data structures,
such as queues, stacks and counters, locking may
be avoided by using lock-free data structures.
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Problem Definition

Consider a graph G D .V;E/. A subset C of V
is called a dominating set if every vertex is either
in C or adjacent to a vertex in C . If, further-
more, the subgraph induced by C is connected,
then C is called a connected dominating set. A
connected dominating set with a minimum cardi-
nality is called a minimum connected dominating
set (MCDS). Computing an MCDS is an NP-
hard problem and there is no polynomial-time
approximation with performance ratio �H.Δ/ for
� < 1 unless NP � DTIME.nO.ln ln n//whereH
is the harmonic function and Δ is the maximum
degree of the input graph [11].

A unit disk is a disk with radius one. A unit
disk graph (UDG) is associated with a set of unit
disks in the Euclidean plane. Each node is at the
center of a unit disk. An edge exists between two
nodes u and v if and only if juvj � 1 where juvj
is the Euclidean distance between u and v. This
means that two nodes u and v are connected with
an edge if and only if u’s disk covers v and v’s
disk covers u.

Computing an MCDS in a unit disk graph
is still NP-hard. How hard is it to construct
a good approximation for MCDS in unit disk
graphs? Cheng et al. [5] answered this question
by presenting a polynomial-time approximation
scheme.

Historical Background
The connected dominating set problem has been
studied in graph theory for many years [23].
However, recently it becomes a hot topic due to
its application in wireless networks for virtual
backbone construction [4]. Guha and Khuller
[11] gave a two-stage greedy approximation for
the minimum connected dominating set in gen-
eral graphs and showed that its performance ratio
is 3 C ln Δ where Δ is the maximum node
degree in the graph. To design a one-step greedy
approximation to reach a similar performance
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ratio, the difficulty is to find a submodular po-
tential function. In [22], Ruan et al. successfully
designed a one-step greedy approximation that
reaches a better performance ratio c C ln Δ for
any c > 2. Du et al. [7] showed that there
exists a polynomial-time approximation with a
performance ratio a.1 C ln Δ/ for any a > 1.
The importance of those works is that the poten-
tial functions used in their greedy algorithm are
non-submodular and they managed to complete
its theoretical performance evaluation with fresh
ideas.

Guha and Khuller [11] also gave a nega-
tive result that there is no polynomial-time ap-
proximation with a performance ratio � ln Δ

for � < 1 unless NP � DTIME.nO.ln ln n//.
As indicated by [9], dominating sets cannot be
approximated arbitrarily well, unless P almost
equal to NP. These results move ones’ attention
from general graphs to unit disk graphs because
the unit disk graph is the model for wireless
sensor networks, and in unit disk graphs, MCDS
has a polynomial-time approximation with a con-
stant performance ratio. While this constant ratio
is getting improved step-by-step [1, 2, 20, 25],
Cheng et al. [5] closed this story by showing
the existence of a polynomial-time approxima-
tion scheme (PTAS) for the MCDS in unit disk
graphs. This means that theoretically, the perfor-
mance ratio for polynomial-time approximation
can be as small as 1C" for any positive number ".

Dubhashi et al. [8] showed that once a
dominating set is constructed, a connected
dominating set can be easily computed in a
distributed fashion. Most centralized results
for dominating sets are available at [19]. In
particular, a simple constant approximation
for dominating sets in unit disk graphs was
presented in [19]. Constant-factor approximation
for minimum-weight (connected) dominating
sets in UDGs was studied in [3]. A PTAS for the
minimum dominating set problem in UDGs was
proposed in [21]. Kuhn et al. [16] proved that a
maximal independent set (MIS) (and hence also
a dominating set) can be computed in asymptoti-
cally optimal timeO.log n/ in UDGs and a large
class of bounded independence graphs. Luby [18]
reported an elegant local O.log n/ algorithm for

MIS on general graphs. Jia et al. [12] proposed a
fastO.log n/ distributed approximation for dom-
inating set in general graphs. The first constant-
time distributed algorithm for dominating sets
that achieves a nontrivial approximation ratio
for general graphs was reported in [13]. The
matching Ω.log n/ lower bound is considered to
be a classic result in distributed computing [17].
For UDGs a PTAS is achievable in a distributed
fashion [15]. The fastest deterministic distributed
algorithm for dominating sets in UDGs was
reported in [14], and the fastest randomized
distributed algorithm for dominating sets in
UDGs was presented in [10].

Key Results

The construction of PTAS for MCDS is based
on the fact that there is a polynomial-time ap-
proximation with a constant performance ratio.
Actually, this fact is quite easy to see. First, note
that a unit disk contains at most five independent
vertices [2]. This implies that every maximal
independent set has a size at most 1C4opt where
opt is the size of an MCDS. Moreover, every
maximal independent set is a dominating set and
it is easy to construct a maximal independent
set with a spanning tree of all edges with length
two. All vertices in this spanning tree form a
connected dominating set of a size at most 1 C
8opt. By improving the upper bound for the size
of a maximal independent set [26] and the way to
interconnecting a maximal independent set [20],
the constant ratio has been improved to 6.8 with
a distributed implementation.

The basic techniques in this construction are
nonadaptive partition and shifting. Its general
picture is as follows: First, the square containing
all vertices of the input unit disk graph is divided
into a grid of small cells. Each small cell is further
divided into two areas, the central area and the
boundary area. The central area consists of points
h distance away from the cell boundary. The
boundary area consists of points within distance
h C 1 from the boundary. Therefore, two areas
are overlapping. Then a minimum union of con-
nected dominating sets is computed in each cell
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for connected components of the central area of
the cell. The key lemma is to prove that the union
of all such minimum unions is no more than the
minimum connected dominating set for the whole
graph. For vertices not in central areas, just use
the part of an 8-approximation lying in boundary
areas to dominate them. This part together with
the above union forms a connected dominating
set for the whole input unit disk graph. By shift-
ing the grid around to get partitions at different
coordinates, a partition having the boundary part
with a very small upper bound can be obtained.

The following details the construction.
Given an input connected unit disk graphG D

.V;E/ residing in a squareQ D f.x; y/j0 � x �
q; 0 � y � qg where q � jV j. To construct an
approximation with a performance ratio 1C " for
" > 0, choose an integer m D O..1="/ ln.1="//.
Let p D bq=mc C 1. Consider the square Q00.
Partition NQ into .p C 1/ � .p C 1/ grids so
that each cell is an m � m square excluding the
top and the right boundaries, and hence, no two
cells are overlapping each other. This partition of
NQs is denoted by P.0/ (Fig. 1). In general, the

partition P.a/ is obtained from P.0/ by shifting
the bottom-left corner of NQ from .�m;�m/ to
.�mCa; �mCa/. Note that shifting from P.0/

to P.a/ for 0 � a � m keeps Q covered by the
partition.

Connected Dominating Set, Fig. 1 Squares Q and NQ

For each cell e (an m � m square), Ce .d/

denotes the set of points in e away from the
boundary by distance at least d , e.g., Ce.0/ is the
cell e itself. Denote Be.d/ D Ce.0/ � Ce.d/.
Fix a positive integer h D 7C 3blog2.4m

2=�/c.
Call Ce.h/ the central area of e and Be.h C 1/

the boundary area of e. Hence, the boundary area
and the central area of each cell are overlapping
with width one.

Central Area
LetGe .d/ denote the part of input graphG lying
in area Ce .d/. In particular, Ge .h/ is the part of
graphG lying in the central area of e.Ge .h/may
consist of several connected components. Let Ke

be a subset of vertices in Ge.0/ with a minimum
cardinality such that for each connected com-
ponent H of Ge .h/, Ke contains a connected
component dominating H . In other words, Ke is
a minimum union of connected dominating sets
in G.0/ for the connected components of Ge .h/.

Now, denote by K.a/ the union of Ke for e
over all cells in partition P.a/. K.a/ has two
important properties:

Lemma 1 K.a/ can be computed in time
nO.m2/.

Lemma 2 jKaj � opt for 0 � a � m � 1.

Lemma 1 is not hard to see. Note that in
a square with edge length

p
2=2, all vertices

induce a complete subgraph in which any vertex
must dominate all other vertices. It follows that
the minimum dominating set for the vertices

of Ge.0/ has size at most
�jp

2m
k�2

. Hence,

the size of Ke is at most 3
�jp

2m
k�2

because

any dominating set in a connected graph has a
spanning tree with an edge length at most three.
Suppose cell Ge.0/ has ne vertices. Then the
number of candidates for Ke is at most

3.d
p

2me/
2

X

kD0

	
ne

k



D nO.m2/

e :

Hence, computing K.a/ can be done in time
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X

e

nO.m2/
e �

 
X

e

ne

!O.m2/

D nO.m2/ :

However, the proof of Lemma 2 is quite tedious.
The reader who is interested in it may find it
in [5].

Boundary Area
Let F be a connected dominating set of G satis-
fying jF j � 8optC 1. Denote by F.a/ the subset
of F lying in the boundary area Ba.hC 1/. Since
F is constructed in polynomial time, only the size
of F.a/ needs to be studied.

Lemma 3 Suppose h D 7 C 3blog2.4m
2=�/c

and bm=.h C 1/c � 32=". Then there is at least
half of i D 0; 1; : : : ; bm=.h C 1/c � 1 such that
jF.i.hC 1//j � " � opt.

Proof Let FH .a/ .FV .a// denote the subset of
vertices in F.a/ each with distance < hC 1 from
the horizontal (vertical) boundary of some cell in
P.a/. Then F.a/ D FH .a/ [ FV .a/. Moreover,
all FH .i.hC1// for i D 0; 1; : : : ; bm=.hC1/c�1
are disjoint. Hence,

bm=.hC1/c�1X

iD0

jFH .i.hC 1//j j�j jF j � 8opt:

Similarly, all FV .i.hC 1// for i D 0; 1; : : : ; bm=
.hC 1/c � 1 are disjoint and

bm=.hC1/c�1X

iD0

jFV .i.hC 1//j j�j jF j � 8opt:

Thus,

bm=.hC1/c�1X

iD0

jF .i .hC 1//j �

bm=.hC1/c�1X

iD0

.jFH .i .hC1//jC jFV .i.hC1//j/

� 16opt:

That is,

1

bm=.hC1/c

bm=.hC1/c�1X

iD0

jF.i.hC1//j �."=2/opt:

This means that there are at least half of F.i.hC
1// for i D 0; 1; bm=.hC 1/c � 1 satisfying

jF.i.hC 1//j � " � opt:

�

Putting Together
Now put K.a/ and F.a/. By Lemmas 2 and 3,
there exists a 2 f0; h C 1; : : : ; .bm=.h C 1/c �
1/.hC 1/g such that

jK.a/ [ F.a/j � .1C "/opt:

Lemma 4 For 0 � a � m � 1, K.a/ [ F.a/
is a connected dominating for input connected
graph G.

Proof K.a/ [ F.a/ is clearly a dominating set
for input graph G. Its connectivity can be shown
as follows. Note that the central area and the
boundary area are overlapping with an area of
width one. Thus, for any connected component
H of the subgraph Ge .h/, F.a/ has a vertex in
H . Hence, F.a/ must connect to any connected
dominating set for H , especially, the one DH

in K.a/. This means that DH is making up the
connections of F lost from cutting a part in
H . Therefore, the connectivity of K.a/ [ F.a/
follows from the connectivity of F . �

By summarizing the above results, the follow-
ing result is obtained:

Theorem 1 There is a .1C"/-approximation for
MCDS in connected unit disk graphs, running in
time nO..1="/log.1="/2/.

Applications

An important application of connected dominat-
ing sets is to construct virtual backbones for wire-
less networks, especially, wireless sensor net-
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works [4]. The topology of a wireless sensor
network is often a unit disk graph.

Open Problems

In general, the topology of a wireless network is
a disk graph, that is, each vertex is associated
with a disk. Different disks may have different
sizes. There is an edge from vertex u to vertex
v if and only if the disk at u covers v. A virtual
backbone in disk graphs is a subset of vertices,
which induces a strongly connected subgraph,
such that every vertex not in the subset has an in-
edge coming from a vertex in the subset and also
has an out-edge going into a vertex in the subset.
Such a virtual backbone can be considered as a
connected dominating set in disk graph. Is there
a polynomial-time approximation with a constant
performance ratio? It is still open right now [6].
Thai et al. [24] has made some effort towards this
direction.
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Problem Definition

Given a collection C of subsets of a finite set
X , find a minimum subcollection C0 of C such
that every element of X appears in some subset

in C0. This problem is called the minimum set-
cover problem. Every feasible solution, i.e., a
subcollection C0 satisfying the required condi-
tion, is called a set-cover. The minimum set-
cover problem is NP-hard, and the complexity
of approximation for it is well solved. It is well
known that (1) the minimum set-cover problem
has a polynomial-time .1 C lnn/-approximation
where n D jX j [2, 7, 8], and moreover (2) if the
minimum set-cover problem has a polynomial-
time .� lnn/-approximation for any 0 < � < 1,
then NP � DTIME.nO.log log n// [4].

The minimum connected set-cover problem is
closely related to the minimum set-cover prob-
lem, which can be described as follows: Given
a collection C of subsets of a finite set X and
a graph G with vertex set C, find a minimum
set-cover C0 � C such that the subgraph in-
duced by C0 is connected. An issue of whether
the minimum connected set-cover problem has a
polynomial-time O.logn/-approximation or not
[1, 9, 11] was open for several years.

Key Results

Zhang et al. [12] solved this problem by discov-
ering a relationship between the minimum con-
nected set-cover problem and the group Steiner
tree problem.

Given a graph G D .V;E/ with edge non-
negative weight c W E ! N and k subsets
(called groups) of vertices, V1; : : : ; Vk , find the
minimum edge-weight tree interconnecting those
k vertex subsets, i.e., containing at least one
vertex from each subset. This is called the group
Steiner tree problem. It has another formulation
as follows: Given a graph G D .V;E/ with edge
nonnegative weight c W E ! RC, a special
vertex r , and k subsets of vertices, V1; : : : ; Vk ,
find the minimum edge-weight tree with root r ,
interconnecting those k vertex subsets.

These two formulations are equivalent in
the sense that one has a polynomial-time
�-approximation and so does the other one.
Actually, consider vertex r as a group with only
one member. Then it is immediately known that
if the first formulation has a polynomial-time �-
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approximation, so does the second formulation.
Next, assume the second formulation has
a polynomial-time �-approximation. In the
first formulation, fix a group V1, for each
vertex v 2 V1, and apply the polynomial-
time �-approximation algorithm for the second
formulation to the root r D v and k � 1

groups V2; : : : ; Vk . Choose the shortest one
from jV1j obtained trees, which would be a
polynomial-time �-approximation for the first
formulation.

The following are well-known results for the
group Steiner tree problem

Theorem 1 (Halperin and Krauthgamer
[6]) The group Steiner tree problem has no
polynomial-time O.log2�" n/-approximation for
any " > 0 unless NP has quasi-polynomial
Las-Vega algorithm.

Theorem 2 (Garg, Konjevod, Ravi [5]) The
group Steiner tree problem has a polynomial-time
random O.log2 n log k/-approximation where n
is the number of nodes in the input graph and k
is the number of groups.

Zhang et al. [12] showed that if the minimum
connected set-cover problem has a polynomial-
time �-approximation, then for any " > 0, there
is a polynomial-time .� C "/-approximation for
the group Steiner tree problem. Therefore, by
Theorem 1 they obtained the following result.

Theorem 3 (Zhang et al. [12]) The connected
set-cover problem has no polynomial-time
O.log2�" n/-approximation for any " > 0 unless
NP has quasi-polynomial Las-Vega algorithm.

To obtain a good approximation for the mini-
mum connected set-cover problem, Wu et al. [10]
showed that if the group Steiner tree problem has
a polynomial-time �-approximation, so does the
minimum connected set-cover problem. There-
fore, they obtained the following theorem.

Theorem 4 (Wu et al. [10]) The connected set-
cover problem has a polynomial-time random
O.log2 n log k/-approximation where n D jCj
and k D jX j.

Combining what have been proved by Zhang
et al. [12] and by Wu et al. [10], it is easy to know
the following relation.

Theorem 5 The connected set-cover problem
has a polynomial-time .� C "/-approximation
for any " > 0 if and only if the group Steiner
tree problem has a polynomial-time .� C "/-
approximation.

This equivalence is also independently discov-
ered by [3]. Actually, this equivalence is similar
to the one between the minimum set-cover prob-
lem and the minimum hitting set problem.

For each element x 2 X , define a collection of
subsets:

Cx D fS j x 2 S 2 Cg:

Then, the minimum set-cover problem becomes
the minimum hitting set problem as follows:
Given a finite set C and a collection of subsets
of C, fCx j x 2g, find the minimum hitting set,
i.e., a subset C0 of C such that for every x 2 X ,
C0 \ Cx 6D ;.

Similarly, the minimum connected set-cover
problem becomes the equivalent connected hit-
ting set problem as follows: Given a finite set
C, a graph G with vertex set C, and a collection
of subsets of C, fCx j x 2g, find the minimum
connected hitting set where a connected hitting
set is a hitting set C0 such that C0 induces a
connected subgraph of G.

To see the equivalence between the minimum
connected hitting set problem and the group
Steiner tree problem, it is sufficient to note the
following two facts.

First, the existence of a connected hitting set
C0 is equivalent to the existence of a tree with
weight jC0j�1, interconnecting groups Cx for all
x 2 X when the graph G is given unit weight
for each edge. This is because in the subgraph
induced by C0, we can construct a spanning tree
with weight jC0j � 1.

Second, a graph with nonnegative integer edge
weight can be turned into an equivalent graph
with unit edge weight by adding some new ver-
tices to cut each edge with weight bigger than one
into several edges with unit weight.
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Open Problems

It is an open problem whether there exists or not a
polynomial-time approximation for the minimum
connected set-cover problem with performance
ratio O.log˛ n/ for 2 < ˛ < 3.
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Problem Definition

A new model of random graphs was introduced
in [10], that of random regular graphs with edge
faults (denoted hereafter by Gr

n;p), obtained by
selecting the edges of a random member of the
set of all regular graphs of degree r independently
and with probability p. Such graphs can represent
a communication network in which the links fail
independently and with probability f D 1 � p.
A formal definition of the probability space Gr

n;p

follows.

Definition 1 (The Gr
n;p Probability Space) Let

Gr
n be the probability space of all random regular

graphs with n vertices where the degree of each
vertex is r . The probability spaceGr

n;p of random
regular graphs with edge faults is constructed
by the following two subsequent random exper-
iments: first, a random regular graph is chosen
from the space Gr

n and, second, each edge is
randomly and independently deleted from this
graph with probability f D 1 � p.

Important connectivity properties of Gr
n;p are

investigated in this entry by estimating the ranges
of r; f for which, with high probability, Gr

n;p
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graphs (a) are highly connected (b) become dis-
connected and (c) admit a giant (i.e., of �.n/
size) connected component of small diameter.

Notation. The terms “almost certainly” (a.c.)
and “with high probability” (w.h.p.) will be fre-
quently used with their standard meaning for
random graph properties. A property defined in
a random graph holds almost certainly when its
probability tends to 1 as the independent variable
(usually the number of vertices in the graph)
tends to infinity. “With high probability” means
that the probability of a property of the random
graph (or the success probability of a randomized
algorithm) is at least 1 � n�˛ , where ˛ > 0 is
a constant and n is the number of vertices in the
graph.

The interested reader can further study [1]
for an excellent exposition of the probabilistic
method and its applications, [3] for a classic book
on random graphs, as well as [6] for an excellent
book on the design and analysis of randomized
algorithms.

Key Results

Summary. This entry studies several important
connectivity properties of random regular graphs
with edge faults. In order to deal with the Gr

n;p

model, [10] first extends the notion of configura-
tions and the translation lemma between config-
urations and random regular graphs provided by
B. Bollobás [2, 3], by introducing the concept of
random configurations to account for edge faults
and by also providing an extended translation
lemma between random configurations and ran-
dom regular graphs with edge faults.

For this new model of random regular graphs
with edge faults [10] shows that:

1. For all failure probabilities f D 1 � p � n��

(	 � 3
2r

fixed) and any r � 3 the biggest
part of Gr

n;p (i.e., the whole graph except
of O.1/ vertices) remains connected and this
connected part cannot be separated, almost
certainly, unless more than r vertices are re-
moved. Note interestingly that the situation for

this range of f and r is very similar, despite
the faults, to the properties of Gr

n which is r-
connected for r � 3.

2. Gr
n;p is disconnected a.c. for constant f and

any r D o.logn/ but is highly connected,
almost certainly, when r � ˛ logn, where
˛ > 0 an appropriate constant.

3. Even when Gr
n;p becomes disconnected, it

still has a giant component of small diameter,
even when r D O.1/. An O.n logn/-time
algorithm to construct a giant component is
provided.

Configurations and Translation Lemmata
Note that it is not as easy (from the technical
point of view) as in the Gn;p case to argue about
random regular graphs, because of the stochastic
dependencies on the existence of the edges due to
regularity. The following notion of configurations
was introduced by B. Bollobás [2, 3] to translate
statements for random regular graphs to state-
ments for the corresponding configurations which
avoid the edge dependencies due to regularity and
thus are much easier to deal with:

Definition 2 (Bollobás [2]) Let w D [n
j D1wj

be a fixed set of 2m D
Pn

j D1 dj labeled vertices
where jwj j D dj . A configuration F is a partition
of w into m pairs of vertices, called edges of F .

Given a configuration F , let �.F / be the
(multi)graph with vertex set V in which .i; j /
is an edge if and only if F has a pair (edge)
with one element in wi and the other in wj . Note
that every regular graph G 2 Gr

n is of the form
�.F / for exactly .rŠ/n configurations. However
not every configuration F with dj D r for all
j corresponds to a G 2 Gr

n since F may have an
edge entirely in some wj or parallel edges joining
wi and wj .

Let � be the set of all configurations F and
let Gr

n be the set of all regular graphs. Given
a property (set) Q � Gr

n let Q� � � such
that Q� \ ��1.Gr

n/ D ��1.Q/. By estimat-
ing the probability of possible cycles of length
one (self-loops) and two (loops) among pairs
wi ;wj in �.F /, the following important lemma
follows:
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Lemma 1 (Bollobás [3]) If r � 2 is fixed and
property Q� holds for a.e. configuration, then
property Q holds for a.e. r�regular graph.

The main importance of the above lemma is
that when studying random regular graphs, in-
stead of considering the set of all random regular
graphs, one can study the (much more easier to
deal with) set of configurations.

In order to deal with edge failures, [10] intro-
duces here the following extension of the notion
of configurations:

Definition 3 (Random Configurations) Let wD
[n

j D1wj be a fixed set of 2m D
Pn

j D1 dj

labeled “vertices” where jwj j D dj . Let F
be any configuration of the set �. For each
edge of F , remove it with probability 1 � p,
independently. Let O� be the new set of objects
and OF the outcome of the experiment. OF is called
a random configuration.

By introducing probability p in every edge,
an extension of the proof of Lemma 1 leads
(since in both NQ and OQ each edge has the same
probability and independence to be deleted, thus
the modified spaces follow the properties of Q
and Q�) to the following extension to random
configurations.

Lemma 2 (Extended Translation Lemma) Let
r � 2 fixed and NQ be a property forGr

n;p graphs.

If OQ holds for a.e. random configuration, then the
corresponding property NQ holds for a.e. graph in
Gr

n;p .

Multiconnectivity Properties of G r
n;p

The case of constant link failure probability f
is studied, which represents a worst case for
connectivity preservation. Still, [10] shows that
logarithmic degrees suffice to guarantee thatGr

n;p

remains w.h.p. highly connected, despite these
constant edge failures. More specifically:

Theorem 1 Let G be an instance of Gr
n;p where

p D �.1/ and r � ˛ logn, where ˛ > 0 an
appropriate constant. Then G is almost certainly
k-connected, where

k D O

	
logn

log logn




The proof of the above theorem uses Chernoff
bounds to estimate the vertex degrees inGr

n;p and
“similarity” of Gr

n;p and Gn;p0 (whose properties
are known) for a suitably chosen p0.

Now the (more practical) case in which
f D 1 � p D o.1/ is considered and
it is proved that the desired connectivity
properties of random regular graphs are almost
preserved despite the link failures. More
specifically:

Theorem 2 Let r � 3 and f D 1 � p D O.n��/

for 	 � 3
2r

. Then the biggest part ofGr
n;p (i.e., the

whole graph except of O.1/ vertices) remains
connected and this connected part (excluding
the vertices that were originally neighbors of the
O.1/-sized disconnected set) cannot be separated
unless more than r vertices are removed, with
probability tending to 1 as n tends toC1.

The proof is carefully extending, in the case
of faults, a known technique for random regular
graphs about not admitting small separators.

G r
n;p Becomes Disconnected

Next remark that a constant link failure probabil-
ity dramatically alters the connectivity structure
of the regular graph in the case of low degrees. In
particular, by using the notion of random config-
urations, [10] proves the following theorem:

Theorem 3 When 2 � r �
p

log n

2
and p D

�.1/ then Gr
n;p has at least one isolated node

with probability at least 1 � n�k ; k � 2.

The regime for disconnection is in fact larger,
since [10] shows that Gr

n;p is a.c. disconnected
even for any r D o.logn/ and constant f . The
proof of this last claim is complicated by the fact
that due to the range for r one has to avoid using
the extended translation lemma.

Existence of a Giant Component in G r
n;p

Since Gr
n;p is a.c. disconnected for r D o.logn/

and 1 � p D f D �.1/, it would be in-
teresting to know whether at least a large part
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of the network represented by Gr
n;p is still con-

nected, i.e., whether the biggest connected com-
ponent of Gr

n;p is large. In particular, [10] shows
that:

Theorem 4 When f < 1� 32
r

then Gr
n;p admits

a giant (i.e., �.n/-sized) connected component
for any r � 64 with probability at least 1 �

O
�

log2 n

n˛=3

�
, where ˛ > 0 a constant that can be

selected.

In fact, the proof of the existence of the
component includes first proving the existence
(w.h.p.) of a sufficiently long (of logarithmic size)
path as a basis for a BFS process starting from the
vertices of that path that creates the component.
The proof is quite complex: occupancy
arguments are used (bins correspond to the
vertices of the graphs while balls correspond to its
edges); however, the random variables involved
are not independent, and in order to use Chernoff-
Hoeffding bounds for concentration one must
prove that these random variables, although
not independent, are negatively associated.
Furthermore, the evaluation of the success of the
BFS process uses a careful, detailed average case
analysis.

The path construction and the BFS process
can be viewed as an algorithm that (in case of
no failures) actually reveals a giant connected
component. This algorithm is very efficient, as
shown by the following result:

Theorem 5 A giant component of Gr
n;p can be

constructed in O.n logn/ time, with probability

at least 1 � O
�

log2 n

n˛=3

�
, where ˛ > 0 a constant

that can be selected.

Applications

In recent years the development and use of
distributed systems and communication networks
has increased dramatically. In addition, state-of-
the-art multiprocessor architectures compute over
structured, regular interconnection networks.
In such environments, several applications
may share the same network while executing
concurrently. This may lead to unavailability

of certain network resources (e.g., links) for
certain applications. Similarly, faults may cause
unavailability of links or nodes. The aspect of
reliable distributed computing (which means
computing with the available resources and
resisting faults) adds value to applications
developed in such environments.

When computing in the presence of faults,
one cannot assume that the actual structure of
the computing environment is known. Faults may
happen even in execution time. In addition, what
is a “faulty” or “unavailable” link for one appli-
cation may in fact be the de-allocation of that
link because it is assigned (e.g., by the network
operation system) to another application. The
problem of analyzing allocated computation or
communication in a network over a randomly
assigned subnetwork and in the presence of faults
has a nature different from fault analysis of spe-
cial, well-structured networks (e.g., hypercube),
which does not deal with network aspects. The
work presented in this entry addresses this inter-
esting issue, i.e., analyzing the average case taken
over a set of possible topologies and focuses on
multiconnectivity and existence of giant compo-
nent properties required for reliable distributed
computing in such randomly allocated unreliable
environments.

The following important application of this
work should be noted: multitasking in distributed
memory multiprocessors is usually performed by
assigning an arbitrary subnetwork (of the in-
terconnection network) to each task (called the
computation graph). Each parallel program may
then be expressed as communicating processors
over the computation graph. Note that a multi-
connectivity value k of the computation graph
means also that the execution of the application
can tolerate up to k � 1 online additional faults.

Open Problems

The ideas presented in [10] inspired already fur-
ther interesting research. Andreas Goerdt [4] con-
tinued the work presented in a preliminary ver-
sion [8] of [10] and showed the following results:
if the degree r is fixed then p D 1

r�1
is a
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threshold probability for the existence of a linear-
sized component in the faulty version of almost
all random regular graphs. In fact, he further
shows that if each edge of an arbitrary graph
G with maximum degree bounded above by r is
present with probability p D �

r�1
, when � < 1,

then the faulty version of G has only components
whose size is at most logarithmic in the number
of nodes, with high probability. His result implies
some kind of optimality of random regular graphs
with edge faults. Furthermore, [5, 7] investigates
important expansion properties of random regular
graphs with edge faults, as well as [9] does in
the case of fat trees, a common type of intercon-
nection networks. It would be also interesting to
further pursue this line of research, by also inves-
tigating other combinatorial properties (and also
provide efficient algorithms) for random regular
graphs with edge faults.
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Problem Definition

Reaching agreement is one of the central issues in
fault tolerant distributed computing. One version
of this problem, called Consensus, is defined over
a fixed set ˘ D fp1; : : : ; png of n processes
that communicate by exchanging messages along
channels. Messages are correctly transmitted (no
duplication, no corruption), but some of them
may be lost. Processes may fail by prematurely
stopping (crash), may omit to send or receive
some messages (omission), or may compute erro-
neous values (Byzantine faults). Such processes
are said to be faulty. Every process p 2 ˘ has
an initial value vp and non-faulty processes must
decide irrevocably on a common value v. More-
over, if the initial values are all equal to the same
value v, then the common decision value is v. The
properties that define Consensus can be split into
safety properties (processes decide on the same
value; the decision value must be consistent with
initial values) and a liveness property (processes
must eventually decide).

Various Consensus algorithms have been de-
scribed [6, 12] to cope with any type of process
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failures if there is a known (Intuitively, “known
bound” means that the bound can be “built into”
the algorithm. A formal definition is given in
the next section.) bound on the transmission de-
lay of messages (communication is synchronous)
and a known bound on process relative speeds
(processes are synchronous). In completely asyn-
chronous systems, where there exists no bound
on transmission delays and no bound on process
relative speeds, Fischer, Lynch, and Paterson [8]
have proved that there is no Consensus algorithm
resilient to even one crash failure. The paper
by Dwork, Lynch, and Stockmeyer [7] intro-
duces the concept of partial synchrony, in the
sense it lies between the completely synchronous
and completely asynchronous cases, and shows
that partial synchrony makes it possible to solve
Consensus in the presence of process failures,
whatever the type of failure is.

For this purpose, the paper examines the quite
realistic case of asynchronous systems that be-
have synchronously during some “good” periods
of time. Consensus algorithms designed for syn-
chronous systems do not work in such systems
since they may violate the safety properties of
Consensus during a bad period, that is when
the system behaves asynchronously. This leads
to the following question: is it possible to de-
sign a Consensus algorithm that never violates
safety conditions in an asynchronous system,
while ensuring the liveness condition when some
additional conditions are met?

Key Results

The paper has been the first to provide a positive
and comprehensive answer to the above question.
More precisely, the paper (1) defines various
types of partial synchrony and introduces
a new round based computational model
for partially synchronous systems, (2) gives
various Consensus algorithms according to the
severity of failures (crash, omission, Byzantine
faults with or without authentication), and
(3) shows how to implement the round based
computational model in each type of partial
synchrony.

Partial Synchrony
Partial synchrony applies both to communi-
cations and to processes. Two definitions for
partially synchronous communications are given:
(1) for each run, there exists an upper bound �
on communication delays, but � is unknown in
the sense it depends on the run; (2) there exists an
upper bound � on communication delays that is
common for all runs (� is known), but holds only
after some time T, called the Global Stabilization
Time (GST) that may depend on the run (GST
is unknown). Similarly, partially synchronous
processes are defined by replacing “transmission
delay of messages” by “relative process speeds”
in (1) and (2) above. That is, the upper bound
on relative process speed ˚ is unknown, or ˚ is
known but holds only after some unknown time.

Basic Round Model
The paper considers a round based model: com-
putation is divided into rounds of message ex-
change. Each round consists of a send step, a re-
ceive step, and then a computation step. In a send
step, each process sends messages to any subset
of processes. In a receive step, some subset of
the messages sent to the process during the send
step at the same round is received. In a computa-
tion step, each process executes a state transition
based on its current state and the set of messages
just received.

Some of the messages that are sent may not
be received, i.e., some can be lost. However, the
basic round model assumes that there is some
round GSR, such that all messages sent from non
faulty processes to non faulty processes at round
GSR or afterward are received.

Consensus Algorithm for Benign Faults
(Requires f < n=2)
In the paper, the algorithm is only described
informally (textual form). A formal expression is
given by Algorithm 1: the code of each process
is given round by round, and each round is spec-
ified by the send and the computation steps (the
receive step is implicit). The constant f denotes
the maximum number of processes that may be
faulty (crash or omission). The algorithm requires
f < n=2.
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Algorithm 1 Consensus algorithm in the basic round model for benign faults (f < n=2)

1: Initialization:
2: Acce ptabl ep vp {vp is the initial value of p }
3: Properp vp {All the lines for maintaining Properp are trivial to write, and so are omitted}
4: votep
5: Lockp

6: Round r = 4k − 3 :
7: Send:
8: send Acce ptabl ep to coordk

9: Compute:
10: if p = coordk and p receives at least n − f messages containing a common value then
11: votep select one of  these common acceptable values

12: Round r = 4k − 2 :
13: Send:
14: if p = coordk and votep then
15: send votep to all processes

16: Compute:
17: if received v from coordk then
18: Lockp Lockp v , ; Lockp Lockp v , k ;

19: Round r = 4k − 1 :
20: Send:
21: if v s.t. ( v , k Lockp then
22: send ack to coordk

23: Compute:
24: if p = coordk then
25: if received at least f + 1 ack messages then
26: decide( votep ) ;
27: votep

28: Round r = 4k :
29: Send:
30: send Lockp to all processes

31: Compute:
32: for all ( v , θ Lockp do
33: if received (w , θ) s.t. w v and θ θ then {release lock on v}
34: Lockp Lockp w , θ v , θ ;
35: if Lockp 1 then
36: Acce ptabl ep v where ( v , Lockp
37: else
38: if Lockp then Acce ptabl ep Properp else Acce ptabl ep

Rounds are grouped into phases, where each
phase consists in four consecutive rounds. The
algorithm includes the rotating coordinator strat-
egy: each phase k is led by a unique coordinator –
denoted by coordk – defined as process pi for
phase k D i.mod n/. Each process p maintains
a set Properp of values that p has heard of
(proper values), initialized to fvpgwhere vp is p’s
initial value. Process p attaches Properp to each
message it sends.

Process p may lock value v when p thinks that
some process might decide v. Thus value v is an
acceptable value to p if (1) v is a proper value to
p, and (2) p does not have a lock on any value
except possibly v (lines 35–38).

At the first round of phase k (round 4k � 3),
each process sends the list of its acceptable values
to coordk. If coordk receives at least n � f sets
of acceptable values that all contain some value

v, then coordk votes for v (line 11), and sends
its vote to all at second round 4k � 2. Upon
receiving a vote for v, any process locks v in the
current phase (line 18), releases any earlier lock
on v, and sends an acknowledgment to coordk

at the next round 4k � 1. If the latter process
receives acknowledgments from at least f C 1
processes, then it decides (line 26). Finally locks
are released at round 4k – for any value v, only
the lock from the most recent phase is kept, see
line 34 – and the set of values acceptable to p is
updated (lines 35–38).

Consensus Algorithm for Byzantine Faults
(Requires f < n=3)
Two algorithms for Byzantine faults are given.
The first algorithm assumes signed messages,
which means that any process can verify the
origin of all messages. This fault model is



Consensus with Partial Synchrony 439

C

called Byzantine faults with authentication.
The algorithm has the same phase structure as
Algorithm 1. The difference is that (1) messages
are signed, and (2) “proofs” are carried by
some messages. A proof carried by message
m sent by some process pi in phase k consists of
a set of signed messages sgnj .m

0; k/, proving
that pi received message .m0; k/ in phase k
from pj before sending m. A proof is carried
by the message send at line 16 and line 30
(Algorithm 1). Any process receiving a message
carrying a proof accepts the message and behaves
accordingly if – and only if the proof is found
valid. The algorithm requires f < n=3 (less than
a third of the processes are faulty).

The second algorithm does not assume
a mechanism for signing messages. Compared
to Algorithm 1, the structure of a phase is slightly
changed. The problem is related to the vote sent
by the coordinator (line 15). Can a Byzantine
coordinator fool other processes by not sending
the right vote? With signed messages, such
a behavior can be detected thanks to the “proofs”
carried by messages. A different mechanism is
needed in the absence of signature.

The mechanism is a small variation of the
Consistent Broadcast primitive introduced by
Srikanth and Toueg [15]. The broadcast primitive
ensures that (1) if a non faulty process broadcasts
m, then every non faulty process delivers m, and
(2) if some non faulty process delivers m, then all
non faulty processes also eventually deliver m.
The implementation of this broadcast primitive
requires two rounds, which define a superround.
A phase of the algorithm consists now of three
superrounds. The superrounds 3k � 2, 3k � 1,
3k mimic rounds 4k � 3, 4k � 2, and 4k � 1 of
Algorithm 1, respectively. Lock-release of phase
k occurs at the end of superround 3k, i.e., does not
require an additional round, as it does in the two
previous algorithms. The algorithm also requires
f < n=3.

The Special Case of Synchronous
Communication
By strengthening the round based computational
model, the authors show that synchronous com-
munication allow higher resiliency. More pre-

cisely, the paper introduces the model called the
basic round model with signals, in which upon
receiving a signal at round r, every process knows
that all the non faulty processes have received
the messages that it has sent during round r. At
each round after GSR, each non faulty process
is guaranteed to receive a signal. In this com-
putational model, the authors present three new
algorithms tolerating less than n benign faults,
n/2 Byzantine faults with authentication, and n/3
Byzantine faults respectively.

Implementation of the Basic Round Model
The last part of the paper consists of algorithms
that simulate the basic round model under vari-
ous synchrony assumption, for crash faults and
Byzantine faults: first with partially synchronous
communication and synchronous processes (case
1), second with partially synchronous communi-
cation and processes (case 2), and finally with
partially synchronous processes and synchronous
communication (case 3).

In case 1, the paper first assumes the basic
case ˚ D 1, i.e., all non faulty process progress
exactly at the same speed, which means that they
have a common notion of time. Simulating the
basic round model is simple in this case. In case
2 processes do not have a common notion of
time. The authors handle this case by designing
an algorithm for clock synchronization. Then
each process uses its private clock to determine
its current round. So processes alternate between
steps of the clock synchronization algorithm
and steps simulating rounds of the basic round
model. With synchronous communication (case
3), the authors show that for any type of faults,
the so-called basic round model with signals is
implementable.

Note that, from the very definition of partial
synchrony, the six algorithms share the funda-
mental property of tolerating message losses,
provided they occur during a finite period of time.

Upper Bound for Resiliency
In parallel, the authors exhibit upper bounds for
the resiliency degree of Consensus algorithms in
each partially synchronous model, according to
the type of faults. They show that their Consensus
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Consensus with Partial Synchrony, Table 1 Tight resiliency upper bounds (P stands for “process”, C for “commu-
nication”; 0 means “asynchronous”, 1/2 means “partially synchronous”, and 1 means “synchronous”)

P D 0 C D 0 P D 1=2 C D 1=2 P D 1 C D 1=2 P D 1=2 C D 1 P D 1 C D 1

Benign 0 d.n � 1/=2e d.n � 1/=2e n � 1 n � 1

Authenticated
Byzantine 0 d.n � 1/=3e d.n � 1/=3e d.n � 1/=2e n � 1

Byzantine 0 d.n � 1/=3e d.n � 1/=3e d.n � 1/=3e d.n � 1/=3e

algorithms achieve these upper bounds, and so
are optimal with respect to their resiliency degree.
These results are summarized in Table 1.

Applications

Availability is one of the key features of critical
systems, and is defined as the ratio of the time
the system is operational over the total elapsed
time. Availability of a system can be increased
by replicating its critical components. Two main
classes of replication techniques have been con-
sidered: active replication and passive replica-
tion. The Consensus problem is at the heart of the
implementation of these replication techniques.
For example, active replication, also called state
machine replication [10, 14], can be implemented
using the group communication primitive called
Atomic Broadcast, which can be reduced to Con-
sensus [3].

Agreement needs also to be reached in the
context of distributed transactions. Indeed, all
participants of a distributed transaction need to
agree on the output commit or abort of the trans-
action. This agreement problem, called Atomic
Commitment, differs from Consensus in the valid-
ity property that connects decision values (com-
mit or abort) to the initial values (favorable to
commit, or demanding abort) [9]. In the case de-
cisions are required in all executions, the problem
can be reduced to Consensus if the abort decision
is acceptable although all processes were favor-
able to commit, in some restricted failure cases.

Open Problems

A slight modification to each of the algorithms
given in the paper is to force a process repeatedly
to broadcast the message “Decide v” after it

decides v. Then the resulting algorithms share the
property that all non faulty processes definitely
make a decision within O(f) rounds after GSR,
and the constant factor varies between 4 (benign
faults) and 12 (Byzantine faults). A question
raised by the authors at the end of the paper
is whether this constant can be reduced. Inter-
estingly, a positive answer has been given later,
in the case of benign faults and f < n=3, with
a constant factor of 2 instead of 4. This can be
achieved with deterministic algorithms, see [4],
based on the communication schema of the Rabin
randomized Consensus algorithm [13].

The second problem left open is the gener-
alization of this algorithmic approach – namely,
the design of algorithms that are always safe
and that terminate when a sufficiently long good
period occurs – to other fault tolerant distributed
problems in partially synchronous systems. The
latter point has been addressed for the Atomic
Commitment and Atomic Broadcast problems
(see section “Applications”).
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Problem Definition

A convex drawing of a planar graph G is a planar
drawing of G where every vertex is drawn as
a point, every edge is drawn as a straight line
segment, and every face is drawn as a convex
polygon. Not every planar graph has a convex
drawing. The planar graph in Fig. 1a has a convex
drawing as shown in Fig. 1b whereas the planar
graph in Fig. 1d has no convex drawing. Tutte
[11] showed that every 3-connected planar graph
has a convex drawing, and obtained a necessary
and sufficient condition for a planar graph to
have a convex drawing with a prescribed outer
polygon. Furthermore, he gave a “barycentric
mapping” method for finding a convex drawing,
which requires solving a system of O.n/ linear
equations [12] and leads to an O.n1:5/ time
convex drawing algorithm for a planar graph with
a fixed embedding. Development of faster algo-
rithms for determining whether a planar graph
(where the embedding is not fixed) has a convex
drawing and finding such a drawing if it exits
is addressed in the paper of Chiba, Yamanouchi,
and Nishizeki [2].

A Characterization for Convex Drawing A
plane graph is a planar graph with a fixed em-
bedding. In a convex drawing of a plane graphG,
the outer cycle Co.G/ is also drawn as a convex
polygon. The polygonal drawing C �

o of Co.G/,
called an outer convex polygon, plays a crucial
role in finding a convex drawing of G. The plane
graph G in Fig. 1a admits a convex drawing if an
outer convex polygon C �

o has all vertices 1, 2, 3,
4, and 5 of Co.G/ as the apices (i.e., geometric
vertices) ofC �

o , as illustrated in Fig. 1b. However,
if C �

o has only apices 1, 2, 3, and 4, then G

does not admit a convex drawing as depicted in
Fig. 1c. We say that an outer convex polygon C �

o

is extendible if there exists a convex drawing of
G in which Co.G/ is drawn as C �

o . Thus, the
outer convex polygon drawn by thick lines in
Fig. 1b is extendible, while that in Fig. 1c is not.
If the outer facial cycleCo has an extendible outer
convex polygon, we say that the facial cycle Co is
extendible.

Tutte established a necessary and sufficient
condition for an outer convex polygon to be
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Convex Graph Drawing, Fig. 2 G and C �

o violating Conditions (i)–(iii) in Theorem 1

extendible [11]. The following theorem obtained
by Thomassen [9] is slightly more general than
the result of Tutte.

Theorem 1 Let G be a 2-connected plane
graph, and let C �

o be an outer convex polygon
of G. Let C �

o be a k-gon, k � 3, and let
P1; P2; : : : ; Pk be the paths in Co.G/, each
corresponding to a side of the polygon C �

o , as il-
lustrated in Fig. 2a. Then, C �

o is extendible if and
only if the following Conditions (i)–(iii) hold.

(i) For each inner vertex v with d.v/ � 3, there
exist three paths disjoint except v, each
joining v and an outer vertex.

(ii) G�V.Co.G// has no connected component
H such that all the outer vertices adjacent
to vertices in H lie on a single path Pi , and
no two outer vertices in each path Pi are
joined by an inner edge.

(iii) Any cycle containing no outer edge has at
least three vertices of degree �3.

Figure 2a–c violate Conditions (i)–(iii) of
Theorem 1, respectively, where each of the

faces marked by � cannot be drawn as a convex
polygon.

Key Results

Two linear algorithms for convex drawings
are the key contribution of the paper of
Chiba, Yamanouchi, and Nishizeki [2]. One
algorithm is for finding a convex drawing
of a plane graph if it exists, and the other
algorithm is for testing whether there is a planar
embedding of a given planar graph which has
a convex drawing. Thus, the main result of
the paper can be stated as in the following
theorem.

Theorem 2 Let G be a 2-connected planar
graph. Then, one can determine whether G has
a convex drawing in linear time and find such a
drawing in linear time if it exists.

Convex Drawing Algorithm
In this section, we describe the drawing algorithm
of Chiba, Yamanouchi, and Nishizeki [2] which is
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C

based on Thomassen’s short proof of Theorem 1.
Suppose that a 2-connected plane graph G and
an outer convex polygon C �

o satisfy conditions
in Theorem 1. The convex drawing algorithm
extends C �

o into a convex drawing of G in linear
time. For simplicity, it is assumed that every inner
vertex has degree three or more in G. Otherwise,
replace each maximal induced path not on Co.G/

by a single edge joining its ends (the resulting
simple graph G0 satisfies Conditions (i)–(iii) of
Theorem 1); then, find a convex drawing of G0;
and finally, subdivide each edge substituting a
maximal induced path.

They reduce the convex drawing of G to those
of several subgraphs of G as follows: delete from
G an arbitrary apex v of the outer convex polygon
C �

o together with the edges incident to v; divide
the resulting graph G0 D G � v into blocks
B1; B2; : : : ; Bp , p � 1 as illustrated in Fig. 3;
determine an outer convex polygon C �

i of each
block Bi so that Bi with C �

i satisfies Conditions
(i)–(iii) of Theorem 1; and recursively apply the
algorithm to each block Bi with C �

i to determine
the position of inner vertices of Bi .

The recursive algorithm described above can
be implemented in linear time by ensuring that
only the edges which newly appear on the outer
face are traversed in each recursive step.

Convex Testing Algorithm
In this section, we describe the convex testing al-
gorithm of Chiba, Yamanouchi, and Nishizeki [2]

B1
B2

Bp

v3

vp

Bp−1
v1

v vp+1

vp−1
v2

Convex Graph Drawing, Fig. 3 Reduction of the con-
vex drawing of G into subproblems

which implies a constructive proof of Theorem 2.
They have modified the conditions in Theorem 1
into a form suitable for the convex testing, which
is represented in terms of 3-connected compo-
nents. Using the form, they have shown that the
convex testing of a planar graphG can be reduced
to the planarity testing of a certain graph obtained
from G.

To describe the convex testing algorithm, we
need some definitions. A pair fx; yg of vertices
of a 2-connected graph G D .V;E/ is called
a separation pair if there exists two subgraphs
G0

1 D .V1; E
0
1/ and G0

2 D .V2; E
0
2/ satisfying

the following conditions (a) and (b): (a) V D
V1 [ V2; V1 \ V2 D fx; yg; and (b) E D

E 0
1 [ E

0
2; E

0
1 \ E

0
2 D ;; jE

0
1j � 2; jE 0

2j �

2: For a separation pair fx; yg of G, G1 D

.V1; E
0
1 C .x; y// and G2 D .V2; E

0
2 C .x; y//

are called the split graphs of G. The new edges
.x; y/ added to G1 and G2 are called the virtual
edges. Dividing a graph G into two split graphs
G1 and G2 is called splitting. Reassembling the
two split graphs G1 and G2 into G is called
merging. Suppose that a graph G is split, the split
graphs are split, and so on, until no more splits
are possible. The graphs constructed in this way
are called the split components of G. The split
components are of three types: triple bonds (i.e.,
a set of three multiple edges), triangles, and 3-
connected graphs. The 3-connected components
ofG are obtained from the split components ofG
by merging triple bonds into a bond and triangles
into a ring, as far as possible, where a bond is a
set of multiple edges and a ring is a cycle. Note
that the split components ofG are not necessarily
unique, but the 3-connected components ofG are
unique [5].

A separation pair fx; yg is prime if x and y
are the end vertices of a virtual edge contained in
a 3-connected component. Suppose that fx; yg is
a prime separation pair of a graph G and that G
is split at fx; yg, the split graphs are split, and so
on, until no more splits are possible at fx; yg. A
graph constructed in this way is called an fx; yg-
split component of G if it has at least one real
(i.e., non-virtual) edge.

In some cases, it can be easily known only
from the fx; yg-split components for a single
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separation pair fx; yg that a graph G has no
convex drawing. A prime separation pair fx; yg
of G is called a forbidden separation pair if there
are either (a) at least four fx; yg-split components
or (b) exactly three fx; yg-split components, each
of which is neither a ring nor a bond. Note that
an fx; yg-split component corresponds to an edge
.x; y/ if it is a bond and to a subdivision of an
edge .x; y/ if it is a ring. One can easily know that
if a planar graph G has a forbidden separation
pair, then any plane embedding of G has no con-
vex drawing, that is, G has no extendible facial
cycle. On the other hand, the converse of the fact
above is not true. A prime separation pair fx; yg
is called a critical separation pair if there are
either (i) exactly three fx; yg-split components
including a bond or a ring or (ii) exactly two
fx; yg-split components each of which is neither
a bond nor a ring. When a planar graph G has
no forbidden separation pair, two cases occur: if
G has no critical separation pair either, then G
is a subdivision of a 3-connected graph, and so
every facial cycle of G is extendible; otherwise,
that is, if G has critical separation pairs, then a
facial cycle F ofG may or may not be extendible,
depending on the interaction of F and critical
separation pairs.

Using the concepts of forbidden separation
pairs and critical separation pairs, Chiba et al.
gave the following condition in Theorem 3 which
is suitable for the testing algorithm. They proved
that the condition in Theorem 3 is equivalent to
the condition in Theorem 1 under a restriction
that the outer convex polygon C �

o is strict, that
is, every vertex of Co.G/ is an apex of C �

o [2].

Theorem 3 Let G D .V;E/ be a 2-connected
plane graph with the outer facial cycle F D

Co.G/, and let C �
o be an outer strict convex

polygon of G. Then, C �
o is extendible if and only

if G and F satisfy the following conditions.

(a) G has no forbidden separation pair.
(b) For each critical separation pair fx; yg of G,

there is at most one fx; yg-split component
having no edge of F , and, if any, it is either a
bond if .x; y/ 2 E or a ring, otherwise.

The convex testing condition in Theorem 3
is given for a plane graph. Note that Condition

(a) does not depend on a plane embedding. Thus,
to test whether a planar graph G has a convex
drawing, it is needed to test whether G satisfies
Condition (a) or not and if G satisfies Condition
(a) then test whether G has a plane embedding
such that its outer face F satisfies Condition
(b) in Theorem 3. With some simple observa-
tion, it is shown that every graph G having no
forbidden separation pair has an embedding such
that the outer face satisfies Condition (b) if G
has at most one critical separation pair. Hence,
every planar graph with no forbidden separation
pair and at most one critical separation pair has a
convex drawing.

The convex testing problem of G for the case
whereG has no forbidden separation pair and has
two or more critical separation pairs is reduced to
the planarity testing problem of a certain graph
obtained from G. If G has a plane embedding
which has a convex drawing, the outer face F
of the embedding must satisfy Condition (b) of
Theorem 3. Then, F contains every vertex of
critical separation pairs and any split component
which is neither a bond nor a ring must have an
edge on the outer face. Observe that if a critical
separation pair fx; yg has exactly three fx; yg-
split components, then two of them can have
edges on F and one cannot have an edge on F ;
the fx; yg-split component which will not have an
edge on F must be either a bond or a ring. Thus,
to test whether G has such an embedding or not,
a new graph from G is constructed as follows.
For each critical separation pair fx; yg, if .x; y/
is an edge of G, then delete the edge fx; yg from
G. If .x; y/ is not an edge of G and exactly one
fx; yg-split component is a ring, then delete the
x-y path in the component fromG. LetG1 be the
resulting graph, as illustrated in Fig. 4b. Let G2

be the graph obtained from G1 by adding a new
vertex v and joining v to all vertices of critical
separation pairs of G, as illustrated in Fig. 4c.
If G2 has a planar embedding �2 such that v is
embedded on the outer face of �2 as illustrated
in Fig. 4d, we get a planar embedding �1 of G1

from �2 by deleting v from the embedding as
illustrated in Fig. 4e. The outer facial cycle of
�1 will be the outer facial cycle F of a planar
embedding of G as illustrated in Fig. 4f which
satisfies the Condition (b) of Theorem 3. Thus,
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Convex Graph Drawing, Fig. 4 Illustration for convex testing; (a) G, (b) G1, (c) G2, (d) �2, (e) �1, and (f) �

the strict convex polygon F � of F is extendible.
Hence,G has a convex drawing ifG2 has a planar
embedding with v on the outer face. It is not
difficult to show the converse implication. Hence,
Theorem 2 holds.

Observe that F may not be the only extendible
facial cycle of G, that is, � may not be the only
planar embedding ofG which has a convex draw-
ing. Chiba et al. [2] also gave a linear algorithm
which finds all extendible facial cycles of G.

Applications

Thomassen [10] showed applications of convex
representations in proving a conjecture of Grün-
baum and Shephard on convex deformation of
convex graphs and for giving a short proof of
the result of Mani-Levistka, Guigas, and Klee
on convex representation of infinite doubly peri-
odic 3-connected planar graphs. The research on
convex drawing of planar graphs was motivated
by the desire of finding aesthetic drawings of
graphs [3]. Arkin et al. [1] showed that there is a
monotone path in some direction between every
pair of vertices in any strictly convex drawing of
a planar graph.

Open Problems

A convex drawing is called a convex grid drawing
if each vertex is drawn at a grid point of an
integer grid. Using canonical ordering and shift
method, Chrobak and Kant [4] showed that every
3-connected plane graph has a convex grid draw-
ing on an .n � 2/ � .n � 2/ grid and such a grid
drawing can be found in linear time. However, the
question of whether every planar graph which has
a convex drawing admits a convex grid drawing
on a grid of polynomial size remained as an open
problem. Several research works are concentrated
in this direction [6, 7, 13]. For example, Zhou
and Nishizeki showed that every internally tricon-
nected plane graph G whose decomposition tree
T .G/ has exactly four leaves has a convex grid
drawing on a 2n�4n D O.n2/ grid and presented
a linear algorithm to find such a drawing [13].
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Problem Definition

The convex hull of a set P of n points in R
d is

the intersection of all convex regions that contain
P . While convex hulls are defined for arbitrary
d , the focus here is on d D 2 (and d D 3). For
a more general overview, we recommend reading
[7, 9] as well as [3].

A frequently used visual description for a
convex hull in 2D is a rubber band: when we
imagine the points in the plane to be nails and
put a rubber band around them, the convex hull is
exactly the structure we obtain by a tight rubber
band; see Fig. 1.

The above definition, though intuitive, is hard
to use for algorithms to compute the convex hull
– one would have to intersect all convex supersets
of P . However, one can show that there is an
alternative definition of the convex hull of P : it
is the set of all convex combinations of P .

Notation
For a point set P D fp1; : : : ; png, a convex
combination is of the form

�1p1C�2p2C: : : �npn with �i � 0;
X

�iD1:

(1)
The convex hull, CH.P /, of P is the polygon
that consists of all convex combinations of P .
The ordered convex hull gives the ordered se-
quence of vertices on the boundary of CH.P /,
instead of only the set of vertices that constitute
the hull.

Key Results

In the following, we present algorithms that com-
pute the ordered convex hull of a given point set
P in the plane. We start with a short proof for a
lower bound of ˝.n logn/.

Lower Bound
Theorem 1 Let P be a set of n points in the
plane. An algorithm that computes the ordered
convex hull is in ˝.n logn/.
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C

Convex Hulls, Fig. 1 The
convex hull of a set of
points in R

2

Convex Hulls, Fig. 2 Set of numbers X in gray, the
point set P in black and the convex hull CH.P / in blue

Proof Given an unsorted list of numbers X D
fx1; x2; : : : ; xng, we can lift these to a parabola
as depicted in Fig. 2. Computing the convex hull
CH.P / of the resulting set P D f.xi ; x

2
i / j xi 2

Xg allows to output the sorted numbers by read-
ing off the x-values of the vertices on the lower
chain of CH.P / in O.n/ time. Thus, a computa-
tion of CH.P / in o.n logn/ time would contra-
dict the lower bound ˝.n logn/ for sorting.

Divide and Conquer by Preparata and
Hong [8]
In the first step, the elements of P are sorted,
and then the algorithm recursively divides P into
subsets A and B of similar size. This is done
until at most three points are left in each set,

for which the convex hull is trivially computed.
The sorting assures that the computed convex
hulls are disjoint. Thus, in each step of the merge
phase, the algorithm is given two ordered convex
hulls CH(A) and CH(B), which are separated by
a vertical line. To compute CH(A [ B), it needs
to find the two tangents supporting CH(A) and
CH(B) from above and below, respectively. The
procedure, which is often referred to as a “wobbly
stick”, is exemplified in Fig. 3.

It is easy to see that each level of the merge
phase requires O.n/ time, resulting in a total
running time of O.n logn/. A similar idea is also
applicable in 3D.

Graham Scan [4]
The Graham Scan starts with a known point on
the hull as an anchor, the bottommost (rightmost)
point p1. The remaining n � 1 points are sorted
according to the angles they form with the nega-
tive x-axis through p1, from the largest angle to
the smallest angle. The points pi are processed
using this angular order. For the next point pi ,
the algorithm determines whether the last con-
structed hull edge xy and pi form a left or a right
turn. In case of a right turn, y is not part of the
hull and is discarded. The discarding is continued
as long as the last three points form a right turn.
Once xy and pi form a left turn, the next point
in the angular order is considered. Because of the
initial sorting step, the total running time of the
Graham Scan is O.n logn/.

Jarvis’s March or Gift Wrapping [5]
Jarvis’s March is an output-sensitive algorithm,
i.e., the running time does depend on the size of
the output. Its total running time isO.nh/, where
h is the number of points on CH.P /.
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CH(A) CH(B)
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Convex Hulls, Fig. 3 Finding the tangent supporting
CH(A) and CH(B) from below: considering CH(A) and
CH(B) as obstacles, the algorithm iteratively tries to
increment either ˛ or ˇ in clockwise (cw) and coun-

terclockwise (ccw) order, respectively, while maintaining
visibility of ˛ and ˇ . That is, it stops as soon as ˛ does
not see the ccw neighbor of ˇ and ˇ does not see the cw
neighbor of ˛

p1 p1

p2 p2

p3

p1

p2

p3

p4

Convex Hulls, Fig. 4 The first three steps of the gift wrapping algorithm. Starting at p1, the algorithm acts as if it was
wrapping a string around the point set

The algorithm starts with a known point on
the hull, i.e., the bottommost (rightmost) point
p1. Just like wrapping a string around the point
set, it then computes the next point on CH.P /
in counterclockwise order: compare angles to
all other points and choose the point with the
largest angle to the negative x-axis. In general,
the wrapping step is as follows: let pk�1 and
pk be the two previously computed hull vertices,
then pkC1 is set to the point p 2 P; p ¤ pk , that
maximizes the angle †pk�1pkpkC1; see Fig. 4.
Each steps takes O.n/ time and finds one point
on CH.P /. Thus, the total running time isO.nh/.

Chan’s Algorithm [2]
In 1996, Chan presented an output-sensitive al-
gorithm, with a worst-case optimal running time
of O.n log h/. This does not contradict the lower
bound presented above, as it features n points on
the hull. Let us for now assume that h is known,
the number of points on the final convex hull. The
algorithm runs in two phases.

Phase 1 splits P into dn=he groups of size at
most h. Computing the convex hull for each
set using, e.g., Graham Scan takes O.h log h/.

This results in dn=he (potentially overlapping)
convex hulls and takes O.dn=he � h log h/ D
O.n logh/; see Fig. 5.

Phase 2 essentially applies Jarvis’s March.
Starting at the lowest leftmost point, it wraps
a string around the set of convex hulls, i.e., for
each hull it computes the proper tangent to the
current point and chooses the tangent with the
best angle in order to obtain the next point on
the final convex hull. Computing the tangent
for a hull of size h takes O.logh/, which
must be done for each of the dn=he hulls in
each of the h rounds. Thus, the running time
is O.h � dn=he log h/ D O.n log h/.

Because h is not known, the algorithm does
several such rounds for increasing values of h,
until h is determined. In the initial round, it
starts with a very small h0 D 4 D 220

and
continues with hi D 22i

in round i . As long
as hi < h, phase 1 is very quick. The second
phase stops with an incomplete hull, knowing
that hi is still too small. That is, round i costs
at most n log.hi / D n2i . The algorithm ter-
minates as soon as hi > h. Thus, in total we
obtain dlog log he rounds. Therefore, the total
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Convex Hulls, Fig. 5
Initial step of Jarvis’s
March in the first round of
Chan’s algorithm
(h0 D 4). Starting at p1,
the algorithm computes
tangents to each convex
hull (indicated in different
colors) and selects the first
tangent in
counterclockwise order

p1

cost is:

O.

dlog log heX

tD1

n2t /DO.n2dlog log heC1/DO.n logh/:

(2)

Implementation

Like many geometric algorithms, the computa-
tion of the convex hull can be very sensitive to
inconsistencies, due to rounding errors [6]. A
well-maintained collection of exact implementa-
tions that eliminates problems due to rounding
errors can be found in CGAL, the Computational
Geometry Algorithms Library [1].
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Problem Definition

Data is often sampled as a means of addressing
resource constraints on storage, bandwidth, or
processing – even when we have the resources to
store the full data set, processing queries exactly
over the data can be very expensive, and we
therefore may opt for approximate fast answers
obtained from the much smaller sample.

Our focus here is on data sets that have the
form of a set of keys from some universe and mul-
tiple instances, which are assignments of non-
negative values to keys. We denote by vhi the
value of key h in instance i . Examples of data
sets with this form include measurements of a set
of parameters; snapshots of a state of a system;
logs of requests, transactions, or activity; IP flow
records in different time periods; and occurrences
of terms in a set of documents. Typically, this
matrix is very sparse – the vast majority of entries
are vih D 0.

The sampling algorithms we apply can scan
the full data set but retain the values vhi of only
a subset of the entries .h; i/. From the sample,
we would like to estimate functions (or statistics)
specified over the original data. In particular,
many common queries can be expressed as (or
as a function of) the sum

P
h2H f .vh�/ over

selected keys h 2 H of a basic function f

applied to the values of the key h in one or more
instances. These include domain (subset) queriesP

h2H vhi which are the total weight of keys
H in instance i , Lp distances between instances
i; j which use f .vh�/ 	 jvhi � vhj j

p , one-
sided distances which use f .vh�/ 	 maxf0; vhi�

vhj g
p , and sums of quantiles (say maximum or

median) of the tuple .vh1; : : : ; vhr /.
The objective is to design a family of sampling

scheme that is suitable for one or more query
types. When the sampling scheme is specified, we
are interested in designing estimators that use the
information in the sample in the “best” way. The
estimators are functions Of that are applied to the
sample and return an approximate answer to the
query.

When sampling a single-instance i and aiming
for approximation quality on domain queries and
on sparse or skewed data, we use a weighted
sample, meaning that the inclusion probability of
an entry .h; i/ in the sample depends (usually is
increasing) with its weight vhi . In particular, zero
entries are never sampled. Two popular weighted
sampling schemes are Poisson sampling, where
entries are sampled independently, and bottom-k
(order) sampling [12, 35, 36]. It is convenient for
our purposes to specify these sampling schemes
through a rank function, r W Œ0; 1
 � V !

R, which maps seed-value pairs to a number
r.u; v/ that is nonincreasing with u and nonde-
creasing with v. For each item h, we draw a
seed u.h/ � U Œ0; 1
 uniformly at random and
compute the rank value r.u.h/; vhi /. A Poisson
sample includes a key h ” r.u.h/; vhi / �

Thi , where Thi are fixed thresholds. A bottom-
k sample includes the k items with the highest
ranks. (The term bottom-k is due to equivalently
using the inverse rank function and lowest k ranks
[12–14, 35, 36].)

Specifically, Poisson probability proportional
to size (PPS) [28] samples include each key
with probability proportion to its value. They
are specified using the rank function r.u; v/ D
v=u and a fixed Ti 	 Thi across all keys in
the instance. Priority (sequential Poisson) sam-
ples [22, 33, 38] are bottom-k samples utilizing
the PPS ranks r.u; v/ D v=u, and successive
weighted samplings without replacement [12, 23,
35] are bottom-k samples with the rank function
r.u; v/ D �v= ln.1 � u/. All these sampling
algorithms can be easily implemented when the
data is streamed or distributed.

Queries over a single instance can be
estimated using inverse probabilities [29]. For
each sampled key h, we can compute the
probability q.h/ that it is included in the sample.
With Poisson sampling, this probability is that
of u � U Œ0; 1
 satisfying r.u.h/; vhi / � Thi .
With bottom-k sampling, we use a conditioned
version [13, 22, 38]: The probability q.h/ is that
of r.u.h/; vhi / being larger than the kth largest
value among r.u.y/; vyi /, where y are all keys
other than h and u.y/ is fixed to be as in the
current sample. Note that this threshold value
is available to us from the sample, and hence
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keys: 1 2 3 4 5 6 7 8

Instance1: 1 3 2 0 1 4 0 1

Instance2: 0 1 3 2 0 1 2 3

PPS sampling probabilities for T=4 (sample of expected size 3):

Instance1: 0.25 0.75 0.50 0.00 0.25 1.00 0.00 0.25

Instance2: 0.00 0.25 0.75 0.50 0.00 0.25 0.50 0.75

Coordinated Sampling, Fig. 1 Two instances with 8
keys and respective PPS sampling probabilities for thresh-
old value 4, so a key with value v is sampled with
probability minf1; v=4g. To obtain two coordinated PPS
samples of the instances, we associate an independent
u.i/ 	 U Œ0; 1� with each key i 2 Œ8�. We then

sample i 2 Œ8� in instance h 2 Œ2� if and only if
u.i/ � vhi =4, where vhi is the value of i in instance h.
When coordinating the samples this way, we make them
as similar as possible. In the example, key 8 will always
(for any drawing of seeds) be sampled in instance 2 if it is
sampled in instance 1 and vice versa for key 2

q.h/ can be computed for each sampled key. We
then estimate

P
h2H f .vhi / using the sum over

sampled keys that are in H of f .vhi /=q.h/. This
estimator is a sum estimator in that it is applied
separately for each key: Of .h/ D 0 when the
key is not sampled and is Of .h/ D f .vhi /=q.h/

otherwise. When the sampling scheme is such
that q.h/ > 0 whenever f .vhi / > 0, this
estimator is unbiased. Moreover, this is also the
optimal sum estimator, in terms of minimizing
variance. We note that tighter estimators can be
obtained when the total weight of the instance is
available to the estimator [13].

What Is Sample Coordination?
When the data has multiple instances, we dis-
tinguish between a data source that is dispersed,
meaning that different entries of each key occur
in different times or locations and co-located if
all entries occur together. These scenarios [17]
impose different constraints on the sampling al-
gorithm. In particular, with co-located data, it is
easy to include the complete tuple vh� of each key
h that is sampled in at least one instance, whereas
with dispersed data, we would want the sampling
of one entry vhi not to depend on the values vhj

in other instances j .
When sampling, we can redraw a fresh set

of random seed values u.h/ for each instance,
which results in the samples being independent.
Samples of different instances are coordinated
when the set of seeds u.h/ is common in all
instances. Scalable sharing of seeds when data
is dispersed is facilitated through random hash

functions u.h/, where the only requirement
for our purposes is uniformity and pairwise
independence.

Coordinated sampling has the property that the
samples of different instances are more similar
when the instances are more similar, a property
also known as Locality Sensitive Hashing (LSH)
[26, 30, 31]. Figure 1 contains an example data
set of two instances and the PPS sampling proba-
bilities of each item in each instance. When the
samples are coordinated, a key sampled in one
instance is always sampled in the instance with
a higher inclusion probability.

Why Use Coordination?

Co-located Data
With co-located data, coordination allows us to
minimize the sample size, which is the (expected)
total number of included keys, while ensuring
that the sample “contains” a desired Poisson or
bottom-k sample of each instance.

For a key h, we can consider its respective
inclusion probabilities in each of the instances
(for bottom-k, inclusion may be conditioned on
seeds of other keys). With coordination, the in-
clusion probability in the combined sample, q.h/,
is always the maximum of these probabilities. Es-
timation with these samples is easy: We estimateP

h2H f .vh�/ using the Horvitz-Thompson esti-
mator (inverse probabilities) [29]. The estimate is
the sum f .vh�/=q.h/ over sampled keys that are
inH . Since the complete tuple vh� is available for
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each sampled key, we can compute f .vh�/, q.h/,
and thus the estimate.

When the query involves entries from a single-
instance i , the variance of this estimate is at most
that obtained from a respective sample of i . This
is because the inclusion probability q.h/ of each
key is at least as high as in the respective single-
instance sample. Therefore, by coordinating the
samples, we minimize the total number of keys
included while ensuring estimation quality with
respect to each instance.

Dispersed Data
With dispersed data, coordination is useful when
we are interested in both domain queries over a
single instance at a time and some queries that in-
volve complex relation, such as similarity queries
between multiple instances. Estimation of more
complex relations, however, can be much more
involved. Intuitively, this is because the sample
can provide us with partial information on f .vh�/

that is short of the exact value but still lower
bounds it by a positive amount. Therefore, in this
case, inverse probability estimators may not be
optimal or even well defined – there could be
zero probability of knowing the exact value, but
the function f can have a nonnegative unbiased
estimator. In the sequel, we overview estimators
that are able to optimally use the available infor-
mation.

Implicit Data
Another setting where coordination arises is
when the input is not explicit, for example,
expressed as relations in a graph, and coordinated
samples can be obtained much more efficiently
than independent samples. In this case, we work
with coordinated samples even when we are
interested in queries that are approximated well
with independent samples.

Key Results

We now overview results on estimators that are
applied to coordinated samples of dispersed data.

We first observe that coordinated PPS and
bottom-k samples are mergeable, meaning that a
respective sample of the union, or more generally,

of a new instance whose weight of each key is
the coordinate-wise maxima of several instances
can be computed from the individual samples
of each instance. This makes some estimation
problems very simple. Even in these cases, how-
ever, better estimators of cardinalities of unions
and intersections (key-wise maxima or minima)
can be computed when we consider all sampled
keys in the two sets rather than just the sample
of the union. Such estimators for the 0/1 case
are presented in [14] and for general nonnegative
weights in [17].

The general question is to derive estimators for
an arbitrary function f � 0 with respect to a
coordinated sampling scheme. This problem can
be formalized as a Monotone Estimation Problem
(MEP) [9]: The smaller the seed u.h/ 2 U Œ0; 1

is, the more information we have on the values
vh� and therefore on f .vh�/. We are interested
in deriving estimators Of that are nonnegative;
this is because we are interested in nonnegative
functions and estimates should be from the same
range. We also seek unbiasedness, because we are
ultimately estimating a sum over many keys, and
bias accumulates even when sampling of different
keys are independent. Other desirable properties
are finite variance (for any vh� in the domain) or
bounded estimates. A complete characterization
of functions f for which estimators with subsets
of these properties exist is given in [15].

We are also interested in deriving estimators
that are admissible. Admissibility is Pareto op-
timality, meaning that any other estimator with
lower variance on some data would have higher
variance on another. Derivations of admissible
estimators (for any MEP for which an unbiased
nonnegative estimator exists) are provided in [9].
Of particular interest is the L� estimator, which
is the unique admissible monotone estimator. By
monotone, we mean that when there is more
information, that is, when u.h/ is higher, the
estimate Of is at least as high.

A definition of variance competitiveness of
MEP estimators is provided in [15]. The competi-
tive ratio of an estimator Of is the maximum, over
all possible inputs (data values) vh�, of the ratio
of the integral of the square of Of to the minimum
possible by a nonnegative unbiased estimator. It
turns out that the L� has ratio of at most 4 on any
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MEP for which a nonnegative unbiased estimator
with finite variances exists [9]. Two interesting
remaining open problems, partially addressed in
[10], are to design an estimator with minimum
ratio for a given MEP and also to bound the
maximum minimum ratio over all MEPs that
admit an unbiased nonnegative estimator with
finite variance.

Applications

We briefly discuss the history and some applica-
tions of coordinated sampling.

Sample coordination was proposed in 1972 by
Brewer, Early, and Joice [2], as a method to max-
imize overlap and therefore minimize overhead
in repeated surveys [34, 36, 37]: The values of
keys change, and therefore, there is a new set of
PPS sampling probabilities. With coordination,
the sample of the new instance is as similar as
possible to the previous sample, and therefore,
the number of keys that need to be surveyed
again is minimized. The term permanent random
numbers (PRN) is used in the statistics literature
for sample coordination.

Coordination was subsequently used by com-
puter scientists to facilitate efficient processing
of large data sets, as estimates obtained over
coordinated samples are much more accurate
than possible with independent samples [1, 3–
6, 8, 13, 14, 16, 17, 21, 24, 25, 27, 32].

In some applications, the representation of
the data is not explicit, and coordinated samples
are much easier to compute than independent
samples. One such example is computing all-
distance sketches, which are coordinated samples
of (all) d -neighborhoods of all nodes in a graph
[6,7,11–13,32]. These sketches support centrality
and similarity and influence queries useful in the
analysis of massive graph data sets such as social
networks or Web graphs [18–20].
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Problem Definition

We consider a framework of the problems to
enumerate all the subsets of a given graph, each
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subset of which satisfies a given constraint. For
example, enumerating all Hamilton cycles, all
spanning trees, all paths between two vertices,
all independent sets of vertices, etc. When we
assume a graph G D .V;E/ with the vertex set
V D fv1; v2; : : : ; vng and the edge set E D
fe1; e2; : : : ; emg, a graph enumeration problem is
to compute a subset of the power set 2E (or 2V ),
each element of which satisfies a given constraint.
In this model, we can consider that each solution
is a combination of edges (or vertices), and the
problem is how to represent the set of solutions
and how to generate it efficiently.

Constraints

Any kind of constraint for the graph edges and
vertices can be considered. For example, we con-
sider to enumerate all the simple (self-avoiding)
paths connecting the two vertices s and t on the
graph shown in Fig. 1. The constraint is described
as:

1. At a terminal vertex (s and t ), only one edge
is selected and connected to the vertex.

2. At the other vertices, none or just two edges
are selected and connected to the vertex, re-
spectively.

3. The set of selected edges forms a connected
component.

In this example, the set of solutions can be
represented as a combination of the edges,
fe1e3e5; e1e4; e2e3e4; e2e5g.

Key Results

A binary decision diagram (BDD) is a representa-
tion of a Boolean function, one of the most basic
models of discrete structures. After the epoch-
making paper [1] by Bryant in 1986, BDD-based

Counting by ZDD, Fig. 1
Example of a graph

methods have attracted a great deal of attention.
BDD was originally invented for the efficient
Boolean function manipulation required in VLSI
logic design, but Boolean functions are also used
for modeling many kinds of combinatorial prob-
lems. Zero-suppressed BDD (ZDD) [8] is a vari-
ant of BDD, customized for manipulating “sets
of combinations.” ZDDs have been successfully
applied not only for VLSI design but also for
solving various combinatorial problems, such as
constraint satisfaction, frequent pattern mining,
and graph enumeration.

Recently, D. E. Knuth presented a surprisingly
fast algorithm “Simpath” [7] to construct a ZDD
which represents all the paths connecting two
points in a given graph structure. This work is
important because many kinds of practical prob-
lems are efficiently solved by some variations
of this algorithm. We generically call such ZDD
construction method “frontier-based methods.”

BDDs/ZDDs for Graph Enumeration

A binary decision diagram (BDD) is a graph
representation for a Boolean function, developed
for VLSI design. A BDD is derived by reducing a
binary decision tree, which represents a decision-
making process by the input variables. If we fix
the order of input variables and apply the follow-
ing two reduction rules, then we have a compact
canonical form for a given Boolean function:

1. Delete all redundant nodes whose two edges
have the same destination.

2. Share all equivalent nodes having the same
child nodes and the same variable.

The compression ratio achieved by using a BDD
instead of a decision tree depends on the property
of Boolean function to be represented, but it can
be 10–100 times in some practical cases.

A zero-suppressed BDD (ZDD) is a variant of
BDD, customized for manipulating sets of com-
binations. This data structure was first introduced
by Minato [8]. ZDDs are based on the special
reduction rules different from ordinary ones, as
follows:
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1. Delete all nodes whose 1-edge directly points
to the 0-terminal node, but do not delete the
nodes which were deleted in ordinary BDDs.

This new reduction rule is extremely effective,
when it is applied to a set of sparse combinations.
If each item appears in 1 % of combinations
in average, ZDDs are possibly more compact
than ordinary BDDs, by up to 100 times. Such
situations often appear in real-life problems, for
example, in a supermarket, the number of items
in a customer’s basket is usually much less than
all the items displayed there. Because of such an
advantage, ZDDs are now widely recognized as
the most important variant of BDD.

ZDDs can be utilized for enumerating and
indexing the solutions of a graph problem. For
example, Fig. 2 shows the ZDD enumerating all
the simple paths of the graph the same as Fig. 1.
The ZDD has four paths from the root node to the
1-terminal node, and each path corresponds to the
solution of the problem, where ei D 1 means to
use the edge ei and ei D 0 means not to use ei .

Frontier-Based Method

In 2009, Knuth published the surprisingly fast
algorithm “Simpath” [7] (Vol. 4, Fascicle 1,
p. 121, or p. 254 of Vol. 4A) to construct a
ZDD which represents all the simple (or self-
avoiding) paths connecting two points s and t in a
given graph (not necessarily the shortest ones but

Counting by ZDD, Fig. 2 ZDD representing the paths
from s to t

ones not passing through the same point twice).
This work is important because many kinds of
practical problems can be efficiently solved by
some variations of this algorithm. Knuth provides
his own C source codes on his web page for
public access, and the program is surprisingly
fast. For example, in a 14 � 14 grid graph (420
edges in total), the number of self-avoiding
paths between opposite corners is exactly
227449714676812739631826459327989863387

613323440 (2.27� 1047) ways. By applying
the Simpath algorithm, the set of paths can be
compressed into a ZDD with only 144759636
nodes, and the computation time is only a few
minutes.

The Simpath algorithm is minutely written
in Knuth’s book, and his source codes are also
provided, but it is not easy to read. The survey
paper [9] will be helpful for understanding the
basic mechanism of the Simpath algorithm.

The Simpath algorithm belongs to the method
of dynamic programming, by scanning the given
graph from left to right like a moving frontier
line. If the frontier grows larger in the compu-
tation process, more intermediate states appear
and more computation time is required. Thus,
it is important to keep the frontier small. The
maximum size of the frontier depends on the
given graph structures and the order of the edges.
Planar and narrow graphs tend to have small
frontier.

Knuth described in his book [7] that the Sim-
path algorithm can easily be modified to generate
not only s � t paths but also Hamilton paths,
directed paths, some kinds of cycles, and many
other problems by slightly changing the mate
data structure. We generically call such ZDD
construction method “frontier-based methods.”

Applications

Here we list graph problems which can be enu-
merated and indexed by a ZDD using a frontier-
based method.

All s � t paths, s � t paths with length k, k-
pairs of s � t paths, all cycles, cycles with
length k, Hamilton paths/cycles, directed
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paths/cycles, all connected components, span-
ning trees/forests, Steiner trees, all cutsets,
k-partitioning, calculating probability of
connectivity, all cliques, all independent sets,
graph colorings, tilings, and perfect/imperfect
matching.

These problems are strongly related to many
kinds of real-life problems. For example, path
enumeration is of course important in geographic
information systems and is also used for
dependency analysis of a process flow chart,
fault analysis of industrial systems, etc. Recently,
Inoue et al. [5] discussed the design of electric
power distribution systems. Such civil engineer-
ing systems are usually near to planar graphs,
so the frontier-based method is very effective
in many cases. They succeeded in generating
a ZDD to enumerate all the possible switching
patterns in a realistic benchmark of an electric
power distribution system with 468 switches.
The obtained ZDD represents as many as 1060

of the valid switching patterns, but the actual
ZDD size is less than 100 MB, and computation
time is around 30 min. After generating the
ZDD, all valid switching patterns are compactly
represented, and we can efficiently discover the
switching patterns with maximum, minimum,
and average cost. We can also efficiently apply
additional constraints to the current solutions. In
this way, frontier-based methods can be utilized
for many kinds of real-life problems.

Open Problems

Frontier-based method is a general framework of
the algorithm, and we have to develop particular
algorithm for enumerating graphs to satisfy a
given constraint. It is sometimes time consuming,
and it is not clearly understood which kind of
graphs can be generated easily and which are hard
or impossible.

Experimental Results

It is an interesting problem how large n is possi-
ble to count the number of simple paths included
in an n�n grid graph with s and t at the opposite

corners. We have worked for this problems and
succeeded in counting the total number of self-
avoiding s � t paths for the 26 � 26 grid graph.
The number is exactly:

173699315862792729311754404212364989003

7222958828814060466370372091034241327

613476278921819349800610708229622314338

0491348290026721931129627708738890853

908108906396:

This is the current world record and is officially
registered in the On-Line Encyclopedia of Integer
Sequences [10] in November 2013. The detailed
techniques for solving larger problems are pre-
sented in the report by Iwashita et al. [6]

A Related YouTube Video

In 2012, Minato supervised a short educational
animation video (Fig. 3). The video is mainly de-
signed for junior high school to college students,
to show the power of combinatorial explosion and
the state-of-the-art techniques for solving such
hard problems. This video uses the simple path
enumeration problem for n � n grid graphs. The
story is that the teacher counts the total number
of paths for children starting from n D 1, but
she will be faced with a difficult situation, since
the number grows unbelievably fast. She would
spend 250,000 years to count the paths for the
10�10 grid graph by using a supercomputer if she
used a naive method. The story ends by telling
that a state-of-the-art algorithm can finish the
same problem in a few seconds. The video is now
shown in YouTube [2] and received more than
1.5 million views, which is an extraordinary case
in the scientific educational contents. We hear
that Knuth also enjoyed this video and shared it
to several of his friends.

Graphillion: Open Software Library

The above techniques of data structures and al-
gorithms have been implemented and published
as an open software library, named “Graphillion”
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Counting by ZDD, Fig. 3
Screenshots of the
animation video [2]

[3, 4]. Graphillion is a library for manipulating
very large sets of graphs, based on ZDDs and
frontier-based method. Traditional graph libraries
maintain each graph individually, which causes
poor scalability, while Graphillion handles a set
of graphs collectively without considering indi-
vidual graph. Graphillion is implemented as a
Python extension in C++, to encourage easy de-
velopment of its applications without introducing
significant performance overhead.

URLs to Code and Data Sets

The open software library “Graphillion” can
be found on the web page at http://graphillion.
org, the YouTube video http://www.youtube.
com/watch?v=Q4gTV4r0zRs, and the On-Line
Encyclopedia of Integer Sequences (OEIS) on the
self-avoiding path enumeration problem https://
oeis.org/A007764.
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Problem Definition

A graph stream is a sequence of unordered pairs
of elements from a set V implicitly describing an
underlying graph G on vertex set. The unordered
pairs represent edges of the graph. A triangle is
a triple of vertices u; v;w 2 V which form a 3-
clique, that is, every unordered pair of vertices of
the set fu; v;wg is connected by an edge. In this
article, we investigate the problem of counting the
number of triangles in an input graph G given
as a graph stream. Furthermore, we restrict our
attention to algorithms which are severely limited
in total space (in particular, they cannot store the
entire stream) and are allowed only a single scan
over the stream of edges.

Next we describe the streaming setting
more formally. Consider a sequence of
distinct unordered pairs or, equivalently, edges
e1; e2; : : : ; em on the set V . Let Gt be the graph
formed by the first t edges of the stream where
t 2 f1; : : : ; mg. Denoting the empty graph by
G0, we see that graph Gt is obtained from Gt�1

by inserting edge et for all t 2 f1; : : : ; mg. An
edge fu; vg of the stream implicitly introduces
vertex labels u and v. New vertices are therefore
implicitly added as new labels. In this article,
we do not consider edge or vertex deletions, nor
do we allow repeated edges. The problem of
counting triangles even in this simple setting has
received a lot of attention [1, 2, 6, 12–15, 17].

A streaming algorithm has a small working
memory M and gets to scan the input stream
in a sequential fashion at most a few times. In
this article, we only consider algorithms which
make a single pass over the input stream. Thus,
the algorithm proceeds by sequentially reading
each edge et from the input graph stream and
updating its data structures in M using et . The
algorithm cannot read an edge that has already
passed again. (It may remember it in M .) Since
the size of M is much smaller than m, the
algorithm must work with only a “sketch” of the
input graph stored in M . The streaming algo-
rithm has access to random coins and typically
maintains a random sketch of the input graph
(e.g., a random subsample of the input edge
stream).

The aim is to output an accurate estimate of
the number of triangles in graph Gm. In fact,
we require that the algorithm output a running
estimate of the number of triangles Tt in graph
Gt seen so far as it is reading the edge stream.
It is also of interest to output an estimate of
another quantity, related to the number of tri-
angles, called transitivity. The transitivity of a
graph, denoted �, is the fraction of length-2 paths
which form triangles. A path of length 2 is also
called a wedge. A wedge ffu; vg; fu;wgg is open
(respectively, closed) if the edge fv;wg is absent
(respectively, present) in the graph. Every closed
wedge is part of a triangle, and every triangle has
exactly three closed wedges. This immediately
gives a formula for transitivity: � D 3T=W ,
where T and W are the total number of triangles
and wedges in the graph, respectively. We use
the subscript t , as in Tt , Wt , and �t , to denote
corresponding quantities for graph Gt . The key
result described in this article is a small space
single-pass streaming algorithm for maintaining
a running estimate for each of Tt , Wt , and �t .

Outline of the Rest of the Article
The bulk of this article is devoted to the de-
scription of results and algorithms of [12]. This
is complemented by a section on related work
where we briefly describe some of the other algo-
rithms for triangle counting. This is followed by
applications of triangle counting, an open prob-
lem, a section describing experimental results,
and, finally, references used in this article.

Key Results

The main result (from [12]) presented in this
article is a single pass, O.m=

p
T /-space stream-

ing algorithm to estimate the transitivity and the
number of triangles of the input graph with small
additive error.

The Algorithm of [12] and Its Analysis

The starting point of the algorithm is the wedge
sampling idea from [19]. The transitivity of a



460 Counting Triangles in Graph Streams

graph is precisely the probability that a uniformly
random wedge from the graph is closed. Thus,
estimating transitivity amounts to approximating
the bias of a coin flip simulated by the follow-
ing probabilistic experiment: sample a wedge
ffu; vg; fu;wgg uniformly from the set of wedges
and output “Heads” if it is closed and “Tails”
otherwise. One can check whether a wedge is
closed by checking if fv;wg is an edge in the
graph. If, in addition, we have an accurate esti-
mate of W , the triangle count can be estimated
using T D �=3 �W .

If we adopt the described strategy, we need
a way to sample a wedge uniformly from the
graph stream. While this task by itself appears
rather challenging, we note that sampling an edge
uniformly from the graph stream can be done
easily via an adaptation of reservoir sampling.
(See below for details.) Can we use an edge
sampling primitive to sample wedges uniformly
from a graph stream? This is exactly what [12]
achieves. Before we describe the algorithm of
[12], we present a key primitive which is also
used in other works on counting triangles in graph
streams.

A key Algorithmic Tool: A Reservoir of
Uniform Edges
This algorithmic tool allows one to maintain a
set Rt of k edges while reading the edge stream
with the following guarantee for every t : each of
the k edges in Rt is selected uniformly from the
edges of Gt and all edges are mutually indepen-
dent. The idea is to adapt the classic reservoir
sampling [21]. More precisely, at the beginning
of the stream, R0 consists of k empty slots. While
reading the edge stream, on observing edge et , do
the following probabilistic experiment indepen-
dently for each of the k slots of Rt�1 to yield Rt :
(i) sample a random number x uniformly from
Œ0; 1
, and (ii) if x � 1=t , replace the slot with et .
Otherwise, keep the slot unchanged.

How does a reservoir of edges Rt help in sam-
pling wedges from the graph stream? When the
edge reservoir Rt is large enough, there are many
pairs of edges in Rt sharing a common vertex,
yielding many wedges. Further, if the transitivity
of the input graph is high, many of these wedges

will in fact be closed wedges, aka, triangles. This
is the idea behind the algorithm of [12]. The
key theoretical insight is that there is a birthday
paradox-like situation here: many uniform edges
result in sufficiently many “collisions” to form
wedges. Recall (e.g., from Chap.II.3 of [10]) that
the classic birthday paradox states that if we
choose 23 random people, the probability that 2
of them share a birthday is at least 1/2. In our
setting, edges correspond to people and “sharing
a birthday” corresponds to sharing a common
vertex.

A Key Analytical Tool: The Birthday
Paradox
Suppose R1; : : : ; Rk are i.i.d. samples from the
uniform distribution on the edges of G. Then for
distinct i; j 2 Œk
, Pr.fRi ; Rj g forms a wedge/ D
2W=m2. By linearity of expectation, the expected
number of expected wedges is

�
k
2

�
.2W=m2/. In

particular, setting k to be c times a large constant
multiple of m=

p
W results in expectation of at

least c2 wedges. Even better is the fact that these
wedges are uniformly (but not independently)
distributed in the set of all wedges. Similarly,
one can show that when k is ˝.m=

p
T /, one

obtains many closed wedges. This is the heart of
the argument in the analysis of the algorithm of
[12].

While we do not wish to present all the tech-
nical details of the algorithm of [12] here, we
do provide some high-level ideas from [12]. The
algorithm maintains a reservoir of edges Rt as
explained above. Further, it maintains a set Ct

of wedges fea; ebg with ea; eb 2 Rt such that
(i) fea; ebg is a closed wedge in Gt and (ii) the
closing edge appears after edges ea and eb in the
stream. In other words, Ct are the wedges in Rt

which can be detected to be closed. The algorithm
outputs a random bit bt whose expectation is
close to �t .

For each edge et of the graph stream:

(a) Update reservoir Rt of k edges as described
above.

(b) Let Wt be the set of wedges in Rt . Let Nt

be the set of wedges in Rt which have et as
their closing edge.
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(c) Update Ct to Ct�1 \Wt [ Nt .
(d) If there are no wedges in Rt , output bt D 0.

Otherwise, sample a uniform wedge in Rt

and output bt D 1 if this wedge is in Ct and
bt D 0 otherwise.

The next theorem shows that the expectation
of bm is close to �=3. Moreover, it shows that
jWmj can be used to estimate W . Getting a good
estimate on EŒbm
 and W allows one to estimate
T by multiplying the two estimates together. We
note that while the theorem is stated for the final
index t D m, it holds for any large enough t .

Theorem 1 ([12]) Assume W � m and fix ˇ 2
.0; 1/. Suppose k D jRmj is ˝.m=.ˇ3

p
T //. Set

OW D m2jWmj=.k.k�1//. Then j�=3�EŒbm
j <

ˇ and PrŒjW � OW j < ˇW 
 are at least 1 � ˇ.

Related Work

The problem of counting triangles in graphs has
been studied extensively in a variety of different
settings: exact, sampling, streaming, and MapRe-
duce. We refer the reader to references in [12]
for a comprehensive list of these works. Here we
focus on a narrow topic: single-pass streaming al-
gorithms for estimating triangle counts. In partic-
ular, we do not discuss streaming algorithms that
make multiple passes (e.g., [11,13]) or algorithms
that compute triangles incident on every vertex
(e.g., Becchetti et al. [4]).

Bar-Yossef et al. [3] were the first to study
the problem of triangle counting in the streaming
setting. Since then there have been a long line of
work improving the guarantees of the algorithm
in various ways [1, 2, 6, 12–15, 17]. Specifically,
Buriol et al. [6] gave an O.mn=T / space algo-
rithm. The algorithm maintains samples of the
form ..u; v/;w/ where .u; v/ is a uniform edge
in the stream and w is a uniform node label other
than u and v. The algorithm checks for presence
of edges .u;w/ and .v;w/ to detect triangle. They
also give an implementation of their algorithm
which is practical but relative error in triangle
estimates can be high. The O.m=

p
T / algorithm

described in this algorithm is from Jha et al. [12].

In parallel with [12], Pavan et al. [17] inde-
pendently gave an O.m�=T / space algorithm
where � is the maximum degree of the graph.
Their algorithm is based on a sampling tech-
nique they introduced called neighborhood sam-
pling. Neighborhood sampling maintains edge
pair samples of the form .r1; r2/. In each pair,
edge r1 is sampled uniformly from the edges
observed so far. Edge r2 is sampled uniformly
from the set N.r1/ where N.r1/ consists of the
edges adjacent to edge r1 that appear after edge
r1 in the stream. When r2 is nonempty, the pair
.r1; r2/ forms a wedge which can be monitored to
see if it forms a triangle. Observe that a triangle
formed by edges et1 , et2 , and et3 appearing in
this order is detected as a closed triangle with
probability 1=jN.et1/j � m. Accounting for this
bias by keeping track of the quantity N.r1/ for
each sample .r1; r2/, one gets an unbiased es-
timator for triangle counts. In a recent work,
Ahmed et al. [1] give practical algorithms for
triangle counting which seem to empirically im-
prove on some of the previous results. In this
work, the authors present a generic technique
called graph sample and hold and use it for
estimating triangle counts. At a high level, graph
sample and hold associates a nonzero probability
pet

to each edge et which corresponds to the
probability with which edge et is independently
sampled. Importantly, the probability pet

may
depend on the graph sampled so far. But the
actual probability with which the edge is sampled
is recorded. Now estimates about the original
graph can be obtained from the sampled graph
using the selection estimator. For example, the
number of triangles is estimated by summing
1=.pet1

� pet2
� pet3

/ over all sampled triangles
fet1 ; et2 ; et3g. This can be seen as a generalization
of neighborhood sampling.

On the lower bound side, Braverman et al. [5]
show that any single-pass streaming algorithm
which gives a good multiplicative approximation
of triangle counts must use ˝.m/ bits of storage
even if the input graph has ˝.n/ triangles. This
improves lower bounds from [3, 13]. For algo-
rithms making a constant c number of passes, for
every constant c, the lower bound is shown to be
˝.m=T / in the same work.
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Applications

The number of triangles in a graph and the
transitivity of a graph are important measures
used widely in the study of networks across many
different domains. For example, these measures
appear in social science research [7, 8, 18, 22], in
data mining applications such as spam detection
and finding common topics on the World Wide
Web [4,9], and in bioinformatics for motif count-
ing [16]. For a more detailed list of applications,

we point the reader to introductory sections of
references in the related work.

Open Problems

Give a tight lower bound on the space required by
a single-pass streaming algorithm for estimating
the number of triangles in graph stream with
additive error. The lower bound for multiplicative
approximation is known to be ˝.m/ [3, 5].
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Experimental Results

Figures 1 and 2 give a glimpse of experimental
results from [12] on performance of algorithm
STREAMING-TRIANGLES. Specifically, Fig. 1
shows the result of running the algorithm on
a variety of graph datasets obtained from [20].
This includes run on graph datasets such as Orkut
social network consisting of 200 M edges. The
relative errors on � and T are mostly less than
5 % (except for graphs with tiny �). The storage
used by the algorithm stated in terms of number
of edges is at most 40 K. (The storage roughly
corresponds to the size of edge reservoir used in
the algorithm of [12] described in this article.)

An important aspect of the algorithm pre-
sented in [12] is that it can track the quantities
�t and Tt for all values of t in real time. This is
exhibited in Fig. 2.
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Problem Definition

The problem of sketching a large mathematical
object is to produce a compact data structure
that approximately represents it. The Count-Min
(CM) sketch is an example of a sketch that allows
a number of related quantities to be estimated
with accuracy guarantees, including point queries
and dot product queries. Such queries are at the
core of many computations, so the structure can
be used in order to answer a variety of other
queries, such as frequent items (heavy hitters),
quantile finding, join size estimation, and more.
Since the sketch can process updates in the form
of additions or subtractions to dimensions of
the vector (which may correspond to insertions
or deletions or other transactions), it is capa-
ble of working over streams of updates, at high
rates.

The data structure maintains the linear pro-
jection of the vector with a number of other
random vectors. These vectors are defined im-
plicitly by simple hash functions. Increasing the
range of the hash functions increases the accuracy
of the summary, and increasing the number of
hash functions decreases the probability of a bad
estimate. These trade-offs are quantified precisely
below. Because of this linearity, CM sketches can
be scaled, added, and subtracted, to produce sum-
maries of the corresponding scaled and combined
vectors.

Key Results

The Count-Min sketch was first proposed
in 2003 [4], following several other sketch
techniques, such as the Count sketch [2] and
the AMS sketch [1]. The sketch is similar
to a counting Bloom filter or multistage
filter [7].
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Count-Min Sketch, Fig. 1
Each item i is mapped to
one cell in each row of the
array of counts: when an
update of c to item it

arrives, ct is added to each
of these cells
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Data Structure Description
The CM sketch is simply an array of counters
of width w and depth d , CMŒ1; 1
 : : : CMŒd;w
.
Each entry of the array is initially zero. Addition-
ally, d hash functions

h1 : : : hd W f1 : : : ng ! f1 : : :wg

are chosen uniformly at random from a pairwise-
independent family. Once w and d are chosen,
the space required is fixed: the data structure is
represented by wd counters and d hash functions
(which can each be represented in O.1/ machine
words [12]).

Update Procedure
A vector a of dimension n is described incre-
mentally. Initially, a.0/ is the zero vector, 0, so
ai .0/ is 0 for all i . Its state at time t is denoted
a.t/ D Œa1.t/; : : : ai .t/; : : : an.t/
. Updates to
individual entries of the vector are presented as a
stream of pairs. The t th update is .it ; ct /, meaning
that

ait .t/ D ait .t � 1/C ct

ai 0.t/ D ai 0.t � 1/ i 0 ¤ it :

For convenience, the subscript t is dropped, and
the current state of the vector simply referred to
as a. For simplicity of description, it is assumed
here that although values of ai increase and
decrease with updates, each ai � 0. However,
the sketch can also be applied to the case where
ai s can be less than zero with some increase in
costs [4].

When an update .it ; ct / arrives, ct is added
to one count in each row of the Count-Min
sketch; the counter is determined by hj . For-
mally, given .it ; ct /, the following modifications

are performed:

81�j�d W CMŒj; hj .it /
 CMŒj; hj .it /
Cct :

This procedure is illustrated in Fig. 1. Because
computing each hash function takes constant
time, the total time to perform an update isO.d/,
independent of w. Since d is typically small
in practice (often less than 10), updates can be
processed at high speed.

Point Queries
A point query is to estimate the value of an
entry in the vector ai . Given a query point i ,
an estimate is found from the sketch as Oai D

min1�j �d CMŒj; hj .i/
. The approximation
guarantee is that if w D d e

"
e and d D dln 1

ı
e, the

estimate Oai obeys ai � Oai ; and, with probability
at least 1 � ı,

Oai � ai C "kak1:

Here, kak1 is the L1 norm of a, i.e., the sum of
the (absolute) values. The proof follows by using
the Markov inequality to limit the error in each
row and then using the independence of the hash
functions to amplify the success probability.

This analysis makes no assumption about the
distribution of values in a. In many applications,
there are Zipfian, or power law, distributions of
item frequencies. Here, the (relative) frequency
of the i th most frequent item is proportional to
i�´, for some parameter ´, where ´ is typically in
the range 1–3. Here, the skew in the distribution
can be used to show a stronger space/accuracy
trade-off: for a Zipf distribution with parameter
´, the space required to answer point queries with
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error "kak1 with probability at least 1�ı is given
by O."� minf1;1=´g ln 1=ı/ [5].

Range, Heavy Hitter, and Quantile Queries
A range query is to estimate

Pr
iDl ai for a range

Œl : : : r
. For small ranges, the range sum can be
estimated as a sum of point queries; however,
as the range grows, the error in this approach
also grows linearly. Instead, logn sketches can be
kept, each of which summarizes a derived vector
ak where

ak Œj 
 D

.j C1/2k�1X

iDj 2k

ai

for k D 1 : : : logn. A range of the form
j 2k : : : .jC1/2k�1 is called a dyadic range, and
any arbitrary range Œl : : : r
 can be partitioned into
at most 2 logn dyadic ranges. With appropriate
rescaling of accuracy bounds, it follows that
Count-Min sketches can be used to find an
estimate Or for a range query on l : : : r such that

Or � "kak1 �

rX

iDl

ai � Or:

The right inequality holds with certainty, and the
left inequality holds with probability at least 1 �

ı. The total space required is O. log2 n
"

log 1
ı
/ [4].

The closely related �-quantile query is to find a
point j such that

jX

iD1

ai � �kak1 �

j C1X

iD1

ai :

Range queries can be used to (binary) search for a
j which satisfies this requirement approximately
(i.e., tolerates up to "kak1 error in the above
expression) given �. The overall cost is space
that depends on 1=", with further log factors
for the rescaling necessary to give the overall
guarantee [4]. The time for each insert or delete
operation and the time to find any quantile are
logarithmic in n, the size of the domain.

Heavy hitters are those points i such that ai �

�kak1 for some specified �. The range query

primitive based on Count-Min sketches can again
be used to find heavy hitters, by recursively split-
ting dyadic ranges into two and querying each
half to see if the range is still heavy, until a range
of a single, heavy item is found. The cost of this is
similar to that for quantiles, with space dependent
on 1=" and log n. The time to update the data
structure and to find approximate heavy hitters
is also logarithmic in n. The guarantee is that
every item with frequency at least .�C "/kak1 is
output, and with probability 1 � ı no item whose
frequency is less than �kak1 is output.

Inner Product Queries
The Count-Min sketch can also be used to esti-
mate the inner product between two vectors. The
inner product a�b can be estimated by treating the
Count-Min sketch as a collection of d vectors of
length w and finding the minimum inner product
between corresponding rows of sketches of the
two vectors. With probability 1 � ı, this estimate
is at most an additive quantity "kak1kbk1 above
the true value of a � b. This is to be compared
with AMS sketches which guarantee "kak2kbk2
additive error but require space proportional to 1

"2

to make this guarantee.

Conservative Update
If only positive updates arrive, then the “conser-
vative update” process (due to Estan and Vargh-
ese [7]) can be used. For an update .i; c/, Oai

is computed, and the counts are modified ac-
cording to 81 � j � d W CMŒj; hj .i/
  

max.CMŒj; hj .i/
; Oai C c/. This procedure still
ensures for point queries that ai � Oai , and that
the error is no worse than in the normal update
procedure; it has been observed that conservative
update can improve accuracy “up to an order of
magnitude” [7]. However, deletions or negative
updates can no longer be processed, and the new
update procedure is slower than the original one.

Applications

The Count-Min sketch has found a number of
applications.
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• Indyk [9] used the Count-Min sketch to esti-
mate the residual mass after removing a set of
items, that is, given a (small) set of indices I ,
to estimate

P
i 62I ai . This supports clustering

over streaming data.
• The entropy of a data stream is a function

of the relative frequencies of each item or
character within the stream. Using Count-Min
sketches within a larger data structure based
on additional hashing techniques, B. Lakshmi-
nath and Ganguly [8] showed how to estimate
this entropy to within relative error.

• Sarlós et al. [14] gave approximate algorithms
for personalized page rank computations
which make use of Count-Min sketches to
compactly represent web-sized graphs.

• In describing a system for building selectivity
estimates for complex queries, Spiegel and
Polyzotis [15] use Count-Min sketches
in order to allow clustering over a high-
dimensional space.

• Sketches that reduce the amount of infor-
mation stored seem like a natural candidate
to preserve privacy of information. However,
proving privacy requires more care. Roughan
and Zhang use the Count-Min sketch to allow
private computation of a sketch of a vec-
tor [13]. Dwork et al. show that the Count-Min
sketch can be made pan-private, meaning that
information about individuals contributing to
the data structure is held private.

Experimental Results

There have been a number of experimental stud-
ies of COUNT-MIN and related algorithms for a
variety of computing models. These have shown
that the algorithm is accurate and fast to ex-
ecute [3, 11]. Implementations on desktop ma-
chines achieve many millions of updates per sec-
ond, primarily limited by IO throughput. Other
implementations have incorporated Count-Min
sketch into high-speed streaming systems such
as Gigascope [6] and tuned it to process packet
streams of multi-gigabit speeds. Lai and Byrd re-
port on an implementation of Count-Min sketches
on a low-power stream processor [10] capable

of processing 40 byte packets at a throughput
rate of up to 13 Gbps. This is equivalent to about
44 million updates per second.

URLs to Code and Data Sets

Sample implementations are widely available in
a variety of languages.

C code is given by the MassDal code bank:
http://www.cs.rutgers.edu/~muthu/massdal-
code-index.html.

C++ code by Marios Hadjieleftheriou is
available from http://hadjieleftheriou.com/
sketches/index.html.

The MADlib project has SQL implementations
for Postgres/Greenplum http://madlib.net/.

OCaml implementation is available via https://
github.com/ezyang/ocaml-cminsketch.
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Problem Definition

This problem is concerned with a Walrasian equi-
librium model to determine the prices of CPU
time. In a market model of a CPU job scheduling
problem, the owner of the CPU processing time
sells time slots to customers and the prices of
each time slot depends on the seller’s strategy
and the customers’ bids (valuation functions).
In a Walrasian equilibrium, the market is clear
and each customer is most satisfied according
to its valuation function and current prices. The
work of Deng, Huang, and Li [1] establishes the
existence conditions of Walrasion equilibrium,
and obtains complexity results to determine the
existence of equilibrium. It also discusses the
issues of excessive supply of CPU time and
price dynamics.

Notations
Consider a combinatorial auction (˝; I; V ):

• Commodities: The seller sells m kinds of
indivisible commodities. Let ˝ D f!1 � ı1;

: : : ; !m � ımg denote the set of commodities,
where •j is the available quantity of the item
¨j.

• Agents: There are n agents in the market act-
ing as buyers, denoted by I D f1; 2; : : : ; ng.

• Valuation functions: Each buyer i 2 I has
a valuation function vi W 2

˝ ! R
C to submit

the maximum amount of money he is willing
to pay for a certain bundle of items. Let
V D fv1; v2; : : : ; vng.

An XOR combination of two valuation func-
tions v1 and v2 is defined by:

.v1 XOR v2/.S/ D max fv1.S/; v2.S/g

An atomic bid is a valuation function v

denoted by a pair (S, q), where S 
 ˝ and
q 2 R

C:

v.T / D

(
q ; if S 
 T

0 ; otherwise
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Any valuation function vi can be expressed by an
XOR combination of atomic bids,

viD.Si1; qi1/XOR .Si2; qi2/ : : : XOR .Sin; qin/

Given (˝; I; V ) as the input, the seller will
determine an allocation and a price vector as
the output:

• An allocation X D fX0; X1; X2; : : : ; Xng is
a partition of �, in which Xi is the bundle of
commodities assigned to buyer i and X0 is the
set of unallocated commodities.

• A price vector p is a non-negative vector in
R

m, whose jth entry is the price of good
!j 2 ˝.

For any subset T Df!1� �1; : : : ; !m � �mg 
˝,
define p(T) by p.T / D

Pm
j D1 �jpj . If buyer i

is assigned to a bundle Xi, his utility is
ui .Xi ; p/ D vi .Xi / � p.Xi /.

Definition A Walrasian equilibrium for a combi-
natorial auction (˝; I; V ) is a tuple (X, p), where
X D fX0; X1; : : : ; Xng is an allocation and p is
a price vector, satisfying that:

.1/ p.X0/ D 0I

.2/ ui .Xi ; p/ � ui .B; p/; 8B 
 ˝;

81 � i � n

Such a price vector is also called a market
clearing price, or Walrasian price, or equilibrium
price.

The CPU Job-Scheduling Problem
There are two types of players in a market-
driven CPU resource allocation model: a resource
provider and n consumers. The provider sells to
the consumers CPU time slots and the consumers
each have a job that requires a fixed number of
CPU time, and its valuation function depends on
the time slots assigned to the job, usually the
last assigned CPU time slot. Assume that all jobs
are released at time t D 0 and the ith job needs

si time units. The jobs are interruptible without
preemption cost, as is often modeled for CPU
jobs.

Translating into the language of combinatorial
auctions, there are m commodities (time units),
˝ D f!1; : : : ; !mg, and n buyers (jobs),
I D f1; 2; : : : ; ng, in the market. Each buyer has
a valuation function vi, which only depends on
the completion time. Moreover, if not explicitly
mentioned, every job’s valuation function is non-
increasing w.r.t. the completion time.

Key Results

Consider the following linear programming prob-
lem:

max
nX

iD1

kiX

j D1

qijxij

s:t:
X

i;j j!k2Sij

xij � ık ; 8!k 2 ˝

riX

j D1

xij � 1 ; 81 � i � n

0 � xij � 1 ; 8i; j

Denote the problem by LPR and its inte-
ger restriction by IP. The following theorem
shows that a non-zero gap between the integer
programming problem IP and its linear relax-
ation implies the non-existence of the Walrasian
equilibrium.

Theorem 1 In a combinatorial auction, the Wal-
rasian equilibrium exists if and only if the opti-
mum of IP equals the optimum of LPR. The size
of the LP problem is linear to the total number of
XOR bids.
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Theorem 2 Determination of the existence of
Walrasian equilibrium in a CPU job scheduling
problem is strong NP-hard.

Now consider a job scheduling problem in which
the customers’ valuation functions are all linear.
Assume n jobs are released at the time t D 0
for a single machine, the jth job’s time span is
sj 2 N

C and weight wj � 0. The goal of the
scheduling is to minimize the weighted comple-
tion time:

Pn
iD1 wi ti , where ti is the completion

time of job i. Such a problem is called an MWCT
(Minimal Weighted Completion Time) problem.

Theorem 3 In a single-machine MWCT job
scheduling problem, Walrasian equilibrium al-
ways exists when m � EM C�, where m is the
total number of processor time, EM D

Pn
iD1 si

and � D maxk fskg. The equilibrium can be
computed in polynomial time.

The following theorem shows the existence of
a non-increasing price sequence if Walrasian
equilibrium exists.

Theorem 4 If there exists a Walrasian equi-
librium in a job scheduling problem, it can be
adjusted to an equilibrium with consecutive al-
location and a non-increasing equilibrium price
vector.

Applications

Information technology has changed people’s
lifestyles with the creation of many digital
goods, such as word processing software,
computer games, search engines, and online
communities. Such a new economy has already
demanded many theoretical tools (new and old,
of economics and other related disciplines) be
applied to their development and production,
marketing, and pricing. The lack of a full
understanding of the new economy is mainly
due to the fact that digital goods can often
be re-produced at no additional cost, though
multi-fold other factors could also be part of the
difficulty. The work of Deng, Huang, and Li [1]
focuses on CPU time as a product for sale in the

market, through the Walrasian pricing model in
economics. CPU time as a commercial product is
extensively studied in grid computing. Singling
out CPU time pricing will help us to set aside
other complicated issues caused by secondary
factors, and a complete understanding of this
special digital product (or service) may shed
some light on the study of other goods in the
digital economy.

The utilization of CPU time by multiple cus-
tomers has been a crucial issue in the develop-
ment of operating system concept. The rise of
grid computing proposes to fully utilize compu-
tational resources, e.g., CPU time, disk space,
bandwidth. Market-oriented schemes have been
proposed for efficient allocation of computational
grid recourses, by [2, 5]. Later, various practical
and simulation systems have emerged in grid
resource management. Besides the resource al-
location in grids, an economic mechanism has
also been introduced to TCP congestion control
problems, see Kelly [4].
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Problem Definition

Given a point set V, a graph of the vertex set V
in which two vertices have an edge if and only if
the distance between them is at most r for some
positive real number r is called a r-disk graph
over the vertex set V and denoted by Gr .V /. If
r1 � r2, obviously Gr1

.V / � Gr2
.V /. A graph

property is monotonic (increasing) if a graph is
with the property, then every supergraph with
the same vertex set also has the property. The
critical-range problem (or critical-radius prob-
lem) is concerned with the minimal range r such
thatGr .V / is with some monotonic property. For
example, graph connectivity is monotonic and
crucial to many applications. It is interesting to
know whether Gr .V / is connected or not. Let
�con .V / denote the minimal range r such that
Gr .V / is connected. Then, Gr .V / is connected
if r � �con .V /, and otherwise not connected.
Here �con .V / is called the critical range for
connectivity of V. Formally, the critical-range
problem is defined as follows.

Definition 1 The critical range for a monotonic
graph property   over a point set V, denoted by

�� .V /, is the smallest range r such that Gr .V /

has property � .

From another aspect, for a given geometric prop-
erty, a corresponding geometric structure is usu-
ally embedded. In many cases, the critical-range
problem for graph properties is related or equiv-
alent to the longest-edge problem of correspond-
ing geometric structures. For example, if Gr .V /

is connected, it contains a Euclidean minimal
spanning tree (EMST), and �con .V / is equal to
the largest edge length of the EMST. So the
critical range for connectivity problem is equiv-
alent to the longest edge of the EMST prob-
lem, and the critical range for connectivity is
the smallest r such that Gr .V / contains the
EMST.

In most cases, given an instance, the critical
range can be calculated by polynomial time algo-
rithms. So it is not a hard problem to decide the
critical range. Researchers are interested in the
probabilistic analysis of the critical range, espe-
cially asymptotic behaviors of r-disk graphs over
random point sets. Random geometric graphs [8]
is a general term for the theory about r-disk
graphs over random point sets.

Key Results

In the following, problems are discussed in a 2D
plane. Let X1; X2; � � � be independent and uni-
formly distributed random points on a bounded
region A. Given a positive integer n, the point
process fX1; X2; : : : ; Xng is referred to as the
uniform n-point process on A, and is denoted by
Xn .A/. Given a positive number œ, let Po .�/
be a Poisson random variable with parameter
œ, independent of fX1; X2; : : : g. Then the point
process

˚
X1; X2; : : : ; XPo.n/

�
is referred to as

the Poisson point process with mean n on A, and
is denoted by Pn .A/. A is called a deployment
region. An event is said to be asymptotic almost
sure if it occurs with a probability that converges
to 1 as n!1.

In a graph, a node is “isolated” if it has no
neighbor. If a graph is connected, there exists
no isolated node in the graph. The asymptotic
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distribution of the number of isolated nodes is
given by the following theorem [2, 6, 14].

Theorem 1 Let rn D
q

ln nC
�n

and ˝ be a unit-
area disk or square. The number of isolated nodes
in Gr .Xn.˝// or Gr .Pn.˝// is asymptotically
Poisson with mean e� .

According to the theorem, the probability of
the event that there is no isolated node is asymp-
totically equal to exp

�
�e�

�
. In the theory of

random geometric graphs, if a graph has no
isolated node, it is almost surely connected. Thus,
the next theorem follows [6, 8, 9].

Theorem 2 Let rn D
q

ln nC
�n

and ˝ be a unit-
area disk or square. Then,
Pr ŒGr .Xn.˝// is connected
!exp

�
�e�

�
; and

Pr ŒGr .Pn.˝// is connected
! exp
�
�e�

�
:

In wireless sensor networks, the deployment re-
gion is k-covered if every point in the deployment
region is within the coverage ranges of at least
k sensors (vertices). Assume the coverage ranges
are disks of radius r centered at the vertices. Let
k be a fixed non-negative integer, and ˝ be the
unit-area square or disk centered at the origin
o. For any real number t, let t˝ denote the set
ftxW x 2 ˝g, i. e., the square or disk of area t2

centered at the origin. Let C n;r (respectively,
C 0

n;r ) denote the event that ˝ is .k C 1/-covered
by the (open or closed) disks of radius r centered
at the points in Pn.˝/ (respectively, Xn.˝/).
Let K s;n (respectively, K 0

s;n) denote the event
that
p
s˝ is .k C 1/-covered by the unit-area

(closed or open) disks centered at the points in
Pn.
p
s˝/ (respectively, Xn.

p
s˝/). To simplify

the presentation, let ˜ denote the peripheral of
�, which is equal to 4 (respectively, 2

p
�) if �

is a square (respectively, disk). For any � 2 R,
let

˛ .�/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

	
p

��

2 Ce�
�
2


2

16

	
2

p
��Ce�

�
2


 e� �
2 ; if k D 0 I

p
��

2kC6.kC2/Š
e� �

2 ; if k � 1 :

and

ˇ .�/D

8
<̂

:̂

4e�C 2
�p

�C 1p
�

�
�e� �

2 ; if k D 0 I

p
�C 1

p

�

2k�1kŠ
�e� �

2 ; if k � 1 :

The asymptotics of Pr ŒCn;r 
 and Pr
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�
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infinity are given in the following two
theorems [4, 10, 16].
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In Gabriel graphs (GG), two nodes have an edge
if and only if there is no other node in the
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disk using the segment of these two nodes as its
diameter. If V is a point set and l is a positive
real number, we use �GG .V / to denote the largest
edge length of the GG over V, and N .V; l/

denotes the number of GG edges over V whose
length is at least l. Wan and Yi (2007) [11] gave
the following theorem.

Theorem 5 Let ˝ be a unit-area disk. For any

constant � , N

	
Pn.˝/; 2

q
ln nC

�n



is asymptoti-

cally Poisson with mean 2e� , and

lim
n!1

Pr

"

�GG .Pn.˝// < 2

r
lnnC �

�n

#

D exp
�
�2e�

�
:

Let �Del .V / denote the largest edge length of the
Delaunay triangulation over a point set V. The
following theorem is given by Kozma et al. [3].

Theorem 6 Let ˝ be a unit-area disk. Then,

�Del .Xn.˝// D O

 
3

r
lnn

n

!

:

In wireless networks with greedy forward routing
(GFR), each node discards a packet if none of its
neighbors is closer to the destination of the packet
than itself, or otherwise forwards the packet to
the neighbor that is the closest to the destination.
Since each node only needs to maintain the lo-
cations of its one-hop neighbors and each packet
should contain the location of the destination
node, GFR can be implemented in a localized and
memoryless manner. Because of the existence
of local minima where none of the neighbors is
closer to the destination than the current node,
a packet may be discarded before it reaches its
destination. To ensure that every packet can reach
its destination, all nodes should have sufficiently
large transmission radii to avoid the existence
of local minima. Applying the r-disk model, we
assume every node has the same transmission
radius r, and each pair of nodes with distance at
most r has a link. For a point set V, the critical

transmission radius for GFR is given by

�GFR .V /D max
.u;v/2V 2;u¤v

	
min

kw�vk<ku�vk
kw�uk



:

In the definition, .u; v/ is a source–destination
pair and w is a node that is closer to v than u. If
every node is with a transmission radius not less
than �GFR .V /, GFR can guarantee the deliver-
ability between any source–destination pair [12].

Theorem 7 Let ˝ be a unit-area convex
compact region with bounded curvature, and

ˇ0 D 1=
�
2=3 �

p
3=2�

�
 1:62 . Suppose that

n�r2
n D .ˇ C o .1// lnn for some ˇ > 0 . Then,

1. If ˇ > ˇ0 , then �GFR .Pn.˝// � rn is asymp-
totically almost sure.

2. If ˇ < ˇ0 , then �GFR .Pn.˝// > rn is asymp-
totically almost sure.

Applications

In the literature, r-disk graphs (or unit disk graphs
by proper scaling) are widely used to model
homogeneous wireless networks in which each
node is equipped with an omnidirectional an-
tenna. According to the path loss of radio fre-
quency, the transmission ranges (radii) of wire-
less devices depend on transmission powers. For
simplicity, the power assignment problem usu-
ally is modeled by a corresponding transmission
range assignment problem. Recently, wireless ad-
hoc networks have attracted attention from a lot
of researchers because of various possible ap-
plications. In many of the possible applications,
since wireless devices are powered by batteries,
transmission range assignment has become one
of the most important tools for prolonging system
lifetime. By applying the theory of critical ranges,
a randomly deployed wireless ad-hoc network
may have good properties in high probability if
the transmission range is larger than some critical
value.

One application of critical ranges is to con-
nectivity of networks. A network is k-vertex-
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connected if there exist k node-disjoint paths
between any pair of nodes. With such a prop-
erty, at least k distinct communication paths exist
between any pair of nodes, and the network is
connected even if k � 1 nodes fail. Thus, with
a higher degree of connectivity, a network may
have larger bandwidth and higher fault tolerance
capacity. In addition, in [9, 14], and [15], net-
works with node or link failures were considered.

Another application is in topology control.
To efficiently operate wireless ad-hoc networks,
subsets of network topology will be constructed
and maintained. The related topics are called
topology control. A spanner is a subset of the net-
work topology in which the minimal total cost of
a path between any pair of nodes, e.g., distance or
energy consumption, is only a constant fact larger
than the minimal total cost in the original network
topology. Hence spanners are good candidates for
virtual backbones. Geometric structures, includ-
ing Euclidean minimal spanning trees, relative
neighbor graphs, Gabriel graphs, Delaunay tri-
angulations, Yao’s graphs, etc., are widely used
ingredients to construct spanners [1, 5, 13]. By
applying the knowledge of critical ranges, the
complexity of algorithm design can be reduced,
e.g., [3, 11].

Open Problems

A number of problems related to critical ranges
remain open. Most problems discussed here
apply 2-D plane geometry. In other words, the
point set is in the plane. The first direction for
future work is to study those problems in high-
dimension spaces. Another open research area is
on the longest-edge problems for other geometric
structures, e.g., relative neighbor graphs and
Yao’s graphs. A third direction for future work
involves considering relations between graph
properties. A well-known result in random
geometric graphs is that vanishment of isolated
nodes asymptotically implies connectivity of
networks. But for the wireless networks with
unreliable links, this property is still open. In
addition, in wireless sensor networks, the rela-

tions between connectivity and coverage are also
interesting.
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Problem Definition

This entry deals with proving negative results
for distribution-free PAC learning. The crux of
the problem is proving that a polynomial-time
algorithm for learning various concept classes in
the PAC model implies that several well-known
cryptosystems are insecure. Thus, if we assume
a particular cryptosystem is secure, we can con-
clude that it is impossible to efficiently learn a
corresponding set of concept classes.

PAC Learning
We recall here the PAC learning model. Let C be
a concept class (a set of functions over n vari-
ables), and let D be a distribution over the input
space f0; 1gn. With C we associate a size func-
tion size that measures the complexity of each
c 2 C . For example, if C is a class of Boolean
circuits, then size(c) is equal to the number of
gates in c. Let A be a randomized algorithm that
has access to an oracle which returns labeled
examples .x; c.x// for some unknown c 2 C ; the
examples x are drawn according toD. Algorithm
A PAC learns concept classC by hypothesis class
H if for any c 2 C , for any distribution D

over the input space, and any 	; ı > 0, A runs
in time poly.n; 1=	; 1=ı; size.c// and produces a
hypothesis h 2 H such that with probability
at least .1 � •/, PrDŒc.x/ ¤ h.x/
 < 	. This
probability is taken over the random coin tosses
of A as well as over the random labeled examples
seen from distribution D. When H D C (the
hypothesis must be some concept in C ), then A is
a proper PAC learning algorithm. In this entry it
is not assumed H D C , i.e., hardness results for
representation-independent learning algorithms
are discussed. The only assumption made on H
is that for each h 2 H , h can be evaluated in
polynomial time for every input of length n.

Cryptographic Primitives
Also required is knowledge of various crypto-
graphic primitives such as public-key cryptosys-
tems, one-way functions, and one-way trapdoor
functions. For a formal treatment of these primi-
tives, refer to Goldreich [3].
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Informally, a function f is one way if, after
choosing a random x of length n and giving
an adversary A only f .x/, it is computationally
intractable for A to find y such that f .y/ D
f .x/. Furthermore, given x, f .x/ can be eval-
uated in polynomial time. That is, f is easy to
compute one way, but there is no polynomial-
time algorithm for finding pre-images of f on
randomly chosen inputs. Say a function f is
trapdoor if f is one way, but if an adversary A
is given access to a secret “trapdoor” d , then A
can efficiently find random pre-images of f .

Trapdoor functions that are permutations are
closely related to public-key cryptosystems: imag-
ine a person Alice who wants to allow others
to secretly communicate with her. She publishes
a one-way trapdoor permutation f so that it
is publicly available to everyone, but keeps the
“trapdoor” d to herself. Then Bob can send Alice
a secret message x by sending her f .x/. Only Al-
ice is able to invert f (recall f is a permutation)
and recover x because only she knows d .

Key Results

The main insight in Kearns and Valiant’s work
is the following: if f is a trapdoor one-way
function, and C is a circuit class containing the
set of functions capable of inverting f given
access to the trapdoor, then C is not efficiently
PAC learnable, i. e., assuming the difficulty of
inverting trap-door function f , there is a distri-
bution on f0; 1gn where no learning algorithm
can succeed in learning f ’s associated decryption
function.

The following theorem is stated in the (closely
related) language of public-key cryptosystems:

Theorem 1 (Cryptography and learning; cf.
Kearns and Valiant [4]) Consider a public-
key cryptosystem for encrypting individual
bits into n-bit strings. Let C be a concept
class that contains all the decryption functions
f0; 1gn ! f0; 1g of the cryptosystem. If C is
PAC learnable in polynomial time, then there
is a polynomial-time distinguisher between the
encryptions of 0 and 1.

The intuition behind the proof is as follows:
fix an encryption function f , associated secret
key d , and let C be a class of functions such
that the problem of inverting f .x/ given d can
be computed by an element c of C ; notice that
knowledge of d is not necessary to generate a
polynomial-size sample of .x; f .x// pairs.

If C is PAC learnable, then given a relatively
small number of encrypted messages .x; f .x//,
a learning algorithm A can find a hypothesis
h that will approximate c and thus have a
non-negligible advantage for decrypting future
randomly encrypted messages. This violates the
security properties of the cryptosystem.

A natural question follows: “what is the
simplest concept class that can compute the
decryption function for secure public-key
cryptosystems?” For example, if a public-
key cryptosystem is proven to be secure, and
encrypted messages can be decrypted (given the
secret key) by polynomial-size DNF formulas,
then, by Theorem 1, one could conclude that
polynomial-size DNF formulas cannot be learned
in the PAC model.

Kearns and Valiant do not obtain such a hard-
ness result for learning DNF formulas (it is still
an outstanding open problem), but they do obtain
a variety of hardness results assuming the secu-
rity of various well-known public-key cryptosys-
tems based on the hardness of number-theoretic
problems such as factoring.

The following list summarizes their main re-
sults:

• Let C be the class of polynomial-size Boolean
formulas (not necessarily DNF formulas)
or polynomial-size circuits of logarithmic
depth. Assuming that the RSA cryptosystem
is secure, or recognizing quadratic residues
is intractable, or factoring Blum integers is
intractable, C is not PAC learnable.

• Let C be the class of polynomial-size de-
terministic finite automata. Under the same
assumptions as above, C is not PAC learnable.

• Let C be the class of constant depth threshold
circuits of polynomial size. Under the same
assumptions as above, C is not PAC learnable.
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The depth of the circuit class is not specified
but it can be seen to be at most 4.

Kearns and Valiant also prove the intractability
of finding optimal solutions related to coloring
problems assuming the security of the above
cryptographic primitives (e.g., breaking RSA).

Relationship to Hardness Results for
Proper Learning
The key results above should not be confused
with the extensive literature regarding hardness
results for properly PAC learning concept classes.
For example, it is known [1] that, unless RP
D NP, it is impossible to properly PAC learn
polynomial-size DNF formulas (i.e., require the
learner to learn DNF formulas by outputting a
DNF formula as its hypothesis). Such results
are incomparable to the work of Kearns and
Valiant, as they require something much stronger
from the learner but take a much weaker assump-
tion (RP ¤ NP is a weaker assumption than the
assumption that RSA is secure).

Applications and Related Work

Valiant [10] was the first to observe that the
existence of a particular cryptographic primi-
tive (pseudorandom functions) implies hardness
results for PAC learning concept classes. The
work of Kearns and Valiant has subsequently
found many applications. Klivans and Sherstov
have recently shown [7] that the problem of
PAC learning intersections of halfspaces (a very
simple depth-2 threshold circuit) is intractable
unless certain lattice-based cryptosystems due to
Regev [9] are not secure. Their result makes use
of the Kearns and Valiant approach. Angluin and
Kharitonov [2] have extended the Kearns and
Valiant paradigm to give cryptographic hardness
results for learning concept classes even if the
learner has query access to the unknown concept.
Kharitonov [6] has given hardness results for
learning polynomial-size, constant depth circuits
that assumes the existence of secure pseudo-

random generators rather than the existence of
public-key cryptosystems.

Open Problems

The major open problem in this line of research
is to prove a cryptographic hardness result for
PAC learning polynomial-size DNF formulas.
Currently, polynomial-size DNF formulas seem
far too weak to compute cryptographic primitives
such as the decryption function for a well-known
cryptosystem. The fastest known algorithm
for PAC learning DNF formulas runs in time
2

NO.n1=3/ [8].
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Problem Definition

A dictionary (also known as an associative array)
is an abstract data structure capable of storing a
set S of elements, referred to as keys, and infor-
mation associated with each key. The operations
supported by a dictionary are insertion of a key
(and associated information), deletion of a key,
and lookup of a key (retrieving the associated
information). In case a lookup is made on a key
that is not in S , this must be reported by the data
structure.

The hash table is a class of data structures
use to implement dictionaries in the RAM model
of computation. Open addressing hash tables are
a particularly simple type of hash table, where
the data structure is an array such that each
entry either contains a key of S or is marked
“empty.” Cuckoo hashing addresses the problem
of implementing an open addressing hash table
with worst-case constant lookup time. Specifi-
cally, a constant number of entries in the hash
table should be associated with each key x, such
that x is present in one of these entries if x 2 S .

In the following it is assumed that a key and
the information associated with a key are single
machine words. This is essentially without loss
of generality: If more associated data is wanted,
it can be referred to using a pointer. If keys
are longer than one machine word, they can be
mapped down to a single (or a few) machine

words using universal hashing [4] and the de-
scribed method used on the hash values (which
are unique to each key with high probability).
The original key must then be stored as associated
data. Let n denote an upper bound on the size of
S . To allow the size of the set to grow beyond n,
global rebuilding can be used.

Key Results

Prehistory
It has been known since the advent of universal
hashing [4] that if the hash table has r � n2

entries, a lookup can be implemented by retriev-
ing just a single entry in the hash table. This is
done by storing a key x in entry h.x/ of the
hash table, where h is a function from the set of
machine words to f1; : : : ; n2g. If h is chosen at
random from a universal family of hash functions
[4], then with probability at least 1/2 every key in
S is assigned a unique entry. The same behavior
would be seen if h was a random function, but in
contrast to random functions, there are universal
families that allow efficient storage and evalua-
tion of h (constant number of machine words and
constant evaluation time).

This overview concentrates on the case where
the space used by the open- addressing hash table
is linear, r D O.n/. It was shown by Azar et al.
[1] that it is possible to combine linear space
with worst-case constant lookup time. It was
not considered how to construct the data struc-
ture. Since randomization is used, all schemes
discussed have a probability of error. However,
this probability is small, O.1=n/ or less for
all schemes, and an error can be handled by
rehashing (changing the hash functions and re-
building the hash table). The result of [1] was
shown under the assumption that the algorithm
is given free access to a number of truly random
hash functions. In many of the subsequent papers,
it is shown how to achieve the bounds using
explicitly defined hash functions. However, no
attempt is made here to cover these constructions.

In the following, let © denote an arbitrary pos-
itive constant. Pagh [11] showed that retrieving
two entries from the hash table suffices when
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r � .2C ©/n. Specifically, lookup of a key x can
be done by retrieving entries h1.x/ and h2.x/ of
the hash table, where h1 and h2 are random hash
functions mapping machine words to {1,. . . ,r}.
The same result holds if h1 has range {1,. . . ,r / 2}
and h2 has range {r=2 C 1; : : :; r}, that is, if the
two lookups are done in disjoint parts of memory.

It follows from [11] that it is not possible to
perform lookup by retrieving a single entry in the
worst case unless the hash table is of size n2�o.1/.

Cuckoo Hashing
Pagh and Rodler [12] showed how to maintain
the data structure of Pagh [11] under insertions.
They considered the variant in which the lookups
are done in disjoint parts of the hash table. It
will be convenient to think of these as separate
arrays, T1 and T2. Let ? denote the contents of
an empty hash table entry, and let x $ y express
that the values of variables x and y are swapped.
The proposed dynamic algorithm, called cuckoo
hashing, performs insertions by the following
procedure:

procedure insert(x/
i : = 1;
repeat
x $ Ti [hi .x/]; i : = 3 � i ;
until x = ?

end

At any time the variable x holds a key that
needs to be inserted in the table, or ?. The value
of i changes between 1 and 2 in each iteration,
so the algorithm is alternately exchanging the
contents of x with a key from Table 1 and Table 2.
Conceptually, what happens is that the algorithm
moves a sequence of zero or more keys from
one table to the other to make room for the new
key. This is done in a greedy fashion, by kicking
out any key that may be present in the location
where a key is being moved. The similarity of the
insertion procedure and the nesting habits of the
European cuckoo is the reason for the name of the
algorithm.

The pseudocode above is slightly simplified.
In general the algorithm needs to make sure
not to insert the same key twice and handle the

possibility that the insertion may not succeed (by
rehashing if the loop takes too long).

Theorem 1 Assuming that r � .2 C ©/n, the
expected time for the cuckoo hashing insertion
procedure is O(1).

Generalizations of Cuckoo Hashing
Cuckoo hashing has been generalized in several
directions. Kirsh et al. [8] showed that keeping
a small stash of memory locations that are in-
spected at every lookup can significantly reduce
the error probability of cuckoo hashing.

More generally the case of k > 2 hash func-
tions has been considered. Also, the hash table
may be divided into “buckets” of size b, such that
the lookup procedure searches an entire bucket
for each hash function. Let (k, b)-cuckoo denote
a scheme with k hash functions and buckets of
size b. What was described above is a (2,1)-
cuckoo scheme. Already in 1999, (4,1)-cuckoo
was described in a patent application by David
A. Brown (US patent 6,775,281). Fotakis et al.
described and analyzed a (k; 1)-cuckoo scheme
in [7], and a (2,b/-cuckoo scheme was described
and analyzed by Dietzfelbinger and Weidling [5].
In both cases, it was shown that space utilization
arbitrarily close to 100 % is possible and that
the necessary fraction of unused space decreases
exponentially with k and b. The insertion proce-
dure considered in [5, 7] is a breadth-first search
for the shortest sequence of key moves that can
be made to accommodate the new key. Pani-
grahy [13] studied (2,2)-cuckoo schemes in de-
tail, showing that a space utilization of 83 % can
be achieved dynamically, still supporting con-
stant time insertions using breadth-first search.
In a static setting with no updates, thresholds for
general .k; b/-cuckoo hashing have been estab-
lished (see LeLarge [10] and its references).

Applications

Dictionaries (sometimes referred to as key-value
stores) have a wide range of uses in computer
science and engineering. For example, dictionar-
ies arise in many applications in string algorithms
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and data structures, database systems, data com-
pression, and various information retrieval ap-
plications. Also, cuckoo hashing has been used
in oblivious RAM simulations and other crypto-
graphic constructions [2, 14].

Open Problems

The results above provide a good understanding
of the properties of open-addressing schemes
with worst-case constant lookup time. How-
ever, several aspects are still not understood
satisfactorily.

First of all, there is no practical class of hash
functions for which the above results can be
shown. The only explicit classes of hash func-
tions that are known to make the methods work
either have evaluation time Θ.log n/ or use
space nΩ.1/. It is an intriguing open problem to
construct a class having constant evaluation time
and space usage.

For the generalizations of cuckoo hashing, the
use of breadth-first search is not so attractive
in practice, due to the associated overhead in
storage. A simpler approach that does not require
any storage is to perform a random walk where
keys are moved to a random, alternative position.
(This generalizes the cuckoo hashing insertion
procedure, where there is only one alternative
position to choose.) Panigrahy [13] showed that
this works for (2,2)-cuckoo when the space uti-
lization is low. However, it is unknown whether
this approach works well as the space utilization
approaches 100 %.

Finally, many of the analyses that have been
given are not tight. In contrast, most classical
open addressing schemes have been analyzed
very precisely. It seems likely that precise anal-
ysis of cuckoo hashing and its generalizations
is possible using techniques from analysis of
algorithms and tools from the theory of random
graphs. In particular, the relationship between
space utilization and insertion time is not well
understood. A precise analysis of the probabil-
ity that cuckoo hashing fails has been given by
Kutzelnigg [9].

Experimental Results

All experiments on cuckoo hashing and its gener-
alizations so far presented in the literature have
been done using simple, heuristic hash func-
tions. Pagh and Rodler [12] presented experi-
ments showing that, for space utilization 1/3,
cuckoo hashing is competitive with open ad-
dressing schemes that do not give a worst-case
guarantee. Zukowski et al. [15] showed how to
implement cuckoo hashing such that it runs very
efficiently on pipelined processors with the capa-
bility of processing several instructions in par-
allel. For hash tables that are small enough to
fit in cache, cuckoo hashing was 2 to 4 times
faster than chained hashing in their experiments.
Erlingsson et al. [6] considered (k, b/-cuckoo
schemes for various combinations of small val-
ues of k and b, showing that very high space
utilization is possible even for modestly small
values of k and b. For example, a space utilization
of 99.9 % is possible for k D b D 4. It was
further found that the resulting algorithms were
very robust. Experiments in [7] indicate that the
random walk insertion procedure performs as
well as one could hope for.
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Problem Definition

In the online bin packing problem, a sequence of
items with sizes in the interval .0; 1
 arrive one by
one and need to be packed into bins, so that each
bin contains items of total size at most 1. Each
item must be irrevocably assigned to a bin before
the next item becomes available. The algorithm
has no knowledge about future items. There is an
unlimited supply of bins available, and the goal is
to minimize the total number of used bins (bins
that receive at least one item).

The most common performance measure for
online bin packing algorithms is the asymptotic
performance ratio, or asymptotic competitive ra-
tio, which is defined as

RASY.A/WDlim sup
n!1

�
max

L

�
A.L/

n

ˇˇˇˇOPT.L/Dn

��
:

(1)

Hence, for any input L, the number of bins used
by an online algorithm A is compared to the
optimal number of bins needed to pack the same
input. Note that calculating the optimal num-
ber of bins might take exponential time; more-
over, it requires that the entire input is known in
advance.

Key Results

This paper presents a new framework for analyz-
ing online bin packing algorithms. It can be used
to analyze all known versions of the well-known
Harmonic algorithm, including a new version
introduced in this paper.

The Harmonic algorithm [4] partitions the
input into types depending on its size and packs
each type separately. Harmonic-k has k types,
and type i consists of items of size in the interval
.1=.i C 1/; 1=i
. Harmonic has k open bins at
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all times, one for each type, and packs i items of
type i in one bin. Thus it achieves an asymptotic
performance ratio of 1.691.

For some inputs, this algorithm wastes a lot
of space in some bins, for instance, if many
items of size 1=2 C " arrive for some small
" > 0. Several authors improved on the basic
Harmonic algorithm by combining some items
of different types together into bins. Typically
this is done by partitioning the intervals .1=2; 1

and .1=3; 1=2
 further, guaranteeing that items
can be combined. As a simple example, by
introducing intervals .1=2; 0:6
 and .1=3; 0:4
,
we can guarantee that items of these two
new types can always be packed together in a
single bin. Furthermore, the remaining intervals
.0:6; 1
 and .0:4; 0:5
 now give better area
guarantees than before: bins with items of these
types will be at least 0.6 and at least 0.8 full,
respectively.

Seiden builds on this idea and gives a
new algorithm, Harmonic++, which beats
all previously known algorithms and is
still the best algorithm known. He used a
computer-assisted search to set the many
parameters of this algorithm. The algorithm
partitions the intervals .1=2; 1
 and .1=3; 1=2


in ten matching subintervals (in the sense
described above) and also partitions intervals
of several smaller types, using no less than
70 intervals in total. Also using a computer
search, he proves that the asymptotic per-
formance ratio of this algorithm is at most
1.58889.

Seiden also showed that the asymptotic perfor-
mance ratio of a similar algorithm presented ear-
lier, Harmonic+1, is at least 1.5972, disproving a
claim by Richey [6] that Harmonic+1 is 1.58872-
competitive.

The framework introduced by Seiden was used
later in other contexts, for instance, for two-
dimensional bin packing, where a set of rectan-
gles needs to be packed into square bins. Han
et al. [3] presented an algorithm with asymp-
totic performance ratio 2.5545. For the special
case of packing squares, Han et al. [2] presented
an algorithm with asymptotic performance ratio
2.1187.

Open Problems

The algorithm is very close to optimal for
Harmonic-type algorithms, for which Ramanan
et al. [5] showed a lower bound of 1.58333. . . .
However, the general lower bound for this
problem is only 1.54037 [1]. It is very difficult
to see how either result can be improved,
and this remains a challenging open problem
which will require new ideas. There has been
essentially no improvement in this area in over a
decade.
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Problem Definition

Given a set S of sample points from a col-
lection � of simple (nonintersecting) curves in
the Euclidean plane, curve reconstruction is the
problem of computing the graph G.S; � /, called
the correct reconstruction, whose vertex set is S
and that has an edge between two vertices if and
only if the respective samples are adjacent on a
curve in � ; see Fig. 1.

Obviously, it is not possible to correctly
reconstruct a given collection of curves from
an arbitrary sample set from it. Therefore,
some restriction on the sample set S – a so-
called sampling condition – is required which
specifies how dense a sampling has to be to
guarantee a correct output of an algorithm. The
difficulty for an algorithm to solve the curve
reconstruction problem (and to come up with
a suitable sampling condition) varies with the
classes of allowed curves in � and whether the
set S is actually sampled from the curves or
noisy.

Key Results

If the curves are closed, smooth, and uniformly
sampled – that is, with a uniform maximum dis-
tance between adjacent sample points – several
methods for the curve reconstruction problem
are known to work ranging over minimum span-
ning trees,˛-shapes, ˇ-skeletons [KR85], and r-
regular shapes; see the survey by Edelsbrunner
[7]. The focus of this section are approaches
which can deal with nonuniform sampling con-
ditions, that is, conditions which allow sparser
sampling in areas of low detail and require higher
sampling only in areas of high detail.

Closed Smooth Curves
Amenta, Bern, and Epstein [2] introduced the
concept of the local feature size lfs.p/ of a point
p 2 � which is defined as the distance to the
medial axis of � . The medial axis of a collection
of curves � is defined as the set of points in the
plane which have more than one closest point on
a curve in � ; see Fig. 2. Roughly speaking, a
neighborhood of a point of size equal to its local
feature size is intersected by the curves in a single
piece that winds up only a small angle.

The introduction of the local feature size al-
lowed for a very elegant sampling condition:
A sample set S is called an 	-sampling for a
collection of curves � , if for all p 2 � , 9s 2 S
with jpsj � 	lfs.p/. This condition naturally
captures the intuition that “complicated” areas of
the curve require higher sampling density than
areas of low detail.

Curve Reconstruction, Fig. 1 A collection of curves � , a sample S from � , and the correct reconstruction G(S ,� )
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Curve Reconstruction, Fig. 2 The light curves are the
medial axis of the heavy curves (Courtesy of N. Amenta,
M. Bern, and D. Eppstein)

For small enough 	, the Voronoi nodes in the
Voronoi diagram VD.S/ of an 	-sampling S for
� approximate the medial axis of � . Based on
that intuition, the CRUST algorithm in [1] outputs
as correct reconstruction the edges of the Delau-
nay triangulation of S having a ball empty of
Voronoi vertices in the Voronoi diagram VD.S/.
For 	 < 0:252 CRUST provably outputs the
correct reconstruction of an 	-sampling S with
respect to a collection of closed smooth curves
� .

In the same paper, the authors could also show
that a known algorithm – the ˇ-skeleton – for
suitable choice of ˇ also correctly reconstructs a
collection of closed smooth curves for 	 < 0:297.

Later, Dey and Kumar [4] presented an
extremely simple and straightforward algorithm
connecting essentially the nearest neighbors on
opposite sides. They could prove this algorithm to
be correct under the local feature size sampling
condition for 	 � 1=3. What is particularly
interesting about this algorithm is the fact that
decisions which points to connect are made
based on a very local neighborhood of the
respective points. This idea later nicely translated
to algorithms for the 3- and higher-dimensional
manifold reconstruction problem.

Open Smooth Curves
When considering the larger class of open and
closed smooth curves, there is a little caveat.
While one can guarantee for sufficiently dense
samplings, i.e., small enough values of 	, that

all edges of the correct reconstruction are present
in the output of a reconstruction algorithm, one
cannot always avoid the inclusion of additional
edges in the output of an algorithm. Essentially,
the problem is that a sample set, S set, might
be an 	-sampling for two collections of curves
� and � 0 with different correct reconstructions
G.S; � / and G.S; � 0/ irrespectively how small
	 is chosen.

Dey, Mehlhorn, and Ramos in [5] introduced
the concept of a witness curve � �, proving the
following guarantee for their CONSERVATIVE
CRUST algorithm: If S is an 	-sampling for a
collection of open and closed smooth curves � ,
their algorithm returns a reconstruction H such
that H � G.S; � /, that is, H contains all edges
of the correct reconstruction. Furthermore, the
algorithm outputs a curve � � such that S is an
	0  	-sampling for � � and H D G.S; � �/.
Their algorithm is similar to the CRUST algo-
rithm in that it identifies a subcomplex of the
Delaunay triangulation.

Closed Curves with Corners
Another natural extension of the allowed classes
of curves in � is the inclusion of curves with cor-
ners, that is, points where left and right tangent do
not coincide. Unfortunately, in this case, one can-
not use the sampling condition based on the local
feature size since the medial axis actually touches
the corners, requiring an infinitely dense sam-
pling near corners. The first algorithms to deal
with a single closed curve possibly with corners
were by Giesen [9] and Althaus/Mehlhorn [2]
based on the construction of a travelling salesman
tour. In their sampling condition, areas of the
curve nearby a corner were exempt from the 	-
sampling condition. [2] could even prove that
the respective TSP instance can be solved in
polynomial time for sufficiently dense sample
sets. Dey and Wenger [6] proposed a non-TSP-
based approach for collections of closed curves
with corners.

Open and Closed Curves with Corners
Finally Funke/Ramos [8] considered the case of
collections of open and closed curves. While
their algorithm also comes with a guarantee for
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some variant of an 	-sampling condition (with
special condition near corners like [9] and [2]),
they also propose a sampling condition which is
expressed with respect to the correct reconstruc-
tion G.S; � /. Not being based on a travelling
salesman tour computation, their algorithm can
also handle collections containing several open
curves. As [5] the algorithm also produces a
collection of witness curves � 0.

Noisy Sample Sets
A generalization in a different direction is the
consideration of sample sets S which do not con-
sist of points exactly on the curves in � but – e.g.,
due to measurement errors – lie only “nearby.”
In [3] the authors considered such noisy sample
sets from a collection of disjoint smooth closed
curves and could prove for a perturbed locally
uniform sample set that their algorithm computes
as output a set of polygonal curves converging to
� as the sampling density increases.
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Problem Definition

The problem is motivated by the need to manage
data on a set of storage devices to handle dynami-
cally changing demand. To maximize utilization,
the data layout (i.e., a mapping that specifies the
subset of data items stored on each disk) needs to
be computed based on disk capacities as well as
the demand for data. Over time as the demand for
data changes, the system needs to create new data
layout. The data migration problem is to compute
an efficient schedule for the set of disks to convert
an initial layout to a target layout.

The problem is defined as follows. Suppose
that there are N disks and � data items, and
an initial layout and a target layout are given

(see Fig. 1a for an example). For each item i,
source disks Si is defined to be a subset of disks
which have item i in the initial layout. Destination
disks Di is a subset of disks that want to receive
item i. In other words, disks in Di have to store
item i in the target layout but do not have to store
it in the initial layout. Figure 1b shows the cor-
responding Si and Di. It is assumed that Si ¤ ;

and Di ¤ ; for each item i. Data migration is the
transfer of data to have all Di receive data item i
residing in Si initially, and the goal is to minimize
the total amount of time required for the transfers.

Assume that the underlying network is fully
connected and the data items are all the same
size. In other words, it takes the same amount of
time to migrate an item from one disk to another.
Therefore, migrations are performed in rounds.
Consider the half-duplex model, where each disk
can participate in the transfer of only one item –
either as a sender or as a receiver. The objective is
to find a migration schedule using the minimum
number of rounds. No bypass nodes (A bypass
node is a node that is not the target of a move
operation, but is used as an intermediate holding
point for a data item.) can be used and therefore
all data items are sent only to disks that desire
them.

Key Results

Khuller et al. [11] developed a 9.5-approximation
for the data migration problem, which was later
improved to 6:5C o.1/. In the next subsection,

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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Data Migration, Fig. 1
Left An example of initial
and target layout and
right their corresponding
Si’s and Di’s

a b

the lower bounds of the problem are first
examined.

Notations and Lower Bounds
1. Maximum in-degree (“): Let “j be the

number of data items that a disk j has to
receive. In other words, ˇj D jfi jj 2 Digj.
Then ˇ D maxj ˇj is a lower bound on the
optimal as a disk can receive only one data
item in one round.

2. Maximum number of items that a disk may
be a source or destination for (’): For each
item i, at least one disk in Si should be used
as a source for the item, and this disk is
called a primary source. A unique primary
source si 2 Si for each item i that minimizes
˛ D maxj D1;:::;N .jfi jj D sigj C ˇj ) can be
found using a network flow. Note that ˛ � ˇ,
and ’ is also a lower bound on the optimal
solution.

3. Minimum time required for cloning (M):
Let a disk j make a copy of item i at the kth
round. At the end of the mth round, the number
of copies that can be created from the copy
is at most 2m - k as in each round the number
of copies can only be doubled. Also note that
each disk can make a copy of only one item
in one round. Since at least jDij copies of
item i need to be created, the minimum m that
satisfies the following linear program gives
a lower bound on the optimal solution: L(m):

X

j

mX

kD1

2m�kxijk � jDi j for all i (1)

X

i

xijk � 1 for all j; k (2)

0 � xijk � 1 (3)

Data Migration Algorithm
A 9.5-approximation can be obtained as follows.
The algorithm first computes representative sets
for each item and sends the item to the represen-
tative sets first, which in turn send the item to the
remaining set. Representative sets are computed
differently depending on the size of Di.

Representatives for Big Sets
For sets with size at least “, a disjoint collec-
tion of representative sets Ri ; i D 1 : : : � has to
satisfy the following properties: Each Ri should
be a subset of Di and jRi j D bjDi j=ˇc. The
representative sets can be found using a network
flow.

Representatives for Small Sets
For each item i, let �i D jDi jmod k. A sec-
ondary representativeri in Di for the items with
�i ¤ 0 needs to be computed. A disk j can be
a secondary representative ri for several items as
long as

P
i2Ij

�i � 2ˇ � 1, where Ij is a set of
items for which j is a secondary representative.
This can be done by applying the Shmoys–Tardos
algorithm [17] for the generalized assignment
problem.

Scheduling Migrations
Given representatives for all data items, migra-
tions can be done in three steps as follows:

1. Migration to Ri: Each item i is first sent to
the set Ri. By converting a fractional solu-
tion given in L(M), one can find a migration
schedule from si to Ri and it requires at most
2M C ˛ rounds.

2. Migration to ri: Item i is sent from primary
source si to ri. The migrations can be done
in 1:5˛ rounds, using an algorithm for edge
coloring [16].
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3. Migration to the remaining disks: A transfer
graph from representatives to the remaining
disks can now be created as follows. For each
item i, add directed edges from disks in Ri to
.ˇ � 1/b jDi j

ˇ
c disks in Di nRi such that the

out-degree of each node in Ri is at most ˇ � 1

and the in-degree of each node in Di nRi

from Ri is 1. A directed edge is also added
from the secondary representative ri of item i
to the remaining disks in Di which do not have
an edge coming from Ri. It has been shown
that the maximum degree of the transfer graph
is at most 4ˇ � 5 and the multiplicity is ˇ C 2.
Therefore, migration for the transfer graph can
be done in 5ˇ � 3 rounds using an algorithm
for multigraph edge coloring [18].

Analysis
Note that the total number of rounds required
in the algorithm described in “Data Migration
Algorithm” is at most 2M C 2:5˛ C 5ˇ � 3. As
˛, ˇ and M are lower bounds on the optimal
number of rounds, the abovementioned algorithm
gives a 9.5-approximation.

Theorem 1 ([11]) There is a 9.5-approximation
algorithm for the data migration problem.

Khuller et al. [10] later improved the algorithm
and obtained a (6:5C o.1/)-approximation.

Theorem 2 ([10]) There is a (6.5 C o(1))-
approximation algorithm for the data migration
problem.

Applications

Data Migration in Storage Systems
Typically, a large storage server consists of sev-
eral disks connected using a dedicated network,
called a storage area network. To handle high de-
mand, especially for multimedia data, a common
approach is to replicate data objects within the
storage system. Disks typically have constraints
on storage as well as the number of clients that
can access data from a single disk simultaneously.
Approximation algorithms have been developed
to map known demand for data to a specific

data layout pattern to maximize utilization (The
utilization is the total number of clients that can
be assigned to a disk that contains the data they
want.) [4, 8, 14, 15]. In the layout, they compute
not only how many copies of each item need to
be created, but also a layout pattern that specifies
the precise subset of items on each disk. The
problem is NP-hard, but there are polynomial-
time approximation schemes [4, 8, 14]. Given the
relative demand for data, the algorithm computes
an almost optimal layout.

Over time as the demand for data changes,
the system needs to create new data layouts. To
handle high demand for popular objects, new
copies may have to be dynamically created and
stored on different disks. The data migration
problem is to compute a specific schedule for the
set of disks to convert an initial layout to a target
layout. Migration should be done as quickly as
possible since the performance of the system will
be suboptimal during migration.

Gossiping and Broadcasting
The data migration problem can be considered as
a generalization of gossiping and broadcasting.
The problems of gossiping and broadcasting play
an important role in the design of communication
protocols in various kinds of networks and have
been extensively studied (see for example [6, 7]
and the references therein). The gossip problem
is defined as follows. There are n individuals and
each individual has an item of gossip that he/she
wish to communicate to everyone else. Commu-
nication is typically done in rounds, where in
each round an individual may communicate with
at most one other individual. Some communica-
tion models allow for the full exchange of all
items of gossip known to each individual in a sin-
gle round. In addition, there may be a communi-
cation graph whose edge indicates which pairs of
individuals are allowed to communicate directly
in each round. In the broadcast problem, one
individual needs to convey an item of gossip to
every other individual. The data migration prob-
lem generalizes the gossiping and broadcasting
in three ways: (1) each item of gossip needs to
be communicated to only a subset of individuals;
(2) several items of gossip may be known to an
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individual; (3) a single item of gossip can initially
be shared by several individuals.

Open Problems

The data migration problem is NP-hard by re-
duction from the edge coloring problem. How-
ever, no inapproximability results are known for
the problem. As the current best approxima-
tion factor is relatively high (6:5C o.1/), it is
an interesting open problem to narrow the gap
between the approximation guarantee and the
inapproximability.

Another open problem is to combine data
placement and migration problems. This question
was studied by Khuller et al. [9]. Given the initial
layout and the new demand pattern, their goal
was to find a set of data migrations that can be
performed in a specific number of rounds and
gives the best possible layout to the current de-
mand pattern. They showed that even one-round
migration is NP-hard and presented a heuris-
tic algorithm for the one-round migration prob-
lem. The experiments showed that performing
a few rounds of one-round migration consecu-
tively works well in practice. Obtaining nontrivial
approximation algorithms for this problem would
be interesting future work.

Data migration in a heterogeneous storage
system is another interesting direction for future
research. Most research on data migration has
focused mainly on homogeneous storage sys-
tems, assuming that disks have the same fixed
capabilities and the network connections are of
the same fixed bandwidth. In practice, however,
large-scale storage systems may be heterogenous.
For instance, disks tend to have heterogeneous
capabilities as they are added over time ow-
ing to increasing demand for storage capacity.
Lu et al. [13] studied the case when disks have
variable bandwidth owing to the loads on dif-
ferent disks. They used a control-theoretic ap-
proach to generate adaptive rates of data mi-
grations which minimize the degradation of the
quality of the service. The algorithm reduces
the latency experienced by clients significantly
compared with the previous schemes. However,
no theoretical bounds on the efficiency of data

migrations were provided. Coffman et al. [2]
studied the case when each disk i can handle pi

transfers simultaneously and provided approxi-
mation algorithms. Some papers [2, 12] consid-
ered the case when the lengths of data items are
heterogenous (but the system is homogeneous),
and present approximation algorithms for the
problem.

Experimental Results

Golubchik et al. [3] conducted an extensive study
of the performance of data migration algorithms
under different changes in user-access patterns.
They compared the 9.5-approximation [11] and
several other heuristic algorithms. Some of these
heuristic algorithms cannot provide constant
approximation guarantees, while for some of
the algorithms no approximation guarantees are
known. Although the worst-case performance of
the algorithm by Khuller et al. [11] is 9.5, in the
experiments the number of rounds required was
less than 3.25 times the lower bound.

They also introduced the correspondence
problem, in which a matching between disks in
the initial layout with disks in the target layout is
computed so as to minimize changes. A good
solution to the correspondence problem can
improve the performance of the data migration
algorithms by a factor of 4.4 in their experiments,
relative to a bad solution.

URL to Code

http://www.cs.umd.edu/projects/smart/data-
migration/
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They assumed that a data transfer graph is given,
in which a node corresponds to each disk and
a directed edge corresponds to each move oper-
ation that is specified (the creation of new copies
of data items is not allowed). Computing a data
movement schedule is exactly the problem of
edge-coloring the transfer graph. Algorithms for
edge-coloring multigraphs can now be applied to
produce a migration schedule since each color
class represents a matching in the graph that can
be scheduled simultaneously. Computing a solu-
tion with the minimum number of rounds is NP-
hard, but several good approximation algorithms
are available for edge coloring. With space con-
straints on the disk, the problem becomes more
challenging. Hall et al. [5] showed that with the
assumption that each disk has one spare unit
of storage, very good constant factor approxi-
mations can be developed. The algorithms use
at most 4d�=4e colors with at most n/3 bypass
nodes, or at most 6d�=4e colors without bypass
nodes.

Most of the results on the data migration prob-
lem deal with the half-duplex model. Another in-
teresting communication model is the full-duplex
model where each disk can act as a sender and
a receiver in each round for a single item. There
is a (4C o.1/)-approximation algorithm for the
full-duplex model [10].
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Problem Definition

The NP-complete DOMINATING SET problem is
a notoriously hard problem:

Problem 1 (Dominating Set)
INPUT: An undirected graph G D .V; E/ and an
integer k � 0.
QUESTION: Is there an S � V with jS j � k such
that every vertex v 2 V is contained in S or has at
least one neighbor in S?

For instance, for an n-vertex graph its optimiza-
tion version is known to be polynomial-time
approximable only up to a factor of �.log n/

unless some standard complexity-theoretic
assumptions fail [9]. In terms of parametrized
complexity, the problem is shown to be W[2]-
complete [8]. Although still NP-complete when
restricted to planar graphs, the situation much
improves here. In her seminal work, Baker
showed that there is an efficient polynomial-
time approximation scheme (PTAS) [6], and
the problem also becomes fixed-parameter
tractable [2, 4] when restricted to planar graphs.
In particular, the problem becomes accessible
to fairly effective data reduction rules and
a kernelization result (see [16] for a general
description of data reduction and kernelization)
can be proven. This is the subject of this entry.

Key Results

The key idea behind the data reduction is pre-
processing based on locally acting simplification
rules. Exemplary, here we describe a rule where
the local neighborhood of each graph vertex is
considered. To this end, we need the following
definitions.

We partition the neighborhood N(v) of an ar-
bitrary vertex v 2 V in the input graph into three
disjoint sets N1(v), N2(v), and N3(v) depending

on local neighborhood structure. More specifi-
cally, we define

• N1(v) to contain all neighbors of v that have
edges to vertices that are not neighbors of v;

• N2(v) to contain all vertices from N.v/nN1.v/

that have edges to at least one vertex
from N1.v/;

• N3(v) to contain all neighbors of v that are
neither in N1(v) nor in N2(v).

An example which illustrates such a partitioning
is given in Fig. 1 (left-hand side). A helpful
and intuitive interpretation of the partition is to
see vertices in N1(v) as exits because they have
direct connections to the world outside the closed
neighborhood of v, vertices in N2(v) as guards
because they have direct connections to exits, and
vertices in N3(v) as prisoners because they do not
see the world outside fvg [N.v/.

Now consider a vertex w 2 N3.v/. Such a ver-
tex only has neighbors in fvg [N2.v/ [N3.v/.
Hence, to dominate w, at least one vertex
of fvg [N2.v/ [N3.v/ must be contained in
a dominating set for the input graph. Since v can
dominate all vertices that would be dominated
by choosing a vertex from N2.v/ [N3.v/ into
the dominating set, we obtain the following data
reduction rule.

If N3.v/ 6D ; for some vertex v; then remove

N2.v/ and N3.v/ from G

and add a new vertex v0

with the edge fv; v0g to G:

Note that the new vertex v0 can be considered as
a “gadget vertex” that “enforces” v to be chosen
into the dominating set. It is not hard to verify the
correctness of this rule, that is, the original graph
has a dominating set of size k iff the reduced
graph has a dominating set of size k. Clearly,
the data reduction can be executed in polynomial
time [5]. Note, however, that there are particular
“diamond” structures that are not amenable to
this reduction rule. Hence, a second, somewhat
more complicated rule based on considering the
joint neighborhood of two vertices has been in-
troduced [5].
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D
Data Reduction for Domination in Graphs, Fig. 1 The
left-hand side shows the partitioning of the neighborhood
of a single vertex v. The right-hand side shows the

result of applying the presented data reduction rule to this
particular (sub)graph

Altogether, the following core result could be
shown [5].

Theorem 1 A planar graph G D .V; E/ can
be reduced in polynomial time to a planar
graph G0 D .V 0; E 0/ such that G has a domi-
nating set of size k iff G0 has a dominating set of
size k and jV 0j D O.k/.

In other words, the theorem states that the DOM-
INATING SET in planar graphs has a linear-size
problem kernel. The upper bound on jV0j was
first shown to be 335k [5] and was then further
improved to 67k [7]. Moreover, the results can be
extended to graphs of bounded genus [10]. In ad-
dition, similar results (linear kernelization) have
been recently obtained for the FULL-DEGREE

SPANNING TREE problem in planar graphs [13].
Very recently, these results have been generalized
into a methodological framework [12].

Applications

DOMINATING SET is considered to be one of
the most central graph problems [14, 15]. Its
applications range from facility location to bioin-
formatics.

Open Problems

The best lower bound for the size of a problem
kernel for DOMINATING SET in planar graphs
is 2k [7]. Thus, there is quite a gap between
known upper and lower bounds. In addition,
there have been some considerations concerning
a generalization of the above-discussed data

reduction rules [3]. To what extent such
extensions are of practical use remains to be
explored. Finally, a study of deeper connections
between Baker’s PTAS results [6] and linear
kernelization results for DOMINATING SET in
planar graphs seems to be worthwhile for future
research. Links concerning the class of problems
amenable to both approaches have been detected
recently [12]. The research field of data reduction
and problem kernelization as a whole together
with its challenges is discussed in a recent
survey [11].

Experimental Results

The above-described theoretical work has been
accompanied by experimental investigations on
synthetic as well as real-world data [1]. The re-
sults have been encouraging in general. However,
note that grid structures seem to be a hard case
where the data reduction rules remained largely
ineffective.
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Problem Definition

The problem is concerned with the following
setting. A computationally limited client wants
to compute some property of a massive input,
but lacks the resources to store even a small
fraction of the input, and hence cannot perform
the desired computation locally. The client there-
fore accesses a powerful but untrusted service
provider (e.g., a commercial cloud computing
service), who not only performs the requested
computation but also proves that the answer is
correct. An array of closely related models have
been introduced to capture this scenario. The
following section provides a unified presentation
of these models, emphasizing their common fea-
tures before delineating their differences.

Streaming Verification Model
Let � D ha1; a2; : : : ; ami be a data stream, where
each ai comes from a data universe U of size n,
and let F be a function mapping data streams to
a finite range R. A stream verification protocol
for F involves two parties: a prover P and a
(randomized) verifier V . The protocol consists of
two stages: a stream observation stage and a proof
verification stage.

In the stream observation stage, V processes
the stream � , subject to the standard constraints
of the data-stream model, i.e., sequential access
to � and limited memory. In the proof verification
stage, V and P exchange a sequence of one or
more messages, and afterward V outputs a value
b. V is allowed to output a special symbol ?
indicating a rejection of P’s claims. Formally, V
constitutes a stream verification protocol if the
following two properties are satisfied:
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• Completeness: There is some prover strategy
P such that, for all streams � , the probability
that V outputs F.�/ after interacting with P is
at least 2=3.

• Soundness: For all streams � and all prover
strategies P , the probability that V outputs a
value not in fF.x/;?g after interacting with
P is at most � � 1=3.

Here, the probabilities are taken over V’s inter-
nal randomness. The constants 2=3 and 1=3 are
not essential and are chosen by convention. The
parameter � is referred to as the soundness error
of the protocol.

Costs
There are five primary costs in any stream ver-
ification protocol: (1) V’s space usage, (2) the
total communication cost, (3) V’s runtime, (4)
P’s runtime, and (5) the number of messages
exchanged.

Differences Between Models
There are three primary differences between
the various models of stream verification that
have been put forth in the literature. The first
is whether the soundness condition is required
to hold against all cheating provers (such
protocols are called information-theoretically
or statistically sound), or only against cheating
provers that run in polynomial time (such
protocols are called computationally sound).
The second is the amount and format of the
interaction allowed between P and V . The third
is the temporal relationship between the stream
observation and proof verification stage – in
particular, several models permit P and V to
exchange messages before and during the stream
observation stage and sometimes permit the
prover’s messages to depend on parts of the
data stream that V has not yet seen. In general,
more permissive models allow a larger class of
problems to be solved efficiently, but may yield
protocols that are less realistic.

Summary of Models
The annotated data streaming (ADS) model [3]
is noninteractive: P is permitted to send a single

message to V , with no communication allowed
in the reverse direction. Technically, this model
permits the contents of P’s message to be inter-
leaved with the stream, in which case each bit
of P’s message may be viewed as an “annota-
tion” associated with a particular stream update.
However, for most ADS protocols that have been
developed, P’s message can be sent after the
stream observation phase. There are two kinds of
ADS protocols: prescient protocols, in which the
annotation sent at any given time can depend on
parts of the data stream that V has not yet seen,
and online protocols, which disallow this kind of
dependence.

Streaming interactive proofs (SIPs) extend the
ADS model to allow the prover and verifier to
exchange many messages [6]. The Arthur–Merlin
streaming model [10] is equivalent to a restricted
class of SIPs, in which V is only allowed to
send a single message to P (which must con-
sist entirely of random coin tosses, in analogy
with the classical complexity class AM), before
receiving P’s reply. The streaming delegation
model [5] corresponds to SIPs that only satisfy
computational, rather than information-theoretic,
soundness.

Key Results

Obtaining exact answers even for basic problems
in the standard data streaming model is impos-
sible using o.n/ space. In contrast, stream veri-
fication protocols with o.n/ space and commu-
nication costs have been developed for (exactly
solving) a wide variety of problems. Many of
these protocols have adapted powerful algebraic
techniques originally developed in the classical
literature on interactive proofs, particularly the
sum-check protocol of Lund et al. [14]. All of the
protocols described here apply even to streams in
the strict turnstile update model, where universe
items can be deleted as well as inserted.

Annotated Data Streams
Chakrabarti et al. [3] showed that prescient ADS
protocols can be exponentially more powerful
than online ones for some problems. For example,
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there is a prescient ADS protocol with logarith-
mic space and communication costs for com-
puting the median of a sequence of numbers:
P sends V the claimed median � at the start
of the stream, and while observing the stream,
V checks that jfj W aj < �gj � m=2, and
jfj W aj > �gj � m=2, which can be done
using an O.log m/-bit counter. Meanwhile, [3]
proved that any online protocol for MEDIAN with
communication cost h and space cost v requires
h � v D ˝.n/ and gave an online ADS protocol
achieving these communication–space trade-offs
up to logarithmic factors.

Chakrabarti et al. [3] also gave online
ADS protocols achieving identical trade-offs
between space and communication costs for
problems including FREQUENCY MOMENTS

and FREQUENT ITEMS and used a lower
bound due to Klauck [11] on the Merlin–
Arthur communication complexity of the SET-
DISJOINTNESS function to show that these
trade-offs are optimal for these problems even
among prescient protocols. Subsequent work
gave similarly optimal online ADS protocols
for several more problems, including maximum
matching and counting triangles in graphs and
matrix-vector multiplication [8, 18]. Chakrabarti
et al. [2] gave optimized protocols for streams
whose length m is much smaller than the universe
size n.

Streaming Interactive Proofs
Cormode, Thaler, and Yi [6] showed that several
general protocols from the classical literature
on interactive proofs can be simulated in the
SIP model. In particular, this includes a power-
ful, general-purpose protocol due to Goldwasser,
Kalai, and Rothblum [9] (henceforth, the GKR
protocol). Given any problem computed by an
arithmetic or Boolean circuit of polynomial size
and polylogarithmic depth, the GKR protocol
requires only polylogarithmic space and com-
munication while using polylogarithmic rounds
of verifier–prover interaction. This yields SIPs
for exactly solving many basic streaming prob-
lems with polylogarithmic space and communi-
cation costs, including FREQUENCY MOMENTS,
FREQUENT ITEMS, and GRAPH CONNECTIVITY.

Optimized protocols for specific problems, in-
cluding FREQUENCY MOMENTS (see the detailed
example below), were also presented.

Chakrabarti et al. [4] give constant-round SIPs
with logarithmic space and communication costs
for many problems, including INDEX, RANGE-
COUNTING, and NEAREST-NEIGHBOR SEARCH.
Gur and Raz [10] gave an Arthur–Merlin stream-
ing protocol for the DISTINCT ELEMENTS prob-
lem with communication cost QO.h/ space cost
QO.v/ for any h; v satisfying h � v � n. Klauck

and Prakash [13] extended this protocol to give an
SIP for Distinct Elements with polylogarithmic
space and communication costs and logarithmi-
cally many rounds of prover–verifier interaction.

Computationally Sound Protocols
Computationally sound protocols may achieve
properties that are unattainable in the information-
theoretic setting. For example, they typically
achieve reusability, allowing the verifier to use
the same randomness to answer many queries.
In contrast, most SIPs only support “one-shot”
queries, because they require the verifier to reveal
secret randomness to the prover over the course of
the protocol. Chung et al. [5] combined the GKR
protocol with fully homomorphic encryption
(FHE) to give reusable two-message protocols
with polylogarithmic space and communication
costs for any problem in the complexity class NC.
They also gave reusable four-message protocols
with polylogarithimic space and communication
costs for any problem in the complexity class P.
Papamanthou et al. [15] gave improved protocols
for a class of low-complexity queries including
point queries and range search: these protocols
avoid the use of FHE and allow the prover to
answer such queries in polylogarithmic time. (In
contrast, protocols based on the GKR protocol
[5,6] require the prover to spend time quasilinear
in the size of the data stream after receiving a
query, even if the answer itself can be computed
in sublinear time.)

Implementations
Implementations of the GKR protocol were
provided in [7, 17]. Cormode, Mitzenmacher,
and Thaler [7] also provided optimized
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implementations of several ADS protocols from
[3, 8]. Thaler et al. [19] provided parallelized im-
plementations using Graphics Processing Units.

Detailed Example
The sum-check protocol can be directly applied
to give an SIP for the kth frequency moment
problem with log n rounds of prover–verifier iter-
ation and O.log2.n// space and communication
costs. The sum-check protocol is described in
Fig. 1.

Properties and Costs of the Sum-Check
Protocol
The sum-check protocol satisfies perfect com-
pleteness and has soundness error � � deg.g/=

jFj, where deg.g/ denotes the total degree of
g [14]. There is one round of prover–verifier
interaction in the sum-check protocol for each of
the v variables of g, and the total communication
is O.deg.g// field elements.

Note that as described in Fig. 1, the sum-check
protocol assumes that the verifier has oracle ac-
cess to g. However, this will not be the case in
applications, as g will ultimately be a polynomial
that depends on the input data stream.

The SIP for Frequency Moments
In the kth frequency moment problem, the goal
is to output

P
i2U f k

i , where fi is the number
of times item i appears in the data stream � .
For a vector i D .i1; : : : ; ilog n/ 2 f0; 1glog n,

let 	i.x1; : : : ; xlog n/ D
Qlog n

kD1
	ik .xk/, where

	0.xk/ D 1 � xk and 	1.xk/ D xk . 	i is
the unique multilinear polynomial that maps i 2
f0; 1glog n to 1 and all other values in f0; 1glog n to
0, and it is referred to as the multilinear extension
of i.

For each i 2 U , associate i with a vector
i 2 f0; 1glog n in the natural way, and let F be a
finite field with nk � jFj � 4 � nk . Define the
polynomial Of WFlog n ! F via

Input: V is given oracle access to a v-variate polynomial g over finite field F and an H ∈ F.
Goal: Determine whether H =

∑
(x1,...,xv)∈{0,1}v g(x1,.......,xv ).

g(X1,x2,......,xv),

• In the first round, P computes the univariate polynomial

g1(X1) :=
∑

x2,...,xv∈{0,1}v−1

and sends g1 to V. V checks that g1 is a univariate polynomial of degree at most deg1(g),
and that H = g1(0) + g1(1), rejecting if not.

• V chooses a random element r1 ∈ F, and sends r1 to P.
• In the jth round, for 1 < j < v, P sends to V the univariate polynomial

gj(Xj) =
∑

(xj+1,...,xv)∈{0,1}v−j

g(r1,......,rj−1,Xj, xj+1,...,xv).

V checks that gj is a univariate polynomial of degree at most degj(g), and that gj−1(rj−1) =
gj(0) + gj(1), rejecting if not.

• V chooses a random element rj ∈ F, and sends rj to P.
• In round v, P sends to V the univariate polynomial

gv(Xv) =g(r1,......,rv−1,Xv).

V checks that gv is a univariate polynomial of degree at most degv(g), rejecting if not.
• V chooses a random element rv ∈ F and evaluates g(r1,......,rv) with a single oracle query

to g. V checks that gv(rv) = g(r1,......,rv), rejecting if not.
• If V has not yet rejected, V halts and accepts.

Data Stream Verification, Fig. 1 Description of the sum-check protocol. degi .g/ denotes the degree of g in the i th
variable
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Of D
X

i2f0;1glog n

fi � 	i: (1)

Note that Of is the unique multilinear polynomial
satisfying the property that Of .i/ D fi for all i 2
f0; 1glog n.

The kth frequency moment of � is equal to

X

i2f0;1glog n

f k
i D

X

i2f0;1glog n

. Of k/.i/ :

Hence, in order to compute the kth frequency
moment of � , it suffices to apply the sum-check
protocol to the polynomial g D Of k . This requires
log n rounds of prover–verifier interaction, and
since the total degree of Of k is k � log n, the total
communication cost is O.k log n/ field elements,
which require O.k2 log2 n/ total bits to specify.

At the end of the sum-check protocol, V must
compute

g.r1; : : : ; rlog n/ D . Of k/.r1; : : : ; rlog n/

for randomly chosen .r1; : : : ; rlog n/ 2 F
log n. It

suffices for V to evaluate ´ WD Of .r1; : : : ; rlog n/,
since . Of k/.r1; : : : ; rlog n/ D ´k . The following
lemma establishes that V can evaluate ´ with a
single pass over � , while storing O.log n/ field
elements.

Lemma 1 V can compute ´ D Of .r1; : : : ; rlog n/

with a single streaming pass over � , while storing
O.log n/ field elements.

Proof Given any stream update aj 2 U , let
aj denote the binary vector associated with aj .
It follows from Eq. (1) that Of .r1; : : : ; rlog n/ DPm

j D1 	aj.r1; : : : ; rlog n/. Thus, V can compute
Of .r1; : : : ; rlog n/ incrementally from the raw

stream by initializing Of .r1; : : : ; rlog n/  0 and
processing each update aj via

Of .r1; : : : ; rlog n/ Of .r1; : : : ; rlog n/

C 	aj.r1; : : : ; rlog n/:

V only needs to store .r1; : : : ; rlog n/ and
Of .r1; : : : ; rlog n/, which is O.log n/ field

elements in total.

Open Problems

• For several functions F W f0; 1gn ! f0; 1g, it
is known that any online ADS protocol for F

with communication cost h and space cost v

requires h � v D ˝.n/. This lower bound is
tight in many cases, such as for the INDEX

function [3]. However, it is open to exhibit
a function that cannot be computed by any
online ADS protocol with communication and
space costs both bounded above by h, for
some h D !.n1=2/.

• Two-message online SIP protocols with log-
arithmic space and communication costs are
known for several functions, including the
INDEX function [4]. It is also known that ex-
isting techniques cannot yield 2- or 3-message
online SIPs of polylogarithmic cost for the
MEDIAN or FREQUENCY MOMENT problems.
However, it is open to exhibit a function F W

f0; 1gn ! f0; 1g that cannot be computed by
any online two-message SIP with communica-
tion and space costs both bounded above by h,
for some h D !.log n/.
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Problem Definition

A three-dimensional domain with piecewise lin-
ear boundary elements can be represented as a
piecewise linear complex (PLC) of linear cells
– vertices, edges, polygons, and polyhedra –
that satisfy the following properties [4]. First, no
vertex lies in the interior of an edge and every two
edges are interior-disjoint. Second, the boundary
of a polygon or polyhedra are union of cells in
the PLC. Third, if two cells f and g intersect, the
intersection is a union of cells in the PLC with
dimensions lower than f or g. A triangulation
of an input PLC is conforming if every edge
and polygon appear as a union of segments and
triangles in the triangulation. Additional Steiner
vertices are often necessary. The 3D conforming
Delaunay triangulation problem is to construct
a triangulation of an input PLC that is both
conforming and Delaunay. Figure 1a, b shows
an input PLC and its conforming Delaunay tri-
angulation. In many applications, it is often de-
sired that the triangulation is not unnecessarily
dense and the resulting tetrahedra are of bounded
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a b c

3D Conforming Delaunay Triangulation, Fig. 1 A PLC and its conforming Delaunay triangulation in (a) and (b).
A sliver with negligible volume and edge lengths similar to its circumradius in (c).

aspect ratio. Another popular shape measure is
the radius-edge ratio, which is the ratio of the
circumradius of the tetrahedron to its shortest
edge length. Tetrahedra with bounded radius-
edge ratio may still have negligible volume, and
they are known as slivers. Figure 1c shows a
sliver.

Key Results

Since the Delaunayhood of edges and triangles
are guaranteed by the emptiness of their circum-
spheres, one would imagine that a conforming
Delaunay triangulation can be obtained by sprin-
kling Steiner vertices on the input edges and
polygons. Indeed, Murphy, Mount, and Gable [6]
showed a way to do this, but the resulting trian-
gulation is very dense, and no shape guarantee is
offered.

Shewchuk [9] gave the first algorithm that
offers shape guarantee for PLCs in which two
adjoining elements do not make an acute angle.
(The exact requirement is more general and is
called the projection condition [4, 9].) The al-
gorithm is a generalization of Ruppert’s Delau-
nay refinement algorithm in the plane [8]. An
initial Delaunay triangulation is formed using
the input vertices, and then Steiner vertices are
added incrementally. Boundary conformity takes
precedence. Therefore, whenever a segment on an
edge or a triangle on a polygon has a nonempty
diametric ball (the ball enclosed by the smallest
circumsphere), that segment or triangle is split by
inserting the center of its diametric ball. A Delau-
nay tetrahedron with radius-edge ratio larger than
a prescribed constant 
 > 2 is split by inserting

its circumcenter. However, if this circumcenter
lies inside the diametric ball of a segment or a
triangle, then the insertion is aborted and that
segment or triangle is split instead. Similarly, the
insertion of a triangle’s diametric ball center is
aborted if it lies in the diametric ball of a segment,
and that segment is split instead. The following
theorem states the main result.

Theorem 1 ([4, 9]) Let 
 be a constant greater
than 2. Let P be a PLC with no acute input
angle. A conforming Delaunay triangulation of
P can be obtained by Delaunay refinement and
all tetrahedra obtained have radius-edge ratio at
most 
.

In the presence of acute angles, the splitting
of segments and triangles may lead to an infinite
loop as illustrated in Fig. 2. Notice that the Steiner
vertices inserted are approaching the input vertex
in Fig. 2. In the plane, Ruppert [8] proposed a fix:
place some protecting circles centered at the input
vertices, disallow the insertion of Steiner vertices
inside these protecting circles, and triangulate the
inside of these protecting circles using a separate
mechanism. A key change is that if a Steiner
vertex to be inserted is too close to an arc on a
protecting circle, then the insertion of the Steiner
vertex is aborted and the circular arc is split by
inserting its midpoint. This is analogous to the
splitting of segments.

Cohen-Steiner, de Verdière, and Yvinec [5]
generalized this idea partly to three dimensions.
They proposed to place protecting balls centered
at the input vertices as well as at some ap-
propriate points in the interior of input edges.
These protecting balls cover all input vertices and
edges. The intersection between a protecting ball
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3D Conforming Delaunay Triangulation, Fig. 2 The
midpoint of the segment with the largest diametric ball
triggers the splitting of the segment with the second largest
diametric ball, which in turn triggers the splitting of the
segment with the smallest diametric ball. This may go on
indefinitely

boundary and an input polygon is analogous to
a protecting circle in 2D. Therefore, when we
want to insert Steiner vertices in a polygon f

to recover the Delaunay triangles on f , if such
a Steiner vertex v is too close to an arc ˛ at
the intersection of f and some protecting ball
boundary, the insertion of v is aborted and ˛ is
split instead. The portions of polygons inside the
protecting balls are triangulated using a separate
mechanism. If a tetrahedron � has large radius-
edge ratio but its circumcenter lies inside some
protecting ball, then � is just kept in the triangu-
lation. As a result, no shape guarantee is offered.

Theorem 2 ([5]) There is a Delaunay refine-
ment algorithm that constructs a conforming
Delaunay triangulation of any input PLC.

Cheng and Poon [2] extended Delaunay re-
finement by observing that segments, circular
arcs, triangles, and spherical triangles can all be
handled in a uniform way.

Let B be the union of protecting balls with
centers at the input vertices and interior of input
edges. Let B be a protecting ball. Let @ denote
the boundary operator. For every input polygon
f , the Steiner vertices on f \ B \ @B divide
f \ B \ @B into circular arcs. For every pro-

tecting B , the projection of the convex hull of
the Steiner vertices on B onto @B divides @B into
some spherical triangles. The diametric ball of a
segment or triangle can be viewed as the circum-
scribing ball whose boundary intersects the affine
hull of the segment or triangle at right angle.
Analogously, the “diametric ball” of a circular arc
in @B or a spherical triangle with vertices in @B

can be defined as the circumscribing ball whose
boundary intersects B at right angle. If a Steiner
vertex to be inserted lies inside this “diametric
ball,” the insertion is aborted and the circular arc
or spherical triangle is split instead. A circular
arc is split by inserting its midpoint. A spherical
triangle is split by inserting the intersection point
between @B and the line segment joining the
centers of B and the “diametric ball.” The last
ingredient is that for every pair of protecting balls
whose centers are adjacent on an input edge, their
boundaries should intersect at right angle. That
is, the protecting ball B 0 adjacent to B serves as
the “diametric ball” of the spherical triangles that
have vertices on the circle @B \ @B 0.

Theorem 3 ([2]) There exist a constant 
 > 2

and a Delaunay refinement algorithm that con-
structs a conforming Delaunay triangulation of
any input PLC such that all resulting tetrahedra
have radius-edge ratio at most 
.

In fact, all tetrahedra inside the union of pro-
tecting balls have aspect ratios that depend only
on the smallest angle in the input PLC. Subse-
quently, different simplifications and algorithms
with less expensive primitives have been pro-
posed [3, 7].

Placing Steiner vertices on the protecting balls
and constructing the convex hull of the Steiner
vertices on a protecting ball are fairly expensive.
Even checking whether a Steiner vertex to be
inserted lies inside any protecting ball is a burden.
These expensive computations can be bypassed
by switching to the weighted Delaunay trian-
gulation – a more general variant of Delaunay
triangulation.

Let Bx and By be two balls with centers x

and y and radii rx � 0 and ry � 0. The power
distance between Bx and By is defined to be

�.Bx ; By/ D d.x; y/2 � r2
x � r2

y :
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This definition allows Bx or By to degenerate
to a single point. As in the Euclidean case, the
bisector between Bx and By is also a plane
perpendicular to the line through x and y; how-
ever, the bisector plane may not pass through
the midpoint of xy. Using the power distance,
one can define a weighted version of the Voronoi
diagram called the power diagram. The dual of
the power diagram is known as the weighted De-
launay triangulation. For each segment, triangle
or tetrahedron � in the triangulation, there is a
point ´ at equal and minimum power distances
D from the vertices of � . This point ´ is known
as the orthocenter of � . The ball centered at
´ with radius

p
D is called the orthoball of

� , which is at zero power distances from the
vertices of � .

The key idea is to use a weighted Delaunay
triangulation after placing the protecting balls.
The Delaunay refinement strategy is then mod-
ified to insert orthocenters instead of centers of
diametric balls. If the protecting balls are not too
large, every triangle or tetrahedron � in the initial
weighted Delaunay triangulation involve a pair of
nonoverlapping protecting ball, which must be a
positive power distance apart. It follows that the
orthocenter of � lies outside all protecting balls.
As the refinement progresses, an edge, triangle,
or tetrahedron � may involve Steiner vertices
which can be viewed as balls of zero radii. Such a
Steiner vertex must be at positive power distances
from the other vertices of � , so the orthocenter of
� also lies outside all protecting balls. In sum-
mary, the indefinite insertions of Steiner vertices
at decreasing distances from the input vertices
and edges as shown in Fig. 2 cannot happen. The
following theorem summarizes the result.

Theorem 4 ([4]) Let P be a PLC. Let 
 be
any constant at least 2. There is an algorithm
that constructs a conforming weighted Delaunay
triangulation of P in which no tetrahedron has
an orthoradius-edge ratio greater than 
. There-
fore, tetrahedra with no weighted vertices have
circumradius-edge ratio at most 
.

There are known methods for eliminating sliv-
ers from a conforming weighted Delaunay trian-
gulation of a PLC [1, 4].
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Problem Definition

In order to ensure the integrity of data in the
presence of errors, an error-correcting code is
used to encode data into a redundant form (called
a codeword). It is natural to view both the orig-
inal data (or message) as well as the associated
codeword as strings over a finite alphabet. There-
fore, an error-correcting code C is defined by an
injective encoding map EW˙k!˙n, where k is
called the message length, and n the block length.
The codeword, being a redundant form of the
message, will be longer than the message. The
rate of an error-correcting code is defined as the
ratio k/n of the length of the message to the length
of the codeword. The rate is a quantity in the
interval .0; 1�, and is a measure of the redundancy
introduced by the code. Let R(C) denote the rate
of a code C.

The redundancy built into a codeword enables
detection and hopefully also correction of any
errors introduced, since only a small fraction of
all possible strings will be legitimate codewords.
Ideally, the codewords encoding different mes-
sages should be “far-off” from each other, so
that one can recover the original codeword even
when it is distorted by moderate levels of noise.
A natural measure of distance between strings is
the Hamming distance. The Hamming distance
between strings x; y 2 ˙� of the same length,
denoted dist.x; y/, is defined to be the number
of positions i for which xi ¤ yi .

The minimum distance, or simply distance,
of an error-correcting code C, denoted d(C), is
defined to be the smallest Hamming distance
between the encodings of two distinct messages.
The relative distance of a code C of block length
n, denoted ı.C /, is the ratio between its dis-
tance and n. Note that arbitrary corruption of any
b.d.C / � 1/=2c of locations of a codeword of C
cannot take it closer (in Hamming distance) to

any other codeword of C. Thus in principle (i.e.,
efficiency considerations apart) error patterns of
at most b.d.C / � 1/=2c errors can be corrected.
This task is called unique decoding or decod-
ing up to half-the-distance. Of course, it is also
possible, and will often be the case, that error
patterns with more than d.C /=2 errors can also
be corrected by decoding the string to the closest
codeword in Hamming distance. The latter task is
called Nearest-Codeword decoding or Maximum
Likelihood Decoding (MLD).

One of the fundamental trade-offs in the the-
ory of error-correcting codes, and in fact one
could say all of combinatorics, is the one be-
tween rate R(C) and distance d(C) of a code.
Naturally, as one increases the rate and thus
number of codewords in a code, some two code-
words must come closer together thereby low-
ering the distance. More qualitatively, this rep-
resents the tension between the redundancy of
a code and its error-resilience. To correct more er-
rors requires greater redundancy, and thus lower
rate.

A code defined by encoding map E W˙k!˙n

with minimum distance d is said to be an .n; k; d/

code. Since there are j˙ jk codewords and only
j˙k�1j possible projections onto the first k D 1

coordinates, some two codewords must agree
on the first k � 1 positions, implying that the
distance d of the code must obey d � n � k C 1

(this is called the Singleton bound). Quite
surprisingly, over large alphabets † there are
well-known codes called Reed–Solomon codes
which meet this bound exactly and have the
optimal distance d D n � k C 1 for any given
rate k/n. (In contrast, for small alphabets, such
as ˙ D f0; 1g, the optimal trade-off between rate
and relative distance for an asymptotic family of
codes is unknown and is a major open question
in combinatorics.)

This article will describe the best known
algorithmic results for error-correction of Reed–
Solomon codes. These are of central theoretical
and practical interest given the above-mentioned
optimal trade-off achieved by Reed–Solomon
codes, and their ubiquitous use in our everyday
lives ranging from compact disc players to deep-
space communication.
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Reed–Solomon Codes

Definition 1 A Reed–Solomon code (or RS
code), RSF;S Œn; k�, is parametrized by integers
n; k satisfying 1 � k � n, a finite field F of size
at least n, and a tuple S D .˛1; ˛2; : : : ; ˛n/ of n
distinct elements from F. The code is described
as a subset of Fn as:

RSF;S Œn; k� D f.p.˛1/; p.˛2/; : : : ; p.˛n//

jp.X/2FŒX� is a polynomial of degree�k�1g:

In other words, the message is viewed as a poly-
nomial, and it is encoded by evaluating the poly-
nomial at n distinct field elements ˛1; : : : ; ˛n.
The resulting code is linear of dimension k, and
its minimum distance equals n � k C 1, which
matches the Singleton bound.

The distance property of RS codes follows from
the fact that the evaluations of two distinct poly-
nomials of degree less than k can agree on at most
k � 1 field elements. Note that in the absence
of errors, given a codeword y 2 F

n, one can
recover its corresponding message by polynomial
interpolation on any k out of the n codeword
positions. In fact, this also gives an erasure de-
coding algorithm when all but the information-
theoretically bare minimum necessary k symbols
are erased from the codeword (but the receiver
knows which symbols have been erased and the
correct values of the rest of the symbols). The RS
decoding problem, therefore, amounts to a noisy
polynomial interpolation problem when some of
the evaluation values are incorrect.

The holy grail in decoding RS codes would
be to find the polynomial p(X) whose RS encod-
ing is closest in Hamming distance to a noisy
string y 2 F

n. One could then decode y to this
message p(X) as the maximum likelihood choice.
No efficient algorithm for such nearest-codeword
decoding is known for RS codes (or for that
matter any family of “good” or non-trivial codes),
and it is believed that the problem is NP-hard.
Guruswami and Vardy [6] proved the problem
to NP-hard over exponentially large fields, but
this is a weak negative result since normally one
considers Reed–Solomon codes over fields of
size at most O(n).

Given the intractability of nearest-codeword
decoding in its extreme generality, lot of attention
has been devoted to the bounded distance decod-
ing problem, where one assumes that the string
y 2 F

n to be decoded has at most e errors, and
the goal is to find the Reed–Solomon codeword(s)
within Hamming distance e from y.

When e < .n � k/=2, this corresponds to de-
coding up to half the distance. This is a classical
problem for which a polynomial time algorithm
was first given by Peterson [8]. (It is notable
that this even before the notion of polynomial
time was put forth as the metric of theoretical
efficiency.) The focus of this article is on a list
decoding algorithm for Reed–Solomon codes due
to Guruswami and Sudan [5] that decode beyond
half the minimum distance. The formal problem
and the key results are stated next.

Key Results

In this section, the main result of focus con-
cerning decoding Reed–Solomon codes is stated.
Given the target of decoding errors beyond half-
the-minimum distance, one needs to deal with
inputs where there may be more than one code-
word within the radius e specified in the bounded
distance decoding problem. This is achieved by
a relaxation of decoding called list decoding
where the decoder outputs a list of all code-
words (or the corresponding messages) within
Hamming distance e from the received word. If
one wishes, one can choose the closest codeword
among the list as the “most likely” answer, but
there are many applications of Reed–Solomon
decoding, for example to decoding concatenated
codes and several applications in complexity the-
ory and cryptography, where having the entire list
of codewords adds to the power of the decoding
primitive. The main result of Guruswami and
Sudan [5], building upon the work of Sudan [9],
is the following:

Theorem 1 ([5]) Let C D RSF;S Œn; k� be
a Reed–Solomon code over a field F of size
q � n with S D .˛1; ˛2; : : : ; ˛n/. There is
a deterministic algorithm running in time
polynomial in q that on input y 2 F

n
q outputs
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D

a list of all polynomials p.X/ 2 FŒX� of degree
less than k for which p.˛i / ¤ yi for less
than n �

p
.k � 1/n positions i 2 f1; 2; : : : ; ng.

Further, at most O(n2) polynomials will be output
by the algorithm in the worst-case.

Alternatively, one can correct a RS code
of block length n and rate R D k=n up to
n �

p
.k � 1/ errors, or equivalently a fraction

1 �
p

R of errors.
The Reed–Solomon decoding algorithm is

based on the solution to the following more
general polynomial reconstruction problem
which seems like a natural algebraic question
in itself. (The problem is more general than RS
decoding since the ˛i ’s need not be distinct.)

Problem 1 (Polynomial Reconstruction)
Input: Integers k; t � n and n distinct pairs
f.˛i ; yi /g

n
iD1 where ˛i ; yi 2 F.

Output: A list of all polynomials p.X/ 2 FŒX� of
degree less than k which satisfy p.˛i / D yi for at
least t values of i 2 Œn�.

Theorem 2 The polynomial reconstruction
problem can be solved in time polynomial in
n; jFj, provided t >

p
.k � 1/n.

The reader is referred to the original papers [5,
9], or a recent survey [1], for details on the above
algorithm. A quick, high level peek into the
main ideas is given below. The first step in the
algorithm consists of an interpolation step where
a nonzero bivariate polynomial Q(X,Y) is “fit”
through the n pairs .˛i ; yi /, so that Q.˛i ; yi / D 0

for every i. The key is to do this with relatively
low degree; in particular one can find such
a Q(X,Y) with so-called .1; k � 1/-weighted
degree at most D �

p
2.k � 1/n. This degree

budget on Q implies that for any polynomial
p(X) of degree less than k, Q.X; p.X// will have
degree at most D. Now whenever p.˛i / D yi ,
Q.˛i ; p.˛/i// D Q.˛i ; yi / D 0. Therefore, if
a polynomial p(X) satisfies p.˛i / D yi for at
least t values of i, then Q.X; p.X// has at
least t roots. On the other hand the polynomial
Q.X; p.X// has degree at most D. Therefore,
if t > D, one must have Q.X; p.X// D 0, or
in other words Y � p.X/ is a factor of Q(X,Y).
The second step of the algorithm factorized the

polynomial Q(X,Y), and all polynomials p(X) that
must be output will be found as factors Y � p.X/

of Q(X,Y).
Note that since D �

p
2.k � 1/n this gives

an algorithm for polynomial reconstruction
provided the agreement parameter t satisfies
t >

p
2.k � 1/n [9]. To get an algorithm for

t >
p

.k � 1/n, and thus decode beyond half the
minimum distance .n � k/=2 for all parameter
choices for k, n, Guruswami and Sudan [5]
use the crucial idea of allowing “multiple
roots” in the interpolation step. Specifically, the
polynomial Q is required to have r � 1 roots at
each pair .˛i ; yi / for some integer multiplicity
parameter r (the notion needs to be formalized
properly, see [5] for details). This necessitates
an increase in the .1; k � 1/-weighted degree
of a factor of about r=

p
2, but the gain is

that one gets a factor r more roots for the
polynomial Q.X; p.X//. These facts together
lead to an algorithm that works as long as
t >

p
.k � 1/n.

There is an additional significant benefit of-
fered by the multiplicity based decoder. The mul-
tiplicities of the interpolation points need not
all be equal and they can picked in proportion
to the reliability of different received symbols.
This gives a powerful way to exploit “soft” in-
formation in the decoding stage, leading to im-
pressive coding gains in practice. The reader is
referred to the paper by Koetter and Vardy [7] for
further details on using multiplicities to encode
symbol level reliability information from the
channel.

Applications

Reed–Solomon codes have been extensively
studied and are widely used in practice. The
above decoding algorithm corrects more errors
beyond the traditional half the distance limit
and therefore directly advances the state of
the art on this important algorithmic task. The
RS list decoding algorithm has also been the
backbone for many further developments in
algorithmic coding theory. In particular, using
this algorithm in concatenation schemes leads to
good binary list-decodable codes. A variant of
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RS codes called folded RS codes have been used
to achieve the optimal trade-off between error-
correction radius and rate [3] (see the companion
encyclopedia entry by Rudra on folded RS
codes).

The RS list decoding algorithm has also
found many surprising applications beyond
coding theory. In particular, it plays a key
role in several results in cryptography and
complexity theory (such as constructions of
randomness extractors and pseudorandom
generators, hardness amplification, constructions
to hardcore predicates, traitor tracing, reductions
connecting worst-case hardness to average-case
hardness, etc.); more information can be found,
for instance, in [10] or Chap. 12 in [2].

Open Problems

The most natural open question is whether one
can improve the algorithm further and correct
more than a fraction 1 �

p
R of errors for RS

codes of rate R. It is important to note that there
is a combinatorial limitation to the number of
errors one can list decode from. One can only
list decode in polynomial time from a fraction
¡ of errors if for every received word y the
number of RS codewords within distance e D 
n

of y is bounded by a polynomial function of
the block length n. The largest ¡ for which this
holds as a function of the rate R is called the
list decoding radius 
LD D 
LD.R/ of RS codes.
The RS list decoding algorithm discussed here
implies that 
LD.R/ � 1 �

p
R, and it is trivial

to see than 
LD.R/ � 1 �R. Are there RS codes
(perhaps based on specially structured evaluation
points) for which 
LD.R/ > 1 �

p
R? Are there

RS codes for which the 1 �
p

R radius (the so-
called “Johnson bound”) is actually tight for list
decoding? For the more general polynomial re-
construction problem the

p
.k � 1/n agreement

cannot be improved upon [4], but this is not
known for RS list decoding.

Improving the NP-hardness result of [6] to
hold for RS codes over polynomial sized fields
and for smaller decoding radii remains an impor-
tant challenge.
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Problem Definition

A dynamic graph algorithm maintains a given
property P on a graph subject to dynamic
changes, such as edge insertions, edge deletions
and edge weight updates. A dynamic graph
algorithm should process queries on property
P quickly, and perform update operations faster
than recomputing from scratch, as carried out by
the fastest static algorithm. An algorithm is fully
dynamic if it can handle both edge insertions and
edge deletions. A partially dynamic algorithm
can handle either edge insertions or edge
deletions, but not both: it is incremental if it
supports insertions only, and decremental if it
supports deletions only.

This entry addressed the decremental version
of the all-pairs shortest paths problem (APSP),
which consists of maintaining a directed graph
with real-valued edge weights under an inter-
mixed sequence of the following operations:

delete(u, v): delete edge (u, v) from the graph.
distance(x, y): return the distance from ver-

tex x to vertex y.
path(x, y): report a shortest path from vertex x

to vertex y, if any.

A natural variant of this problem supports a gen-
eralized delete operation that removes a vertex
and all edges incident to it. The algorithms ad-
dressed in this entry can deal with this general-
ized operation within the same bounds.

History of the Problem
A simple-minded solution to this problem would
be to rebuild shortest paths from scratch after
each deletion using the best static APSP algo-
rithm so that distance and path queries can be
reported in optimal time. The fastest known static
APSP algorithm for arbitrary real weights has
a running time of O.mnCn2 log log n/, where m
is the number of edges and n is the number of

vertices in the graph [13]. This is ˝.n3/ in the
worst case. Fredman [6] and later Takaoka [19]
showed how to break this cubic barrier: the best
asymptotic bound is by Takaoka, who showed
how to solve APSP in O.n3

p
log log n= log n/

time.
Another simple-minded solution would be to

answer queries by running a point-to-point short-
est paths computation, without the need to update
shortest paths at each deletion. This can be done
with Dijkstra’s algorithm [3] in O.m C n log n/

time using the Fibonacci heaps of Fredman and
Tarjan [5]. With this approach, queries are an-
swered in O.m C n log n/ worst-case time and
updates require optimal time.

The dynamic maintenance of shortest paths
has a long history, and the first papers date back to
1967 [11, 12, 17]. In 1985 Even and Gazit [4] pre-
sented algorithms for maintaining shortest paths
on directed graphs with arbitrary real weights.
The worst-case bounds of their algorithm for
edge deletions were comparable to recomput-
ing APSP from scratch. Also Ramalingam and
Reps [15, 16] and Frigioni et al. [7, 8] con-
sidered dynamic shortest path algorithms with
real weights, but in a different model. Namely,
the running time of their algorithm is analyzed
in terms of the output change rather than the
input size (output bounded complexity). Again,
in the worst case the running times of output-
bounded dynamic algorithms are comparable to
recomputing APSP from scratch.

The first decremental algorithm that was
provably faster than recomputing from scratch
was devised by King for the special case of
graphs with integer edge weights less than C: her
algorithm can update shortest paths in a graph
subject to a sequence of ˝.n2/ deletions in
O.C � n2/ amortized time per deletion [9]. Later,
Demetrescu and Italiano showed how to deal
with graphs with real non-negative edge weights
in O.n2 log n/ amortized time per deletion [2]
in a sequence of ˝.m=n/ operations. Both
algorithms work in the more general case where
edges are not deleted from the graph, but their
weight is increased at each update. Moreover,
since they update shortest paths explicitly
after each deletion, queries are answered in
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optimal time at any time during a sequence of
operations.

Key Results

The decremental APSP algorithm by Demetrescu
and Italiano hinges upon the notion of locally
shortest paths [2].

Definition 1 A path is locally shortest in a graph
if all of its proper subpaths are shortest paths.

Notice that by the optimal-substructure prop-
erty, a shortest path is locally shortest. The main
idea of the algorithm is to keep information
about locally shortest paths in a graph subject
to edge deletions. The following theorem derived
from [2] bounds the number of changes in the set
of locally shortest paths due to an edge deletion:

Theorem 1 If shortest paths are unique in the
graph, then the number of paths that start or
stop being shortest at each deletion is O.n2/

amortized over ˝.m=n/ update operations.

The result of Theorem 1 is purely combinatorial
and assumes that shortest paths are unique in the
graph. The latter can be easily achieved using any
consistent tie-breaking strategy (see, e.g., [2]).
It is possible to design a deletions-only algo-
rithm that pays only O.log n/ time per change in
the set of locally shortest paths, using a simple
modification of Dijkstra’s algorithm [3]. Since
by Theorem 1 the amortized number of changes
is bounded by O.n2/, this yields the following
result:

Theorem 2 Consider a graph with n vertices
and an initial number of m edges subject to
a sequence of ˝.m=n/ edge deletions. If shortest
paths are unique and edge weights are non-
negative, it is possible to support each delete
operation in O.n2 log n/ amortized time, each
distance query in O(1) worst-case time, and each
path query in O(`) worst-case time, where ` is the
number of vertices in the reported shortest path.
The space used is O(mn).

Applications

Application scenarios of dynamic shortest paths
include network optimization [1], document
formatting [10], routing in communication
systems, robotics, incremental compilation,
traffic information systems [18], and dataflow
analysis. A comprehensive review of real-world
applications of dynamic shortest path problems
appears in [14].

URL to Code

An efficient C language implementation of the
decremental algorithm addressed in section “Key
Results” is available at the URL: http://www.dis.
uniroma1.it/~demetres/experim/dsp.
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Problem Definition

A dynamic graph algorithm maintains informa-
tion about a graph that is changing over time.
Given a property P of the graph (e.g., minimum
spanning tree), the algorithm must support an
online sequence of query and update operations,
where an update operation changes the underly-
ing graph, while a query operation asks for the
state of P in the current graph. In the typical
model studied, each update only affects a single
edge. In a fully dynamic setting, an update can
insert or delete an edge or change the weight of an
existing edge; in a decremental setting an update
can only delete an edge or increase a weight; in an
incremental setting an update can insert an edge
or decrease a weight.

This entry addresses the decremental .1C �/-
approximate all-pairs shortest path problem
(APSP) in weighted directed graphs. The goal
is to maintain a directed graph G with real-
valued nonnegative edge weights under an
online intermixed sequence of the following
operations:

• delete(u; v) (update): remove edge (u; v) from
G.

• increase-weight(u; v; w) (update): increase
the weight of edge .u; v/ to w.

• distance(u; v) (query): return a .1C �/-
approximation to the shortest u � v distance
in G.

• path(u; v) (query): return a .1C �/-approxi-
mate shortest path from u to v.

A History of Decremental APSP
The naive approach to the decremental APSP
problem is to recompute shortest paths from
scratch after every update, allowing queries to
be answered in optimal time. Letting n be the
number of vertices and m the number of edges,
computing APSP requires O.mnCn2 log log.n//
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time in sparse graphs [11] or slightly less than n3

in dense graphs (see [13, 14]). Another simple-
minded approach would be to not perform
any computation during the updates and to
simply compute the shortest u � v path from
scratch when a query arrived. This would lead
to a constant update time and a query time of
O.mC n log.n// using Dijkstra’s algorithm with
Fibonacci heaps [6].

One can improve significantly upon both
the above approaches by reusing information
between updates. Decremental shortest path
algorithms have a long history, with the current
state of the art for the general case of directed
graphs with real-valued weights being an
algorithm of Demetrescu and Italiano which
achieves constant query time and update time
O.n2 log.n// [5]. Later papers improved upon
O.n2/ update time in restricted types of graph.
In unweighted directed graphs, Baswana et al.
achieve an amortized update of O.n3 log2.n/=m/

for exact distances and QO.��1n2=
p

m/ for .1C�/

approximate distances [1]. (We say that f .n/ D
QO.g.n// if f .n/ D O.g.n/polylog.n//).

Keeping the .1 C �/ approximation, Roditty
and Zwick further reduced the amortized update
time to QO.n=�/ [12].

An amortized update time of QO.n/ forms a
natural barrier for decremental APSP because if
edges are deleted from the graph one at a time,
an QO.n/ update time allows us to maintain APSP
over the entire sequence of deletions in a total
of QO.mn/ time; excepting fast matrix multipli-
cation in dense graphs, this QO.mn/ matches the
best known bound for the much simpler problem
of computing APSP a single time in the static
setting. Roddity and Zwick achieve this desired
total update time of QO.mn/ only for undirected,
unweighted graphs; this entry focuses on a result
of Bernstein that achieves the same QO.mn/ for
directed graphs with weights polynomial in n [3].

There have recently been several results on
breaking through the QO.n/ amortized update time
barrier in undirected graphs by allowing a larger
than .1C �/ approximation (see [4, 7, 9]), as
well in directed graphs for single-source shortest
paths [8].

Key Results

Bernstein’s result shows that in a directed graph
with weights polynomial in n, we can maintain
.1C �/-approximate decremental APSP with
constant query time and a total update time of
QO.mn/ over the entire sequence of deletions and

weight increases (see Theorem 2 below). At a
high level, Bernstein’s result uses the framework
from his earlier paper on fully dynamic APSP
in undirected graphs [2], but all the details and
techniques change significantly in the shift to
directed graphs.

From Weighted Distances to Hop
Distances
The majority of dynamic APSP algorithms use
as a building block an algorithm of King for
maintaining a single-source shortest path tree un-
der deletions [10]. King’s algorithm maintains a
shortest path tree up to distance d (assuming inte-
gral weights) in the total update time O.md/ over
all deletions (amortized O.d/ per update); hence,
O.mn/ is the total update time in unweighted
graphs where d � n. This makes it an extremely
efficient building block for small distances, but
with two main drawbacks: it is inefficient at han-
dling vertices that are far apart and it completely
fails in graphs with large weights where d can
be very big. Bernstein’s algorithm overcomes the
second of these problems by showing that if we
allow a .1C�/ approximation, then with a simple
scaling approach, we can shift the dependency
from the weighted distance d between two ver-
tices to the unweighted hop distance between
them.

Definition 1 The hop distance between two ver-
tices x and y is the number of edges on the
shortest x�y path. The .1C �/-approximate x�

y hop distance, denoted h.x; y/, is the minimum
number of edges among any .1C �/-approximate
x � y path.

Theorem 1 Given a directed graph G with non-
negative real weights and a source s and letting
R be the ratio of the heaviest to the lightest
nonzero edge weight in the graph, we can for any



Decremental Approximate-APSP in Directed Graphs 511

D

hop distance h decrementally maintain .1C �/-
shortest paths from s to all vertices v for which
h.s; v/ � h. The total update time over the whole
sequence of deletions and weight increases is
O.nh log.R/=�/, which is O.nh/ if weights are
polynomial in n.

We refer to the above decremental SSSP algo-
rithm as h-SSSP. In short, Theorem 1 tells us
that with a .1C �/ approximation, we can decre-
mentally maintain a shortest path tree in time
proportional not to the maximum distance of the
tree (O.nd/) but to the maximum hop distance
(O.nh/) of the tree. This is a big improvement
in weighted graphs where h � d , but still
inadequate as h can be ˝.n/. Bernstein’s key
idea is that regardless of whether the original
graph is weighted or not, we can add weighted
edges that reduce hop distances in the graph
and hence allow h-SSSP to run extremely effi-
ciently.

Shortcut Edges
The algorithm of Bernstein works by adding
many different (weighted) shortcut edges .x; y/

to the original graph G, which are defined as
edges that do not exist in G itself and have
weight w.x; y/ satisfying ı.x; y/ � w.x; y/ �

.1C �/ı.x; y/, where ı.x; y/ is the shortest x�y

distance. Note that as the graph changes, ı.x; y/

will increase, and so the algorithm will have to
increase w.x; y/ for the shortcut edge to remain
valid; a shortcut edge .x; y/ is not simply com-
puted once, but must be maintained over the
whole sequence of edge deletions and weight
increases.

It is clear that because the weight of a shortcut
edge .x; y/ is tethered to ı.x; y/, the shortcut
edges do not change shortest distances in the
graph. But they do drastically reduce hop dis-
tances. In an unweighted graph with ı.x; y/ D

1;000, a single x � y edge of weight 1;000 (or
slightly larger) decreases h.x; y/ from 1;000 to
1. Moreover, any path that goes through x and y

can also use the .x; y/ shortcut edge to reduce its
hop distance by 999.

Bernstein’s algorithm runs in phases, each
of which adds more shortcut edges to succes-
sively decrease all hop distances in the graph
by a factor of 2. It starts by defining a small
set of pairs S1 for which it maintains approxi-
mate shortest paths over the entire sequence of
updates; this first step can easily be done in
the desired QO.mn log.R// total update time as
instead of maintaining all-pairs shortest paths,
the algorithm only has to maintain jS1j pairs.
Now that the algorithm maintains ı.x; y/ for
every pair .x; y/ in S1, it can add shortcut edges
.x; y/ to the graph. These shortcut edges de-
crease hop distances in the graph, thus increas-
ing the efficiency of the h-SSSP building block
and allowing it to maintain approximate shortest
distances within a slightly larger set of pairs
S2 in the same QO.mn log.R// total update time.
Since knowing the shortest distance between two
vertices allows us to maintain a corresponding
shortcut edge, maintaining the larger set of dis-
tances S2 directly leads to a larger set of shortcut
edges, which further reduce hop distances in
the graph, allowing h-SSSP to efficiently main-
tain shortest distances for an even larger set of
pairs S3; this in turn leads to more shortcut
edges, thus further reducing hop distances and
allowing h-SSSP to maintain a larger distance
set S4, and so on. After log.n/ such layers,
there are enough shortcut edges to ensure that
all hop distances are constant, so by Theorem 1
h-SPPP can decrementally maintain a shortest
path tree in the graph in a total update time of
only QO.n log.R/=�/; doing this from every vertex
yields the desired bound of QO.mn log.R/=�/ for
decremental APSP.

Theorem 2 Let G be a graph with nonnega-
tive real-valued edge weights, n vertices, and
m initial edges subject to an arbitrary sequence
of ˙ edge deletions and weight increases. Let
R be the ratio of the heaviest weight that ever
appears in G to the lightest nonzero weight.
It is possible to support the whole sequence of
updates in a total time QO.mn log.R/=�/CO.˙/

while answering queries with a single O.1/ time
lookup.
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Problem Definition

An important requirement of wireless ad hoc
networks is that they should be self-organizing,
and transmission ranges and data paths may need
to be dynamically restructured with changing
topology. Energy conservation and network per-
formance are probably the most critical issues
in wireless ad hoc networks, because wireless
devices are usually powered by batteries only
and have limited computing capability and mem-
ory. Hence, in such a dynamic and resource-
limited environment, each wireless node needs
to locally select communication neighbors and
adjust its transmission power accordingly, such
that all nodes together self-form a topology that
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is energy efficient for both unicast and broadcast
communications.

To support energy-efficient unicast, the topol-
ogy is preferred to have the following features in
the literature:

1. POWER SPANNER: [1, 9, 13, 16, 17] Formally
speaking, a subgraph H is called a power
spanner of a graph G if there is a positive real
constant ¡ such that for any two nodes, the
power consumption of the shortest path in H
is at most ¡ times of the power consumption
of the shortest path in G. Here ¡ is called the
power stretch factor or spanning ratio.

2. DEGREE BOUNDED: [1, 9, 11, 13, 16, 17] It
is also desirable that the logical node degree
in the constructed topology is bounded from
above by a small constant. Bounded logical
degree structures find applications in Blue-
tooth wireless networks since a master node
can have only seven active slaves simulta-
neously. A structure with small logical node
degree will save the cost of updating the rout-
ing table when nodes are mobile. A structure
with a small degree and using shorter links
could improve the overall network through-
out [6].

3. PLANAR: [1, 4, 13, 14, 16] A network topol-
ogy is also preferred to be planar (no two
edges crossing each other in the graph) to
enable some localized routing algorithms to
work correctly and efficiently, such as Greedy
Face Routing (GFG) [2], Greedy Perimeter
Stateless Routing (GPSR) [5], Adaptive Face
Routing (AFR) [7], and Greedy Other Adap-
tive Face Routing (GOAFR) [8]. Notice that
with planar network topology as the under-
lying routing structure, these localized rout-
ing protocols guarantee the message delivery
without using a routing table: each intermedi-
ate node can decide which logical neighboring
node to forward the packet to using only local
information and the position of the source and
the destination.

To support energy-efficient broadcast [15], the
locally constructed topology is preferred to be
low-weighted [10, 12]: the total link length of
the final topology is within a constant factor of

that of EMST. Recently, several localized algo-
rithms [10, 12] have been proposed to construct
low-weighted structures, which indeed approxi-
mate the energy efficiency of EMST as the net-
work density increases. However, none of them
is power efficient for unicast routing.

Before this work, all known topology control
algorithms could not support power efficient uni-
cast and broadcast in the same structure. It is
indeed challenging to design a unified topology,
especially due to the trade off between spanner
and low weight property. The main contribution
of this algorithm is to address this issue.

Key Results

This algorithm is the first localized topology con-
trol algorithm for all nodes to maintain a unified
energy-efficient topology for unicast and broad-
cast in wireless ad hoc/sensor networks. In one
single structure, the following network properties
are guaranteed:

1. Power efficient unicast: given any two nodes,
there is a path connecting them in the structure
with total power cost no more than 2
C 1

times the power cost of any path connecting
them in the original network. Here 
 > 1 is
some constant that will be specified later in
this algorithm. It assumes that each node u can
adjust its power sufficiently to cover its next-
hop v on any selected path for unicast.

2. Power efficient broadcast: the power
consumption for broadcast is within a constant
factor of the optimum among all locally
constructed structures. As proved in [10],
to prove this, it equals to prove that the
structure is low-weighted. Here we called
a structure low-weigthed, if its total edge
length is within a constant factor of the total
length of the Euclidean Minimum Spanning
Tree (EMST). For broadcast or generally
multicast, it assumes that each node u can
adjust its power sufficiently to cover its
farthest down-stream node on any selected
structure (typically a tree) for multicast.

3. Bounded logical node degree: each node has
to communicate with at most k � 1 logical
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Algorithm 1 S�GG: Power-Efficient Unicast Topology

neighbors, where k � 9 is an adjustable
parameter.

4. Bounded average physical node degree:
the expected average physical node degree
is at most a small constant. Here the physical
degree of a node u in a structure H is defined as
the number of nodes inside the disk centered
at u with radius maxuv2H kuvk.

5. Planar: there are no edges crossing each other.
This enables several localized routing algo-
rithms, such as [2, 5, 7, 8], to be performed on
top of this structure and guarantee the packet
delivery without using the routing table.

6. Neighbors �-separated: the directions be-
tween any two logical neighbors of any node
are separated by at least an angle ™, which
reduces the communication interferences.

It is the first known localized topology con-
trol strategy for all nodes together to maintain
such a single structure with these desired prop-
erties. Previously, only a centralized algorithm
was reported in [1]. The first step is Algorithm 1
that can construct a power-efficient topology for
unicast, then it extends to the final algorithm
(Algorithm 2) that can support power-efficient
broadcast at the same time.

Definition 1 (�-Dominating Region) For each
neighbor node v of a node u, the  -dominating
region of v is the 2 -cone emanated from u, with
the edge uv as its axis.

Let NUDG.u/ be the set of neighbors of node u in
UDG, and let N(u) be the set of neighbors of node
u in the final topology, which is initialized as the
set of neighbor nodes in GG.

Algorithm 1 constructs a degree-.k � 1/ pla-
nar power spanner.

Lemma 1 Graph S�GG is connected if the
underlying graph GG is connected. Furthermore,
given any two nodes u and v, there exists a path
fu; t1; : : : ; tr ; vg connecting them such that all
edges have length less than

p
2kuvk.

Theorem 1 The structure S�GG has node de-
gree at most k � 1 and is planar power spanner
with neighbors �-separated. Its power stretch

factor is at most 
 D
p

2
ˇ

=.1 � .2
p

2 sin �
k

/ˇ /,
where k � 9 is an adjustable parameter.

Obviously, the construction is consistent for two
endpoints of each edge: if an edge uv is kept
by node u, then it is also kept by node v. It is
worth mentioning that, the number 3 in crite-
rion kxyk > max.kuvk; 3kuxk; 3kvyk/ is care-
fully selected.

Theorem 2 The structure LS�GG is a degree-
bounded planar spanner. It has a constant power
spanning ratio 2
C 1, where 
 is the power
spanning ratio of S�GG. The node degree is
bounded by k � 1 where k � 9 is a customizable
parameter in S�GG.
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Algorithm 2 Construct LS�GG: Planar Spanner with Bounded Degree and Low Weight

Theorem 3 The structure LS�GG is low-
weighted.

Theorem 4 Assuming that both the ID and the
geometry position can be represented by log n

bits each, the total number of messages during
constructing the structure LS�GG is in the
range of Œ5n; 13n�, where each message has at
most O.log n/ bits.

Compared with previous known low-weighted
structures [10, 12], LS�GG not only achieves
more desirable properties, but also costs much
less messages during construction. To construct
LS�GG, each node only needs to collect the
information E2.x/ which costs at most 6n
messages for n nodes. The Algorithm 2 can
be generally applied to any known degree-
bounded planar spanner to make it low-weighted
while keeping all its previous properties, except
increasing the spanning ratio from ¡ to 2
C 1

theoretically.
In addition, the expected average node

interference in the structure is bounded by a small
constant. This is significant on its own due to the
following reasons: it has been taken for granted
that “a network topology with small logical node
degree will guarantee a small interference” and
recently Burkhart et al. [3] showed that this
is not true generally. This work also shows
that, although generally a small logical node
degree cannot guarantee a small interference, the
expected average interference is indeed small if

the logical communication neighbors are chosen
carefully.

Theorem 5 For a set of nodes produced by
a Poisson point process with density n, the
expected maximum node interferences of EMST,
GG, RNG, and Yao are at least �.log n/.

Theorem 6 For a set of nodes produced by
a Poisson point process with density n, the
expected average node interferences of EMST
are bounded from above by a constant.

This result also holds for nodes deployed with
uniform random distribution.

Applications

Localized topology control in wireless ad hoc
networks are critical mechanisms to maintain
network connectivity and provide feedback to
communication protocols. The major traffic in
networks are unicast communications. There
is a compelling need to conserve energy and
improve network performance by maintaining
an energy-efficient topology in localized ways.
This algorithm achieves this by choosing
relatively smaller power levels and size of
communication neighbors for each node (e.g.,
reducing interference). Also, broadcasting is
often necessary in MANET routing protocols.
For example, many unicast routing protocols
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such as Dynamic Source Routing (DSR), Ad
Hoc On Demand Distance Vector (AODV), Zone
Routing Protocol (ZRP), and Location Aided
Routing (LAR) use broadcasting or a derivation
of it to establish routes. It is highly important
to use power-efficient broadcast algorithms for
such networks since wireless devices are often
powered by batteries only.
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Problem Definition

The problem is to construct a spanning tree of
small degree for a connected undirected graph
G D .V; E/. In the Steiner version of the prob-
lem, a set of distinguished vertices D � V is
given along with the input graph G. A Steiner
tree is a tree in G which spans at least the
set D.

As finding a spanning or Steiner tree of the
smallest possible degree �� is NP-hard, one is in-
terested in approximating this minimization prob-
lem. For many such combinatorial optimization
problems, the goal is to find an approximation in
polynomial time (a constant or larger factor). For
the spanning and Steiner tree problems, the iter-
ative polynomial time approximation algorithms
of Fürer and Raghavachari [8] (see also [14])
find much better solutions. The degree � of the
solution tree is at most �� C 1.

There are very few natural NP-hard optimiza-
tion problems for which the optimum can be
achieved up to an additive term of 1. One such
problem is coloring a planar graph, where col-
oring with four colors can be done in poly-
nomial time. On the other hand, 3-coloring is
NP-complete even for planar graphs. An other
such problem is edge coloring a graph of degree
�. While coloring with �C 1 colors is always
possible in polynomial time, � edge coloring is
NP-complete.

Chvátal [3] has defined the toughness �.G/

of a graph as the minimum ratio jX j=c.X/ such
that the subgraph of G induced by V nX has
c.X/ � 2 connected components. The inequality
1=�.G/ � �� immediately follows. Win [17] has
shown that �� < 1

�.G/
C 3; i.e., the inverse of

the toughness is actually a good approximation
of ��.

A set X, such that the ratio jX j=c.X/ is the
toughness �.G/, can be viewed as witnessing the

upper bound jX j=c.X/ on �.G/ and therefore the
lower bound c.X/=jX j on ��. Strengthening this
notion, Fürer and Raghavachari [8] define X to
be a witness set for �� � d if d is the smallest
integer greater or equal to .jX jC c.X/� 1/=jX j.
Their algorithm not only outputs a spanning tree,
but also a witness set X, proving that its degree is
at most �� C 1.

Key Results

The minimum degree spanning tree and Steiner
tree problems are easily seen to be NP-hard,
as they contain the Hamiltonian path problem.
Hence, we cannot expect a polynomial time al-
gorithm to find a solution of minimal possible
degree ��. The same argument also shows that
an approximation by a factor less than 3=2 is
impossible in polynomial time unless P D NP .

Initial approximation algorithms obtained so-
lutions of degree O.�� log n/ [6], where n D jV j

is the number of vertices. The optimal result for
the spanning tree case has been obtained by Fürer
and Raghavachari [7, 8].

Theorem 1 Let �� be the degree of an un-
known minimum degree spanning tree of an input
graph G D .V; E/. There is a polynomial time
approximation algorithm for the minimum degree
spanning tree problem that finds a spanning tree
of degree at most �� C 1.

Later this result has been extended to the Steiner
tree case [8].

Theorem 2 Assume a Steiner tree problem is
defined by a graph G D .V; E/ and an arbitrary
subset D of vertices V. Let �� be the degree of
an unknown minimum degree Steiner tree of G
spanning at least the set D. There is a polynomial
time approximation algorithm for the minimum
degree Steiner tree problem that finds a Steiner
tree of degree at most �� C 1.

Both approximation algorithms run in time
O.mn log n ˛.m; n//, where m is the number
of edges and ’ is the inverse Ackermann
function.
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Applications

Some possible direct applications are in networks
for noncritical broadcasting, where it might be
desirable to bound the load per node, and in
designing power grids, where the cost of splitting
increases with the degree. Another major benefit
of a small degree network is limiting the effect of
node failure.

Furthermore, the main results on approximat-
ing the minimum degree spanning and Steiner
tree problems have been the basis for approximat-
ing various network design problems, sometimes
involving additional parameters.

Klein, Krishnan, Raghavachari and Ravi [11]
find 2-connected subgraphs of approximately
minimal degree in 2-connected graphs, as well
as approximately minimal degree spanning trees
(branchings) in directed graphs. Their algorithms
run in quasi-polynomial time, and approximate
the degree �� by .1C �/�� CO.log1C� n/.

Often the goal is to find a spanning tree that
simultaneously has a small degree and a small
weight. For a graph having an minimum weight
spanning tree (MST) of degree �� and weight
w, Fischer [5] finds a spanning tree with degree
O.�� C log n/ and weight w, (i.e., an MST of
small weight) in polynomial time.

Könemann and Ravi [12, 13] provide a bi-
criteria approximation. For a given B� � ��,
let w be the minimum weight of any spanning
tree of degree at most B�. The polynomial
time algorithm finds a spanning tree of degree
O.B� C log n/ and weight O.w/. In the second
paper, the algorithm adapts to the case of
a different degree bound on each vertex.
Chaudhuri et al. [2] further improved this result
to approximate both the degree B� and the weight
w by a constant factor.

In another extension of the minimum degree
spanning tree problem, Ravi and Singh [15] have
obtained a strict generalization of the �� C 1

spanning tree approximation [8]. Their polyno-
mial time algorithm finds an MST of degree
�� C k for the case of a graph with k distinct
weights on the edges.

Recently, there have been some drastic im-
provements. Again, let w be the minimum cost of

a spanning tree of given degree B �. Goemans [9]
obtains a spanning tree of cost w and degree
B� C 2. Finally, Singh and Lau [16] decrease
the degree to B� C 1 and also handle individual
degree bounds ��

v for each vertex v in the same
way.

Interesting approximation algorithms are also
known for the 2-dimensional Euclidian minimum
weight bounded degree spanning tree problem,
where the vertices are points in the plane and
edge weights are the Euclidian distances. Khuller,
Raghavachari, and Young [10] show factor 1.5
and 1.25 approximations for degree bounds 3
and 4 respectively. These bounds have later been
improved slightly by Chan [1]. Slightly weaker
results are obtained by Fekete et al. [4], using
flow-based methods, for the more general case
where the weight function just satisfies the trian-
gle inequality.

Open Problems

The time complexity of the minimum degree
spanning and Steiner tree algorithms [8] is
O.mn ˛.m; n/ log n/. Can it be improved to
O.mn/? In particular, what can be gained by
initially selecting a reasonable Steiner tree with
some greedy technique instead of starting the
iteration with an arbitrary Steiner tree?

Is there an efficient parallel algorithm that
can obtain a �� C 1 approximation in poly-
logarithmic time? Fürer and Raghavachari [6]
have obtained such an NC-algorithm, but only
with a factor O.log n/ approximation of the
degree.
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Problem Definition

The Delaunay triangulation and the Voronoi dia-
gram are two classic geometric structures in the
field of computational geometry. Their success
can perhaps be attributed to two main reasons:
Firstly, there exist practical, efficient algorithms
to construct them; and secondly, they have an
enormous number of useful applications ranging
from meshing and 3D-reconstruction to interpo-
lation.

Given a set S of n sites in some space E, we
define the Voronoi regionVS .p/ of p 2 S to be
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the set of points in E whose nearest neighbor in
S is p (for some distance ı):

V.p/ D
n
x 2E;8q 2S nfpgı.x; p/ < ı.x; q/

o
:

It is easily seen that these regions form a partition
of E into convex regions which we refer to as
cells. These concepts may be extended into more
exotic spaces such as periodic and hyperbolic
spaces or metric spaces using convex distances,
though we restrict ourselves to the case where E

is the Euclidean space E D R
d and the distance

ı is the L2 norm.
The Voronoi diagram V.S/ may now be de-

fined as the limit between the different Voronoi
cells

V.S/ D E n
[

p2S

VS .p/:

The Delaunay triangulation D.S/ is the geo-
metric dual of V.S/. More formally, D.S/ is a
simplicial complex defined by

� 2 D.S/”
\

p2�

VS .p/ ¤ ;;

where VS .p/ is the closure of the Voronoi cell
VS .p/ (see Fig. 1).

Voronoi diagrams and Delaunay triangulations
have received a lot of attention in the literature

D(S)

V(S)

VS(p)

p

∈S

σ

Delaunay Triangulation and Randomized Construc-
tions, Fig. 1 The Voronoi diagram of a set S of 15 points
and its dual Delaunay triangulation

with several surveys, books, or book chapters
(e.g., [4, 14]) and hundreds of papers. In this
article, we will focus on randomized construction
algorithms for the Delaunay triangulation. Such
algorithms use randomness to speed up their
running time but do not assume any randomness
in the data distribution.

Key Results

Delaunay Properties

Empty Ball Property
One crucial property of the Delaunay triangula-
tion, which is the basis of many algorithms, is
the empty ball property, which guarantees that a
triangle is a Delaunay triangle of S if and only if
the interior of its circumball does not contain any
point of S .

Size of the Triangulation
In the plane, the combinatorial properties of a
triangulation (not necessarily Delaunay) are com-
pletely fixed by the Euler relation. In particular,
given n vertices, h of which on the convex hull,
every triangulation must have 2n�2�h triangles
and 3n� 3� h edges. In dimension d , the Dehn-
Sommerville relations yield a linear dependence
for the number of simplices of all dimensions
on the number of simplices of dimensions k

for k �
l

d
2

m
; this gives an O

�
nd

d
2 e
�

upper

bound for the number of simplices of all di-
mension. For both Delaunay and more general
triangulations, these bounds are tight in the worst
case.

These bounds can be tightened given some as-
sumptions on the distribution of the input sites. If
the points are uniformly distributed in a compact
convex of fixed volume, then the triangulation
size (its total number of simplices) is �.n/, with
a constant exponential in d [9]. In 3D, and for re-
construction purposes, it is convenient to assume
that the points lie on a surface. It is known that
the Delaunay triangulation of points uniformly
distributed on a convex polyhedron has size �.n/

(for a constant depending on the polyhedron
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complexity). For points uniformly distributed on
a (non convex) polyhedron, the triangulation’s
size is between ˝.n/ and O.n log n/ [12]. If,
instead of making a probabilistic assumption, we
assume that the points are a “good sampling”
of the surface such that every small ball cen-
tered on the surface contains between 1 and �

points (where � is a constant), then the size of
the Delaunay triangulation is �.n/ for a poly-
hedron, O.n log n/ for a generic smooth sur-
face [3], and ˝.n

p
n/ for a nongeneric surface

(e.g., a cylinder). In the case of the cylinder,
a uniformly distributed point set has a trian-
gulation of size �.n log n/. In dimension d , a
p-dimensional polyhedron whose faces have a
“good sampling” has size O.nk/ where k D
dC1�

l
dC1
pC1

m

p
[2].

First Algorithms
Many classical techniques in algorithmic and
computational geometry have been used to at-
tack the problem of constructing the Delaunay
triangulation and the Voronoi Diagram. The gift
wrapping and the incremental approaches were
introduced in the 1970s [11], followed by some
worst case optimal algorithms in 2D, based on
divide-and-conquer [13] and sweep line tech-
niques [10]. In higher dimensions, the optimal
worst case construction of Delaunay triangulation
and convex hulls was solved in the 1990s.

In the remainder of the entry, we will describe
some further algorithmic techniques that may be
used to construct the Delaunay triangulation.

Randomized Construction
One popular and efficient method, applied
to the Delaunay triangulation at the end of

the 1980s [5], is Randomized Incremental
Construction (RIC). The idea is to exploit the
simplicity of an incremental algorithm while
avoiding its worst case behavior by simply
adjusting the order of insertion of the points.

Conflict Graph
Recalling that D.S/ is the set of triangles with
vertices in S whose circumballs are empty, the
idea is to maintain for a sequence ¿ D S0 	

S1 	 S2 	 : : : 	 Sn D S , where jSi j D i , a
sequence of triangulations D.Si / with associated
conflict graphs. We define the conflict graph to
be a bipartite graph that links a point p of S n Si

to a simplex � in D.Si / if the circumball of �

contains p (p and � are called in conflict). The
information contained in the conflict graph sim-
plifies the construction of D.SiC1/ from D.Si /

since it gives directly the simplices in D.Si /n

D.SiC1/.
The key point comes from an analysis based

on random sampling [6]; let’s assume that Si is
a random sample of size i of S . We say that a
simplex has width j if it has j points in conflict
in S . In which case a Delaunay simplex is a
simplex of width 0. Denote by �j the number of
simplices of width j and let ��k D

P
j �k �j .

We first bound ��k using the following remark:
a simplex of width j is a Delaunay simplex
of a random sample R of size n

k
of S with

probability pk D
1

kdC1

�
1 � 1

k

�j
(vertices of

� must be chosen in R and points in conflict
must not). Notice that for j 2 Œ2 : : : k�, we have�
1 � 1

k

�j
�
�
1 � 1

k

�k
� 1

4
since

�
1 � 1

x

�x
is an

increasing function of value 1
4

for x D 2. For
k � 2, we have (using P to denote the probability
measure)

jD.R/j D O

 
n

k

dd
2 e
!
D

X

�2SdC1

P.� 2 D.R// D
X

j �n

�j pj �
�0

kdC1
C

�1
1
2

kdC1

C

kX

j D2

�j
1
4

kdC1
�

��k

4kdC1
; ��k � O

 
n

k

dd
2 e

kdC1

!
D O

�
nd

d
2 ek

l
dC1

2

m�
:
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We can now analyze the incremental construction
of D.S/. The probability that a triangle of width
j appears during the construction is

p0
j D

�
dC1

j CdC1

�

.j C d C 1/Š

(the number of permutations that look at the
vertices of � before the points in conflict divided
by the total number of permutations). Then the
cost of the algorithm is given by the total number
of conflicts occurring during the construction:

X

�2SdC1

width .�/P.� appears/ D
X

j

�j � j � p
0
j D

X

j

.��j ���j �1/j � p0
j

D
X

j

��j .j � p0
j � .j C 1/p0

j C1/ �
X

j

nd
d
2 ej

l
dC1

2

m

O

�
1

j dC2

�
� O

0

@nd
d
2 e
X

j

j �dd
2 e

1

A

which gives O.n log n/ for d D 2 and O
�
nd

d
2 e
�

for higher d .

Backward Analysis
A simpler way of analyzing RIC is backward
analysis [15], and we will sketch it in 2D. The
idea is quite simple and consists in asking: what

is the cost of the last step? The answer is that
the cost of modifying the triangulation during
last insertion is clearly proportional to the degree
(number of simplices incident) of the last point
inserted into the triangulation. Since the last point
is a random point, its expected degree is

Exp.degree.last point// D Exp.degree.random point// D
1

n

X

p2S

degree.p/ �
6n

n
D 6;

and summing over all insertion steps gives a
linear cost for updating the triangulation. It re-
mains to count the cost of updating the conflict
graph. We remark that there is a conflict between
the last point pn and a triangle created by the
insertion of the j th point pj if and only if the
edge pj pn exists in D.Sj [ fpng/. Since pj

and pn are both random points of Sj [ fpng,

it happens with probability O
�

1
j

�
, the expected

number of conflicts for pn is thus O
�P

j
1
j

�
D

O.log n/, and the total number of conflicts is
O
�P

k log k
�
D O.n log n/.

Delaunay Hierarchy
The conflict graph approach assumes complete
knowledge of S to initialize the conflict graph.
Using a lazy approach and postponing the con-
flict determination, it is possible to obtain online
algorithms [5].

Among the online schemes to construct
the Delaunay triangulation, the Delaunay

hierarchy [7] gives good results both in theory
and in practice. The Delaunay hierarchy
constructs a sequence of random samples
S D S0 
 S1 
 � � � 
 Sh such that
P .p 2 Si j p 2 Si�1/ D ˛. Then the Delaunay
triangulations of D.Si /; 1 � i � h are
maintained under point insertions. Pointers
from a vertex of D.Si / to the vertices at the
same position in D.Si�1/ (if i < h) and in
D.SiC1/ (if it actually belongs to SiC1) are also
computed.

When a new point p needs to be inserted, it is
located by walking in D.Sh/ (using neighborhood
relations) to reach the closest vertex wh of p

in D.Sh/. Then the hierarchy is descended,
walking in D.Si / from wiC1 to find wi the
closest neighbor in sample Si . Using these
neighbors, it is easy to insert p in D.Sh/ and
in the triangulation of other samples that the
random process assigns to p.

In 2D, the expected cost of the walk at any
level is O.˛�1/ and the expected value for h is
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D

O
�

log n
� log ˛

�
. Thus the theoretical complexity of

the algorithm is O.n log n/. The value of ˛ can
be optimized depending on the input distribution:
for random points ˛ D 1

30
gives good timings and

a very low memory requirement in addition to the
one needed for D.S/.

A Less Randomized Construction
Constructing the Delaunay triangulation by in-
serting the points in a random order presents a
drawback with respect to memory management.
Since the inserted point is random in S , there is
very little chance that the triangles needed are
present in the cache memory. So, an idea is to
sort the points using a space-filling curve (see
Fig. 2-left) to ensure locality of the insertions.
Unfortunately, when inserting the points in such
an order, the randomized complexity results no
longer apply and the number of created and
destroyed triangles during the construction may
explode on certain data sets.

A smart solution has been proposed: it is
possible to use an insertion order random enough
to apply randomized complexity results and allow
some locality to benefit from cache memory.
BRIO (Biased Randomized Insertion Order) [1]
proposes to partition S in a set of random samples
S D

S
0�i�h Si such that jSi j D ˛jSiC1j for

˛ � 1, a small constant (e.g., ˛ D 1
4

), and
to insert the samples by increasing size, each

sample being sorted using a spatial filling curve
(see Fig. 2-right).

In the random setting, we have seen that
the probability for a triangle of width j to
appear in the conflict graph algorithm was

1�2�3
.j C1/.j C2/.j C3/

D �.j �3/. Using BRIO, this
probability is a bit less intricate to compute, but
it can be bounded in terms of ˛ and it can be
shown that it is still �.j �3/ and thus randomized
complexity results still apply.

Experimental Results

On a 16 GB, 2.3 GHz desktop CGAL currently
computes the Delaunay triangulation of up to
200M points in 2D and 50M points in 3D [8].

Static timings are almost constant with respect
to the total number of points and are about 1 μs
per point in 2D and 8 μs per point in 3D. In the
dynamic setting, one million points are processed
in 6s in 2D and 25s in 3D.

URLs to Code and Data Sets

CGAL, among a big collection of computational
geometry algorithms, provides implementations
for Delaunay triangulations in 2D, 3D, and gen-
eral dimension. It computes the Delaunay tri-
angulation in 2D and 3D using the Delaunay
hierarchy in a dynamic setting and using BRIO
for static computation (http://cgal.org).

1

2

3

4

5

6

7

19

20

21

Delaunay Triangulation and Randomized Constructions, Fig. 2 Right: the Hilbert space-filling curve. Left:
random points sorted with BRIO
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Problem Definition

Satisfiability is the central NP-complete problem.
Given a Boolean formula in conjunctive normal
form, for example, .x _ Ny _ ´/ ^ . Nx _ Ń/ ^ : : :,
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decide whether there is a satisfying assignment.
An important subclass is k-SAT, where the input
is restricted to k-CNF formulas: CNF formulas in
which every clause has at most k literals. In 1999,
Uwe Schöning [6] gave an extremely simple
randomized algorithm for k-SAT of running time

�
2.k � 1/

k

�n

poly.n/:

In particular this solves 3-SAT in time
O�.1:334n/, 4-SAT in O�.1:5n/ for 4-SAT,
and so on (we use O� to suppress polynomial
factors in n). Several authors have attempted to
derandomize Schöning’s algorithm, albeit at the
cost of a greater running time: an algorithm of
Dantsin, Goerdt, Hirsch, Kannan, Kleinberg,
Papadimitriou, Raghavan, and Schöning [2]
runs in time O�..2k=.k C 1//n/, which for
k D 3 is O�.1:5n/. For k D 3 Brueggemann
and Kern [1] achieve O.1:473n/; Scheder [5]
achieves O.1:465n/; Kutzkov and Scheder [3]
reduced this to O.1:439n/. All improvements
suffer from two drawbacks: they fall short
of achieving the running time of Schöning’s
randomized algorithm; most of them are tailored
to k D 3; finally, they are all fairly complicated.

Key Results

We describe a simple deterministic algorithm due
to Moser and Scheder [4] with a running time that
matches that of Schöning’s up to subexponential
overhead. That is, we prove the following theo-
rem:

Theorem 1 There is a deterministic algorithm
deciding satisfiability of k-CNF formulas over n

variables in time
�

2.k�1/
k

�nCo.n/

.

Notation

For a CNF formula F we denote by vbl(F ) the
set of variables appearing in F . Usually n D

jvbl.F /j denotes the number of variables in a
formula. By f0; 1gvbl.F / (or {0, 1}n/, we denote

the set of all truth assignments to these variables.
We make frequent use of the notation F Œu7!b�,
which is the CNF formula created from F by
replacing every occurrence of the literal u by b

and of Nu by 1 � b. For a literal u and a truth
assignment ˛, we denote by ˛Œu D b� the truth
assignment that sets u to b and agrees with ˛

otherwise.

A Promise Version of k-SAT

The heart of the proof will be an algorithm
solving a promise version of k-SAT:

Theorem 2 Let F be a k-CNF formula over n
variables, ˛ 2 f0; 1gn a (not necessarily satisfy-
ing) assignment, and r 2 N0. There is a deter-
ministic algorithm sb-fast with the following
properties:

1. If F is unsatisfiable, sb-fast .F; r/ returns
unsatisfiable.

2. If F has a satisfying assignment ˛� with
dH .˛; ˛�/ � r , then sb-fast.F; ˛; r/

returns satisfiable.
3. Otherwise (i.e., if F is satisfiable but all

satisfying assignments of F are too far from
˛), then sb-fast.F; ˛; r/ might return
unsatisfiable or satisfiable.

Furthermore, sb-fast runs in time .k �

1/rCo.r/poly.n/.

The “inner random walk” in Schöning’s
algorithm has all properties stated in Theorem 2,
except that it is randomized (with a small error
probability). Combining Theorem 2 with the
covering code machinery of Dantsin, Goerdt,
Hirsch, Kannan, Kleinberg, Papadimitriou,
Raghavan, and Schöning [2] yields our main
result, Theorem 1.

Theorem 3 Suppose there is an algorithm A
which satisfies properties 1–4 of Theorem 2 and
runs in time cr poly.n/. Then there is an al-

gorithm B solving k-SAT in time
�

2c
cC1

�nCo.n/
.

Furthermore, B is deterministic if A is.

Plugging in c D k � 1 yields Theorem 2.
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Preliminaries: A Slower Algorithm

Dantsin et al. [2] give a deterministic algorithm,
henceforth called sb-slow, satisfying Point 1–4
of Theorem 2 with a running time of kr poly.n/.
We will start by explaining and analyzing this
algorithm because our algorithm sb-fast uses
it as a subroutine in case the input formula F is
“well behaved.”

Algorithm sb-slow.F; ˛; r/. F is
a k-CNF formula over n variables, ˛ 2

f0; 1gvbl.F / a truth assignment, and r 2

N0.

1. If ˛ satisfies F , return satisfiable.
2. Else if r D 0, return unsatisfiable.
3. Else:

(a) Pick some clause C D .u1 _ � � � _ u`/

unsatisfied by ˛. Note that ` � k holds
in any case, but ` < k is possible.

(b) Set Fi WD F Œui D1�.
(c) Call sb-slow.Fi ; ˛; r � 1/ for all

1 � i � `.
(d) If some of these ` recursive calls

returns satisfiable, return
satisfiable, otherwise return
unsatisfiable.

It is obvious that sb-slow runs in time
kr poly.n/. For correctness, note that sb-slow
returns unsatisfiable if F is unsatisfiable.
If F has a satisfying assignment ˛� ¤ ˛, let
.u1 _ : : : _ uk/ be the clause picked in step (3a).
Now ˛� satisfies some literal ui in that clause,
and thus the formula Fi WD F Œui D1� is satisfiable,
as well. Since neither ui nor Nui appears in Fi ,
we see that ˛�Œui D 0� satisfies Fi . Since
dH .˛�Œui D 0�; ˛/ D dH .˛�; ˛/ � 1 � r � 1,
the call sb-slow.Fi ; ˛; r � 1/ will return
satisfiable.

Speeding Up the Algorithm

Let k 2 N0 be fixed from now on.

Definition 1 Let F be a k-CNF formula and ˛ 2

f0; 1gvbl.F /. We say that F is good (with respect
to ˛) if ˛ satisfies all k-clauses of F (it might still
violate smaller clauses).

Observe that if F is good, then F ŒuD1� is good
for every literal u. If F is good with respect to ˛,
then sb-slow.F; ˛; r/ picks a clause of size at
most k � 1 in step (3a) and causes at most k � 1

recursive calls, each again with a good formula:

Lemma 1 Suppose F is a k-CNF that is good
with respect to ˛. Then sb-slow .F; ˛; r/ runs
in time .k � 1/r poly.n/.

Great! The only thing that is left is to do
something smart for formulas that are not good,
i.e., have some unsatisfied clauses of size k. We
will now describe how sb-fast proceeds and
give a precise pseudocode description later. The
algorithm sb-fast greedily finds a maximal set
of pairwise disjoint k-clauses that are unsatisfied
by ˛: C1; : : :; Cm, all over disjoint sets of vari-
ables. This can be done in polynomial time. Let
ˇ be an assignment to these variables.

Proposition 1 F Œˇ� is good with respect to ˛.

This is easy to see: consider a k-clause C in F

that is not satisfied by ˛. Then C might or might
not be among C1; : : :; Cm, but by maximality it
shares at least one variable with some i . This vari-
able disappears in F Œˇ�, and C is either satisfied
or shrinks to something smaller than k.

Fix t D blogk log2 nc. If m � t sb-fast can
simply iterate over all 2km � 2kt � .log2 n/k

different assignments ˇ to the variables in
C1; : : :; Cm: each F Œˇ� is good, and thus
sb-fast (F Œˇ�;˛;r / runs in time (k�1/r poly.n/.
Also, if F is unsatisfiable then all F Œˇ� are.
If F has a satisfying assignment ˛� with
dH .˛�; ˛/ � r , then at least one F Œˇ� does,
too. So this step is correct. We are left with
the case that m � t . In this case we define
G WD C1; : : : ; Ct .

k-ary Covering Codes

The set Œk�t is endowed with a Hamming
distance, just as the Hamming cube is: for
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w; w0 2 Œk�t , we define dH .w; w0/ WDˇ̌˚
i 2 Œt �

ˇ̌
wi ¤ w0

i

�ˇ̌
. The k-ary Hamming ball

around w of radius s is the set B
.k/
s .w/ WD˚

w0 2 Œk�t j dH .w; w0/ � s
�
. The number of

elements in such a ball is independent of w.
We define and observe

vol.k/.t; s/ WD
ˇ̌
ˇB.k/

s .w/
ˇ̌
ˇ D

sX

iD0

�
t

i

�
.k � 1/i :

If C � Œk�t and [w2CB
.k/
s .w/ D Œk�t , we call

C a k-ary code of length t and covering radius s.
Using the probabilistic method it is easy to show
the following result:

Lemma 2 Let t , k 2 N, and s 2 N0. There exists
a k-ary code of length t and covering radius s

with at most

&
t ln .k/ kt

vol.k/.t; s/

'

elements.

Observe that kt � log2 n and thus there are at
most 2log2 n D n subsets C � Œk�t . We iterate
through all of them and find a smallest code of
covering radius s.

Consider G D .C1; : : :; Ct /, our maximal set
of pairwise disjoint k-clauses not satisfied by ˛.
Any satisfying assignment ˛� of F must satisfy
at least one literal in each Ci . Since they are
pairwise disjoint, this implies dH .˛; ˛�/ � t .
There are exactly kt assignments that satisfy G

and have distance exactly t from ˛. Each such
assignment can be represented by a w 2 Œk�t in
the obvious way. To be more precise, for w 2 Œk�t

we define ˛ŒG; w� to be the assignment which we
obtain from ˛ by flipping the wth

i literal in Ci , for
1 � i � t . If G is understood from the context,
we write ˛Œw� instead of ˛ŒG; w�.

Example 1 Consider G D ..x1; y1; ´1/; .x2;

y2; ´2/; .x3; y3; ´3//; ˛ D .0; : : :; 0/ and t D

3. Let w D .2; 3; 3/. Then ˛Œw� is the assignment
that sets y1; ´2, and ´3 to 1 and all other variables
to 0.

Proposition 2 We observe the following facts
about ˛Œw�:

1. dH .˛; ˛Œw�/ D t for every w 2 Œk�t .
2. If ˛� satisfies F, then for some w� 2 Œk�t we

have dH .˛Œw��; ˛�/ D dH .˛; ˛�/ � t .
3. Let w; w0 2 Œk�t . Then dH .˛Œw�; ˛Œw0�/ D

2dH .w; w0/.

Lemma 3 Let t and G be defined as above, and
let C � Œk�t be a k-ary code of covering radius s.
If ˛� is a satisfying assignment of F , then there
is some w 2 C such that dH .˛Œw��; ˛�/ �

dH .˛; ˛�/ � t C 2s.

In particular, if Br .˛/ contains a satisfying
assignment, then there is some w 2 C such that
Br�tC2s .˛ Œw�/ contains it, too.

Proof (of Lemma 3) By Proposition 2, there is
some w� 2 Œk�t such that dH .˛ Œw�� ; ˛�/ D

dH .˛; ˛�/ � t � r � t . Since C has covering ra-
dius s, there is some w 2 C such that dH .ww�/ �

s, and by Observation 2, dH .˛Œw�; ˛Œw��/ �

2s. The lemma now follows from the triangle
inequality. The proof is illustrated in Fig. 1.

We now state sb-fast formally. We com-
pute an optimal k-ary code C of length t and
covering radius s D t=k that is fixed throughout
the run of the algorithm.

Algorithm sb-fast.F; ˛; r/.

1. If ˛ satisfies F , return satisfiable.
2. Else if r D 0, return unsatisfiable.
3. Else let G be maximal set of pairwise

disjoint k-clauses of F unsatisfied by ˛.
4. If jGj � t WD logk log2 n: Call

sb-slow.F Œˇ�; ˛; r/ for every ˇ 2

f0; 1gvbl.G/ and return satisfiable iff
at least one call returns satisfiable.

5. Else, if jGj � t set
G D .C1; : : :; Ct / and call
sb-fast.F; ˛ ŒG; w� ; r � t C 2t=k/

for every w 2 C and return
satisfiable iff at least one call
returns satisfiable.



528 Derandomization of k-SAT Algorithm

Derandomization of
k-SAT Algorithm, Fig. 1
The distance from ˛� to
˛Œw� is at most the distance
from ˛� to ˛Œw�� plus 2s

®∗® ®[w∗]

t

2sa[w]

Correctness of sb-fast follows from the above
discussion: If there is some ˛� 2 Br .˛/ that
satisfies F , then for at least one w 2 C it holds
that dH .˛ Œw� ; ˛�/ � r � t C 2t=k, thus the
corresponding recursive call to sb-fast will be
successful.

What about the running time? If jGj � t , then
every call to sb-slow (F Œˇ�; ˛; r/ runs in time
O..k � l/r poly.n//. Otherwise, the procedure
sb-fast calls itself recursively for each w 2 C.
Every level further into the recursion, the param-
eter r decreases by t � 2t=k. The running time
is therefore jCjr=.t�2t=k/ poly.n/. To evaluate this
we have to estimate the size of C. Recall that
s D t=k.

jCj � kt poly .t/

vol.k/ .t; s/
�

kt poly .t/
�

t

s

�
.k � 1/s

�
kt poly .t/

�
t
s

�s � t
t�s

�t�s
.k � 1/s

D
kt poly .t/

ks
�

k
k�1

�t�s

.k � 1/s

D .k � 1/t�2s poly.t/:

Therefore,

jCjr=.t�2t=k/ j�
�
.k � 1/t�2s poly .t/

�r=.t�2s/

D .k � 1/r poly .t/r=.t�2s/ :

Since t is a growing function in n, the term
poly.t/1=.t�2s/ converges to 1 as n grows, and the
running time is at most .k � 1/rCo.r/poly.n/. This
completes the proof of Theorem 2.
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Problem Definition

One of the most fundamental communication
problems in wired as well as wireless networks
is broadcasting, where one distinguished source
node has a message that needs to be sent to all
other nodes in the network.

The radio network abstraction captures the
features of distributed communication networks
with multi-access channels, with minimal as-
sumptions on the channel model and processors’
knowledge. Directed edges model unidirectional
links, including situations in which one of two
adjacent transmitters is more powerful than the
other. In particular, there is no feedback mecha-
nism (see, for example, [13]). In some applica-
tions, collisions may be difficult to distinguish
from the noise that is normally present on the
channel, justifying the need for protocols that
do not depend on the reliability of the collision
detection mechanism (see [9,10]). Some network
configurations are subject to frequent changes.
In other networks, topologies could be unstable
or dynamic; for example, when mobile users
are present. In such situations, algorithms that
do not assume any specific topology are more
desirable.

More formally a radio network is a directed
graph where by n we denote the number of nodes

in this graph. If there is an edge from u to v,
then we say that v is an out-neighbor of u and
u is an in-neighbor of v. Each node is assigned a
unique identifier from the set f1; 2; : : : ; ng. In the
broadcast problem, one node, for example, node
1, is distinguished as the source node. Initially,
the nodes do not possess any other informa-
tion. In particular, they do not know the network
topology.

The time is divided into discrete time steps.
All nodes start simultaneously, have access to
a common clock, and work synchronously. A
broadcasting algorithm is a protocol that for each
identifier id, given all past messages received by
id, specifies, for each time step t , whether id will
transmit a message at time t , and if so, it also
specifies the message. A message M transmitted
at time t from a node u is sent instantly to all its
out-neighbors. An out-neighbor v of u receives
M at time step t only if no collision occurred, that
is, if the other in-neighbors of v do not transmit
at time t at all. Further, collisions cannot be
distinguished from background noise. If v does
not receive any message at time t , it knows that
either none of its in-neighbors transmitted at time
t or that at least two did, but it does not know
which of these two events occurred. The running
time of a broadcasting algorithm is the smallest
t such that for any network topology, and any
assignment of identifiers to the nodes, all nodes
receive the source message no later than at step t .

All efficient radio broadcasting algorithms are
based on the following purely combinatorial con-
cept of selectors.

Selectors Consider subsets of f1; : : : ; ng. We
say that a set S hits a set X iff jS \ X j D 1,
and that S avoids Y iff S \ Y D ;. A family S
of sets is a w-selector if it satisfies the following
property:

(�) For any two disjoint sets X , Y with w = 2 �

jX j � w, jY j � w, there is a set in S which
hits X and avoids Y .

A complete layered network is a graph consist-
ing of layers L0; : : : ; Lm�1, in which each node
in layer Li is directly connected to every node in
layer LiC1, for all i D 0; : : : ; m � 1. The layer
L0 contains only the source node s.
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Key Results

Theorem 1 ([5]) For all positive integers w and
n, s.t., w � n, there exists a w-selector NS with
O.w log n/ sets.

Theorem 2 ([5]) There exists a deterministic
O.n log 2n/-time algorithm for broadcasting in
radio networks with arbitrary topology.

Theorem 3 ([5]) There exists a deterministic
O.n log n/-time algorithm for broadcasting in
complete layered radio networks.

Applications

Prior to this work, Bruschi and Del Pinto showed
in [1] that radio broadcasting requires time
�.n log D/ in the worst case. In [4], Chlebus
et al. presented a broadcasting algorithm with
time complexity O.n11=6/ – the first subquadratic
upper bound. This upper bound was later
improved to O.n5=3 log 3n/ by De Marco and
Pelc [8] and by Chlebus et al. [3] to O.n3=2/ by
application of finite geometries.

Recently, Kowalski and Pelc in [12] proposed
a faster O.n log n log D/ – time radio broadcast-
ing algorithm, where D is the eccentricity of the
network. Later, Czumaj and Rytter showed in [6]
how to reduce this bound to O.n log 2D/. The re-
sults presented in [5] (see Theorems 1–3, as well
as further improvements in [6,12]) are existential
(non-constructive). The proofs are based on the
probabilistic method. A discussion on efficient
explicit construction of selectors was initiated by
Indyk in [11] and then continued by Chlebus and
Kowalski in [2].

More careful analysis and further discussion
on selectors in the context of combinatorial group
testing can be found in [7], where DeBonis et al.
proved that the size of selectors is ‚.w log n

w /.

Open Problems

The exact complexity of radio broadcasting re-
mains an open problem, although the gap be-
tween the lower and upper bounds �.n log D/

and O.n log 2D/ is now only a factor of log D.
Another promising direction for further studies is
improvement of efficient explicit construction of
selectors.

Recommended Reading

1. Bruschi D, Del Pinto M (1997) Lower bounds for the
broadcast problem in mobile radio networks. Distrib
Comput 10(3):129–135

2. Chlebus BS, Kowalski DR (2005) Almost optimal ex-
plicit selectors. In: Proceedings of 15th international
symposium on fundamentals of computation theory,
Lübeck, pp 270–280
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Problem Definition

In the Linear Search Problem (LSP), we seek effi-
cient strategies for locating an immobile target on
the infinite line. More formally, the search envi-
ronment consists of the infinite (i.e., unbounded)
line, with a point O designated as a specific start
point. A mobile searcher is initially located at O ,
whereas the target may be hidden at any point
on the line. The searcher’s strategy S defines the
movement of the searcher on the line; on the
other hand, the hider’s strategy H is defined as
the precise placement of the target on the line,
and we denote by jH j the distance of the target
from the start point. Given strategies S; H , the
cost of locating the target, denoted by c.S; H/

is the total distance traversed by the searcher at
the first time the target is located. The normalized
cost of the strategies is defined as the quantity
c.S; H/ D c.S;H/

jH j
.

The objective of the linear search problem
is to determine a strategy S for the searcher
that minimizes the worst-case normalized cost,
namely, the quantity supH c.S; H/; the latter is
often referred to as the competitive ratio of the
strategy S , due to similarities of this setup with

the competitive analysis of online algorithms. In
game-theoretic terms, the problem can be de-
scribed as a zero-sum game between the searcher
and the hider in which we seek the minimax
strategy of the game.

Extensions
A natural extension of the linear search problem
is the m-ray search problem, also known as the
star search problem. Here, the search environ-
ment consists of m infinite rays, with the start
point O being their common intersection point.
Clearly, the linear search problem is precisely the
2-ray search problem.

Constraints
It must be noted that if jH j is arbitrarily small,
no strategy of constant competitive ratio exists.
Hence, a frequent and natural assumption in the
field is to assume that jH j � 1, i.e., that the
target is hidden at least at some minimum allowed
distance from the start point. A different assump-
tion that can be made in order to circumvent
this complication is that the search strategy must
incorporate an infinite sequence of infinitesimal
steps (i.e., depths of exploration). In this entry we
assume the former, namely, that jH j � 1.

In addition, we assume only deterministic (i.e.,
pure) strategies for both the searcher and the
hider. We note that a substantial amount of pre-
vious work has addressed mixed strategies under
given probability distributions on the placement
of the target. We refer the reader to the textbook
of Alpern and Gal [1].

Key Results

We consider two variants of the problem. In the
first variant, the searcher lacks any information
concerning the hidden target. In the second vari-
ant, the searcher knows that the target is within
distance h D jH j from the start point O .

Note that for the linear search problem, the
searcher’s strategy is completely determined by
the sequence of search depths fxigi�1, where xi

denotes the total distance from the start point



532 Deterministic Searching on the Line

in which the line is searched during the i -th
exploration.

Searching with No Information
It has long been known that a doubling strategy,
namely, the strategy f2igi�1 attains an optimal
competitive ratio equal to 9 for this variant. The
result is due to Beck and Newman [4] and redis-
covered by Baeza-Yates et al. [2].

Calculating an upper bound on the competitive
ratio is easy: if the target is at distance h from O ,
the doubling strategy will discover it at traversal
2k C 1, where 22k�1 < h and 22kC1 � h. The
total distance traversed by the searcher is equal to
2
P2k

iD1 2iCd D 4.22k�1/Ch. The competitive
ratio is maximized when h ! 1 and converges
(from below) to 9.

An elegant approach for proving the tightness
of this bound is based on lower bounds on cer-
tain functionals over positive sequences [8]. Let
fxigi�1 be an optimal search strategy, then it is
easy to see that its competitive ratio is at least

equal to supk 1 C 2
PkC1

iD1
xi

xk
. In addition, it can

be readily seen that an optimal search strategy
fxigi�1 must be monotone, i.e., xi � xj for
i > j . Given the above, Gal shows that there
exists a > 1 such that

sup
k

1C 2

PkC1
iD1 xi

xk

� sup
a

lim
k!1

1C 2

PkC1
iD1 ai

ak
;

which in turn is at least equal to 9, for all a > 1.
Informally, the above argument shows that

geometric strategies of the form faigi�1 comprise
the space of optimal strategies, and by choosing
a D 2 one obtains the best strategy.

Searching with an Upper Bound on the
Target Distance
In the setting in which the searcher has an upper
bound h on the distance of the target from the
start point, it is possible to obtain improved com-
petitive ratios. Jaillet and Stafford [9] approach
this problem by solving the following “dual”
problem: given a target competitive ratio r , and
the upper bound h, what is the largest “extent”
(i.e., the furthest one can go in both directions)

that can be searched while guaranteeing a com-
petitive ratio at most r? A solution to this problem
implies a solution to the (primal) search problem:
it suffices to find the smallest r such that e.r/ �

h, where e.h/ is the best-possible extent.
The dual problem of finding e.r/ is addressed

by means of a series of linear-program formu-
lations. The solution to this series of linear pro-
grams defines a search strategy in which the
search depths fxigi�1 are determined by an ap-
propriate linear recurrence relation. As a last
step, e.r/ is obtained as a particular element
of the sequence that is generated by the linear
recurrence in question. It should be noted that
although the strategy is optimal, this technique
does not yield a closed-form expression of the
optimal competitive ratio (given h).

A similar approach leads to a solution for
m-ray searching with an upper bound on the
target distance. The crucial difficulty here, as
opposed to the case m D 2, is in showing
that an optimal strategy can be found in the
class of cyclic strategies: these are strategies in
which the searcher always visits the rays in some
fixed round-robin order. This seemingly intuitive
property is surprisingly hard to be established
formally. To bypass this obstacle, one must first
show that the property holds when the search
depths form a nondecreasing sequence. Then one
can argue that, once a searcher is at the start point,
it will always choose to explore the ray that has
been explored the least up to the current point. As
noted in [9], this “least-extended-so-far discipline
is the link between non-decreasing depths and
the cyclic property that is sought.” Once the
optimality of cyclic strategies is established, a
similar approach can be applied as in the case
m D 2; namely, the search depths are determined
by a (more complicated) linear recurrence.

Applications

The problem has obvious applications in the
context of robotic navigation in an unknown envi-
ronment. Strategies based on doubling are used in
searching more complicated environments, e.g.,
a graph [11]. The linear search problem and its
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generalization have connections with the design
of black-box strategies for obtaining interruptible
algorithms. The latter class consists of algorithms
with the property that they return efficient solu-
tions even if interrupted during their execution.
Such algorithms are very desirable in the context
of real-time and anytime applications in artificial
intelligence [5].
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Problem Definition

Indexing and dictionary matching are generalized
models of pattern matching. These models have
attained importance with the explosive growth of
multimedia, digital libraries, and the Internet.

1. Text Indexing: In text indexing one desires
to preprocess a text t , of length n, and to
answer where subsequent queries p, of length
m, appear in the text t .

2. Dictionary Matching: In dictionary match-
ing one is given a dictionary D of strings
p1; : : : ; pd to be preprocessed. Subsequent
queries provide a query string t , of length n,
and ask for each location in t at which patterns
of the dictionary appear.

Key Results

Text Indexing
The indexing problem assumes a large text that
is to be preprocessed in a way that will allow
the following efficient future queries. Given a
query pattern, one wants to find all text locations
that match the pattern in time proportional to the
pattern length and to the number of occurrences.
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To solve the indexing problem, Weiner [14]
invented the suffix tree data structure (originally
called a position tree), which can be constructed
in linear time, and subsequent queries of length
m are answered in time O.m log j†j C tocc/,
where tocc is the number of pattern occurrences
in the text.

Weiner’s suffix tree in effect solved the
indexing problem for exact matching of fixed
texts. The construction was simplified by the
algorithms of McCreight and, later, Chen
and Seiferas. Ukkonen presented an online
construction of the suffix tree. Farach presented
a linear time construction for large alphabets
(specifically, when the alphabet is {1; : : : ; nc},
where n is the text size and c is some fixed
constant). All results, besides the latter, work by
handling one suffix at a time. The latter algorithm
uses a divide-and-conquer approach, dividing the
suffixes to be sorted to even-position suffixes and
odd-position suffixes. See the entry on � Suffix
Tree Construction for full details. The standard
query time for finding a pattern p in a suffix tree
is O.m log j†j/. By slightly adjusting the suffix
tree, one can obtain a query time of O.mClog n/;
see [12].

Another popular data structure for indexing is
suffix arrays. Suffix arrays were introduced by
Manber and Myers. Others proposed linear time
constructions for linearly bounded alphabets. All
three extend the divide and conquer approach
presented by Farach. The construction in [11]
is especially elegant and significantly simplifies
the divide-and-conquer approach, by dividing the
suffix set into three groups instead of two. See
the entry on � Suffix Array Construction for full
details. The query time for suffix arrays is O.mC

log n/ achievable by embedding additional lcp
(longest common prefix) information into the
data structure. See [11] for reference to other
solutions. Suffix Trays were introduced in [6] as a
merge between suffix trees and suffix arrays. The
construction time of suffix trays is the same as
for suffix trees and suffix arrays. The query time
is O.mC log j†j/.

Solutions for the indexing problem in dynamic
texts, where insertions and deletions (of single
characters or entire substrings) are allowed,

appear in several Papers; see [2] and references
therein.

Dictionary Matching
Dictionary matching is, in some sense, the “in-
verse” of text indexing. The large body to be
preprocessed is a set of patterns, called the dic-
tionary. The queries are texts whose length is
typically significantly smaller than the dictionary
size. It is desired to find all (exact) occurrences of
dictionary patterns in the text in time proportional
to the text length and to the number of occur-
rences.

Aho and Corasick [1] suggested an automaton-
based algorithm that preprocesses the dictionary
in time O.d/ and answers a query in time
O.n C docc/, where docc is the number of
occurrences of patterns within the text. Another
approach to solving this problem is to use a
generalized suffix tree. A generalized suffix tree is
a suffix tree for a collection of strings. Dictionary
matching is done for the dictionary of patterns.
Specifically, a suffix tree is created for the
generalized string p1$1p2$2 : : : $pd $d , where
the $i ’s are not in the alphabet. A randomized
solution using a fingerprint scheme was proposed
in [3]. In [7] a parallel work-optimal algorithm
for dictionary matching was presented. Ferragina
and Luccio [8] considered the problem in the
external memory model and suggested a solution
based upon the String Btree data structure along
with the notion of a certificate for dictionary
matching. Two-dimensional dictionary matching
is another fascinating topic which appears
as a separate entry. See also the entry on
�Multidimensional String Matching.

Dynamic Dictionary Matching
Here one allows insertion and deletion of patterns
from the dictionary D. The first solution to the
problem was a suffix tree-based method for solv-
ing the dynamic dictionary matching problem.
Idury and Schäffer [10] showed that the failure
function (function mapping from one longest
matching prefix to the next longest matching
prefix; see [1]) approach and basic scanning loop
of the Aho-Corasick algorithm can be adapted to
dynamic dictionary matching for improved initial
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dictionary preprocessing time. They also showed
that faster search time can be achieved at the
expense of slower dictionary update time.

A further improvement was later achieved
by reducing the problem to maintaining a se-
quence of well-balanced parentheses under cer-
tain operations. In [13] an optimal method was
achieved based on a labeling paradigm, where
labels are given to, sometimes overlapping, sub-
strings of different lengths. The running times are
O.jDj/ preprocessing time, O.m/ update time,
and O.n C docc/ time for search. See [13] for
other references.

Text Indexing and Dictionary Matching
with Errors
In most real-life systems, there is a need to allow
errors. With the maturity of the solutions for exact
indexing and exact dictionary matching, the quest
for approximate solutions began. Two of the
classical measures for approximating closeness
of strings, Hamming distance and Edit distance,
were the first natural measures to be considered.

Approximate Text Indexing
For approximate text indexing, given a distance
k, one preprocesses a specified text t . The goal
is to find all locations ` of t within distance k of
the query p, i.e., for the Hamming distance all
locations ` such that the length m substring of
t beginning at that location can be made equal
to p with at most k character substitutions. (An
analogous statement applies for the edit distance.)
For k D 1 [4] one can preprocess in time
O.n log2 n/ and answer subsequent queries p

in time O.m
p

log n log log n C occ/. For small
k � 2, the following naive solutions can be
achieved. The first possible solution is to traverse
a suffix tree checking all possible configurations
of k, or less, mismatches in the pattern. However,
while the preprocessing needed to build a suffix
tree is cheap, the search is expensive, namely,
O.mkC1j†jk C occ/. Another possible solution,
for the Hamming distance measure only, leads to
data structures of size approximately O.nkC1/

embedding all mismatch possibilities into the
tree. This can be slightly improved by using the

data structures for k D 1, which reduce the size
to approximately O.nk/.

Approximate Dictionary Matching
The goal is to preprocess the dictionary along
with a threshold parameter k in order to sup-
port the following subsequent queries: Given a
query text, seek all pairs of patterns (from the
dictionary) and text locations which match within
distance k. Here once again there are several
algorithms for the case where k D 1 [4, 9].
The best solution for this problem has query
time O.m log log n C occ/; the data structure
uses space O.n log n/ and can be built in time
O.n log n/.

The solutions for k D 1 in both problems
(Approximate Text Indexing and Approximate
Dictionary Matching) are based on the following,
elegant idea, presented in Indexing terminology.
Say a pattern p matches a text t at location i

with one error at location j of p (and at location
iCj �1 of t ). Obviously, the j �1-length prefix
of p matches the aligned substring of t and so
does the m � j � 1 length suffix. If t and p are
reversed, then the j � 1-th length prefix of p

becomes a j � 1-th length suffix of pR (that is
p reverse). Notice that there is a match with, at
most one error, if (1) the suffix of p starting at
location j C 1 matches the (prefix of the) suffix
of t starting at location i C j and (2) the suffix
of pR starting at location m � j C 1 (the reverse
of the j � 1-th length prefix of p) matches the
(prefix of the) suffix of tR starting at location
m � i � j C 3. So, the problem now becomes a
search for locations j which satisfy the above. To
do so, the abovementioned solutions, naturally,
use two suffix trees, one for the text and one for
its reverse (with additional data structure tricks
to answer the query fast). In dictionary matching
the suffix trees are defined on the dictionary. The
problem is that this solution does not carry over
for k � 2. See the introduction of [5] for a full
list of references.

Text Indexing and Dictionary Matching
Within (Small) Distance k

Cole et al. [5] proposed a new method that yields
a unified solution for approximate text indexing,
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approximate dictionary matching, and other re-
lated problems. However, since the solution is
somewhat involved, it will be simpler to explain
the ideas on the following problem. The desire
is to index a text t to allow fast searching for
all occurrences of a pattern containing, at most,
k don’t cares (don’t cares are special characters
which match all characters).

Once again, there are two possible, relatively
straightforward, solutions to be elaborated. The
first is to use a suffix tree, which is cheap to
preprocess, but causes the search to be expensive,
namely, O.mj†jk C occ/ (if considering k mis-
matches this would increase to O.mkC1j†jk C

occ/. To be more specific, imagine traversing a
path in a suffix tree. Consider the point where
a don’t care is reached. If in the middle of an
edge the only text suffixes (representing sub-
strings) that can match the pattern with this don’t
care must also go through this edge, so simply
continue traversing. However, if at a node, then
all the paths leaving this node must be explored.
This explains the mentioned time bound.

The second solution is to create a tree that
contains all strings that are at Hamming distance
k from a suffix. This allows fast search but
leads to trees of size exponential in k, namely,
O.nkC1/ size trees. To elaborate, the tree, called
a k-error trie, is constructed as follows. First,
consider the case for one don’t care, i.e., a 1-error
trie, and then extend it. At any node v a don’t
care may need to be evaluated. Therefore, create
a special subtree branching off this node that
represents a don’t care at this node. To understand
this subtree, note that the subtree (of the suffix
tree) rooted at v is actually a compressed trie
of (some of the) suffixes of the text. Denote the
collection of suffixes Sv . The first character of
all these suffixes has to be removed (or, perhaps
better imagined as a replacement with a don’t
care character). Each will be a new suffix of the
text. Denote the new collection as S 0

v . Now, create
a new compressed trie of suffixes for S 0

v , calling
this new subtree an error tree. Do so for every v.
The suffix tree along with its error trees is a 1-
error trie. Turning to queries in the 1-error trie,
when traversing the 1-error trie, do so with the
suffix tree up till the don’t care at node v. Move

into the error tree at node v and continue the
traversal of the pattern.

To create a 2-error trie, simply take each error
tree and construct an error tree for each node
within. A .kC 1/-error trie is created recursively
from a k-error trie. Clearly the 1-error trie is of
size O.n2/, since any node u in the original suffix
tree will appear in all the new subtrees of the 1-
error trie created for each of the nodes v which
are ancestors of u. Likewise, the k-error trie is of
size O.nkC1/.

The method introduced in Cole et al. [5] uses
the idea of the error trees to form a new data
structure, which is called a k-errata trie. The k-
errata trie will be much smaller than O.nkC1/.
However, it comes at the cost of a somewhat
slower search time. To understand the k-errata
tries, it is useful to first consider the 1-errata tries
and to extend. The 1-errata trie is constructed
as follows. The suffix tree is first decomposed
with a centroid path decomposition (which is a
decomposition of the nodes into paths, where all
nodes along a path have their subtree sizes within
a range 2r and 2rC1, for some integer r). Then,
as before, error trees are created for each node v

of the suffix tree with the following difference.
Namely, consider the subtree, Tv , at node v and
consider the edge .v; x/ going from v to child x

on the centroid path. Tv can be partitioned into
two subtrees, Tx [ .v; x/, and T 0

v all the rest of
Tv . An error tree is created for the suffixes in
T 0

v . The 1-errata trie is the suffix tree with all
of its error trees. Likewise, a .k C 1/-errata trie
is created recursively from a k-errata trie. The
contents of a k-errata trie should be viewed as
a collection of error trees, k levels deep, where
error trees at each level are constructed on the
error trees of the previous level (at level 0 there
is the original suffix tree). The following lemma
helps in obtaining a bound on the size of the k-
errata trie.

Lemma 1 Let C be a centroid decomposition of
a tree T . Let u be an arbitrary node of T and �

be the path from the root to u. There are at most
log n nodes v on � for which v and v’s parent on
� are on different centroid paths.
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The implication is that every node u in the
original suffix tree will only appear in log n error
trees of the 1-errata trie because each ancestor v

of u is on the path � from the root to u and only
log n such nodes are on different centroid paths
than their children (on �). Hence, u appears in
only log kn error trees in the k-errata trie. There-
fore, the size of the k-errata trie is O.n logk n/.
Creating the k-errata tries in O.n logkC1 n/ can
be done. To answer queries on a k-errata trie,
given the pattern with (at most) k don’t cares,
the 0th level of the k-errata trie, i.e., the suffix
tree, needs to be traversed. This is to be done until
the first don’t care, at location j , in the pattern is
reached. If at node v in the 0th level of the k-
errata trie, enter the (1st level) error tree hanging
off of v and traverse this error tree from location
j C 2 of the pattern (until the next don’t care is
met). However, the error tree hanging off of node
v does not contain the subtree hanging off of v

that is along the centroid path. Hence, continue
traversing the pattern in the 0th level of the k-
errata trie, starting along the edge on the centroid
path leaving v (until the next don’t care is met).
The search is done recursively for k don’t cares
and, hence, yields an O.2km/ time search.

Recall that a solution for indexing text that
supports queries of a pattern with k don’t cares
has been described. Unfortunately, when index-
ing to support k mismatch queries, not to mention
k edit operation queries, the traversal down a
k-errata trie can be very time consuming as
frequent branching is required since an error
may occur at any location of the pattern. To
circumvent this problem, search many error trees
in parallel. In order to do so, the error trees have
to be grouped together. This needs to be done
carefully; see [5] for the full details. Moreover,
edit distance needs even more careful handling.
The time and space of the algorithms achieved in
[5] are as follows:

Approximate Text Indexing: The data
structure for mismatches uses space O.n logk n/,
takes time O.n logkC1 n/ to build, and answers
queries in time O..logk n/ log log nCmC occ/.
For edit distance, the query time becomes
O..logk n/ log log n C m C 3k � occ/. It must

be pointed out that this result is mostly effective
for constant k.

Approximate Dictionary Matching: For k

mismatches the data structure uses space O.nC

d logk d/, is built in time O.nCd logkC1 d/, and
has a query time of O..mC logkd/ � log log nC

occ/. The bounds for edit distance are modified
as in the indexing problem.

Applications

Approximate Indexing has a wide array of
applications in signal processing, computational
biology, and text retrieval, among others.
Approximate Dictionary Matching is important
in digital libraries and text retrieval systems.
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Problem Definition

The problem of lossless data compression is the
problem of compactly representing data in a for-
mat that admits the faithful recovery of the orig-
inal information. Lossless data compression is
achieved by taking advantage of the redundancy
which is often present in the data generated by
either humans or machines.

Dictionary-based data compression has been
“the solution” to the problem of lossless data
compression for nearly 15 years. This technique
originated in two theoretical papers of Ziv
and Lempel [15, 16] and gained popularity
in the “1980s” with the introduction of the
Unix tool compress (1986) and of the gif
image format (1987). Although today there
are alternative solutions to the problem of
lossless data compression (e.g., Burrows-
Wheeler compression and Prediction by Partial
Matching), dictionary-based compression is still
widely used in everyday applications: consider
for example the zip utility and its variants,
the modem compression standards V.42bis
and V.44, and the transparent compression
of pdf documents. The main reason for the
success of dictionary-based compression is its
unique combination of compression power and
compression/decompression speed. The reader
should refer to [13] for a review of several
dictionary-based compression algorithms and
of their main features.

Key Results

Let T be a string drawn from an alphabet †.
Dictionary-based compression algorithms work
by parsing the input into a sequence of substrings
(also called words) T1; T2; : : : ; Td and by encod-
ing a compact representation of these substrings.
The parsing is usually done incrementally and
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on-line with the following iterative procedure.
Assume the encoder has already parsed the sub-
strings T1; T2; : : : ; Ti�1. To proceed, the encoder
maintains a dictionary of potential candidates
for the next word Ti and associates a unique
codeword with each of them. Then, it looks at
the incoming data, selects one of the candidates,
and emits the corresponding codeword. Different
algorithms use different strategies for establish-
ing which words are in the dictionary and for
choosing the next word Ti. A larger dictionary
implies a greater flexibility for the choice of the
next word, but also longer codewords. Note that
for efficiency reasons the dictionary is usually not
built explicitly: the whole process is carried out
implicitly using appropriate data structures.

Dictionary-based algorithms are usually clas-
sified into two families whose respective ances-
tors are two parsing strategies, both proposed by
Ziv and Lempel and today universally known as
LZ78 [16] and LZ77 [15].

The LZ78 Algorithm
Assume the encoder has already parsed the words
T1; T2; : : : ; Ti�1, that is, T D T1T2 � � �Ti�1

OTi

for some text suffix OTi . The LZ78 dictionary
is defined as the set of strings obtained by
adding a single character to one of the words
T1; : : : ; Ti�1 or to the empty word. The next
word Ti is defined as the longest prefix of OTi

which is a dictionary word. For example, for
T D aabbaaabaabaabba the LZ78 parsing is:
a, ab, b, aa, aba, abaa, bb, a. It is easy to see
that all words in the parsing are distinct, with
the possible exception of the last one (in the
example the word a). Let T0 denote the empty
word. If Ti D Tj ˛, with 0 � j < i and ˛ 2 ˙ ,
the codeword emitted by LZ78 for Ti will be
the pair (j, ’). Thus, if LZ78 parses the string
T into t words, its output will be bounded by
t log t C t log j˙ j C�.t/ bits.

The LZ77 Algorithm
Assume the encoder has already parsed the words
T1; T2; : : : ; Ti�1, that is, T D T1T2 � � �Ti�1

OTi

for some text suffix OTi . The LZ77 dictionary
is defined as the set of strings of the form w’

where ˛ 2 ˙ and w is a substring of T starting

in the already parsed portion of T. The next
word Ti is defined as the longest prefix of OTi

which is a dictionary word. For example, for
T D aabbaaabaabaabba the LZ77 parsing is:
a, ab, ba, aaba, abaabb, a. Note that, in some
sense, T5 D abaabb is defined in terms of itself:
it is a copy of the dictionary word w˛ with w
starting at the second a of T4 and extending into
T5! It is easy to see that all words in the parsing
are distinct, with the possible exception of the
last one (in the example the word a), and that
the number of words in the LZ77 parsing is
smaller than in the LZ78 parsing. If Ti D w˛

with ˛ 2 ˙ , the codeword for Ti is the triplet
.si ; `i ; ˛/ where si is the distance from the start
of Ti to the last occurrence of w in T1T2 � � �Ti�1,
and `i D jwj.

Entropy Bounds
The performance of dictionary-based com-
pressors has been extensively investigated
since their introduction. In [15] it is shown
that LZ77 is optimal for a certain family of
sources, and in [16] it is shown that LZ78
achieves asymptotically the best compression
ratio attainable by a finite-state compressor. This
implies that, when the input string is generated
by an ergodic source, the compression ratio
achieved by LZ78 approaches the entropy of
the source. More recent work has established
similar results for other Ziv–Lempel compressors
and has investigated the rate of convergence of
the compression ratio to the entropy of the source
(see [14] and references therein).

It is possible to prove compression bounds
without probabilistic assumptions on the input,
using the notion of empirical entropy. For any
string T, the order k empirical entropy Hk(T) is
the maximum compression one can achieve using
a uniquely decodable code in which the codeword
for each character may depend on the k charac-
ters immediately preceding it [6]. The following
lemma is a useful tool for establishing upper
bounds on the compression ratio of dictionary-
based algorithms which hold pointwise on every
string T.
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Lemma 1 ([6, Lemma 2.3]) Let T D T1T2 � � �Td

be a parsing of T such that each word Ti appears
at most M times. Then, for any k � 0

d log d � jT jHk.T /C d log.jT j=d/

Cd log M C�.kd C d/;

where Hk(T) whereis the k-th order empirical
entropy of T. �

Consider, for example, the algorithm LZ78. It
parses the input T into t distinct words (ignoring
the last word in the parsing) and produces an
output bounded by t log t C t log j˙ j C�.t/

bits. Using Lemma 1 and the fact that
t D O.jT j= log T /, one can prove that LZ780s
output is at most jT jHk.T /C o.jT j/ bits. Note
that the bound holds for any k � 0: this means
that LZ78 is essentially “as powerful” as any
compressor that encodes the next character on
the basis of a finite context.

Algorithmic Issues
One of the reasons for the popularity of
dictionary-based compressors is that they admit
linear-time, space-efficient implementations.
These implementations sometimes require non-
trivial data structures: the reader is referred
to [12] and references therein for further reading
on this topic.

Greedy vs. Non-Greedy Parsing
Both LZ78 and LZ77 use a greedy parsing strat-
egy in the sense that, at each step, they select the
longest prefix of the unparsed portion which is
in the dictionary. It is easy to see that for LZ77
the greedy strategy yields an optimal parsing;
that is, a parsing with the minimum number of
words. Conversely, greedy parsing is not optimal
for LZ78: for any sufficiently large integer m
there exists a string that can be parsed to O(m)
words and that the greedy strategy parses in
˝.m3=2/ words. In [9] the authors describe an ef-
ficient algorithm for computing an optimal pars-
ing for the LZ78 dictionary and, indeed, for any
dictionary with the prefix-completeness property
(a dictionary is prefix-complete if any prefix
of a dictionary word is also in the dictionary).

Interestingly, the algorithm in [9] is a one-step
lookahead greedy algorithm: rather than choosing
the longest possible prefix of the unparsed portion
of the text, it chooses the prefix that results in the
longest advancement in the next iteration.

Applications

The natural application field of dictionary-based
compressors is lossless data compression (see, for
example [13]). However, because of their deep
mathematical properties, the Ziv–Lempel parsing
rules have also found applications in other algo-
rithmic domains.

Prefetching
Krishnan and Vitter [7] considered the problem
of prefetching pages from disk into memory to
anticipate users’ requests. They combined LZ78
with a pre-existing prefetcher P1 that is asymp-
totically at least as good as the best memoryless
prefetcher, to obtain a new algorithm P that is
asymptotically at least as good as the best finite-
state prefetcher. LZ780s dictionary can be viewed
as a trie: parsing a string means starting at the
root, descending one level for each character in
the parsed string and, finally, adding a new leaf.
Algorithm P runs LZ78 on the string of page
requests as it receives them, and keeps a copy of
the simple prefetcher P1 for each node in the trie;
at each step, P prefetches the page requested by
the copy of P1 associated with the node LZ78 is
currently visiting.

String Alignment
Crochemore, Landau and Ziv-Ukelson [4]
applied LZ78 to the problem of sequence
alignment, i.e., finding the cheapest sequence of
character insertions, deletions and substitutions
that transforms one string T into another T0

(the cost of an operation may depend on the
character or characters involved). Assume, for
simplicity, that jT j D jT 0j D n. In 1980 Masek
and Paterson proposed an O.n2= log n/-time
algorithm with the restriction that the costs be
rational; Crochemore et al.’s algorithm allows
real-valued costs, has the same asymptotic cost
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in the worst case, and is asymptotically faster for
compressible texts.

The idea behind both algorithms is to break
into blocks the matrix AŒ1 : : : n; 1 : : : n� used by
the obvious O(n 2)-time dynamic programming
algorithm. Masek and Paterson break it into
uniform-sized blocks, whereas Crochemore
et al. break it according to the LZ78 parsing
of T and T0. The rationale is that, by the
nature of LZ78 parsing, whenever they come
to solve a block AŒi : : : i 0; j : : : j 0�, they can
solve it in O.i 0 � i C j 0 � j / time because
they have already solved blocks identical to
AŒi : : : i 0 � 1; j : : : j 0� and AŒi : : : i 0; j : : : j 0 � 1�

[8]. Lifshits, Mozes, Weimann and Ziv-
Ukelson [8] recently used a similar approach
to speed up the decoding and training of hidden
Markov models.

Compressed Full-Text Indexing
Given a text T, the problem of compressed full-
text indexing is defined as the task of building an
index for T that takes space proportional to the en-
tropy of T and that supports the efficient retrieval
of the occurrences of any pattern P in T. In [10]
Navarro proposed a compressed full-text index
based on the LZ78 dictionary. The basic idea is
to keep two copies of the dictionary as tries: one
storing the dictionary words, the other storing
their reversal. The rationale behind this scheme
is the following. Since any non-empty prefix of
a dictionary word is also in the dictionary, if the
sought pattern P occurs within a dictionary word,
then P is a suffix of some word and easy to find
in the second dictionary. If P overlaps two words,
then some prefix of P is a suffix of the first word–
and easy to find in the second dictionary–and the
remainder of P is a prefix of the second word–and
easy to find in the first dictionary. The case when
P overlaps three or more words is a generalization
of the case with two words. Recently, Arroyuelo
et al. [1] improved the original data structure
in [10]. For any text T, the improved index uses
.2C �/jT jHk.T /C o.jT j log j˙ j/ bits of space,
where Hk(T) is the k-th order empirical entropy
of T, and reports all occ occurrences of P in T in
O.jP j2 log jP j C .jP j C occ/ log jT j/ time.

Independently of [10], in [5] the LZ78 parsing
was used together with the Burrows-Wheeler
compression algorithm to design the first full-
text index that uses o.jT j log jT j/ bits of space
and reports the occ occurrences of P in T in
O.jP j C occ/ time. If T D T1T2 � � �Td is the
LZ78 parsing of T, in [5] the authors consider the
string T$ D T1$T2$ � � � $Td $ where $ is a new
character not belonging to †. The string T$ is
then compressed using the Burrows-Wheeler
transform. The $’s play the role of anchor points:
their positions in T$ are stored explicitly so that,
to determine the position in T of any occurrence
of P, it suffices to determine the position with
respect to any of the $’s. The properties of
the LZ78 parsing ensure that the overhead of
introducing the $’s is small, but at the same time
the way they are distributed within T$ guarantees
the efficient location of the pattern occurrences.

Related to the problem of compressed full-text
indexing is the compressed matching problem
in which text and pattern are given together (so
the former cannot be preprocessed). Here the
task consists in performing string matching in
a compressed text without decompressing it. For
dictionary-based compressors this problem was
first raised in 1994 by A. Amir, G. Benson,
and M. Farach, and has received considerable
attention since then. The reader is referred to [11]
for a recent review of the many theoretical and
practical results obtained on this topic.

Substring Compression Problems
Substring compression problems involve
preprocessing T to be able to efficiently answer
queries about compressing substrings: e.g., how
compressible is a given substring s in T? what
is s’s compressed representation? or, what is the
least compressible substring of a given length `?
These are important problems in bioinformatics
because the compressibility of a DNA sequence
may give hints as to its function, and because
some clustering algorithms use compressibility
to measure similarity. The solutions to these
problems are often trivial for simple compressors,
such as Huffman coding or run-length encoding,
but they are open for more powerful algorithms,
such as dictionary-based compressors, BWT
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compressors, and PPM compressors. Recently,
Cormode and Muthukrishnan [3] gave some
preliminary solutions for LZ77. For any string s,
let C(s) denote the number of words in the LZ77-
parsing of s, and let LZ77(s) denote the LZ77-
compressed representation of s. In [3] the authors
show that, with O(jTj polylog(jTj)) time prepro-
cessing, for any substring s of T they can: a)
compute LZ77(s) in O.C.s/ log jT j log log jT j/
time, b) compute an approximation of C(s) within
a factor O.log jT j log� jT j/ in O(1) time, c) find
a substring of length ` that is close to being
the least compressible in O.jT j`= log `/ time.
These bounds also apply to general versions
of these problems, in which queries specify
another substring t in T as context and ask about
compressing substrings when LZ77 starts with
a dictionary already containing the words in the
LZ77 parsing of t.

Grammar Generation
Charikar et al. [2] considered LZ78 as an ap-
proximation algorithm for the NP-hard problem
of finding the smallest context-free grammar that
generates only the string T. The LZ78 parsing of
T can be viewed as a context-free grammar in
which for each dictionary word Ti D Tj ˛ there is
a production Xi ! Xj ˛. For example, for T D

aabbaaabaabaabba the LZ78 parsing is: a, ab,
b, aa, aba, abaa, bb, a, and the corresponding
grammar is: S ! X1 : : : X7X1; X1 ! a; X2 !

X1b; X3 ! b; X4 ! X1a; X5 ! X2a; X6 !

X5a; X7 ! X3b. Charikar et al. showed LZ78’s
approximation ratio is in O..jT j= log jT j/2=3/ \

˝.jT j2=3 log jT j/; i.e., the grammar it produces
has size at most f .jT j/ �m�, where f(jTj) is
a function in this intersection and m � is the size
of the smallest grammar. They also showed m � is
at least the number of words output by LZ77 on
T, and used LZ77 as the basis of a new algorithm
with approximation ratio O.log.jT j=m�//.

URL to Code

The source code of the gzip tool (based on LZ77)
is available at the page http://www.gzip.org/. An
LZ77-based compression library zlib is available

from http://www.zlib.net/. A more recent, and
more efficient, dictionary-based compressor is
LZMA (Lempel–Ziv Markov chain Algorithm),
whose source code is available from http://www.
7-zip.org/sdk.html.
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Problem Definition

Many datasets can be represented by graphs,
where nodes correspond to individuals and
edges capture relationships between them. On
one hand, such datasets contain potentially
sensitive information about individuals; on the
other hand, there are significant public benefits
from allowing access to aggregate information

about the data. Thus, analysts working with
such graphs are faced with two conflicting
goals: protecting privacy of individuals and
publishing accurate aggregate statistics. This
article describes algorithms for releasing accurate
graph statistics while preserving a rigorous
notion of privacy, called differential privacy.

Differential privacy was introduced by Dwork
et al. [6]. It puts a restriction on the algorithm that
processes sensitive data and publishes the output.
Intuitively, differential privacy requires that, for
every individual, the output distribution of the
algorithm is roughly the same whether or not this
individual’s data is present in the dataset. Next,
we give a formal definition of differential privacy,
specialized to datasets represented by graphs.

Two graphs are called neighbors if one can be
obtained from the other by removing a node and
its adjacent edges. Given a parameter � > 0, an
algorithm A is �-node differentially private if for
all neighbor graphs G and G0 and for all sets S of
possible outputs produced by A:

PrŒA.G/ � S� � e� � PrŒA.G/ � S�:

This variant of differential privacy is called
node-differential privacy because neighbor
graphs are defined with respect to node removals.
Analogously, we can define edge differential
privacy by letting graphs be neighbors if
they differ in exactly one edge. Intuitively,
edge differential privacy protects edges (which
represent connections between people), while
node-differential privacy protects nodes together
with their adjacent edges (i.e., all information
pertaining to individuals). Node-differential
privacy is a stronger privacy definition, but it
is much harder to attain because it requires the
output distribution of the algorithm to hide much
larger differences in the input graph.

We would like to design differentially pri-
vate algorithms (preferably, node-differentially
private) that compute accurate graph statistics
on a large family of realistic graphs. Typically,
graphs that contain sensitive information, such
as friendships, sexual relationships, and com-
munication patterns, are sparse. Some examples
of graph statistics we would like to compute
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on these graphs are the number of edges, small
subgraph counts, and the degree distribution.

Most work on the topic considers an analyst
who wants to evaluate a real-valued function f

on the private input graph G (e.g., the number
of triangles or the number of connected com-
ponents in G). The goal is to release as good
an approximation as possible to the true value
f .G/. Differentially private algorithms must be
randomized, so we try to minimize the expecta-
tion of the random variable errorA.G/ D jA.G/�

f .G/j. We will also discuss work on algorithms
that release higher-dimensional summaries (i.e.,
output a real vector).

Bibliographical Notes
Edge privacy was first studied by Nissim
et al. [16], and the distinction between node and
edge privacy was laid out by Hay et al. [9]. Edge
differentially private algorithms for a variety of
tasks have been widely investigated. Examples
include subgraph counts, degree distributions,
and parameters of generative statistical models.
Gehrke et al. [7] investigated a notion whose
strength lies between edge and node privacy:
node privacy for bounded-degree graphs. (The
focus of their work is a generalization of
differential privacy, called zero-knowledge
privacy.)

Until recently, no node-differentially private
algorithms (where privacy guarantees hold with
respect to all graphs) were known that compute
accurate graph statistics on realistic (namely,
sparse) graphs. The first such algorithms were
designed independently by Blocki et al. [3],
Kasiviswanathan et al. [11], and Chen and
Zhou [5]. Those algorithms look at releasing
one real-valued statistic at a time. Two more
recent works focus on higher-dimensional node-
private releases: Raskhodnikova and Smith [17]
and Borgs et al. [4].

This encyclopedia entry focuses on node-
differentially private algorithms, since these
offer the strongest privacy guarantees. Progress,
however, continues on edge-private algorithms;
see Lin and Kifer [13], Karwa and Slavkovic [10],
Lu and Miklau [14], and Zhang et al. [18] for
recent results.

Key Results

The main difficulty in the design of node-private
algorithms is that techniques based on local
sensitivity of a function (which are the basis of
the best edge-private algorithms) yield node-
private algorithms whose error on “typical”
inputs swamps the statistic that one wants to
release. The local sensitivity of a function f

is a discrete analogue of the derivative of f

– it measures how much the value of f can
change when the input graph is replaced with its
neighbor. On sparse graphs, the local sensitivity
can be larger than the value of the function. Any
method whose error is proportional to the local
sensitivity will have large relative error.

Focus on a “Preferred Subset”
To get around the challenge of high local sensi-
tivity, two works [3, 11] independently designed
algorithms that are given a set S of “nice” graphs
that hopefully contains G (e.g., graphs with an
upper bound on the maximum degree). These
algorithms are private on all graphs and return an
accurate answer on graphs in S . What makes this
approach work is that S is selected so that the
sensitivity of f is small when restricted to inputs
in S .

Let G denote the set of all labeled, undirected
graphs. We will call S � G the “preferred”
subset. Define the Lipschitz constant (also called
the restricted sensitivity) of f on S to be

�f .S/ D sup
G;G02S

kf .G0/ � f .G/k1

dnode.G; G0/
;

where dnode is the node distance between two
graphs – the number of vertex insertions and
deletions needed to go from G to G0. Blocki
et al. [3] and Kasiviswanathan et al. [11] give
methods for adding noise proportional to the
Lipschitz constant of f on S .

Theorem 1 ([3, 11]) For every S � G, function
f W S ! R, and � > 0, there exists an algorithm
AS that is �-differentially private (for all inputs)
and such that, for all G 2 S ,
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EjAS .G/ � f .G/j D O.�S .f /=�2/:

Moreover, for S D GD (the set of D-bounded
graphs), the running time of A is the running time
for one evaluation of f plus a fixed polynomial in
the size of G.

The same works [3, 11] also give generic re-
ductions showing that given any algorithm that is
�-differentially private when restricted to graphs
in S , one can design an algorithm A that has simi-
lar behavior on graphs in S but is �0-differentially
private for all inputs, for �0 not too much larger
than �.

“Down” Sensitivity
Rather than focusing on a single “nice” subset,
some works [5, 17] sought to add noise propor-
tional to a quantity related to, but usually much
smaller than, the local sensitivity.

Define the down sensitivity (called empirical
global sensitivity when first defined by Chen
and Zhou [5]) of f at a graph G to be the
Lipschitz constant of f when restricted to the set
of induced subgraphs of G. Specifically, we write
G � H to denote that G is an induced subgraph
of H (i.e., G can be obtained by deleting a set of
vertices from H ) and define the down sensitivity
to be

DSf .G/ D max
H;H 0neighbors;H�H 0�G

jf .G0/�f .G/j:

By carefully (and privately) selecting the “pre-
ferred” subset based on the input, one can add
noise essentially proportional to the down sensi-
tivity.

Theorem 2 ([17]) For every monotone function
f W G! R and � > 0, there is an algorithm Af

that is �-differentially private and such that, for
all G 2 G,

EjAf .G/ � f .G/j

D
DSf .G/C 1

�
�O.log log max

G0
DSf .G0//:

Moreover, Af can be made efficient when f is
a generalized linear query (a class that includes
counting occurrences of a fixed subgraph).

The down sensitivity is low for many com-
monly studied statistics in graphs that satisfy ˛-
decay, a condition on the degree distribution that
is satisfied by known generative models (includ-
ing those that generate “scale-free”). (See [11] for
a definition of ˛-decay.)

Lipschitz Extensions and
Higher-Dimensional Releases
The main technical tool in the down-sensitivity-
based results [5, 17] is the construction of
efficient (i.e., polynomial time computable)
Lipschitz extensions of the function f from
subsets S of graphs to the space of all graphs.
Kasiviswanathan et al. [11] and Chen and
Zhou [5] give efficient Lipschitz extensions of
several useful functions (including graph counts)
that return a single real value. Raskhodnikova and
Smith [17] give efficient Lipschitz extensions of
higher-dimensional functions, namely, the degree
distribution and adjacency matrix of a graph.

Borgs et al. [4] use the Lipschitz extension
technique together with the exponential
mechanism to provide the first node-differentially
private algorithms for fitting high-dimensional
statistical models to a given graph (specifically,
they consider stochastic block models and
generalizations thereof).

Applications

The algorithms discussed above address a real
problem: datasets containing sensitive informa-
tion about relationships among a collection of
individuals are often valuable sources of informa-
tion, but publishing useful summaries about such
data without leaking individual information is
difficult. Even when the graphs are “anonymized”
by removing all obviously identifying informa-
tion, such as names, addresses, birthdays, and zip
codes, they present a privacy risk. For example,
[1, 15] give de-anonymization attacks based only
on unlabeled links. Node-differentially private
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algorithms offer a principled method for releasing
information about a network while providing rig-
orous privacy guarantees (though some authors
argue that even stronger notions may be needed
[7, 12]).

Open Problems

Gupta et al. [8] and Blocki et al. [2] give edge
differentially private algorithms for releasing a
data structure that approximates the sizes of all
cuts in the input graph in the following sense: for
any cut, with high probability, the estimated cut
size is accurate (the first reference gives weaker
approximation guarantees with a stronger quanti-
fier order: with high probability, all cut sizes are
accurate). It is open whether a node-differentially
private algorithm can obtain similar results.

For datasets that do not contain information
about relationships, but only contain personal at-
tributes that come from a relatively small set, dif-
ferentially private algorithms can output a large
number of statistics at once (see �Query Re-
lease via Online Learning and �Geometric Ap-
proaches to Answering Queries cross-referenced
below). It is open how to do achieve similar
results for graph statistics, even with edge differ-
ential privacy.

Finally, all algorithms we discussed release
numerical graph statistics. The subject of differ-
entially private synthetic graphs is largely unex-
plored. See [10, 13] for initial results.

Cross-References
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Problem Definition

Notations
Let G D .V; E/ be a plane geometric network,
whose vertex set V is a finite set of point sites in
R

2, connected by an edge set E of non-crossing
straight line segments with endpoints in V . For
two points p ¤ q 2 V , let ŸG.p; q/ denote a
shortest path from p to q in G. Then

�.p; q/ WD
j�G.p; q/j

jpqj
(1)

is the detour one encounters when using network
G, in order to get from p to q, instead of walking
straight. Here, j : j denotes the Euclidean length.

The dilation of G is defined by

�.G/ WD maxp¤q2V �.p; q/: (2)

This value is also known as the spanning ratio
or the stretch factor of G. It should, however,
not be confused with the geometric dilation of a
network, where the points on the edges are also
being considered, in addition to the vertices.

Given a finite set S of points in the plane,
one would like to find a plane geometric network
G D .V; E/ whose dilation �.G/ is as small
as possible, such that S is contained in V . The
value of

†.S/ W D inff�.G/IG D .V; E/ finite plane
geometric network where S 	 V g

is called the dilation of point set S. The problem
is in computing, or bounding, †.S/ for a given
set S .

Related Work

If edge crossings were allowed, one could use
spanners whose stretch can be made arbitrarily
close to 1; see the monographs by Eppstein [6]
or Narasimhan and Smid [12]. Different types
of triangulations of S are known to have their
stretch factors bounded from above by small con-
stants, among them the Delaunay triangulation
of stretch �2.42; see Dobkin et al. [3], Keil and
Gutwin [10], and Das and Joseph [2]. Eppstein
[5] has characterized all triangulations T of dila-
tion �.T / D 1; these triangulations are shown
in Fig. 1. Trivially, †.S/ D 1 holds for each
point set S contained in the vertex set of such a
triangulation T .

Key Results

The previous remark’s converse also turns out to
be true.
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Dilation of Geometric
Networks, Fig. 1 The
triangulations of dilation 1

Theorem 1 ([11]) If S is not contained in one of
the vertex sets depicted in Fig. 1, then †.S/ > 1.

That is, if a point set S is not one of these
special sets, then each plane network including
S in its vertex set has a dilation larger than some
lower bound 1 C �.S/. The proof of Theorem 1
uses the following density result. Suppose one
connects each pair of points of S with a straight
line segment. Let S 0 be the union of S and the
resulting crossing points. Now the same construc-
tion is applied to S 0 and repeated. For the limit
point set S1, the following theorem holds. It
generalizes work by Hillar and Rhea [8] and by
Ismailescu and Radoičić [9] on the intersections
of lines.

Theorem 2 ([11]) If S is not contained in one of
the vertex sets depicted in Fig. 1, then S1 lies
dense in some polygonal part of the plane.

For certain infinite structures can concrete lower
bounds be proven.

Theorem 3 ([4]) Let N be an infinite plane net-
work all of whose faces have a diameter bounded
from above by some constant. Then �.N / >

1:00156 holds.

Theorem 4 ([4]) Let C denote the (infinite) set
of all points on a closed convex curve. Then
†.C / > 1:00157 holds.

Theorem 5 ([4]) Given n families Fi ; 2 � i �

n, each consisting of infinitely many equidistant
parallel lines. Suppose that these families are in
general position.

Then their intersection graph G is of dilation
at least 2=

p
3.

The proof of Theorem 5 makes use of Kro-
necker’s theorem on simultaneous approxima-

Dilation of Geometric Networks, Fig. 2 A network of
dilation �1.1247

tion. The bound is attained by the packing of
equiangular triangles.

Finally, there is a general upper bound to the
dilation of finite point sets.

Theorem 6 ([4]) Each finite point set S is of
dilation †.S/ < 1:1247.

To prove this upper bound, one can embed
any given finite point set S in the vertex set of
a scaled, and slightly deformed, finite part of
the network depicted in Fig. 2. It results from a
packing of equilateral triangles by replacing each
vertex with a small triangle and by connecting
neighboring triangles as indicated.

Applications

A typical university campus contains facilities
like lecture halls, dorms, library, mensa, and
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supermarkets, which are connected by some path
system. Students in a hurry are tempted to walk
straight across the lawn, if the shortcut seems
worth it. After a while, this causes new paths to
appear. Since their intersections are frequented by
many people, they attract coffee shops or other
new facilities. Now, people will walk across the
lawn to get quickly to a coffee shop, and so on.

D. Eppstein [5] has asked what happens to the
lawn if this process continues. The above results
show that (1) part of the lawn will be completely
destroyed, and (2) the temptation to walk across
the lawn cannot, in general, be made arbitrarily
small by a clever path design.

Open Problems

For practical applications, upper bounds to the
weight (D total edge length) of a geometric
network would be valuable, in addition to upper
dilation bounds. Some theoretical questions re-
quire further investigation, too. Is †.S/ always
attained by a finite network? How to compute,
or approximate, †.S/ for a given finite set S?
Even for a set as simple as S5, the corners of
a regular 5-gon, is the dilation unknown. The
smallest dilation value known, for a triangulation
containing S5 among its vertices, equals 1.0204;
see Fig. 3. Finally, what is the precise value of
supf†.S/ISfiniteg?
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Problem Definition

The performance of a communication network
is affected by the packet collisions which occur
when two or more packets appear simultaneously
in the same network node (router) and all these
packets wish to follow the same outgoing link
from the node. Since network links have limited
available bandwidth, the collided packets wait on
buffers until the collisions are resolved. Colli-
sions cause delays in the packet delivery time
and also contribute to the network performance
degradation.

Direct routing is a packet delivery method
which avoids packet collisions in the network.
In direct routing, after a packet is injected into
the network it follows a path to its destination
without colliding with other packets, and thus
without delays due to buffering, until the packet
is absorbed at its destination node. The only delay
that a packet experiences is at the source node
while it waits to be injected into the network.

In order to formulate the direct routing prob-
lem, the network is modeled as a graph where all
the network nodes are synchronized with a com-
mon time clock. Network links are bidirectional,
and at each time step any link can be crossed by
at most two packets, one packet in each direction.
Given a set of packets, the routing time is defined
to be the time duration between the first packet
injection and the last packet absorbtion.

Consider a set of N packets, where each packet
has its own source and destination node. In the
direct routing problem, the goal is first to find
a set of paths for the packets in the network,
and second, to find appropriate injection times
for the packets, so that if the packets are in-
jected at the prescribed times and follow their
paths they will be delivered to their destinations
without collisions. The direct scheduling problem
is a variation of the above problem, where the

paths for the packets are given a priori, and the
only task is to compute the injection times for
the packets.

A direct routing algorithm solves the direct
routing problem (similarly, a direct scheduling
algorithm solves the direct scheduling problem).
The objective of any direct algorithm is to mini-
mize the routing time for the packets. Typically,
direct algorithms are offline, that is, the paths
and the injection schedule are computed ahead
of time, before the packets are injected into the
network, since the involved computation requires
knowledge about all packets in order to guarantee
the absence of collisions between them.

Key Results

Busch, Magdon-Ismail, Mavronicolas, and Spi-
rakis, present in [6] a comprehensive study of
direct algorithms. They study several aspects of
direct routing such as the computational com-
plexity of direct problems and also the design of
efficient direct algorithms. The main results of
their work are described below.

Hardness of Direct Routing
It is shown in [Sect. 4 in 6] that the optimal
direct scheduling problem, where the paths are
given and the objective is to compute an optimal
injection schedule (that minimizes the routing
time) is an NP-complete problem. This result
is obtained with a reduction from vertex color-
ing, where vertex coloring problems are trans-
formed to appropriate direct scheduling problems
in a 2-dimensional grid. In addition, it is shown
in [6] that approximations to the direct scheduling
problem are as hard to obtain as approximations
to vertex coloring. A natural question is what
kinds of approximations can be obtained in poly-
nomial time. This question is explored in [6] for
general and specific kinds of graphs, as described
below.

Direct Routing in General Graphs
A direct algorithm is given in [Section 3
in 6] that solves approximately the optimal
direct scheduling problem in general network
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topologies. Suppose that a set of packets and
respective paths are given. The injection schedule
is computed in polynomial time with respect to
the size of the graph and the number of packets.
The routing time is measured with respect to the
congestion C of the packet paths (the maximum
number of paths that use an edge), and the
dilation D (the maximum length of any path).

The result in [6] establishes the existence of
a simple greedy direct scheduling algorithm with
routing time rt D O.C � D/. In this algorithm,
the packets are processed in an arbitrary order
and each packet is assigned the smallest avail-
able injection time. The resulting routing time is
worst-case optimal, since there exist instances of
direct scheduling problems for which no direct
scheduling algorithm can achieve a better routing
time. A trivial lower bound on the routing time
of any direct scheduling problem is ˝.C C D/,
since no algorithm can deliver the packets faster
than the congestion or dilation of the paths. Thus,
in the general case, the algorithm in [6] has
routing time rt D O..rt�/2/, where rt� is the
optimal routing time.

Direct Routing in Specific Graphs
Several direct algorithms are presented in [6] for
specialized network topologies. The algorithms
solve the direct routing problem where first good
paths are constructed and then an efficient injec-
tion schedule is computed. Given a set of packets,
let C* and D* denote the optimal congestion and
dilation, respectively, for all possible sets of paths
for the packets. Clearly, the optimal routing time
is rt� D ˝.C � CD�/. The upper bounds in the
direct algorithm in [6] are expressed in terms of
this lower bound. All the algorithms run in time
polynomial to the size of the input.

Tree
The graph G is an arbitrary tree. A direct routing
algorithm is given in [Section 3.1 in 6], where
each packet follows the shortest path from its
source to the destination. The injection sched-
ule is obtained using the greedy algorithm with
a particular ordering of the packets. The routing
time of the algorithm is asymptotically optimal:
rt � 2C � CD� � 2 < 3 � rt�.

Mesh
The graph G is a d-dimensional mesh (grid)
with n nodes [10]. A direct routing algorithm
is proposed in [Section 3.2 in 6], which first
constructs efficient paths for the packets with
congestion C D O.d log n � C �/ and dilation
D D O.d 2 �D�/ (the congestion is guaranteed
with high probability). Then, using these paths
the injection schedule is computed giving a direct
algorithm with the routing time:

rt D O.d 2 log2 n � C � C d 2 �D�/

D O.d 2 log2 n � rt�/:

This result follows from a more general result
which is shown in [6], that says that if the paths
contain at most b “bends”, i.e., at most b dimen-
sion changes, then there is a direct scheduling
algorithm with routing time O.b � C CD/. The
result follows because the constructed paths have
b D O.d log n/ bends.

Butterfly
The graph G is a butterfly network with n input
and n output nodes [10]. In [Section 3.3 in 6] the
authors examine permutation routing problems
in the butterfly, where each input (output) node
is the source (destination) of exactly one packet.
An efficient direct routing algorithm is presented
in [6] which first computes good paths for the
packets using Valiant’s method [14, 15]: two
butterflies are connected back to back, and
each path is formed by choosing a random
intermediate node in the output of the first
butterfly. The chosen paths have congestion
C D O.lg n/ (with high probability) and dilation
D D 2 lg n D O.D�/. Given the paths, there is
a direct schedule with routing time very close to
optimal: rt � 5 lg n D O.rt�/.

Hypercube
The graph G is a hypercube with n nodes [10].
A direct routing algorithm is given in [Section 3.4
in 6] for permutation routing problems. The algo-
rithm first computes good paths for the packets
by selecting a single random intermediate node
for each packet. Then an appropriate injection
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schedule gives routing time rt < 14 lg n, which is
worst-case optimal since there exist permutations
for which D� D ˝.lg n/.

Lower Bound for Buffering
In [Section 5 in 6] an additional problem has
been studied about the amount of buffering
required to provide small routing times. It is
shown in [6] that there is a direct scheduling
problem for which every direct algorithm
requires routing time ˝.C �D/; at the same
time, C CD D �.

p
C �D/ D o.C �D/. If

buffering of packets is allowed, then it is
well known that there exist packet scheduling
algorithms [11, 12] with routing time very
close to the optimal O.C CD/. In [6] it is
shown that for the particular packet problem,
in order to convert a direct injection schedule of
routing time O.C �D/ to a packet schedule with
routing time O.C CD/, it is necessary to buffer
packets in the network nodes in total ˝.N 4=3/

times, where a packet buffering corresponds
to keeping a packet in an intermediate node
buffer for a time step, and N is the number of
packets.

Related Work
The only previous work which specifically ad-
dresses direct routing is for permutation problems
on trees [3, 13]. In these papers, the resulting
routing time is O(n) for any tree with n nodes.
This is worst-case optimal, while the result in [6]
is asymptotically optimal for all routing problems
in trees.

Cypher et al. [7] study an online version of
direct routing in which a worm (packet of length
L) can be re-transmitted if it is dropped (they also
allow the links to have bandwidth B � 1). Adler
et al. [1] study time constrained direct routing,
where the task is to schedule as many packets
as possible within a given time frame.They show
that the time constrained version of the problem
is NP-complete, and also study approximation
algorithms on trees and meshes. Further, they
discuss how much buffering could help in this
setting.

Other models of bufferless routing are match-
ing routing [2] where packets move to their desti-

nations by swapping packets in adjacent nodes,
and hot-potato routing [4, 5, 8, 9] in which
packets follow links that bring them closer to the
destination, and if they cannot move closer (due
to collisions) they are deflected toward alternative
directions.

Applications

Direct routing represent collision-free commu-
nication protocols, in which packets spend the
smallest amount of time possible time in the net-
work once they are injected. This type of routing
is appealing in power or resource constrained
environments, such as optical networks, where
packet buffering is expensive, or sensor networks
where energy resources are limited. Direct rout-
ing is also important for providing quality of ser-
vice in networks. There exist applications where
it is desirable to provide guarantees on the de-
livery time of the packets after they are injected
into the network, for example in streaming audio
and video. Direct routing is suitable for such
applications.
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Problem Definition

Let S D fs1; s2; : : : ; sng be a set of elements
called objects and let C D fc1; c2; : : : ; cmg

be a set of functions from S to f0; 1g called
characters. For each object si 2 S and character
cj 2 C , we say that si has cj if cj .si / D 1 or that
si does not have cj if cj .si / D 0, respectively
(in this sense, characters are binary). Then the
set S and its relation to C can be naturally rep-
resented by a matrix M of size .n�m/ satisfying
MŒi; j � D cj .si / for every i 2 f1; 2; : : : ; ng and
j 2 f1; 2; : : : ; mg. Such a matrix M is called a
binary character state matrix.

Next, for each si 2 S , define the set Csi
D

fcj 2 C W si has cj g. A phylogeny for S is a tree
whose leaves are bijectively labeled by S , and
a directed perfect phylogeny for .S; C / (if one
exists) is a rooted phylogeny T for S in which
each cj 2 C is associated with exactly one edge
of T in such a way that for any si 2 S , the set
of all characters associated with the edges on the
path in T from the root to leaf si is equal to Csi

.
See Figs. 1 and 2 for two examples.

Now, define the following problem.

Problem 1 (The Directed Perfect Phylogeny
Problem for Binary Characters)

INPUT: An .n � m/-binary character state ma-
trix M for some S and C .

OUTPUT: A directed perfect phylogeny for
.S; C /, if one exists; otherwise, null.

Key Results

In the presentation below, define a set Scj
for

each cj 2 C by Scj
D fsi 2 S W si has cj g.

The next lemma is the key to solving the Directed
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M c8c1

s1

s2

s3

s4

s5

c2 c3 c4 c5 c6 c7

0 0 1 1 1 0 1 0
0 1 1 1 0 0 0 0
1 0 0 0 0 1 0 1
0 0 1 1 0 0 1 0
1 0 0 0 0 0 0 0

s1

s2 s3

s4

s5

c7 c2

c1

c5

c3,c4

c6,c8

a
b

Directed Perfect Phylogeny (Binary Characters), Fig. 1 (a) A .5 	 8/-binary character state matrix M . (b) A
directed perfect phylogeny for .S; C /

M c1

s1

s2

s3

c2

1 0

1 1

0 1

Directed Perfect Phylogeny (Binary Characters),
Fig. 2 This binary character state matrix admits no di-
rected perfect phylogeny

Perfect Phylogeny Problem for Binary Characters
efficiently. It is also known in the literature as the
pairwise compatibility theorem [5].

Lemma 1 There exists a directed perfect phy-
logeny for .S; C / if and only if for each pair
cj ; ck 2 C , it holds that Scj

\ Sck
D ;, Scj

�

Sck
, or Sck

� Scj
.

Short constructive proofs of the lemma can be
found in, e.g., [8] and [14]. An algebraic proof
of a slightly more general version of the lemma
was given earlier by Estabrook, Johnson, and
McMorris [3, 4].

Using Lemma 1, it is trivial to construct a
top-down algorithm for the problem that runs
in O.nm2/ time. As one might expect, a faster
algorithm is possible. Gusfield [7] observed that
after sorting the columns of M in nonincreasing
lexicographic order, all duplicate copies of a
column appear in a consecutive block of columns
and column j is to the right of column k if Scj

is
a proper subset of Sck

, and then exploited these
two facts together with Lemma 1 to obtain the
following result:

Theorem 1 ([7]) The Directed Perfect Phy-
logeny Problem for Binary Characters can be
solved in O.nm/ time.

For a description of the original algorithm and
a proof of its correctness, see [7] or [14]. A
conceptually simplified version of the algorithm
based on keyword trees can be found in Chap-
ter 17.3.4 in [8]. Gusfield [7] also gave an ad-
versary argument to prove a corresponding lower
bound of ˝.nm/ on the running time, showing
that his algorithm is time optimal:

Theorem 2 ([7]) Any algorithm that decides if
a given binary character state matrix M admits
a directed perfect phylogeny must, in the worst
case, examine all entries of M .

Agarwala, Fernández-Baca, and Slutzki [1]
noted that the input binary character state matrix
is often sparse, i.e., in general, most of the objects
will not have most of the characters. In addition,
they noted that for the sparse case, it is more
efficient to represent the input .S; C / by all the
sets Scj

for j 2 f1; 2; : : : ; mg, where each
set Scj

is defined as above and each Scj
is spec-

ified as a linked list, than by using a binary char-
acter state matrix. Agarwala et al. [1] proved that
with this alternative representation of S and C ,
the algorithm of Gusfield can be modified to run
in time proportional to the total number of 1s in
the corresponding binary character state matrix:

Theorem 3 ([1]) The variant of the Di-
rected Perfect Phylogeny Problem for Binary
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Characters in which the input is given as
linked lists representing all the sets Scj

for
j 2 f1; 2; : : : ; mg can be solved in O.h/ time,
where h D

Pm
j D1 jScj

j.

For a description of the algorithm, refer to [1]
or [6]. Observe that Theorem 3 does not contra-
dict Theorem 2; in fact, Gusfield’s lower bound
argument for proving Theorem 2 considers an
input matrix consisting mostly of 1s.

When only a portion of an .n � m/-binary
character state matrix is available, an QO.nm/-
time algorithm by Pe’er et al. [13] can fill in the
missing entries with 0s and 1s so that the resulting
matrix admits a directed perfect phylogeny, if
possible. A ZDD-based algorithm for enumerat-
ing all such solutions was recently developed by
Kiyomi et al. [11].

Theorem 4 ([13]) The variant of the Directed
Perfect Phylogeny Problem for Binary Charac-
ters in which the input consists of an incomplete
binary character state matrix can be solved in
QO.nm/ time.

Applications

Directed perfect phylogenies for binary charac-
ters are used to describe the evolutionary history
for a set of objects (e.g., biological species)
that share some observable traits and that have
evolved from a “blank” ancestral object which
has none of the traits. Intuitively, the root of a di-
rected perfect phylogeny corresponds to the blank
ancestral object, and each directed edge e D

.u; v/ corresponds to an evolutionary event in
which the hypothesized ancestor represented by u
gains the characters associated with e, transform-
ing it into the hypothesized ancestor or object rep-
resented by v. For simplicity, it may be assumed
that each character can emerge once only during
the evolutionary history and is never lost after it
has been gained, so that a leaf si is a descendant
of the edge associated with a character cj if
and only if si has cj . When this requirement
is too strict, one can relax it to permit errors,
for example, by letting each character be asso-
ciated with more than one edge in the phylogeny

(i.e., allow each character to emerge many times)
while minimizing the total number of such asso-
ciations (Camin-Sokal optimization) or by keep-
ing the requirement that each character emerges
only once but allowing it to be lost multiple
times (Dollo parsimony) [5, 6]. Such relaxations
generally increase the computational complexity
of the underlying computational problems; see,
e.g., [2] and [15].

Binary characters are commonly used by biol-
ogists and linguists. Traditionally, morphological
traits or directly observable features of species
were employed by biologists as binary characters,
and recently, binary characters based on genomic
information such as substrings in DNA or protein
sequences, SNP markers, protein regulation data,
and shared gaps in a given multiple alignment
have become more and more prevalent. Chap-
ter 17.3.2 in [8] mentions several examples where
phylogenetic trees have been successfully con-
structed based on such types of binary character
data. In the context of reconstructing the evo-
lutionary history of natural languages, linguists
often use phonological and morphological char-
acters with just two states [10].

The Directed Perfect Phylogeny Problem for
Binary Characters is closely related to the Perfect
Phylogeny Problem, a fundamental problem in
computational evolutionary biology and phylo-
genetic reconstruction [5, 6, 14]. This problem
(also described in more detail in Encyclopedia
entry � Perfect Phylogeny (Bounded Number of
States)) introduces nonbinary characters so that
each character cj 2 C has a set of allowed
states f0; 1; : : : ; rj � 1g for some integer rj ,
and for each si 2 S , character cj is in one
of its allowed states. Generalizing the notation
used above, define the set Scj ;˛ for every ˛ 2

f0; 1; : : : ; rj � 1g by Scj ;˛ D fsi 2 S W

the state of si on cj is ˛g. Then, the objective of
the Perfect Phylogeny Problem is to construct (if
possible) an unrooted phylogeny T for S such
that the following holds: for each cj 2 C and
distinct states ˛; ˇ of cj , the minimal subtree
of T that connects Scj ;˛ and the minimal sub-
tree of T that connects Scj ;ˇ are vertex-disjoint.
McMorris [12] showed that the special case with
rj D 2 for all cj 2 C can be reduced to the
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Directed Perfect Phylogeny Problem for Binary
Characters in O.nm/ time: for each cj 2 C , if
the number of 1s in column j of M is greater
than the number of 0s, then set entry MŒi; j � to
1 �MŒi; j � for all i 2 f1; 2; : : : ; ng. Therefore,
another application of Gusfield’s algorithm [7] is
as a subroutine for solving the Perfect Phylogeny
Problem in O.nm/ time when rj D 2 for all cj 2

C . Even more generally, the Perfect Phylogeny
Problem for directed as well as undirected cladis-
tic characters can be solved in polynomial time by
a similar reduction to the Directed Perfect Phy-
logeny Problem for Binary Characters (see [6]).

In addition to the above, it is possible to
apply Gusfield’s algorithm to determine whether
two given trees describe compatible evolutionary
history, and if so, merge them into a single tree
so that no branching information is lost (see [7]
for details). Finally, Gusfield’s algorithm has also
been used by Hanisch, Zimmer, and Lengauer [9]
to implement a particular operation on docu-
ments defined in their Protein Markup Language
(ProML) specification.
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Problem Definition

The problem is concerned about computing vir-
tual coordinates for greedy routing in a wire-
less ad hoc network. Consider a set of wireless
nodes S densely deployed inside a geometric
domain R � R

2. Nodes within communication
range can directly communicate with each other.
We ask whether one can compute a set of vir-
tual coordinates for S such that greedy routing
has guaranteed delivery. In particular, each node
forwards the message to the neighbor whose
distance to the destination, computed under the
virtual coordinates and some metric function d ,
is the smallest. If such a neighbor can always be
found, greedy routing successfully delivers the
message to the destination. The problem can be
phrased as finding a greedy embedding of S in
some geometric space, such that greedy routing
always succeeds.

In the setting of this entry, we assume that the
nodes are a dense sample of the domain R such
that the communication graph on S contains a
triangulated mesh ˙ as a discrete approximation
of R.

Key Results

The key result is a family of distributed algo-
rithms for computing the greedy embedding us-
ing discrete Ricci flow. Given a triangular mesh
˙ with vertex set V , edge set E, and face set
F , we can define a piecewise linear metric by
the edge lengths on ˙ : l W E ! R

C that

satisfies the triangle inequality for each triangle
face. The piecewise linear metric determines the
corner angles of the triangles on ˙ , by the cosine
law. The discrete curvature Ki at a vertex vi is
defined as the angle deficit on the mesh. If vi

is an interior vertex, Ki D 2� �
P

j j , where
j ’s are the corner angles at vi . If vi is a vertex
on the boundary, Ki D � �

P
j j , where j ’s

are the corner angles at vi . Thus, the curvature at
an interior vertex vi is 0 if the surface is flat at
vi . The curvature at a boundary vertex vi is 0 if
the boundary is locally a straight line at vi (see
Fig. 1). The famous Gauss-Bonnet theorem states
that the total curvature is a topological invariant:P

vi 2V Ki D 2�	.˙/, where 	.˙/ is the Euler
characteristic number (The Euler characteristics
number of a surface is 2 � 2g � h, where g is
the genus or the number of handles and h is the
number of holes.) of ˙ . Ricci flow is a process
that deforms the surface metric to meet any target
curvature that is admissible by the Gauss-Bonnet
theorem.

A conformal map in the continuous surface
preserves the intersection angle of any two
curves. In the discrete case, the “intersection
angle” is defined using the circle packing
metric [10, 11]. We place a circle at each vertex
vi with radius �i such that for each edge eij ,
the circles at vi ; vj intersect or are tangent to
each other. The intersection angle is denoted
by �.eij /. The pair of vertex radii and the
intersection angles on a mesh ˙ , .�; ˚/, are
called a circle packing metric of ˙ (see Fig. 1).
Two circle packing metrics .�1; ˚1/ and .�2; ˚2/

on the same mesh are conformal equivalent, if
˚1  ˚2. Therefore, a conformal deformation of
a circle packing metric only modifies the vertex
radii �i ’s and preserves the intersection angles.
Note that the circle packing metric and the edge
lengths (the piecewise linear metric) on one mesh
can be converted to each other by using the cosine
law.

Now we are ready to introduce the discrete
Ricci flow algorithm. Let ui be log �i for each
vertex. Then the discrete Ricci flow, introduced
in the work of [2], is defined as follows: dui .t/

dt
D

NKi �Ki , where Ki ; NKi are the current and target
curvature at vertex vi , respectively. Discrete Ricci
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Discrete Ricci Flow for Geometric Routing, Fig. 1
The circle packing metric

flow can be formulated in the variational setting,
namely, it is a negative gradient flow of some
special energy form: f .u/ D

R u
u0

Pn
iD1. NKi �

Ki /dui , where u0 is an arbitrary initial met-
ric and NK is the prescribed target curvature.
The integration above is well defined and called
the Ricci energy. The discrete Ricci flow is the
negative gradient flow of the discrete Ricci en-
ergy. The discrete metric which induces NK is
the minimizer of the energy. Computing the de-
sired circle packing metric with prescribed cur-
vature NK is equivalent to minimizing the dis-
crete Ricci energy. The discrete Ricci energy
is strictly convex (namely, its Hessian is posi-
tive definite after a normalization). The global
minimum uniquely exists, corresponding to the
metric Nu, which induces NK. The discrete Ricci
flow converges to this global minimum and the
convergence is exponentially fast [2], i.e., j NKi �

Ki .t/j < c1e�c2t , where c1; c2 are two posi-
tive constants. This represents a centralized al-
gorithm for computing the discrete Ricci flow on
˙ . In the following, we describe the distributed
algorithm for different types of greedy routing
scenarios.

Discrete Ricci Flow Algorithm
To apply discrete Ricci flow for greedy routing,
we take a triangular mesh ˙ as a subgraph from
the communication graph. All non-triangular

faces are considered as network holes that will be
mapped to circular holes in the embedding. All
nodes not on hole boundaries have zero curvature
under the mapping. Thus, the embedding is
denoted as a circular domain. With the virtual
coordinates and Euclidean distance metric,
greedy routing guarantees delivery. (For a node
in the interior of the triangulation, if the corner
angle is greater than 2�=3, we will adopt greedy
routing on an edge that has provably guaranteed
delivery.)

In particular, we set all edge lengths to be
initially 1, which determines the initial curvature
at each node. In particular, we choose the circle
packing metric by placing a circle of initial radius
1=2 on each node. The circles at adjacent nodes
are tangent to each other. Thus, the intersection
angle is kept at 0. We now set the target curvature
at interior nodes to be zero and at hole boundary
nodes to be 2�=k with k as the number of nodes
on the hole boundary. The algorithms run in a
gossip style. In each round, each node exchanges
its radius with neighbors and computes its own
Gaussian curvature. The algorithm stops when
the current curvature is within error � from the
specified target curvature.

At each gossip round, node vi is associated
with a disk with radius eui , where ui is a scalar
value. The length of the edge connecting vi and
vj equals to eui C euj . The corner angles of
each triangle can be estimated using cosine law
by each node locally. That is, the angle 

jk
i in

triangle Œvi ; vj ; vk � is


jk
i D cos�1

l2
ij C l2

ki
� l2

jk

2lij lki

The curvature ki at vi is

ki D

8
<

:
2� �

P
jk 

jk
i ; vi 62 @M

� �
P

jk 
jk
i ; vi 2 @M

When the target curvature is not met, ui is mod-
ified proportionally to the difference between the
target curvature and the current curvature.

ui ( ui C ı. Nki � ki /
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a b

Discrete Ricci Flow for Geometric Routing, Fig. 2 (a) A network of 7,000 nodes with many holes; (b) virtual
coordinates

Once the curvatures are computed, the trian-
gulation is then flattened out by a simple flooding
from a triangle root. Given three edge lengths of
the root triangle Œv0; v1; v2�, the node coordinates
can be constructed directly. Then the neighbor-
ing triangle of the root, e.g., Œv1; v0; vi �, can be
flattened; the virtual coordinates of vi are the
intersection of two circles, one is centered at v0

with radius l0i and the other is centered at v1

with radius l1i . In a similar way, the neighbors
of the newly flattened triangles can be further
embedded. The virtual coordinates of the whole
network are thus computed (Fig. 2).

Discrete Hyperbolic Ricci Flow
The key result in conformal geometry says that
any surface with a Riemannian metric admits a
Riemannian metric of constant Gaussian curva-
ture, which is conformal to the original metric.
Such metric is called the uniformization metric.
Thus, depending on the surface topology, the
uniformization metric has either positive con-
stant, zero, or negative constant curvature every-
where. Simply connected surfaces with constant
curvature are only of three canonical types: the
sphere (constant positive curvature everywhere),
the Euclidean plane (zero curvature everywhere),
and the hyperbolic plane (negative curvature ev-
erywhere). Discrete Ricci flow is a powerful tool
to compute the uniformization metric.

In our setting, when the triangulation ˙ has
two or more holes, it has negative total curvature.
Thus, its uniformization metric is hyperbolic. To
actually embed the surface and realize the uni-
formization metric, the holes in the network are
cut open to get a simply connected triangulation
T . Using discrete hyperbolic Ricci flow, we em-
bed T in a convex region S in hyperbolic space.
Each node is given a hyperbolic coordinate. Each
edge uv has a length d.u; v/ as the geodesic
between u; v in the hyperbolic space. In this way,
greedy routing with the hyperbolic metric (i.e.,
send the message to the neighbor closer to the
destination measured by hyperbolic distance) has
guaranteed delivery.

The hyperbolic Ricci flow is very similar to the
Euclidean version with a few modifications. First
all metrics are hyperbolic. The edge length lij of
eij is determined by the hyperbolic cosine law:

cosh lij D cosh �i cosh �jCsinh �i sinh �j cos �ij:

(1)
Let ui D log tanh �i

2
; the discrete Ricci flow is

defined as
dui .t/

dt
D �Ki ; (2)

where Ki is the discrete Gaussian curvature at
vi . Once the hyperbolic metric is computed, we
can embed the triangulation isometrically onto
the Poincare disk.
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Generalized Discrete Surface Ricci Flow
There are many schemes for discrete surface
Ricci flow [14], including tangential circle pack-
ing, Thurston’s circle packing, inversive distance
circle packing, Yamabe flow, virtual radius circle
packing, and mixed typed schemes. All of them
can be unified as follows. The combinatorial
structure of the triangulation is ˙ ; it is with one
of three background geometries: Euclidean E

2,
hyperbolic H

2, and spherical S2. Each vertex is
associated with a circle; the vertex radii function
is � W V ! R

C. Each vertex is also associated
with a constant �, which indicates the scheme.
Each edge has a conformal structure coefficient
� W E ! R. So a circle packing metric is given
by .˙; �; �; �/. The discrete conformal factor is
given by

ui D

8
<

:

log �i ; E2

log tanh �i

2
; H2

log tan �i

2
; S2

The length of Œvi ; vj � is given by

8
ˆ̂̂
<

ˆ̂̂
:

l2
ij D 2�ij eui Cuj C �i e

2ui C �j e2uj ; E2

cosh lij D
4	ij e

ui Cuj C.1C�i e2ui /.1C�j e
2uj /

.1��i e2ui /.1��j e
2uj /

; H2

cos lij D
4	ij e

ui Cuj C.1��i e2ui /.1��j e
2uj /

.1C�i e2ui /.1C�j e
2uj /

; S2

The discrete Ricci flow is given by

dui .t/

dt
D NKi �Ki .t/;

where NK W V ! R is the prescribed target
curvature, which is the negative gradient flow of
the discrete Ricci energy

E.u/ D

Z uX

i

. NKi �Ki /dui :

For the discrete surfaces with Euclidean back-
ground geometry, the Ricci energy is convex on
the space

P
i ui D 0. For those with hyperbolic

background geometry, the energy is convex. For
spherical case, the energy is indefinite.

For Yamabe scheme (where �  0), the
combinatorial structure ˙ is Delaunay, if for each
edge Œvi ; vj � share by two faces Œvi ; vj ; vk � and
Œvj ; vi ; vl �, k

ij C  l
j i � � . If during the Yamabe

flow, the combinatorial structure can be updated
to ensure the Delaunay condition, then for any
NK W V ! .�1; 2�/ satisfying the Gauss-Bonnet

constraint
P

v2V
NK.v/ D 2�	.˙/, the Yamabe

flow with surgery can lead to the discrete metric
that realizes the target curvature; the conver-
gence is exponentially fast. This theorem implies
the discrete uniformization theorem: any closed
polyhedral surface admits a polyhedral metric
discretely conformal to the original one, which
induces constant Gaussian curvature everywhere
[4, 5] (Fig. 3).

Applications

The presented Ricci flow algorithms can be
applied for a variety of routing primitives
for large-scale wireless sensor networks
with nonuniform node distribution. Besides
guaranteed delivery [8], we can also achieve
multiple additional desirable routing objectives,
all derived from the unique property of a
conformal mapping. For example, greedy routing
on a circular domain may accumulate high
traffic load on the interior hole boundaries. To
alleviate that, we can reflect the network along
a hole boundary using a Mobius transformation
and map a copy of the network to cover the
interior of the hole, recursively [9] (see Fig. 4).
Routing on this covering space makes traffic load
more balanced as hole boundaries essentially
“disappear.” In another case, when there are
sudden link or node failures, we can apply a
Mobius transformation to generate a different
circular domain, with the sizes and positions of
the holes rearranged, on which greedy routing
generates a different path [6]. Thus, quick
recovery from a spontaneous failure is possible.
The hyperbolic Ricci flow can be used to map
the domain with the holes cut open to a convex
polygon that can tile up the entire hyperbolic
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Discrete Ricci Flow for Geometric Routing, Fig. 3 Discrete surface uniformization

Discrete Ricci Flow for Geometric Routing, Fig. 4 Three-level circular reflections and a routing path

plane. This mapping supports greedy routing with
specified “homotopy types,” i.e., routes that go
around holes in different ways [13] (see Fig. 5).
Hyperbolic embedding can be generalized to
3D sensor networks with complex topology
as in the case of monitoring underground
tunnels [12]. Additional applications include
generation of “space filling curves” for
arbitrary domains [1], supporting greedy routing
in mobile networks [7] and load balanced
routing [3].

Open Problems

Given a smooth surface S with a Riemannian
metric g, the smooth Ricci flow leads to the uni-
formization metric e2
g, where � is the smooth
conformal factor. If the surface is tessellated to
get a discrete surface M0 and discrete Ricci flow
is performed on M0, one obtains discrete confor-
mal factor function u0. When M is subdivided
by n times, the discrete conformal factor is un,
whether limn!1 un D �.
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Discrete Ricci Flow for Geometric Routing, Fig. 5
Computing the shortest paths using the hyperbolic em-
bedding of a 3-connected domain with 1,286 nodes. Two
different paths are generated using greedy routing toward

images of the destination in different patches. (a) Shortest
path 1. (b) Geodesic of (a). (c) Shortest path 2. (d)
Geodesic of (c)

Experimental Results

The convergence rate, i.e., the number of itera-
tions is proportional to O( log.1=�/

ı
), where ı is

the step size in the Ricci flow algorithm and
� is the error bound on the curvature. In our
experiments we take � to be 1e � 6. Routing
with the virtual coordinates has 100 % delivery
rate and the average path stretch (compared to
the shortest path in the network) is no greater
than 2.

URLs to Code and Data Sets

http://www.cs.sunysb.edu/~gu/tutorial/RicciFlow.
html
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Problem Definition

Let G D .V; E/ be a weighted undirected graph
with n vertices and m edges. A distance oracle
is a data structure capable of representing al-
most shortest paths efficiently, both in terms of
space requirement and query time. Thorup and
Zwick [7] showed that for any integer k � 1 it
is possible to preprocess the graph in QO.mn1=k/

time and generate a compact data structure of size
O.kn1C1=k/ that answers approximate distance
queries with 2k � 1 multiplicative stretch in
O.k/ time. This means that for every u; v 2

V , it is possible to retrieve an estimate Od.u; v/

to the distance d.u; v/ in O.k/ time, such that
d.u; v/ � Od.u; v/ � .2k � 1/d.u; v/. Re-
cently, [8] showed, using a clever query algo-
rithm, that the query time of Thorup and Zwick

can be reduced from O.k/ to O.log k/. Even
more recently, [1] showed that the query time
of Thorup and Zwick can be reduced to O.1/.
Thorup and Zwick [7] showed, based on the girth
conjecture of [2], that there are dense enough
graphs which cannot be represented by a data
structure of size less than n1C1=k without in-
creasing the stretch above 2k � 1 for any integer
k. Therefore, for dense graphs their distance
oracle is optimal assuming the girth conjecture
holds.

This suggests that the distance oracle of Tho-
rup and Zwick can be improved only for sparse
graphs and in particular, graphs with less than
n1C1=k edges. Alternatively, it might be possible
to get below the 2k � 1 multiplicative stretch by
allowing an additive stretch as well.

Notice, however, that we cannot gain from
introducing also additive stretch without getting
an improved multiplicative stretch distance ora-
cles for sparse graphs (i.e., m D O.n/). A data
structure with size S.m; n/ and stretch .˛; ˇ/,
where ˛ is multiplicative stretch and ˇ is additive
stretch, implies a data structure with size S..ˇ C

1/m; n C ˇm/ and multiplicative stretch of ˛,
as if we divide every edge into ˇ C 1 edges
then all distances become a multiply of ˇ C 1

and additive stretch of ˇ is useless. For graphs
with m D O.n/, the size of the data structure is
asymptotically the same.

Key Results

Pǎtraşcu and Roditty [4] obtained a distance ora-
cle for sparse unweighted graphs with m D QO.n/

of size QO.m5=3/ that can supply in O.1/ time
an estimate of the distance with multiplicative
stretch 2. For dense graphs, the distance oracle
has size of QO.n5=3/ and stretch .2; 1/.

Pǎtraşcu et al. [5] extended this result for
weighted graphs and generalized it. In particular,
they show that for any fixed positive integers
k and `, there is a distance oracle with stretch
˛ D 2k C 1 ˙ 2

`
D 2k C 1 � 2

`
; 2k C 1 C 2

`
,

that uses QO.m1C2=.˛C1// space. The query time
is O.k C `/.
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Sommer et al. [6] proved a three-way trade-
off between space, stretch, and query time of
approximate distance oracles. They show that
any distance oracle that can give stretch ˛ an-
swers to distance queries in time O.t/ must
use n1C˝.1=.t˛//= log n space. Their result is ob-
tained by a reduction from lopsided set disjoint-
ness to distance oracles, using the framework
introduced by [3]. Any improvement to this lower
bound requires a major breakthrough in lower
bounds techniques. In particular, it does not imply
anything even for slightly non-constant query
time as ˝.log n/ and slightly non-linear space as
n1:01.

Pǎtraşcu and Roditty [4] showed also a con-
ditional lower bound for distance oracle that
is based on a conjecture on the hardness of
the set intersection problem. They showed that
a distance oracle for unweighted graphs with
m D QO.n/ edges, which can distinguish be-
tween distances of 2 and 4 in constant time (as
multiplicative stretch strictly less than 2 implies)
requires Q̋ .n2/ space, assuming the conjecture
holds. Thus, non-constant query time is essential
to get stretch smaller than 2.

Pǎtraşcu et al. [5] showed, based also on a
conjecture on the hardness of the set intersec-
tion problem, for any fixed positive integer `,
that there are graphs with m edges such that
a distance oracle with constant query time and
stretch below 3 � 2=.` C 1/ must use space
Q̋ .m1C1=.2�1=`//.

Open Problems

The conditional lower bounds of [5] for sparse
graphs do not say anything on stretch 3.
The best space upper bound for stretch 3 in
sparse graphs and dense graphs is QO.n1:5/.
While in dense graphs this is tight due to the
existence of graphs with ˝.n1:5/ edges and
girth 6, for sparse graphs nothing is known.
Therefore, we have the following two open
problems:

Can we get a o.n1:5/ space for stretch 3 in
sparse graphs? Can we get stretch less than 3 for
space QO.n1:5/ in sparse graphs?
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Problem Definition

Introduction
From a mathematical point of view, a phylogeny
defines a probability space for random sequences
observed at the leaves of a binary tree T.
The tree T represents the unknown hierarchy
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of common ancestors to the sequences. It is
assumed that (unobserved) ancestral sequences
are associated with the inner nodes. The tree
along with the associated sequences models the
evolution of a molecular sequence, such as the
protein sequence of a gene. In the conceptually
simplest case, each tree node corresponds to
a species, and the gene evolves within the
organismal lineages by vertical descent.

Phylogeny reconstruction consists of finding T
from observed sequences. The possibility of such
reconstruction is implied by fundamental princi-
ples of molecular evolution, namely, that random
mutations within individuals at the genetic level
spreading to an entire mating population are not
uncommon, since often they hardly influence
evolutionary fitness [15]. Such mutations
slowly accumulate, and, thus, differences
between sequences indicate their evolutionary
relatedness.

The reconstruction is theoretically feasible in
several known situations. In some cases, dis-
tances can be computed between the sequences,
and used in a distance-based algorithm. Such an
algorithm is fast-converging if it almost surely
recovers T, using sequences that are polynomially
long in the size of T. Fast-converging algorithms
exploit statistical concentration properties of dis-
tance estimation.

Formal Definitions
An evolutionary topology U(X) is an unrooted
binary tree in which leaves are bijectively
mapped to a set of species X. A rooted topology T
is obtained by rooting a topology U on one
of the edges uv: a new node 
 is added (the
root), the edge uv is replaced by two edges 
v

and 
u, and the edges are directed outwards
on paths from ¡ to the leaves. The edges,
vertices, and leaves of a rooted or unrooted
topology T are denoted by E.T /, V.T / and L.T /,
respectively.

The edges of an unrooted topology U may be
equipped with a a positive edge length function
d WE.U / 7! .0;1/. Edge lengths induce a tree
metric d WV.U / � V.U / 7! Œ0;1/ by the exten-
sion d.u; v/ D

P
e2u v d.e/, where u v de-

notes the unique path from u to v. The value d(u,

v) is called the distance between u and v. The
pairwise distances between leaves form a dis-
tance matrix.

An additive tree metric is a function ıWX �

X 7! Œ0;1/ that is equivalent to the distance
matrix induced by some topology U(X) and edge
lengths. In certain random models, it is possible
to define an additive tree metric that can be
estimated from dissimilarities between sequences
observed at the leaves.

In a Markov model of character evolution over
a rooted topology T, each node u has an associ-
ated state, which is a random variable �.u/ taking
values over a fixed alphabet A D f1; 2; : : : rg.
The vector of leaf states constitutes the
character � D

�
�.u/W u 2 L.T /

�
. The states

form a first-order Markov chain along every
path. The joint distribution of the node states
is specified by the marginal distribution of the
root state, and the conditional probabilities
Pf�.v/ D bj�.u/ D ag D pe.a! b/ on each
edge e, called edge transition probabilities.

A sample of length ` consists of inde-
pendent and identically distributed characters
� D

�
�i W i D 1; : : : `

�
. The random sequence

associated with the leaf u is the vector
�.u/ D

�
�i .u/W i D 1; : : : `

�
.

A phylogeny reconstruction algorithm is
a function F mapping samples to unrooted
topologies. The success probability is the
probability that F.�/ equals the true topology.

Popular Random Models

Neyman Model [14]
The edge transition probabilities are

pe.a! b/ D

8
<

:
1 � �e if a D bI

�e

r�1
if a ¤ b

with some edge-specific mutation probability 0 <

�e < 1 � 1=r . The root state is uniformly
distributed. A distance is usually defined by

d.u; v/ D � r�1
r

ln
�
1 � r

r�1
Pf�.u/ ¤ �.v/g

�
:
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General Markov Model
There are no restrictions on the edge transi-
tion probabilities in the general Markov model.
For identifiability [1, 16], however, it is usu-
ally assumed that 0 < det Pe < 1, where Pe is
the stochastic matrix of edge transition prob-
abilities. Possible distances in this model in-
clude the paralinear distance [1, 12] and the
LogDet distance [13, 16]. This latter is defined
by d.u; v/ D � ln det Juv , where Juv is the matrix
of joint probabilities for �.u/ and �.v/.

It is often assumed in practice that sequence
evolution is effected by a continuous-time
Markov process operating on the edges.
Accordingly, the edge length directly measures
time. In particular, Pe D eQ�d.e/ on every edge e,
where Q is the instantaneous rate matrix of the
underlying process.

Key Results

It turns out that the hardness of reconstructing
an unrooted topology U from distances is de-
termined by its edge depth 
.U /. Edge depth is
defined as the smallest integer k for which the
following holds. From each endpoint of every
edge e 2 E.U /, there is a path leading to a leaf,
which does not include e and has at most k
edges.

Theorem 1 (Erdős, Steel, Székely, Warnow [6])
If U has n leaves, then 
.U / � 1C log2.n � 1/.
Moreover, for almost all random n-leaf topolo-
gies under the uniform or Yule-Harding distribu-
tions, 
.U / 2 O.log log n/

Theorem 2 (Erdős, Steel, Székely, Warnow [6])
For the Neyman model, there exists a polynomial-
time algorithm that has a success probabil-
ity .1 � ı/ for random samples of length

` D O
� log nC log 1

ı

f 2.1 � 2g/4�C6

�
; (1)

where 0 < f D mine �e and g D maxe

�e < 1=2 are extremal edge mutation probabili-
ties, and 
 is the edge depth of the true topology.

Theorem 2 can be extended to the general
Markov model with analogous success rates for
LogDet distances [7], as well as to a number of
other Markov models [2].

Equation (1) shows that phylogenies can
be reconstructed with high probability from
polynomially long sequences. Algorithms with
such sample size requirements were dubbed fast-
converging [9]. Fast convergence was proven for
the short quartet methods of Erdős et al. [6, 7],
and for certain variants [11] of the so-called
disk-covering methods introduced by Huson
et al. [9]. All these algorithms run in ˝.n5/

time. Csürös and Kao [3] initiated the study
of computationally efficient fast-converging
algorithms, with a cubic-time solution. Csürös [2]
gave a quadratic-time algorithm. King et al. [10]
designed an algorithm with an optimal running
time of O.n log n/ for producing a phylogeny
from a matrix of estimated distances.

The short quartet methods were revisited re-
cently: [4] described an O(n4)-time method that
aims at succeeding even if only a short sample is
available. In such a case, the algorithm constructs
a forest of “trustworthy” edges that match the true
topology with high probability.

All known fast-converging distance-based al-
gorithms have essentially the same sample bound
as in (1), but Daskalakis et al. [5] recently gave
a twist to the notion of fast convergence. They
described a polynomial-time algorithm, which
outputs the true topology almost surely from
a sample of size O.log n/, given that edge lengths
are not too large. Such a bound is asymptotically
optimal [6]. Interestingly, the sample size bound
does not involve exponential dependence on the
edge depth: the algorithm does not rely on a dis-
tance matrix.

Applications

Phylogenies are often constructed in molecular
evolution studies, from aligned DNA or protein
sequences. Fast-converging algorithms have
mostly a theoretical appeal at this point. Fast
convergence promises a way to handle the
increasingly important issue of constructing
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large-scale phylogenies: see, for example, the
CIPRES project (http://www.phylo.org/).
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Problem Definition

A phylogeny is an evolutionary tree tracing the
shared history, including common ancestors, of
a set of extant species or “taxa.” Phylogenies
are increasingly reconstructed on the basis of
molecular data (DNA and protein sequences)
using statistical techniques such as likelihood
and Bayesian methods. Algorithmically, these
techniques suffer from the discrete nature of
tree topology space. Since the number of tree
topologies increases exponentially as a function
of the number of taxa, and each topology requires
a separate likelihood calculation, it is important
to restrict the search space and to design efficient
heuristics. Distance methods for phylogeny re-
construction serve this purpose by inferring trees
in a fraction of the time required for the more
statistically rigorous methods. Distance methods
also provide fairly accurate starting trees to be
further refined by more sophisticated methods.
Moreover, the input to a distance method is the
matrix of pairwise evolutionary distances among
taxa, which are estimated by maximum likeli-
hood, so that distance methods also have sound
statistical justifications.

Mathematically, a phylogenetic tree is a triple
T D .V; E; l/ where V is the set of nodes
(extant taxa correspond to leaves, ancestors to
internal nodes), E is the set of edges (branches)
representing relations of descent, and l is a func-
tion that assigns positive lengths to each edge in
E, representing a measure of evolutionary diver-
gence, for example, in terms of time, or amount
of change between DNA and protein sequences.
Any phylogenetic tree T defines a metric DT on
its leaf set L: let PT .u; v/ define the unique path
through T from u to v; then the distance from u
to v is set to DT .u; v/ D

P
e2PT .u;v/

l.e/.

Distance methods for phylogeny reconstruc-
tion rely on the fundamental result [22] that the
map T ! DT is reversible; i.e., a tree T can be
reconstructed from its tree metric, a problem that

can be solved in O .n log n/ time [14]. However,
in practice DT is not known, and one must use
molecular sequence data to estimate a distance
matrix D that approximates DT [9]. As the
amount of sequence data increases, D can be
assumed to converge to DT . A minimal require-
ment for any distance method is consistency: for
any tree T , and for distance matrices D “close
enough” to DT , the algorithm should output a
tree with the same topology as T (i.e., with
the same underlying graph (V ,E)). The present
chapter deals with the question of when any
distance algorithm for phylogeny reconstruction
can be guaranteed to output the correct phylogeny
as a function of the divergence between D and
DT . Atteson [1] demonstrated that this question
can be precisely answered for neighbor joining
(NJ) [18], one of the most cited algorithms in
computational biology (with more than 35,000
citations up to 2014), and a number of NJ’s
variants.

The Neighbor Joining (NJ) Algorithm of
Saitou and Nei [18]
NJ is agglomerative: it works by using the input
matrix D to identify a pair of taxa x, y 2 L

that are neighbors in T , i.e., there exists a node
u 2 V such that {(u,x), (u,y)} 	 E. Then, the
algorithm creates a node c that is connected to x

and y, extends the distance matrix to c, and solves
the reduced problem on L[{c}n{x,y}. The pair
(x; y/ is chosen to minimize the following sum:

SD .x; y/ D .jLj � 2/ �D .x; y/

�
X

´2L

.D .´; x/CD.´; y// :

The soundness of NJ is based on the observation
that, if D D DT for a tree T; the value SD.x; y/

will be minimized for a pair (x; y/ that are neigh-
bors in T .

Balanced Minimum Evolution and
Algorithms Inspired by It
A number of papers (reviewed in [11]) have been
dedicated to the various interpretations and prop-
erties of the SD criterion. One of these interpreta-
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tions consists of observing that agglomerating the
pair of nodes that minimizes SD is equivalent to
choosing, among all the trees that can be obtained
in this way, the one that minimizes a simple linear
formula [16] to calculate the length of a tree
from the distances between its leaves [11], thus
connecting distance and parsimony methods [9].
As the optimization principle seeking the tree that
minimizes this formula has been named balanced
minimum evolution (BME) [6], NJ can then be
seen as a greedy algorithm for BME.

This remarkable connection between NJ and
BME naturally spurred the proposal of alternative
algorithms for BME. One of these, GreedyBME,
consists of iteratively adding taxa to a tree so
that, at each step, the resulting tree is the one
that minimizes BME among all the binary trees
that can be obtained in this way [6]. More in-
volved algorithms can be obtained by combining
a simple tree construction algorithm such as NJ
or GreedyBME, with a local search based on the
traditional tree rearrangements used in phyloge-
netics [9], such as nearest-neighbor interchange
(NNI) or subtree pruning and regrafting (SPR).

The Fast Neighbor Joining (FNJ) Algorithm
of Elias and Lagergren [7]
Standard implementations of NJ require O.n3/

computations, where n is the number of taxa in
the data set. Since a distance matrix only has
n2 entries, many attempts have been made to
construct a distance algorithm that would only
require O.n2/ computations while retaining the
accuracy of NJ. To this end, one of the most
interesting results is the fast neighbor joining
(FNJ) algorithm of Elias and Lagergren [7].

Most of the computation of NJ is used in the
recalculations of the sums SD.x; y/ after each
agglomeration step. Although each recalculation
can be performed in constant time, and although
it is not necessary to consider all pairs of taxa
(x; y/ in order to find the one that minimizes
this sum [20], the number of pairs to consider
remains, in the worst case, O.k2/ when k nodes
are left to agglomerate. Thus, summing over k,
O.n3/ computations are required in all.

Elias and Lagergren take a related approach
to agglomeration, which does not exhaustively

seek the minimum value of SD.x; y/ at each
step, but instead uses a heuristic to maintain a
list of candidates of “visible pairs” (x; y/ for
agglomeration. At the (n � k/th step, when two
neighbors are agglomerated from a k-taxa tree to
form a (k � 1)-taxa tree, FNJ has a list of O.k/

visible pairs for which SD.x; y/ is calculated.
The pair joined is selected from this list. By
trimming the number of pairs considered, Elias
and Lagergren achieved an algorithm which re-
quires only O.n2/ computations. Other similar
improvements to neighbor joining have also been
proposed in recent years [8, 13, 20].

Safety Radius Performance Analysis
(Atteson [1])
In order to provide accuracy guarantees for
distance-based algorithms, Atteson [1] tackled
the following question: if D is a distance matrix
that approximates a tree metric DT , can one have
some confidence in the algorithm’s ability to
reconstruct T , or parts of it, given D, based
on some measure of the distance between
D and DT ? For two matrices, D1 and D2,
the L1 distance between them is defined by
jjD1 � D2jj1 D maxi;j jD1.i; j / � D2.i; j /j.
Moreover, let �.T / denote the length of the
shortest internal edge of a tree T . This is
an important quantity, as short branches in a
phylogeny are difficult to resolve, because of
the relatively few (if any) molecular changes
occurring on a short branch.

The safety radius of an algorithm A is then the
greatest value of r with the property that given
any phylogeny T , and any distance matrix D

satisfying jjD�DT jj1 < r ��.T /, A will return
a tree OT with the same topology as T . Similarly,
the edge radius of A is the greatest value of r ,
for which the presence in OT of an edge e 2 E

is guaranteed whenever jjD– DT jj1 < r � l.e/.
As an easy consequence of these definitions, the
safety radius is always at least as large as the edge
radius. Moreover, both the safety radius and the
edge radius can also be attributed to an optimiza-
tion principle, assuming an exact optimization
algorithm.
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Key Results

Atteson [1] proved the following theorems:

Theorem 1 The safety radius of NJ is 1=2.

Theorem 2 The largest possible safety radius
for any algorithm is 1=2.

Indeed, given any �, one can find two different
trees T1, T2 and a distance matrix D such that
� D �.T1/ D �.T2/, and kD�DT1

k1 D �=2 D

kD � DT2
k1. Since D is equidistant from two

distinct tree metrics, no algorithm could assign it
to the “closest” tree.

In their presentation of FNJ, Elias and Lager-
gren updated Atteson’s results for their algorithm.
They showed:

Theorem 3 The safety radius of FNJ is 1=2.

An insight on the above results on neighbor-
joining-type algorithms is provided by the fact
that the optimization principle they are linked to,
BME, has itself safety radius 1=2 [15]. A simple
consequence of this [15] is the fact that also
GreedyBME has safety radius 1=2, a result first
proven by Shigezumi [19]. Finally, performing a
local search guided by BME and based on SPR
leads to an algorithm with safety radius greater
or equal to 1=3, regardless of the method used to
construct the initial tree [2].

The edge radius of a number of algorithms
has also been studied. As conjectured by Atte-
son [1] and formally proven by Dai et al. [5],
the edge radius of NJ is 1=4. Interestingly, other
heuristics, related to NJ via the principle they
seek to optimize (BME), perform better than NJ
in terms of edge radius: GreedyBME has edge
radius 1=3 [3]; moreover, building an initial tree
with GreedyBME and then performing a local
search guided by BME and based on NNI or
SPR operations constitute an algorithm with edge
radius 1=3 [3].

Finally, we note that the safety radius frame-
work has also been applied to the ultrametric
setting where the correct tree T is rooted and all
tree leaves are at the same distance from the root
[10]. These trees are called “molecular clock”

trees in phylogenetics and “indexed hierarchies”
in data analysis. In this setting, the optimal safety
radius is equal to 1 (instead of 1=2/, and a number
of standard algorithms (e.g., UPGMA, with time
complexity in O.n2// have a safety radius of 1.

Open Problems

With increasing amounts of sequence data be-
coming available for an increasing number of
species, distance algorithms such as NJ should
be useful for quite some time. Currently, the
bottleneck in the process of building phyloge-
nies is estimating distances, rather than exploring
tree topologies. Two algorithms were recently
developed to reconstruct trees from incomplete
distance matrices. These algorithms use character
information as well as distances and hence cannot
be categorized as pure distance methods.

FastTree [17] is an NJ-like heuristic that
avoids computing the full distance matrix. For
each taxon, FastTree computes the distances
to O.

p
n/ close neighbors. FastTree also uses

sequence profiles to approximate SD.x; y/

values in constant time. The overall algorithm
takes O.san

p
n log n/ time and O.sanC n

p
n/

memory, where s is the length of the input
sequences and a is their alphabet size. FastTree
has been shown to be highly accurate with
simulated data [17], but no formal guarantee
has yet been shown for this algorithm.

The only known o.n2/ algorithm with theoret-
ical guarantees is LSHTree [4]. It uses locality-
sensitive hashing to rapidly find candidate pairs
of close sequences for merging. After each
merge, LSHTree reconstructs ancestral sequences
at new internal nodes to ensure that a close pair
of sequences can be found at each iteration.
LSHTree is guaranteed to reconstruct the correct
tree from sequences of logarithmic length under a
Markov model of sequence evolution. The exact
running time of LSHTree depends on the branch
lengths.

As we have shown, a number of distance-
based tree building algorithms have been ana-
lyzed in the safety radius framework. However,
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computer simulations (e.g., [6, 7]) have shown
that not all algorithms with optimal safety radius
achieve the same accuracy: for example, NJ is
slightly more accurate than FNJ (both having
safety radius D 1=2), but is beaten by heuristics
based on NNI or SPR moves (with demonstrated
safety radius >D 1=3, but possibly = 1=2/. More-
over, some well-established methods (e.g., based
on least squares [10, 21]) have safety radius con-
verging to 0 when the number of taxa increases,
which contradicts the common practice. These
experimental observations indicate that the safety
radius approach should be sharpened to provide
better theoretical analysis of method performance
(see [12] for a work in this direction). In par-
ticular, the choice of the L1 norm to measure
the error in a distance matrix seems to have little
statistical or biological justification.

An alternative analysis framework, strictly
linked to the one presented here, is the one
seeking to estimate the minimum sequence length
required for accurate reconstruction of the correct
tree. It is discussed in a separate entry of this
encyclopedia [A].
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Problem Definition

Consider a communication network, modeled by
an undirected weighted graph G D .V; E/, where
jV j D n; jEj D m. Each vertex of V represents a
processor of unlimited computational power; the
processors have unique identity numbers (ids),
and they communicate via the edges of E by
sending messages to each other. Also, each edge
e 2 E has associated a weight w.e/, known to the
processors at the endpoints of e. Thus, a proces-
sor knows which edges are incident to it and their
weights, but it does not know any other infor-
mation about G. The network is asynchronous:
each processor runs at an arbitrary speed, which
is independent of the speed of other processors.
A processor may wake up spontaneously or when
it receives a message from another processor.
There are no failures in the network. Each mes-
sage sent arrives at its destination within a fi-
nite but arbitrary delay. A distributed algorithm
A for G is a set of local algorithms, one for
each processor of G, that include instructions for
sending and receiving messages along the edges
of the network. Assuming that A terminates (i.e.,
all the local algorithms eventually terminate),
its message complexity is the total number of
messages sent over any execution of the algo-

rithm, in the worst case. Its time complexity is the
worst-case execution time, assuming processor
steps take negligible time, and message delays are
normalized to be at most 1 unit.

A minimum spanning tree (MST) of G is a
subset E 0 of E such that the graph T D .V; E 0/ is
a tree (connected and acyclic) and its total weight,
w.E 0/ D

P
e2E 0

w.e/, is as small as possible. The

computation of an MST is a central problem in
combinatorial optimization, with a rich history
dating back to 1926 [2], and up to now, the
book [12] collects properties, classical results,
applications, and recent research developments.

In the distributed MST problem, the goal is to
design a distributed algorithm A that terminates
always and computes an MST T of G. At the
end of an execution, each processor knows which
of its incident edges belong to the tree T and
which do not (i.e., the processor writes in a local
output register the corresponding incident edges).
It is remarkable that in the distributed version of
the MST problem, a communication network is
solving a problem where the input is the network
itself. This is one of the fundamental starting
points of network algorithms.

It is not hard to see that if all edge weights
are different, the MST is unique. Due to the
assumption that processors have unique ids,
it is possible to assume that all edge weights
are different: whenever two edge weights are
equal, ties are broken using the processor ids
of the edge endpoints. Having a unique MST
facilitates the design of distributed algorithms, as
processors can locally select edges that belong
to the unique MST. Notice that if processors do
not have unique ids and edge weights are not
different, there is no deterministic MST (nor any
spanning tree) distributed algorithm, because it
may be impossible to break the symmetry of the
graph, for example, in the case it is a cycle with
all edge weights equal.

Key Results

The distributed MST problem has been studied
since 1977, and dozens of papers have been
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written on the subject. In 1983, the fundamen-
tal distributed GHS algorithm in [5] was pub-
lished, the first to solve the MST problem with
O.m C n log n/ message complexity. The paper
has had a very significant impact on research in
distributed computing and won the 2004 Edsger
W. Dijkstra Prize in Distributed Computing.

It is not hard to see that any distributed MST
algorithm must have �.m/ message complex-
ity (intuitively, at least one message must tra-
verse each edge). Also, results in [3, 4] imply an
�.n log n/ message complexity lower bound for
the problem. Thus, the GHS algorithm is optimal
in terms of message complexity.

The �.m C n log n/ message complexity
lower bound for the construction of an MST
applies also to the problem of finding an arbitrary
spanning tree of the graph. However, for specific
graph topologies, it may be easier to find an
arbitrary spanning tree than to find an MST. In
the case of a complete graph, �.n2/ messages
are necessary to construct an MST [8], while
an arbitrary spanning tree can be constructed in
O.n log n/ messages [7].

The time complexity of the GHS algorithm is
O.n log n/. In [1] it is described how to improve
its time complexity to O.n/ while keeping the
optimal O.m C n log n/ message complexity.
It is clear that �.D/ time is necessary for the
construction of a spanning tree, where D is the
diameter of the graph. And in the case of an MST,
the time complexity may depend on other param-
eters of the graph. For example, due to the need
for information flow among processors residing
on a common cycle, as in an MST construction,
at least one edge of the cycle must be excluded
from the MST. If messages of unbounded size
are allowed, an MST can be easily constructed in
O.D/ time, by collecting the graph topology and
edge weights in a root processor. The problem
becomes interesting in the more realistic model
where messages are of size O.log n/ and an edge
weight can be sent in a single message. When
the number of messages is not important, one can
assume without loss of generality that the model
is synchronous. For near-time optimal algorithms
and lower bounds, see [10] and references herein.

Applications

The distributed MST problem is important to
solve, both theoretically and practically, as an
MST can be used to save on communication,
in various tasks such as broadcast and leader
election, by sending the messages of such appli-
cations over the edges of the MST.

Also, research on the MST problem, and in
particular the MST algorithm of [5], has mo-
tivated a lot of work. Most notably, the algo-
rithm of [5] introduced various techniques that
have been in widespread use for multicasting,
query and reply, cluster coordination and routing,
protocols for handshake, synchronization, and
distributed phases. Although the algorithm is in-
tuitive and is easy to comprehend, it is sufficiently
complicated and interesting that it has become a
challenge problem for formal verification meth-
ods, e.g., [11].

Open Problems

There are many open problems in this area, and
only a few significant ones are mentioned. As far
as message complexity, although the asymptoti-
cally tight bound of O.mCn log n/ for the MST
problem in general graphs is known, finding the
actual constants remains an open problem. There
are smaller constants known for general spanning
trees than for MST though [6].

As mentioned above, near-time optimal al-
gorithms and lower bounds appear in [10] and
references herein. The optimal time complexity
remains an open problem. Also, in a synchronous
model for overlay networks, where all processors
are directly connected to each other, an MST can
be constructed in sublogarithmic time, namely,
O.log log n/ communication rounds [9], and no
corresponding lower bound is known.
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Problem Definition

This entry considers enumeration of combinato-
rial problems, which can be formulated as fol-
lows. Given a large search space C and a predicate
of interest P W C 7! ftrue; falseg the goal is
to enumerate the solutions S � C such that
8‹s 2 S P .s/ D true. In most settings, C
is the complete set of combinations of an initial
set G; hence, jCj D 2jGj and the problem is NP-
hard. There are also cases where the elements to
enumerate are not sets but other combinatorial
structures such as sequences or graphs.

We restrict ourselves to the case where C can
be organized as an enumeration tree:

• There exists a distinguished element of C
called the root

• There exists (at least) a parent function parent:
Cn frootg 7! C

Finding S implies, in the worst case, to enumer-
ate all elements of C. A large body of research
has exploited properties of P together with par-
ent to avoid enumerating some parts of C, as
described in the �Reverse Search; Enumeration
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Algorithms entry. The focus of the current entry
is to exploit parallel computing devices in order
to speedup the enumeration process. Due to the
prevalence of multicore processors nowadays,
they will be the main focus of this entry. How-
ever, many solutions presented also apply to a
cluster setting.

Key Results

The main challenges of distributed enumeration,
as well as existing solutions, are presented below.

Synchronization

For most distributed algorithms, one important
challenge is to ensure the sharing of information
between parallel processes, either by message
passing in a cluster setting or by access to shared
memory locations in a multicore setting.

This entry considers a tree-shaped enumer-
ation, where all branches of the enumeration
tree are independent. In such setting, complex
synchronization mechanisms are not needed. The
main difficulty is thus to guarantee that such tree-
shaped enumeration can take place, i.e., find (at
least) one parent function (cf. �Reverse Search;
Enumeration Algorithms entry).

Note that in some parallel SAT solvers [6] us-
ing portfolio-based approaches, each computing

resource exploits a different strategy (and thus a
different parent function) to explore the search
space. Ideally these strategies are orthogonal:
they explore different parts of the space, and they
exchange information to help mutual pruning.

Load Balancing

Most recent algorithms explore the enumeration
tree with Depth-First Search (DFS). The simplest
way to perform distributed enumeration is to
partition the enumeration tree and assign each
subtree to a parallel process. A simple example
is shown in Fig. 1. The figure shows the enumer-
ation tree. Each subtree of the root is assigned to
a different computing resource (either to a node
in a cluster or to a core of a multicore processor).

However, depending on the choice of parent
function and of pruning strategies, each subtree
is likely to be of a different size, resulting on
large running time differences for the parallel
processes. Such phenomenon is called load un-
balance. On the right of Fig. 1, the execution
time is represented for both computing resources,
assuming that computing for any node of the
enumeration tree takes exactly one time unit.
Computing resource T1 computes for four time
units, while computing resource T2 computes for
eight time units. This means that T1 has been
idle for four time units: for more than half of the
execution time, the execution has only exploited

Distributed Computing for Enumeration, Fig. 1 Partitioning of the enumeration tree
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one of the two available computing resources,
resulting in a longer execution time (in an ideal
case, as there are 12 nodes to explore, the exe-
cution time should be 6 time units). The solution
to this problem is to use dynamic load balancing
strategies such as work sharing or work stealing.

Work sharing is based on a simple pro-
ducer/consumer principle: tasks (here nodes of
the enumeration tree) are not assigned statically
but made available in a single pool. Each idle
computing resource can request one or more tasks
from this pool. By reducing the granularity of the
work each computing resource has to perform,
this technique effectively reduces load unbalance.
A disadvantage of this technique is that if compu-
tation for a single node of the enumeration tree is
short, the computing resource will make frequent
requests to the central work pool, with an
increased risk of synchronization overheads over
accesses to the pool. This can be limited by pass-
ing more than one enumeration tree node to each
computing resource [1]; however, if the computa-
tion time of each of these nodes is unpredictable,
a new load unbalance situation may arise.

Work stealing [2] is an “optimistic” improve-
ment over work sharing in cases where the com-
putation time of each task is unpredictable (which
is often the case in distributed enumeration). The
idea is that each computing resource enqueues a
list of tasks to perform, which can either come
from a central pool (as in work sharing) or from
a partition of the search space (as in a static parti-
tioning). When a computing resource finishes its
tasks and becomes idle, it will query the work
queues of the other resources and “steal” part
of a nonempty queue (usually from the biggest
queue).

Recent works from Hanusse et al. [3] have
proposed an enumeration approach that mixes
DFS and BFS. The parallelism that takes place
in the BFS steps naturally lead to a good load
balancing without needing work-stealing mech-
anisms. Their approach show promising results.

Data Locality

In some classes of applications, such as pattern
mining, testing the predicate P requires to access

a large dataset D. The enumeration tree is or-
ganized such that each branch explores a subset
of the dataset, which allows to benefit from data
locality effects and efficiently exploit the cache in
case of multicore processors.

Techniques to limit load unbalance presented
above tend to dispatch nodes from the same
branch to different computing resources, which
destroys data locality. This can lead to a
vastly increased bandwidth usage (memory
bus bandwidth for multicores and network
bandwidth in clusters), resulting in a severe loss
of performance.

Several solutions have been proposed by the
pattern mining community in order to combine
good load balance and good data locality. These
solutions are designed for multicore processors.
In the case of work stealing, Buehrer et al. [4]
propose a method which dynamically decides,
for a given node of the enumeration tree, if it
has to be mined by the same thread as its parent
(preserving locality) or if it can be enqueued and
possibly stolen by another thread. This method
takes into account the system load, which is a
function of the size of the queues for the threads.

In the case of work sharing, Négrevergne
et al. [5] divide the task pool in one queue per
thread. Task assignement to threads prioritizes
data locality.

Applications

The main applications of distributed enumeration
are pattern mining (a field of data mining) and
SAT problem solving [6]. Pattern mining consists
in finding regularities in data, whereas solving
SAT consists in finding if there exists a truth as-
signment for variables of a propositional formula.
Both problems explore a huge search space and
have numerous applications, they thus require
to exploit as much as possible available parallel
computing power.

Open Problems

Having an optimal parallel scaling for applica-
tions using distributed enumeration is still an
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open problem. The techniques presented in this
entry allow to design algorithms having satisfy-
ing results on existing multicore computers with
tens of cores. However as the number of cores
will grow towards many-core processors (hun-
dreds of cores), the current algorithms are un-
likely to exhibit a good parallel scalability. Novel
approaches with fewer overheads for handling the
parallelism will be required.
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Problem Definition

Broadcasting is a fundamental problem in com-
munication networks, where one distinguished
node, called the source, holds a piece of informa-
tion, and the goal is to disseminate this message
to all other nodes in the network.

The signal-to-interference-and-noise-ratio
model, SINR for short, generalizes the abstract
radio networks model (RN) in the following way:
nodes located in a metric space communicate by
transmitting a signal to the wireless medium, and
the quantitative accumulation of interference and
signal attenuation are taken into account when
deciding which nodes successfully receive the
signal.

In more detail, a wireless network consists of
n nodes, deployed into the Euclidean plane; each
node v has its transmission power Pv , which is a
positive real number. A network is uniform when
transmission powers Pv are equal or nonuniform
otherwise. In the following, the uniform networks
are considered.

Nodes work synchronously in rounds; each
node can either act as a transmitter or as a receiver
during a round.

Interferences and collisions are determined by
three fixed model parameters: path loss ˛ > 2,
threshold ˇ � 1, and ambient noise N > 0. The
SINR.v; u; T / ratio, for given nodes u; v and a set
of transmitting nodes T , is defined as

SINR.v; u; T /D
Pvdist.v; u/�˛

NC
P

w2T nfvg Pwdist.w; u/�˛
;

where dist.�; �/ is the distance function on the
plane. A node u successfully receives a message
from a node v in a round if v 2 T , u … T , and
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SINR.v; u; T / � ˇ; (1)

where T is the set of nodes transmitting at that
round.

A single message sent in an execution of any
algorithm can carry the source message and at
most logarithmic, in the size of the network, num-
ber of control bits. A node other than the source
starts executing the broadcast protocol after the
first successful receipt of the source message; it is
often called a non-spontaneous wake-up model.

In an ad hoc network, there is no central
knowledge of network topology. A node v par-
ticipating in an execution of a protocol knows
the size of a network n or only a linear upper
bound on the size. In the case that a network is
deployed in the Euclidean space, one can distin-
guish between the case that each node knows its
coordinates and the case that it does not know
them.

Assuming that the transmission power of
nodes is equal to P , the largest distance from the
transmitter in which a message can be received is
equal to r D .P=.Nˇ//1=˛ , provided only one
node is transmitting in the whole network.

Sensitivity. Due to physical constraints, it is
often assumed that the actual distance on which
message can be received is smaller than r D

.P=.Nˇ//1=˛ . This assumption is expressed by
the sensitivity parameter 0 < "s < 1 such that a
message transmitted by v is received at a node
u in a round with the set of transmitters T if
SINR.v; u; T / � ˇ and dist.v; u/ � .1 � "s/r .

The setting with "s D 0 is called the model
with strong sensitivity, and "s > 0 defines the
model with weak sensitivity.

Connectivity. In order to determine which
nodes are connected in a network, the notion
of a communication graph is introduced. To this
aim, the connectivity parameter "c is introduced
such that 1 > "c � "s � 0. An edge
.u; v/ appears in the communication graph iff
dist.u; v/ � .1 � "c/r . The setting with "s D "c

is called the model with weak connectivity, and
the inequality "s < "c defines the model with
strong connectivity.

Time complexity of a randomized broadcasting
algorithm is the number of rounds after which,
for all communication networks defined by given
SINR parameters ˛; ˇ; and N , and the param-
eters "s , "c , the source message is delivered to
all nodes accessible from the source node in
the communication graph with high probability
(whp), i.e., with the probability at least 1 � 1=n,
where n is the number of nodes in the network.

Key Results

Complexity of the broadcasting problem signif-
icantly differs in various models obtained by
constraints imposed on the sensitivity and con-
nectivity parameters.

The Model with Strong Sensitivity and
Strong Connectivity
In this setting reception of messages is deter-
mined merely by Eq. (1), and the communication
graph does not contain links of distance close to
r due to "c > 0.

Theorem 1 ([3]) The broadcasting problem can
be solved in time O

�
D log nC log2 n

�
with high

probability in the model with strong connectivity
and strong sensitivity for networks in Euclidean
two-dimensional space with known coordinates.

For the setting that nodes do not know their
coordinates, Daum et al. [2] provided a broad-
casting algorithm which relies on a parameter
Rs equal to the maximum ratio among distances
between pairs of nodes connected by an edge
in the communication graph. That is, Rs D

maxfdist.u; v/=dist.x; y/ j .u; v/; .x; y/ 2 Eg,
where G.V; E/ is the communication graph of a
network.

Theorem 2 ([2]) The broadcasting problem can
be solved in time O

�
D log n log˛C1 Rs

�
with

high probability in the model with strong connec-
tivity and strong sensitivity.

As Rs might be even exponential with respect to
n, the solution from Theorem 2 is inefficient for
some networks. The following theorem gives a
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solution independent of geometric properties of
a network.

Theorem 3 ([6]) The broadcasting problem can
be solved in time O

�
D log2 n

�
with high prob-

ability in the model with strong sensitivity and
strong connectivity.

The Model with Strong Sensitivity and
Weak Connectivity
In this setting reception of messages is
determined merely by Eq. (1), and an edge
.u; v/ belongs to the communication graph iff
SINR.u; v;;/ � ˇ.

Theorem 4 ([2]) There exist families of
networks with diameter 2 in the model with strong
sensitivity and weak connectivity in which each
broadcasting algorithm requires ˝.n/ rounds to
accomplish broadcast.

Theorem 5 ([2]) The broadcasting problem can
be solved in time O.n log2 n/ with high probabil-
ity in the model with strong sensitivity and weak
connectivity.

The Model with Weak Sensitivity and
Strong Connectivity
In this setting, transmissions on unreliable links
(i.e., on distance very close to r) are “filtered out.”
Moreover, the communication graph connects
only nodes in distance at most .1�"c/r , which is
strictly smaller than r .

Theorem 6 ([7]) The broadcasting problem can
be solved in time O

�
D C log2 n

�
with high prob-

ability in the model with weak sensitivity and
strong connectivity for networks deployed on the
Euclidean plane, provided 0 < "s < "c D

2=3. This solution works in the model with spon-
taneous wake-up and requires power control
mechanism.

When applied directly to the case of non-
spontaneous wake-up, the algorithm from [7]
gives time bound O

�
D log2 n

�
.

Corollary 1 The broadcasting problem can be
solved in time O

�
D log2 n

�
with high probability

in the model with weak sensitivity and strong con-
nectivity for networks deployed on the Euclidean

plane, provided 0 < "s < "c D 2=3. This so-
lution works in the model with non-spontaneous
wake-up and requires power control mechanism.

The Model with Weak Sensitivity and
Weak Connectivity
In this setting, the maximal distances for a suc-
cessful transmission and for connecting nodes
by an edge are equal and both smaller than the
largest theoretically possible range r following
from Eq. (1).

Theorem 7 ([5]) There exist (i) an infinite
family of n-node networks requiring ˝.n log n/

rounds to accomplish broadcast whp and, (ii) for
every D; � D O.n/, an infinite family of n-node
networks of diameter D and maximum degree of
the communication graph � requiring ˝.D�/

rounds to accomplish broadcast whp in the model
with weak sensitivity and weak connectivity (i.e.,
0 < "s D "c < 1) for networks on the plane.

Using appropriate combinatorial structures,
deterministic broadcasting algorithms were
obtained with complexities close to the above
lower bounds, provided nodes know their
coordinates.

Theorem 8 ([5]) The broadcasting problem
can be solved deterministically in time O

�
min˚

D� log2 N; n log N
� �

in the model with
weak sensitivity and weak connectivity (i.e.,
0 < "s D "c < 1) for networks in Euclidean
two-dimensional space with known coordinates,
with IDs in the range Œ1; N �.

The above result translates to a randomized
algorithm with complexity O

�
min

˚
D� log2 n;

n log n
��

, since nodes can choose unique IDs in
the polynomial range with high probability.

Recently, Chlebus et al. [1] provided a ran-
domized algorithm for the setting without knowl-
edge of coordinates.

Theorem 9 ([1]) The broadcasting problem can
be solved in time O

�
n log2 n

�
with high proba-

bility in the model with weak sensitivity and weak
connectivity.
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Distributed Randomized Broadcasting in Wireless
Networks under the SINR Model, Table 1 Complexity
of randomized broadcasting with non-spontaneous wake-
up for various sensitivity and connectivity settings. The

result from [7] marked with ? requires power control
mechanism and "c D 2=3. The positive results requiring
knowledge of coordinates apply only to the Euclidean
space

Strong Weak
Coordinates connectivity: "c > "s connectivity: "c D "s

Strong sensitivity: Known O
�
D log n C log2 n

�
˝.n/

"s D 0 Unknown O
�
D log2 n

�
; O

�
D log n log˛C1 Rs

�
O
�
n log2 n

�

Weak sensitivity: Known ˝ .minfD; ng/

"s > 0 O
�

min
˚
D log2 n; n log n

��

Unknown O
�
D log2 n

�
? O

�
n log2 n

�

Applications

Using similar techniques to those in [5], an ef-
ficient deterministic broadcasting algorithm was
obtained in the model with strong connectivity
and strong sensitivity.

Theorem 10 ([4]) The broadcasting problem
can be solved deterministically in time O

�
D log2

N
�

in the model with strong connectivity and
strong sensitivity for networks in Euclidean two-
dimensional space with known coordinates, with
IDs in the range Œ1; N �.

The solution in [7] applies to a more general
problem of multi-broadcast and was further gen-
eralized in [8] to the setting in which nodes wake
up in various time steps.

Positive results from [1, 2, 6] work also in a
more general setting when nodes are deployed in
a bounded-growth metric space.

Open Problems

In all considered models, there is at least log n

gap between the established lower and upper
bounds for the complexity of broadcasting.
A natural open problem is to tighten these
bounds.

As seen in Table 1, it is not known whether the
complexity of broadcasting depends on sensitiv-
ity for each connectivity setting.

Another interesting research direction is to
explore the impact of additional features such as
power control or carrier sensing on the complex-
ity of the problem.
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Preliminary Remark

The presentation of this entry of the Encyclopedia
follows Chapter 6 of [15], to which it borrows
the presentation style and all figures. The reader
interested on this topic will find developments
in [15].

The Notion of a Global State

Modeling the Execution of a Process: The
Event Point of View
A distributed computation involving n asyn-
chronous sequential processes p1; : : : ; pn,
communicating by directed channels (hence, a
directional channel can be represented by two
directed channels). Channels can be FIFO (first
in first out) or non-FIFO.

A distributed computation can be modeled by
a (reflexive) partial order on the events produced
by the processes. An event corresponds to the
sending of a message, the reception of a message,
or a nonempty sequence of operations which does
not involve the sending or the reception of a
message. This partial order, due to Lamport and
called happened before relation [12], is defined as

follows. Let e1 and e2 be two events; e1
ev
�! e2

is the smallest order relation such that:

• Process order: e1 and e2 are the same event or
have been produced by the same process, and
e1 was produced before e2.

• Message order: e1 is the sending of a message
m and e2 is its reception.

• Transitive closure: There is an event e such
that e1

ev
�! e ^ e

ev
�! e2.

Modeling the Execution of a Process: The
Local State Point of View
Let us consider a process pi , which starts in
the initial state �0

i . Let ex
i be its xth event.

The transition function ıi ./ associated with pi is
consequently such that �x

i D ıi .�
x
i ; ex

i /, where
x � 1.

While a distributed computation can be mod-

eled the partial order
ev
�! (“action” point of

view), it follows from the previous definition that
it can also be modeled by a partial order on its
local states (“state” point of view). This partial

order, denoted
�
�!, is defined as follows: �x

i

�
�!

�
y
j

def
D exC1

i

ev
�! e

y
j :

A two-process distributed execution is de-

scribed in Fig. 1. The relation
ev
�! on event and

the relation
�
�! on local states can be easily

extracted from it. As an example, we have e1
1

ev
�!

e3
2 and �0

2

�
�! �2

1 . Two local states � and � 0

which are not related by
�
�! are independent.

This is denoted � jj� 0.

Orphan and In-Transit Messages
Let us consider an ordered pair of local states
h�i ; �j i from different processes pi and pj and
a message m sent by pi to pj .

p1

p2

σ 0
1 σ 1

1 σ 2
1e1

1 e2
1

e2
2 e3

2e1
2

σ 0
2 σ 1

2 σ 2
2 σ 3

2

m1 m2

Distributed Snapshots, Fig. 1 A two-process dis-
tributed execution
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• If m is sent by pi after �i and received by pj

before �j , this message is orphan with respect
to h�i ; �j i. This means that m is received
and not sent with respect to the ordered pair
h�i ; �j i.

• If m is sent by pi before �i and received by pj

after �j , this message is in-transit with respect
to h�i ; �j i. This means that m is sent and not
yet received with respect to the ordered pair
h�i ; �j i.

As an example, the message m1 is orphan
with respect to the ordered pair h�0

2 ; �1
1 i, while

the message m2 is in-transit with respect to the
ordered pair h�2

1 ; �1
2 i.

Consistent Global State
A global state is a vector of n local states (one
per process), plus a set of channel states (one
per directed channel). The state of a channel is
a sequence of messages if the channel is FIFO or
a set of messages if the channel is non-FIFO.

A consistent global state (also called snap-
shot) is a global state in which the computation
has passed or could have passed. More formally,
a global state is a pair .†; M/ where the vector
of local states † D Œ�1; : : : ; �n� and the set of
channel states M D [f.i;j /gcs.i; j / are such that
for any directed pair .i; j / we have:

• �i jj�j . (This means that there is no orphan
message with respect to the ordered pair
h�i ; �j i.)

• cs.i; j / contains all the messages which are in
transit with respect to the ordered pair h�i ; �j i

and only them. (This means that cs.i; j / con-
tains all the messages (and only them) sent by
pi before �i and not yet received by pj when
it enters �j .)

As an example, when looking at Fig. 1,�
Œ�2

1 ; �1
2 �; fcs.1; 2/ D m2; cs.2; 1/ D ;g

�

is a consistent global state, while both�
Œ�1

1 ; �0
2 �; fcs.1; 2/ D : : : ; cs.2; 1/ D : : :g

�
and�

Œ�0
1 ; �2

2 �; fcs.1; 2/ D ;; cs.2; 1/ D ;g
�

are not
consistent (the first because, as the message m1 is
orphan with respect to the ordered pair h�1

1 ; �0
2 i,

we do not have �1
1 jj�

0
2 ; the second because the

message m1 does not belong to the channel state
cs.2; 1/.).

The Lattice of Global States
Let us consider a vector of local states † D

Œ�1; : : : ; �n� belonging to a consistent global
state. The consistent global state, where †0 D

Œ� 0
1; : : : ; � 0

n�, is directly reachable from † if there
is a process pi whose next event ei , and we have
8 j ¤ j W � 0

j D �j and �i D ıi .�i ; ei /. This is

denoted †
GS
�! †0. By definition †

GS
�! †. More

generally, †
GS
�! †a

GS
�! †b � � �†y

GS
�! †´ is

denoted †
GS�

�! †´.
It can be shown that the set of all the vectors

† associated with the consistent global states pro-
duced by a distributed computation is a lattice [3,
16]. The lattice obtained from the computation
of Fig. 1 is described in Fig. 2. In this lattice, the
notation † D Œa; b� means † D Œ�a

1 ; �b
2 �.

Problem Definition

Specification of the Computation of a
Consistent Global State
The problem to determine on-the-fly a consis-
tent global state (in short CGS) was introduced,
precisely defined, and solved by Chandy and
Lamport in 1985 [2]. It can be defined by the fol-
lowing properties. The first is liveness property,
while the last two are safety properties.

• Termination. If one or more processes launch
the computation of a consistent global state,
then this global state computation terminates.

• Consistency. If a global state is computed,
then it is consistent.

• Validity. Let †start be the global state of the
computation when CGS starts, †end be its
global state when CGS terminates, and † be
the global state returned by CGS. We have

†start
GS�

�! † and †
GS�

�! †end.

The validity property states that the global
state which is returned depends on the time at
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Σinit = [0, 0]

Σ = [0, 1]

Σ = [1, 1] Σ = [0, 2]

Σ = [2, 1] Σ = [1, 2]

Σ = [2, 2]

e1
2

e1
1 e2

2

e1
1e2

2e2
1

e2
2 e2

1

e3
2

p1

Events produced by

p2

Σfinal = [2, 3]

Distributed Snapshots, Fig. 2 The lattice associated with the computation of Fig. 2

which its computation is launched. Without this
property, returning always the initial global state
would be a correct solution.

Principles of CGS Algorithms
To compute a consistent global state, each pro-
cess pi is in charge of (a) recording a copy
of its local state �i (sometimes called its local
snapshot) and (b) the states of its input (or out-
put) channels. In order that the computed global
state satisfies the safety properties, in one way
or another, all CGS algorithms have two things
to do.

• Synchronization. In order to ensure that there
is no orphan messages with respect to each
ordered pair of local states h�i ; �j i, such that
there is a directed channel from pi to pj ,
the processes must synchronize the recording
of their local states which will define the
consistent global state that is computed.

• Message recording. Each process has to
record all the messages it receives (or

messages it sends) which are in transit with
respect to the computed global state.

Key Result 1: Chandy-Lamport’s
Algorithm

Chandy and Lamport ’s algorithm is denoted
CL85 in the following.

Assumption
CL85 considers a failure-free asynchronous sys-
tem. Asynchronous means that each process pro-
ceeds to its speed which can vary arbitrarily
with time and remains always unknown to the
other processes. Message transfer delays also are
arbitrary (but finite).

CL85 assumes that the processes are
connected by a directed communication graph,
which is strongly connected (there is a directed
path from any process to any other process).
Each process has consequently a nonempty set
of input channels and a nonempty set of output
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channels. Moreover, each directed channel is a
FIFO channel.

The Algorithm in Two Rules
CL85 requires that each process computes the
state of its input channels. At a high abstraction
level, it can formulated with two rules.

• “Local state recording” rule. When a process
pi records its local state �i , it sends a special
control message (called marker) on each of its
outgoing channels.

It is important to notice that as channels are
FIFO, a marker partitions the messages sent
on a channel in two sets: the messages sent
before the marker and the messages sent after
the marker.

• “Input channel state recording” rule. When a
process pi receives a marker on one of its
input channels c.j; i/, there are two cases.
– If not yet done, it records its local state (i.e.,

it applies the first rule) and defines cs.j; i/

(the state of the input channel c.j; i/) as
the empty sequence.

– If it has already recorded its local state (i.e.,
executed the first rule), pi defines cs.j; i/

as the sequence of application messages
received on c.j; i/ between the recording
of its local state and the reception of the
marker on this input channel.

Properties of the Computed Global State
If one or more processes execute the first rule,
it follows from this rule, and the fact that the
communication graph is strongly connected, all
the processes will execute this rule. Hence, a
marker is sent on each directed channel, and each
process records the state of its input channels.
This proves the liveness property.

The consistency property follows from the fol-
lowing simple observation. Let us color processes
and messages as follows. A process is initially
green and becomes red when it sends a marker on
each of its output channels. Moreover, a message
has the color of its sender at the time the message
is sent.

It is easy to see that the previous two rules
guarantee that a green process turns red before

receiving a red message (hence, there is no or-
phan messages). Moreover, the green messages
received on a channel c.j; i/ by a red process pi

are the messages that are in transit with respect to
the ordered pair h�j ; �i i. Hence, all the in-transit
messages are recorded and only them.

The Inherent Uncertainty on the
Computed Global State
The proof of the validity property is a little
bit more involved. The interested reader will
consult [2, 15]. When looking at the lattice of
Fig. 2, let us consider that the CL85 algorithm
is launched when the observed computation is
in the global state †start D Œ0; 1� and terminates
when it is in the global state †end D Œ2; 2�. The
consistency property states that the global state †

which is returned is one of the following global
states: Œ0; 1�, Œ1; 1�, Œ0; 2�, Œ2; 1�, Œ1; 2�, or Œ2; 2�.

This uncertainty on the computed global state
is intrinsic to the nature of distributed computing.
(Eliminate would require to freeze the execution
of the application we are observing, which in
some sense forces it to execute sequentially.)

The main property of the consistent global
state † that is computed is that the application has
passed through it or could have passed through
it. While an external omniscient observer can
know if the application passed or not through
†, no process can know it. This noteworthy
feature characterizes the relativistic nature of the
observation of distributed computations.

Message-Passing Snapshot Versus Shared
Memory Snapshot
The notion of a shared memory snapshot has
been introduced in [1]. A snapshot object is an
object that consists of an array of atomic multi-
reader/single-write atomic registers, one per pro-
cess (a process can read any register but can
write only the register it is associated with). A
snapshot object provides the processes with two
operations denoted update./ and snapshot./.
The update./ operation allows the invoking pro-
cess to store a new value in its register, while
the snapshot./ operation allows it to obtain the
values of all the atomic read/write registers as
if that operation was executed instantaneously.
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More precisely, the invocations of the operations
update./ and snapshot./ are linearizable [8].

Differently from the snapshot values returned
in a message-passing system (whose global
structure is a lattice), the arrays of values
returned by the snapshot./ operations of a
shared memory system can be totally ordered.
This is a fundamental difference, which is related
to the communication medium. In one case,
the underlying shared memory is a centralized
component, while in the second case, the
underlying message-passing system is inherently
distributed, making impossible to totally order all
the message-passing snapshots.

Other Assumptions and Algorithms
Algorithms that compute consistent global states
in systems equipped with non-FIFO channels
have been designed. Such algorithms are de-
scribed in [11, 13, 15].

A communication-induced (CI) algorithm is a
distributed algorithm that does not use additional
control messages (such as markers). In these
algorithms, control information (if needed) has to
be carried by application messages. CI algorithms
that compute consistent global states have been
investigated in [6].

Global states computation in large-scale dis-
tributed systems is addressed in [9].

Key Result 2: A Necessary and
Sufficient Condition

The Issue
An important question is the following one:
Given a set of x, 1 � x � n, local states from
different processes do these local states belong to
a consistent global state?

If x D n, the answer is easy: any ordered
pair of local states h�i ; �j i has to be such that
�i jj�j (none of them causally depends on the
other). Hence, the question is interesting when
1 � x < n. This problem was addressed and
solved by Netzer and Xu [14] and generalized
in [7].

As a simple example, let us consider the exe-
cution in Fig. 3, where there are three processes
pi , pj , and pk that have recorded the local states

mi,j

mj,k

σa
k σb

k

σb
jσa

j

σa
i

σb
ipi

pj

pk

Distributed Snapshots, Fig. 3 A simple zigzag path

�a
x and �b

x , where x 2 fi; j; kg. These local states
produced by the computation are the only local
states which have been recorded. Said another
way, these recorded local states can be seen as
local checkpoints.

An instance of the previous question is the
following one: can the set f�a

i ; �b
k
g be extended

by the addition of a recorded local state �j of pj

(i.e., �j D �a
j or �j D �b

j ) such that the resulting

global state † D Œ�a
i ; �j ; �b

k
� is a consistent?

It is easy to see that, despite the fact that the
local states �a

i and �b
k

are independent (�a
i jj�

b
k

),
neither Œ�a

i ; �a
j ; �b

k
� nor Œ�a

i ; �b
j ; �b

k
� is consistent.

More precisely, Œ�a
i ; �a

j ; �b
k

� is not consistent be-
cause, due the message mj;k , the local states �a

j

and �b
k

are not independent, while Œ�a
i ; �b

j ; �b
k

� is
not consistent because, due the message mi;j , �a

i

and �b
j are not independent.

The Result
The notion of a zigzag path has been introduced
by Netzer and Xu in [14]. An example of a
simple zigzag path is the sequence of messages
hmi;j ; mj;ki of Fig. 3, where we see that the
local states �a

i and �b
k

are related by this zigzag
path. A zigzag path captures hidden dependencies
linking recorded local states. These dependencies
are hidden in the sense that not all of them can
be captured by the relation

�
�! defined on local

states (as shown in the figure).
The main result due to Netzer and Xu [14] is

the following: a set x local states, with 1 � x < n

and at most one local state per process, can be
extended to a consistent global state if and only if
no two of them are related by a zigzag path. This
result has been extended in [7].
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Applications: Global Snapshots in
Action

Distributed snapshots are a key element to un-
derstand and master the uncertainty created by
asynchrony. From a practical point of view, they
are important in distributed checkpointing, in the
detection of stable properties defined on the set of
global states, and in the debugging of distributed
programs.

Detection of Stable Properties
A stable property is a property that, one true,
remains true forever. In the distributed context,
examples of distributed stable properties are
deadlock (once deadlocked, an application
remains forever deadlocked), termination (once
terminated, an application remains forever
terminated) [4, 5], object inaccessibility, etc.

Algorithms that compute consistent global
states satisfying the liveness, consistency, and
validity properties previously stated can be used
to detect stable properties. This follows from the
observation that if the computed global state †

satisfies a stable property P , then the global state
†end also satisfies P .

Checkpointing
A checkpoint is a global state from which a com-
putation can be resumed. Trivially, checkpoint-
ing and consistent global states computation are
problems which are very close [7]. The interested
reader can consult [10, 15] for more details.
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Problem Definition

The vertex coloring problem takes as input an
undirected graph G WD .V; E/ and computes
a vertex coloring, i.e., a function, c W V ! Œk�

for some positive integer k such that adjacent
vertices are assigned different colors (that is,
c.u/ 6D c.v/ for all .u; v/ 2 E). In the .�C 1/

vertex coloring problem, k is set equal to �C 1

where � is the maximum degree of the input
graph G. In general, .�C 1/ colors could be
necessary as the example of a clique shows.
However, if the graph satisfies certain properties,
it may be possible to find colorings with far fewer
colors. Finding the minimum number of colors
possible is a computationally hard problem:
the corresponding decision problems are NP-
complete [5]. In Brooks–Vizing colorings, the
goal is to try to find colorings that are near
optimal.

In this paper, the model of computation used is
the synchronous, message passing framework as
used in standard distributed computing [11]. The
goal is then to describe very simple algorithms
that can be implemented easily in this distributed
model that simultaneously are efficient as mea-
sured by the number of rounds required and have
good performance quality as measured by the
number of colors used. For efficiency, the number
of rounds is require to be poly-logarithmic in
n, the number of vertices in the graph and for
performance quality, the number of colors used
is should be near-optimal.

Key Results

Key theoretical results related to distributed
.�C 1/-vertex coloring are due to Luby [9]
and Johansson [7]. Both show how to compute
a .�C 1/-coloring in O.log n/ rounds with
high probability. For Brooks–Vizing colorings,

Kim [8] showed that if the graph is square or
triangle free, then it is possible to color it with
O.�= log �/ colors. If, moreover, the graph is
regular of sufficiently high degree (�� log n),
then Grable and Panconesi [6] show how to
color it with O.�= log �/ colors in O.log n/

rounds. See [10] for a comprehensive discussion
of probabilistic techniques to achieve such
colorings.

The present paper makes a comprehensive ex-
perimental analysis of distributed vertex coloring
algorithms of the kind analyzed in these papers on
various classes of graphs. The results are reported
in section “Experimental Results” below and the
data sets used are described in section “Data
Sets.”

Applications

Vertex coloring is a basic primitive in many
applications: classical applications are schedul-
ing problems involving a number of pairwise
restrictions on which jobs can be done simulta-
neously. For instance, in attempting to schedule
classes at a university, two courses taught by the
same faculty member cannot be scheduled for
the same time slot. Similarly, two course that
are required by the same group of students also
should not conflict. The problem of determining
the minimum number of time slots needed sub-
ject to these restrictions can be cast as a vertex
coloring problem. One very active application
for vertex coloring is register allocation. The
register allocation problem is to assign variables
to a limited number of hardware registers during
program execution. Variables in registers can be
accessed much quicker than those not in registers.
Typically, however, there are far more variables
than registers so it is necessary to assign multiple
variables to registers. Variables conflict with each
other if one is used both before and after the other
within a short period of time (for instance, within
a subroutine). The goal is to assign variables
that do not conflict so as to minimize the use of
non-register memory. A simple approach to this
is to create a graph where the nodes represent
variables and an edge represents conflict be-
tween its nodes. A coloring is then a conflict-free
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assignment. If the number of colors used is less
than the number of registers then a conflict-free
register assignment is possible. Modern appli-
cations include assigning frequencies to mobile
radios and other users of the electro-magnetic
spectrum. In the simplest case, two customers
that are sufficiently close must be assigned dif-
ferent frequencies, while those that are distant
can share frequencies. The problem of minimiz-
ing the number of frequencies is then a vertex
coloring problem. For more applications and ref-
erences, see Michael Trick’s coloring page [12].

Open Problems

The experimental analysis shows convincingly
and rather surprisingly that the simplest, trivial,
version of the algorithm actually performs best
uniformly! In particular, it significantly outper-
forms the algorithms which have been analyzed
rigorously. The authors give some heuristic recur-
rences that describe the performance of the trivial
algorithm. It is a challenging and interesting open
problem to give a rigorous justification of these
recurrences. Alternatively, and less appealing,
a rigorous argument that shows that the trivial
algorithm dominates the ones analyzed by Luby
and Johansson is called for. Other issues about
how local structure of the graph impacts on the
performance of such algorithms (which is hinted
at in the paper) is worth subjecting to further
experimental and theoretical analysis.

Experimental Results

All the algorithms analyzed start by assigning an
initial palette of colors to each vertex, and then
repeating the following simple iteration round:

1. Wake up!: Each vertex independently of the
others wakes up with a certain probability to
participate in the coloring in this round.

2. Try!: Each vertex independently of the others,
selects a tentative color from its palette of
colors at this round.

3. Resolve conflicts!: If no neighbor of a vertex
selects the same tentative color, then this color
becomes final. Such a vertex exits the algo-
rithm, and the remaining vertices update their
palettes accordingly. If there is a conflict, then
it is resolved in one of two ways: Either all
conflicting vertices are deemed unsuccessful
and proceed to the next round, or an inde-
pendent set is computed, using the so-called
Hungarian heuristic, amongst all the vertices
that chose the same color. The vertices in the
independent set receive their final colors and
exit. The Hungarian heuristic for independent
set is to consider the vertices in random or-
der, deleting all neighbors of an encountered
vertex which itself is added to the independent
set, see [1, p. 91] for a cute analysis of this
heuristic to prove Turan’s Theorem.

4. Feed the Hungry!: If a vertex runs out of colors
in its palette, then fresh new colors are given
to it.

Several parameters can be varied in this basic
scheme: the wake up probability, the conflict
resolution and the size of the initial palette are
the most important ones.

In .�C 1/-coloring, the initial palette for
a vertex v is set to Œ�� WD f1; � � � ; �C 1g (global
setting) or Œd.v/C 1� (where d(v) is the degree of
vertex v) (local setting). The experimental results
indicate that (a) the best wake-up probability
is 1, (b) the local palette version is as good as
the global one in running time, but can achieve
significant color savings and (c) the Hungarian
heuristic can be used with vertex identities rather
than random numbers giving good results.

In the Brooks–Vizing colorings, the initial
palette is set to Œd.v/=s� where s is a shrink-
ing factor. The experimental results indicate that
uniformly, the best algorithm is the one where
the wake-up probability is 1, and conflicts are
resolved by the Hungarian heuristic. This is both
with respect to the running time, as well as the
number of colors used. Realistically useful values
of s are between 4 and 6 resulting in �=s-
colorings. The running time performance is ex-
cellent, with even graphs with a thousand vertices
colored within 20–30 rounds. When compared to
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the best sequential algorithms, these algorithms
use between twice or thrice as many colors, but
are much faster.

Data Sets

Test data was both generated synthetically us-
ing various random graph models, and bench-
mark real life test sets from the second DIMACS
implementation challenge [3] and Joe Culber-
son’s web-site [2] were also used.
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Problem Definition

Indexing data so that it can be easily searched is
one of the most fundamental problems in com-
puter science. Especially in the fields of databases
and information retrieval, indexing is at the heart
of query processing. One of the most popular
indexes, used by all search engines, is the inverted
index. However, in many cases like bioinformat-
ics, eastern language texts, and phrase queries
for Web, one may not be able to assume word
demarcations. In such cases, these documents are
to be seen as a string of characters. Thus, more so-
phisticated solutions are required for these string
documents.

Formally, we are given a collection of D docu-
ments D D fd1; d2; d3; : : : ; dDg. Each document
di is a string drawn from the character set ˙ of
size � and the total number of characters across
all the documents is n. Our task is to preprocess
this collection and build a data structure so that
queries can be answered as quickly as possible.
The query consists of a pattern string P , of length
p, drawn from ˙ . As the answer to the query,
we are supposed output all the documents di in
which this pattern P occurs as a substring. This
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is called the document listing problem. In a more
advanced top-k version, the query consists of
a tuple .P; k/ where k is an integer. Now, we
are supposed to output only the k most relevant
documents. This is called the top-k document
retrieval problem.

The notion of relevance is captured by a score
function. The function score.P; d/ denotes the
score of the document d with respect to the
pattern P . It can be the number of times P occurs
in d , known as term frequency, or the distance
between two closest occurrences of P in d , or
any other function. Here, we will assume that
score.P; d/ is solely dependent on the set of
occurrences of P in d and is known at the time
of construction of the data structure.

Key Results

The first formal study of this problem was initi-
ated by Muthukrishnan [4]. He took the approach
of augmenting the generalized suffix tree with ad-
ditional information. All subsequent works have
used generalized suffix trees as their starting
point. A generalized suffix tree GST is a compact
trie of all the lexicographically sorted suffixes
of all the documents. Thus, n total suffixes are
stored and there are n leaves in this trie. Each
edge in GST is labeled with a string and each
root to leaf path (labels concatenated) represents
some suffix of some document. The overall num-
ber of nodes in GST is O.n/. With each leaf,
we associate a document id, which indicates the
document to which that particular suffix belongs.

When the pattern P comes as a query, we
first traverse from the root downward and find a
vertex, which is known as locus.P /. This can be
done in O.p/ time. This is the first vertex below
the edge where P finished in the root to leaf
traversal. If v is locus.P / then all the leaves in the
subtree of v represent the suffixes whose prefix
is P . For any vertex v, let path.v/ be the string
obtained by concatenating all the labels from the
root until v.

Document Listing Problem
Let us first see how the document listing problem
is solved. One easy solution is to reach the locus

v of P and then visit all the leaves in the subtree
of v. But this is costly as the number of leaves
occ may be much more than number of unique
document labels ndoc among these leaves. Opti-
mally, we want to achieve O.p C ndoc/ time.

To overcome this issue, Muthukrishnan first
proposed to use a document array DA. To con-
struct this, he traverses all the leaves in GST
from left-to-right and takes the corresponding
document id. Thus, DAŒi � D document id of i th
lexicographically smallest suffix in GST. It is
easy to find boundary points sp and ep such that
the subtree of locus v corresponds to entries form
DAŒsp; : : : ; ep�. To uniquely find documents in
DAŒsp; : : : ep�, we must not traverse the entire
subarray as this would cost us O(occ). To avoid
this, we construct another array C called a chain
array. C Œi� D j , where j < i is the largest
index for which DAŒi � D DAŒj �. If no such j

exists then C Œi� D �1. Thus, every document
entry DAŒi � links to the previous entry with the
same document id. Now, to solve the document
listing problem, one needs to get all the i ’s
such that sp � i � ep and C Œi� < sp. The
second constraint guarantees that every document
is output only once. Muthukrishnan shows how to
repeatedly apply range minimum queries (RMQ)
to achieve constant time per output id.

Theorem 1 ([4]) Given a collection of docu-
ments of total length n, we can construct a data
structure taking O.n/ space, such that document
listing queries for pattern P can be answered in
optimal O.p C ndoc/ time.

Top-k Document Retrieval
Hon et al. [3] brought in an additional constraint
of score function which can capture various no-
tions of relevance like frequency and proximity.
Instead of reporting all the documents, we only
care to output the k highest scoring documents,
as these would be the most relevant. Thus, O.pC

ndoc/ time is not optimal. We briefly describe
their solution.

Let STd denote a suffix tree only for suf-
fixes of document d . They augment the GST
with Links. Link L is a 4-tuple: origin_node o,
target_node t , document_id d , score_value s.
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Essentially, (L:o, L:t , L:d , L:s) is a link if
and only if .t 0; o0/ is an edge in the suffix tree
STd of the document d . Here, t 0 is the node in
STd for which path.t 0/ D path.L:t/. Similarly,
path.o0/ D path.L:o/. The score value of the link
L:s D score.path.o0/; d/. For L:o and L:t , we
use the preorder-id of those nodes in the GST.
The total number of link entries is the same as the
sum of number of edges in each individual suffix
tree of all the documents, which is O.n/. They
store these links in an array L, sorted by target. In
case of a tie among targets, we sort them further
by their origin values.

When they execute the query .P; k/, they first
find the locus node v in GST. Now, the task is to
find the top-k highest scoring documents within
the subtree of v. Because the links are essentially
edges in individual suffix trees, for any document
di , there is at most one link whose origin o is
within the subtree of v and whose target t is
outside the subtree. Moreover, note that if the
target t is outside the subtree then it must be
one of the ancestors of v. The score of this link
is exactly the score.P; di /. Then the query is:
Among all the links, whose origin starts within
the subtree of locus v and whose target is outside
the subtree of v, find the top-k highest scoring
links. The documents are to be output in sorted
order of score values. Let fv be the preorder value
of v and lv be the preorder value of the last node
in the subtree of v, then any qualifying link L

would satisfy fv � L:o � lv and L:t � fv . And
then, among all such links, only get k with the
highest scores.

Their main idea is that one needs to look for at
most p different target values – one for each an-
cestor of v. In the sorted array L, these links come
as at most p different subarray chunks. Moreover,
within every target value the links originating
from the subtree of v also come contiguously.
Let .l1; r1/; .l2; r2/; : : : ; .lg ; rg/ with g < p be
the intervals of the array L in which any link L

satisfies fv � L:o � lv and L:t � fv . We
skip here the description of how these intervals
are found in O.p/ time. Now, the task is to get
top-k highest ranking links from these intervals.
For this, they construct a Range Maximum Query
(RMQ) structure on score values of L. They ap-

ply RMQs over each interval and put these values
in a heap. Then they do extract-min from the
heap, which at most maintains O.k/ elements.
If they output an element from .la; ra/, the next
greatest element from the same interval is put
in the heap. They stop when the heap outputs k

links. This takes O.p C k log k/ time.

Theorem 2 ([3]) Given a collection of docu-
ments of total length n, we can construct a
data structure taking O.n/ space, such that
top-k document retrieval queries .P; k/ can be
answered in O.p C k log k/ time.

Navarro and Nekrich [5] further improved the
time to optimal O.p C k/. To achieve this, they
first change the target attribute of the link to
target_depth td . They model the links as two
dimensional points .xi ; yi / with weights wi as
the score. They maintain a global array of these
points sorted by their x-coordinates, which are
the preorders of origins of the links, while y

stands for target_depth. If h is the depth of locus
v and v spans the preorders Œa; b�, then their
query is to obtain points in Œa; b� � Œ0; h� with
top-k highest weights. First, they make a basic
unit structure for m � n points and answer these
queries in O.mf C k/ time. Here, 0 < f < 1

is a constant. This is done by partitioning points
by weights. Within each partition, the weights
are disregarded. Then they start executing query
Q D Œa; b� � Œ0; h� from the highest partition.
If less than k0 < k points qualify, then they
output these points, change k to k � k0 and go
to the next partition and so on. At some stage,
in some partition more than k points will qualify.
One cannot output all of them, and must get only
the highest weighted points from that partition.
For this, the partitions are further recursively
divided into next level partitions. The depth of
this recursion is constant and there are at most
O.mf / partitions to be queried and each point
is output in constant time. This gives O.mf C

k/ time. For sorted reporting, they show how
Radix sort can be applied in a constant number of
rounds.

Next, with this as a basic unit, they show how
to create a layerwise data structure, so that we
choose the appropriate layer according to h when
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the query comes. The parameters of that layer
ensure that we get O.hC k/ time for the query.

Theorem 3 ([5]) Given a collection of docu-
ments of total length n, we can construct a data
structure taking O.n/ space, such that top-k
document retrieval queries can be answered in
O.p C k/ time.

External Memory Document Retrieval
Shah et al. [6] obtained the first external memory
results for this problem. In the external memory
model, we take B as the block size and we count
I/O (input/output) operations as the performance
measure of the algorithm. They achieved opti-
mal O.p=B C logB nC k=B/ I/Os for unsorted
retrieval. They take O.n log� n/ space, which
is slightly super linear. We briefly describe the
structure here. They first make ranked compo-
nents of GST. The rank of a node v with subtree
size sv is blogdsv=Bec. Ranked components are
the contiguous set of vertices of the same rank.
Apart from rank 0 vertices, all other compo-
nents form downward paths (this is very similar
to heavy path decomposition). Now, for links,
instead of global array L, they keep the set of
links associated with each component. Basically,
every link belongs to the component where its
target is. They maintain two structures, one is a
3-sided structure in 2D [2] and the other is a 3D
dominance structure [1].

The query processing first finds the locus v.
Also, the query parameter k is converted into a
score threshold � using sketching structures. We
are interested in links such that fv � L:o �

lv , L:t � fv , and L:s � � . These are four
constraints. In external memory, three constraints
are manageable, but not four. So they decom-
pose the query into those with three constraints.
They categorize the answer set into two kinds of
links (i) the links whose targets are in the same
component as v, and (ii) the links whose targets
are in components ranked higher than v. By the
property of rank components there are at most
log n=B such higher components. For the second
kind of links, we query all the higher-ranked 3-
sided (2D) structures [2] with fv; lv; � as the
parameters. As long as the links are coming from

the subtree of v, the target values of links need not
be checked. For the first kind of links, one cannot
drop the target condition, i.e., L:t � fv must be
satisfied. However, they show that a slight renum-
bering of pre-orders based on visiting the child in
its own rank component allows condition L:o �

lv to be dropped. Such queries are answered by
3D dominance structures. Using this, they obtain
O.p=B C log2.n=B/ C k=B/ query I/Os with
linear space structure. They further bootstrap this
to remove the middle term log log2.n=B/ by dou-
bling space requirements. This recursively leads
to the following result.

Theorem 4 ([6]) Given a document collection of
size n, we can construct an O.n log� n/ space
structure in external memory, which can answer
the top-k document retrieval queries .P; k/ in
O.p=B C logB n C k=B/ I/Os. The output is
unsorted.

As a side effect of this result, they also obtain
internal memory sorted top-k retrieval in O.p C

k/ time like [5], and better, just O.k/ time if
locus.P / is given. This is because the answers
come from at most log n different components.
For dominance and 3-sided queries, one can get
sorted outputs. And then, atomic heaps are used
to merge at most log n sorted streams. Since
atomic heaps only have O.log n/ elements at a
time, they can generate each output in O.1/ time.

Cross-References

�Compressed Document Retrieval on String
Collections

� Suffix Trees and Arrays

Recommended Reading

1. Afshani P (2008) On dominance reporting in 3d. In:
ESA, Karlsruhe, pp 41–51

2. Arge L, Samoladas V, Vitter JS (1999) On two-
dimensional indexability and optimal range search
indexing. In: PODS, Philadephia, pp 346–357

3. Hon WK, Shah R, Vitter JS (2009) Space-efficient
framework for top-k string retrieval problems. In:
FOCS, Atlanta, pp 713–722



Double Partition 593

D

4. Muthukrishnan S (2002) Efficient algorithms for doc-
ument retrieval problems. In: SODA, San Francisco,
pp 657–666

5. Navarro G, Nekrich Y (2012) Top-k document re-
trieval in optimal time and linear space. In: SODA,
Kyoto, pp 1066–1077

6. Shah R, Sheng C, Thankachan SV, Vitter JS (2013)
Top-k document retrieval in external memory. In: ESA,
Sophia Antipolis, pp 803–814

Double Partition

Xiaofeng Gao
Department of Computer Science, Shanghai Jiao
Tong University, Shanghai, China

Keywords

Approximation; Connected dominating set; Unit
disk graph; Wireless network

Years and Authors of Summarized
Original Work

2008; Gao, Huang, Zhang, Wu
2009; Huang, Gao, Zhang, Wu

Problem Definition

This problem deals with the design and analysis
of a novel approximation algorithm for the min-
imum weight connected dominating set problem
(MWCDS) under unit disk graph (UDG) model.
The WCDS is proved to be NP-hard in 1970s,
while for a long period researchers could not find
a constant-factor approximation until 2006, when
Ambühl et al. first introduced an approximation
with ratio of 89 under UDG model. Inspired
by their subroutines, we proposed a .10 C �/-
approximation with double partition technique,
which greatly improved the efficiency and effec-
tiveness of the problem.

Given a homogeneous wireless ad hoc net-
work, represented as an undirected graph G D

.V; E/, where each vertex vi 2 V in the network
has the same communication range, we denote it
as the unit 1 distance. Two nodes v1, v2 can com-
municate with each other when their Euclidean
distance is smaller than 1, and correspondingly,
the edge set E D f.vi ; vj / j dist.vi ; vj / � 1g. If
vi and vj are connected, then we say that vj is a
neighbor of vi (and vice versa). Such communi-
cation model is named as unit disk graph (UDG).
Additionally, each vertex vi has a weight wi .

Objective
We hope to find a connected dominating subset
U � V in the given graph with the minimum
weight, such that each vertex vi 2 V is either in
U or has a neighbor in U and the induced graph
GŒU � is connected. In addition, the weight of U

(defined as the sum of weights for elements in U ,
say, W.U / D

P
vi 2U wi ) is the minimum among

all connected dominating subsets satisfying the
above requirements.

Constraints

1. Unit disk graph: We restrict our discussion
on two-dimensional space where each vertex
has the same communication range, and edges
between vertices are constructed according to
the distance constraint.

2. Weight minimization: We focus on the
weight version of minimum connected
dominating set problem, which is much
harder than the cardinality version, and thus
providing a constant-factor approximation
seems more difficult.

Problem 1 (Minimum Weight Connected
Dominating Set in Unit Disk Graph)

INPUT: A unit disk graph G D .V; E/ and a
weight assigned on each vertex

OUTPUT: A minimum weight connected domi-
nating vertex subset U 	 V such that (1)
wirelength is minimized and (2) the area-
density constraints Dij � K are satisfied for
all Bij 2 B
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Key Results

The minimum weight connected dominating set
problem (MWCDS) can be divided into two
parts: selecting a minimum weight dominating
set (MWDS) and connecting the dominating set
into a connected dominating set. In this chapter,
we will focus on the former part, while the latter
part is equivalent to solving a node-weighted
Steiner tree problem in unit disk graphs.

The first constant-factor approximation algo-
rithm for MWCDS under UDG was proposed
by Ambühl C. et al. in 2006 [1], which is a
polynomial-time 89-approximation. Later, Gao
X. et al. [2] introduced a better approximation
scheme with approximation ratio of .6 C �/ for
MWDS, and Huang Y. et al. [3] further extended
this idea to MWCDS with approximation ratio
of .10 C �/. The main idea of their methods in-
volves a double partition technique and a shifting
strategy to reduce the redundant vertices selected
through the algorithms.

In recent year, the approximation for MWDS
in UDG received further improvements from (6C
�) to 5 by Dai and Yu [4], to 4 by Erlebach T.
et al. [5] and Zou F. et al. [6] independently,
and to 3.63 by Willson J. et al. [7]. Meanwhile,
to connect the dominating set in UDG, Ambühl
C. et al. [1] gave a 12-approximation, Huang Y.
et al. [3] provided a 4-approximation, and Zou F.
et al. [8] constructed a 2.5
-approximation with
a known 
-approximation algorithm for the mini-
mum network Steiner tree problem. Recently, the
minimum approximation for network Steiner tree
problem has an approximation ratio of 1.39 [9],
so the best approximation ratio for MWCDS
problem in UDG is 7.105 up to now.

Double Partition Technique

Given a UDG G containing n disks in the plane.

Let � <
p

2
2

be a real number which is suf-

ficiently close to
p

2
2

, say, � D 0:7. Partition
the area into squares with side length �. If the
whole area has boundary P.n/ � Q.n/, where
P.n/ and Q.n/ are two polynomial functions on

n, then given the integer even constant K and
letting K �K squares form a block, our partition
will have at most

�
dP.n/

K
e C 1

�
�
�
dQ.n/

K
e C 1

�

blocks. We will discuss algorithm to compute
MWDS for each block firstly and then combine
them together.

MWDS in K � K Squares
Assume each block B has K2 squares Sij , for
i; j 2 f0; 1; : : : ; K�1g. Let Vij be the set of disks
in Sij . If we have a dominating set D for this
block, then for each square Sij , its corresponding
dominating set is (1) either a disk from inside Sij

(since dist.d; d 0/ � 1 for any two disks within
this square) or (2) a group of disks from neighbor
region around Sij , the union of which can cover
all disk centers inside the square. Then if we want
to select a minimum weight dominating set, for
each square we will have two choices. However,
instead of selecting dominating sets square by
square, we hope to select them strip by strip to
avoid repeated computation for some disks. For
this purpose, we have the following lemmas.

Lemma 1 ([1]) Let P be a set of points located
in a strip between lines y D y1 and y D y2 for
some y1 < y2. Let D be a set of weighted disks
with uniform radius whose centers are above
the line y D y2 or below the line y D y1.
Furthermore, assume that the union of the disks
in D covers all points in P . Then a minimum
weight subset of D that covers all points in P

can be computed in polynomial time.

The proof of result for Lemma 1 is in fact con-
structive. It gives a polynomial-time algorithm by
a dynamic programming. It says that as long as
the set of centers P in a horizontal strip can be
dominated by a set of centers D above and/or
below the strip, then an optimal subset of D

dominating P can be found in polynomial time.
Our next work is to select some disks for

each square within a strip so that those disks
can be covered by disks from the upper and
lower strips. To better illuminate the strategy, we
divide the neighbor parts of Sij into eight regions
UL; UM , UR; CL; CR; LL; LM; andLR as
shown in Fig. 1. The four lines forming Sij

are x D x1, x D x2, y D y1, and y D y2.
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x = x1 x = x2

y = y2

y = y1

UL UM UR

CL Sij CR

LL LM LR

Double Partition, Fig. 1 Sij and its neighbor regions

Denote by Lef t D UL [ CL [ LL, Right D

UR [ CR [ LR, Up D UL [ UM [ UR, and
Down D LL [ LM [ LR. After that, we will
have Lemma 2.

Lemma 2 Suppose p 2 Vij is a disk in Sij

which can be dominated by a disk d 2 LM . We
draw two lines pl and pr , which intersect y D

y1 by angle �
4

and 3�
4

. Then the shadow PLM

surrounded by x D x1, x D x2, y D y1, pl ,
and pr (shown in Fig. 2) can also be dominated
by d . Similar results can be held for shadow
PUM , PCL, and PCR, which can be defined with
a rotation.

Proof We split shadow PLM into two halves with
vertical line x D xp , where xp is x-coordinate
of disk p. Then we prove that the right half of
PLM can be covered by d . The left half can be
proved symmetrically. Let o be intersection point
of x D xp and y D y1, a that of pr and x D

x2 (or pr and y D y1), and b that of x D x2

and y D y1. Intuitionally, the right half can be
either a quadrangle pabo or a triangle pao. We
will prove both cases as follows:

Quadrangle case: Draw the perpendicular line
of the line segment pa, namely, pm. When
d is under pm as in Fig. 3a, we will have
dist.d; a/ � dist.p; d/ � 1. Moreover, it is
trivial that dist.d; o/ and dist.d; b/ are all < 1.
Thus, d can cover the whole quadrangle. When
d is above the line pm as in Fig. 3b, we draw an
auxiliary line y D ya parallel with y D y1 and

x D xd intersecting y D ya at point c. Since d

lies above pm, †cad � �=4, and thus

dist.d; a/ D
dist.c; a/

cos†cad
<

p
2=2

cos �
4

D 1:

Note that both dist.d; o/ and dist.d; b/ are less
than 1, so d can cover the whole quadrangle.

Triangle case: Similarly, draw pm as described
above. The proof remains when d is under pm

(see Fig. 3c). When d is above pm as in Fig. 3d,
we draw auxiliary line x D xd intersecting y D

y1 at c. Then we will get the same conclusion.

With the help of Lemma 2, we can select
a region from Sij , where the disks inside this
region can be covered by disks from Up and
Down neighbor area. We name this region as
“sandglass,” with formal definition as follows:

Definition 1 (Sandglass) If D is a dominating
set for square Sij and D \ Vij D ;, then there
exists a subset VM � Vij which can only be
covered by disks from UM and LM (we can
set VM D ; if there are no such disks). Choose
VLM � VM the disks that can be covered by
disks from LM , and draw pl and pr line for each
p 2 VLM . Choose the leftmost pl and rightmost
pr and form a shadow similar as that in Lemma 2.
Symmetrically, choose VUM and form a shadow
with leftmost and rightmost lines. The union
of the two shadows form a “sandglass” region
Sandij of Sij (see Fig. 4a, where solid circle
represents VLM , while hollow circle represents
VUM ). Fig. 4b–4d gives other possible shapes of
Sandij.

Lemma 3 Suppose D is a dominating set for Sij

and Sandij s are chosen in the above way. Then
any disks in Sandij can be dominated by disks
only from neighbor region Up[Down, and disks
from Sij nSandij can be dominated by disks only
from neighbor region Lef t [Right .

Proof Suppose to the contrary, there exists a disk
d 2 Sandij which cannot be dominated by disks
from Up [ Down. Since D is a dominating set,
there must be a d 0 2 CL [ CR which dominates
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Double Partition, Fig. 2
Different shapes for
shadow PLM
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Double Partition, Fig. 3
Shape of shadow and
location of d . (a) d to left
of pm. (b) d to left of pm.
(c) d to left of pm. (d) d
to left of pm
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d . Without loss of generality, assume d belongs
to lower half of the sandglass which is formed by
p1 and p2, and let d 0 2 CL (see Fig. 5). Based on
our assumption, d cannot locate in p1’s triangle
shadow to Down region (otherwise, since p1 can

be dominated by a disk from LM , d can also
be dominated by this disk). We then draw dl

and dr to CL region and form a shadow to CL.
Then by Lemma 2 every disk from this shadow
can be dominated by d 0. Obviously, p1 belongs
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a b

c d

Double Partition, Fig. 4 Sandglass Sandij for Sij. (a)
Form of sandglass. (b) Sandglass without intersection. (c)
Sandglass with single disk. (d) Sandglass with half side

p1

p2

d

d

Down Region

Up Region

CL CR

Double Partition, Fig. 5 Proof for sandglass

to this region, but p1 is a disk which cannot be
dominated by disks from CL, a contradiction.

Till now we already find “sandglass” region
in which disks can be dominated by disks only
from Up and Down regions. In our algorithm, for
each square Sij , we can firstly decide whether to
choose a disk inside this square as dominating set
or to choose a dominating set from its neighbor
region. If we choose the latter case, the algorithm
will randomly select 4 disks d1, d2, d3, and d4

from Sij and make corresponding sandglass (we
can also choose less than 4 disks to form the
sandglass). By enumeration of all possible sand-
glasses including the case of choosing one disk
inside the square, for all squares within K � K

area, there are at most Œ
P4

iD0 C i
n�2

i �K
2

choices (n
is the number of disks), which can be calculated
within polynomial time. Moreover, when consid-
ering choosing a dominating set from neighbor

Kµ
2µ 2µ

Double Partition, Fig. 6 Block selection

Algorithm 1 Calculate MWDS in K�K squares
Input: K 	 K squares with inner disks
Output: A local MWDS

1: For each Sij , choose its sandglass or randomly select
d 2 Sij .

2: If d 2 Sij is selected, then remove d and all disks
dominated by d .

3: For each strip [K
j D1

Sij from i D 1 to K, calculate
a dominating set for the union of disks in the sand-
glasses.

4: For each strip [K
iD1

Sij from j D 1 to K, calculate
a dominating set for the remaining disks not covered
by Step 3.
Return the union of disks chosen in the above steps
for K 	 K squares.

regions, we should also include regions around
this K �K areas such that we will not miss disks
outside the region. Therefore, we should consider
.KC4/� .KC4/ area, where the inner region is
our selected block and the surrounding four strips
are the assistance (shown as Fig. 6).

In all, we will have Algorithm 1 with four
steps to calculate an MWDS for K �K squares.
We enumerate all possible cases for each Sij and
choose the solution with minimum weight, which
forms an MWDS for Sij .

MWDC for the Whole Region
As discussed above, if our plane has size P.n/ �

Q.n/, then there are at most
�
dP.n/

K
e C 1

�
��

dQ.n/
K
e C 1

�
blocks in the plane. We name each

block Bxy , where 0 � x � dP.n/
K
e C 1 and

0 � y � dQ.n/
K
e C 1. Then, using Algorithm 1

to calculate dominating set for each block and by
combining them together, we obtain a dominating
set for our original partition.
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Algorithm 2 Calculate MWDS for the whole
plane

Input: G in region P.n/ 	 Q.n/
Output: A global MWDS

1: For a certain partition, calculate MWDS for each
block Bxy , sum the weight of MWSD for each block,
and form a solution.

2: Move each block to two squares to the right and two
squares to the top of the original block.

3: Repeat Step 1 for new partition, and get a new
solution.

4: Repeat Step 2 for d K
2

e times, and choose the mini-
mum solution among those steps.
Return the solution from Step 4 as our final result.

Next, we move our blocks to different posi-
tions by shifting policy. Move every block two
squares right and two squares up to its original
position, which can be seen from Fig. 7. Then
calculate dominating set for each block again, and
combine the solution together. We do this process
K
2

times, choose the minimum solution as our
final result. The whole process can be shown as
Algorithm 2.

Performance Ratio

In the following, we extend our terminology
“dominate” to points (a point is a location which
is not necessarily a disk). A point p is dominated
by a set of disks if the distance between p and
at least one center of the disks is not more than
1. We say an area is dominated by a set of disks
if every point in this area is dominated by the
set of disks. Let OP T be optimal solution for

H1

V1 V2 V3

H2

H3

Double Partition, Fig. 8 An example for disk cover
region

our problem and w.OP T / the weight of optimal
solution.

Theorem 1 Algorithm 2 always outputs a dom-
inating set with weight within 6 C " times of the
optimum one.

Proof Our proof mainly has two phases. The first
phase analyzes that our Algorithm 1 gives a 6-
approximation for disks in K � K squares. The
second phase proves that result from Algorithm 2
is less than .6C "/ � w.OP T /.

Phase 1: If a disk has radius 2 and our partition

has side length � <
p

2
2

, then a disk may
dominate disks from at most 16 squares, which
can be shown in Fig. 8. Simply, if a disk in OP T

is used to dominate the square it belongs to,
then we will remove this disk before calculating
MWDS for strips. Therefore, it will be used only
once. If a disk is not used to dominate the square
containing it, then it may be used 3 times in
calculating its 3 horizontal neighbor strips (H1,
H2, and H3 as shown in Fig. 8) and another 3
times in calculating its 3 vertical neighbor strips
(V1, V2, and V3 in Fig. 8). Therefore, Algorithm 1
is a 6-approximation for each block.

Phase 2: Now we consider the disks in side
strips for a block. As discussed above, when
calculating MWDS for a strip, we may use disks
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within .K C 2/ � .K C 2/ squares. Therefore,
we can divide a block B.xy/ into three kinds of
squares, just as shown in Fig. 9 (0 � x � dP.n/

K
e,

and 0 � y � dQ.n/
K
e ). If a disk belongs to inner

part A of B.xy/, it will be used at most 6 times
during calculating process. We name those disks
as din. If a disk belongs to side part B of B.xy/,
it may be used at most 5 times for calculating
B.xy/, but it may used at most 4 times when
calculating B.xy/’s neighbor block. We name
those disks as dside. If a disk belongs to corner
squares C of B.xy/, it may be used at most 4 times
for calculating B.xy/ and at most 8 times for
neighbor blocks. We name those disks as dcorner.
In addition, we know that during shifting process
a node can stay at most 4 times in side or corner
square. If we name l as the l th shifting, then our
final solution will have the following inequality:

W.Solution/

D min
l

˚X

Soll

Œ6w.d l
in/C 9w.d l

side/C 12w.d l
corner/�

�

�
1
K
2

K
2X

lD0

˚
6w.d l

in/C 4 � 12w.d l
side C d l

corner/
�

D 6w.OP T /C
42
K
2

w.OP T /

� .6C "/w.OP T /

where " D 42=K
2

can be arbitrarily small
when K is sufficiently large.

Applications

Dominating set problem is widely used in
network-related applications. For instance,
in mobile and wireless ad hoc networks, it
is implemented for communication virtual
backbone selection to improve routing efficiency,
for sensor coverage problem to extend network
lifetime, and for clustering and data gathering
problem to avoid flooding and energy waste.
In optical network and data center networks, it
is used for network management and switch-
centric routing protocols. In social network
applications, it is used for many cluster-related
problems like positive influence, effective leader

C C

C C

B

B

B BA

2µ 2µ

2µ 2µ

Double Partition, Fig. 9 Divide block B.xy/ into
3 parts

group, etc. A weighted dominating set is a
generalized heterogeneous network model to
describe real-world applications, which is more
realistic and practical.

Open Problems

There are two open problems for the minimum
weighted connected dominating set (MWCDS)
problem under unit disk graph (UDG). Firstly,
there is another grid partition design to con-
struct a constant approximation for domatic par-
tition problem in unit disk graph [10]. Could this
new technique result in an improvement in run-
ning time or performance ratio? Secondly, does
MWCDS problem in UDG have a polynomial-
time approximation scheme (PTAS)? Currently,
no one has answered the above questions.
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Problem Definition

Given an undirected, unweighted graph with
n nodes and m edges that is modified by a
sequence of edge insertions and deletions, the
problem is to maintain a data structure that
quickly answers queries that ask for the length
d.u; v/ of the shortest path between two arbitrary
nodes u and v in the graph, called the distance of
u and v. The fastest exact algorithm for this
problem is randomized and takes amortized
O
�
n2
�
log nC log2 ..mC n/=n/

��
time per

update and constant query time [6, 11]. In the
decremental case, i.e., if only edge deletions are
allowed, there exists a deterministic algorithm
with amortized time O.n2/ per deletion [7]. More
precisely, its total update time for a sequence of
up to m deletions is O.mn2/. Additionally, there
is a randomized algorithm with O.n3 log2 n/

total update time and constant query time [1].
However, in the decremental case, when only
˛-approximate answers are required, i.e., when
it suffices to output an estimate ı.u; v/ such that
d.u; v/ � ı.u; v/ � ˛d.u; v/ for all nodes u
and v, the total update time can be significantly
improved: Let � > 0 be a small constant. The
fastest prior work was a class of randomized
algorithms with total update time QO.mn/ for

˛ D 1 C � [10], QO
�
n5=2CO.1=

p
log n/

�
for

˛ D 3 C �, and QO
�
n2C1=kCO.1=

p
log n/

�
for

˛ D 2k � 1C � [4].
This leads to the question whether for ˛ D 1C

� (a), a total update time of o.nm/ is possible and
(b) a deterministic algorithm with total update
time QO.nm/ exists.

As pointed out in [3] and several other places,
a deterministic algorithm is interesting due to
the fact that deterministic algorithms can deal
with an adaptive offline adversary (the strongest
adversary model in online computation [2, 5]),
while the randomized algorithms developed so
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far assume an oblivious adversary (the weakest
adversary model) where the order of edge dele-
tions must be fixed before an algorithm makes
random choices.

Key Results

The paper of Henzinger, Krinninger, and
Nanongkai [8] presents two algorithms for
˛ D 1 C �. The first one is a deterministic
algorithm with total update time QO.mn/.
The second one studies a slightly relaxed
version of the problem: Given a constant
ˇ; let ı.u; v/ be an .˛; ˇ/-approximation if
d.u; v/ � ı.u; v/ � ˛d.u; v/ C ˇ for all nodes
u and v. The second algorithm is a randomized
algorithm with total update time QO.n5=2/ that
can guarantee both a .1 C �; 2/ and a .2 C �; 0/

approximation.
The results build on two prior techniques,

namely, an exact decremental single-source
shortest path data structure [7], called ES-tree,
and the .1 C �; 0/-approximation algorithm
of [10], called RZ-algorithm. The RZ-algorithm
chooses for all integer i with 1 � i � log n,
QO.n=.�2i // random nodes as centers, and

maintains an ES-tree up to distance 2iC2 for
each center. For correctness, it exploits the fact
that the random choice of centers guarantees
the following invariant (I): For every pair of
nodes u and v with distance d.u; v/, there
exists with high probability a center c such
that d.u; c/ � �d.u; v/ and d.c; v/ � d.u; v/.
The total update time per center is O.m2i /

resulting in a total update time of QO.mn/. The
deterministic algorithm of [8] derandomizes
this algorithm by initially choosing centers
fulfilling invariant (I) and after each update (a)
greedily generating new centers to guarantee
that (I) continues to hold and (b) moving the
root of the existing ES-trees. To achieve a
running time of QO.mn/, the algorithm is not
allowed to create more than QO.n=.�2i // many
centers for each i . This condition is fulfilled by
dynamically assigning each center a set of ˝.2i /

vertices such that no vertex is assigned to two
centers.

The improved randomized algorithm uses the
idea of an emulator, a sparser weighted graph
that approximates the distances of the original
graph. Emulators were used for dynamic shortest-
path algorithms before [4]. The challenge when
using an emulator is that edge deletions in the
original graph might lead to edge deletions, edge
insertions, or weight increases in the emulator,
requiring in principle the use of a fully dynamic
shortest-path algorithm on the emulator. Bern-
stein and Roditty [4] deal with this challenge
by using an emulator where the number of dis-
tance changes between any two nodes can be
bounded. However, the RZ-algorithm requires
that the number of times that the distance between
any two nodes changes is at most R before that
distance exceeds R for any integer R with 1 �

R � n. As the emulator used by Bernstein
and Roditty does not fulfill this property, they
cannot run the RZ-algorithm on it. The new algo-
rithm does not construct such an emulator either.
Instead, it builds an emulator where the error
introduced by edge insertions is limited and runs
the RZ-algorithm with modified ES-trees, called
monotone ES-trees, on this emulator. The analy-
sis exploits the fact that the distance between any
two nodes in the original graph can only increase
after an edge deletion. Thus, even if an edge
deletion leads to changes in the emulator that
decrease their distance in the emulator, the corre-
sponding ES-trees do not have to be updated, i.e.,
the distance of a vertex to its root in the ES-tree
never decreases. The analysis shows that the error
introduced through the use of monotone ES-trees
in the RZ-algorithm is small so that the claimed
approximation ratio is achieved. However, since
the ES-trees are run on the sparse emulator the
overall running time is o.mn/.

Open Problems

The main open problem is to find a similarly
efficient algorithm in the fully dynamic setting,
where both edge insertions and deletions are
allowed. A further open problem is to extend the
derandomization technique to the exact algorithm
of [1].
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Another challenge is to obtain similar results
for weighted, directed graphs. We recently
extended some of the above techniques to
weighted, directed graphs and presented a
randomized algorithm with QO

�
mn0:986

�
total

update time for .1 C �/-approximate single-
source shortest paths [9].
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Problem Definition

A dynamic graph algorithm maintains informa-
tion about a graph that is changing over time.
Given a property P of the graph (e.g., maxi-
mum matching), the algorithm must support an
online sequence of query and update operations,
where an update operation changes the underly-
ing graph, while a query operation asks for the
state of P in the current graph. In the typical
model studied, each update affects a single edge,
in which case the most general setting is the fully
dynamic one, where an update can either insert
an edge, delete an edge, or change the weight
of an edge. Common restrictions of this include
the decremental setting, where an update can
only delete an edge or increase a weight, and the
incremental setting where an update can insert an
edge or decrease a weight.

This entry addresses the problem of
maintaining ˛-approximate all-pairs shortest
paths (APSP) in the fully dynamic setting in a
weighted, undirected graph (the approximation
factor ˛ depends on the algorithm); the goal is to
maintain an undirected graph G with real-valued
nonnegative edge weights under an online inter-
mixed sequence of the following operations:

• delete(u; v) (update): remove edge (u; v) from
G.
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• insert(u; v) (update): insert an edge (u; v) into
G.

• change weight(u; v; w) (update): change the
weight of edge .u; v/ to w.

• distance(u; v) (query): return an ˛-appro-
ximation to the shortest u � v distance in
G.

• path(u; v) (query): return an ˛-approximate
shortest path from u to v.

Approaches
The naive approach to the fully dynamic APSP
problem is to recompute shortest paths from
scratch after every update, allowing queries to
be answered in optimal time. Letting n be the
number of vertices and m the number of edges,
computing APSP requires O.mnCn2loglog.n//

time in sparse graphs [8] or slightly less
than n3 in dense graphs [9, 13]. If we allow
approximation, a slightly better approach would
be to construct an approximate distance oracle
after each update, i.e., a static data structure
for answering approximate distance queries
quickly; an oracle for returning k-approximate
distances (k � 3) can be constructed in time
O.minfn2 log.n/; kmn1=kg/ [1, 11]. Another
simple-minded approach would be to not perform
any work during the updates and to simply
compute the shortest u�v path from scratch when
a query arrived; using Dijkstra’s algorithm with
Fibonacci heaps [7], this would lead to a constant
update time and a query time of O.mCn log.n//.

The goal of a dynamic algorithm is to improve
upon the above approaches by taking advantage
of the fact that each update only affects a single
edge, so one can reuse information between up-
dates and thus avoid recomputing from scratch.
In a breakthrough result, Demetrescu and Italiano
showed that in the most general case of a di-
rected graph with arbitrary real weights, one can
answer updates in amortized time O.n2 log3.n//

while maintaining optimal O.1/ time for distance
queries [6]; Thorup improved the update time
slightly to O.n2.log.n/Clog2..mCn/=n/// [10].
This entry addresses a recent result of Bernstein
[3] which shows that in undirected graphs, one
can significantly improve upon this n2 update
time by settling for approximate distances.

Key Results

Bernstein’s paper starts by showing that assum-
ing integral weights, there is an algorithm for
maintaining .2 C �/-approximate APSP up to a
bounded distance d with amortized update time
O.md/. This is efficient for small distances, but
in the general case d can be very large, especially
in weighted graphs. Bernstein overcomes this by
introducing a high-level framework for extending
shortest path-related algorithms that are efficient
for small distances to ones that are efficient for
general graphs; he later applied this approach to
two other results [4, 5].

The first step of the approach is to show
that with simple scaling techniques, an algorithm
that is efficient for small (weighted) distances
can be extended to an algorithm that is efficient
for shortest paths with few edges (regardless of
weight). Applying this technique to the above
algorithm yields the following result:

Definition 1 Let the hop distance of a path be
the number of edges it contains. A graph G is
said to have approximate hop diameter h if for
every pair of vertices .x; y/; there is a .1 C �/-
approximate shortest x�y path with hop distance
� h.

Theorem 1 ([3]) Let G be an undirected graph
with nonnegative real edge weights, and let R be
the ratio of the heaviest to the lightest nonzero
weight. One can maintain .2 C �/-APSP in the
fully dynamic setting with amortized update time
O.mh log.nR//, where h is the approximate hop
diameter of the graph.

Shortcut Edges
Theorem 1 provides an efficient algorithm for
small h, but on its own a result that is efficient for
small hop diameter is not particularly powerful as
even in unweighted graphs h can be ˝.n/. The
second step of Bernstein’s approach is to show
that regardless of whether the original graph is
weighted, one can add weighted edges to reduce
the hop diameter. A shortcut edge .x; y/ is a new
edge constructed by the algorithm that has weight
w.x; y/ with ı.x; y/ � w.x; y/ � .1C�/ı.x; y/,
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where ı.x; y/ is the shortest x � y distance. It is
clear that because shortcut weights are tethered to
shortest distances, they do not change (weighted)
distances in the graph. But a shortcut edge can
greatly reduce hop distances; for example, in an
unweighted graph where ı.x; y/ D 1000, adding
a single shortcut edge .x; y/ of weight 1000 de-
creases the x�y hop distance to 1 while also de-
creasing the hop distance of paths that go through
x and y. Bernstein adapts techniques from span-
ner and emulator theory (see in particular Thorup
and Zwick’s result on graph sparsification [12]) to
show that in fact a small number of shortcut edges
suffice to greatly reduce the hop diameter of a
graph.

Theorem 2 ([3]) Let G be an undirected graph
with nonnegative real edge weights, and let R be
the ratio of the heaviest to the lightest edge weight
in the graph. There exists an algorithm that in

time O.m � nO.1=
p

log.n// � log.nR// constructs a

set S of O.n1CO.1=
p

log.n// � log.nR// shortcut
edges such that adding S to the edges of the
graph reduces the approximate hop diameter to

nO.1=
p

log.n//.

Theorems 1 and 2 combined encapsulate the
approach of Bernstein’s algorithm: take an
algorithm that works well for small distances,
use scaling to transform it into an algorithm that
is efficient for graphs of small hop diameter, and
then add shortcut edges to the original graph
to ensure a small hop diameter. For dynamic
APSP, there are additional complications that
arise from edges being inserted and deleted
over time, but the basic approach remains
the same.

Theorem 3 ([3]) Let G be an undirected graph
with real nonnegative edge weights, and let R

be the ratio of the maximum edge weight ap-
pearing in the graph during any point in the
update sequence to the minimum nonzero edge
weight. There is an algorithm that maintains fully
dynamic .2C �/-approximate APSP in amortized

update time O.m � nO.1=
p

log.n// � log.nR// and
can answer distance queries in worst-case time
O.log log log.n//:

Open Problems

The main open problem for fully dynamic ap-
proximate APSP is to develop an efficient algo-
rithm for maintaining .1 C �/ approximate dis-
tances, possibly with a small additive error in the
unweighted case. Another interesting problem
would be to achieve o.n2/ update times for dense
graphs – this can already be done to some extent
by combining the result of Bernstein discussed
here with the fully dynamic spanner of Baswana
et al. [2], but only for unweighted graphs and at
the cost of a much worse approximation ratio.
Other open problems include removing the de-
pendence on log.R/ and developing an efficient
deterministic algorithm for the problem.
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Problem Definition

The dynamic tree problem is that of maintaining
an arbitrary n-vertex forest that changes over
time through edge insertions (links) and deletions
(cuts). Depending on the application, one asso-
ciates information with vertices, edges, or both.
Queries and updates can deal with individual
vertices or edges, but more commonly they refer
to entire paths or trees. Typical operations include
finding the minimum-cost edge along a path,

determining the minimum-cost vertex in a tree, or
adding a constant value to the cost of each edge
on a path (or of each vertex of a tree). Each of
these operations, as well as links and cuts, can be
performed in O.log n/ time with appropriate data
structures.

Key Results

The obvious solution to the dynamic tree problem
is to represent the forest explicitly. This, however,
is inefficient for queries dealing with entire paths
or trees, since it would require actually traversing
them. Achieving O.log n/ time per operation re-
quires mapping each (possibly unbalanced) input
tree into a balanced tree, which is better suited
to maintaining information about paths or trees
implicitly. There are three main approaches to
perform the mapping: path decomposition, tree
contraction, and linearization.

Path Decomposition
The first efficient dynamic tree data structure was
Sleator and Tarjan’s ST-trees [13, 14], also known
as link-cut trees or simply dynamic trees. They
are meant to represent rooted trees, but the user
can change the root with the evert operation.
The data structure partitions each input tree into
vertex-disjoint paths, and each path is represented
as a binary search tree in which vertices appear
in symmetric order. The binary trees are then
connected according to how the paths are related
in the forest. More precisely, the root of a binary
tree becomes a middle child (in the data structure)
of the parent (in the forest) of the topmost vertex
of the corresponding path. Although a node has
no more than two children (left and right) within
its own binary tree, it may have arbitrarily many
middle children. See Fig. 1. The path containing
the root (qlifcba in the example) is said to be
exposed, and is represented as the topmost binary
tree. All path-related queries will refer to this
path. The expose operation can be used to make
any vertex part of the exposed path.

With standard balanced binary search trees
(such as red-black trees), ST-trees support each
dynamic tree operation in O.log2 n/ amortized
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Dynamic Trees, Fig. 1 An ST-tree (Adapted from [14]).
On the left, the original tree, rooted at a and already par-
titioned into paths; on the right, the actual data structure.

Solid edges connect nodes on the same path; dashed edges
connect different paths

time. This bound can be improved to O.log n/

amortized with locally biased search trees, and
to O.log n/ in the worst case with globally bi-
ased search trees. Biased search trees (described
in [5]), however, are notoriously complicated.
A more practical implementation of ST-trees uses
splay trees, a self-adjusting type of binary search
trees, to support all dynamic tree operations in
O.log n/ amortized time [14].

Tree Contraction
Unlike ST-trees, which represent the input trees
directly, Frederickson’s topology trees [6, 7, 8]
represent a contraction of each tree. The origi-
nal vertices constitute level 0 of the contraction.
Level 1 represents a partition of these vertices
into clusters: a degree-one vertex can be com-
bined with its only neighbor; vertices of degree
two that are adjacent to each other can be clus-
tered together; other vertices are kept as single-
tons. The end result will be a smaller tree, whose
own partition into clusters yields level 2. The
process is repeated until a single cluster remains.
The topology tree is a representation of the con-
traction, with each cluster having as children its
constituent clusters on the level below. See Fig. 2.

With appropriate pieces of information
stored in each cluster, the data structure can
be used to answer queries about the entire tree
or individual paths. After a link or cut, the
affected topology trees can be rebuilt in O.log n/

time.
The notion of tree contraction was developed

independently by Miller and Reif [11] in the
context of parallel algorithms. They propose two
basic operations, rake (which eliminates vertices
of degree one) and compress (which eliminates
vertices of degree two). They show that O.log n/

rounds of these operations are sufficient to con-
tract any tree to a single cluster. Acar et al. trans-
lated a variant of their algorithm into a dynamic
tree data structure, RC-trees [1], which can also
be seen as a randomized (and simpler) version of
topology trees.

A drawback of topology trees and RC-trees is
that they require the underlying forest to have ver-
tices with bounded (constant) degree in order to
ensure O.log n/ time per operation. Similarly, al-
though ST-trees do not have this limitation when
aggregating information over paths, they require
bounded degrees to aggregate over trees. Degree
restrictions can be addressed by “ternarizing”
the input forest (replacing high-degree vertices
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Dynamic Trees, Fig. 2 A topology tree (Adapted from [7]). On the left, the original tree and its multilevel partition;
on the right, a corresponding topology tree

Dynamic Trees, Fig. 3
The rake and compress
operations, as used by top
trees (From [16]))

with a series of low-degree ones [9]), but this
introduces a host of special cases.

Alstrup et al.’s top trees [3, 4] have no such
limitation, which makes them more generic than
all data structures previously discussed. Although
also based on tree contraction, their clusters be-
have not like vertices, but like edges. A compress
cluster combines two edges that share a degree-
two vertex, while a rake cluster combines an edge
with a degree-one endpoint with a second edge
adjacent to its other endpoint. See Fig. 3.

Top trees are designed so as to completely
hide from the user the inner workings of the data
structure. The user only specifies what pieces of
information to store in each cluster, and (through
call-back functions) how to update them after
a cluster is created or destroyed when the tree
changes. As long as the operations are properly
defined, applications that use top trees are com-
pletely independent of how the data structure is
actually implemented, i.e., of the order in which
rakes and compresses are performed.

In fact, top trees were not even proposed
as stand-alone data structures, but rather as an
interface on top of topology trees. For efficiency
reasons, however, one would rather have a more
direct implementation. Holm, Tarjan, Thorup

and Werneck have presented a conceptually
simple stand-alone algorithm to update a top
tree after a link or cut in O.log n/ time in
the worst case [17]. Tarjan and Werneck [16]
have also introduced self-adjusting top trees,
a more efficient implementation of top trees
based on path decomposition: it partitions the
input forest into edge-disjoint paths, represents
these paths as splay trees, and connects these
trees appropriately. Internally, the data structure
is very similar to ST-trees, but the paths are
edge-disjoint (instead of vertex-disjoint) and the
ternarization step is incorporated into the data
structure itself. All the user sees, however, are
the rakes and compresses that characterize tree
contraction.

Linearization
ET-trees, originally proposed by Henzinger and
King [10] and later slightly simplified by Tar-
jan [15], use yet another approach to represent
dynamic trees: linearization. It maintains an Eu-
ler tour of the each input tree, i.e., a closed
path that traverses each edge twice–once in each
direction. The tour induces a linear order among
the vertices and arcs, and therefore can be repre-
sented as a balanced binary search tree. Linking
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and cutting edges from the forest corresponds
to joining and splitting the affected binary trees,
which can be done in O.log n/ time. While lin-
earization is arguably the simplest of the three
approaches, it has a crucial drawback: because
each edge appears twice, the data structure can
only aggregate information over trees, not paths.

Lower Bounds
Dynamic tree data structures are capable of
solving the dynamic connectivity problem on
acyclic graphs: given two vertices v and w, decide
whether they belong to the same tree or not.
P˘atraşcu and Demaine [12] have proven a lower
bound of ˝.log n/ for this problem, which is
matched by the data structures presented here.

Applications

Sleator and Tarjan’s original application for
dynamic trees was Dinic’s blocking flow
algorithm [13]. Dynamic trees are used to
maintain a forest of arcs with positive residual
capacity. As soon as the source s and the sink
t become part of the same tree, the algorithm
sends as much flow as possible along the
s–t path; this reduces to zero the residual
capacity of at least one arc, which is then
cut from the tree. Several maximum flow and
minimum-cost flow algorithms incorporating
dynamic trees have been proposed ever since
(some examples are [9, 15]). Dynamic tree
data structures, especially those based on tree
contraction, are also commonly used within
dynamic graph algorithms, such as the dynamic
versions of minimum spanning trees [6, 10],
connectivity [10], biconnectivity [6], and
bipartiteness [10]. Other applications include
the evaluation of dynamic expression trees [8]
and standard graph algorithms [13].

Experimental Results

Several studies have compared the performance
of different dynamic-tree data structures; in most
cases, ST-trees implemented with splay trees are

the fastest alternative. Frederickson, for example,
found that topology trees take almost 50 % more
time than splay-based ST-trees when executing
dynamic tree operations within a maximum flow
algorithm [8]. Acar et al. [2] have shown that RC-
trees are significantly slower than splay-based
ST-trees when most operations are links and cuts
(such as in network flow algorithms), but faster
when queries and value updates are dominant.
The reason is that splaying changes the structure
of ST-trees even during queries, while RC-trees
remain unchanged.

Tarjan and Werneck [17] have presented an
experimental comparison of several dynamic tree
data structures. For random sequences of links
and cuts, splay-based ST-trees are the fastest al-
ternative, followed by splay-based ET-trees, self-
adjusting top trees, worst-case top trees, and
RC-trees. Similar relative performance was ob-
served in more realistic sequences of operations,
except when queries far outnumber structural
operations; in this case, the self-adjusting data
structures are slower than RC-trees and worst-
case top trees. The same experimental study also
considered the “obvious” implementation of ST-
trees, which represents the forest explicitly and
require linear time per operation in the worst
case. Its simplicity makes it significantly faster
than the O.log n/-time data structures for path-
related queries and updates, unless paths are
hundred nodes long. The sophisticated solutions
are more useful when the underlying forest has
high diameter or there is a need to aggregate
information over trees (and not only paths).
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12. Pătraşcu M, Demaine ED (2004) Lower bounds for
dynamic connectivity. In: Proceedings of the 36th
annual ACM symposium on theory of computing
(STOC), pp 546–553

13. Sleator DD, Tarjan RE (1983) A data structure for
dynamic trees. J Comput Syst Sci 26(3):362–391

14. Sleator DD, Tarjan RE (1985) Self-adjusting binary
search trees. J ACM 32(3):652–686

15. Tarjan RE (1997) Dynamic trees as search trees via
Euler tours, applied to the network simplex algorithm.
Math Program 78:169–177

16. Tarjan RE, Werneck RF (2005) Self-adjusting top
trees. In: Proceedings of the 16th annual ACM-
SIAM symposium on discrete algorithms (SODA), pp
813–822

17. Tarjan RE, Werneck RF (2007) Dynamic trees in
practice. In: Proceedings of the 6th workshop on
experimental algorithms (WEA). Lecture notes in
computer science, vol 4525, pp 80–93

18. Werneck RF (2006) Design and analysis of data
structures for dynamic trees. PhD thesis, Princeton
University



E

Edit Distance Under Block
Operations

S. Cenk Sahinalp
Laboratory for Computational Biology, Simon
Fraser University, Burnaby, BC, USA

Keywords

Block edit distance

Years and Authors of Summarized
Original Work

2000; Cormode, Paterson, Sahinalp, Vishkin
2000; Muthukrishnan, Sahinalp

Problem Definition

Given two strings S D s1s2 : : : sn and R D
r1r2 : : : rm (wlog let n � m) over an alphabet
� D f�1; �2; : : : �`g, the standard edit distance
between S and R, denoted ED(S, R) is the min-
imum number of single character edits, specif-
ically insertions, deletions and replacements, to
transform S into R (equivalently R into S).

If the input strings S and R are permutations
of the alphabet ¢ (so that jS j D jRj D j� j) then
an analogous permutation edit distance between
S and R, denoted PED(S, R) can be defined as the

minimum number of single character moves, to
transform S into R (or vice versa).

A generalization of the standard edit distance
is edit distance with moves, which, for input
strings S and R is denoted EDM(S, R), and is de-
fined as the minimum number of character edits
and substring (block) moves to transform one of
the strings into the other. A move of block s[j,
k] to position h transforms S D s1s2 : : : sn into
S 0 D s1 : : : sj�1 skC1skC2 : : : sh�1sj : : : sksh
: : : sn [4].

If the input strings S and R are permutations
of the alphabet ¢ (so that jS j D jRj D j� j)
then EDM(S, R) is also called as the transposition
distance and is denoted TED(S, R) [1].

Perhaps the most general form of the standard
edit distance that involves edit operations on
blocks/substrings is the block edit distance,
denoted BED(S, R). It is defined as the
minimum number of single character edits,
block moves, as well as block copies and
block uncopies to transform one of the strings
into the other. Copying of a block s[j, k] to
position h transforms S D s1s2 : : : sn into S 0 D
s1 : : : sj sjC1 : : : sk : : : sh�1sj : : : sksh : : : sn.
A block uncopy is the inverse of a block
copy: it deletes a block s[j, k] provided there
exists sŒj 0; k0� D sŒj; k� which does not
overlap with s[j, k] and transforms S into
S 0 D s1 : : : sj�1skC1 : : : sn.

Throughout this discussion all edit operations
have unit cost and they may overlap; i.e., a char-
acter can be edited on multiple times.

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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Key Results

There are exact and approximate solutions to
computing the edit distances described above
with varying performance guarantees. As can be
expected, the best available running times as well
as the approximation factors for computing these
edit distances vary considerably with the edit
operations allowed.

Exact Computation of the Standard and
Permutation Edit Distance
The fastest algorithms for exactly computing the
standard edit distance have been available for
more than 25 years.

Theorem 1 (Levenshtein [9]) The standard edit
distance ED(S, R) can be computed exactly in
time O.n �m/ via dynamic programming.

Theorem 2 (Masek-Paterson [11]) The stan-
dard edit distance ED(S, R) can be computed
exactly in time O.n C n �m=log2

j� j n/ via the
“four-Russians trick”.

Theorem 3 (Landau-Vishkin [8]) It is possible
to compute ED(S, R) in time O.n �ED.S;R//.

Finally, note that if S and R are permutations
of the alphabet ¢ , PED(S, R) can be computed
much faster than the standard edit distance for
general strings: Observe that PED.S;R/ D
n � LCS.S;R/ where LCS(S, R) represents the
longest common subsequence of S and R. For
permutations S, R, LCS(S, R) can be computed in
time O.n � log log n/ [3].

Approximate Computation
of the Standard Edit Distance
If some approximation can be tolerated, it is
possible to considerably improve the QO.n � m/
time ( QO notation hides polylogarithmic factors)
available by the techniques above. The fastest
algorithm that approximately computes the stan-
dard edit distance works by embedding strings S
and R from alphabet ¢ into shorter strings S 0 and
R0 from a larger alphabet � 0 [2]. The embedding
is achieved by applying a general version of the
Locally Consistent Parsing [13, 14] to partition

the strings R and S into consistent blocks of
size c to 2c � 1; the partitioning is consistent
in the sense that identical (long) substrings are
partitioned identically. Each block is then re-
placed with a label such that identical blocks are
identically labeled. The resulting strings S 0 and
R0 preserve the edit distance between S and R
approximately as stated below.

Theorem 4 (Batu-Ergun-Sahinalp [2])
ED(S, R) can be computed in time QO.n1C�/

within an approximation factor of minfn
1��

3 Co.1/;

.ED.S; R/=n�/
1
2Co.1/g.

For the case of � D 0, the above result
provides an QO.n/ time algorithm for ap-
proximating ED(S, R) within a factor of
minfn

1
3Co.1/; ED.S;R/

1
2Co.1/g.

Approximate Computation
of Edit Distances Involving Block Edits
For all edit distance variants described above
which involve blocks, there are no known poly-
nomial time algorithms; in fact it is NP-hard to
compute TED(S, R) [1], EDM(S, R) and BED(S,
R) [10]. However, in case S and R are permuta-
tions of ¢ , there are polynomial time algorithms
that approximate transposition distance within
a constant factor:

Theorem 5 (Bafna-Pevzner [1]) TED(S, R) can
be approximated within a factor of 1.5 in O.n2/

time.

Furthermore, even if S and R are arbitrary strings
from ¢ , it is possible to approximately compute
both BED(S, R) and EDM(S, R) in near linear
time. More specifically obtain an embedding of
S and R to binary vectors f(S) and f(R) such that:

Theorem 6 (Muthukrishnan-Sahinalp [12])
jjf .S/�f .R/jj1

log� n
� BED.S;R/ � jjf .S/ �

f .R/jj1 � logn:

In other words, the Hamming distance between
f(S) and f(R) approximates BED(S, R) within
a factor of logn � log� n. Similarly for EDM(S, R),
it is possible to embed S and R to integer valued
vectors F(S) and F(R) such that:
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Theorem 7 (Cormode-Muthukrishnan [4])
jjF .S/�F .R/jj1

log� n
� EDM.S;R/ � jjF.S/ �

F.R/jj1 � logn:

In other words, the L1 distance between F(S) and
F(R) approximates EDM(S, R) within a factor of
logn � log� n.

The embedding of strings S and R into binary
vectors f(S) and f(R) is introduced in [5] and
is based on the Locally Consistent Parsing
described above. To obtain the embedding, one
needs to hierarchically partition S and R into
growing size core blocks. Given an alphabet
¢ , Locally Consistent Parsing can identify
only a limited number of substrings as core
blocks. Consider the lexicographic ordering
of these core blocks. Each dimension i of the
embedding f(S) simply indicates (by setting
f .S/Œi � D 1) whether S includes the ith
core block corresponding to the alphabet ¢ as
a substring. Note that if a core block exists in S
as a substring, Locally Consistent Parsing will
identify it.

Although the embedding above is exponential
in size, the resulting binary vector f(S) is very
sparse. A simple representation of f(S) and f(R),
exploiting their sparseness can be computed in
time O.n log� n/ and the Hamming distance be-
tween f(S) and f(R) can be computed in linear
time by the use of this representation [12].

The embedding of S and R into integer valued
vectors F(S) and F(R) are based on similar tech-
niques. Again, the total time needed to approxi-
mate EDM(S, R) within a factor of logn � log� n
is O.n log� n/.

Applications

Edit distances have important uses in compu-
tational evolutionary biology, in estimating the
evolutionary distance between pairs of genome
sequences under various edit operations. There
are also several applications to the document ex-
change problem or document reconciliation prob-
lem where two copies of a text string S have been
subject to edit operations (both single character
and block edits) by two parties resulting in two

versions S1 and S2, and the parties communicate
to reconcile the differences between the two ver-
sions. An information theoretic lower bound on
the number of bits to communicate between the
two parties is then ˝.BED.S;R// � logn. The
embedding of S and R to binary strings f(S) and
f(R) provides a simple protocol [5] which gives
a near-optimal tradeoff between the number of
rounds of communication and the total number of
bits exchanged and works with high probability.

Another important application is to the
Sequence Nearest Neighbors (SNN) problem,
which asks to preprocess a set of strings
S1, : : : , Sk so that given an on-line query
string R, the string Si which has the lowest
distance of choice to R can be computed in time
polynomial with jRj and polylogarithmic with
Pk

jD1 jSj j. There are no known exact solutions
for the SNN problem under any edit distance
considered here. However, in [12], the embedding
of strings Si into binary vectors f(Si), combined
with the Approximate Nearest Neighbors results
given in [6] for Hamming Distance, provides an
approximate solution to the SNN problem under
block edit distance as follows.

Theorem 8 (Muthukrishnan-Sahinalp [12])
It is possible to preprocess a set of strings
S1, : : : , Sk from a given alphabet � in
O.poly.

Pk
jD1 jSj j// time such that for any

on-line query string R from � one can compute
a string Si in time O.polylog.

Pk
jD1 jSj j/ �

poly.jRj// which guarantees that for all h 2
Œ1; k�; BED.Si ; R/ � BED.Sh; R/ � log.maxj

jSj j/ � log�.maxj jSj j/.

Open Problems

It is interesting to note that when dealing with
permutations of the alphabet ¢ the problem of
computing both character edit distances and
block edit distances become much easier; one can
compute PED(S, R) exactly and TED(S, R) within
an approximation factor of 1.5 in QO.n/ time. For
arbitrary strings, it is an open question whether
one can approximate TED(S, R) or BED(S, R)
within a factor of o.logn/ in polynomial time.
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One recent result in this direction shows that
it is not possible to obtain a polylogarithmic
approximation to TED(S, R) via a greedy
strategy [7]. Furthermore, although there is
a lower bound of ˝.n

1
3 / on the approximation

factor that can be achieved for computing the
standard edit distance in QO.n/ time by the use of
string embeddings, there is no general lower
bound on how closely one can approximate
ED(S, R) in near linear time.
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Problem Definition

The basic group testing problem is to identify
the unknown set of positive items from a large
population of items using as few tests as possi-
ble. A test is a subset of items. A test returns
positive if there is a positive item in the subset.
The semantics of “positives,” “items,” and “tests”
depend on the application.

In the original context [3], group testing was
invented to solve the problem of identifying
syphilis-infected blood samples from a large
collection of WWII draftees’ blood samples.
In this case, items are blood samples, which
are positive if they are infected. A test is
a pool (group) of blood samples. Testing a
group of samples at a time will save resources
if the test outcome is negative. On the other
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hand, if the test outcome is positive, then all
we know is that at least one sample in the
pool is positive, but we do not know which
one(s).

In nonadaptive combinatorial group testing
(NACGT), we assume that the number of posi-
tives is at most d for some fixed integer d and
that all tests have to be specified in advance
before any test outcome is known. The NACGT
paradigm has found numerous applications in
many areas of mathematics, computer science,
and computational biology [4, 9, 10].

A NACGT strategy with t tests on a universe
ofN items is represented by a t�N binary matrix
M D .mij /, where mij D 1 iff item j belongs to
test i . Let Mi and Mj denote row i and column
j of M, respectively. Abusing notation, we will
also use Mi (respectively, Mj ) to denote the set
of rows (respectively, columns) corresponding to
the 1-entries of row i (respectively, column j ). In
other words, Mi is the i th pool, and Mj is the set
of pools that item j belongs to.

Let D � ŒN � be the unknown subset of posi-
tive items, where jDj � d . Let y D .yi /

t
iD1 2

f0; 1gt denote the test outcome vector, i.e., yi D

1 iff the i th test is positive. Then, the test outcome
vector is precisely the (Boolean) union of the
positive columns: y D

S
j2D Mj . The task of

identifying the unknown subset D from the test
outcome vector y is called decoding.

The main problem In many modern applica-
tions of NACGT, there are two key requirements
for an NACGT scheme:

1. Small number of tests. “Tests” are computa-
tionally expensive in many applications.

2. Efficient decoding. As the item universe size
N can be extremely large, it would be ideal for
the decoding algorithm to run in time sublin-
ear in N and more precisely in poly.d; logN/
time.

Key Results

To be able to uniquely identify an arbitrary subset
D of at most d positives, it is necessary and suffi-

cient for the test outcome vectors y to be different
for distinct subsets D of at most d positives. An
NACGT matrix with the above property is called
d -separable. However, in general such matrices
only admit the brute force˝.N d /-time decoding
algorithm. A very natural decoding algorithm
called the naïve decoding algorithm runs much
faster, in time O.tN /.

Definition 1 (Naïve decoding algorithm)
Eliminate all items that participate in negative
tests; return the remaining items.

This algorithm does not work for arbitrary d -
separable matrices. However, if the test matrix
M satisfies a slightly stronger property called d -
disjunct, then the naïve decoding algorithm is
guaranteed to work correctly.

Definition 2 (Disjunct matrix) A t � N binary
matrix M is said to be d -disjunct iff Mj n
S

k2S Mk ¤ ; for any set S of d columns and
any j … S . (See Fig. 1.)

Minimize Number of Tests

It is remarkable that d -disjunct matrices not only
allow for linear time decoding, which is a vast
improvement over the brute-force algorithm for
separable matrices, but also have asymptotically
the same number of tests as d -separable matrices
[4]. Let t .d;N / denote the minimum number
of rows of an N -column d -disjunct matrix. It
has been known for about 40 years [5] that
t .˝.
p
N/;N / D �.N/, and for d D O.

p
N/

we have

˝

�
d2

log d
logN

�

� t .d;N / � O.d2 logN/:

(1)

A t � N d -disjunct matrix with t D

O.d2 logN/, rows can be constructed randomly
or even deterministically (see [11]). However,
the decoding time O.tN / of the naïve
decoding algorithm is still too slow for modern
applications, where in most cases d � N and
thus t � N .
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Efficient Decodable
Group Testing, Fig. 1 A
d -disjunct matrix has the
following property: for any
subset S of d (not
necessarily contiguous)
columns, and any column
j that is not present in S ,
there exists a row i that has
a 1 in column j and all
zeros in S

j

i

S

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Efficient Decoding

An ideal decoding time would be in the order
of poly.d; logN/, which is sublinear in N for
practical ranges of d . Ngo, Porat, and Rudra [10]
showed how to achieve this goal using a couple of
ideas: (a) two-layer test matrix construction and
(b) code concatenation using a list recoverable
code.

(a) Two-layer test matrix construction The
idea is to construct M by stacking on top of
one another two matrices: a “filtering” matrix F
and an “identification” matrix D. (See Fig. 2.)
The filtering matrix is used to quickly identify
a “small” set of L candidate items including
all the positives. Then, the identification matrix
is used to pinpoint precisely the positives. For
example, let D be any d -disjunct matrix, and that
from the tests corresponding to the rows of F,
we can produce a set S of L D poly.d; logN/
candidate items in time poly.d; logN/. Then,
by running the naïve decoding algorithm on
S using test results corresponding to the rows
of D, we can identify all the positives in time
poly.d; logN/. To formalize the notion of
“filtering matrix,” we borrow a concept from
coding theory, where producing a small list
of candidate codewords is the list decoding
problem [6].

Definition 3 (List-disjunct matrix) Let dC` �
N be positive integers. A matrix F is .d; `/-list
disjunct if and only if

S
j2T Mj n

S
k2S Mk ¤ ;

for any two disjoint sets S and T of columns of
F with jS j D d and jT j D `. (See Fig. 3.)

Note that a matrix is d -disjunct matrix iff it
is .d; 1/-list disjunct. However, the relaxation
to ` D �.d/ allows the existence (and
construction) of .d;O.d//-list-disjunct matrices
with�.d log.N=d// rows. The existence of such
small list-disjunct matrices is crucially used in
the second idea below.

(b) Code Concatenation with list recoverable
codes A t � N .d; `/-list-disjunct matrix
admits O.tN /-decoding time using the naïve
decoding algorithm. However, to achieve
poly.d; logN/ decoding time overall, we will
need to construct list-disjunct matrices that allow
for a poly.d; logN/ decoding time. In particular,
to use such a matrix as a filtering matrix, it
is necessary that ` D poly.d/. To construct
efficiently decodable list-disjunct matrices, we
need other ideas. Ngo, Porat, and Rudra [10]
used a connection to list recoverable codes [6]
to construct such matrices. This connection
was used to construct .d;O.d3=2//-list-disjunct
matrices with t D o.d2 logd N/ rows that can
be decoded in poly.t/ time. This along with
the construction in Fig. 2 implies the following
result:

Theorem 1 ([10]) Given any d -disjunct matrix,
it can be converted into another matrix with 1C
o.1/ times as many rows that is also efficiently
decodable (even if the original matrix was not).

Other constructions of list-disjunct matrices
with worse parameters were obtained earlier by
Indyk, Ngo and Rudra [7], and Cheraghchi [1]
using connections to expanders and randomness
extractors.
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t1

t2

N

L := d + �

d

x

F (filtering matrix)
(d, �)-list disjunct

D (identification matrix)
d-disjunct

poly(t1)
time

O(L · t2)
time y2

y1

Efficient Decodable Group Testing, Fig. 2 The vector
x denotes the characteristic vector of the d positives
(illustrated by the orange box). The final matrix is the
stacking of F, which is a .d; `/-list-disjunct matrix, and
D, which is a d -disjunct matrix. The result vector is
naturally divided into y1 (the part corresponding to F and
denoted by the red vector) and y2 (the part corresponding

to D and denoted by the blue vector). The decoder first
uses y1 to compute a superset of the set of positives
(denoted by green box), which is then used with y2 to
compute the final set of positives. The first step of the
decoding is represented by the red-dotted box, while the
second step (naïve decoder) is denoted by the blue-dotted
box

Efficient Decodable
Group Testing, Fig. 3 A
.d; `/-list-disjunct matrix
satisfies the following
property: for any subset S
of size d and any disjoint
subset T of size `, there
exists a row i that has a 1
in at least one column in T
and all zeros in S

T

i

S

0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 1 0 0 0 0 0

Applications

Heavy hitter is one of the most fundamental
problems in data streaming [8]. Cormode and
Muthukrishnan [2] showed that an NACGT
scheme that is efficiently decodable and is also
explicit solves a natural version of the heavy
hitter problem. An explicit construction means

one needs an algorithm that outputs a column
or a specific entry of M instead of storing the
entire matrix M which can be extremely space
consuming. This is possible with Theorem 1 by
picking the filtering and decoding matrices to be
explicit.

Another important generalization of NACGT
matrices are those that can handle errors in the
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test outcomes. Again this is possible with the
construction of Fig. 2 if the filtering and decoding
matrices are also error tolerant. The list-disjunct
matrices constructed by Cheraghchi are also error
tolerant [1].

Open Problems

The outstanding open problem in group test-
ing theory is to close the gap (1). An explicit
construction of .d; d/-list-disjunct matrices is
not known; solving this problem will lead to
a scheme that is (near-)optimal in all desired
objectives.
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Problem Definition

For a hypergraph H D .V; E/, a subset of edges
E 0 	 E is an exact cover of H , if every vertex
of V is contained in exactly one hyperedge of
E 0, that is, for all e; f 2 E 0 with e ¤ f ,
e \ f D ; and

S
E 0 D V . The EXACT COVER

(XC) problem asks for the existence of an exact
cover in a given hypergraph H . Exact Cover is in
Karp’s famous list of 21 NP-complete problems;
it is NP-complete even for 3-element hyperedges
(problem X3C [SP2] in [14]).
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Let G be a finite simple undirected graph with
vertex set V and edge set E. A vertex dominates
itself and all its neighbors, i.e., every vertex v 2
V dominates its closed neighborhood NŒv� D
fu j u D v or uv 2 Eg. A vertex subset D
of G is an efficient dominating (e.d.) set, if, for
every vertex v 2 V , there is exactly one d 2 D
dominating v [1, 2]. An edge subset M of G is
an efficient edge dominating (e.e.d.) set, if it is an
efficient dominating set in the line graph L.G/ of
G [15]. Efficient dominating sets are sometimes
also called independent perfect dominating sets,
and efficient edge dominating sets are also known
as dominating induced matchings.

The EFFICIENT DOMINATION (ED) problem
for a graph G asks for the existence of an e.d.
set in G. The EFFICIENT EDGE DOMINATION

(EED) problem asks for the existence of an e.d.
set in the line graph L.G/.

For a graph G, let N .G/ denote its closed
neighborhood hypergraph, that is, for every ver-
tex v 2 V , the closed neighborhood NŒv� is a
hyperedge in N .G/; note that this is a multiset
since distinct vertices may have the same closed
neighborhood. For a graph G, the square G2 has
the same vertex set as G and two vertices, x and
y, are adjacent in G2, if and only if their distance
in G is at most 2. Note that G2 is isomorphic to
L.N .G//.

By definition, the ED problem on a graph G is
the same as the Exact Cover problem on its closed
neighborhood hypergraph N .G/, and the EED
problem is the same as the Exact Cover problem
on L.N .G//.

Key Results

ED and EED are NP-complete; their complexity
on special graph classes was studied in various
papers – see, e.g., [2, 3, 12, 16–18, 20, 22, 24, 25]
for ED and [5, 7, 11, 15, 19, 21] for EED. In
particular, ED remains NP-complete for chordal
graphs as well as for (very restricted) bipartite
graphs such as chordal bipartite graphs, and EED
is NP-complete for bipartite graphs but solvable
in linear time for chordal graphs.

ED for Graphs
A key tool in [8] is a reduction of ED for G
to the maximum-weight independent set prob-
lem for G2, which is based on the following
observation:

For a hypergraph H D .V; E/ and e 2 E ,
let !.e/ WD jej be an edge weight function. For
the line graph L.H/, let ˛!.L.H// denote the
maximum weight of an independent vertex set
in L.H/. The weight of any independent vertex
set in L.H/ is at most jV j, and H has an exact
cover, if and only if ˛!.L.H// D jV j. Using the
fact that G2 is isomorphic to L.N .G// and ED
on G corresponds to Exact Cover on N .G/, this
means that ED on G can be reduced to the max-
imum weight of an independent vertex set in G2,
similarly for EED. This unified approach helps
to answer some open questions on ED and EED
for graph classes; one example is ED for strongly
chordal graphs: Since for a dually chordal graph
G, its square G2 is chordal, ED is solvable in
polynomial time for dually chordal graphs and
thus for strongly chordal graphs [8] (recall that
ED is NP-complete for chordal graphs). Similar
properties of powers lead to polynomial time
for ED on AT-free graphs using known results
[8]. For P5-free graphs having an e.d., G2 is
P4-free [9].

ED is NP-complete for planar bipartite graphs
of maximum degree 3 [9]. In [23], this is sharp-
ened by adding a girth condition: ED is NP-
complete for planar bipartite graphs of maximum
degree 3 and girth at least g, for every fixed g.

From the known results, it follows that ED
is NP-complete for F -free graphs whenever F
contains a cycle or a claw. Thus, F can be
assumed to be cycle- and claw-free (see, e.g.,
[9]); such graphs F are called linear forests.
For .P3 C P3/-free graphs and thus for P7-
free graphs, ED is NP-complete. ED is robustly
solvable in time O.nm/ for P5-free graphs and
for .P4 C P2/-free graphs [9, 23]. For every
fixed k � 1, ED is solvable in polynomial
time for .P5 C kP2/-free graphs [4]. For P6-free
graphs, the complexity of ED is an open prob-
lem, and correspondingly for .P6 C kP2/-free
graphs; these are the only open cases for F -free
graphs.
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EED for Graphs
The fact that graphs having an e.e.d. are K4-free
leads to a simple linear time algorithm for EED
on chordal graphs. More generally, EED is solv-
able in polynomial time for hole-free graphs and
thus for weakly chordal graphs and for chordal
bipartite graphs [7]. This also follows from the
fact that, for a weakly chordal graph G, L.G/2

is weakly chordal [10] and from the reduction
of EED for G to the maximum-weight inde-
pendent set problem for L.G/2. In [23], this is
improved to a robust O.nm/ time algorithm for
EED on hole-free graphs. In [8], we show that
EED is solvable in linear time for dually chordal
graphs.

One of the open problems for EED was its
complexity on Pk-free graphs. In [5], we show
that EED is solvable in linear time for P7-free
graphs. The complexity of EED remains open for
Pk-free graphs, k � 8. In [11], EED is solved in
polynomial time on claw-free graphs. EED is NP-
complete for planar bipartite graphs of maximum
degree 3 [7]. In [23], it is shown that EED is
NP-complete for planar bipartite graphs of max-
imum degree 3 and girth at least g, for every
fixed g.

XC, ED, and EED for Hypergraphs
The notion of ˛-acyclicity [13] is one of the
most important and most frequently studied hy-
pergraph notions. Among the many equivalent
conditions describing ˛-acyclic hypergraphs, we
take the following: For a hypergraphH D .V; E/,
a tree T with node set E and edge set ET is a join
tree of H , if, for all vertices v 2 V , the set of
hyperedges Ev WD fe 2 E j v 2 eg containing
v induces a subtree of T . H is ˛-acyclic, if it
has a join tree. Let H� WD .E ; fEv j v 2 V g/

be the dual hypergraph of H . The hypergraph
H D .V; E/ is a hypertree, if there is a tree T
with vertex set V such that, for all e 2 E , T Œe� is
connected. Obviously,H is ˛-acyclic, if and only
if its dual H� is a hypertree.

By a result of Duchet, Flament, and Slater
(see, e.g., [6]), it is known that H is a hypertree,
if and only if H has the Helly property and its
line graph L.H/ is chordal. In its dual version,

it says that H is ˛-acyclic, if and only if H is
conformal and its 2-section graph is chordal. In
[8], we show:

(i) ED and XC are NP-complete for ˛-acyclic
hypergraphs but solvable in polynomial time
for hypertrees.

(ii) EED is NP-complete for hypertrees but solv-
able in polynomial time for ˛-acyclic hyper-
graphs.
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Problem Definition

Multiple sequence alignment is an important
problem in computational biology. Applications
include finding highly conserved subregions in
a given set of biological sequences and inferring
the evolutionary history of a set of taxa from their
associated biological sequences (e.g., see [9]).
There are a number of measures proposed for
evaluating the goodness of a multiple alignment,
but prior to this work, no efficient methods are
known for computing the optimal alignment for
any of these measures. The work of Gusfield
[7] gives two computationally efficient multiple
alignment approximation algorithms for two
of the measures with approximation ratio of
less than 2. For one of the measures, they also
derived a randomized algorithm, which is much
faster and with high probability and reports a
multiple alignment with small error bounds.
To the best knowledge of the entry authors,
this work is the first to provide approximation
algorithms (with guarantee error bounds) for this
problem.
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Notations and Definitions

Let X and Y be two strings of alphabet †. The
pairwise alignment of X and Y maps X and Y
into strings X 0 and Y 0 that may contain spaces,
denoted by ‘_’, where (1) jX 0j D jY 0j D ` and
(2) removing spaces from X 0 and Y 0 returns X
and Y , respectively. The score of the alignment
is defined as d.X 0; Y 0/ D

P`
iD1 s.X

0.i/; Y 0.i//

whereX 0.i/ (and Y 0.i// denotes the i th character
in X 0 (and Y 0) and s.a; b/ with a; b 2 † [ ‘_’ is
the distance-based scoring scheme that satisfies
the following assumptions:

1. s.‘_’; ‘_’/ D 0;
2. Triangular inequality: for any three characters,
x; y; ´; s.x; ´/ � s.x; y/C s.y; ´//.

Let � D X1; X2; : : : ; Xk be a set of k > 2 strings
of alphabet †. A multiple alignment A of these k
strings maps X1; X2; : : : ; Xk to X 01; X

0
2; : : : ; X

0
k

that may contain spaces such that (1)
ˇ
ˇX 01

ˇ
ˇ Dˇ

ˇX 02
ˇ
ˇ D � � � D

ˇ
ˇX 0

k

ˇ
ˇ D ` and (2) removing

spaces from X 0i returns Xi for all 1 � i � k.
The multiple alignment A can be represented as a
k � ` matrix.

The Sum of Pairs (SP) Measure

The score of a multiple alignment A, de-
noted by SP(A/, is defined as the sum
of the scores of pairwise alignments in-
duced by A, that is,

P
i<j d.X

0
i ; X

0
j / D

P
i<j

P`
pD1 s.X

0
i Œp�; X

0
j Œp�/where 1�i <j �k.

Problem 1 (Multiple Sequence Alignment
with Minimum SP Score)

INPUT: A set of k strings, a scoring scheme s.
OUTPUT: A multiple alignment A of these k

strings with minimum SP.A/.

The Tree Alignment (TA) Measure

In this measure, the multiple alignment is derived
from an evolutionary tree. For a given set � of k
strings, let �0 
 �. An evolutionary tree T 0� for

� is a tree with at least k nodes, where there is
a one-to-one correspondence between the nodes
and the strings in �0. Let X 0u 2 �

0 be the string
for node u. The score of T 0�, denoted by TA

�
T 0�
�
,

is defined as
P

eD.u;v/D
�
X 0u; X

0
v

�
where e is an

edge in T 0� and D
�
X 0u; X

0
v

�
denotes the score

of the optimal pairwise alignment for X 0u and
X 0v . Analogously, the multiple alignment of �
under the TA measure can also be represented
by a j�0j � ` matrix, where j�0j � k, with a
score defined as

P
eD.u;v/ d

�
X 0u; X

0
v

�
(e is an

edge in T 0�/, similar to the multiple alignment
under the SP measure in which the score is the
summation of the alignment scores of all pairs of
strings. Under the TA measure, since it is always
possible to construct the j�0j � ` matrix such that
d
�
X 0u; X

0
v

�
D D

�
X 0u; X

0
v

�
for all e D .u; v/ in

T 0� and we are usually interested in finding the
multiple alignment with the minimum TA value,
so D

�
X 0u; X

0
v

�
is used instead of d

�
X 0u; X

0
v

�
in

the definition of TA
�
T 0�
�
.

Problem 2 (Multiple Sequence Alignment
with Minimum TA Score)

INPUT: A set of k strings, a scoring scheme s.
OUTPUT: An evolutionary tree T for these k

strings with minimum TA.T /.

Key Results

Theorem 1 Let A� be the optimal multiple
alignment of the given k strings with minimum SP
score. They provide an approximation algorithm
(the center star method) that gives a multiple
alignment A such that SP.A/

SP.A�/
� 2.k�1/

k

D 2 � 2
k

.

The center star method is to derive a multiple
alignment which is consistent with the optimal
pairwise alignments of a center string with all
the other strings. The bound is derived based on
the triangular inequality of the score function.
The time complexity of this method is O.k2`2/,
where `2 is the time to solve the pairwise align-
ment by dynamic programming and k2 is needed
to find the center string, Xc , which gives the
minimum value of

P
i¤c D.Xc ; Xi /.
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Theorem 2 Let A� be the optimal multiple
alignment of the given k strings with minimum
SP score. They provide a randomized algorithm
that gives a multiple alignment A such that
SP.A/

SP.A�/
� 2 C 1

r�1
with probability at least

1 �
�

r�1
r

�p
for any r > 1 and p � 1. Instead

of computing

�
k

2

�

optimal pairwise alignments

to find the best center string, the randomized
algorithm only considers p randomly selected
strings to be candidates for the best center
string; thus, this method needs to x compute
only .k � 1/p optimal pairwise alignments in
O.kp`2/ time where 1 � p � k.

Theorem 3 Let T � be the optimal evolutionary
tree of the given k strings with minimum TA score.
They provide an approximation algorithm that
gives an evolutionary tree T such that TA.T /

TA.T �/
�

2.k�1/
k
D 2 � 2

k
.

In the algorithm, they first compute all the

�
k

2

�

optimal pairwise alignments to construct a graph
with every node representing a distinct string
Xi and the weight of each edge .Xi ; Xj / as
D.XiXj /. This step determines the overall time
complexity O.k2`2/. Then, they find a mini-
mum spanning tree from the graph. The multiple
alignment has to be consistent with the optimal
pairwise alignments represented by the edges of
this minimum spanning tree.

Applications

Multiple sequence alignment is a fundamental
problem in computational biology. In particular,
multiple sequence alignment is useful in identify-
ing those common structures, which may only be
weakly reflected in the sequence and not easily
revealed by pairwise alignment. These common
structures may carry important information for
their evolutionary history, critical conserved mo-
tifs, and common 3D molecular structure, as well
as biological functions.

More recently, multiple sequence alignment is
also used in revealing noncoding RNAs (ncR-

NAs) [2]. In this type of multiple alignment, we
are not only align the underlying sequences but
also the secondary structures of the RNAs. Re-
searchers believe that ncRNAs that belong to the
same family should have common components
giving a similar secondary structure. The multiple
alignment can help to locate and identify these
common components.

Open Problems

A number of open problems related to the work
of Gusfield remain open. For the SP measure,
the center star method can be extended to the q-
star method .q > 2/ with approximation ratio of
2 � q=k [1, 10], sect. 7.5 of [11]). Whether there
exists an approximation algorithm with better
approximation ratio or with better time complex-
ity is still unknown. For the TA measure, to
be the best knowledge of the entry authors, the
approximation ratio in Theorem 3 is currently the
best result.

Another interesting direction related to this
problem is the constrained multiple sequence
alignment problem [12] which requires the mul-
tiple alignment to contain certain aligned charac-
ters with respect to a given constrained sequence.
The best known result [6] is an approximation
algorithm (also follows the idea of center star
method) which gives an alignment with approx-
imation ratio of 2 � 2=k for k strings.

For the complexity of the problem, Wang and
Jiang [13] were the first to prove the NP-hardness
of the problem with SP score under a nonmetric
distance measure over a 4-symbol alphabet. More
recently, in [5], the multiple alignment problem
with SP score, star alignment, and TA score have
been proved to be NP-hard for all binary or larger
alphabets under any metric. Developing efficient
approximation algorithms with good bounds for
any of these measures is desirable.

Experimental Results

Two experiments have been reported in the pa-
per showing that the worst-case error bounds in
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Theorems 1 and 2 (for the SP measure) are pes-
simistic compared to the typical situation arising
in practice.

The scoring scheme used in the experiments
is s.a; b/ D 0 if a D bI s.a; b/ D 1 it either
a or b is a space; otherwise s.a; b/ D 2.
Since computing the optimal multiple alignment
with minimum SP score has been shown to
be NP-hard, they evaluate the performance
of their algorithms using the lower bound of
P

i<j D.Xi ; Xj / (recall that D.Xi ; Xj / is the
score of the optimal pairwise alignment of Xi

and Xj /. They have aligned 19 similar amino
acid sequences with average length of 60 of
homeoboxs from different species. The ratio of
the scores of reported alignment by the center star
method to the lower bound is only 1.018 which
is far from the worst-case error bound given in
Theorem 1. They also aligned 10 not-so-similar
sequences near the homeoboxes, and the ratio
of the reported alignment to the lower bound
is 1.162. Results also show that the alignment
obtained by the randomized algorithm is usually
not far away from the lower bound.

Data Sets

The exact sequences used in the experiments are
not provided.
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Problem Definition

We consider the following fundamental problem
in scheduling theory. Suppose that there is a set J
of n independent jobs Jj with processing time pj

and a set P of m nonidentical processors Pi that
run at different speeds si . If job Jj is executed on
processor Pi , then processor Pi needs pj =si time
units to complete the job. The goal is to find an
assignment a W J ! P for the jobs to the proces-
sors that minimizes the total length of the sched-
ule maxiD1;:::;m

P
Jj Wa.Jj /DPi

pj =si . This is the
minimum time needed to complete all jobs on the
processors. The problem is denoted QjjCmax and
it is also called the minimum makespan problem
on uniform parallel processors. By simplicity we
may assume that the number m of processors is
bounded by the number of jobs; otherwise select
only the fastest n machines in O.m/ time.

Key Results

The scheduling problem on uniform and also
identical processors is NP-hard [7] and the exis-
tence of a polynomial time algorithm for it would
imply P D NP . Hochbaum and Shmoys [9, 10]
presented a family of polynomial time approxi-
mation algorithms fA�j� > 0g for both schedul-
ing problems, where each algorithmA� generates
a schedule of length .1 C �/OPT .I / for each
instance I and has running time polynomial in
the input size jI j. Such a family of algorithms is
called a polynomial time approximation scheme
(PTAS). It is allowed that the running time of
each algorithm A� is exponential in 1=�. The
running time of the PTAS for uniform processors
by Hochbaum and Shmoys [10] is .n=�/O.1=�2/.

Two restricted classes of approximation
schemes were defined to classify different faster

approximation scheme. An efficient polynomial
time approximation scheme (EPTAS) is a PTAS
with running time f .1=�/ poly.jI j/ for some
function f , while a fully polynomial time
approximation scheme (FPTAS) runs in time
poly.1=�; jI j/; polynomial in 1=� and the size
jI j of the instance. Since the scheduling problem
on identical and also uniform processors is
NP-hard in the strong sense (it contains bin
packing as special case), we cannot hope for
an FPTAS. For identical processors, Hochbaum
and Shmoys (see [8]) and Alon et al. [1] gave an
EPTAS with running time f .1=�/CO.n/, where
f is doubly exponential in 1=�.

Known Techniques
Hochbaum and Shmoys [9] introduced the
dual approximation approach for identical and
uniform processors and used the relationship
between these scheduling problems and the bin
packing problem. This relationship between
scheduling on identical processors and bin
packing problem had been exploited already by
Coffman et al. [3]. Using the dual approximation
approach, Hochbaum and Shmoys [9] proposed a
PTAS for scheduling on identical processors with
running time .n=�/O.1=�2/.

The main idea in the approach is to guess the
length of the schedule by using binary search
and to consider the corresponding bin packing
instance with scaled identical bin size equal to 1.
Then they distinguish between large items with
size > � and small items with size � �. For
the large items they use a dynamic programming
approach to calculate the minimum number of
bins needed to pack them all. Afterward, they
pack the remaining small items in a greedy way
in enlarged bins of size 1C � (i.e., they pack into
any bin that currently contains items of total size
at most 1; and if no such bin exists, then they open
a new bin).

Furthermore, Hochbaum and Shmoys (see [8])
and Alon et al. [1] achieved an improvement to
linear time by using an integer linear program
for the cutting stock formulation of bin packing
for the large items and a result on integer linear
programming with a fixed number of variables by
Lenstra [15]. This gives an EPTAS for identical
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processors with running time f .1=�/ C O.n/

where f is doubly exponential in 1=�.
For uniform processors, the decision problem

for the scheduling problem with makespan at
most T can be viewed as a bin packing problem
with different bin sizes. Using an �-relaxed ver-
sion of this bin packing problem, Hochbaum and
Shmoys [10] were also able to obtain a PTAS for
scheduling on uniform processors with running
time .n=�/O.1=�2/. The main underlying idea in
their algorithm is a clever rounding technique and
a nontrivial dynamic programming approach over
the different bins ordered by their sizes.

New Results
Recently, Jansen [11] proposed an EPTAS for
scheduling jobs on uniform machines:

Theorem 1 ([11]) There is an EPTAS (a family
of algorithms fA�j� > 0g) which, given an in-
stance I ofQjjCmax with n jobs andm processors
with different speeds and a positive number � >
0, produces a schedule for the jobs of length
A�.I / � .1 C �/OPT .I /. The running time of
A� is

2O.1=�2 log3.1=�// C poly.n/:

Interestingly, the running time of the EPTAS
is only single exponential in 1=�.

Integer Linear Programming and
Grouping Techniques
The new algorithm uses the dual approximation
method by Hochbaum and Shmoys [10] to trans-
form the scheduling problem into a bin packing
problem with different bin sizes. Next, the input
is structured by rounding bin sizes and processing
times to values of the form .1C ı/i and ı.1C ı/i

with i 2 Z where ı depends on �. After sorting
the bins according to their sizes, c1 � : : : �

cm, three groups of bins are built: B1 with the
largest K bins (where K is constant). Let G be
the smallest index such that capacity cKCGC1 �

�cK where � < 1 depends on �; such an index G
exists for cm � �cK . In this case B2 is the set of
the next G largest bins where the maximum size
cmax.B2/ D cKC1 divided by the minimum size
cmin.B2/ D cKCG is bounded by a constant 1=�
and B3 is the set with the remaining smaller bins

of size smaller than �cK . This generates a gap
of constant size between the capacities of bins in
B1 and B3. If the rate cm=cK , where cm is the
smallest bin size, is larger the constant � , then a
simpler instance is obtained with only two groups
B1 and B2 of bins.

For B1 all packings for the very large items
are computed (those which only fit there). If there
is a feasible packing, then a mixed integer linear
program (MILP) or an integer linear program
(ILP) in the simpler case is used to place the
other items into the bins. The placement of the
large items into the second group B2 is done
via integral configuration variables; similar to the
ILP formulation for bin packing by Fernandez de
la Vega and Lueker [6]. Fractional configuration
variables are used for the placement of large
items into B3. Furthermore, additional fractional
variables are taken to place small items into
B1, B2, and B3. The MILP has only a constant
number of integral variables and, therefore, can
be solved via the algorithm by Lenstra or Kannan
[14, 15].

In order to avoid that the running time is
doubly exponential in 1=�, a recent result by
Eisenbrand and Shmonin [5] about integer cones
is used. To apply their result a system of equal-
ities for the integral configuration variables is
considered and the corresponding coefficients are
rounded. Then each feasible solution of the mod-
ified MILP contains at most O.1=ı log2.1=ı//

integral variables with values larger than zero. By
choosing the strictly positive integral variables
in the MILP, the number of integral configu-
ration variables is reduced from 2O.1=ı log.1=ı//

to O.1=ı log2.1=ı//. The number of choices is
bounded by 2O.1=ı2 log3.1=ı//.

Afterward, the fractional variables in the
MILP solution are rounded to integral values
using ideas from scheduling job shops [13]
and scheduling on unrelated machines [16]. The
effect of the rounding is that most of the items
can be placed directly into the bins. Only a few
of them cannot be placed this way, and here is
where the K largest bins and the gap between
B1 and B3 come into play. It can be proved that
these items can be moved to the K largest bins
by increasing their sizes only slightly.
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Algorithm Avoiding the MILP
Recently an EPTAS for scheduling on uniform
machines is presented by Jansen and Robenek
[12] that avoids the use of an MILP or ILP solver.
In the new approach instead of solving (M)ILPs,
an LP-relaxation and structural information about
the “closest” ILP solution is used.

In the following the main techniques are de-
scribed for identical processors. For a given LP-
solution x, the distance to the closest ILP solution
y in the infinity norm is studied, i.e., kx � yk1.
For the constraint matrixAı of the considered LP,
this distance is defined by

max -gap.Aı/ WD maxfminfky? � x?k1 W y
?

solution of ILPg W x?solution of LPg:

Let C.Aı/ denote an upper bound for max -gap
.Aı/. The running time of the algorithm is
2O.1=� log.1=�/ log.C.Aı/// C poly.n/. The al-
gorithm for uniform processors is more
complex, but we obtain a similar running time
2O.1=� log.1=�/ log.C. QAı/// C poly.n/, where the
constraint matrix QAı is slightly different. For the
details we refer to [12].

It can be proved using a result by Cook
et al. [4] that C.Aı/; C. QAı/ � 2O.1=� log2.1=�//.
Consequently, the algorithm has a running time
at most 2O.1=�2 log3.1=�// C poly.n/, the same as
in [11]. But, to our best knowledge, no instance
is known to take on the value 2O.1=� log2.1=�//

for max - gap.Aı/. We conjecture C.Aı/ �

poly.1=�/. If that holds, the running time of the
algorithm would be 2O.1=� log2.1=�// C poly.n/

and thus improve the result in [11].

Lower Bounds
Recently, Chen, Jansen, and Zhang [2] proved the
following lower bound on the running time: For
scheduling on an arbitrary number of identical
machines, denoted by P jjCmax, a polynomial
time approximation scheme (PTAS) of running
time 2O..1=�/1�ı/ � poly.n/ for any ı > 0 would
imply that the exponential time hypothesis (ETH)
for 3-SAT fails.

Open Problems

The main open question is whether there is an EP-
TAS for scheduling jobs on identical and uniform
machines with a running time 2O.1=� logc.1=�// �

poly.n/.

Experimental Results

None is reported.
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Problem Definition

In the 50 years since the discovery of the
structure of DNA, and with new techniques for
sequencing the entire genome of organisms,
biology is rapidly moving towards a data-
intensive, computational science. Many of
the newly faced challenges require high-
performance computing, either due to the
massive-parallelism required by the problem,
or the difficult optimization problems that are
often combinatoric and NP-hard. Unlike the
traditional uses of supercomputers for regular,
numerical computing, many problems in biology
are irregular in structure, significantly more
challenging to parallelize, and integer-based
using abstract data structures.

Biologists are in search of biomolecular
sequence data, for its comparison with other

genomes, and because its structure determines
function and leads to the understanding of bio-
chemical pathways, disease prevention and cure,
and the mechanisms of life itself. Computational
biology has been aided by recent advances in
both technology and algorithms; for instance,
the ability to sequence short contiguous strings
of DNA and from these reconstruct the whole
genome and the proliferation of high-speed
microarray, gene, and protein chips for the study
of gene expression and function determination.
These high-throughput techniques have led to an
exponential growth of available genomic data.

Algorithms for solving problems from
computational biology often require parallel
processing techniques due to the data- and
compute-intensive nature of the computations.
Many problems use polynomial time algorithms
(e.g., all-to-all comparisons) but have long
running times due to the large number of items
in the input; for example, the assembly of
an entire genome or the all-to-all comparison
of gene sequence data. Other problems
are compute-intensive due to their inherent
algorithmic complexity, such as protein folding
and reconstructing evolutionary histories from
molecular data, that are known to be NP-hard (or
harder) and often require approximations that are
also complex.

Key Results

None

Applications

Phylogeny Reconstruction
A phylogeny is a representation of the evolu-
tionary history of a collection of organisms or
genes (known as taxa). The basic assumption of
process necessary to phylogenetic reconstruction
is repeated divergence within species or genes.
A phylogenetic reconstruction is usually depicted
as a tree, in which modern taxa are depicted at the
leaves and ancestral taxa occupy internal nodes,
with the edges of the tree denoting evolution-
ary relationships among the taxa. Reconstructing
phylogenies is a major component of modern
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research programs in biology and medicine (as
well as linguistics). Naturally, scientists are in-
terested in phylogenies for the sake of knowl-
edge, but such analyses also have many uses in
applied research and in the commercial arena.
Existing phylogenetic reconstruction techniques
suffer from serious problems of running time (or,
when fast, of accuracy). The problem is particu-
larly serious for large data sets: even though data
sets comprised of sequence from a single gene
continue to pose challenges (e.g., some analyses
are still running after 2 years of computation
on medium-sized clusters), using whole-genome
data (such as gene content and gene order) gives
rise to even more formidable computational prob-
lems, particularly in data sets with large numbers
of genes and highly-rearranged genomes.

To date, almost every model of speciation and
genomic evolution used in phylogenetic recon-
struction has given rise to NP-hard optimiza-
tion problems. Three major classes of methods
are in common use. Heuristics (a natural conse-
quence of the NP-hardness of the problems) run
quickly, but may offer no quality guarantees and
may not even have a well-defined optimization
criterion, such as the popular neighbor-joining
heuristic [9]. Optimization based on the crite-
rion of maximum parsimony (MP) [4] seeks the
phylogeny with the least total amount of change
needed to explain modern data. Finally, optimiza-
tion based on the criterion of maximum likelihood
(ML) [5] seeks the phylogeny that is the most
likely to have given rise to the modern data.

Heuristics are fast and often rival the opti-
mization methods in terms of accuracy, at least
on datasets of moderate size. Parsimony-based
methods may take exponential time, but, at least
for DNA and amino acid data, can often be
run to completion on datasets of moderate size.
Methods based on maximum likelihood are very
slow (the point estimation problem alone ap-
pears intractable) and thus restricted to very small
instances, and also require many more assump-
tions than parsimony-based methods, but appear
capable of outperforming the others in terms of
the quality of solutions when these assumptions
are met. Both MP- and ML-based analyses are
often run with various heuristics to ensure timely

termination of the computation, with mostly un-
quantified effects on the quality of the answers
returned.

Thus there is ample scope for the application
of high-performance algorithm engineering in
the area. As in all scientific computing areas,
biologists want to study a particular dataset and
are willing to spend months and even years in
the process: accurate branch prediction is the
main goal. However, since all exact algorithms
scale exponentially (or worse, in the case of
ML approaches) with the number of taxa, speed
remains a crucial parameter – otherwise few
datasets of more than a few dozen taxa could ever
be analyzed.

Experimental Results

As an illustration, this entry briefly describes
a high-performance software suite, GRAPPA
(Genome Rearrangement Analysis through
Parsimony and other Phylogenetic Algorithms)
developed by Bader et al. GRAPPA extends
Sankoff and Blanchette’s breakpoint phylogeny
algorithm [10] into the more biologically-
meaningful inversion phylogeny and provides
a highly-optimized code that can make use of
distributed- and shared-memory parallel systems
(see [1, 2, 6, 7, 8, 11] for details). In [3], Bader
et al. gives the first linear-time algorithm and fast
implementation for computing inversion distance
between two signed permutations. GRAPPA
was run on a 512-processor IBM Linux cluster
with Myrinet and obtained a 512-fold speed-
up (linear speedup with respect to the number of
processors): a complete breakpoint analysis (with
the more demanding inversion distance used in
lieu of breakpoint distance) for the 13 genomes
in the Campanulaceae data set ran in less than
1.5 h in an October 2000 run, for a million-
fold speedup over the original implementation.
The latest version features significantly improved
bounds and new distance correction methods
and, on the same dataset, exhibits a speedup
factor of over one billion. GRAPPA achieves this
speedup through a combination of parallelism
and high-performance algorithm engineering.
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Although such spectacular speedups will not
always be realized, many algorithmic approaches
now in use in the biological, pharmaceutical, and
medical communities may benefit tremendously
from such an application of high-performance
techniques and platforms.

This example indicates the potential of ap-
plying high-performance algorithm engineering
techniques to applications in computational
biology, especially in areas that involve complex
optimizations: Bader’s reimplementation did
not require new algorithms or entirely new
techniques, yet achieved gains that turned an
impractical approach into a usable one.
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Problem Definition

Dealing effectively with applications in large net-
works, it typically requires the efficient solution
of one ore more underlying algorithmic prob-
lems. Due to the size of the network, a consid-
erable effort is inevitable in order to achieve the
desired efficiency in the algorithm.

One of the primary tasks in large network
applications is to answer queries for finding best
routes or paths as efficiently as possible. Quite
often, the challenge is to process a vast number of
such queries on-line: a typical situation encoun-
tered in several real-time applications (e.g., traffic
information systems, public transportation sys-
tems) concerns a query-intensive scenario, where
a central server has to answer a huge number
of on-line customer queries asking for their best
routes (or optimal itineraries). The main goal in
such an application is to reduce the (average)
response time for a query.

Answering a best route (or optimal itinerary)
query translates in computing a minimum cost
(shortest) path on a suitably defined directed
graph (digraph) with nonnegative edge costs.
This in turn implies that the core algorithmic
problem underlying the efficient answering of
queries is the single-source single-target shortest
path problem.

Although the straightforward approach of pre-
computing and storing shortest paths for all pairs
of vertices would enabling the optimal answer-
ing of shortest path queries, the quadratic space
requirements for digraphs with more than 105

vertices makes such an approach prohibitive for
large and very large networks. For this reason, the
main goal of almost all known approaches is to
keep the space requirements as small as possible.
This in turn implies that one can afford a heavy
(in time) preprocessing, which does not blow up
space, in order to speed-up the query time.

The most commonly used approach for an-
swering shortest path queries employs Dijkstra’s
algorithm and/or variants of it. Consequently, the
main challenge is how to reduce the algorithm’s
search-space (number of vertices visited), as this
would immediately yield a better query time.

Key Results

All results discussed concern answering of
optimal (or exact or distance-preserving) shortest
paths under the aforementioned query-intensive
scenario, and are all based on the following
generic approach. A preprocessing of the input
network G D .V;E/ takes place that results in
a data structure of size O.jV j C jEj/ (i.e., linear
to the size of G). The data structure contains
additional information regarding certain shortest
paths that can be used later during querying.

Depending on the pre-computed additional
information as well as on the way a shortest path
query is answered, two approaches can be distin-
guished. In the first approach, graph annotation,
the additional information is attached to vertices
or edges of the graph. Then, speed-up techniques
to Dijkstra’s algorithm are employed that, based
on this information, decide quickly which part
of the graph does not need to be searched. In
the second approach, an auxiliary graph G0

is constructed hierarchically. A shortest path
query is then answered by searching only a small
part of G0, using Dijkstra’s algorithm enhanced
with heuristics to further speed-up the query
time.

In the following, the key results of the
first [3, 4, 9, 11] and the second approach [1, 2,
5, 7, 8, 10] are discussed, as well as results
concerning modeling issues.

First Approach: Graph Annotation
The first work under this approach concerns the
study in [9] on large railway networks. In that
paper, two new heuristics are introduced: the
angle-restriction (that tries to reduce the search
space by taking advantage of the geometric lay-
out of the vertices) and the selection of sta-
tions (a subset of vertices is selected among
which all pairs shortest paths are pre-computed).
These two heuristics along with a combination of
the classical goal-directed or A * search turned
out to be rather efficient. Moreover, they moti-
vated two important generalizations [10, 11] that
gave further improvements to shortest path query
times.
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The full exploitation of geometry-based
heuristics was investigated in [11], where both
street and railway networks are considered. In
that paper, it is shown that the search space
of Dijkstra’s algorithm can be significantly
reduced (to 5–10 % of the initial graph size) by
extracting geometric information from a given
layout of the graph and by encapsulating
pre-computed shortest path information in
resulted geometric objects, called containers.
Moreover, the dynamic case of the problem was
investigated, where edge costs are subject to
change and the geometric containers have to be
updated.

A powerful modification to the classical Dijk-
stra’s algorithm, called reach-based routing, was
presented in [4]. Every vertex is assigned a so-
called reach value that determines whether a par-
ticular vertex will be considered during Dijkstra’s
algorithm. A vertex is excluded from considera-
tion if its reach value is small; that is, if it does
not contribute to any path long enough to be of
use for the current query.

A considerable enhancement of the classical
A * search algorithm using landmarks (selected
vertices like in [9, 10]) and the triangle inequality
with respect to the shortest path distances was
shown in [3]. Landmarks and triangle inequality
help to provide better lower bounds and hence
boost A * search.

Second Approach: Auxiliary Graph
The first work under this approach concerns the
study in [10], where a new hierarchical decompo-
sition technique is introduced called multi-level
graph. A multi-level graph M is a digraph which
is determined by a sequence of subsets of V and
which extends E by adding multiple levels of
edges. This allows to efficiently construct, during
querying, a subgraph ofM which is substantially
smaller than G and in which the shortest path
distance between any of its vertices is equal to the
shortest path distance between the same vertices
in G. Further improvements of this approach have
been presented recently in [1]. A refinement of
the above idea was introduced in [5], where the
multi-level overlay graphs are introduced. In such

a graph, the decomposition hierarchy is not de-
termined by application-specific information as it
happens in [9, 10].

An alternative hierarchical decomposition
technique, called highway hierarchies, was
presented in [7]. The approach takes advantage
of the inherent hierarchy possessed by real-
world road networks and computes a hierarchy
of coarser views of the input graph. Then, the
shortest path query algorithm considers mainly
the (much smaller in size) coarser views, thus
achieving dramatic speed-ups in query time.
A revision and improvement of this method was
given in [8]. A powerful combination of the
highway hierarchies with the ideas in [3] was
reported in [2].

Modeling Issues
The modeling of the original best route (or
optimal itinerary) problem on a large network
to a shortest path problem in a suitably defined
directed graph with appropriate edge costs also
plays a significant role in reducing the query time.
Modeling issues are thoroughly investigated
in [6]. In that paper, the first experimental
comparison of two important approaches (time-
expanded versus time-dependent) is carried out,
along with new extensions of them towards
realistic modeling. In addition, several new
heuristics are introduced to speed-up query
time.

Applications

Answering shortest path queries in large graphs
has a multitude of applications, especially in
traffic information systems under the aforemen-
tioned scenario; that is, a central server has to
answer, as fast as possible, a huge number of
on-line customer queries asking for their best
routes or itineraries. Other applications of the
above scenario involve route planning systems
for cars, bikes and hikers, public transport sys-
tems for itinerary information of scheduled ve-
hicles (like trains or buses), answering queries
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in spatial databases, and web searching. All the
above applications concern real-time systems in
which users continuously enter their requests for
finding their best connections or routes. Hence,
the main goal is to reduce the (average) response
time for answering a query.

Open Problems

Real-world networks increase constantly in size
either as a result of accumulation of more and
more information on them, or as a result of the
digital convergence of media services, commu-
nication networks, and devices. This scaling-up
of networks makes the scalability of the under-
lying algorithms questionable. As the networks
continue to grow, there will be a constant need
for designing faster algorithms to support core
algorithmic problems.

Experimental Results

All papers discussed in section “Key Results”
contain important experimental studies on the
various techniques they investigate.

Data Sets

The data sets used in [6, 11] are available from
http://lso-compendium.cti.gr/ under problems 26
and 20, respectively.

The data sets used in [1, 2] are available from
http://www.dis.uniroma1.it/~challenge9/.

URL to Code

The code used in [9] is available from http://doi.
acm.org/10.1145/351827.384254.

The code used in [6, 11] is available from
http://lso-compendium.cti.gr/ under problems 26
and 20, respectively.

The code used in [3] is available from http://
www.avglab.com/andrew/soft.html.
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Problem Definition

Transforming a theoretical geometric algorithm
into an effective computer program abounds with
hurdles. Overcoming these difficulties is the con-
cern of engineering geometric algorithms, which
deals, more generally, with the design and imple-
mentation of certified and efficient solutions to
algorithmic problems of geometric nature. Typ-
ical problems in this family include the con-
struction of Voronoi diagrams, triangulations, ar-
rangements of curves and surfaces (namely, space
subdivisions), two- or higher-dimensional search
structures, convex hulls and more.

Geometric algorithms strongly couple topo-
logical/combinatorial structures (e.g., a graph de-
scribing the triangulation of a set of points) on
the one hand, with numerical information (e.g.,
the coordinates of the vertices of the triangula-
tion) on the other. Slight errors in the numerical
calculations, which in many areas of science
and engineering can be tolerated, may lead to
detrimental mistakes in the topological structure,
causing the computer program to crash, to loop
infinitely, or plainly to give wrong results.

Straightforward implementation of geometric
algorithms as they appear in a textbook, using

standard machine arithmetic, is most likely to
fail. This entry is concerned only with certified
solutions, namely, solutions that are guaranteed
to construct the exact desired structure or a good
approximation of it; such solutions are often
referred to as robust.

The goal of engineering geometric algorithms
can be restated as follows: Design and implement
geometric algorithms that are at once robust and
efficient in practice.

Much of the difficulty in adapting in practice
the existing vast algorithmic literature in compu-
tational geometry comes from the assumptions
that are typically made in the theoretical study
of geometric algorithms that (1) the input is in
general position, namely, degenerate input is pre-
cluded, (2) computation is performed on an ideal
computer that can carry out real arithmetic to in-
finite precision (so-called real RAM), and (3) the
cost of operating on a small number of simple
geometric objects is “unit” time (e.g., equal cost
is assigned to intersecting three spheres and to
comparing two integer numbers).

Now, in real life, geometric input is quite
often degenerate, machine precision is limited,
and operations on a small number of simple
geometric objects within the same algorithm may
differ 100-fold and more in the time they take
to execute (when aiming for certified results).
Just implementing an algorithm carefully may
not suffice and often redesign is called for.

Key Results

Tremendous efforts have been invested in
the design and implementation of robust
computational-geometry software in recent years.
Two notable large-scale efforts are the CGAL

library [1] and the geometric part of the LEDA

library [14]. These are jointly reviewed in the
survey by Kettner and Näher [13]. Numerous
other relevant projects, which for space
constraints are not reviewed here, are surveyed by
Joswig [12] with extensive references to papers
and Web sites.

A fundamental engineering decision to
take when coming to implement a geometric
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algorithm is what will the underlying arithmetic
be, that is, whether to opt for exact computation
or use the machine floating-point arithmetic.
(Other less commonly used options exist as well.)
To date, the CGAL and LEDA libraries are almost
exclusively based on exact computation. One
of the reasons for this exclusivity is that exact
computation emulates the ideal computer (for
restricted problems) and makes the adaptation of
algorithms from theory to software easier. This
is facilitated by major headway in developing
tools for efficient computation with rational
or algebraic numbers (GMP [3], LEDA [14],
CORE [2] and more). On top of these tools, clever
techniques for reducing the amount of exact com-
putation were developed, such as floating-point
filters and the higher-level geometric filtering.

The alternative is to use the machine floating-
point arithmetic, having the advantage of be-
ing very fast. However, it is nowhere near the
ideal infinite precision arithmetic assumed in the
theoretical study of geometric algorithms and
algorithms have to be carefully redesigned. See,
for example, the discussion about imprecision in
the manual of QHULL, the convex hull program
by Barber et al. [5]. Over the years a variety
of specially tailored floating-point variants of
algorithms have been proposed, for example, the
carefully crafted VRONI package by Held [11],
which computes the Voronoi diagram of points
and line segments using standard floating-point
arithmetic, based on the topology-oriented ap-
proach of Sugihara and Iri. While VRONI works
very well in practice, it is not theoretically cer-
tified. Controlled perturbation [9] emerges as
a systematic method to produce certified ap-
proximations of complex geometric constructs
while using floating-point arithmetic: the input
is perturbed such that all predicates are com-
puted accurately even with the limited-precision
machine arithmetic, and a method is given to
bound the necessary magnitude of perturbation
that will guarantee the successful completion of
the computation.

Another decision to take is how to represent
the output of the algorithm, where the major issue
is typically how to represent the coordinates of
vertices of the output structure(s). Interestingly,

this question is crucial when using exact com-
putation since there the output coordinates can
be prohibitively large or simply impossible to
finitely enumerate. (One should note though that
many geometric algorithms are selective only,
namely, they do not produce new geometric en-
tities but just select and order subsets of the
input coordinates. For example, the output of an
algorithm for computing the convex hull of a set
of points in the plane is an ordering of a subset
of the input points. No new point is computed.
The discussion in this paragraph mostly applies to
algorithms that output new geometric constructs,
such as the intersection point of two lines.) But
even when using floating-point arithmetic, one
may prefer to have a more compact bit-size rep-
resentation than, say, machine doubles. In this
direction there is an effective, well-studied so-
lution for the case of polygonal objects in the
plane, called snap rounding, where vertices and
intersection points are snapped to grid vertices
while retaining certain topological properties of
the exact desired structure. Rounding with guar-
antees is in general a very difficult problem,
and already for polyhedral objects in 3-space the
current attempts at generalizing snap rounding
are very costly (increasing the complexity of
the rounded objects to the third, or even higher,
power).

Then there are a variety of engineering issues
depending on the problem at hand. Following
are two examples of engineering studies where
the experience in practice is different from what
the asymptotic resource measures imply. The
examples relate to fundamental steps in many
geometric algorithms: decomposition and point
location.

Decomposition
A basic step in many geometric algorithms is
to decompose a (possibly complex) geometric
object into simpler subobjects, where each
subobject typically has constant descriptive
complexity. A well-known example is the
triangulation of a polygon. The choice of
decomposition may have a significant effect on
the efficiency in practice of various algorithms
that rely on decomposition. Such is the case
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when constructing Minkowski sums of polygons
in the plane. The Minkowski sum of two sets A
and B in R

d is the vector sum of the two sets
A˚ B D faC bja 2 A; b 2 Bg. The simplest
approach to computing Minkowski sums of
two polygons in the plane proceeds in three
steps: triangulate each polygon, then compute
the sum of each triangle of one polygon with
each triangle of the other, and finally take
the union of all the subsums. In asymptotic
measures, the choice of triangulation (over
alternative decompositions) has no effect. In
practice though, triangulation is probably the
worst choice compared with other convex
decompositions, even fairly simple heuristic
ones (not necessarily optimal), as shown by
experiments on a dozen different decomposition
methods [4]. The explanation is that triangulation
increases the overall complexity of the subsums
and in turn makes the union stage more complex –
indeed by a constant factor, but a noticeable
factor in practice. Similar phenomena were
observed in other situations as well. For
example, when using the prevalent vertical
decomposition of arrangements – often it is too
costly compared with sparser decompositions
(i.e., decompositions that add fewer extra
features).

Point Location
A recurring problem in geometric computing
is to process given planar subdivision (planar
map), so as to efficiently answer point-location
queries: Given a point q in the plane, which
face of the map contains q? Over the years
a variety of point-location algorithms for
planar maps were implemented in CGAL, in
particular, a hierarchical search structure that
guarantees logarithmic query time after expected
O.n logn/ preprocessing time of a map with
n edges. This algorithm is referred to in CGAL

as the RIC point-location algorithm after the
preprocessing method which uses randomized
incremental construction. Several simpler, easier-
to-program algorithms for point location were
also implemented. None of the latter beats the
RIC algorithm in query time. However, the RIC
is by far the slowest of all the implemented

algorithms in terms of preprocessing, which in
many scenarios renders it less effective. One
of the simpler methods devised is a variant
of the well-known jump-and-walk approach to
point location. The algorithm scatters points
(so-called landmarks) in the map and maintains
the landmarks (together with their containing
faces) in a nearest-neighbor search structure.
Once a query q is issued it finds the nearest
landmark ` to q, and “walks” in the map from
` toward q along the straight line segment
connecting them. This landmark approach offers
query time that is only slightly more expensive
than the RIC method while being very efficient
in preprocessing. The full details can be found
in [10]. This is yet another consideration when
designing (geometric) algorithms: the cost of
preprocessing (and storage) versus the cost of
a query. Quite often the effective (practical)
tradeoff between these costs needs to be deduced
experimentally.

Applications

Geometric algorithms are useful in many areas.
Triangulations and arrangements are examples
of basic constructs that have been intensively
studied in computational geometry, carefully im-
plemented and experimented with, as well as used
in diverse applications.

Triangulations
Triangulations in two and three dimensions
are implemented in CGAL [7]. In fact, CGAL

offers many variants of triangulations useful for
different applications. Among the applications
where CGAL triangulations are employed are
meshing, molecular modeling, meteorology,
photogrammetry, and geographic information
systems (GIS). For other available triangulation
packages, see the survey by Joswig [12].

Arrangements
Arrangements of curves in the plane are
supported by CGAL [15], as well as en-
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velopes of surfaces in three-dimensional space.
Forthcoming is support also for arrangements
of curves on surfaces. CGAL arrangements
have been used in motion planning algorithms,
computer-aided design and manufacturing, GIS,
computer graphics, and more (see Chap. 1 in [6]).

Open Problems

In spite of the significant progress in certified im-
plementation of effective geometric algorithms,
the existing theoretical algorithmic solutions for
many problems still need adaptation or redesign
to be useful in practice. One example where
progress can have wide repercussions is devising
effective decompositions for curved geometric
objects (e.g., arrangements) in the plane and for
higher-dimensional objects. As mentioned ear-
lier, suitable decompositions can have a signif-
icant effect on the performance of geometric
algorithms in practice.

Certified fixed-precision geometric computing
lags behind the exact computing paradigm in
terms of available robust software, and moving
forward in this direction is a major challenge.
For example, creating a certified floating-point
counterpart to CGAL is a desirable (and highly
intricate) task.

Another important tool that is largely missing
is consistent and efficient rounding of geometric
objects. As mentioned earlier, a fairly satisfactory
solution exists for polygonal objects in the plane.
Good techniques are missing for curved objects
in the plane and for higher-dimensional objects
(both linear and curved).

URL to Code

http://www.cgal.org
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Problem Definition

Let P be a set of n points in the plane in general
position, i.e., no three points are collinear. A
geometric graph on P is a graph on the vertex set
P whose edges are straight-line segments con-
necting points in P . A geometric graph is called
non-crossing (or crossing-free) if any pair of its
edges does not have a point in common except
possibly their endpoints. We denote by P.P / the
set of all non-crossing geometric graphs on P
(which are also called plane straight-line graphs
on P ). A graph class C.P / 	 P.P / can be
defined by imposing additional properties such
as connectivity, degree bound, or cycle-freeness.
Examples of C.P / are the set of triangulations
(i.e., inclusion-wise maximal graphs in P.P /),

the set of non-crossing perfect matchings, the set
of non-crossing spanning k-connected graphs,
the set of non-crossing spanning trees, and the
set of non-crossing spanning cycles (i.e., sim-
ple polygons). The problem is to enumerate all
graphs in C.P / for a given set P of n points in
the plane.

The following notations will be used to
denote the cardinality of C.P /: tri.P / for
triangulations, pg.P / for plane straight-line
graphs, st.P / for non-crossing spanning trees,
and cg.P / for non-crossing spanning connected
graphs.

Key Results

Enumeration of Triangulations
The first efficient enumeration algorithm for tri-
angulations was given by Avis and Fukuda [3] as
an application of their reverse search technique.
The algorithm relies on well-known properties of
Delaunay triangulations.

A triangulation T on P is called Delaunay if
no point in P is contained in the interior of the
circumcircle of a triangle in T . If it is assumed for
simplicity that no four points in P lie on a circle,
then the Delaunay triangulation on P exists and
is unique. The Delaunay triangulation has the
lexicographically largest angle vector among all
triangulations on P , where the angle vector of a
triangulation is the list of all the angles sorted in
nondecreasing order.

For a triangulation T , a Lawson edge is an
edge ab which is incident to two triangles, say
abc and abd in T , and the circumcircle of abc
contains d in its interior. Flipping a Lawson
edge ab (i.e., replacing ab with another diagonal
edge cd ) always creates a triangulation having a
lexicographically larger angle vector. Moreover a
triangulation has a Lawson edge if and only if it
is not Delaunay. In other words, any triangulation
can be converted to the Delaunay triangulation by
flipping Lawson edges.

In the algorithm by Avis and Fukuda, a rooted
search tree on the set of triangulations is defined
such that the root is the Delaunay triangulation
and the parent of a non-Delaunay triangulation T
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is a triangulation obtained by flipping the smallest
Lawson edge in T (assuming a fixed total order-
ing on edges). Since the Delaunay triangulation
can be computed inO.n logn/ time, all the trian-
gulations can be enumerated by tracing the rooted
search tree based on the reverse search technique.
A careful implementation achieves O.n � tr.P //
time with O.n/ space.

An improved algorithm was given by
Bespamyatnikh [5], which runs in O.log logn �
tr.P // time with O.n/ space. His algorithm
is also based on the reverse search technique,
but the rooted search tree is defined by using
the lexicographical ordering of edge vectors
rather than angle vectors. This approach was
also applied to the enumeration of pointed
pseudo-triangulations [4]. See [6] for another
approach.

Enumeration of Non-crossing Geometric
Graphs
In [3], Avis and Fukuda also developed an enu-
meration algorithm for non-crossing spanning
trees, whose running time is O.n3 � sp.P //.
This was improved to O.n logn � sp.P // by
Aichholzer et al. [1]. They also gave enumeration
algorithms for plane straight-line graphs and non-
crossing spanning connected graphs with running
time O.n logn � pg.P // and O.n logn � sc.P //,
respectively.

Katoh and Tangiawa [8] proposed a simple
enumeration technique for wider classes of non-
crossing geometric graphs. The same approach
was independently given by Razen and Welzl [9]
for counting the number of plane straight-line
graphs, and the following description in terms of
Delaunay triangulations is from [9].

Since each graph in C.P / is a subgraph of
a triangulation, one can enumerate all graphs in
C.P / by first enumerating all triangulations and
then enumerating all graphs in C.P / in each
triangulation. The output may contain duplicates,
but one can avoid duplicates by enumerating only
graphs in fG 2 C.P / j L.T / 	 E.G/ 	 E.T /g
for each triangulation T , where L.T / denotes the
set of the Lawson edges in T . This enumera-
tion framework leads to an algorithm with time
complexity O..t preC log logn/tri.P /C t � c.P //

and space complexity O.n C s/ provided that
graphs in fG 2 C.G/ j L.T / 	 E.G/ 	

E.T /g can be enumerated inO.t/ time per graph
with O.tpre/ time preprocessing and O.s/ space
for each triangulation T . For example, in the
case of non-crossing spanning trees, one can
use a fast enumeration algorithm for spanning
trees in a given undirected graph to solve each
subproblem, and the current best implementa-
tion gives an enumeration algorithm for non-
crossing spanning trees with time complexity
O.n � tri.P /C st.P //.

For plane straight-line graphs and spanning
connected graphs, pg.P / � .

p
8/ntri.P / [9]

and cs.P / � 1:51ntri.P / [8] hold for any
P in general position. Hence tri.P / is domi-
nated by pg.P / and cs.P /, respectively, and
plane straight-line graphs or non-crossing span-
ning connected graphs can be enumerated in
constant time on average with O.n/ space [8].
The same technique can be applied to the set of
non-crossing spanning 2-connected graphs. It is
not known whether there is a constant c > 1 such
that st.P / � cntri.P / for every P in general
position.

In [8] an approach that avoids enumerating all
triangulations was also discussed. Suppose that a
nonempty subset I of P.P / satisfies a monotone
property, i.e., for every G;G0 2 P.P / with
G 	 G0, G0 2 I implies G 2 I, and suppose
that C.P / is the set of all maximal elements in
I. Then all graphs in C.P / can be enumerated
just by enumerating all triangulations T on P
with L.T / 2 I, and this can be done efficiently
based on the reverse search technique. This ap-
proach leads to an algorithm for enumerating
non-crossing minimally rigid graphs in O.n2/

time per output with O.n/ space, where a graph
G D .V;E/ is called minimally rigid if jEj D
2jV j � 3 and jE 0j � 2jV 0j � 3 for any subgraph
G0 D .V 0; E 0/ with jV 0j � 2.

Enumeration of Non-crossing Perfect
Matchings
Wettstein [10] proposed a new enumeration (and
counting) technique for non-crossing geometric
graphs. This is motivated from a counting
algorithm of triangulations by Alvarez and
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Seidel [2] and can be used for enumerating,
e.g., non-crossing perfect matchings, plane
straight-line graphs, convex subdivisions, and
triangulations. The following is a sketch of the
algorithm for non-crossing perfect matchings.

A matching can be reduced to an empty graph
by removing edges one by one. By fixing a rule
for the removing edge in each matching, one can
define a rooted search tree T on the set of non-
crossing matchings, and the set of non-crossing
matchings can be enumerated by tracing T . To
reduce time complexity, the first idea is to trace
only a subgraph T 0 of T induced by a subclass
of non-crossing matchings by a clever choice of
removing edges. Another idea is a compression
of the search tree T 0 by using an equivalence
relation on the subclass of non-crossing match-
ings. The resulting graph G is a digraph on the set
of equivalence classes, where there is a one-to-
one correspondence between non-crossing per-
fect matchings and directed paths of length n=2
from the root. A crucial observation is that G has
at most 2nn3 edges while the number of non-
crossing perfect matchings is known to be at least
poly.n/ � 2n for any P in general position [7].
Hence non-crossing perfect matchings can be
enumerated in polynomial time on average by
first constructing G and then enumerating all the
dipaths of length n=2 in G. It was also noted in
[10] that the algorithm can be polynomial-time
delay, but still the space complexity is exponen-
tial in n.

Open Problems

A challenging open problem is to design an
efficient enumeration algorithm for the set of
non-crossing spanning cycles, the set of highly
connected triangulations, or the set of degree-
bounded triangulations or non-crossing spanning
trees. It is also not known whether triangulations
can be enumerated in constant time per output.
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Problem Definition

Let G D .V;E/ be a (directed or undirected)
graph with n D jV j vertices and m D jEj

edges. A walk of length k is a sequence of
vertices v0; : : : ; vk 2 V such that vi and viC1 are
connected by an edge of E, for any 0 � i < k.
A path � of length k is a walk v0; : : : ; vk such
that any two vertices vi and vj are distinct, for
0 � i < j � k: this is also called st-path where
s D v0 and t D vk . A cycle (or, equivalently,
elementary circuit) C of length k C 1 is a path
v0; : : : ; vk such that vk and v0 are connected by
an edge of E.

We denote by Pst .G/ the set of st-paths in
G for any two given vertices s; t 2 V and
by C.G/ the set of cycles in G. Given a graph
G, the problem of st-path enumeration asks for
generating all the paths in Pst .G/. The problem
of cycle enumeration asks for generating all the
cycles in C.G/.

We denote by S.G/ the set of spanning trees
in a connected graph G, where a spanning tree
T 	 E is a set of jT j D n � 1 edges such that
no cycles are contained in T and each vertex in
V is incident to at least an edge of T . Given a
connected graph G, the problem of spanning tree
enumeration asks for generating all the spanning
trees in S.G/.

Typical costs of enumeration algorithms are
proportional to the output size times a polynomial
function of the graph size. Sometimes enumera-
tion is meant with the stronger property of listing,
where each solution is explicitly output. In the
latter case, we define an algorithm for a listing
problem to be optimally output sensitive if its

running time is O.n C m C K/ where K is the
following output cost for the enumeration prob-
lem at hand, namely, Pst .G/, C.G/, or S.G/.

• K D
P

�2Pst .G/ j�j where j�j is the number
of nodes in the st-path � .

• K D
P

C2C.G/ jC j where jC j is the number
nodes in the cycle C .

• K D
P

T2S.G/ jT j D jS.G/j � .n � 1/ for
spanning trees.

Although the above is a notion of optimality
for listing solutions explicitly, it is possible in
some cases that the enumeration algorithm can
efficiently encode the differences between con-
secutive solutions in the sequence produced by
the enumeration. This is the case of spanning
trees, where a cost of K D jS.G/j is possible
when they are implicitly represented during enu-
meration. This is called CAT (constant amortized
time) enumeration in [28].

Key Results

Some possible approaches to attack the enumer-
ation problems are listed below, where the term
“search” is meant as an exploration of the space
of solutions.

Backtrack search. A backtracking algorithm
finds the solutions for a listing problem by ex-
ploring the search space and abandoning a partial
solution (thus the name “backtracking”) that can-
not be completed to a valid one.

Binary partition search. An algorithm divides
the search space into two parts. In the case of
graphs, this is generally done by taking an edge
(or a vertex) and (i) searching for all solutions that
include that edge (resp. vertex) and (ii) searching
for all solutions that do not include that edge
(resp. vertex). Point (i) can sometimes be imple-
mented by contracting the edge, i.e., merging the
endpoints of the edge and their adjacency list.

Differential encoding search. The space of
solutions is encoded in such a way that consec-
utive solutions differ by a constant number of
modifications. Although not every enumeration
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problem has properties that allow such encoding,
this technique leads to very efficient algorithms.

Reverse search. This is a general technique to
explore the space of solutions by reversing a local
search algorithm. This approach implicitly gener-
ates a tree of the search space that is traversed by
the reverse search algorithm. One of the proper-
ties of this tree is that it has bounded height, a
useful fact for proving the time complexity of the
algorithm.

Although there is some literature on tech-
niques for enumeration problems [38, 39, 41],
many more techniques and “tricks” have been in-
troduced when attacking particular problems. For
a deep understanding of the topic, the reader is
recommended to review the work of researchers
such as David Avis, Komei Fukuda, Shin-ichi
Nakano, and Takeaki Uno.

Path and Cycles
Listing all the cycles in a graph is a classical
problem whose efficient solutions date back to
the early 1970s. In particular, at the turn of the
1970s, several algorithms for enumerating all
cycles of an undirected graph were proposed.
There is a vast body of work, and the majority of
the algorithms listing all the cycles can be divided
into the following three classes (see [1, 23] for
excellent surveys).

Search space algorithms. Cycles are looked
for in an appropriate search space. In the case
of undirected graphs, the cycle vector space [6]
turned out to be the most promising choice: from
a basis for this space, all vectors are computed,
and it is tested whether they are a cycle. Since the
algorithm introduced in [43], many algorithms
have been proposed: however, the complexity of
these algorithms turns out to be exponential in the
dimension of the vector space and thus in n. For
the special case of planar graphs, the paper in [34]
describes an algorithm listing all the cycles in
O..jC.G/j C 1/n/ time.

Backtrack algorithms. All paths are generated
by backtrack, and, for each path, it is tested
whether it is a cycle. One of the first algo-
rithms based on this approach is the one pro-
posed in [37], which is however exponential in
jC.G/j. By adding a simple pruning strategy,

this algorithm has been successively modified
in [36]: it lists all the cycles in O.nm.jC.G/j C
1// time. Further improvements were proposed
in [16], [35], and [27], leading to O..jC.G/j C
1/.m C n// time algorithms that work for both
directed and undirected graphs. Apart from the
algorithm in [37], all the algorithms based on this
approach are polynomial-time delay, that is, the
time elapsed between the outputting of two cycles
is polynomial in the size of the graph (more
precisely, O.nm/ in the case of the algorithm
of [36] and O.m/ in the case of the other three
algorithms).

Algorithms using the powers of the adjacency
matrix. This approach uses the so-called variable
adjacency matrix, that is, the formal sum of edges
joining two vertices. A nonzero element of the
pth power of this matrix is the sum of all walks of
length p: hence, to compute all cycles, we com-
pute the nth power of the variable adjacency ma-
trix. This approach is not very efficient because
of the non-simple walks. All algorithms based on
this approach (e.g., [26] and [45]) basically differ
only on the way they avoid to consider walks that
are neither paths nor cycles.

For directed graphs, the best known algorithm
for listing cycles is Johnson’s [16]. It builds
upon Tarjan’s backtracking search [36], where
the search starts from the least vertex of each
strongly connected component. After that, a new
strongly connected component is discovered, and
the search starts again from the least vertex in it.
When exploring a strongly connected component
with a recursive backtracking procedure, it uses
an enhanced marking system to avoid visiting the
same cycle multiple times. A vertex is marked
each time it enters the backtracking stack. Upon
leaving the stack, if a cycle is found, then the
vertex is unmarked. Otherwise, it remains marked
until another vertex involved in a cycle is popped
from the stack, and there exists a path of marked
vertices (not in the stack) between these two
vertices. This strategy is implemented using a
collection of listsB , one list per vertex containing
its marked neighbors not in the stack. Unmarking
is done by a recursive procedure. The complexity
of the algorithm isO.nCmCjC.G/jm/ time and
O.nCm/ space.
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For undirected graphs, Johnson’s bound can
be improved with an optimal output-sensitive
algorithm [2]. First of all, the cycle enumeration
problem is reduced to the st-path enumeration by
considering any spanning tree of the given graph
G and its non-tree edges b1; b2; : : : ; br . Then, for
i D 1; 2; : : : ; r , the cycles in C.G/ can be listed
as st-paths in G n fb1; : : : ; big, where s and t
are the endpoint of non-tree edge bi . Hence, the
subproblem to be solved with an optimal output-
sensitive algorithm is the st-path enumeration
problem. Binary partition search is adopted to
avoid duplicated output, but the additional ingre-
dient is the notion of certificate, which is a suit-
able data structure that maintains the biconnected
components of the residual graph and guarantees
that each recursive call thus produces at least
one solution. Its amortized analysis is based on
a lower bound on the number of st-paths that can
be listed in the residual graph, so as to absorb the
cost of maintaining the certificate. The final cost
isO.mCnC

P
�2Pst .G/ j�j/ time andO.nCm/

space, which is optimal for listing.

Spanning Trees
Listing combinatorial structures in graphs has
been a long-time problem of interest. In his 1970
book [25], Moon remarks that “many papers have
been written giving algorithms, of varying de-
grees of usefulness, for listing the spanning trees
of a graph” (citation taken from [28]). Among
others, he cites [7, 9, 10, 13, 42] – some of these
early papers date back to the beginning of the
twentieth century. More recently, in the 1960s,
Minty proposed an algorithm to list all spanning
trees [24].

The first algorithmic solutions appeared in the
1960s [24] and the combinatorial papers even
much earlier [25]. Other results from Welch,
Tiernan, and Tarjan for this and other problems
soon followed [36, 37, 43] and used backtracking
search. Read and Tarjan presented an algorithm
taking O.mC nC jS.G/j �m/ time and O.mC
n/ space [27]. Gabow and Myers proposed the
first algorithm [11] which is optimal when the
spanning trees are explicitly listed, takingO.mC
nC jS.G/j � n/ time and O.mC n/ space.

When the spanning trees are implicitly
enumerated, Kapoor and Ramesh [17] showed
that an elegant incremental representation is
possible by storing just the O.1/ information
needed to reconstruct a spanning tree from
the previously enumerated one, requiring a
total of O.m C n C jS.G/j/ time and O.mn/
space [17], later reduced to O.m/ space by
Shioura et al. [32]. These methods use the reverse
search where the elements are the spanning trees.
The rule for moving along these elements and
for their differential encoding is based upon
the observation that adding a non-tree edge
and removing a tree edge of the cycle thus
formed produces another spanning tree from
the current one. Some machinery is needed to
avoid duplicated spanning trees and to spend
O.1/ amortized cost per generated spanning
tree.

A simplification of the incremental enumera-
tion of spanning trees is based on matroids and
presented by Uno [39]. It is a binary partition
search giving rise to a binary enumeration tree,
where the two children calls generated by the
current call correspond to the fact that the current
edge is either contracted in O.n/ time or deleted
in O.m � n/ time. There is a trimming and
balancing phase in O.n.m � n// time: trimming
removes the edges that do not appear in any of
the spanning trees that will be generated by the
current recursive call and contracts the edges that
appear in all of these spanning trees. Balancing
splits the recursive calls as in the divide-and-
conquer paradigm. A crucial property proved
in [39] is that the residual graph will generate at
least ˝.n.m � n// spanning trees, and thus the
total cost per call, which is dominated by trim-
ming and balancing, can be amortized as O.1/
per spanning tree. The method in [39] works
also for directed spanning trees (arborescences)
with an amortizedO.logn/ time cost per directed
spanning tree.

Applications

The classical problem of listing all the cycles of a
graph has been extensively studied for its many
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applications in several fields, ranging from the
mechanical analysis of chemical structures [33]
to the design and analysis of reliable commu-
nication networks and the graph isomorphism
problem [43]. Almost 40 years after, the problem
of efficiently listing all cycles of a graph is still
an active area of research (e.g., [14,15,22,29,30,
44]). New application areas have emerged in the
last decade, such as bioinformatics: for example,
two algorithms for this problem have been pro-
posed in [20] and [21] while studying biological
interaction graphs, with important network prop-
erties derived for feedback loops, signaling paths,
and dependency matrix, to name a few.

When considering weighted cycles, the paper
in [19] proves that there is no polynomial total
time algorithm (unless P D NP ) to enumer-
ate negative-weight (simple) cycles in directed
weighted graphs. Uno [40] and Ferreira et al. [8]
considered the enumeration of chordless cycles
and paths. A chordless or induced cycle (resp.,
path) in an undirected graph is a cycle (resp.,
path) such that the subgraph induced by its ver-
tices contains exactly the edges of the cycle
(resp., path). Both chordless cycles and paths are
very natural structures in undirected graphs with
an important history, appearing in many papers
in graph theory related to chordal graphs, perfect
graphs, and co-graphs (e.g., [4, 5, 31]), as well
as many NP-complete problems involving them
(e.g., [3, 12, 18]).

As for spanning trees, we refer to the section
“K-best enumeration” of this book.
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Problem Definition

A priority queue is an abstract data structure
that maintains a set Q of elements, each with an
associated value called a key, under the following
set of operations [5, 6]:

insert. Q; x; k /: Inserts element x with key k
into Q.

find-min. Q /: Returns an element ofQ with the
minimum key but does not change Q.

delete. Q; x; k /: Deletes element x with key
k from Q.

Additionally, the following operations are often
supported:
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delete-min. Q /: Deletes an element with the
minimum key value from Q and returns it.

decrease-key. Q; x; k /: Decreases the current
key k0 of x to k assuming k < k0.

meld. Q1 ;Q2 /: Given priority queues Q1 and
Q2, returns the priority queue Q1 [Q2.

Observe that a delete-min can be implemented as
a find-min followed by a delete, a decrease-key
as a delete followed by an insert, and a meld as
a series of find-min, delete and insert. However,
more efficient implementations of decrease-key
and meld often exist [5, 6].

Priority queues have many practical ap-
plications including event-driven simulation,
job scheduling on a shared computer, and
computation of shortest paths, minimum
spanning forests, minimum cost matching,
optimum branching, etc. [5, 6].

A priority queue can trivially be used for sort-
ing by first inserting all keys to be sorted into the
priority queue and then by repeatedly extracting
the current minimum. The major contribution
of Mikkel Thorup’s 2002 article (Full version
published in 2007) titled “Equivalence between
Priority Queues and Sorting” [17] is a reduction
showing that the converse is also true. Taken
together, these two results imply that priority
queues are computationally equivalent to sorting,
that is, asymptotically, the per key cost of sorting
is the update time of a priority queue.

A result similar to those in the current work
[17] was presented earlier by the same author [14]
which resulted in monotone priority queues (i.e.,
meaning that the extracted minimums are non-
decreasing) with amortized time bounds only. In
contrast, the current work [17] constructs general
priority queues with worst-case bounds.

In addition to establishing the equivalence
between priority queues and sorting, Thorup’s
reductions [17] are also used to translate several
known sorting results into new results on priority
queues.

Background
Some relevant background information is
summarized below which will be useful in
understanding the key results in section “Key
Results.”

• A standard word RAM models what one
programs in a standard imperative program-
ming language such as C. In addition to
direct and indirect addressing and conditional
jumps, there are functions, such as addition
and multiplication, operating on a constant
number of words. The memory is divided
into words, addressed linearly starting from 0.
The running time of a program is the number
of instructions executed and the space is the
maximal address used. The word length is a
machine-dependent parameter which is big
enough to hold a key and at least logarithmic
in the number of input keys so that they can
be addressed.

• A pointer machine is like the word RAM
except that addresses cannot be manipulated.

• The AC0 complexity class consists of
constant-depth circuits with unlimited fan-
in [18]. Standard AC0 operations refer to
the operations available via C but where the
functions on words are in AC0. For example,
this includes addition but not multiplication.

• Integer keys will refer to nonnegative integers.
However, if the input keys are signed integers,
the correct ordering of the keys is obtained
by flipping their sign bits and interpreting
them as unsigned integers. Similar tricks work
for floating point numbers and integer frac-
tions [14].

• The atomic heaps of Fredman and Willard
[7] are used in one of Thorup’s reductions
[17]. These heaps can support updates and
searches in sets of O

�
log2 n

�
keys in O .1/

worst-case time [20]. However, atomic heaps
use multiplication operations which are not
in AC0.

Key Results

The main results in this paper are two reductions
from priority queues to sorting. The stronger
of the two, stated in Theorem 1, is for integer
priority queues running on a standard word RAM.

Theorem 1 If for some nondecreasing function
S , up to n integer keys can be sorted in S.n/
time per key, an integer priority queue can be im-
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plemented supporting find-min in constant time,
and updates, i.e., insert and delete, in O .S.n//
time. Here n is the current number of keys in
the queue. The reduction uses linear space. The
reduction runs on a standard word RAM assum-
ing that each integer key is contained in a single
word.

The reduction above provides the following
new bounds for linear space integer priority
queues improving previous bounds given by Han
[8] and Thorup [14], respectively:

1. (Deterministic) O .log logn/ update time us-
ing a sorting algorithm by Han [9].

2. (Randomized) O
�p

log logn
�

expected up-

date time using a sorting algorithm given by
Han and Thorup [10].

The reduction in Theorem 1 employs atomic
heaps [7] which, in addition to being very compli-
cated, use AC0 operations. The following slightly
weaker recursive reduction which does not re-
strict the domain of the keys is completely com-
binatorial.

Theorem 2 If for some nondecreasing function
S , up to n keys can be sorted in S.n/ time per key,
a priority queue can be implemented supporting
find-min in constant time, and updates in T .n/
time where n is the current number of keys in the
queue and T .n/ satisfies the recurrence:

T .n/ D O .S.n//C T .O .logn//

The reduction runs on a pointer machine in
linear space using only standard AC0 operations.

This reduction implies the following new in-
teger priority queue bounds not implied by The-
orem 1, which improve previous bounds given
by Thorup in 1998 [13] and 1997 [15], respec-
tively:

1. (Deterministic in AC0) O
�
.log logn/1C�

�

update time for any constant � > 0 using a
standard AC0 sorting algorithm given by Han
and Thorup [10].

2. (Randomized in AC0) O .log log n/ expected
update time using a randomized AC0 sorting
algorithm given by Thorup [15].

The Reduction in Theorem 1
Given a sorting routine that can sort up to n

keys in S.n/ time per key, the priority queue is
constructed as follows. All keys are assumed to
be distinct.

The data structure has two major components:
a partially sorted list of keys called a base list and
a set of level buffers (also called update buffers).
Most keys of the priority queue reside in the base
list partitioned into logarithmic-sized disjoint sets
called base sets. While the keys inside any given
base set are not required to be sorted, each of
those keys must be larger than every key in the
base set (if any) appearing before it in the list.
Keys inside each base set are stored in a doubly
linked list allowing constant time updates. The
first base set in the list containing the smallest
key among all base sets is also maintained in an
atomic heap so that the current minimum can be
found in constant time. Each level buffer has a
different capacity and accumulates updates (in-
sert/delete) with key values in a different range.
Smaller level buffers accept updates with smaller
keys. An atomic heap is used to determine in
constant time which level buffer collects a new
update. When a level buffer accumulates enough
updates, they first enter a sorting phase and then a
merging phase. In the merging phase each update
is applied on the proper base set in the key list,
and invariants on base set size and ranges of level
buffers are fixed. These phases are not executed
immediately, instead they are executed in fixed
time increments over a period of time. A level
buffer continues to accept new updates, while
some updates accepted by it earlier are still in
the sorting phase, and some even older updates
are in the merging phase. Every time it accepts a
new update, O .S.n// time is spent on the sorting
phase associated with it and O .1/ time on its
merging phase including rebalancing of base sets
and scanning. This strategy allows the sorting and
merging phases to complete execution by the time
the level buffer becomes full again and thus keep-
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ing the movement of updates through different
phases smooth while maintaining an O .S.n//
worst-case time bound per update. Moreover,
the size and capacity constraints ensure that the
smallest key in the data structure is available in
O .1/ time. More details are given below.

The Base List: The base list consists of base sets
A1; A2; : : : ; Ak , where ˆ

4
� jAi j � ˆ for

i < k, and jAkj � ˆ for some ˆ D

‚.logn/. The exact value ofˆ is chosen care-
fully to make sure that it conforms with the
requirements of the delicate worst-case base
set rebalancing protocol used by the reduction.
The base sets are partitioned by base splitters
s0; s1; : : : ; skC1, where s0 D �1, skC1 D

1, and for i D 1; : : : ; k�1, maxAi�1 < si �

minAi . If a base set becomes too large or too
small, it is split or joined with an adjacent set,
respectively.

Level Buffers: Among the base splitters l C 2 D
‚.logn/ are chosen to become level splitters
t0; t1; : : : ; tl ; tlC1 with t0 D s0 D �1 and
tlC1 D skC1 D 1, so that for j > 0, the
number of keys in the base list below tj is
around 4jC1ˆ. These splitters are placed in
an atomic heap. As the base list changes the
level splitters are moved, as needed, in order
to maintain their exponential distribution.
Associated with each level splitter tj , 1 �
j � l , is a level buffer Bj containing keys
in Œtj�1; tjC2/, where tlC2 D 1. Buffer Bj

consists of an entrance buffer, a sorter, and
a merger, each with capacity for 4j keys.
Level j works in a cycle of 4j steps. The
cycle starts with an empty entrance, at most
4j updates in the sorter, and a sorted list of at
most 4j updates in the merger. In each step
one may accept an update for the entrance,
spend S

�
4j
�
D O .S.n// time in the sorter

and O .1/ time in merging the sorted list
in the merger with the O

�
4j
�

base splitters
in Œtj�1; tjC2/ and scanning for a new tj
among them. Therefore, after 4j such steps,
the sorted list is correctly merged with the
base list, a new tj is found, and a new sorted
list is produced. The sorter then takes the
role of the merger, the entrance becomes the

sorter, and the empty merger becomes the new
entrance.

Handling Updates: When a new update key k

(insert/delete) is received, the atomic heap of
level splitters is used to find in O .1/ time the
tj such that k 2 Œtj�1; tj /. If k 2 Œt0; t1/,
its position is identified among the O .1/ base
splitters below t1, and the corresponding base
set is updated in O .1/ time using the doubly
linked list and the atomic heap (if exists) over
the keys of that set. If k 2 Œtj�1; tj / for some
j > 1, the update is placed in the entrance
of Bj , performing one step of the cycle of Bj

in O .S.n// time. Additionally, during each
update another splitter tr is chosen in a round-
robin fashion, and a step of a cycle of level r
is executed in O .S.n// time. This additional
work ensures that after every l updates some
progress is made on moving each level splitter.

A find-min returns the minimum element of
the base list which is available in O .1/ time.

The Reduction in Theorem 2
This reduction follows from the previous reduc-
tion by replacing the atomic heap containing the
level splitters with a data structure similar to a
level buffer and the atomic heap over the keys
of the first base set with a recursively defined
priority queue satisfying the following recurrence
for update time: T .n/ D O .S.n//C T .O .ˆ//.

Further Improvement
Alstrup et al. [1] presented a general reduction
that transforms a priority queue to support insert
in O .1/ time while keeping the other bounds
unchanged. This reduction can be used to reduce
the cost of insertion to a constant in Theorems 1
and 2.

Applications

Thorup’s equivalence results [17] can be used to
translate known sorting results into new results
on priority queues for integers and strings in
different computational models (see section “Key
Results”). These results can also be viewed as a
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new means of proving lower bounds for sorting
via priority queues.

A new RAM priority queue that matches the
bounds in Theorem 1 and also supports decrease-
key in O .1/ time is presented by Thorup [16].
This construction combines Andersson’s expo-
nential search trees [2] with the priority queues
implied by Theorem 1. The reduction in Theo-
rem 1 is also used by Pagh et al. [12] in order to
develop an adaptive integer sorting algorithm for
the word RAM and by Arge and Thorup [3] to
develop a sorting algorithm that is simultaneously
I/O efficient and internal memory efficient in the
RAM model of computation. Cohen et al. [4] use
a priority queue generated through this reduction
to obtain a simple and fast amortized imple-
mentation of a reservoir sampling scheme that
provides variance optimal unbiased estimation of
subset sums. Reductions from meldable priority
queues to sorting presented by Mendelson et
al. [11] use the reductions from non-meldable
priority queues to sorting given in [17].

An external-memory version of Theorem 1
has been proved by Wei and Yi [19].

Open Problems

One major open problem is to find a general
reduction (if one exists) that allows us to decrease
the value of a key in constant time. Another open
question is whether the gap between the bounds
implied by Theorems 1 and 2 can be reduced or
removed. For example, for a hypothetical linear
time-sorting algorithm, Theorem 1 implies a pri-
ority queue with an update time of O .1/, while
Theorem 2 implies only O

�
log� n

�
-time updates.
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Problem Definition

A graph parameter � is a real-valued function
over graphs that is invariant under graph iso-
morphism. For example, the average degree of
the graph, the average distance between pairs
of vertices, and the minimum size of a vertex
cover are graph parameters. For a fixed graph
parameter � and a graph G D .V;E/, we would
like to compute an estimate of �.G/. To this
end we are given query access to G and would
like to perform this task in time that is sublinear
in the size of the graph and with high success
probability. In particular, this means that we do
not read the entire graph but rather only access
(random) parts of it (via the query mechanism).
Our main focus here is on a very basic graph
parameter: its average degree, denoted d.G/.

The estimation algorithm is given an approx-
imation parameter � > 0. It should output a
value Od such that with probability at least 2=3

(over the random choices of the algorithm) it
holds that d.G/ � Od � .1 C �/ � d.G/. (The
error probability can be decreased to 2�k by
invoking the algorithm�.k/ times and outputting
the median value.) For any vertex v 2 V D Œn� of

its choice, where Œn�
def
D f1; : : : ; ng, the estimation

algorithm may query the degree of v, denoted
d.v/. We refer to such queries as degree queries.
In addition, the algorithm may ask for the i th
neighbor of v, for any 1 � i � d.v/. These
queries are referred to as neighbor queries. We
assume for simplicity thatG does not contain any
isolated vertices (so that, in particular, d.G/ �
1). This assumption can be removed.

Key Results

The problem of estimating the average degree of
a graph in sublinear time was first studied by
Feige [7]. He considered this problem when the
algorithm is allowed only degree queries, so that
the problem is a special case of estimating the
average value of a function given query access
to the function. For a general function d W Œn� !
Œn � 1�, obtaining a constant-factor estimate of
the average value of the function (with constant
success probability) requires ˝.n/ queries to the
function. Feige showed that when d is the degree
function of a graph, for any � 2 .0; 1�, it is
possible to obtain an estimate of the average
degree that is within a factor of .2 C �/ by
performing only O.

p
n=�/ (uniformly selected)

queries. He also showed that in order to go below
a factor of 2 in the quality of the estimate, ˝.n/
queries are necessary.

However, given that the object in question is
a graph, it is natural to allow the algorithm to
query the neighborhood of vertices of its choice
and not only their degrees; indeed, the afore-
mentioned problem definition follows this natural
convention. Goldreich and Ron [10] showed that
by giving the algorithm this extra power, it is
possible to break the factor-2 barrier. They pro-
vide an algorithm that, given � > 0, outputs a
.1C�/-factor estimate of the average degree (with
probability at least 2=3) after performing O.

p
n �
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poly.logn; 1=�// degree and neighbor queries. In
fact, since a degree query to vertex v can be
replaced by O.log d.v// D O.logn/ neighbor
queries, which implement a binary search, degree
queries are not necessary. Furthermore, when the
average degree increases, the performance of the
algorithm improves, as stated next.

Theorem 1 There exists an algorithm that
makes only neighbor queries to the input
graph and satisfies the following condition.
On input G D .V;E/ and � 2 .0; 1/,
with probability at least 2=3, the algorithm

halts within O

�q

n=d.G/ � poly.logn; 1=�/

�

steps and outputs a value in Œd .G/; .1 C �/ �

d.G/�.

The running time stated in Theorem 1 is
essentially optimal in the sense that (as shown
in [10]) a .1 C �/-factor estimate requires

˝.

q

n=.�d.G/// queries, for every value

of n, for d.G/ 2 Œ2; o.n/�, and for � 2

Œ!.n�1=4/; o.n=d.G//�.
The following is a high-level description of

the algorithm and the ideas behind its analysis.
For the sake of simplicity, we only show how
to obtain a .1 C �/-factor estimate by perform-
ing O

�p
n � poly.logn; 1=�/

�
queries (under the

assumption that d.G/ � 1). For the sake of
the presentation, we also allow the algorithm to
perform degree queries. We assume that � � 1=2,
or else we run the algorithm with � D 1=2. We
first show how to obtain a .2C �/-approximation
by performing only degree queries and then ex-
plain how to improve the approximation by using
neighbor queries as well.

Consider a partition of the graph vertices into
buckets B1; : : : ; Br , where

Bi
def
D fv W .1C �=8/i�1 � d.v/ < .1C �=8/ig

(1)
and r D O.logn=�/. By this definition,

1

n

rX

iD1

jBi j�.1C�=8/
i 2
h
d.G/; .1C�=8/ � d.G/

i
:

(2)

Suppose we could obtain an estimate Obi of
the size of each bucket Bi such that Obi 2

Œ.1 � �=8/jBi j; .1C �=8/jBi j�. Then

1

n

rX

iD1

Obi � .1C �=8/
i

2
h
.1 � �=8/ � d.G/; .1C 3�=8/ � d.G/

i
:

(3)

Now, for each Bi , if we uniformly at ran-

dom select ˝
�

n
jBi j
� log r

�2

�
vertices, then, by

a multiplicative Chernoff bound, with proba-
bility 1 � O.1=r/, the fraction of sampled
vertices that belong to Bi is in the intervalh
.1 � �=8/ jBi j

n
; .1C �=8/ jBi j

n

i
. By querying the

degree of each sampled vertex, we can deter-
mine to which bucket it belongs and obtain an
estimate of jBi j. Unfortunately, if Bi is much
smaller than

p
n, then the sample size required

to estimate jBi j is much larger than the de-

sired O
�p
n � poly.logn; 1=�/

�
. Let L

def
D fi W

jBi j �
p
�n=8rg denote the set of indices of

large buckets. The basic observation is that if,
for each i 2 L, we have an estimate Obi 2

Œ.1 � �=8/jBi j; .1C �=8/jBi j�, then

1

n

X

i2L

Obi � .1C �=8/
i

2
h
.1=2 � �=4/ � d.G/; .1C 3�=8/ � d.G/

i
:

(4)

The reasoning is essentially as follows. Recall
that

P
v d.v/ D 2jEj. Consider an edge .u; v/

where u 2 Bj and v 2 Bk . If j; k 2 L,
then this edge contributes twice to the sum
in Eq. (4): once when i D j and once when
i D k. If j 2 L and k … L (or vice verse),
then this edge contributes only once. Finally,
if j; k … L, then the edge does not contribute
at all, but there are at most �n=8 edges of this
latter type. Since it is possible to obtain such
estimates Obi for all i 2 L simultaneously,
with constant success probability, by sampling
O
�
.
p
n � poly.logn; 1=�/

�
vertices, we can get a
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.2C�/-factor estimate by performing this number
of degree queries. Recall that we cannot obtain
an approximation factor below 2 by performing
o.n/ queries if we use only degree queries.

In order to obtain the desired factor of .1C �/,
we estimate the number of edges .u; v/ such
that u 2 Bj and v 2 Bk with j 2 L and
k … L, which are counted only once in Eq. (4).
Here is where neighbor queries come into play.
For each i 2 L (more precisely, for each i

such that Obi is sufficiently large), we estimate

ei
def
D jf.u; v/ W u 2 Bi ; v 2 Bk for k … Lgj.

This is done by uniformly sampling neighbors
of vertices in Bi , querying their degree, and
therefore estimating the fraction of edges incident
to vertices in Bi whose other endpoint belongs
to Bk for k … L. If we denote the estimate
of ei by Oei , then we can get that by perform-
ing O

�
.
p
n � poly.logn; 1=�/

�
neighbor queries,

with high constant probability, the Oei ’s are such
that

1

n

X

i2L

�
Obi � .1C �=8/

i C Oei

�

2
h
.1 � �=2/ � d.G/; .1C �=2/ � d.G/

i
:

(5)

By dividing the left-hand side in Eq. (5) by .1 �
�=2/, we obtain the .1C �/-factor we sought.

Estimating the Average Distance
Another graph parameter considered in [10] is
the average distance between vertices. For this
parameter, the algorithm is given access to a
distance-query oracle. Namely, it can query the
distance between any two vertices of its choice.
As opposed to the average degree parameter
where neighbor queries could be used to improve
the quality of the estimate (and degree queries
were not actually necessary), distance queries are
crucial for estimating the average distance, and
neighbor queries are not of much use. The main
(positive) result concerning the average distance
parameter is stated next.

Theorem 2 There exists an algorithm that
makes only distance queries to the input graph

and satisfies the following condition. On input
G D .V;E/ and � 2 .0; 1/, with proba-
bility at least 2=3, the algorithm halts within

O

�q
n=D.G/ � poly.1=�/

�

steps and outputs a

value in ŒD.G/; .1 C �/ � D.G/�, where D.G/
is the average of the all-pairs distances in G. A
corresponding algorithm exists for the average
distance to a given vertex s 2 V .

Comments for the Recommended
Reading

The current entry falls within the scope of
sublinear-time algorithms (see, e.g., [4]).

Other graph parameters that have been stud-
ied in the context of sublinear-time algorithms
include the minimum weight of a spanning tree
[2, 3, 5], the number of stars [11] and the number
of triangles [6], the minimum size of a vertex
cover [13–15, 17], the size of a maximum match-
ing [14, 17], and the distance to having vari-
ous properties [8, 13, 16]. Related problems over
weighted graphs that represent distance metrics
were studied in [12] and [1].
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Problem Definition

This entry considers geometric optimization
NP-hard problems like the Euclidean traveling
salesman problem and the Euclidean Steiner tree
problem. These problems are geometric variants
of standard graph optimization problems, and the
restriction of the input instances to geometric or
Euclidean case arises in numerous applications
(see [1,2]). The main focus of this entry is on the
Euclidean traveling salesman problem.

The Euclidean Traveling Salesman
Problem (TSP)
For a given set S of n points in the Euclidean
space R

d , find the minimum length path that
visits each point exactly once. The cost ı.x; y/
of an edge connecting a pair of points x; y 2 R

d

is equal to the Euclidean distance between points

x and y, that is, ı.x; y/ D

s
dP

iD1

.xi�yi /
2, where

x D .x1; : : : ; xd / and y D .y1; : : : ; yd /. More
generally, the distance could be defined using
other norms, such as `p norms for any p > 1,

ı.x; y/ D

�
pP

iD1

.xi � yi /
p

�1=p

.

For a given set S of points in Euclidean space
R

d , for a certain integer d , d � 2, a Euclidean
graph (network) is a graph G D .S; E/, where
E is a set of straight-line segments connecting
pairs of points in S . If all pairs of points in S
are connected by edges in E, then G is called a
complete Euclidean graph on S. The cost of the
graph is equal to the sum of the costs of the edges
of the graph, cost.G/ D

P
.x; y/2E ı.x; y/.

A polynomial-time approximation scheme
(PTAS) is a family of algorithms fA"g such that,
for each fixed © > 0, A" runs in polynomial time
in the size of the input and produces a .1 C ©/-
approximation.
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Related Work
The classical book by Lawler et al. [16] pro-
vides extensive information about the TSP. Also,
the survey exposition of Bern and Eppstein [8]
presents the state of the art for geometric TSP
until 1995, and the survey of Arora [2] discusses
the research after 1995.

Key Results

We begin with the hardness results. The TSP in
general graphs is well known to be NP-hard,
and the same claim holds for the Euclidean TSP
[14, 18].

Theorem 1 The Euclidean TSP is NP-hard.

Perhaps rather surprisingly, it is still not known
if the decision version of the problem is NP-
complete [14]. (The decision version of the Eu-
clidean TSP: given a point set in the Euclidean
space R

d and a number t , verify if there is a
simple path of length smaller than t that visits
each point exactly once.)

The approximability of TSP has been studied
extensively over the last few decades. It is
not hard to see that TSP is not approximable
in polynomial time (unless P D NP) for
arbitrary graphs with arbitrary edge costs. When
the weights satisfy the triangle inequality (the
so-called metric TSP), there is a polynomial-
time 3/2-approximation algorithm due to
Christofides [9], and it is known that no PTAS
exists (unless P D NP). This result has
been strengthened by Trevisan [21] to include
Euclidean graphs in high dimensions (the same
result holds also for any `p metric).

Theorem 2 (Trevisan [21]) If d � log n, then
there exists a constant " > 0 such that the
Euclidean TSP in R

d is NP-hard to approximate
within a factor of 1C ".

In particular, this result implies that if d � logn,
then the Euclidean TSP in R

d has no PTAS
unless P D NP .

The same result holds also for any `p metric.
Furthermore, Theorem 2 implies that Euclidean

TSP in R
log n is APX PB-hard under E-reductions

and APX-complete under AP-reductions.
It has been believed for some time that The-

orem 2 might hold for smaller values of d ,
in particular even for d D 2, but this has
been disproved independently by Arora [1] and
Mitchell [17].

Theorem 3 (Arora [1] and Mitchell [17]) The
Euclidean TSP on the plane has a PTAS.

The main idea of the algorithms of Arora and
Mitchell is rather simple, but the details of the
analysis are quite complicated. Both algorithms
follow the same approach. One first proves a so-
called structure theorem, which demonstrates that
there is a .1 C "/-approximation that has some
local properties (in the case of the Euclidean
TSP, there is a quadtree partition of the space
containing all the points such that there is a
.1 C "/-approximation in which each cell of the
quadtree is crossed by the tour at most a constant
number of times and only in some prespecified
locations). Then, one uses dynamic programming
to find an optimal (or almost optimal) solution
that obeys the local properties specified in the
structure theorem.

The original algorithms presented in the first
conference version of [1] and in the early version
of [17] have the running times of the form
O.n1=�/ to obtain a .1 C "/-approximation,
but this has been subsequently improved. In
particular, Arora’s randomized algorithm in
[1] runs in time O.n.log n/1=�/, and it can be
derandomized with a slowdown of O.n/. The
result from Theorem 3 can be also extended to
higher dimensions. Arora shows the following
result.

Theorem 4 (Arora [1]) For every constant d ,
the Euclidean TSP in R

d has a PTAS.
For every fixed c > 1 and given any n points in

R
d , there is a randomized algorithm that finds a�
1C 1

c

�
-approximation of the optimum traveling

salesman tour in O
�
n.log n/.O.

p
dc//d�1

�
time.

In particular, for any constant d and c, the
running time is O

�
n.log n/O.1/

�
. The algorithm

can be derandomized by increasing the running
time by a factor of O.nd /.
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This has been later extended by Rao and
Smith [19], who proved the following.

Theorem 5 (Rao and Smith [19]) There is a
deterministic algorithm that computes a

�
1C 1

c

�
-

approximation of the optimum traveling salesman

tour in O
�
2.cd/O.d/

nC .cd/O.d/n log n
�

time.

There is a randomized algorithm that
succeeds with probability at least 1

2
and that

computes a
�
1C 1

c

�
-approximation of the

optimum traveling salesman tour in expected
�
c
p
d
�O.d.c

p
d/d�1/

nCO.d n log n/ time.

These results are essentially asymptotically opti-
mal in the decision tree model thanks to a lower
bound of 	.n logn/ for any sublinear approxi-
mation for 1-dimensional Euclidean TSP due to
Das et al. [12]. In the real RAM model, one can
further improve the randomized results.

Theorem 6 (Bartal and Gottlieb [6]) Given
a set S of n points in d -dimensional grid
f0; : : : ; 
gd with 
 D 2.cd/O.d/

n, there is a
randomized algorithm that with probability 1 �
e�Od .n1=3d / computes a

�
1C 1

c

�
-approximation

of the optimum traveling salesman tour for S in
time 2.cd/O.d/

n in the integer RAM model.

If the data is not given in the integral form, then
one may round the data into this form using
the floor or mod functions, and assuming these
functions are atomic operations, the rounding
can be done in O.dn/ total time, leading to the
following theorem.

Theorem 7 (Bartal and Gottlieb [6]) Given a
set of n points in R

d , there is a randomized
algorithm that with probability 1 � e�Od .n1=3d /

computes a
�
1C 1

c

�
-approximation of the opti-

mum traveling salesman tour in time 2.cd/O.d/
n

in the real RAM model with atomic floor or mod
operations.

Applications

The techniques developed by Arora [1] and
Mitchell [17] found numerous applications in
the design of polynomial-time approximation
schemes for geometric optimization problems.

Euclidean Minimum Steiner Tree
For a given set S of n points in the Euclidean
space R

d , find the minimum-cost network con-
necting all the points in S (where the cost of a
network is equal to the sum of the lengths of the
edges defining it).

Euclidean k-median
For a given set S of n points in the Euclidean
space Rd and an integer k, find k-medians among
the points in S so that the sum of the distances
from each point in S to its closest median is
minimized.

Euclidean k-TSP
For a given set S of n points in the Euclidean
space R

d and an integer k, find the shortest tour
that visits at least k points in S .

Euclidean k-MST
For a given set S of n points in the Euclidean
space R

d and an integer k, find the shortest tree
that visits at least k points in S .

Euclidean Minimum-Cost k-Connected
Subgraph
For a given set S of n points in the Euclidean
space R

d and an integer k, find the minimum-
cost subgraph (of the complete graph on S ) that
is k-connected.

Theorem 8 For every constant d, the following
problems have a PTAS:

• Euclidean minimum Steiner tree problem in
R

d [1, 19]
• Euclidean k-median problem in R

d [5]
• Euclidean k-TSP and the Euclidean k-MST

problems in R
d [1]

• Euclidean minimum-cost k-connected
subgraph problem in R

d (constant k) [10]

The technique developed by Arora [1] and
Mitchell [17] led also to some quasi-polynomial-
time approximation schemes, that is, the
algorithms with the running time of nO.log n/.
For example, Arora and Karokostas [4] gave a
quasi-polynomial-time approximation scheme
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for the Euclidean minimum latency problem,
Das and Mathieu [13] gave a quasi-polynomial-
time approximation scheme for the Euclidean
capacitated vehicle routing problem, and Remy
and Steger [20] gave a quasi-polynomial-time
approximation scheme for the minimum-weight
triangulation problem.

For more discussion, see the survey by
Arora [2] and Czumaj and Lingas [11].

Extensions to Planar Graphs and Metric
Spaces with Bounded Doubling Dimension
The dynamic programming approach used by
Arora [1] and Mitchell [17] is also related to
the recent advances for a number of optimization
problems for planar graphs and in graphs in
metric spaces with bounded doubling dimension.
For example, Arora et al. [3] designed a PTAS for
the TSP in weighted planar graphs (cf. [15] for a
linear-time PTAS), and there is a PTAS for metric
spaces with bounded doubling dimension [7].

Open Problems

An interesting open problem is if the quasi-
polynomial-time approximation schemes men-
tioned above (for the minimum latency, the
capacitated vehicle routing, and the minimum-
weight triangulation problems) can be extended
to obtain PTAS. For more open problems, see
Arora [2].

Experimental Results

The Web page of the 8th DIMACS Imple-
mentation Challenge, http://dimacs.rutgers.edu/
Challenges/TSP/, contains a lot of instances.

URLs to Code and Data Sets

The Web page of the 8th DIMACS Imple-
mentation Challenge, http://dimacs.rutgers.edu/
Challenges/TSP/, contains a lot of instances.
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Problem Definition

All problems in NP can be exactly solved in
2poly.n/ time via exhaustive search, but research
has yielded faster exponential-time algorithms
for many NP-hard problems. However, some key
problems have not seen improved algorithms, and
problems with improvements seem to converge
toward O.C n/ for some unknown constant
C > 1.

The satisfiability problem for Boolean formu-
las in conjunctive normal form, CNF-SAT, is
a central problem that has resisted significant
improvements. The complexity of CNF-SAT and
its special case k-SAT, where each clause has
k literals, is the canonical starting point for the
development of NP-completeness theory.

Similarly, in the last 20 years, two hypothe-
ses have emerged as powerful starting points
for understanding exponential-time complexity.
In 1999, Impagliazzo and Paturi [5] defined the
exponential-time hypothesis (ETH), which as-
serts that 3-SAT cannot be solved in subexponen-
tial time. Namely, it asserts there is an � > 0 such
that 3-SAT cannot be solved inO..1C �/n/ time.
ETH has been a surprisingly useful assumption
for ruling out subexponential-time algorithms for
other problems [2, 6]. A stronger hypothesis has
led to more fine-grained lower bounds, which is
the focus of this article. Many NP-hard problems
are solvable in C n time via exhaustive search (for
some C > 1) but are not known to be solvable
in .C � �/n time, for any � > 0. The strong
exponential-time hypothesis (SETH) [1,5] asserts
that for every � > 0, there exists a k such that k-
SAT cannot be solved in timeO..2��/n/. SETH
has been very useful in establishing tight (and
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exact) lower bounds for many problems. Here we
survey some of these tight results.

Key Results

The following results are reductions from k-SAT
to other problems. They can be seen either as new
attacks on the complexity of SAT or as lower
bounds for exact algorithms that are conditional
on SETH.

Lower Bounds on General Problems
The following problems have lower bounds con-
ditional on SETH. The reduction for the first
problem is given to illustrate the technique.

k-Dominating Set
A dominating set of a graph G D .V;E/ is a
subset S 	 V such that every vertex is either
in S or is a neighbor of a vertex in S . The k-
DOMINATING SET problem asks to find a dom-
inating set of size k. Assuming SETH, for any
k � 3 and � > 0, k-DOMINATING SET cannot be
solved in O.nk��/ time [8].

The reduction from SAT to k-DOMINATING

SET proceeds as follows. Fix some k � 3 and
let F be a CNF formula on n variables; we build
a corresponding graph GF . Partition its variables
into k equally sized parts of n=k variables. For
each part, take all 2n=k partial assignments and
make a node for each partial assignment. Make
each of the k parts into a clique (disjoint from
the others). Add a dummy node for each partial
assignment clique that is connected to every node
in that clique but has no other edges. Addmmore
nodes, one for each clause. Finally, make an edge
from a partial assignment node to a clause node
iff the partial assignment satisfies the clause. We
observe that there is a k-dominating set in GF if
F is satisfiable.

2Sat+2Clauses
The 2SAT+2CLAUSES problem asks whether a
Boolean formula is satisfiable, given that it is
a 2-CNF with two additional clauses of arbi-
trary length. Assuming SETH, for any m D

n1Co.1/ and � > 0, 2SAT+2CLAUSES cannot

be solved in O.n2��/ time [8]. It is known that
2SAT+2CLAUSES can be solved in O.mn C n2/

time [8].

HornSat+kClauses
The HORNSAT+kCLAUSES problem asks
whether a Boolean formula is satisfiable, given
that it is a CNF of clauses that contain at most
one nonnegative literal per clause (a Horn CNF),
conjoined with k additional clauses of arbitrary
length but only positive literals. Assuming SETH,
for any k � 2 and � > 0, HORNSAT+kCLAUSES

cannot be solved in O..n C m/k��/ time [8]. It
can be trivially solved inO.nk � .mCn// time by
guessing a variable to set to true for each of the k
additional clauses and checking if the remaining
Horn CNF is satisfiable in linear time.

3-Party Set Disjointness
The 3-PARTY SET DISJOINTNESS problem is a
communication problem with three parties and
three subsets S1; S2; S3 	 Œm�, where the i th
party has access to all sets except for Si . The
parties wish to determine if S1 \ � � � \ S3 D

¿. Clearly this can be done with O.m/ bits of
communication. Assuming SETH, 3-PARTY SET

DISJOINTNESS cannot be solved using protocols
running in 2o.n/ time and communicating only
o.m/ bits [8].

k-SUM
The k-SUM problem asks whether a set of n
numbers contains a k-tuple that sums to zero.
Assuming SETH, k-SUM on n numbers cannot
be solved in no.k/ time for any k < n0:99. (It is
well known that k-SUM is inO.ndk=2e/ time) [8].

For all the problems below, we can solve in
2nnO.1/ time via exhaustive search.

k-Hitting Set
Given a set system F 	 2U in some universe U ,
a hitting set is a subsetH 	 U such thatH\S 6D
¿ for every S 2 F . The k-HITTINGSET problem
asks whether there is a hitting set of size at most t ,
given that each set S 2 F has at most k elements.
SETH is equivalent to the claim that for all � > 0,
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there is a k for which k-HITTINGSET cannot be
solved in time O..2 � �/n/ [3].

k-Set Splitting
Given a set system F 	 2U in some universe
U , a set splitting is a subset X 	 U such that
the first element of the universe is in X and for
every S 2 F , neither S 	 X nor S 	 .U n

X/. The k-SETSPLITTING problem asks whether
there is a set splitting, given that each set S 2
F has at most k elements. SETH is equivalent
to the claim that for all � > 0, there is a k for
which k-SETSPLITTING cannot be solved in time
O..2 � �/n/ [3].

k-NAE-Sat
The k-NAE-SAT problem asks whether a k-CNF
has an assignment where the first variable is set to
true and each clause has both a true literal and a
false literal. SETH is equivalent to the claim that
for all � > 0, there is a k for which k-NAE-SAT

cannot be solved in time O..2 � �/n/ [3].

c-VSP-Circuit-SAT
The c-VSP-CIRCUIT-SAT problem asks whether
a cn-size Valiant series-parallel circuit over n
variables has a satisfying assignment. SETH is
equivalent to the claim that for all � > 0, there
is a k for which c-VSP-CIRCUIT-SAT cannot be
solved in time O..2 � �/n/ [3].

Problems Parameterized by Treewidth
A variety of NP-complete problems have been
shown to be much easier on graphs of bounded
treewidth. Reductions starting from SETH given
by Lokshtanov, Marx, and Saurabh [7] can also
prove lower bounds that depend on the treewidth
of an input graph, tw.G/. The following are
proven via analyzing the pathwidth of a graph,
pw.G/, and the fact that tw.G/ � pw.G/.

Independent Set
An independent set of a graph G D .V;E/ is a
subset S 	 V such that the subgraph induced
by S contains no edges. The INDEPENDENT

SET problem asks to find an independent set of
maximum size. Assuming SETH, for any � > 0,

INDEPENDENT SET cannot be solved in .2 �

�/tw.G/nO.1/ time.

Dominating Set
A dominating set of a graph G D .V;E/ is a
subset S 	 V such that every vertex is either in
S or is a neighbor of a vertex in S . The DOMI-
NATING SET problem asks to find a dominating
set of minimum size. Assuming SETH, for any
� > 0, DOMINATING SET cannot be solved in
.3 � �/tw.G/nO.1/ time.

Max Cut
A cut of a graph G D .V;E/ is a partition of V
into S and V nS . The size of a cut is the number of
edges that have one endpoint in S and the other in
V nS . The MAX CUT problem asks to find a cut of
maximum size. Assuming SETH, for any � > 0,
MAX CUT cannot be solved in .2 � �/tw.G/nO.1/

time.

Odd Cycle Transversal
An odd cycle transversal of a graph G D .V;E/

is a subset S 	 V such that the subgraph
induced by V n S is bipartite. The ODD CYCLE

TRANSVERSAL problem asks to, given an inte-
ger k, determine whether there is an odd cycle
transversal of size k. Assuming SETH, for any
� > 0, ODD CYCLE TRANSVERSAL cannot be
solved in .3 � �/tw.G/nO.1/ time.

Graph Coloring
A q-coloring of a graph G D .V;E/ is a function
� W V ! Œq�. A q-coloring is proper if for
all edges .u; v/ 2 E, �.u/ 6D �.v/. The q-
COLORING problem asks to decide whether the
graph has a proper q-coloring. Assuming SETH,
for any q � 3 and � > 0, q-COLORING cannot be
solved in .q � �/tw.G/nO.1/ time.

Partition Into Triangles
A graph G D .V;E/ can be partitioned into
triangles if there is a partition of the vertices
into S1; S2; : : : ; Sn=3 such that each Si induces a
triangle in G. The PARTITION INTO TRIANGLES

problem asks to decide whether the graph can be
partitioned into triangles. Assuming SETH, for
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any � > 0, PARTITION INTO TRIANGLES cannot
be solved in .2 � �/tw.G/nO.1/ time.

All of the above results are tight, in the sense
that when � D 0, there is an algorithm for each of
them.

Showing Difficulty Via Set Cover
Given a set system F 	 2U in some universeU , a
set cover is a subset C 	 F such that

S
S2C S D

U . The SET COVER problem asks whether there
is a set cover of size at most t .

Cygan et al. [3] also gave reductions from SET

COVER to several other problems, showing lower
bounds conditional on the assumption that for all
� > 0, there is a k such that SET COVER where
sets in F have size at most k cannot be computed
in time O�..2 � �/n/.

It is currently unknown how SET COVER is re-
lated to SETH; if there is a reduction from CNF-
SAT to SET COVER, then all of these problems
would have conditional lower bounds as well.

Steiner Tree
Given a graph G D .V;E/ and a set of terminals
T 	 V , a Steiner Tree is a subset X 	 V

such that the graph induced by X is connected
and T 	 X . The STEINER TREE problem asks
whether G has a Steiner tree of size at most
t . With the above SET COVER assumption, for
all � > 0, STEINER TREE cannot be solved in
O�..2 � �/t / time.

Connected Vertex Cover
A connected vertex cover of a graph G D .V;E/
is a subset X 	 V such that the subgraph in-
duced by X is connected and every edge contains
at least one endpoint in X . The CONNECTED

VERTEX COVER problem asks whether G has a
connected vertex cover of size at most t . With
the above SET COVER assumption, for all � > 0,
CONNECTED VERTEX COVER cannot be solved
in O�..2 � �/t / time.

Set Partitioning
Given a set system F 	 2U in some universe U ,
a set partitioning is a set cover C where pairwise
disjoint elements have an empty intersection. The
SET PARTITIONING problem asks whether there

is a set partitioning of size at most t . With the
above SET COVER assumption, for all � > 0, SET

PARTITIONING cannot be solved inO�..2� �/n/
time.

Subset Sum
The SUBSET SUM problem asks whether a set of
n positive numbers contains a subset that sums
to a target t . With the above SET COVER assump-
tion, for all ı < 1, SUBSET SUM cannot be solved
in O�.tı/ time. Note that there is a dynamic
programming solution that runs in O.nt/ time.

Open Problems

• Does ETH imply SETH?
• Does SETH imply SET COVER requires
O�..2 � �/n/ time for all � > 0?

• Does SETH imply that the Traveling Sales-
man Problem in its most general, weighted
form requiresO�..2��/n/ time for all � > 0?

• Given two graphs F and G, on k and n nodes,
respectively, the SUBGRAPH ISOMORPHISM

problem asks whether a (noninduced) sub-
graph of G is isomorphic to F . Does SETH
imply that SUBGRAPH ISOMORPHISM cannot
be solved in 2O.n/?
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Problem Definition

In the subset sum problem, we are given
integers a1; : : : ; an; t and are asked to find a
subset X 	 f1; : : : ; ng such that

P
i2X ai D

t . In the Knapsack problem, we are given
a1; : : : ; an; b1; : : : ; bn; t; u and are asked to find
a subset X 	 f1; : : : ; ng such that

P
i2X ai � t

and
P

i2X bi � u. It is well known that both
problems can be solved in O.nt/ time using
dynamic programming. However, as is typical for
dynamic programming, these algorithms require
a lot of working memory and are relatively hard
to execute in parallel on several processors: the
above algorithms use O.t/ space which may be
exponential in the input size.

This raises the question: when can we avoid
these disadvantages and still be (approximately)
as fast as dynamic programming algorithms?
It appears that by (slightly) loosening the time
budget, space usage and parallelization can
be significantly improved in many dynamic
programs.

Key Results

A Space Efficient Algorithm for Subset Sum
In this article, we will use QO.�/ to suppress factors
that are poly-logarithmic in the input size. In
what follows, we will discuss how to prove the
following theorem:

Theorem 1 (Lokshtanov and Nederlof, [7])
There is an algorithm counting the number
of solutions of a subset sum instance in
QO.n2t .n C log t // time and .n C lg.t//.lgnt/

space.

The Discrete Fourier Transform
We use Iverson’s bracket notation: given a
Boolean predicate b, Œb� denotes 1 if b is true



662 Exact Algorithms and Time/Space Tradeoffs

and 0 otherwise. Let P.x/ be a polynomial
of degree N � 1, and let p0; : : : ; pN�1 be
its coefficients. Thus, P.x/ D

PN�1
iD0 pix

i .
Let !N denote the N ’th root of unity, that
is, !N D e

2��
N . Let k; t be integers such that

k ¤ t . By the summation formula for geometric

progressions
�PN�1

`D0 r
` D 1�rN

1�r
for r ¤ 1

�
, we

have:

N�1X

`D0

!
`.k�t/
N D

1 � !
.k�t/N
N

1 � !k�t
N

D
1 �

�
!N

N

�k�t

1 � !k�t
N

D
1 � .1/k�t

1 � !k�t
N

D 0:

On the other hand, if k D t , then
PN�1

`D0 !
`.k�t/
N D

PN�1
`D0 1 D N . Thus, both cases can be

compactly summarized as
PN�1

`D0 !
`.k�t/
N D

Œk D t �N . As a consequence, we can express
a coefficient pt of P.x/ directly in terms of its
evaluations:

pt D

N�1X

kD0

Œk D t �pk

D

N�1X

kD0

1

N

N�1X

`D0

!
`.k�t/
N

X
pk

D
1

N

N�1X

`D0

!�`t
N

N�1X

kD0

pk

�
!`

N

�k

D
1

N

N�1X

`D0

!�`t
N P.!`

N /

(1)

Using the Discrete Fourier Transform
for Subset Sum
Given an instance a1; : : : ; an; t of subset sum,
define the polynomial P.x/ to be P.x/ D
Qn

iD1.1C x
ai /. Clearly, we can discard integers

ai larger than t , and assume that P.x/ has degree
at mostN D nt. If we expand the products in this
polynomial to get rid of the parentheses, we get
a sum of 2n products and each of these products
is of the type xk and corresponds to a subset

X 	 f1; : : : ; ng such that
P

i2X ai D k. Thus,
if we aggregate these products, we obtained the
normal form P.x/ D

PN�1
kD0 pkx

k , where pk

equals the number of subsets X 	 Œn� such that
P

i2X ai D k. Plugging this into Eq. 1, we have
that the number of subset sum solutions equals

pt D
1

N

N�1X

`D0

!�`t
N

nY

iD1

�
1C !

`ai

N

�
: (2)

Given Eq. 2, the algorithm suggests itself: evalu-
ation of the right-hand side gives the number of
solutions of the subset sum instance. Given !N ,
this would be a straightforward on the unit-cost
RAM model (recall that in this model arithmetic
instructions as C;�;� and = are assumed to take
constant time): the required powering operations
are performed in log.N / arithmetic operations so
an overall upper bound would be O.n2t log.nt//
time.

However, still the value of this algorithm is
not clear yet: for example, !N may be irrational,
so it is not clear how to perform the arithmetic
efficiently. This is an issue that also arises for
the folklore fast Fourier transform (see, e.g., [3]
for a nice exposition), and this issue is usually
not addressed (a nice exception is Knuth [6]).
Moreover in our case we should also be careful
on the space budget: for example, we cannot even
store 2t in the usual way within our space budget.
But, as we will now see, it turns out that we can
simply evaluate Eq. 2 with finite precision and
round to the nearest integer within the resource
bounds claimed in Theorem 1.

Evaluating Equation 2 with Finite Precision
The algorithm establishing Theorem 1 is pre-
sented in Algorithm 1. Here, � represents the
amount of precision the algorithm works with.
The procedure tr� truncates � bits after the
decimal point. The procedure apxr�.´/ returns
an estimate of !´

N . In order to do this, estimates
of !´

N with ´ being powers of 2 are precomputed
in Lines 3–4. We omit an explicit implementation
of the right-hand side of Line 4 since this is very
standard; for example, one can use an approxima-
tion of � together with a binary splitting approach
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Algorithm 1 Approximate evaluation of Eq. 2
Algorithm: SSS(a1; : : : ; an; t )
Require: for every 1 � i � n; ai < t .
1: � 3nC 6 log nt
2: s 0
3: for 0 � q � log N � 1 do
4: ==store roots of unity for powers of two

5: rq  tr�.e
2�2q

N� /
6: end for
7: for 0 � ` � N � 1 do
8: p apxr�.�`t % N /
9: for 1 � i � n do

10: p tr�.p � .1C apxr�.`ai % N ///
11: end for
12: s sC p
13: end for
14: return rnd.tr�. s

N
// ==round to nearest int

Algorithm: apxr�.´/
Require: ´ < N
15: p0  1
16: for 1 � q � log N � 1 do
17: if 2q divides ´ then
18: p tr�.p0 � rq/
19: end if
20: end for
21: return p0

(see [1, Section 4.9.1]) or a Taylor expansion-
based approach (see [2]). Crude upper bounds
on the time and space usage of both approaches
are O.�2 logN/ time and O.n log nt C log nt/
space.

Let us proceed with verifying whether
Algorithm 1 satisfies the resource bounds of
Theorem 1. It is easy to see that all intermediate
numbers have modulus at most 2nN , so their
estimates can be represented with O.�/ bits. For
all multiplications we will use an asymptotically
fast algorithm running in QO.n/ time (e.g., [5]).
Then, Line 3–4 take QO.�2 logN/ time. Line 6
takes QO.� lgN/ time; Lines 7–8 take n� lgN
time, which is the bottleneck. So overall, the
algorithm uses QO.Nn�/ D QO.n2t .n C log t //
time. The space usage is dominated by the
precomputed values which use O.logN�/ D
O.nC log t .log nt// space.

For the correctness of Algorithm 1, let us
first study what happens if we work with infinite
precision (i.e., � D 1). Note that apxr1.´/ D
!´

N since it computes

log N�1Y

qD1

Œ2q divides ´�rq

D

log N�1Y

qD1

Œ2q divides ´�!2q

N

D !

Plog N �1

qD1
Œ2q divides ´�2q

N D !´:

Moreover, note that on iteration ` of the for-loop
of Line 5, we will have on Line 9 that p D
P.!`

N / by the definition of P.x/. Then, it is easy
to see that Algorithm 1 indeed evaluates the right-
hand side of Eq. 2.

Now, let us focus on the finite precision. The
algorithm computes an N -sized sum of .n C
2 logN/-sized products of precomputed values,
(increased by one). Note that it is sufficient to
guarantee that on Line 9 in every iteration `, jp�
!�`t

N

Qn
iD1.1C!

`ai

N /j � 0:4, since then the total
error of s on Line 10 is at most 0:4N and the total
error of s=N is 0:4, which guarantees rounding to
the correct integer. Recall that p is the result of
an .nC 2 logN/-sized product, so let us analyze
how the approximation error propagates in this
situation. If Oa; Ob are approximations of a; b and
we approximate c by tr� Oa � Ob, we have

jc�Ocj � ja�OajjbjCjb�ObjjajCja�Oajjb�ObjC2��:

Thus, if a is the result of a (i-1)-sized product,
and using an upper bound of 2 for the modulus
of any of the product terms in the algorithm,
we can upper bound the error of Ei estimating
an i -length product as follows: E1 � 2�� and
for i > 1:

Ei � 2Ei�1 C 2
��2i�1 C 2��Ei�1 C 2

��

� 3Ei�1 C 2
��2i :

Using straightforward induction we have that
Ei � 6

i2�� So indeed, setting � D 3nC 6 log nt
suffices.

A Generic Framework
For Theorem 1, we only used that the to be
determined value is a coefficient of a (relatively)
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small degree polynomial that we can evaluate
efficiently. Whether this is the case for other
problems solved by dynamic programming can
be seen from the structure of the used recur-
rence: when the recurrence can be formulated
over a polynomial ring where the polynomials
have small degree, we can evaluate it fast and
interpolate with the same technique as above
to find a required coefficient. For example, for
Knapsack, one can use the polynomialP.x; y/ D
Qn

iD1.x
aiybi / and look for a nonzero coefficient

of xt 0

yu0

where t 0 � t and u0 � u to obtain
a pseudo-polynomial time and polynomial space
algorithm as well.

Naturally, this technique does not only apply
to the polynomial ring. In general, if the ring
would be R 	 CN�N equipped with matrix
addition and multiplication, we just need a matrix
that simultaneously diagonalizes all matrices of
R (in the above case, R are all circulant matrices
which are simultaneously diagonalized by the
Fourier matrix).

Applications

The framework applies to many dynamic pro-
gramming algorithms. A nice additional exam-
ple is the algorithm of Dreyfus and Wagner for
Steiner tree [4, 7, 8].
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Problem Definition

Given a graph G with n vertices, an ordering is a
bijective function � W V.G/! f1; 2; : : : ; ng. The
bandwidth of � is a maximal length of an edge,
i.e.,

bw.�/ D max
uv2E.G/

j�.u/ � �.v/j:

The bandwidth problem, given a graph G and a
positive integer b, asks if there exists an ordering
of bandwidth at most b.
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Key Results

An exhaustive search for the bandwidth problem
enumerates all the nŠ orderings, trying to find
one of bandwidth at most b. The first single
exponential time algorithm is due to Feige and
Kilian [6], which we are going to describe now.

Bucketing
Definition 1 For a positive integer k, let Ik be
the collection of dn=ke sets obtained by splitting
the set f1; : : : ; ng into equal parts (except the last
one), i.e., Ik D ff1; : : : ; kg; fkC1; : : : ; 2kg; : : :g.
A function f W V.G/ ! Ik is called a k-bucket
assignment, if for every edge uv 2 E.G/ at least
one of the following conditions is satisfied:

• f .u/ D f .v/,
• jmax f .u/ �min f .v/j � b,
• jmin f .u/ �max f .v/j � b.

Clearly, if a function f W V.G/! Ik is not a
k-bucket assignment, then there is no ordering �
of bandwidth at most b consistent with f , where
� is consistent with f iff �.v/ 2 f .v/ for each
v 2 V.G/. A bucket function can be seen as a
rough assignment – instead of assigning vertices
to their final positions in the ordering, we assign
them to intervals.

The O.10npoly.n// time algorithm of [6] is
based on two ideas, both related to the notion of
bucket assignments. For the sake of presentation,
let us assume that n is divisible by b, whereas b
is a power of two. Moreover, we assume thatG is
connected, as otherwise it is enough to consider
each connected component of G separately.

First, one needs to show that there is a family
of at most n3n�1 b-bucket assignments F , such

that any ordering of bandwidth at most b is
consistent with some b-bucket assignment from
F . We create F recursively by branching. First,
fix an arbitrary vertex v0, and assign it to some in-
terval from Ik (there are at most n choices here).
Next, consider any vertex v without assigned
interval, which has a neighbor u with already
assigned interval. By the assumption that G is
connected, v always exists. Note that in order
to create a valid bucket assignment, v has to be
assigned either to the same interval as u or to
one of its two neighboring intervals. This gives
at most three branches to be explored.

In the second phase, consider some b-bucket
assignment f 2 F . We want to check whether
there exists some ordering of bandwidth at most
b consistent with f . To do this, for each vertex
v, we branch into two choices, deciding whether
v should be assigned to the left half of f .v/ or
to the right half of f .v/. This leads to at most
2n b=2-bucket assignments to be processed. The
key observation is that each of those assignments
can be naturally split into two independent sub-
problems. This is because each edge within an
interval of length b=2 and each edge between
two neighboring intervals of length b=2 will be
of length at most b � 1. Additionally, each edge
connecting two vertices with at least two intervals
of length b=2 in between would lead to violating
the constraint of being a valid b=2-bucket assign-
ment. Therefore, it is enough to consider vertices
in even and odd intervals separately (see Fig. 1).
Such routine of creating more and more refined
bucket assignments can be continued, where the
running time used for n vertices satisfies

T .n/ D 2n � 2 � T .
n

2
/

... ...b
2

b
2

b
2

b
2

b
2

b
2

Exact Algorithms for Bandwidth, Fig. 1 Thick vertical lines separate subsequent intervals from Ib=2. Meaningful
edges connect vertices with exactly one interval in between
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which in turn gives T .n/ D 4npoly.n/.
Since we have jF j � n3n�1, we end up
with O.12npoly.n// time algorithm. If instead
of generating b-bucket assignments one uses
b=2-bucket assignments (there are at most n5n�1

of them), then the running time can be improved
to 10npoly.n/.

Dynamic Programming
In [2, 5], Cygan and Pilipczuk have shown that
for a single .b C 1/-bucket assignment, one can
check in time and space O.2npoly.n// whether
there exists an ordering of bandwidth at most
b consistent with it. Since there are at most
n3n�1 .b C 1/-bucket assignments, this leads to
O.6npoly.n// time algorithm.

The key idea is to assign vertices to their final
positions consistent with some f 2 F in a very
specific order. Let us color the set of positions
f1; : : : ; ng with color.i/ D .i � 1/ mod .b C 1/.
Define a color order of positions, where
positions from f1; : : : ; ng are sorted by their
color values, breaking ties with position values
(see Fig. 2).

A lemma that proves usefulness of the
color order shows that if we assign vertices to
positions in the color order, then we can use
the standard Held-Karp dynamic programming
over subsets approach. In particular, in a state of

1 5 9 12 2 6 10 13 3 7 11 14 4 8

b+1 b+1 b+1

Exact Algorithms for Bandwidth, Fig. 2 An index of
each position in a color order for n D 14 and b D 3

dynamic programming, it is enough to store the
subset S 	 V.G/ of vertices already assigned
to the first jS j positions in the color order
(see Fig. 3).

Further Improvements
Instead of upper bounding running time of the
algorithm for each .b C 1/-bucket assignment
separately, one can count the number of states
of the dynamic programming routine used by the
algorithm throughout the processing of all the
bucket assignments. As shown in [2], this leads to
O.5npoly.n// running time, which with more in-
sights and more technical analysis can be further
improved to O.4:83n/ [5] and O.4:383n/ [3].
If only polynomial space is allowed, then the
best known algorithm needs O.9:363n/ running
time [4].

Related Work

Concerning small values of b, Saxe [8] presented
a nontrivial O.nbC1/ time and space dynamic
programming, consequently proving the problem
to be in XP. However, Bodlaender et al. [1] have
shown that bandwidth is hard for any fixed level
of the W hierarchy.

For a related problem of minimum distortion
embedding, Fomin et al. [7] obtained a
O.5npoly.n// time algorithm, improved by
Cygan and Pilipczuk [4] to running times
same as for the best known bandwidth
algorithms.

v

b+1

bb

Exact Algorithms for Bandwidth, Fig. 3 When a ver-
tex v is to be assigned to the next position in the color
order, then all its neighbors from the left interval cannot

be yet assigned a position, whereas all its neighbors from
the right interval have to be already assigned in order to
obtain an ordering of bandwidth at most b
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Open Problems

Many vertex ordering problems admit O.2n

poly.n// time and space algorithms, like Hamil-
tonicity, cutwidth, pathwidth, optimal linear
arrangement, etc. In [2], Cygan and Pilipczuk
have shown that a dynamic programming routine
with such a running time is possible, provided
a .b C 1/-bucket assignment is given. A natural
question to ask is whether it is possible to obtain
O.2npoly.n// without the assumption of having
a fixed assignment to be extended.
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Problem Definition

The dominating set problem is a classical NP-
hard optimization problem which fits into the
broader class of covering problems. Hundreds of
papers have been written on this problem that has
a natural motivation in facility location.

Definition 1 For a given undirected, simple
graph G D .V;E/, a subset of vertices D 	 V is
called a dominating set if every vertex u 2 V �D
has a neighbor in D. The minimum dominating
set problem (abbr. MDS) is to find a minimum
dominating set of G, i.e., a dominating set of G
of minimum cardinality.

Problem 1 (MDS)

INPUT: Undirected simple graph G D .V;E/.
OUTPUT: A minimum dominating set D of G.
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Various modifications of the dominating set prob-
lem are of interest, some of them obtained by
putting additional constraints on the dominating
set as, e.g., requesting it to be an independent
set or to be connected. In graph theory, there
is a huge literature on domination dealing with
the problem and its many modifications. In graph
algorithms, the MDS problem and some of its
modifications like independent dominating set
and connected dominating set have been studied
as benchmark problems for attacking NP-hard
problems under various algorithmic approaches.

Known Results
The algorithmic complexity of MDS and its mod-
ifications when restricted to inputs from a par-
ticular graph class has been studied extensively.
Among others, it is known that MDS remains
NP-hard on bipartite graphs, split graphs, planar
graphs, and graphs of maximum degree 3. Poly-
nomial time algorithms to compute a minimum
dominating set are known, e.g., for permutation,
interval, and k-polygon graphs. There is also a
O.3k nO.1// time algorithm to solve MDS on
graphs of treewidth at most k.

The dominating set problem is one of the
basic problems in parameterized complexity; it
is W[2]-complete and thus it is unlikely that the
problem is fixed parameter tractable. On the other
hand, the problem is fixed parameter tractable on
planar graphs. Concerning approximation, MDS
is equivalent to MINIMUM SET COVER under L-
reductions. There is an approximation algorithm
solving MDS within a factor of 1 C log jV j,
and it cannot be approximated within a factor
of .1 � �/ ln jV j for any � > 0, unless NP �
DTIME(nlog log n).

Exact Exponential Algorithms
If P ¤ NP, then no polynomial time algorithm
can solve MDS. Even worse, it has been observed
in [5] that unless SNP	 SUBEXP (which is
considered to be highly unlikely), there is not
even a subexponential time algorithm solving the
dominating set problem.

The trivial O.2n .n C m// algorithm, which
simply checks all the 2n vertex subsets whether
they are dominating, clearly solves MDS. Three

faster algorithms have been established in 2004.
The algorithm of Fomin et al. [5] uses a deep
graph-theoretic result due to B. Reed, stating
that every graph on n vertices with minimum
degree at least three has a dominating set of size
at most 3n=8, to establish an O.20:955n/ time
algorithm solving MDS. The O.20:919n/ time
algorithm of Randerath and Schiermeyer [9] uses
very nice ideas including matching techniques to
restrict the search space. Finally, Grandoni [6]
established anO.20:850n/ time algorithm to solve
MDS.

Key Results

Branch and Reduce and Measure
and Conquer
The work of Fomin, Grandoni, and Kratsch
presents a simple and easy way to implement
a recursive branch and reduce algorithm to solve
MDS. It was first presented at ICALP 2005 [2]
and later published in 2009 in [3]. The running
time of the algorithm is significantly faster than
the ones stated for the previous algorithms.
This is heavily based on the analysis of the
running time by measure and conquer, which
is a method to analyze the worst case running
time of (simple) branch and reduce algorithms
based on a sophisticated choice of the measure of
a problem instance.

Theorem 1 There is a branch and reduce al-
gorithm solving MDS in time O.20:610n/ using
polynomial space.

Theorem 2 There is an algorithm solving MDS
in time O.20:598n/ using exponential space.

The algorithms of Theorems 1 and 2 are
simple consequences of a transformation from
MDS to MINIMUM SET COVER (abbr. MSC)
combined with new exact exponential time
algorithms for MSC.

Problem 2 (MSC)

INPUT: Finite set U and a collection S of subsets
S1; S2; : : : St of U .



Exact Algorithms for Dominating Set 669

E

OUTPUT: A minimum set cover S 0, where S 0 	
S is a set cover of .U ;S/ if

S
Si2S0

Si D U .

Theorem 3 There is a branch and reduce al-
gorithm solving MSC in time O.20:305.jU jCjSj//
using polynomial space.

Applying memorization to the polynomial
space algorithm of Theorem 3, the running time
can be improved as follows.

Theorem 4 There is an algorithm solving MSC
in time O.20:299.jSjCjU j// needing exponential
space.

The analysis of the worst case running time of
the simple branch and reduce algorithm solving
MSC (of Theorem 3) is done by a careful choice
of the measure of a problem instance which al-
lows to obtain an upper bound that is significantly
smaller than the one that could be obtained using
the standard measure. The refined analysis leads
to a collection of recurrences. Then, random local
search was used to compute the weights, used in
the definition of the measure, aiming at the best
achievable upper bound of the worst case running
time. By now various other methods to do these
time-consuming computations are available; see,
e.g., [1].

Getting Faster MDS Algorithms
There is a lot of interest in exact exponential
algorithms for solving MDS and in improving
their best known running times. Two important
improvements on the running times of the orig-
inal algorithm stated in Theorems 1 and 2 have
been achieved. To simplify the comparison, let
us mention that in [4] those running times are
stated asO.1:5259n/ using polynomial space and
O.1:5132n/ needing exponential space.

Van Rooij and Bodlaender presented faster ex-
act exponential algorithms solving MDS that are
strongly based on the algorithms of Fomin et al.
and the methods of their analysis. By introducing
new reduction rules in the algorithm and a refined
analysis, they achieved running time O.1:5134n/

using polynomial space and time O.1:5063n/,
presented at STACS 2008. This analysis has been
further improved in [11] to achieve a running time
of O.1:4969n/ using polynomial space, which

was published in 2011. It should be emphasized
that memorization cannot be applied to the latter
algorithm.

The currently best known algorithms solving
MDS have been obtained by Ywata [7] and pre-
sented at IPEC 2011.

Theorem 5 There is a branch and reduce al-
gorithm solving MDS in time O.1:4864n/ using
polynomial space.

Theorem 6 There is an algorithm solving
MDS in time O.1:4689n/ needing exponential
space.

Ywata’s polynomial space branch and reduce
algorithm is also strongly related to the algo-
rithm of Fomin et al. and its analysis. The im-
provement in the running time is achieved by
some crucial change in the order of branchings
in the algorithm solving MSC, i.e., the algo-
rithm branches on the same element consecu-
tively. These consecutive branchings can then
be exploited by a refined analysis using global
weights called potentials. Thus, such an analy-
sis is dubbed “potential method.” By a variant
of memorization where dynamic programming
memorizes only solutions of subproblems with
small number of elements, an algorithm of run-
ning time O.1:4689n/ needing exponential space
has been obtained.

Counting Dominating Sets
A strongly related problem is #DS that asks to
determine for a given graph G the number of
dominating sets of size k, for any k. In [8],
Nederlof, van Rooij, and van Dijk show how to
combine inclusion/exclusion and a branch and re-
duce algorithm while using measure and conquer,
as to obtain an algorithm (needing exponential
space) of running time O.1:5002n/. Clearly, this
also solves MDS.

Applications

There are various other NP-hard domination-type
problems that can be solved by exact exponen-
tial algorithms based on an algorithm solving
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MINIMUM SET COVER: any instance of the initial
problem is transformed to an instance of MSC,
and then an algorithm solving MSC is applied and
thus the initial problem is solved. Examples of
such problems are TOTAL DOMINATING SET, k-
DOMINATING SET, k-CENTER, and MDS on split
graphs. Measure and conquer and the strongly
related quasiconvex analysis of Eppstein [1] have
been used to design and analyze a variety of
exact exponential branch and reduce algorithms
for NP-hard problems, optimization, counting,
and enumeration problems; see [4].

Open Problems

While for many algorithms it is easy to show that
the worst case analysis is tight, this is not the
case for the nowadays time analysis of branch
and reduce algorithms. For example, the worst
case running times of the branch and reduce
algorithms of Fomin et al. [3] solving MDS
and MSC remain unknown; a lower bound of
˝.3n=4/ for the MDS algorithm is known. The
situation is similar for many other branch and
reduce algorithms. Consequently, there is a strong
need for new and better tools to analyze the
worst case running time of branch and reduce
algorithms.
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Problem Definition

The satisfiability problem (SAT) for Boolean for-
mulas in conjunctive normal form (CNF) is one
of the first NP-complete problems [2, 13]. Since
its NP-completeness currently leaves no hope for
polynomial-time algorithms, the progress goes
by decreasing the exponent. There are several
versions of this parametrized problem that differ
in the parameter used for the estimation of the
running time.

Problem 1 (SAT)

INPUT: Formula F in CNF containing n vari-
ables, m clauses, and l literals in total.

OUTPUT: “Yes” ifF has a satisfying assignment,
i.e., a substitution of Boolean values for the
variables that makes F true. “No” otherwise.

The bounds on the running time of SAT algo-
rithms can be thus given in the form jF jO.1/ � ˛n,
jF jO.1/ � ˇm, or jF jO.1/ � � l , where jF j is the
length of a reasonable bit representation of F
(i.e., the formal input to the algorithm). In fact,
for the present algorithms, the bases ˇ and � are
constants, while ˛ is a function ˛.n;m/ of the
formula parameters (because no better constant
than ˛ D 2 is known).

Notation
A formula in conjunctive normal form is a set of
clauses (understood as the conjunction of these
clauses), a clause is a set of literals (understood
as the disjunction of these literals), and a literal
is either a Boolean variable or the negation of
a Boolean variable. A truth assignment assigns
Boolean values (false or true) to one or more vari-
ables. An assignment is abbreviated as the list of
literals that are made true under this assignment
(e.g., assigning false to x and true to y is denoted
by :x; y). The result of the application of an
assignment A to a formula F (denoted F ŒA�)
is the formula obtained by removing the clauses
containing the true literals from F and removing
the falsified literals from the remaining clauses.
For example, if F D .x _ :y _ ´/ ^ .y _ :´/,
then F Œ:x; y� D .´/. A satisfying assignment
for F is an assignment A such that F ŒA� D

true. If such an assignment exists, F is called
satisfiable.

Key Results

Bounds for ˇ and �

General Approach and a Bound for ˇ
The trivial brute-force algorithm enumerating all
possible assignments to the n variables runs in 2n

polynomial-time steps. Thus ˛ � 2, and by trivial
reasons also ˇ; � � 2. In the early 1980s, Monien
and Speckenmeyer noticed that ˇ could be made
smaller. (They and other researchers also noticed
that ˛ could be made smaller for a special case
of the problem where the length of each clause
is bounded by a constant; the reader is referred
to another entry (Local search algorithms for k-
SAT) of the Encyclopedia for relevant references
and algorithms.) Then Kullmann and Luckhardt
[12] set up a framework for divide-and-conquer
(Also called DPLL due to the papers of Davis and
Putnam [6] and Davis, Logemann, and Loveland
[7].) algorithms for SAT that split the original
problem into several (yet usually a constant num-
ber of) subproblems by substituting the values
of some variables and simplifying the obtained
formulas. This line of research resulted in the
following upper bounds for ˇ and � :

Theorem 1 (Hirsch [8]) SAT can be solved in
time

1. jF jO.1/ � 20:30897mI

2. jF jO.1/ � 20:10299l .

A typical divide-and-conquer algorithm for SAT
consists of two phases: splitting of the origi-
nal problem into several subproblems (e.g., re-
ducing SAT(F) to SAT(F[x]) and SAT .F Œ:x�/)
and simplification of the obtained subproblems
using polynomial-time transformation rules that
do not affect the satisfiability of the subprob-
lems (i.e., they replace a formula by an equi-
satisfiable one). The subproblems F1; : : : ; Fk for
splitting are chosen so that the corresponding
recurrent inequality using the simplified problems
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F 01; : : : ; F
0
k

,

T .F / �

kX

iD1

T
�
F 0i
�
C const,

gives a desired upper bound on the number of
leaves in the recurrence tree and, hence, on the
running time of the algorithm. In particular, in
order to obtain the bound jF jO.1/ � 20:30897m one
takes either two subproblems F Œx�; F Œ:x� with
recurrent inequality

tm � tm�3 C tm�4

or four subproblemsF Œx; y�; F Œx;:y�; F Œ:x; y�;
F Œ:x;:y� with recurrent inequality

tm � 2tm�6 C 2tm�7

where ti D max m.G/�iT .G/. The simplification
rules used in the jF jO.1/ � 20:30897m-time and the
jF jO.1/ �20:10299l -time algorithms are as followsW

Simplification Rules

Elimination of 1-Clauses If F contains a
1-clause .a/, replace F by F Œa�.

Subsumption If F contains two clauses C and
D such that C 	 D, replace F by F nfDg.

Resolution with Subsumption Suppose a lit-
eral a and clauses C and D are such that a is the
only literal satisfying both conditions a 2 C and
:a 2 D. In this case, the clause .C[D/nfa;:ag
is called the resolvent by the literal a of the
clauses C and D and denoted by R.C;D/.

The rule is: if R.C;D/ 	 D, replace F by
.F nfDg/ [ fR.C;D/g.

Elimination of a Variable by Resolution
[6] Given a literal a, construct the formula
DP a.F / by

1. Adding to F all resolvents by a
2. Removing from F all clauses containing a

or :a

The rule is: if DP a.F / is not larger in m (resp.,
in l) than F , then replace F by DP a.F /.

Elimination of Blocked Clauses A clause C
is blocked for a literal a w.r.t. F if C contains
the literal a, and the literal :a occurs only in
the clauses of F that contain the negation of at
least one of the literals occurring in Cnfag. For
a CNF-formula F and a literal a occurring in it,
the assignment I.a; F / is defined as

fag [
˚
literals x … fa;:ag j the clause

f:a; xg is blocked for :a w.r.t. F
�
:

Lemma 2 (Kullmann [11])

(1) If a clause C is blocked for a literal a w.r.t.
F , then F and F nfC g are equi-satisfiable.

(2) Given a literal a, the formula F is satisfiable
iff at least one of the formulas F Œ:a� and
F ŒI.a; F /� is satisfiable.

The first claim of the lemma is employed as a
simplification rule.

Application of the Black and White Literals
Principle Let P be a binary relation between
literals and formulas in CNF such that for a
variable v and a formula F , at most one of
P.v; F / and P.:v; F / holds.

Lemma 3 Suppose that each clause of F

that contains a literal w satisfying P.w; F /
contains also at least one literal b satisfying
P.:b; F /. Then F and F Œfl jP.:l; F /g� are
equi-satisfiable.

A Bound for �
To obtain the bound jF jO.1/ � 20:10299l , it is
enough to use a pair F Œ:a�; F ŒI.a; F /� of sub-
problems (see Lemma 2(2)) achieving the desired
recurrent inequality tl � tl�5 C tl�17 and to
switch to the jF jO.1/ �20:30897m-time algorithm if
there are none. A recent (much more technically
involved) improvement to this algorithm [16]
achieves the bound jF jO.1/ � 20:0926l .
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A Bound for ˛
Currently, no non-trivial constant upper bound
for ˛ is known. However, starting with [14]
there was an interest to non-constant bounds.
A series of randomized and deterministic al-
gorithms showing successive improvements was
developed, and at the moment the best possible
bound is achieved by a deterministic divide-and-
conquer algorithm employing the following re-
cursive procedure. The idea behind it is a di-
chotomy: either each clause of the input formula
can be shortened to its first k literals (then a
k-CNF algorithm can be applied), or all these
literals in one of the clauses can be assumed
false. (This clause-shortening approach can be
attributed to Schuler [15], who used it in a ran-
domized fashion. The following version of the
deterministic algorithm achieving the best known
bound both for deterministic and randomized
algorithms appears in [5].)
Procedure S

Input: a CNF formula F and a positive inte-
ger k.

1. Assume F consists of clauses C1; : : : ; Cm.
Change each clause Ci to a clause Di as
follows: If jCi j > k then choose any k
literals in Ci and drop the other literals;
otherwise leave Ci as is, i.e., Di D Ci . Let
F 0 denote the resulting formula.

2. Test satisfiability of F 0 using the m �

poly .n/ � .2 � 2=.k C 1//n-time k-CNF
algorithm defined in [4].

3. If F 0 is satisfiable, output “satisfiable” and
halt. Otherwise, for each i , do the follow-
ing:
1. Convert F to Fi as follows:

1. Replace Cj by Dj for all j < i .
2. Assign false to all literals in Di .

2. Recursively invoke Procedure S on
(Fi ; k).

4. Return “unsatisfiable”.

The algorithm just invokes Procedure S on
the original formula and the integer parameter
k D k � .m; n/. The most accurate analysis of
this family of algorithms by Calabro, Impagli-

azzo, and Paturi [1] implies that, assuming that
m > n, one can obtain the following bound
by taking k.m; n/ D 2log.m=n/ C const:
(This explicit bound is not stated in [1] and is
inferred in [3].)

Theorem 4 (Dantsin, Hirsch [3]) Assuming
m > n, SAT can be solved in time

jF jO.1/ � 2n

�

1 �
1

O .log .m=n//

�

:

Applications

While SAT has numerous applications, the pre-
sented algorithms have no direct effect on them.

Open Problems

Proving a constant upper bound on ˛ < 2 remains
a major open problem in the field, as well as the
hypothetic existence of .1C "/l -time algorithms
for arbitrary small " > 0.

It is possible to perform the analysis of a
divide-and-conquer algorithm and even to gener-
ate simplification rules automatically [10]. How-
ever, this approach so far led to new bounds only
for the (NP-complete) optimization version of
2-SAT [9].

Experimental Results

Jun Wang has implemented the algorithm yield-
ing the bound on ˇ and collected some statistics
regarding the number of applications of the sim-
plification rules [17].
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Problem Definition

A graph class ˘ is a set of simple graphs. One
can also think of ˘ as a property: ˘ comprises
all the graphs that satisfy a certain condition. We
say that class (property) ˘ is hereditary if it
is closed under taking induced subgraphs. More
precisely, whenever G 2 ˘ and H is an induced
subgraph of G, then also H 2 ˘ .
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We shall consider the MAXIMUM INDUCED

˘ -SUBGRAPH problem: given a graph G, find
the largest (in terms of the number of vertices)
induced subgraph of G that belongs to ˘ .
Suppose now that class ˘ is polynomial-time
recognizable: there exists an algorithm that
decides whether a given graphH belongs to˘ in
polynomial time. Then MAXIMUM INDUCED ˘ -
SUBGRAPH on an n-vertex graphG can be solved
by brute force in time (The O?.�/ notation hides
factors polynomial in the input size.) O?.2n/: we
iterate through all the induced subgraphs of G,
and on each of them, we run a polynomial-time
test deciding whether it belongs to ˘ .

Can we do anything smarter? Of course, this
very much depends on the class ˘ we are work-
ing with. MAXIMUM INDUCED ˘ -SUBGRAPH

is a generic problem that encompasses many
other problems as special cases; examples in-
clude CLIQUE (˘ D complete graphs), INDE-
PENDENT SET (˘ D edgeless graphs), or FEED-
BACK VERTEX SET (˘ D forests). It is conve-
nient to assume that ˘ is also hereditary; this
assumption is satisfied in many important exam-
ples, including the aforementioned special cases.

So far, the MAXIMUM INDUCED ˘ -
SUBGRAPH problem has been studied for many
graph classes ˘ , and basically in all the cases
it turned out that it is possible to find an
algorithm with running time O.cn/ for some
c < 2. Obtaining a result of this type is
often informally called breaking the 2n barrier.
While the algorithms share a common general
methodology, vital details differ depending on
the structural properties of the class ˘ . This
makes each and every algorithm of this type
contrived to a particular scenario. However, it
is tempting to formulate the following general
conjecture.

Conjecture 1 ([1]) For every hereditary,
polynomial-time recognizable class of graphs
˘ , there exists a constant c˘ < 2 for which there
is an algorithm solving MAXIMUM INDUCED

˘ -SUBGRAPH in time O.cn
˘ /.

On one hand, current partial progress on this
conjecture consists of scattered results exploit-
ing different properties of particular classes ˘ ,

without much hope for proving more general
statements. On the other hand, finding a coun-
terexample refuting Conjecture 1 based, e.g., on
the Strong Exponential Time Hypothesis seems
problematic: the input to MAXIMUM INDUCED

˘ -SUBGRAPH consists only of
�

n
2

�
bits of in-

formation about adjacencies between the ver-
tices, and it seems difficult to model the search
space of a general k-SAT using such input under
the constraint that ˘ has to be hereditary and
polynomial-time recognizable.

It can be that Conjecture 1 is either false
or very difficult to prove, and therefore, one
can postulate investigating its certain subcases
connected to well-studied classes of graphs. For
instance, one could assume that graphs from ˘

have constant treewidth or that ˘ is a subclass of
chordal or interval graphs. Another direction is to
strengthen the assumption about the description
of the class ˘ by requiring that belonging to
˘ can be expressed in some formalism (e.g.,
some variant of logic). Finally, one can inves-
tigate the algorithms for MAXIMUM INDUCED

˘ -SUBGRAPH where ˘ is not required to be
hereditary; here, natural nonhereditary properties
are connectivity and regularity.

Key Results

Table 1 presents a selection of results on the
MAXIMUM INDUCED ˘ -SUBGRAPH problem.
Since the algorithms are usually quite technical
when it comes to details, we now present an
overview of the general methodology and most
important techniques. In the following, we as-
sume that ˘ is hereditary and polynomial-time
recognizable.

Most often, the general approach is to exam-
ine the structure of the input instance and of
a fixed, unknown optimum solution. The goal
is to identify as broad spectrum of situations
as possible where the solution can be found
by examining O..2 � "/n/ candidates, for some
" > 0. By checking the occurrence of each
of these situations, we eventually narrow down
our investigations to the case where we have a
well-defined structure of the input instance and
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Exact Algorithms for Induced Subgraph
Problems, Table 1 Known results for MAXIMUM

INDUCED ˘ -SUBGRAPH. The first part of the table
presents results for problems for which breaking the 2n

barrier follows directly from branching on forbidden
subgraphs. The second part contains results for which
breaking the barrier requires a nontrivial insight into the
structure of ˘ . Finally, the last part contains results for
nonhereditary classes ˘ . Here, " denotes a small, positive
constant, and its index specifies a parameter on which the
value of this constant depends

Property Time complexity Reference

Edgeless O.1:2109n/ Robson [10]

Biclique O.1:3642n/ Gaspers et al. [6]

Cluster graph O.1:6181n/ Fomin et al. [3]

Bipartite O.1:62n/ Raman et al. [9]

Acyclic O.1:7347n/ Fomin et al. [2]

Constant treewidth O.1:7347n/ Fomin et al. [2]

Planar O.1:7347n/ Fomin et al. [4]

d -degenerate O..2� "d /n/ Pilipczuk�2 [8]

Chordal O..2� "/n/ Bliznets et al. [1]

Interval O..2� "/n/ Bliznets et al. [1]

r-regular O..2� "r /n/ Gupta et al. [7]

Matching O.1:6957n/ Gupta et al. [7]

a number of assumptions about how the solution
looks like. Then, hopefully, a direct algorithm can
be devised.

Let us consider a very simple example of
this principle, which is also a technique used
in many algorithms for breaking the 2n barrier.
Suppose the input graph has n vertices and as-
sume the optimum solution is of size larger that
.1=2C ı/n, for some ı > 0. Then, as candidates
for the optimum solution, we can consider all
the vertex subsets of at least this size: there is
only .2 � "/n of them, where " > 0 depends
on ı. Similarly, if the optimum solution has size
smaller than .1=2 � ı/n, then we can identify
this situation by iterating through all the vertex
subsets of size .1=2 � ı/n (whose number is
again .2 � "/n for some " > 0) and verifying
that none of them induces a graph belonging to
˘ ; note that here we use the assumption that
˘ is hereditary. In this case we can solve the
problem by looking at all vertex subsets of size

at most .1=2 � ı/n. All in all, we can solve
the problem faster than O?.2n/ provided that
the number of vertices in the optimum solution
differs by at least ın from n=2, for some " > 0.
More precisely, for every ı > 0 we will obtain
a running time of the form O..2 � "/n/, where
" tends to 0 when ı tends to 0. Hence, we can
focus only on the situation when the number of
vertices in the optimum solution is very close
to n=2.

We now give an overview of some other im-
portant techniques.

Branching on Forbidden Induced
Subgraphs
Every hereditary graph class ˘ can be char-
acterized by giving a minimal set of forbidden
induced subgraphs F : a graph belongs to ˘ if
and only if it does not contain any graph from
F as an induced subgraph, and F is inclusion-
wise minimal with this property. For instance,
the class of forests is characterized by F being
the family of all the cycles, whereas taking F to
be the family of all the cycles of length at least
4 gives the class of chordal graphs. For many
important classes the family F is infinite, but
there are notable examples where it is finite, like
cluster, trivially perfect, or split graphs.

If ˘ is characterized by a finite set of forbid-
den subgraphs F , then already a simple branch-
ing strategy yields an algorithm working in time
O..2 � "/n/, for some " > 0 depending on F .
Without going into details, we iteratively find
a forbidden induced subgraph that is not yet
removed by the previous choices and branch on
the fate of all the undecided vertices in this
subgraph, omitting the branch where all of them
are included in the solution. Since this forbidden
induced subgraph is of constant size, a standard
analysis shows that the running time of this algo-
rithm is O..2 � "/n/ for some " > 0 depending
on maxH2F jV.H/j. This simple observation can
be combined with more sophisticated techniques
in case when F is infinite. We can namely start
the algorithm by branching on forbidden induced
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subgraphs that are of constant size and, when
their supply is exhausted, turn to some other
algorithms. The following lemma provides a for-
malization of this concept; a graph is called F-
free if it does not contain any graph from F as an
induced subgraph.

Lemma 1 ([1]) Let F be a finite set of graphs
and let ` be the maximum number of vertices in
a graph from F . Let ˘ be a hereditary graph
class that is polynomial-time recognizable. As-
sume that there exists an algorithm A that for
a given F-free graph G on n vertices, in time
O..2�"/n/ finds a maximum induced subgraph of
G that belongs to ˘ , for some " > 0. Then there
exists an algorithm A0 that for a given graph
G on n vertices, in time O..2 � "0/n/ finds a
maximum induced subgraph of G that is F-free
and belongs to ˘ , where "0 > 0 is a constant
depending on " and `.

Thus, for the purpose of breaking the 2n bar-
rier, it is sufficient to focus on the case when
no constant-size forbidden induced subgraph is
present in the input graph.

Exploiting a Large Substructure
Here, the general idea is to look for a large
substructure in the graph that can be leveraged
to design an algorithm breaking the barrier. Let
us take as an example the MAXIMUM INDUCED

CHORDAL SUBGRAPH problem, considered by
Bliznets et al. [1]. Suppose that in the input graph
G one can find a clique Q of size ın, for some
ı > 0; recall that the largest clique in a graph
can be found as fast as in time O.1:2109n/ [10].
Then consider the following algorithm: guess, by
considering 2n�jQj possibilities, the intersection
of the optimum solution with V.G/ n Q. Then
observe that, since Q is a clique, every induced
cycle in G can have only at most two vertices
in common with Q. Hence, the problem of op-
timally extending the choice on V.G/ n Q to
Q essentially boils down to solving a VERTEX

COVER instance on jQj vertices, which can be

done in time O.1:2109jQj/. As Q constitutes
a linear fraction of all the vertices, the overall
running time is O.1:2109jQj � 2n�jQj/, which is
O..2 � "/n/ for some " > 0 depending on ı.
Thus, one can focus on the case where the largest
clique in the input graph, and hence also in any
maximum-sized induced chordal subgraph, has
less than ın vertices.

Potential Maximal Cliques
A potential maximal clique (PMC) in a graph G
is a subset of vertices that becomes a clique in
some inclusion-wise minimal triangulation (By a
triangulation of a graph we mean any its chordal
supergraph.) of G. Fomin and Villanger in [2]
observed two facts. Firstly, whenever H is an
induced subgraph of G of treewidth t , then there
exists a minimal triangulation TG of G that
captures H in the following sense: every clique
of TG intersects V.H/ only at a subset of some
bag of a fixed width-t tree decomposition of
H . Secondly, a graph G on n vertices can have
only O.1:734601n/ PMCs, which can be enu-
merated in time O.1:734601n/. Intuitively, this
means that we can effectively search the space
of treewidth-t induced subgraphs of G in time
O.1:734601n � nO.t// using dynamic program-
ming. Slightly more precisely, treewidth-t in-
duced subgraphs of G can be assembled in a
dynamic programming manner using states of
the form .˝;X/, where ˝ is a PMC in G

and X is a subset of ˝ of size at most t C
1, corresponding to ˝ \ V.H/. In this man-
ner one can obtain an algorithm with running
time O.1:734601n � nO.t// for finding the maxi-
mum induced treewidth-t subgraph, which in par-
ticular implies a O.1:734601n/-time algorithm
for MAXIMUM INDUCED FOREST, equivalent
to FEEDBACK VERTEX SET. Recently, Fomin
et al. [5] extended this framework to encapsulate
also problems where the induced subgraph H is
in addition required to satisfy a property express-
ible in Monadic Second-Order Logic.
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Problem Definition

The CNF satisfiability problem is to determine,
given a CNF formula F with n variables, whether
or not there exists a satisfying assignment for F .
If each clause of F contains at most k literals,
then F is called a k-CNF formula and the prob-
lem is called k-SAT, which is one of the most
fundamental NP-complete problems. The trivial
algorithm is to search 2n 0/1-assignments for
the n variables. But since [6], several algorithms
which run significantly faster than this O.2n/

bound have been developed. As a simple exercise,
consider the following straightforward algorithm
for 3-SAT, which gives us an upper bound of
1:913n: choose an arbitrary clause in F , say,
.x1_x2_x3/. Then generate seven new formulas
by substituting to these x1, x2, and x3 all the
possible values except .x1; x2; x3/ D .0; 1; 0/

which obviously unsatisfies F . Now one can
check the satisfiability of these seven formulas
and conclude that F is satisfiable iff at least one
of them is satisfiable. (Let T .n/ denote the time
complexity of this algorithm. Then one can get
the recurrence T .n/ � 7�T .n�3/ and the above
bound follows.)

Key Results

In the long history of k-SAT algorithms, the one
by Schöning [11] is an important breakthrough.
It is a standard local search and the algorithm
itself is not new (see, e.g., [7]). Suppose that
y is the current assignment (its initial value is
selected uniformly at random). If y is a satisfying
assignment, then the algorithm answers yes and
terminates. Otherwise, there is at least one clause
whose three literals are all false under y. Pick an
arbitrary such clause and select one of the three
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literals in it at random. Then flip (true to false
and vice versa) the value of that variable, replace
y with that new assignment, and then repeat the
same procedure. More formally:

SCH(CNF formula F , integer I )
repeat I times
y D uniformly random vector 2 f0; 1gn

´ D RandomWalk.F; y/;
if ´ satisfies F
then output(´); exit;
end
output(‘Unsatisfiable’);
RandomWalk(CNF formulaG.x1; x2; : : : ; xn/,

assignment y);
y0 D y;
for 3n times
if y0 satisfies G
then return y0; exit;
C  an arbitrary clause ofG that is not satisfied

by y0;
Modify y0 as follows:
select one literal of C uniformly at random and
flip the assignment to this literal;
end
return y0

Schöning’s analysis of this algorithm is very
elegant. Let d.a; b/ denote the Hamming dis-
tance between two binary vectors (assignments)
a and b. For simplicity, suppose that the formula
F has only one satisfying assignment y� and the
current assignment y is far from y� by Hamming
distance d . Suppose also that the currently false
clause C includes three variables, xi , xj , and
xk . Then y and y� must differ in at least one
of these three variables. This means that if the
value of xi , xj , or xk is flipped, then the new as-
signment gets closer to y� by Hamming distance
one with probability at least 1/3. Also, the new
assignment gets farther by Hamming distance one
with probability at most 2/3. The argument can
be generalized to the case that F has multiple
satisfying assignments. Now here comes the key
lemma:

Lemma 1 Let F be a satisfiable formula and
y� be a satisfying assignment for F . For each
assignment y, the probability that a satisfying
assignment (that may be different from y�)
is found by RandomWalk .F; y/ is at least
.1=.k � 1//d.y;y �/=p.n/, where p.n/ is a
polynomial in n.

By taking the average over random ini-
tial assignments, the following theorem
follows:

Theorem 1 For any satisfiable formula F

on n variables, the success probability of
RandomWalk .F; y/ is at least .k=2.k �

1//n=p.n/ for some polynomial p. Thus,
by setting I D .2.k � 1/=k/n � p.n/,
SCH finds a satisfying assignment with high
probability. When k D 3, this value of I is
O.1:334n/.

Applications

The Schöning’s result has been improved by a
series of papers [1, 3, 9] based on the idea of
[3]. Namely, RandomWalk is combined with the
(polynomial time) 2SAT algorithm, which makes
it possible to choose better initial assignments.
For derandomization of SCH, see [2]. Iwama and
Tamaki [4] developed a nontrivial combination of
SCH with another famous, backtrack-type algo-
rithm by [8], resulting in the then fastest algo-
rithm with O.1:324n/ running time. The current
fastest algorithm is due to [10], which is based
on the same approach as [4] and runs in time
O.1:32216n/.

Open Problems

k-SAT is probably the most popular NP-complete
problem for which numerous researchers are
competing for its fastest algorithm. Thus,
improving its time bound is always a good
research target.
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Experimental Results

AI researchers have also been very active in SAT
algorithms including local search; see, e.g., [5].
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Problem Definition

Let G D .V;E/ be an n-node undirected, simple
graph without loops. A set I 	 V is called
an independent set of G if the nodes of I are
pairwise not adjacent. The maximum indepen-
dent set (MIS) problem asks to determine the
maximum cardinality ˛.G/ of an independent set
of G. MIS is one of the best studied NP-hard
problems.

We will need the following notation. The
(open) neighborhood of a vertex v is N.v/ D
fu 2 V W uv 2 Eg, and its closed neighborhood
is NŒv� D N.v/ [ fvg. The degree deg.v/ of v
is jN.v/j. For W 	 V , GŒW � D .W;E \

�
W
2

�
/

is the graph induced by W . We let G � W D

GŒV �W �.

Key Results

A very simple algorithm solves MIS (exactly)
in O�.2n/ time: it is sufficient to enumerate
all the subsets of nodes, check in polynomial
time whether each subset is an independent set
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or not, and return the maximum cardinality in-
dependent set. We recall that the O� notation
suppresses polynomial factors in the input size.
However, much faster (though still exponential-
time) algorithms are known. In more detail, there
exist algorithms that solve MIS in worst-case
time O�.cn/ for some constant c 2 .1; 2/. In
this section, we will illustrate some of the most
relevant techniques that have been used in the
design and analysis of exact MIS algorithms.
Due to space constraints, our description will be
slightly informal (please see the references for
formal details).

Bounding the Size of the Search Tree
All the nontrivial exact MIS algorithms, starting
with [7], are recursive branching algorithms. As
an illustration, consider the following simple MIS
algorithm Alg1. If the graph is empty, output
˛.G/ D 0 (base instance). Otherwise, choose any
node v of maximum degree, and output

˛.G/ D maxf˛.G � fvg/; 1C ˛.G �NŒv�/g:

Intuitively, the subgraph G � fvg corresponds to
the choice of not including v in the independent
set (v is discarded), while the subgraphG�NŒv�
to the choice of including v in the independent set
(v is selected). Observe that, when v is selected,
the neighbors of v have to be discarded. We
will later refer to this branching as a standard
branching.

The running time of the above algorithm, and
of branching algorithms more in general, can be
bounded as follows. The recursive calls induce a
search tree, where the root is the input instance
and the leaves are base instances (that can be
solved in polynomial time). Observe that each
branching step can be performed in polynomial
time (excluding the time needed to solve sub-
problems). Furthermore, the height of the search
tree is bounded by a polynomial. Therefore, the
running time of the algorithm is bounded by
O�.L.n//, where L.n/ is the maximum number
of leaves of any search tree that can be generated
by the considered algorithm on an input instance
with n nodes. Let us assume that L.n/ � cn for
some constant c � 1. When we branch at node v,

we generate two subproblems containing n � 1
and n � jNŒv�j nodes, respectively. Therefore,
c has to satisfy cn � cn�1 C cn�jN Œv�j. As-
suming pessimistically jNŒv�j D 1, one obtains
cn � 2cn�1 and therefore c � 2. We can
conclude that the running time of the algorithm
is O�.2n/. Though the running time of Alg1
does not improve on exhaustive search, much
faster algorithms can be obtained by branching
in a more careful way and using a similar type
of analysis. This will be discussed in the next
subsections.

Refined Branching Rules
Several refined branching rules have been de-
veloped for MIS. Let us start with some reduc-
tion rules, which reduce the problem without
branching (alternatively, by branching on a single
subproblem). An isolated node v can be selected
w.l.o.g.:

˛.G/ D 1C ˛.G �NŒv�/:

Observe that if NŒu� 	 NŒv�, then node v can be
discarded w.l.o.g. (dominance):

˛.G/ D ˛.G � fvg/:

This rule implies that nodes of degree 1 can
always be selected.

Suppose that we branch at a node v, and in
the branch where we discard v we select exactly
one of its neighbors, say w. Then by replacing
w with v, we obtain a solution of the same car-
dinality including v: this means that the branch
where we select v has to provide the optimal
solution. Therefore, we can assume w.l.o.g. that
the optimal solution either contains v or at least
2 of its neighbors. This idea is exploited in the
folding operation [1], which we next illustrate
only in the case of degree-2 nodes. Let NŒv� D
fw1;w2g. Remove NŒv�. If w1w2 … E, create
a node v0 and add edges between v0 and nodes
in N.w1/ [ N.w2/ � fvg. Let Gfold.v/ be the
resulting graph. Then, one has

˛.G/ D 1C ˛.Gfold.v//:
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Intuitively, including node v0 in the optimal so-
lution to Gfold.v/ corresponds to selecting both
w1 and w2, while discarding v0 corresponds to
selecting v.

Let Alg2 be the algorithm that exhaustively
applies the mentioned reduction rules and then
performs a standard branching on a node of
maximum degree. Reduction rules reduce the
number of nodes at least by 1; hence, we have
the constraint cn � cn�1. If we branch at node v,
deg.v/ � 3. This gives cn � cn�1C cn�4, which
is satisfied by c � 1:380 : : :. Hence, the running
time is in O�.1:381n/.

Let us next briefly sketch some other useful
ideas that lead to refined branchings. A mirror [3]
of a node v is a node u at distance 2 from v such
that N.v/ �N.u/ induces a clique. By the above
discussion, if we branch by discarding v, we can
assume that we select at least two neighbors of v
and therefore we have also to discard the mirrors
M.v/ of v. In other terms, we can use the refined
branching

˛.G/Dmaxf˛.G�fvg�M.v//; 1C˛.G�NŒv�/g:

A satellite [5] of a node v is a node u at distance 2
from v such that there exists a node u0 2 N.v/ \
N.u/ that satisfies NŒu0� � NŒv� D fug. Observe
that if an optimal solution discards u, then we can
discard v as well by dominance since NŒu0� 	
NŒv� in G � fug. Therefore, we can assume that
in the branch where we select v, we also select its
satellites S.v/. In other terms,

˛.G/ D maxf˛.G � fvg/; 1C jS.v/j

C ˛.G �NŒv� � [u2S.v/NŒu�/g:

Another useful trick [4] is to branch on nodes
that form a small separator (of size 1 or 2 in the
graph), hence isolating two or more connected
components that can be solved independently
(see also [2, 5]).

Measure and Conquer
Above we always used the number n of nodes as a
measure of the size of subproblems. As observed
in [3], much tighter running time bounds can

be achieved by using smarted measures. As an
illustration, we will present a refined bound on
the running time of Alg2.

Let us measure the size of subproblems with
the number n3 of nodes of degree at least 3 (large
nodes). Observe that, when n3 D 0,G is a collec-
tion of isolated nodes, paths, and cycles. There-
fore, in that case, Alg2 only applies reduction
rules, hence solving the problem in polynomial
time. In other terms, L.n3/ D L.0/ D 1 in this
case. If the algorithm applies any reduction rule,
the number of large nodes cannot increase and we
obtain the trivial inequality cn3 � cn3 . Suppose
next that Alg2 performs a standard branching at
a node v. Note that at this point all nodes in the
graph are large. If deg.v/ � 4, then we obtain the
inequality cn3 � cn3�1Ccn3�5 which is satisfied
by c � 1:324 : : : . Otherwise (deg.v/ D 3),
observe that the neighbors of v have degree 3
in G and at most 2 in G � fvg. Therefore, the
number of large nodes is at most n3 � 4 in both
subproblems G � fvg and G � NŒv�. This gives
the inequality cn3 � 2cn3�4 which is satisfied by
c � 21=4 < 1:1893. We can conclude that the
running time of the algorithm is in O�.1:325n/.
In [3], each node is assigned a weight which is a
growing function of its degree, and the measure
is the sum of node weights (a similar measure is
used also in [2, 5]).

In [2], it is shown how to use a fast MIS
algorithm for graphs of maximum degree  to
derive faster MIS algorithms for graphs of maxi-
mum degreeC 1. Here the measure used in the
analysis is a combination of the number of nodes
and edges.

Memorization
So far we described algorithms with polynomial
space complexity. Memorization [6] is a tech-
nique to speed up exponential-time branching
algorithms at the cost of an exponential space
complexity. The basic idea is to store the op-
timal solution to subproblems in a proper (ex-
ponential size) data structure. Each time a new
subproblem is generated, one first checks (in
polynomial time) whether that subproblem was
already solved before. This way one avoids to
solve the same subproblem several times.
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In order to illustrate this technique, it is
convenient to consider the variant Alg3 of
Alg2 where we do not apply folding. This way,
each subproblem corresponds to some induced
subgraph GŒW � of the input graph. We will also
use the standard measure though memorization
is compatible with measure and conquer. By
adapting the analysis of Alg2, one obtains
the constraint cn � cn�1 C cn�3 and hence
a running time of O�.1:466n/. Next, consider
the variant Alg3mem of Alg3 where we apply
memorization. Let Lk.n/ be the maximum
number of subproblems on k nodes generated by
Alg3mem starting from an instance with n nodes.
A slight adaptation of the standard analysis
shows that Lk.n/ � 1:466n�k . However, since
there are at most

�
n
k

�
induced subgraphs on k

nodes and we never solve the same subproblem
twice, one also has Lk.n/ �

�
n
k

�
. Using

Stirling’s formula, one obtains that the two
upper bounds are roughly equal for k D ˛n and
˛ D 0:107 : : :. We can conclude that the running
time of Alg3mem is in O�.

Pn
kD0Lk.n// D

O�.
Pn

kD0 minf1:466n�k ;
�

n
k

�
g/ D O�.maxn

kD0

minf1:466n�k ;
�

n
k

�
g/ D O�.1:466.1�0:107/n/ D

O�.1:408n/. The analysis can be refined [6] by
bounding the number of connected induced sub-
graphs with k nodes in graphs of small maximum
degree.
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Problem Definition

In the maximum 2-satisfiability problem (abbre-
viated as MAX 2-SAT), one is given a Boolean
formula in conjunctive normal form, such that
each clause contains at most two literals. The task
is to find an assignment to the variables of the
formula such that a maximum number of clauses
are satisfied.

MAX 2-SAT is a classic optimization problem.
Its decision version was proved NP-complete by
Garey, Johnson, and Stockmeyer [7], in stark
contrast with 2-SAT which is solvable in linear
time [2]. To get a feeling for the difficulty of
the problem, the NP-completeness reduction is
sketched here. One can transform any 3-SAT

instance F into a MAX 2-SAT instance F 0, by
replacing each clause of F such as

ci D .`1 _ `2 _ `3/;
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where `1, `2, and `3 are arbitrary literals, with the
collection of 2-CNF clauses

.`1/; .`2/; .`3/; .ci /; .:`1 _ :`2/; .:`2 _ :`3/;

.:`1 _ :`3/; .`1 _ ci /; .`2 _ ci /; .`3 _ ci /;

where ci is a new variable. The following are
true:

• If an assignment satisfies ci , then exactly
seven of the ten clauses in the 2-CNF
collection can be satisfied.

• If an assignment does not satisfy ci , then
exactly six of the ten clauses can be satisfied.

If F is satisfiable then there is an assignment
satisfying 7/10 of the clauses inF 0, and ifF is not
satisfiable, then no assignment satisfies more than
7/10 of the clauses in F 0. Since 3-SAT reduces
to MAX 2-SAT, it follows that MAX 2-SAT (as a
decision problem) is NP-complete.

Notation

A CNF formula is represented as a set of
clauses.

The letter ! denotes the smallest real number
such that for all � > 0, n by n matrix multipli-
cation over a field can be performed in O.n!C�/

field operations. Currently, it is known that ! <

2:373 [4, 16]. The field matrix product of two
matrices A and B is denoted by A � B .

LetA andB be matrices with entries from R[

f1g. The distance product ofA andB (written in
shorthand as A ~ B) is the matrix C defined by
the formula

C Œi; j � D min
kD1;:::;n

fAŒi; k�C BŒk; j �g:

A word on m’s and n’s: in reference to graphs,
m and n denote the number of edges and the
number of nodes in the graph, respectively. In
reference to CNF formulas, m and n denote the
number of clauses and the number of variables,
respectively.

Key Result

The primary result of this entry is a procedure
solving Max 2-Sat in O.m � 2!n=3/ time. The
method can be generalized to count the number of
solutions to any constraint optimization problem
with at most two variables per constraint. Indeed,
in the same running time, one can find a Boolean
assignment that maximizes any given degree-
two polynomial in n variables [18, 19]. In this
entry, we shall restrict attention to be Max 2-
Sat, for simplicity. There are several other known
exact algorithms for Max 2-Sat that are more
effective in special cases, such as sparse instances
[3, 8, 9, 11–13, 15, 17]. The procedure described
below is the only one known (to date) that runs in
cn steps for a constant c < 2.

Key Idea

The algorithm gives a reduction from MAX 2-SAT

to the problem MAX TRIANGLE, in which one is
given a graph with integer weights on its nodes
and edges, and the goal is to output a 3-cycle of
maximum weight. At first, the existence of such
a reduction sounds strange, as MAX TRIANGLE

can be trivially solved inO.n3/ time by trying all
possible 3-cycles. The key is that the reduction
exponentially increases the problem size, from
a MAX 2-SAT instance with m clauses and n

variables to a MAX TRIANGLE instance having
O.22n=3/ edges, O.2n=3/ nodes, and weights in
the range f�m; : : : ; mg.

Note that if MAX TRIANGLE required ‚.n3/

time to solve, then the resulting MAX 2-SAT

algorithm would take ‚.2n/ time, rendering the
above reduction pointless. However, it turns out
that the brute-force search of O.n3/ for MAX

TRIANGLE is not the best one can do: using fast
matrix multiplication, there is an algorithm for
MAX TRIANGLE that runs in O.Wn!/ time on
graphs with weights in the range f�W; : : : ;W g.

Main Algorithm

First, a reduction from MAX 2-SAT to MAX TRI-
ANGLE is described, arguing that each triangle of
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weight K in the resulting graph is in one-to-one
correspondence with an assignment that satisfies
K clauses of the MAX 2-SAT instance. Let a; b
be reals, and let ZŒa; b� WD Œa; b� \ Z.

Lemma 1 If MAX TRIANGLE on graphs with n
nodes and weights in ZŒ�W;W � is solvable in
O.f .W / � g.n// time, for polynomials f and g,
then MAX 2-SAT is solvable inO.f .m/�g.2n=3//

time, where m is the number of clauses and n is
the number of variables.

Proof Let C be a given 2-CNF formula. Assume
without loss of generality that n is divisible by 3.
Let F be an instance of MAX 2-SAT. Arbitrarily
partition the n variables of F into three sets P1,
P2, P3, each having n=3 variables. For each Pi ,
make a list Li of all 2n=3 assignments to the
variables of Pi .

Define a graph G D .V;E/ with V D L1 [

L2 [ L3 and E D f.u; v/ju 2 Pi ; v 2 Pj ; i ¤

j g. That is, G is a complete tripartite graph with
2n=3 nodes in each part, and each node in G

corresponds to an assignment to n=3 variables in
C . Weights are placed on the nodes and edges
of G as follows. For a node v, define w.v/ to
be the number of clauses that are satisfied by the
partial assignment denoted by v. For each edge
fu; vg, define w.fu; vg/ D �Wuv , where Wuv is
the number of clauses that are satisfied by both u
and v.

Define the weight of a triangle in G to be
the total sum of all weights and nodes in the
triangle.

Claim 1 There is a one-to-one correspondence
between the triangles of weight K in G and the
variable assignments satisfying exactlyK clauses
in F .

Proof Let a be a variable assignment. Then there
exist unique nodes v1 2 L1; v2 2 L2, and v3 2

L3 such that a is precisely the concatenation of
v1, v2, v3 as assignments. Moreover, any triple
of nodes v1 2 L1; v2 2 L2, and v3 2 L3

corresponds to an assignment. Thus, there is a
one-to-one correspondence between triangles in
G and assignments to F .

The number of clauses satisfied by an assign-
ment is exactly the weight of its corresponding

triangle. To see this, let Ta D fv1; v2; v3g be
the triangle in G corresponding to assignment a.
Then

w.Ta/ D w.�1/C w.�2/C w.�3/C w.f�1; �2g/

C w.f�2; �3g/C w.f�1; �3g/

D

3X

iD1

jfc 2 F j�i satisfies F gj

�
X

i;j Wi¤j

jfc 2 F j�i and �j satisfy F gj

D jfc 2 F ja satisfies F gj;

where the last equality follows from the
inclusion-exclusion principle.

Notice that the number of nodes in G is
3�2n=3, and the absolute value of any node and
edge weight is m. Therefore, running a MAX

TRIANGLE algorithm onG, a solution to MAX 2-
SAT, is obtained inO.f .m/ �g.3 �2n=3//, which is
O.f .m/ � g.2n=3// since g is a polynomial. This
completes the proof of Lemma 1.

Next, a procedure is described for finding
a maximum triangle faster than brute-force
search, using fast matrix multiplication. Alon,
Galil, and Margalit [1] (following Yuval [22])
showed that the distance product for matrices
with entries drawn from ZŒ�W;W � can be
computed using fast matrix multiplication as a
subroutine.

Theorem 1 (Alon, Galil, Margalit [1]) Let A
and B be n � n matrices with entries from
ZŒ�W;W �[ f1g. Then A~B can be computed
in O.W n! logn/ time.

Proof (Sketch) One can replace 1 entries in A
and B with 2W C 1 in the following. Define
matrices A0 and B 0, where

A0Œi; j � D x3W�AŒi;j �; B 0Œi; j � D x3W�BŒi;j �;

and x is a variable. Let C D A0 � B 0. Then

C Œi; j � D

nX

kD1

x6W�AŒi;k��BŒk;j �:
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The next step is to pick a number x that makes
it easy to determine, from the sum of arbitrary
powers of x, the largest power of x appearing
in the sum; this largest power immediately gives
the minimum AŒi; k� C BŒk; j �. Each C Œi; j � is
a polynomial in x with coefficients from ZŒ0; n�.
Suppose each C Œi; j � is evaluated at x D .nC1/.
Then each entry of C Œi; j � can be seen as an
.nC1/-ary number, and the position of this num-
ber’s most significant digit gives the minimum
AŒi; k�C BŒk; j �.

In summary, A ˝d B can be computed by
constructing

A0Œi; j � D .nC 1/3W�AŒi;j �;

B 0Œi; j � D .nC 1/3W�BŒi;j �

in O.W logn/ time per entry, computing C D
A0 � B 0 in O.n! � .W logn// time (as the sizes
of the entries are O.W logn/), then extracting
the minimum from each entry of C , in O.n2 �

W logn/ time. Note if the minimum for an entry
C Œi; j � is at least 2W C 1, then C Œi; j � D1.

Using the fast distance product algorithm, one
can solve MAX TRIANGLE faster than brute
force. The following is based on an algorithm by
Itai and Rodeh [10] for detecting if an unweighted
graph has a triangle in less than n3 steps. The
result can be generalized to counting the number
of k-cliques, for arbitrary k � 3. (To keep
the presentation simple, the counting result is
omitted. Concerning the k-clique result, there is
unfortunately no asymptotic runtime benefit from
using a k-clique algorithm instead of a triangle
algorithm, given the current best algorithms for
these problems.)

Theorem 2 MAX TRIANGLE can be solved in
O.W n! logn/, for graphs with weights drawn
from ZŒ�W;W �.

Proof First, it is shown that a weight function
on nodes and edges can be converted into an
equivalent weight function with weights on only
edges. Let w be the weight function of G, and
redefine the weights to be:

w0.fu; �g/ D
w.u/C w.�/

2
C w.fu; �g/;

w0.u/ D 0:

Note the weight of a triangle is unchanged by this
reduction.

The next step is to use a fast distance product
to find a maximum weight triangle in an edge-
weighted graph of n nodes. Construe the vertex
set of G as the set f1; : : : ; ng. Define A to be
the n � n matrix such that AŒi; j � D �w.fi; j g/
if there is an edge fi; j g, and AŒi; j � D 1

otherwise. The claim is that there is a triangle
through node i of weight at least K if and only
if .A ~ A ~ A/Œi; i � � �K. This is because
.A~ A~ A/Œi; i � � �K if and only if there are
distinct j and k such that fi; j g; fj; kg; fk; ig are
edges and AŒi; j �CAŒj; k�CAŒk; i � � �K, i.e.,
w.fi; j g/C w.fj; kg/C w.fk; ig/ � K.

Therefore, by finding an i such that .A ~
A ~ A/Œi; i � is minimized, one obtains a node i
contained in a maximum triangle. To obtain the
actual triangle, check all m edges fj; kg to see if
fi; j; kg is a triangle.

Theorem 3 MAX 2-SAT can be solved in O.m �
1:732n/ time.

Proof Given a set of clauses C , apply the reduc-
tion from Lemma 1 to get a graphG withO.2n=3/

nodes and weights from ZŒ�m;m�. Apply the
algorithm of Theorem 2 to output a max triangle
in G in O.m � 2!n=3 log.2n=3// D O.m � 1:732n/

time, using the O.n2:376/ matrix multiplication
of Coppersmith and Winograd [4].

Applications

By modifying the graph construction, one can
solve other problems in O.1:732n/ time, such
as Max Cut, Minimum Bisection, and Sparsest
Cut. In general, any constraint optimization prob-
lem for which each constraint has at most two
variables can be solved faster using the above
approach. For more details, see [18] and the
survey by Woeginger [21]. Techniques similar to
the above algorithm have also been used by Dorn
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[6] to speed up dynamic programming for some
problems on planar graphs (and in general, graphs
of bounded branchwidth).

Open Problems

• Improve the space usage of the above algo-
rithm. Currently, ‚.22n=3/ space is needed.
A very interesting open question is if there
is a O.1:99n/ time algorithm for MAX 2-SAT

that uses only polynomial space. This question
would have a positive answer if one could
find an algorithm for solving the k-CLIQUE

problem that uses polylogarithmic space and
nk�ı time for some ı > 0 and k � 3.

• Find a faster-than-2n algorithm for MAX 2-
SAT that does not require fast matrix multi-
plication. The fast matrix multiplication al-
gorithms have the unfortunate reputation of
being impractical.

• Generalize the above algorithm to work for
MAX k-SAT, where k is any positive integer.
The current formulation would require one
to give an efficient algorithm for finding a
small hyperclique in a hypergraph. However,
no general results are known for this problem.
It is conjectured that for all k � 2, MAX

k-SAT is in NO.2n.1� 1
kC1

// time, based on
the conjecture that matrix multiplication is in
n2Co.1/ time [17].
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Problem Definition

The treewidth parameter intuitively measures
whether the graph has a “treelike” structure.
Given an undirected graph G D .V;E/, a tree
decomposition of G is a pair .X ; T /, where
T D .I; F / is a tree and X D fXi j i 2 I g

is a collection of subsets of V called bags
satisfying:

1.
S

i2I Xi D V ,
2. For each edge uv of G, there is a bag Xi

containing both endpoints,

3. For all v 2 V , the set fi 2 I j v 2 Xig induces
a connected subtree of T .

The width of a tree decomposition .X ; T / is the
size of its largest bag, minus one. The treewidth
of G, denoted by tw.G/, is the minimum width
over all possible tree decompositions. One
can easily observe that n-vertex graphs have
treewidth at most n � 1 and that the graphs of
treewidth at most one are exactly the forests.

Given a graph G and a number k, the
TREEWIDTH problem consists in deciding if
tw.G/ � k. Arnborg, Corneil, and Proskurowski
show that the problem is NP-hard [1]. On
the positive side, Bodlaender [2] gives an
algorithm solving the problem in time 2O.k3/n.
Bouchitté and Todinca [4, 5] prove that the
problem is polynomial on classes of graphs
with polynomially many minimal separators,
with an algorithm based on the notion of
potential maximal clique. This latter technique
is also employed by several exact, moderately
exponential algorithms for TREEWIDTH.

Key Results

TREEWIDTH can be solved in O�.2n/ time
by adapting the O.nk/ algorithm of Arnborg
et al. [1] or the Held-Karp technique initially
designed for the TRAVELING SALESMAN

problem [12]. (We use here the O� notation
that suppresses polynomial factors.) Fomin
et al. [9] break this “natural” 2n barrier with
an algorithm running in time O�.1:8135n/,
using the same space complexity. Bodlaender
et al. [3] present a polynomial-space algorithm
running in O�.2:9512n/ time. A major
improvement for both results is due to Fomin and
Villanger [8].

Theorem 1 ([8]) The TREEWIDTH problem can
be solved in O�.1:7549n/ time using exponential
space and in O�.2:6151n/ time using polynomial
space.

These algorithms use an alternative definition for
treewidth. A graph H D .V;E/ is chordal or
triangulated if it has no induced cycle with four
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or more vertices. It is well-known that a chordal
graph has tree decompositions whose bags are
exactly its maximal cliques. Given an arbitrary
graph G D .V;E/, a chordal graph H D

.V; F / on the same vertex set is called a minimal
triangulation ofG ifH containsG as a subgraph
and no chordal subgraph of H contains G. The
treewidth of G can be defined as the minimum
clique size of H minus one, over all minimal
triangulations H of G.

A vertex subset S of graph G is a minimal
separator if there are two distinct components
GŒC � and GŒD� of the graph GŒV n S� such that
NG.C / D NG.D/ D S (NG.C / denotes the
neighborhood of C in graph G).

A vertex subset˝ of G is a potential maximal
clique if there exists some minimal triangulation
H of G such that ˝ induces a maximal clique in
H . Potential maximal cliques are characterized
as follows [4]: ˝ is a potential maximal clique
of G if and only if (i) for each pair of vertices
u; v 2 ˝, u and v are adjacent or see a same
component of GŒV n ˝�, and (ii) no component
ofGŒV n˝� sees the whole set˝. As an example,
when G is a cycle, its minimal separators are
exactly the pairs of nonadjacent vertices, and the
potential maximal cliques are exactly the triples
of vertices.

A block is pair .S; C / such that S is a minimal
separator ofG andGŒC � is a component ofGŒV n
S�. Denote byRG.S; C / the graph obtained from
GŒS [ C � by turning S into a clique, i.e., by
adding all missing edges with both endpoints
in S . The treewidth of G can be obtained as
follows:

tw.G/ D min
S

�

max
C

tw.R.S; C //

�

(1)

where the minimum is taken over all minimal
separators S and the maximum is taken over all
connected components GŒC � of GŒV n S�.

All quantities tw.RG.S; C // can be computed
by dynamic programming over blocks .S; C /, by
increasing the size of S [ C . We only consider
here blocks .S; C / such that S D NG.C / (see [4]
for more details).

tw.RG.S; C //

D min
S�˝�S[C

�

max
1�i�p

.j˝j�1; tw.RG.Si ; Ci ///

�

(2)

where the minimum is taken over all potential
maximal cliques˝ with S � ˝ 	 S[C and the
maximum is taken over all pairs .Si ; Ci /, where
GŒCi � is a component of GŒC n ˝� and Si D

NG.Ci /. Let ˘G denote the set of all potential
maximal cliques of graphG. It was pointed in [9]
that the number of triples .S;˝;C / like in Eq. 2
is at most nj˘G j, which proves that TREEWIDTH

can be computed in O�.j˘G j/ time and space, if
˘G is given in the input.

Therefore, it remains to give a good upper
bound for the number j˘G j of potential maximal
cliques of G, together with efficient algorithms
for listing these objects. Based on the previously
mentioned characterization of potential maximal
cliques, Kratsch et al. provide an algorithm
listing them in time O�.1:8135n/. Fomin and
Villanger [8] improve this result, thanks to the
following combinatorial theorem:

Theorem 2 ([8]) Let G D .V;E/ be an n-
vertex graph, let v be a vertex of G, and b; f
be two integers. The number of vertex subsets B
containing v such that GŒB� is connected, jBj D
b C 1, and jNG.B/j D f is at most

�
bCf

f

�
.

The elegant inductive proof also leads to an
O�.

�
bCf

f

�
/ time algorithm listing all such sets

B . Eventually, the potential maximal cliques of
an input graph G can be listed in O�.1:7549n/

time [8]. This bound was further improved to
O�.1:7347n/ in [7].

In order to obtain polynomial-space algo-
rithms for TREEWIDTH, Bodlaender et al. [3]
provide a relatively simple divide-and-conquer
algorithm, based on the Held-Karp approach,
running in O�.4n/ time. They also observe that
Eq. 1 can be used for recursive, polynomial-
space algorithms, by replacing the minimal
separators S by balanced separators, in the sense
that each component of GŒV n S� contains at
most n=2 vertices. This leads to polynomial-
space algorithm with O�.2:9512n/ running time.
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Fomin and Villanger [8] restrict the balanced
separators to a subset of the potential maximal
cliques, and based on Theorem 2 they obtain,
still using polynomial space, a running time of
O�.2:6151n/.

We refer to the book of Fomin and Kratsch [6]
for more details on the TREEWIDTH problem and
more generally on exact algorithms.

Applications

Exact algorithms based on potential maximal
cliques have been extended to many other prob-
lems like FEEDBACK VERTEX SET, LONGEST

INDUCED PATH, or MAXIMUM INDUCED SUB-
GRAPH WITH A FORBIDDEN PLANAR MINOR.
More generally, for any constant t and any prop-
erty P definable in counting monadic second-
order logic, consider the problem of finding, in an
arbitrary graph G, a maximum-size induced sub-
graph GŒF � of treewidth at most t and with prop-
erty P . This generic problem can be solved in
O�.j˘G j/ time, if ˘G is part of the input [7,10].
Therefore, there is an algorithm in O�.1:7347n/

time for the problem, significantly improving the
O�.2n/ time for exhaustive search.

Open Problems

Currently, the best known upper bound on the
number of potential maximal cliques in n-vertex
graphs is of O�.1:7347n/ and does not seem
to be tight [7]. Simple examples show that
this bound is of at least 3n=3 � 1:4425n. A
challenging question is to find a tight upper
bound and efficient algorithms enumerating
all potential maximal cliques of arbitrary
graphs.

Experimental Results

Several experimental results are reported in [3],
especially on an “engineered” version of the

O�.2n/ time and space algorithm based on the
Held-Karp approach. This dynamic programming
algorithm is compared with the branch and bound
approach of Gogate and Dechter [11] on in-
stances of up to 50 vertices. The results are rel-
atively similar. Bodlaender et al. [3] also observe
that the polynomial-space algorithms become too
slow even for small instances.
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Problem Definition

We focus on the following question: how an
assumption on the sparsity of an input graph, such
as bounded (average) degree, can help in design-
ing exact (exponential-time) algorithms for NP-
hard problems. The following classic problems
are studied:

Traveling Salesman Problem Find a minimum-
length Hamiltonian cycle in an input graph
with edge weights.

Chromatic Number Find a minimum number k
for which the vertices of an input graph can
be colored with k colors such that no two
adjacent vertices receive the same color.

Counting Perfect Matchings Find the number
of perfect matchings in an input graph.

Key Results

The classic algorithms of Bellman [1] and Held
and Karp [10] for traveling salesman problem
run in 2nnO.1/ time for n-vertex graphs. Using

the inclusion-exclusion principle, the chromatic
number of an input graph can be determined
within the same running time bound [4]. Finally,
as long as counting perfect matchings is con-
cerned, a half-century-old 2n=2nO.1/-time algo-
rithm of Ryser for bipartite graphs [12] has only
recently been transferred to arbitrary graphs by
Björklund [2].

In all three aforementioned cases, it is widely
open whether the 2n or 2n=2 factor in the running
time bound can be improved. In 2008, Björklund,
Husfeldt, Kaski, and Koivisto [5,6] observed that
such an improvement can be made if we restrict
ourselves to bounded degree graphs. Further
work of Cygan and Pilipczuk [8] and Golovnev,
Kulikov, and Mihajlin [9] extended these results
to graphs of bounded average degree.

Bounded Degree Graphs

Traveling Salesman Problem
Let us present the approach of Björklund, Hus-
feldt, Kaski, and Koivisto on the example of trav-
eling salesman problem. Assume we are given
an n-vertex edge-weighted graph G. The classic
dynamic programming algorithm picks a root
vertex r and then, for every vertex v 2 V.G/

and every set X 	 V.G/ containing v and r ,
computes T ŒX; v�: the minimum possible length
of a path in G with vertex set X that starts in r
and ends in v. The running time bound 2nnO.1/ is
dominated by the number of choices of the setX .

The simple, but crucial, observation is as fol-
lows: if a set X satisfies X \ NG Œu� D fug for
some u 2 V.G/ n frg, then the values T ŒX; v� are
essentially useless, as no path starting in r can
visit the vertex u without visiting any neighbor
of u (here NG Œu� D NG.u/ [ fug stands for
the closed neighborhood of u). Let us call a set
X 	 V.G/ useful if X \ NG Œu� ¤ fug for every
u 2 V.G/ n frg. The argumentation so far proved
that we may skip the computation of T ŒX; v� for
all setsX that are not useful. The natural question
is how many different useful sets may exist in an
n-vertex graph?

Consider the following greedy procedure: ini-
tiate A D ; and, as long as there exists a vertex
u 2 V.G/ such that NG Œu� \ NG ŒA� D ;,
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add an arbitrarily chosen vertex u to the set A.
By construction, the set A satisfies the following
property: for every u1; u2 2 A, we haveNG Œu1�\

NG Œu2� D ;. An interesting fact is that jAj D
˝.n/ for graphs of bounded degree: whenever
we insert a vertex u into the set A, we cannot
later insert into A any neighbor of u nor any
neighbor of a neighbor of u. However, if the
maximum degree of G is bounded by d , then
there are at most d neighbors of u, and every
such neighbor has at most d�1 further neighbors.
Consequently, when we insert a vertex u into A,
we prohibit at most d C d.d � 1/ D d2 other

vertices from being inserted into A, and jAj �
n=.1C d2/.

It is easy to adjust the above procedure such
that the root vertex r does not belong to A.
Observe that for every useful setX and every u 2
A, we have X \ NG Œu� ¤ fug and, furthermore,
the setsNG Œu� for u 2 A are pairwise disjoint. We
can think of choosing a useful set X as follows:
first, for every u 2 A, we choose the intersection
X \NG Œu� (there are 2jNG Œu�j � 1 choices, as the
choice fug is forbidden), and, second, we choose
the set X n NG ŒA�. Hence, the number of useful
sets is bounded by

 
Y

u2A

2jNG Œu�j � 1

!

� 2n�jNG ŒA�j D 2n �
Y

u2A

�
1 � 2�jNG Œu�j

�
� 2n �

Y

u2A

.1 � 2�d�1/

D 2n � .1 � 2�d�1/jAj � 2n � .1 � 2�d�1/
n

1Cd2

D
�
2 �

1Cd2p
1 � 2�d�1

�n

:

Thus, for every degree bound d , there exists
a constant "d > 0 such that the number of useful
sets in an n-vertex graph of maximum degree d is
bounded by .2�"d /

n, yielding a .2�"d /
nnO.1/-

time algorithm for traveling salesman problem. A
better dependency on d in the formula for "d can
be obtained using a projection theorem of Chung,
Frankl, Graham, and Shearer [7] (see [5]).

Chromatic Number
A similar reasoning can be performed for the
problem of determining the chromatic number
of an input graph. Here, it is useful to rephrase
the problem as follows: find a minimum number
k such that the vertex set of an input graph
can be covered by k maximal independent sets;
note that we do not insist that the independent
sets are disjoint. Observe that if X is a set of
vertices covered by one or more such maximal
independent sets, we have X \ NG Œu� ¤ ; for
every u 2 V.G/, as otherwise the vertex u should
have been included into one of the covering sets.
Hence, we can call a set X 	 V.G/ useful
if it intersects every closed neighborhood in G,

and we obtain again a .2 � "d /
n bound on the

number of useful sets. An important contribution
of Björklund, Husfeldt, Kaski, and Koivisto [5]
can be summarized as follows: using the fact that
the useful sets are upward-closed (any superset
of a useful set is useful as well), we can trim the
fast subset convolution algorithm of [3] to con-
sider useful sets only. Consequently, we obtain a
.2� "d /

nnO.1/-time algorithm for computing the
chromatic number of an input graph of maximum
degree bounded by d .

Bounded Average Degree

Generalizing Algorithms for Bounded Degree
Graphs
The above approach for traveling salesman prob-
lem has been generalized to graphs of bounded
average degree by Cygan and Pilipczuk [8] using
the following observation. Assume a graph G

has n vertices and average degree bounded by d .
Then, a simple Markov-type inequality implies
that for every � > 1 there are at most n=� vertices
of degree larger than �d . However, this bound
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cannot be tight for all values of � at once, and
one can prove the following: if we want at most
n=.˛�/ vertices of degree larger than �d for some
˛ > 1, then we can always find such a constant �
of order roughly exponential in ˛.

An appropriate choice of ˛ and the corre-
sponding value of � allow us to partition the
vertex set of an input graph into a large part
of bounded degree and a very small part of
unbounded degree. The extra multiplicative gap
of ˛ in the size bound allows us to hide the cost of
extensive branching on the part with unbounded
degree in the gains obtained by considering only
(appropriately defined) useful sets in the bounded
degree part.

With this line of reasoning, Cygan and
Pilipczuk [8] showed that for every degree
bound d , there exists a constant "d > 0 such
that traveling salesman problem in graphs of
bounded average degree by d can be solved
in .2 � "d /

nnO.1/ time. It should be noted
that the constant "d depends here doubly
exponentially on d , as opposed to single-
exponential dependency in the works for bounded
degree graphs.

Furthermore, Cygan and Pilipczuk showed
how to express the problem of counting perfect
matchings in an n-vertex graph as a specific
variant of a problem of counting Hamiltonian
cycles in an n=2-vertex graph. This reduction not
only gives a simpler 2n=2nO.1/-time algorithm for
counting perfect matchings, as compared to the
original algorithm of Björklund [2], but since the
reduction does not increase the number of edges
in a graph, it also provides a .2 � "d /

n=2nO.1/-
time algorithm in the case of bounded average
degree.

In a subsequent work, Golovnev, Kulikov,
and Mihajlin [9] showed how to use the
aforementioned multiplicative gap of ˛ to
obtain a .2 � "d /

nnO.1/-time algorithm for
computing the chromatic number of a graph
with average degree bounded by d . Furthermore,
they expressed all previous algorithms as the
task of determining one coefficient in a carefully
chosen polynomial, obtaining polynomial space
complexity without any significant loss in time
complexity.

Counting Perfect Matchings in Bipartite
Graphs
A somewhat different line of research concerns
counting perfect matchings in bipartite graphs.
Here, a 2n=2nO.1/-time algorithm is known for
several decades [12]. Cygan and Pilipczuk pre-
sented a very simple 2.1�1=.3:55d//n=2nO.1/-time
algorithm for this problem in graphs of average
degree at most d , improving upon the previous
works of Servedio and Wan [13] and Izumi and
Wadayama [11]. Furthermore, this result general-
izes to the problem of computing the permanent
of a matrix over an arbitrary commutative ring
with the number of nonzero entries linear in the
dimension of the matrix.
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Problem Definition

A k-coloring of a graph G D .V;E/ assigns one
of k colors to each vertex such that neighboring
vertices have different colors. This is sometimes
called vertex coloring.

The smallest integer k for which the graph
G admits a k-coloring is denoted �.G/ and
called the chromatic number. The number of k-
colorings of G is denoted P.GI k/ and called the
chromatic polynomial.

Key Results

The central observation is that �.G/ and P.GI k/
can be expressed by an inclusion-exclusion for-
mula whose terms are determined by the num-
ber of independent sets of induced subgraphs of
G. For X 	 V , let s.X/ denote the number
of nonempty independent vertex subsets disjoint
fromX , and let sr .X/ denote the number of ways
to choose r nonempty independent vertex subsets
S1; : : : ; Sr (possibly overlapping and with repeti-
tions), all disjoint from X , such that jS1j C � � � C

jSr j D jV j.

Theorem 1 ([1]) Let G be a graph on n ver-
tices.

1.

�.G/D min
k2f1;:::;ng

8
<

:
k W

X

X�V

.�1/jX js.X/k > 0

9
=

;
:

2. For k D 1; : : : ; n,

P.GI k/ D

kX

rD1

�
k

r

�
0

@
X

X�V

.�1/jX jsr .X/

1

A :

The time needed to evaluate these expressions
is dominated by the 2n evaluations of s.X/
and sr .X/, respectively. These values can be
precomputed in time and space within a poly-
nomial factor of 2n because they satisfy

s.X/ D

	
0; if X D V;
s .X [ f�g/C s .X [ f�g [N.v//C 1; for v … X;
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where N.v/ are the neighbors of v in G.
Alternatively, the values can be computed us-
ing exponential-time, polynomial-space algo-
rithms from the literature.

This leads to the following bounds:

Theorem 2 ([3]) For a graph G on n vertices,
�.G/ and P.GI k/ can be computed in

1. Time and space 2nnO.1/.
2. Time O.2:2461n/ and polynomial space

The space requirement can be reduced to
O.1:292n/ [4].

The techniques generalize to arbitrary families
of subsets over a universe of size n, provided
membership in the family can be decided in poly-
nomial time [3, 4], and to the Tutte polynomial
and the Potts model [2].

Applications

In addition to being a fundamental problem in
combinatorial optimization, graph coloring also
arises in many applications, including register
allocation and scheduling.
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Problem Definition

Many of the most important known quantum al-
gorithms operate in the query complexity model.
In the simplest variant of this model, the goal
is to compute some Boolean function of n input
bits by making the minimal number of queries
to the bits. All other resources (such as time and
space) are considered to be free. In the model of
exact quantum query complexity, one insists that
the algorithm succeeds with certainty on every
allowed input. The aim is then to find quan-
tum algorithms which satisfy this constraint and
still outperform any possible classical algorithm.
This can be a challenging task, as achieving a
probability of error equal to zero requires deli-
cate cancellations between the amplitudes in the
quantum algorithm. Nevertheless, efficient exact
quantum algorithms are now known for certain
functions.

Some basic Boolean functions which we will
consider below are:

• Parityn: f .x1; : : : ; xn/ D x1˚ x2˚ � � � ˚ xn.
• Thresholdn

k : f .x1; : : : ; xn/ D 1 if jxj � k,
and f .x/ D 0 otherwise, where jxj WD

P
i xi
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is the Hamming weight of x. The special case
k D n=2 is called the majority function.

• Exactnk : f .x1; : : : ; xn/ D 1 if jxj D k, and
f .x/ D 0 otherwise.

• NE (“not-all-equal”) on 3 bits: f .x1; x2; x3/ D

0 if x1 D x2 D x3, and f .x1; x2; x3/ D 1

otherwise.

Key Results

Early Results
One of the earliest results in quantum computa-
tion was that the parity of 2 bits can be computed
with certainty using only 1 quantum query [6],
implying that Parityn can be computed using
dn=2e quantum queries. By contrast, any clas-
sical algorithm which computes this function
must make n queries. The quantum algorithm for
Parityn can be used as a subroutine to obtain
speedups over classical computation for other
problems. For example, based on this algorithm
the majority function on n bits can be computed
exactly using n C 1 � w.n/ quantum queries,
where w.n/ is the number of 1s in the binary
expansion of n [8]; this result has recently been
improved (see below).

If the function to be computed is partial, i.e.,
some possible inputs are disallowed, the separa-
tion between exact quantum and classical query

complexity can be exponential. For example, in
the Deutsch-Jozsa problem we are given query
access to an n-bit string x (with n even) such that
either all the bits of x are equal or exactly half
of them are equal to 1. Our task is to determine
which is the case. Any exact classical algorithm
must make at least n=2 C 1 queries to bits of
x to solve this problem, but it can be solved
with only one quantum query [7]. An exponential
separation is even known between exact quantum
and bounded-error classical query complexity for
a different partial function [5].

Recent Developments
For some years, the best known separation be-
tween exact quantum and classical query com-
plexity of a total Boolean function (i.e., a function
f W f0; 1gn ! f0; 1g with all possible n-
bit strings allowed as input) was the factor of
2 discussed above. However, recently the first
example has been presented of an exact quantum
algorithm for a family of total Boolean func-
tions which achieves a lower asymptotic query
complexity than the best possible classical algo-
rithm [1].

The family of functions used can be sum-
marized as a “not-all-equal tree of depth d .”
It is based around the recursive use of the NE
function. Define the function NE0.x1/ D x1 and
then for d > 0

NEd .x1; : : : ; x3d /

D NE.NEd�1.x1; : : : ; x3d�1/;NEd�1.x3d�1C1; : : : ; x2�3d�1/;NEd�1.x2�3d�1C1; : : : ; x3d //:

Then the following separation is known:

Theorem 1 (Ambainis [1]) There is an exact
quantum algorithm which computes NEd using
O.2:593 : : :d / queries. Any classical algorithm
which computes NEd must make ˝.3d / queries,
even if it is allowed probability of failure 1=3.

In addition, Theorem 1 implies the first known
asymptotic separation between exact quantum
and classical communication complexity for a to-
tal function. Improvements over the best possible

classical algorithms are also known for the other
basic Boolean functions previously mentioned.

Theorem 2 (Ambainis, Iraids, and Smotrovs
[2]) There is an exact quantum algorithm which
computes Exactnk using maxfk; n � kg queries
and an exact quantum algorithm which computes
Thresholdn

k using maxfk; n�kC1g queries. Both
of these complexities are optimal.

By contrast, it is easy to see that any exact
classical algorithm for these functions must make
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n queries. An optimal exact quantum algorithm
for the special case Exact42 had already been
found prior to this, in work which also gave
optimal exact quantum query algorithms for all
Boolean functions on up to 3 bits [9].

Methods
We briefly describe the main ingredients of the
efficient quantum algorithm for NEd [1]. The
basic idea is to fix some small d0, start with an
exact quantum algorithm which computes NEd0

using fewer queries than the best possible clas-
sical algorithm, and then amplify the separation
by using the algorithm recursively. A difficulty
with this approach is that the standard approach
for using a quantum algorithm recursively in-
curs a factor of 2 penalty in the number of
queries with each recursive call. This factor of 2
is required to “uncompute” information left over
after the algorithm has completed. Therefore, a
query complexity separation by a factor of 2 or
less does not immediately give an asymptotic
separation.

This problem can be addressed by introducing
the notion of p-computation. Let p 2 Œ�1; 1�.
A quantum algorithm A is said to p-compute
a function f .x1; : : : ; xn/ if, for some state
j starti:

• Whenever f .x1; : : : ; xn/ D 0, Aj starti D

j starti.
• Whenever f .x1; : : : ; xn/ D 1, Aj starti D

pj starti C
p
1 � p2j i for some j i, which

may depend on x, such that h j starti D 0.

It can be shown that if there exists an algorithm
which p-computes some function f for some
p � 0, there exists an exact quantum algorithm
which computes f using the same number of
queries. Further, if an algorithm .�1/-computes
some function f , the same algorithm can im-
mediately be used recursively, without needing
any additional queries at each level of recursion.
Thus, to obtain an asymptotic quantum-classical
separation for NEd , it suffices to obtain an algo-
rithm which .�1/-computes NEd0 using strictly
fewer than 3d0 queries, for some d0.

The NEd problem also behaves particularly
well with respect to p-computation for general
values of p:

Lemma 1 If there is an algorithm A which p-
computes NEd�1 using k queries, there is an
algorithm A0 which p0-computes NEd with 2k
queries, for p0 D 1 � 4.1 � p/2=9.

This lemma allows algorithms for NEd�1 to
be lifted to algorithms for NEd , at the expense of
making the value of p worse. Nevertheless, given
that it is easy to write down an algorithm which
.�1/-computes NE0 using one query, the lemma
is sufficient to obtain an exact quantum algorithm
for NE2 using 4 queries. This is already enough
to prove an asymptotic quantum-classical separa-
tion, but this separation can be improved using
the following lemma (a corollary of a variant of
amplitude amplification):

Lemma 2 If there is an algorithm A which p-
computes NEd using k queries, there is an al-
gorithm A0 which p0-computes NEd with 2k

queries, for p0 D 2p2 � 1.

Interleaving Lemmas 1 and 2 allows one to
derive an algorithm which .�1/-computes NE8

using 2,048 queries, which implies an exact quan-
tum algorithm for NEd using O.2;048d=8/ D

O.2:593 : : :d / queries.

Experimental Results

It is a difficult task to design exact quantum query
algorithms, even for small functions, as these
algorithms require precise cancellations between
amplitudes. One way to gain numerical evidence
for what the exact quantum query complexity of
a function should be is to use the formulation
of quantum query complexity as a semidefinite
programming (SDP) problem [4]. This allows
one to estimate the optimal success probability
of any quantum algorithm using a given num-
ber of queries to compute a given function. If
this success probability is very close to 1, this
gives numerical evidence that there exists an
exact quantum algorithm using that number of
queries.
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This approach has been applied for all Boolean
functions on up to 4 bits, giving strong evidence
that the only function on 4 bits which requires
4 quantum queries is the AND function and
functions equivalent to it [9]. This has led to the
conjecture that, for any n, the only function
on n bits which requires n quantum queries
to be computed exactly is the AND function
and functions equivalent to it. This would be
an interesting contrast with the classical case
where most functions on n bits require n queries.
This conjecture has recently been proven for
various special cases: symmetric functions,
monotone functions, and functions with formula
size n [3].
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Problem Definition

From the earliest works on tile self-assembly,
abstract theoretical models and experimental im-
plementations have been linked. In 1998, in ad-
dition to developing the abstract and kinetic Tile
Assembly Models (aTAM and kTAM) [14], Win-
free et al. demonstrated the use of DNA tiles
to construct a simple, periodic lattice [16]. Pe-
riodic lattices and “uniquely addressed” assem-
blies, where each tile type appears once in each
assembly, have been widely studied, with systems
employing up to a thousand unique tiles in three
dimensions [8, 13]. While these systems provide
insight into the behavior of DNA tile systems, al-
gorithmic tile systems of more theoretical interest
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pose specific challenges for experimental imple-
mentation.

In the aTAM, abstract tiles attach individually
to empty lattice sites if bonds of a sufficient total
strength b (at least abstract “temperature” � ) can
be made, and once attached, never detach. Ex-
perimentally, free tiles and assemblies of bound
tiles are in solution. Tiles have short single-
stranded “sticky ends” regions that form bonds
with complementary regions on other tiles. Tiles
attach to assemblies at rates dependent only upon
their concentrations, regardless of the strength
of bonds that can be made. Once attached, tiles
can detach and do so at a rate that is exponen-
tially dependent upon the total strength of the
bonds [6]. Thus, for a tile ti with concentration
Œti � binding by a total abstract bond strength b,
we have attachment and detachment rates of

rf D kf Œti � rb D kf e
�b�Gı

se=RTC˛ (1)

where kf is an experimentally determined rate
constant, ˛ is a constant binding free energy
change (e.g., from entropic considerations),Gıse

is the free energy change of a single-strength
bond, and T is the (physical) temperature. Us-
ing the substitutions Œti � D e�GmcC˛ , Gse D

�Gıse=RT , and Okf D kf e
˛ , these can be

simplified to

rf D Okf e
�Gmc rb D Okf e

�bGse (2)

whereGse is a (positive) unitless free energy for a
single-strength bond (larger values correspond to
stronger bonds), Gmc is a free energy analogue of
concentration (larger values correspond to lower
concentrations), and Okf is an adjusted rate con-
stant.

These rates are the basis of the kinetic Tile
Assembly Model (kTAM), which is widely used
as a physical model of tile assembly [14]. Tiles
that attach faster than they detach will tend to
remain attached and allow further growth: for
example, if Gmc < 2Gse, tile attachments by
b � 2 will be favorable. Tiles that detach faster
than they attach will tend to remain detached and
not allow further growth. Since Gmc is dependent
upon tile concentration, and Gse is dependent

upon physical temperature (lower temperatures
result in larger Gse values), the attachment and
detachment rates can be tuned such that attach-
ment is slightly more favorable than detachment
for tiles attaching by a certain total bond strength
and less favorable for less strongly bound tiles. In
this way, in the limit of low concentrations and
slow growth, the kTAM approximates the aTAM
at a given abstract temperature � . When moving
away from this limit and toward experimentally
feasible conditions, however, the kTAM provides
insight into many of the challenges faced in
experimental implementation of algorithmic tile
assembly:

Growth errors: While tile assembly in the
aTAM is error-free, tiles can attach in erroneous
locations in experiments. Even ignoring the
possibility of lattice defects, malformed tiles, and
other experimental peculiarities, errors can arise
in the kTAM via tiles that attach by less than the
required bond strength (e.g., one single-strength
bond for a � D 2 system) and are then “frozen”
in place by further attachments [4]. As the further
growth of algorithmic systems depends on the
tiles already present in an assembly, a single
erroneously incorporated tile can propagate
undesired growth via further, valid attachments.
These errors can arise both in growth sites where
another tile could attach correctly (“growth
errors”) and lattice sites where no correct tile
could attach (“facet nucleation errors”) [3, 14].

Seeding: Tile assembly in the aTAM is usually
initiated from a designated “seed” tile. In solu-
tion, however, tiles are free to attach to all other
tiles and can form assemblies without starting
from a seed, even if this requires several unfavor-
able attachments to form a stable structure that
can allow further growth. Depending upon the tile
system, these “spuriously nucleated” structures
can potentially form easily. For example, a T D
2 system with boundaries of identical tiles that
attach by double bonds on both sides can readily
form long strings of boundary tiles [10, 11].

Tile depletion: As free tiles in solution are incor-
porated into assemblies, their concentrations are
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correspondingly reduced. This depletion lowers
the attachment rates for those tiles and in turn
changes the favorability of growth. If different
tile types are incorporated in different quantities,
their attachment rates will become unequal, and
at some point in assembly, attachment by two
single-strength bonds may be favorable for one
tile type and unfavorable for another.

Tile design: While theoretical constructions
may employ an arbitrary number of sticky
ends types, this number is limited by tile
designs in practice. Most tiles use short single-
stranded DNA regions of 5–10 nucleotides (nt),
limiting the number of possible sticky ends to
45–410 at best. However, since partial bonds
can form between subsequences of the sticky
ends, sequences with sufficient orthogonality
are required, and since DNA binding strength
is sequence dependent, sequences with similar
binding energies are required [5]. Both of these
effects place considerably more stringent limits
on the number of sticky ends and change the
behavior of experimental systems.

Key Results

Winfree and Bekbolatov developed a tileset
transformation, “uniform proofreading,” that
reduced per-site growth error rates from rerr 

me�Gse (where m is the number of possible
errors) to me�KGse by scaling each tile into
a K � K block of individually attaching tiles
with unique internal bonds [15]. However, this
transformation did not reduce facet nucleation
errors. Chen and Goel later created a modified
transformation, “snaked proofreading,” that
reduced both growth and facet nucleation errors
by changing the strengths of the internal bonds
used [3]. These and other proofreading methods
have the potential to drastically reduce error rates
in experimental systems.

Schulman et al. analyzed tile system nucle-
ation through the consideration of “critical nu-
clei,” tile assemblies where melting and further
growth are equally favorable, and showed that
by ensuring a sufficient number of unfavorable

attachments would be required for a critical nu-
cleus to form, the rate of spurious nucleation can
be kept arbitrarily low [11]. Using this analysis,
Schulman et al. constructed the “zigzag” ribbon
system, which forms a ribbon where each row
must assemble completely before the next can
begin growth, as an example of a system where
spurious nucleation can be made arbitrarily low
by increasing ribbon width. To nucleate desired
structures, this system makes use of a large,
preformed seed structure to allow the growth of
the first ribbon row.

Schulman et al. also devised a “constant-
temperature” growth technique where the
concentrations of assemblies, controlled by the
concentration of initial seeds in a nucleation-
controlled system, are kept small enough in
comparison to the concentrations of free tiles
that growth does not significantly deplete tile
concentrations, which thus remain approximately
constant [12]. After growth is completed, the
remaining free tiles are “deactivated” by adding
an excess of DNA strands complementary to
specific sticky ends sequences.

In analyzing the effects of DNA sequences
on tile assembly, Evans and Winfree showed an
exponential increase of error rates in the kTAM
for partial binding between different sticky ends
sequences and for differing sequence-dependent
binding energies and developed algorithms for
sequence design and assignment to reduce these
effects [5]. With reasonable design constraints,
their algorithms suggested limits of around 80
sticky ends types for tiles using 5 nt sticky ends
and around 360 for tiles using 10 nt sticky ends
before significant sequence effects begin to be-
come unavoidable and must be incorporated into
tile system design.

Experimental Results

While numerous designs exist for tile structures,
experimental implementations have usually used
either double-crossover (DX) tiles with 5 or
6 nt sticky ends [16] or single-stranded tiles
(SST) with 10 and 11 nt sticky ends [17]. SSTs
potentially offer a significantly larger sequence
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Experimental Implementation of Tile Assembly,
Fig. 1 Experimental results for algorithmic tile assembly.
(a) and (b) show the Rothemund et al. XOR system’s DX
tiles and resulting structures, with (b) illustrating the high
error rates and seeding problems of the system [9]. (c)
shows the Fujibayashi et al. fixed-width XOR ribbon [7],

while (d) shows the Barish et al. binary counter ribbon
with partial 2 � 2 proofreading [2]; the rectangular struc-
tures on the left of both systems are preformed DNA
origami seeds. (e) shows an example bit-copying ribbon
from Schulman et al. [12]

space and have been employed in large, non-
algorithmic systems [8, 13] but have not yet been
used for complex algorithmic systems.

Early experiments in algorithmic tile assembly
using DX tiles did not employ any of the
key results discussed above. Rothemund et al.
implemented a simple XOR system of four
logical tiles (eight tiles were needed owing to
structural considerations), using DNA hairpins on
“one-valued” tiles as labels [9] and flexible, one-
dimensional seeds (Fig. 1a,b). While assemblies
grew, and Sierpinski triangle patterns were
visible, error rates were between 1 and 10%
per tile. Barish et al. implemented more complex
bit-copying and binary counting systems in a
similar way, finding per-tile error rates of around
10% [1].

More recently, Fujibayashi et al. used rigid
DNA origami structures to serve as seeds for
the growth of a fixed-width XOR ribbon system
and, in doing so, reduced error rates to 1:4%
per tile without incorporating proofreading [7]
(Fig. 1c). This seeding mechanism was also used
by Barish et al. to seed zigzag bit-copying and
binary counting ribbon systems that implemented
2 � 2 uniform proofreading [2]. With nucleation
control and proofreading, these systems resulted
in dramatically reduced error rates of 0:26% per
proofreading block for copying and 4:1% for the
more algorithmically complex binary counting,
which only partially implemented uniform proof-
reading (Fig. 1d).

A similar bit-copying ribbon was later
implemented by Schulman et al., with the
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addition of the constant-temperature, constant-
concentration growth method and the use of
biotin-streptavidin labels rather than DNA
hairpins. The result was a decrease in error
rates by almost a factor of ten to 0:034%
per block [12] (Fig. 1e). At this error rate,
structures of around 2,500 error-free blocks,
or 10,000 individual tiles, could be grown
with reasonable yields, suggesting that with
the incorporation of proofreading, nucleation
control and constant-concentration growth
methods, low-error experimental implementa-
tions of increasingly complex algorithmic tile
systems may be feasible up to sequence space
limitations.
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Problem Definition

Experimental analysis of algorithms describes
not a specific algorithmic problem, but rather
an approach to algorithm design and analysis. It
complements, and forms a bridge between, tra-
ditional theoretical analysis, and the application-
driven methodology used in empirical analysis.

The traditional theoretical approach to algo-
rithm analysis defines algorithm efficiency in
terms of counts of dominant operations, under
some abstract model of computation such as
a RAM; the input model is typically either worst-
case or average-case. Theoretical results are usu-
ally expressed in terms of asymptotic bounds
on the function relating input size to number of
dominant operations performed.

This contrasts with the tradition of empirical
analysis that has developed primarily in fields
such as operations research, scientific computing,
and artificial intelligence. In this tradition, the
efficiency of implemented programs is typically
evaluated according to CPU or wall-clock times;
inputs are drawn from real-world applications or
collections of benchmark test sets, and experi-
mental results are usually expressed in compar-
ative terms using tables and charts.

Experimental analysis of algorithms spans
these two approaches by combining the sensi-
bilities of the theoretician with the tools of the
empiricist. Algorithm and program performance
can be measured experimentally according
to a wide variety of performance indicators,
including the dominant cost traditional to theory,
bottleneck operations that tend to dominate
running time, data structure updates, instruction
counts, and memory access costs. A researcher
in experimental analysis selects performance
indicators most appropriate to the scale and scope
of the specific research question at hand. (Of
course time is not the only metric of interest in
algorithm studies; this approach can be used to
analyze other properties such as solution quality
or space use.)

Input instances for experimental algorithm
analysis may be randomly generated or derived
from application instances. In either case, they
typically are described in terms of a small-

to medium-sized collection of controlled
parameters. A primary goal of experimentation
is to investigate the cause-and-effect relationship
between input parameters and algorithm/program
performance indicators.

Research goals of experimental algorith-
mics may include discovering functions (not
necessarily asymptotic) that describe the
relationship between input and performance,
assessing the strengths and weaknesses of
different algorithm/data structures/programming
strategies, and finding best algorithmic strategies
for different input categories. Results are
typically presented and illustrated with graphs
showing comparisons and trends discovered in
the data.

The two terms “empirical” and “experimen-
tal”, are often used interchangeably in the lit-
erature. Sometimes the terms “old style” and
“new style” are used to describe, respectively,
the empirical and experimental approaches to this
type of research. The related term “algorithm en-
gineering” refers to a systematic design process
that takes an abstract algorithm all the way to
an implemented program, with an emphasis on
program efficiency. Experimental and empirical
analysis is often used to guide the algorithm en-
gineering process. The general term algorithmics
can refer to both design and analysis in algorithm
research.

Key Results

None

Applications

Experimental analysis of algorithms has been
used to investigate research problems originating
in theoretical computer science. One example
arises in the average-case analysis of algorithms
for the One-Dimensional Bin Packing problem.
Experimental analyses have led to new theorems
about the performance of the optimal algorithm;
new asymptotic bounds on average-case perfor-
mance of approximation algorithms; extensions
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of theoretical results to new models of inputs; and
to new algorithms with tighter approximation
guarantees. Another example is the experi-
mental discovery of a type of phase-transition
behavior for random instances of the 3CNF-
Satisfiabilty problem, which has led to new
ways to characterize the difficulty of problem
instances.

A second application of experimental algorith-
mics is to find more realistic models of computa-
tion, and to design new algorithms that perform
better on these models. One example is found in
the development of new memory-based models
of computation that give more accurate time pre-
dictions than traditional unit-cost models. Using
these models, researchers have found new cache-
efficient and I/O-efficient algorithms that exploit
properties of the memory hierarchy to achieve
significant reductions in running time.

Experimental analysis is also used to design
and select algorithms that work best in practice,
algorithms that work best on specific categories
of inputs, and algorithms that are most robust
with respect to bad inputs.

Data Sets

Many repositories for data sets and instance gen-
erators to support experimental research are avail-
able on the Internet. They are usually organized
according to specific combinatorial problems or
classes of problems.

URL to Code

Many code repositories to support experimental
research are available on the Internet. They
are usually organized according to specific
combinatorial problems or classes of problems.
Skiena’s Stony Brook Algorithm Repository
(www.cs.sunysb.edu/~algorith/) provides a com-
prehensive collection of problem definitions and
algorithm descriptions, with numerous links to
implemented algorithms.

Recommended Reading

The algorithmic literature containing examples
of experimental research is much too large to
list here. Some articles containing advice and
commentary on experimental methodology in the
context of algorithm research appear in the list
below.

The workshops and journals listed below
are specifically intended to support research
in experimental analysis of algorithms. Ex-
perimental work also appears in more general
algorithm research venues such as SODA
(ACM/IEEE Symposium on Data Structures
and Algorithms), Algorithmica, and ACM
Transactions on Algorithms.

1. ACM Journal of Experimental Algorithmics.
Launched in 1996, this journal publishes contributed
articles as well as special sections containing selected
papers from ALENEX and WEA. Visit www.jea.
acm.org, or visit portal.acm.org and click on ACM
Digital Library/Journals/Journal of Experimental
Algorithmics

2. ALENEX. Beginning in 1999, the annual workshop on
Algorithm Engineering and Experimentation is spon-
sored by SIAM and ACM. It is co-located with SODA,
the SIAM Symposium on Data Structures and Algo-
rithms. Workshop proceedings are published in the
Springer LNCS series. Visit www.siam.org/meetings/
for more information

3. Barr RS, Golden BL, Kelly JP, Resende MGC, Stew-
art WR (1995) Designing and reporting on computa-
tional experiments with heuristic methods. J Heuristics
1(1):9–32

4. Cohen PR (1995) Empirical methods for artificial
intelligence. MIT, Cambridge

5. DIMACS Implementation Challenges. Each DIMACS
Implementation Challenge is a year-long coopera-
tive research event in which researchers cooperate to
find the most efficient algorithms and strategies for
selected algorithmic problems. The DIMACS Chal-
lenges since 1991 have targeted a variety of opti-
mization problems on graphs; advanced data struc-
tures; and scientific application areas involving com-
putational biology and parallel computation. The DI-
MACS Challenge proceedings are published by AMS
as part of the DIMACS Series in Discrete Mathe-
matics and Theoretical Computer Science. Visit di-
macs.rutgers.edu/Challenges for more information

6. Johnson DS (2002) A theoretician’s guide to the ex-
perimental analysis of algorithms. In: Goodrich MH,
Johnson DS, McGeoch CC (eds) Data structures,
near neighbors searches, and methodology: fifth and
sixth DIMACS implementation challenges, vol 59, DI-
MACS series in discrete mathematics and theoretical
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computer science. American Mathematical Society,
Providence

7. McGeoch CC (1996) Toward an experimental method
for algorithm simulation. INFORMS J Comput
1(1):1–15

8. WEA. Beginning in 2001, the annual Workshop on
Experimental and Efficient Algorithms is sponsored by
EATCS. Workshop proceedings are published in the
Springer LNCS series
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Problem Definition

Given a propositional formula in conjunctive nor-
mal form, such as .x _ y/ ^ . Nx _ Ny _ ´/ ^ . Ń/,
one wants to find an assignment of truth values
to the variables that makes the formula evaluate
to true. Here, Œx 7! 1; y 7! 0; ´ 7! 0� does
the job. We call such formulas CNF formulas and
such assignments satisfying assignments. SAT is
the problem of deciding whether a given CNF
formula is satisfiable. If every clause (such as
. Nx _ Ny _ ´/ above) has at most k literals, we call
this a k-CNF formula. The above example is a 3-
CNF formula. The problem of deciding whether
a given k-CNF formula is satisfiable is called

k-SAT. This is one of the most fundamental NP-
complete problems.

Several clever algorithms have been developed
for k-SAT. In this note we are mostly concerned
with the PPSZ algorithm [3]. This is itself an
improved version of the older PPZ algorithm [4].
Another prominent SAT algorithm is Schöning’s
random walk algorithm [6], which is slower than
PPSZ, but has the benefit that it can be turned into
a deterministic algorithm [5].

Given that we currently cannot prove P ¤
NP, all super-polynomial lower bounds on the
running time of k-SAT algorithms must be ei-
ther conditional, that is, rest on widely believed
but yet unproven assumptions, or must be for a
particular family of algorithms. In this note we
sketch exponential lower bounds for the PPSZ al-
gorithm, which is the currently fastest algorithm
for k-SAT. We measure the running time of a SAT
algorithm in terms of n, the number of variables.
Often probabilistic algorithms for k-SAT (like
PPSZ) have polynomial running time and success
probability pn for some p < 1. One can turn this
into a Monte Carlo algorithm with success prob-
ability at least 1=2 by repeating it .1=p/n times.
We prefer the formulation of PPSZ as having
polynomial running time, and we are interested
in the worst-case success probability pn.

Key Results

The worst-case behavior of PPSZ is exponential.
That is, there are satisfiable k-CNF formulas
on n variables, for which PPSZ finds a satisfy-
ing assignment with probability at most 2�˝.n/.
More precisely, there is a constant C and a

sequence �k �
C log2 k

k
such that the worst-case

success probability of PPSZ for k-SAT is at most
2�.1��k/n. See Theorem 3 below for a formal
statement.

The PPSZ Algorithm

The PPSZ algorithm, named after its inventors
Paturi, Pudlák, Saks, and Zane [3], is the fastest
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known algorithm for k-SAT. We now give a
brief description of it: Choose a random ordering
� of the n variables x1; : : : ; xn of F . Choose
random truth values b D .b1; : : : ; bn/ 2 f0; 1g.
Iterate through the variables in the ordering given
by � . When processing xi check whether it is
“obvious” what the correct value of xi should be.
If so, fix xi to that value. Otherwise, fix xi to bi .
By fixing we mean replacing each occurrence of
xi in F by that value (and each occurrence of Nxi

by the negation of that value). After all variables
have been processed, the algorithm returns the
satisfying assignment it has found or returns
failure if it has run into a contradiction.

It remains to specify what “obvious” means:
Given a CNF formula F and a variable xi , we
say that the correct value of xi is obviously b if
the statement xi D b can be derived from F

by width-w resolution, where w is some large
constant (think of w D 1;000). This can be
checked in time O.nw/, which is polynomial.

Let ppsz.F; �; b/ be the return value of ppsz.
That is, ppsz.F; �; b/ 2 sat.F / [ ffailureg,
where sat.F / is the set of satisfying assignments
of F .

A Very Brief Sketch of the Analysis of PPSZ
Let � be a permutation of x1; : : : ; xn and let
b D .b1; : : : ; bn/ 2 f0; 1g

n. Suppose we run
PPSZ on F using this permutation � and the truth
values b. For 1 � i � n, define Zi to be 1
if PPSZ did not find it obvious what the correct
value of xi should be. Let Z D Z1 C � � � C Zn.
To underline the dependence on F , � , and b, we
sometimes write Z.F; �; b/. It is not difficult to
show the following lemma.

Lemma 1 ([3]) Let F be a satisfiable CNF for-
mula over n variables. Let � be a random per-
mutation of its variables and let a 2 f0; 1gn be
satisfying assignment of F . Then

Pr
�;b
Œppsz.F; �; b/ D a� D E� Œ2

�Z.F;�;a/� (1)

Since x 7! 2x is a convex function, Jensen’s
inequality implies that E� Œ2

�Z � � 2�EŒZ�, and
by linearity of expectation, it holds that EŒZ� D
Pn

iD1 EŒZi �.

Lemma 2 ([3]) There are numbers ck 2 Œ0; 1�

such that the following holds: If F is a k-CNF
formula over n variables with a unique satisfying
assignment a, then E� ŒZi .F; �; a/� � ck for all
1 � i � n. Furthermore, for large k we have
ck  1�

�2

6k
, and in particular c3 D 2 ln.2/�1 

0:38.

Combining everything, Paturi, Pudlák, Saks, and
Zane obtain their main result:

Theorem 1 ([3]) Let F be a k-CNF formula
with a unique satisfying assignment a. Then
PPSZ finds this satisfying assignment with
probability at least 2�ckn.

It takes a considerable additional effort to show
that the same bound holds also if F has multiple
satisfying assignments:

Theorem 2 ([2]) Let F be a satisfiable k-CNF
formula. Then PPSZ finds a satisfying assignment
with probability at least 2�ckn.

We sketch the intuition behind the proof of
Lemma 2. It turns out that in the worst case the
event Zi D 1 can be described by the following
random experiment: Let T D .V;E/ be the
infinite rooted .k � 1/-ary tree. For each node
v 2 V choose �.v/ 2 Œ0; 1� randomly and
independently. Call a node v alive if �.v/ �
�.root/. Then PrŒZi D 1� is (roughly) equal to
the probability that T contains an infinite path
of alive vertices, starting with the root. Call this
probability ck . A simple calculation shows that
c3 D 2 ln.2/ � 1. For larger values of ck , there is
not necessarily a closed form, but Paturi, Pudlák,
Saks, and Zane show that ck  1�

�2

6k
for large k.

Hard Instances for the PPSZ
Algorithm

One can construct instances on which the success
probability of PPSZ is exponentially small. The
construction is probabilistic and rather simple. Its
analysis is quite technical, so we can only sketch
it here. We start with some easy estimates. By
Lemma 1 we can write the success probability of
PPSZ as
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Pr
�;b
Œppsz.F; �; b/ 2 sat.F /�

D
X

a2sat.F /

E� Œ2
�Z.F;�;a/� : (2)

Above we used Jensen’s inequality to prove
EŒ2�Z � � 2�EŒZ�. In this section we want to
construct hard instances, that is, instances on
which the success probability (2) is exponentially
small. Thus, we cannot use Jensen’s inequality,
as it gives a lower bound, not an upper. Instead,
we use the following trivial estimate:

X

a2sat.F /

E� Œ2
�Z.F;�;a/� �

X

a2sat.F /

max
�

2�Z.F;�;a/

� jsat.F /j � max
a2sat.F /;�

2�Z.F;�;a/ : (3)

We would like to construct a satisfiable k-CNF
formula F for which (i) jsat.F /j is small, i.e.,
F has few satisfying assignments, and (ii)
Z.F; �; a/ is large for every permutation and
every satisfying assignment a. It turns out there
are formulas satisfying both requirements:

Theorem 3 There are numbers �k converging to
0 such that the following holds: For every k,
there is a family .Fn/n	1, where each Fn is a
satisfiable k-CNF formula over n variables such
that

1. jsat.Fn/j � 2
�kn.

2. Z.F; �; a/ � .1 � �k/n for all � and all a 2
sat.Fn/.

Thus, the probability of PPSZ finding a satisfying
assignment of Fn is at most 2�.1�2�k/n. Further-

more, �k �
C log2.k/

k
for some universal constant

C .

This theorem shows that PPSZ has exponentially
small success probability. Also, it shows that
the strong exponential time hypothesis (SETH)
holds for PPSZ: As k grows, the advantage
over the trivial success probability 2�n becomes
negligible.

The Probabilistic Construction
Let A 2 F

n�n
2 . The system Ax D 0 defines

a Boolean function fA W f0; 1g
n ! f0; 1g as

follows: fA.x/ D 1 if and only if A � x D 0.
Say A is k-sparse if every row of A has at most
k nonzero entries. If A is k-sparse, then fA can
be written as a k-CNF formula with n variables
and 2k�1n clauses. Our construction will be prob-
abilistic. For this, we define a distribution over
k-sparse matrices in F

n�n
2 . Our distribution will

have the form Dn, where D is a distribution over
row vectors from F

n
2 . That is, we sample each row

of A independently from D. Let us describe D.
Define ei 2 F

n
2 to be the vector with a 1 at the

i th position and 0 elsewhere. Sample i1; : : : ; ik 2
f1; : : : ; ng uniformly and independently and let
X D ei1 C � � � C eik . Clearly, X 2 F

n
2 has at

most k nonzero entries. This is our distribution
D.

Let A be a random matrix sampled as de-
scribed, and write fA as a k-CNF formula F .
Note that sat.F / D kerA. The challenge is
to show that F satisfies the two conditions of
Theorem 3.

Lemma 3 (A has high rank) With probability
1 � o.1/, j ker.A/j � 2�kn.

This shows that F satisfies the first condition of
the theorem, i.e., it has few satisfying assign-
ments. Lemma 3 is quite straightforward to prove,
though not trivial. The next lemma shows that
Z.F; �; a/ is large.

Lemma 4 With probability 1�o.1/, it holds that
Z.F; �; a/ � .1��k/n for all permutations � and
all a 2 sat.F /.

Proving this lemma is the main technical chal-
lenge. The proof uses ideas from proof complex-
ity (indeed, the above construction is inspired by
constructions in proof complexity).

Open Problems

Suppose the true worst-case success probability
of PPSZ on k-CNF formulas is 2�rkn. Paturi,
Pudlák, Saks, and Zane have proved that rk �
1 � ˝ .1k/. Chen, Scheder, Talebanfard, and
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Tang showed that rk � 1 � O
�

log2 k
k

�
. Can one

close this gap by construction harder instances or
maybe even improve the analysis of PPSZ?

What is the average-case success probability
of PPSZ on F when we sample A from Dn? Note
that F is exponentially hard with probability 1 �
o.1/, but this might leave a 1=n probability that
F is very easy for PPSZ.

The construction of [1] is probabilistic. Can
one make it explicit? The proof of Lemma 4 uses
(implicit in [1]) a nonstandard notion of expan-
sion. We do not know of explicit construction of
those expanders.
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Problem Definition

Notations The main properties of magnetic
disks and multiple disk systems can be captured
by the commonly used parallel disk model
(PDM), which is summarized below in its current
form as developed by Vitter and Shriver [22]:

N D problem size .in units of data items/I

M D internal memory size.inunitsofdata items/I

B D block transfer size .in units of data items/I

D D number of independent disk drivesI

P D number of CPUs;
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where M < N , and 1 � DB � M=2. The
data items are assumed to be of fixed length.
In a single I/O, each of the D disks can si-
multaneously transfer a block of B contiguous
data items. (In the original 1988 article [2], the
D blocks per I/O were allowed to come from
the same disk, which is not realistic.) If P �
D, each of the P processors can drive about
D=P disks; if D < P , each disk is shared by
about P=D processors. The internal memory
size is M=P per processor, and the P proces-
sors are connected by an interconnection net-
work.

It is convenient to refer to some of the above
PDM parameters in units of disk blocks rather
than in units of data items; the resulting formulas
are often simplified. We define the lowercase
notation

n D
N

B
; m D

M

B
; q D

Q

B
; ´ D

Z

B
(1)

to be the problem input size, internal memory
size, query specification size, and query output
size, respectively, in units of disk blocks.

The primary measures of performance in PDM
are:

1. The number of I/O operations performed
2. The amount of disk space used
3. The internal (sequential or parallel) computa-

tion time

For reasons of brevity in this survey, focus is re-
stricted onto only the first two measures. Most of
the algorithms run inO.N logN/ CPU time with
one processor, which is optimal in the compari-
son model, and in many cases are optimal for par-
allel CPUs. In the word-based RAM model, sort-
ing can be done more quickly in O.N log logN/
CPU time. Arge and Thorup [5] provide sort-
ing algorithms that are theoretically optimal in
terms of both I/Os and time in the word-based
RAM model. In terms of auxiliary storage in
external memory, algorithms and data structures
should ideally use linear space, which means

O.N=B/ D O.n/ disk blocks of storage. Vit-
ter [20] gives further details about the PDM
model and provides optimal algorithms and data
structures for a variety of problems. The content
of this chapter comes largely from an abbreviated
form of [19].

Problem 1 External sorting
INPUT: The input data records R0, R1, R2, . . .
are initially “striped” across the D disks, in units
of blocks, so that record Ri is in block bi=Bc and
block j is stored on disk j mod D.
OUTPUT: A striped representation of a permuted
ordering R�.0/, R�.1/, R�.2/, . . . of the input
records with the property that key.R�.i/ �

key.R�.iC1/ for all i � 0.

Permuting is the special case of sorting in
which the permutation that describes the final
position of the records is given explicitly and
does not have to be discovered, for example, by
comparing keys.

Problem 2 Permuting
INPUT: Same input assumptions as in external
sorting. In addition, a permutation � of the in-
tegers f0, 1, 2, . . . , N � 1g is specified.
OUTPUT: A striped representation of a permuted
ordering R�.0/, R�.1/, R�.2/, . . . of the input
records.

Key Results

Theorem 1 ([2, 15]) The average-case and
worst-case number of I/Os required for sorting
N D nB data items using D disks is

Sort.N / D ‚
� n

D
logm n

�
: (2)

Theorem 2 ([2]) The average-case and worst-
case number of I/Os required for permuting
N data items using D disks is

‚

�

min

	
N

D
;Sort.N /


�

: (3)

A more detailed lower bound is provided in (9) in
section “Lower Bounds on I/O.”
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Matrix transposition is the special case of
permuting in which the permutation can be rep-
resented as a transposition of a matrix from row-
major order into column-major order.

Theorem 3 ([2]) With D disks, the number
of I/Os required to transpose a p � q matrix
from row-major order to column-major order is

‚
� n

D
logm minfM;p; q; ng

�
; (4)

where N D pq and n D N=B .

Matrix transposition is a special case of a
more general class of permutations called bit-
permute/complement (BPC) permutations, which
in turn is a subset of the class of bit-matrix-
multiply/complement (BMMC) permutations.
BMMC permutations are defined by a logN �
logN nonsingular 0-1 matrix A and a (logN )-
length 0-1 vector c. An item with binary
address x is mapped by the permutation to
the binary address given by Ax ˚ c, where ˚
denotes bitwise exclusive-or. BPC permutations
are the special case of BMMC permutations in
which A is a permutation matrix, that is, each
row and each column of A contain a single 1.
BPC permutations include matrix transposition,
bit-reversal permutations (which arise in the
FFT), vector-reversal permutations, hypercube
permutations, and matrix re-blocking. Cormen
et al. [8] characterize the optimal number of
I/Os needed to perform any given BMMC
permutation solely as a function of the associated
matrix A, and they give an optimal algorithm for
implementing it.

Theorem 4 ([8]) With D disks, the number
of I/Os required to perform the BMMC
permutation defined by matrix A and vector c
is

‚

�
n

D

�

1C
rank.�/

logm

��

; (5)

where � is the lower-left logn � logB submatrix
of A.

The two main paradigms for external sorting
are distribution and merging, which are discussed
in the following sections for the PDM model.

Sorting by Distribution
Distribution sort [12] is a recursive process that
uses a set of S � 1 partitioning elements to
partition the items into S disjoint buckets. All the
items in one bucket precede all the items in the
next bucket. The sort is completed by recursively
sorting the individual buckets and concatenating
them together to form a single fully sorted list.

One requirement is to choose the S � 1 par-
titioning elements so that the buckets are of
roughly equal size. When that is the case, the
bucket sizes decrease from one level of recursion
to the next by a relative factor of ‚.S/, and thus
there are O.logS n/ levels of recursion. During
each level of recursion, the data are scanned.
As the items stream through internal memory,
they are partitioned into S buckets in an online
manner. When a buffer of size B fills for one of
the buckets, its block is written to the disks in
the next I/O, and another buffer is used to store
the next set of incoming items for the bucket.
Therefore, the maximum number of buckets (and
partitioning elements) is S D ‚.M=B/ D

‚.m/, and the resulting number of levels of re-
cursion is ‚.logm n/. How to perform each level
of recursion in a linear number I/Os is discussed
in [2, 14, 22].

An even better way to do distribution sort,
and deterministically at that, is the BalanceSort
method developed by Nodine and Vitter [14].
During the partitioning process, the algorithm
keeps track of how evenly each bucket has been
distributed so far among the disks. It maintains an
invariant that guarantees good distribution across
the disks for each bucket.

The distribution sort methods mentioned
above for parallel disks perform write operations
in complete stripes, which make it easy to write
parity information for use in error correction
and recovery. But since the blocks written in
each stripe typically belong to multiple buckets,
the buckets themselves will not be striped on
the disks, and thus the disks must be used
independently during read operations. In the
write phase, each bucket must therefore keep
track of the last block written to each disk so
that the blocks for the bucket can be linked
together.
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An orthogonal approach is to stripe the con-
tents of each bucket across the disks so that
read operations can be done in a striped manner.
As a result, the write operations must use disks
independently, since during each write, multiple
buckets will be writing to multiple stripes. Error
correction and recovery can still be handled ef-
ficiently by devoting to each bucket one block-
sized buffer in internal memory. The buffer is
continuously updated to contain the exclusive-or
(parity) of the blocks written to the current stripe,
and after D � 1 blocks have been written, the
parity information in the buffer can be written to
the final (Dth) block in the stripe.

Under this new scenario, the basic loop of
the distribution sort algorithm is, as before,
to read one memory load at a time and
partition the items into S buckets. However,
unlike before, the blocks for each individual
bucket will reside on the disks in contiguous
stripes. Each block therefore has a predefined
place where it must be written. With the
normal round-robin ordering for the stripes
(namely, : : : ; 1; 2; 3; : : : ;D; 1; 2; 3; : : : ;D; : : : ),
the blocks of different buckets may “collide,”
meaning that they need to be written to the
same disk, and subsequent blocks in those
same buckets will also tend to collide. Vitter
and Hutchinson [21] solve this problem by
the technique of randomized cycling. For each
of the S buckets, they determine the ordering
of the disks in the stripe for that bucket via a
random permutation of f1, 2, . . . , Dg. The S
random permutations are chosen independently.
If two blocks (from different buckets) happen to
collide during a write to the same disk, one block
is written to the disk and the other is kept on a
write queue. With high probability, subsequent
blocks in those two buckets will be written to
different disks and thus will not collide. As long
as there is a small pool of available buffer space to
temporarily cache the blocks in the write queues,
Vitter and Hutchinson [21] show that with high
probability the writing proceeds optimally.

The randomized cycling method or the related
merge sort methods discussed at the end of sec-
tion “Sorting by Merging” are the methods of
choice for sorting with parallel disks. Distribution

sort algorithms may have an advantage over the
merge approaches presented in section “Sorting
by Merging” in that they typically make better
use of lower levels of cache in the memory
hierarchy of real systems, based upon analysis
of distribution sort and merge sort algorithms on
models of hierarchical memory.

Sorting by Merging
The merge paradigm is somewhat orthogonal to
the distribution paradigm of the previous sec-
tion. A typical merge sort algorithm works as
follows [12]: In the “run formation” phase, the
n blocks of data are scanned, one memory load
at a time; each memory load is sorted into a
single “run,” which is then output onto a series
of stripes on the disks. At the end of the run
formation phase, there areN=M D n=m (sorted)
runs, each striped across the disks. (In actual
implementations, “replacement selection” can be
used to get runs of 2M data items, on the average,
when M � B [12].) After the initial runs are
formed, the merging phase begins. In each pass of
the merging phase, R runs are merged at a time.
For each merge, the R runs are scanned and its
items merged in an online manner as they stream
through internal memory. Double buffering is
used to overlap I/O and computation. At most
R D ‚.m/ runs can be merged at a time, and
the resulting number of passes is O.logm n/.

To achieve the optimal sorting bound (2), each
merging pass must be done in O.n=D/ I/Os,
which is easy to do for the single-disk case. In
the more general multiple-disk case, each parallel
read operation during the merging must on the
average bring in the next‚.D/ blocks needed for
the merging. The challenge is to ensure that those
blocks reside on different disks so that they can be
read in a single I/O (or a small constant number
of I/Os). The difficulty lies in the fact that the runs
being merged were themselves formed during the
previous merge pass. Their blocks were written to
the disks in the previous pass without knowledge
of how they would interact with other runs in later
merges.

The Greed Sort method of Nodine and Vit-
ter [15] was the first optimal deterministic EM
algorithm for sorting with multiple disks. It works
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by relaxing the merging process with a final
pass to fix the merging. Aggarwal and Plax-
ton [1] developed an optimal deterministic merge
sort based upon the Sharesort hypercube parallel
sorting algorithm. To guarantee even distribu-
tion during the merging, it employs two high-
level merging schemes in which the schedul-
ing is almost oblivious. Like Greed Sort, the
Sharesort algorithm is theoretically optimal (i.e.,
within a constant factor of optimal), but the con-
stant factor is larger than the distribution sort
methods.

One of the most practical methods for sorting
is based upon the simple randomized merge sort
(SRM) algorithm of Barve et al. [7], referred to as
“randomized striping” by Knuth [12]. Each run is
striped across the disks, but with a random start-
ing point (the only place in the algorithm where
randomness is utilized). During the merging pro-
cess, the next block needed from each disk is read
into memory, and if there is not enough room, the
least needed blocks are “flushed” (without any
I/Os required) to free up space.

Further improvements in merge sort are pos-
sible by a more careful prefetching schedule
for the runs. Barve et al. [6], Kallahalla and
Varman [11], Shah et al. [17], and others have
developed competitive and optimal methods for
prefetching blocks in parallel I/O systems.

Hutchinson et al. [10] have demonstrated a
powerful duality between parallel writing and
parallel prefetching, which gives an easy way to
compute optimal prefetching and caching sched-
ules for multiple disks. More significantly, they
show that the same duality exists between dis-
tribution and merging, which they exploit to get
a provably optimal and very practical parallel
disk merge sort. Rather than use random start-
ing points and round-robin stripes as in SRM,
Hutchinson et al. [10] order the stripes for each
run independently, based upon the randomized
cycling strategy discussed in section “Sorting
by Distribution” for distribution sort. These ap-
proaches have led to successfully faster external
memory sorting algorithms [9]. Clever algorithm
engineering optimizations on multicore architec-
tures have won recent big data sorting competi-
tions [16].

Handling Duplicates: Bundle Sorting
For the problem of duplicate removal, in
which there are a total of K distinct items
among the N items, Arge et al. [4] use a
modification of merge sort to solve the problem
in O

�
nmax

˚
1; logm.K=B/

��
I/Os, which

is optimal in the comparison model. When
duplicates get grouped together during a merge,
they are replaced by a single copy of the item and
a count of the occurrences. The algorithm can
be used to sort the file, assuming that a group of
equal items can be represented by a single item
and a count.

A harder instance of sorting called bundle
sorting arises when there are K distinct key
values among the N items, but all the items
have different secondary information that must
be maintained, and therefore items cannot be ag-
gregated with a count. Matias et al. [13] develop
optimal distribution sort algorithms for bundle
sorting using

O
�
nmax

˚
1; logm minfK; ng

��
(6)

I/Os and prove the matching lower bound. They
also show how to do bundle sorting (and sorting
in general) in place (i.e., without extra disk
space).

Permuting and Transposition
Permuting is the special case of sorting in which
the key values of the N data items form a per-
mutation of f1; 2; : : : ; N g. The I/O bound (3) for
permuting can be realized by one of the optimal
sorting algorithms except in the extreme case
B logm D o.logn/, where it is faster to move
the data items one by one in a nonblocked way.
The one-by-one method is trivial if D D 1,
but with multiple disks, there may be bottlenecks
on individual disks; one solution for doing the
permuting in O.N=D/ I/Os is to apply the ran-
domized balancing strategies of [22].

Matrix transposition can be as hard as general
permuting when B is relatively large (say, 1

2
M )

and N is O.M 2/, but for smaller B , the special
structure of the transposition permutation makes
transposition easier. In particular, the matrix can
be broken up into square submatrices of B2

elements such that each submatrix contains B
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blocks of the matrix in row-major order and also
B blocks of the matrix in column-major order.
Thus, if B2 < M , the transpositions can be done
in a simple one-pass operation by transposing
the submatrices one at a time in internal mem-
ory. Thonangi and Yang [18] discuss other types
of permutations realizable with fewer I/Os than
sorting.

Fast Fourier Transform and Permutation
Networks
Computing the fast Fourier transform (FFT) in
external memory consists of a series of I/Os that
permit each computation implied by the FFT
directed graph (or butterfly) to be done while its
arguments are in internal memory. A permutation
network computation consists of an oblivious
(fixed) pattern of I/Os such that any of the NŠ
possible permutations can be realized; data items
can only be reordered when they are in internal
memory. A permutation network can be realized
by a series of three FFTs.

The algorithms for FFT are faster and sim-
pler than for sorting because the computation is
nonadaptive in nature, and thus the communica-
tion pattern is fixed in advance [22].

Lower Bounds on I/O
The following proof of the permutation lower
bound (3) of Theorem 2 is due to Aggarwal and
Vitter [2]. The idea of the proof is to calculate, for
each t � 0, the number of distinct orderings that
are realizable by sequences of t I/Os. The value
of t for which the number of distinct orderings
first exceeds NŠ=2 is a lower bound on the av-
erage number of I/Os (and hence the worst-case
number of I/Os) needed for permuting.

Assuming for the moment that there is only
one disk, D D 1, consider how the number
of realizable orderings can change as a result
of an I/O. In terms of increasing the number of
realizable orderings, the effect of reading a disk

block is considerably more than that of writing
a disk block, so it suffices to consider only the
effect of read operations. During a read operation,
there are at most B data items in the read block,
and they can be interspersed among the M items
in internal memory in at most

�
M
B

�
ways, so the

number of realizable orderings increases by a fac-
tor of

�
M
B

�
. If the block has never before resided

in internal memory, the number of realizable
orderings increases by an extra BŠ factor, since
the items in the block can be permuted among
themselves. (This extra contribution of BŠ can
only happen once for each of the N=B original
blocks.) There are at most nC t � N logN ways
to choose which disk block is involved in the t th
I/O (allowing an arbitrary amount of disk space).
Hence, the number of distinct orderings that can
be realized by all possible sequences of t I/Os is
at most

.BŠ/N=B

 

N.logN/

 
M

B

!!t

: (7)

Setting the expression in (7) to be at least NŠ=2,
and simplifying by taking the logarithm, the re-
sult is

N logBCt

�

logNCB log
M

B

�

D 	.N logN/:

(8)
Solving for t gives the matching lower bound
	.n logm n/ for permuting for the case D D

1. The general lower bound (3) of Theorem 2
follows by dividing by D.

Hutchinson et al. [10] derive an asymptotic
lower bound (i.e., one that accounts for constant
factors) from a more refined argument that ana-
lyzes both input operations and output operations.
Assuming that m D M=B is an increasing
function, the number of I/Os required to sort or
permute n indivisible items, up to lower-order
terms, is at least

2N

D

logn

B logmC 2 logN
�

8
ˆ̂
<

ˆ̂
:

2n

D
logm n if B logm D !.logN/I

N

D
if B logm D o.logN/:

(9)
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For the typical case in which B logm D

!.logN/, the lower bound, up to lower order
terms, is 2n logm n I/Os. For the pathological in
which B logm D o.logN/, the I/O lower bound
is asymptotically N=D.

Permuting is a special case of sorting, and
hence the permuting lower bound applies also
to sorting. In the unlikely case that B logm D
o.logn/, the permuting bound is only 	.N=D/,
and in that case the comparison model must be
used to get the full lower bound (2) of Theo-
rem 1 [2]. In the typical case in which B logm D
	.logn/, the comparison model is not needed to
prove the sorting lower bound; the difficulty of
sorting in that case arises not from determining
the order of the data but from permuting (or
routing) the data.

The proof used above for permuting also
works for permutation networks, in which the
communication pattern is oblivious (fixed). Since
the choice of disk block is fixed for each t ,
there is no N logN term as there is in (7),
and correspondingly there is no additive logN
term in the inner expression as there is in (8).
Hence, solving for t gives the lower bound (2)
rather than (3). The lower bound follows directly
from the counting argument; unlike the sorting
derivation, it does not require the comparison
model for the case B logm D o.logn/. The
lower bound also applies directly to FFT, since
permutation networks can be formed from three
FFTs in sequence. The transposition lower bound
involves a potential argument based upon a
togetherness relation [2].

For the problem of bundle sorting, in which
the N items have a total of K distinct key values
(but the secondary information of each item is
different), Matias et al. [13] derive the matching
lower bound.

The lower bounds mentioned above assume
that the data items are in some sense “indivisible,”
in that they are not split up and reassembled in
some magic way to get the desired output. It
is conjectured that the sorting lower bound (2)
remains valid even if the indivisibility assump-
tion is lifted. However, for an artificial problem
related to transposition, removing the indivisi-
bility assumption can lead to faster algorithms.

Whether the conjecture is true is a challenging
theoretical open problem.

Applications

Sorting and sorting-like operations account for
a significant percentage of computer use [12],
with numerous database applications. In addition,
sorting is an important paradigm in the design of
efficient EM algorithms, as shown in [20], where
several applications can be found. With some
technical qualifications, many problems that can
be solved easily in linear time in internal memory,
such as permuting, list ranking, expression tree
evaluation, and finding connected components in
a sparse graph, require the same number of I/Os
in PDM as does sorting.

Open Problems

Several interesting challenges remain. One diffi-
cult theoretical problem is to prove lower bounds
for permuting and sorting without the indivisibil-
ity assumption. Another question is to determine
the I/O cost for each individual permutation, as
a function of some simple characterization of
the permutation, such as number of inversions.
A continuing goal is to develop optimal EM
algorithms and to translate theoretical gains into
observable improvements in practice.

Many interesting challenges and opportuni-
ties in algorithm design and analysis arise from
new architectures being developed. For example,
Arge et al. [3] propose the parallel external
memory (PEM) model for the design of efficient
algorithms for chip multiprocessors, in which
each processor has a private cache and shares a
larger main memory with the other processors.
The paradigms described earlier form the ba-
sis for efficient algorithms for sorting, selection,
and prefix sums. Further architectures to explore
include other forms of multicore architectures,
networks of workstations, hierarchical storage
devices, disk drives with processing capabilities,
and storage devices based upon microelectrome-
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chanical systems (MEMS). Active (or intelligent)
disks, in which disk drives have some processing
capability and can filter information sent to the
host, have been proposed to further reduce the
I/O bottleneck, especially in large database ap-
plications. MEMS-based nonvolatile storage has
the potential to serve as an intermediate level
in the memory hierarchy between DRAM and
disks. It could ultimately provide better latency
and bandwidth than disks, at less cost per bit than
DRAM.

URL to Code

Two systems for developing external memory
algorithms are TPIE and STXXL, which can
be downloaded from http://www.madalgo.
au.dk/tpie/ and http://stxxl.sourceforge.net/,
respectively. Both systems include subroutines
for sorting and permuting and facilitate
development of more advanced algorithms.
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Problem Definition

Facility location problems concern situations
where a planner needs to determine the location
of facilities intended to serve a given set of
clients. The objective is usually to minimize
the sum of the cost of opening the facilities and
the cost of serving the clients by the facilities,
subject to various constraints, such as the number
and the type of clients a facility can serve. There
are many variants of the facility location problem,

depending on the structure of the cost function
and the constraints imposed on the solution.
Early references on facility location problems
include Kuehn and Hamburger [35], Balinski and
Wolfe [8], Manne [40], and Balinski [7]. Review
works include Krarup and Pruzan [34] and
Mirchandani and Francis [42]. It is interesting to
notice that the algorithm that is probably one of
the most effective ones to solve the uncapacitated
facility location problem to optimality is the
primal-dual algorithm combined with branch-
and-bound due to Erlenkotter [16] dating back
to 1978. His primal-dual scheme is similar to
techniques used in the modern literature on
approximation algorithms.

More recently, extensive research into approx-
imation algorithms for facility location problems
has been carried out. Review articles on this
topic include Shmoys [49, 50] and Vygen [55].
Besides its theoretical and practical importance,
facility location problems provide a showcase of
common techniques in the field of approximation
algorithms, as many of these techniques such as
linear programming rounding, primal-dual meth-
ods, and local search have been applied suc-
cessfully to this family of problems. This entry
defines several facility location problems, gives
a few historical pointers, and lists approxima-
tion algorithms with an emphasis on the results
derived in the paper by Shmoys, Tardos, and
Aardal [51]. The techniques applied to the un-
capacitated facility location (UFL) problem are
discussed in some more detail.
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In the UFL problem, a set F of nf facili-
ties and a set C of nc clients (also known as
cities, or demand points) are given. For every
facility i 2 F , the facility opening cost is equal
to fi. Furthermore, for every facility i 2 F and
client j 2 C, there is a connection cost cij. The
objective is to open a subset of the facilities
and connect each client to an open facility so
that the total cost is minimized. Notice that once
the set of open facilities is specified, it is opti-
mal to connect each client to the open facility
that yields smallest connection cost. Therefore,
the objective is to find a set S � F that min-
imizes

P
i2S fi C

P
j 2C mini2Sfcij g. This def-

inition and the definitions of other variants of
the facility location problem in this entry assume
unit demand at each client. It is straightforward
to generalize these definitions to the case where
each client has a given demand. The UFL prob-
lem can be formulated as the following integer
program due to Balinski [7]. Let yi ; i 2 F be
equal to 1 if facility i is open, and equal to 0
otherwise. Let xij ; i 2 F ; j 2 C be the fraction
of client j assigned to facility i.

min
X

i2F
fi yi C

X

i2F

X

j 2C
cij xij (1)

subject to
X

i2F
xij D 1; for all j 2 C; (2)

xij � yi � 0; for all i 2 F ; j 2 C (3)

x � 0; y 2 f0; 1gnf (4)

In the linear programming (LP) relaxation of
UFL the constraint y 2 f0; 1gnf is substituted
by the constraint y 2 Œ0; 1�nf . Notice that in
the uncapacitated case, it is not necessary to
require xij 2 f0; 1g; i 2 F ; j 2 C if each client
has to be serviced by precisely one facility, as
0 � xij � 1 by constraints (2) and (4). Moreover,
if xij is not integer, then it is always possible
to create an integer solution with the same cost
by assigning client j completely to one of the
facilities currently servicing j.

A ”-approximation algorithm is a polynomial
algorithm that, in case of minimization, is guar-

anteed to produce a feasible solution having value
at most �´�, where ´� is the value of an optimal
solution, and � � 1. If � D 1 the algorithm pro-
duces an optimal solution. In case of maximiza-
tion, the algorithm produces a solution having
value at least �´�, where 0 � � � 1.

Hochbaum [25] developed an O.log n/-
approximation algorithm for UFL. By a straight-
forward reduction from the Set Cover problem,
it can be shown that this cannot be improved
unless NP � DTIMEŒnO.log log n/� due
to a result by Feige [17]. However, if the
connection costs are restricted to come from
distances in a metric space, namely cij D cj i � 0

for all i 2 F ; j 2 C (nonnegativity and
symmetry) and cij C cj i 0 C ci 0j 0 � cij 0 for
all i; i 0 2 F ; j; j 0 2 C (triangle inequality),
then constant approximation guarantees can
be obtained. In all results mentioned below,
except for the maximization objectives, it is
assumed that the costs satisfy these restrictions.
If the distances between facilities and clients
are Euclidean, then for some location problems
approximation schemes have been obtained [5].

Variants and Related Problems
A variant of the uncapacitated facility location
problem is obtained by considering the objective
coefficients cij as the per unit profit of servicing
client j from facility i. The maximization version
of UFL, max-UFL is obtained by maximizing
the profit minus the facility opening cost, i.e.,
max

P
i2F

P
j 2C cij xij �

P
i2F fi yi . This vari-

ant was introduced by Cornuéjols, Fisher, and
Nemhauser [15].

In the k-median problem the facility opening
cost is removed from the objective function (1)
to obtain min

P
i2M

P
j 2N cij xij , and the con-

straint that no more than k facilities may be
opened,

P
i2M yi � k, is added. In the k-center

problem the constraint
P

i2M yi � k is again
included, and the objective function here is to
minimize the maximum distance used on a link
between an open facility and a client.

In the capacitated facility location problem
a capacity constraint

P
j 2C xij � ui yi is added

for all i 2 F . Here it is important to distin-
guish between the splittable and the unsplittable
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case, and also between hard capacities and soft
capacities. In the splittable case one has x � 0,
allowing for a client to be serviced by multiple
depots, and in the unsplittable case one requires
x 2 f0; 1gnf �nc . If each facility can be opened
at most once (i.e., yi 2 f0; 1g), the capacities
are called hard; otherwise, if the problem allows
a facility i to be opened any number r of times to
serve rui clients, the capacities are called soft.

In the k-level facility location problem, the
following are given: a set C of clients, k disjoint
sets F1; : : : ;Fk of facilities, an opening cost
for each facility, and connection costs between
clients and facilities. The goal is to connect each
client j through a path i1, : : : ,ik of open facili-
ties, with i` 2 F`. The connection cost for this
client is cj i1 C ci1i2 C � � � C cik�1ik . The goal is
to minimize the sum of connection costs and
facility opening costs.

The problems mentioned above have all been
considered by Shmoys, Tardos, and Aardal [51],
with the exceptions of max-UFL, and the k-center
and k-median problems. The max-UFL variant
is included for historical reasons, and k-center
and k-median are included since they have a rich
history and since they are closely related to UFL.
Results on the capacitated facility location prob-
lem with hard capacities are mentioned as this,
at least from the application point of view, is
a more realistic model than the soft capacity
version, which was treated in [51]. For k-level
facility location, Shmoys et al. considered the
case k D 2. Here, the problem for general k is
considered.

There are many other variants of the facility
location problem that are not discussed here.
Examples include K-facility location [33],
universal facility location [24, 38], online
facility location [3, 18, 41], fault tolerant
facility location [28, 30, 54], facility location
with outliers [12, 28], multicommodity facility
location [48], priority facility location [37,
48], facility location with hierarchical facility
costs [52], stochastic facility location [23,
37, 46], connected facility location [53], load-
balanced facility location [22, 32, 37], concave-
cost facility location [24], and capacitated-cable
facility location [37, 47].

Key Results

Many algorithms have been proposed for location
problems. To begin with, a brief description of the
algorithms of Shmoys, Tardos, and Aardal [51]
is given. Then, a quick overview of some key
results is presented. Some of the algorithms giv-
ing the best values of the approximation guar-
antee ” are based on solving the LP-relaxation
by a polynomial algorithm, which can actually
be quite time consuming, whereas some authors
have suggested fast combinatorial algorithms for
facility location problems with less competitive
”-values. Due to space restrictions the focus of
this entry is on the algorithms that yield the best
approximation guarantees. For more references
the survey papers by Shmoys [49, 50] and by
Vygen [55] are recommended.

The Algorithms of Shmoys, Tardos,
and Aardal
First the algorithm for UFL is described, and then
the results that can be obtained by adaptations of
the algorithm to other problems are mentioned.

The algorithm solves the LP relaxation and
then, in two stages, modifies the obtained frac-
tional solution. The first stage is called filtering
and it is designed to bound the connection cost
of each client to the most distant facility fraction-
ally serving him. To do so, the facility opening
variables yi are scaled up by a constant and then
the connection variables xij are adjusted to use the
closest possible facilities.

To describe the second stage, the notion
of clustering, formalized later by Chudak and
Shmoys [13] is used. Based on the fractional
solution, the instance is cut into pieces called
clusters. Each cluster has a distinct client called
the cluster center. This is done by iteratively
choosing a client, not covered by the previous
clusters, as the next cluster center, and adding
to this cluster the facilities that serve the cluster
center in the fractional solution, along with other
clients served by these facilities. This construc-
tion of clusters guarantees that the facilities in
each cluster are open to a total extent of one,
and therefore after opening the facility with the
smallest opening cost in each cluster, the total
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facility opening cost that is paid does not exceed
the facility opening cost of the fractional solution.
Moreover, by choosing clients for the cluster
centers in a greedy fashion, the algorithm makes
each cluster center the minimizer of a certain
cost function among the clients in the cluster. The
remaining clients in the cluster are also connected
to the opened facility. The triangle inequality for
connection costs is now used to bound the cost
of this connection. For UFL, this filtering and
rounding algorithm is a 4-approximation algo-
rithm. Shmoys et al. also show that if the filtering
step is substituted by randomized filtering, an
approximation guarantee of 3.16 is obtained.

In the same paper, adaptations of the algo-
rithm, with and without randomized filtering, was
made to yield approximation algorithms for the
soft-capacitated facility location problem, and
for the 2-level uncapacitated problem. Here, the
results obtained using randomized filtering are
discussed.

For the problem with soft capacities two
versions of the problem were considered. Both
have equal capacities, i.e., ui D u for all i 2 F .
In the first version, a solution is “feasible” if
the y-variables either take value 0, or a value
between 1 and � 0 � 1. Note that � 0 is not required
to be integer, so the constructed solution is
not necessarily integer. This can be interpreted
as allowing for each facility i to expand to
have capacity � 0u at a cost of � 0fi . A .�; � 0/-
approximation algorithm is a polynomial
algorithm that produces such a feasible solution
having a total cost within a factor of ” of the true
optimal cost, i.e., with y 2 f0; 1gnf . Shmoys
et al. developed a .5:69; 4:24/-approximation
algorithm for the splittable case of this problem,
and a .7:62; 4:29/-approximation algorithm for
the unsplittable case.

In the second soft-capacitated model, the
original problem is changed to allow for the
y-variables to take nonnegative integer values,
which can be interpreted as allowing multiple
facilities of capacity u to be opened at each
location. The approximation algorithms in
this case produces a solution that is feasible
with respect to this modified model. It is easy
to show that the approximation guarantees

obtained for the previous model also hold
in this case, i.e., Shmoys et al. obtained
a 5.69-approximation algorithm for splittable
demands and a 7.62-approximation algorithm for
unsplittable demands. This latter model is the
one considered in most later papers, so this is the
model that is referred to in the paragraph on soft
capacity results below.

UFL
The first algorithm with constant performance
guarantee was the 3.16-approximation algorithm
by Shmoys, Tardos, and Aardal, see above. Since
then numerous improvements have been made.
Guha and Khuller [19, 20] proved a lower bound
on approximability of 1.463, and introduced
a greedy augmentation procedure. A series of
approximation algorithms based on LP-rounding
was then developed (see e.g., [10, 13]). There
are also greedy algorithms that only use the LP-
relaxation implicitly to obtain a lower bound
for a primal-dual analysis. An example is the
JMS 1.61-approximation algorithm developed by
Jain, Mahdian, and Saberi [29]. Some algorithms
combine several techniques, like the 1.52-
approximation algorithm of Mahdian, Ye, and
Zhang [39], which uses the JMS algorithm and
the greedy augmentation procedure. Currently,
the best known approximation guarantee is
1.5 reported by Byrka [10]. It is obtained by
combining a randomized LP-rounding algorithm
with the greedy JMS algorithm.

max-UFL
The first constant factor approximation algorithm
was derived in 1977 by Cornuéjols et al. [15]
for max-UFL. They showed that opening one
facility at a time in a greedy fashion, choosing the
facility to open as the one with highest marginal
profit, until no facility with positive marginal
profit can be found, yields a .1 � 1=e/ � 0:632-
approximation algorithm. The current best ap-
proximation factor is 0.828 by Ageev and Sviri-
denko [2].

k-Median, k-Center
The first constant factor approximation algorithm
for the k-median problem is due to Charikar,
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Guha, Tardos, and Shmoys [11]. This LP-
rounding algorithm has the approximation ratio
of 6 2

3
. The currently best known approximation

ratio is 3C � achieved by a local search heuristic
of Arya, et al. [6] (see also a separate entry k-
median and Facility Location).

The first constant factor approximation
algorithm for the k-center problem was given
by Hochbaum and Shmoys [26], who developed
a 2-approximation algorithm. This performance
guarantee is the best possible unless P D NP .

Capacitated Facility Location
For the soft-capacitated problem with equal ca-
pacities, the first constant factor approximation
algorithms are due to Shmoys et al. [51] for
both the splittable and unsplittable demand cases,
see above. Recently, a 2-approximation algorithm
for the soft capacitated facility location problem
with unsplittable unit demands was proposed by
Mahdian et al. [39]. The integrality gap of the LP
relaxation for the problem is also 2. Hence, to
improve the approximation guarantee one would
have to develop a better lower bound on the
optimal solution.

In the hard capacities version it is important
to allow for splitting the demands, as otherwise
even the feasibility problem becomes difficult.
Suppose demands are splittable, then we may
to distinguish between the equal capacity case,
where ui D u for all i 2 F , and the general case.
For the problem with equal capacities, a 5.83-
approximation algorithm was given by Chudak
and Wiliamson [14]. The first constant factor
approximation algorithm, with � D 8:53C �, for
general capacities was given by Pál, Tardos,
and Wexler [44]. This was later improved
by Zhang, Chen, and Ye [57] who obtained
a 5.83-approximation algorithm also for general
capacities.

k-Level Problem
The first constant factor approximation algorithm
for k D 2 is due to Shmoys et al. [51], with
� D 3:16. For general k, the first algorithm, hav-
ing � D 3, was proposed by Aardal, Chudak, and
Shmoys [1]. For k D 2, Zhang [56] developed
a 1.77-approximation algorithm. He also showed

that the problem for k D 3 and k D 4 can be
approximated by � D 2:523 (This value of ”

deviates slightly from the value 2.51 given in the
paper. The original argument contained a minor
calculation error.) and � D 2:81 respectively.

Applications

Facility location has numerous applications in the
field of operations research. See the book edited
by Mirchandani and Francis [42] or the book by
Nemhauser and Wolsey [43] for a survey and
a description of applications of facility location
in problems such as plant location and locating
bank accounts. Recently, the problem has found
new applications in network design problems
such as placement of routers and caches [22,
36], agglomeration of traffic or data [4, 21], and
web server replications in a content distribution
network [31, 45].

Open Problems

A major open question is to determine the exact
approximability threshold of UFL and close the
gap between the upper bound of 1.5 [10] and the
lower bound of 1.463 [20]. Another important
question is to find better approximation algo-
rithms for k-median. In particular, it would be
interesting to find an LP-based 2-approximation
algorithm for k-median. Such an algorithm would
determine the integrality gap of the natural LP
relaxation of this problem, as there are simple
examples that show that this gap is at least 2.

Experimental Results

Jain et al. [28] published experimental results
comparing various primal-dual algorithms.
A more comprehensive experimental study of
several primal-dual, local search, and heuristic
algorithms is performed by Hoefer [27].
A collection of data sets for UFL and several
other location problems can be found in the OR-
library maintained by Beasley [9].



722 Facility Location

Cross-References

�Assignment Problem
�Bin Packing (hardness of Capacitated Facility

Location with unsplittable demands)
�Circuit Placement
�Greedy Set-Cover Algorithms (hardness of

a variant of UFL, where facilities may be built
at all locations with the same cost)

�Local Approximation of Covering and Packing
Problems

�Local Search for K-medians and Facility Loca-
tion
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Problem Definition

A distributed system is comprised of a collection
of processes. The processes typically seek to
achieve some common task by communicating
through message passing or shared memory.
Most interesting tasks require, at least at
certain points of the computation, some form of
agreement between the processes. An abstract
form of such agreement is consensus where
processes need to agree on a single value among

a set of proposed values. Solving this seemingly
elementary problem is at the heart of reliable
distributed computing and, in particular, of
distributed database commitment, total ordering
of messages, and emulations of many shared
object types.

Fischer, Lynch, and Paterson’s seminal result
in the theory of distributed computing [13] says
that consensus cannot be deterministically solved
in an asynchronous distributed system that is
prone to process failures. This impossibility holds
consequently for all distributed computing prob-
lems which themselves rely on consensus.

Failures and asynchrony are fundamental in-
gredients in the consensus impossibility. The im-
possibility holds even if only one process fails,
and it does so only by crashing, i.e., stopping
its activities. Tolerating crashes is the least one
would expect from a distributed system for the
goal of distribution is in general to avoid single
points of failures in centralized architectures.
Usually, actual distributed applications exhibit
more severe failures where processes could devi-
ate arbitrarily from the protocol assigned to them.

Asynchrony refers to the absence of assump-
tions on process speeds and communication de-
lays. This absence prevents any process from
distinguishing a crashed process from a correct
one and this inability is precisely what leads
to the consensus impossibility. In practice, how-
ever, distributed systems are not completely asyn-
chronous: some timing assumptions can typically
be made. In the best case, if precise lower and
upper bounds on communication delays and pro-
cess speeds are assumed, then it is easy to show
that consensus and related impossibilities can be
circumvented despite the crash of any number of
processes [20].

Intuitively, the way that such timing assump-
tions circumvent asynchronous impossibilities
is by providing processes with information
about failures, typically through time-out (or
heart-beat) mechanisms, usually underlying
actual distributed applications. Whereas certain
information about failures can indeed be obtained
in distributed systems, the accuracy of such
information might vary from a system to another,
depending on the underlying network, the load
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of the application, and the mechanisms used to
detect failures. A crucial problem in this context
is to characterize such information, in an abstract
and precise way.

Key Results

The Failure Detector Abstraction
Chandra and Toueg [5] defined the failure de-
tector abstraction as a simple way to capture
failure information that is needed to circumvent
asynchronous impossibilities, in particular the
consensus impossibility. The model considered
in [5] is a message passing one where processes
can fail by crashing. Processes that crash stop
their activities and do not recover. Processes that
do not crash are said to be correct. At least
one process is supposed to be correct in every
execution of the system.

Roughly speaking, a failure detector is an
oracle that provides processes with information
about failures. The oracle is accessed in each
computation step of a process and it provides
the process with a value conveying some failure
information. The value is picked from some set
of values, called the range of the failure de-
tector. For instance, the range could be the set
of subsets of processes in the system, and each
subset could depict the set of processes detected
to have crashed, or considered to be correct.
This would correspond to the situation where the
failure detector is implemented using a time-out:
every process q that does not communicate within
some time period with some process p, would
be included in subset of processes suspected of
having crashed by p.

More specifically, a failure detector is a func-
tion, D, that associates to each failure pattern, F,
a set of failure detector histories fHig D D.F /.
Both the failure pattern and the failure detector
history are themselves functions.

• A failure pattern F is a function that associates
to each time t, the set of processes F(t) that
have indeed crashed by time t. This notion
assumes the existence of a global clock, out-
side the control of the processes, as well as

a specific concept of crash event associated
with time. A set of failure pattern is called an
environment.

• A failure detector history H is also a function,
which associates to each process p and time t,
some value v from the range of failure detector
values. (The range of a failure detector D is
denoted RD.) This value v is said to be output
by the failure detector D at process p and
time t.

Two observations are in order.

• By construction, the output of a failure de-
tector does not depend on the computation,
i.e., on the actual steps performed by the pro-
cesses, on their algorithm or the input of such
algorithm. The output of the failure detector
depends solely on the failure pattern, namely
on whether and when processes crashed.

• A failure detector might associate several
histories to each failure pattern. Each history
represents a suite of possible combinations
of outputs for the same given failure pattern.
This captures the inherent non-determinism
of a failure detection mechanism. Such
a mechanism is typically itself implemented
as a distributed algorithm and the variations in
communication delays for instance could lead
the same mechanism to output (even slightly)
different information for the same failure
pattern.

To illustrate these concepts, consider two classi-
cal examples of failure detectors.

1. The perfect failure detector outputs a subset
of processes, i.e., the range of the failure
detector is the set of subsets of processes in the
system. When a process q is output at some
time t at a process p, then q is said to be
detected (of having crashed) by p. The perfect
failure detector guarantees the two following
properties:

• Every process that crashes is eventually
permanently detected;

• No correct process is ever detected.
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2. The eventually strong failure detector outputs
a subset of processes: when a process q is
output at some time t at a process p, then q is
said to be suspected (of having crashed) by p.
An eventually strong failure detector ensures
the two following properties:
• Every process that crashes is eventually

suspected;
• Eventually, some correct process is never

suspected.

The perfect failure detector is reliable: if a pro-
cess q is detected, then q has crashed. An even-
tually strong failure detector is unreliable: there
never is any guarantee that the information that is
output is accurate. The use of the term suspected
conveys that idea. The distinction between un-
reliability and reliability was precisely captured
in [14] for the general context where the range of
the failure detector can be arbitrary.

Consensus Algorithms
Two important results were established in [5].

Theorem 1 (Chandra-Toueg [5]) There is an
algorithm that solves consensus with a perfect
failure detector.

The theorem above implicitly says that if the
distributed system provides means to implement
perfect failure detection, then the consensus im-
possibility can be circumvented, even if all but
one process crashes. In fact, the result holds for
any failure pattern, i.e., in any environment.

The second theorem below relates the exis-
tence of a consensus algorithm to a resilience
assumption. More specifically, the theorem holds
in the majority environment, which is the set
of failure patterns where more than half of the
processes are correct.

Theorem 2 (Chandra-Toueg [5]) There is an
algorithm that implements consensus with an
eventually strong failure detector in the majority
environment.

The algorithm underlying the result above is sim-
ilar to eventually synchronous consensus algo-
rithms [10] and share also some similarities with
the Paxos algorithm [18]. It is shown in [5] that

no algorithm using solely the eventually strong
failure detector can solve consensus without the
majority assumption. (This result is generalized
to any unreliable failure detector in [14].) This
resilience lower bound is intuitively due to the
possibility of partitions in a message passing
system where at least half of the processes can
crash and failure detection is unreliable. In shared
memory for example, no such possibility exists
and consensus can be solved with the eventually
strong failure [19].

Failure Detector Reductions
Failure detectors can be compared. A failure
detector D2 is said to be weaker than a failure
detector D1 if there is an asynchronous algorithm,
called a reduction algorithm, which, using D1,
can emulate D2. Three remarks are important
here.

• The fact that the reduction algorithm is asyn-
chronous means that it does not use any other
source of failure information, besides D1.

• Emulating failure detector D2 means imple-
menting a distributed variable that mimics the
output that could be provided by D2.

• The existence of a reduction algorithm
depends on environment. Hence, strictly
speaking, the fact that a failure detector is
weaker than another one depends on the
environment under consideration.

If failure detector D1 is weaker than D2, and vice
et versa, then D1 and D2 are said to be equivalent.
Else, if D1 is weaker than D2 and D2 is not weaker
than D1, then D1 is said to be strictly weaker
than D2. Again, strictly speaking, these notions
depend on the considered environment.

The ability to compare failure detectors help
define a notion of weakest failure detector to
solve a problem. Basically, a failure detector D
is the weakest to solve a problem P if the two
following properties are satisfied:

• There is an algorithm that solves P using D.
• If there is an algorithm that solves P using

some failure detector D0, then D is weaker
than D0.
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Theorem 3 (Chandra-Hadzilacos-Toueg [4])
The eventually strong failure detector is the weak-
est to solve consensus in the majority environ-
ment.

The weakest failure detector to implement con-
sensus in any environment was later established
in [8].

Applications

A Practical Perspective
The identification of the failure detector concept
had an impact on the design of reliable distributed
architectures. Basically, a failure detector can be
viewed as a first class service of a distributed
system, at the same level as a name service or
a file service. Time-out and heartbeat mecha-
nisms can thus be hidden under the failure detec-
tor abstraction, which can then export a unified
interface to higher level applications, including
consensus and state machine replication algo-
rithms [2, 11, 21].

Maybe more importantly, a failure detector
service can encapsulate synchrony assumptions:
these can be changed without impact on the
rest of the applications. Minimal synchrony
assumptions to devise specific failure detectors
could be explored leading to interesting
theoretical results [1, 7, 12].

A Theoretical Perspective
A second application of the failure detector
concept is a theory of distributed computability.
Failure detectors enable to classify problems.
A problem A is harder (resp. strictly harder)
than problem B if the weakest failure detector
to solve B is weaker (resp. strictly weaker) than
the weakest failure detector to solve A. (This
notion is of course parametrized by a specific
environment.)

Maybe surprisingly, the induced failure
detection reduction between problems does not
exactly match the classical black-box reduction
notion. For instance, it is well known that there
is no asynchronous distributed algorithm that can
use a Queue abstraction to implement a Compare-

Swap abstraction in a system of n > 2 processes
where n � 1 can fail by crashing [15]. In this
sense, a Compare-Swap abstraction is strictly
more powerful (in a black-box sense) than
a Queue abstraction. It turns out that:

Theorem 4 (Delporte-Fauconnier-Guerraoui
[9]) The weakest failure detector to solve the
Queue problem is also the weakest to solve the
Compare-Swap problem in a system of n > 2

processes where n � 1 can fail by crashing.

In a sense, this theorem indicates that reducibility
as induced by the failure detector notion is differ-
ent from the traditional black-box reduction.

Open Problems

Several issues underlying the failure detector
notion are still open. One such issue consists
in identifying the weakest failure detector to
solve the seminal set-agreement problem [6]:
a decision task where processes need to agree
on up to k values, instead of a single value
as in consensus. Three independent groups of
researchers [3, 16, 22] proved the impossibility
of solving this problem in an asynchronous
system with k failures, generalizing the consensus
impossibility [13]. Determining the weakest
failure detector to circumvent this impossibility
would clearly help understand the fundamentals
of failure detection reducibility.

Another interesting research direction is to
relate the complexity of distributed algorithm
with the underlying failure detector [17]. Clearly,
failure detectors circumvents asynchronous
impossibilities, but to what extend do they
boost the complexity of distributed algorithms?
One would of course expect the complexity of
a solution to a problem to be higher if the failure
detector is weaker. But to what extend?
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Problem Definition

In Internet auctions, it is easy for a bidder to sub-
mit multiple bids under multiple identifiers (e.g.,
multiple e-mail addresses). If only one item/good
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is sold, a bidder cannot make any additional profit
by using multiple bids. However, in combinato-
rial auctions, where multiple items/goods are sold
simultaneously, submitting multiple bids under
fictitious names can be profitable. A bid made
under a fictitious name is called a false-name bid.

Here, use the same model as the GVA section.
In addition, false-name bids are modeled as
follows.

• Each bidder can use multiple identifiers.
• Each identifier is unique and cannot be imper-

sonated.
• Nobody (except the owner) knows whether

two identifiers belongs to the same bidder or
not.

The goal is to design a false-name-proof protocol,
i.e., a protocol in which using false-names is use-
less, thus bidders voluntarily refrain from using
false-names.

The problems resulting from collusion have
been discussed by many researchers. Compared
with collusion, a false-name bid is easier to ex-
ecute on the Internet since obtaining additional
identifiers, such as another e-mail address, is
cheap. False-name bids can be considered as
a very restricted subclass of collusion.

Key Results

The Generalized Vickrey Auction (GVA) proto-
col is (dominant strategy) incentive compatible,
i.e., for each bidder, truth-telling is a dominant
strategy (a best strategy regardless of the action of
other bidders) if there exists no false-name bids.
However, when false-name bids are possible,
truth-telling is no longer a dominant strategy, i.e.,
the GVA is not false-name-proof.

Here is an example, which is identical to
Example 1 in the GVA section.

Example 1 Assume there are two goods a and b,
and three bidders, bidder 1, 2, and 3, whose types
are ™1, ™2, and ™3, respectively. The evaluation
value for a bundle v.B; �i / is determined as
follows.

fag fbg fa; bg

�1 $6 $0 $6
�2 $0 $0 $8
�3 $0 $5 $5

As shown in the GVA section, good a is allocated
to bidder 1, and b is allocated to bidder 3. Bid-
der 1 pays $3 and bidder 3 pays $2.

Now consider another example.

Example 2 Assume there are only two bidders,
bidder 1 and 2, whose types are ™1 and ™2,
respectively. The evaluation value for a bundle
v.B; �i / is determined as follows.

fag fbg fa; bg

�1 $6 $5 $11
�2 $0 $0 $8

In this case, the bidder 1 can obtains both goods,
but he/she requires to pay $8, since if bidder 1
does not participate, the social surplus would
have been $8. When bidder 1 does participate,
bidder 1 takes everything and the social surplus
except bidder 1 becomes 0. Thus, bidder 1 needs
to pay the decreased amount of the social surplus,
i.e., $8.

However, bidder 1 can use another identifier,
namely, bidder 3 and creates a situation identical
to Example 1. Then, good a is allocated to bid-
der 1, and b is allocated to bidder 3. Bidder 1 pays
$3 and bidder 3 pays $2. Since bidder 3 is a false-
name of bidder 1, bidder 1 can obtain both goods
by paying $3 C $2 D $5. Thus, using a false-
name is profitable for bidder 1.

The effects of false-name bids on combinato-
rial auctions are analyzed in [4]. The obtained
results can be summarized as follows.

• As shown in the above example, the GVA
protocol is not false-name-proof.

• There exists no false-name-proof combinato-
rial auction protocol that satisfies Pareto effi-
ciency.

• If a surplus function of bidders satisfies a con-
dition called concavity, then the GVA is guar-
anteed to be false-name-proof.
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Also, a series of protocols that are false-name-
proof in various settings have been developed:
combinatorial auction protocols [2, 3], multi-
unit auction protocols [1], and double auction
protocols [5].

Furthermore, in [2], a distinctive class of
combinatorial auction protocols called a Price-
oriented, Rationing-free (PORF) protocol is
identified. The description of a PORF protocol
can be used as a guideline for developing
strategy/false-name proof protocols.

The outline of a PORF protocol is as
follows:

1. For each bidder, the price of each bundle of
goods is determined independently of his/her
own declaration, while it depends on the dec-
larations of other bidders. More specifically,
the price of bundle (a set of goods) B for bid-
der i is determined by a function p.B; �X /,
where �X is a set of declared types by other
bidders X.

2. Each bidder is allocated a bundle that maxi-
mizes his/her utility independently of the allo-
cations of other bidders (i.e., rationing-free).
The prices of bundles must be determined so
that allocation feasibility is satisfied, i.e., no
two bidders want the same item.

Although a PORF protocol appears to be quite
different from traditional protocol descriptions,
surprisingly, it is a sufficient and necessary con-
dition for a protocol to be strategy-proof. Further-
more, if a PORF protocol satisfies the following
additional condition, it is guaranteed to be false-
name-proof.

Definition 1 (No Super-Additive price increase
(NSA)) For any subset of bidders S � N

and N 0 D N n S , and for i 2 S , denote Bi as
a bundle that maximizes i’s utility, then

P
i2S

p.Bi ;
S

j 2Snfigf�j g [�N 0/�p.
S

i2S Bi ; �N 0/.

An intuitive description of this condition is that
the price of buying a combination of bundles (the
right side of the inequality) must be smaller than
or equal to the sum of the prices for buying these
bundles separately (the left side). This condition

is also a necessary condition for a protocol to
be false-name-proof, i.e., any false-name-proof
protocol can be described as a PORF protocol that
satisfies the NSA condition.

Here is a simple example of a PORF protocol
that is false-name-proof. This protocol is called
the Max Minimal-Bundle (M-MB) protocol [2].
To simplify the protocol description, a concept
called a minimal bundle is introduced.

Definition 2 (minimal bundle) Bundle B is
called minimal for bidder i, if for all B 0 � B and
B 0 ¤ B , v.B 0; �i / < v.B; �i / holds.

In this new protocol, the price of bundle B for
bidder i is defined as follows:

• p.B; �X / D maxBj �M;j 2X v.Bj ; �j /,
where B \ Bj ¤ ; and Bj is minimal for
bidder j.

How this protocol works using Example 1
is described here. The prices for each bidder is
determined as follows.

fag fbg fa; bg

bidder 1 $8 $8 $8
bidder 2 $6 $5 $6
bidder 3 $8 $8 $8

The minimal bundle for bidder 1 is fag, the
minimal bundle for bidder 2 is fa, bg, and the
minimal bundle for bidder 3 is fbg. The price of
bundle fag for bidder 1 is equal to the largest
evaluation value of conflicting bundles. In this
case, the price is $8, i.e., the evaluation value of
bidder 2 for bundle fa, bg. Similarly, the price of
bidder 2 for bundle fa, bg is 6, i.e., the evaluation
value of bidder 1 for bundle fag. As a result,
bundle fa, bg is allocated to bidder 2.

It is clear that this protocol satisfies the alloca-
tion feasibility. For each good l, choose bidder j*

and bundle B�
j that maximize v.Bj ; �j / where

l 2 Bj and Bj is minimal for bidder j. Then,
only bidder j* is willing to obtain a bundle that
contains good l. For all other bidders, the price of
a bundle that contains l is higher than (or equal
to) his/her evaluation value.
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Furthermore, it is clear that this protocol sat-
isfies the NSA condition. In this pricing scheme,
p.B [ B 0; �X / D max.p.B; �X /; p.B 0; �X //

holds for all B; B 0, and ‚X. Therefore, the fol-
lowing formula holds

p

 
[

i2S

Bi ; �X

!

Dmax
i2S

p.Bi ; �X /�
X

i2S

p.Bi ;�X/:

Furthermore, in this pricing scheme, prices
increase monotonically by adding opponents, i.e.,
for all X 0 	 X , p.B; �X 0/ � p.B; �X / holds.
Therefore, for each i, p.Bi ;

S
j 2Snfigf�j g [

�N 0/ � p.Bi ; �N 0/ holds. Therefore, the
NSA condition, i.e.,

P
i2S p.Bi ;

S
j 2Snfigf�j g[

�N 0/� p.
S

i2S Bi ; �N 0/ holds.

Applications

In Internet auctions, using multiple identifiers
(e.g., multiple e-mail addresses) is quite easy
and identifying each participant on the Internet
is virtually impossible. Combinatorial auctions
have lately attracted considerable attention.
When combinatorial auctions become widely
used in Internet auctions, false-name-bids could
be a serious problem.

Open Problems

It is shown that there exists no false-name-proof
protocol that is Pareto efficient. Thus, it is in-
evitable to give up the efficiency to some extent.
However, the theoretical lower-bound of the ef-
ficieny loss, i.e., the amount of the efficiency
loss that is inevitabe for any false-name-proof
protocol, is not identified yet. Also, the efficiency
loss of existing false-name-proof protocols can
be quite large. More efficient false-name-proof
protocols in various settings are needed.
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Problem Definition

Minimal triangulation is the addition of an inclu-
sion minimal set of edges to an arbitrary undi-
rected graph, such that a chordal graph is ob-
tained. A graph is chordal if every cycle of
length at least 4 contains an edge between two
nonconsecutive vertices of the cycle.

More formally, Let G D .V; E/ be a simple
and undirected graph, where n D jV j and
m D jEj. A graph H D .V; E [ F /, where
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E \ F D ; is a triangulation of G if H is
chordal, and H is a minimal triangulation if there
exists no F 0 � F , such that H 0 D .V; E [ F 0/

is chordal. Edges in F are called fill edges,
and a triangulation is minimal if and only if
the removal of any single fill edge results in
a chordless four cycle [10].

Since minimal triangulations were first de-
scribed in the mid-1970s, a variety of algorithms
have been published. A complete overview of
these along with different characterizations of
chordal graphs and minimal triangulations can
be found in the survey of Heggernes et al. [5]
on minimal triangulations. Minimal triangulation
algorithms can roughly be partitioned into algo-
rithms that obtain the triangulation through elim-
ination orderings, and those that obtain it through
vertex separators. Most of these algorithms have
an O(nm) running time, which becomes O(n3) for
dense graphs. Among those that use elimination
orderings, Kratsch and Spinrad’s O.n2:69/-time
algorithm [8] is currently the fastest one. The
fastest algorithm is an o.n2:376/-time algorithm
by Heggernes et al. [5]. This algorithm is based
on vertex separators, and will be discussed further
in the next section. Both the algorithm of Kratsch
and Spinrad [8] and the algorithm of Heggernes
et al. [5] use the matrix multiplication algorithm
of Coppersmith and Winograd [3] to obtain an
o.n3/-time algorithm.

Key Results

For a vertex set A � V , the subgraph of
G induced by A is GŒA� D .A; W /, where
uv 2 W if u; v 2 A and uv 2 Eg/. The closed
neighborhood of A is N ŒA� D U , where
u; v 2 U for every uv 2 E; where u 2 Ag

and N.A/ D N ŒA� n A. A is called a clique if
GŒA� is a complete graph. A vertex set S � V is
called a separator if GŒV n S� is disconnected,
and S is called a minimal separator if there exists
a pair of vertices a; b 2 V n S such that a, b are
contained in different connected components of
GŒV n S�, and in the same connected component
of GŒV n S 0� for any S 0 � S . A vertex set
˝ � V is a potential maximal clique if there

exists no connected component of GŒV n˝�

that contains � in its neighborhood, and for
every vertex pair u; v 2 ˝, uv is an edge or there
exists a connected component of GŒV n˝� that
contains both u and v in its neighborhood.

From the results in [1, 7], the following
recursive minimal triangulation algorithm is
obtained. Find a vertex set A which is either
a minimal separator or a potential maximal
clique. Complete GŒA� into a clique. Recursively
for each connected component C of GŒV n A�

where GŒN ŒC �� is not a clique, find a minimal
triangulation of GŒN ŒC ��. An important property
here is that the set of connected components
of GŒV n A� defines independent minimal
triangulation problems.

The recursive algorithm just described defines
a tree, where the given input graph G is the
root node, and where each connected component
of GŒV n A� becomes a child of the root node
defined by G. Now continue recursively for each
of the subproblems defined by these connected
components. A node H which is actually a sub-
problem of the algorithm is defined to be at level
i, if the distance from H to the root in the tree is
i. Notice that all subproblems at the same level
can be triangulated independently. Let k be the
number of levels. If this recursive algorithm can
be completed for every subgraph at each level
in O.f .n// time, then this trivially provides an
O.f .n/ � k/-time algorithm.

The algorithm in Fig. 1 uses queues to
obtain this level-by-level approach, and matrix
multiplication to complete all the vertex
separators at a given level in O.n˛/ time, where
˛ < 2:376 [3]. In contrast to the previously
described recursive algorithm, the algorithm in
Fig. 1 uses a partitioning subroutine that either
returns a set of minimal separators or a potential
maximal clique.

Even though all subproblems at the same level
can be solved independently they may share ver-
tices and edges, but no nonedges (i.e., pair of
vertices that are not adjacent). Since triangulation
involves edge addition, the number of nonedges
will decrease for each level, and the sum of
nonedges for all subproblems at the same level
will never exceed n2. The partitioning algorithm
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Algorithm  FMT - Fast Minimal Triangulation
Input: An arbitrary graph G = (V,E).
Output: A minimal triangulation G  of G.

Let Q1 , Q2 and Q3 be empty queues; Insert G into Q1 ; G = G;
repeat

Construct a zero matrix M with a row for each vertex in V (columns are added later);
while Q1 is nonempty do

Pop a graph H = ( U , D) from Q1 ;
Call Algorithm Partition( H) which returns a vertex subset A ⊂ U ;
Push vertex set A onto Q3;
for each connected component C of H[U A] do

Add a column in M such that M( v , C) = 1 for all vertices v NH ( C) ;
if there exists a non-edge uv in H[ NH[C]] with u C then

Push HC = ( NH [C] , DC ) onto Q2 , where uv DC if u C and uv D;
Compute MM T ;
Add to G the edges indicated by the nonzero elements of MM T ;
while Q3 is nonempty do

Pop a vertex set A from Q3;
if G [ A] is not complete then Push G [ A] onto Q2 ;

Swap names of Q1 and Q2;
until Q1 is empty

Fast Minimal Triangulation, Fig. 1 Fast minimal triangulation algorithm

in Fig. 2 exploits this fact and has an O.n2 �m/

running time, which sums up to O.n2/ for each
level. Thus, each level in the fast minimal trian-
gulation algorithm given in Fig. 1 can be com-
pleted in O.n2 C n˛/ time, where O.n˛/ is the
time needed to compute MMT. The partitioning
algorithm in Fig. 2 actually finds a set A that
defines a set of minimal separators, such that
no subproblem contains more than four fifths of
the nonedges in the input graph. As a result, the
number of levels in the fast minimal triangulation
algorithm is at most log4=5.n2/ D 2 log4=5.n/,
and the running time O.n˛ log n/ is obtained.

Applications

The first minimal triangulation algorithms were
motivated by the need to find good pivotal
orderings for Gaussian elimination. Finding
an optimal ordering is equivalent to solving
the minimum triangulation problem, which

is a nondeterministic polynomial-time hard
problem. Since any minimum triangulation
is also a minimal triangulation, and minimal
triangulations can be found in polynomial time,
then the set of minimal triangulations can be
a good place to search for a pivotal ordering.

Probably because of the desired goal, the
first minimal triangulation algorithms were
based on orderings, and produced an ordering
called a minimal elimination ordering. The
problem of computing a minimal triangulation
has received increasing attention since then, and
several new applications and characterizations
related to the vertex separator properties have
been published. Two of the new applications
are computing the tree-width of a graph, and
reconstructing evolutionary history through
phylogenetic trees [6]. The new separator-
based characterizations of minimal triangulations
have increased the knowledge of minimal
triangulations [1, 7, 9]. One result based on these
characterizations is an algorithm that computes
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Algorithm Partition
Input: A graph H = (U, D) (a subproblem popped from Q1).
Output: A subset A of U such that either A = N [K ] for some connected H[K ]

or A is a potential maximal clique of H (and G ).

Part I: def ining P
Unmark all vertices of H; k = 1;
while there exists an unmarked vertex u do

if e

e

H̄ ( U NH [u])< 2
5 Ē( H then Mark u as an s-vertex (stop vertex);

else
Ck u ; Mark u as a c-vertex (component vertex);
while there exists a vertex v ∈NH [Ck] which is unmarked or marked as an s-vertex do

if H̄ ( U NH[Ck v 2
5 Ē( H then

Ck = Ck v ; Mark v as a c-vertex (component vertex);
else

Mark v as a p-vertex (potential maximal clique vertex); Associate v with Ck;
k = k + 1;

P = the set of all p-vertices and s-vertices;

Part II: def ining A
if H[U P] has a full component C then A = NH [C] ;
else if  there exist two non-adjacent vertices u,v such that u is an s-vertex

and v is an s-vertex or a p-vertex then A = NH  [u];
else if there exist two non-adjacent p-vertices u and v,where u is associated with Ci

and v is associated with C j and u NH ( C j ) and v NH ( Ci ) then A = NH [Ci u ;
else A = P;

Fast Minimal Triangulation, Fig. 2 Partitioning algorithm. Let NE.H/ D W , where uv 2 W if uv 62 D be the set
of nonedges of H. Define E NH .S/ to be the sum of degrees in NH D .U; NE/ of vertices in S � U D V.H/

the tree-width of a graph in polynomial time if the
number of minimal separators is polynomially
bounded [2]. A second application is faster exact
(exponential-time) algorithms for computing the
tree-width of a graph [4].

Open Problems

The algorithm described shows that a minimal tri-
angulation can be found in O..n2 C n˛/ log n/

time, where O.n˛/ is the time required to
preform an n 
 n binary matrix multiplication.
As a result, any improved binary matrix
multiplication algorithm will result in a faster
algorithm for computing a minimal triangulation.
An interesting question is whether or not this

relation goes the other way as well. Does
there exist an O..n2 C nˇ /f .n// algorithm for
binary matrix multiplication, where O.nˇ / is
the time required to find a minimal triangulation
and f .n/ D o.n˛�2/ or at least f .n/ D O.n/.
A possibly simpler and related question
previously asked in [8] is: Is it at least as hard to
compute a minimal triangulation as to determine
whether a graph contains at least one triangle?
A more algorithmic question is if there exists
an O.n2 C n˛/-time algorithm for computing
a minimal triangulation.

Cross-References

�Treewidth of Graphs
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Problem Definition

A basic strategy to solve hard problems by dy-
namic programming is to express the partial so-
lutions using a recurrence over the 2n subsets
of an n-element set U . Our interest here is in
recurrences that have the following structure:

For each subset S � U , in order to obtain the
partial solution at S , we consider all possible ways
to partition S into two disjoint parts, T and S nT ,
with T � S .

Fast subset convolution [1] is a technique to speed
up the evaluation of such recurrences, assuming
the recurrence can be reduced to a suitable alge-
braic form. In more precise terms, let R be an
algebraic ring, such as the integers equipped with
the usual arithmetic operations (addition, nega-
tion, multiplication). We seek a fast solution to:

Problem (Subset Convolution)

INPUT: Two functions f W 2U ! R and g W

2U ! R.
OUTPUT: The function f �g W 2U ! R, defined
for all S � U by

.f � g/.S/ D
X

T �S

f .T /g.S n T /: (1)

Here, we may view the output f � g and the
inputs f and g each as a table with 2n entries,
where each entry is an element of R. If we
evaluate the sum (1) directly for each S � U in
turn, in total we will execute �

�Pn
sD0

�
n
s

�
2s
�
D

�.3n/ arithmetic operations in R to obtain f � g

from f and g.

Key Results

We can considerably improve on the �.3n/ di-
rect evaluation by taking advantage of the ring
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structure of R (i.e., the possibility to form and,
after multiplication, cancel linear combinations
of the entries in f and g):

Theorem 1 (Fast Subset Convolution [1])
There exists an algorithm that solves SUBSET

CONVOLUTION in O.2nn2/ arithmetic opera-
tions in R.

In what follows, we present an algorithm that
proceeds via reduction to the union product and
fast Möbius inversion; an alternative proof is
possible via reduction to the symmetric differ-
ence product and fast Walsh–Hadamard (Fourier)
transforms.

Fast Evaluation via the Union Product
Let us start with a relaxed version of subset
convolution. Namely, instead of partitioning S ,
we split S in all possible ways into a cover .A; B/

with A [ B D S ; this cover need not be disjoint
(i.e., we need not have A \ B D ;) as would
be required by subset convolution. For f and
g as earlier, define the union product (covering
product) f [ g W 2U ! R for all S � U by

.f [ g/.S/ D
X

A;B�U
A[BDS

f .A/g.B/:

The union product diagonalizes into a point-
wise product via a pair of mutually inverse linear
transforms. For a given f W 2U ! R, the
zeta transform f � W 2U ! R is defined for
all S � U by f �.S/ D

P
T �S f .T /, and

its inverse the Möbius transform f	 W 2U !

R is defined for all S � U by f	.S/ D

.�1/jS j
P

T �S .�1/jT jf .T /. Using the zeta and
Möbius transforms to diagonalize into a point-
wise product, the union product can be evalu-
ated as

f [ g D ..f �/ � .g�//	: (2)

We can now reduce subset convolution to a
union product over a polynomial ring with coeffi-
cients in the original ring R. Denote by RŒw� the
univariate polynomial ring with indeterminate w
and coefficients in the ring R. Let f; g W 2U ! R

be the given input to subset convolution. Extend
the input f W 2U ! R to the input fw W

2U ! RŒw� defined for all S � U by fw.S/ D

f .S/wjS j. Extend g similarly to gw. Compute the
union product fw [ gw using (2) over RŒw�. For
all S � U , it now holds that the coefficient of the
monomial wjS j in the polynomial .fw[gw/.S/ is
equal to .f � g/.S/.

To compute (2) fast, we require algorithms
that evaluate zeta and Möbius transforms over
an arbitrary ring in O.2nn/ arithmetic opera-
tions. We proceed via the following recurrence
for j D 1; 2; : : : ; n. Let us assume that U D

f1; 2; : : : ; ng. Let ´0 D f . Suppose ´j �1 W 2
U !

R is available. Then, we compute ´j W 2U ! R

for all S � U by

´j .S/ D

(
´j �1.S/ if j … S I

´j �1.S/C ´j �1.S n fj g/ if j 2 S:

We have f � D ´n. The recurrence carries out
exactly 2n�1n additions in R. To compute the
Möbius transform f	 of a given input f , first
transform the input by negating the values of all
sets that have odd size, then run the previous
recurrence with the transformed input as ´0, and
transform the output ´n by negating the values of
all sets that have odd size. The result is f	.

Remarks The fast algorithm (2) for the union
product (in a dual form that considers intersec-
tions instead of unions) is due to Kennes [9], who
used the algorithm to speed up an implementa-
tion of the Dempster–Shafer theory of evidence.
The fast recurrences for the zeta and Möbius
transforms are special cases of an algorithm of
Yates [12] for multiplying a vector with an iter-
ated Kronecker product; see Knuth [10, §4.6.4].

Extensions and Variations
A number of extensions and variations of the
basic framework are possible [1]. Iterated subset
convolution (union product) enables one to solve
set partitioning and packing (covering) problems.
Assuming the input is sparse, more careful con-
trol over the space usage of the framework can
be obtained by splitting the fast zeta transform
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into two parts [5]. Similarly, the running time
can be controlled by trimming [4] the trans-
forms, for example, to the down-closure (subset-
closure) of the desired outputs and/or the up-
closure (superset-closure) of the supports of the
inputs in 2U . A trimmed complementary dual to
the union product is investigated in [3].

Beyond the subset lattice .2U ;�;[;\/, fast
algorithms are known for the zeta and Möbius
transforms of lattices .L;�;_;^/ with few
join-irreducible elements [6]. This implies fast
analogs of the union product (the join product)
for such lattices.

Applications

Fast subset convolution and its variants are ap-
plied to speed up dynamic programming algo-
rithms that build up a solution from partitions
of smaller solutions such that there is little or
no interaction between the parts. Connectivity,
partitioning, and subgraph counting problems on
graphs are natural examples [1–3, 8, 11].

To apply fast subset convolution, it is neces-
sary to reduce the recurrence at hand into the
algebraic form (1). Let us briefly discuss two
types of recurrences as examples.

Boolean Subset Convolution
Suppose that f and g are f0; 1g-valued, and we
are seeking to decide whether there exists a valid
partition of S into two parts so that one part is
valid by f and the other part valid by g. This
can be modeled as a Boolean (OR–AND) subset
convolution:

.f �_;^ g/.S/ D
_

T �S

f .T / ^ g.S n T /:

Boolean subset convolutions can be efficiently
reduced into a subset convolution (1) over the
integers simply by replacing the OR with a sum
and the AND with multiplication.

Min-Sum Subset Convolution
Another common situation occurs when we are
seeking the minimum cost to partition S so that

the cost of one part is measured by f and the
other by g, where both f and g take nonnegative
integer values. This can be modeled as a min-sum
subset convolution:

.f �min;C g/.S/ D min
T �S

f .T /C g.S n T /:

A min-sum subset convolution over nonneg-
ative integers can be reduced to a subset
convolution (1) over a univariate polynomial
ring ZŒx� with integer coefficients. Extend
f W 2U ! Z�0 to fx W 2U ! ZŒx� by
setting fx.S/ D xf .S/ for all S � U . Extend
g similarly to gx . Now observe that the degree
of the least-degree monomial with a nonzero
coefficient in the polynomial .fx � gx/.S/

equals .f �min;C g/.S/. This reduction requires
computation with polynomials of degree O.D/

with D D maxfmaxS�U f .S/; maxS�U g.S/g,
which may not be practical compared with the
O.3n/ baseline if D is large.

We refer to [1] for a more detailed discussion
and examples.
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Problem Definition

We consider the fully dynamic graph connectivity
problem. Here we wish to maintain a data struc-
ture for a simple graph that changes over time.
We assume a fixed set of n vertices and updates
consist of adding and deleting single edges. The
data structure should support queries for vertex
pairs .u; v/ of whether u and v are connected in
the current graph.

Key Results

The first nontrivial data structure is due to
Frederickson [2] who showed how to achieve
deterministic worst-case update time O.

p
m/ and

query time O.1/, where m is the current number
of edges of the graph. Using a sparsification
technique, Eppstein et al. [1] obtained O.

p
n/

update time. Much faster amortized bounds can
be achieved. Henzinger and King [3] gave a data
structure with O.log3 n/ randomized expected
amortized update time and O.log n= log log n/

query time. Update time was improved to
O.log2 n/ by Henzinger and Thorup [4]. A
deterministic data structure with O.log2 n/

amortized update time and O.log n= log log n/

query time was given by Holm et al. [5].
Thorup [8] achieved a randomized expected
amortized update time of O.log n.log log n/3/

and a query time of O.log n= log log log n/.
The fastest known deterministic amortized
data structure was given in [9]. Its update
time is O.log2 n= log log n/ and query time is
O.log n= log log n/. Kapron et al. [6] gave a
Monte Carlo algorithm with polylogarithmic
worst-case operation time. A general cell-prove
lower bound of ˝.log n/ was shown by Pătraşcu
and Demaine [7].

In the following, we sketch the main ideas in
the data structure presented in [9].
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A Simple Data Structure
We start with a simple data structure similar
to that of Thorup [8] (which is based on the
data structure of Holm et al. [5]) that achieves
O.log2 n/ update time and O.log n/ query time.
In the subsection below, we give the main
ideas for improving these bounds by a factor
of log log n.

In the following, denote by G D .V; E/ the
current graph. The data structure maintains for
each edge e 2 E a level `.e/ between 0 and
`max D blog nc. Initially, an edge has level 0

and its level can only increase over time. For
the amortization, we can think of `max � `.e/

as the amount of credits associated with edge e,
and every time `.e/ increases, e pays one credit
(which may correspond to more than one unit
of time). Let Gi denote the subgraph of G with
vertex set V and containing the edges of level at
least i and refer to each connected component of
Gi as a level i cluster. The following invariant is
maintained:

Invariant: For each i , any level i cluster contains
at most n=2i vertices.

The clusters nest and thus have a forest repre-
sentation. More specifically, the cluster forest of
G is a forest C of rooted trees where a node u
at depth i corresponds to a level i cluster C.u/

and the children of u correspond to level i C 1

clusters contained in C.u/. Note that roots of
C correspond to components of G0 D G and
leaves correspond to vertices of G. Hence, if we
can maintain C, we can answer a connectivity
query .u; v/ in O.log n/ time by traversing the
leaf-to-root paths from u and v, respectively, and
checking whether the roots are distinct.

In the following, for each node w 2 C, denote
by n.w/ the number of vertices of G contained in
C.w/; equivalently, n.w/ is the number of leaves
in the subtree of C rooted at w.

Edge insertions: When a new edge e is inserted
into G, its level `.e/ is initialized to 0. Up-
dating C amounts to merging the roots corre-
sponding to the endpoints of e if these roots are
distinct.

Edge deletions: Handling the deletion of an
edge e D .u; v/ is more involved. Let i D `.e/,
let C.wi / be the level i cluster containing
e, and let C.uiC1/ and C.viC1/ be the level
i C 1 clusters containing u and v, respectively.
If C.uiC1/ D C.viC1/, no changes occur
in C. Otherwise, consider the multigraph M

obtained from C.wi / by contracting its level
i C 1 child clusters to single vertices. We search
in parallel in M from C.uiC1/ and C.viC1/,
respectively, using a standard search procedure
like BFS or DFS. Note that all edges visited
have level i . If a search procedure visits a vertex
a already visited by the other procedure, the
removal of e does not disconnect the level i

cluster containing e. In this case, we terminate
both search procedures. Consider the two sets
Vu and Vv of vertices of M visited by the
procedures from C.uiC1/ resp. C.viC1/ where
we only include a in one of the sets. Then
Vu \ Vv D ;, and since n.wi / � n=2i by
our invariant, either

P
w2Vu

n.w/ � n=2iC1 or
P

w2Vv
n.w/ � n=2iC1. Assume w.l.o.g. the

former. Then we increase the level of all visited
edges between vertices in Vu to i C 1 without
violating the invariant. These level increases pay
for the search procedure from C.uiC1/, and since
we ran the two procedures in parallel, they also
pay for the search procedure from C.viC1/.

If the two search procedures do not meet, we
increase edge levels on one side as above but
now C.wi / is split into two subclusters since
we did not manage to reconnect it with level i

edges. In this case, we recursively try to connect
these two subclusters in the level i � 1 cluster
containing them. If we are in this case at level 0,
it means that a connected component of G0 D G

is split in two.

Performance: To show how to implement the
above with O.log2 n/ update time, let us assume
for now that C is a forest of binary trees. In order
for a search procedure to visit a level i edge from
a level i C 1 cluster C.aiC1/ to a level i C 1

cluster C.biC1/, it identifies the start point a of
this edge .a; b/ in G by traversing the path in C
from aiC1 down to leaf a. It then visits .a; b/

and traverses the path in C from leaf b up to
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Th(u) Tl(u)u

Faster Deterministic Fully-Dynamic Graph Connec-
tivity, Fig. 1 Hybrid local tree for u. Left subtree Th.u/
is a simple local tree for the heavy children and the black
subtrees are rank trees attached to a rank path ending in

the root of Th.u/. Right subtree Tl .u/ is a lazy local tree
for the light children; see [8, 9] for details on the structure
of this tree

biC1. To guide the downward searches for level
i edges, we maintain for every node w of C a
bitmap whose i th bit is 1 iff there is a level i -
edge incident to a leaf in the subtree of C rooted
at w. Since trees in C are binary, the start point a

of .a; b/ can be identified from aiC1 in O.log n/

time using these bitmaps. Hence, each edge level
increase costs O.log n/. Since edge levels can
only increase, an edge pays a total of O.log2 n/.
Hence, we achieve an amortized update time of
O.log2 n/.

Above, we assumed that trees in C are binary.
To handle the general case, we modify C to
a different forest CL by adding a simple local
tree L.u/ between each non-leaf node u and its
children. Associate with each node v 2 C a
rank rank.v/ D blog n.v/c. To form L.u/, let
C be the set of its children. As long as there are
nodes in C with the same rank r , we give them
a common parent with rank r C 1 and replace
them by this parent in C . When this procedure
terminates, we have at most log n rank trees
whose roots have pairwise distinct ranks and we
attach these roots to a rank path whose root is
u; rank tree roots with bigger rank are attached
closer to u than rank tree roots of smaller rank.
The resulting tree L.u/ is binary; see the left
subtree in Fig. 1 for an illustration. Hence, the
trees in CL are binary as well, and it is easy to see
that they have height O.log n/. The performance
analysis above for C then carries through to CL,
and we still have an amortized update time of
O.log2 n/.

A Faster Data Structure
The above data structure has update time
O.log2 n/ and query time O.log n/. We now
sketch how to speed up both bounds by a factor
of log log n. We can get the speedup for query
time by adding an upward shortcutting system
in CL where for each leaf-to-root path, we have
shortcuts each skipping �.log log n/ vertices.
Maintaining this shortcutting system can be
done efficiently. This system also gives a factor
log log n speedup for each of the upward searches
performed by the search procedures described
earlier. Speeding up downward searches can be
done using a variant of a downward shortcutting
system of Thorup [8].

These two shortcutting systems alone
do not suffice to improve update time to
O.log2 n= log log n/. The data structure needs
to support merges and splits of clusters, and
with the simple local trees defined above, this
costs O.log n/ time per merge/split, and each
edge needs to pay a total of O.log2 n/ for this
over all its level increases. Thorup [8] considered
lazy local trees which can be maintained much
more efficiently under cluster merges/splits.
However, using these trees to form CL may
increase the height of trees in this forest to order
log n log log n which will slow down our upward
shortcutting system by a factor of log log n. To
handle this, consider a hybrid of the simple local
tree and Thorup’s lazy local tree. For a non-leaf
node u in C, a child v is called heavy if n.v/ �

n.u/= log� n where � > 0 is a constant that we
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can pick arbitrarily small. A child that is not
heavy is called light. Now, the hybrid local tree
of u consists of a simple local tree Th.u/ for the
heavy children and a lazy local tree Tl.u/ for the
light children; see Fig. 1 for an illustration. It can
be shown that trees in CL have height O. 1

�
log n/

if we use hybrid local trees. Furthermore, CL can
be maintained efficiently under cluster merges
and splits. The reason is that, although the hybrid
local trees contain simple local trees which are
expensive to maintain, these simple local trees
are very small as each of them has at most
log� n leaves. Hence, maintaining them is not
a bottleneck in the data structure.

Combining hybrid local trees with the
two shortcutting systems suffice to obtain
a factor log log n speedup for updates and
queries. This gives a deterministic data structure
with O.log2 n= log log n/ update time and
O.log n= log log n/ query time.

Open Problems

Two main open problems for dynamic connectiv-
ity are:

• Is there a data structure with O.log n/ oper-
ation time (which would be optimal by the
lower bound in [7])?

• Is there a data structure with worst-case poly-
logarithmic operation time which is not Monte
Carlo?
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Problem Definition

The problem of interest is to find a virtual back-
bone with a certain level of fault tolerance. Vir-
tual backbone is a subset of nodes to be in charge
of routing messages among the other nodes and is
a very effective tool to improve the communica-
tion efficiency of various wireless networks such
as mobile ad hoc networks and wireless sensor
networks [3]. It is known that a virtual backbone
with smaller cardinality works more efficiently.
Without the fault-tolerance consideration, the
problem of computing minimum cardinality vir-
tual backbone can be formulated as a minimum
connected dominating set problem [1], which is
a well-known NP-hard problem [2]. To improve
the fault tolerance of a connected dominating set
C in homogenous wireless networks, C needs to
exhibit two additional properties [4]:

• k-connectivity: C has to be k-vertex-
connected so that the virtual backbone can
survive even after k � 1 backbone nodes fail.

• m-domination: each node v has to be adjacent
to at least m nodes in C so that v can be
still connected even after m � 1 neighboring
backbone nodes fail.

The actual value of the two integers, k and m, can
be determined by a network operator based on the
degree of fault tolerance desired. The majority of
the results on this topic consider homogenous
wireless networks which is a wireless network
of uniform hardware functionality. In this case,
the network can be abstracted using the unit disk
graph model [6].

Mathematical Formulation
Given a unit disk graph G D .V; E/, a subset
C � V is a dominating set in G if for each node
v 2 V nC , v has a neighboring node in C . C is an

m-dominating set in G if for each node v 2 V nC ,
v has at least m neighboring nodes in C . C is a
connected dominating set in G if C is a domi-
nating set in G and if GŒC �, the subgraph of G

induced by C , is connected. C is a k-connected
dominating set in G if GŒC � is a dominating set in
G and GŒC � is k-vertex-connected. Finally, C is
a k-connected m-dominating set if (a) GŒC � is k-
vertex-connected and (b) C is an m-dominating
set in G. Given G D .V; E/, the minimum k-
connected m-dominating set problem is to find
a minimum cardinality subset C of V satisfying
those two requirements.

Key Results

The initial discussion about the need of fault tol-
erance in virtual backbones has been made by Dai
and Wu [4]. Since the minimum k-connected m-
dominating set problem in NP-hard, many efforts
are made to design a constant factor approxi-
mation algorithm for the problem. In [7], Wang
et al. proposed a constant factor approximation
algorithm for the problem with k D 2 and m D 1.
In [8], Shang et al. introduced a constant factor
approximation algorithm for arbitrary integer m

and k D 1; 2. Later, lots of efforts are made to
introduce a constant factor approximation algo-
rithm for arbitrary k and m pairs [9–13]. How-
ever, all of them do not work or lose the claimed
constant approximation bound in some instances
when k � 3 [14, 15].

In [16], the authors introduce an O.1/ ap-
proximation algorithm, Fault-Tolerant Connected
Dominating Sets Computation Algorithm (FT-
CDS-CA), which computes .3; m/-CDSs in
UDGs. The core part of the algorithm is for
computing a .3; 3/-CDS, and then it can be easily
adapted to compute .3; m/-CDS for any m � 1.
The following sections will introduce some key
ideas and results of this work.

Constant Approximation for 3-Connected
m-Dominating Set

Core Idea
The algorithm starts from a 2-connected 3-
dominating set Y0 WD C2;3, which can be done
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by the algorithm in [8]. Then, it augments the
connectivity of the subset by adding a set of
nodes C0 � V n Y0 into Y0 while guaranteeing
the number of the newly added nodes C0 is within
a constant factor of jY0j. In order to do so, the
entry introduces the concept of a good node and a
bad node. A node u in a 2-connected graph G2 is
called a good node if G2nfug is still 2-connected,
that is, it cannot constitute a separator with any
other node in G2; otherwise it is a bad node. An
important observation is that a 2-connected graph
without bad nodes is 3-connected. Then the entry
shows that one can always convert a bad node
into a good node by adding a constant number
of nodes into Y0 while not introducing new bad
nodes, and they gave an efficient way to achieve
this goal. By repeatedly changing bad nodes in
Y0 into good nodes until no bad node is left, Y0

eventually becomes 3-connected whose size is
guaranteed to be within a constant factor of the
optimal solution.

Brief Description

A. Removing Separators If a 2-connected graph
G2 is not 3-connected, then there exists a pair
of nodes u and v, called separator of G2, such
that G2 n fu; vg splits into several parts. It can
be shown, due to the properties of UDG, that by
adding the internal nodes of at most a constant
number of H3-paths (by an H3-path we mean
a path with length at most three connecting two
nodes of a subgraph H of G2, the internal nodes
of which do not belong to H ) into Y0, fu; vg is
no longer a separator of Y0, and the nodes newly
added are good nodes because Y0 D C2;3 is a
3-dominating set.

B. Decomposition of a Connected Graph into a
Leaf-Block Tree In graph theory, a block of a
graph is a maximal 2-connected subgraph [5].
Given a 2-connected subgraph Y0 (initially, this
is a C2;3) and the set X of bad points in Y0, we
select v 2 X as a root and compute a leaf-block
tree T0 of Y0 n fvg [5]. Then, T0 constitutes of
a set of blocks fB1; B2; : : : ; Bsg and a set of cut
vertices fc1; : : : ; ctg. An important fact is that v

can constitute a separator only with another node
in fc1; : : : ; ctg.

C. Good Blocks vs Bad Blocks In the process of
decomposing a block B with root v into a leaf-
block tree, it is important to identify those blocks
Bi containing internal bad nodes, that is, those
bad nodes in Bi that cannot be connected with
nodes outside Bi directly without going through
v (otherwise, it is called external bad nodes).
We call such a block Bi with (resp. without)
an internal bad node a bad block (resp. a good
block). A key fact is that an internal bad node
in Bi can only constitute a separator of Y0 with
another node inside Bi , while this may not be true
for external bad nodes.

D. Multilevel Decomposition The purpose of the
multilevel decomposition is to find a block B

with root v such that B n fvg contains only
good blocks. We assume that X 6D ;, since
otherwise Y0 is already 3-connected. After setting
B  Y0, FT-CDS-CA first picks one v 2

X and starts the initial decomposition process
(say level-0 decomposition). Then, B n fvg is
decomposed into a (level-0) leaf-block graph T0,
which is a tree whose vertices consist of a set
of blocks fB1; : : : ; Bsg and a set of cut vertices
fc1; c2; : : : ; ctg (s � 2 and t � 1). Now, FT-
CDS-CA examines each block in T0 to see if
there is a block Bi having an internal bad node
in it. If all blocks are good blocks, then we are
done in this step. Otherwise, there must exist
some Bi having an internal node w 2 Bi which
constitutes a separator fw; ug of Y0 with another
node u 2 Bi � Y0. Now, set v  w and
B  Bi , start next level (level-1) decomposition.
By repeating such process, we can keep making
our problem smaller and eventually can find a
block B with root v such that B n fvg contains
only good blocks.

E. Merging Blocks (Reconstructing the Leaf-
Block Tree with a New Root) After the multilevel
decomposition process, we obtain a series of
blocks: Yl � Yl�1 � � � �Y1 � Y0, where Yl D B

is the final block with a root v such that there is
no bad block in the leaf-block tree of Yl n fvg.
In the induced subgraph GŒYl �, v constitutes a
separator with any of c1; c2; : : : ; ct , but in Y0

this is not necessarily true, since there exist some
blocks Bi having external nodes that are adjacent
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to some nodes in Y0 n Yl (otherwise, Yl and
Y0 n Yl cannot be connected with each other). So
these blocks that can be connected directly with
Y0nYl without going through v should be merged
together with Y0 n Yl into a larger block. After
merging all possible blocks into one bigger block,
we obtain a modified leaf-block tree T 0

l
in which

one bigger block VB (we call it a virtual block)
is added representing all the merged blocks and
Y0 n Yl , and all the cut vertices ci which do not
constitute a separator with v have to be removed.
Moreover, we mark every remaining cut vertex of
VB as a virtual cut vertex. In essence, the above
merging process can be considered as a process
to generate a leaf-block tree directly from Y0nfvg

with all blocks being good except possibly for the
virtual block.

F. One Bad-Node Elimination At this point,
we have a leaf-block tree T 0

l
with V.T 0

l
/ D

fB1; B2; : : : ; Bs; VBg [ fc1; : : : ; ctg, which is
obtained through the decomposition of Y0 n fvg

(or, equivalently, through the merging process),
where v is the internal bad node chosen as root
in B D Yl . Note in T 0

l
, every Bi is a good block

except possibly for the virtual block VB . The key
point here is that we must have s � 1; otherwise
v would be a good node. In this step, a simple
process is employed to make either v or one of
the cut vertices in fv1; v2; : : : ; vtg n C (C is the
set of cut vertices in the virtual block VB) to be
a good node. Consider two cases: (i) if the leaf-
block tree T 0

l
has only virtual cut vertices (i.e.,

Tl is a star centered at VB), then the bad node v

becomes a good node by removing the separators
consisting of v and the virtual cut vertices, and
(ii) if the leaf-block tree T 0

l
has a cut vertex which

is not a virtual cut vertex, then we can find a path
P D . QB0; Qc1; : : : ; R/ in T 0

l
with one endpoint QB0

being a leaf in the tree T 0
l

and the other endpoint
R being a block (cut vertex) with degree larger
than two or the virtual block VB (a virtual cut
vertex c), if the former does not exist. In this
case, two consecutive blocks QBi and QBiC1 can
be found which share a common cut vertex Qci .
Then it can be shown that at most five H3-paths
are needed such that Qci cannot constitute a pair

of separator of Y0 with any of the remaining cut
vertex or v. Meanwhile, it is still possible that Qci

may constitute separators of Y0 with the external
nodes QBi and QBiC1 (clearly Qci cannot constitute
separators of Y0 with the internal nodes QBi and
QBiC1). It can be proved that the total number of

external nodes in QBi and QBiC1 that may constitute
separators of Y0 with Qci is at most five. In both
cases, the number of H3-paths added to change
one bad node (v or Qci ) into a good node is at most
a constant.

Open Problems

While Wang et al. [16] manage to introduce a
constant factor approximation algorithm for the
minimum k-connected m-dominating set prob-
lem in unit disk graph with k D 3 and arbitrary
integer m � 1, it is still open to design an
approximation algorithm for the case with k � 4.

Experimental Results

Wang et al.’s work [16] presents some simulation
results. The results show that when a 2-connected
3-dominating set computed by Shang et al.’s
approach [8] is augmented to a 3-connected 3-
dominating set using their algorithm, the size
of the connected dominating set will modestly
increase roughly less than 25 %. Their algorithm
is also compared with an optimal solution us-
ing an exhaustive computation within small-scale
random unit disk graphs. The result shows the
performance gap between exact algorithm and
their algorithm is no greater than 39.27 %.
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Problem Definition

Fault tolerance is the study of reliable computa-
tion using unreliable components. With a given
noise model, can one still reliably compute? For
example, one can run many copies of a clas-
sical calculation in parallel, periodically using
majority gates to catch and correct faults. Von
Neumann showed in 1956 that if each gate fails
independently with probability p, flipping its out-
put bit 0$ 1, then such a fault tolerance scheme
still allows for arbitrarily reliable computation
provided that p is below some constant threshold
(whose value depends on the model details) [10].

In a quantum computer, the basic gates are
much more vulnerable to noise than classical
transistors – after all, depending on the imple-
mentation, they are manipulating single electron
spins, photon polarizations, and similarly fragile
subatomic particles. It might not be possible
to engineer systems with noise rates less than



746 Fault-Tolerant Quantum Computation

vertical polarization

X error

1

Z error horizontal
polarization

+

−

0

Fault-Tolerant Quantum Computation, Fig. 1 Bit-flip
X errors flip 0 and 1. In a qubit, j0i and j1i might be
represented by horizontal and vertical polarization of a
photon, respectively. Phase-flip Z errors flip the ˙45ı

polarized states jCi and j�i

10�2, or perhaps 10�3, per gate. Additionally,
the phenomenon of entanglement makes quan-
tum systems inherently fragile. For example, in
Schrödinger’s cat state – an equal superposition
between a living cat and a dead cat, often ideal-
ized as 1=

p
2.j0ni C j1ni/ – an interaction with

just one quantum bit (“qubit”) can collapse, or
decohere, the entire system. Fault tolerance tech-
niques will therefore be essential for achieving
the considerable potential of quantum computers.
Practical fault tolerance techniques will need to
control high noise rates and do so with low
overhead, since qubits are expensive.

Quantum systems are continuous, not discrete,
so there are many possible noise models. How-
ever, the essential features of quantum noise for
fault tolerance results can be captured by a simple
discrete model similar to the one Von Neumann
used. The main difference is that, in addition to
bit-flip X errors which swap 0 and 1, there can
also be phase-flip Z errors which swap jCi �
1=
p

2.j0i C j1i/ and j�i � 1=
p

2.j0i � j1i/

(Fig. 1). A noisy gate is modeled as a perfect gate
followed by independent introduction of X, Z, or

Y (which is both X and Z) errors with respective
probabilities pX; pZ; pY. One popular model is
independent depolarizing noise .pX D pZ D

pY � p=3/; a depolarized qubit is completely
randomized.

Faulty measurements and preparations of
single-qubit states must additionally be modeled,
and there can be memory noise on resting
qubits. It is often assumed that measurement
results can be fed into a classical computer
that works perfectly and dynamically adjusts
the quantum gates, although such control
is not necessary. Another common, though
unnecessary, assumption is that any pair of
qubits in the computer can interact; this is called
a nonlocal gate. In many proposed quantum
computer implementations, however, qubit
mobility is limited so gates can be applied only
locally, between physically nearby qubits.

Key Results

The key result in fault tolerance is the existence
of a noise threshold, for certain noise and compu-
tational models. The noise threshold is a positive,
constant noise rate (or set of model parameters)
such that with noise below this rate, reliable
computation is possible. That is, given an input-
less quantum circuit C of perfect gates, there
exists a “simulating” circuit F T C of faulty gates
such that with probability at least 2/3, say, the
measured output of C agrees with that of F T C.
Moreover, F T C should be only polynomially
larger than C.

A quantum circuit with N gates can a priori
tolerate only O.1=N / error per gate, since
a single failure might randomize the entire
output. In 1996, Shor showed how to tolerate
O.1=poly.log N // error per gate by encoding
each qubit into a poly(log N )-sized quantum
error-correcting code and then implementing
each gate of the desired circuit directly on the
encoded qubits, alternating computation and
error correction steps (similar to Von Neumann’s
scheme) [8]. Shor’s result has two main technical
pieces:



Fault-Tolerant Quantum Computation 747

F

1. The discovery of quantum error-correcting
codes (QECCs) was a major result. Re-
markably, even though quantum errors can
be continuous, codes that correct discrete
errors suffice. (Measuring the syndrome of
a code block projects into a discrete error
event.) The first quantum code, discovered
by Shor, was a nine-qubit code consisting
of the concatenation of the three-qubit
repetition code j0i ! j000i; j1i ! j111i

to protect against bit-flip errors, with its
dual jCi 7! j C CCi; j�i 7! j � ��i to
protect against phase-flip errors. Since then,
many other QECCs have been discovered.
Codes like the nine-qubit code that can
correct bit- and phase-flip errors separately
are known as Calderbank-Shor-Steane (CSS)
codes and have quantum code words which
are simultaneously superpositions over code
words of classical codes in both the j0=1i and
j C =�i bases.

2. QECCs allow for quantum memory or for
communicating over a noisy channel. For
computation, however, it must be possible
to compute on encoded states without first
decoding. An operation is said to be fault
tolerant if it cannot cause correlated errors
within a code block. With the n-bit majority
code, all classical gates can be applied
transversely – an encoded gate can be
implemented by applying the unencoded gate
to bit i of each code block, 1 � i � n.
This is fault tolerant because a single failure
affects at most 1 bit in each block, and thus,
failures can’t spread too quickly. For CSS
quantum codes, the controlled-NOT gate
CNOT, ja; bi ! ja; a ˚ bi, can similarly
be applied transversely. However, the CNOT
gate by itself is not universal, so Shor also
gave a fault-tolerant implementation of the
Toffoli gate ja; b; ci ! ja; b; c ˚ .a ^ b/i.
Procedures are additionally needed for error
correction using faulty gates and for the initial
preparation step. The encoding of j0i will
be a highly entangled state and difficult to
prepare (unlike 0n for the classical majority
code).

However, Shor did not prove the existence of a
constant tolerable noise rate, a noise threshold.
Several groups – Aharonov/Ben-Or, Kitaev, and
Knill/Laflamme/Zurek – each had the idea of
using smaller codes and concatenating the proce-
dure repeatedly on top of itself. Intuitively, with a
distance-three code (i.e., code that corrects any
one error), one expects the “effective” logical
error rate of an encoded gate to be at most cp2

for some constant c, because one error can be
corrected but two errors cannot. The effective
error rate for a twice-encoded gate should then
be at most c.cp2/2; and since the effective error
rate is dropping doubly exponentially fast in the
number of levels of concatenation, the overhead
in achieving a 1=N error rate is only poly(log
N ). The threshold for improvement, cp2 < p,
is p < 1=c. However, this rough argument is
not rigorous, because the effective error rate is ill
defined, and logical errors need not fit the same
model as physical errors (e.g., they will not be
independent).

Aharonov and Ben-Or and Kitaev gave in-
dependent rigorous proofs of the existence of a
positive constant noise threshold, in 1997 [1, 5].

Broadly, there has since been progress on two
fronts of the fault tolerance problem:

1. First, work has proceeded on extending the set
of noise and computation models in which a
fault tolerance threshold is known to exist. For
example, correlated or even adversarial noise,
leakage errors (where a qubit leaves the j0i,
j1i subspace), and non-Markovian noise (in
which the environment has a memory) have all
been shown to be tolerable in theory, even with
only local gates.

2. Threshold existence proofs establish that
building a working quantum computer is
possible in principle. Physicists need only
engineer quantum systems with a low
enough constant noise rate. But realizing
the potential of a quantum computer will
require practical fault tolerance schemes.
Schemes will have to tolerate a high noise
rate (not just some constant) and do so with
low overhead (not just polylogarithmic).
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However, rough estimates of the noise rate
tolerated by the original existence proofs
are not promising – below 10�6 noise per
gate. If the true threshold is only 10�6,
then building a quantum computer will be
next to impossible. Therefore, second, there
has been substantial work on optimizing
fault tolerance schemes primarily in order
to improve the tolerable noise rate. These
optimizations are typically evaluated with
simulations and heuristic analytical models.
Recently, though, Aliferis, Gottesman, and
Preskill have developed a method to prove
reasonably good threshold lower bounds, up
to 2 
 10�4, based on counting “malignant”
sets of error locations [3].

In a breakthrough, Knill has constructed a novel
fault tolerance scheme based on very efficient
distance-two codes [6]. His codes cannot correct
any errors, and the scheme uses extensive posts-
election on no detected errors – i.e., on detecting
an error, the enclosing subroutine is restarted. He
has estimated a threshold above 3 % per gate,
an order of magnitude higher than previous es-
timates. Reichardt has proved a threshold lower
bound of 10�3 for a similar scheme [7], some-
what supporting Knill’s high estimate. However,
reliance on postselection leads to an enormous
overhead at high error rates, greatly limiting prac-
ticality. (A classical fault tolerance scheme based
on error detection could not be efficient, but
quantum teleportation allows Knill’s scheme to
be at least theoretically efficient.) There seems to
be tradeoff between the tolerable noise rate and
the overhead required to achieve it.

There are several complementary approaches
to quantum fault tolerance. For maximum
efficiency, it is wise to exploit any known
noise structure before switching to general fault
tolerance procedures. Specialized techniques
include careful quantum engineering, techniques
from nuclear magnetic resonance (NMR) such
as dynamical decoupling and composite pulse
sequences, and decoherence-free subspaces. For
very small quantum computers, such techniques
may give sufficient noise protection.

It is possible that an inherently reliable
quantum-computing device will be engineered

or discovered, like the transistor for classical
computing, and this is the goal of topological
quantum computing [4].

Applications

As quantum systems are noisy and entanglement
fragile, fault tolerance techniques will probably
be essential in implementing any quantum algo-
rithms – including efficient factoring and quan-
tum simulation.

The quantum error-correcting codes originally
developed for fault tolerance have many other
applications, including quantum key distribution.

Open Problems

Dealing with noise may turn out to be the most
daunting task in building a quantum computer.
Currently, physicists’ low-end estimates of
achievable noise rates are only slightly below
theorists’ high-end (mostly simulation based)
estimates of tolerable noise rates, at reasonable
levels of overhead. However, these estimates
are made with different noise models – most
simulations are based on the simple independent
depolarizing noise model, and threshold lower
bounds for more general noise are much lower.
Also, both communities may be being too
optimistic. Unanticipated noise sources may
well appear as experiments progress. The
probabilistic noise models used by theorists
in simulations may not match reality closely
enough, or the overhead/threshold tradeoff
may be impractical. It is not clear if fault-
tolerant quantum computing will work in
practice, unless inefficiencies are wrung out
of the system. Developing more efficient fault
tolerance techniques is a major open problem.
Quantum system engineering, with more realistic
simulations, will be required to understand better
various tradeoffs and strategies for working with
gate locality restrictions.

The gaps between threshold upper bounds,
threshold estimates, and rigorously proven
threshold lower bounds are closing, at least
for simple noise models. Our understanding of
what to expect with more realistic noise models
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is less developed, though. One current line of
research is in extending threshold proofs to more
realistic noise models – e.g., [2]. A major open
question here is whether a noise threshold can be
shown to even exist where the bath Hamiltonian
is unbounded – e.g., where system qubits are
coupled to a non-Markovian, harmonic oscillator
bath. Even when a threshold is known to exist,
rigorous threshold lower bounds in more general
noise models may still be far too conservative
(according to arguments, mostly intuitive, known
as “twirling”) and, since simulations of general
noise models are impractical, new ideas are
needed for more efficient analyses.

Theoretically, it is of interest what is the best
asymptotic overhead in the simulating circuit
F T C versus C? Overhead can be measured in
terms of size N and depth/time T . With con-
catenated coding, the size and depth of F T C are
O.N polylog N / and O.T polylog N /, respec-
tively. For classical circuit C, however, the depth
can be only O.T /. It is not known if the quantum
depth overhead can be improved.

Experimental Results

Fault tolerance schemes have been simulated
for large quantum systems, in order to obtain
threshold estimates. For example, extensive
simulations including geometric locality
constraints have been run by Thaker et al. [9].

Error correction using very small codes has
been experimentally verified in the lab.

URL to Code

Andrew Cross has written and distributes code
for giving Monte Carlo estimates of and rigorous
lower bounds on fault tolerance thresholds:
http://web.mit.edu/awcross/www/qasm-tools/.
Emanuel Knill has released Mathematica code
for estimating fault tolerance thresholds for
certain postselection-based schemes: http://arxiv.
org/e-print/quant-ph/0404104.
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Problem Definition

To subdivide an edge e in a graph G with end-
points u and v, delete the edge from the graph and
add a path of length two connecting the vertices
u and v. A graph G is a subdivision of graph
H if G can be obtained from H by repeatedly
subdividing edges. A graph H is a topological
subgraph (or topological minor) of graph G if
a subdivision of H is a subgraph of G. Equiva-
lently, H is a topological subgraph of G if H can
be obtained from G by deleting edges, deleting
vertices, and suppressing vertices of degree 2 (to
suppress a vertex of degree 2, delete the vertex
and add an edge connecting its two neighbors).
The notion of topological subgraphs appears in
the classical result of Kuratowski in 1935 stating
that a graph is planar if and only if it does not have
a topological subgraph isomorphic to K5 or K3;3.
This entry considers the problem of determining,
given a graph G and H , whether G contains H

as a topological minor.

Topological Subgraph Testing

Input: Graphs G and H

Output: Determine if H is a topological subgraph of G

Observe that a graph G on n vertices contains
the cycle of length n as a topological subgraph if
and only if G contains a Hamiltonian cycle. Thus,
it is NP -complete to decide if H is a topological
subgraph of a graph G with no further restrictions
on G or H .

Previous Work
The algorithmic problem of testing for topologi-
cal subgraphs was already studied in the 1970s by
Lapaugh and Rivest [12] (also see [7]). Fortune,
Hopcroft, and Wyllie [6] showed that the analo-
gous problem in directed graphs is NP -complete
even when H is a fixed small graph. Robertson
and Seymour, as a consequence of their semi-
nal work on graphs minors, showed that for a
fixed graph H , there exists a polynomial time
algorithm to check whether H is a topological
subgraph of a graph G given in input. However,
the running time of the Robertson-Seymour algo-

rithm is jV.G/jO.jV.H/j/. Following this, Downey
and Fellows [4] (see also [5]) conjectured that the
problem of topological subgraph testing is fixed
parameter tractable: they conjectured that there
exists a function f and a constant c such that
there exists an algorithm for testing whether a
graph H is a topological subgraph of G which
runs in time f .jV.H/j/ � jV.G/jc .

The problem of topological subgraph testing
is closely related to that of minor testing and
the k-disjoint paths problem. A graph H is a
minor of G if H can be obtained from a subgraph
of G by contracting edges. The k-disjoint paths
problem instead takes as input k pairs of vertices
.s1; t1/; : : : ; .sk ; tk/ of vertices in a graph G and
asks if there exist pairwise internally vertex dis-
joint paths P1; : : : ; Pk such that the endpoints of
Pi are si and ti for all 1 � i � k. Robertson and
Seymour [13] considered a model of labeled mi-
nor containment that unites these two problems
and showed that there is an O.jV.G/j3/ time
algorithm for both H -minor testing for a fixed
graph H and the k-disjoint paths problem for a
fixed value k.

For every H , there exists a finite list
H1; : : : ; Ht of graphs such that a graph G

contains H as a minor if and only if G contains
Hi as a topological minor for some index
i ; this follows from the definition of minor
and topological minor. Thus, the problem of
minor testing reduces to the harder problem
of topological minor testing. It is not difficult
to reduce the problem of topological subgraph
containment for a fixed graph H to the k-disjoint
paths problem. For each vertex v of H , guess
a vertex v0 of G, and then for each edge uv

of H , and seek to find a path connecting u0

and v0 in G such that these jE.H/j paths are
pairwise internally vertex disjoint. This approach
yields the jV.G/jO.jV.H/j/ time algorithm for
topological subgraph testing mentioned above.

Key Results

The following theorem of Grohe, Kawarabayashi,
Marx, and Wollan [8] shows that topological
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subgraph testing is fixed parameter tractable, con-
firming the conjecture of Downey and Fellows.

Theorem 1 For every fixed, undirected graph
H , there is an O.jV.G/j3/ time algorithm that
decides if H is a topological subgraph of G.

Outline of the Proof
The algorithm given by Theorem 1 builds on
the techniques first developed by Robertson and
Seymour in their algorithm for minor testing and
the k-disjoint paths problem. Fix a graph H and
let G be a graph given in input. The algorithm
separately considers each of the following three
cases:

1. The tree-width of G is bounded (by an appro-
priate function on jV.H/j);

2. G has large tree-width, but the size of the
largest clique minor is bounded (again by an
appropriate function on jV.H/j);

3. G has a large clique minor.

Note that in the third case, the existence of a
large clique minor necessarily forces the graph
G to have large tree-width. We do not use any
technical aspects of the parameter tree-width here
and direct interested readers to [1, 2] for further
discussion of this topic.

The Robertson-Seymour algorithm for minor
testing offers a roadmap for the proof of Theo-
rem 1; the discussion of the proof of Theorem 1
highlights where the proof builds on the tools
of Robertson and Seymour and where new tech-
niques are required. As in Robertson-Seymour’s
algorithm for minor testing, the algorithm consid-
ers a rooted version of the problem.

G has Bounded Tree-Width
Numerous problems can be efficiently solved
when the input graph is restricted to have
bounded tree-width (see [1, 3] for examples).
For example, the k-disjoint paths problem can
be solved in linear time in graphs of bounded
tree-width [15]. Standard dynamic programming
techniques can be used to solve the more general
rooted version of the topological subgraph
problem which the algorithm considers.

G has Large Tree-Width, but no Large Clique
Minor
Robertson and Seymour showed that graphs of
large tree-width which do not contain a fixed
clique minor must contain a large, almost planar
subgraph [11,13]; this result is sometimes known
as the flat-wall theorem. The proof of correctness
for their disjoint paths algorithm hinges upon
this theorem by showing that a vertex in the
planar subgraph can be deleted without affecting
the feasibility of a given disjoint paths problem.
The proof of Theorem 1 builds on this approach.
Given graphs G and H , say a vertex v 2 V.G/

is irrelevant for the problem of topological sub-
graph testing if G contains H as a topological
minor if and only if G � v contains H as a
topological minor. If the algorithm can efficiently
find an irrelevant vertex v, then it can proceed
by recursing on the graph G � v. In order to
apply a similar irrelevant vertex argument to that
developed by Robertson and Seymour for the
disjoint paths problem, the proof of Theorem 1
shows that a large flat wall contains an irrelevant
vertex for a given topological subgraph testing
problem by first generalizing several technical
results on rerouting systems of paths in graphs
[10, 13] as well as deriving a stronger version of
the flat-wall theorem.

G has a Large Clique Minor
In the Robertson and Seymour algorithm for
minor testing, once the graph can be assumed
to have a large clique minor, the algorithm triv-
ially terminates. When considering the k-disjoint
paths problem, again it is a relatively straight-
forward matter to find an irrelevant vertex for a
given disjoint paths problem assuming the ex-
istence of a large clique minor. Instead, if we
are considering the problem of testing topolog-
ical subgraph containment, the presence of a
large clique minor does not yield an easy re-
cursion. Consider the case where we are testing
for the existence of a topological subgraph of
a 4-regular graph H in a graph G which con-
tains a subcubic subgraph G0 such that G0 has
a large clique minor. Whether or not G0 will
prove useful in finding a topological subgraph
of H in G will depend entirely on whether
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or not it is possible to link many vertices of
degree four (in G) to the clique minor in G0

and not on the size itself of the clique minor in
G0. Similar issues arise in [9] when developing
structure theorems for excluded topological sub-
graphs.

The proof of Theorem 1 proceeds by consid-
ering separately the case when the large-degree
vertices can be separated from the clique minor
by a bounded sized separator or not. If they can-
not, one can find the necessary rooted topological
minors. Alternatively, if they can, the algorithm
recursively calculates the rooted topological mi-
nors in subgraphs of G and replaces a portion
of the graph with a bounded size gadget. This
portion of the argument is substantially different
from the approach of Robertson and Seymour
to minor testing and comprises the major new
development in the proof.

Applications

An immersion of a graph H into a graph G is
defined like a topological embedding, except that
the paths in G corresponding to the edges of H

are only required to be pairwise edge disjoint
instead of pairwise internally vertex disjoint. For-
mally, an immersion of H into G is a mapping

 that associates with each vertex v 2 V.H/ a
distinct vertex 
.v/ 2 V.G/ and with each edge
e D vw 2 E.H/ a path 
.e/ in G with endpoints

.v/ and 
.w/ in such a way that the paths 
.e/

for e 2 E.H/ are mutually edge disjoint. Robert-
son and Seymour [14] showed that graphs are
well quasi-ordered under the immersion relation,
proving a conjecture of Nash-Williams. In [8],
the authors give a construction which implies the
following corollary of Theorem 1.

Corollary 1 For every fixed undirected graph
H , there is an O.jV.G/j3/ time algorithm that
decides if there is an immersion of H into G.

Again, the algorithm is uniform in H , which im-
plies that the immersion problem is fixed parame-
ter tractable. This answers another open question
by Downey and Fellows [4, 5]. Corollary 1 also
holds for the more restrictive “strong immersion”

version, where 
.v/ cannot be the internal vertex
of the path 
.e/ for any v 2 V.G/ and e 2 E.G/.
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Problem Definition

In the classical bin packing (BP) problem, we are
given a set of items with rational sizes between 0
and 1, and we try to pack them into a minimum
number of bins of unit size so that no bin contains
items with total size more than 1. The problem
definition originates in the early 1970s: Johnson’s
thesis [10] on bin packing together with Gra-
ham’s work on scheduling [8, 9] (among other
pioneering works) started and formed the whole
area of approximation algorithms. The First Fit
(FF) algorithm is one among the first algorithms
which were proposed to solve the BP problem
and analyzed in the early works. FF performs as
follows: The items are first given in some list
L and then are handled by the algorithm in this
given order. Then, algorithm FF packs each item
into the first bin where it fits; in case the item does
not fit into any already opened bin, the algorithm
opens a new bin and puts the actual item there. A
closely related algorithm is Best Fit (BF); it packs
the items also according to a given list, but each
item is packed into the most full bin where it fits
or the item is packed into a new bin only if it does
not fit into any open bin. If the items are ordered
in the list by decreasing sizes, the algorithms are
called as FFD (first fit decreasing) and BFD (best
fit decreasing).

Applications

There are many applications for bin packing
(in industry, computer science, etc), and BP has
many different versions. It is worth noting that BP
has a strong relationship to the area of scheduling.
So the scientific communities of packing and
scheduling are almost the same.is a major

Key Results

It was immediately shown in the early works
[6,12,15] that the asymptotic approximation ratio
of FF and BF bin packing is 1.7. It means that if
the optimum packing needs OPT bins, algorithm
FF never uses more than 1:7 � OPT C C bins,
where C is a fixed constant (The same holds for
the BF algorithm). It is easy to see that the mul-
tiplicative factor, i.e., 1.7, cannot be smaller. But
the minimum value of the C constant, for which
the statement remains valid, is not a simple issue.

First, Ullman in 1971 [15] showed that C can
be chosen to be 3. But this is not the best choice.

Soon, the additive term was decreased in [6]
to 2 and then in [7] to FF � d1:7 � OPTe; since
both FF and OPT denote integer numbers, this is
the same as FF � 1:7 � OPT C 0:9.

Then, for many years, no new results were
published regarding the possible decreasing of
the additive term.

Another direction is considered in the many-
times-cited work of Simchi-Levy [14]. He
showed that the absolute approximation ratio
of FF (and BF) is at most 1.75. It means that if
we do not use an additive term in the inequality,
then FF � 1:75 � OPT is valid.

Now, if we are interested in the tight result,
we have two options. One is that we can try to
decrease the multiplicative factor in the inequal-
ity of the absolute approximation ratio, i.e., the
question is the following: What is the smallest
number, say α, that can be substituted in the place
of 1.75 such that the inequality FF � ˛ � OPT
is valid for any input? The other direction is the
following: What is the smallest possible value
of the additive constant C such that the FF �
1:7 � OPT C C inequality is true for every input?
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The next step was made independently from
each other in two works. Xia and Tan [17]
and Boyar et al. [1] proved that the absolute
approximation ratio of FF is not larger than
12=7 � 1:7143.

Moreover, [17] also dealt with the other di-
rection and decreased the value of C to FF �
1:7 � OPT C 0:7.

If we are interested in how much the additive
term (or the α factor) can be decreased, we must
also deal with the lower bound of the algorithm.
Regarding this, the early works give examples
for both the asymptotic and absolute ratios. For
the asymptotic bound, there exists such input
for which FF D 17k holds whenever OPT D
10k C 1; thus, the asymptotic upper bound 1.7
is tight, see [6, 12, 15]. For the absolute ratio, an
example is given with FF D 17 and OPT D 10,
i.e., an instance with approximation ratio exactly
1.7 [6, 12]. But no example was shown for large
values of OPT.

It means that soon, it turned out that the
value of the multiplicative factor of the absolute
approximation ratio (i.e., α) cannot be smaller
than 1.7 or, regarding the another measure, the
additive constant cannot be chosen to be smaller
than zero. But this remained an open question for
40 years whether the smallest possible choice of
α is really 1.7 or, in other words, the smallest
possible choice of the additive term is really zero.

Finally, the papers [3, 4] answered the ques-
tion. Lower-bound instances are given with FF D
BF D b1:7 �OPTc for any value of OPT, and it is
also shown that FF D BF � b1:7 � OPTc holds
for any value of OPT. So this is the tight bound
which was looked for 40 years.

Methods
To prove the upper bound, the main technique is
the usage of a weighting function. Any item gets
some weight according to its size. Then, to get
the asymptotic ratio, it is only needed that any
optimal bin has a weight at most 1.7 and any bin
in the FF packing (with bounded exception) has a
weight at least 1.

In the recent paper [13], a nice and surprising
idea is presented: The same weight function that

First Fit Algorithm for Bin Packing, Fig. 1 The bonus
function

was used traditionally in the analysis is divided
into two parts: scaled size and bonus. Thus, the
weight of any item a is w.a/ D s.a/ C b.a/,
where s.a/ D 6=5 � a is the scaled size of the
item and the remaining part b.a/ is the bonus of
the item, which is defined as follows:

b.a/ is zero if the size of the item is below
1/6. The bonus is just 0.1 if a is between 1/3 and
1/2, and it is 0.4 if the size is above 1/2. Between
1/6 and 1/3, the bonus function is continuous and
linear. We emphasize that this is the same old
weighting function, only in a new costume. The
bonus function can be seen in Fig. 1.

By this separation, it is easy to show that the
weight of any optimal bin is at most 1.7, and this
implies that the weight of the whole instance is at
most 1:7 � OPT .

The key part is to show that on average, the
weight of each FF bin is at least 1. This property
trivially holds if the total size of the items in the
bin is at least 5/6. It is not hard to handle the
bins with single items; here, almost all of them
must be bigger than 1/2, and such items have
huge bonus (i.e., 0.4), together with the scaled
size, that is, at least 0.6, we are again done. In
the remaining bins, the next tricky calculation is
used: The scaled size of the bin plus the bonus
of the following bin is at least 1. By this trick,
the proof will be almost done, but several further
examinations are also needed for completing the
tightness result.

New Lower Bound Construction
The lower bound construction works in the fol-
lowing way. Suppose, for the sake of simplicity,
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that OPT D 10k for some integer k, and let © > 0,
a small value.

The input consists of OPT small items of size
approximately 1/6, followed by OPT medium-
sized items of size approximately 1/3, followed
by OPT large items of size exactly 1=2C ©. The
optimum packs in each bin one item from each
group. FF packs the small items into 2k bins with
5 items with the exception of the first and last
of these bins, which will have 6 and 4 items,
respectively. The sizes of items differ from 1/3,
or differ from 1/6, in both directions by a small
amount ıi . Finally, every large item will occupy
its own bin.

In the original construction, the choice of the
small and medium-sized items is a bit difficult,
so one could think that the construction must be
so difficult, and thus, the construction cannot be
tightened. It turns out, however, that this is not the
case. The construction can be modified in the way
that ıi is exponentially decreasing but remains
greater than © for all i. This guarantees that only
the item with the largest ıi in a bin is relevant for
its final size, and this in turn enables us to order
the items so that no additional later item fits into
these bins. Thus, by the modification, not only the
construction is simpler but it also makes possible
to prove the tightness.

Open Problems

There are many open problems regarding bin
packing. For example, the tight absolute approx-
imation ratio of BFD is an open question (For
FFD, it was recently proved that FFD � .11=9/ �

OPT C 6=9 and this is the tight result, see [5].).
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Problem Definition

NP-hard problems are believed to be intractable.
This is the widely believed assumption that P ¤

NP . For all our problems, the size of their input
is denoted by n. In parameterized complexity,
the input is refined to .I; k/ with k a parame-
ter related to the input, and the goal is to find
an exact algorithm for the problem that runs
in time f .k/ � nO.1/, for some function f . In
this survey, we parameterize by the optimum
value of the instance unless stated otherwise.
In addition, the optimum is always integral. In
approximation algorithms, a � approximation for
a minimization (maximization) problem P is a
polynomial time algorithm A, such that for any
instance I , A returns a solution of value A.I /

and A.I /=OPT.I / � � (OPT.I /=A.I / � �)
with OPT.I / the optimum value for the instance.
In both subjects, there are intractability results.
The class FPT are the problems that admit an
f .k/nO.1/ time, exact solution for some function
f . The classes W Œi� for every integer i � 1

Supported in part by NSF grant number 1218620.

satisfy FPT � W Œ1� � W Œ2� � : : :. It is widely
believed that all inclusions are strict. Consider
the CLIQUE problem. Given a graph G.V; E/,
a subset U � V , forms a clique, if for every
u; v 2 U , .u; v/ 2 E. The problem is

Input: A graph G and a parameter k.
Question: Is there in G a clique U of size jU j �

k?

In [21], it is proved that CLIQUE admits no n1��

approximation unless P D NP . It is known
that CLIQUE is W Œ1�-complete. Thus it is con-
sidered highly unlikely that CLIQUE 2 FPT. The
SETCOVER problem is defined as follows:

Input: A universe U and a collection S D fSig

of subsets of U and a parameter k.
Question: Is there a subcollection S 0 � S con-

taining at most k sets so that
S

Si 2S0 Si D U?

SETCOVER is W Œ2�-complete. In addition, Raz
and Safra [27] show that unless P D NP ,
SETCOVER admits no c ln n algorithm for some
constant c, almost matching the simple greedy
ln nC 1 ratio approximation algorithm.

Our Subject
Formally, we deal with the following subject:
An algorithm for a minimization (resp., max-
imization) problem P is called an .r; t/-FPT-
approximation algorithm for P with input param-
eter k, if the algorithm takes as input an instance
I with value OPT and an integer parameter k

and either computes a feasible solution to I with
value at most k � r.k/ (resp., at least k=r.k/ and
k=r.h/ D o.k/) or computes a certificate that
k < OPT (resp., k > OPT) in time t .k/ � jI jO.1/.
The requirement that k=r.k/ D o.k/ avoids
returning a single vertex in the clique problem,
claiming OPT approximation.

A problem is called .r; t/-FPT-inapproximable
(or, .r; t/-FPT-hard) if it does not admit an
.r; t/-FPT-approximation algorithm. An FPT
approximation is mainly interesting if the
problem is W Œ1�-hard and allowing running
time f .k/ � nO.1/ gives improved approximation.
We restrict our attention to this scenario. Thus,
we do not discuss many subjects such as
approximations in OPT that run in polynomial
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time in n and upper and lower bounds, on
algorithms with sub exponential time in n, for
several conbinatorial problems.

Our Complexity Assumption
We assume the following conjecture through-
out Impagliazzo et al. [4] conjectured the
following:

Exponential Time Hypothesis (ETH)
3-SAT cannot be solved in 2o.q/.q Cm/O.1/

time where q is the number of variables and
m is the number of clauses.

The following is due to [4].

Lemma 1 Assuming ETH, 3-SAT cannot be
solved in 2o.m/.q C m/O.1/ time where q is
the number of variables and m is the number of
clauses.

It is known that the ETH implies that W Œ1� ¤

FPT. This implies that W Œ2� ¤ FPT as well.

Key Results

We survey some FPT-approximability and FPT-
inapproximability results. Our starting point is a
survey by Marx [23], and we also discuss recent
results. The simplest example we are aware of
in which combining FPT running time and FPT-
approximation algorithm gives an improved re-
sult is for the strongly connected directed sub-
graph (SCDS) problem.

Input: A directed graph G.V; E/, a set T D

ft1; t2; : : : ; tpg of terminals, and an integer k.
Question: Is there a subgraph G0.V; E 0/ so that
jE 0j � k and for every ti ; tj 2 T , there is
a directed path in G0 from ti to tj and vice
versa?

The problem is in W Œ1�-hard. The best approx-
imation algorithm known for this problem is n�

for any constant �. See Charikar et al. [5].
The following is due to [7].

Theorem 1 The SCDS problem admits an FPT
time 2 approximation ratio.

Proof The directed Steiner tree problem is given
a directed edge-weighted graph and a root r and a
set T D ft1; t2; : : : ; tpg of terminals; find a mini-
mum cost-directed tree rooted by r containing T .
This problem belongs to FPT. See Dreyfus and
Wagner [12]. Note that for every terminal ti , any
feasible solution contains a directed tree from ti
to T and a a reverse-directed Steiner tree from T

to ti . These two problems can be solved optimally
in FPT time. In the second application, we reverse
the direction of edges before we find the directed
Steiner tree. Moreover, two such trees give a
feasible solution for the SCDS problem as every
two terminals tj ; tk have a path via ti . Clearly, the
solution has value at most 2 � OPT with OPT the
optimum value for the SCDS instance. The claim
follows.

Definition 1 A polynomial time approximation
scheme (PTAS) for a problem P is a 1 C �

approximation for any constant � that runs in time
nf .1=�/. An EPTAS is such an algorithm that runs
in time f .1=�/nO.1/.

The vertex cover problem is to select the smallest
possible subset U of V so that for every edge
.u; v/, either u 2 U or v 2 U (or both). In the
partial vertex cover problem, a graph G.V; E/

and an integer k are given. The goal is to find a
set U of k vertices that is touched by the largest
number of edges. An edge .u; v/ is touched by a
set U if u 2 U or v 2 U or both. It is known that
this problem admits no PTAS unless P D NP

(see Dinur and Safra [10]). The corresponding
minimum partial vertex cover problem requires
a set of k vertices touched by the least number of
edges. This problem admits no better than 2-ratio,
under the small set expansion conjecture. See
[15]. Both problems belong to W Œ1�-hard. The
following theorem of [23] relies on a technique
called color coding [1].

Theorem 2 ([23]) For every constant �, the par-
tial vertex cover problem (and in a similar proof
the minimum partial vertex cover problem) ad-
mits an EPTAS that runs in time f .k; 1=�/ �nO.1/

with n the number of vertices in the graph.

Proof Let D D
�

k
2

�
=�. Sort the vertices

v1; v2; : : : ; vn by nonincreasing degrees. If for
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the largest degree, d.v1/ satisfies d.v1/ � D, the
algorithm outputs the set fv1; v2; : : : ; vkg. These
k vertices cover at least

Pk
iD1 deg.vi / �

�
k
2

�

edges. Clearly, OPT �
Pk

iD1 deg.vi /. Hence,
the value of the constructed solution is at
least

Pk
iD1 deg.vi / �

�
k
2

�

Pk
iD1 deg.vi /

� 1�

�
k
2

�

D
� 1�

�

2
�

1

1C �

times the optimum for a 1C � approximation. In
the other case, the optimum OPT � k � D. We
guess the correct value of the optimum by trying
all values between 1; : : : ; k �D. Fix the run with
the correct OPT. Let E� be the set of OPT edges
that are touched by the optimum. An OPT labeling
is an assignment of a label in f1; : : : ; OPTg to the
edges of E. We show that if the labels of E�

are pairwise distinct, we can solve the problem
in time h.k; 1=�/. Let fu1; u2; : : : ; ukg be the op-
timum set. Let Li be the labels of the edges of ui .
As all labels of E� are pairwise distinct, fL.ui /g

is a disjoint partition of all labels (as otherwise
there is a labeling with less than OPT labels). The
number of possible partitions of the labels into k

sets is at most kOPT. Given the correct partition
fLig, we need to match every Li with a vertex ui

so that the labels of ui are Li . This can be done
in polynomial time by matching computation. To
get a labeling with different pairwise labels on
E�, we draw for every edges a label between
1 and OPT, randomly and independently. The
probability that the labels of E� are disjoint
is more than 1=OPTOPT. Repeating the random
experiment for OPTOPT times implies that with
probability at least 1 � 1=e, one of the labeling
has different pairwise labels for E�. This result
can be derandomized [1].

We consider one example in which OPT is not the
parameter [23]. Consider a graph that contains a
set X D fx1; : : : ; xkg. so that G n X is a planar
graph. Thus the parameter here is the number
of vertices that need to be removed to make the
graph. Consider the minimum coloring problem
on G. We can determine the best coloring of X

in time kk . Then we can color G n X by four
(different) colors. A simple calculation shows

that this algorithm has approximation ratio at
most 7=3.

The following is a simple relation exist be-
tween EPTAS and FPT theory.

Proposition 1 If an optimization problem P ad-
mits an EPTAS, then P 2 FPT.

Proof We prove the theorem for minimization
problems. For maximization problems, the proof
is similar. Assume that P has a 1 C � approx-
imation that runs in time f .1=�/ � nO.1/. Set
� D 1=.2k/. Using the EPTAS algorithm gives
an f .2k/nO.1/ time .1C�/ approximation. If the
optimum is at most k, we get a solution of size
at most .1 C �/k D k C 1=2 < k C 1. As the
solution is integral, the cost is at most k. If the
minimum is k C 1, the approximation will not
return a better than k C 1 size solution. Thus the
approximation returns cost at most k if and only
if there is a solution of size at most k.

Thus we can rule out the possibility of an EPTAS
if a problem is W Œ1�-hard. For example, this
shows that the maximum independent set for
unit disks graphs admits no EPTAS as it be-
longs to W Œ1�. See many more examples in [23].
Chen Grohe and Grüber [6] provide an early
discussion of our topic. Lange wrote a PDF
presentation for recent FPT approximation. The
following theorem is due to Grohe and Grüber
(see [19]).

Theorem 3 If a maximization problem admits an
FPT-approximation algorithm with performance
ratio �.k/, then for some function �0, there exists
a �0.k/ polynomial time approximation algo-
rithm for the problem.

In the traveling salesperson with a deadline, the
input is a metric on n points and a set D �

V with each v 2 D having a deadline tv . A
feasible solution is a simple path containing all
vertices, so that for every v 2 D, the length of
the tour until v is at most tv . The problem admits
no constant approximation and is not in FPT
when parameterized by jDj. See Bockenhauer,
Hromkovic, Kneis, and Kupke [2]. In this entry,
the authors give a 2:5 approximation that runs
in time nO.1/ C jDjŠ � jDj. The parameterized
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undirected multicut problem is given an undi-
rected graph and a collection fsi ; tig

m
iD1 of pairs,

and a parameter k is possible to remove at most
k edges and disconnect all pairs. Garg, Vazirani,
and Yannakakis give an O.log n/ approximation
for the problem [16]. In 2009, it was given a
ratio 2 fixed-parameter approximation (Marx and
Razgon) algorithm. However, Marx and Razgon
[25] and Bousquet et al. [3] show that this prob-
lem is in fact in FPT. Fellows, Kulik, Rosa-
mond, and Shachnai give the following tradeoff
(see [14]). The best known exact time algorithm
for the vertex cover problem has running time
1:273k . The authors show that if we settle for
an approximation result, then the running time
can be improved. Specifically, they gave ˛ � 1

approximation for vertex cover that runs in time
1:237.2�˛/k . The minimum edge dominating set
problem is given a graph and a parameter k, and
there is a subset E 0 � E of size at most k so
that every edge in E n E 0 is adjacent to at least
one edge in E 0. Escoffier, Monnot, Paschos, and
Mingyu Xiao (see [13]) prove that the problem
admits a 1 C � ratio for any 0 � � � 1 that
runs in time 2.2��/�k . A kernel for a problem P

is a reduction from an instance I to an instance
I 0 whose size is g.k/, namely, a function of k, so
that a yes answer for I implies a yes answer for I 0

and a no answer for I implies a no answer for I 0.
If a kernel exists, it is clear that P 2 FPT. How-
ever, the size of the kernel may determine what is
the function of k in the f .k/�nO.1/ exact solution.
The following result seems interesting because it
may not be intuitive. In the tree deletion problem,
we are given a graph G.V; E/ and a number k

and the question is if we can delete up to k

vertices and get a tree. Archontia Giannopoulou,
Lokshtanov, Saket, and Suchy prove (see [17])
that the tree deletion problem admits a kernel
of size O.k4/. However, the problem does not
admit an approximation ratio of OPTc for any
constant c.

Other Parameters
An independent set is a set vertices so that no two
vertices in the set share an edge. In parameterized
version given k, the question is if there is an
independent set of size at least k. Clearly, the

problem is W Œ1�-complete. Grohe [18] show that
the maximum independent set admits a FPT-
approximation scheme if the parameter is the
genus of the graph. E. D. Demaine, M. Haji-
aghayi, and K. Kawarabayashi [9] showed that
vertex coloring has a ratio 2 approximation when
parameterized by the genus of a graph. The tree
augmentation problem is given an edge-weighted
graph and a spanning tree whose edges have cost
0; find a minimum cost collection of edges to add
to the tree, so that the resulting graph is 2-edge
connected. The problem admits several polyno-
mial time, ratio 2, and approximation algorithms.
Breaking the 2 ratio for the problem is an impor-
tant challenge in approximation algorithms. Co-
hen and Nutov parameterized the problem by the
diameter D of the tree and gave an f .D/ � nO.1/

time, 1C ln 2 < 1:7 approximation algorithm for
the problem [8].

Fixed-Parameter Inapproximability
The following inapproximability is from [11].
The additive maximum independent set problem
is given a graph and a parameter k and a constant
c, and the question is if the problem admits an
independent set of size at least k � c or no
independent set of size k exists.

It turns out that the problem is equivalent to
the independent set problem.

Theorem 4 Unless W Œ1� D FPT (hence, under
the ETH), the independent set problem admits no
additive c approximation.

Proof Let I be the instance. Find the smallest d

so that �
dk � c

d

�

� k:

Output d copies of G and let k � d be the
parameter of the new instance I 0. We show that
the new graph has independent set of size dk �

c if and only if the original instance has an
independent set of size k. If the original instance
has an independent set of size k, taking union of
d independent sets, we get an independent set of
size k � d .

Now say that I 0 has an independent set of size
dk� c. The average size of an independent set in
a graph in I 0 is then .dk � c/=d . Since the size
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of the independent set is integral, there is a copy
that admits an independent set of size

�
dk � c

d

�

� k:

An independent set I is maximal if for every v 62

I , vCI is not an independent set. The problem of
minimum size maximal independent set (MSDIS)
is shown to be completely inapproximable in
[11]. Namely, this problem is .r.k/; t.k//-FPT-
hard for any r; t , unless FPT D W Œ2� (hence,
under the ETH). The problem admits no n1�� ap-
proximation (see [20]). In the min-WSAT prob-
lem, a Boolean circuit is given and the task is to
find a satisfying assignment of minimum weight.
The weight of an assignment is the number of
true variables. Min-WSAT was given a complete
inapproximability by Chen, Grohe, Grüber (see
[6]) 2006.

The above two problems are not monotone.
This implies that the above results are non-
surprising. The most meaningful complete
inapproximability is given by Marx [24] who
shows that the weighted circuit satisfiability for
monotone or antimonotone circuits is completely
FPT inapproximable.

Of course, if the problem has almost no gap,
namely, the instance can have value k or k � 1, it
is hard to get a strong hardness.

A natural question is if we can use gap re-
ductions from approximation algorithms theory
to get some strong lower bounds, in particular
for clique and setcover. It turns out that this
is very difficult even under the ETH conjecture.
This subject is related to almost linear PCP (see
[26]). In this entry, Moshkovitz poses a conjec-
ture called the projection game conjecture (PGC).
M. Hajiaghayi, R. Khandekar, and G. Kortsarz
show the following theorem.

Theorem 5 Under the ETH and PGC con-
jectures, SETCOVER is .r; t/-FPT-hard for
r.k/ D .log k/� and t .k/ D exp.exp..log k/� // �

poly.n/ D exp
�
k.logf k/

�
� poly.n/ for some

constant � > 1 and f D � � 1.
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Problem Definition

The problem is concerned with efficient cod-
ing of the constraint that defines the placement
of objects on a plane without mutual overlap-
ping. This has numerous motivations, especially
in the design automation of integrated semicon-
ductor chips, where almost hundreds of millions
of rectangular modules shall be placed within
a small rectangular area (chip). Until 1994, the
only known coding efficient in computer-aided
design was Polish-Expression [1]. However, this
can only handle a limited class of placements
of the slicing structure. In 1994 Nakatake, Fu-
jiyoshi, Murata, and Kajitani [2] and Murata,
Fujiyoshi, Nakatake, and Kajitani [3] were finally
successful to answer this long-standing problem
in two contrasting ways. Their code names are
Bounded-Sliceline-Grid (BSG) for floorplanning
and Sequence-Pair (SP) for placement.

Notations

1. Floorplanning, placement, compaction, pack-
ing, layout: Often they are used as exchange-
able terms. However, they have their own
implications to be used in the following con-
text. Floorplanning concerns the design of the
plane by restricting and partitioning a given
area on which objects are able to be prop-
erly placed. Packing tries a placement with
an intention to reduce the area occupied by
the objects. Compaction supports packing by
pushing objects to the center of the placement.
The result, including other environments, is
the layout. BSG and SP are paired concepts,
the former for “floorplanning,” the latter for
“placement.”

2. ABLR-relation: The objects to be placed are
assumed rectangles in this entry though they
could be more general depending on the prob-
lem. For two objects p and q, p is said to
be above q (denoted as pAq) if the bottom
edge (boundary) of p is above the top edge
of q. Other relations with respect to “below”
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Floorplan and Placement, Fig. 1 (a) A feasible place-
ment whose ABLR-relations could be observed differ-
ently. (b) Compacted placement if ABLR-relations are
(qLr), (sAp), : : :. Its sequence-pair is SP D (qspr,pqrs)

and single-sequence is SS D (2413). (c) Compacted
placement for (qLr), (sRp), : : :. SP D (qpsr,pqrs). SS D
(2143). (d) Compacted placement if (qAr), (sAp), : : :. SP
D (qspr,prqs). SS D (3412)

(pBq), “left-of” (pLq), and “right-of” (pRq)
are analogously defined. These four relations
are generally called ABLR-relations.

A placement without mutual overlapping
of objects is said to be feasible. Trivially, a
placement is feasible if and only if every pair
of objects is in one of ABLR-relations. The
example in Fig. 1 will help these definitions.

It must be noted that a pair of objects may
satisfy two ABLR-relations simultaneously,
but not three. Furthermore, an arbitrary set
of ABLR-relations is not necessarily consis-
tent for any feasible placement. For example,
any set of ABLR-relations including relations
(pAq), (qAr), and (rAp) is not consistent.

3. Compaction: Given a placement, its bounding-
box is the minimum rectangle that encloses
all the objects. A placement of objects is
evaluated by the smallness of the bounding-
box’s area, abbreviated as the bb-area. An
ABLR-relation set is also evaluated by the
minimum bb-area of all the placements that
satisfy the set. However, given a consistent
ABLR-relation set, the corresponding
placement is not unique in general. Still,
the minimum bb-area is easily obtained by
a common technique called the “Longest-Path
Algorithm.” (See, e.g., [4].)

Consider the placement whose objects are
all inside the 1st quadrant of the xy-coordinate
system, without loss of generality with respect
to minimizing the bb-area. It is evident that if
a given ABLR-relation set is feasible, there is
an object that has no object left or below it.

Place it such that its left-bottom corner is at the
origin. From the remaining objects, take one
that has no object left of or below it. Place it as
leftward and downward as long as any ABLR-
relation with already fixed objects is not vio-
lated. See Fig. 1 to catch the concept, where
the ABLR-relation set is the one obtained the
placement in (a) (so that it is trivially feasi-
ble). It is possible to obtain different ABLR-
relation sets, according to which compaction
would produce different placements.

4. Slice-line: If it is possible to draw a straight
horizontal line or vertical line to separate the
objects into two groups, the line is said a slice-
line. If each group again has a slice-line, and
so does recursively, the placement is said to be
a slicing structure. Figure 2 shows placements
of slicing and non-slicing structures.

5. Spiral: Two structures each consisting of four
line segments connected by a T-junction as
shown in Fig. 3a are spirals. Their regular
alignment in the first quadrant as shown in
(b) is the Bounded-Sliceline-Grid or BSG. A
BSG is a floorplan, or a T-junction dissection,
of the rectangular area into rectangular regions
called rooms. It is denoted as an n 
 m BSG
if the numbers of rows and columns of its
rooms are n and m, respectively. According
to the left-bottom room being p-type or q-
type, the BSG is said to be p-type or q-type,
respectively.

In a BSG, take two rooms x and y. The ABLR-
relations between them are all that is defined by



Floorplan and Placement 763

F

a b c
No.3No.2

No.4

No.1

No.5

Floorplan and Placement, Fig. 2 (a) A placement with a slice-line. (b) A slicing structure since a slice-line can be
found in each i th hierarchy No. k.k D 1; 2; 3; 4/. (c) A placement that has no slice-line

Floorplan and
Placement, Fig. 3 (a)
Two types of the spiral
structure (b) 5 � 5 p-type
bounded-slice line-grid
(BSG)

z

q-typep-type y

x

a b

the rule: If the bottom segment of x is the top
segment of y (Fig. 3), room x is above room y.
Furthermore, Transitive Law is assumed: If “x is
above y” and “z is above x,” then “z is above y.”

Other relations are analogously defined.

Lemma 1 A room is in a unique ABLR-relation
with every other room.

An n
 n BSG has n2 rooms. A BSG-assignment
is a one-to-one mapping of n objects into the
rooms of n 
 n BSG. (n2 � n rooms remain
vacant.)

After a BSG-assignment, a pair of two ob-
jects inherits the same ABLR-relation as the
ABLR-relation defined between corresponding
rooms. In Fig. 3, if x, y, and z are the names
of objects, the ABLR-relations among them are
f(xAy), (xRz), (yBx), (yBz), (zLx), (zAy)g.

Key Results

The input is n objects that are rectangles of
arbitrary sizes. The main concern is the solution
space, the collection of distinct consistent ABLR-
relation sets, to be generated by BSG or SP.

Theorem 1 ([4, 5])

1. For any feasible ABLR-relation set, there is a
BSG-assignment into n 
 n BSG of any type
that generates the same ABLR-relation set.

2. The size n 
 n is a minimum: if the number
of rows or columns is less than n, there is a
feasible ABLR-relation set that is not obtained
by any BSG-assignment.

The proof to (1) is not trivial [5] (Appendix).
The number of solutions is n2Cn. A remarkable
feature of an n
n BSG is that any ABLR-relation
set of n objects is generated by a proper BSG-
assignment. By this property, BSG is said to be
universal [11].

In contrast to the BSG-based generation of
consistent ABLR-relation sets, SP directly im-
poses the ABLR-relations on objects.

A pair of permutations of object names, repre-
sented as .�C; ��/, is called the sequence-pair,
or SP. See Fig. 1. An SP is decoded to a unique
ABLR-relation set by the rule:

Consider a pair (x, y) of names such that x is
before y in ��. Then (xLy) or (xAy) if x is before
or after y in �C, respectively. ABLR-relations
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“B” and “R” can be derived as the inverse of “A”
and “L.” Examples are given in Fig. 1.

A remarkable feature of sequence-pair is that
its generation and decoding are both possible
by simple operations. The question is what the
solution space of all SPs is.

Theorem 2 Any feasible placement has a corre-
sponding SP that generates an ABLR-relation set
satisfied by the placement. On the other hand, any
SP has a corresponding placement that satisfies
the ABLR-relation set derived from the SP.

Using SP, a common compaction technique men-
tioned before is described in a very simple way:

Minimum Area Placement from
SP D .�C; ��/

1. Relabel the objects such that �� D

.1; 2; : : : ; n/. Then �C D .p1; p2; : : : ; pn/

will be a permutation of numbers 1; 2; : : : ; n.
It is simply a kind of normalization of SP
[6]. But Kajitani [11] considers it a concept
derived from Q-sequence [10] and studies its
implication by the name of single-sequence or
SS. In the example in Fig. 1b, p, q, r, and s are
labeled as 1, 2, 3, and 4 so that SS D .2413/.

2. Take object 1 and place it at the left-bottom
corner in the 1st quadrant.

3. For k D 2; 3; : : : ; n, place k such that its left
edge is at the rightmost edge of the objects
with smaller numbers than k and lie before k

in SS, and its bottom edge is at the topmost
edge of the objects with smaller numbers than
k and lie after k in SS.

Applications

Many ideas followed after BSG and SP [2–5]
as seen in the reference. They all applied a
common methodology of a stochastic heuristic
search, called simulated annealing, to generate
feasible placements one after another based on
some evaluation (with respect to the smallness
of the bb-area) and to keep the best-so-far as the
output. This methodology has become practical

by the speed achieved due to their simple data
structure. The first and naive implementation of
BSG [2] could output the layout of sufficiently
small area placement of 500 rectangles in several
minutes. (Finding a placement with the minimum
bb-area is NP-hard [3].) Since then many ideas
followed, including currently widely used codes
such as O-tree [7], B*-tree [8], corner block
list [9], Q-sequence [10], single-sequence [11],
and others. Their common feature is in coding
the nonoverlapping constraint along horizontal
and vertical directions, which is the inheritant
property of rectangles.

As long as applications are concerned with
the rectangle placement in the minimum area and
do not mind mutual interconnection, the problem
can be solved practically enough by BSG, SP, and
those related ideas. However, in an integrated cir-
cuit layout problem, mutual connection is a major
concern. Objects are not restricted to rectangles,
even soft objects are used for performance. Many
efforts have been devoted with a certain degree
of success. For example, techniques concerned
with rectilinear objects, rectilinear chip, insertion
of small but numerous elements like buffers and
decoupling capacitors, replacement for design
change, symmetric placement for analog circuit
design, three-dimensional placement, etc. have
been developed. Here few of them is cited but
it is recommended to look at proceedings of
ICCAD (International Conference on Computer-
Aided Design), DAC (Design Automation
Conference), ASPDAC (Asia and South Pacific
Design Automation Conference), DATE (Design
Automation and Test in Europe), and journals
TCAD (IEEE Trans. on Computer-Aided Design)
and TCAS (IEEE Trans. on Circuit and Systems),
particularly those that cover VLSI (Very Large
Scale Integration) physical design.

Open Problems

BSG

The claim of Theorem 1 that a BSG needs n rows
to provide any feasible ABLR-relation set is rea-
sonable if considering a placement of all objects
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Floorplan and
Placement, Fig. 4
Octagonal BSG of size n,
p-type: (a) If n is odd, it
has .n2 C 1/=2 rooms. (b)
If n is even, it has
.n2 C 2n/=2 rooms

a
b

aligned vertically. This is due to the rectangular
framework of a BSG. However, experiments have
been suggesting a question if from the beginning
[5] if we need such big BSGs. The octagonal
BSG is defined in Fig. 4. It is believed to hold the
following claim expecting a drastic reduction of
the solution space.

Conjecture (BSG): For any feasible ABLR-
relation set, there is an assignment of n objects
into octagonal BSG of size n, any type, that
generates the same ABLR-relation set.

If this is true, then the size of the solution
space needed by a BSG reduces to .n2C1/=2Cn or

.n2C2n/=2Cn.

SP or SS

It is possible to define the universality of SP or
SS in the same manner as defined for BSG. In
general, two sequences of arbitrary k numbers
P D .p1; p2; : : : ; pk/ and Q D .q1; q2; : : : ; qk/

are said similar with each other if ord.pi / D

ord.qi / for every i where ord.pi / D j implies
that pi is the j th smallest in the sequence. If
they are single-sequences, two similar sequences
generate the same set of ABLR-relations under
the natural one-to-one correspondence between
numbers.

An SS of length m (necessarily � n) is said
universal of order n if SS has a subsequence (a
sequence obtained from SS by deleting some of
the numbers) that is similar to any sequence of
length n. Since rooms of a BSG are considered
n2 objects, Theorem 1 implies that there is a

universal SS of order n whose length is n2. The
known facts about smaller universal SS are:

1. For n D 2; 132; 231; 213, and 312 are the
shortest universal SS. Note that 123 and 321
are not universal.

2. For n D 3; SS D 41352 is the shortest
universal SP.

3. For n D 4, the shortest length of universal SS
10 or less.

4. The size of universal SS is �.n2/ (Imahori S,
Dec 2005, Private communication).

Open Problem (SP)

It is still an open problem to characterize the
universal SP. For example, give a way to (1)
certify a sequence as universal and (2) generate
a minimum universal sequence for general n.
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Problem Definition

Shortest-job-first heuristics arise in sequencing
problems, when the goal is minimizing the
perceived latency of users of a multiuser
or multitasking system. In this problem, the
algorithm has to schedule a set of jobs on a pool
of m identical machines. Each job has a release
date and a processing time, and the goal is to
minimize the average time spent by jobs in the
system. This is normally considered a suitable
measure of the quality of service provided by
a system to interactive users. This optimization
problem can be more formally described as
follows:

Input
A set of m identical machines and a set of n jobs
1; 2; : : : ; n. Every job j has a release date rj and
a processing time pj. In the sequel, I denotes the
set of feasible input instances.

Goal
The goal is minimizing the average flow (also
known as average response) time of the jobs. Let
Cj denote the time at which job j is completed by
the system. The flow time or response time Fj of
job j is defined by Fj D Cj � rj . The goal is thus
minimizing

min
1

n

nX

j D1

Fj :

Since n is part of the input, this is equivalent to
minimizing the total flow time, i.e.,

Pn
j D1 Fj .

Off-line versus On-line
In the off-line setting, the algorithm has full
knowledge of the input instance. In particular,
for every j D 1; : : : ; n, the algorithm knows rj

and pj.
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Conversely, in the on-line setting, at any time t,
the algorithm is only aware of the set of jobs
released up to time t.

In the sequel, A and OPT denote, respectively,
the algorithm under consideration and the op-
timal, off-line policy for the problem. A(I) and
OPT(I) denote the respective costs on a specific
input instance I.

Further Assumptions in the On-line Case
Further assumptions can be made as to the algo-
rithm’s knowledge of processing times of jobs.
In particular, in this survey an important case is
considered, realistic in many applications, i.e.,
that pj is completely unknown to the on-line al-
gorithms until the job eventually completes (non-
clairvoyance) [1, 3].

Performance Metric
In all cases, as is common in combinatorial op-
timization, the performance of the algorithm is
measured with respect to its optimal, off-line
counterpart. In a minimization problem such as
those considered in this survey, the competitive
ratio �A is defined as:

�A D max
I2I

A.I /

OP T .I /
:

In the off-line case, �A is the approximation
ratio of the algorithm. In the on-line setting, �A is
known as the competitive ratio of A.

Preemption
When preemption is allowed, a job that is being
processed may be interrupted and resumed later
after processing other jobs in the interim. As
shown further, preemption is necessary to design
efficient algorithms in the framework considered
in this survey [5, 6].

Key Results

Algorithms
Consider any job j in the instance and a time t
in A’s schedule, and denote by wj(t) the amount
of time spent by A on job j until t. Denote

by xj .t/ D pj � wj .t/ its remaining processing
time at t.

The best known heuristic for minimizing the
average flow time when preemption is allowed
is shortest remaining processing time (SRPT).
At any time t, SRPT executes a pending job j
such that xj(t) is minimum. When preemption is
not allowed, this heuristic translates to shortest
job first (SJF): at the beginning of the schedule,
or when a job completes, the algorithm chooses
a pending job with the shortest processing time
and runs it to completion.

Complexity
The problem under consideration is polynomially
solvable on a single machine when preemption
is allowed [9, 10]. When preemption is allowed,
SRPT is optimal for the single-machine case. On
parallel machines, the best known upper bound
for the preemptive case is achieved by SRPT,
which was proven to be O.log min n=m; P /-
approximate [6], P being the ratio between the
largest and smallest processing times of the in-
stance. Notice that SRPT is an on-line algorithm,
so the previous result holds for the on-line case
as well. The authors of [6] also prove that this
lower bound is tight in the on-line case. In the off-
line case, no non-constant lower bound is known
when preemption is allowed.

In the non-preemptive case, no off-line algo-
rithm can be better than ˝.n1=3��/-approximate,
for every � > 0, the best upper bound being
O.
p

n=m log.n=m// [6]. The upper and lower
bound become O.

p
n/ and ˝.n1=2��/ for the

single machine case [5].

Extensions
Many extensions have been proposed to the sce-
narios described above, in particular for the pre-
emptive, on-line case. Most proposals concern
the power of the algorithm or the knowledge of
the input instance. For the former aspect, one
interesting case is the one in which the algo-
rithm is equipped with faster machines than its
optimal counterpart. This aspect has been con-
sidered in [4]. There the authors prove that even
a moderate increase in speed makes some very
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simple heuristics have performances that can be
very close to the optimum.

As to the algorithm’s knowledge of the input
instance, an interesting case in the on-line setting,
consistent with many real applications, is the non-
clairvoyant case described above. This aspect
has been considered in [1, 3]. In particular, the
authors of [1] proved that a randomized variant
of the MLF heuristic described above achieves
a competitive ratio that in the average is at most
a polylogarithmic factor away from the opti-
mum.

Applications

The first and traditional field of application for
scheduling policies is resource assignment to pro-
cesses in multitasking operating systems [11]. In
particular, the use of shortest-job-like heuristics,
notably the MLF heuristic, is documented in
operating systems of wide use, such as UNIX
and WINDOWS NT [8, 11]. Their application to
other domains, such as access to Web resources,
has been considered more recently [2].

Open Problems

Shortest-job-first-based heuristics such as those
considered in this survey have been studied in
depth in the recent past. Still, some questions
remain open. One concerns the off-line, parallel-
machine case, where no non-constant lower
bound on the approximation is known yet. As
to the on-line case, there still is no tight lower
bound for the non-clairvoyant case on parallel
machines. The current ˝.log n/ lower bound
was achieved for the single-machine case [7],
and there are reasons to believe that it is below
the one for the parallel case by a logarithmic
factor.
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Problem Definition

Given a connected undirected graph, the problem
is to determine a straight-line layout such that the
structure of the graph is represented in a readable
and unbiased way. Part of the problem is the
definition of readable and unbiased.

Formally, we are given a simple, undirected
graph G D .V; E/ with vertex set V and edge set
E �

�
V
2

�
. Let n D jV j be the number of vertices

and m D jEj the number of edges. The neighbors
of a vertex v are defined as N.v/ D fu W fu; vg 2

Eg, and deg.v/ D jN.v/j is its degree. We
assume that G is connected, for otherwise the
connected components can be treated separately.

A (two-dimensional) layout for G is a vec-
tor p D .pv/v2V of vertex positions pv D

hxy ; yvi 2 R2. Since edges are drawn as line
segments, the drawing is completely determined
by these vertex positions. All approaches in this
chapter generalize to higher-dimensional layouts,
and there are variants for various graph classes
and desired layout features; we only discuss some
of them briefly at the end.

The main idea is to make use of physical
analogies. A graph is likened to a system of
objects (the vertices) that are subject to varying
forces (derived from structural features). Forces
cause the objects to move around until those
pushing and pulling into different directions can-
cel each other out and the graph layout reaches
an equilibrium state. Equivalently, states might be
described by an energy function so that forces are
not specified directly, but derived from gradients
of the energy function.

As a reference model, consider the layout
energy function

A.p/ D
X

fu;vg2E

kpu � pvk
2 (1)

where kpu � pvk
2 D .xu � xv/2 C .yu � yv/2 is

the squared Euclidean distance of the endpoints
of edge fu; vg. It associates with a layout the sum
of squared edge lengths, so that its minimization
marks an attempt to position adjacent vertices
close to each other. Because of its straightforward
physical analogy, we refer to the minimization of
Eq. (1) as the attraction model.

Note that minimum-energy layouts of this
pure attraction model are degenerate in that all
vertices are placed in the same position, since
such layouts p are exactly those for which
A.p/ D 0 for a connected graph.

Even if it has not been the starting point of any
of the approaches sketched in the next section,
it is instructive to think of them as different
solutions to the degeneracy problem inherent in
the attraction model.

Key Results

We present force-directed layout methods as vari-
ations on the attraction model. The first two
variants retain the objective but introduce con-
straints, whereas the other two modify the objec-
tive (Fig. 1).

For the constraint-based variants, it is more
convenient to analyze the attraction model in
matrix form. A necessary condition for a (lo-
cal) minimum of any objective function is that
all partial derivatives vanish. For the attraction
model (1), this amounts to

@

@xv

A.p/ D
@

@yv

A.p/ D 0 for all v 2 V .

For any v 2 V ,

@

@xv

A.p/ D
X

u2N.v/

2.xv � xu/
Š
D 0;

and likewise for @
@yv

A.p/. The necessary condi-
tions can therefore be translated into

xv D

P
u2N.v/ xu

deg.v/
and yv D

P
u2N.v/ yu

deg.v/
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a

b c

Force-Directed Graph Drawing, Fig. 1 Three different layouts of the same planar triconnected graph. (a) Barycen-
tric. (b) Spectral. (c) Stress

for all v 2 V , i.e., every vertex must lie in
the barycenter of its neighbors. Bringing all vari-
ables to the left-hand side, we obtain a system
of linear equations whose coefficients form an
eminent graph-related matrix, the Laplacian ma-
trix L.G/ D D.G/ � A.G/, where D.G/ is
a diagonal matrix with diagonal entries deg.v/,
v 2 V , and A.G/ is the adjacency matrix of G.
The entries of L D L.G/ D .`uv/u;v2V are thus

`uv D

8
<̂

:̂

deg.v/ if u D v

�1 if u ¤ v and fu; vg 2 E

0 otherwise:

so that the optimality conditions can be written as

L � p D 0; (2)

where 0 is an n
 2-matrix of zeros. As discussed
above, the solutions to this system of linear equa-
tions are given by those layouts p in which all x-
and all y-coordinates are identical.

Fixed Boundary
An intuitive approach to prevent attraction from
collapsing an entire graph onto a single point is
to grab a few of its vertices and drag them apart.
Technically, this corresponds to constraining
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the layout by fixing select vertices to distinct
positions.

Let B � V be a nonempty subset of boundary
vertices for which positions Opv D h Oxv; Oyvi,
v 2 B are pre-specified. A layout is called
barycentric (with respect to these constraints) if
it satisfies

pv D

(
Opv if v 2 B

1
deg.v/

P
u2N.v/ pu otherwise:

We next show that the solution of the attrac-
tion model with a proper boundary constraint is
unique by showing that the reduced system of
linear equations has a coefficient matrix with a
nonzero determinant. Let LB denote the matrix
obtained by striking out the rows and columns of
L indexed by B . Then, a barycentric layout is a
solution of

LB � pV nB D

0

@
X

u2N.v/\B

Opu

1

A

V nB

: (3)

Different from the pure attraction model, the
barycentric model (with a nondegenerate bound-
ary) has a nondegenerate solution that is uniquely
defined. Recall that a system of linear equations
has a unique solution if and only if the determi-
nant of its matrix of coefficients is positive. The
Matrix Tree Theorem [9] asserts that the deter-
minant of every principal minor of a Laplacian
matrix equals the number of spanning trees of
its associated multigraph, and LB is a principal
minor of the Laplacian of the graph obtained
from G by contracting the vertices in B . Since
this graph has at least one spanning tree, the
determinant of LB is positive and the solution
of (3) is thus unique.

The barycentric approach was introduced in
Tutte [15]. The main result shown in this paper is,
in fact, that barycentric layouts of a triconnected
planar graph with one face constrained to a con-
vex polygon are planar. For the purpose of graph
drawing, less desirable properties are exponen-
tially small resolution of angles and edge lengths
as evidenced by a family of triangular graphs
obtained by starting from a triangle and adding

vertices adjacent to the same two initial ver-
tices and the most recently added one. For non-
triconnected graphs, degenerate subgraph layouts
are possible because components lacking bound-
ary vertices are mapped to a line if between a
separation pair, or to a point if hinging on a cut
vertex.

Orthogonality
Barycentric layouts are systematically biased by
the choice of boundary. An alternative constraint
avoiding the single-point collapse is to constrain
the coordinate vector of each dimension to be
orthogonal to the degenerate layout.

Observe that the one-dimensional version of
Eq. (2) can also be read as a special case of the
eigenequation Lx D x, since  D 0 is, in fact,
an eigenvalue of L associated with eigenvector
x D 1. The Laplacian of a simple undirected
graph is a real, symmetric, and positive semi-
definite matrix so that the eigenvalues are real and
nonnegative, and eigenvectors associated with
different eigenvalues are orthogonal.

Rearranging the eigenequation yields  D
xT Lx
xT x

, where xT x only normalizes for scale.
Since xT Lx D A.x/, eigenvectors x ? y associ-
ated with the smallest positive eigenvalues yield
the best layout in the attraction model subject to
orthogonality also with the degenerate layout 1.
Note that 1 ? x implies that the average of all
coordinates xv is zero, so that the layouts are
centered on the origin.

Spectral drawings based on the Laplacian have
been proposed by Hall [7], but can be also be
defined via other matrices [11]. It is interesting
to note that Laplacian spectral layout corresponds
to classical multidimensional scaling using the
square root of effective resistance as a measure
of distance between vertices. While spectral lay-
outs display symmetries, they are highly cluttered
and imbalanced for graphs of low algebraic con-
nectivity as measured by their smallest positive
eigenvalue.

Distances
The terms in the objective function of the at-
traction model correspond to the potential energy
of a spring with ideal length zero. To avoid
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collapse, one can thus replace them by springs
of some nonzero ideal length. While this takes
care of the adjacent pairs of vertices, vertices that
are more than one edge away from each other
can be connected by springs of different length,
say proportional to their shortest-path distance.
Down-weighting the influence of distant pairs,
we obtain the stress-minimization model with
objective

S.p/D
X

u;v2V

1

d.u; v/2
.kpu�pvk�d.u; v//2 ;

constituting another special case of MDS [12]
with graph-theoretic distances d.u; v/ as input
and inverse quadratic weights. This instantiation
has been proposed as a graph drawing method
by Kamada and Kawai [8] using gradient descent
to determine locally optimal layouts. The use of
majorization [13] was shown to be superior by
Gansner, Koren, and North [6]. A comprehensive
survey of variant layout objective functions is
given in Chen and Buja [3].

Repulsion
Instead of springs with nonzero ideal length,
a dual physical analogy motivates another ap-
proach to counter the collapse caused by attrac-
tion, namely, repulsion.

The classic spring embedder of Eades [4]
specifies forces rather than an energy function.
While there is a logarithmic force log kpu�pvk

l
�

.pu�pv/ between adjacent vertices that is neutral
if their distance equals a desired value l , nonadja-
cent vertices push each other apart with quadrati-
cally with .pu�pv/

kpu�pvk
. Both forces are up to scaling

constants. A layout is obtained by iteratively
evaluating the forces exerted on a vertex by all
others and then moving it in the direction of the
resulting force, until an approximate equilibrium
is obtained.

Many, many variants of the spring embedder
have been proposed. The most widely used from
Fruchterman and Reingold [5] replaces the forces
by quadratically declining repulsion between all
pairs of vertices and additional quadratic attrac-
tion between adjacent pairs and also introduces

several pragmatic improvements. Brandes and
Pich [2] find that suitably initialized stress MDS
yields superior results, though.

More force-directed methods are surveyed in
Brandes [1] and Kobourov [10], and forces have
been used very creatively to realize different
layout objectives such as common direction of
edges, edge curvatures, angles between incident
edges, preferred locations, and many more. A
relation with graph clustering is pointed out in
Noack [14].
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Problem Definition

Introduction
Field-programmable gate array (FPGA) is a
type of integrated circuit (IC) device that can
be (re)programmed to implement custom logic
functions. A majority of FPGA devices use
lookup table (LUT) as the basic logic element,
where a LUT of K logic inputs (K-LUT)
can implement any Boolean function of up
to K variables. An FPGA also contains other
logic elements, such as registers, programmable
interconnect resources, dedicated logic resources
such as memory blocks and digital signal
processing (DSP) blocks, and input/output
resources [6].

The programming of an FPGA involves the
transformation of a logic design into a form
suitable for implementation on the target FPGA

device. This generally takes multiple steps. For
LUT-based FPGAs, technology mapping is to
transform a general Boolean logic network (ob-
tained from the design specification through ear-
lier transformations) into a functionally equiva-
lent K-LUT network that can be implemented
by the target FPGA device. The objective of
a technology mapping algorithm is to generate,
among many possible solutions, an optimized
one according to certain criteria, some of which
are timing optimization, which is to make the
resultant implementation operable at faster speed;
area minimization, which is to make the resultant
implementation compact in size; and power min-
imization, which is to make the resultant imple-
mentation low in power consumption. The algo-
rithm presented here, named FlowMap [2], is for
timing optimization; it was the first provably op-
timal polynomial time algorithm for technology
mapping problems on general Boolean networks,
and the concepts and approach it introduced have
since generated numerous useful derivations and
applications.

Data Representation and Preliminaries
The input data to a technology mapping algo-
rithm for LUT-based FPGA is a general Boolean
network, which can be modeled as a direct acyclic
graph N D .V; E/. A node v 2 V can either
represent a logic signal source from outside of
the network, in which case it has no incoming
edge and is called a primary input (PI) node, or
it can represent a logic gate, in which case it
has incoming edge(s) from PIs and/or other gates,
which are its logic input(s). If the logic output of
the gate is also used outside of the network, its
node is a primary output (PO), which can have
no outgoing edge if it is only used outside.

If edge hu; vi 2 E; u is said to be a fanin of
v and v a fanout of u. For a node v; input.v/

denotes the set of its fanins; similarly, for a
subgraph H; input.H/ denotes the set of distinct
nodes outside of H that are fanins of nodes in H .
If there is a direct path in N from a node u to
a node v; u is said to be a predecessor of v and
v a successor of u. The input network of a node
v, denoted Nv , is the subgraph containing v and
all of its predecessors. A cone of a non-PI node
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v, denoted Cv , is a subgraph of Nv containing
v and possibly some of its non-PI predecessors,
such that for any node u 2 Cv , there is a path
from u to v in Cv . If jinput.Cv/j � K; Cv is
called a K-feasible cone. The network N is K-
bounded if every non-PI node has a K-feasible
cone. A cut of a non-PI node v is a bipartition
.X; X 0/ of nodes in Nv such that X 0 is a cone
of v; input.X 0/ is called the cut-set of .X; X 0/

and n.X; X 0/ D jinput.X 0/j the size of the cut.
If n.X; X 0/ � K; .X; X 0/ is a K-feasible cut. The
volume of .X; X 0/ is vol.X; X 0/ D jX 0j.

A topological order of the nodes in the net-
work N is a linear ordering of the nodes in which
each node appears after all of its predecessors
and before any of its successors. Such an order
is always possible for an acyclic graph.

Problem Formulation
A K-cover of a given Boolean network N is a
network NM D .VM ; EM /, where VM consists
of the PI nodes of N and some K-feasible cones
of nodes in N , such that for each PO node v of
N , VM contains a cone Cv of v; and if Cu 2 VM ,
then for each non-PI node v 2 input.Cu/, VM

also contains a cone Cv of v. Edge hu; Cvi 2

EM if and only if PI node u 2 input.Cv/;
edge hCu; Cvi 2 EM if and only if non-PI node
u 2 input.Cv/. Since each K-feasible cone
can be implemented by a K-LUT, a K-cover
can be implemented by a network of K-LUTs.
Therefore, the technology mapping problem for

K-LUT based FPGA, which is to transform N

into a network of K-LUTs, is to find a K-cover
NM of N .

The depth of a network is the number of edges
in its longest path. A technology mapping solu-
tion NM is depth optimal if among all possible
mapping solutions of N it has the minimum
depth. If each level of K-LUT logic is assumed
to contribute a constant amount of logic delay
(known as the unit delay model), the minimum
depth corresponds to the smallest logic propaga-
tion delay through the mapping solution, or in
other words, the fastest K-LUT implementation
of the network N . The problem solved by the
FlowMap algorithm is depth-optimal technology
mapping for K-LUT based FPGAs.

A Boolean network that is not K-bounded
may not have a mapping solution as defined
above. To make a network K-bounded, gate
decomposition may be used to break larger
gates into smaller ones. The FlowMap algorithm
applies, as preprocessing, an algorithm named
DMIG [3] that converts all gates into 2-input
ones in a depth-optimal fashion, thus making
the network K-bounded for K � 2. Different
decomposition schemes may result in different
K-bounded networks and consequently different
mapping solutions; the optimality of FlowMap
is with respect to a given K-bounded network
Fig. 1 illustrates a Boolean network, its DAG, a
covering with 3-feasible cones, and the resultant
3-LUT network. As illustrated, the cones in

A Boolean Network A 3-Cover of the DAG 3-LUT Mapping

PI

Its DAG

PO Internal

FPGA Technology Mapping, Fig. 1 A Boolean network, its DAG. a 3-feasible cone covering, and a 3-LUT mapping
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the covering may overlap; this is allowed and
often beneficial. (When the mapped network is
implemented, the overlapped portion of logic
will be replicated into each of the K-LUTs that
contain it)

Key Results

The FlowMap algorithm takes a two-phase ap-
proach. In the first phase, it determines for each
non-PI node a preferred K-feasible cone as a can-
didate for the covering; the cones are computed
such that if used, they will yield a depth-optimal
mapping solution. This is the central piece of
the algorithm. In the second phase, the cones
necessary to form a cover are chosen to generate
a mapping solution.

Structure of Depth-Optimal K-Covers
Let M.v/ denote a K-cover (or equivalently, K-
LUT mapping solution) of the input network Nv

of v. If v is a PI, M.v/ consists of v itself. (For
simplicity, in the rest of the article, M.v/ shall be
referred as a K-cover of v.) With that defined, first
there is

Lemma 1 If Cv is the K-feasible cone of v in a
K-cover M.v/, then M.v/ D fCvg C [fM.u/ W

u 2 input.Cv/g where M.u/ is a certain K-cover
of u. Conversely, if Cv is a K-feasible cone of v,
and for each u 2 input.Cv/; M.u/ a K-cover of
u, then M.v/ D fCvgC[fM.u/ W u 2 input.Cv/g

is a K-cover of v.

In other words, a K-cover of a node consists
of a K-feasible cone of the node and a K-cover
of each input of the cone. Note that for u1 2

input.Cv/; u2 2 input.Cv/; M.u1/ and M.u2/

may overlap, and an overlapped portion may or
may not be covered the same way; the union
above includes all distinct cones from all parts.
Also note that for a given Cv , there can be
different K-covers of v containing Cv , varying
by the choice of M.u/ for each u 2 input.Cv/.

Let d.M.v// denote the depth of M.v/. Then

Lemma 2 For K-cover M.v/ D fCvg C

[fM.u/ W u 2 input.Cv/g;

d.M.v// D maxfd.M.u// W u 2 input.Cv/gC1:

In particular, let M �.u/ denote a K-cover
of u with minimum depth, then d.M.v// �

maxfd.M �.u// W u 2 input.Cv/g C 1; the
equality holds when every M.u/ in M.v/ is of
minimum depth.

Recall that Cv defines a K-feasible cut
.X; X 0/ where X 0 D Cv; X D Nv � Cv . Let
H.X; X 0/ denote the height of the cut .X; X 0/,
defined as H.X; X 0/ D maxfd.M �.u// W u 2
input.X 0/g C 1. Clearly, H.X; X 0/ gives the
minimum depth of any K-cover of v containing
Cv D X 0. Moreover, by properly choosing
the cut, H.X; X 0/ height can be minimized,
which leads to a K-cover with minimum
depth:

Theorem 1 If K feasible cut .X; X 0/ of v has the
minimum height among all K-feasible cuts of v,
then the K-cover M �.v/ D fX 0g C [fM �.u/ W

u 2 input.X 0/g is of minimum depth among all
K-covers of v.

That is, a minimum height K-feasible cut
defines a minimum depth K-cover. So the cen-
tral task for depth-optimal technology mapping
becomes the computation of a minimum height
K-feasible cut for each PO node.

By definition, the height of a cut depends
on the (depths of) minimum depth K-covers of
nodes in Nv � fvg. This suggests a dynamic
programming procedure that follows topological
order, so that when the minimum depth K-cover
of v is to be determined, a minimum depth K-
cover of each node in Nv � fvg is already known
and the height of a cut can be readily determined.
This is how the first phase of the FlowMap
algorithm is carried out.

Minimum Height K-Feasible Cut
Computation
The first phase of FlowMap was originally called
the labeling phase, as it involves the computation
of a label for each node in the K-bounded graph.
The label of a non-PI node v, denoted l.v/, is
defined as the minimum height of any cut of
v. For convenience, the labels of PI nodes are
defined to be 0.
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The so-defined label has an important mono-
tonic property.

Lemma 3 Let p D maxfl.u/ W u 2

input.v/g; then p � l.v/ � p C 1.

Note that this also implies that for any node
u 2 Nv � fvg; l.u/ � p. Based on this, in order
to find a minimum height K-feasible cut, it is
sufficient to check if there is one of height p; if
not, then any K-feasible cut will be of minimum
height .p C 1/, and one always exists for a K-
bounded graph.

The search for a K-feasible cut of a height
p .p > 0Ip D 0 is trivial) in FlowMap is done
by transforming Nv into a flow network Fv and
computing a network flow [5] on it (hence the
name). The transformation is as follows. For each
node u 2 Nv � fvg; l.u/ < p; Fv has two nodes
u1 and u2, linked by a bridge edge hu1; u2iIFv

has a single sink node t for all other nodes in
Nv , and a single source node s. For each PI node
u of Nv , which corresponds to a bridge edge
hu1; u2iinFv; Fv contains edge hs; u1iI for each
edge hu; wi in Nv , if both u and w have bridge
edges in Fv , then Fv contains edge hu2; w1i; if
u has a bridge edge but w does not, Fv con-
tains edge hu2; ti; otherwise (neither has bridge)
no corresponding edge is in Fv . The bridging
edges have unit capacity; all others have infinite
capacity. Noting that each edge in Fv with fi-
nite (unit) capacity corresponds to a node u 2
Nv with l.u/ < p and vice versa, and according
to the max-flow min-cut theorem [5], it can be
shown that.

Lemma 4 Node v has a K-feasible cut of height
p if and only if Fv has a maximum network flow
of size no more than K.

On the flow network Fv , a maximum flow
can be computed by running the augmenting
path algorithm [5]. Once a maximum flow is
obtained, the residual graph of the flow network
is disconnected, and the corresponding min-cut
.X; X 0/ can be identified as follows: v 2 X 0; for
u 2 Nv � fvg, if it is bridged in Fv , and u1 can
be reached in a depth-first search of the residual
graph from s, then u 2 X ; otherwise u 2 X 0.

Note that as soon as the flow size exceeds K,
the computation can stop, knowing there will not
be a desired K-feasible cut. In this case, one can
modify the flow network by bridging all nodes in
Nv � fvg allowing the inclusion of nodes u with
l.u/ D p in the cut computation, and find a K-
feasible cut with height p C 1 the same way.

An augmenting path is found in linear time to
the number of edges, and there are at most K aug-
mentations for each cut computation. Applying
the algorithm to every node in topological order,
one would have the following result.

Theorem 2 In a K-bounded Boolean network
of n nodes and m edges, the computation of a
minimum height K-feasible cut for every node
can be completed in O.Kmn/ time.

The cut found by the algorithm has another
property:

Lemma 5 The cut .X; X 0/ computed as above is
the unique maximum volume min-cut; moreover,
if .Y; Y 0/ is another min-cut, then Y 0 � X 0.

Intuitively, a cut of larger volume defines a
larger cone which covers more logic, therefore a
cut of larger volume is preferred. Note however
that Lemma 5 only claims maximum among min-
cuts; if n.X; X 0/ < K, there can be other cuts
that are still K-feasible but with larger cut size
and larger cut volume. A post-processing algo-
rithm used by FlowMap tries to grow .X; X 0/ by
collapsing all nodes in X 0, plus one or more in the
cut-set, into the sink, and repeat the flow compu-
tation; this will force a cut of larger volume, an
improvement if it is still K-feasible.

K-Cover Construction
Once minimum height K-feasible cuts have been
computed for all nodes, each node v has a K-
feasible cone Cv defined by its cut, which has
minimum depth. From here, constructing the K-
cover NM D .VM ; EM / is straight-forward.
First, the cones of all PO nodes are included in
VM . Then, for any cone Cv 2 VM , cone Cu for
each non-PI node u 2 input .Cv/ is also included
in VM ; so is every PI node u 2 input.Cv/.
Similarly, an edge hCu; Cvi 2 EM for each non-
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PI node u 2 input.Cv/I an edge hu; Cvi 2 EM

for each PI node u 2 input.Cv/.

Lemma 6 The K-cover constructed as above is
depth optimal.

This is a linear time procedure, therefore

Theorem 3 The problem of depth-optimal tech-
nology mapping for K-LUT based FPGAs on a
Boolean network of n nodes and m edges can be
solved in O.Kmn/ time.

Applications

The FlowMap algorithm has been used as a
centerpiece or a framework for more complicated
FPGA logic synthesis and technology mapping
algorithms. There are many possible variations
that can address various needs in its applications.
Some are briefed below; details of such varia-
tions/applications can be found in [1, 3].

Complicated Delay Models
With minimal change, the algorithm can be ap-
plied where non-unit delay model is used, allow-
ing delay of the nodes and/or the edges to vary,
as long as they are static. Dynamic delay models,
where the delay of a net is determined by its
post-mapping structure, cannot be applied to the
algorithm. In fact, delay-optimal mapping under
dynamic delay models is NP-hard [3].

Complicated Architectures
The algorithm can be adapted to FPGA architec-
tures that are more sophisticated than homoge-
neous K-LUT arrays. For example, mapping for
FPGA with two LUT sizes can be carried out by
computing a cone for each size and dynamically
choosing the best one.

Multiple Optimization Objectives
While the algorithm is for delay minimization,
area minimization (in terms of the number of
cones selected) as well as other objectives can
also be incorporated, by adapting the criteria for
cut selection. The original algorithm considers
area minimization by maximizing the volume of
the cuts; substantially, more minimization can be
achieved by considering more K-feasible cuts

and making smart choices to, e.g., increase shar-
ing among input networks, allow cuts of larger
heights along no-critical paths, etc. [4] Achieving
area optimality, however, is NP-hard [3].

Integration with Other Optimizations
The algorithm can be combined with other types
of optimizations, including retiming, logic resyn-
thesis, and physical synthesis.
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Problem Definition

This entry presents results on fast algorithms
that produce approximate solutions to problems
which can be formulated as linear programs (LP)
and therefore can be solved exactly, albeit with
slower running times. The general format of the
family of these problems is the following: Given
a set of m inequalities on n variables, and an
oracle that produces the solution of an appro-
priate optimization problem over a convex set
P 2 R

n, find a solution x 2 P that satisfies
the inequalities, or detect that no such x exists.
The basic idea of the algorithm will always be
to start from an infeasible solution x, and use
the optimization oracle to find a direction in
which the violation of the inequalities can be
decreased; this is done by calculating a vector
y that is a dual solution corresponding to x.
Then, x is carefully updated towards that direc-
tion, and the process is repeated until x becomes
“approximately” feasible. In what follows, the
particular problems tackled, together with the
corresponding optimization oracle, as well as the
different notions of “approximation” used are
defined.

• The fractional packing problem and its ora-
cle are defined as follows:

PACKING: Given an m � n matrix A, b > 0,
and a convex set P in R

n such that
Ax�0, 8x 2 P , is there x 2 P such
that Ax � b?

PACK_ORACLE: Given m-dimensional vector y �
0 and P as above, return Nx WD
arg minfyTAx W x 2 P g.

• The relaxed fractional packing problem and
its oracle are defined as follows:

RELAXED PACKING: Given " > 0, an m � n matrix A,
b > 0, and convex sets P and OP
in R

n such that P � OP and Ax �
0, 8x 2 OP , find x 2 OP such that
Ax � .1 C "/b, or show that Àx 2
P such that Ax � b.

REL_PACK_ORACLE: Given m-dimensional vector y �

0 and P , OP as above, return Nx 2
OP such that yTA Nx � minfyTAx W

x 2 P g.

• The fractional covering problem and its ora-
cle are defined as follows:

COVERING: Given an m � n matrix A, b > 0, and
a convex set P in R

n such that Ax �
0, 8x 2 P , is there x 2 P such that
Ax � b?

COVER_ORACLE: Given m-dimensional vector y �
0 and P as above, return Nx WD
arg maxfyTAx W x 2 P g.

• The simultaneous packing and covering
problem and its oracle are defined as follows:

SIMULTANEOUS

PACKING AND

COVERING:

Given Om�n and .m� Om/�n matrices
OA, A respectively, b > 0 and Ob > 0,

and a convex set P in R
n such that

Ax � 0 and OAx � 0, 8x 2 P , is
there x 2 P such that Ax � b, and
OAx � Ob?

SIM_ORACLE: Given P as above, a constant �
and a dual solution .y; Oy/, return
Nx 2 P such that A Nx � vb,
and yTA Nx �

P

i2I.v; Nx/

Oyi Oai Nx D

minfyTAx �
P

i2I.v;x/

Oyi Oai x W

x a vertex of P such that Ax � vbg,
where I.v; x/ WD fi W Oai x � vbi g.
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• The general problem and its oracle are de-
fined as follows:

GENERAL: Given an m � n matrix A, an arbitrary
vector b, and a convex set P in R

n, is
there x 2 P such that Ax � b,?

GEN_ORACLE: Given m-dimensional vector y � 0 and
P as above, return Nx WD arg minfyTAx W
x 2 P g.

Definitions and Notation

For an error parameter " > x0, a point x 2 P

is an "-approximation solution for the fractional
packing (or covering) problem if Ax � .1 C

"/b (or Ax � .1 � "/b/. On the other hand,
if x 2 P satisfies Ax � b (or Ax � b),
then x is an exact solution. For the GENERAL

problem, given an error parameter " > 0 and
a positive tolerance vector d , x 2 P is an "-
approximation solution if Ax � b C "d and an
exact solution if Ax � b. An "-relaxed decision
procedure for these problems either finds an "-
approximation solution or correctly reports that
no exact solution exists. In general, for a min-
imization (maximization) problem, an .1 C "/-
approximation (.1�"/-approximation) algorithm
returns a solution at most .1C"/ (at least .1�"/)
times the optimal.

The algorithms developed work within time
that depends polynomially on "�1, for any error
parameter " > 0. Their running time will also
depend on the width � of the convex set P relative
to the set of inequalities Ax � b or Ax � b

defining the problem at hand. More specifically,
the width � is defined as follows for each one of
the problems considered here:

• PACKING: � WD maxi maxx2P
ai x
bi

.
• RELAXED PACKING: O� WD maxi max

x2 OP
ai x
bi

.
• COVERING: � WD maxi maxx2P

ai x
bi

.
• SIMULTANEOUS PACKING AND COVER-

ING: � WD maxx2P maxfmaxi
ai x
bi

; maxi

Oai x

Obi

g.

• GENERAL: � WD maxi maxx2P
jai x�bi j

di
C 1,

where d is the tolerance vector defined above.

Key Results

Many of the results below were presented in [8]
by assuming a model of computation with exact
arithmetic on real numbers and exponentiation in
a single step. But, as the authors mention [8],
they can be converted to run on the RAM model
by using approximate exponentiation, a version
of the oracle that produces a nearly optimal
solution, and a limit on the numbers used that
is polynomial in the input length similar to the
size of numbers used in exact linear programming
algorithms. However, they leave as an open prob-
lem the construction of "-approximate solutions
using polylogarithmic precision for the general
case of the problems they consider (as can be
done, e.g., in the multicommodity flow case [4]).

Theorem 1 For 0 < " � 1, there is a determinis-
tic "-relaxed decision procedure for the fractional
packing problem that uses O."�2� log.m"�1//

calls to PACK_ORACLE, plus the time to compute
Ax for the current iterate x between consecutive
calls.

For the case of P being written as a
product of smaller-dimension polytopes, i.e.,
P D P 1 
 : : : 
 P k , each P l with width

�l

 

obviously� �
P

l

�l

!

, and a separate

PACK_ORACLE for each P l ,Al , then ran-
domization can be used to potentially speed
up the algorithm. By using the notation
PACK_ORACLEl for the P l ,Al oracle, the
following holds:

Theorem 2 For 0 < " � 1, there is a
randomized "-relaxed decision procedure for the
fractional packing problem that is expected to use

O

 

"�2

 
P

l

�l

!

log.m"�1/C k log.�"�1/

!

calls to PACK_ORACLEl for some l 2

f1; : : : ; kg (possibly a different l in every
call), plus the time to compute

P

l

Alxl for the
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current iterate x D .x1; x2; : : : ; xk/ between
consecutive calls.

Theorem 2 holds for RELAXED PACKING as
well, if � is replaced by O� and PACK_ORACLE by
REL_PACK_ORACLE.

In fact, one needs only an approximate version
of PACK_ORACLE. Let CP.y/ be the minimum
cost yTAx achieved by PACK_ORACLE for a
given y.

Theorem 3 Let PACK_ORACLE be replaced by
an oracle that, given vector y � 0, finds a point
Nx 2 P such that yTA Nx � .1 C "=2/CP.y/ C

."=2/yTb, where œ is minimum so that Ax �

b is satisfied by the current iterate x. Then,
Theorems 1 and 2 still hold.

Theorem 3 shows that even if no efficient im-
plementation exists for an oracle, as in, e.g., the
case when this oracle solves an NP-hard problem,
a fully polynomial approximation scheme for it
suffices.

Similar results can be proven for the fractional
covering problem (COVER_O rACLEl is
defined similarly to PACK_ORACLEl

above):

Theorem 4 For 0 < " < 1, there is a determinis-
tic "-relaxed decision procedure for the fractional
covering problem that uses O.m C � log2 m C

"�2� log.m"�1// calls to COVER_ORACLE, plus
the time to compute Ax for the current iterate x

between consecutive calls.

Theorem 5 For 0 < " < 1, there is
a randomized "-relaxed decision procedure
for the fractional packing problem that is

expected to use O

 

mk C

�
P

i

�l

	

log2 m C

k log "�1 C "�2

 
P

l

�l

!

log.m"�1/

!

calls to

COVER_ORACLEl for some l 2{1,. . . ,k}
(possibly a different l in every call), plus the
time to compute

P

l

Alxl for the current iterate

x D .x1; x2; : : : ; xk/ between consecutive calls.

Let CC.y/ be the maximum cost yTAx
achieved by COVER_ORACLE for a given y.

Theorem 6 Let COVER_ORACLE be replaced
by an oracle that, given vector y � 0, finds a
point Nx 2 P such that yTA Nx � .1�"=2/CC.y/�

."=2/yTb, where œ is maximum so that Ax�
b is satisfied by the current iterate x. Then,
Theorems 4 and 5 still hold.

For the simultaneous packing and covering
problem, the following is proven:

Theorem 7 For 0 < " � 1, there is a random-
ized "-relaxed decision procedure for the simul-
taneous packing and covering problem that is ex-
pected to use O.m2.log2 �/"�2 log."�1m log �//

calls to SIM_ORACLE, and a deterministic ver-
sion that uses a factor of log � more calls, plus
the time to compute OAx for the current iterate x

between consecutive calls.

For the GENERAL problem, the following is
shown:

Theorem 8 For 0 < " < 1, there is
a deterministic "-relaxed decision proce-
dure for the GENERAL problem that uses
O."�2�2 log.m�"�1// calls to GEN_ORACLE,
plus the time to compute Ax for the current iterate
x between consecutive calls.

The running times of these algorithms are pro-
portional to the width �, and the authors devise
techniques to reduce this width for many special
cases of the problems considered. One example
of the results obtained by these techniques is
the following: If a packing problem is defined
by a convex set that is a product of k smaller-
dimension convex sets, i.e., P D P 1 
 : : :
P k ,
and the inequalities

P

l

Alxl � b, then there is

a randomized "-relaxed decision procedure that
is expected to use O."�2k log.m"�1/C k log k/

calls to a subroutine that finds a minimum-cost
point in OP l D fxl 2 P l W Alxl � bg,
l D 1; : : : ; k and a deterministic version that uses
O."�2k2 log.m"�1// such calls, plus the time
to compute Ax for the current iterate x between
consecutive calls. This result can be applied to the
multicommodity flow problem, but the required
subroutine is a single-source minimum-cost flow
computation, instead of a shortest-path calcula-
tion needed for the original algorithm.
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Applications

The results presented above can be used in order
to obtain fast approximate solutions to linear pro-
grams, even if these can be solved exactly by LP
algorithms. Many approximation algorithms are
based on the rounding of the solution of such pro-
grams, and hence one might want to solve them
approximately (with the overall approximation
factor absorbing the LP solution approximation
factor), but more efficiently. Two such examples,
which appear in [8], are mentioned here.

Theorems 1 and 2 can be applied for
the improvement of the running time of the
algorithm by Lenstra, Shmoys, and Tardos
[5] for the scheduling of unrelated parallel
machines without preemption (RjjCmax): N

jobs are to be scheduled on M machines,
with each job i scheduled on exactly one
machine j with processing time pij , so that the
maximum total processing time over all machines
is minimized. Then, for any fixed r > 1,
there is a deterministic .1 C r/-approximation
algorithm that runs in O.M 2N log2 N log M/

time and a randomized version that runs
in O.MN log M log N / expected time. For
the version of the problem with preemption,
there are polynomial-time approximation
schemes that run in O.MN 2 log2 N / time
and O.MN log N log M/ expected time in the
deterministic and randomized case, respectively.

A well-known lower bound for the metric
Traveling Salesman Problem (metric TSP) on N

nodes is the Held-Karp bound [2], which can be
formulated as the optimum of a linear program
over the subtour elimination polytope. By using
a randomized minimum-cut algorithm by Karger
and Stein [3], one can obtain a randomized
approximation scheme that computes the Held-
Karp bound in O.N 4 log6 N / expected time.

Open Problems

The main open problem is the further reduction
of the running time for the approximate solution
of the various fractional problems. One direction
would be to improve the bounds for specific

problems, as has been done very successfully
for the multicommodity flow problem in a series
of papers starting with Shahrokhi and Matula
[9]. Currently, the best running times for several
versions of the multicommodity flow problems
are achieved by Madry [6]. Shahrokhi and Matula
[9] also led to a series of results by Grigoriadis
and Khachiyan developed independently to [8],
starting with [1] which presents an algorithm with
a number of calls smaller than the one in Theorem
1 by a factor of log.m"�1/= log m. Considerable
effort has been dedicated to the reduction of the
dependence of the running time on the width
of the problem or the reduction of the width
itself (e.g., see [10] for sequential and parallel
algorithms for mixed packing and covering), so
this can be another direction of improvement.

A problem left open by [8] is the development
of approximation schemes for the RAM model
that use only polylogarithmic in the input length
precision and work for the general case of the
problems considered.
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Problem Definition

This problem is to enumerate all subgraphs ap-
pearing with frequencies not less than a threshold
value in a given graph data set. Let G.V; E; L; `/

be a labeled graph where V is a set of vertices,

E � V 
V a set of edges, L a set of labels and ` W

V [E ! L a labeling function. A labeled graph
g.v; e; L; `/ is a subgraph of G.V; E; L; `/, i.e.,
g v G, if and only if a mapping f W v ! V

exists such that 8ui 2 v; f .ui / 2 V , `.ui / D

`.f .ui //, and 8.ui ; uj / 2 e; .f .ui /; f .uj // 2

E, `.ui ; uj / D `.f .ui /; f .uj //. Given a graph
data set D D fGi ji D 1; : : : ; ng, a support of
g in D is a set of all Gi involving g in D, i.e.,
D.g/ D fGi jg v Gi 2 Dg. Under a given
threshold frequency called a minimum support
minsup > 0, g is said to be frequent, if the
size of D.g/ i.e., jD.g/j, is greater than or equal
to minsup. Generic frequent graph mining is
a problem to enumerate all frequent subgraphs
g of D, while most algorithms focus on con-
nected and undirected subgraphs. Some focus on
induced subgraphs or limit the enumeration to
closed frequent subgraphs where each of them
is maximal in the frequent subgraphs having an
identical support.

Key Results

Study of the frequent graph mining was
initiated in the mid-1990s under motivation
to analyze complex structured data acquired
and accumulated in our society. Their major
issue has been principles to efficiently extract
frequent subgraphs embedded in a given graph
data set. They invented many original canonical
graph representations adapted to the data-
driven extraction, which are different from these
proposed in studies of efficient isomorphism
checking [1] and graph enumeration without
duplications [2].

Pioneering algorithms of frequent graph min-
ing, SUBDUE [3] and GBI [4], did not solve
the aforementioned standard problem but greed-
ily extracted subgraphs concisely describing the
original graph data under some measures such as
minimum description length (MDL). The earliest
algorithms for deriving a complete set of the
frequent subgraphs are WARMR [5] and its ex-
tension FARMER [6]. They can flexibly focus on
various types of frequent subgraphs for the enu-
meration by applying inductive logic program-
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ming (ILP) in artificial intelligence, while they
are not very scalable in the size of the enumerated
subgraphs.

AGM proposed in 2000 [7, 8] was an epoch-
making study in the sense that it combined fre-
quent item set mining [9] and the graph enu-
meration and enhanced the scalability for prac-
tical applications. It introduced technical strate-
gies of (1) incremental candidate enumeration
based on anti-monotonicity of the subgraph fre-
quency, (2) canonical graph representation to
avoid duplicated candidate subgraph extractions,
and (3) data-driven pruning of the candidates
by the minimum support. The anti-monotonicity
is a fundamental nature of the subgraph fre-
quency that jD.g1/j � jD.g2/j for any sub-
graphs g1 and g2 in D if g2 v g1. Dozens
of frequent graph mining algorithms have been
studied along this line after 2000. In the rest
of this entry, gSpan [10] and Gaston [11], con-
sidered to be the most efficient up to date, are
explained.

gSpan
gSpan derives all frequent connected subgraphs
in a given data set of connected and undirected
graphs [10]. For the aforementioned strategy (1),
it applies a pattern growth technique which is
data-driven enumeration of candidate frequent

subgraphs. It is performed by tracing vertices and
edges of each data graph G in a DFS manner.
Figure 1b is an example search tree generated by
starting from the vertex labeled as Y in the graph
(a). In a search tree T , the vertex for the next visit
is the one reachable from the current vertex by
passing through an edge untraced yet in G. If the
vertex for the next visit is the one visited earlier in
G, the edge is called a backward edge otherwise
a forward edge. They are depicted by dashed
and solid lines, respectively, in Fig. 1b. When no
more untraced edges are available from the cur-
rent vertex, the search backtracks to the nearest
vertex having the untraced edges. Any subtree of
T represents a subgraph of G. We denote the sets
of the forward and the backward edges in T as
Ef;T D fej8i; j; i < j; e D .vi ; vj / 2 Eg and
Eb;T D fej8i; j; i > j; e D .vi ; vj / 2 Eg,
respectively, where i and j are integer indices
numbered at the vertices in their visiting order
in T .

There exist many trees T representing an iden-
tical graph G as another tree of the graph (a)
shown in Fig. 1c. This ambiguity causing dupli-
cation and miss in the candidate graph enumer-
ation is avoided by introducing the strategy (2).
gSpan applied the following three types of partial
orders of the edges in T . Given e1 D .vi1 ; vj1

/

and e2 D .vi2 ; vj2
/,

e1 f;T e2 if and only if j1 < j2 for e1; e2 2 Ef;T ;

e1 b;T e2 if and only if (i) i1 < i2 or (ii) i1 D i2 and j1 < j2; for e1; e2 2 Eb;T ;

e1 bf;T e2 if and only if (i) i1 < j2 for e1 2 Eb;T ; e2 2 Ef;T

or (ii) j1 � i2 for e1 2 Ef;T ; e2 2 Eb;T :

The combination of these partial orders is known
to give a linear order of the edges. We also
assume a total order of the labels in L and define
a representation of T , a DFS code, as a sequence
of 5-tuples ..vi ; vj /; `.vi /; `..vi ; vj //; `.vj //

following the trace order of the DFS in T .
A DFS code is smaller if smaller edges and
smaller labels appear in earlier 5-tuples in the
sequence. Accordingly, we define the search
tree T having the minimum DFS code as a

canonical representation of G. The search tree
in Fig. 1c is canonical, since its DFS code is the
minimum. As any subtree of a canonical T has
its minimum DFS code, it is also canonical for its
corresponding subgraph.

Moreover, gSpan applies the DFS which
chooses the untraced edge having the smallest
5-tuples at the current vertex for visiting the
next vertex. This focuses on the minimum DFS
code and ensures to enumerate the canonical
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subtree of every subgraph before finding its other
noncanonical subtrees. This efficiently prunes
an infrequent subgraph without matching its
multiple DSF codes in (3). In this manner, the
canonical graph representation of gSpan is fully
adapted to its search algorithm.

Gaston
Gaston also derives all frequent connected sub-
graphs in a given data set of connected and
undirected graphs [11]. It uses the polynomial
time complexity of the enumeration of paths and
free trees. Gaston uses a canonical path represen-
tation, a backbone, in (2). Two sequences of the
labels of the vertices and edges starting from a
center, which is a middle vertex, in the path to the
both terminals are derived as shown in Fig. 2a,
and the reverse of the lexicographically smaller
sequence with the appended larger sequence is
defined to be the backbone. In case of a path
having an even number of vertices, two centers,
which are two middle vertices, are used as shown

in Fig. 2b. Starting from a single vertex, Gaston
extends a path by adding a vertex to one of the
terminals in the strategy (1). Finally, it efficiently
counts the frequency of the extended path in the
data set by using its backbone and prunes the
infrequent paths in (3).

Gaston further enumerates free trees involving
a frequent path as the longest path by iteratively
adding vertices to the vertices in the free trees
except for the terminal vertices of the path. Since
the set of the free trees having a distinct back-
bone as its longest path is also distinct, the set
does not intersect each other. This reduces the
complexity of the enumeration in (1). Moreover,
Gaston derives a canonical representation of a
free tree, a canonical depth sequence, for (2) by
transforming the tree to a rooted and ordered
tree where the root is the center of its longest
path, and its vertices and edges are arranged in a
lexicographically descending order of the labels.
If the two center exists in the path, the free tree
is partitioned for each center, and each free tree
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is represented by its canonical depth sequence.
Similarly to the DFS code of gSpan, any subtree
involving the root in this rooted and ordered tree
is a canonical depth sequence. This is beneficial
for (1), since all canonical depth sequences are
incrementally obtained in the depth first search.
Gaston efficiently prunes the infrequent free trees
in the data set by using the canonical depth
sequence in (3).

Gaston further enumerates cyclic subgraphs
from a frequent free tree by iteratively adding
edges bridging vertex pairs in the tree in (1). For
(2), Gaston avoids duplicated enumerations of the
cyclic subgraphs by using Nauty algorithm for
the graph isomorphism checking [1]. It prunes
the infrequent cyclic subgraphs of the data set
in (3) and finally derives the frequent subgraphs.
Gaston works very efficiently for the sparse data
graphs, since the candidate cyclic subgraphs is
less in such graphs.

URLs to Code and Data Sets

gSpan suite (http://www.cs.ucsb.edu/~xyan/
software/gSpan.htm), Gaston suite (http://www.
liacs.nl/~snijssen/gaston/). Other common suites
can be found for various frequent substructure
mining (http://hms.liacs.nl/index.html).
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Problem Definition

Pattern mining is a fundamental problem in data
mining. The problem is to find all the patterns
appearing in the given database frequently. For
a set E D f1; : : : ; ng of items, an itemset (also
called a pattern) is a subset of E. Let D be a given
database composed of transactions R1; : : : ; Rm,
Ri � E. For an itemset P , an occurrence of P

is a transaction of D such that P � R, and the
occurrence set Occ.P / is the set of occurrences
of P . The frequency of P , also called support,
is jOcc.P /j and denoted by frq.P /. For a given
constant � called minimum support, an itemset P

is frequent if frq.P / � � . For given a database
and a minimum support, frequent itemset mining
is the problem of enumerating all frequent item-
sets in D.

Key Results

The enumeration is solved in output polyno-
mial time [1], and the space complexity is in-
put polynomial [5]. Many algorithms have been
proposed for practical efficiency on real-world
data [7, 8, 10, 11] that are drastically fast. We
show algorithm LCM that is the winner in the
competition [6], and several techniques used in
LCM.

Algorithms

There have been a lot of algorithms for this prob-
lem. The itemsets satisfy the following monotone
property, and this is used in almost all existing
algorithms.

Lemma 1 For any itemsets P and Q such that
P 	 Q, there holds frq.P / � frq.Q/. In
particular, Occ.P / � Occ.Q/. ut

Using the monotone property, we can enumer-
ate all frequent itemsets from ; by recursively
adding items. ut

Lemma 2 Any frequent itemset P of size k is
generated by adding an item to a frequent itemset
of size k � 1.

Apriori
Apriori algorithm was proposed in the first paper
of frequent pattern mining, by Agrawal et al. in
1993 [1]. The computational resources are not
enough in the era, and the database could not
fit memory, thus stored in an HDD. Apriori is
designed to be efficient in such environments so
that it scans the database only few times. Apriori
is a breadth-first search algorithm that iteratively
generates all frequent itemsets of size 1, size 2,
and so on. Apriori generates candidate itemsets
by adding an item to each frequent itemset of
size k � 1. From the monotone property, any
frequent itemset of size k is in the candidate
itemsets. Apriori then checks the inclusion re-
lation between a transaction and all candidates.
By doing this for all transactions, the frequencies
of candidates are computed and infrequent can-
didates are removed. The algorithm is written as
follows:

Algorithm Apriori(D; �):

1. P0 D f;g; k WD 0;
2. while Pk ¤ ; do

3. PkC1 WD ;;
4. for each P 2 Pk , frq.P / WD 0; PkC1 WD

PkC1 [ fP [ fig j i 2 Eg

5. for each R 2 D, frq.P / WD frq.P / C 1 for all
P 2 PkC1; P � R.
6. remove all P from PkC1 satisfying frq.P / < �

7. output all P 2 PkC1; k WD k C 1

8. end while

The space complexity of Apriori is O.n	/

where 	 is the number of frequent itemsets
of D. The time complexity is O.njjDjj	/

where jjDjj D
P

R2D jRj is the size of
D. Hence Apriori is output polynomial
time.
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Backtrack Algorithm
Backtrack algorithm is a depth-first search-based
frequent itemset mining algorithm that is first
proposed Bayardo et al. [5] in 1998. The amount
of memory in a computer was rapidly increasing
in the era, and thus the databases began to fit
the memory. We can then reduce the memory
space for storing candidate itemsets and thus
huge amount of itemsets can be enumerated.
Moreover, a technique so-called down project
accelerates the computation. According to the
monotone property, we can see that P [ fig is
included in a transaction R only if R 2 Occ.P /

holds. By using this, down project reduces the
checks only with transactions in Occ.P /. Partic-
ularly, we can see that Occ.P [fig/ D Occ.P /\

Occ.fig/. Moreover, we can reduce the check for
the duplication by using a technique so-called
tail extension. We denote the maximum item in
P by tail.P /. Tail extension generates itemsets
P [ fig only with i; i > tail.P /. In this way,
any frequent itemset P is generated uniquely
from another frequent itemset; thus duplications
are efficiently avoided, by recursively generating
with tail extensions.

Algorithm BackTrack (P; Occ.P /; �):

1. output P

2. for each item i > tail.P / do

3. if jOcc.P / \ Occ.fig/j � � , then call BackTrack
(P [ fig; Occ.P / \ Occ.fig/; �)
4. end for

The space complexity of BackTrack is
O.jjDjj/; thereby BackTrack is polynomial
space. The time complexity is O.jjDjj	/, since
step 3 is done by marking transactions in Occ.P /

and checking whether each transaction of
Occ.fig/ is marked in constant time. Moreover,
since the depth of recursion is at most n, the
delay of BackTrack is O.njjDjj/. BackTrack
with down project reduces practical computation
time in order of magnitude, in implementation
competitions FIMI03 and FIMI04 [6].

Database Reduction
The technique of database reduction was first
developed in FP-growth by Han et al. [8] and

modified in LCM by Uno et al. [11]. Database re-
duction drastically reduces practical computation
time, as shown in the experiments in [6].

We observe that down project removes the un-
necessary transactions from the database given to
a recursive call, where unnecessary transactions
are those never used in the recursion, and this
fastens the computation. The idea of database
reduction is to further remove unnecessary items
from the database. The unnecessary items are (1)
items i satisfying i < tail.P / and (2) items i

such that P [ fig is not frequent. Items of (1) are
never used because of the rule of tail extension.
(2) comes from that P [fig[ fj g is not frequent
for any item j , by the monotone property. Thus,
the removal of these items never disturbs the
enumeration. The database obtained by remov-
ing unnecessary items from each transaction of
Occ.P / is called the conditional database.

In the deep of recursion, the conditional
database tends to have few items since tail.P / is
large and frq.P / is small. In such cases, several
transactions would be identical. The computation
for the identical transactions is the same, and
thus we unify these transactions and put a mark
of their quantity to the unified transaction as the
representation of the multiplicity. For example,
three transactions R1; R2; R3 D f100; 105; 110g

are replaced by Rj D f100; 105; 110g and a mark
“three” is put to Rj . By this, the computation
time on the bottom levels of the recursion is
drastically shortened when � is large. This is
because conditional databases usually have k

items in the bottom levels where k is a small
constant and thus can have at most 2k different
transactions. The obtained database is called the
reduced database and is denoted by D�.P; �/.

The computation for the unification of
identical transactions can be done by, for
example, radix sort in O.jjD�.P; �/jj/ time [11].
FP-growth further reduces by representing the
database by a trie [7, 8]. However, experiments
in [6] show that the overheads of trie are often
larger than the gain; thus in many cases FP-
growth is slower than LCM. The computation
of frequent itemset mining generates recursions
widely spread as the depth, thus so-called bottom
expanded. In such case, the computation time on
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the bottom levels dominates the total computation
time [9]; thus database reduction performs very
well.

Delivery
Delivery [10, 11] is a technique to compute
Occ.P [ fig/ for all i > tail.P / at once. Down
project computes Occ.P [ fig/ in O.jOcc.fig/j/

time and thus takes O.jjDjj/ time for all i .
Delivery computes Occ.P [ fig/ for all i at
once in .jjOcc.P /jj/ time. The idea is to find
all P [ fig that are included in R, for each
transaction R 2 Occ.P /. Actually, P [ fig � R

iff i 2 R; thus this is done by just scanning
items i > tail.P /. The algorithm is described as
follows:

1. Occ.P [ fig/ WD ; for each i > tail.P /

2. for each R 2 Occ.P / do

3. for each item i 2 R; i > tail.P /, insert R to
Occ.P [ fig/

4. end for

By using the reduced database D�.P; �/, de-
livery is done in O.jjD�.P; �/jj/ time. Note that
the frequency is the sum of multiplications of
transactions in the reduced database.

Generalizations and Extensions

The frequent itemset mining problem is extended
by varying patterns and databases, such as trees
in XML databases, labeled graphs in chemical
compound databases, and so on. Let L be a class
of structures, and � be an binary relation on L.
A member of L is called a pattern. Suppose that
we are given a database D composed of records
R1; : : : ; Rm, Ri 2 L. Itemset mining is the case
that L D 2E and a � b holds iff a � b. For a
pattern P 2 L, an occurrence of P is a record
R 2 D such that P � R, and the other notations
are defined in the same way. For given a database
and a minimum support, frequent pattern mining
is the problem of enumerating all the frequent
patterns in D.

When L is arbitrary, the frequent pattern min-
ing is hard. Thus, we often assume that .L;�/ is
a lattice, and there is an element ? of L such that
? � P holds for any P 2 L. We then have the
monotone property.

Lemma 3 For any P; Q 2 L satisfying P � Q,
there holds frq.P / � frq.Q/. ut

Let suc.P / (resp., prc.P /) be the set of ele-
ments Q 2 L n fP g such that P � Q (resp.,
Q � P ) holds and no X 2 L n fP; Qg satisfies
P � X � Q (resp., Q � X � P ). Using
the monotone property, we can enumerate all fre-
quent patterns from ? by recursively generating
all elements of suc.P /.

In this general setting, Apriori needs an as-
sumption that .L;�/ is modular; thus for any
P; Q such that P � Q, the length of any
maximal chain P � X1 � � �Xk � Q is identical.
By this assumption, we can define the size of a
pattern P by the length of the maximal chain
from ? to P . Apriori then works by replacing
fP [ fig j i 2 Eg of step 4 by suc.P /.

Let T be the time to generate a pattern in
suc.P / and T 0 be the time to evaluate a � b.
Note that T 0 may be large, for example, in the
case that L is the set of graphs and T 0 is the
time for graph isomorphism. Apriori generates
jsuc.P /j patterns for each pattern P , and we
have to check whether each generated pattern
is already in PiC1 by comparing P and each
member of PiC1. Thus, the total computation
time is O.s.T C T 0.	 C jDj/// where s is the
maximum size of suc.P /.

The depth-first search algorithm needs an al-
ternative for tail extension. The alternative is
given by reverse search technique proposed by
Avis and Fukuda [4]. A pattern Q is gener-
ated from many patterns in prc.Q/, and this
makes duplications. We avoid this by defining
the parent P.Q/ by one of prc.Q/ and allow
to generate Q only from P.Q/, so that Q is
uniquely generated. For example, the same as
tail extension, we define an order in prc.Q/

and define P.Q/ by the minimum one in the
order.
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Algorithm Backtrack2 (P; Occ.P /; �):

1. output P

2. for each Q 2 suc.P / do

3. compute Occ.Q/ from Occ.P /

4. if frq.Q/ � � and P D P.Q/ then call

Backtrack2 (Q; Occ.Q/; �)
5. end for

The time complexity of BackTrack2 is
O.s.T C T 00 C T 0jDj/	/ where T 00 is the time
to compute the parent of a pattern. The heaviest
part of T 0jDj is usually reduced by down project.
The algorithm will be efficient if all patterns Q

satisfying P D P.Q/ are efficiently enumerated.
Such examples are sequences [12], trees [3], and
motifs with wildcards [2].

Frequent Sequence Mining
L is composed of strings on alphabet ˙ , and
a; b 2 L satisfy a � b iff a is a subsequence
of b, i.e., a is obtained from b by deleting some
letters. For a pattern P , suc.P / is the set of
strings obtained by inserting a letter to P at some
position.

We define the parent of P by the string
obtained by removing the last letter from
P . Then, the children of P is generated by
appending a letter to the tail of P . Since
� can be tested in linear time, BackTrack2
runs in O.j˙ j 
 jjDjj/ time for each frequent
sequence.

Frequent Ordered Tree Mining
L is composed of rooted trees such that each
vertex has a label and an ordering of children.
Such a tree is called a labeled ordered tree. a; b 2

L satisfy a � b iff a is a subtree of b with
correspondence keeping the children orders and
vertex labels; a vertex of label “A” has to be
mapped to a vertex having label “A,” and children
orders do not change. For a pattern P , suc.P /

is the set of labeled ordered trees obtained by
inserting a vertex as a leaf.

The rightmost path of an ordered tree is
fv1; : : : ; vkg where v1 is the root, and vi is

the last child of vi�1. We define the parent of
P by that obtained by removing the rightmost
leaf vk . Then, the children of P is generated by
appending a vertex with a label so that the vertex
is the last child of a vertex in the rightmost path.
Since � can be tested in linear time, BackTrack2
runs in O.t j˙ j 
 jjDjj/ time for each frequent
ordered tree, where t is the maximum height of
the pattern tree.
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Problem Definition

The problem is concerned with efficiently main-
taining information about all-pairs shortest paths
in a dynamically changing graph. This problem
has been investigated since the 1960s [17, 18, 20],
and plays a crucial role in many applications,
including network optimization and routing, traf-
fic information systems, databases, compilers,
garbage collection, interactive verification sys-
tems, robotics, dataflow analysis, and document
formatting.

A dynamic graph algorithm maintains a given
property P on a graph subject to dynamic
changes, such as edge insertions, edge deletions
and edge weight updates. A dynamic graph
algorithm should process queries on property
P quickly, and perform update operations faster
than recomputing from scratch, as carried out
by the fastest static algorithm. An algorithm is
said to be fully dynamic if it can handle both
edge insertions and edge deletions. A partially
dynamic algorithm can handle either edge
insertions or edge deletions, but not both: it is
incremental if it supports insertions only, and
decremental if it supports deletions only. In this
entry, fully dynamic algorithms for maintaining
shortest paths on general directed graphs are
presented.

In the fully dynamic All Pairs Shortest Path
(APSP) problem one wishes to maintain a di-

rected graph G D .V; E/ with real-valued edge
weights under an intermixed sequence of the
following operations:

Update(x, y, w): update the weight of edge (x, y)
to the real value w; this includes as a special
case both edge insertion (if the weight is set
from C1 to w < C1) and edge deletion (if
the weight is set to w D C1);

Distance(x, y): output the shortest distance
from x to y.

Path(x, y): report a shortest path from x to y, if
any.

More formally, the problem can be defined as
follows.

Problem 1 (Fully Dynamic All-Pairs Shortest
Paths)
INPUT: A weighted directed graph G D .V; E/,
and a sequence ¢ of operations as defined above.
OUTPUT: A matrix D such entry DŒx; y� stores
the distance from vertex x to vertex y throughout
the sequence ¢ of operations.

Throughout this entry, m and n denotes respec-
tively the number of edges and vertices in G.

Demetrescu and Italiano [3] proposed a new
approach to dynamic path problems based on
maintaining classes of paths characterized by
local properties, i.e., properties that hold for all
proper subpaths, even if they may not hold for the
entire paths. They showed that this approach can
play a crucial role in the dynamic maintenance of
shortest paths.

Key Results

Theorem 1 The fully dynamic shoretest path
problem can be solved inO.n2 log3 n/ amortized
time per update during any intermixed sequence
of operations. The space required is O(mn).

Using the same approach, Thorup [22] has shown
how to slightly improve the running times:

Theorem 2 The fully dynamic shoretest path
problem can be solved in O.n2.log n C
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log2.m=n/// amortized time per update during
any intermixed sequence of operations. The space
required is O(mn).

Applications

Dynamic shortest paths find applications in many
areas, including network optimization and rout-
ing, transportation networks, traffic information
systems, databases, compilers, garbage collec-
tion, interactive verification systems, robotics,
dataflow analysis, and document formatting.

Open Problems

The recent work on dynamic shortest paths has
raised some new and perhaps intriguing ques-
tions. First, can one reduce the space usage for
dynamic shortest paths to O(n2)? Second, and
perhaps more importantly, can one solve effi-
ciently fully dynamic single-source reachabil-
ity and shortest paths on general graphs? Fi-
nally, are there any general techniques for making
increase-only algorithms fully dynamic? Similar
techniques have been widely exploited in the
case of fully dynamic algorithms on undirected
graphs [11–13].

Experimental Results

A thorough empirical study of the algorithms
described in this entry is carried out in [4].

Data Sets

Data sets are described in [4].
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Problem Definition

Design a data structure for an undirected graph
with a fixed set of nodes which can process
queries of the form “Are nodes i and j con-
nected?” and updates of the form “Insert edge
{i ,j }”; “Delete edge {i ,j }.” The goal is to min-
imize update and query times, over the worst-
case sequence of queries and updates. Algorithms
to solve this problem are called “fully dynamic”
as opposed to “partially dynamic” since both
insertions and deletions are allowed.

Key Results

Holm et al. [4] gave the first deterministic fully
dynamic graph algorithm for maintaining con-
nectivity in an undirected graph with polylog-
arithmic amortized time per operation, specifi-
cally, O.log 2n/ amortized cost per update op-
eration and O.log n= log log n/ worst-case per
query, where n is the number of nodes. The
basic technique is extended to maintain minimum
spanning trees in O.log 4n/ amortized cost per
update operation and 2-edge connectivity and
biconnectivity in O.log 5n/ amortized time per
operation.

The algorithm relies on a simple novel tech-
nique for maintaining a spanning forest in a graph
which enables efficient search for a replacement
edge when a tree edge is deleted. This technique
ensures that each nontree edge is examined no
more than log 2n times. The algorithm relies on
previously known tree data structures, such as
top trees or ET-trees to store and quickly retrieve
information about the spanning trees and the
nontree edges incident to them.

Algorithms to achieve a query time
O.log n= log log log n/ and expected amortized
update time O.log n.log log n/3/ for connectivity
and O.log 3n log log n/ expected amortized
update time for 2-edge and biconnectivity were
given in [6]. Lower bounds showing a continuum
of tradeoffs for connectivity between query and
update times in the cell probe model which match
the known upper bounds were proved in [5].
Specifically, if tu and tq are the amortized update



Fully Dynamic Connectivity: Upper and Lower Bounds 793

F

and query time, respectively, then tq �log.tu=tq/ D

˝.log n/ and tu � log.tq=tu/ D ˝.log n/.
A previously known, somewhat different, ran-

domized method for computing dynamic connec-
tivity with O.log 3n/ amortized expected update
time can be found in [2], improved to O(log 2n/

in [3]. A method which minimizes worst-case
rather than amortized update time is given in [1]
O.
p

n/ time per update for connectivity as well
as 2-edge connectivity and bipartiteness.

Open Problems

Can the worst-case update time be reduced to
O.n1=2/, with polylogarithmic query time?

Can the lower bounds on the trade-offs in [6]
be matched for all possible query costs?

Applications

Dynamic connectivity has been used as a subrou-
tine for several static graph algorithms, such as
the maximum flow problem in a static graph [7],
and for speeding up numerical studies of the Potts
spin model.

URL to Code

See http://www.mpi-sb.mpg.de/LEDA/friends/
dyngraph.html for software which implements
the algorithm in [2] and other older methods.
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Problem Definition

The problem is concerned with efficiently main-
taining information about connectivity in a dy-
namically changing graph. A dynamic graph al-
gorithm maintains a given property P on a graph
subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight up-
dates. A dynamic graph algorithm should pro-
cess queries on property P quickly, and perform
update operations faster than recomputing from
scratch, as carried out by the fastest static algo-
rithm. An algorithm is said to be fully dynamic if
it can handle both edge insertions and edge dele-
tions. A partially dynamic algorithm can handle
either edge insertions or edge deletions, but not
both: it is incremental if it supports insertions
only, and decremental if it supports deletions
only.

In the fully dynamic connectivity problem,
one wishes to maintain an undirected graph G D

.V; E/ under an intermixed sequence of the fol-
lowing operations:

Connected(u, v): Return true if vertices u and v

are in the same connected component of the
graph. Return false otherwise.

Insert(x, y): Insert a new edge between the two
vertices x and y.

Delete(x, y): Delete the edge between the two
vertices x and y.

Key Results

In this section, a high level description of the al-
gorithm for the fully dynamic connectivity prob-
lem in undirected graphs described in [11] is
presented: the algorithm, due to Holm, de Licht-
enberg and Thorup, answers connectivity queries
in O.log n= log log n/ worst-case running time
while supporting edge insertions and deletions in
O.log2 n/ amortized time.

The algorithm maintains a spanning forest F
of the dynamically changing graph G. Edges in F
are referred to as tree edges. Let e be a tree
edge of forest F, and let T be the tree of F

containing it. When e is deleted, the two trees
T1 and T2 obtained from T after the deletion
of e can be reconnected if and only if there is
a non-tree edge in G with one endpoint in T1

and the other endpoint in T2. Such an edge is
called a replacement edge for e. In other words, if
there is a replacement edge for e, T is reconnected
via this replacement edge; otherwise, the deletion
of e creates a new connected component in G.

To accommodate systematic search for re-
placement edges, the algorithm associates to each
edge e a level `(e) and, based on edge levels,
maintains a set of sub-forests of the spanning
forest F: for each level i, forest Fi is the sub-forest
induced by tree edges of level� i . Denoting by L
denotes the maximum edge level, it follows that:

F D F0 	 F1 	 F2 	 � � � 	 FL :

Initially, all edges have level 0; levels are then
progressively increased, but never decreased. The
changes of edge levels are accomplished so as
to maintain the following invariants, which ob-
viously hold at the beginning.

Invariant (1): F is a maximum spanning forest
of G if edge levels are interpreted as weights.

Invariant (2): The number of nodes in each tree
of Fi is at most n=2i .

Invariant (1) should be interpreted as follows.
Let (u, v) be a non-tree edge of level `(u, v) and
let u � � � v be the unique path between u and v

in F (such a path exists since F is a spanning
forest of G). Let e be any edge in u � � � v and
let `(e) be its level. Due to (1), `.e/ � `.u; v/.
Since this holds for each edge in the path, and
by construction F`.u;v/ contains all the tree edges
of level � `.u; v/, the entire path is contained in
F`.u;v/, i.e., u and v are connected in F`.u;v/.

Invariant (2) implies that the maximum num-
ber of levels is L � blog2 nc.

Note that when a new edge is inserted, it is
given level 0. Its level can be then increased at
most blog2 nc times as a consequence of edge
deletions. When a tree edge e D .v; w/ of level
`(e) is deleted, the algorithm looks for a replace-
ment edge at the highest possible level, if any.
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Due to invariant (1), such a replacement edge has
level ` � `.e/. Hence, a replacement subroutine
Replace((u, w),`(e)) is called with parameters
e and `(e). The operations performed by this
subroutine are now sketched.

Replace((u, w), `) finds a replacement edge of
the highest level � `, if any. If such a replace-
ment does not exist in level `, there are two
cases: if ` > 0, the algorithm recurses on level
`�1; otherwise, ` D 0, and the deletion of (v,
w) disconnects v and w in G.

During the search at level `, suitably chosen tree
and non-tree edges may be promoted at higher
levels as follows. Let Tv and Tw be the trees of
forest F` obtained after deleting (v, w) and let,
w.l.o.g., Tv be smaller than Tw. Then Tv contains
at most n=2`C1 vertices, since Tv [Tw[f.v; w/g

was a tree at level ` and due to invariant (2). Thus,
edges in Tv of level ` can be promoted at level `C

1 by maintaining the invariants. Non-tree edges
incident to Tv are finally visited one by one: if an
edge does connect Tv and Tw, a replacement edge
has been found and the search stops, otherwise its
level is increased by 1.

Trees of each forest are maintained so that the
basic operations needed to implement edge inser-
tions and deletions can be supported in O.log n/

time. There are few variants of basic data struc-
tures that can accomplish this task, and one could
use the Euler Tour trees (in short ET-tree), first
introduced in [17], for this purpose.

In addition to inserting and deleting edges
from a forest, ET-trees must also support opera-
tions such as finding the tree of a forest that con-
tains a given vertex, computing the size of a tree,
and, more importantly, finding tree edges of level
` in Tv and non-tree edges of level ` incident to
Tv. This can be done by augmenting the ET-trees
with a constant amount of information per node:
the interested reader is referred to [11] for details.

Using an amortization argument based on
level changes, the claimed O.log2 n/ bound on
the update time can be proved. Namely, inserting
an edge costs O.log n/, as well as increasing its
level. Since this can happen O.log n/ times, the
total amortized insertion cost, inclusive of level

increases, is O.log2 n/. With respect to edge
deletions, cutting and linking O.log n/ forest
has a total cost O.log2 n/; moreover, there are
O.log n/ recursive calls to Replace, each of
cost O.log n/ plus the cost amortized over level
increases. The ET-trees over F0 D F allows it to
answer connectivity queries in O.log n/ worst-
case time. As shown in [11], this can be reduced
to O.log n= log log n/ by using a �.log n/-ary
version of ET-trees.

Theorem 1 A dynamic graph G with n vertices
can be maintained upon insertions and deletions
of edges using O.log2 n/ amortized time per
update and answering connectivity queries in
O.log n= log log n/ worst-case running time.

Later on, Thorup [18] gave another data structure
which achieves slightly different time bounds:

Theorem 2 A dynamic graph G with n vertices
can be maintained upon insertions and dele-
tions of edges using O.log n � .log log n/3/ amor-
tized time per update and answering connectivity
queries in O.log n= log log log n/ time.

The bounds given in Theorems 1 and 2 are not
directly comparable, because each sacrifices the
running time of one operation (either query or
update) in order to improve the other.

The best known lower bound for the dynamic
connectivity problem holds in the bit-probe
model of computation and is due to Pǎtraşcu
and Tarniţǎ [16]. The bit-probe model is an
instantiation of the cell-probe model with one-
bit cells. In this model, memory is organized in
cells, and the algorithms may read or write a cell
in constant time. The number of cell probes is
taken as the measure of complexity. For formal
definitions of this model, the interested reader is
referred to [13].

Theorem 3 Consider a bit-probe implemen-
tation for dynamic connectivity, in which
updates take expected amortized time tu, and
queries take expected time tq. Then, in the
average case of an input distribution, tu D

˝
�
log2n=log2.tu C tq/

�
. In particular
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maxftu; tqg D ˝

 �
log n

log log n

	2
!

:

In the bit-probe model, the best upper bound
per operation is given by the algorithm of The-
orem 2, namely it is O.log2 n= log log log n/.
Consequently, the gap between upper and lower
bound appears to be limited essentially to doubly
logarithmic factors only.

Applications

Dynamic graph connectivity appears as a basic
subproblem of many other important problems,
such as the dynamic maintenance of minimum
spanning trees and dynamic edge and vertex
connectivity problems. Furthermore, there
are several applications of dynamic graph
connectivity in other disciplines, ranging from
Computational Biology, where dynamic graph
connectivity proved to be useful for the dynamic
maintenance of protein molecular surfaces as the
molecules undergo conformational changes [6],
to Image Processing, when one is interested
in maintaining the connected components of
a bitmap image [3].

Open Problems

The work on dynamic connectivity raises some
open and perhaps intruiguing questions. The first
natural open problem is whether the gap between
upper and lower bounds can be closed. Note
that the lower bound of Theorem 3 seems to
imply that different trade-offs between queries
and updates could be possible: can we design
a data structure with o.log n/ time per update
and O.poly.log n// per query? This would be
particulary interesting in applications where the
total number of queries is substantially larger
than the number of updates.

Finally, is it possible to design an algorithm
with matching O.log n/ update and query bounds
for general graphs? Note that this is possible in
the special case of plane graphs [5].

Experimental Results

A thorough empirical study of dynamic connec-
tivity algorithms has been carried out in [1, 12].

Data Sets

Data sets are described in [1, 12].
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Problem Definition

The problem is concerned with efficiently main-
taining information about edge and vertex con-
nectivity in a dynamically changing graph. Be-
fore defining formally the problems, a few pre-
liminary definitions follow.

Given an undirected graph G D .V; E/, and
an integer k � 2, a pair of vertices hu; vi is said
to be k-edge-connected if the removal of any
.k � 1/ edges in G leaves u and v connected.
It is not difficult to see that this is an equiva-
lence relationship: the vertices of a graph G are
partitioned by this relationship into equivalence
classes called k-edge-connected components. G
is said to be k-edge-connected if the removal of
any .k � 1/ edges leaves G connected. As a result
of these definitions, G is k-edge-connected if
and only if any two vertices of G are k-edge-
connected. An edge set E 0 � E is an edge-cut for
vertices x and y if the removal of all the edges in
E 0 disconnects G into two graphs, one containing
x and the other containing y. An edge set E 0 � E

is an edge-cut for G if the removal of all the edges
in E 0 disconnects G into two graphs. An edge-cut
E 0 for G (for x and y, respectively) is minimal if
removing any edge from E 0 reconnects G (for x
and y, respectively). The cardinality of an edge-
cut E 0, denoted by jE 0j, is given by the number
of edges in E 0. An edge-cut E 0 for G (for x and y,
respectively) is said to be a minimum cardinality
edge-cut or in short a connectivity edge-cut if
there is no other edge-cut E 00 for G (for x and
y respectively) such that jE 00j < jE 0j. Connectiv-
ity edge-cuts are of course minimal edge-cuts.
Note that G is k-edge-connected if and only if
a connectivity edge-cut for G contains at least k
edges, and vertices x and y are k-edge-connected
if and only if a connectivity edge-cut for x and y
contains at least k edges. A connectivity edge-cut
of cardinality 1 is called a bridge.
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The following theorem due to Ford and
Fulkerson, and Elias, Feinstein and Shannon
(see [7]) gives another characterization of k-edge
connectivity.

Theorem 1 (Ford and Fulkerson, Elias, Fe-
instein and Shannon) Given a graph G and
two vertices x and y in G, x and y are k-edge-
connected if and only if there are at least k edge-
disjoint paths between x and y.

In a similar fashion, a vertex set V 0 � V � fx; yg

is said to be a vertex-cut for vertices x and y if
the removal of all the vertices in V 0 disconnects x
and y. V 0 � V is a vertex-cut for vertices G if the
removal of all the vertices in V 0 disconnects G.

The cardinality of a vertex-cut V 0, denoted by
jV 0j, is given by the number of vertices in V 0.
A vertex-cut V 0 for x and y is said to be a min-
imum cardinality vertex-cut or in short a con-
nectivity vertex-cut if there is no other vertex-
cut V 00 for x and y such that jV 00j < jV 0j. Then
x and y are k-vertex-connected if and only if
a connectivity vertex-cut for x and y contains
at least k vertices. A graph G is said to be k-
vertex-connected if all its pairs of vertices are
k-vertex-connected. A connectivity vertex-cut of
cardinality 1 is called an articulation point, while
a connectivity vertex-cut of cardinality 2 is called
a separation pair. Note that for vertex connec-
tivity it is no longer true that the removal of
a connectivity vertex-cut splits G into two sets of
vertices.

The following theorem due to Menger
(see [7]) gives another characterization of k-
vertex connectivity.

Theorem 2 (Menger) Given a graph G and
two vertices x and y in G, x and y are k-vertex-
connected if and only if there are at least k vertex-
disjoint paths between x and y.

A dynamic graph algorithm maintains a given
property P on a graph subject to dynamic
changes, such as edge insertions, edge deletions
and edge weight updates. A dynamic graph
algorithm should process queries on property
P quickly, and perform update operations faster
than recomputing from scratch, as carried out by

the fastest static algorithm. An algorithm is fully
dynamic if it can handle both edge insertions and
edge deletions. A partially dynamic algorithm
can handle either edge insertions or edge
deletions, but not both: it is incremental if it
supports insertions only, and decremental if it
supports deletions only.

In the fully dynamic k-edge connectivity prob-
lem one wishes to maintain an undirected graph
G D .V; E/ under an intermixed sequence of the
following operations:

• k-EdgeConnected(u, v): Return true if vertices
u and v are in the same k-edge-connected
component. Return false otherwise.

• Insert(x, y): Insert a new edge between the two
vertices x and y.

• Delete(x, y): Delete the edge between the two
vertices x and y.

In the fully dynamic k-vertex connectivity
problem one wishes to maintain an undirected
graph G D .V; E/ under an intermixed sequence
of the following operations:

• k-VertexConnected(u, v): Return true if ver-
tices u and v are k-vertex-connected. Return
false otherwise.

• Insert(x, y): Insert a new edge between the two
vertices x and y.

• Delete(x, y): Delete the edge between the two
vertices x and y.

Key Results

To the best knowledge of the author, the most
efficient fully dynamic algorithms for k-edge and
k-vertex connectivity were proposed in [3, 12].
Their running times are characterized by the
following theorems.

Theorem 3 The fully dynamic k-edge connectiv-
ity problem can be solved in:

1. O.log4 n/ time per update and O.log3 n/ time
per query, for k D 2



Fully Dynamic Higher Connectivity 799

F

2. O.n2=3/ time per update and query, for k D 3

3. O.n˛.n// time per update and query, for
k D 4

4. O.n log n/ time per update and query, for
k � 5:

Theorem 4 The fully dynamic k-vertex connec-
tivity problem can be solved in:

1. O.log4 n/ time per update and O.log3 n/ time
per query, for k D 2

2. O(n) time per update and query, for k D 3

3. O.n˛.n// time per update and query, for
k D 4:

Applications

Vertex and edge connectivity problems arise of-
ten in issues related to network reliability and
survivability. In computer networks, the vertex
connectivity of the underlying graph is related
to the smallest number of nodes that might fail
before disconnecting the whole network. Sim-
ilarly, the edge connectivity is related to the
smallest number of links that might fail before
disconnecting the entire network. Analogously, if
two nodes are k-vertex-connected then they can
remain connected even after the failure of up
to .k � 1/ other nodes, and if they are k-edge-
connected then they can survive the failure of up
to .k � 1/ links. It is important to investigate the
dynamic versions of those problems in contexts
where the networks are dynamically evolving,
say, when links may go up and down because of
failures and repairs.

Open Problems

The work of Eppstein et al. [3] and Holm
et al. [12] raises some intriguing questions. First,
while efficient dynamic algorithms for k-edge
connectivity are known for general k, no efficient
fully dynamic k-vertex connectivity is known for
k � 5. To the best of the author’s knowledge,
in this case even no static algorithm is known.
Second, fully dynamic 2-edge and 2-vertex

connectivity can be solved in polylogarithmic
time per update, while the best known update
bounds for higher edge and vertex connectivity
are polynomial: Can this gap be reduced, i.e., can
one design polylogarithnmic algorithms for fully
dynamic 3-edge and 3-vertex connectivity?
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Problem Definition

In this entry, the problem of maintaining a dy-
namic planar graph subject to edge insertions
and edge deletions that preserve planarity but
that can change the embedding is considered.
In particular, in this problem one is concerned
with the problem of efficiently maintaining in-
formation about edge and vertex connectivity in
such a dynamically changing planar graph. The
algorithms to solve this problem must handle in-
sertions that keep the graph planar without regard
to any particular embedding of the graph. The
interested reader is referred to the chapter � Fully
Dynamic Planarity Testing of this encyclopedia
for algorithms to learn how to check efficiently
whether a graph subject to edge insertions and
deletions remains planar (without regard to any
particular embedding).

Before defining formally the problems consid-
ered here, a few preliminary definitions follow.

Given an undirected graph G D .V; E/, and
an integer k � 2, a pair of vertices hu; vi is said
to be k-edge-connected if the removal of any
.k � 1/ edges in G leaves u and v connected.
It is not difficult to see that this is an equiva-
lence relationship: the vertices of a graph G are
partitioned by this relationship into equivalence
classes called k-edge-connected components. G
is said to be k-edge-connected if the removal of
any .k � 1/ edges leaves G connected. As a result
of these definitions, G is k-edge-connected if
and only if any two vertices of G are k-edge-
connected. An edge set E 0 � E is an edge-cut for
vertices x and y if the removal of all the edges in
E 0 disconnects G into two graphs, one containing
x and the other containing y. An edge set E 0 � E

is an edge-cut for G if the removal of all the edges
in E 0 disconnects G into two graphs. An edge-cut
E 0 for G (for x and y, respectively) is minimal if
removing any edge from E 0 reconnects G (for x
and y, respectively). The cardinality of an edge-
cut E 0, denoted by jE 0j, is given by the number
of edges in E 0. An edge-cut E 0 for G (for x and y,
respectively) is said to be a minimum cardinality
edge-cut or in short a connectivity edge-cut if
there is no other edge-cut E 00 for G (for x and
y, respectively) such that jE 00j < jE 0j. Connec-
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tivity edge-cuts are of course minimal edge-cuts.
Note that G is k-edge-connected if and only if
a connectivity edge-cut for G contains at least k
edges, and vertices x and y are k-edge-connected
if and only if a connectivity edge-cut for x and y
contains at least k edges. A connectivity edge-cut
of cardinality 1 is called a bridge.

In a similar fashion, a vertex set V 0�V� fx; yg

is said to be a vertex-cut for vertices x and y if
the removal of all the vertices in V 0 disconnects
x and y. V 0 � V is a vertex-cut for vertices G if
the removal of all the vertices in V 0 disconnects
G.

The cardinality of a vertex-cut V 0, denoted by
jV 0j, is given by the number of vertices in V 0.
A vertex-cut V 0 for x and y is said to be a mini-
mum cardinality vertex-cut or in short a connec-
tivity vertex-cut if there is no other vertex-cut V 00

for x and y such that jV 00j < jV 0j. Then x and y are
k-vertex-connected if and only if a connectivity
vertex-cut for x and y contains at least k vertices.
A graph G is said to be k-vertex-connected if
all its pairs of vertices are k-vertex-connected.
A connectivity vertex-cut of cardinality 1 is
called an articulation point, while a connectivity
vertex-cut of cardinality 2 is called a separation
pair. Note that for vertex connectivity it is no
longer true that the removal of a connectivity
vertex-cut splits G into two sets of vertices.

A dynamic graph algorithm maintains a given
property P on a graph subject to dynamic
changes, such as edge insertions, edge deletions
and edge weight updates. A dynamic graph
algorithm should process queries on property P
quickly, and perform update operations faster
than recomputing from scratch, as carried out by
the fastest static algorithm. An algorithm is fully
dynamic if it can handle both edge insertions and
edge deletions. A partially dynamic algorithm
can handle either edge insertions or edge
deletions, but not both: it is incremental if it
supports insertions only, and decremental if it
supports deletions only.

In the fully dynamic k-edge connectivity prob-
lem for a planar graph one wishes to maintain
an undirected planar graph G D .V; E/ under
an intermixed sequence of edge insertions, edge
deletions and queries about the k-edge connectiv-

ity of the underlying planar graph. Similarly, in
the fully dynamic k-vertex connectivity problem
for a planar graph one wishes to maintain an
undirected planar graph G D .V; E/ under an in-
termixed sequence of edge insertions, edge dele-
tions and queries about the k-vertex connectivity
of the underlying planar graph.

Key Results

The algorithms in [2, 3] solve efficiently the
above problems for small values of k:

Theorem 1 One can maintain a planar graph,
subject to insertions and deletions that preserve
planarity, and allow queries that test the 2-edge
connectivity of the graph, or test whether two
vertices belong to the same 2-edge-connected
component, in O.log n/ amortized time per inser-
tion or query, and O.log2 n/ per deletion.

Theorem 2 One can maintain a planar graph,
subject to insertions and deletions that preserve
planarity, and allow testing of the 3-edge and 4-
edge connectivity of the graph in O.n1=2/ time
per update, or testing of whether two vertices
are 3- or 4-edge-connected, in O.n1=2/ time per
update or query.

Theorem 3 One can maintain a planar graph,
subject to insertions and deletions that preserve
planarity, and allow queries that test the 3-vertex
connectivity of the graph, or test whether two
vertices belong to the same 3-vertex-connected
component, in O.n1=2/ amortized time per up-
date or query.

Note that these theorems improve on the bounds
known for the same problems on general graphs,
reported in the chapter � Fully Dynamic Higher
Connectivity

Applications

The interest reader is referred to the chapter
� Fully Dynamic Higher Connectivity for appli-
cations of dynamic edge and vertex connectivity.
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The case of planar graphs is especially impor-
tant, as these graphs arise frequently in applica-
tions.

Open Problems

A number of problems related to the work of
Eppstein et al. [2, 3] remain open. First, can
the running times per operation be improved?
Second, as in the case of general graphs, also
for planar graphs fully dynamic 2-edge connec-
tivity can be solved in polylogarithmic time per
update, while the best known update bounds for
higher edge and vertex connectivity are poly-
nomial: Can this gap be reduced, i.e., can one
design polylogarithnmic algorithms at least for
fully dynamic 3-edge and 3-vertex connectivity?
Third, in the special case of planar graphs can
one solve fully dynamic k-vertex connectivity for
general k?
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Problem Definition

Let G D .V; E/ be an undirected weighted
graph. The problem considered here is concerned
with maintaining efficiently information about
a minimum spanning tree of G (or minimum
spanning forest if G is not connected), when G
is subject to dynamic changes, such as edge in-
sertions, edge deletions and edge weight updates.
One expects from the dynamic algorithm to per-
form update operations faster than recomputing
the entire minimum spanning tree from scratch.

Throughout, an algorithm is said to be fully
dynamic if it can handle both edge insertions and
edge deletions. A partially dynamic algorithm
can handle either edge insertions or edge dele-
tions, but not both: it is incremental if it supports
insertions only, and decremental if it supports
deletions only.

Key Results

The dynamic minimum spanning forest algo-
rithm presented in this section builds upon the
dynamic connectivity algorithm described in the
entry � Fully Dynamic Connectivity. In particu-
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lar, a few simple changes to that algorithm are
sufficient to maintain a minimum spanning forest
of a weighted undirected graph upon deletions
of edges [13]. A general reduction from [11]
can then be applied to make the deletions-only
algorithm fully dynamic.

This section starts by describing a decremen-
tal algorithm for maintaining a minimum span-
ning forest under deletions only. Throughout the
sequence of deletions, the algorithm maintains
a minimum spanning forest F of the dynamically
changing graph G. The edges in F are referred
to as tree edges and the other edges (in G � F )
are referred to as non-tree edges. Let e be an
edge being deleted. If e is a non-tree edge, then
the minimum spanning forest does not need to
change, so the interesting case is when e is a tree
edge of forest F. Let T be the tree of F containing
e. In this case, the deletion of e disconnects the
tree T into two trees T1 and T2: to update the
minimum spanning forest, one has to look for
the minimum weight edge having one endpoint
in T1 and the other endpoint in T2. Such an edge
is called a replacement edge for e.

As for the dynamic connectivity algorithm,
to search for replacement edges, the algorithm
associates to each edge e a level `(e) and, based
on edge levels, maintains a set of sub-forests of
the minimum spanning forest F: for each level i,
forest Fi is the sub-forest induced by tree edges
of level � i . Denoting by L the maximum edge
level, it follows that:

F D F0 	 F1 	 F2 	 � � � 	 FL:

Initially, all edges have level 0; levels are then
progressively increased, but never decreased. The
changes of edge levels are accomplished so as
to maintain the following invariants, which ob-
viously hold at the beginning.

Invariant (1): F is a maximum spanning forest
of G if edge levels are interpreted as weights.

Invariant (2): The number of nodes in each tree
of Fi is at most n=2i .

Invariant (3): Every cycle C has a non-tree
edge of maximum weight and minimum level
among all the edges in C.

Invariant (1) should be interpreted as follows.
Let (u,v) be a non-tree edge of level `(u, v) and
let u � � � v be the unique path between u and v

in F (such a path exists since F is a spanning
forest of G). Let e be any edge in u � � � v and
let `.e/ be its level. Due to (1), `.e/ � `.u; v/.
Since this holds for each edge in the path, and
by construction F`.u;v/ contains all the tree edges
of level � `.u; v/, the entire path is contained in
F`.u;v/, i.e., u and v are connected in F`.u;v/.

Invariant (2) implies that the maximum num-
ber of levels is L � blog2 nc.

Invariant (3) can be used to prove that, among
all the replacement edges, the lightest edge is
on the maximum level. Let e1 and e2 be two
replacement edges with w.e1/ < w.e W 2/, and
let Ci be the cycle induced by ei in F, i D 1; 2.
Since F is a minimum spanning forest, ei has
maximum weight among all the edges in Ci . In
particular, since by hypothesis w.e1/ < w.e W 2/,
e2 is also the heaviest edge in cycle C D .C1 [

C2/ n .C1 \ C2/. Thanks to Invariant (3), e2 has
minimum level in C, proving that `.e2/ � `.e1/.
Thus, considering non-tree edges from higher to
lower levels is correct.

Note that initially, an edge is is given level 0.
Its level can be then increased at most blog2 nc

times as a consequence of edge deletions.
When a tree edge e D .v; w/ of level `.e/ is
deleted, the algorithm looks for a replacement
edge at the highest possible level, if any. Due
to invariant (1), such a replacement edge has
level ` � `.e/. Hence, a replacement subroutine
Replace(.u; w/; `.e/) is called with parameters
e and `.e/. The operations performed by this
subroutine are now sketched.

Replace(.u; w/; `) finds a replacement edge of
the highest level � `, if any, considering
edges in order of increasing weight. If such
a replacement does not exist in level `, there
are two cases: if ` > 0, the algorithm recurses
on level ` � 1; otherwise, ` D 0, and the
deletion of (v,w) disconnects v and w in G.

It is possible to show that Replace returns
a replacement edge of minimum weight on the
highest possible level, yielding the following
lemma:
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Lemma 1 There exists a deletions-only mini-
mum spanning forest algorithm that can be ini-
tialized on a graph with n vertices and m edges
and supports any sequence of edge deletions in
O.m log2 n/ total time.

The description of a fully dynamic algorithm
which performs updates in O.log4 n/ time now
follows. The reduction used to obtain a fully
dynamic algorithm is a slight generalization of
the construction proposed by Henzinger and
King [11] and works as follows.

Lemma 2 Suppose there is a deletions-
only minimum spanning tree algorithm that,
for any k and `, can be initialized on
a graph with k vertices and ` edges and
supports any sequence of ˝.`/ deletions in
total time O.` � t .k; `//, where t is a non-
decreasing function. Then there exists a fully-
dynamic minimum spanning tree algorithm
for a graph with n nodes starting with no
edges, that, for m edges, supports updates in
time

O

0

@log3 nC

3Clog2 mX

iD1

iX

j D1

t
�
minfn; 2j g; 2j

�
1

A :

The interested reader is referred to refer-
ences [11] and [13] for the description of
the construction that proves Lemma 2. From
Lemma 1 one gets t .k; `/ D O.log2 k/. Hence,
combining Lemmas 1 and 2, the claimed result
follows:

Theorem 3 There exists a fully-dynamic mini-
mum spanning forest algorithm that, for a graph
with n vertices, starting with no edges, maintains
a minimum spanning forest in O.log4 n/ amor-
tized time per edge insertion or deletion.

There is a lower bound of ˝.log n/ for dy-
namic minimum spanning tree, given by Eppstein
et al. [6], which uses the following argument. Let
A be an algorithm for maintaining a minimum
spanning tree of an arbitrary (multi)graph G. Let
A be such that change weight.e; �/ returns the

edge f that replace e in the minimum spanning
tree, if e is replaced. Clearly, any dynamic span-
ning tree algorithm can be modified to return
f. One can use algorithm A to sort n positive
numbers x1, x2, : : : , xn, as follows. Construct
a multigraph G consisting of two nodes con-
nected by .nC 1/ edges e0, e1, : : : , en, such that
edge e0 has weight 0 and edge ei has weight xi.
The initial spanning tree is e0. Increase the weight
of e0 toC1. Whichever edge replaces e0, say ei,
is the edge of minimum weight. Now increase the
weight of ei to C1: the replacement of ei gives
the second smallest weight. Continuing in this
fashion gives the numbers sorted in increasing
order. A similar argument applies when only edge
decreases are allowed. Since Paul and Simon [14]
have shown that any sorting algorithm needs
˝.n log n/ time to sort n numbers on a unit-cost
random access machine whose repertoire of oper-
ations include additions, subtractions, multiplica-
tions and comparisons with 0, but not divisions
or bit-wise Boolean operations, the following
theorem follows.

Theorem 4 Any unit-cost random access
algorithm that performs additions, subtractions,
multiplications and comparisons with 0, but
not divisions or bit-wise Boolean operations,
requires ˝.log n/ amortized time per oper-
ation to maintain a minimum spanning tree
dynamically.

Applications

Minimum spanning trees have applications in
many areas, including network design, VLSI,
and geometric optimization, and the problem of
maintaining minimum spanning trees dynami-
cally arises in such applications.

Algorithms for maintaining a minimum
spanning forest of a graph can be used also for
maintaining information about the connected
components of a graph. There are also other
applications of dynamic minimum spanning trees
algorithms, which include finding the k smallest
spanning trees [3–5, 8, 9], sampling spanning
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trees [7] and dynamic matroid intersection prob-
lems [10]. Note that the first two problems are not
necessarily dynamic: however, efficient solutions
for these problems need dynamic data structures.

Open Problems

The first natural open question is to ask whether
the gap between upper and lower bounds for the
dynamic minimum spanning tree problem can be
closed. Note that this is possible in the special
case of plane graphs [6].

Second, the techniques for dynamic minimum
spanning trees can be extended to dynamic 2-
edge and 2-vertex connectivity, which indeed can
be solved in polylogarithmic time per update. Can
one extend the same technique also to higher
forms of connectivity? This is particularly im-
portant, since the best known update bounds for
higher edge and vertex connectivity are polyno-
mial, and it would be useful to design polylog-
arithnmic algorithms at least for fully dynamic
3-edge and 3-vertex connectivity.

Experimental Results

A thorough empirical study on the performance
evaluation of dynamic minimum spanning trees
algorithms has been carried out in [1, 2].

Data Sets

Data sets are described in [1, 2].
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Problem Definition

In this entry, the problem of maintaining a dy-
namic planar graph subject to edge insertions and
edge deletions that preserve planarity but that
can change the embedding is considered. Before
formally defining the problem, few preliminary
definitions follow.

A graph is planar if it can be embedded in
the plane so that no two edges intersect. In
a dynamic framework, a planar graph that is
committed to an embedding is called plane,
and the general term planar is used only when
changes in the embedding are allowed. An
edge insertion that preserves the embedding is
called embedding-preserving, whereas it is called
planarity-preserving if it keeps the graph planar,
even though its embedding can change; finally,
an edge insertion is called arbitrary if it is not
known to preserve planarity. Extensive work
on dynamic graph algorithms has used ad hoc
techniques to solve a number of problems such as
minimum spanning forests, 2-edge-connectivity
and planarity testing for plane graphs (with
embedding-preserving insertions) [5–7, 9–12]:
this entry is concerned with more general
planarity-preserving updates.

The work of Galil et al. [8] and of Eppstein
et al. [3] provides a general technique for dy-
namic planar graph problems, including those
mentioned above: in all these problems, one can
deal with either arbitrary or planarity-preserving

insertions and therefore allow changes of the
embedding.

The fully dynamic planarity testing problem
can be defined as follows. One wishes to main-
tain a (not necessarily planar) graph subject to
arbitrary edge insertions and deletions, and allow
queries that test whether the graph is currently
planar, or whether a potential new edge would
violate planarity.

Key Results

Eppstein et al. [3] provided a way to apply the
sparsification technique [2] to families of graphs
that are already sparse, such as planar graphs.

The new ideas behind this technique are the
following. The notion of a certificate can be ex-
panded to a definition for graphs in which a sub-
set of the vertices are denoted as interesting; these
compressed certificates may reduce the size of the
graph by removing uninteresting vertices. Using
this notion, one can define a type of sparsification
based on separators, small sets of vertices the
removal of which splits the graph into roughly
equal size components. Recursively finding sepa-
rators in these components gives a separator tree
which can also be used as a sparsification tree;
the interesting vertices in each certificate will be
those vertices used in separators at higher levels
of the tree. The notion of a balanced separator
tree, which also partitions the interesting vertices
evenly in the tree, is introduced: such a tree can be
computed in linear time, and can be maintained
dynamically. Using this technique, the following
results can be achieved.

Theorem 1 One can maintain a planar graph,
subject to insertions and deletions that preserve
planarity, and allow queries that test whether
a new edge would violate planarity, in amortized
timeO.n1=2/ per update or query.

This result can be improved, in order to allow
arbitrary insertions or deletions, even if they
might let the graph become nonplanar, using the
following approach. The data structure above can
be used to maintain a planar subgraph of the given
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graph. Whenever one attempts to insert a new
edge, and the resulting graph would be nonplanar,
the algorithm does not actually perform the inser-
tion, but instead adds the edge to a list of non-
planar edges. Whenever a query is performed,
and the list of nonplanar edges is nonempty, the
algorithm attempts once more to add those edges
one at a time to the planar subgraph. The time
for each successful addition can be charged to the
insertion operation that put that edge in the list of
nonplanar edges. As soon as the algorithm finds
some edge in the list that can not be added, it
stops trying to add the other edges in the list. The
time for this failed insertion can be charged to
the query the algorithm is currently performing.
In this way the list of nonplanar edges will be
empty if and only if the graph is planar, and the
algorithm can test planarity even for updates in
nonplanar graphs.

Theorem 2 One can maintain a graph, subject
to arbitrary insertions and deletions, and allow
queries that test whether the graph is presently
planar or whether a new edge would violate
planarity, in amortized timeO.n1=2/ per update
or query.

Applications

Planar graphs are perhaps one of the most
important interesting subclasses of graphs
which combine beautiful structural results with
relevance in applications. In particular, planarity
testing is a basic problem, which appears
naturally in many applications, such as VLSI
layout, graphics, and computer aided design. In
all these applications, there seems to be a need
for dealing with dynamic updates.

Open Problems

The O.n1=2/ bound for planarity testing is amor-
tized. Can we improve this bound or make it
worst-case?

Finally, the complexity of the algorithms pre-
sented here, and the large constant factors in-

volved in some of the asymptotic time bounds,
make some of the results unsuitable for practical
applications. Can one simplify the methods while
retaining similar theoretical bounds?
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Problem Definition

Design a data structure for a directed graph with
a fixed set of node which can process queries of
the form “Is there a path from i to j ?” and updates
of the form: “Insert edge (i, j)”; “Delete edge (i,
j)”. The goal is to minimize update and query
times, over the worst case sequence of queries
and updates. Algorithms to solve this problem are
called “fully dynamic” as opposed to “partially
dynamic” since both insertions and deletions are
allowed.

Key Results

This work [4] gives the first deterministic fully
dynamic graph algorithm for maintaining the
transitive closure in a directed graph. It uses
O.n2 log n/ amortized time per update and O(1)

worst case query time where n is number of nodes
in the graph. The basic technique is extended to
give fully dynamic algorithms for approximate
and exact all-pairs shortest paths problems.

The basic building block of these algorithms
is a method of maintaining all-pairs shortest paths
with insertions and deletions for distances up to d.
For each vertex v, a single-source shortest path
tree of depth d which reach v (“Inv”) and another
tree of vertices which are reached by v (“Outv”)
are maintained during any sequence of deletions.
Each insert of a set of edges incident to v results
in the rebuilding of Inv and Outv I. For each pair
of vertices x, y and each length, a count is kept of
the number of v such that there is a path from x in
Inv to y in Outv of that length.

To maintain transitive closure, log n levels of
these trees are maintained for trees of depth 2,
where the edges used to construct a forest on
one level depend on the paths in the forest of the
previous level.

Space required was reduced from O.n3/

to O.n2/ in [6]. A log n factor was shaved
off [7, 10]. Other tradeoffs between update and
query time are given in [1, 7–10]. A deletions
only randomized transitive closure algorithm run-
ning in O(mn) time overall is given by [8] where
m is the initial number of edges in the graph.
A simple monte carlo transitive closure algorithm
for acyclic graphs is presented in [5]. Dynamic
single source reachability in a digraph is
presented in [8, 9]. All-pairs shortest paths can be
maintained with nearly the same update time [2].

Applications

None

Open Problems

Can reachability from a single source in a di-
rected graph be maintained in o(mn) time over
a worst case sequence of m deletions?

Can strongly connected components be main-
tained in o(mn) time over a worst case sequence
of m deletions?
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Experimental Results

Experimental results on older techniques can be
found in [3].
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Problem Definition

For a detailed exposition of the solution approach
presented in this entry, please refer to [15]. As
evidenced by the successive announcement of
ever-faster computer systems in the past decade,
increasing the speed of VLSI systems continues
to be one of the major requirements for VLSI
system designers today. Faster integrated circuits
are making possible newer applications that were
traditionally considered difficult to implement in
hardware. In this scenario of increasing circuit
complexity, reduction of circuit delay in inte-
grated circuits is an important design objective.
Transistor sizing is one such task that has been
employed for speeding up circuits for quite some
time now [6]. Given the circuit topology, the

delay of a combinational circuit can be controlled
by varying the sizes of transistors in the circuit.
Here, the size of a transistor is measured in terms
of its channel width, since the channel lengths of
MOS transistors in a digital circuit are generally
uniform. In any case, what really matters is the
ratio of channel width to channel length, and if
channel lengths are not uniform, this ratio can be
considered as the size. In coarse terms, the circuit
delay can usually be reduced by increasing the
sizes of certain transistors in the circuit from the
minimum size. Hence, making the circuit faster
usually entails the penalty of increased circuit
area relative to a minimum-sized circuit, and the
area-delay trade-off involved here is the problem
of transistor size optimization. A related problem
to transistor sizing is called gate sizing, where a
logic gate in a circuit is modeled as an equivalent
inverter and the sizing optimization is carried
out on this modified circuit with equivalent in-
verters in place of more complex gates. There
is, therefore, a reduction in the number of size
parameters corresponding to every gate in the cir-
cuit. Needless to say, this is an easier problem to
solve than the general transistor sizing problem.
Note that gate sizing mentioned here is distinct
from library-specific gate sizing that is a discrete
optimization problem targeted to selecting appro-
priate gate sizes from an underlying cell library.
The gate sizing problem targeted here is one of
continuous gate sizing where the gate sizes are
allowed to vary in a continuous manner between
a minimum and a maximum size. There has been
a large amount of work done on transistor sizing

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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[1–3, 5, 6, 9, 10, 12, 13], that underlines the im-
portance of this optimization technique. Starting
from a minimum-sized circuit, TILOS, [6], uses a
greedy strategy for transistor sizing by iteratively
sizing transistors in the critical path. A sensitivity
factor is calculated for every transistor in the
critical path to quantify the gain in circuit speed
achieved by a unit upsizing of the transistor. The
most sensitive transistor is then bumped up in
size by a small constant factor to speed up the
circuit. This process is repeated iteratively until
the timing requirements are met. The technique is
extremely simple to implement and has run-time
behavior proportional to the size of the circuit. Its
chief drawback is that it does not have guaranteed
convergence properties and hence is not an exact
optimization technique.

Key Results

The solution presented in the entry heretofore
referred to as MINFLOTRANSIT was a novel
way of solving the transistor sizing problem ex-
actly and in an extremely fast manner. Even
though the entry treats transistor sizing, in the
description, the results apply as well to the less
general problem of continuous gate sizing as de-
scribed earlier. The proposed approach has some
similarity in form to [2, 5, 8] which will be sub-
sequently explained, but the similarity in content
is minimal and the details of implementation are
vastly different.

In essence, the proposed technique and the
techniques in [2, 5, 8] are iterative relaxation
approaches that involve a two-step optimization
strategy. The first step involves a delay budget-
ing step where optimal delays are computed for
transistors/gates. The second step involves sizing
transistors optimally under this “constant delay”
model to achieve these delay budgets. The two
steps are iteratively alternated until the solution
converges, i.e., until the delay budgets calculated
in the first step are exactly satisfied by the tran-
sistor sizes determined by the second step.

The primary features of the proposed approach
are:

• It is computationally fast and is comparable to
TILOS in its run-time behavior.

• It can be used for true transistor sizing as well
as the relaxed problem of gate sizing. Addi-
tionally, the approach can easily incorporate
wire sizing [15].

• It can be adapted for more general delay
models than the Elmore delay model [15].

The starting point for the proposed approach is
a fast guess solution. This could be obtained,
for example, from a circuit that has been op-
timized using TILOS to meet the given delay
requirements. The proposed approach, as out-
lined earlier, is an iterative relaxation procedure
that involves an alternating two-phase relaxed
optimization sequence that is repeated iteratively
until convergence is achieved. The two phases in
the proposed approach are:

• The D-phase where transistor sizes are
assumed fixed and transistor delays are
regarded as variable parameters. Irrespective
of the delay model employed, this phase
can be formulated as the dual of a min-
cost network flow problem. Using jV j to
denote the number of transistors and jEj the
number of wires in the circuit, this step in
our application has worst-case complexity of
O.jV jjEj log.log jV j// [7].

• The W-phase where transistor/gate delays are
assumed fixed and their sizes are regarded as
variable parameters. As long as the gate delay
can be expressed as a separable function of the
transistor sizes, this step can be solved as a
Simple Monotonic Program (SMP) [11]. The
complexity of SMP is similar to an all-pairs
shortest-path algorithm in a directed graph,
[4, 11], i.e., O.V jjEj/.

The objective function for the problem is the
minimization of circuit area. In the W-phase, this
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Gate Sizing, Table 1 Comparison of TILOS and MIN-
FLOTRANSIT on a Sun Ultrasparc 10 workstation for
ISCAS85 and MCNC91 benchmarks for 0.13 um technol-

ogy. The delay specs are with respect to a minimum-sized
circuit. The optimization approach followed here was gate
sizing

Circuit # Gates
Area saved over
TILOS (%) Delay specs. (Dmin) CPU time (TILOS) (s)

CPU time
(OURS) (s)

Adder32 480 � 1 0.5 2:2 5

Adder256 3;840 � 1 0.5 262 608

Cm163a 65 2:1 0.55 0:13 0:32

Cm162a 71 10:4 0.5 0:23 0:96

Parity8 89 37 0.45 0:68 2:15

Frg1 177 1:9 0.7 0:55 1:49

Population 518 6:7 0.4 57 179

Pmult8 1;431 5 0.5 637 1476

Alu2 826 2:6 0.6 28 71

C432 160 9:4 0.4 0:5 4:8

C499 202 7:2 0.57 1:47 11:26

C880 383 4 0.4 2:7 8; 2

C1355 546 9:5 0.4 29 76

C1908 880 4:6 0.4 36 84

C2670 1;193 9:1 0.4 27 69

C3540 1;669 7:7 0.4 226 651

C5315 2;307 2 0.4 90 201

C6288 2;416 16:5 0.4 1;677 4;138

C7552 3;512 3:3 0.4 320 683

objective is addressed directly, and in the D-phase
the objective is chosen to facilitate a move in the
solution space in a direction that is known to lead
to a reduction in the circuit area.

Applications

The primary application of the solution provided
here is circuit and system optimization in auto-
mated VLSI design. The solution provided here
can enable electronic design automation (EDA)
tools that take a holistic approach toward tran-
sistor sizing. This will in turn enable making
custom circuit design flows more realizable in
practice. The mechanics of some of the elements
of the solution provided here especially the D-
phase have been used to address other circuit
optimization problems [14].

Open Problems

The related problem of discrete gate sizing op-
timization matching gate sized to available gate
sizes from a standard cell library is a provably
hard optimization problem which could be aided
by the development of efficient heuristics and
probabilistic algorithms.

Experimental Results

A relative comparison of MINFLOTRANSIT
with TILOS is provided in Table 1 for gate
sizing of ISACS85 and mcnc91 benchmark
circuits. As can be seen a significant performance
improvement is observed with a tolerable loss in
execution time.
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Problem Definition

This problem is concerned with the computa-
tional complexity of finding an exchange market
equilibrium. The exchange market model consists
of a set of agents, each with an initial endowment
of commodities, interacting through a market,
trying to maximize each’s utility function. The
equilibrium prices are determined by a clearance
condition. That is, all commodities are bought,
collectively, by all the utility maximizing agents,
subject to their budget constraints (determined by
the values of their initial endowments of com-
modities at the market price). The work of Deng,
Papadimitriou and Safra [3] studies the com-
plexity, approximability, inapproximability, and
communication complexity of finding equilib-
rium prices. The work shows the NP-hardness
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of approximating the equilibrium in a market
with indivisible goods. For markets with divisible
goods and linear utility functions, it develops
a pseudo-polynomial time algorithm for comput-
ing an –-equilibrium. It also gives a communi-
cation complexity lower bound for computing
Pareto allocations in markets with non-strictly
concave utility functions.

Market Model
In a pure exchange economy, there are m traders,
labeled by i D 1; 2; :::; m, and n types of com-
modities, labeled by j D 1; 2; :::; n. The com-
modities could be divisible or indivisible. Each
trader i comes to the market with initial en-
dowment of commodities, denoted by a vector
wi 2 R

n
C, whose j-th entry is the amount of com-

modity j held by trader i.
Associate each trader i a consumption set

Xi to represents the set of possible commodity
bundles for him. For example, when there are
n 1 divisible commodities and .n � n1/ indivis-
ible commodities, Xi can be R

n1

C � Z
n�n1

C . Each
trader has a utility function Xi 7! RC to present
his utility for a bundle of commodities. Usually,
the utility function is required to be concave and
nondecreasing.

In the market, each trader acts as both a buyer
and a seller to maximize his utility. At a cer-
tain price p 2 R

n
C, trader i is is solving the

following optimization problem, under his budget
constraint:

max ui .xi / s:t: xi2Xi and hp; xi i�hp; wi i:

Definition 1 An equilibrium in a pure exchange
economy is a price vector Np 2 R

n
C and bundles of

commodities f Nxi 2 R
n
C; i D 1; :::; mg, such that

Nxi 2argmaxfui .xi /jxi2Xi and hxi ; Npi�hwi ; Npig;

81 � i � m

mX

iD1

Nxij �

mX

iD1

wij ;81 � j � n:

The concept of approximate equilibrium was in-
troduced in [3]:

Definition 2 ([3 )] An –-approximate equilibrium
in an exchange market is a price vector Np 2 R

n
C

and bundles of goods f Nxi 2 R
n
C; i D 1; :::; mg,

such that

ui . Nxi / �
1

1C �
maxfui .xi /jxi 2 Xi ; hxi ; Npi

� hwi ; Npig;8i (1)

h Nxi ; Npi � .1C �/hwi ; Npi;8i (2)

mX

iD1

Nxij � .1C �/

mX

iD1

wij ;8j : (3)

Key Results

A linear market is a market in which all the agents
have linear utility functions. The deficiency of
a market is the smallest � � 0 for which an –-
approximate equilibrium exists.

Theorem 1 The deficiency of a linear market
with indivisible goods is NP-hard to compute,
even if the number of agents is two. The deficiency
is also NP-hard to approximate within 1/3.

Theorem 2 There is a polynomial-time algo-
rithm for finding an equilibrium in linear markets
with bounded number of divisible goods. Ditto for
a polynomial number of agents.

Theorem 3 If the number of goods is bounded,
there is a polynomial-time algorithm which, for
any linear indivisible market for which a price
equilibrium exists, and for any � > 0, finds an �-
approximate equilibrium.

If the utility functions are strictly concave and the
equilibrium prices are broadcasted to all agents,
the equilibrium allocation can be computed
distributely without any communication, since
each agent’s basket of goods is uniquely
determined. However, if the utility functions are
not strictly concave, e.g., linear functions, com-
munications are needed to coordinate the agents’
behaviors.
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Theorem 4 Any protocol with binary domains
for computing Pareto allocations of m agents
and n divisible commodities with concave utility
functions (resp. �-Pareto allocations for indivisi-
ble commodities, for any � < 1) must have mar-
ket communication complexity ˝.m log.mC n//

bits.

Applications

This concept of market equilibrium is the out-
come of a sequence of efforts trying to fully un-
derstand the laws that govern human commercial
activities, starting with the “invisible hand” of
Adam Smith, and finally, the mathematical con-
clusion of Arrow and Debreu [1] that there exists
a set of prices that bring supply and demand into
equilibrium, under quite general conditions on
the agent utility functions and their optimization
behavior.

The work of Deng, Papadimitriou and
Safra [3] explicitly called for an algorithmic
complexity study of the problem, and developed
interesting complexity results and approximation
algorithms for several classes of utility functions.
There has since been a surge of algorithmic study
for the computation of the price equilibrium
problem with continuous variables, discovering
and rediscovering polynomial time algorithms
for many classes of utility functions, see [2,
4–9].

Significant progress has been made in the
above directions but only as a first step. New
ideas and methods have already been invented
and applied in reality. The next significant step
will soon manifest itself with many active stud-
ies in microeconomic behavior analysis for E-
commercial markets. Nevertheless the algorith-
mic analytic foundation in [3] will be an in-
dispensable tool for further development in this
reincarnated exciting field.

Open Problems

The most important open problem is what is the
computational complexity for finding the equilib-

rium price, as guaranteed by the Arrow–Debreu
theorem. To the best of the author’s knowledge,
only the markets whose set of equilibria is con-
vex can be solved in polynomial time with cur-
rent techniques. And approximating equilibria in
some markets with disconnected set of equilibria,
e.g., Leontief economies, are shown to be PPAD-
hard. Is the convexity or (weakly) gross substi-
tutability a necessary condition for a market to be
polynomial-time solvable?

Second, how to handle the dynamic case is es-
pecially interesting in theory, mathematical mod-
eling, and algorithmic complexity as bounded
rationality. Great progress must be made in those
directions for any theoretical work to be mean-
ingful in practice.

Third, incentive compatible mechanism de-
sign protocols for the auction models have been
most actively studied recently, especially with
the rise of E-Commerce. Especially at this level,
a proper approximate version of the equilibrium
concept handling price dynamics should be espe-
cially important.
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Problem Definition

The generalized Steiner network problem is a net-
work design problem, where the input consists of
a graph together with a collection of connectivity
requirements, and the goal is to find the cheapest
subgraph meeting these requirements.

Formally, the input to the generalized Steiner
network problem is an undirected multigraph
G D .V; E/, where each edge e 2 E has a non-
negative cost c.e/, and for each pair of ver-
tices i; j 2 V , there is a connectivity requirement
ri;j 2 Z. A feasible solution is a subset E 0 � E

of edges, such that every pair i; j 2 V of vertices
is connected by at least ri;j edge-disjoint path
in graph G0 D .V; E 0/. The generalized Steiner
network problem asks to find a solution E 0 of
minimum cost

P
e2E 0 c.e/.

This problem generalizes several classical net-
work design problems. Some examples include
minimum spanning tree, Steiner tree and Steiner
forest. The most general special case for which
a 2-approximation was previously known is the
Steiner forest problem [1, 4].

Williamson et al. [8] were the first to
show a non-trivial approximation algorithm
for the generalized Steiner network prob-
lem, achieving a 2k-approximation, where
k D maxi;j 2V fri;j g. This result was improved to
O.log k/-approximation by Goemans et al. [3].

Key Results

The main result of [6] is a factor-2 approximation
algorithm for the generalized Steiner network
problem. The techniques used in the design and
the analysis of the algorithm seem to be of inde-
pendent interest.

The 2-approximation is achieved for a more
general problem, defined as follows. The in-
put is a multigraph G D .V; E/ with costs c.�/

on edges, and connectivity requirement function
f W 2V ! Z. Function f is weakly submodular,
i.e., it has the following properties:

1. f .V / D 0.
2. For all A; B � V , at least one of the following

two conditions holds:

• f .A/C f .B/ � f .A n B/C f .B n A/.
• f .A/C f .B/ � f .A \ B/C f .A [ B/.

For any subset S � V of vertices, let ı.S/

denote the set of edges with exactly one endpoint
in S. The goal is to find a minimum-cost subset of
edges E 0 � E, such that for every subset S � V

of vertices, jı.S/ \E 0j � f .S/.
This problem can be equivalently expressed as

an integer program. For each edge e 2 E, let xe

be the indicator variable of whether e belongs to
the solution.

(IP) min
X

e2E

c.e/xe

subject to:
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X

e2ı.S/

xe � f .S/ 8S � V (1)

xe 2 f0; 1g 8e 2 E (2)

It is easy to see that the generalized Steiner
network problem is a special case of (IP), where
for each S � V , f .S/ D maxi2S;j 62Sfri;j g.

Techniques
The approximation algorithm uses the LP-
rounding technique. The initial linear program
(LP) is obtained from (IP) by replacing the
integrality constraint (2) with:

0 � xe � 1 8e 2 E (3)

It is assumed that there is a separation oracle
for (LP). It is easy to see that such an oracle
exists if (LP) is obtained from the generalized
Steiner network problem. The key result used in
the design and the analysis of the algorithm is
summarized in the following theorem.

Theorem 1 In any basic solution of (LP), there
is at least one edge e 2 E with xe � 1=2.

The approximation algorithm works by
iterative LP-rounding. Given a basic optimal
solution of (LP), let E� � E be the subset of
edges e with xe � 1=2. The edges of E� are
removed from the graph (and are eventually
added to the solution), and the problem is then
solved recursively on the residual graph, by
solving (LP) on G� D .V; E n E�/, where for
each subset S � V , the new requirement is
f .S/ � jı.S/ \E�j. The main observation that
leads to factor-2 approximation is the following:
if E 0 is a 2-approximation for the residual
problem, then E 0 [E� is a 2-approximation
for the original problem.

Given any solution to (LP), set S � V is
called tight iff constraint (1) holds with equality
for S. The proof of Theorem 1 involves con-
structing a large laminar family of tight sets
(a family where for every pair of sets, either
one set contains the other, or the two sets are
disjoint). After that a clever accounting scheme
that charges edges to the sets of the laminar

family is used to show that there is at least one
edge e 2 E with xe � 1=2.

Applications

Generalized Steiner network is a very basic and
natural network design problem that has many
applications in different areas, including the de-
sign of communication networks, VLSI design
and vehicle routing. One example is the design
of survivable communication networks, which
remain functional even after the failure of some
network components (see [5] for more details).

Open Problems

The 2-approximation algorithm of Jain [6] for
generalized Steiner network is based on LP-
rounding, and it has high running time. It
would be interesting to design a combinatorial
approximation algorithm for this problem.

It is not known whether a better approximation
is possible for generalized Steiner network. Very
few hardness of approximation results are known
for this type of problems. The best current hard-
ness factor stands on 1:01063 [2], and this result
is valid even for the special case of Steiner tree.
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Problem Definition

In the generalized two-server problem, we are
given two servers: one moving in a metric space
X and one moving in a metric space Y. They are
to serve requests r 2 X � Ywhich arrive one by
one. A request r D .x; y/ is served by moving
either the X-server to point x or the Y-server
to point y. The decision as to which server to
move to the next request is irrevocable and has
to be taken without any knowledge about future
requests. The objective is to minimize the total
distance traveled by the two servers (Fig. 1).

x2

y4

y2 y0

y3

y1x0 x4

x1 x3
X Y

Generalized Two-Server Problem, Fig. 1 In this ex-
ample, both servers move in the plane and start from
the configuration (x0; y0). The X-server moves through
requests 1 and 3, and the Y-server takes care of requests
2 and 4. The cost of this solution is the sum of the path-
lengths

Online Routing Problems
The generalized two-server problem belongs to a
class of routing problems called metrical service
systems [4, 10]. Such a system is defined by a
metric space M of all possible system configu-
rations, an initial configuration C0, and a set R of
possible requests, where each request r 2 R is
a subset of M. Given a sequence, r1; r2 : : : ; rn,
of requests, a feasible solution is a sequence,
C1; C2; : : : ; Cn, of configurations such that Ci 2

ri for all i 2{1,. . . ,n}.
When we model the generalized two-server

problem as a metrical service system we have
M D X � Y and R D ffx � Yg [ fX � ygjx 2

X; y 2 Yg. In the classical two-server problem,
both servers move in the same space and receive
the same requests, that is, M D X � X and
R D ffx � Yg [ fX � xgjx 2 Xg.

The performance of algorithms for online opti-
mization problems is often measured using com-
petitive analysis. We say that an algorithm is
˛-competitive (˛ �1) for some minimization
problem if for every possible instance the cost
of the algorithm’s solution is at most ˛ times the
cost of an optimal solution for the instance.

A standard algorithm that performs provably
well for several elementary routing problems is
the so-called work function algorithm [2, 5, 8];
after each request, the algorithm moves to a con-
figuration with low cost and which is not too far
from the current configuration. More precisely,
if the system’s configuration after serving a se-
quence � is C and r �M is the next request, then
the work function algorithm with parameter � �1
moves to a configuration C0 2 r that minimizes

�W�;r .C0/C d.C; C0/;
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where d.C; C0/ is the distance between configu-
rations C and C0, and W�;r .C0/ is the cost of an
optimal solution that serves all requests (in order)
in � plus request r with the restriction that it ends
in configuration C0.

Key Results

The main result in [11] is a sufficient condition
for a metrical service system to have a constant-
competitive algorithm. Additionally, the authors
show that this condition holds for the generalized
two-server problem.

For a fixed metrical service system S with
metric space M, denote by A.C; �/ the cost of
algorithm A on input sequence � , starting in
configuration C. Let OPT.C; �/ be the cost of the
corresponding optimal solution. We say that a
path T in M serves a sequence � if it visits all
requests in order. Hence, a feasible path is a path
that serves the sequence and starts in the initial
configuration.

Paths T1 and T2 are said to be independent if
they are far apart in the following way: jT1j C

jT2j < d.Cg
1 ; Ct

1/ C d.Cg
1 ; Ct

1/, where Cg
i and

Ct
i are, respectively, the start and end point of

path Ti .i 2{1,2}). Notice, for example, that two
intersecting paths are not independent.

Theorem 1 Let S be a metrical service system
with metric space M. Suppose there exists an
algorithm A and constants ˛ �1, ˇ �0, and
m �2 such that for any point C 2 M, sequence
� and pairwise independent paths T1; T2; : : : ; Tm

that serve �

A.C; �/ � ˛OPT.C; �/C ˇ

mX

iD1

jTi j: (1)

Then there exists an algorithm B that is constant
competitive for S.

The proof in [11] of the theorem above pro-
vides an explicit formulation of B . This algo-
rithm combines algorithm A with the work func-
tion algorithm and operates in phases. In each
phase, it applies algorithm A until its cost be-
comes too large compared to the optimal cost.
Then, it makes one step of the work function al-

gorithm and a new phase starts. In each phase, al-
gorithm A makes a restart, that is, it takes the final
configuration of the previous phase as the initial
configuration, whereas the work function algo-
rithm remembers the whole request sequence.

For the generalized two-server problem the so-
called balance algorithm satisfies condition (1).
This algorithm stores the cumulative costs of the
two servers and with each request it moves the
server that minimizes the maximum of the two
new values. The balance algorithm itself is not
constant competitive but Theorem 1 says that,
if we combine it in a clever way with the work
function algorithm, then we get an algorithm that
is constant competitive.

Applications

A set of metrical service systems can be com-
bined to get what is called in [9] the sum system.
A request of the sum system consists of one
request for each system, and to serve it we need
to serve at least one of the individual requests.
The generalized two-server problem should be
considered as one of the simplest sum systems
since the two individual problems are completely
trivial: There is one server and each request
consists of a single point.

Sum systems are particularly interesting to
model systems for information storage and re-
trieval. To increase stability or efficiency, one
may store copies of the same information in
multiple systems (e.g., databases, hard disks). To
retrieve one piece of information, we may read it
from any system. However, to read information it
may be necessary to change the configuration of
the system. For example, if the database is stored
in a binary search tree, then it is efficient to make
online changes to the structure of the tree, that is,
to use dynamic search trees [12].

Open Problems

A proof that the work function algorithm is com-
petitive for the generalized two-server problem
(as conjectured in [9] and [11]) is still lacking.
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Also, a randomized algorithm with a smaller
competitive ratio than that of [11] is not known.
No results (except for a lower bound) are known
for the generalized problem with more than two
servers. It is not even clear if the work function
algorithm may be competitive here.

There are systems for which the work function
algorithm is not competitive. It would be inter-
esting to have a nontrivial property that implies
competitiveness of the work function algorithm.
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Problem Definition

Auctions are used for allocating goods, tasks, re-
sources, etc. Participants in an auction include an
auctioneer (usually a seller) and bidders (usually
buyers). An auction has well-defined rules that
enforce an agreement between the auctioneer and
the winning bidder. Auctions are often used when
a seller has difficulty in estimating the value of an
auctioned good for buyers.

The Generalized Vickrey Auction protocol
(GVA) [5] is an auction protocol that can
be used for combinatorial auctions [3] in
which multiple items/goods are sold simul-
taneously. Although conventional auctions
sell a single item at a time, combinatorial
auctions sell multiple items/goods. These
goods may have interdependent values, e.g.,
these goods are complementary/substitutable
and bidders can bid on any combination of
goods. In a combinatorial auction, a bidder can
express complementary/substitutable preferences
over multiple bids. By taking into account
complementary/substitutable preferences, the
participants’ utilities and the revenue of the seller
can be increased. The GVA is one instance of
the Clarke mechanism [2, 4]. It is also called the
Vickrey–Clarke–Groves mechanism (VCG). As
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its name suggests, it is a generalized version of
the well-known Vickrey (or second-price) auction
protocol [6], proposed by an American economist
W. Vickrey, a 1996 Nobel Prize winner.

Assume there is a set of bidders N D f1; 2;

: : : ; ng and a set of goods M D f1; 2; : : : ; mg.
Each bidder i has his/her preferences over a bun-
dle, i.e., a subset of goods B �M . Formally, this
can be modeled by supposing that bidder i pri-
vately observes a parameter, or signal, �i , which
determines his/her preferences. The parameter �i

is called the type of bidder i. A bidder is assumed
to have a quasilinear, private value defined as
follows.

Definition 1 (Utility of a Bidder) The utility of
bidder i, when i obtains B �M and pays pi, is
represented as v .B; �i / � pi .

Here, the valuation of a bidder is determined
independently of other bidders’ valuations. Also,
the utility of a bidder is linear in terms of the
payment. Thus, this model is called a quasilinear,
private value model.

Definition 2 (Incentive Compatibility) An
auction protocol is (dominant-strategy) incentive
compatible (or strategy-proof) if declaring
the true type/evaluation values is a dominant
strategy for each bidder, i.e., an optimal strategy
regardless of the actions of other bidders.

A combination of dominant strategies of all bid-
ders is called a dominant-strategy equilibrium.

Definition 3 (Individual Rationality) An auc-
tion protocol is individually rational if no par-
ticipant suffers any loss in a dominant-strategy
equilibrium, i.e., the payment never exceeds the
evaluation value of the obtained goods.

Definition 4 (Pareto Efficiency) An auction
protocol is Pareto efficient when the sum of
all participants’ utilities (including that of the
auctioneer), i.e., the social surplus, is maximized
in a dominant-strategy equilibrium.

The goal is to design an auction protocol that is
incentive compatible, individually rational, and

Pareto efficient. It is clear that individual rational-
ity and Pareto efficiency are desirable. Regarding
the incentive compatibility, the revelation princi-
ple states that in the design of an auction protocol,
it is possible to restrict attention only to incentive
compatible protocols without loss of general-
ity [4]. In other words, if a certain property (e.g.,
Pareto efficiency) can be achieved using some
auction protocol in a dominant-strategy equilib-
rium, then the property can also be achieved using
an incentive-compatible auction protocol.

Key Results

A feasible allocation is defined as a vector of
n bundles EB D hB1; : : : ; Bni, where

S
j 2N Bj

�M and for all j ¤ j 0; Bj \ Bj 0 D ; hold.
The GVA protocol can be described as

follows.

1. Each bidder i declares his/her type O�i , which
can be different from his/her true type �i .

2. The auctioneer chooses an optimal allocation
EB� according to the declared types. More

precisely, the auctioneer chooses EB� defined
as follows:

EB� D arg max
EB

X

j 2N

v
�
Bj ; O�j

�
:

3. Each bidder i pays pi, which is defined as
follows (B�i

j and B�
j are the jth element of

EB�i and EB�, respectively):

piD
X

j 2N nfig

v
�
B�i

j ; O�j

�
�

X

j 2N nfig

v
�
B�

j ; O�j

�
;

where EB�iD arg max
EB

X

j 2N nfig

v
�
Bj ; O�j

�
:

(1)

The first term in Eq. (1) is the social surplus when
bidder i does not participate. The second term is
the social surplus except bidder i when i does
participate. In the GVA, the payment of bidder i
can be considered as the decreased amount of
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the other bidders’ social surplus resulting from
his/her participation.

A description of how this protocol works is
given below.

Example 1 Assume there are two goods a and b,
and three bidders, 1, 2, and 3, whose types are
�1; �2, and �3, respectively. The evaluation value
for a bundle v.B; �i / is determined as follows.

fag fbg fa; bg

�1 $6 $0 $6

�2 $0 $0 $8

�3 $0 $5 $5

Here, bidder 1 wants good a only, and bidder 3
wants good b only. Bidder 2’s utility is all-or-
nothing, i.e., he/she wants both goods at the same
time and having only one good is useless.

Assume each bidder i declares his/her true
type �i . The optimal allocation is to allocate
good a to bidder 1 and b to bidder 3, i.e.,
EB� D hfag; fg; fbgi. The payment of bidder 1

is calculated as follows. If bidder 1 does not
participate, the optimal allocation would have
been allocating both items to bidder 2, i.e.,
EB�1 D hfg; fa; bg; fgi and the social surplus,

i.e.,
P

j 2N nf1g v
�
B�1

j ; O�j

�
is equal to $8. When

bidder 1 does participate, bidder 3 obtains fbg,
and the social surplus except for bidder 1, i.e.,
P

j 2N nf1g v
�
B�

j ; O�j

�
, is 5. Therefore, bidder 1

pays the difference $8 � $5 D $3. The obtained
utility of bidder 1 is $6 � $3 D $3. The payment
of bidder 3 is calculated as $8 � $6 D $2.

The intuitive explanation of why truth telling
is the dominant strategy in the GVA is as follows.
In the GVA, goods are allocated so that the social
surplus is maximized. In general, the utility of
society as a whole does not necessarily mean
maximizing the utility of each participant. There-
fore, each participant might have an incentive for
lying if the group decision is made so that the
social surplus is maximized.

However, the payment of each bidder in the
GVA is cleverly determined so that the utility of
each bidder is maximized when the social surplus
is maximized. Figure 1 illustrates the relationship
between the payment and utility of bidder 1 in
Example 1. The payment of bidder 1 is defined
as the difference between the social surplus when
bidder 1 does not participate (i.e., the length of
the upper shaded bar) and the social surplus ex-
cept bidder 1 when bidder 1 does participate (the
length of the lower black bar), i.e., $8 � $5 D $3.

On the other hand, the utility of bidder 1
is the difference between the evaluation value
of the obtained item and the payment, which
equals $6 � $3 D $3. This amount is equal to
the difference between the total length of the
lower bar and the upper bar. Since the length
of the upper bar is determined independently of
bidder 1’s declaration, bidder 1 can maximize
his/her utility by maximizing the length of the
lower bar. However, the length of the lower bar
represents the social surplus. Thus, bidder 1 can
maximize his/her utility when the social surplus
is maximized. Therefore, bidder 1 does not have
an incentive for lying since the group decision is
made so that the social surplus is maximized.

Generalized Vickrey
Auction, Fig. 1 Utilities
and Payments in the GVA
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Theorem 1 The GVA is incentive compatible.

Proof Since the utility of bidder i is assumed to
be quasilinear, it can be represented as
v .Bi ; �i / � pi D v .Bi ; �i /

�

2

4
X

j 2N nfig

v
�
B�i

j ; O�j

�
�
X

j 2N nfig

v
�
B�

j ; O�j

�
3

5

D

2

4v .Bi ; �i /C
X

j 2N nfig

v
�
B�

j ; O�j

�
3

5

�
X

j 2N nfig

v
�
B�i

j ; O�j

�

(2)

The second term in Eq. (2) is determined inde-
pendently of bidder i’s declaration. Thus, bid-
der 1 can maximize his/her utility by maximizing
the first term. However, EB� is chosen so thatP

j 2Nv
�
Bj ; O�j

�
is maximized. Therefore, bid-

der i can maximize his/her utility by declaring
O�i D �i , i.e., by declaring his/her true type. �

Theorem 2 The GVA is individually rational.

Proof This is clear from Eq. (2), since the first
term is always larger than (or at least equal to)
the second term. �

Theorem 3 The GVA is Pareto efficient.

Proof From Theorem 1, truth telling is
a dominant-strategy equilibrium. From the way
of choosing the allocation, the social surplus
is maximized if all bidders declare their true
types. �

Applications

The GVA can be applied to combinatorial auc-
tions, which have lately attracted considerable
attention [3]. The US Federal Communications
Commission has been conductingauctions for al-

locating spectrum rights. Clearly, there exist in-
terdependencies among the values of spectrum
rights. For example, a bidder may desire licenses
for adjoining regions simultaneously, i.e., these
licenses are complementary. Thus, the spectrum
auctions is a promising application field of com-
binatorial auctions and have been a major driving
force for activating the research on combinatorial
auctions.

Open Problems

Although the GVA has these good characteris-
tics (Pareto efficiency, incentive compatibility,
and individual rationality), these characteristics
cannot be guaranteed when bidders can submit
false-name bids. Furthermore, [1] pointed out
several other limitations such as vulnerability to
the collusion of the auctioneer and/or losers.

Also, to execute the GVA, the auctioneer must
solve a complicated optimization problem. Var-
ious studies have been conducted to introduce
search techniques, which were developed in the
artificial intelligence literature, for solving this
optimization problem [3].
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Problem Definition

Geographic routing is a type of routing
particularly well suited for dynamic ad hoc
networks. Sometimes also called directional,
geometric, location-based, or position-based
routing, it is based on two principal assumptions.
First, it is assumed that every node knows its own
and its network neighbors’ positions. Second, the
source of a message is assumed to be informed
about the position of the destination. Geographic
routing is defined on a Euclidean graph, that
is a graph whose nodes are embedded in the
Euclidean plane. Formally, geographic ad hoc
routing algorithms can be defined as follows:

Definition 1 (Geographic Ad Hoc Routing Al-
gorithm) Let G D .V; E/ be a Euclidean graph.
The task of a geographic ad hoc routing algorithm
A is to transmit a message from a source s 2 V

to a destination t 2 V by sending packets over the
edges of G while complying with the following
conditions:

• All nodes v 2 V know their geographic posi-
tions as well as the geographic positions of all
their neighbors in G.

• The source s is informed about the position of
the destination t.

• The control information which can be stored
in a packet is limited by O.log n/ bits, that is,
only information about a constant number of
nodes is allowed.

• Except for the temporary storage of packets
before forwarding, a node is not allowed to
maintain any information.

Geographic routing is particularly interesting, as
it operates without any routing tables whatsoever.
Furthermore, once the position of the destination
is known, all operations are strictly local, that is,
every node is required to keep track only of its
direct neighbors. These two factors – absence of
necessity to keep routing tables up to date and
independence of remotely occurring topology
changes – are among the foremost reasons why
geographic routing is exceptionally suitable for
operation in ad hoc networks. Furthermore, in
a sense, geographic routing can be considered
a lean version of source routing appropriate
for dynamic networks: While in source routing
the complete hop-by-hop route to be followed
by the message is specified by the source, in
geographic routing the source simply addresses
the message with the position of the destination.
As the destination can generally be expected
to move slowly compared to the frequency
of topology changes between the source and
the destination, it makes sense to keep track
of the position of the destination instead of
maintaining network topology information up
to date; if the destination does not move too
fast, the message is delivered regardless of
possible topology changes among intermediate
nodes.

The cost bounds presented in this entry are
achieved on unit disk graphs. A unit disk graph
is defined as follows:

Definition 2 (Unit Disk Graph) Let V � R
2 be

a set of points in the 2-dimensional plane. The
graph with edges between all nodes with distance
at most 1 is called the unit disk graph of V.



826 Geographic Routing

Unit disk graphs are often employed to model
wireless ad hoc networks.

The routing algorithms considered in this en-
try operate on planar graphs, graphs that contain
no two intersecting edges. There exist strictly
local algorithms constructing such planar graphs
given a unit disk graph. The edges of planar
graphs partition the Euclidean plane into contigu-
ous areas, so-called faces. The algorithms cited in
this entry are based on these faces.

Key Results

The first geographic routing algorithm shown to
always reach the destination was Face Routing
introduced in [14].

Theorem 1 If the source and the destination are
connected, Face Routing executed on an arbi-
trary planar graph always finds a path to the
destination. It thereby takes at most O.n/ steps,
where n is the total number of nodes in the
network.

There exists however a geographic routing algo-
rithm whose cost is bounded not only with respect
to the total number of nodes, but in relation to
the shortest path between the source and the
destination: The GOAFRC algorithm [15, 16,
18, 24] (pronounced as “gopher-plus”) combines
greedy routing – where every intermediate node
relays the message to be routed to its neighbor
located nearest to the destination – with face
routing. Together with the locally computable
Gabriel Graph planarization technique, the effort
expended by the GOAFRC algorithm is bounded
as follows:

Theorem 2 Let c be the cost of an optimal path
from s to t in a given unit disk graph. GOAFRC

reaches t with cost O(c2) if s and t are connected.
If s and t are not connected, GOAFRC reports so
to the source.

On the other hand it can be shown that – on
certain worst-case graphs – no geographic routing
algorithm operating in compliance with the above
definition can perform asymptotically better than
GOAFRC:

Theorem 3 There exist graphs where any deter-
ministic (randomized) geographic ad hoc routing
algorithm has (expected) cost ˝.c2/.

This leads to the following conclusion:

Theorem 4 The cost expended by GOAFRC to
reach the destination on a unit disk graph is
asymptotically optimal.

In addition, it has been shown that the GOAFRC

algorithm is not only guaranteed to have low
worst-case cost but that it also performs well
in average-case networks with nodes randomly
placed in the plane [15, 24].

Applications

By its strictly local nature geographic routing is
particularly well suited for application in poten-
tially highly dynamic wireless ad hoc networks.
However, also its employment in dynamic net-
works in general is conceivable.

Open Problems

A number of problems related to geographic
routing remain open. This is true above all with
respect to the dissemination within the network
of information about the destination position and
on the other hand in the context of node mobility
as well as network dynamics. Various approaches
to these problems have been described in [7] as
well as in chapters 11 and 12 of [24]. More gen-
erally, taking geographic routing one step further
towards its application in practical wireless ad
hoc networks [12, 13] is a field yet largely open.
A more specific open problem is finally posed
by the question whether geographic routing can
be adapted to networks with nodes embedded in
three-dimensional space.

Experimental Results

First experiences with geographic and in par-
ticular face routing in practical networks have
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been made [12, 13]. More specifically, problems
in connection with graph planarization that can
occur in practice were observed, documented,
and tackled.
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Problem Definition

The central problem of private data analysis is to
extract meaningful information from a statistical
database without revealing too much about any
particular individual represented in the database.
Here, by a statistical database, we mean a mul-
tiset D 2 X n of n rows from the data universe
X . The notation jDj , n denotes the size of
the database. Each row represents the information
belonging to a single individual. The universe X
depends on the domain. A natural example to
keep in mind is X D f0; 1gd , i.e., each row of the
database gives the values of d binary attributes
for some individual.

Differential privacy formalizes the notion that
an adversary should not learn too much about any
individual as a result of a private computation.
The formal definition follows.

Definition 1 ([8]) A randomized algorithm A
satisfies ."; ı/-differential privacy if for any two
databases D and D0 that differ in at most a single
row (i.e., jD4D0j � 1), and any measurable
event S in the range of A,

PrŒA.D/ 2 S� � e" PrŒA.D0/ 2 S�C ı:

Above, probabilities are taken over the internal
coin tosses of A.

Differential privacy guarantees to a data owner
that allowing her data to be used for analysis does
not risk much more than she would if she did not
allow her data to be used.

In the sequel, we shall call databases D and D0

that differ in a single row neighboring databases,
denoted D 	 D0. Usually, the parameter " is
set to be a small constant so that e" 
 1 C ",
and ı is set to be no bigger than n�2 or even
n�!.1/. The case of ı D 0 often requires different
techniques from the case ı > 0; as is common
in the literature, we shall call the two cases pure
differential privacy and approximate differential
privacy.

Query Release
In the query release problem, we are given a set
Q of queries, where each q 2 Q is a function
q W X n ! R. Our goal is to design a differen-
tially private algorithm A which takes as input a
database D and outputs a list of answers to the
queries in Q. We shall call such an algorithm a
(query answering) mechanism. Here, we treat the
important special case of query release for sets
of linear queries. A linear query q is specified
by a function q W X ! Œ�1; 1�, and, slightly
abusing notation, we define the value of the query
as q.D/ ,

P
�2D q.e/. When q W X ! f0; 1g is

a predicate, q.D/ is a counting query: it simply
counts the number of rows of D that satisfy the
predicate.

It is easy to see that a differentially private
algorithm (with any reasonable choice of " and ı)
cannot answer a nontrivial set of queries exactly.
For this reason, we need to have a measure of
error, and here we introduce the two most com-
monly used ones: average and worst-case error.
Assume that on an input database D and a set of
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linear queries Q, the algorithm A gives answer
QqA.D/ for query q 2 Q. The average errorof A

on the query set Q for databases of size at most n

is equal to

erravg.A;Q; n/ , max
DWjDj�n

vuuut 1

jQjE

2

4
X

q2Q
j QqA.D/ � q.D/j2

3

5:

The worst-case error is equal to

errwc.A;Q; n/, max
DWjDj�n

E max
q2Q
j QqA.D/�q.D/j:

In both definitions above, expectations are
taken over the coin throws of A. We also
define erravg.A;Q/ D supn erravg.A;Q; n/, and
respectively errwc.A;Q/ D supn errwc.A;Q; n/,
to be the maximum error over all database sizes.
The objective in the query release problem is to
minimize error subject to privacy constraints.

Marginal Queries
An important class of counting queries are the
marginal queries. A k-way marginal query
marS;˛ W f0; 1gd ! f0; 1g is specified by a
subset of attributes S � f1; : : : ; dg of size k and
a vector ˛ 2 f0; 1gS . The query evaluates to 1

on those rows that agree with ˛ on all attributes
in S , i.e., marS;˛.�/ D

V
i2S �i D ˛i for any

� 2 f0; 1gd . Recall that, using the notation we
introduced above, this implies that marS;˛.D/

counts the number of rows in the database D

that agree with ˛ on S . Marginal queries capture
contingency tables in statistics and OLAP cubes
in databases. They are widely used in the sciences
and are released by a number of official agencies.

Matrix Notation
It will be convenient to encode the query release
problem for linear queries using matrix notation.
A common and very useful representation of a
database D 2 X n is the histogram representa-
tion: the histogram of D is a vector x 2 P

X (P is
the set of nonnegative integers) such that for any
� 2 X , x� is equal to the number of copies of �

in D. Notice that kxk1 D n and also that if x and
x0 are, respectively, the histograms of two neigh-

boring databases D and D0, then kx � x0k1 � 1

(here kxk1 D
P

� jx�j is the standard `1 norm).
Linear queries are a linear transformation of x.
More concretely, let us define the query matrix
A 2 Œ�1; 1�Q�X associated with a set of linear
queries Q by aq;� D q.�/. Then it is easy to
see that the vector Ax gives the answers to the
queries Q on a database D with histogram x.

Key Results

A central object of study in geometric approaches
to the query release problem is a convex body
associated with a set of linear queries. Before
introducing some of the main results and algo-
rithms, we define this body.

The Sensitivity Polytope
Let A be the query matrix for some set of queries
Q, and let x and x0 be the histograms of two
neighboring databases, respectively, D and D0.
Above, we observed that D 	 D0 implies that
kx�xk1 � 1. Let us use the notation BX

1 , fx W
kxk1 � 1g for the unit ball of the `1 norm in R

X .
Then, Ax � Ax0 2 KQ, where

KQ , fAx W kxk1 � 1g D A � BX
1

is the sensitivity polytope associated with Q.
In other words, the sensitivity polytope is the
smallest convex body such that Ax0 2 Ax CKQ
for any histogram x and any histogram x0 of a
neighboring database. In this sense, KQ describes
how the answers to the queries Q can change
between neighboring databases, which motivates
the terminology. Informally, a differentially pri-
vate algorithm must “hide” where in Ax C KQ
the true query answers are.
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Another very useful property of the sensitivity
polytope is that the vector Ax of query answers
for any database of size at most n is contained in
n �KQ D fAx W kxk1 � ng.

Geometrically, KQ is a convex polytope in
R

Q, centrally symmetric around 0, i.e., KQ D
�KQ. It is the convex hull of the points f˙a� W

� 2 X g, where a� is the column of A indexed by
the universe element �, i.e., a� D .q.�//q2Q.

The sensitivity polytope was introduced by
Hardt and Talwar [12]. The name was suggested
by Li Zhang.

The Generalized Gaussian Mechanism
We mentioned informally that a differentially
private mechanism must hide where in AxCKQ
the true query answers lie. A simple formaliza-
tion of this intuition is the Gaussian Mechanism,
which we present here in a generalized geometric
variant.

Recall that an ellipsoid in R
m is an affine

transformation F � Bm
2 C y of the unit Euclidean

ball Bm
2 , fx 2 R

m W kxk2 � 1g (kxk2 is the
usual Euclidean, i.e., `2 norm). In this article, we
will only consider centrally symmetric ellipsoids,
i.e., ellipsoids of the form E D F � Bm

2 .

Algorithm 1: Generalized Gaussian Mecha-
nism AE

Input: (Public) Query set Q; ellipsoid E D F � BQ
2

such that KQ � E .
Input: (Private) Database D.

Sample a vector g � N.0; c2
";ı

/Q, where

c";ı D
0:5

p

"C

p

2 ln.1=ı/

"
I

Compute the query matrix A and the histogram x for
the database D;

Output: Vector of query answers Ax C F g .

The generalized Gaussian mechanism AE

is shown as Algorithm 1. The notation g 	

N.0; c2
";ı

/Q means that each coordinate of g

is an independent Gaussian random variable
with mean 0 and variance c2

";ı
. In the special

case, when the ellipsoid E is just the Euclidean
ball �2 � B

Q
2 , with radius equal to the diameter

�2 , maxy2KQ kyk2 of KQ, AE is the well-
known Gaussian mechanism, whose privacy was

analyzed in [6–8]. The diameter �2 is also known
as the `2-sensitivity of Q and for linear queries
is always upper bounded by

p
jQj. The privacy

of the generalized version is an easy corollary of
the privacy of the standard Gaussian mechanism
(see [16] for a proof).

Theorem 1 ([6–8, 16]) For any ellipsoid E con-
taining KQ, AE satisfies ."; ı/-differential pri-
vacy.

It is not hard to analyze the error of the
mechanism AE . Let E D F � BQ

2 , and recall the
Hilbert-Schmidt norm kF kHS D

p
tr.FF |/ and

the 1-to-2 norm kF |k1!2 which is equal to the
largest `2 norm of any row of F . Geometrically,
kF kHS is equal to the square root of the sum of
squared major axis lengths of E, and kF |k1!2

is equal to the largest `1 norm of any point in E.
We have the error bounds

erravg.A;Q/ D O.c";ı/ �
1

p
jQj
kF kHS I

errwc.A;Q/ D O.c";ı

p
log jQj/ � kF |k1!2:

Surprisingly, for any query set Q, there exists
an ellipsoid E such that the generalized Gaussian
noise mechanism AE is nearly optimal among all
differentially private mechanisms for Q. In order
to formulate the result, let us define opt";ı

avg.Q/

(respectively, opt";ı
wc .Q/) to be the infimum of

erravg.A;Q/ (respectively, errwc.A;Q/) over all
."; ı/-differentially private mechanisms A.

Theorem 2 ([16]) Let E D F � BQ
2 be the ellip-

soid that minimizes kF kHS over all ellipsoids E

containing KQ. Then

erravg.AE ;Q/ D O.log jQj
p

log 1=ı/�opt";ı
avg.Q/:

If E D F � BQ
2 minimizes kF |k1!2 subject to

KQ � E, then

errwc.AE ;Q/

D O..log jQj/3=2
p

log 1=ı/ � opt";ı
wc .Q/:

Minimizing kF kHS or kF |k1!2 subject to
KQ � F �BQ

2 is a convex minimization problem.
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An optimal solution can be approximated to
within any prescribed degree of accuracy in
time polynomial in jQj and jX j via the ellipsoid
algorithm. In fact, more efficient solutions are
available: both problems can be formulated as
semidefinite programs and solved via interior
point methods, or one can also use the Plotkin-
Shmoys-Tardos framework [1, 17]. Algorithm
AE also runs in time polynomial in n; jQj; jX j,
since it only needs to compute the true query
answers and sample jQj many Gaussian random
variables. Thus, Theorem 2 gives an efficient
approximation to the optimal differentially
private mechanism for any set of linear queries.

The near-optimal mechanisms of Theorem 2
are closely related to the matrix mechanism [13].
The matrix mechanism, given a set of queries
Q with query matrix A, solves an optimiza-
tion problem to find a strategy matrix M , then
computes answers Qy to the queries Mx using
the standard Gaussian mechanism, and outputs
AM �1 Qy. The generalized Gaussian mechanism
AE instantiated with ellipsoid E D F � BQ

2 is
equivalent to the matrix mechanism with strategy
matrix F �1A.

The proof of optimality for the generalized
Gaussian mechanism is related to a fundamental
geometric fact: if all ellipsoids containing a con-
vex body are “large,” then the body itself must
be “large.” In particular, if the sum of squared
major axis lengths of any ellipsoid containing
KQ is large, then KQ must contain a simplex of
proportionally large volume. Moreover, this sim-
plex is the convex hull of a subset of the contact
points of KQ with the optimal ellipsoid. Since the
contact points must be vertices of KQ, and all
vertices of KQ are either columns of the query
matrix A or their negations, this guarantees the
existence of a submatrix of A with large determi-
nant. Determinants of submatrices in turn bound
opt";ı

avg.Q/ from below (this is a consequence
of a connection between combinatorial discrep-
ancy and privacy [15], and the determinant lower
bound on discrepancy [14]). This phenomenon is
related to the Restricted Invertibility Principle of
Bourgain and Tzafriri [4] and was established for
the closely related minimum volume ellipsoid by
Vershynin [18].

The Gaussian noise mechanism can only pro-
vide approximate privacy guarantees: when ı D

0, the noise variance scaling factor c";ı is un-
bounded. The case of pure privacy requires differ-
ent techniques. Nevertheless, ."; 0/-differentially
private algorithms with efficiency and optimality
guarantees analogous to these in Theorem 2 are
known [2,12]. They use a more complicated noise
distribution. In the important special case when
KQ is “well rounded” (technically, when KQ is
isotropic), the noise vector is sampled uniformly
from r � KQ, where r is a 	 -distributed random
variable. Optimality is established conditional
on the Hyperplane Conjecture [12] or uncondi-
tionally using Klartag’s proof of an isomorphic
version of the conjecture [2].

The Projection Mechanism
Despite the near-optimality guarantees, the gen-
eralized Gaussian mechanism has some draw-
backs that can limit its applicability. One issue
is that in some natural scenarios, the universe
size jX j can be huge, and running time linear
in jX j is impractical. Another is that its error
is sometimes larger even than the database size,
making the query answers unusable. We shall
see that a simple modification of the Gaussian
mechanism, based on an idea from statistics, goes
a long way towards addressing these issues.

It is known that there exist sets of linear
queries Q for which opt";ı

avg.Q/ D ˝.
p
jQj/

for any small enough constant " and ı [6, 9].
However, this lower bound only holds for large
databases, and algorithms with significantly
better error guarantees are known when n D

o.jQj/ [3, 10, 11]. We now know that there
are ."; ı/-differentially private algorithms that
answer any set Q of linear queries on any
database D 2 X n with average error at most

O

 p
n.log jX j/1=4.log 1=ı/1=4

p
"

!
: (1)

Moreover, for k-way marginal queries, this much
error is necessary, up to factors logarithmic in n

and jQj [5]. Here, we describe a simple geometric
algorithm from [16] that achieves this error bound
for any Q.
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We know that for any set of queries Q and
a database of size n, the true query answers are
between 0 and n. Therefore, it is always safe to
take the noisy answers Qy output by the Gaussian
mechanism and truncate them inside the interval
Œ0; n�. However, we can do better by using knowl-
edge of the query set Q. For any database D

of size n, the true query answers y D Ax lie
in n � KQ. This suggests a regression approach:
find the vector of answers Oy 2 n � KQ which is
closest to the noisy output Qy from the Gaussian
mechanism. This is the main insight used in the
projection mechanism (Algorithm 2).

Algorithm 2: Projection Mechanism Aproj

Input: (Public) Query set Q;
Input: (Private) Database D 2 Xn.

Compute a noisy vector of query answers Qy with AE

for E D
p

jQj � BQ
2 .

Compute a projection Oy of Qy onto n � KQ:
Oy , arg min Oy2n�KQ k Qy � Oyk2.

Output: Vector of answers Oy.

The fact that the projection mechanism is
."; ı/-differentially private is immediate, because
its only interaction with the database is via the
."; ı/-differentially private Gaussian mechanism,
and post-processing cannot break differential
privacy.

The projection step in Aproj reduces the noise
significantly when n D o.jQj="/. Intuitively, in
this case, n�KQ is small enough so that projection
cancels a significant portion of the noise. Let us
sketch the analysis. Let y D Ax be the true query
answers and g D Qy�y the Gaussian noise vector.
A simple geometric argument shows that ky �

Oyk22 � 2jhy � Oy; gij: the main observation is that
in the triangle formed by y, Qy, and Oy, the angle
at Oy is an obtuse or right angle; see Fig. 1. Since
Oy 2 n �KQ, there exists some histogram vector Ox
with k Oxk1 � n such that Oy D A Ox. We can rewrite
the inner product hy� Oy; gi as hx� Ox; A|gi. Now,
we apply Hölder’s inequality and get

Egky � Oyk
2
2 � 2Eg jhx � Ox; A|gij

� 2Egkx � Oxk1kA
|gk1

� 4nEgkA
|gk1: (2)

The term EgkA
|gk1 is the expected maximum

of jX j Gaussian random variables, each with
mean 0 and variance c2

";ı
jQj2, and standard

techniques give the bound O.c";ı jQj
p

log jX j/.
Plugging this into (2) shows that erravg.Aproj;Q/

is always bounded by (1). It is useful to
note that kA|gk1 is equal to hKQ.g/ D

maxy2KQ jhy; gij, where hKQ is the support
function of KQ. Geometrically, hKQ.g/ is equal
to half the width of KQ in the direction of g,
scaled by the Euclidean length of g (see Fig. 1).
Thus, the average error of Aproj scales with the
expected width of n �KQ in a random direction.

Running in Time Sublinear in |X |
An important example when running time linear
in jX j is impractical is marginal queries: the size
of the universe is 2d , which is prohibitive even
for a moderate number of attributes. Notice, how-
ever, that in order to compute Qy in Algorithm 2,
we only need to compute the true query answers
and add independent Gaussian noise to each. This
can be done in time O.njQj/. The computa-

Geometric Approaches
to Answering Queries,
Fig. 1 The projection
mechanism Aproj on the
left: the angle � is
necessarily obtuse or right.
The figure on the right
shows the value of the
support function hKQ.g/

is equal to 1
2

kgk2 times
the width of KQ in the
direction of g

y

ŷ

ỹ

g

n ·KQ

θ

KQ 0

hKQ(g)

‖g‖2

g
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2 The sensitivity polytope for 2-way marginals on 3
attributes (left) and a spectrahedral relaxation of the

polytope (right). A projection onto 3 of the 12 queries
restricted to the positive orthant is shown

tionally expensive operation then is computing
the projection Qy. This is a convex optimization
problem, and can be solved using the ellipsoid
algorithm, provided we have a separation oracle
for KQ. (A more practical approach is to use
the Frank-Wolfe algorithm which can be imple-
mented efficiently as long as we can solve arbi-
trary linear programs with feasible region KQ.)
For k-way marginals, after a linear transforma-
tion that doesn’t significantly affect error, KQ can
be assumed to be the convex hull of f˙�˝k W � 2

f�1; 1gd g, where �˝k is the k-fold tensor power
of �. Unfortunately, even for k D 2, separation
for this convex body is NP-hard. Nevertheless, a
small modification of the analysis of Aproj shows
that the algorithm achieves asymptotically the
same error bound if we project onto a convex
body L such that KQ � L and EghL.g/ �

O.1/ � EghKQ.g/. In other words, we need a
convex L that relaxes KQ but is not too much
wider than KQ in a random direction. If we can
find such an L with an efficient separation oracle,
we can implement Aproj in time polynomial in Q
and n while only increasing the error by a con-
stant factor. For 2-way marginals, an appropriate
relaxation can be derived from Grothendieck’s
inequality and is formulated using semidefinite
programming. The sensitivity polytope KQ and
the relaxation L are shown for 2-way marginals
on f0; 1g3 in Fig. 2. Finding a relaxation L for

k-way marginals with efficient separation and
mean width bound EghL.g/ � O.1/ �EghKQ.g/

is an open problem for k � 3.

Optimal Error for Small Databases
We can refine the optimal error opt";ı

avg.Q/ to

a curve opt";ı
avg.Q; n/, where opt";ı

avg.Q; n/ is
the infimum of erravg.A;Q; n/ over all ."; ı/-
differentially private algorithms A. There exists
an algorithm that, for any database of size at
most n and any query set Q, has an average
error only a polylogarithmic (in jQj, jX j, and
1=ı) factor larger than opt";ı

avg.Q; n/ [16]. The
algorithm is similar to Aproj. However, the
noise distribution used is the optimal one from
Theorem 2. The post-processing step is also
slightly more complicated, but the key step
is again noise reduction via projection onto a
convex body. The running time is polynomial
in n; jQj; jX j. Giving analogous guarantees for
worst-case error remains open.
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Problem Definition

Urban street systems can be modeled by plane
geometric networks GD .V; E/ whose edges e 2

E are piecewise smooth curves that connect the
vertices v 2 V � R

2. Edges do not intersect, ex-
cept at common endpoints in V . Since streets are
lined with houses, the quality of such a network
can be measured by the length of the connections
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Geometric Dilation of
Geometric Networks,
Fig. 1 Minimum dilation
embeddings of regular
point sets

Δ(S3) = 2/√3 Δ(S4) = √2 Δ(Sn) = π/2 if n ≥5

it provides between two arbitrary points p and q

on G.
Let 
G.p; q/ denote a shortest path from p to

q in G. Then

ı.p; q/ WD
j
G.p; q/j

jpqj
(1)

is the detour one encounters when using network
G, in order to get from p to q, instead of walk-
ing straight. Here, j : j denotes the Euclidean
length. The geometric dilation of network G is
defined by

ı.G/ WD sup
p¤q2G

ı.p; q/: (2)

This definition differs from the notion of stretch
factor (or spanning ratio) used in the context
of spanners; see the monographs by Eppstein
[6] or Narasimhan and Smid [11]. In the latter,
only the paths between the vertices p; q 2 V

are considered, whereas the geometric dilation
involves all points on the edges as well. As a
consequence, the stretch factor of a triangle T

equals 1, but its geometric dilation is given by
ı.T / D

p
2=.1 � cos ˛/ � 2, where ˛ � 60ı

is the most acute angle of T .
Presented with a finite set S of points

in the plane, one would like to find a
finite geometric network containing S whose
geometric dilation is as small as possible. The
value of

Δ.S/ WD inffı.G/IG finite plane geometric
network containing Sg

is called the geometric dilation of point set S. The
problem is in computing, or bounding, Δ.S/ for
a given set S .

Key Results

Theorem 1 ([4]) Let Sn denote the set of
corners of a regular n-gon. Then, Δ.S3/ D

2=
p

3;Δ.S4/D
p

2; and Δ.Sn/ D �=2 for all
n � 5.

The networks realizing these minimum values
are shown in Fig. 1. The proof of minimality
uses the following two lemmata that may be
interesting in their own right. Lemma 1 was
independently obtained by Aronov et al. [1].

Lemma 1 Let T be a tree containing Sn . Then
ı.T / � n=� .

Lemma 2 follows from a result of Gromov’s
[7]. It can more easily be proven by applying
Cauchy’s surface area formula; see [4].

Lemma 2 Let C denote a simple closed curve in
the plane. Then ı.C / � � /2.

Clearly, Lemma 2 is tight for the circle. The
next lemma implies that the circle is the only
closed curve attaining the minimum geometric
dilation of �=2.

Lemma 3 ([3]) Let C be a simple closed curve
of geometric dilation <�=2 C �.ı/. Then C is
contained in an annulus of width ı.

For points in general position, computing their
geometric dilation seems quite complicated. Only
for sets S D fA; B; C g of size three is the
solution completely known.

Theorem 2 ([5]) The plane geometric network
of minimum geometric dilation containing three
given points {A; B; C } is either a line segment,
or a Steiner tree as depicted in Fig. 1, or a simple
path consisting of two line segments and one
segment of an exponential spiral; see Fig. 2.
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Geometric Dilation of Geometric Networks, Fig. 3 A
network of geometric dilation 	1,6778

The optimum path shown in Fig. 2 contains a
degree two Steiner vertex, P , situated at distance
jABj from B . The path runs straight between
A; B and B; P . From P to C , it follows an
exponential spiral centered at A.

The next results provide upper and lower
bounds to Δ.S/.

Theorem 3 ([4]) For each finite point set S , the
estimate Δ.S/ < 1:678 holds.

To prove this general upper bound, one can
replace each vertex of the hexagonal tiling of R2

with a certain closed Zindler curve (by definition,
all point pairs bisecting the perimeter of a Zindler
curve have identical distance). This results in a
network GF of geometric dilation 
1:6778; see
Fig. 3. Given a finite point set S , one applies a
slight deformation to a scaled version of GF ,
such that all points of S lie on a finite part,
G, of the deformed net. By Dirichlet’s result on
simultaneous approximation of real numbers by
rationals, a deformation small as compared to the

cell size is sufficient, so that the dilation is not
affected. See [8] for the history and properties of
Zindler curves.

Theorem 4 ([3]) There exists a finite point set S

such that Δ.S/ > .1C 10�11/�=2.

Theorem 4 holds for the set S of 19 � 19

vertices of the integer grid. Roughly, if S were
contained in a geometric network G of dilation
close to �=2, the boundaries of the faces of G

must be contained in small annuli, by Lemma 3.
To the inner and outer circles of these annuli, one
can now apply a result by Kuperberg et al. [9]
stating that an enlargement, by a certain factor, of
a packing of disks of radius �1 cannot cover a
square of size 4.

Applications

The geometric dilation has applications in
the theory of knots; see, e.g., Kusner and
Sullivan [10] and Denne and Sullivan [2].
With respect to urban planning, the above
results highlight principal dilation bounds for
connecting given sites with plane geometric
networks.

Open Problems

For practical applications, one would welcome
upper bounds to the weight (= total edge length)
of a geometric network, in addition to upper
bounds on its geometric dilation. Some theoret-
ical questions require further investigation, too.
Is Δ.S/ always attained by a finite network?
How to compute, or approximate, Δ.S/ for a
given finite set S? What is the precise value of
sup{Δ.S/ISfinite}?
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Problem Definition

Enumerating objects with the given property is
one of basic problems in mathematics. We review
some geometric objects enumeration problems
and algorithms to solve them.

A graph is planar if it can be embedded in the
plane so that no two edges intersect geometrically
except at a vertex to which they are both incident.
A plane graph is a planar graph with a fixed
planar embedding. A plane graph divides the
plane into connected regions called faces. The
unbounded face is called the outer face, and other
faces are called inner faces.

A plane graph is a floor plan if each face
(including the outer face) is a rectangle. A based
floor plan is a floor plan with one designated line
on the contour of the outer face. The designated
line is called the base line and we always draw the
base line as the lowermost horizontal line of the
drawing. The 25 based floor plans having 4 inner
faces are shown in Fig. 1. Given an integer f the
problem of floor plan enumeration asks for gen-
erating all floor plans with exactly f inner faces.

A plane graph is a plane triangulation if
each inner face has exactly three edges on its
contour. A based plane triangulation is a plane
triangulation with one designated edge on the
contour of the outer face. The designated edge is
called the base edge. Triangulations are important
model for 3D modeling. A graph is biconnected
if removing any vertex always results in a
connected graph. A graph is triconnected if
removing any two vertices always results in a
connected graph. Given two integers n and r ,
the problem of biconnected plane triangulation
enumeration asks for generating all biconnected
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plane triangulations with exactly n vertices
including exactly r vertices on the outer face.
Given two integers n and r , the problem of
triconnected plane triangulation enumeration
asks for generating all triconnected plane
triangulations with exactly n vertices including
exactly r vertices on the outer face.

Key Results

Enumeration of All Floor Plans
Using reverse search method [1], one can
enumerate all based floor plans with f inner
faces in O.1/ time for each [3]. We sketch the
method in [3].

Let Sf be the set of all based floor plans
with f > 1 inner faces. Let R be a based floor
plan in Sf and F a face of R having the upper
right corner of R. We have two cases. If R has a
vertical line segment with upper end at the lower
left corner of F , then by continually shrinking
R to the uppermost horizontal line of R with
preserving the width of F and enlarging the faces
below R, we can have a based floor plan with one
less inner face. If R has no vertical line segment
with the upper end at the lower left corner of F ,
then R has a horizontal line segment with the
right end at the lower left corner of F , and then by
continually shrinking R to the rightmost vertical
line of R with preserving the height of F and
enlarging the faces locating the left of R, we can
have a base floor plan with one less inner face.
Repeating this results in the sequence of based
floor plans which always ends with the based
floor plan with one inner face. See an example in
Fig. 2. If we merge the sequence of all R in Sf ,
then we have the tree Tf in which every R in Sf

appears as a leaf in Tf . See Fig. 3.
The reverse search method efficiently

traverses the tree (without storing the tree in
the memory) and output each based floor plan
in Sf at each corresponding leaf. Thus, we can
efficiently enumerate all based floor plans in Sf .
The algorithm enumerates all based floor plans in
Sf in O.1/ time for each.

Enumeration of Triangulations
Similarly, using reverse search method [1], given
two integers n and r , one can enumerate all

based biconnected triangulations having exactly
n vertices including exactly r vertices on the
outer face in O.1/ time for each [2], all based
triconnected triangulations having exactly n ver-
tices including exactly r vertices on the outer face
in O.1/ time for each [3], and all triconnected
(non-based) plane triangulation having exactly n

vertices including exactly r vertices on the outer
face in O.r2n/ time for each [3]. Also one can
enumerate all based triangulation having exactly
n vertices with exactly three vertices on the outer
face in O.1/ time for each [3].
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Problem Definition

Finding the shortest path between a source and a
destination is a natural optimization problem with
many applications. Perhaps the oldest variant of
the problem is the geometric shortest path prob-
lem, in which the domain is physical space: the
problem is relevant to human travelers, migrating
animals, and even physical phenomena like wave
propagation. The key feature that distinguishes
the geometric shortest path problem from the cor-
responding problem in graphs or other discrete
spaces is the unbounded number of paths in a
multidimensional space. To solve the problem
efficiently, one must use the “shortness” criterion
to limit the search.

In computational geometry, physical space is
modeled abstractly as the union of some number
of constant-complexity primitive elements. The
traditional formulation of the shortest path
problem considers paths in a domain bounded
by linear elements – line segments in two
dimensions, triangles in three dimensions, and
.d � 1/-dimensional simplices in d > 3. Canny
and Reif showed that the three-dimensional
shortest path problem is NP-complete [2], so
this article will focus on the two-dimensional
problem.

We consider paths in a free space P bounded
by h polygons – one outer boundary and .h � 1/

obstacles – with a total of n vertices. The free
space is closed, so paths may touch the boundary.
The source and destination of the shortest path
are points s and t inside or on the boundary of P .
The goal of the shortest path problem is to find
the shortest path from s to t inside P , denoted by
�.s; t/, as efficiently as possible, where running
time and memory use are expressed as functions
of n and h. The length of �.s; t/ is denoted
by dist.s; t/; in some applications, it may be
desirable to compute dist.s; t/ without finding
�.s; t/ explicitly.

Key Results

Visibility Graph Algorithms
Early approaches to the two-dimensional shortest
path problem exploited the visibility graph to
reduce the continuous shortest path problem to a
discrete graph problem [1, 12, 18]. The visibility
graph is a graph whose nodes are s, t , and the
vertices of P and whose edges .u; v/ connect
vertex pairs such that the line segment uv is
contained in P . It is convenient and customary
to identify the edges of the abstract visibility
graph with the line segments they represent. The
visibility graph is important because the edges
of the shortest path �.s; t/ are a subset of the
visibility graph edges. This is easy to understand
intuitively, because of subpath optimality – for
any two points a; b 2 �.s; t/, the subpath of
�.s; t/ between a and b is also the shortest path
between a and b. In particular, if ab is contained
in P , then �.s; t/ coincides with ab between a

and b, and the distance dist.a; b/ is equal to jabj,
the length of the segment ab. If �.s; t/ has a bend
anywhere except at a vertex of P , an infinitesimal
subpath near the bend can be shortened by a
straight shortcut, implying that �.s; t/ is not the
shortest path. Hence every segment of �.s; t/ is
an edge of the visibility graph.

This observation leads directly to an algo-
rithm for computing shortest paths: compute the
visibility graph of P and then run Dijkstra’s
algorithm to find the shortest path from s to t

in the visibility graph. The visibility graph can
be constructed in O.n log n C m/ time, where
m is the number of edges, using an algorithm of
Ghosh and Mount [7]. Dijkstra’s algorithm takes
O.n log n C m/ time on a graph with n nodes
and m edges [4], so this is the running time of
the straightforward visibility graph solution to
the shortest path problem. This algorithm can be
quadratic in the worst case, since m, the number
of visibility graph edges, can be as large as
�.n2/.

The running time can be improved somewhat
by noting that only a subset of the visibility graph
edges can belong to a shortest path. In particular,
any shortest path must turn toward the boundary
of P at any path vertex. This limits the edges to
common tangents of the polygons of P . We omit
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Geometric Shortest
Paths in the Plane, Fig. 1
The spreading wavefront

S

the details, but note that if s and t are known, the
common tangent restriction limits the number of
visibility graph edges that may belong to �.s; t/

to O.n C h2/ [11]. These useful edges can be
computed in O.n log n C h2/ time [17], and so
the shortest path can be computed in the same
time bound by applying Dijkstra’s algorithm to
the subgraph [11].

Continuous Dijkstra Algorithms
Visibility graph approaches to finding the shortest
path run in quadratic time in the worst case, since
h may be �.n/. This led Mitchell to propose
an alternative approach called the continuous
Dijkstra method [15]. Imagine a wavefront that
spreads at unit speed inside P , starting from s.
The wavefront at time  is the set of points in
P whose geodesic (shortest path) distance from
s is exactly  . Said another way, the shortest path
distance from s to a point p 2 P is equal to the
time at which the wavefront reaches p.

The wavefront at time  is a union of paths
and cycles bounding the region whose geodesic
distance from s is at most  . Each path or cycle is
a sequence of circular arc wavelets, each centered
on a vertex v that is its root. The radius of the
wavelet is  � dist.s; v/, with dist.s; v/ <  .
As  increases, the combinatorial structure of the
wavefront changes at discrete event times when
the wavefront hits the free space boundary, col-
lides with itself, or eliminates wavelets squeezed

between neighboring wavelets. See Fig. 1. The
continuous Dijkstra method simulates the spread
of this wavefront, computing the shortest path
distance to every point of the free space in the
process.

Mitchell used the continuous Dijkstra method
to compute shortest paths under the L1 metric in
O.n log n/ time [15]. He later extended the ap-
proach to compute L2 (Euclidean) shortest paths
in O.n5=3C�/ time, for � arbitrarily small [16].
Hershberger and Suri gave an alternative im-
plementation of the continuous Dijkstra scheme,
using different data structures, that computes Eu-
clidean shortest paths in O.n log n/ time [9]. The
next two subsections discuss these algorithms in
more detail.

Continuous Dijkstra with Sector
Propagation Queries
If p is a point in P , �.s; p/ is a shortest path from
s to p, and the predecessor of p is the vertex
of �.s; p/ adjacent to (immediately preceding)
p in the path. If a point is reached by multiple
shortest paths, it has multiple predecessors. The
shortest path map is a linear-complexity partition
of P into regions such that every point inside
a region has the same predecessor. See Fig. 2.
The root of each region is the predecessor of all
points in the region. The edges of the shortest
path map are polygon edges and bisectors (curves
with two distinct predecessors, namely, the roots
of the regions separated by the bisector).
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Geometric Shortest Paths in the Plane, Fig. 2 The
shortest path map for the wavefront in Fig. 1

Mitchell’s shortest path algorithm simulates
the spread of the wavefront inside the shortest
path map. This may seem a bit peculiar, since
the shortest path map is not known until the
shortest paths have been computed. The trick is
that the algorithm builds the shortest path map
as it runs, and it propagates a pseudo-wavefront
inside its current model of the shortest path map
at each step. The true wavefront is a subset of
the pseudo-wavefront. This pseudo-wavefront is
locally correct – each wavelet’s motion is deter-
mined by its neighbors in the pseudo-wavefront
and the shortest path map known so far – but
it may overrun itself. When an overrun is de-
tected, the algorithm revises its model of the
shortest path map in the neighborhood of the
overrun.

To be more specific, each wavelet w is a
circular arc centered at a root vertex r.w/. The
endpoints of w move along left and right tracks
˛.w/ and ˇ.w/. Each track is either a straight
line segment (a polygon edge or an extension
of a visibility edge) or a bisector determined by
w and the left/right neighbor wavefront L.w/ or
R.w/. For example, if r D r.w/ and r 0 D

r.L.w//, the left bisector is the set of points x

such that dist.s; r/ C jrxj D dist.s; r 0/ C jr 0xj;
consequently, the bisector is a hyperbolic arc.
For every wavelet w, the algorithm computes a
next event, which is the next value of  where
w reaches an endpoint of one of its tracks, the left
and right tracks collide, or w hits a polygon vertex

between its left and right tracks. (Collisions with
polygon edges or other wavefront arcs are not
detected.) The events for all wavelets are placed
in a global priority queue and processed in order
of increasing  values.

When the algorithm processes an event, it up-
dates the wavelets involved and their events in the
priority queue. Processing wavelet collisions with
a polygon vertex v is the most complicated case:
To detect possible previous collisions with poly-
gon edges, the algorithm performs a ray shooting
query from r.w/ toward v [8]. If the ray hits
an edge, the algorithm traces the edge through
the current shortest path map regions and updates
the corresponding wavelets. If v is reached for
the first time by w, then the algorithm updates the
wavefront with a new wavelet rooted at v. If ver-
tex v was previously reached by another wavelet,
then there are previously undiscovered bisectors
between w and the other wavelet. The algorithm
traces these bisectors through its local shortest
path map model and carves off portions that are
reached by a shorter path following another route.
Processing other events (track vertices and track
collisions) is similar.

Mitchell shows that even though vertices may
be reached more than once by different wavelets,
and portions of the shortest path map are carved
off and discarded when they are discovered to
be invalid, no vertex is reached more than O.1/

times, and the total shortest path map complexity,
even including discarded portions, is O.n/. The
most costly part of the algorithm is finding the
first polygon vertex hit by each wavelet. All
the rest of the algorithm – ray shooting, prior-
ity queue, bisector tracing, and maintaining the
shortest path map structure – can be done in
O.n log n/ total time.

The complexity of Mitchell’s algorithm is
dominated by wavelet dragging queries, which
find the first obstacle vertex hit by a wavelet
w between the left and right tracks ˛.w/ and
ˇ.w/. Mitchell phrases this as a ten-dimensional
optimization problem dependent on the position
and distance from s for the root of w and its
neighbors in the wavefront, plus the start time  .
Although Euclidean distances are square roots
of quadratics (by Pythagoras), Mitchell is able,
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by squaring, substitution, and simplification, to
convert the distance minimization problem into a
linear optimization range query over a constant-
size polyhedron in <5. (The objects in the range
query are n 5-dimensional points, images of
the polygon vertices.) There are O.n/ such
queries to be performed. Using known bounds
and balancing preprocessing against query time,
the O.n/ queries can be answered in O.n5=3C�/

time and space [3, 13, 14]. All other parts of the
algorithm take near-linear time, so the total time
for Mitchell’s algorithm to find the Euclidean
shortest path map is O.n5=3C�/ [16].

Continuous Dijkstra in a Conforming
Subdivision
The challenge of implementing the continuous
Dijkstra paradigm is that detecting and process-
ing wavefront events in strict temporal order is
difficult to do efficiently, but processing events
out of order may lead to incorrect results or
to processing too many invalid events. Mitchell
addresses the challenge by detecting only one
subclass of events in temporal order (wavelet con-
tacts with polygon vertices) and repairing errors
in the shortest path map structure as they are
discovered. Hershberger and Suri achieve a better
time bound (optimal O.n log n/) by processing
events in an even more relaxed order [9]. The key
to their approach is a subdivision of the free space

in which spatial locality is used to bound the tem-
poral inaccuracy of wavefront event processing.

As a simple example, consider a wavefront
propagating across an obstacle-free plane that has
been subdivided into a grid of unit squares. Each
edge e of the grid lies at the center of a 4 � 5

rectangle of squares. The distance from e to each
of the 18 edges on the rectangle boundary is at
least 2. If the wavefront source is outside the
rectangle, then the first wavelet that reaches any
point p 2 e must pass through the rectangle
boundary at least two time units before it reaches
p. By the triangle inequality, an edge of length
ı is completely covered by the wavefront within
time ı of the time the wavefront first hits it. It
follows that if the shortest path to p 2 e passes
through an edge f on the rectangle boundary,
edge f is completely covered by the wavefront at
least one time unit before the wavefront reaches
p. See Fig. 3.

The algorithm propagates the wavefront from
edge to edge in the grid. For each edge e, let
input.e/ be the edges on the boundary of the
4�5 rectangle around e. The algorithm computes
a cover time for e, denoted cover.e/, that is an
upper bound on the time when the wavefront
completely covers e. If fvc.e/ is the time at which
the wavefront first contacts a vertex of e, and
jej is the length of e, then cover.e/ is defined
to be fvc.e/ C jej. For each edge e, cover.e/ is
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determined by a wavefront passing through f 2

input.e/, and cover.f / < cover.e/.
The propagation algorithm processes edges in

order of cover time, computing the wavefront
at e by combining the wavefronts from edges
f 2 input.e/ with cover.f / < cover.e/. The
combination algorithm is linear in the number
of features of the shortest path map that lie
inside the rectangle for e. The algorithm com-
putes a one-dimensional representation of the
intersection of the shortest path map with each
edge of the grid; each bisector that has an event
(an arc endpoint) within the input region of an
edge e is flagged in the wavefront representation
for e. To turn the one-dimensional wavefront
representation at edges into a two-dimensional
representation of the shortest path map, the algo-
rithm combines the wavefronts of the edges on
each cell’s boundary to compute the shortest path
map inside the cell. (The algorithm computes
additively weighted Voronoi diagrams [6] for the
wavelet roots whose bisectors have events (end-
points) in the cell, plus compact representations
of the groups of bisectors that have no endpoints
in the cell.)

The key feature of the grid subdivision is well-
covering property: each edge e is surrounded by
a region that is the union of O.1/ cells, and
the distance from e to the region boundary is
relatively large. In particular, if f is an edge on
the boundary, dist.e; f / � 2 �max.jej; jf j/. This
property allows the algorithm to perform spatial
(not temporal) wavefront propagation at discrete
cover times. Hershberger and Suri show how to
extend the well-covering property to a special
conforming subdivision of free space made up
of O.n/ constant-complexity cells. The wave-
front propagation algorithm carries over from
the grid to the conforming subdivision of free
space with only a few changes to handle the
obstacle vertices. As on the grid, the number of
propagation steps and data structure changes is
O.n/. Including the overhead of a priority queue
and data structure updates (full persistence is
needed [5]) increases the time and space by a
factor of O.log n/, so the overall algorithm runs
in O.n log n/ time and space.

Extensions

Hershberger and Suri’s algorithm supports
multiple wavefront sources, including line-
segment sources. Hence the algorithm can be
used to compute geodesic Voronoi diagrams, in-
cluding Voronoi diagrams whose sites are points,
segments, polygons, or combinations of all
these.

Since the publication of Hershberger and
Suri’s optimal-time algorithm for shortest paths
among polygonal obstacles, their result has been
extended to other two-dimensional domains.
Schreiber showed how to find shortest paths
on the surface of a convex polyhedron in
O.n log n/ time [20]. His algorithm decomposes
the surface into cells and then propagates
wavefronts between cell edges similarly to
Hershberger and Suri’s algorithm. Schreiber
extended his algorithm for polyhedra to work
for polygonal terrains as well, assuming that
the maximum gradient of the terrain is bounded
by a constant [19]. More recently, Hershberger,
Suri, and Yıldız [10] extended the algorithm for
polygonal obstacles [9] to find shortest paths in a
free space bounded by curved obstacle edges. The
conforming subdivision for the free space is very
similar to that for polygonal obstacles; the chief
difficulty is computing the positions of bisector
events (intersections). Bisectors for polygonal
obstacles are hyperbolic arcs, but they are much
more complicated curves for curved obstacles.
The algorithm of [10] approximates the bisector
events using primitive tangent-finding operations
on individual obstacle curves, with the result that
the algorithm’s running time is O.n log.n=�//,
where � is the relative error of the computed path
length.
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Problem Definition

Consider a set S of n points in d -dimensional
Euclidean space. A network on S can be modeled
as an undirected graph G with vertex set S of
size n and an edge set E where every edge .u; v/

has a weight. A geometric (Euclidean) network
is a network where the weight of the edge .u; v/

is the Euclidean distance juvj between its end
points. Given a real number t > 1, we say that
G is a t -spanner for S , if for each pair of points
u; v 2 S , there exists a path in G of weight at
most t times the Euclidean distance between u
and v. The minimum t such that G is a t -spanner
for S is called the stretch factor, or dilation, of G.
For a detailed description of many constructions
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of t -spanners, see the book by Narasimhan and
Smid [30]. The problem considered is the con-
struction of t -spanners given a set S of n points
in Rd and a positive real value t > 1, where
d is a constant. The aim is to compute a good
t -spanner for S with respect to the following
quality measures:

size: the number of edges in the graph
degree: the maximum number of edges incident

on a vertex
weight: the sum of the edge weights
spanner diameter: the smallest integer k such

that for any pair of vertices u and v in S ,
there is a path in the graph of length at most
t � juvj between u and v containing at most k

edges
fault tolerance: the resilience of the graph to

edge, vertex, or region failures

Thus, good t -spanners require large fault
tolerance and small size, degree, weight, and
spanner diameter. Additionally, the time required
to compute such spanners must be as small as
possible.

Key Results

This section contains descriptions of several
known approaches for constructing a t -spanner
of a set of points in Euclidean space. We also
present descriptions of the construction of fault-
tolerant spanners, spanners among polygonal
obstacles, and, finally, a short note on dynamic
and kinetic spanners.

Spanners of Points in Euclidean Space
The most well-known classes of t -spanner
networks for points in Euclidean space include
�-graphs, WSPD graphs, and greedy spanners.
In the following sections, the main idea of each
of these classes is given, together with the known
bounds on the quality measures.

The �-Graph
The �-graph was discovered independently by
Clarkson and Keil in the late 1980s. The general
idea is to process each point p 2 S independently
as follows: partition Rd into k simplicial cones
of angular diameter at most � and apex at p,
where k D O.1=�d�1/. For each nonempty cone
C , an edge is added between p and the point in
C whose orthogonal projection onto some fixed
ray in C emanating from p is closest to p; see
Fig. 1a. The resulting graph is called the �-
graph on S . The following result is due to Arya
et al. [9].

Theorem 1 The �-graph is a t -spanner of S for

t D 1
cos ��sin �

with O
�

n

�d�1

�
edges and can

be computed in O
�

n

�d�1 logd�1 n
�

time using

O
�

n

�d�1 C n logd�2 n
�

space.

The following variants of the �-graph also
give bounds on the degree, spanner diameter, and
weight.

Skip-List Spanners
The idea is to generalize skip lists and apply
them to the construction of spanners. Construct a

q

a b

Geometric Spanners, Fig. 1 (a) Illustrating the �-graph and (b) a graph with a region fault



848 Geometric Spanners

sequence of h subsets, S1; : : : ; Sh, where S1 D

S and Si is constructed from Si�1 as follows
(reminiscent of the levels in a skip list). For each
point in Si�1, flip a fair coin. The set Si is the
set of all points of Si�1 whose coin flip produced
heads. The construction stops if Si D ;. For each
subset, a �-graph is constructed. The union of the
graphs is the skip-list spanner of S with dilation

t , having O
�

n

�d�1

�
edges and O.log n/ spanner

diameter with high probability [9].

Gap Greedy
A set of directed edges is said to satisfy the gap
property if the sources of any two distinct edges
in the set are separated by a distance that is at
least proportional to the length of the shorter of
the two edges. Arya and Smid [6] proposed an
algorithm that uses the gap property to decide
whether or not an edge should be added to the
t -spanner graph. Using the gap property, the
constructed spanner can be shown to have degree
O.1=�d�1/ and weight O.log n � wt.MST.S///,
where wt.MST.S// is the weight of the minimum
spanning tree of S .

The WSPD Graph
The well-separated pair decomposition (WSPD)
was developed by Callahan and Kosaraju [12].
The construction of a t -spanner using the well-
separated pair decomposition is done by first
constructing a WSPD of S with respect to a
separation constant s D 4.tC1/

.t�1/
. Initially set

the spanner graph G D .S;;/ and add edges
iteratively as follows. For each well-separated
pair fA; Bg in the decomposition, an edge
.a; b/ is added to the graph, where a and b

are arbitrary points in A and B , respectively.
The resulting graph is called the WSPD graph
on S .

Theorem 2 The WSPD graph is a t -spanner for
S with O.sd �n/ edges and can be constructed in
time O.sd nCn log n/, where s D 4.tC1/=.t�1/.

There are modifications that can be made to
obtain bounded spanner diameter or bounded
degree.

Bounded spanner diameter: Arya, Mount, and
Smid [7] showed how to modify the construction
algorithm such that the spanner diameter of the
graph is bounded by 2 log n. Instead of selecting
an arbitrary point in each well-separated set, their
algorithm carefully chooses a representative point
for each set.

Bounded degree: A single point v can be part
of many well-separated pairs, and each of these
pairs may generate an edge with an end point at v.
Arya et al. [8] suggested an algorithm that retains
only the shortest edge for each cone direction,
thus combining the �-graph approach with the
WSPD graph. By adding a postprocessing step
that handles all high-degree vertices, a t -spanner

of degree O
�

1

.t�1/2d�1

�
is obtained.

The Greedy Spanner
The greedy algorithm was first presented in 1989
by Bern, and since then, the greedy algorithm
has been subject to considerable research. The
graph constructed using the greedy algorithm is
called a Greedy spanner, and the general idea is
that the algorithm iteratively builds a graph G.
The edges in the complete graph are processed
in order of increasing edge length. Testing an
edge .u; v/ entails a shortest path query in the
partial spanner graph G. If the shortest path in
G between u and v is at most t � juvj, then the
edge .u; v/ is discarded; otherwise, it is added to
the partial spanner graph G.

Das, Narasimhan, and Salowe [22] proved
that the Greedy spanner fulfills the so-called
leapfrog property. A set of undirected edges E

is said to satisfy the t -leapfrog property, if for
every k � 2, and for every possible sequence
f.p1; q1/; : : : ; .pk ; qk/g of pairwise distinct
edges of E,

t �jp1q1j<

kX

iD2

jpi qi jCt �

 
k�1X

iD1

jqi piC1jCjpkq1j

!
:

Using the leapfrog property, it has been shown
that the total edge weight of the graph is within
a constant factor of the weight of a minimum
spanning tree of S .
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Using Dijkstra’s shortest-path algorithm,
the greedy spanner can be constructed in
O.n3 log n/ time. Bose et al. [10] improved the
time to O.n2 log n/, while using O.n2/ space.
Alewijnse et al. [4] improved the space bound to
O.n/, while slightly increasing the time bound to
O.n2 log2 n/.

Das and Narasimhan [21] observed that an
approximation of the greedy spanner can be con-
structed while maintaining the leapfrog property.
This observation allowed for faster construction
algorithms.

Theorem 3 ([27]) The greedy spanner is a t -

spanner of S with O
�

n

.t�1/d log. 1
t�1

/
�

edges,

maximum degree O
�

1

.t�1/d log. 1
t�1

/
�

, and

weight O
�

1

.t�1/2d � wt.MST.S//
�

and can be

computed in time O
�

n

.t�1/2d log n
�

.

The Transformation Technique
Chandra et al. [16, 17] introduced a transfor-
mation technique for general metrics that trans-
forms an algorithm for constructing spanners
with small stretch factor and size into an algo-
rithm for constructing spanners with the same
asymptotic stretch factor and size, but with the
additional feature of small weight. Elkin and
Solomon [24] refined their approach to develop
a transformation technique that achieved the fol-
lowing: It takes an algorithm for constructing
spanners with small stretch factor, small size,
small degree, and small spanner diameter and
transforms it into an algorithm for constructing
spanners with a small increase in stretch factor,
size, degree, and spanner diameter, but that also
has small weight and running time.

Using the transformation technique allowed
Elkin and Solomon to prove the following theo-
rem.

Theorem 4 ([24]) For any set of n points in
Euclidean space of any constant dimension d ,
any � > 0, and any parameter � � 2, there exists
a .1C�/-spanner with O.n/ edges, degree O.�/,
spanner diameter O.log� n C ˛.�//, andweight

O.� �log� n�wt.MST//, which can be constructed
in time O.n log n/.

Given the lower bounds proved by Chan and
Gupta [13] and Dinitz et al. [23], these results
represent optimal tradeoffs in the entire range of
the parameter �.

Fault-Tolerant Spanners
The concept of fault-tolerant spanners was first
introduced by Levcopoulos et al. [28] in 1998:
After one or more vertices or edges fail, the span-
ner should retain its good properties. In particular,
there should still be a short path between any
two vertices in what remains of the spanner after
the fault. Czumaj and Zhao [19] showed that a
greedy approach produces a k-vertex (or k-edge)
fault-tolerant geometric t -spanner with degree
O.k/ and total weight O.k2 � wt.MST.S///;
these bounds are asymptotically optimal. Chan
et al. [15] used a “standard net-tree with cross-
edge framework” developed by [14,26] to design
an algorithm that produces a k-vertex (or k-
edge) fault-tolerant geometric .1 C �/-spanner
with degree O.k2/, diameter O.log n/, and to-
tal weight O.k2 log n � wt.MST.S///. Such a
spanner can be constructed in O.n log n C k2n/

time.
For geometric spanners, it is natural to con-

sider region faults, i.e., faults that destroy all
vertices and edges intersecting some geometric
fault region. For a fault region F , let G�F be
the part of G that remains after the points from S

inside F and all edges that intersect F have
been removed from the graph; see Fig. 1b. Abam
et al. [2] showed how to construct region-fault
tolerant t -spanners of size O.n log n/ that are
fault tolerant to any convex region fault. If one
is allowed to use Steiner points, then a linear size
t -spanner can be achieved.

Spanners Among Obstacles
The visibility graph of a set of pairwise non-
intersecting polygons is a graph of intervisible
locations. Each polygonal vertex is a vertex in
the graph and each edge represents a visible
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connection between them, that is, if two vertices
can see each other, an edge is drawn between
them. This graph is useful since it contains the
shortest obstacle avoiding path between any pair
of vertices.

Das [20] showed that a t -spanner of the
visibility graph of a point set in the Euclidean
plane can be constructed by using the �-
graph approach followed by a pruning step.
The obtained graph has linear size and constant
degree.

Dynamic and Kinetic Spanners
Arya et al. [9] designed a data structure of
size O.n logd n/ that maintains the skip-list
spanner, described in section “The �-Graph,”
in O.logd n log log n/ expected amortized time
per insertion and deletion in the model of random
updates.

Gao et al. [26] showed how to maintain a t -

spanner of size O
�

n

.t�1/d

�
and maximum de-

gree O
�

1

.t�2/d log ˛
�

, in time O
�

log ˛

.t�1/d

�
per

insertion and deletion, where ˛ denotes the aspect
ratio of S , i.e., the ratio of the maximum pairwise
distance to the minimum pairwise distance. The
idea is to use an hierarchical structure T with
O.log ˛/ levels, where each level contains a set
of centers (subset of S ). Each vertex v on level
i in T is connected by an edge to all other

vertices on level i within distance O
�

2i

t�1

�
of

v. The resulting graph is a t -spanner of S and it
can be maintained as stated above. The approach
can be generalized to the kinetic case so that
the total number of events in maintaining the
spanner is O.n2 log n/ under pseudo-algebraic

motion. Each event can be updated in O
�

log ˛

.t�1/d

�

time.
The problem of maintaining a spanner under

insertions and deletions of points was settled by
Gottlieb and Roditty [5]: For every set of n points
in a metric space of bounded doubling dimension,
there exists a .1 C �/-spanner whose maximum
degree is O.1/ and that can be maintained under
insertions and deletions of points, in O.log n/

time per operation.

Recently several papers have considered the
kinetic version of the spanner construction prob-
lem. Abam et al. [1, 3] gave the first data struc-
tures for maintaining the �-graph, which was
later improved by Rahmati et al. [32]. Assuming
the trajectories of the points can be described
by polynomials whose degrees are at most a
constant s, the data structure uses O.n logd n/

space and handles O.n2/ events with a total cost

of O
�
n�2sC2.n/ logdC1 n

�
, where �2sC2.n/ is

the maximum length of Davenport-Schinzel se-
quences of order 2sC2 on n symbols. The kinetic
data structure is compact, efficient, responsive (in
an amortized sense), and local.

Applications

The construction of sparse spanners has been
shown to have numerous application areas
such as metric space searching [31], which
includes query by content in multimedia
objects, text retrieval, pattern recognition, and
function approximation. Another example is
broadcasting in communication networks [29].
Several well-known theoretical results also use
the construction of t -spanners as a building
block, for example, Rao and Smith [33] made a
breakthrough by showing an optimal O.n log n/-
time approximation scheme for the well-known
Euclidean traveling salesperson problem, using
t -spanners (or banyans). Similarly, Czumaj and
Lingas [18] showed approximation schemes for
minimum-cost multi-connectivity problems in
geometric networks.

Open Problems

A few open problems are mentioned below:

1. Determine if there exists a fault-tolerant t -
spanner of linear size for convex region
faults.

2. Can the k-vertex fault-tolerant spanner be
computed in O.n log nC kn/ time?
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Experimental Results

The problem of constructing spanners has re-
ceived considerable attention from a theoretical
perspective but not much attention from a prac-
tical or experimental perspective. Navarro and
Paredes [31] presented four heuristics for point
sets in high-dimensional space (d D 20) and
showed by empirical methods that the running
time was O.n2:24/ and the number of edges in the
produced graphs was O.n1:13/. Farshi and Gud-
mundsson [25] performed a thorough compari-
son of the construction algorithms discussed in
section “Spanners of Points in Euclidean Space.”
The results showed that the spanner produced by
the original greedy algorithm is superior com-
pared to the graphs produced by the other ap-
proaches discussed in section “Spanners of Points
in Euclidean Space” when it comes to number
of edges, maximum degree, and weight. How-
ever, the greedy algorithm requires O.n2 log n/

time [10] and uses quadratic space, which re-
stricted experiments in [25] to instances contain-
ing at most 13,000 points. Alewijnse et al. [4]
showed how to reduce the space usage to linear
only paying an additional O.log n/ factor in the
running time. In their experiments, they could
handle more than a million points. In a follow-up
paper, Bouts et al. [11] gave further experimental
improvements.
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Problem Definition

Given a graph G in which every edge has a
nonnegative capacity, the goal of the minimum-
cut problem is to find a subset of edges of G

with minimum total capacity whose deletion dis-
connects G. The closely related minimum .s; t/-
cut problem further requires two specific vertices
s and t to be separated by the deleted edges.
Minimum cuts and their generalizations play a
central role in divide-and-conquer and network
optimization algorithms.

The fastest algorithms known for comput-
ing minimum cuts in arbitrary graphs run in
roughly O.mn/ time for graphs with n vertices
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and m edges. However, even faster algorithms
are known for graphs with additional topologi-
cal structure. This entry sketches algorithms to
compute minimum cuts in near-linear time when
the input graph can be drawn on a surface with
bounded genus – informally, a sphere with a
bounded number of handles.

Problem 1 (Minimum (s,t)-Cut)
INPUT: An undirected graph G D .V; E/ em-
bedded on an orientable surface of genus g, a
nonnegative capacity function cWE ! R, and
two vertices s and t . OUTPUT: A minimum-
capacity .s; t/-cut in G.

Problem 2 (Global Minimum Cut)
INPUT: An undirected graph G D .V; E/ em-
bedded on an orientable surface of genus g and
a nonnegative capacity function cWE ! R.
OUTPUT: A minimum-capacity cut in G.

Key Results

Topological Background
A surface is a compact space in which each point
has a neighborhood homeomorphic to either the
plane or a closed half plane. Points with half-
plane neighborhoods comprise the boundary of
the surface, which is the union of disjoint simple
cycles. The genus is the maximum number of
disjoint simple cycles whose deletion leaves the
surface connected. A surface is orientable if it
does not contain a MÃbius band. An embedding
is a drawing of a graph on a surface, with vertices
drawn as distinct points and edges as simple
interior-disjoint paths, whose complement is a
collection of disjoint open disks called the faces
of the embedding.

An even subgraph of G is a subgraph in which
every vertex has even degree; each component
of an even subgraph is Eulerian. Two even
subgraphs of an embedded graph G are Z2-
homologous, or in the same Z2-homology class,
if their symmetric difference is the boundary
of a subset of the surface. If G is embedded
on a surface of genus g with b > 0 boundary
cycles, the even subgraphs of G fall into 22gCb�1

Z2-homology classes. An even subgraph of
G is Z2-minimal if it has minimum total cost
within its Z2-homology class. Each component
of a Z2-minimal even subgraph is itself
Z2-minimal.

Every embedded graph G has a dual graph
G�, embedded on the same surface, whose
vertices correspond to faces of G and whose
edges correspond to pairs of faces that share an
edge in G. The cost of a dual edge in G� is
the capacity of the corresponding primal edge
in G.

Duality maps cut to certain sets of cycles and
vice versa. For example, the minimum-capacity
.s; t/-cut in any planar graph G is dual to the
minimum-cost cycle in G� that separates the
dual faces s� and t�. If we remove s� and t�

from the sphere, the dual of the minimum cut
is the shortest generating cycle of the resulting
annulus [11, 15]. More generally, let X denote
the set of edges that cross some minimum .s; t/-
cut in an embedded graph G, and let X� denote
the corresponding subgraph of the dual graph G�.
Then X� is a minimum-cost even subgraph of G�

that separates s� and t�. If we remove s� and
t� from the surface, X� becomes a Z2-minimal
subgraph homologous with the boundary of s�.

Crossing Sequences
Our first algorithm [6] reduces computing a
minimum .s; t/-cut in a graph embedded on a
genus-g surface to gO.g/ instances of the planar
minimum-cut problem.

The algorithm begins by constructing a collec-
tion A of 2g C 1 paths in G�, called a greedy
system of arcs, with three important properties.
First, the endpoints of each path are incident to
the boundary faces s� and t�. Second, each path
is composed of two shortest paths plus at most
one additional edge. Finally, the complement
˙ n A of the paths is a topological open disk. A
greedy system of arcs can be computed in O.gn/

time [5, 9].
We regard each component of X� as a closed

walk, and we enumerate all possible sequences
of crossings between the components of X� with
the arcs in A. The components of any Z2-minimal
even subgraph cross any shortest path, and there-
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fore any arc in A, at most O.g/ times. It follows
that we need to consider at most gO.g/ crossing
sequences, each of length at most O.g2/. Fol-
lowing Kutz [13], the shortest closed walk with a
given crossing sequence is the shortest generating
cycle in an annulus obtained by gluing together
O.g2/ copies of the disk ˙ n A, which can be
computed in O.g2n log log n/ time using the pla-
nar minimum-cut algorithm of Italiano et al. [12].
The overall running time of this algorithm is
gO.g/n log log n.

Surprisingly, a reduction from MAXCUT im-
plies that finding the minimum-cost even sub-
graph in an arbitrary Z2-homology class is NP-
hard. Different reductions imply that it is NP-hard
to find the minimum-cost closed walk [5] or
simple cycle [2] in a given Z2-homology class.

Z2-Homology Cover
Our second algorithm [9] finds the minimum-
cost closed walks in G� in every Z2-homology
class by searching a certain covering space and
then assembles X� from these closed walks via
dynamic programming.

As in our first algorithm, we first compute a
greedy system of arcs A. The homology class of
any cycle � is determined by the parity of the
number of crossings of � with each arc in A. Each
arc ˛i 2 A appears as two paths ˛C

i and ˛�
i on

the boundary of the disk D D ˙ n A.
We then construct a new surface ˙ , called

the Z2-homology cover of ˙ , by gluing together
several copies of D as follows. We associate each
homology class h 2 Z

2gC1
2 with a vector of

2gC1 bits. Let h^i denote the bit vector obtained
from h by flipping its i th bit. For each bit vector
h, we construct a copy Dh of D; let ˛C

i;h
and ˛�

i;h

denote the copies of ˛C
i and ˛�

i on the boundary
of Dh. Finally, we construct ˙ by identifying the
paths ˛C

i;h
and ˛�

i;h^i
for each homology class h

and index i .
This construction also yields a graph G em-

bedded in ˙ , with 22gC1 vertices vh and edges eh

for each vertex v and edge e of G�. Each edge eh

of G inherits the cost of the corresponding edge e

in G�. Any walk in G projects to a walk in G� by
dropping subscripts; in particular, any walk in G

from v0 to vh projects to a closed walk in G� with

homology class h that starts and ends at vertex v.
Conversely, the shortest closed walk in G� in any
homology class h is the projection of the shortest
path from v0 to vh, for some vertex v.

Any cycle in any nontrivial homology class
crosses some path ˛i , an odd number of times,
and therefore at least once. To find all such cycles
for each index i , we slice G along the lifted path
˛i;0 to obtain a new boundary cycle, and then
compute the shortest path from each vertex v0 on
this cycle to every other vertex vh in 2O.g/n log n

time, using an algorithm of Chambers et al. [3].
Altogether, we find the shortest closed walk in
every Z2-homology class in 2O.g/n log n time.
The dual minimum cut X� can then be built from
these Z2-minimal cycles in 2O.g/ additional time
via dynamic programming.

Global Minimum Cuts
Our final result generalizes the recent O.n log
log n/-time algorithm for planar graphs by Lacki
and Sankowski [14], which in turn relies on the
O.n log log n/-time algorithm for planar mini-
mum .s; t/-cuts of Italiano et al. [12].

The global minimum cut X in a surface graph
G is dual to the minimum-cost nonempty sep-
arating subgraph of the dual graph G�. In par-
ticular, if G is planar, X is dual to the shortest
nonempty cycle in G�. There are two cases to
consider: either X� is a simple contractible cycle,
or it isn’t. We describe two algorithms, one of
which is guaranteed to return the minimum-cost
separating subgraph.

To handle the contractible cycle case, we first
slice the surface ˙ to make it planar, first along
the shortest non-separating cycle ˛ in G�, which
we compute in gO.g/n log log n time using a
variant of our crossing sequence algorithm, and
then along a greedy system of arcs A connecting
the resulting boundary cycles. Call the resulting
planar graph D; each edge of ˛ [ A appears as
two edges on the boundary of D. Let eC and e�

be edges on the boundary of D corresponding to
some edge e of ˛. Using the planar algorithm of
Lacki and Sankowski [14], we find the shortest
cycle �C in D n eC and the shortest cycle �� in
D n e�. The shorter of these two cycles projects
to a closed walk � in the original dual graph G�.
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Results of Cabello [2] imply that if � is a simple
cycle, it is the shortest contractible simple cycle
in G�; otherwise, X� is not a simple cycle.

Our second algorithm begins by enumerat-
ing all 2O.g/

Z2-minimal even subgraphs in G�

in gO.g/n log log n time, using our crossing se-
quence algorithm. Our algorithm marks the faces
on either side of an arbitrary edge of each Z2-
minimal even subgraphs in G�. If X� is not
a simple contractible cycle, then some pair of
marked faces must be separated by X�. In other
words, in gO.g/n log log n time, we identify a set
T of 2O.g/ vertices of G, at least two of which
are separated by the global minimum cut. Thus,
if we fix an arbitrary source vertex s and compute
the minimum .s; t/-cut for each vertex t 2 T in
gO.g/n log log n time, the smallest such cut is the
global minimum cut X .

Open Problems

Extending these algorithms to directed surface
graphs remains an interesting open problem;
currently the only effective approach known
is to compute a maximum .s; t/-flow and
apply the maxflow-mincut theorem. The recent
algorithm of Borradaile and Klein [1] computes
maximum flows in directed planar graphs
in O.n log n/ time. For higher-genus graphs,
Chambers et al. [7] describes maximum-flow
algorithms that run in gO.g/n3=2 time for
arbitrary capacities and in O.g8n log2 n log2 C /

for integer capacities that sum to C .
Another open problem is reducing the de-

pendencies on the genus from exponential to
polynomial. Even though there are near-quadratic
algorithms to compute minimum cuts, the only
known approach to achieving near-linear time for
bounded-genus graphs with weighted edges is to
solve an NP-hard problem.

Finally, it is natural to ask whether minimum
cuts can be computed quickly in other minor-
closed families of graphs, for which embeddings
on to bounded-genus surfaces may not exist. Such
results already exist for one-crossing-minor-free
families [4] and in particular, graphs of bounded
treewidth [10].
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Problem Definition

Global routing is a key step in VLSI physical
design after floor planning and placement. Its
main goal is to reduce the overall routing com-
plexity and guide the detailed router by planning
the approximate routing path of each net. The
commonly used objectives during global routing
include minimizing total wirelength, mitigating
routing congestion, or meeting routing resource
constraints. If timing critical paths are known,
they can also be put in the design objectives
during global routing, along with other metrics
such as manufacturability and noise.

The global routing problem can be formulated
using graph models. For a given netlist graph

G.C; N /, vertices C represent pins on placed
objects such as standard cells or IP blocks, and
edges N represent nets connecting the pins. The
routing resources on a chip can be modeled in
another graph G.V; E/ by dividing the entire
global routing region into a set of smaller re-
gions, so-called global routing cells (G-cells),
where v 2 V represents a G-cell and e 2 E

represents the boundary between two adjacent
G-cells with a given routing capacity (ce). Fig-
ure 1 shows how the chip can be abstracted into
a 2-dimensional global routing graph. Such ab-
straction can be easily extended to 3-dimensional
global routing graph to perform layer assign-
ment (e.g., [15]). Since all standard cells and
IP blocks are placed before the global routing
stage (e.g., C can be mapped into V ), the goal of
global routing is to find G-cell to G-cell paths
for N while trying to meet certain objectives
such as routability optimization and wirelength
minimization.

A straightforward mathematical optimization
for global routing can be formulated as a 0-1
integer linear programming (ILP). Let Ri be a
set of Steiner trees on G for net ni 2 N , and
xi;j be the binary variable to indicate whether
ri;j 2 Ri is selected as the routing solution. Then
an example ILP formulation can be written as
follows:

The above formulation minimizes the total
routing capacity utilization under the maximum
routing capacity constraint for each edge e 2

E. In fact, minimizing the total routing capac-
ity is equivalent to minimizing total wirelength,
because a unit wirelength in the global routing
utilizes one routing resource (i.e., crossing the
boundary between two adjacent G-cells). Other
objectives/constraints can include timing opti-
mization, noise reduction [10, 14], or manufac-
turability (e.g., CMP) [8].

Key Results

The straightforward formulation using ILP, e.g.,
as in Fig. 2, is NP-complete which cannot be
solved efficiently for modern VLSI designs. One
common technique to solve ILP is to use linear
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Global Routing, Fig. 1
Graph model for global
routing. (a) Real circuit
with G-cells. (b) Global
routing graph A B

G-cell

A B
3

a b

min :
∑

e∈E
ue

s.t :
∑

ri,j∈Ri

xi,j = 1, ∀ni ∈ N

ue

ue

=
∑

(i,j):e∈ri,j

xi,j, ∀e ∈ E

≤ ce, ∀e ∈ E

Global Routing, Fig. 2 An example of global routing
formulation using ILP

programming relaxation where the binary vari-
ables are made continuous, xi;j 2 Œ0; 1�, and
that can be solved in polynomial time. Once a
linear programming solution is obtained, round-
ing technique is used to find the binary solution.
Another technique is a hierarchical divide-and-
conquer scheme to limit the complexity, which
solves many independent subproblems of similar
sizes. These approaches may suffer from large
amount of rounding errors or lack of interactions
between subproblems, resulting in poor quality.

BoxRouter [1, 6] proposed a new approach
to divide the entire routing region into a set
of synergistic subregions. The key idea in
BoxRouter is the progressive ILP based on the
routing box expansion, which pushes congestion
outward progressively from the highly congested
region. Unlike conventional hierarchical divide-
and-conquer approach, BoxRouter solves a
sequence of ILP problems where an early
problem is a subset of a later problem. BoxRouter
progressively applies box expansion to build a
sequence of ILP problems starting from the most
congested region which is obtained through a
very fast pre-routing stage. Figure 3 illustrates
the concept of box expansion.

The advantage of BoxRouter over conven-
tional approach is that each problem synergi-

Global Routing, Fig. 3 Box expansion for Progressive
ILP during BoxRouter

cally reflects the decisions made so far by taking
the previous solutions as constraints, in order
to enhance congestion distribution and shorten
the wirelength. In that sense, the first ILP prob-
lem has the largest flexibility which motivates
the box expansion originating from the most
congested region. Even though the last box can
cover the whole design, the effective ILP size
remains tractable in BoxRouter, as ILP is only
performed on the wires between two subsequent
boxes.

Compared with the formulation in Fig. 2
which directly minimizes the total wirelength,
progressive ILP in BoxRouter maximizes the
completion rate (e.g., minimizing unrouted nets)
which can be more important and practical
than minimizing total wirelength as shown in
Fig. 4. Wirelength minimization in BoxRouter
is indirectly achieved by allowing only the
minimum rectilinear Steiner trees for each binary
variable (i.e., xi;j ) and being augmented with
the post-maze routing step. Such change in the
objective function provides higher computation
efficiency: it is found that the BoxRouter
formulation can be solved significantly faster
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max :
∑

xi,j

xi,j

xi,j

s.t :
∑

∑
r
i,j∈Ri

≤ 1 , ∀ni ∈ N

(i,j):e∈ri,h

≤ ce, ∀e ∈ E

Global Routing, Fig. 4 Global routing formulation in
BoxRouter for minimal unrouted nets

than the traditional formulations due to its simple
and well-exploited knapsack structure [7].

In case some nets remain unrouted after each
ILP problem either due to insufficient routing
resources inside a box or a limited number
of Steiner graphs for each net, BoxRouter
applies adaptive maze routing which penalizes
using routing resources outside the current
box, in order to reserve them for subsequence
problems. Based on the new ILP techniques,
BoxRouter has obtained much better results than
previous state-of-the-art global routers [4, 9] and
motivated many further studies in global routing
(e.g., [5, 11–13, 15]) and global routing contests
at ISPD 2007 and ISPD 2008 [2, 3].
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Problem Definition

Let G D .V; E/ be an undirected graph with
jV j D n and jEj D m. The edge connectivity
of two vertices s; t 2 V , denoted by �.s; t/,
is defined as the size of the smallest cut that
separates s and t ; such a cut is called a minimum
s � t cut. Clearly, one can represent the �.s; t/

values for all pairs of vertices s and t in a table of
size O.n2/. However, for reasons of efficiency,
one would like to represent all the �.s; t/ values
in a more succinct manner. Gomory-Hu trees
(also known as cut trees) offer one such suc-
cinct representation of linear (i.e., O.n// space
and constant (i.e., O(1)) lookup time. It has the
additional advantage that apart from representing
all the �.s; t/ values, it also contains structural
information from which a minimum s � t cut can
be retrieved easily for any pair of vertices s and t .

Formally, a Gomory-Hu tree T D .V; F / of an
undirected graph G D .V; E/ is a weighted undi-
rected tree defined on the vertices of the graph
such that the following properties are satisfied:

• For any pair of vertices s; t 2 V; �.s; t/ is
equal to the minimum weight on an edge in
the unique path connecting s to t in T . Call
this edge e.s; t/. If there are multiple edges
with the minimum weight on the s to t path
in T , any one of these edges is designated as
e.s; t/.

• For any pair of vertices s and t , the biparti-
tion of vertices into components produced by
removing e.s; t/ (if there are multiple candi-
dates for e.s; t/, this property holds for each
candidate edge) from T corresponds to a min-
imum s � t cut in the original graph G.

To understand this definition better, consider the
following example. Figure 1 shows an undirected
graph and a corresponding Gomory-Hu tree. Fo-
cus on a pair of vertices, for instance, 3 and 5.

1 1

6

5

4

3

3

6

5

4

3

4

3

2

2 2

2

Gomory-Hu Trees, Fig. 1 An undirected graph (left)
and a corresponding Gomory-Hu tree (right)

Clearly, the edge (6,5) of weight 3 is a minimum-
weight edge on the 3 to 5 path in the Gomory-
Hu tree. It is easy to see that �.3; 5/ D 3

in the original graph. Moreover, removing edge
(6,5) in the Gomory-Hu tree produces the vertex
bipartition ({1,2,3,6},{4,5}), which is a cut of
size 3 in the original graph.

It is not immediate that such Gomory-Hu trees
exist for all undirected graphs. In a classical result
in 1961, Gomory and Hu [8] showed that not
only do such trees exist for all undirected graphs
but that they can also be computed using n � 1

minimum s-t cut (or equivalently maximum s-
t flow) computations. In fact, a graph can have
multiple Gomory-Hu trees.

All previous algorithms for constructing
Gomory-Hu trees for undirected graphs used
maximum-flow subroutines. Gomory and Hu
gave an algorithm to compute a cut tree T using
n � 1 maximum-flow computations and graph
contractions. Gusfield [9] proposed an algorithm
that does not use graph contractions; all n � 1

maximum-flow computations are performed on
the input graph. Goldberg and Tsioutsiouliklis
[7] did an experimental study of the algorithms
due to Gomory and Hu and due to Gusfield
for the cut tree problem and described efficient
implementations of these algorithms. Examples
were shown by Benczúr [1] that cut trees do not
exist for directed graphs.

Any maximum-flow-based approach for con-
structing a Gomory-Hu tree would have a running
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time of (n � 1) times the time for computing
a single maximum flow. Till now, faster algo-
rithms for Gomory-Hu trees were by-products
of faster algorithms for computing a maximum
flow. The current fastest QO.mCn�.s; t// (polylog
n factors ignored in QO notation) maximum-flow
algorithm, due to Karger and Levine [11], yields
the current best expected running time of QO.n3/

for Gomory-Hu tree construction on simple un-
weighted graphs with n vertices. Bhalgat et al.
[2] improved this time complexity to QO.mn/.
Note that both Karger and Levine’s algorithm
and Bhalgat et al.’s algorithm are randomized
Las Vegas algorithms. The fastest deterministic
algorithm for the Gomory-Hu tree construction
problem is a by-product of Goldberg and Rao’s
maximum-flow algorithm [6] and has a running
time of QO.nm1=2 min.m; n3=2//.

Since the publication of the results of Bhalgat
et al. [2], it has been observed that the maximum-
flow subroutine of Karger and Levine [11] can
also be used to obtain an QO.mn/ time Las Vegas
algorithm for constructing the Gomory-Hu tree
of an unweighted graph. However, this algorithm
does not yield partial Gomory-Hu trees which are
defined below. For planar undirected graphs, Bor-
radaile et al. [3] gave an QO.mn/ time algorithm
for constructing a Gomory-Hu tree.

It is important to note that in spite of the
tremendous recent progress in approximate max-
imum s-t flow (or approximate minimum s-t cut)
computation, this does not immediately trans-
late to an improved algorithm for approximate
Gomory-Hu tree construction. This is because of
two reasons: first, the property of uncrossability
of minimum s-t cuts used by Gomory and Hu in
their minimum s-t cut based cut tree construction
algorithm does not hold for approximate mini-
mum s-t cuts, and second, the errors introduced
in individual minimum s-t cut computation can
add up to create large errors in the Gomory-Hu
tree.

Key Results

Bhalgat et al. [2] considered the problem of
designing an efficient algorithm for construct-

ing a Gomory-Hu tree on unweighted undirected
graphs. The main theorem shown in this entry is
the following.

Theorem 1 Let G D .V; E/ be a simple un-
weighted graph with m edges and n vertices.
Then a Gomory-Hu tree for G can be built in
expected time QO.mn/.

Their algorithm is always faster by a factor of
QΩ.n2=9/ (polylog n factors ignored in QΩ nota-

tion) compared to the previous best algorithm.
Instead of using maximum-flow subroutines,

they use a Steiner connectivity algorithm. The
Steiner connectivity of a set of vertices S (called
the Steiner set) in an undirected graph is the
minimum size of a cut which splits S into two
parts; such a cut is called a minimum Steiner cut.
Generalizing a tree-packing algorithm given by
Gabow [5] for finding the edge connectivity of a
graph, Cole and Hariharan [4] gave an algorithm
for finding the Steiner connectivity k of a set of
vertices in either undirected or directed Eulerian
unweighted graphs in QO.mk2/ time. (For undi-
rected graphs, their algorithm runs a little faster
in time QO.m C nk3/.) Bhalgat et al. improved
this result and gave the following theorem.

Theorem 2 In an undirected or directed Eule-
rian unweighted graph, the Steiner connectivity
k of a set of vertices can be determined in time
QO.mk/.

The algorithm in [4] was used by Hariharan
et al. [10] to design an algorithm with expected
running time QO.m C nk3/ to compute a par-
tial Gomory-Hu tree for representing the �.s; t/

values for all pairs of vertices s; t that satisfied
�.s; t/ � k. Replacing the algorithm in [4] by
the new algorithm for computing Steiner connec-
tivity yields an algorithm to compute a partial
Gomory-Hu tree in expected running time QO.mC

nk2/. Bhalgat et al. showed that using a more
detailed analysis, this result can be improved to
give the following theorem.

Theorem 3 The partial Gomory-Hu tree of an
undirected unweighted graph to represent all
�.s; t/ values not exceeding k can be constructed
in expected time QO.mk/.
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Since �.s; t/ < n for all s; t vertex pairs in an
unweighted (and simple) graph, setting k to n in
Theorem 3 implies Theorem 1.

Applications

Gomory-Hu trees have many applications in mul-
titerminal network flows and are an important
data structure in graph connectivity literature.

Open Problems
The problem of derandomizing the algorithm
due to Bhalgat et al. [2] to produce an QO.mn/

time deterministic algorithm for constructing
Gomory-Hu trees for unweighted undirected
graphs remains open. The other main challenge
is to extend the results in [2] to weighted graphs.

Experimental Results

Goldberg and Tsioutsiouliklis [7] did an exten-
sive experimental study of the cut tree algorithms
due to Gomory and Hu [8] and that due to
Gusfield [9]. They showed how to efficiently
implement these algorithms and also introduced
and evaluated heuristics for speeding up the algo-
rithms. Their general observation was that while
Gusfield’s algorithm is faster in many situations,
Gomory and Hu’s algorithm is more robust. For
more detailed results of their experiments, refer
to [7].

No experimental results are reported for the
algorithm due to Bhalgat et al. [2].
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Problem Definition

Given an input string S , the grammar-based
compression problem is to find a small
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Grammar Compression, Fig. 1 (Left) an SLP G that
represents string aabaaaaaba, where the variable X7

is the start symbol. (Center) derivation tree of G. (Right)

an ordered DAG corresponding to G, where the solid
and dashed edges respectively correspond to the first and
second child of each node

description of S that is based on a deterministic
context-free grammar that generates a language
consisting only of S . We will call such
a context-free grammar, a grammar that
represents S .

Generally, grammar-based compression can
be divided into two phases [8], the grammar
transform phase, where a context-free grammar
G that represents string S is computed, and the
grammar encoding phase, where an encoding for
G is computed. Kieffer and Yang [8] showed that
if a grammar transform is irreducible, namely, if
the resulting grammar that represents S satisfies
the following three conditions: (1) distinct vari-
ables derive different strings, (2) every variable
other than the start symbol is used more than
once (rule utility), and (3) all pairs of symbols
have at most one nonoverlapping occurrence in
the right-hand side of production rules (di-gram
uniqueness); then, the grammar-based code using
a zero order arithmetic code for encoding the
grammar is universal.

Grammar-based compression algorithms dif-
fer mostly by how they perform the grammar
transform, which can be stated as the following
problem.

Problem 1 (Smallest Grammar Problem)
Given an input string S of length N , out-
put the smallest context-free grammar that
represents S .

Here, the size of the grammar is defined as the
total length of the right-hand side of the produc-
tion rules in the grammar. Often, grammars are
considered to be in the Chomsky normal form,
in which case the grammar is called a straight
line program (SLP) [7], i.e., the right-hand side of
each production rule is either a terminal character
or a pair of variables. Note that any grammar
of size n can be converted into an SLP of size
O.n/. Figure 1 shows an example of an SLP
that represents string aabaaaaaba. A grammar
representing a string can be considered as an or-
dered directed acyclic graph. Another important
feature is that grammars allow for exponential
compression, that is, the size of a grammar that
represents a string of length N can be as small as
O.log N /.

Grammar-based compression is known to
be especially suitable for compressing highly
repetitive strings, for example, multiple whole
genomes, where, although each individual string
may not be easily compressible, the ensemble of
strings is very compressible since each string is
very similar to each other. Also, due to its ease of
manipulation, grammar-based representation of
strings is a frequently used model for compressed
string processing, where the aim is to efficiently
process compressed strings without explicit
decompression. Such an approach allows for
theoretical and practical speedups compared to a
naive decompress-then-process approach.
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Key Results

Hardness
The smallest grammar problem is known to
be NP-hard [21]. The approximation ratio of
a grammar-based algorithm A is defined as

maxS2˙�

jGA
S

j

jG
opt
S

j
, where jGA

S j is the size of the

grammar that represents string S produced
by A and jGopt

S j is the size of the smallest
grammar that represents string S . Charikar et
al. [3] showed that there is no polynomial-time
algorithm for the smallest grammar problem
with approximation ratio less than 8;569

8;568
, unless

P D NP. Furthermore, they show that for a
given set fk1; : : : ; kmg of positive integers, the
smallest grammar for string ak1bak2b � � �bakm

is within a constant factor of the smallest
number of multiplications required to compute
xk1 ; : : : ; xkm , given a real number x. This is
a well-studied problem known as the addition
chain problem, whose best-known approximation
algorithm has an approximation ratio of
O.

log N
log log N

/ [23]. Thus, achieving o.
log N

log log N
/

approximation for the smallest grammar problem
may be difficult.

Algorithms for Finding Small Grammars

Heuristics
Below, we give brief descriptions of several
grammar-based compression algorithms based on
simple greedy heuristics for which approximation
ratios have been analyzed [3] (see Table 1).

• LZ78 [24] can be considered as constructing
a grammar. Recall that each LZ78 factor of
length at least two consists of a previous
factor and a letter and can be expressed as a
production rule of a grammar.

• SEQUITUR [15] processes the string in an
online manner and adds a new character of
the string to the right-hand side of the pro-
duction rule of the start symbol, which is
initially empty. For each new character, the
algorithm updates the grammar, adding or
removing production rules and replacing cor-

responding symbols in the grammar so that the
di-gram uniqueness and rule utility properties
are satisfied. The algorithm can be imple-
mented to run in expected linear time. The
grammar produced by SEQUITUR is not nec-
essarily irreducible, and thus a revised version
called SEQUENTIAL was proposed in [8].

• RE-PAIR [11] greedily and recursively re-
places the most frequent di-gram in the string
with a new symbol until no di-gram occurs
more than once. Each such replacement cor-
responds to a new production rule in the final
grammar. The algorithm can be implemented
to run in linear time.

• LONGEST MATCH [8] greedily and recur-
sively replaces the longest substring that has
more than one nonoverlapping occurrence.
The algorithm can be implemented to run in
linear time by carefully maintaining a struc-
ture based on the suffix tree, through the
course of the algorithm [10, 14].

• GREEDY [1] (originally called OFF-LINE,
but coined in [3]) greedily and recursively
replaces substrings that give the highest com-
pression (with several variations in its defini-
tion). The algorithm can be implemented to
run in O.N log N / time for each production
rule, utilizing a data structure called minimal
augmented suffix trees, which augments the
suffix tree in order to consider the total num-
ber of nonoverlapping occurrences of a given
substring.

• BISECTION [9] recursively partitions the
string S into strings L and R of lengths 2i and
N � 2i , where i D dlog N e � 1, each time
forming a production rule XS ! XLXR. A
new production rule is created only for each
distinct substring, and the rule is shared for
identical substrings. The algorithm can be
viewed as fixing the shape of the derivation
tree and then computing the smallest grammar
whose derivation tree is of the given
shape.

Approximation Algorithms
Rytter [16] and Charikar et al. [3] independently
and almost simultaneously developed linear time
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Grammar Compression, Table 1 Known upper and lower bounds on approximation ratios for the simple heuristic
algorithms (Taken from [3] with corrections)

Algorithm Upper bound Lower bound

LZ78 [24]

O..N= log N /2=3/

˝.N 2=3= log N /

RE-PAIR [11] ˝.
p

log N /

LONGEST MATCH [8] ˝.log log N /

GREEDY [1] .5 log 3/=.3 log 5/ > 1:137 : : :

SEQUENTIAL [8] O..N= log N /3=4/ ˝.N 1=3/

BISECTION [9] O..N= log N /1=2/ ˝.N 1=2= log N /

Grammar Compression, Table 2 Approximation algorithms for the smallest grammar problem. N is the size of the
input string, and n is the size of the output grammar

Algorithm Approximation ratio Working space Running time

Charikar et al. [3]

O.log.N=G
opt
S // O.N / O.N /

Rytter [16]

LEVELWISE-
REPAIR [18]
Jeż [5]

Jeż [6]

LCA [19] O..log N / log G
opt
S / O.n/ O.N / expected

LCA� [20] O..log� N / log N / O.n/ O.N log� N / expected

OLCA [12] O.log2 N / O.n/ O.N / expected

FOLCA [13] O.log2 N / 2n log n.1Co.1//C2n
bits

O.N log N /

algorithms which achieve the currently best ap-
proximation ratio of O.log.N=G

opt
S //, essentially

relying on the same two key ideas: the LZ77 fac-
torization and balanced binary grammars. Below,
we briefly describe the approach by Rytter to
obtain an O.log N / approximation algorithm.

The string is processed from left to right,
and the LZ77 factorization of the string helps
to reuse, as much as possible, the grammar of
previously occurring substrings. For string S ,
let S D f1 : : : f´ be the LZ77 factorization
of S . The algorithm sequentially processes each
LZ factor fi , maintaining a grammar Gi for
f1 : : : fi . Recall that by definition, each factor
fi of length at least 2 occurs in f1 : : : fi�1.
Therefore, there exists a sequence of O.hi�1/

variables of grammar Gi�1 whose concatenation
represents fi , where hi�1 is the height of the
derivation tree of Gi�1. Using this sequence of
variables, a grammar for fi is constructed, which
is then subsequently appended to Gi�1 to finally
construct Gi .

A balanced binary grammar is a grammar in
which the shape of the derivation tree resembles
a balanced binary tree. Rytter proposed AVL
(height balanced) grammars, where the height
of sibling sub-trees differ by at most one. By
restricting the grammar to AVL grammars, the
height of the grammar is bounded by O.log N /,
and the above operations can be performed in
O.log N / time for each LZ77 factor, by adding
O.log N / new variables and using techniques
resembling those of binary balanced search trees
for re-balancing the tree. The resulting time com-
plexity as well as the size of the grammar is
O.´ log N /.

Finally, an important observation is that the
size of the LZ77 factorization of a string S is a
lower bound on the size of any grammar G that
represents S .

Theorem 1 ([3, 16]) For string S , let S D

f1 : : : f´ be the LZ77 factorization of S . Then,
for any grammar G that represents S , ´ � jGj.
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Thus, the total size of the grammar is
O.G

opt
S log N /, achieving an O.log N / approxi-

mation ratio. Instead of AVL grammars, Charikar
et al. use ˛ balanced (length balanced) grammars,
where the ratio between the lengths of sibling
sub-trees is between ˛

1�˛
and 1�˛

˛
for some

constant 0 < ˛ � 1
2

, but the remaining arguments
are similar.

Several other linear time algorithms that
achieve O.log.N=G

opt
S // approximation have

been proposed [5, 6, 18]. These algorithms
resemble RE-PAIR in that they basically
replace di-grams in the string with a new
symbol in a bottom-up fashion but with specific
mechanisms to choose the di-grams so that a
good approximation ratio is achieved.

LCA and its variants [12, 13, 19, 20] are ap-
proximation algorithms shown to be among the
most scalable and practical. The approximation
ratios are slightly weaker, but the algorithm can
be made to run in an online manner and to use
small space (see Table 2). Although seemingly
proposed independently, the core idea of LCA
is essentially the same as LCP [17] which con-
structs a grammar based on a technique called
locally consistent parsing. The parsing is a par-
titioning of the string that can be computed using
only local characteristics and guarantees that for
any two occurrences of a given substring, the par-
titioning in the substring will be almost identical
with exceptions in a sufficiently short prefix and
suffix of the substring. This allows the production
rules of the grammar to be more or less the
same for repeated substrings, thus bounding the
approximation ratio.

Decompression
The string that a grammar represents can be
recovered in linear time by a simple depth-first
left-to-right traversal on the grammar. Given an
SLP G of size n that represents a string S of
length N , G can be preprocessed in O.n/ time
and space so that each variable holds the length
of the string it derives. Using this information, it
is possible to access SŒi � for any 1 � i � N

in O.h/ time, where h is the height of the SLP,
by simply traversing down the production rules
starting from the start symbol until reaching a ter-

minal character corresponding to SŒi �. Balanced
SLPs have height O.log N / and, therefore, allow
access to any position of S in O.log N / time. For
any grammar G, G can be preprocessed in O.n/

time and space, so that an arbitrary substring of
length l of S can be obtained in O.l C log N /

time [2]. Also, G can be preprocessed in O.n/

time and space so that the prefix or suffix of any
length l for any variable in G can be obtained
in O.l/ time [4]. On the other hand, it has been
shown that using any data structure of size poly-
nomial in n, the time for retrieving a character at
an arbitrary position is at least .log N /1�� for any
constant � > 0 [22].

URLs to Code and Data Sets

Publicly available implementations of SE-
QUITUR:

• http://www.sequitur.info

Publicly available implementations of RE-
PAIR:

• http://www.dcc.uchile.cl/~gnavarro/software/
repair.tgz

• http://www.cbrc.jp/~rwan/en/restore.html,
and

• https://code.google.com/p/re-pair/

Publicly available implementations of GREEDY
(OFF-LINE):

• http://www.cs.ucr.edu/~stelo/Offline/.

Publicly available implementations of LCA vari-
ants:

• https://code.google.com/p/lcacomp/
• https://github.com/tb-yasu/olca-plus-plus
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Problem Definition

The graph bandwidth problem concerns produc-
ing a linear ordering of the vertices of a graph
G D .V; E/ so as to minimize the maximum
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“stretch” of any edge in the ordering. Formally,
let n D jV j, and consider any one-to-one
mapping � W V ! f1; 2; : : : ; ng. The bandwidth
of this ordering is bw�.G/ D maxfu;vg2E j�.u/

��.v/j. The bandwidth of G is given by
the bandwidth of the best possible ordering:
bw.G/ D min� bw�.G/.

The original motivation for this problem lies
in the preprocessing of sparse symmetric square
matrices. Let A be such an n � n matrix, and
consider the problem of finding a permutation
matrix P such that the non-zero entries of P TAP

all lie in as narrow a band as possible about the
diagonal. This problem is equivalent to minimiz-
ing the bandwidth of the graph G whose vertex
set is f1; 2; : : : ; ng and which has an edge fu; vg

precisely when Au;v ¤ 0.
In lieu of this fact, one tries to efficiently

compute a linear ordering   for which
bw�.G/ � A � bw.G/, with the approximation
factor A is as small as possible. There is even ev-
idence that achieving any value A D O.1/ is NP-
hard [18]. Much of the difficulty of the bandwidth
problem is due to the objective function being
a maximum over all edges of the graph. This
makes divide-and-conquer approaches ineffective
for graph bandwidth, whereas they often succeed
for related problems like Minimum Linear Ar-
rangement [6] (here the objective is to minimizeP

fu;vg2E j�.u/ � �.v/j). Instead, a more global
algorithm is required. To this end, a good lower
bound on the value of bw.G/ has to be initially
discussed.

The Local Density
For any pair of vertices u; v 2 V , let d(u,
v) to be the shortest path distance be-
tween u and v in the graph G. Then, de-
fine B.v; r/ D fu 2 V W d.u; v/ � rg as the
ball of radius r about a vertex v 2 V .
Finally, the local density of G is defined by
D.G/ D maxv2V;r
1 jB.v; r/j=.2r/: It is not
difficult to see that bw.G/ � D.G/. Although
it was conjectured that an upper bound of
the form bw.G/ � poly.log n/ �D.G/ holds,
it was not proven until the seminal work of
Feige [7].

Key Results

Feige proved the following.

Theorem 1 There is an efficient algorithm that,
given a graph G D .V; E/ as input, produces
a linear ordering � WV ! f1; 2; : : : ; ng for which

bw�.G/ � O
�
.log n/3

p
log n log log n

�
�D.G/.

In particular, this provides a poly.log n/-
approximation algorithm for the bandwidth
problem in general graphs.

Feige’s algorithmic framework can be described
quite simply as follows.

1. Compute a representation f WV ! R
n of G in

Euclidean space.
2. Let u1; u2; : : : ; un be independent N.0; 1/:

.N.0I 1/ denotes a standard normal random
variable with mean 0 and variance 1.) random
variables, and for each vertex v 2 V , compute
h.v/ D

Pn
iD1 ui fi .v/, where fi(v) is the ith

coordinate of the vector f(v).
3. Sort the vertices by the value h(v), breaking

ties arbitrarily, and output the induced linear
ordering.

An equivalent characterization of steps (2) and
(3) is to choose a uniformly random vector
a 2 Sn�1 from the .n � 1/-dimensional sphere
Sn�1 � R

n and output the linear ordering
induced by the values h.v/ D ha; f .v/i, where
h�; �i denotes the usual inner product on R

n.
In other words, the algorithm first computes
a map f WV ! R

n, projects the images of the
vertices onto a randomly oriented line, and then
outputs the induced ordering; step (2) is the
standard way that such a random projection is
implemented.

Volume-Respecting Embeddings
The only step left unspecified is (1); the function
f has to somehow preserve the structure of the
graph G in order for the algorithm to output
a low-bandwidth ordering. The inspiration for
the existence of such an f comes from the
field of low-distortion metric embeddings (see,
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e.g., [2, 14]). Feige introduced a generalization
of low-distortion embeddings to mappings called
volume respecting embeddings. Roughly, the
map f should be non-expansive, in the sense that
kf .u/ � f .v/k � 1 for every edge fu; vg 2 E,
and should satisfy the following property: For
any set of k vertices v1; : : : ; vk , the .k � 1/-
dimensional volume of the convex hull of the
points f .v1/; : : : ; f .vk/ should be as large
as possible. The proper value of k is chosen
to optimize the performance of the algorithm.
Refer to [7, 10, 11] for precise definitions on
volume-respecting embeddings, and a detailed
discussion of their construction. Feige showed
that a modification of Bourgain’s embedding [2]
yields a mapping f WV ! R

n which is good
enough to obtain the results of Theorem 1.

The requirement kf .u/ � f .v/k � 1 for ev-
ery edge fu; vg is natural since f(u) and f(v)
need to have similar projections onto the random
direction a; intuitively, this suggests that u and
v will not be mapped too far apart in the induced
linear ordering. But even if jh.u/ � h.v/j is small,
it may be that many vertices project between h(u)
and h(v), causing u and v to incur a large stretch.
To prevent this, the images of the vertices should
be sufficiently “spread out,” which corresponds
to the volume requirement on the convex hull of
the images.

Applications

As was mentioned previously, the graph band-
width problem has applications to preprocess-
ing sparse symmetric matrices. Minimizing the
bandwidth of matrices helps in improving the
efficiency of certain linear algebraic algorithms
like Gaussian elimination; see [3, 8, 17]. Follow-
up work has shown that Feige’s techniques can be
applied to VLSI layout problems [19].

Open Problems

First, state the bandwidth conjecture (see,
e.g., [13]).

Conjecture: For any n-node graph G D .V; E/,
one has bw.G/ D O.log n/ �D.G/.

The conjecture is interesting and unresolved
even in the special case when G is a tree (see [9]
for the best results for trees). The best-known
bound in the general case follows from [7, 10],
and is of the form bw.G/ D O.log n/3:5 �D.G/.
It is known that the conjectured upper bound is
best possible, even for trees [4]. One suspects that
these combinatorial studies will lead to improved
approximation algorithms.

However, the best approximation algorithms,
which achieve ratio O..log n/3.log log n/1=4/;

are not based on the local density bound.
Instead, they are a hybrid of a semi-definite
programming approach of [1, 5] with the
arguments of Feige, and the volume-respecting
embeddings constructed in [12, 16]. Determining
the approximability of graph bandwidth is an
outstanding open problem, and likely requires
improving both the upper and lower bounds.
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Problem Definition

An independent set in an undirected graph G D

.V; E/ is a set of vertices that induce a subgraph
which does not contain any edges. The size of
the maximum independent set in G is denoted
by ˛.G/. For an integer k, a k-coloring of G

is a function � W V ! Œ1 : : : k� which assigns
colors to the vertices of G. A valid k-coloring
of G is a coloring in which each color class
is an independent set. The chromatic number
�.G/ of G is the smallest k for which there
exists a valid k-coloring of G. Finding �.G/ is
a fundamental NP-hard problem. Hence, when
limited to polynomial time algorithms, one turns
to the question of estimating the value of �.G/

or to the closely related problem of approximate
coloring.

Problem 1 (Approximate coloring)
INPUT: Undirected graph G D .V; E/.
OUTPUT: A valid coloring of G with r � �.G/

colors, for some approximation ratio r � 1.
OBJECTIVE: Minimize r .

Let G be a graph of size n. The approximate
coloring of G can be solved efficiently within an

approximation ratio of r D O
�

n.log log n/2

log3 n

�
[12].

This holds also for the approximation of ˛.G/

[8]. These results may seem rather weak; how-
ever, it is NP-hard to approximate ˛.G/ and
�.G/ within a ratio of n1�" for any constant
" > 0 [9, 14, 23]. Under stronger complexity
assumptions, there is some constant 0 < ı < 1

such that neither problem can be approximated
within a ratio of n=2logı n [19,23]. This entry will
concentrate on the problem of coloring graphs
G for which �.G/ is small. As will be seen,
in this case the approximation ratio achievable
significantly improves.
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Vector Coloring of Graphs
The algorithms achieving the best ratios for ap-
proximate coloring when �.G/ is small are all
based on the idea of vector coloring, introduced
by Karger, Motwani, and Sudan [17]. (Vector
coloring as presented in [17] is closely related to
the Lovász � function [21]. This connection will
be discussed shortly.)

Definition 1 A vector k-coloring of a graph is
an assignment of unit vectors to its vertices,
such that for every edge, the inner product of
the vectors assigned to its endpoints is at most
(in the sense that it can only be more negative)
�1=.k � 1/.

The vector chromatic number �!� .G/ of G is
the smallest k for which there exists a vector k-
coloring of G. The vector chromatic number can
be formulated as follows:

�!� .G/ Minimize k

subject to: hvi ; vj i � �
1

k�1
8.i; j / 2E

hvi ; vi i D 1 8i 2 V

Here, assume that V D Œ1; : : : ; n� and that the
vectors fvig

n
iD1 are in Rn. Every k-colorable

graph is also vector k-colorable. This can be seen
by identifying each color class with one vertex of
a perfect .k � 1/-dimensional simplex centered
at the origin. Moreover, unlike the chromatic
number, a vector k-coloring (when it exists) can
be found in polynomial time using semidefinite
programming (up to an arbitrarily small error in
the inner products).

Claim 1 (Complexity of vector coloring [17])
Let " > 0. If a graph G has a vector k-coloring,
then a vector .k C "/-coloring of the graph
can be constructed in time polynomial in n and
log.1="/.

One can strengthen Definition 1 to obtain a
different notion of vector coloring and the vector
chromatic number:

�!� 2.G/ Minimize k

subject to: hvi ; vj i D �
1

k�1
8.i; j /2E

hvi ; vi i D 1 8i 2 V

�!� 3.G/ Minimize k

subject to: hvi ; vj i D �
1

k�1
8.i; j /2E

hvi ; vj i � �
1

k�1
8i; j 2 V

hvi ; vi i D 1 8i 2 V

The function �!� 2.G/ is referred to as the strict
vector chromatic number of G and is equal to the
Lovász � function on NG [17, 21], where NG is the
complement graph of G. The function �!� 3.G/ is
referred to as the strong vector chromatic number.
An analog to Claim 1 holds for both �!� 2.G/

and �!� 3.G/. Let !.G/ denote the size of the
maximum clique in G; it holds that !.G/ �
�!� .G/ � �!� 2.G/ � �!� 3.G/ � �.G/.

Key Results

In what follows, assume that G has n vertices and
maximal degree �. The QO.�/ and Q̋ .�/ notation
are used to suppress polylogarithmic factors. We
now state the key result of Karger, Motwani, and
Sudan [17]:

Theorem 1 ([17]) If �!� .G/ D k, then G

can be colored in polynomial time using
min

˚
QO.�1�2=k/ ,

QO.n1�3=.kC1//
�

colors.

As mentioned above, the use of vector color-
ing in the context of approximate coloring was
initiated in [17]. Roughly speaking, once given a
vector coloring of G, the heart of the algorithm
in [17] finds a large independent set in G. In
a nutshell, this independent set corresponds to
a set of vectors in the vector coloring which
are close to one another (and thus by definition
cannot share an edge). Combining this with the
ideas of Wigderson [22] mentioned below yields
Theorem 1.

We proceed to describe related work. The first
two theorems below appeared prior to the work
of Karger, Motwani, and Sudan [17].

Theorem 2 ([22]) If �.G/ D k, then G

can be colored in polynomial time using
O.kn1�1=.k�1// colors.
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Theorem 3 ([1]) If �.G/ D 3, then G can be
colored in polynomial time using QO.n3=8/ colors.
If �.G/ D k � 4 then G can be colored in
polynomial time using at most QO.n1�1=.k�3=2//

colors.

Combining the techniques of [17] and [1], the
following results were obtained for graphs G with
�.G/ D 3; 4 (these results were also extended for
higher values of �.G/).

Theorem 4 ([2]) If �.G/ D 3, then G can
be colored in polynomial time using QO.n3=14/

colors.

Theorem 5 ([13]) If �.G/ D 4, then G can
be colored in polynomial time using QO.n7=19/

colors.

The currently best known result for coloring
a 3-colorable graph is presented in [16]. The
algorithm of [16] combines enhanced notions of
vector coloring presented in [5] with the combi-
natorial coloring techniques of [15].

Theorem 6 ([16]) If �.G/ D 3, then G can
be colored in polynomial time using O.n0:19996/

colors.

To put the above theorems in perspective, it
is NP-hard to color a 3-colorable graph G with
4 colors [11, 18] and a k-colorable graph (for

sufficiently large k) with k
log k
25 colors [19]. Under

stronger complexity assumptions (related to the
unique games conjecture [20]) for any constant
k, it is hard to color a k-colorable graph with
any constant number of colors [6]. The wide gap
between these hardness results and the approxi-
mation ratios presented in this section has been
a major initiative in the study of approximate
coloring.

Finally, the limitations of vector coloring are
addressed. Namely, are there graphs for which
�!� .G/ is a poor estimate of �.G/? One would
expect the answer to be “yes” as estimating �.G/

beyond a factor of n1�" is a hard problem. As
will be stated below, this is indeed the case
(even when �!� .G/ is small). Some of the results
that follow are stated in terms of the maximum
independent set ˛.G/ in G. As �.G/ � n=˛.G/,
these results imply a lower bound on �.G/.

Theorem 7 (i) states that the original analysis of
[17] is essentially tight. Theorem 7 (ii) presents
bounds for the case of �!� .G/ D 3. Theorem 7
(iii) and Theorem 8 present graphs G in which
there is an extremely large gap between �.G/ and
the relaxations �!� .G/ and �!� 2.G/.

Theorem 7 ([10]) (i) For every constant " > 0

and constant k > 2, there are infinitely many
graphs G with �!� .G/ D k and ˛.G/ �

n=�1� 2
k

�" (here � > nı for some constant
ı > 0). (ii) There are infinitely many graphs G

with �!� .G/ D 3 and ˛.G/ � n0:843. (iii) For
some constant c, there are infinitely many graphs
G with �!� .G/ D O.

log n
log log n

/ and ˛.G/ � logc n.

Theorem 8 ([7]) For some constant c, there are
infinitely many graphs G with �!� 2.G/ � 2

p
log n

and �.G/ � n=2c
p

log n.

Vector colorings, including the Lovász � func-
tion and its variants, have been extensively stud-
ied in the context of approximation algorithms
for problems other than Problem 1. These include
approximating ˛.G/, approximating the mini-
mum vertex cover problem, and combinatorial
optimization in the context of random graphs.

Applications

Besides its theoretical significance, graph color-
ing has several concrete applications (see, e.g.,
[3, 4]).

Open Problems

By far the major open problem in the context
of approximate coloring addresses the wide gap
between what is known to be hard and what
can be obtained in polynomial time. The case
of constant �.G/ is especially intriguing, as the
best known upper bounds (on the approximation
ratio) are polynomial while the lower bounds are
of constant nature. Regarding the vector color-
ing paradigm, a majority of the results stated
in section “Key Results” use the weakest from
of vector coloring �!� .G/ in their proof, while
stronger relaxations may also be considered. It
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would be very interesting to improve upon the
algorithmic results stated above using stronger
relaxations, as would a matching analysis of the
limitations of these relaxations.
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Problem Definition

An undirected graph is said to be k-connected
(specifically, k-vertex-connected) if the removal
of any set of k � 1 or fewer vertices (with their
incident edges) does not disconnect G. Anal-
ogously, it is k-edge-connected if the removal
of any set of k � 1 edges does not disconnect
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G. Menger’s theorem states that a k-vertex-
connected graph has at least k openly vertex-
disjoint paths connecting every pair of vertices.
For k-edge-connected graphs there are k edge-
disjoint paths connecting every pair of vertices.
The connectivity of a graph is the largest value
of k for which it is k-connected. Finding the con-
nectivity of a graph, and finding k disjoint paths
between a given pair of vertices can be found
using algorithms for maximum flow. An edge is
said to be critical in a k-connected graph if upon
its removal the graph is no longer k-connected.

The problem of finding a minimum-
cardinality k-vertex-connected (k-edge-
connected) subgraph that spans all vertices of
a given graph is called k-VCSS (k-ECSS) and
is known to be nondeterministic polynomial-
time hard for k � 2. We review some results in
finding approximately minimum solutions to k-
VCSS and k-ECSS. We focus primarily on simple
graphs. A simple approximation algorithm is
one that considers the edges in some order
and removes edges that are not critical. It thus
outputs a k-connected subgraph in which all
edges are critical and it can be shown that it is a
2-approximation algorithm (that outputs
a solution with at most kn edges in an n-vertex
graph, and since each vertex has to have degree
at least k, we can claim that kn=2 edges are
necessary).

Approximation algorithms that do better than
the simple algorithm mentioned above can be
classified into two categories: depth first search
(DFS) based, and matching based.

Key Results

Lower Bounds for k-Connected Spanning
Subgraphs
Each node of a k-connected graph has at least k
edges incident to it. Therefore, the sum of the
degrees of all its nodes is at least kn, where n
is the number of its nodes. Since each edge is
counted twice in this degree-sum, the cardinality
of its edges is at least kn=2. This is called
the degree lower bound. Expanding on this idea

yields a stronger lower bound on the cardinality
of a k-connected spanning subgraph of a given
graph. Let Dk be a subgraph in which the degree
of each node is at least k. Unlike a k-connected
subgraph, Dk has no connectivity constraints. The
counting argument above shows that any Dk has
at least kn=2 edges. A minimum cardinality Dk

can be computed in polynomial time by reducing
the problem to matching, and it is called the
matching lower bound.

DFS-Based Approaches
The following natural algorithm finds a 3/2 ap-
proximation for 2-ECSS. Root the tree at some
node r and run DFS. All edges of the graph are
now either tree edges or back edges. Process the
DFS tree in postorder. For each subtree, if the
removal of the edge from its root to its parent
separates the graph into two components, then
add a farthest-back edge from this subtree, whose
other end is closest to r. It can be shown that the
number of back edges added by the algorithm is
at most half the size of Opt.

This algorithm has been generalized to solve
the 2-VCSS problem with the same approxima-
tion ratio, by adding carefully chosen back edges
that allow the deletion of tree edges. Wherever it
is unable to delete a tree edge, it adds a vertex
to an independent set I. In the final analysis, the
number of edges used is less than nC jI j. Since
Opt is at least max.n; 2jI j/, it obtains a 3/2-
approximation ratio.

The algorithm can also be extended to the
k-ECSS problem by repeating these ideas k=2

times, augmenting the connectivity by 2 in each
round. It has been shown that this algorithm
achieves a performance of about 1.61.

Matching-Based Approaches
Several approximation algorithms for k-ECSS
and k-VCSS problems have used a minimum
cardinality Dk as a starting solution, which
is then augmented with additional edges
to satisfy the connectivity constraints. This
approach yields better ratios than the DFS-based
approaches.



874 Graph Connectivity

1C 1
k

Algorithm for k-VCSS
Find a minimum cardinality Dk�1. Add just
enough additional edges to it to make the
subgraph k-connected. In this step, it is ensured
that the edges added are critical. It is known by
a theorem of Mader that in a k-connected graph,
a cycle of critical edges contains at least one
node of degree k. Since the edges added by the
algorithm in the second step are all critical, there
can be no cycle induced by these edges because
the degree of all the nodes on such a cycle would
be at least k C 1. Therefore, at most n � 1 edges
are added in this step. The number of edges added
in the first step, in the minimum Dk�1 is at most
Opt � n=2. The total number of edges in the
solution thus computed is at most .1C 1=k/

times the number of edges in an optimal
k-VCSS.

1C 2
kC1

Algorithm for k-ECSS
Mader’s theorem about cycles induced by crit-
ical edges is valid only for vertex connectivity
and not edge connectivity, Therefore, a differ-
ent algorithm is proposed for k-ECSS in graphs
that are k-edge-connected, but not k-connected.
This algorithm finds a minimum cardinality Dk

and augments it with a minimal set of edges to
make the subgraph k-edge-connected. The num-
ber of edges added in the last step is at most

k
kC1

.n � 1/. Since the number of edges added in
the first step is at most Opt, the total number of
edges is at most .1C 2

kC1
/Opt.

Better Algorithms for Small k
For k 2 f2; 3g, better algorithms have been
obtained by implementing the abovementioned
algorithms carefully, deleting unnecessary
edges, and by getting better lower bounds. For
k D 2, a 4/3 approximation can be obtained by
generating a path/cycle cover from a minimum
cardinality D2 and 2-connecting them one at
a time to a “core” component. Small cycles/paths
allow an edge to be deleted when they are 2-
connected to the core, which allows a simple
amortized analysis. This method also generalizes
to the 3-ECSS problem, yielding a 4/3 ratio.

Hybrid approaches have been proposed which
use the path/cycle cover to generate a specific
DFS tree of the original graph and then 2-connect
the tree, trying to delete edges wherever possible.
The best ratios achieved using this approach are
5/4 for 2-ECSS, 9/7 for 2-VCSS, and 5/4 for
2-VCSS in 3-connected graphs.

Applications

Network design is one of the main application
areas for this work. This involves the construction
of low-cost highly connected networks.

Recommended Reading
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ings and path/cycle covers, see [3]. Fast
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of about 1.61. Cheriyan et al. [2] studied the
k-VCSS problem with edge weights and designed
an O.log k/ approximation algorithm in graphs
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The matching-based algorithms were intro-
duced by Cheriyan and Thurimella [1]. They
proposed algorithms with ratios of 1C 1

k
for

k-VCSS, 1C 2
kC1

for k-ECSS, 1C 1
k

for k-
VCSS in directed graphs, and 1C 4p

k
for k-

ECSS in directed graphs. Vempala and Vetta [14]
obtained a ratio of 4/3 for 2-VCSS. The ratios
were further improved by Krysta and Kumar [12],
who introduced the hybrid approach, which was
used to derive a 5/4 algorithm by Jothi et al. [9].
A 3/2-approximation algorithm for 3-ECSS has
been proposed by Gabow [5] that works on
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multigraphs, whereas the earlier algorithm of
Cheriyan and Thurimella gets the same ratio in
simple graphs only. This ratio has been improved
to 4/3 by Gubbala and Raghavachari [8].

1. Cheriyan J, Thurimella R (2000) Approximating
minimum-size k-connected spanning subgraphs via
matching. SIAM J Comput 30(2):528–560

2. Cheriyan J, Vempala S, Vetta A (2003) An approx-
imation algorithm for the minimum-cost k-vertex
connected subgraph. SIAM J Comput 32(4):1050–
1055

3. Cook WJ, Cunningham WH, Pulleyblank WR, Schri-
jver A (1998) Combinatorial optimization. Wiley,
New York

4. Gabow HN (2003) Better performance bounds for
finding the smallest k-edge connected spanning
subgraph of a multigraph. In: SODA, pp 460–
469

5. Gabow HN (2004) An ear decomposition approach
to approximating the smallest 3-edge connected span-
ning subgraph of a multigraph. SIAM J Discret Math
18(1):41–70

6. Garg N, Vempala S, Singla A (1993) Improved ap-
proximation algorithms for biconnected subgraphs
via better lower bounding techniques. In: SODA,
pp 103–111

7. Gubbala P, Raghavachari B (2005) Approximation al-
gorithms for the minimum cardinality two-connected
spanning subgraph problem. In: Jünger M, Kaibel
V (eds) IPCO, vol 3509, Lecture notes in computer
science. Springer, Berlin, pp 422–436

8. Gubbala P, Raghavachari B (2007) A 4/3-
approximation algorithm for minimum 3-edge-
connectivity. In: Proceedings of the workshop on
algorithms and data structures (WADS) August 2007,
Halifax, pp 39–51

9. Jothi R, Raghavachari B, Varadarajan S (2003) A
5/4-approximation algorithm for minimum 2-edge-
connectivity. In: SODA, pp 725–734

10. Khuller S, Raghavachari B (1996) Improved approx-
imation algorithms for uniform connectivity prob-
lems. J Algorithms 21(2):434–450

11. Khuller S, Vishkin U (1994) Biconnectivity ap-
proximations and graph carvings. J ACM 41(2):
214–235

12. Krysta P, Kumar VSA (2001) Approximation algo-
rithms for minimum size 2-connectivity problems.
In: Ferreira A, Reichel H (eds) STACS. Lecture
notes in computer science, vol 2010. Springer, Berlin,
pp 431–442

13. Nagamochi H, Ibaraki T (1992) A linear-time
algorithm for finding a sparse k-connected spanning
subgraph of a k-connected graph. Algorithmica 7(5–
6):583–596

14. Vempala S, Vetta A (2000) Factor 4/3 approximations
for minimum 2-connected subgraphs. In: Jansen K,
Khuller S (eds) APPROX. Lecture notes in com-
puter science, vol 1913. Springer, Berlin, pp 262–
273

Graph Isomorphism

Brendan D. McKay
Department of Computer Science, Australian
National University, Canberra, ACT, Australia

Keywords

Graph matching; Symmetry group

Years and Authors of Summarized
Original Work

1980; McKay

Problem Definition

The problem of determining isomorphism of two
combinatorial structures is a ubiquitous one, with
applications in many areas. The paradigm case
of concern in this chapter is isomorphism of two
graphs. In this case, an isomorphism consists of
a bijection between the vertex sets of the graphs
which induces a bijection between the edge sets
of the graphs. One can also take the second graph
to be a copy of the first, so that isomorphisms map
a graph onto themselves. Such isomorphisms
are called automorphisms or, less formally, sym-
metries. The set of all automorphisms forms
a group under function composition called the
automorphism group. Computing the automor-
phism group is a problem rather similar to that
of determining isomorphisms.

Graph isomorphism is closely related to many
other types of isomorphism of combinatorial
structures. In the section entitled “Applications”,
several examples are given.

Formal Description
A graph is a pair G D .V; E/ of finite sets, with
E being a set of 2-tuples (v, w) of elements
of V. The elements of V are called vertices (also
points, nodes), while the elements of E are called
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Graph Isomorphism,
Fig. 1 Example of an
isomorphism and an
automorphism group

directed edges (also arcs). A complementary pair
.v; w/; .w; v/ of directed edges (v ¤ w) will be
called an undirected edge and denoted fv; wg.
A directed edge of the form (v, v) will also
be considered an undirected edge, called a loop
(also self-loop). The word “edges” without qual-
ification will indicate undirected edges, directed
edges, or both.

Given two graphs G1 D .V1; E1/ and
G2 D .V2; E2/, an isomorphism from G1 to G2

is a bijection from V1 to V2 such that the induced
action on E1 is a bijection onto E2. If G1 D G2,
then the isomorphism is an automorphism of
G1. The set of all automorphisms of G1 is
a group under function composition, called
the automorphism group of G1, and denoted
Aut .G1/.

In Fig. 1 two isomorphic graphs are shown,
together with an isomorphism between them and
the automorphism group of the first.

Canonical Labeling
Practical applications of graph isomorphism
testing do not usually involve individual pairs
of graphs. More commonly, one must decide
whether a certain graph is isomorphic to any
of a collection of graphs (the database lookup
problem) or one has a collection of graphs and
needs to identify the isomorphism classes in it
(the graph sorting problem). Such applications

are not well served by an algorithm that can only
test graphs in pairs.

An alternative is a canonical labeling algo-
rithm. The essential idea is that in each isomor-
phism class there is a unique, canonical graph
which the algorithm can find, given as input any
graph in the isomorphism class. The canonical
graph might be, for example, the least graph
in the isomorphism class according to some or-
dering (such as lexicographic) of the graphs in
the class. Practical algorithms usually compute
a canonical form designed for efficiency rather
than ease of description.

Key Results

The graphisomorphism problem plays a key
role in modern complexity theory. It is not
known to be solvable in polynomial time,
nor to be NP-complete, nor is it known to
be in the class co-NP. See [3, 8] for details.
Polynomial-time algorithms are known for many
special classes, notably graphs with bounded
genus, bounded degree, bounded tree-width,
and bounded eigenvalue multiplicity. The fastest
theoretical algorithm for general graphs requires
exp.n1=2Co.1// time [1], but it is not known to be
practical.
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In this entry, the focus is on the program
nauty, which is generally regarded as the most
successful for practical use. McKay wrote the
first version of nauty in 1976 and described its
method of operation in [5]. It is known [7] to have
exponential worst-case time, but in practice the
worst case is rarely encountered.

The input to nauty is a graph with colored
vertices. Two outputs are produced. The first is
a set of generators for the color-preserving auto-
morphism group. Though it is rarely necessary,
the full group can also be developed element by
element. The second, optional, output is a canon-
ical graph. The canonical graph has the following
property: two input graphs with the same number
of vertices of each color have the same canonical
graph if and only if they are isomorphic by
a color-preserving isomorphism.

Two graph data structures are supported:
a packed adjacency matrix suitable for small
dense graphs and a linked list suitable for large
sparse graphs.

Applications

As mentioned, nauty can handle graphs with
colored vertices. In this section, it is described
how several other types of isomorphism problems
can be solved by mapping them onto a problem
for vertex-colored graphs.

Isomorphism of Edge-Colored Graphs
An isomorphism of two graphs, each with both
vertices and edges colored, is defined in the
obvious way. An example of such a graph appears
at the left of Fig. 2.

In the center of the figure the colors are iden-
tified with the integers 1; 2; 3. At the right of
the figure an equivalent vertex-colored graph is
shown. In this case there are two layers, each with
its own color. Edges of color 1 are represented as
an edge in the first (lowest) layer, edges of color 2
are represented as an edge in the second layer,
and edges of color 3 are represented as edges in
both layers. It is now easy to see that the auto-
morphism group of the new graph (specifically,
its action on the first layer) is the automorphism
group of the original graph. Moreover, the order
in which a canonical labeling of the new graph
labels the vertices of the first layer can be taken
to be a canonical labeling of the original graph.

More generally, if the edge colors are integers
in f1; 2; : : : ; 2d � 1g, there are d layers, and the
binary expansion of each color number dictates
which layers contain edges. The vertical threads
(each corresponding to one vertex of the original
graph) can be connected using either paths or
cliques. If the original graph has n vertices and
k colors, the new graph has O.n log k/ vertices.
This can be improved to O.n

p
log k/ vertices by

also using edges that are not horizontal.

Isomorphism of Hypergraphs and Designs
A hypergraph is similar to an undirected graph
except that the edges can be vertex sets of any
size, not just of size 2. Such a structure is also
called a design.

On the left of Fig. 3 there is a hypergraph
with five vertices, two edges of size 2, and one
edge of size 3. On the right is an equivalent
vertex-colored graph. The vertices on the left,
colored with one color, represent the hypergraph
edges, while the edges on the right, colored with a

Graph Isomorphism, Fig. 2 Graph isomorphism with colored edges
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Graph Isomorphism, Fig. 3 Hypergraph/design isomorphism as graph isomorphism

different color, represent the hypergraph vertices.
The edges of the graph indicate the hypergraph
incidence (containment) relationship.

The edge-vertex incidence matrix appears
in the center of the figure. This can be any
binary matrix at all, which correctly suggests
that the problem under consideration is just
that of determining the 0–1 matrix equivalence
under independent permutation of the rows and
columns. By combining this idea with the previ-
ous construction, such an equivalence relation on
the set of matrices with arbitrary entries can be
handled.

Other Examples
For several applications to equivalence operations
such as isotopy, important for Latin squares and
quasigroups, see [6].

Another important type of equivalence relates
matrices over f�1;C1g. As well as permuting
rows and columns, it allows multiplication of
rows and columns by�1. A method of converting
this Hadamard equivalence problem to a graph
isomorphism problem is given in [4].

Experimental Results

Nauty gives a choice of sparse and dense data
structures, and some special code for difficult
graph classes. For the following timing examples,
the best of the various options are used for a sin-
gle CPU of a 2.4 GHz Intel Core-duo processor.

1. Random graph with 10,000 vertices, p D 1
2

:
0.014 s for group only, 0.4 s for canonical
labeling as well.

2. Random cubic graph with 100,000 vertices:
8 s.

3. 1-skeleton of 20-dimensional cube (1,048,576
vertices, group size 2:5 � 1024): 92 s.

4. 3-dimensional mesh of size 50 (125,000 ver-
tices): 0.7 s.

5. 1027-vertex strongly regular graph from ran-
dom Steiner triple system: 0.6 s.

Examples of more difficult graphs can be found
in the nauty documentation.

URL to Code

The source code of nauty is available at http://
cs.anu.edu.au/~bdm/nauty/. Another implemen-
tation of the automorphism group portion of
nauty, highly optimized for large sparse graphs,
is available as saucy [2]. Nauty is also
incorporated into a number of general-purpose
packages, including GAP, Magma, and MuPad.

Cross-References
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Problem Definition

The basic problem we consider is testing whether
an undirected graph G on n nodes fv1; : : : ; vng

is connected. We consider this problem in the
following two related models:

1. Dynamic Graph Stream Model: The graph
G is defined by a sequence of edge insertions
and deletions; the edges of G are the set of
edges that have been inserted but not subse-
quently deleted. An algorithm for analyzing G

may only read the input sequence from left to

right and has limited working memory. If the
available memory was O.n2/ bits, then the al-
gorithm could maintain the exact set of edges
that have been inserted but not deleted. The
primary objective in designing an algorithm
in the stream model is to reduce the amount
of memory required. Ideally, the time to pro-
cess each element of the stream and the post-
processing time should be small but ensuring
this is typically a secondary objective.

2. Simultaneous Communication Model: We
consider the n rows of the adjacency matrix
of G to be partitioned between n players
P1; : : : ; Pn where Pi receives the i th row of
the matrix. This means that the existence of
any edge is known by exactly two players.
An additional player Q wants to evaluate a
property of G, and to facilitate this, each
player Pi simultaneously sends a message mi

to Q such that Q may evaluate the property
given the messages m1; m2; : : : ; mn. With n-
bit messages from each player, Q could learn
the entire graph and the problem would be
uninteresting. The objective is to minimize
the number of bits sent by each player. Note
that the Pi players may not communicate to
each other and that each message mi must
be constructed given only the i th row of the
adjacency matrix and possibly a set of random
bits that is known to all the players.

If there were no edge deletions in the data
stream setting, it would be simple to determine
whether G was connected using O.n log n/ mem-
ory since it is possible to maintain the connected
components of the graph; whenever an edge is
added, we merge the connected components con-
taining the endpoints of this edge. This algo-
rithm is optimal in terms of space [19]. Such
an approach does not extend if edges may also
be deleted since it is unclear how the connected
components should be updated when an edge is
deleted within a connected component.

To illustrate the challenge in the simultaneous
communication model, suppose G is connected
but G n feg is disconnected for some edge e. The
player Q can only learn about the existence of the
edge e D fvi ; vj g from either player Pi or player
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Pj , but since both of these players have limited
knowledge of the graph, neither will realize the
important role this edge plays in determining the
connectivity of the graph.

Linear Sketches
For both models the best known algorithms are
based on random linear projections, aka linear
sketches. If we denote the n rows of the adjacency
matrix by x1; : : : ; xn 2 f0; 1gn, then the linear
sketches of the graph are A1.x1/; : : : ;An.xn/

where each Ai 2 R
d�n is a random matrix

chosen according to a specific distribution. Note
that the matrices A1; : : : ;An need not be chosen
independently.

In the simultaneous communication model,
the message from player Pi is mi D Ai .xi /,
and, assuming that the entries of Ai have poly-
nomial precision, each of these messages requires
O.d polylog n/ bits. In the dynamic graph stream
model, the algorithm constructs each Ai .xi / us-
ing O.nd polylog n/ bits of space. Note that each
Ai .xi / can be constructed incrementally using
the following update rules:

on the insertion of fvi ; vj g W Ai .xi / Ai .xi /CAi .ej /

on the deletion of fvi ; vj g W Ai .xi / Ai .xi / �Ai .ej /

on the insertion/deletion of fvj ; vkg for i 62 fj; kg W Ai .xi / Ai .xi /

where ej is the characteristic vector of the set
fj g. Hence, we have transformed the problem
of designing an efficient algorithm into finding
the minimum d such that there exists a distri-
bution of matrices A1; : : : ;An 2 R

d�n such
that for any graph G, we can determine (with
high probability) whether G is connected given
A1.x1/; : : : ;An.xn/.

Key Results

The algorithm for connectivity that we present
in this entry, and much of the subsequent work
on graph sketching, fits the following template.
First, we consider a basic “non-sketch” algorithm
for the graph problem in question. Second, we
design sketches Ai such that it is possible to
emulate the steps of the basic algorithm given
only the projections Ai .xi / 2 R

d where d D

O.polylog n/.

Connectivity

Basic Non-sketch Algorithm
We pick an incident edge for each node arbitrarily
and collapse the resulting connected components

into a set of “supernodes.” In each subsequent
round of the algorithm, we pick an edge from
each supernode to another supernode (if one
exists) and collapse the connected components
into new supernodes. It can be shown that this
process terminates after O.log n/ rounds and that
the set of edges picked during the different rounds
include a spanning forest of the graph. From this
we can deduce whether the graph is connected.

Designing the Sketches
There are two main steps required in constructing
the sketches for the connectivity algorithm:

An Alternative Graph Representation. Rather
than consider the rows of the adjacency matrix
xi , it will be convenient to consider an alternative
representation ai 2 f�1; 0; 1g.

n
2/ with entries

indexed by pairs

ai Œfj; kg� D

8
<̂

:̂

1 if i Dj < k and fvj ; vkg2E

�1 if j < k D i and fvj ; vkg2E

0 otherwise

These vectors have the useful property that for
any subset of nodes fvigi2S , the non-zero en-
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tries of
P

i2S ai correspond exactly to the edges
across the cut .S; V n S/.

For example, consider the graph on nodes
fv1; v2; v3; v4g with edges fv1; v2g; fv2; v3g;

fv3; v4g; and fv1; v4g. Then

a1 D . 1 0 1 0 0 0 /

a2 D . �1 0 0 1 0 0 /

a3 D . 0 0 0 �1 0 1 /

a4 D . 0 0 �1 0 0 �1 /

where the entries correspond to the pairs f1; 2g;

f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4g in that order.
Note that the nonzero entries of

a1 C a2 D . 0 0 1 1 0 0 /

correspond to f1; 4g and f2; 3g which are exactly
the edges across the cut .S; V n S/ for S D

fv1; v2g.

`0-Sampling via Linear Sketches. `0-sampling
is a technique that has found numerous
applications in data stream processing. We
appeal to a result by Jowhari et al. [12] that
shows the existence of a distribution over
matrices M 2 R

polylog.n/�poly.n/ such that for
any nonzero vector z 2 R

poly.n/, the index of
some nonzero entry of z can be reconstructed
with high probability given M.z/ 2 R

polylog.n/.
Note that we do not get to choose which entry is
reconstructed.

Emulation Basic Algorithm via Sketches
Let M1; : : : ;Mr be r D O.log n/ independent
sketch matrices for `0-sampling. Given Mj .ai /

for all j 2 Œr� and i 2 Œn�, we can emulate the
basic algorithm as follows:

1. Given M1.a1/;M1.a2/; : : : ;M1.an/, we
may emulate the first round of the algorithm
since from each M1.ai / we may reconstruct a
nonzero entry of ai , and these nonzero entries
correspond to edges incident to vi .

2. To emulate round j > 1 of the algorithm,
suppose S is one of the connected components
already constructed. Then, given

X

i2S

Mj .ai / DMj .
X

i2S

ai /

we may reconstruct a nonzero entry ofP
i2S ai which corresponds to an edge across

the cut .S; V n S/.

Extensions and Further Work

Subsequent work has extended the above results
significantly. If d is increased to O.k polylog n/

then, it is possible to test whether every cut has at
least k edges [1]. With d D O.��2 polylog n/,
it is possible to construct graph sparsifiers that
can be used to estimate the size of every cut
up to a .1 C �/ factor [2] along with spectral
properties such as the eigenvalues of the graph
[14]. With d D O.��1k polylog n/, it is possi-
ble to distinguish graphs which are not k-vertex
connected from those that are at least .1 C �/k-
vertex connected [11]. Some of the above results
have also been extended to hypergraphs [11].
The algorithm presented in this entry can be im-
plemented with O.polylog n/ update time in the
dynamic graph stream model, but a connectivity
query may take ˝.n/ time. This was addressed in
subsequent work by Kapron et al. [15].

More generally, solving graph problems via
linear sketches has become a very active area of
research [1–8, 10, 11, 13, 14, 16, 17]. Other prob-
lems that have been considered include approxi-
mating the densest subgraph [6, 9, 18], maximum
matching [5, 7, 8, 16], vertex cover and hitting set
[8], correlation clustering [4], and estimating the
number of triangles [17].
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Problem Definition

Consider a graph G D .V; E/. A subset C of V

is called a dominating set if every vertex is either
in C or adjacent to a vertex in C . If, furthermore,
the subgraph induced by C is connected, then C

is called a connected dominating set.
Given a connected graph G, find a connecting

dominating set of minimum cardinality. This
problem is denoted by MCDS and is NP-
hard. Its optimal solution is called a minimum
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connected dominating set. The following is a
greedy approximation with potential function f .

Greedy Algorithm A:
C  ;;
while f .C / > 2do
choose a vertex x to maximize f .C /�f .C [

fxg/ and
C  C [ fxg; output C .

Here, f is defined as f .C / D p.C / C q.C /

where p.C / is the number of connected
components of subgraph induced by C and
q.C / is the number of connected components
of subgraph with vertex set V and edge
set f.u; v/ 2 E j u 2 C or v 2 Cg. f has an
important property that C is a connected
dominating set if and only if f .C / D 2.

If C is a connected dominating set, then
p.C / D q.C / D 1, and hence f .C / D

2. Conversely, suppose f .C [ fxg/ D 2.
Since p.C / � 1 and q.C / � 1, one has
p.C / D q.C / D 1 which implies that C

is a connected dominating set. f has another
property, for G with at least three vertices, that
if f .C / > 2, then there exists x 2 V such
that f .C / � f .C [ fxg/ > 0. In fact, for
C D ;, since G is a connected graph with at
least three vertices, there must exist a vertex x

with degree at least two, and for such a vertex
x, f .C [ fxg/ < f .C /. For C ¤ ;, consider
a connected component of the subgraph induced
by C . Let B denote its vertex set which is a
subset of C . For every vertex y adjacent to
B , if y is adjacent to a vertex not adjacent to
B and not in C , then p.C [ fyg/ < p.C /

and q.C [ fyg/ � q.C /; if y is adjacent to a
vertex in C � B , then p.C [ fyg/ � p.C / and
q.C [ fyg/ < q.C /.

Now, look at a possible analysis for the above
greedy algorithm: Let x1; : : : ; Xg be vertices
chosen by the greedy algorithm in the ordering of
their appearance in the algorithm. Denote Ci D

fx1; : : : ; xig. Let C � D fy1; : : : ; yoptg be a min-
imum connected dominating set. Since adding
C � to Ci will reduce the potential function value
from f .Ci ) to 2, the value of f reduced by
a vertex in C � would be .f .Ci / � 2/=opt in

average. By the greedy rule for choosing xi C 1,
one has

f .Ci / � f .CiC1/ �
f .Ci / � 2

opt
:

Hence,

f .CiC1/ � 2 � .f .Ci / � 2/
�
1 � 1

opt

�

� .f .;/ � 2/
�
1 � 1

opt

�iC1

D .n � 2/
�
1 � 1

opt

�iC1

;

where n D jV j. Note that 1 � 1=opt � e�1=opt .
Hence,

f .Ci / � 2 � .n � 2/e�i=opt :

Choose i such that f .Ci / � optC 2 > f .CiC1/.
Then

opt � .n � 2/ e�i=opt

and
g � i � opt:

Therefore,

g � opt C i � opt

�
1C ln

n � 2

opt

�
:

Is this analysis correct? The answer is NO. Why?
How could one give a correct analysis? This entry
will answer those questions and introduce a new
general technique, analysis of greedy approxima-
tion with nonsubmodular potential function.

Key Results

The Role of Submodularity
Consider a set X and a function f defined on the
power set 2X , i.e., the family of all subsets of X .
f is said to be submodular if for any two subsets
A and B in 2X ,

f .A/C f .B/ � f .A \ B/C f .A [ B/:

For example, consider a connected graph G. Let
X be the vertex set of G. The function �q.C /
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defined in the last section is submodular. To
see this, first mention a property of submodular
functions.

A submodular function f is normalized if
f .;/ D 0. Every submodular function f can
be normalized by setting g.A/ D f .A/ � f .;/.
A function f is monotone increasing if f .A/ �

f .B/ for A � B . Denote Δxf .A/ D f .A [

fxg/ � f .A/.

Lemma 1 A function f W 2X ! R is submod-
ular if and only if Δxf .A/ � Δxf .B/ for any
x 2 X�B and A � B . Moreover, f is monotone
increasing if and only if Δxf .A/ � Δxf .B/ for
any x 2 B and A � B .

Proof If f is submodular, then for x 2 X � B

and A � B , one has

f .A [ fxg/C f .B/

� f ..A [ fxg/ [ B/C f .A [ fxg/ \ B/

D f .B [ fxg/C f .A/;

that is,
Δxf .A/ � Δxf .B/: (1)

Conversely, suppose (1) holds for any x 2 B and
A � B . Let C and D be two sets and C=D D

fx1; : : : ; xkg. Then

f .C [D/ �f .D/

D
kP

iD1

Δxi
f .D [ fx1; : : : ; xi�1/

�
kP

iD1

Δxi
f ..C\D/[fx1; : : : ; xi�1/

D f .C / � f .C \D/:

If f is monotone increasing, then for A � B ,
f .A/ � f .B/. Hence, for x 2 B ,

Δ/xf .A/ � 0 D Δxf .B/:

Conversely, if Δxf .A/ � Δxf .B/ for any x 2 B

and A � B , then for any x and A, Δxf .A/ �

Δxf .A[ fxg/ D 0, that is, f .A/ � f .A[ fxg/.
Let B � A D fx1; : : : ; xkg. Then

f .A/ � f .A [ fx1g/

� f .A [ fx1; x2g/ � � � � � f .B/:

Next, the submodularity of�q.A/ is studied. �

Lemma 2 If A � B , then Δyq.A/ � Δyq.B/.

Proof Note that each connected component of
graph .V; D.B// is constituted by one or more
connected components of graph .V; D.A// since
A � B . Thus, the number of connected compo-
nents of .V; D.B// dominated by y is no more
than the number of connected components of
.V; D.A// dominated by y. Therefore, the lemma
holds.

The relationship between submodular func-
tions and greedy algorithms has been established
for a long time [2].

Let f be a normalized, monotone increasing,
submodular integer function. Consider the mini-
mization problem

min c.A/

subject to A 2 Cf :

where c is a nonnegative cost function defined on
2X and Cf D fC midf .C [ fxg/ � f .C / D

0 for all x 2 Xg. The following is a greedy
algorithm to produce approximation solution for
this problem. �

Greedy Algorithm B
input submodular function f and cost function

c;
A ;;
while there exists x 2 E such that Δxf .A/ > 0

do select a vertex x that maximizes Δxf .A/=c.x/

and set
A A [ fxg;
return A.

The following two results are well known.

Theorem 1 If f is a normalized, monotone
increasing, submodular integer function, then
Greedy Algorithm B produces an approximation
solution within a factor of H.�/ from optimal,
where � D maxx2E f .fxg/.

Theorem 2 Let f be a normalized, monotone
increasing, submodular function and c a non-
negative cost function. If in Greedy Algorithm B,
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selected x always satisfies Δxf .Ai�1/=c.x/ �

1, then it produces an approximation solution
within a factor of 1 C ln.f �=opt/ from optimal
for the above minimization problem where f � D

f .A�/ and opt D c.A�/ for optimal solution
A�.

Now, come back to the analysis of Greedy
Algorithm A for the MCDS. It looks like that
the submodularity of f is not used. Actually,
the submodularity was implicitly used in the
following statement:

“Since adding C � to Ci will reduce the po-
tential function value from f .Ci ) to 2, the
value of f reduced by a vertex in C � would be
.f .Ci �2/=opt in average. By the greedy rule for
choosing xi C 1, one has

f .Ci / � f .CiC1/ �
f .Ci / � 2

opt
:”

To see this, write this argument more carefully.
Let C � D fy1; : : : ; yoptg and denote C �

j D

fy1; : : : ; yj g. Then

f .Ci / � 2 D f .Ci / � f .Ci [ C �/

D
j D1P
opt

Œf .Ci [ C �
j �1/ � f .Ci [ C �

j /�

where C �
0 D ;. By the greedy rule for choosing

xi C 1, one has

f .Ci / � f .CiC1/ � f .Ci / � f .Ci [
˚
yj

�
/

for j D 1; : : : ; opt. Therefore, it needs to have

�Δyj
f .Ci / D f .Ci / � f .Ci [

˚
yj

�
/

� f .Ci [ C �
j �1/ � f .Ci [ C �

j /

D �Δyj
f .Ci [ C �

j �1/

(2)
in order to have

f .Ci / � f .CiC1/ �
f .Ci / � 2

opt
:

Equation (2) asks the submodularity of �f . Un-
fortunately, �f is not submodular. A counterex-
ample can be found in [2]. This is why the

analysis of Greedy Algorithm A in section “Prob-
lem Definition” is incorrect.

Giving Up Submodularity

Giving up submodularity is a challenge task since
it is open for a long time. But, it is possible
based on the following observation on (2) by
Du et al. [1]: The submodularity of �f is
applied to increment of a vertex yj belonging
to optimal solution C �.

Since the ordering of yj ’s is flexible, one may
arrange it to make Δyj f .Ci /�Δyj f .Ci [C �

j �1/

under control. This is a successful idea for the
MCDS.

Lemma 3 Let yj ’s be ordered in the way that
for any j D 1; : : : ; opt; fy1; : : : ; yj g induces a
connected subgraph. Then

Δyj
f .Ci / � Δyj

f .Ci [ C �
j �1/ � 1:

Proof Since all y1; : : : ; yj �1 are connected, yj

can dominate at most one additional connected
component in the subgraph induced by Ci�1 [

C �
j �1 than in the subgraph induced by ci � 1.

Hence,

Δyj
p.Ci / � Δyj

f .Ci [ C �
j �1/ � 1:

Moreover, since �q is submodular,

Δyj
q.Ci / � Δyj

q.Ci [ C �
j �1/ � 0:

Therefore,

Δyj
f .Ci / � Δyj

f .Ci [ C �
j �1/ � 1:

Now, one can give a correct analysis for the
greedy algorithm for the MCDS [3].

By Lemma 3,

f .Ci / � f .CiC1/ �
f .Ci / � 2

opt
� 1:

Hence,
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f .CiC1/ �2 � opt

� .f .Ci / � 2C opt/
�
1 � 1

opt

�

� .f .;/ � 2 � opt/
�
1 � 1

opt

�iC1

D .n � 2 � opt/
�
1 � 1

opt

�iC1

;

where n D jV j. Note that 1 � 1=opt � e�1=opt .
Hence,

f .Ci / � 2 � opt � .n � 2/e�i=opt :

Choose i such that f .Ci / � 2 � opt C 2 >

f .CiC1/. Then

opt � .n � 2/e�i=opt

and
g � i � 2 � opt:

Therefore,

g�2�optCi�opt

�
2Cln

n � 2

opt

�
�opt.2Cln ı/

where ı is the maximum degree of input graph
G. �

Applications

The technique introduced in the previous section
has many applications, including analysis of it-
erated 1-Steiner trees for minimum Steiner tree
problem and analysis of greedy approximations
for optimization problems in optical networks [3]
and wireless networks [2].

Open Problems

Can one show the performance ratio 1 C H.ı/

for Greedy Algorithm B for the MCDS? The
answer is unknown. More generally, it is
unknown how to get a clean generalization of
Theorem 1.
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Problem Definition

Given a collection S of sets over a universe U ,
a set cover C � S is a subcollection of the
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sets whose union is U . The set-cover problem is,
given S, to find a minimum-cardinality set cover.
In the weighted set-cover problem, for each set
s 2 S, a weight ws �0 is also specified, and the
goal is to find a set-cover C of minimum total
weight

P
S2C

wS .

Weighted set cover is a special case of mini-
mizing a linear function subject to a submodular
constraint, defined as follows. Given a collection
S of objects, for each object s a nonnegative
weight w s , and a nondecreasing submodular
function f W 2S ! R, the goal is to find a
subcollection C � Ssuch that f .C / D f .S/

minimizing
P

s2C

ws . (Taking f .C / D j [s2C sj

gives weighted set cover.)

Key Results

The greedy algorithm for weighted set cover
builds a cover by repeatedly choosing a set s that
minimizes the weight ws divided by the number
of elements in s not yet covered by chosen sets. It
stops and returns the chosen sets when they form
a cover:

Let Hk denote
kP

iD1

1=i 
 ln k, where k is the

largest set size.

greedy-set-cover(S,w)
1. Initialize C ← 0. Define f (C) = ⎜Us∈C S ⎜.
2. Repeat until f (C ) = f (S):
3.        Choose s∈S minimizing the price per

4.       Let C ← C U {S}.
5. Return C.

element ws/[ f (CU {s}) – f (C )].

Theorem 1 The greedy algorithm returns a set
cover of weight at most Hk times the minimum
weight of any cover.

Proof When the greedy algorithm chooses a set
s, imagine that it charges the price per element
for that iteration to each element newly covered
by s. Then, the total weight of the sets chosen
by the algorithm equals the total amount charged,
and each element is charged once.

Consider any set s D fxk ; xk�1; : : :; x1g in the
optimal set cover C �. Without loss of generality,
suppose that the greedy algorithm covers the
elements of s in the order given: xk ; xk�1; : : :; x1.
At the start of the iteration in which the algorithm
covers element xi of s, at least i elements of s

remain uncovered. Thus, if the greedy algorithm
were to choose s in that iteration, it would pay a
cost per element of at most ws / i . Thus, in this
iteration, the greedy algorithm pays at most ws /
i per element covered. Thus, it charges element
xi at most ws / i to be covered. Summing over
i , the total amount charged to elements in s is at
most wsHk . Summing over s 2 C � and noting
that every element is in some set in C �, the total
amount charged to elements overall is at mostP
s2C �

WsHk D HkOPT. �

The theorem was shown first for the
unweighted case (each ws D 1) by Johnson
[5], Lovász [8], and Stein [13] and then extended
to the weighted case by Chvátal [2].

Since then a few refinements and im-
provements have been shown, including the
following:

Theorem 2 Let S be a set system over a universe
with n elements and weights ws �1. The total
weight of the cover C returned by the greedy
algorithm is at most Œ1C ln .n=OPT/� OPT C 1

(compare to [12]).

Proof Assume without loss of generality that
the algorithm covers the elements in order
xn; xn�1; : : :; x1. At the start of the iteration
in which the algorithm covers xi , there are at
least i elements left to cover, and all of them
could be covered using multiple sets of total cost
OPT. Thus, there is some set that covers not-yet-
covered elements at a cost of at most OPT=i per
element.

Recall the charging scheme from the previ-
ous proof. By the preceding observation, ele-
ment xi is charged at most OPT=i . Thus, the
total charge to elements xn; : : :; xi is at most
.Hn � Hi�1/OPT. Using the assumption that
each ws �1, the charge to each of the remaining
elements is at most 1 per element. Thus, the total
charge to all elements is at most i � 1 C .Hn �
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Hi�1/OPT. Taking i D 1 C dOPTe, the total
charge is at most dOPTeC .Hn�HdOPTe/OPT �
1C OPT.1C ln.n=OPT//. �

Each of the above proofs implicitly constructs
a linear-programming primal-dual pair to show
the approximation ratio. The same approximation
ratios can be shown with respect to any fractional
optimum (solution to the fractional set-cover lin-
ear program).

Other Results
The greedy algorithm has been shown to have an
approximation ratio of ln n�ln ln nCO(1) [11].
For the special case of set systems whose duals
have finite Vapnik-Chervonenkis (VC) dimen-
sion, other algorithms have substantially better
approximation ratio [1]. Constant-factor approxi-
mation algorithms are known for geometric vari-
ants of the closely related k-median and facility
location problems.

The greedy algorithm generalizes naturally to
many problems. For example, for minimizing
a linear function subject to a submodular con-
straint (defined above), the natural extension of
the greedy algorithm gives an Hk -approximate
solution, where k D maxs2S f .fsg/ � f .;/,
assuming f is integer valued [10].

The set-cover problem generalizes to allow
each element x to require an arbitrary number rx

of sets containing it to be in the cover. This gen-
eralization admits a polynomial-time O.log n/-
approximation algorithm [7].

The special case when each element belongs
to at most r sets has a simple r-approximation
algorithm ([15] § 15.2). When the sets have
uniform weights (ws D 1), the algorithm reduces
to the following: select any maximal collection
of elements, no two of which are contained in the
same set; return all sets that contain a selected
element.

The variant “Max k-coverage” asks for a set
collection of total weight at most k covering as
many of the elements as possible. This variant
has a .1 � 1=e/-approximation algorithm ([15]
Problem 2.18) (see [6] for sets with nonuniform
weights).

For a general discussion of greedy methods for
approximate combinatorial optimization, see ([4]
Ch. 4).

Finally, under likely complexity-theoretic as-
sumptions, the ln n approximation ratio is essen-
tially the best possible for any polynomial-time
algorithm [3, 9].

Applications

Set cover and its generalizations and variants are
fundamental problems with numerous applica-
tions. Examples include:

• Selecting a small number of nodes in a net-
work to store a file so that all nodes have a
nearby copy

• Selecting a small number of sentences to
be uttered to tune all features in a speech-
recognition model [14]

• Selecting a small number of telescope snap-
shots to be taken to capture light from all
galaxies in the night sky

• Finding a short string having each string in a
given set as a contiguous sub-string
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Problem Definition

E. Marczewski proved that every graph can be
represented by a list of sets where each vertex
corresponds to a set and the edges to nonempty

intersections of sets. It is natural to ask what sort
of graphs would be most likely to arise if the list
of sets is generated randomly.

Consider the model of random graphs where
each vertex chooses randomly from a universal
set the members of its corresponding set, each
independently of the others. The probability
space that is created is the space of random inter-
section graphs, Gn;m;p , where n is the number of
vertices, m is the cardinality of a universal set of
elements and p is the probability for each vertex
to choose an element of the universal set. The
model of random intersection graphs was first
introduced by M. Karońsky, E. Scheinerman, and
K. Singer-Cohen in [4]. A rigorous definition
of the model of random intersection graphs
follows:

Definition 1 Let n, m be positive integers and
0 � p � 1. The random intersection graph
Gn;m;p is a probability space over the set of
graphs on the vertex set f1; : : : ; ng where each
vertex is assigned a random subset from a fixed
set of m elements. An edge arises between two
vertices when their sets have at least a common
element. Each random subset assigned to a vertex
is determined by

Pr Œvertex i chooses element j � D p

with these events mutually independent.

A common question for a graph is whether it has
a cycle, a set of edges that form a path so that the

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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first and the last vertex is the same, that visits all
the vertices of the graph exactly once. We call this
kind of cycle the Hamilton cycle and the graph
that contains such a cycle is called a Hamiltonian
graph.

Definition 2 Consider an undirected graph
G D .V; E/ where V is the set of vertices and E
the set of edges. This graph contains a Hamilton
cycle if and only if there is a simple cycle that
contains each vertex in V.

Consider an instance of Gn;m;p , for specific val-
ues of its parameters n, m, and p, what is the prob-
ability of that instance to be Hamiltonian? Taking
the parameter p, of the model, to be a function
of n and m, in [2], a threshold function P.n; m/

has been found for the graph property “Contains
a Hamilton cycle”; i.e., a function P.n; m/ is
derived such that

if p.n; m/ � P.n; m/

lim
n;m!1

Pr
�
Gn;m;pContains Hamilton cycle

�
D 0

if p.n; m/ � P.n; m/

lim
n;m!1

Pr
�
Gn;m;pContains Hamilton cycle

�
D 1

When a graph property, such as “Contains
a Hamilton cycle,” holds with probability that
tends to 1 (or 0) as n, m tend to infinity, then it
is said that this property holds (does not hold),
“almost surely” or “almost certainly.”

If in Gn;m;p the parameter m is very small
compared to n, the model is not particularly in-
teresting and when m is exceedingly large (com-
pared to n) the behavior of Gn;m;p is essentially
the same as the Erdös–Rényi model of random
graphs (see [3]). If someone takes m D dn˛e, for
fixed real ˛ > 0, then there is some deviation
from the standard models, while allowing for
a natural progression from sparse to dense graphs.
Thus, the parameter m is assumed to be of the
form m D dn˛e for some fixed positive real ’.

The proof of existence of a Hamilton cy-
cle in Gn;m;p is mainly based on the estab-
lishment of a stochastic order relation between

the model Gn;m;p and the Erdös–Rényi random
graph model Gn; Op .

Definition 3 Let n be a positive integer,
0 � Op � 1. The random graph G.n; Op/ is
a probability space over the set of graphs on
the vertex set f1; : : : ; ng determined by

Pr Œi; j � D Op

with these events mutually independent.

The stochastic order relation between the two
models of random graphs is established in the
sense that if A is an increasing graph property,
then it holds that

Pr
�
Gn; Op 2 A

�
� Pr

�
Gn;m;p 2 A

�

where Op D f .p/. A graph property A is in-
creasing if and only if given that A holds for
a graph G.V; E/ then A holds for any G.V; E 0/:
E 0 � E.

Key Results

Theorem 1 Let m D dn˛e, where ˛ is a fixed
real positive, and C1; C2 be sufficiently large
constants. If

p � C1

log n

m
for 0 < ˛ < 1 or

p � C2

r
log n

nm
for ˛ > 1

then almost all Gn;m;p are Hamiltonian. Our
bounds are asymptotically tight.

Note that the theorem above says nothing
when m D n, i.e., ˛ D 1.

Applications

The Erdös–Rényi model of random graphs, Gn;p ,
is exhaustively studied in computer science
because it provides a framework for studying
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practical problems such as “reliable network
computing” or it provides a “typical instance”
of a graph and thus it is used for average
case analysis of graph algorithms. However,
the simplicity of Gn;p means it is not able to
capture satisfactorily many practical problems
in computer science. Basically, this is because
of the fact that in many problems independent
edge-events are not well justified. For example,
consider a graph whose vertices represent a set
of objects that either are placed or move in a
specific geographical region, and the edges are
radio communication links. In such a graph,
we expect that, any two vertices u, w are more
likely to be adjacent to each other, than any
other, arbitrary, pair of vertices, if both are
adjecent to a third vertex v. Even epidemiological
phenomena (like the spread of disease) tend to
be more accurately captured by this proximity-
sensitive random intersection graph model. Other
applications may include oblivious resource
sharing in a distributive setting, interaction of
mobile agents traversing the web etc.

The model of random intersection graphs
Gn;m;p was first introduced by M. Karońsky,
E. Scheinerman, and K. Singer-Cohen in [4]
where they explored the evolution of random
intersection graphs by studying the thresholds
for the appearance and disappearance of
small induced subgraphs. Also, J.A. Fill, E.R.
Scheinerman, andK. Singer Cohen in [3] proved
an equivalence theorem relating the evolution of
Gn;m;p and Gn;p , in particular they proved that
when m D n˛ where ˛ > 6, the total variation
distance between the graph random variables
has limit 0. S. Nikoletseas, C. Raptopoulos, and
P. Spirakis in [8] studied the existence and the
efficient algorithmic construction of close to
optimal independent sets in random intersection
graphs. D. Stark in [11] studied the degree of
the vertices of the random intersection graphs.
However, after [2], Spirakis and Raptopoulos,
in [10], provide algorithms that construct
Hamilton cycles in instances of Gn;m;p , for
p above the Hamiltonicity threshold. Finally,
Nikoletseas et al. in [7] study the mixing time and
cover time as the parameter p of the model varies.

Open Problems

As in many other random structures, e.g., Gn;p

and random formulae, properties of random in-
tersection graphs also appear to have threshold
behavior. So far threshold behavior has been
studied for the induced subgraph appearance and
hamiltonicity.

Other fields of research for random intersec-
tion graphs may include the study of connectivity
behavior, of the model i.e., the path formation,
the formation of giant components. Additionally,
a very interesting research question is how cover
and mixing times vary with the parameter p, of
the model.
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Problem Definition

In many diploid organisms like humans, chro-
mosomes come in pairs. Genetic variation oc-
curs in some “positions” along the chromosomes.
These genetic variations are commonly modelled
in the form of single nucleotide polymorphisms

(SNPs) [5], which are the nucleotide sites where
more than one nucleotide can occur. A hap-
lotype is the sequence of linked SNP genetic
markers (small segments of DNA) on a single
chromosome. However, experiments often yield
genotypes, which is a blend of the two haplotypes
of the chromosome pair. It is more useful to
have information on the haplotypes, thus giving
rise to the computational problem of inferring
haplotypes from genotypes.

The physical position of a marker on a chro-
mosome is called a locus and its state is called
an allele. SNP are often biallelic, i.e., the allele
can take on two different states, corresponding
to two different nucleotides. In the language of
computer science, the allele of a biallelic SNP
can be denoted by 0 and 1, and a haplotype
with m loci is represented as a length-m string
in f0; 1gm and a genotype as a length-m string
in f0; 1; 2gm. Consider a haplotype pair hh1, h2i

and a corresponding genotype g. For each locus,
if both haplotypes show a 0, then the geno-
type must also be 0, and if both haplotypes
show a 1, the genotype must also be 1. These
loci are called homozygous. If however one of
the haplotypes shows a 0 and the other a 1,
the genotype shows a 2 and the locus is called
heterozygous. This is called SNP consistency.
For example, considering a single individual, the
genotype g D 012212 has four SNP-consistent
haplotype pairs: {h011111, 010010i, h011110,
010011i, h011011, 010110i, h011010, 010111i}.
In general, if a genotype has s heterozygous
loci, it can have 2s�1 SNP-consistent haplotype
solutions.

Haplotypes are passed down from an indi-
vidual to its descendants. Mendelian consistency
requires that, in the absence of recombinations
or mutations, each child inherits one haplotype
from one of the two haplotypes of the father
and inherits the other haplotype from the mother
similarly. This gives us more information to in-
fer haplotypes when we are given a pedigree.
The computational problem is therefore, given
a pedigree with n individuals where each indi-
vidual is associated with a genotype of length
m, find an assignment of a pair of haplotypes
to each individual such that SNP consistency
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Haplotype Inference on Pedigrees Without Recom-
binations, Fig. 1 (a) Example of a pedigree with four
nodes. (b) The graph G with 12 vertices, 6 red edges,

and 4 brown edges. Each vector is a vertex in G. Vector
pairs enclosed by rounded rectangles belong to the same
individual

and Mendelian consistency are obeyed for each
individual. In rare cases (especially for humans)
[3], the pedigree may contain mating loops: a
mating loop is formed when, for example, there
is a marriage between descendants of a common
ancestor.

As a simple example, consider the pedigree in
Fig. 1a for a family of four individuals and their
genotypes. Due to SNP consistency, mother M’s
haplotypes must be h0000; 1000i (the order does
not matter). Similarly, daughter D’s haplotypes
must be h1000; 1100i. Now we apply Mendelian
consistency to deduce that D must obtain the
1000 haplotype from M since neither of father
F’s haplotypes can be 1000 (considering locus
2). Therefore, D obtains 1100 from F, and F’s
haplotypes must be h0101; 1100i. With F’s and
M’s haplotypes known, the only solution for the
haplotypes of son S that is consistent with his
genotype 2202 is h0101; 1000i.

Key Results

While this kind of deduction might appear to
be enough to resolve all haplotype values, it
is not the case. As we will shortly see, there
are “long-distance” constraints that need to be
considered. These constraints can be represented
by a system of linear equations in GF(2) and
solved using Gaussian elimination. This gives a
O.m3n3/ time algorithm [3]. Subsequent papers
try to capture or solve the constraints more eco-
nomically. The time complexity was improved
in [6] to O.mn2 C n3 log2 n log log n/ by elimi-
nating redundant equations and using low-stretch
spanning trees. A different approach was used

in [1], representing the constraints by the parity
of edge labels of some auxiliary graphs and
finding solutions of these constraints using graph
traversal without (directly) solving a system of
linear equations. This gives a linear O.mn/ time
algorithm, although it only works for the case
with no mating loops and only produces one
particular solution even when the pedigree admits
more than one solution. Later algorithms include
[4] which returns the full set of solutions in
optimal time (again without mating loops) and
[2] which can handle mating loops and runs in
O.kmn C k2m/ time where k is the number of
mating loops.

In the following we sketch the idea behind
the linear time algorithm in [1]. Each individual
only has a pair of haplotypes, but the algorithm
first produces a number of vector pairs for each
individual, one vector pair for each trio (a father-
mother-child triplet) that this individual belongs
to. Each vector pair represents the information
about the two haplotypes of this individual that
can be derived by considering this trio only.
These vector pairs will eventually be “unified” to
become a single pair.

For the pedigree in Fig. 1a, the algorithm
first produces the graph G in Fig. 1b, which has
two connected components for the two trios F-
M-S and F-M-D. The rule for enforcing SNP
consistency (Mendelian consistency) is that the
unresolved loci values, i.e., the ? values, must
be different (same) at opposite ends of a red
(brown) edge. There is only one way to unify the
vector pairs of F consistently (due to locus 4):
?101 must correspond to 0101. We add an edge
between these two vectors to represent the fact
that they should be identical. Then all ? values
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Haplotype Inference on Pedigrees Without Recombi-
nations, Fig. 2 An example showing how constraints are
represented by labeled edges in another graph. (a) The

pedigree. (b) The local graph G. (c) The parity constraint
graph J . Three constraints are added

can be resolved by traversing the now-connected
graph and applying the aforementioned rules for
enforcing consistency.

However, consider another pedigree in Fig. 2a.
The previous steps can only produce Fig. 2b,
which has four connected components and un-
resolved loci. We need to decide for A and B

whether A D 00‹ should connect to B D‹‹0

or its complement ??1 and similarly for B 0 and
C , etc. Observe that a path between A and C

must go through an odd number of red edges
since locus 1 changes from 0 to 1. To capture this
type of long-distance constraints, we construct a
parity constraint graph J where the edge labels
represent the parity constraints; see Fig. 2c. In
effect, J represents a set of linear equations in
GF(2); in Fig. 2c, the equations are xAB CxB0C D

1; xB0C CxC 0D D 0, and xABCxB0C CxC 0D D 0.
Finally, we can traverse J along the unique

path between any two nodes; the parity of this
path tells us how to merge the vector pairs in G.
For example, the parity between A and B should
be 0, indicating 00? in A should connect to ??0 in
B (so both become 000), while the parity between
B 0 and C is 1, so B 0 and C should be 000 and
111, respectively.
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Problem Definition

The work of Pitt and Valiant [18] deals with
learning Boolean functions in the Probably Ap-
proximately Correct (PAC) learning model intro-
duced by Valiant [19]. A learning algorithm in
Valiant’s original model is given random exam-
ples of a function f W f0; 1gn ! f0; 1g from a
representation class F and produces a hypothesis
h 2 F that closely approximates f . Here, a
representation class is a set of functions and a
language for describing the functions in the set.
The authors give examples of natural represen-
tation classes that are NP-hard to learn in this
model, whereas they can be learned if the learn-
ing algorithm is allowed to produce hypotheses
from a richer representation class H. Such an
algorithm is said to learn F by H; learning F by
F is called proper learning.

The results of Pitt and Valiant were the first
to demonstrate that the choice of representation
of hypotheses can have a dramatic impact on the
computational complexity of a learning problem.

Their specific reductions from NP-hard problems
are the basis of several other follow-up works on
the hardness of proper learning [1, 3, 7].

Notation
Learning in the PAC model is based on the as-
sumption that the unknown function (or concept)
belongs to a certain class of concepts C. In order
to discuss algorithms that learn and output func-
tions, one needs to define how these functions
are represented. Informally, a representation for
a concept class C is a way to describe concepts
from C that defines a procedure to evaluate a con-
cept in C on any input. For example, one can rep-
resent a conjunction of input variables by listing
the variables in the conjunction. More formally, a
representation class can be defined as follows.

Definition 1 A representation class F is a pair
.L;R/ where

• L is a language over some fixed finite alphabet
(e.g., f0; 1g);

• R is an algorithm that for � 2 L, on input
.�; 1n/ returns a Boolean circuit over f0; 1gn.

In the context of efficient learning, only ef-
ficient representations are considered, or, rep-
resentations for which R is a polynomial-time
algorithm. The concept class represented by F is
the set of functions over f0; 1gn defined by the
circuits in fR.�; 1n/ j � 2 Lg. For a Boolean
function f , “f 2 F” means that f belongs to
the concept class represented by F and that there
is a � 2 L whose associated Boolean circuit com-
putes f: For most of the representations discussed
in the context of learning, it is straightforward
to construct a language L and the corresponding
translating function R, and therefore, they are not
specified explicitly.

Associated with each representation is the
complexity of describing a Boolean function
using this representation. More formally, for a
Boolean function f 2 C, F-size.f / is the
length of the shortest way to represent f using
F , or minfj� j j � 2 L; R.�; 1n/ � f g.

We consider Valiant’s PAC model of learning
[19], as generalized by Pitt and Valiant [18].
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In this model, for a function f and a distribu-
tion D over X , an example oracle EX.f;D/

is an oracle that, when invoked, returns an ex-
ample hx; f .x/i, where x is chosen randomly
with respect to D, independently of any previous
examples. For � � 0, we say that function
g �-approximates a function f with respect to
distribution D if PrDŒf .x/ ¤ g.x/� � �.

Definition 2 A representation class F is PAC
learnable by representation class H if there exists
an algorithm that for every � > 0, ı > 0, n,
f 2 F , and distribution D over X , given �, ı,
and access to EX.f;D/, runs in time polynomial
in n; s D F-size.c/; 1=� and 1=ı, and outputs,
with probability at least 1�ı, a hypothesis h 2 H
that �-approximates f .

A DNF expression is defined as an OR of
ANDs of literals, where a literal is a possibly
negated input variable. We refer to the ANDs of a
DNF formula as its terms. Let DNF.k/ denote the
representation class of k-term DNF expressions.
Similarly, a CNF expression is an OR of ANDs
of literals. Let k-CNF denote the representation
class of CNF expressions with each AND having
at most k literals.

For a real-valued vector c 2 R
n and � 2 R, a

linear threshold function (also called a halfspace)
Tc;� .x/ is the function that equals 1 if and only
if
P

i�n ci xi � � . The representation class of
Boolean threshold functions consists of all linear
threshold functions with c 2 f0; 1gn and � an
integer.

Key Results

Theorem 1 ([18]) For every k � 2, the repre-
sentation class of DNF.k/ is not properly learn-
able unless RP D NP.

More specifically, Pitt and Valiant show that
learning DNF.k/ by DNF.`/ is at least as hard as
coloring a k-colorable graph using ` colors. For
the case k D 2, they obtain the result by reducing
from Set Splitting (see [9] for details on the
problems). Theorem 1 is in sharp contrast with
the fact that DNF.k/ is learnable by k-CNF [19].

Theorem 2 ([18]) The representation class of
Boolean threshold functions is not properly
learnable unless RP D NP.

This result is obtained via a reduction from
the NP-complete Zero-One Integer Programming
problem (see [9] (p.245) for details on the prob-
lem). The result is contrasted by the fact that gen-
eral linear thresholds are properly learnable [4].

These results show that using a specific repre-
sentation of hypotheses forces the learning algo-
rithm to solve a combinatorial problem that can
be NP-hard. In most machine learning applica-
tions it is not important which representation of
hypotheses is used as long as the value of the
unknown function is predicted correctly. There-
fore, learning in the PAC model is now defined
without any restrictions on the output hypothesis
(other than it being efficiently evaluatable). Hard-
ness results in this setting are usually based on
cryptographic assumptions (cf. [15]).

Hardness results for proper learning based on
assumption NP ¤ RP are now known for several
other representation classes and for other vari-
ants and extensions of the PAC learning model.
Blum and Rivest show that for any k � 3,
unions of k halfspaces are not properly learn-
able [3]. Hancock et al. prove that decision trees
(cf. [16] for the definition of this representation)
are not learnable by decision trees of somewhat
larger size [11]. This result was strengthened
by Alekhnovich et al. who also proved that in-
tersections of two halfspaces are not learnable by
intersections of k halfspaces for any constant
k, general DNF expressions are not learnable
by unions of halfspaces (and in particular are not
properly learnable) and k-juntas are not properly
learnable [1]. Further, DNF expressions remain
NP-hard to learn properly even if membership
queries, or the ability to query the unknown func-
tion at any point, are allowed [7]. Khot and Saket
show that the problem of learning intersections
of two halfspaces remains NP-hard even if a
hypothesis with any constant error smaller than
1=2 is required [17]. No efficient algorithms or
hardness results are known for any of the above
learning problems if no restriction is placed on
the representation of hypotheses.
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The choice of representation is important even
in powerful learning models. Feldman proved
that nc-term DNF are not properly learnable for
any constant c even when the distribution of
examples is assumed to be uniform and member-
ship queries are available [7]. This contrasts with
Jackson’s celebrated algorithm for learning DNF
in this setting [13], which is not proper.

In the agnostic learning model of Haussler
[12] and Kearns et al. [14], even the representa-
tion classes of conjunctions, decision lists, halfs-
paces, and parity functions are NP-hard to learn
properly (cf. [2, 6, 8, 10] and references therein).
Here again the status of these problems in the
representation-independent setting is largely un-
known.

Applications

A large number of practical algorithms use repre-
sentations for which hardness results are known
(most notably decision trees, halfspaces, and neu-
ral networks). Hardness of learning F by H
implies that an algorithm that uses H to represent
its hypotheses will not be able to learn F in
the PAC sense. Therefore such hardness results
elucidate the limitations of algorithms used in
practice. In particular, the reduction from an NP-
hard problem used to prove the hardness of learn-
ing F by H can be used to generate hard instances
of the learning problem.

Open Problems

A number of problems related to proper
learning in the PAC model and its extensions
are open. Almost all hardness of proper
learning results are for learning with respect
to unrestricted distributions. For most of the
problems mentioned in section “Key Results”
it is unknown whether the result is true if the
distribution is restricted to belong to some
natural class of distributions (e.g., product
distributions). It is unknown whether decision
trees are learnable properly in the PAC model

or in the PAC model with membership queries.
This question is open even in the PAC model
restricted to the uniform distribution only. Note
that decision trees are learnable (non-properly)
if membership queries are available [5] and are
learnable properly in time O.nlog s/, where s is
the number of leaves in the decision tree [1].

An even more interesting direction of research
would be to obtain hardness results for learning
by richer representation classes, such as AC0 cir-
cuits, classes of neural networks and, ultimately,
unrestricted circuits.
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Problem Definition

One of the goals of the design of the harmonic
algorithm (or class of algorithms) was to provide
an online algorithm for the classic bin pack-
ing problem that performs well with respect to

the asymptotic competitive ratio, which is the
standard measure for online algorithms for bin
packing type problems. The competitive ratio for
a given input is the ratio between the costs of
the algorithm and of an optimal off-line solution.
The asymptotic competitive ratio is the worst-
case competitive ratio of inputs for which the
optimal cost is sufficiently large. In the online
(standard) bin packing problem, items of rational
sizes in .0; 1� are presented one by one. The
algorithm must pack each item into a bin before
the following item is presented. The total size of
items packed into a bin cannot exceed 1, and the
goal is to use the minimum number of bins, where
a bin is used if at least one item was packed into
it. All items must be packed, and the supply of
bins is unlimited.

When an algorithm acts on an input, it can
decide to close some of its bins and never use
them again. A bin is called closed in such a case,
while otherwise a used bin (which already has at
least one item) is called open. The motivation for
closing bins is to obtain fast running times per
item (so that the algorithm will pack it into a
bin selected out of a small number of options).
Simple algorithms such as First Fit (FF), Best
Fit (BF), and Worst Fit (WF) have worst-case
running times of O.log N / per item, where N

is the number of items at the time of assignment
of the new item. On the other hand, the simple
algorithm Next Fit (NF), which keeps at most of
open bin and closes it when a new item cannot
be packed there (before it uses a new bin for the
new item), has a worst-case running time of O.1/

per item. Algorithms that keep a constant number
of open bins are called bounded space. In many
practical applications, this property is desirable,
since the number of candidate bins for a new item
is small and it does not increase with the input
size.

Algorithm HARMk (for an integer k � 3)
was defined by Lee and Lee [7]. The fundamental
and natural idea of “harmonic-based” algorithms
is classify each item by size first (for online
algorithms, the classification of an item must be
done immediately upon arrival) and then pack it
according to its class (instead of letting the exact
size influence packing decisions). For the classifi-
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cation of items, HARMk splits the interval .0; 1�

into subintervals. There are k � 1 subintervals
of the form . 1

iC1
; 1

i
� for i D 1; : : : ; k � 1 and

one final subinterval .0; 1
k

�. Each bin will contain
only items from one subinterval (type). Every
type is packed independently into its own bins
using NF. Thus, there are at most k � 1 open
bins at each time (since for items of sizes above
1
2

, two items cannot share a bin, and any bin can
be closed once it receives an item). Moreover, for
i < k, as the items of type i have sizes no larger
than 1

i
but larger than 1

iC1
, every closed bin of

this type will have exactly i items. For type k, a
closed bin will contain at least k items, but it may
contain many more items. This defines a class of
algorithms (containing one algorithm for any k �

3). The term the harmonic algorithm (or simply
HARM) refers to HARMk for a sufficiently large
value of k, and its asymptotic competitive ratio
is the infimum value that can be achieved as the
asymptotic competitive ratio of any algorithm of
this class.

Key Results

It was shown in paper [7] that for k tending to
infinity, the asymptotic ratio of HARM is a sum
of series denoted by ˘1 (see below), and it is
equal to approximately 1:69103. Moreover, this is
the best possible asymptotic competitive ratio of
any online bounded space algorithm for standard
bin packing.

The crucial item sizes are of the form 1
`

C ",
where " > 0 is small and ` is an integer. These
are items of type ` � 1, and bins consisting of
such items contain ` � 1 items (except for the last
bin used for this type that may contain a smaller
number of items). However, a bin (of an off-line
solution) that already contains an item of size
1
2

C"1 and an item of size 1
3

C"2 (for some small
"1; "2 > 0) cannot contain also an item whose
size is slightly above 1

4
. The largest item of this

form would be slightly larger than 1
7

. Thus, the
following sequence was defined [7]. Let �1 D 1

and, for j > 1, �j D �j�1.�j�1 C 1/ (note that
�j 0 is divisible by any �j for j < j 0). It turns out

that the crucial item sizes are just above 1
�jC1

.

The series
P1

jD1
1

�j
give the asymptotic compet-

itive ratio of the HARM, ˘1. For a long time the
best lower bound on the asymptotic competitive
ratio of (unbounded space) online algorithms was
the one by van Vliet [8, 13], proved using this
sequence (but the current best lower bound was
proved using another set of inputs [1]).

In order to prove the upper bound ˘1 on the
competitive ratio, weights were used [12]. In this
case weights are defined (for a specific value of k)
quite easily such that all bins (except for the bins
that remain open when the algorithm terminates)
have total weights of at least 1. The weight of an
item of type i < k is 1

i
. The bins of type k are

almost full for sufficiently large values of k (a bin
can be closed only if the total size of its items
exceeds 1 � 1

k
). Assigning such an item a weight

that is k
k�1

times its size will allow one to show
that all bins except for a constant number of bins
(at most k�1 bins) have total weights of at least 1.
It is possible to show that the total weight of any
packed bin is sufficiently close to ˘1 for large
values of k. As both HARMk and an optimal
solution pack the same items, the competitive
ratio is implied. To show the upper bound on the
total weight of any packed bin, it is required to
show that the worst-case bin contains exactly one
item of size just above 1

�jC1
for �j � k � 1

(and the remaining space can only contain items
of type k). Roughly speaking, this holds as once
it was proved that the bin contains the largest
such items, the largest possible additional weight
can be obtained only by adding the next such
item.

Proving that no better bounded space algo-
rithms exist can be done as follows. Let j 0 be
a fixed integer. Let N be a large integer and
consider a sequence containing N items of each
size 1

�j
C ı for a sufficiently small ı > 0,

for any j D j 0; j 0 � 1; 	 	 	 ; 1. If ı is chosen
appropriately, we have

Pj 0

jD1
1

�jC1
C j 0ı < 1,

so the items can be packed (off-line) into N

bins. However, if items are presented in this order
(sorted by nondecreasing size), after all items of
one size have been presented, only a constant
number of bins can receive larger items, and
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thus the items of each size are packed almost
independently.

Related Results

The space of a bounded space algorithm is the
number of open bins that it can have. The space of
NF is 1, while the space of harmonic algorithms
increases with k. A bounded space algorithm
with space 2 and the same asymptotic competitive
ratio as FF and BF have been designed [3] (for
comparison, HARM3 has an asymptotic compet-
itive ratio of 7

4
). A modification where smaller

space is used to obtain the same competitive
ratios of harmonic algorithms (or alternatively,
smaller competitive ratios were obtained using
the same space) was designed by Woeginger [15].
Thus, there exists another sequence of bounded
space algorithms, with an increasing sequence of
open bins, where their sequence of competitive
ratios tends to ˘1 such that the space required
for every competitive ratio is much smaller than
that of [7].

One drawback of the model above is that an
off-line algorithm can rearrange the items and
does not have to process them as a sequence. The
variant where it must process them in the same
order as an online algorithm was studied as well
[2]. Algorithms that are based on partitioning into
classes and have smaller asymptotic competitive
ratios (but they are obviously not bounded space)
were designed [7, 9, 11].

Generalizations have been studied too, in par-
ticular, bounded space bin packing with cardi-
nality constraints (where an item cannot receive
more than t items for a fixed integer t � 2)
[5], parametric bin packing (where there is an
upper bound strictly smaller than 1 on item sizes)
[14], bin packing with rejection (where an item i

has a rejection penalty ri associated with it, and
it can be either packed, or rejected for the cost
ri ) [6], variable-sized bin packing (where bins of
multiple sizes are available for packing) [10], and
bin packing with resource augmentation (where
the online algorithm can use bins of size b > 1

for a fixed rational number b, while an off-line

algorithm still uses bins of size 1) [4]. In this last
variant, the sequences of critical item sizes were
redefined as a function of b, while variable-sized
bin packing required a more careful partition into
intervals.
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Problem Definition

The general idea of hierarchical self-assembly
(a.k.a., multiple tile [2], polyomino [8, 10], two-
handed [3, 5, 6]) is to model self-assembly of
tiles in which attachment of two multi-tile assem-
blies is allowed, as opposed to all attachments
being that of a single tile onto a larger assembly.
Several problems concern comparing hierarchical
self-assembly to its single-tile-attachment variant
(called the “seeded” model of self-assembly),
so we define both models here. The model of
hierarchical self-assembly was first defined (in
a slightly different form that restricted the size
of assemblies that could attach) by Aggarwal,
Cheng, Goldwasser, Kao, Moisset de Espanes,
and Schweller [2]. Several generalizations of the
model exist that incorporated staged mixing of
test tubes, “dissolvable” tiles, active signaling
across tiles, etc., but here we restrict attention
to the model closest to the seeded model of

Supported by NSF grants CCF-1219274, CCF-1162589,
and 1317694.

Winfree [9], different from that model only in
the absence of a seed and the ability of two large
assemblies to attach.

Definitions
A tile type is a unit square with four sides, each
consisting of a glue label (often represented as a
finite string) and a nonnegative integer strength.
We assume a finite set T of tile types, but an
infinite number of copies of each tile type, each
copy referred to as a tile. An assembly is a
positioning of tiles on the integer lattice Z

2, i.e.,
a partial function ˛ W Z

2 Ü T . We write
j˛j to denote jdom ˛j. Write ˛ v ˇ to denote
that ˛ is a subassembly of ˇ, which means that
dom ˛ 
 dom ˇ and ˛.p/ D ˇ.p/ for all points
p 2 dom ˛. We abuse notation and take a tile
type t to be equivalent to the single-tile assembly
containing only t (at the origin if not otherwise
specified). Two adjacent tiles in an assembly in-
teract if the glue labels on their abutting sides are
equal and have positive strength. Each assembly
induces a binding graph, a grid graph whose
vertices are tiles, with an edge between two tiles
if they interact. The assembly is � -stable if every
cut of its binding graph has strength at least � ,
where the weight of an edge is the strength of
the glue it represents. That is, the assembly is
stable if at least energy � is required to separate
the assembly into two parts.

We now define both the seeded and hierarchi-
cal variants of the tile assembly model. A seeded
tile system is a triple T D .T; �; �/, where T is
a finite set of tile types, � W Z2 Ü T is a finite,
� -stable seed assembly, and � is the temperature.
If T has a single seed tile s 2 T (i.e., �.0; 0/ D s

for some s 2 T and is undefined elsewhere),
then we write T D .T; s; �/: Let jT j denote jT j.
An assembly ˛ is producible if either ˛ D �

or if ˇ is a producible assembly and ˛ can be
obtained from ˇ by the stable binding of a single
tile. In this case, write ˇ !1 ˛ (˛ is producible
from ˇ by the attachment of one tile), and write
ˇ ! ˛ if ˇ !�1 ˛ (˛ is producible from ˇ by the
attachment of zero or more tiles). An assembly is
terminal if no tile can be � -stably attached to it.

A hierarchical tile system is a pair T D .T; �/,
where T is a finite set of tile types and � 2 N
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is the temperature. An assembly is producible if
either it is a single tile from T or it is the � -stable
result of translating two producible assemblies
without overlap. Therefore, if an assembly ˛ is
producible, then it is produced via an assembly
tree, a full binary tree whose root is labeled with
˛, whose j˛j leaves are labeled with tile types,
and each internal node is a producible assembly
formed by the stable attachment of its two child
assemblies. An assembly ˛ is terminal if for
every producible assembly ˇ, ˛ and ˇ cannot be
� -stably attached. If ˛ can grow into ˇ by the
attachment of zero or more assemblies, then we
write ˛ ! ˇ.

In either model, let AŒT � be the set of pro-
ducible assemblies of T , and let A�ŒT � 
 AŒT �

be the set of producible, terminal assemblies of
T . A TAS T is directed (a.k.a., deterministic,
confluent) if jA�ŒT �j D 1. If T is directed with
unique producible terminal assembly ˛, we say
that T uniquely produces ˛. It is easy to check
that in the seeded aTAM, T uniquely produces
˛ if and only if every producible assembly ˇ v

˛. In the hierarchical model, a similar condition
holds, although it is more complex since hierar-
chical assemblies, unlike seeded assemblies, do
not have a “canonical translation” defined by the
seed position. T uniquely produces ˛ if and only
if for every producible assembly ˇ, there is a
translation ˇ0 of ˇ such that ˇ0 v ˛. In particular,
if there is a producible assembly ˇ ¤ ˛ such
that dom ˛ D dom ˇ, then ˛ is not uniquely
produced. Since dom ˇ D dom ˛, every nonzero
translation of ˇ has some tiled position outside
of dom ˛, whence no such translation can be a
subassembly of ˛, implying ˛ is not uniquely
produced.

Power of Hierarchical Assembly Compared
to Seeded
One sense in which we can conclude that one
model of computation M is at least as powerful as
another model of computation M 0 is to show that
any machine defined by M 0 can be “simulated
efficiently” by a machine defined by M . In self-
assembly, there is a natural definition of what it
means for one tile system S to “simulate” another
T . We now discuss intuitively how to define such

a notion. There are several intricacies to the full
formal definition that are discussed in further
detail in [3, 5].

First, we require that there is a constant k 2

Z
C (the “resolution loss”) such that each tile type

t in T is “represented” by one or more k � k

blocks ˇ of tiles in S. In this case, we write
r.ˇ/ D t , where ˇ W f1; : : : ; kg2 Ü S and S

is the tile set of S. Then ˇ represents a k � k

block of such tiles, possibly with empty positions
at points x where ˇ.x/ is undefined. We call
such a k � k block in S a “macrotile.” We can
extend r to a function R that, given an assembly
˛S partitioned into k � k macrotiles, outputs an
assembly ˛T of T such that, for each macrotile
ˇ of ˛S , r.ˇ/ D t , where t is the tile type at the
corresponding position in ˛T .

Given such a representation function R indi-
cating how to interpret assemblies of S as repre-
senting assemblies of T , we now define what it
means to say that S simulates T . For each pro-
ducible assembly ˛T of T , there is a producible
assembly ˛S of S such that R.˛S/ D T , and
furthermore, for every producible assembly ˛S , if
R.˛S/ D T , then T is producible in T . Finally,
we require that R respects the “single attach-
ment” dynamics of T : there is a single tile that
can be attached to ˛T to result in ˛0T if and only if
there is some sequence of attachments to ˛S that
results in assembly ˛0S such that R.˛0S/ D ˛0T .

With such an idea in mind, we can ask, “Is
the hierarchical model at least as powerful as the
seeded model?”

Problem 1 For every seeded tile system T , de-
sign a hierarchical tile system S that simulates T .

Another interpretation of a solution to Prob-
lem 1 is that, to the extent that the hierarchical
model is more realistic than the seeded model by
incorporating the reality that tiles may aggregate
even in the absence of a seed, such a solution
shows how to enforce seeded growth even in
such an unfriendly environment that permits non-
seeded growth.

Assembly Time
We now define time complexity for hierarchi-
cal systems (this definition first appeared in [4],
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where it is explained in more detail). We treat
each assembly as a single molecule. If two assem-
blies ˛ and ˇ can attach to create an assembly
� , then we model this as a chemical reaction
˛Cˇ ! � , in which the rate constant is assumed
to be equal for all reactions (and normalized to
1). In particular, if ˛ and ˇ can be attached
in two different ways, this is modeled as two
different reactions, even if both result in the same
assembly.

At an intuitive level, the model we define can
be explained as follows. We imagine dumping
all tiles into solution at once, and at the same
time, we grab one particular tile and dip it into
the solution as well, pulling it out of the solution
when it has assembled into a terminal assem-
bly. Under the seeded model, the tile we grab
will be a seed, assumed to be the only copy
in solution (thus requiring that it appears only
once in any terminal assembly). In the seeded
model, no reactions occur other than the attach-
ment of individual tiles to the assembly we are
holding. In the hierarchical model, other reac-
tions are allowed to occur in the background
(we model this using the standard mass-action
model of chemical kinetics [7]), but only those
reactions with the assembly we are holding move
it “closer” to completion. The other background

reactions merely change concentrations of other
assemblies (although these indirectly affect the
time it will take our chosen assembly to complete,
by changing the rate of reactions with our chosen
assembly).

More formally, let T D .T; �/ be a hierarchi-
cal TAS, and let 	 W T ! Œ0; 1� be a concentra-
tions function, giving the initial concentration of
each tile type (we require that

P
t2T 	.t/ D 1,

a condition known as the “finite density con-
straint”). Let RC D Œ0; 1/, and let t 2 R

C: For
˛ 2 AŒT �, let Œ˛��.t/ (abbreviated Œ˛�.t/ when 	

is clear from context) denote the concentration of
˛ at time t with respect to initial concentrations
	, defined as follows. Given two assemblies ˛ and
ˇ that can attach to form � , we model this event
as a chemical reaction R W ˛ C ˇ ! � . Say that
a reaction ˛ C ˇ ! � is symmetric if ˛ D ˇ.
Define the propensity (a.k.a., reaction rate) of R

at time t 2 R
C to be 	R.t/ D Œ˛�.t/ 	 Œˇ�.t/ if R

is not symmetric and 	R.t/ D 1
2

	 Œ˛�.t/2 if R is
symmetric.

If ˛ is consumed in reactions ˛ C ˇ1 !

�1; : : : ; ˛ C ˇn ! �n and produced in asymmet-
ric reactions ˇ01 C � 01 ! ˛; : : : ; ˇ0m C � 0m ! ˛

and symmetric reactions ˇ001 Cˇ001 ! ˛; : : : ; ˇ00p C

ˇ00p ! ˛, then the concentration Œ˛�.t/ of ˛ at
time t is described by the differential equation:

dŒ˛�.t/

dt
D

mX

iD1

Œˇ0i �.t/ 	 Œ� 0i �.t/ C

pX

iD1

1

2
	 Œˇ00i �.t/2 �

nX

iD1

Œ˛�.t/ 	 Œˇi �.t/; (1)

with boundary conditions Œ˛�.0/ D 	.r/ if ˛

is an assembly consisting of a single tile r and
Œ˛�.0/ D 0 otherwise. In other words, the propen-
sities of the various reactions involving ˛ de-
termine its rate of change, negatively if ˛ is
consumed and positively if ˛ is produced.

This completes the definition of the dynamic
evolution of concentrations of producible assem-
blies; it remains to define the time complexity
of assembling a terminal assembly. Although we
have distinguished between seeded and hierarchi-
cal systems, for the purpose of defining a model

of time complexity in hierarchical systems and
comparing them to the seeded system time com-
plexity model of [1], it is convenient to introduce
a seedlike “timekeeper tile” into the hierarchical
system, in order to stochastically analyze the
growth of this tile when it reacts in a solution
that is itself evolving according to the continu-
ous model described above. The seed does not
have the purpose of nucleating growth but is
introduced merely to focus attention on a single
molecule that has not yet assembled anything, in
order to ask how long it will take to assemble
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into a terminal assembly. The choice of which tile
type to pick will be a parameter of the definition,
so that a system may have different assembly
times depending on the choice of timekeeper tile.

Fix a copy of a tile type s to designate as
a “timekeeper seed.” The assembly of s into
some terminal assembly Ǫ is described as a time-
dependent continuous-time Markov process in
which each state represents a producible assem-
bly containing s, and the initial state is the size-
1 assembly with only s. For each state ˛ rep-
resenting a producible assembly with s at the
origin, and for each pair of producible assemblies
ˇ; � such that ˛ C ˇ ! � (with the translation
assumed to happen only to ˇ so that ˛ stays
“fixed” in position), there is a transition in the
Markov process from state ˛ to state � with
transition rate Œˇ�.t/.

We define TT ;�;s to be the random variable
representing the time taken for the copy of s

to assemble into a terminal assembly via some
sequence of reactions as defined above. We define
the time complexity of a directed hierarchical
TAS T with concentrations 	 and timekeeper s

to be T.T ; 	; s/ D E
�
TT ;�;s

�
.

For a shape S � Z
2 (finite and connected),

define the diameter of S to be diam.S/ D

max
u;v2S

ku � vk1; where kwk1 is the L1 norm of w.

Problem 2 Design a hierarchical tile system
T D .T; �/ such that every producible terminal
assembly Ǫ has the same shape S , and for
some s 2 T and concentrations function
	 W T ! Œ0; 1�, T.T ; 	; s/ D o.diam.S//.

It is provably impossible to achieve this with
the seeded model [1, 4], since all assemblies in
that model require expected time at least propor-
tional to their diameter.

Key Results

Power of Hierarchical Assembly Compared
to Seeded
Cannon, Demaine, Demaine, Eisenstat, Patitz,
Schweller, Summers, and Winslow [3] showed a
solution to Problem 1. (They also showed sev-

eral other ways in which the hierarchical model
is more powerful than the seeded model, but
we restrict attention to simulation here.) For the
most part, temperature 2 seeded systems are as
powerful as those at higher temperatures, but the
simulation results of [3] hold for higher temper-
atures as well. In particular, they showed that
every seeded temperature �4 tile system T can
be simulated by a hierarchical temperature 4 tile
system (as well as showing it is possible for tem-
perature � hierarchical tile systems to simulate
temperature � seeded tile systems for � 2 f2; 3g,
using similar logic to the higher-temperature con-
struction). The definition of simulation has a
parameter k indicating the resolution loss of the
simulation. In fact, the simulation described in [3]
requires only resolution loss k D 5.

Figure 1 shows an example of S simulating
T . The construction enforces the “simulation of
dynamics” constraint that if and only if a single
tile can attach in T , and then a 5 � 5 macrotile
representing it in S can assemble. It is critical
that each tile type in T is represented by more
than one type of macrotile in S: each different
type of macrotile represents a different subset
of sides that can cooperate to allow the tile to
bind. To achieve this, each macrotile consists of a
central “brick” (itself a 3�3 block composed of 9
unique tile types with held together with strength-
4 glues) surrounded by “mortar” (forming a ring
around the central brick). Figure 1 shows “mortar
rectangles” but, similarly to the brick, these are
just 3 � 1 assemblies of 3 individual tile types
with strength-4 glues. The logic of the system
is such that if a brick B designed for a subset
of cooperating sides C 
 fN; S; E; Wg, then
only if the mortar for all sides in C is present
can B attach. Its attachment is required to fill
in the remaining mortar representing the other
sides in fN; S; E; WgnC that may not be present.
Finally, those tiles enable the assembly of mortar
in adjacent 5 � 5 blocks, to be ready for possible
cooperation to bind bricks in those blocks.

Assembly Time
Chen and Doty [4] showed a solution to Prob-
lem 2, by proving that for infinitely many n 2

N, there is a (non-directed) hierarchical TAS



Hierarchical Self-Assembly 907

H

Macrotile

Mortar tile

Mortar rectangle

Brick

Simulated aTAM, τ = 4

Hierarchical Self-Assembly, Fig. 1 Simulation of a
seeded tile system T of temperature �4 by a hierarchical
tile system S of temperature 4 (Figure taken from [3]).
Filled arrows represent glues of strength 2, and unfilled

arrows represent glues of strength 1. In the seeded tile
system, the number of dashes on the side of a tile represent
its strength

T D .T; 2/ that strictly self-assembles an n � n0

rectangle S , where n0 D o.n/ (hence diam.S/ D


.n/), such that jT j D O.log n/ and there is a
tile type s 2 T and concentrations function 	 W

T ! Œ0; 1� such that T.T ; 	; s/ D O.n4=5 log n/.
The construction consists of m D n1=5 stages

shown in Fig. 2, where each stage consists of the
attachment of two “horizontal bars” to a single
“vertical bar” as shown in Fig. 3. The vertical
bar of the next stage then attaches to the right
of the two horizontal bars, which cooperate to
allow the binding because they each have a single
strength 1 glue. All vertical bars are identical
when they attach, but attachment triggers the
growth of some tiles (shown in orange in Figs. 2
and 3) that make the attachment sites on the right
side different from their locations in the previous
stage, which is how the stages “count down” from
m to 1.

The bars themselves are assembled in a “stan-
dard” way that requires time linear in the diame-

ter of the bar, which is w D n4=5 for a horizontal
bar and mk2 D n3=5 (where k is a parameter
that we set to be n1=5) for a vertical bar. The
speedup comes from the fact that each horizontal
bar can attach to one of k different binding sites
on a vertical bar, so the expected time for this
to happen is factor k lower than if there were
only a single binding site. The vertical “arm” on
the left of each horizontal bar has the purpose of
preventing any other horizontal bars from binding
near it. Each stage also requires filler tiles to fill
in the gap regions, but the time required for this
is negligible compared to the time for all vertical
and horizontal bars to attach.

Note that this construction is not directed:
although every producible terminal assembly has
the shape of an n � n0 rectangle, there are many
such terminal assemblies. Chen and Doty [4]
also showed that for a class of directed systems
called “partial order tile systems,” no solution to
Problem 2 exists: provably any such tile system
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Hierarchical
Self-Assembly, Fig. 2
High-level overview of
interaction of “vertical
bars” and “horizontal bars”
to create the rectangle in
the solution to Problem 2
that assembles in time
sublinear in its diameter.
Filler tiles fill in the empty
regions. If glues overlap
two regions then represent
a formed bond. If glues
overlap one region but not
another, they are glues
from the former region but
are mismatched (and thus
“covered and protected”)
by the latter region

stage 1

stage 2

stage 3

k identical pairs of glues
spaced O (1) apart;
"group A glues"

horizontal bar type A

width = w

height =
O(mk2)

vertical bar after "post-
binding processing" to
place stage-specific
right-side glues

mk identical glues
spaced O(k ) apart

k identical pairs of glues
(different glues from top)
spaced O(k ) apart; "group
B glues"

horizontal bar type B

vertical bar as it
appears before
binding

previous stage lower
horizontal bar attached
to one of these k glues

partial vertical
bar (will
complete after
binding to two
horizontal bars)

Hierarchical Self-Assembly, Fig. 3 “Vertical bars” for
the construction of a fast-assembling square, and their
interaction with horizontal bars, as shown for a single

stage of Fig. 2. “Type B” horizontal bars have a longer
vertical arm than “Type A” since the glues they must block
are farther apart
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assembling a shape of diameter d requires ex-
pected time ˝.d/.

Open Problems

It is known [2] that the tile complexity of assem-
bling an n � k rectangle in the seeded aTAM, if
k <

log n
log log n�log log log n

, is asymptotically lower

bounded by ˝
�

n1=k

k

�
and upper bounded by

O.n1=k/. For the hierarchical model, the up-
per bound holds as well [2], but the strongest
known lower bound is the information-theoretic
˝
�

log n
log log n

�
:

Question 1 What is the tile complexity of assem-
bling an n�k rectangle in the hierarchical model,
when k <

log n
log log n�log log log n

?

Cross-References

�Experimental Implementation of Tile Assembly
� Patterned Self-Assembly Tile Set Synthesis
�Robustness in Self-Assembly
� Self-Assembly at Temperature 1
� Self-Assembly of Fractals
� Self-Assembly with General Shaped Tiles
� Staged Assembly
�Temperature Programming in Self-Assembly

Recommended Reading

1. Adleman LM, Cheng Q, Goel A, Huang M-D (2001)
Running time and program size for self-assembled
squares. In: STOC 2001: proceedings of the thirty-
third annual ACM symposium on theory of comput-
ing, Hersonissos. ACM, pp 740–748

2. Aggarwal G, Cheng Q, Goldwasser MH, Kao M-Y,
Moisset de Espanés P, Schweller RT (2005) Com-
plexities for generalized models of self-assembly.
SIAM J Comput 34:1493–1515. Preliminary version
appeared in SODA 2004

3. Cannon S, Demaine ED, Demaine ML, Eisenstat S,
Patitz MJ, Schweller RT, Summers SM, Winslow
A (2013) Two hands are better than one (up to
constant factors). In: STACS 2013: proceedings of
the thirtieth international symposium on theoretical
aspects of computer science, Kiel, pp 172–184

4. Chen H-L, Doty D (2012) Parallelism and time in
hierarchical self-assembly. In: SODA 2012: proceed-

ings of the 23rd annual ACM-SIAM symposium on
discrete algorithms, Kyoto, pp 1163–1182

5. Demaine ED, Patitz MJ, Rogers T, Schweller RT,
Summers SM, Woods D (2013) The two-handed tile
assembly model is not intrinsically universal. In:
ICALP 2013: proceedings of the 40th international
colloquium on automata, languages and program-
ming, Riga, July 2013

6. Doty D, Patitz MJ, Reishus D, Schweller RT, Sum-
mers SM (2010) Strong fault-tolerance for self-
assembly with fuzzy temperature. In: FOCS 2010:
proceedings of the 51st annual IEEE symposium on
foundations of computer science, Las Vegas, pp 417–
426

7. Epstein IR, Pojman JA (1998) An introduction
to nonlinear chemical dynamics: oscillations, waves,
patterns, and chaos. Oxford University Press, Oxford

8. Luhrs C (2010) Polyomino-safe DNA self-assembly
via block replacement. Nat Comput 9(1):97–109.
Preliminary version appeared in DNA 2008

9. Winfree E (1998) Algorithmic self-assembly of
DNA. PhD thesis, California Institute of Technology,
June 1998

10. Winfree E (2006) Self-healing tile sets. In: Chen
J, Jonoska N, Rozenberg G (eds) Nanotechnology:
science and computation. Natural computing series.
Springer, Berlin/New York, pp 55–78

Hierarchical Space Decompositions
for Low-Density Scenes

Mark de Berg
Department of Mathematics and Computer
Science, TU Eindhoven, Eindhoven,
The Netherlands

Keywords

Binary space partitions; Compressed quadtrees;
Computational geometry; Hierarchical space
decompositions; Realistic input models

Years and Authors of Summarized
Original Work

2000; De Berg
2010; De Berg, Haverkort, Thite, Toma



910 Hierarchical Space Decompositions for Low-Density Scenes

Problem Definition

Many algorithmic problems on spatial data can
be solved efficiently if a suitable decomposition
of the ambient space is available. Two desirable
properties of the decomposition are that its cells
have a nice shape – convex and/or of constant
complexity – and that each cell intersects only a
few objects from the given data set. Another de-
sirable property is that the decomposition is hier-
archical, meaning that the space is partitioned in a
recursive manner. Popular hierarchical space de-
compositions include quadtrees and binary space
partitions.

When the objects in the given data set are
nonpoint objects, they can be fragmented by
the partitioning process. This fragmentation has
a negative impact on the storage requirements
of the decomposition and on the efficiency of
algorithms operating on it. Hence, it is desirable
to minimize fragmentation. In this chapter, we
describe methods to construct linear-size com-
pressed quadtrees and binary space partitions
for so-called low-density sets. To simplify the
presentation, we describe the constructions in the
plane. We use S to denote the set of n objects
for which we want to construct a space decompo-
sition and assume for simplicity that the objects
in S are disjoint, convex, and of nonzero area.

Binary Space Partitions
A binary space partition for a set S of n objects
in the plane is a recursive decomposition of the
plane by lines, typically such that each cell in
the final decomposition intersects only a few
objects from S . The tree structure modeling this
decomposition is called a binary space partition
tree, or BSP tree for short – see Fig. 1 for an
illustration. Thus, a BSP tree T for S can be
defined as follows.

• If a predefined stopping criterion is met –
often this is when jS j is sufficiently small –
then T consists of a single leaf where the set
S is stored.

• Otherwise the root node v of T stores a
suitably chosen splitting line `. Let `� and
`C denote the half-planes lying to the left

and to the right of `, respectively (or, if ` is
horizontal, below and above `).
– The left subtree of v is a BSP tree for

S� WD fo \ `� W o 2 Sg, the set of object
fragments lying in the half-plane `�.

– The right subtree of v is a BSP tree for
SC WD fo \ `C W o 2 Sg, the set of object
fragments lying in the half-plane `C.

The size of a BSP tree is the total number of object
fragments stored in the tree.

Compressed Quadtrees
Let U D Œ0; 1�2 be the unit square. We say that
a square � 
 U is a canonical square if there
is an integer k > 0 such that � is a cell of the
regular subdivision of U into 2k � 2k squares.
A donut is the set-theoretic difference �out n �in

of a canonical square �out and a canonical square
�in � �out. A compressed quadtree T for a set P

of points inside a canonical square � defined as
follows; see also Fig. 2 (middle).

• If a predefined stopping criterion is met –
usually this is when jP j is sufficiently small
– then T consists of a single leaf storing the
set P .

• If the stopping criterion is not met, then T is
defined as follows. Let �NE denote the north-
east quadrant of � and let PNE WD P \ �NE.
Define �SE, �SW, �NW and PSE, PSW, PNW sim-
ilarly for the other three quadrants. (Here we
should make sure that points on the boundary
between quadrants are assigned to quadrants
in a consistent manner.) Now T consists of
a root node v with four or two children,
depending on how many of the sets PNE, PSE,
PSW, PNW are nonempty:
– If at least two of the sets PNE, PSE, PSW,

PNW are nonempty, then v has four children
vNE, vSE, vSW, vNW. The child vNE is the
root of a compressed quadtree for the set
PNE inside the square �NW; the other three
children are defined similarly for the point
sets inside the other quadrants.

– If only one of PNE, PSE, PSW, PNW is
nonempty, then v has two children vin

and vout. The child vin is the root of a
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Hierarchical Space Decompositions for Low-Density Scenes, Fig. 1 A binary space partition for a set of polygons
(left) and the corresponding BSP tree (right)

Hierarchical Space Decompositions for Low-Density
Scenes, Fig. 2 Construction of a compressed quadtree
for a set of disks: take the bounding-box vertices (left),

construct a compressed quadtree for the vertices (middle),
and put the disks back in (right)

compressed quadtree for P inside �in,
where �in is the smallest canonical square
containing all points from P . The other
child is a leaf corresponding to the donut
� n �in.

A compressed quadtree for a set of n points has
size O.n/.

Above we defined compressed quadtrees for
point sets. In this chapter, we are interested
in compressed quadtrees for nonpoint objects.
These are defined similarly: each internal node
corresponds to a canonical square, and each leaf
is a canonical square or a donut. This time donuts
need not be empty, but may intersect objects
(although not too many). The right picture in
Fig. 2 shows a compressed quadtree for a set of

disks. The size of a compressed quadtree for a set
of nonpoint objects is defined as the total number
of object fragments stored in the tree. Because
nonpoint objects may be split into fragments
during the subdivision process, a compressed
quadtree for nonpoint objects is not guaranteed
to have linear size.

Low-Density Scenes
The main question we are interested in is the
following: given a set S of n objects, can we
construct a compressed quadtree or BSP tree
with O.n/ leaves such that each leaf region
intersects O.1/ objects? In general, the answer to
this question is no. For compressed quadtrees,
this can be seen by considering a set S of
slanted parallel segments that are very close
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together. A linear-size BSP tree cannot be
guaranteed either: there are sets of n disjoint
segments in the plane for which any BSP tree has
size ˝.n log n= log log n/ [7]. In R

3 the situation
is even worse: there are sets of n disjoint triangles
for which any BSP tree has size ˝.n2/ [5].
(Both bounds are tight: there are algorithms that
guarantee a BSP tree of size O.n log n= log log n/

in the plane [8] and of size O.n2/ in R
3 [6].)

Fortunately, in practice, the objects for which we
want to construct a space decomposition are often
distributed nicely, which allows us to construct
much smaller decompositions than for the worst-
case examples mentioned above. To formalize
this, we define the concept of density of a set of
objects in R

d .

Definition 1 The density of a set S of objects in
R

d , denoted density.S/, is defined as the smallest
number � such that the following holds: any ball
b � R

d intersects at most � objects o 2 S such
that diam.o/ > diam.b/, where diam.	/ denotes
the diameter of an object.

As illustrated in Fig. 3(i), a set of n parallel
segments can have density n if the segments are
very close together. In most practical situations,
however, the input objects are distributed nicely
and the density will be small. For many classes
of objects, one can even prove that the density
is O.1/. For example, a set of disjoint disks in
the plane has density at most 5. More generally,
any set of disjoint objects that are fat – exam-
ples of fat objects are disks, squares, triangles
whose minimum angle is lower bounded – has
density O.1/ [3]. The main question now is: Is

low density sufficient to guarantee a hierarchical
space decomposition of linear size? The answer
is yes, and constructing the space decomposition
is surprisingly easy.

Key Results

The construction of space decompositions for
low-density sets is based on the following lemma.
In the lemma, the square � is considered to be
open, that is, � does not include its boundary. Let
bb.o/ denote the axis-aligned bounding box of an
object o.

Lemma 1 Let S be a set of n objects in the plane
and let BS denote the set of 4n vertices of the
bounding boxes bb.o/ of the objects o 2 S . Let
� be any square region in the plane. Then the
number of objects in S intersecting � is at most
k C 4�, where k is the number of bounding-box
vertices inside � and � WD density.S/.

With Lemma 1 in hand, it is surprisingly simple
to construct BSP trees or compressed quadtrees
of small size for any given set S whose density is
small.

Binary Space Partitions
For BSP trees we proceed as follows. Let BS be
the set of vertices of the bounding boxes of the
objects in S . In a generic step in the recursive
construction of T , we are given a square � and
the set of points BS .�/ WD BS \ � . Initially �

is a square containing all points of BS . When
BS D ;, then T consists of a single leaf and the

(i) (ii)

b

b

Hierarchical Space Decompositions for Low-Density
Scenes, Fig. 3 (i) The ball b intersects all n segments
and the segments have diameter larger than diam.b/, so
the density of the set of segments is n. (ii) Any ball b, no

matter where it is placed or what its size is, intersects at
most three triangles with diameter at least diam.b/, so the
density of the set of triangles is 3
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Hierarchical Space Decompositions for Low-Density Scenes, Fig. 4 Two cases in the construction of the BSP tree

recursion ends; otherwise we proceed as follows.
Let �NE, �SE, �SW, and �NW denote the four quad-
rants of � . We now have two cases, illustrated in
Fig. 4.

Case (i): all points in BS .�/ lie in the same
quadrant. Let � 0 be the smallest square shar-
ing a corner with � and containing all points
from BS .�/ in its interior or on its boundary.
Split � into three regions using a vertical
and a horizontal splitting line such that � 0 is
one of those regions; see Fig. 4(i). Recursively
construct a BSP tree for the square � 0 with
respect to the set BS .� 0/ of points lying in the
interior of � 0.

Case (ii): not all points in BS .�/ lie in the same
quadrant. Split � into four quadrants using a
vertical and two horizontal splitting lines; see
Fig. 4(ii). Recursively construct a BSP tree for
each quadrant with respect to the points lying
in its interior.

The construction produces a subdivision of the
initial square into O.n/ leaf regions, which are
squares or rectangles and which do not contain
points from BS in their interior. Using Lemma 1,
one can argue that each leaf region intersects
O.�/ objects.

Compressed Quadtrees
The construction of a compressed quadtree for
a low-density set S is also based on the set
BS of bounding-box vertices: we construct a
compressed quadtree for BS , where we stop the
recursive construction when a square contains
bounding-box vertices from at most one object in
S or when all bounding-box vertices inside the

square coincide. Figure 2 illustrates the process.
The resulting compressed quadtree has O.n/ leaf
regions, which are canonical squares or donuts.
Again using Lemma 1, one can argue that each
leaf region intersects O.�/ objects.

Improvements and Generalizations
The constructions above guarantee that each re-
gion in the space decomposition is intersected
by O.�/ objects and that the number of regions
is O.n/. Hence, the total number of the object
fragments is O.�n/. The main idea behind the
introduction of the density � is that in prac-
tice � is often a small constant. Nevertheless,
it is (at least from a theoretical point of view)
desirable to get rid of the dependency on �

in the number of fragments. This is possible
by reducing the number of regions in the de-
composition to .n=�/. To this end, we allow
leaf regions to contain up to O.�/ bounding-
box vertices. Note that Lemma 1 implies that a
square with O.�/ bounding-box vertices inside
intersects O.�/ objects. If implemented correctly,
this idea leads to decompositions with O.n=�/

regions each of which intersects O.�/ objects,
both for binary space partitions [2, Section 12.5]
and for compressed quadtrees [4]. The results can
also be generalized to higher dimensions, giving
the following theorem.

Theorem 1 Let S be a set of n objects in R
d

and let � WD density.S/. There is a binary space
partition for S consisting of O.n=�/ leaf regions,
each intersecting O.�/ objects. Similarly, there is
a compressed quadtree with O.n=�/ leaf regions,
each intersecting O.�/ objects.
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Problem Definition

Algorithm engineering refers to the process
required to transform a pencil-and-paper
algorithm into a robust, efficient, well tested,
and easily usable implementation. Thus it
encompasses a number of topics, from modeling
cache behavior to the principles of good
software engineering; its main focus, however,
is experimentation. In that sense, it may be
viewed as a recent outgrowth of Experimental
Algorithmics [14], which is specifically devoted
to the development of methods, tools, and
practices for assessing and refining algorithms
through experimentation. The ACM Journal of
Experimental Algorithmics (JEA), at URL www.
jea.acm.org, is devoted to this area.

High-performance algorithm engineering [2]
focuses on one of the many facets of algorithm
engineering: speed. The high-performance aspect
does not immediately imply parallelism; in fact,
in any highly parallel task, most of the impact of
high-performance algorithm engineering tends to
come from refining the serial part of the code.

The term algorithm engineering was first used
with specificity in 1997, with the organization
of the first Workshop on Algorithm Engineering
(WAE 97). Since then, this workshop has taken
place every summer in Europe. The 1998 Work-
shop on Algorithms and Experiments (ALEX98)
was held in Italy and provided a discussion forum
for researchers and practitioners interested in the
design, analyzes and experimental testing of ex-
act and heuristic algorithms. A sibling workshop
was started in the Unites States in 1999, the Work-
shop on Algorithm Engineering and Experiments
(ALENEX99), which has taken place every win-
ter, colocated with the ACM/SIAM Symposium on
Discrete Algorithms (SODA).

Key Results

Parallel computing has two closely related main
uses. First, with more memory and storage
resources than available on a single workstation,
a parallel computer can solve correspondingly
larger instances of the same problems. This



High Performance Algorithm Engineering for Large-Scale Problems 915

H

increase in size can translate into running higher-
fidelity simulations, handling higher volumes
of information in data-intensive applications,
and answering larger numbers of queries and
datamining requests in corporate databases.
Secondly, with more processors and larger
aggregate memory subsystems than available
on a single workstation, a parallel computer
can often solve problems faster. This increase
in speed can also translate into all of the
advantages listed above, but perhaps its crucial
advantage is in turnaround time. When the
computation is part of a real-time system, such
as weather forecasting, financial investment
decision-making, or tracking and guidance
systems, turnaround time is obviously the critical
issue. A less obvious benefit of shortened
turnaround time is higher-quality work: when
a computational experiment takes less than an
hour, the researcher can afford the luxury of
exploration – running several different scenarios
in order to gain a better understanding of the
phenomena being studied.

In algorithm engineering, the aim is to present
repeatable results through experiments that apply
to a broader class of computers than the specific
make of computer system used during the experi-
ment. For sequential computing, empirical results
are often fairly machine-independent. While ma-
chine characteristics such as word size, cache and
main memory sizes, and processor and bus speeds
differ, comparisons across different uniprocessor
machines show the same trends. In particular,
the number of memory accesses and proces-
sor operations remains fairly constant (or within
a small constant factor). In high-performance al-
gorithm engineering with parallel computers, on
the other hand, this portability is usually absent:
each machine and environment is its own special
case. One obvious reason is major differences
in hardware that affect the balance of commu-
nication and computation costs – a true shared-
memory machine exhibits very different behav-
ior from that of a cluster based on commodity
networks.

Another reason is that the communication
libraries and parallel programming environments
(e.g., MPI [12], OpenMP [16], and High-

Performance Fortran [10]), as well as the
parallel algorithm packages (e.g., fast Fourier
transforms using FFTW [6] or parallelized
linear algebra routines in ScaLAPACK [4]),
often exhibit differing performance on different
types of parallel platforms. When multiple
library packages exist for the same task, a user
may observe different running times for each
library version even on the same platform.
Thus a running-time analysis should clearly
separate the time spent in the user code from
that spent in various library calls. Indeed, if
particular library calls contribute significantly
to the running time, the number of such calls
and running time for each call should be
recorded and used in the analysis, thereby
helping library developers focus on the most cost-
effective improvements. For example, in a simple
message-passing program, one can characterize
the work done by keeping track of sequential
work, communication volume, and number
of communications. A more general program
using the collective communication routines of
MPI could also count the number of calls to
these routines. Several packages are available to
instrument MPI codes in order to capture such
data (e.g., MPICH’s nupshot [8], Pablo [17],
and Vampir [15]). The SKaMPI benchmark [18]
allows running-time predictions based on such
measurements even if the target machine is not
available for program development. SKaMPI was
designed for robustness, accuracy, portability,
and efficiency; For example, SKaMPI adaptively
controls how often measurements are repeated,
adaptively refines message-length and step-width
at “interesting” points, recovers from crashes,
and automatically generates reports.

Applications

The following are several examples of algorithm
engineering studies for high-performance and
parallelcomputing.

1. Bader’s prior publications (see [2] and http://
www.cc.gatech.edu/~bader) contain many
empirical studies of parallel algorithms for
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combinatorial problems like sorting, selection,
graph algorithms, and image processing.

2. In a recent demonstration of the power of
high-performance algorithm engineering,
a million-fold speed-up was achieved through
a combination of a 2,000-fold speedup
in the serial execution of the code and
a 512-fold speedup due to parallelism
(a speed-up, however, that will scale to any
number of processors) [13]. (In a further
demonstration of algorithm engineering,
additional refinements in the search and
bounding strategies have added another
speedup to the serial part of about 1,000,
for an overall speedup in excess of 2 billion)

3. JáJá and Helman conducted empirical studies
for prefix computations, sorting, and list-
ranking, on symmetric multiprocessors. The
sorting research (see [9]) extends Vitter’s
external Parallel Disk Model to the internal
memory hierarchy of SMPs and uses this new
computational model to analyze a general-
purpose sample sort that operates efficiently in
shared-memory. The performance evaluation
uses nine well-defined benchmarks. The
benchmarks include input distributions
commonly used for sorting benchmarks (such
as keys selected uniformly and at random),
but also benchmarks designed to challenge the
implementation through load imbalance and
memory contention and to circumvent algo-
rithmic design choices based on specific input
properties (such as data distribution, presence
of duplicate keys, pre-sorted inputs, etc.).

4. In [3] Blelloch et al. compare through analysis
and implementation three sorting algorithms
on the Thinking Machines CM-2. Despite the
use of an outdated (and no longer available)
platform, this paper is a gem and should be
required reading for every parallel algorithm
designer. In one of the first studies of its kind,
the authors estimate running times of four
of the machine’s primitives, then analyze the
steps of the three sorting algorithms in terms
of these parameters. The experimental studies
of the performance are normalized to provide
clear comparison of how the algorithms
scale with input size on a 32K-processor
CM-2.

5. Vitter et al. provide the canonical theoretic
foundation for I/O-intensive experimental
algorithmics using external parallel disks (e.g.,
see [1, 19, 20]). Examples from sorting, FFT,
permuting, and matrix transposition problems
are used to demonstrate the parallel disk
model.

6. Juurlink and Wijshoff [11] perform one of
the first detailed experimental accounts on the
preciseness of several parallel computation
models on five parallel platforms. The authors
discuss the predictive capabilities of the
models, compare the models to find out which
allows for the design of the most efficient
parallel algorithms, and experimentally
compare the performance of algorithms
designed with the model versus those designed
with machine-specific characteristics in mind.
The authors derive model parameters for each
platform, analyses for a variety of algorithms
(matrix multiplication, bitonic sort, sample
sort, all-pairs shortest path), and detailed
performance comparisons.

7. The LogP model of Culler et al. [5] provides
a realistic model for designing parallel
algorithms for message-passing platforms. Its
use is demonstrated for a number of problems,
including sorting.

8. Several research groups have performed
extensive algorithm engineering for high-
performance numerical computing. One of the
most prominent efforts is that led by Dongarra
for ScaLAPACK [4], a scalable linear algebra
library for parallel computers. ScaLAPACK
encapsulates much of the high-performance
algorithm engineering with significant impact
to its users who require efficient parallel
versions of matrix–matrix linear algebra
routines. New approaches for automatically
tuning the sequential library (e.g., LAPACK)
are now available as the ATLAS package [21].

Open Problems

All of the tools and techniques developed over
the last several years for algorithm engineer-
ing are applicable to high-performance algorithm
engineering. However, many of these tools need
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further refinement. For example, cache-efficient
programming is a key to performance but it is not
yet well understood, mainly because of complex
machine-dependent issues like limited associativ-
ity, virtual address translation, and increasingly
deep hierarchies of high-performance machines.
A key question is whether one can find simple
models as a basis for algorithm development.
For example, cache-oblivious algorithms [7] are
efficient at all levels of the memory hierarchy in
theory, but so far only few work well in practice.
As another example, profiling a running program
offers serious challenges in a serial environment
(any profiling tool affects the behavior of what
is being observed), but these challenges pale
in comparison with those arising in a parallel
or distributed environment (for instance, mea-
suring communication bottlenecks may require
hardware assistance from the network switches
or at least reprogramming them, which is sure
to affect their behavior). Designing efficient and
portable algorithms for commodity multicore and
manycore processors is an open challenge.
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Problem Definition

The framework of Holant problems is intended
to capture a class of sum-of-product computa-
tions in a more refined way than counting CSP

problems and is inspired by Valiant’s holographic
algorithms [12] (also cf. entry �Holographic Al-
gorithms). A constraint function f , or signature,
is a mapping from Œ��n to C, representing a local
contribution to a global sum. Here, Œ�� is a finite
domain set, and n is the arity of f . The range
is usually taken to be C, but it can be replaced
by any commutative semiring. A Holant problem
Holant.F/ is parameterized by a set of constraint
functions F . We usually focus on the Boolean
domain, namely, � D 2. For consideration of
models of computation, we restrict function val-
ues to be complex algebraic numbers.

We allow multigraphs, namely, graphs with
self-loops and parallel edges. A signature grid
˝ D .G; �/ of Holant.F/ consists of a graph
G D .V; E/, where � assigns each vertex v 2

V and its incident edges with some fv 2 F
and its input variables. We say ˝ is a planar
signature grid if G is planar. The Holant problem
on instance ˝ is to evaluate

Holant.˝IF/ D
X

�

Y

v2V

fv.� jE.v//;

a sum over all edge labelings � W E ! Œ��, where
E.v/ denotes the incident edges of v and � jE.v/

denotes the restriction of � to E.v/. This is also
known as the partition function in the statistical
physics literature.

Formally, a set of signatures F defines the
following Holant problem:

Name Holant.F/

Instance A signature grid ˝ D .G; �/

Output Holant.˝IF/

The problem Pl-Holant.F/ is defined similarly
using a planar signature grid.

A function fv can be represented by listing
its values in lexicographical order as in a truth
table, which is a vector in C

�deg.v/
or as a tensor

in .C�/˝ deg.v/. Special focus has been put on
symmetric signatures, which are functions in-
variant under any permutation of the input. An
example is the EQUALITY signature Dn of arity
n. A Boolean symmetric function f of arity n

can be listed as Œf0; f1; : : : ; fn�, where fw is the
function value of f when the input has Hamming
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weight w. Using this notation, an EQUALITY sig-
nature is Œ1; 0; : : : ; 0; 1�. Another example is the
EXACTONE signature Œ0; 1; 0; : : : ; 0�. Clearly, the
Holant problem defined by this signature counts
the number of perfect matchings.

The set F is allowed to be an infinite set. For
Holant.F/ to be tractable, the problem must be
computable in polynomial time even when the
description of the signatures in the input ˝ is
included in the input size. In contrast, we say
Holant.F/ is #P-hard if there exists a finite subset
of F for which the problem is #P-hard.

The Holant framework is a generalization and
refinement of both counting graph homomor-
phisms and counting constraint satisfaction prob-
lems (see entry �Complexity Dichotomies for
Counting Graph Homomorphisms for more de-
tails and results).

Key Results

The Holant problem was introduced by Cai, Lu,
and Xia [3], which also contains a dichotomy of
Holant� for symmetric Boolean complex func-
tions. The notation Holant� means that all unary
functions are assumed to be available. This re-
striction is later weakened to only allow two
constant functions that pin a variable to 0 or 1.
This framework is called Holantc . In [5], a di-
chotomy of Holantc is obtained. The need to
assume some freely available functions is fi-
nally avoided in [10]. In this paper, Huang and
Lu proved a dichotomy for Holant but with the
caveat that the functions must be real weighted.
This result was later improved by Cai, Guo, and
Williams [6], who proved a dichotomy for Holant
parameterized by any set of symmetric Boolean
complex functions.

We will give some necessary definitions and
then state the dichotomy from [6]. First are
several tractable families of functions over the
Boolean domain.

Definition 1 A signature f of arity n is degen-
erate if there exist unary signatures uj 2 C

2

(1 � j � n) such that f D u1 ˝ 	 	 	 ˝ un.

A symmetric degenerate signature has the form
u˝n.

Definition 2 A k-ary function f .x1; : : : ; xk/ is
of affine type if it has the form

�AxD0 	
p

�1

Pn
j D1h˛j ;xi

;

where � 2 C, x D .x1; x2; : : : ; xk ; 1/T, A is a
matrix over F2, ˛j is a vector over F2, and 

is a 0–1 indicator function such that AxD0 is 1
iff Ax D 0. Note that the dot product h˛j ; xi is
calculated over F2, while the summation

Pn
jD1

on the exponent of i D
p

�1 is evaluated as a
sum mod 4 of 0–1 terms. We use A to denote the
set of all affine-type functions.

An alternative but equivalent form for an

affine-type function is �AxD0	
p

�1
Q.x1;x2;:::;xk/

where Q.	/ is a quadratic form with integer
coefficients that are even for every cross
term.

Definition 3 A function is of product type if it
can be expressed as a product of unary functions,
binary equality functions .Œ1; 0; 1�/, and binary
disequality functions .Œ0; 1; 0�/, each applied to
some of its variables. We use P to denote the set
of product-type functions.

Definition 4 A function f is called vanishing if
the value Holant.˝I ff g/ is 0 for every signature
grid ˝. We use V to denote the set of vanishing
functions.

For vanishing signatures, we need some more
definitions.

Definition 5 An arity n symmetric signature of
the form f D Œf0; f1; : : : ; fn� is in RCt for
a nonnegative integer t � 0 if t > n or for
any 0 � k � n � t , fk ; : : : ; fkCt satisfy the
recurrence relation

 
t

t

!

i t fkCt

C

 
t

t � 1

!

i t�1fkCt�1 C 	 	 	 C

 
t

0

!

i0fk D 0:

(1)
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We define R�t similarly but with �i in place of i

in (1).

With R˙t , one can define the recurrence degree of
a function f .

Definition 6 For a nonzero symmetric signature
f of arity n, it is of positive (resp. negative)
recurrence degree t � n, denoted by rdC.f / D t

(resp. rd�.f / D t ), if and only if f 2 RCtC1 �

RCt (resp. f 2 R�tC1 � R�t ). If f is the all-zero
signature, we define rdC.f / D rd�.f / D �1.

In [6], it is shown that f 2 V if and only if for
either � D C or �, we have 2rd� .f / < arity.f /.
Accordingly, we split the set V of vanishing
signatures in two.

Definition 7 We define V � for � 2 fC; �g as

V � D ff j 2rd� .f / < arity.f /g:

To state the dichotomy, we also need the no-
tion of F-transformable. For a matrix T 2 C

2�2,
and a signature set F , define TF D fg j 9f 2

F of arity n; g D T˝nf g. Here, we view
the signatures as column vectors. Let D2 be the
equality function of arity 2.

Definition 8 A signature set F 0 is F-transformable
if there exists a non-singular matrix T 2 C

2�2

such that F 0 
 TF and .D2/T˝2 2 F .

If a set of functions F 0 is F-transformable and F
is a tractable set, then Holant.F 0/ is tractable as
well.

The dichotomy of Holant problems over sym-
metric Boolean complex functions is stated as
follows.

Theorem 1 ([6]) Let F be any set of symmetric,
complex-valued signatures in Boolean variables.
Then, Holant.F/ is #P-hard unless F satisfies
one of the following conditions, in which case the
problem is in P:

1. All nondegenerate signatures in F are of arity
at most 2;

2. F is A-transformable;
3. F is P-transformable;
4. F 
 V � [ ff 2 R�

2 j arity.f / D 2g for
some � 2 fC; �g;

5. All nondegenerate signatures in F are in R �
2

for some � 2 fC; �g.

Theorem 1 is about Holant problems parame-
terized by symmetric Boolean complex functions
over general graphs. Holant problems are studied
in other settings as well. For planar graphs, [2]
contains a dichotomy for Holantc with real sym-
metric functions. There are signature sets that are
#P-hard over general graphs but tractable over
planar graphs. The algorithms for such sets are
due to Valiant’s holographic algorithms and the
theory of matchgates [1, 12].

Another generalization looks at a broader
range of functions. One may consider asymmetric
functions as in [4], which contains a dichotomy
for Holant� problems defined by asymmetric
Boolean complex functions. One can also
consider functions of larger domain size. For
domain size 3, [7] contains a dichotomy for a
single arity 3 symmetric complex function in
the Holant� setting. For any constant domain
size, [8] contains a dichotomy for a single arity 3

complex weighted function that satisfies a strong
symmetry property.

One can consider constraint functions with a
range other than C. Replacing C by some finite
field Fp for some prime p defines counting prob-
lems modulo p. The case p D 2 is called parity
Holant problems. It is of special interest because
computing the permanent modulo 2 is tractable,
which implies a family of tractable matchgate
functions even over general graphs. For parity
Holant problems, a complete dichotomy for sym-
metric functions is obtained by Guo, Lu, and
Valiant [9].

Open Problems

Unlike the progress in the general graph setting,
the strongest known dichotomy results for pla-
nar Holant problems are rather limited. These
planar dichotomies showed that newly tractable
problems over planar graphs are captured by
holographic algorithms with matchgates, but with
restrictions like symmetric functions or regular
graphs. The theory of holographic algorithms
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with matchgates can be applied to planar graphs
and asymmetric signatures. A true test of its
power would be to obtain an asymmetric complex
weighted dichotomy of planar Holant problems.
The situation is similarly limited for higher do-
main sizes, where things seem considerably more
complicated. A reasonable first step in this direc-
tion would be to consider some restricted (yet still
powerful) family of functions.

Despite the success for F2, little is known
about the complexity of Holant problems over
other finite fields or semirings. As Valiant showed
in [11], counting problems modulo some finite
modulus include some interesting and surprising
phenomena. It deserves further research.
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Problem Definition

Holographic algorithm, introduced by L. Valiant
[11], is an algorithm design technique rather than
a single algorithm for a particular problem. In
essence, these algorithms are reductions to the
FKT algorithm [7–9] to count the number of
perfect matchings in a planar graph in polyno-
mial time. Computation in these algorithms is
expressed and interpreted through a choice of lin-
ear basis vectors in an exponential “holographic”
mix, and then it is carried out by the FKT method
via the Holant Theorem. This methodology has
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produced polynomial time algorithms for a va-
riety of problems ranging from restrictive ver-
sions of satisfiability, vertex cover, to other graph
problems such as edge orientation and node/edge
deletion. No polynomial time algorithms were
known for these problems, and some minor varia-
tions are known to be NP-hard (or even #P-hard).

Let G D .V; E; W / be a weighted undirected
planar graph, where V; E, and W are sets of
vertices, edges, and edge weights, respectively.
A matchgate is a tuple .G; X/ where X 
 V

is a set of external nodes on the outer face. A
matchgate is considered a generator or a recog-
nizer matchgate when the external nodes are con-
sidered output or input nodes, respectively. They
differ mainly in the way they are transformed.
The external nodes are ordered clockwise on the
external face. � is called an odd (resp. even)
matchgate if it has an odd (resp. even) number
of nodes.

Each matchgate is assigned a signature tensor.
A generator � with m output nodes is assigned
a contravariant tensor G 2 V m

0 of type
�

m
0

�
,

where V m
0 is the tensor space spanned by the m-

fold tensor products of the standard basis b D

Œb0; b1� D

�	
1

0



;

	
0

1


�
. The tensor G under the

standard basis b has the form

X
Gi1i2:::imbi1 ˝ bi2 ˝ 	 	 	 ˝ bim ;

where

Gi1i2:::im D PerfMatch.G � Z/:

Here Z is the subset of the output nodes of
� having the characteristic sequence Z D

i1i2 : : : im 2 f0; 1gm, PerfMatch.G � Z/ DP
M

Q
.i;j /2M wij is a sum over all perfect

matchings M in the graph G � Z obtained from
G by removing Z and its incident edges, and
wij is the weight of the edge .i; j /. Similarly a
recognizer � 0 with underlying graph G0 having m

input nodes is assigned a covariant tensor R 2 V 0
m

of type
�

0
m

�
. This tensor under the standard (dual)

basis b� has the form

X
Ri1i2:::imbi1 ˝ bi2 ˝ 	 	 	 ˝ bim ;

where

Ri1i2:::im D PerfMatch.G0 � Z/;

and Z is the subset of the input nodes of � 0 hav-
ing the characteristic sequence Z D i1i2 : : : im.

As a contravariant tensor, G transforms as
follows. Under a basis transformation ˇj DP

i bi t
i
j ,

.G0/j1j2:::jm D
X

Gi1i2:::im Qt
j1

i1
Qt
j2

i2
: : : Qt

jm

im
;

where .Qt
j
i / is the inverse matrix of .t i

j /. Similarly,
R transforms as a covariant tensor, namely,

.R0/j1j2:::jm
D
X

Ri1i2:::im t
i1
j1

t
i2
j2

: : : t
im
jm

:

A signature is symmetric if each entry only
depends on the Hamming weight of the index
i1i2 : : : im. This notion is invariant under a basis
transformation. A symmetric signature is denoted
by Œ�0; �1; : : : ; �m�, where �i denotes the value
of a signature entry whose Hamming weight of
its index is i .

A matchgrid ˝ D .A; B; C / is a weighted
planar graph consisting of a disjoint union of: a
set of g generators A D .A1; : : : ; Ag/, a set of
r recognizers B D .B1; : : : ; Br /, and a set of
f connecting edges C D .C1; : : : ; Cf /, where
each Ci edge has weight 1 and joins an output
node of a generator with an input node of a
recognizer, so that every input and output node in
every constituent matchgate has exactly one such
incident connecting edge.

Let G D
Ng

iD1 G.Ai / be the tensor product
of all the generator signatures, and let R DNr

jD1 R.Bj / be the tensor product of all the
recognizer signatures. Then Holant˝ is defined
to be the contraction of the two product tensors,
under some basis ˇ, where the corresponding
indices match up according to the f connecting
edges Ck :
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Holant˝ D hR; Gi D
X

x2ˇ
˝f

˚
Œ˘1�i�gG.Ai ; xjAi

/� 	 Œ˘1�j�r R.Bj ; x�jBj
/�
�

: (1)

If we write the covariant tensor R as a row
vector of dimension 2f , write the contravariant
tensor G as a column vector of dimension 2f ,
both indexed by some common ordering of the
connecting edges, then Holant˝ is just the dot
product of these two vectors. Valiant’s beautiful
Holant Theorem is as follows:

Theorem 1 (Valiant) For any matchgrid ˝ over
any basis ˇ, let G be its underlying weighted
graph, then

Holant˝ D PerfMatch.G/:

The FKT algorithm can compute the perfect
matching polynomial PerfMatch.G/ for a
planar graph in polynomial time. This gives
a polynomial time algorithm to compute
Holant˝ .

Key Results

To design a holographic algorithm for a given
problem, the creative part is to formalize the
given problem as a Holant problem. The theory
of holographic algorithms is trying to answer the
second question: given a Holant problem, can we
find a basis transformation so that all the signa-
tures in the Holant problem can be realized by
some matchgates on that basis? More formally,
we want to solve the following simultaneous
realizability problem (SRP).

Definition 1 Simultaneous Realizability Prob-
lem (SRP):

Input: A set of constraint functions for genera-
tors and recognizers.

Output: A common basis under which these
functions can be simultaneously realized by

matchgate signatures, if any exists; “NO” if
they are not simultaneously realizable.

The theory of matchgates and holographic
algorithms provides a systematic understanding
of which constraint functions can be realized
by matchgates, the structure for the bases,
and finally solve the simultaneous realizability
problem.

Matchgate Identities
There is a set of algebraic identities [1, 6] which
completely characterizes signatures directly re-
alizable without basis transformation by match-
gates for any number of inputs and outputs. These
identities are derived from Grassmann-Plücker
identities for Pfaffians.

Patterns ˛; ˇ are m-bit strings, i.e., ˛; ˇ 2

f0; 1gm. A position vector P D fpi g; i 2 Œl � is
a subsequence of f1; 2; : : : ; mg, i.e., pi 2 Œm�

and p1 < p2 < 	 	 	 < pl . We also use p to
denote the m-bit string, whose .p1; p2; : : : ; pl /-
th bits are 1 and others are 0. Let ei 2 f0; 1gm be
the pattern with 1 in the i -th bit and 0 elsewhere.
Let ˛; ˇ 2 f0; 1gm be any pattern, and let P D

fpi g D ˛ C ˇ, i 2 Œl � be their bit-wise XOR
as a position vector. Then, we have the following
identity:

lX

iD1

.�1/i G˛Cepi GˇCepi D 0: (2)

A tensor G D .Gi1;:::;im/ is realizable as the
signature, without basis transformation, of some
planar matchgate iff it satisfies the matchgate
identities (2) for all ˛ and ˇ.

Basis Collapse
When we consider basis transformations for
holographic algorithms, we mainly focus on
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invertible transformations, and these are bases
of dimension 2. However, in a paper called
“accidental algorithm” [10], Valiant showed
that a basis of dimension 4 can be used to
solve in P an interesting (restrictive SAT)
counting problem mod 7. In a later paper [4],
we have shown, among other things, that for
this particular problem, this use of bases of size
2 is unnecessary. Then, in a sequence of two
papers [2, 3], we completely resolve the problem
of the power of higher dimensional bases. We
prove that 2-dimensional bases are universal
for holographic algorithms in the Boolean
domain.

Theorem 2 (Basis Collapse Theorem) Any
holographic algorithm on a basis of any
dimension which employs at least one nondegen-
erate generator can be efficiently transformed
to a holographic algorithm in a basis of
dimension 2. More precisely, if generators
G1; G2; : : : ; Gs and recognizers R1; R2; : : : ; Rt

are simultaneously realizable on a basis T of any
dimension, and not all generators are degenerate,
then all the generators and recognizers are
simultaneously realizable in a basis OT of
dimension 2.

From Art to Science
Based on the characterization for matchgate sig-
natures and basis transformations, we can solve
the simultaneous realizability problem [5]. In
order to investigate the realizability of signatures,
it is useful to introduce a basis manifold M,
which is defined to be the set of all possible
bases modulo an equivalence relation. One can

characterize in terms of M all realizable symmet-
ric signatures under basis transformations. This
structural understanding gives: (i) a uniform ac-
count of all the previous successes of holographic
algorithms using symmetric signatures [10, 11];
(ii) generalizations to solve other problems, when
this is possible; and (iii) a proof when this is not
possible.

Applications

In this section, we list a few problems which can
be solved by holographic algorithms.
#PL-3-NAE-ICE

INPUT: A planar graph G D .V; E/ of maximum
degree 3.

OUTPUT: The number of orientations such that
no node has all incident edges directed toward
it or all incident edges directed away from it.

Hence, #PL-3-NAE-ICE counts the number of
no-sink-no-source orientations. A node of degree
one will preclude such an orientation. We assume
every node has degree 2 or 3. To solve this prob-
lem by a holographic algorithm with matchgates,
we design a signature grid based on G as follows:
We attach to each node of degree 3 a generator
with signature Œ0; 1; 1; 0�. This represents a NOT-
ALL-EQUAL or NAE gate of arity 3. For any
node of degree 2, we use a generator with the bi-
nary NAE (i.e., a binary DISEQUALITY) signature
.6D2/ D Œ0; 1; 0�. For each edge in E, we use
a recognizer with signature .6D2/, which stands
for an orientation from one node to the other. (To
express such a problem, it is completely arbitrary

Holographic Algorithms,
Fig. 1 Some matchgates
used in #PL-3-NAE-ICE
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to label one side as generators and the other side
as recognizers.) From the given planar graph G,
we obtain a signature grid ˝, where the underly-
ing graph G0 is the edge-vertex incidence graph
of G. By definition, Holant˝ is an exponential
sum where each term is a product of appropriate
entries of the signatures. Each term is indexed
by a 0–1 assignment on all edges of G0; it has
a value of 0 or 1, and it has a value of 1 iff
it corresponds to an orientation of G such that
at every vertex of G the local NAE constraint

is satisfied. Therefore, Holant˝ is precisely the
number of valid orientations required by #PL-3-
NAE-ICE.

Note that the signature Œ0; 1; 1; 0� is not the
signature of any matchgate. A simple reason for
this is that a matchgate signature, being defined in
terms of perfect matchings, cannot have nonzero
values for inputs of both odd and even Hamming
weights.

However, under a holographic transformation

using H D
h

1 1
1 �1

i
,

H˝3Œ0; 1; 1; 0� D H˝3

h
1
1

i˝3

�
h

1
0

i˝3

�
h

0
1

i˝3
�

D Œ6; 0; �2; 0�;

H˝2Œ0; 1; 0� D H˝2

h
1
1

i˝2

�
h

1
0

i˝2

�
h

0
1

i˝2
�

D Œ2; 0; �2�;

and

Œ0; 1; 0�.H�1/˝2 D
1

2
Œ1; 0; �1�:

These signatures are all realizable as matchgate
signatures by verifying all the matchgate identi-
ties. More concretely, we can exhibit the requisite
three matchgates in Fig. 1.

Hence, #PL-3-NAE-ICE is precisely the fol-
lowing Holant problem on planar graphs:

Holant.Œ0; 1; 0� j Œ0; 1; 0�; Œ0; 1; 1; 0�/

�T Holant. 1
2
Œ1; 0; �1� j Œ2; 0; �2�; Œ6; 0; �2; 0�/:

Now we may replace each signature 1
2
Œ1; 0; �1�,

Œ2; 0; �2�, and Œ6; 0; �2; 0� in ˝ by their corre-
sponding matchgates, and then we can compute
Holant˝ in polynomial time by Kasteleyn’s algo-
rithm.

The next problem is a satisfiability problem.
#PL-3-NAE-SAT

INPUT: A planar formula ˚ consisting of a con-
junction of NAE clauses each of size 3.

OUTPUT: The number of satisfying assignments
of ˚ .

This is a variant of 3SAT. A Boolean for-
mula is planar if it can be represented by a
planar graph where vertices represent variables
and clauses, and there is an edge iff the vari-
able or its negation appears in that clause. The
SAT problem is when the gate for each clause
is the Boolean OR. When SAT is restricted to
planar formulae, it is still NP-complete, and its
corresponding counting problem is #P-complete.
Moreover, for many connectives other than NAE

(e.g., EXACTLY ONE), the unrestricted or the
planar decision problems are still NP-complete,
and the corresponding counting problems are #P-
complete.

We design a signature grid as follows: To each
NAE clause, we assign a generator with signature
Œ0; 1; 1; 0�. To each Boolean variable, we assign
a generator with signature .Dk/ where k is the
number of clauses the variable appears, either
negated or unnegated. Further, if a variable oc-
currence is negated, we have a recognizer Œ0; 1; 0�

along the edge that joins the variable generator
and the NAE generator, and if the variable oc-
currence is unnegated, then we use a recognizer
Œ1; 0; 1� instead. Under a holographic transforma-
tion using H , .Dk/ is transformed to
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H˝k

h
1
0

i˝k

C
h

0
1

i˝k
�

D
h

1
1

i˝k

C
h

1
�1

i˝k

D 2Œ1; 0; 1; 0; : : :�:

It can be verified that all the signatures used
satisfy all matchgate identities and thus can be
realized by matchgates under the holographic
transformation.

Recommended Reading

1. Cai JY, Gorenstein A (2014) Matchgates revisited.
Theory Comput 10(7):167–197

2. Cai JY, Lu P (2008) Basis collapse in holographic
algorithms. Comput Complex 17(2):254–281

3. Cai JY, Lu P (2009) Holographic algorithms: the
power of dimensionality resolved. Theor Comput Sci
Comput Sci 410(18):1618–1628

4. Cai JY, Lu P (2010) On symmetric signatures in holo-
graphic algorithms. Theory Comput Syst 46(3):398–
415

5. Cai JY, Lu P (2011) Holographic algorithms: from art
to science. J Comput Syst Sci 77(1):41–61

6. Cai JY, Choudhary V, Lu P (2009) On the theory
of matchgate computations. Theory Comput Syst
45(1):108–132

7. Kasteleyn PW (1961) The statistics of dimers on a
lattice. Physica 27:1209–1225

8. Kasteleyn PW (1967) Graph theory and crystal
physics. In: Harary F (ed) Graph theory and theoreti-
cal physics. Academic, London, pp 43–110

9. Temperley HNV, Fisher ME (1961) Dimer problem
in statistical mechanics – an exact result. Philos Mag
6:1061–1063

10. Valiant LG (2006) Accidental algorthims. In: FOCS
’06: proceedings of the 47th annual IEEE symposium
on foundations of computer science. IEEE Computer
Society, Washington, pp 509–517. doi:http://dx.doi.
org/10.1109/FOCS.2006.7

11. Valiant LG (2008) Holographic algorithms. SIAM
J Comput 37(5):1565–1594. doi:http://dx.doi.org/10.
1137/070682575

Hospitals/Residents Problem

David F. Manlove
School of Computing Science, University of
Glasgow, Glasgow, UK

Keywords

Matching; Stability

Synonyms

College admissions problem; Stable admissions
problem; Stable assignment problem; Stable b-
matching problem; University admissions prob-
lem

Years and Authors of Summarized
Original Work

1962; Gale, Shapley

Problem Definition

An instance I of the Hospitals/Residents problem
(HR) [6, 7, 18] involves a set R D fr1; : : : ; rng

of residents and a set H D fh1; : : : ; hmg of
hospitals. Each hospital hj 2 H has a posi-
tive integral capacity, denoted by cj . Also, each
resident ri 2 R has a preference list in which
he ranks in strict order a subset of H . A pair
.ri ; hj / 2 R � H is said to be acceptable if
hj appears in ri ’s preference list; in this case
ri is said to find hj acceptable. Similarly each
hospital hj 2 H has a preference list in which
it ranks in strict order those residents who find
hj acceptable. Given any three agents x; y; ´ 2

R [ H , x is said to prefer y to ´ if x finds each
of y and ´ acceptable, and y precedes ´ on x’s
preference list. Let C D

P
hj2H cj .

Let A denote the set of acceptable pairs in I ,
and let L D jAj. An assignment M is a subset
of A. If .ri ; hj / 2 M , ri is said to be assigned
to hj , and hj is assigned ri . For each q 2 R [

H , the set of assignees of q in M is denoted by
M.q/. If ri 2 R and M.ri / D ;, ri is said to be
unassigned; otherwise ri is assigned. Similarly,
any hospital hj 2 H is under-subscribed, full,
or over-subscribed according as jM.hj /j is less
than, equal to, or greater than cj , respectively.

A matching M is an assignment such that
jM.ri /j � 1 for each ri 2 R and jM.hj /j � cj

for each hj 2 H (i.e., no resident is assigned
to an unacceptable hospital, each resident is as-
signed to at most one hospital, and no hospital
is over-subscribed). For notational convenience,
given a matching M and a resident ri 2 R such
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that M.ri / ¤ ;, where there is no ambiguity, the
notation M.ri / is also used to refer to the single
member of M.ri /.

A pair .ri ; hj / 2 AnM blocks a matching
M or is a blocking pair for M , if the following
conditions are satisfied relative to M :

1. ri is unassigned or prefers hj to M.ri /;
2. hj is under-subscribed or prefers ri to at least

one member of M.hj / (or both).

A matching M is said to be stable if it admits
no blocking pair. Given an instance I of HR, the
problem is to find a stable matching in I .

Key Results

HR was first defined by Gale and Shapley [6]
under the name “College Admissions Problem.”
In their seminal paper, the authors’ primary
consideration is the classical Stable Marriage
problem (SM; see Entries � Stable Marriage and
�Optimal Stable Marriage), which is a special
case of HR in which n D m, A D R � H ,
and cj D 1 for all hj 2 H – in this case,
the residents and hospitals are more commonly
referred to as the men and women, respectively.
Gale and Shapley showed that every instance
I of HR admits at least one stable matching.
Their proof of this result is constructive, i.e., an
algorithm for finding a stable matching in I is
described. This algorithm has become known as
the Gale/Shapley algorithm.

An extended version of the Gale/Shapley
algorithm for HR is shown in Fig. 1. The
algorithm involves a sequence of apply and delete
operations. At each iteration of the while loop,
some unassigned resident ri with a nonempty
preference list applies to the first hospital hj

on his list and becomes provisionally assigned
to hj (this assignment could subsequently be
broken). If hj becomes over-subscribed as a
result of this assignment, then hj rejects its
worst assigned resident rk . Next, if hj is full
(irrespective of whether hj was over-subscribed
earlier in the same loop iteration), then for each
resident rl that hj finds less desirable than its
worst assigned resident rk , the algorithm deletes

the pair .rl ; hj /, which comprises deleting hj

from rl ’s preference list and vice versa.
Given that the above algorithm involves resi-

dents applying to hospitals, it has become known
as the Resident-oriented Gale/Shapley algorithm,
or RGS algorithm for short [7, Section 1.6.3]. The
RGS algorithm terminates with a stable match-
ing, given an instance of HR [6] [7, Theorem
1.6.2]. Using a suitable choice of data structures
(extending those described in [7, Section 1.2.3]),
the RGS algorithm can be implemented to run in
O.L/ time. This algorithm produces the unique
stable matching that is simultaneously best possi-
ble for all residents [6] [7, Theorem 1.6.2]. These
observations may be summarized as follows:

Theorem 1 Given an instance of HR, the RGS
algorithm constructs, in O.L/ time, the unique
stable matching in which each assigned resident
obtains the best hospital that he could obtain
in any stable matching, while each unassigned
resident is unassigned in every stable matching.

A counterpart of the RGS algorithm, known as
the Hospital-oriented Gale/Shapley algorithm, or
HGS algorithm for short [7, Section 1.6.2], gives
the unique stable matching that similarly satisfies
an optimality property for the hospitals [7, Theo-
rem 1.6.1].

Although there may be many stable matchings
for a given instance I of HR, some key structural
properties hold regarding unassigned residents
and under-subscribed hospitals with respect to all
stable matchings in I , as follows.

Theorem 2 For a given instance of HR:

• The same residents are assigned in all stable
matchings;

• Each hospital is assigned the same number of
residents in all stable matchings;

• Any hospital that is under-subscribed in one
stable matching is assigned exactly the same
set of residents in all stable matchings.

These results are collectively known as the “Rural
Hospitals Theorem” (see [7, Section 1.6.4] for
further details). Furthermore, the set of stable
matchings in I forms a distributive lattice under
a natural dominance relation [7, Section 1.6.5].
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M WD ;;
while (some resident ri is unassigned and ri has a nonempty list) {

hj := first hospital on ri ’s list;
/* ri applies to hj */
M WDM [ f.ri ; hj /g;
if (hj is over-subscribed) {

rk := worst resident in M.hj / according to hj ’s list;
M WDMnf.rk; hj /g;

}
if (hj is full) {

rk := worst resident in M.hj / according to hj ’s list;
for (each successor rl of rk on hj ’s list)

delete the pair .rl ; hj /;
}

}

Hospitals/Residents Problem, Fig. 1 Gale/Shapley algorithm for HR

Applications

Practical applications of HR are widespread,
most notably arising in the context of centralized
automated matching schemes that assign
applicants to posts (e.g., medical students to
hospitals, school leavers to universities, and
primary school pupils to secondary schools).
Perhaps the largest and best-known example
of such a scheme is the National Resident
Matching Program (NRMP) in the USA [8],
which annually assigns around 31,000 graduating
medical students (known as residents) to their
first hospital posts, taking into account the
preferences of residents over hospitals and vice
versa and the hospital capacities. Counterparts of
the NRMP are in existence in other countries,
including Canada [9] and Japan [10]. These
matching schemes essentially employ extensions
of the RGS algorithm for HR.

Centralized matching schemes based largely
on HR also occur in other practical contexts, such
as school placement in New York [1], university
faculty recruitment in France [3], and university
admission in Spain [16]. Further applications are
described in [15, Section 1.3.7].

Indeed, the Nobel Prize in Economic Sci-
ences was awarded in 2012 to Alvin Roth and
Lloyd Shapley, partly for their theoretical work
on HR and its variants [6, 18] and partly for
their contribution to the widespread deployment

of algorithms for HR in practical settings such as
junior doctor allocation as noted above.

Extensions of HR

One key extension of HR that has considerable
practical importance arises when an instance may
involve a set of couples, each of which submits
a joint preference list over pairs of hospitals
(typically in order that the members of the cou-
ple can be located geographically close to one
another). The extension of HR in which couples
may be involved is denoted by HRC; the stability
definition in HRC is a natural extension of that in
HR (see [15, Section 5.3] for a formal definition
of HRC). It is known that an instance of HRC
need not admit a stable matching (see [4]). More-
over, the problem of deciding whether an HRC
instance admits a stable matching is NP-complete
[17].

HR may be regarded as a many-one general-
ization of SM. A further generalization of SM
is to a many-many stable matching problem,
in which both residents and hospitals may be
multiply assigned subject to capacity constraints.
In this case, residents and hospitals are more
commonly referred to as workers and firms, re-
spectively. There are two basic variations of the
many-many stable matching problem according
to whether workers rank (i) individual acceptable
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firms in order of preference and vice versa or (ii)
acceptable subsets of firms in order of preference
and vice versa. Previous work relating to both
models is surveyed in [15, Section 5.4].

Other variants of HR may be obtained if pref-
erence lists include ties. This extension is again
important from a practical perspective, since it
may be unrealistic to expect a popular hospital to
rank a large number of applicants in strict order,
particularly if it is indifferent among groups of
applicants. The extension of HR in which pref-
erence lists may include ties is denoted by HRT.
In this context three natural stability definitions
arise, the so-called weak stability, strong stability,
and super-stability (see [15, Section 1.3.5] for
formal definitions of these concepts). Given an
instance I of HRT, it is known that weakly
stable matchings may have different sizes, and
the problem of finding a maximum cardinality
weakly stable matching is NP-hard (see entry
� Stable Marriage with Ties and Incomplete Lists
for further details). On the other hand, in contrast
to the case for weak stability, a super-stable
matching in I need not exist, though there is an
O.L/ algorithm to find such a matching if one
does [11]. Analogous results hold in the case of
strong stability – in this case, an O.L2/ algo-
rithm [13] was improved by an O.CL/ algorithm
[14] and extended to the many-many case [5].
Furthermore, counterparts of the Rural Hospitals
Theorem hold for HRT under each of the super-
stability and strong stability criteria [11, 19].

A further generalization of HR arises when
each hospital may be split into several depart-
ments, where each department has a capacity,
and residents rank individual departments in or-
der of preference. This variant is modeled by
the Student-Project Allocation problem [15, Sec-
tion 5.5]. Finally, the Hospitals/Residents prob-
lem under Social Stability [2] is an extension
of HR in which an instance is augmented by
a social network graph G (a bipartite graph
whose vertices correspond to residents and hos-
pitals and whose edges form a subset of A) such
that a blocking pair must additionally satisfy the
property that it forms an edge of G. Edges in
G correspond to resident–hospital pairs that are

acquainted with one another and therefore more
likely to block a matching in practice.

Open Problems

As noted in Section “Applications,” ties in the
hospitals’ preference lists may arise naturally in
practical applications. In an HRT instance, weak
stability is the most commonly-studied stability
criterion, due to the guaranteed existence of such
a matching. Attempting to match as many resi-
dents as possible motivates the search for large
weakly stable matchings. Several approximation
algorithms for finding a maximum cardinality
weakly stable matching have been formulated
(see � Stable Marriage with Ties and Incomplete
Lists and [15, Section 3.2.6] for further details).
It remains open to find tighter upper and lower
bounds for the approximability of this problem.

URL to Code

Ada implementations of the RGS and HGS
algorithms for HR may be found via the
following URL: http://www.dcs.gla.ac.uk/
research/algorithms/stable.
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Problem Definition

The Hospitals/Residents (HR) problem is the
many-to-one version of the stable marriage prob-
lem introduced by Gale and Shapley. In this prob-
lem, a bipartite graph G D .R [ H; E/ is given.
Each vertex in H represents a hospital and each
vertex in R a resident. Each vertex has a prefer-
ence over its neighboring vertices. Each hospital
h has an upper quota u.h/ specifying the maxi-
mum number of residents it can take in a match-
ing. The goal is to find a stable matching while
respecting the upper quotas of the hospitals.

The original HR has been well studied in the
past decades. A recent trend is to assume that
each hospital h also comes with a lower quota
l.h/. In this context, it is required (if possible)
that a matching satisfies both the upper and the
lower quotas of each hospital. The introduction
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of such lower quotas is to enforce some policy
in hiring or to make the outcome more fair. It
is well-known that hospitals in some rural areas
suffer from the shortage of doctors.

With the lower quotas, the definition of sta-
bility in HR and the objective of the problem
depend on the applications. Below we summarize
three variants that have been considered in the
literature.

Minimizing the Number of Blocking Pairs
In this variant, a matching M is feasible if, for
each hospital h, l.h/ � jM.h/j � u.h/. Given
a feasible matching, a resident r and a hospital
h form a blocking pair if the following condition
holds. (i) .r; h/ 2 EnM , (ii) r is unassigned in
M or r prefers h to his assignment M.r/, and
(iii) jM.h/j < u.h/ or h prefers r to one of its
assigned residents. A matching is stable if the
number of blocking pairs is 0. It is straightfor-
ward to check whether a stable matching exists.
We assume that the given instance has no stable
matching and the objective is to find a matching
with the minimum number of blocking pairs. We
call this problem Min-BP HR. An alternative
objective is to minimize the number of residents
that are part of a blocking pair in a matching. We
call this problem Min-BR HR.

HR with the Option of Closing a Hospital
The following variation of HR is motivated by
the higher education system in Hungary. Instead
of requiring all hospitals to have enough residents
to meet their lower quotas, it is allowed that a
hospital be closed as long as there is not too much
demand for it.

Precisely, in this variant, a matching M is fea-
sible if, for each hospital h, jM.h/j D 0 or l.h/ �

jM.h/j � u.h/. In the former case, a hospital
is closed; in the latter case, a hospital is opened.
Given a feasible matching M , it is stable if

1. There is no opened hospital h and resident r

so that (i) .h; r/ 2 EnM , (ii) r is unassigned
in M or r prefers h to his assignment M.r/,
and (iii) jM.h/j < u.h/ or h prefers r to one
of its assigned residents;

2. There is no closed hospital h and a set R 
 R
of residents so that (i) jRj � jl.h/j, (ii) for
each r 2 R, .r; h/ 2 EnM , and (iii) each
resident r 2 R is either unassigned or prefers
h to his assigned hospital M.r/.

With the above definition of stability, we refer
to the question of the existence of a stable match-
ing as HR woCH.

Classified HR
Motivated by the practice in academic hiring,
Huang introduced a more generalized variant of
HR. In this variant, a hospital h has a classifica-
tion hC over its neighboring residents. Each class
C 2 hC comes with a upper quota u.C / and a
lower quota l.C /. A matching M is feasible if,
for each hospital h and for each of its classes
c 2 hC , l.C / � jM.h/j � u.C /. A feasible
matching M is stable if the following condition
holds: there is no hospital h such that

1. There exists a resident r so that .r; h/ 2 EnM ,
and r is either unassigned in M or r prefers h

to his assignment M.r/;
2. For every class C 2 hC , l.C / � jM.h/ [

frgj � u.C /, or there exists another resident
r 0 2 M.h/ so that h prefers r to r 0 and
for every class C 2 hC , l.C / � jM.h/ [

frgnfr 0gj � u.C /.

With the above definition of stability, we refer
to the question of the existence of a stable match-
ing as CHR.

Key Results

For the first variant where the objective is to
minimize the number of blocking pairs, Hamada
et al. showed the following tight results.

Theorem 1 ([3]) For any positive constant � >

0, there is no polynomial-time .jRj C jHj/1��-
approximation algorithm for Min-BP HR unless
P=NP. This holds true even if the given bipartite
graph is complete and all upper quotas are 1 and
all lower quotas are 0 or 1.
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Theorem 2 ([3]) There is a polynomial-time
.jRj C jHj/-approximation algorithm for Min-
BP HR.

In the case that the objective is to minimize the
number of residents involved in blocking pairs,
Hamada et al. showed the following.

Theorem 3 ([3]) Min-BR HR is NP-hard. This
holds true even if the given bipartite graph is
complete and all hospitals have the same prefer-
ence over the residents.

Theorem 4 ([3]) There is a polynomial-timep
jRj-approximation algorithm for Min-BR HR.

For the second variant, where a hospital is
allowed to be closed, Biró et al. showed the
following.

Theorem 5 ([1]) The problem HR woCH is NP-
complete. This holds true even if all upper quotas
are at most 3.

For the last variant where each hospital is
allowed to classify the neighboring residents and
sets the upper and lower quotas for each of its
classes, Huang showed that if all classifications
of the hospitals are laminar families, the problem
is in P. Fleiner and Kamiyama later proved the
same result by a significantly simpler matroid-
based technique.

Theorem 6 ([2,4]) In CHR, if all classifications
of the hospitals are laminar families, then one
find a stable matching or detect its absence in
the given instance in O.nm/ time, where n D

jR [ Hj and m D jEj.
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Problem Definition

Given a directed graph G D .V; A/ (with n D

jV j and m D jAj) with a length function ` W A !

RC and a pair of vertices s; t , a distance oracle
returns the distance dist.s; t/ from s to t . A label-
ing algorithm [18] implements distance oracles
in two stages. The preprocessing stage computes
a label for each vertex of the input graph. Then,
given s and t , the query stage computes dist.s; t/

using only the labels of s and t ; the query does
not explicitly use G and `.

Hub labeling (HL) (or 2-hop labeling) is a
special kind of labeling algorithm. The label
L.v/ of a vertex v consists of two parts: the
forward label Lf .v/ is a collection of vertices w
with their distances dist.v; w/ from v, while the
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Hub Labeling (2-Hop Labeling), Fig. 1 Example of a
hub labeling. The hubs of s are circles; the hubs of t are
crosses (Taken from [3])

backward label Lb.v/ is a collection of vertices u
with their distances dist.u; v/ to v. (If the graph is
undirected, a single label per vertex suffices.) The
vertices in v’s label are the hubs of v. The labels
must obey the cover property: for any two ver-
tices s and t , the set Lf .s/ \ Lb.t/ must contain
at least one hub that is on the shortest s � t path.
Given the labels, HL queries are straightforward:
to find dist.s; t/, simply find the hub x 2 Lf .s/\

Lb.t/ that minimizes dist.s; x/ C dist.x; t/ (see
Fig. 1 for an example). If the hubs in each label
are sorted by ID, queries consist of a simple linear
sweep over the labels, as in mergesort.

The size of a forward (backward) label,
jLf .v/j (jLb.v/j), is the number of hubs it con-
tains. The size of a labeling L is the sum of the
average label sizes, .Lf .v/ C Lb.v//=2, over all
vertices. The memory footprint of the algorithm
is proportional to the size of the labeling, while
query times are determined by the maximum
label size. Queries themselves are trivial; the
hard part is an efficient implementation of a
preprocessing algorithm that, given G and `,
computes a small hub labeling.

Key Results

We describe an approximation algorithm for find-
ing labelings of size within O.log n/ of the op-
timal [9], as well as its generalization to other
objectives, including the maximum label size [6].
Although polynomial, these approximation al-
gorithms do not scale to large networks. For
more practical alternatives, we discuss hierar-
chical hub labelings (HHLS), a subclass of HL.
We show that HHLs are closely related to ver-

tex orderings and present efficient algorithms
for computing the minimal HHL for a given
ordering, as well as heuristics for finding vertex
orderings that lead to small labels. In particular,
the RXL algorithm uses sampling to efficiently
approximate a greedy vertex order, leading to em-
pirically small labels. RXL can handle large prob-
lems from several application domains. We then
discuss representations of hub labels that allow
various trade-offs between space and query time.

General Hub Labelings
The time and space efficiency of the distance ora-
cles we discuss depend on the label size. If labels
are big, HL is impractical. Gavoille et al. [15]
show that there exist graphs for which general la-
belings must have size Q
.n2/. For planar graphs,
they give an Q̋ .n4=3/ lower and QO.n3=2/ up-
per bound. They also show that graphs with k-
separators have hub labelings of size QO.nk/.
Abraham et al. [1] show that graphs with small
highway dimension (which they conjecture in-
clude road networks) have small hub labelings.

Given a particular graph, computing a labeling
with the smallest size is NP-hard. Cohen et al. [9]
developed an O.log n/-approximation algorithm
for the problem. Next we discuss this general HL
(GHL) algorithm.

A partial labeling is a labeling that does not
necessarily satisfy the cover property. Given a
partial labeling L D .Lf ; Lb/, we say that a
vertex pair Œu; w� is covered if Lf .u/ \ Lb.w/

contains a vertex on a shortest path from u to
w and uncovered otherwise. GHL maintains a
partial labeling L (initially empty) and the cor-
responding set U of uncovered vertex pairs. Each
iteration of the algorithm selects a vertex v and
two subsets X 0; Y 0 
 V , adds .v; dist.x; v// to
Lf .x/ for all x 2 X 0, and adds .y; dist.v; y//

to Lb.y/ for all y 2 Y 0. Then, GHL deletes
from U the set U.v; X 0; Y 0/ of vertex pairs that
become covered by this augmentation. Among all
v 2 V and X 0; Y 0 
 V , the triple .v; X 0; Y 0/

picked in each iteration is one that maximizes
jU.v; X 0; Y 0/j=.jX 0j C jY 0j/, i.e., the ratio of the
number of paths covered over the increase in label
size.
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Cohen et al.’s efficient implementation of
GHL uses the notion of center graphs. Given a
set U of vertex pairs and a vertex v, the center
graph Gv D .X; Y; Av/ is a bipartite graph with
X D Y D V such that an arc .u; w/ 2 Av

if Œu; w� 2 U and some shortest path from
u to w in G go through v. If U is the set of
uncovered vertex pairs, then, for a fixed vertex v,
maximizing jU.v; X 0; Y 0/j=.jX 0j C jY 0j/ over
all X 0; Y 0 
 V is (by definition) the same
as finding the vertex induced-subgraph of Gv

with maximum density (defined as its number
of arcs divided by its number of vertices). This
maximum density subgraph (MDS) problem can
be solved in polynomial time using parametric
flows (see e.g., [14]). To maximize the ratio
over all triples .v; X 0; Y 0/, GHL solves an
MDS problem for center graphs Gv and picks
the densest of the n resulting subgraphs. It
then adds the corresponding vertex v� to the
labels of the vertices given by the sides of the
MDS. Arcs corresponding to newly covered
pairs are removed from center graphs between
iterations.

Cohen et al. show that GHL is a special case
of the greedy set cover algorithm [8] and thus
gives an O.log n/-optimal labeling. They also
show that the same guarantee holds if one uses
a constant-factor approximation to the MDS. We
refer to a k approximation of MDS as a k-
AMDS. Using a linear-time 2-AMDS algorithm
by Kortsarz and Peleg [17], each GHL iteration is
dominated by n AMDS computations on graphs
with O.n2/ arcs. Since each iteration increases
the size of the labeling, the number of iterations
is at most O.n2/. The total running time of GHL
is thus O.n5/.

Delling et al. [11] improve the time bound
for GHL to O.n3 log n/ using eager and lazy
evaluation. Intuitively, eager evaluation finds an
AMDS G0 of G such that deleting G0 reduces
the MDS value of G by a constant factor. More
precisely, given a graph G, an upper bound �

on the MDS value of G and a parameter ˛ >

1, ˛-eager evaluation attempts to find a .2˛/-
AMDS G0 of G such that the MDS value of G

with the arcs of G0 deleted is at most �=˛. If
the evaluation fails to find such G0, the MDS

value of G is at most �=˛. Lazy evaluation was
introduced by Cohen et al. [9] to speed up their
implementation of GHL and refined by Stengel
et al. [20]. It is based on the observation that the
MDS value of a center graph does not increase as
the algorithm adds vertices to labels and removes
arcs from center graphs.

The eager-lazy algorithm maintains upper
bounds on the center subgraph densities �v

computed in previous iterations. These values
are computed during initialization and updated in
a lazy fashion as follows. In each iteration, the
algorithm picks the maximum �v and applies
˛-eager evaluation to Gv . If the evaluation
succeeds, the labels are updated. Regardless of
whether the evaluation succeeds or not, �v=˛ is
a valid upper bound on the density of Gv at the
end of the iteration. This can be used to show that
each vertex is selected by O.n log n/ iterations,
each taking O.n2/ time.

Babenko et al. [6] generalize the definition of
a labeling size as follows. Suppose vertex IDs are
1; 2; : : : ; n. Define a .2n/-dimensional vector L
by L2i�1 D jLf .i/j and L2i D jLb.i/j. The p-
norm of L is defined as kLkp D .

P2n�1
iD0 Lp

i /1=p ,
where p is a natural number and kLk1 D

maxLi . Note that kLk1=2 is the total size
of the labeling and kLk1 is the maximum
label size. Babenko et al. [6] generalize the
algorithm of Cohen et al. to obtain an O.log n/-
approximation algorithm for this more general
problem in O.n5/ time. Delling et al. [11] show
that the eager-lazy approach yields an O.log n/-
approximation algorithm running in time
O.n3 log n min.p; log n//.

Hierarchical Hub Labelings
Even with the performance improvements men-
tioned above, GHL requires too much time and
space to work on large networks. To overcome
this problem, one may use heuristics that have
no known theoretical guarantees on the label size
but produce small labels for large instances from
a wide variety of domains. The most successful
current heuristics use a restricted class of label-
ings called hierarchical hub labeling (HHL) [4].
Hierarchical labels have the cover property and
implement exact distance oracles.
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Given a labeling, let v . w if w is a hub
of L.v/. HL is hierarchical if . is a partial order.
(Intuitively, v . w if w is “more important”
than v.) We say that an HHL respects a given
(total) order on the vertices if the partial order
. induced by the HHL is consistent with the
order.

Consider an order defined by a permutation
rank, with rank.v/ < rank.w/ if v appears
before (is less important than) w. The canonical
labeling L for rank is defined as follows [4].
Vertex v belongs to Lf .u/ if and only if there
exists w such that v is the highest-ranked vertex
that hits Œu; w�. Similarly, v belongs to Lb.w/

if and only if there exists u such that v is the
highest-ranked vertex that hits Œu; w�.

Abraham et al. [4] prove that the canonical
labeling for a given vertex order rank is the
minimum-sized labeling that respects rank. This
suggests a two-stage approach for finding a small
hierarchical hub labeling: first, find a “good”
vertex order, and then compute its corresponding
canonical labeling. We first discuss the latter step
and then the former.

From Orderings to Labelings
We first consider how, given an order rank, one
can compute the canonical hierarchical labeling
L that respects rank.

The straightforward way is to just apply the
definition: for every pair Œu; w� of vertices, find
the maximum-ranked vertex on any shortest u–
w path, and then add it to Lf .u/ and Lb.w/.
Although polynomial, this algorithm is too slow
in practice.

A faster (but still natural) algorithm is as
follows [4]. Start with an empty (partial) labeling
L, and process vertices from the most to least
important. When processing v, for every uncov-
ered pair Œu; w� that v covers, add v to Lf .u/

and Lb.w/. (In other words, add v to the labels
of all end points of arcs in the center graph Gv .)
Abraham et al. [4] show how to implement this in
O.mn log n/ time and 
.n2/ space, which is still
impractical for large instances.

When labels are not too large, a much more
efficient solution is the pruned labeling (PL)
algorithm by Akiba et al. [5]. Starting from empty

labels, PL also processes vertices from the most
to least important, with the iteration that pro-
cesses vertex v, adding v to all relevant labels.
The crucial observation is that, when processing
v, one only needs to look at uncovered pairs
containing v itself; if Œu; v� is not covered, PL
adds v to Lf .u/; if Œv; w� is not covered, it adds v

to Lb.w/. This is enough because of the subpath
optimality property of the shortest paths.

To process v efficiently, PL runs two pruned
Dijkstra searches [13] from v. The first search
works on the forward graph (out of v) as
follows. Before scanning a vertex w (with
distance label d.w/ within the Dijkstra search),
it computes a v–w distance estimate q by
performing an HL query with the current
partial labels. (If the labels do not intersect,
set q D 1.) If q � d.w/, the Œv; w� pair is
already covered by previous hubs, so PL prunes
the search (ignores w). Otherwise (if q > d.w/),
PL adds .v; dist.v; w// to Lb.w/ and scans w
as usual. The second Dijkstra search uses
the reverse graph and is pruned similarly; it
adds .v; dist.w; v// to Lf .w/ for all scanned
vertices w. Note that the number of Dijkstra
scans equals the size of the labeling. Since
each visited vertex requires an HL query
using partial labels, the running time can
be quadratic in the average label size. It
is easy to see that PL produces canonical
labelings.

The final algorithm we discuss, due to Abra-
ham et al. [4], computes a hierarchical hub la-
beling from a vertex ordering recursively. Its
basic building block is the shortcut operation (see
e.g., [16]). To shortcut a vertex v, the operation
deletes v from the graph and adds arcs to ensure
that the distances between the remaining vertices
remain unchanged. For every pair consisting of
an incoming arc .u; v/ and an outgoing arc .v; w/,
the algorithm checks if .u; v/ 	 .v; w/ is the only
shortest u–w path (by running a partial Dijkstra
search from u or w) and, if so, adds a new arc
.u; w/ with length `.u; w/ D `.u; v/ C `.v; w/.

The recursive algorithm computes one label at
a time, from the bottom up (from the least to the
most important vertex). It starts by shortcutting
the least important vertex v from G to get a graph
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G0 (same as G, but without v and its incident arcs
and with the added shortcuts). It then recursively
finds a labeling for G0, which gives correct dis-
tances (in G) for all pairs of vertices not contain-
ing v. Then, the algorithm computes the label of v

from the labels of its neighbors. We describe how
to compute Lf .v/; Lb.v/ is computed similarly.
The crucial observation is that any nontrivial
shortest path starting at v must go through one of
its neighbors. Accordingly, we initialize Lf .v/

with entry .v; 0/ (to cover the trivial path from v

to itself), and then, for every neighbor w of v in
G and every entry .x; dist.w; x// 2 Lf .w/, add
.x; `.v; w/ C dist.w; x// to Lf .v/. If x already
is a hub of v, we only keep the smallest entry
for x. Finally, we prune from Lf .v/ the entries
.x; `.v; w/ C dist.w; x// for which `.v; w/ C

dist.w; x/ > dist.v; x/. (This can happen if
the shortest path from v to x through another
neighbor w0 of v is shorter than the one through
w.) Note that dist.v; x/ can be computed using
the labels of v and x. In general, the shortcut
operation can make the graph dense, limiting the
efficiency of the bottom-up approach. On some
network classes, such as road networks, the graph
remains sparse and the approach scales to large
problems.

Vertex Ordering Heuristics
As mentioned above, the size of the labeling is
determined by the ordering. The most natural
approach to capture the notion of importance is
attributed to Abraham et al. [4], whose greedy
ordering algorithm obtains good orderings on a
wide class of problems. It orders vertices from the
most to least important using a greedy selection
rule. In each iteration, it selects as the next most
important hub the vertex v that hits the most
vertex pairs not covered by previously selected
vertices.

When the shortest paths are unique, this can
be implemented relatively efficiently. The algo-
rithm maintains (initially full) the shortest-path
trees from each vertex in the graph. The tree Ts

rooted at s implicitly represents all shortest paths
starting at s. The total number of descendants of a
vertex v (in aggregate over all trees) is exactly the
number of paths it covers. Once such a vertex v

is picked as the next hub, we restore this invariant
for the remaining paths by removing all of v’s
descendants (including v itself) from all trees.
Abraham et al. [4] show how the entire greedy
order can be found in O.nm log n/ time. An
alternative algorithm (in the same spirit) works
even if the shortest paths are not unique, but takes
O.n3/ time [12].

The weighted greedy ordering algorithm is
similar but selects v so as to maximize the ratio
of the number of uncovered paths that v covers
to the increase in the label size if v is selected
next. This gives slightly better results and can
be implemented in the same time bounds as
the greedy ordering algorithm [4, 12]. Although
faster than GHL, none of these greedy variants
scale to large graphs.

To cope with this problem, Delling et al. [12]
developed RXL (Robust eXact Labeling), which
can be seen as a sampling version of the greedy
ordering algorithm. In each iteration, RXL finds
a vertex v that approximately maximizes the
number of pairs covered. Rather than maintaining
n shortest-path trees, RXL maintains shortest-
path trees from a small number of roots picked
uniformly at random. It estimates the coverage
of v based on how many descendants it has in
these trees. To reduce the bias in this estimation,
the algorithm discards outliers before taking the
average number of descendants. Moreover, as the
original trees shrink (because some of its subtrees
become covered), new subtrees (from other roots)
are added. These new trees are not full, however;
they are pruned from the start (using PL), ensur-
ing the total space (and time) usage remains under
control.

For certain graph classes, simpler ordering
techniques can be used. Akiba et al. [5] show that
ordering by degree works well on a subclass of
complex networks. Abraham et al. [2,4] show that
the order induced by the contraction hierarchies
(CH) algorithm [16] works well on road networks
and other sparse inputs. CH order vertices from
the bottom up: using only local information, it
determines the least important vertex, shortcuts
it, and repeats the process in the remaining graph.
The most relevant signals to estimate the im-
portance of v are the arc difference (of number
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of arcs removed and added if v were shortcut)
and how many neighbors of v have already been
shortcut.

Label Representation and Queries
Given a source s and a target t , one can compute
the minimum of dist.s; v/ C dist.v; t/ over all
v 2 Lf .s/\Lb.t/ in O.jLf .s/jCjLf .t/j/ time.
If vertex labels are represented as arrays sorted
by hub IDs, one can compute Lf .s/ \ Lb.t/ by
a coordinated sweep of the corresponding arrays,
as in mergesort. This is very cache efficient and
works well when the two labels have similar
sizes.

In some applications, label sizes can be very
different. Assuming (without loss of general-
ity) that jLf .s/j � jLf .t/j, one can compute
Lf .s/\Lb.t/ in time O.jLf .s/jClog.jLb.t/j//

by performing a binary search for each hub v 2

Lf .s/ to determine if v is in Lb.t/. In fact,
this set intersection problem can be solved even
faster, in O.min.jLf .s/j; jLb.t/j// time [19].

As each label can be stored in a contiguous
memory block, HL queries are well suited for an
external memory (or even distributed) implemen-
tations, including relational databases [3] or key-
value stores. In such cases, query times depend
on the time to fetch two blocks of data.

For in-memory implementations of HL, stor-
age may be a bottleneck. One can trade space for
time using label compression, which interprets
each label as a tree and stores common subtrees
only once; this reduces space consumption by an
order of magnitude, but queries become much
less cache efficient [10,12]. Another technique to
reduce the space consumption is to store vertices
and a constant number of their neighbors as
superhubs in the labels [5]; on unweighted and
undirected graphs, distances from a vertex v to
all elements of a superhub can be represented
compactly in difference form. This works well on
some social and communication networks [5].

HL has efficient extensions to problems
beyond point-to-point shortest paths, including
one-to-many and via-point queries. These are
important for applications in road networks, such
as finding the closest points of interest, ride
sharing, and path prediction [3].

Experimental Results

Even for very small (constant) sample sizes, the
labels produced by RXL are typically no more
than about 10 % bigger [12] than those pro-
duced by the full greedy hierarchical algorithms,
which in turn are not much worse than those
produced by GHL [11]. Scalability is much dif-
ferent, however. In a few hours in a modern CPU,
GHL can only handle graphs with about 10,000
vertices [11]; for the greedy hierarchical algo-
rithms, the practical limit is about 100,000 [4].
In contrast, as long as labels remain small, RXL
scales to problems with millions of vertices [12]
from a wide variety of graph classes, including
meshes, grids, random geometric graphs (sensor
networks), road networks, social networks, col-
laboration networks, and web graphs. For exam-
ple, for a web graph with 18.5 million vertices
and almost 300 million arcs, one can find labels
with fewer than 300 hubs on average in about half
a day [12]; queries then take less than 2 μs.

For some graph classes, other methods have
faster preprocessing. For continental road net-
works with tens of millions of vertices, a hybrid
approach combining weighted greedy (for the
top few thousand vertices) with the CH order
(for all other vertices) provides the best trade-off
between preprocessing times and label size [2,4].
On a benchmark data set representing Western
Europe (about 18 million vertices, 42.5 million
arcs), it takes roughly an hour to compute la-
bels with about 70 hubs on average, leading
to average query times of about 0.5 μs, roughly
the time of ten random memory accesses. With
additional improvements, one can further reduce
query times (but not the label sizes) by half [2],
making it the fastest algorithm for this applica-
tion [7]. For some unweighted and undirected
complex (social, communication, and collabora-
tion) networks, simply sorting vertices by de-
gree [5] produces labels that are not much bigger
than those computed by a more sophisticated
ordering technique.

Overall, RXL is the most robust method. For
all instances tested in the literature, its prepro-
cessing is never much slower than any other
methods (and often much faster), and query times
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are similar. In particular, CH-based ordering is
too costly for large complex networks (as con-
traction tends to create dense graphs), and the
degree-based order leads to prohibitively large
labels for road networks and web graphs.
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Problem Definition

A sequence of n positive weights or frequencies
is given, hwi > 0 j 0 � i < ni, together with an
output radix r , with r D 2 in the case of binary
output strings.

Objective To determine a sequence of integral
codeword lengths h`i j 0 � i < ni such that:
(a)

Pn�1
iD0 r�`i � 1, and (b) C D

Pn�1
iD0 `i 	 wi

is minimized. Any sequence of codeword lengths
h`i i that satisfies these two properties describes a
minimum-redundancy code for the weights hwi i.
Once a set of minimum-redundancy codeword
lengths h`i i has been identified, a prefix-free r-
ary code in which symbol i is assigned a code-
word of length `i can always be constructed.

Constraints

1. Long messages. In one application, each
weight wi is the frequency of symbol i in a
message M of length m D jM j D

Pn�1
iD0 wi ,

and C is the number of symbols required by
a compressed representation of M . In this
application it is usual to assume that m � n.

2. Entropy-based limit. Define W D
Pn�1

iD0 wi

to be the sum of the weights and pi D wi =W

to be the corresponding probability of symbol
i . Define H0 D �

Pn�1
iD0.pi log2 pi / to be the

zero-order entropy of the distribution. Then
when r D 2, dnH0e � C � ndlog2 ne.

Key Results

A minimum-redundancy code can be identified in
O.n/ time if the weights wi are nondecreasing
and in O.n log n/ time if the weights must be
sorted first.

Example Weights
The n D 10 weights h1; 1; 1; 1; 3; 4; 4; 7; 9; 9i

with W D 40 are used as an example.

Huffman’s Algorithm
In 1952 David Huffman [3] described a process
for calculating minimum-redundancy codes, de-

veloped in response to a term-paper challenge
set the year before by his MIT class instructor,
Robert Fano, a problem that Fano and his col-
laborator Claude Shannon had already tackled
unsuccessfully [7]. In his solution Huffman cre-
ated a classic algorithm that is taught to most
undergraduate computing students as part of al-
gorithms classes. Initially the sequence of input
weights hwi i is regarded as being the leaves of
a tree, with no internal nodes, and each leaf
the root of its own subtree. The two subtrees
(whether singleton leaves or internal nodes) with
the smallest root nodes are then combined by
making both of them children of a new parent,
with an assigned weight calculated as the sum
of the two original nodes. The pool of subtrees
decreases by one at each cycle of this process;
after n�1 iterations a total of n�1 internal nodes
has been added, and all of the original nodes must
be leaves in a single tree and descendants of that
tree’s root node.

Figure 1 shows an example of codeword
length computation, with the original weights
across the top. Each iteration takes the two least-
weight elements (leaf or internal) and combines
them to make a new internal node; note that
the internal nodes are created in nondecreasing
weight order. Once the Huffman tree has been
constructed, the sequence h`i i can be read from
it, by computing the depth of each corresponding
leaf node. In Fig. 1, for example, one of the
elements of weight 4 is at depth three in the tree,
and one is at depth four from the root, hence
`5 D 4 and `6 D 3. A set of codewords can
be assigned at the same time as the depths are
being computed; one possible assignment of
codewords that satisfies the computed sequence
h`i i is shown in the second row in the lower
box. Decoding throughput is considerably faster
if codewords are assigned systematically based
on codeword length in the manner shown, rather
than by strictly following the edge labeling of the
Huffman tree from which the codeword lengths
were extracted [6].

Because ties can occur and can be broken
arbitrarily, different codes are also possible. The
sequence h`i i D h6; 6; 6; 6; 4; 3; 3; 3; 2; 2i has the
same cost of C D 117 bits as the one shown
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5:

74:21: 22:

43: 146:

177: 238:

409:

1 1 1 1 3 4 4 7 9

8

5 5 5 5 4 4 3 3 2 2
1100001 00010 00011 0010 0011 010 011 1000000

Huffman Coding, Fig. 1 Example of (binary) codeword
lengths calculated using Huffman’s algorithm, showing
the order in which internal nodes are formed, and their
weights. The input weights in the top section are used

to compute the corresponding codeword lengths in the
bottom box. A valid assignment of prefix-free codewords
is also shown

in the figure. For the example weights, H0 D

2:8853 bits per symbol, providing a lower bound
of d115:41e D 116 bits on the total cost C for
the input weights. In this case, the minimum-
redundancy codes listed are just 1 bit inferior to
the entropy-based lower limit.

Implementing Huffman’s Algorithm
Huffman’s algorithm is often used in algorithms
textbooks as an example of a process that requires
a dynamic priority queue. If a heap is used, for
example, the n initial and n � 2 subsequent insert
operations, take a total of O.n log n/ time, as do
the 2.n � 1/ extract-min operations.

A simpler approach is to first sort the n

weights into increasing order and then apply an
O.n/-time algorithm due to van Leeuwen [10].
Two sorted lists are maintained: a static one of
original weights, representing the leaves of the
Huffman tree, and a dynamic queue of internal
nodes that is initially empty, to which new
internal nodes are appended as they are created.
Each iteration compares front-of-list elements
from the two lists and combines the two that have
the least weight and then adds the new internal
node at the tail of the queue. The algorithm stops

when the queue contains only one node; it is the
last item that was added and is the root of the
Huffman tree.

If the input weights are provided in an array
wi D AŒi j 0 � i < n� of sorted integers,
that array can be processed in situ into an output
array `i D AŒi� in O.n/ time by van Leeuwen’s
technique using an implementation described by
Moffat and Katajainen [5]. Each array element
takes on values that are, variously, input weight,
internal node weight, parent pointer, and then,
finally, codeword length. Algorithm 1 is taken
from Moffat and Katajainen [5] and describes
this process in detail. There are three phases
of operation. In the first phase, in steps 2–2,
leaf weights in AŒleaf : : : n � 1� are combined
with a queue of internal node weights in
AŒroot : : : next � 1� to form a list of parent
pointers in AŒ0 : : : root � 1�. At the end of this
phase, AŒ0 : : : n � 3� is a list of parents, AŒn � 2�

is the sum of the weights, and AŒn � 1� is unused.
In phase 2 (steps 12–3), the set of parent

pointers of internal nodes is converted to a set
of internal node depths. This mapping is done by
processing the tree from the root down, making
the depth of each node one greater than the depth
of its parent.
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Algorithm 1 Compute Huffman codeword lengths
0: function calc_huff_lens(A; n) F Input: AŒi � 1� � AŒi� for 0 < i < n
1: // Phase 1
2: set leaf  0 and root 0
3: for next 0 to n� 2 do
4: if leaf � n or (root < next and AŒroot� < AŒleaf �/ then
5: set AŒnext� AŒroot� and AŒroot� next and root rootC 1 F Use internal node
6: else
7: set AŒnext� AŒleaf � and leaf  leaf C 1 F Use leaf node
8: end if
9: repeat steps 1–8, but adding to AŒnext� rather than assigning to it F Find second child

10: end for
11: // Phase 2
12: set AŒn� 2� 0
13: for next n� 3 downto 0 do
14: set AŒnext� AŒAŒnext��C 1 F Compute depths of internal nodes
15: end for
16: // Phase 3
17: set avail 1 and used 0 and depth 0 and root n� 2 and next n� 1
18: while avail > 0 do
19: while root � 0 and AŒroot� D depth do

F Count internal nodes used at depth depth
20: set used usedC 1 and root root � 1
21: end while
22: while avail > used do F Assign as leaves any nodes that are not internal
23: set AŒnext� d and next next � 1 and avail avail� 1
24: end while
25: set avail 2 � used and depth depthC 1 and used 0 FMove to next depth
26: end while
27: return A F Output: AŒi� is the length `i of the i th codeword
28: end function

Phase 3 (steps 17–4) then processes those
internal node depths and converts them to a list
of leaf depths. At each depth, some total number
avail of nodes exist, being twice the number of
internal nodes at the previous depth. Some num-
ber used of those are internal nodes; the balance
must thus be leaf nodes at this depth and can be
assigned as codeword lengths. Initially there is
one node available at depth D 0, representing the
root of the whole Huffman tree. Table 1 shows
several snapshots of the Moffat and Katajainen
code construction process when applied to the
example sequence of weights.

Nonbinary Output Alphabets
The example Huffman tree developed in Fig. 1
and the process shown in Algorithm 1 assume
that the output alphabet is binary. Huffman noted
in his original paper that for r-ary alphabets
all that is required is to add additional dummy
symbols of weight zero, so as to bring the total

number of symbols to be one more than a multi-
ple of .r � 1/. Each merging step then combines
r leaf or internal nodes to form a new root node
and decreases the number of items by r � 1.

Dynamic Huffman Coding
Another assumption made by the processes
described so far is that the symbol weights
are known in advance and that the code that is
computed can be static. This assumption can
be satisfied, for example, by making a first
pass over the message that is to be encoded.
In a dynamic coding system, symbols must be
coded on the fly, as soon as they are received
by the encoder. To achieve this, the code must
be adaptive, so that it can be altered after each
symbol. Vitter [11] summarizes earlier work
by Gallager [2], Knuth [4], and Cormack and
Horspool [1] and describes a mechanism in
which the total encoding cost, including the
cost of keeping the code tree up to date, is
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Huffman Coding, Table 1 Sequence of values com-
puted by Algorithm 1 for the example weights. The first
row shows the initial state of the array, with AŒi� D wi .
Values “-2-” indicate parent pointers of internal nodes

that have already been merged; italic values “7” indicate
weights of internal nodes before being merged; values
“(4)” indicate depths of internal nodes; bold values “5”
indicate depths of leaves; and values “–” are unused

i

0 1 2 3 4 5 6 7 8 9

Initial arrangement, AŒi� D wi 1 1 1 1 3 4 4 7 9 9

Phase 1, root D 3; next D 5; leaf D 7 -2- -2- -4- 7 8 – – 7 9 9

Phase 1, finished, root D 8 -2- -2- -4- -5- -6- -7- -8- -8- 40 –

Phase 2, next D 4 -2- -2- -4- -5- -6- (2) (1) (1) (0) –

Phase 2, finished (4) (4) (3) (3) (2) (2) (1) (1) (0) –

Phase 3, next D 5; avail D 4 (4) (4) (3) (3) (2) (2) 3 3 2 2

Final arrangement, AŒi� D `i 5 5 5 5 4 4 3 3 2 2

O.1/ per output bit. Turpin and Moffat [9]
describe an alternative approximate algorithm
that reduces the time required by a constant
factor, by collecting the frequency updates into
batches and allowing controlled inefficiency in
the length of the coded output sequence. Their
“GEO” Coding method is faster than dynamic
Huffman Coding and also faster than dynamic
Arithmetic Coding, which is comparable in
speed to dynamic Huffman Coding, but uses less
space for the dynamic frequency-counting data
structure.

Applications

Minimum-redundancy codes have widespread
use in data compression systems. The sequences
of weights are usually conditioned according
to a model, rather than taken as plain symbol
frequency counts in the source message. The
use of multiple conditioning contexts, and hence
multiple codes, one per context, allows improved
compression when symbols are not independent
in the message, as is the case in natural
language data. However, when the contexts are
sufficiently specific that highly biased probability
distributions arise, Arithmetic Coding will yield
superior compression effectiveness.

Turpin and Moffat [8] consider several ancil-
lary components of Huffman Coding, including
methods for transmitting the description of the
code to the decoder.
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Definition

The input/output model (I/O model) [1] views the
computer as consisting of a processor, internal
memory (RAM), and external memory (disk). See
Fig. 1. The internal memory is of limited size,
large enough to hold M data items. The external
memory is of conceptually unlimited size and is
divided into blocks of B consecutive data items.
All computation has to happen on data in internal
memory. Data is brought into internal memory
and written back to external memory using I/O

operations (I/Os), which are performed explicitly
by the algorithm. Each such operation reads or
writes one block of data from or to external
memory. The complexity of an algorithm in this
model is the number of I/Os it performs.

The parallel disk model (PDM) [15] is an
extension of the I/O model that allows the ex-
ternal memory to consist of D � 1 parallel
disks. See Fig. 2. In this model, a single I/O
operation is capable of reading or writing up to
D independent blocks, as long as each of them is
stored on a different disk.

The parallel external memory (PEM) [5]
model is a simple multiprocessor extension of the
I/O model. See Fig. 3. It consists of P processing
units, each having a private cache of size M . Data
exchange between the processors takes place via
a shared main memory of conceptually unlimited
size: in a parallel I/O operation, each processor
can transfer one block of size B between its
private cache and the shared memory.

The relationship between the PEM model and
the very popular MapReduce framework is dis-
cussed in [8]. A survey of realistic computer
models can be found in [2].

Key Results

A few complexity bounds are of importance to
virtually every I/O-efficient algorithm or data
structure. The searching bound of ‚.logB n/

I/Os, which can be achieved using a Btree [6], is

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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I/O-Model, Fig. 1 The
I/O model
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I/O-Model, Fig. 2 The parallel disk model

the cost of searching for an element in an ordered
collection of n elements using comparisons only.
It is thus the equivalent of the ‚.log n/ searching
bound in internal memory.

Scanning a list of n consecutive data items ob-
viously takes dn=Be I/Os. This scanning bound
is usually referred to as a “linear number of I/Os”
because it is the equivalent of the O.n/ time
bound required to do the same in internal mem-
ory. The respective PDM and PEM bounds are
dn=DBe and dn=PBe.

The sorting bound of sort.n/ D ‚..n=B/

logM=B.n=B// I/Os denotes the cost of sorting
n elements using comparisons only. It is
thus the equivalent of the ‚.n log n/ sorting
bound in internal memory. In the PDM and

PEM model, the sorting bound becomes
‚..n=DB/logM=B.n=B// and ‚..n=PB/ logM=B

.n=B//, respectively. The sorting bound can be
achieved using a range of sorting algorithms,
including external merge sort [1, 5, 10] and
distribution sort [1, 5, 9].

Arguably, the most interesting bound is
the permutation bound, that is, the cost of
rearranging n elements in a given order, which
is ‚.min.sort.n/; n// [1] or, in the PDM,
‚.min.sort.n/; n=D// [15]. For all practical
purposes, this is the same as the sorting
bound. Note the contrast to internal memory
where, up to constant factors, permuting has
the same cost as a linear scan. Since almost
all nontrivial algorithmic problems include a
permutation problem, this implies that only
exceptionally simple problems can be solved
in O.scan.n// I/Os; most problems have an
�.perm.n//, that is, essentially an �.sort.n//

lower bound. Therefore, while internal-memory
algorithms aiming for linear time have to
carefully avoid the use of sorting as a tool,
external-memory algorithms can sort without
fear of significantly exceeding the lower bound.
This makes the design of I/O-optimal algorithms
potentially easier than the design of optimal
internal-memory algorithms. It is, however,
counterbalanced by the fact that, unlike in
internal memory, the sorting bound is not equal
to n times the searching bound, which implies
that algorithms based on querying a tree-based
search structure O.n/ times usually do not
translate into I/O-efficient algorithms. Buffer
trees [4] achieve an amortized search bound of
O..1=B/ logM=B.N=B// I/Os but can be used
only if the entire update and query sequence is
known in advance and thus provide only a limited
solution to this problem.

Apart from these fundamental results, there
exist a wide range of interesting techniques,
particularly for solving geometric and graph
problems. For surveys, refer to [3, 14]. Also,
many I/O-efficient algorithms have been derived
from fast and work-efficient parallel algorithms;
see the book entry on external-memory list
ranking for a well-known example of this
technique.
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I/O-Model, Fig. 3 The
PEM model

Applications

Modern computers are equipped with memory
hierarchies consisting of several levels of cache
memory, main memory (RAM), and disk(s). Ac-
cess latencies increase with the distance from the
processor, as do the sizes of the memory levels.
To amortize these increasing access latencies,
data are transferred between different levels of
cache in blocks of consecutive data items. As a
result, the cost of a memory access depends on
the level in the memory hierarchy currently hold-
ing the data item – the difference in access latency
between L1 cache and disk is about 106 – and the
cost of a sequence of accesses to data items stored
at the same level depends on the number of blocks
over which these items are distributed.

Traditionally, algorithms were designed to
minimize the number of computation steps; the
access locality necessary to solve a problem using
few data transfers between memory levels was
largely ignored. Hence, the designed algorithms
work well on data sets of moderate size but do
not take noticeable advantage of cache memory
and usually break down completely in out-of-
core computations. Since the difference in access
latencies is largest between main memory and
disk, the I/O model focuses on minimizing
this I/O bottleneck. This two-level view of the

memory hierarchy keeps the model simple and
useful for analyzing sophisticated algorithms
while providing a good prediction of their
practical performance. The picture is slightly
more complex for flash memory-based solid state
disks, which have recently become quite popular
(also due to their energy efficiency [7]): not only
do they internally use different block sizes for
reading and writing, but their (reading) latency is
also significantly smaller compared to traditional
hard disks. Nevertheless, the latency gap of solid
state disks compared to main memory remains
large, and optimized device controllers or
translation layers manage to hide the read/write
discrepancy in most practical settings. Thus, the
I/O model still provides reasonable estimates on
flash memory, but extended models with different
block sizes and access costs for reading and
writing are more accurate.

Much effort has been made already to translate
provably I/O-efficient algorithms into highly ef-
ficient implementations. Examples include TPIE
[12] and STXXL [11], two libraries that aim to
provide highly optimized and powerful primi-
tives for the implementation of I/O-efficient al-
gorithms. In particular, TPIE has been used to
realize a number of geometric and GIS applica-
tions, whereas STXXL has served as a basis for
the implementation of various graph algorithms.
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In spite of these efforts, a significant gap between
the theory and practice of I/O-efficient algorithms
remains (see next section).

Open Problems

There are a substantial number of open prob-
lems in the area of I/O-efficient algorithms. The
most important ones concern graph and geomet-
ric problems.

Traditional graph algorithms usually apply a
well-organized graph traversal such as depth-first
search or breadth-first search to gain information
about the structure of the graph and then use this
information to solve the problem at hand. For
massive sparse graphs, no I/O-efficient depth-first
search algorithm is known, and for breadth-first
search and shortest paths, only limited progress
has been made on undirected graphs. Some re-
cent results concern dynamic and approximation
variants or all-pairs shortest paths problems. For
directed graphs, even such simple problems as
deciding whether there exists a directed path
between two vertices are currently still open.
The main research focus in this area is therefore
to either develop (or disprove the existence of)
I/O-efficient general traversal algorithms or to
continue the current strategy of devising graph
algorithms that depart from traditional traversal-
based approaches.

Techniques for solving geometric problems
I/O efficiently are much better understood than
is the case for graph algorithms, at least in two
dimensions. Nevertheless, there are a few impor-
tant frontiers that remain. Despite new results
on some range reporting problems in three and
higher dimensions, arguably the most important
frontier is the development of I/O-efficient algo-
rithms and data structures for higher-dimensional
geometric problems. Motivated by database ap-
plications, results on specialized range search-
ing variants (such as coloured and top-K range
searching) have begun to appear in the literature.
Little work has been done in the past on solving
proximity problems, which pose another frontier

currently being explored. Motivated by the need
for such structures in a range of application ar-
eas and in particular in geographic information
systems, there has been some recent focus on
the development of multifunctional data struc-
tures, that is, structures that can answer different
types of queries efficiently. This is in contrast
to most existing structures, which are carefully
tuned to efficiently support one particular type of
query.

We also face a significant lack of external-
memory lower bounds. Classic results concern
permuting and sorting (see [14] for an overview),
and more recent results concentrate on I/O-
efficient data structure problems such as dynamic
membership [13]. The optimality of many
basic external-memory algorithms, however,
is completely open. For instance, it is unclear
whether sparse graph traversal (and hence
probably a large number of advanced graph
problems) will ever be solvable in an I/O-efficient
manner.

For both I/O-efficient graph algorithms and
computational geometry, there is still a substan-
tial gap between the obtained theoretical results
and what is known to be practical, even though
quite some algorithm engineering work has been
done during the last decade. Thus, if I/O-efficient
algorithms in these areas are to have more
practical impact, increased efforts are needed
to bridge this gap by developing practically
I/O-efficient algorithms that are still provably
efficient.

Cross-References

For details on �External Sorting and Permuting
and �List-Ranking, please refer to the
corresponding entries. Details on one- and
higher-dimensional searching are provided in the
entries on �B-trees and �R-Trees. The reader
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at all levels of the memory hierarchy should
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Model.
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Problem Definition

DIMACS Implementation Challenges (http://
dimacs.rutgers.edu/Challenges/) are scientific
events devoted to assessing the practical perfor-
mance of algorithms in experimental settings,
fostering effective technology transfer and
establishing common benchmarks for fundamen-
tal computing problems. They are organized by
DIMACS, the Center for Discrete Mathematics
and Theoretical Computer Science. One of
the main goals of DIMACS Implementation
Challenges is to address questions of determining
realistic algorithm performance where worst case
analysis is overly pessimistic and probabilistic
models are too unrealistic: experimentation can
provide guides to realistic algorithm performance
where analysis fails. Experimentation also brings
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algorithmic questions closer to the original
problems that motivated theoretical work. It also
tests many assumptions about implementation
methods and data structures. It provides an
opportunity to develop and test problem
instances, instance generators, and other methods
of testing and comparing performance of
algorithms. And it is a step in technology transfer
by providing leading edge implementations of
algorithms for others to adapt.

The first Challenge was held in 1990–
1991 and was devoted to Network flows
and Matching. Other addressed problems
included: Maximum Clique, Graph Coloring, and
Satisfiability (1992–1993), Parallel Algorithms
for Combinatorial Problems (1993–1994), Frag-
ment Assembly and Genome Rearrangements
(1994–1995), Priority Queues, Dictionaries,
and Multi-Dimensional Point Sets (1995–
1996), Near Neighbor Searches (1998–1999),
Semidefinite and Related Optimization Problems
(1999–2000), and The Traveling Salesman
Problem (2000–2001).

This entry addresses the goals and the results
of the 9th DIMACS Implementation Challenge,
held in 2005–2006 and focused on Shortest Path
problems.

The 9th DIMACS Implementation
Challenge: The Shortest Path Problem
Shortest path problems are among the most fun-
damental combinatorial optimization problems
with many applications, both direct and as sub-
routines in other combinatorial optimization al-
gorithms. Algorithms for these problems have
been studied since the 1950s and still remain an
active area of research.

One goal of this Challenge was to create
a reproducible picture of the state of the art in
the area of shortest path algorithms, identifying
a standard set of benchmark instances and gen-
erators, as well as benchmark implementations
of well-known shortest path algorithms. Another
goal was to enable current researchers to compare
their codes with each other, in hopes of identify-
ing the more effective of the recent algorithmic
innovations that have been proposed.

Challenge participants studied the following
variants of the shortest paths problem:

• Point to point shortest paths [4, 5, 6, 9, 10, 11,
14]: the problem consists of answering mul-
tiple online queries about the shortest paths
between pairs of vertices and/or their lengths.
The most efficient solutions for this problem
preprocess the graph to create a data structure
that facilitates answering queries quickly.

• External-memory shortest paths [2]: the
problem consists of finding shortest paths in
a graph whose size is too large to fit in internal
memory. The problem actually addressed in
the Challenge was single-source shortest paths
in undirected graphs with unit edge weights.

• Parallel shortest paths [8, 12]: the problem
consists of computing shortest paths using
multiple processors, with the goal of achiev-
ing good speedups over traditional sequen-
tial implementations. The problem actually
addressed in the Challenge was single-source
shortest paths.

• K-shortest paths [13, 15]: the problem
consists of ranking paths between a pair
of vertices by non decreasing order of their
length.

• Regular-language constrained shortest
paths: [3] the problem consists of a general-
ization of shortest path problems where paths
must satisfy certain constraints specified by
a regular language. The problems studied in
the context of the Challenge were single-
source and point-to-point shortest paths,
with applications ranging from transportation
science to databases.

The Challenge culminated in a Workshop held at
the DIMACS Center at Rutgers University, Pis-
cataway, New Jersey on November 13–14, 2006.
Papers presented at the conference are avail-
able at the URL: http://www.dis.uniroma1.it/~
challenge9/papers.shtml. Selected contributions
are expected to appear in a book published by the
American Mathematical Society in the DIMACS
Book Series.

Key Results

The main results of the 9th DIMACS Implemen-
tation Challenge include:
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• Definition of common file formats for
several variants of the shortest path problem,
both static and dynamic. These include an
extension of the famous DIMACS graph
file format used by several algorithmic
software libraries. Formats are described
at the URL: http://www.dis.uniroma1.it/~
challenge9/formats.shtml.

• Definition of a common set of core input
instances for evaluating shortest path
algorithms.

• Definition of benchmark codes for shortest
path problems.

• Experimental evaluation of state-of-the-art
implementations of shortest path codes on the
core input families.

• A discussion of directions for further research
in the area of shortest paths, identifying
problems critical in real-world applications
for which efficient solutions still remain
unknown.

The chief information venue about the 9th DI-
MACS Implementation Challenge is the website
http://www.dis.uniroma1.it/~challenge9.

Applications

Shortest path problems arise naturally in
a remarkable number of applications. A limited
list includes transportation planning, network
optimization, packet routing, image segmenta-
tion, speech recognition, document formatting,
robotics, compilers, traffic information systems,
and dataflow analysis. It also appears as
a subproblem of several other combinatorial
optimization problems such as network flows.
A comprehensive discussion of applications of
shortest path problems appears in [1].

Open Problems

There are several open questions related to short-
est path problems, both theoretical and practical.
One of the most prominent discussed at the 9th
DIMACS Challenge Workshop is modeling traf-
fic fluctuations in point-to-point shortest paths.

The current fastest implementations preprocess
the input graph to answer point-to-point queries
efficiently, and this operation may take hours on
graphs arising in large-scale road map naviga-
tion systems. A change in the traffic conditions
may require rescanning the whole graph several
times. Currently, no efficient technique is known
for updating the preprocessing information with-
out rebuilding it from scratch. This would have
a major impact on the performance of routing
software.

Data Sets

The collection of benchmark inputs of the 9th
DIMACS Implementation Challenge includes
both synthetic and real-world data. All graphs are
strongly connected. Synthetic graphs include
random graphs, grids, graphs embedded on
a torus, and graphs with small-world properties.
Real-world inputs consist of graphs representing
the road networks of Europe and USA. Europe
graphs are provided by courtesy of the PTV
company, Karlsruhe, Germany, subject to signing
a (no-cost) license agreement. They include the
road networks of 17 European countries: AUT,
BEL, CHE, CZE, DEU, DNK, ESP, FIN, FRA,
GBR, IRL, ITA, LUX, NDL, NOR, PRT, SWE,
with a total of about 19 million nodes and 23
million edges. USA graphs are derived from the
UA Census 2000 TIGER/Line Files produced
by the Geography Division of the US Census
Bureau, Washington, DC. The TIGER/Line
collection is available at: http://www.census.
gov/geo/www/tiger/tigerua/ua_tgr2k.html. The
Challenge USA core family contains a graph
representing the full USA road system with about
24 million nodes and 58 million edges, plus 11
subgraphs obtained by cutting it along different
bounding boxes as shown in Table 1. Graphs in
the collection include also node coordinates and
are given in DIMACS format.

The benchmark input package also features
query generators for the single-source and point-
to-point shortest path problems. For the single-
source version, sources are randomly chosen.
For the point-to-point problem, both random and
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Implementation Challenge for Shortest Paths, Table 1 USA road networks derived from the TIGER/Line
collection

Name Description Nodes Arcs
Bounding box
latitude (N)

Bounding box
longitude (W)

USA Full USA 23 947 347 58 333 344 – –

CTR Central USA 14 081 816 34 292 496 [25.0; 50.0] [79.0; 100.0]

W Western USA 6 262 104 15 248 146 [27.0; 50.0] [100.0; 130.0]

E Eastern USA 3 598 623 8 778 114 [24.0; 50.0] [-1; 79.0]

LKS Great Lakes 2 758 119 6 885 658 [41.0; 50.0] [74.0; 93.0]

CAL California and Nevada 1 890 815 4 657 742 [32.5; 42.0] [114.0; 125.0]

NE Northeast USA 1 524 453 3 897 636 [39.5, 43.0] [-1; 76.0]

NW Northwest USA 1 207 945 2 840 208 [42.0; 50.0] [116.0; 126.0]

FLA Florida 1 070 376 2 712 798 [24.0; 31.0] [79; 87.5]

COL Colorado 435 666 1 057 066 [37.0; 41.0] [102.0; 109.0]

BAY Bay Area 321 270 800 172 [37.0; 39.0] [121; 123]

NY New York City 264 346 733 846 [40.3; 41.3] [73.5; 74.5]

local queries are considered. Local queries of the
form (s, t) are generated by randomly picking t
among the nodes with rank in Œ2i ; 2iC1/ in the
ordering in which nodes are scanned by Dijkstra’s
algorithm with source s, for any parameter i.
Clearly, the smaller i is, the closer nodes s and
t are in the graph. Local queries are important to
test how the algorithms’ performance is affected
by the distance between query endpoints.

The core input families of the 9th DIMACS
Implementation Challenge are available at the
URL: http://www.dis.uniroma1.it/~challenge9/
download.shtml.

Experimental Results

One of the main goals of the Challenge was to
compare different techniques and algorithmic ap-
proaches. The most popular topic was the point-
to-point shortest path problem, studied by six
research groups in the context of the Challenge.
For this problem, participants were additionally
invited to join a competition aimed at assessing
the performance and the robustness of different
implementations. The competition consisted of
preprocessing a version of the full USA graph
of Table 1 with unit edge lengths and answering
a sequence of 1,000 random distance queries.
The details were announced on the first day of

the workshop and the results were due on the
second day. To compare experimental results by
different participants on different platforms, each
participant ran a Dijkstra benchmark code [7] on
the USA graph to do machine calibration. The fi-
nal ranking was made by considering each query
time divided by the time required by the bench-
mark code on the same platform (benchmark
ratio). Other performance measures taken into ac-
count were space usage and the average number
of nodes scanned by query operations.

Six point-to-point implementations were run
successfully on the USA graph defined for the
competition. Among them, the fastest query time
was achieved by the HH-based transit code [14].
Results are reported in Table 2. Codes RE and
REAL(16, 1) [9] were not eligible for the compe-
tition, but used by the organizers as a proof that
the problem is feasible. Some other codes were
not able to deal with the size of the full USA
graph, or incurred runtime errors.

Experimental results for other variants of the
shortest paths problem are described in the papers
presented at the Challenge Workshop.

URL to Code

Generators of problem families and benchmark
solvers for shortest paths problems are avail-
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Implementation Challenge for Shortest Paths, Table 2
Results of the Challenge competition on the USA graph
(23.9 million nodes and 58.3 million arcs) with unit arc
lengths. The benchmark ratio is the average query time

divided by the time required to answer a query using the
Challenge Dijkstra benchmark code on the same platform.
Query times and node scans are average values per query
over 1000 random queries

Preprocessing Query

Code
Time
(minutes) Space (MB) Node scans Time (ms) Benchmark ratio

HH-based transit [14] 104 3664 n.a. 0.019 4.78 � 10�6

TRANSIT [4] 720 n.a. n.a. 0.052 10.77 � 10�6

HH Star [6] 32 2662 1082 1.14 287.32 � 10�6

REAL(16,1) [9] 107 2435 823 1.42 296.30 � 10�6

HH with DistTab [6] 29 2101 1671 1.61 405.77 � 10�6

RE [9] 88 861 3065 2.78 580.08 � 10�6

able at the URL: http://www.dis.uniroma1.it/~
challenge9/download.shtml.
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Problem Definition

The Eighth DIMACS Implementation Challenge,
sponsored by DIMACS, the Center for Discrete
Mathematics and Theoretical Computer Science,
concerned heuristics for the symmetric Traveling
Salesman Problem. The Challenge began in June
2000 and was organized by David S. Johnson,
Lyle A. McGeoch, Fred Glover and César Rego.
It explored the state-of-the-art in the area of TSP
heuristics, with researchers testing a wide range
of implementations on a common (and diverse)
set of input instances. The Challenge remained
ongoing in 2007, with new results still being
accepted by the organizers and posted on the
Challenge website: www.research.att.com/~dsj/
chtsp. A summary of the submissions through
2002 appeared in a book chapter by Johnson and
McGeoch [5].

Participants tested their heuristics on four
types of instances, chosen to test the robustness
and scalability of different approaches:

1. The 34 instances that have at least 1000 cities
in TSPLIB, the instance library maintained by
Gerd Reinelt.

2. A set of 26 instances consisting of points
uniformly distributed in the unit square, with
sizes ranging from 1000 to 10,000,000 cities.

3. A set of 23 randomly generated clustered
instances, with sizes ranging from 1000 to
316,000 cities.

4. A set of 7 instances based on random distance
matrices, with sizes ranging from 1000 to
10,000 cities.

The TSPLIB instances and generators for the
random instances are available on the Challenge
website. In addition, the website contains
a collection of instances for the asymmetric TSP
problem.

For each instance upon which a heuristic was
tested, the implementers reported the machine
used, the tour length produced, the user time,
and (if possible) memory usage. Some heuristics
could not be applied to all of the instances,
either because the heuristics were inherently geo-
metric or because the instances were too large.
To help facilitate timing comparisons between
heuristics tested on different machines, partici-
pants ran a benchmark heuristic (provided by the
organizers) on instances of different sizes. The
benchmark times could then be used to normal-
ize, at least approximately, the observed running
times of the participants’ heuristics.

The quality of a tour was computed from
a submitted tour length in two ways: as a ratio
over the optimal tour length for the instance
(if known), and as a ratio over the Held-Karp
(HK) lower bound for the instance. The Concorde
optimization package of Applegate et al. [1] was
able to find the optimum for 58 of the instances in
reasonable time. Concorde was used in a second
way to compute the HK lower bound for all but
the three largest instances. A third algorithm,
based on Lagrangian relaxation, was used to com-
pute an approximate HK bound, a lower bound on
true HK bound, for the remaining instances. The
Challenge website reports on each of these three
algorithms, presenting running times and a com-
parison of the bounds obtained for each instance.

The Challenge website permits a variety of
reports to be created:

1. For each heuristic, tables can be generated
with results for each instance, including tour
length, tour quality, and raw and normalized
running times.
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2. For each instance, a table can be produced
showing the tour quality and normalized run-
ning time of each heuristic.

3. For each pair of heuristics, tables and graphs
can be produced that compare tour quality and
running time for instances of different type
and size.

Heuristics for which results were submitted
to the Challenge fell into several broad cate-
gories:

Heuristics designed for speed. These heuris-
tics – all of which target geometric instances –
have running times within a small multiple of the
time needed to read the input instance. Examples
include the strip and spacefilling-curve heuris-
tics. The speed requirement affects tour quality
dramatically. Two of these algorithms produced
tours with 14 % of the HK lower bound for
a particular TSPLIB instance, but none came
within 25 % on the other 89 instances.

Tour construction heuristics. These heuristics
construct tours in various ways, without seeking
to find improvements once a single tour passing
through all cities is found. Some are simple,
such as the nearest-neighbor and greedy heuris-
tics, while others are more complex, such as the
famous Christofides heuristic. These heuristics
offer a number of options in trading time for tour
quality, and several produce tours within 15 %
of the HK lower bound on most instances in
reasonable time. The best of them, a variant of
Christofides, produces tours within 8 % on uni-
form instances but is much more time-consuming
than the other algorithms.

Simple local improvement heuristics. These
include the well-known two-opt and three-opt
heuristics and variants of them. These heuristics
outperform tour construction heuristics in terms
of tour quality on most types of instances. For
example, 3-opt gets within about 3 % of the
HK lower bound on most uniform instances. The
submissions in this category explored various im-
plementation choices that affect the time-quality
tradeoff.

Lin-Kernighan and its variants. These
heuristics extend the local search neighborhood
used in 3-opt. Lin-Kernighan can produce high-

quality tours (for example, within 2 % of the HK
lower bound on uniform instances) in reasonable
time. One variant, due to Helsgaun [3],
obtains tours within 1 % on a wide variety
of instances, although the running time can be
substantial.

Repeated local search heuristics. These
heuristics are based on repeated executions of
a heuristic such as Lin-Kernighan, with random
kicks applied to the tour after a local optimum is
found. These algorithms can yield high-quality
tours at increased running time.

Heuristics that begin with repeated local
search. One example is the tour-merge heuris-
tic [2], which runs repeated local search multiple
times, builds a graph containing edges found in
the best tours, and does exhaustive search within
the resulting graph. This approach yields the best
known tours for some of the instances in the
Challenge.

The submissions to the Challenge demon-
strated the remarkable effectiveness of heuristics
for the traveling salesman problem. They
also showed that implementation details, such
a choice of data structure or whether to
approximate aspects of the computation, can
affect running time and/or solution quality
greatly. Results for a given heuristic also varied
enormously depending on the type of instance to
which it is applied.
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Problem Definition

A distributed system is composed of a collec-
tion of n processes which communicate with
one another. Two means of interprocess com-
munication have been heavily studied. Message-
passing systems model computer networks where
each process can send information over message
channels to other processes. In shared-memory
systems, processes communicate less directly by

accessing information in shared data structures.
Distributed algorithms are often easier to de-
sign for shared-memory systems because of their
similarity to single-process system architectures.
However, many real distributed systems are con-
structed as message-passing systems. Thus, a key
problem in distributed computing is the imple-
mentation of shared memory in message-passing
systems. Such implementations are also called
simulations or emulations of shared memory.

The most fundamental type of shared data
structure to implement is a (read-write) register,
which stores a value, taken from some domain
D. It is initially assigned a value from D and
can be accessed by two kinds of operations, read
and write(v), where v 2 D. A register may be
either single-writer, meaning only one process
is allowed to write it, or multi-writer, meaning
any process may write to it. Similarly, it may be
either single-reader or multi-reader. Attiya and
Welch [4] give a survey of how to build multi-
writer, multi-reader registers from single-writer,
single-reader ones.

If reads and writes are performed one at a time,
they have the following effects: a read returns
the value stored in the register to the invoking
process, and a write(v) changes the value stored
in the register to v and returns an acknowl-
edgment, indicating that the operation is com-
plete. When many processes apply operations
concurrently, there are several ways to specify
a register’s behavior [14]. A single-writer reg-
ister is regular if each read returns either the
argument of the write that completed most re-
cently before the read began or the argument
of some write operation that runs concurrently
with the read. (If there is no write that com-
pletes before the read begins, the read may return
either the initial value of the register or the
value of a concurrent write operation.) A reg-
ister is atomic (see �Linearizability) if each
operation appears to take place instantaneously.
More precisely, for any concurrent execution,
there is a total order of the operations such that
each read returns the value written by the last
write that precedes it in the order (or the initial
value of the register, if there is no such write).



Implementing Shared Registers in Asynchronous Message-Passing Systems 955

I

Moreover, this total order must be consistent
with the temporal order of operations: if one
operation finishes before another one begins, the
former must precede the latter in the total order.
Atomicity is a stronger condition than regularity,
but it is possible to implement atomic registers
from regular ones with some complexity over-
head [12].

This article describes the problem of
implementing registers in an asynchronous
message-passing system in which processes
may experience crash failures. Each process
can send a message, containing a finite string,
to any other process. To make the descriptions
of algorithms more uniform, it is often assumed
that processes can send messages to themselves.
All messages are eventually delivered. In the
algorithms described below, senders wait for an
acknowledgment of each message before sending
the next message, so it is not necessary to assume
that the message channels are first-in-first-out.
The system is totally asynchronous: there is no
bound on the time required for a message to
be delivered to its recipient or for a process to
perform a step of local computation. A process
that fails by crashing stops executing its code,
but other processes cannot distinguish between
a process that has crashed and one that is running
very slowly. (Failures of message channels [3]
and more malicious kinds of process failures [15]
have also been studied.)

A t-resilient register implementation provides
programmes to be executed by processes to simu-
late read and write operations. These programmes
can include any standard control structures and
accesses to a process’s local memory, as well as
instructions to send a message to another process
and to read the process’s buffer, where incoming
messages are stored. The implementation should
also specify how the processes’ local variables
are initialized to reflect any initial value of the im-
plemented register. In the case of a single-writer
register, only one process may execute the write
programme. A process may invoke the read and
write programmes repeatedly, but it must wait
for one invocation to complete before starting the
next one. In any such execution where at most t

processes crash, each of a process’s invocations
of the read or write programme should eventually
terminate. Each read operation returns a result
from the set D, and these results should satisfy
regularity or atomicity.

Relevant measures of algorithm complexity
include the number of messages transmitted in
the system to perform an operation, the number
of bits per message, and the amount of local
memory required at each process. One measure of
time complexity is the time needed to perform an
operation, under the optimistic assumption that
the time to deliver messages is bounded by � and
local computation is instantaneous (although al-
gorithms must work correctly even without these
assumptions).

Key Results

Implementing a Regular Register
One of the core ideas for implementing shared
registers in message-passing systems is a con-
struction that implements a regular single-writer
multi-reader register. It was introduced by At-
tiya, Bar-Noy and Dolev [3] and made more
explicit by Attiya [2]. A write(v) sends the value
v to all processes and waits until a majority
of the processes (

�
n
2

˘
C 1, including the writer

itself) return an acknowledgment. A reader sends
a request to all processes for their latest values.
When it has received responses from a majority
of processes, it picks the most recently written
value among them. If a write completes before
a read begins, at least one process that answers
the reader has received the write’s value prior to
sending its response to the reader. This is because
any two sets that each contain a majority of the
processes must overlap. The time required by
operations when delivery times are bounded is
2�.

This algorithm requires the reader to deter-
mine which of the values it receives is most
recent. It does this using timestamps attached to
the values. If the writer uses increasing integers as
timestamps, the messages grow without bound as
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the algorithm runs. Using the bounded timestamp
scheme of Israeli and Li [13] instead yields the
following theorem.

Theorem 1 (Attiya [2]) There is an
˙

n�2
2

�
-

resilient implementation of a regular single-
writer, multi-reader register in a message-passing
system of n processes. The implementation uses
�.n/ messages per operation, with �.n3/ bits
per message. The writer uses �.n4/ bits of
local memory and each reader uses �.n3/

bits.

Theorem 1 is optimal in terms of fault-tolerance.
If
˙

n
2

�
processes can crash, the network can be

partitioned into two halves of size
�

n
2

˘
, with

messages between the two halves delayed in-
definitely. A write must terminate before any
evidence of the write is propagated to the half not
containing the writer, and then a read performed
by a process in that half cannot return an up-to-
date value. For t �

˙
n
2

�
, registers can be imple-

mented in a message-passing system only if some
degree of synchrony is present in the system. The
exact amount of synchrony required was studied
by Delporte-Gallet et al. [6].

Theorem 1 is within a constant factor of the
optimal number of messages per operation. Ev-
idence of each write must be transmitted to at
least

˙
n
2

�
� 1 processes, requiring ˝.n/ mes-

sages; otherwise this evidence could be obliter-
ated by crashes. A write must terminate even
if only

�
n
2

˘
C 1 processes (including the writer)

have received information about the value writ-
ten, since the rest of the processes could have
crashed. Thus, a read must receive information
from at least

˙
n
2

�
processes (including itself) to

ensure that it is aware of the most recent write
operation.

A t-resilient implementation, for t <
˙

n
2

�
, that

uses �.t/ messages per operation is obtained by
the following adaptation. A set of 2t C 1 pro-
cesses is preselected to be data storage servers.
Writes send information to the servers, and wait
for t C 1 acknowledgments. Reads wait for re-
sponses from t C 1 of the servers and choose the
one with the latest timestamp.

Implementing an Atomic Register
Attiya, Bar-Noy and Dolev [3] gave a construc-
tion of an atomic register in which readers for-
ward the value they return to all processes and
wait for an acknowledgment from a majority.
This is done to ensure that a read does not
return an older value than another read that pre-
cedes it. Using unbounded integer timestamps,
this algorithm uses �.n/ messages per operation.
The time needed per operation when delivery
times are bounded is 2� for writes and 4� for
reads. However, their technique of bounding the
timestamps increases the number of messages
per operation to �.n2/ (and the time per oper-
ation to 12�). A better implementation of atomic
registers with bounded message size is given
by Attiya [2]. It uses the regular registers of
Theorem 1 to implement atomic registers using
the “handshaking” construction of Haldar and
Vidyasankar [12], yielding the following result.

Theorem 2 (Attiya [2]) There is an
˙

n�2
2

�
-

resilient implementation of an atomic single-
writer, multi-reader register in a message-passing
system of n processes. The implementation uses
�.n/ messages per operation, with �.n3/ bits
per message. The writer uses �.n5/ bits of local
memory and each reader uses �.n4/ bits.

Since atomic registers are regular, this algorithm
is optimal in terms of fault-tolerance and within
a constant factor of optimal in terms of the num-
ber of messages. The time used when delivery
times are bounded is at most 14� for writes and
18� for reads.

Applications

Any distributed algorithm that uses shared
registers can be adapted to run in a message-
passing system using the implementations
described above. This approach yielded new
or improved message-passing solutions for
a number of problems, including randomized
consensus [1], multi-writer registers [4], and
snapshot objects �Distributed Snapshots. The
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reverse simulation is also possible, using
a straightforward implementation of message
channels by single-writer, single-reader registers.
Thus, the two asynchronous models are
equivalent, in terms of the set of problems
that they can solve, assuming only a minority
of processes crash. However there is some
complexity overhead in using the simulations.

If a shared-memory algorithm is implemented
in a message-passing system using the algorithms
described here, processes must continue to oper-
ate even when the algorithm terminates, to help
other processes execute their reads and writes.
This cannot be avoided: if each process must
stop taking steps when its algorithm terminates,
there are some problems solvable with shared
registers that are not solvable in the message-
passing model [5].

Using a majority of processes to “validate”
each read and write operation is an example
of a quorum system, originally introduced for
replicated data by Gifford [10]. In general, a quo-
rum system is a collection of sets of processes,
called quorums, such that every two quorums
intersect. Quorum systems can also be designed
to implement shared registers in other models
of message-passing systems, including dynamic
networks and systems with malicious failures.
For examples, see [7, 9, 11, 15].

Open Problems

Although the algorithms described here are op-
timal in terms of fault-tolerance and message
complexity, it is not known if the number of bits
used in messages and local memory is optimal.
The exact time needed to do reads and writes
when messages are delivered within time � is
also a topic of ongoing research. (See, for exam-
ple, [8].) As mentioned above, the simulation of
shared registers can be used to implement shared-
memory algorithms in message-passing systems.
However, because the simulation introduces con-
siderable overhead, it is possible that some of
those problems could be solved more efficiently

by algorithms designed specifically for message-
passing systems.
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Problem Definition

Ensuring truthful evaluation of alternatives in
human activities has always been an important
issue throughout history. In sports, in particular,
such an issue is vital and practice of the fair-play
principle has been consistently put forward as a
matter of foremost priority. In addition to relying
on the code of ethics and professional responsi-
bility of players and coaches, the design of game
rules is an important measure in enforcing fair
play.

Ranking alternatives through pairwise com-
parisons (or competitions) is the most common
approach in sports tournaments. Its goal is to

find out the “true” ordering among alternatives
through complete or partial pairwise competi-
tions [1, 3–7]. Such studies have been mainly
based on the assumption that all the players play
truthfully, i.e., with their maximal effort. It is,
however, possible that some players form a coali-
tion and cheat for group benefit. An interesting
example can be found in [2].

Problem Description

The work of Chen, Deng, and Liu [2] considers
the problem of choosing m winners out of n

candidates.
Suppose a tournament is held among n players

Pn D fp1; : : : png and m winners are expected
to be selected by a selection protocol. Here a
protocol fn;m is a predefined function (which will
become clear later) to choose winners through
pairwise competitions, with the intention of find-
ing m players of highest capacity. When the tour-
nament starts, a distinct ID in Nn D f1; 2; : : : ng

is assigned to each player in Pn by a randomly
picked indexing function I W Pn ! Nn. Then
a match is played between each pair of players.
The competition outcomes will form a graph G,
whose vertex set is Nn and edges represent the
results of all the matches. Finally, the graph will
be treated as the input to fn;m, and it will output
a set of m winners. Now it should be clear that
fn;m maps every possible tournament graph G to
a subset (of cardinality m) of Nn.

Suppose there exists a group of bad players
who play dishonestly, i.e., they might lose a
match on purpose to gain overall benefit for the
whole group, while the rest of the players always
play truthfully, i.e., they try their best to win
matches. The group of bad players gains benefit if
they are able to have more winning positions than
that according to the true ranking. Given knowl-
edge of the selection protocol fn;m, the indexing
function I , and the true ranking of all players, the
bad players try to find a cheating strategy that can
fool the protocol and gain benefit.

The problem is discussed under two models
in which the characterizations of bad players are
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different. Under the collective incentive compat-
ible model, bad players are willing to sacrifice
themselves to win group benefit, while the ones
under the alliance incentive compatible model
only cooperate if their individual interests are
well maintained in the cheating strategy.

The goal is to find an “ideal” protocol, under
which players or groups of players maximize
their benefits only by strictly following the fair-
play principle, i.e., always play with maximal
effort.

Formal Definitions

When the tournament begins, an indexing func-
tion I is randomly picked, which assigns ID
I.p/ 2 Nn to each player p 2 Pn. Then a
match is played between each pair of players,
and the results are represented as a directed graph
G. Finally, G is fed into the predefined selection
protocol fn;m, to produce a set of m winners
I�1.W /, where W D fn;m.G/ � Nn.

Notations

An indexing function I for a tournament attended
by n players Pn D fp1; p2; : : : png is a one-to-
one correspondence from Pn to the set of IDs:
Nn D f1; 2; : : : ng. A ranking function R is a one-
to-one correspondence from Pn to f1; 2; : : : ng.
R.p/ represents the underlying true ranking of
player p among the n players. The smaller, the
stronger.

A tournament graph of size n is a directed
graph G D .Nn; E/ such that for all i ¤ j 2 Nn,
either ij 2 E (player with ID i beats player
with ID j n) or j i 2 En. Let Kn denote the
set of all such graphs. A selection protocol fn;m,
which chooses m winners out of n candidates, is
a function from Kn to fS � Nn and jS j D mg.

A tournament Tn among players Pn is a pair
Tn D .R; B/ where R is a ranking function from
Pn to Nn and B � Pn is the group of bad players.

Definition 1 (Benefit) Given a protocol fn;m, a
tournament Tn D .R; B/, an indexing function

I , and a tournament graph G 2 Kn, the benefit
of the group of bad players is

Ben.fn;m;Tn;I;G/Djfi2fn;m.G/; I�1.i/2Bgj

� jfp 2 B; R.p/ � mgj:

Given knowledge of fn;m, Tn, and I , not every
G 2 Kn is a feasible strategy for B: the group of
bad players. First, it depends on the tournament
Tn D .R; B/, e.g., a player pb 2 B cannot win
a player pg … B if R.pb/ > R.pg/. Second, it
depends on the property of bad players which is
specified by the model considered. Tournament
graphs, which are recognized as feasible strate-
gies, are characterized below, for each model.
The key difference is that a bad player in the
alliance incentive compatible model is not willing
to sacrifice his/her own winning position, while a
player in the other model fights for group benefit
at all costs.

Definition 2 (Feasible Strategy) Given fn;m,
Tn D .R; B/, and I , graph G 2 Kn is c-feasible
if

1. For every two players pi ; pj … B , if R.pi / <

R.pj /, then I.pi /I.pj / 2 E;
2. For all pg … B and pb 2 B , if R.pg/ <

R.pb/, then edge I.pg/I.pb/ 2 E.

Graph G 2 Kn is a-feasible if it is c-feasible and
also satisfies

1. For every bad player p 2 B , if R.p/ � m,
then I.p/ 2 fn;m.G/.

A cheating strategy is then a feasible tournament
graph G that can be employed by the group of
bad players to gain positive benefit.

Definition 3 (Cheating Strategy) Given fn;m,
Tn D .R; B/, and I , a cheating strategy for the
group of bad players under the collective incen-
tive compatible (alliance incentive compatible)
model is a graph G 2 Kn which is c-feasible (a-
feasible) and satisfies Ben.fn;m; Tn; I; G/ > 0.

The following two problems are studied in
[2]: (1) Is there a protocol fn;m such that for
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all Tn and I no cheating strategy exists under
the collective incentive compatible model? (2) Is
there a protocol fn;m such that for all Tn and
I , no cheating strategy exists under the alliance
incentive compatible model?

Key Results

Definition 4 For all integers n and m such that
2 � m � n � 2, a tournament graph Gn;m D

.Nn; E/ 2 Kn, which consists of three parts T1,
T2, and T3, is defined as follows:

1. T1 D f1; 2; : : :m � 2g.

For all i < j 2 T1, edge ij 2 E;

2. T2 D fm � 1; m; m C 1g.

.m � 1/m; m.m C 1/; .m C 1/.m � 1/ 2 E;

3. T3 D fm C 2; m C 3; : : :ng.

For all i < j 2 T3, edge ij 2 E;

4. For all i 0 2 Ti and j 0 2 Tj such that i < j ,
edge i 0j 0 2 E.

Theorem 1 Under the collective incentive com-
patible model , for every selection protocol fn;m

with 2 � m � n � 2; if Tn D .R; B/ satisfies
(1) at least one bad player ranks as high as
m � 1, (2) the ones ranked m C 1 and m C 2 are
both bad players, and (3) the one ranked m is a
good player, then there always exists an indexing
function I such that Gn;m is a cheating strategy.

Theorem 2 Under the alliance incentive com-
patible model , if n � m � 3, then there exists
a selection protocol fn;m [2] such that for ev-
ery tournament Tn, indexing function I, and a-
feasible strategy G 2 Kn, Ben.fn;m; Tn; I; G/

� 0.

Applications

The result shows that if players are willing to sac-
rifice themselves, no protocol is able to prevent

malicious coalitions from obtaining undeserved
benefits.

The result may have potential applications in
the design of output truthful mechanisms.

Open Problems

Under the collective incentive compatible model,
the work of Chen, Deng, and Liu indicates that
cheating strategies are available in at least 1/8 of
tournaments, assuming the probability for each
player to be in the bad group is 1/2. Could
this bound be improved? Or could one find a
good selection protocol in the sense that the
number of tournaments with cheating strategies
is close to this bound? On the other hand, al-
though no ideal protocol exists in this model,
does there exist any randomized protocol, under
which the probability of having cheating strate-
gies is negligible?

Cross-References

� Parity Games

Recommended Reading

1. Chang P, Mendonca D, Yao X, Raghavachari M (2004)
An evaluation of ranking methods for multiple in-
complete round-robin tournaments. In: Proceedings of
the 35th annual meeting of decision sciences institute,
Boston, 20–23 Nov 2004

2. Chen X, Deng X, Liu BJ (2006) On incentive compat-
ible competitive selection protocol. In: Proceedings of
the 12th annual international computing and combina-
torics conference (COCOON’06), Taipei, 15–18 Aug
2006, pp 13–22

3. Harary F, Moser L (1966) The theory of round robin
tournaments. Am Math Mon 73(3):231–246

4. Jech T (1983) The ranking of incomplete tournaments:
a mathematician’s guide to popular sports. Am Math
Mon 90(4):246–266

5. Mendonca D, Raghavachari M (1999) Comparing the
efficacy of ranking methods for multiple round-robin
tournaments. Eur J Oper Res 123:593–605

6. Rubinstein A (1980) Ranking the participants in a
tournament. SIAM J Appl Math 38(1):108–111

7. Steinhaus H (1950) Mathematical snapshots. Oxford
University Press, New York



Independent Sets in Random Intersection Graphs 961

I

Independent Sets in Random
Intersection Graphs

Sotiris Nikoletseas1;3, Christoforos L.
Raptopoulos2;3;4, and Paul (Pavlos)
Spirakis5;6;7

1Computer Engineering and Informatics
Department, University of Patras, Patras, Greece
2Computer Science Department, University of
Geneva, Geneva, Switzerland
3Computer Technology Institute and Press
“Diophantus”, Patras, Greece
4Research Academic Computer Technology
Institute, Greece and Computer Engineering and
Informatics Department, University of Patras,
Patras, Greece
5Computer Engineering and Informatics,
Research and Academic Computer Technology
Institute, Patras University, Patras, Greece
6Computer Science, University of Liverpool,
Liverpool, UK
7Computer Technology Institute (CTI), Patras,
Greece

Keywords

Existence and efficient construction of indepen-
dent sets of vertices in general random intersec-
tion graphs

Years and Authors of Summarized
Original Work

2004; Nikoletseas, Raptopoulos, Spirakis

Problem Definition

This problem is concerned with the efficient con-
struction of an independent set of vertices (i.e.,
a set of vertices with no edges between them)
with maximum cardinality, when the input is
an instance of the uniform random intersection
graphs model. This model was introduced by
Karoński, Sheinerman, and Singer-Cohen in [4]
and Singer-Cohen in [10] and it is defined as
follows

Definition 1 (Uniform random intersection
graph) Consider a universe MDf1; 2; : : : ; mg of
elements and a set of vertices V Dfv1; v2; : : : ; vng.
If one assigns independently to each vertex
vj ; j D 1; 2; : : : ; n, a subset Svj

of M by
choosing each element independently with
probability p and puts an edge between two
vertices vj1

; vj2
if and only if Svj1

\ Svj2
¤ ;,

then the resulting graph is an instance of the
uniform random intersection graph Gn;m;p .

The universe M is sometimes called label set and
its elements labels. Also, denote by Ll, for l 2 M ,
the set of vertices that have chosen label l.

Because of the dependence of edges, this
model can abstract more accurately (than the
Bernoulli random graphs model Gn;p that
assumes independence of edges) many real-life
applications. Furthermore, Fill, Sheinerman, and
Singer-Cohen show in [3] that for some ranges
of the parameters n; m; p (m D n˛; ˛ > 6),
the spaces Gn;m;p and Gn; Op are equivalent
in the sense that the total variation distance
between the graph random variables has limit
0. The work of Nikoletseas, Raptopoulos, and
Spirakis [7] introduces two new models, namely
the general random intersection graphs model
Gn;m; Ep; Ep D Œp1; p2; : : : ; pm� and the regular
random intersection graphs model Gn;m;�; � > 0

that use a different way to randomly assign
labels to vertices, but the edge appearance
rule remains the same. The Gn;m; Ep model is
a generalization of the uniform model where
each label i 2 M is chosen independently with
probability pi, whereas in the Gn;m;� model each
vertex chooses a random subset of M with exactly
œ labels.

The authors in [7] first consider the existence
of independent sets of vertices of a given cardi-
nality in general random intersection graphs and
provide exact formulae for the mean and variance
of the number of independent sets of vertices
of cardinality k. Furthermore, they present and
analyze three polynomial time (on the number
of labels m and the number of vertices n) al-
gorithms for constructing large independent sets
of vertices when the input is an instance of the
Gn;m;p model. To the best knowledge of the
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entry authors, this work is the first to consider
algorithmic issues for these models of random
graphs.

Key Results

The following theorems concern the existence of
independent sets of vertices of cardinality k in
general random intersection graphs. The proof of
Theorem 1 uses the linearity of expectation of
sums of random variables.

Theorem 1 Let X .k/ denote the number of in-
dependent sets of size k in a random intersection
graph G.n; m; Ep/, where Ep D Œp1; p2; : : : ; pm�.
Then

E
h
X .k/

i
D

 
n

k

!
mY

iD1

�
.1�pi /

kCkpi .1�pi /
k�1

�
:

Theorem 2 Let X .k/ denote the number of in-
dependent sets of size k in a random intersection
graph G.n; m; Ep/, where Ep D Œp1; p2; : : : ; pm�.
Then

Var
�
X .k/

�
D

kX

sD1

 
n

2k � s

! 
2k � s

s

!

�
�.k; s/

EŒX.k/�
.n

k/
�

E2ŒX.k/�

.n
k/

2

	

where E


X .k/

�
is the mean number of indepen-

dent sets of size k and

�.k; s/ D

mY

iD1

�
.1 � pi /

k�s

C.k � s/pi .1 � pi /
k�s�1

�
1 � spi

1C.k�1/pi

��
:

Theorem 2 is proved by first writing the vari-
ance as the sum of covariances and then apply-
ing a vertex contraction technique that merges
several vertices into one supervertex with sim-
ilar probabilistic behavior in order to compute
the covariances. By using the second moment

method (see [1]) one can derive thresholds for the
existence of independent sets of size k.

One of the three algorithms that were proposed
in [7] is presented below. The algorithm starts
with V (i.e., the set of vertices of the graph) as
its “candidate” independent set. In every subse-
quent step it chooses a label and removes from
the current candidate independent set all vertices
having that label in their assigned label set except
for one. Because of the edge appearance rule, this
ensures that after doing this for every label in M,
the final candidate independent set will contain
only vertices that do not have edges between
them and so it will be indeed an independent set.

Algorithm:
Input: A random intersection graph Gn;m;p .
Output: An independent set of vertices Am.

1. set A0 WD V ; set L WD M ;
2. for i D 1 to m do
3. begin
4. select a random label li 2 L; set

L WD L � fli g;
5. set Di WD fv 2 Ai�1 W li 2 Svg;
6. if .jDi j � 1/ then select a random vertex

u 2 Di and set Di WD Di � fug;
7. set Ai WD Ai�1 � Di ;
8. end
9. output Am;

The following theorem concerns the cardinality
of the independent set produced by the algorithm.
The analysis of the algorithm uses Wald’s equa-
tion (see [9]) for sums of a random number of
random variables to calculate the mean value of
jAmj, and also Chernoff bounds (see e.g., [6]) for
concentration around the mean.

Theorem 3 For the case mp D ˛ log n, for some
constant ˛ > 1 and m � n, and for some con-
stant ˇ > 0, the following hold with high prob-
ability:

1. If np ! 1 then jAmj � .1 � ˇ/ n
log n

.
2. If np ! b where b > 0 is a constant then

jAmj � .1 � ˇ/n.1 � e�b/.
3. If np ! 0 then jAmj � .1 � ˇ/n.
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The above theorem shows that the algorithm
manages to construct a quite large independent
set with high probability.

Applications

First of all, note that (as proved in [5]) any graph
can be transformed into an intersection graph.
Thus, the random intersection graphs models can
be very general. Furthermore, for some ranges
of the parameters n; m; p (m D n˛; ˛ > 6) the
spaces Gn;m;p and Gn;p are equivalent (as proved
by Fill, Sheinerman, and Singer-Cohen in [3],
showing that in this range the total variation
distance between the graph random variables has
limit 0).

Second, random intersection graphs (and in
particular the general intersection graphs model
of [7]) may model real-life applications more
accurately (compared to the Gn;p case). In partic-
ular, such graphs can model resource allocation in
networks, e.g., when network nodes (abstracted
by vertices) access shared resources (abstracted
by labels): the intersection graph is in fact the
conflict graph of such resource allocation prob-
lems.

Other Related Work
In their work [4] Karoński et al. consider the
problem of the emergence of graphs with a con-
stant number of vertices as induced subgraphs
of Gn;m;p graphs. By observing that the Gn;m;p

model generates graphs via clique covers (for
example the sets Ll ; l 2 M constitute an obvious
clique cover) they devise a natural way to use
them together with the first and second moment
methods in order to find thresholds for the appear-
ance of any fixed graph H as an induced subgraph
of Gn;m;p for various values of the parameters n,
m and p.

The connectivity threshold for Gn;m;p was
considered by Singer-Cohen in [10]. She studies
the case m D n˛; ˛ > 0 and distinguishes
two cases according to the value of ’. For the
case ˛ > 1, the results look similar to the Gn;p

graphs, as the mean number of edges at the con-
nectivity thresholds are (roughly) the same. On

the other hand, for ˛ � 1 we get denser graphs
in the Gn;m;p model. Besides connectivity, [10]
examines also the size of the largest clique in
uniform random intersection graphs for certain
values of n, m and p.

The existence of Hamilton cycles in Gn;m;p

graphs was considered by Efthymiou and
Spirakis in [2]. The authors use coupling
arguments to show that the threshold of
appearance of Hamilton cycles is quite close
to the connectivity threshold of Gn;m;p . Efficient
probabilistic algorithms for finding Hamilton
cycles in uniform random intersection graphs
were presented by Raptopoulos and Spirakis
in [8]. The analysis of those algorithms verify that
they perform well w.h.p. even for values of p that
are close to the connectivity threshold of Gn;m;p .
Furthermore, in the same work, an expected
polynomial algorithm for finding Hamilton
cycles in Gn;m;p graphs with constant p is given.

In [11] Stark gives approximations of the dis-
tribution of the degree of a fixed vertex in the
Gn;m;p model. More specifically, by applying
a sieve method, the author provides an exact
formula for the probability generating function of
the degree of some fixed vertex and then analyzes
this formula for different values of the parameters
n, m and p.

Open Problems

A number of problems related to random in-
tersection graphs remain open. Nearly all the
algorithms proposed so far concerning construct-
ing large independent sets and finding Hamilton
cycles in random intersection graphs are greedy.
An interesting and important line of research
would be to find more sophisticated algorithms
for these problems that outperform the greedy
ones. Also, all these algorithms were presented
and analyzed in the uniform random intersection
graphs model. Very little is known about how the
same algorithms would perform when their input
was an instance of the general or even the regular
random intersection graph models.

Of course, many classical problems concern-
ing random graphs have not yet been studied.
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One such example is the size of the minimum
dominating set (i.e., a set of vertices that has
the property that all vertices of the graph either
belong to this set or are connected to it) in a ran-
dom intersection graph. Also, what is the degree
sequence of Gn;m;p graphs? Note that this is very
different from the problem addressed in [11].

Finally, notice that none of the results pre-
sented in the bibliography for general or uniform
random intersection graphs carries over immedi-
ately to regular random intersection graphs. Of
course, for some values of n; m; p and œ, certain
graph properties shown for Gn;m;p could also be
proved for Gn;m;� by showing concentration of
the number of labels chosen by any vertex via
Chernoff bounds. Other than that, the fixed sizes
of the sets assigned to each vertex impose more
dependencies to the model.
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Problem Definition

Consider a text SŒ1 : : : n� over a finite alphabet
˙ . The problem is to build an index for S such
that for any query pattern P Œ1 : : : m� and any inte-
ger k � 0, all locations in S that match P with at
most k errors can be reported efficiently. If the er-
ror is measured in terms of the Hamming distance
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(number of character substitutions), the problem
is called k-mismatch problem. If the error is
measured in terms of the edit distance (number of
character substitutions, insertions, or deletions),
the problem is called k-difference problem. The
two problems are formally defined as follows.

Problem 1 (k-mismatch problem) Consider a
text SŒ1 : : : n� over a finite alphabet ˙ . For any
pattern P and threshold k, position i is an occur-
rence of P if the Hamming distance between P

and SŒi : : : i 0� is less than k for some i 0. The k-
mismatch problem asks for an index I for S such
that, for any pattern P , all occurrences of P in S

can be reported efficiently.

Problem 2 (k-difference problem) Consider a
text SŒ1 : : : n� over a finite alphabet ˙ . For any
pattern P and threshold k, position i is an oc-
currence of P if the edit distance between P

and SŒi : : : i 0� is less than k for some i 0. The k-
difference problem asks for an index I for S such
that, for any pattern P , all occurrences of P in S

can be reported efficiently.

These two problems are also called indexed
inexact pattern matching problem or indexed pat-

tern searching problem based on Hamming dis-
tance or edit distance.

The major concern of these two problems is
how to achieve efficient pattern searching without
using a large amount of space for storing the
index.

Key Results

For indexed k-mismatch or k-difference string
matching, a naive solution either requires an
index of size ˝.nk/ or supports the query
using ˝.mk/ time. The first non-trival solution
is by Cole et al. [10]. They modify suffix
tree to give an O.n logk n/-word index that
supports k-difference query using O.m C

occ C 1
kŠ

.c log n/k log log n/ time. After that,
a number of indexes are proposed that support
k-mismatch/k-difference pattern query for any
k > 0. All these indexes are created by
augmenting the suffix tree and its variants.

Tables 1 and 2 summarize the related results
in the literature for k D 1 and k � 2. Below, the
current best results are briefly summarized.

Indexed Approximate String Matching, Table 1 Known results for 1-difference matching. � is some positive
constant smaller than 1 and occ is the number of 1-difference occurrences in the text

Space Running time

O.j˙ jn log n/ words in avg O.mC occ/ [15]

O.j˙ jn log n/ words O.mC occ/ in avg [15]

O.n log2 n/ words O.m log n log log nC occ/ [1]

O.n log n/ words O.m log log nC occ/ [4]

O.mC occC log n log log n/ [10]

O.n/ words O.minfn; j˙ jm2g C occ/ [8]

O.j˙ jm log nC occ/ [13]

O.n� log n/ [16]

O.n�/ [17]

O.mC occC j˙ j log3 n log log n/ [5]

O.mC occC log n log log n/ [6]

O.n.log n log log n/2 log j˙ j/ bits O.mC occ/ [2]

O.n
p

log n log j˙ j/ bits O.j˙ jm log log nC occ/ [14]

O.n log� n log j˙ j/ bits O.j˙ jmC occ/ [3]

O.n log log n log j˙ j/ bits O..j˙ jmC occ/ log log n/ [3]

O.n log j˙ j/ bits O.j˙ jm log2 nC occ log n/ [13]

O..j˙ jm log log nC occ/ log� n/ [14]

O.mC .occC j˙ j log4 n log log n/ log� n/ [5]
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Indexed Approximate String Matching, Table 2
Known results for k-difference matching for k � 2. c
and d are some positive constants and � is some positive

constant smaller than 1. occ is the number of k-difference
occurrences in the text

Space Running time

O.n1C�/ words O.mC log log nC occ/ [19]

O.j˙ jkn logk n/ words in avg O.mC occ/ [15]

O.j˙ jkn logk n/ words O.mC occ/ in avg [15]

O.n logk n/ words in avg O.3kmkC1 C occ/ [9]

O. dk

kŠ
n logk n/ words O.mC 3koccC 1

kŠ
.c log n/k log log n/ [10]

O.n logk�1 n/ words O.mC k33koccC 1
kŠ

.c log n/k log log n/ [5]

O.n/ words O.minfn; j˙ jkmkC2g C occ/ [8]

O..j˙ jm/k max.k; log n/C occ/ [13]

O.mC k33koccC .c log n/k.kC1/ log log n/ [5]

O..2j˙ j/k�1mk�1 log n log log nC occ/ [6]

O.n
p

log n log j˙ j/ bits O..j˙ jm/k.kC log log n/C occ/ [14]

O.n log j˙ j/ bits O..j˙ jm/k max.k; log2 n/C occ log n/ [13]

O...j˙ jm/k.kC log log n/C occ/ log� n/ [14]

O.mC .k33koccC .c log n/k2
C2k log log n/ log� n/ [5]

Inexact Matching When k = 1

For 1-mismatch and 1-difference approximate
matching problem, the theorems below give the
current best solutions. Both algorithms try to
handle long and short patterns separately. Short
patterns of size polylog.n/ can be handled using
index of size O.polylog.n// space by brute force.
Long patterns can be handled with the help of
some augmented suffix tree.

When the index is of size O.n log j˙ j/ bits,
the next theorem is the current best result.

Theorem 1 (Chan, Lam, Sung, Tam, and
Wong [5]) Given an index of size O.n log j˙ j/

bits, 1-mismatch or 1-difference query can be
supported in O.m C .occ C j˙ j log4 n log log n/

log� n/ time where 	 is any positive constant
smaller than or equal to 1.

When we allow a bit more space, Belazzougui
can further reduce the query time, as shown in the
following theorem.

Theorem 2 (Belazzougui [3]) Given an
index of size O.n log� n log j˙ j/ bits (or
O.n log log n log j˙ j/ bits, respectively), 1-
mismatch/1-difference lookup can be supported

in O.j˙ jmCocc/ (or O..j˙ jmCocc/ log log n/,
respectively) time.

Inexact Matching When k � 2

For k-mismatch and k-difference approximate
matching problem where k � 2, existing solu-
tions are all based on the so-called k-error suffix
trees and its variants (following the idea of Cole
et al.).

Some current solutions create indexes whose
sizes depend on k. Theorems 3–6 summarize the
current best results in this direction.

Theorem 3 (Maas and Nowak [15]) Given
an index of size O.j˙ jkn logk n/ words, k-
mismatch/k-difference lookup can be supported
in O.m C occ/ expected time.

Theorem 4 (Maas and Nowak [15]) Consider
a uniformly and independently generated text
of length n. There exists an index of size
O.j˙ jkn logk n/ words on average such that
an k-mismatch/k-difference lookup query can
be supported in O.m C occ/ worst-case
time.
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Theorem 5 (Chan, Lam, Sung, Tam, and
Wong [5]) Given an index of size O.n logk�hC1

n/ words where h � k, k-mismatch lookup can be
supported in O.m C occ C ck2

logmaxfkh;kChg n

log log n/ time where c is a positive constant.
For k-difference lookup, the term occ becomes
k33kocc.

Theorem 6 (Chan, Lam, Sung, Tam, and
Wong [6]) Given an index of size O.n logk�1 n/

words, k-mismatch/k-difference lookup can be
supported in O.m C occ C logk n log log n/

time.

Theorems 7–12 summarize the current best
results when the index size is independent of k.

Theorem 7 (Chan, Lam, Sung, Tam, and
Wong [5]) Given an index of size O.n/

words, k-mismatch lookup can be supported
in O.m C occ C .c log n/k.kC1/ log log n/ time
where c is a positive constant. For k-difference
lookup, the term occ becomes k33kocc.

Theorem 8 (Chan, Lam, Sung, Tam, and
Wong [5]) Given an index of size O.n log j˙ j/

bits, k-mismatch lookup can be supported in
O.m C .occ C .c log n/k.kC2/ log log n/ log� n/

time where c is a positive constant and 	 is any
positive constant smaller than or equal to 1.
For k-difference lookup, the term occ becomes
k33kocc.

Theorem 9 (Lam, Sung, and Wong [14])
Given an index of size O.n

p
log n log j˙ j/

bits, k-mismatch/k-difference lookup can be
supported in O..j˙ jm/k.k C log log n/ C occ/

time.

Theorem 10 (Lam, Sung, and Wong [14])
Given an index of size O.n log j˙ j/ bits, k-
mismatch/k-difference lookup can be supported
in O...j˙ jm/k.k C log log n/Cocc/ log� n/ time
where 	 is any positive constant smaller than or
equal to 1.

Theorem 11 (Chan, Lam, Sung, Tam, and
Wong [6]) Given an index of size O.n/

words, k-mismatch/k-difference lookup can be
supported in O..2j˙ j/k�1mk�1 log n log log nC

occ/ time.

Theorem 12 (Tsur [19]) Given an index of size
O.n1C�/ words, k-mismatch/k-difference lookup
can be supported in O.mCoccC log log n/ time.

Practically Fast Inexact Matching

In addition, there are indexes which are efficient
in practice for small k=m but give no worst-case
complexity guarantees. Those methods are based
on filtration. The basic idea is to partition the
pattern into short segments and locate those short
segments in the text allowing zero or a small
number of errors. Those short segments help to
identify candidate regions for the occurrences of
the pattern. Finally, by verifying those candidate
regions, all occurrences of the pattern are recov-
ered. See [18] for a summary of those results. One
of the best results based on filtration is stated in
the following theorem.

Theorem 13 (Myers [16] and Navarro and
Baeza-Yates [17]) If k=m < 1�O.1=

p
j˙ j/, k-

mismatch/k-difference search can be supported
in O.n�/ expected time, where 	 is a positive
constant smaller than 1, with an index of size
O.n/ words.

Other methods with good performance on av-
erage include [11] and [12].

All the above approaches either try to index
the strings with errors or are based on filtering.
There are also solutions which use radically dif-
ferent approaches. For instance, there are solu-
tions which transform approximate string search-
ing into range queries in metric space [7].

Applications

Due to the advance in both the Internet and
biological technologies, enormous text data is ac-
cumulated. For example, 60G genomic sequence
data are currently available in GenBank. The data
size is expected to grow exponentially.

To handle the huge data size, indexing tech-
niques are vital to speed up the pattern matching
queries. Moreover, exact pattern matching is no
longer sufficient for both the Internet and bio-
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logical data. For example, biological data usu-
ally contains a lot of differences due to exper-
imental errors and due to mutation and evolu-
tion. Therefore, approximate pattern matching
becomes more appropriate. This gives the mo-
tivation for developing indexing techniques that
allow pattern matching with errors.

Open Problems

The complexity for indexed approximate match-
ing is still not fully understood. A number of
questions are still open. For instance, there are
two open questions: (1) Given a fixed index size
of O.n/ words, what is the best time complexity
of a k-mismatch/k-difference query? (2) Fixed
the k-mismatch/k-difference query time to be
O.m C occ/, what is the best space complexity
of the index?
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Problem Definition

Regular expressions (REs) provide an expres-
sive and powerful formalism for capturing the
structure of messages, events, and documents.
Consequently, they have been used extensively
in the specification of a number of languages
for important application domains, including the
XPath pattern language for XML documents [6]
and the policy language of the Border Gateway
Protocol (BGP) for propagating routing informa-
tion between autonomous systems in the Internet
[12]. Many of these applications have to manage
large databases of RE specifications and need to
provide an effective matching mechanism that,
given an input string, quickly identifies all the
REs in the database that match it. This RE re-
trieval problem is therefore important for a va-
riety of software components in the middleware
and networking infrastructure of the Internet.

The RE retrieval problem can be stated as
follows: Given a large set S of REs over an
alphabet †, where each RE r 2 S defines a
regular language L.r/, construct a data structure
on S that efficiently answers the following query:
given an arbitrary input string w 2 †�, find the
subset Sw of REs in S whose defined regular
languages include the string w. More precisely,
r 2 Sw iff w 2 L.r/. Since S is a large, dynamic,
disk-resident collection of REs, the data structure
should be dynamic and provide efficient support
of updates (insertions and deletions) to S . Note
that this problem is the opposite of the more
traditional RE search problem where S � †� is
a collection of strings and the task is to efficiently
find all strings in S that match an input regular
expression.

Notations
An RE r over an alphabet † represents a subset
of strings in ¢� (denoted by L.r/) that can be

defined recursively as follows [9]: (1) the con-
stants 	 and Ø are REs, where L .	/ D f	g and
L .Ø / D Ø; (2) for any letter a 2 ¢; a is an
RE where L.a/ D fag; (3) if r1 and r2 are REs,
then their union, denoted by r1 C r2, is an RE
where L.r1 C r2/ D L.r1/ [ L.r2/; (4) if r1 and
r2 are REs, then their concatenation, denoted by
r1:r2, is an RE where L.r1:r2/ D fs1s2 j s1 2

L.r1/; s2 2 L.r2/g; (5) if r is an RE, then its
closure, denoted by r�, is an RE where L .r�/ D

L .	/ [L .r/[L .rr/[L .rrr/[� � � ; and (6) if r

is an RE, then a parenthesized r , denoted by .r/,
is an RE where L..r// D L.r/. For example, if
¢ D fa; b; cg, then .a C b/:.a C b C c/�:c is an
RE representing the set of strings that begins with
either a “a” or a “b” and ends with a “c.” A string
s 2 ¢� is said to match an RE r if s 2 L.r/.

The language L.r/ defined by an RE r can
be recognized by a finite automaton (FA) M that
decides if an input string w is in L.r/ by reading
each letter in w sequentially and updating its
current state such that the outcome is determined
by the final state reached by M after w has been
processed [9]. Thus, M is an FA for r if the
language accepted by M , denoted by L.M/, is
equal to L.r/. An FA is classified as a determin-
istic finite automaton (DFA) if its current state
is always updated to a single state; otherwise, it
is a nondeterministic finite automaton (NFA) if
its current state could refer to multiple possible
states. The trade-off between a DFA and an NFA
representations for an RE is that the latter is
more space efficient, while the former is more
time efficient for recognizing a matching string
by checking a single path of state transitions. Let
jL.M/j denote the size of L.M/ and jLn.M/j

denote the number of length-n strings in L.M/.
Given a set M of finite automata, let L .M/

denote the language recognized by the automata
in M; i.e., L .M/ D

S

Mi2M
L .Mi /.

Key Results

The RE retrieval problem was first studied for a
restricted class of REs in the context of content-
based dissemination of XML documents using
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XPath-based subscriptions (e.g., [1, 3, 7]), where
each XPath expression is processed in terms of a
collection of path expressions. While the XPath
language [6] allows rich patterns with tree struc-
ture to be specified, the path expressions that it
supports lack the full expressive power of REs
(e.g., XPath does not permit the RE operators �,
C and � to be arbitrarily nested in path expres-
sions), and thus extending these XML-filtering
techniques to handle general REs may not be
straightforward. Further, all of the XPath-based
methods are designed for indexing main-memory
resident data. Another possible approach would
be to coalesce the automata for all the REs
into a single NFA and then use this structure
to determine the collection of matching REs.
It is unclear, however, if the performance of
such an approach would be superior to a sim-
ple sequential scan over the database of REs;
furthermore, it is not easy to see how such a
scheme could be adapted for disk-resident RE
data sets.

The first disk-based data structure that can
handle the storage and retrieval of REs in their
full generality is the RE-tree [4, 5]. Similar to
the R-tree [8], an RE-tree is a dynamic, height-
balanced, hierarchical index structure, where the
leaf nodes contain data entries corresponding to
the indexed REs, and the internal nodes contain
“directory” entries that point to nodes at the next
level of the index. Each leaf node entry is of the
form (id, M ), where id is the unique identifier of
an RE r and M is a finite automaton representing
r . Each internal node stores a collection of finite
automata, and each node entry is of the form
(M , ptr), where M is a finite automaton and ptr
is a pointer to some node N (at the next level)
such that the following containment property is
satisfied: If MN is the collection of automata
contained in node N , then L .MN / � L .M/.
The automaton M is referred to as the bounding
automaton for MN . The containment property
is key to improving the search performance of
hierarchical index structures like RE-trees: if a
query string w is not contained in L.M/, then
it follows that w … L .Mi / for all Mi 2 MN .
As a result, the entire subtree rooted at N can
be pruned from the search space. Clearly, the

closer L.M/ is to L .MN /, the more effective
this search-space pruning will be.

In general, there are an infinite number of
bounding automata for MN with different de-
grees of precision from the least precise bounding
automaton with L.M/ D ¢� to the most precise
bounding automaton, referred to as the minimal
bounding automaton, with L .M/ D L .MN /.
Since the storage space for an automaton is de-
pendent on its complexity (in terms of the number
of its states and transitions), there is a space-
precision trade-off involved in the choice of a
bounding automaton for each internal node entry.
Thus, even though minimal bounding automata
result in the best pruning due to their tightness, it
may not be desirable (or even feasible) to always
store minimal bounding automata in RE-trees
since their space requirement can be too large
(possibly exceeding the size of an index node),
thus resulting in an index structure with a low
fan-out. Therefore, to maintain a reasonable fan-
out for RE-trees, a space constraint is imposed
on the maximum number of states (denoted by α)
permitted for each bounding automaton in inter-
nal RE-tree nodes. The automata stored in RE-
tree nodes are, in general, NFAs with a minimum
number of states. Also, for better space utiliza-
tion, each individual RE-tree node is required
to contain at least m entries. Thus, the RE-tree
height is O.logm.jS j//.

RE-trees are conceptually similar to other hi-
erarchical, spatial index structures, like the R-tree
[8] that is designed for indexing a collection of
multidimensional rectangles, where each internal
entry is represented by a minimal bounding rect-
angle (MBR) that contains all the rectangles in
the node pointed to by the entry. RE-tree search
simply proceeds top-down along (possibly) mul-
tiple paths whose bounding automaton accepts
the input string; RE-tree updates try to identify
a “good” leaf node for insertion and can lead to
node splits (or, node merges for deletions) that
can propagate all the way up to the root. There is,
however, a fundamental difference between the
RE-tree and the R-tree in the indexed data types:
regular languages typically represent infinite sets
with no well-defined notion of spatial locality.
This difference mandates the development of
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novel algorithmic solutions for the core RE-tree
operations. To optimize for search performance,
the core RE-tree operations are designed to keep
each bounding automaton M in every internal
node to be as “tight” as possible. Thus, if M is the
bounding automaton for MN , then L.M/ should
be as close to L .MN / as possible.

There are three core operations that need to be
addressed in the RE-tree context: (P1) selection
of an optimal insertion node, (P2) computing
an optimal node split, and (P3) computing an
optimal bounding automaton. The goal of (P1)
is to choose an insertion path for a new RE that
leads to “minimal expansion” in the bounding
automaton of each internal node of the inser-
tion path. Thus, given the collection of automata
M .N / in an internal index node N and a new
automaton M , an optimal Mi 2 M .N / needs to
be chosen to insert M such that jL.Mi /\L.M/j

is maximum. The goal of (P2), which arises when
splitting a set of REs during an RE-tree node-
split, is to identify a partitioning that results in
the minimal amount of “covered area” in terms
of the languages of the resulting partitions. More
formally, given the collection of automata M D

fM1; M2; : : : ; Mkg in an overflowed index node,
find the optimal partition of M into two disjoint
subsets M1 and M2 such that jM1j � m,
jM2j � m, and jL .M1/j C jL .M2/j is mini-
mum. The goal of (P3), which arises during inser-
tions, node-splits, or node-merges, is to identify a
bounding automaton for a set of REs that does
not cover too much “dead space.” Thus, given
a collection of automata M, the goal is to find
the optimal bounding automaton M such that
the number of states of M is no more than α,
L .M/ � L .M/ and jL.M/j is minimum.

The objective of the above three operations is
to maximize the pruning during search by keep-
ing bounding automata tight. In (P1), the optimal
automaton Mi selected (within an internal node)
to accommodate a newly inserted automaton M

is to maximize jL.Mi / \ L.M/j. The set of
automata M are split into two tight clusters in
(P2), while in (P3), the most precise automaton
(with no more than α states) is computed to cover
the set of automata in M. Note that (P3) is unique
to RE-trees, while both (P1) and (P2) have their

equivalents in R-trees. The heuristics solutions
[2, 8] proposed for (P1) and (P2) in R-trees
aim to minimize the number of visits to nodes
that do not lead to any qualifying data entries.
Although the minimal bounding automata in RE-
trees (which correspond to regular languages) are
very different from the MBRs in R-trees, the
intuition behind minimizing the area of MBRs
(total area or overlapping area) in R-trees should
be effective for RE-trees as well. The counterpart
for area in an RE-tree is jL.M/j, the size of
the regular language for M . However, since a
regular language is generally an infinite set, new
measures need to be developed for the size of a
regular language or for comparing the sizes of
two regular languages.

One approach to compare the relative sizes of
two regular languages is based on the following
definition: for a pair of automata Mi and Mj ,
L.Mi / is said to be larger than L.Mj / if
there exists a positive integer N such that for

all k � N ,
kP

lD1

ˇ
ˇLl .Mi /

ˇ
ˇ �

kP

lD1

ˇ
ˇLl

�
Mj

�ˇˇ.

Based on the above intuition, three increasingly
sophisticated measures are proposed to capture
the size of an infinite regular language. The
max-count measure simply counts the number
of strings in the language up to a certain size

�; i.e.,
ˇˇL .M/

ˇˇ D
�P

iD1

ˇˇLi .M/
ˇˇ. This measure

is useful for applications where the maximum
length of all the REs to be indexed is known and
is not too large so that � can be set to some value
slightly larger than the maximum length of the
REs. A second more robust measure that is less
sensitive to the � parameter value is the rate-of-
growth measure which is based on the intuition
that a larger language grows at a faster rate than
a smaller language. The size of a language is
approximated by computing the rate of change
of its size from one “window” of lengths to the
next consecutive “window” of lengths: if � is a
length parameter that denote the start of the first
window and 
 is a window-size parameter, then
ˇ̌
L .M/

ˇ̌
D

�C2��1P

�C�

ˇ̌
Li .M/

ˇ
ˇ=

�C��1P

�

jLi .M/j.

As in the max-count measure, the parameters �



972 Indexed Regular Expression Matching

and 
 should be chosen to be slightly greater than
the number of states of M to ensure that strings
involving a substantial portion of paths, cycles,
and accepting states are counted in each window.
However, there are cases where the rate-of-
growth measure also fails to capture the “larger
than” relationship between regular languages
[4]. To address some of the shortcomings of the
first two metrics, a third information-theoretic
measure is proposed that is based on Rissanen’s
minimum description length (MDL) principle
[11]. The intuition is that if L.Mi / is larger
than L.Mj /, then the per-symbol cost of an
MDL-based encoding of a random string in
L.Mi / using Mi is very likely to be higher than
that of a string in L.Mj / using Mj , where the
per-symbol cost of encoding a string w 2 L.M/

is the ratio of the cost of an MDL-based
encoding of w using M to the length of w. More
specifically, if w D w1:w2: : : : :wn 2 L.M/

and s0; s1; : : : ; sn is the unique sequence of states
visited by w in M , then the MDL-based encoding

cost of w using M is given by
n�1P

iD0

dlog2 .ni /e,

where each ni denotes the number of transitions
out of state si , and log2.ni / is the number of
bits required to specify the transition out of state
si . Thus, a reasonable measure for the size of
a regular language L.M/ is the expected per-
symbol cost of an MDL-based encoding for a
random sample of strings in L.M/.

To utilize the above metrics for measuring
L.M/, one common operation needed is the
computation of jLn.M/j, the number of length-
n strings in L.M/. While jLn.M/j can be effi-
ciently computed when M is a DFA, the problem
becomes #P-complete when M is an NFA [10].
Two approaches were proposed to approximate
jLn.M/j when N is an NFA [10]. The first
approach is an unbiased estimator for jLn.M/j,
which can be efficiently computed but can have
a very large standard deviation. The second ap-
proach is a more accurate randomized algorithm
for approximating jLn.M/j but it is not very
useful in practice due to its high time com-
plexity of O.nlog.n//. A more practical approx-
imation algorithm with a time complexity of
O.n2jM j2 min fj¢j; jM jg/ was proposed in [4].

The RE-tree operations (P1) and (P2) require
frequent computations of jL.Mi \ Mj /j and
jL.Mi [ Mj /j to be performed for pairs of
automata Mi ; Mj . These computations can ad-
versely affect RE-tree performance since con-
struction of the intersection and union automaton
M can be expensive. Furthermore, since the final
automaton M may have many more states than
the two initial automata Mi and Mj , the cost of
measuring jL.M/j can be high. The performance
of these computations can, however, be optimized
by using sampling. Specifically, if the counts and
samples for each L.Mi / are available, then this
information can be utilized to derive approxi-
mate counts and samples for L.Mi \ Mj / and
L.Mi [ Mj / without incurring the overhead of
constructing the automata Mi \Mj and Mi [Mj

and counting their sizes. The sampling techniques
used are based on the following results for ap-
proximating the sizes of and generating uniform
samples of unions and intersections of arbitrary
sets:

Theorem 1 (Chan, Garofalakis, Rastogi [4])
Let r1 and r2 be uniform random samples of sets
S1 and S2, respectively.

1. .jr1 \ S2jjS1j/=jr1j is an unbiased estimator
of the size of S1 \ S2.

2. r1 \S2 is a uniform random sample of S1 \S2

with size jr1 \ S2j.
3. If the sets S1 and S2 are disjoint, then a

uniform random sample of S1 [ S2 can be
computed in O.jr1j C jr2j/ time. If S1 and S2

are not disjoint, then an approximate uniform
random sample of S1 [ S2 can be computed
with the same time complexity.

Applications

The RE retrieval problem also arises in the
context of both XML document classification,
which identifies matching DTDs for XML
documents, as well as BGP routing, which
assigns appropriate priorities to BGP advertise-
ments based on their matching routing-system
sequences.
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Experimental Results

Experimental results with synthetic data sets [5]
clearly demonstrate that the RE-tree index is
significantly more effective than performing a
sequential search for matching REs and, in a
number of cases, outperforms sequential search
by up to an order of magnitude.
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Problem Definition

This entry is concerned with designing and build-
ing indexes of a two-dimensional matrix, which
is basically the generalization of indexes of a
string, the suffix tree [12] and the suffix array
[11], to a two-dimensional matrix. This problem
was first introduced by Gonnet [7]. Informally,
a two-dimensional analog of the suffix tree is a
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tree data structure storing all submatrices of an
n � m matrix, n � m. The submatrix tree [2]
is an incarnation of such indexes. Unfortunately,
building such indexes requires �(nm2) time [2].
Therefore, much of the attention paid has been
restricted to square matrices and submatrices,
the important special case in which much better
results are available.

For square matrices, the Lsuffix tree and its
array form, storing all square submatrices of an
n � n matrix, have been proposed [3, 9, 10].
Moreover, the general framework for these index
families is also introduced [4, 5]. Motivated by
LZ1-type image compression [14], the online
case, i.e., the matrix is given one row or column
at a time, has been also considered. These data
structures can be built in time close to n2. Build-
ing these data structures is a nontrivial extension
of the algorithms for the standard suffix tree and
suffix array. Generally, a tree data structure and
its array form of this type for square matrices are
referred to as the two-dimensional suffix tree and
the two-dimensional suffix array, which are the
main concerns of this entry.

Notations
Let A be an n � n matrix with entries defined
over a finite alphabet †. AŒi : : : k; j : : : l � denotes
the submatrix of A with corners .i; j /, .k; j /,
.i; l/, and .k; l/. When i D k or j D l , one of
the repeated indexes is omitted. For 1� i ,j �

n, the suffix A.i; j / of A is the largest square
submatrix of A that starts at position .i; j / in A.
That is, A.i; j / D AŒi : : : i C k; j : : : j C k�,
where k D n � max.i; j /. Let $i be a special
symbol not in † such that $i is lexicographically
smaller than any other character in †. Assume
that $i is lexicographically smaller than $j for
i < j . For notational convenience, assume that
the last entries of the i th row and column are $i .
It makes all suffixes distinct. See Fig. 1a, b for an
example.

Let L
P

D
1S

iD1

P2i�1. The strings of L†

are referred to as Lcharacters, and each of them
is considered as an atomic item. L† is called
the alphabet of Lcharacters. Two Lcharacters are
equal if and only if they are equal as strings over

†. Moreover, given two Lcharacters La and Lb
of equal length, La is lexicographically smaller
than or equal to Lb if and only if the string
corresponding to La is lexicographically smaller
than or equal to that corresponding to Lb. A
chunk is the concatenation of Lcharacters with
the following restriction: an Lcharacter in †2i�1

can precede only one in †2.iC1/�1 and succeed
only one in †2.i�1/�1. An Lstring is a chunk such
that the first Lcharacter is in †.

For dealing with matrices as strings, a lin-
ear representation of square matrices is needed.
Given AŒ1 : : : n; 1 : : : n�, divide A into n Lshaped
characters. Let a.i/ be the concatenation of row
AŒi; 1 : : : i � 1� and column AŒ1 : : : i; i �. Then,
a.i/ can be regarded as an Lcharacter. The lin-
earized string of matrix A, called the Lstring
of matrix A, is the concatenation of Lcharac-
ters a.1/; : : :; a.n/. See Fig. 1c for an example.
Slightly different linearizations have been used
[9,10,13], but they are essentially the same in the
aspect of two-dimensional functionality.

Two-Dimensional Suffix Trees
The suffix tree of matrix A is a compacted trie
over the alphabet L† that represents Lstrings
corresponding to all suffixes of A. Formally, the
two-dimensional suffix tree of matrix A is a rooted
tree that satisfies the following conditions (see
Fig. 1d for an example):

1. Each edge is labeled with a chunk.
2. There is no internal node of outdegree one.
3. Chunks assigned to sibling edges start with

different Lcharacters, which are of the same
length as strings in †�.

4. The concatenation of the chunks labeling the
edges on the path from the root to a leaf gives
the Lstring of exactly one suffix of A, say
A.i; j /. It is said that this leaf is associated
with A.i; j /.

5. There is exactly one leaf associated with each
suffix.

Conditions 4 and 5 mean that there is a one-to-
one correspondence between the leaves of the
tree and the suffixes of A (which are all distinct
because $i is unique).
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Indexed Two-Dimensional String Matching, Fig. 1
(a) A matrix A, (b) the suffix A(2,1) and Lcharacters
composing A(2,1), (c) the Lstring of A(2,1), (d) the suffix

tree of A, and (e) the suffix array of A (omitting the
suffixes started with $i )

Problem 1 (Construction of 2D suffix tree)

INPUT: An n � n matrix A.
OUTPUT: A two-dimensional suffix tree storing

all square submatrices of A.

Online Suffix Trees
Assume that A is read online in row major order
(column major order can be considered simi-
larly). Let At D AŒ1 : : : t; 1 : : : n� and rowt D

AŒt; 1 : : : n]. At time t � 1, nothing but At�1

is known about A. At time t , rowt is read and
so At is known. After time t , the online suffix
tree of A is storing all suffixes of At . Note that
Condition 4 may not be satisfied during the online
construction of the suffix tree. A leaf may be
associated with more than one suffix, because the
suffixes of At are not all distinct.

Problem 2 (Online construction of 2D suffix tree)

INPUT: A sequence of rows of n � n matrix A,
row1,row2; : : :; rown.

OUTPUT: A two-dimensional suffix tree storing
all square submatrices of At after reading
rowt .

Two-Dimensional Suffix Arrays
The two-dimensional suffix array of matrix A is
basically a sorted list of all Lstrings correspond-
ing to suffixes of A. Formally, the kth element
of the array has the start position .i; j / if and
only if the Lstring of A.i; j / is the kth smallest
one among the Lstrings of all suffixes of A. See
Fig. 1e for an example. The two-dimensional
suffix array is also coupled with additional infor-
mation tables, called Llcp and Rlcp, to enhance
its performance like the standard suffix array. The
two-dimensional suffix array can be constructed
from the two-dimensional suffix tree in linear
time.

Problem 3 (Construction of 2D suffix array)

INPUT: An n � n matrix A.
OUTPUT: The two-dimensional suffix array stor-

ing all square submatrices of A.

Submatrix Trees
The submatrix tree is a tree data structure storing
all submatrices. This entry just gives a result on
submatrix trees. See [2] for details.
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Problem 4 (Construction of a submatrix tree)

INPUT: An n � m matrix B , n � m.
OUTPUT: The submatrix tree and its array form

storing all submatrices of B .

Key Results

Theorem 1 (Kim et al. 2011 [10], Cole and
Hariharan 2003 [1]) Given an n � n matrix A

over an integer alphabet, one can construct the
two-dimensional suffix tree in O.n2/ time.

Kim and Park’s result is a deterministic al-
gorithm, while Cole and Hariharan’s result is a
randomized one. For an arbitrary alphabet, one
needs first to sort it and then to apply the theorem
above.

Theorem 2 (Na et al. 2007 [13]) Given an n �

n matrix A, one can construct online the two-
dimensional suffix tree of A in O.n2log n/ time.

Theorem 3 (Kim et al. 2003 [9]) Given an n�n

matrix A, one can construct the two-dimensional
suffix array of A in O.n2log n/ time without
constructing the two-dimensional suffix tree.

Theorem 4 (Giancarlo 1993 [2]) Given an n �

m matrix B , one can construct the submatrix tree
of B in O(nm2log(nm)) time.

Applications

Two-dimensional indexes can be used for many
pattern-matching problems of two-dimensional
applications such as low-level image processing,
image compression, visual data bases, and so
on [3, 6]. Given an n � n text matrix and an
m�m pattern matrix over an alphabet †, the two-
dimensional pattern retrieval problem, which is
a basic pattern-matching problem, is to find all
occurrences of the pattern in the text. The two-
dimensional suffix tree and array of the text
can be queried in O.m2log j†j C occ/ time
and O.m2 C log n C occ/ time, respectively,
where occ is the number of occurrences of the
pattern in the text. This problem can be easily

extended to a set of texts. These queries have
the same procedure and performance as those of
indexes for strings. Online construction of the
two-dimensional suffix tree can be applied to LZ-
1-type image compression [6].

Open Problems

The main open problems on two-dimensional
indexes are to construct indexes in optimal time.
The linear-time construction algorithm for two-
dimensional suffix trees is already known [10].
The online construction algorithm due to [13]
is optimal for unbounded alphabets, but not for
integer or constant alphabets. Another open prob-
lem is to construct two-dimensional suffix arrays
directly in linear time.

Experimental Results

An experiment that compares construction algo-
rithms of two-dimensional suffix trees and suffix
arrays was presented in [8]. Giancarlo’s algo-
rithm [2] and Kim et al.’s algorithm [8] were im-
plemented for two-dimensional suffix trees and
suffix arrays, respectively. Random matrices of
sizes 200 � 200 	 800 � 800 and alphabets of
sizes 2, 4, 16 were used for input data. According
to experimental results, the construction of two-
dimensional suffix arrays is ten times faster and
five times more space efficient than that of two-
dimensional suffix trees.
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Problem Definition

The theory of inductive inference is concerned
with the capabilities and limitations of machine
learning. Here the learning machine, the concepts
to be learned, as well as the hypothesis space
are modeled in recursion theoretic terms, based
on the framework of identification in the limit
[1, 9, 15].

Formally, considering recursive functions
(mapping natural numbers to natural numbers)
as target concepts, a learner (inductive inference
machine) is supposed to process, step by step,
gradually growing initial segments of the graph
of a target function. In each step, the learner
outputs a program in some fixed programming
system, where successful learning means that the
sequence of programs returned in this process
eventually stabilizes on some program actually
computing the target function.

Case and Smith [3, 4] proposed several vari-
ants of this model in order to study the influ-
ence that certain constraints or relaxations may
have on the capabilities of learners. Their models
restrict (i) the number of mind changes (i.e.,
changes of output programs) a learner is allowed
to make during the learning process and (ii) the
number of errors the program eventually hypoth-
esized may have when compared to the target
function.

One major result of studying the correspond-
ing effects is a hierarchy of inference types culmi-
nating in a model general enough to allow for the
identification of the whole class of recursive func-
tions by a single inductive inference machine.

Notation
The target concepts for learning in the model
discussed below are recursive functions [14]
mapping natural numbers to natural numbers.
Such functions, as well as partial recursive func-
tions in general, are considered as computable
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in an arbitrary, but fixed Gödel numbering
' D .'i /i2N. Here N D f0; 1; 2; : : :g denotes
the set of all natural numbers. ' D .'i /i2N is
interpreted as a programming system, where the
number i 2 N is called a program for the partial
recursive function 'i .

Suppose f and g are partial recursive func-
tions and n 2 N. Below f Dn g is written if
the set fx 2 Njf .x/ ¤ g.x/g is of cardinality
at most n. If the set fx 2 Njf .x/ ¤ g.x/g is
finite, this is denoted by f D� g. One considers

 as a special symbol for which the <-relation
is extended by n < 
 for all n 2 N. For any
recursive f and any ´ 2 N, let f Œ´� denote
.´; .f .0/; : : : ; f .´/// for short.

For further basic recursion theoretic notions,
the reader is referred to [14].

Learning Models
Case and Smith [4] build their theory upon the
fundamental model of identification in the limit
[1, 9]. There a learner can be understood as an
algorithmic device, called an inductive inference
machine, which, given any “graph segment” f Œ´�

as its input, returns a program i 2 N. Such a
learner M identifies a recursive function f in the
limit, if there is some j 2 N such that

'j D f and M.f Œ´�/

D j for all but finitely many ´ 2 N:

A class of recursive functions is learnable in
the limit, if there is an inductive inference ma-
chine identifying each function in the class in
the limit. Identification in the limit is called EX-
identification, since a program for f is termed an
explanation for f .

For instance, the class of all primitive re-
cursive functions is EX-identifiable, whereas the
class of all recursive functions is not [9].

The central question discussed by Case and
Smith [4] is how the limitations of EX-learners
are affected by posing certain requirements on the
success criterion, concerning:

• Convergence criteria:
– e.g., when restricting the number of permit-

ted mind changes

– e.g., when relaxing the constraints on syn-
tactical convergence of the sequence of
programs returned in the learning process

• Accuracy:
– e.g., when relaxing the number of per-

mitted anomalies in the programs returned
eventually

Problem 1 In which way do modifications of
EX-identification in terms of accuracy and con-
vergence criteria affect the capabilities of the
corresponding learners?

Problem 2 In particular, if inaccuracies are per-
mitted, can EX-learners always refute inaccurate
hypotheses?

Problem 3 How much relaxation of the model
of EX-identification is needed to achieve
learnability of the full class of recursive
functions?

Key Results

Accuracy and Convergence Constraints
In order to systematically address these problems,
Case and Smith [4] defined inference types
reflecting restrictions and relaxations of EX-
identification as follows.

Definition 1 Suppose S is a class of recursive
functions and m; n 2 N [ f
g. S is EXn

m-
identifiable if there is an inductive inference ma-
chine M , such that for any function f 2 S , there
is some j 2 N satisfying:

• M.f Œ´�/ D j for all but finitely many ´ 2 N.
• j D mf .
• The cardinality of the set f´ 2 NjM.f Œ´�/ ¤

M.f Œ´ C 1�/g is at most n.

For intuition one may view n as an upper bound
on the allowed number of “mind changes” and
m as an upper bound on the allowed number of
“anomalies.”

EXn
m denotes the set of all classes of recur-

sive functions which are EXn
m-identifiable.
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Definition 2 Suppose S is a class of recursive
functions and m 2 N[f
g. S is BCm-identifiable
if there is an inductive inference machine M ,
which, for any function f 2 S , satisfies:

• 'M.f Œ´�/ Dm f for all but finitely many ´ 2

N.

BCm denotes the set of all classes of recursive
functions which are BCm-identifiable. BC is short
for behaviorally correct; the difference to EX-
learning is that convergence of the sequence of
programs returned by the learner is defined only
in terms of semantics, no longer in terms of
syntax.

The Impact of Accuracy and Convergence
Constraints
In general, each permission of mind changes or
anomalies increases the capabilities of learners;
however, mind changes cannot be traded in for
anomalies or vice versa.

Theorem 1 Let a; b; c; d 2 N [ f
g. Then
EXb

a � EXd
c if and only if a � c and b � d .

Corollary 1 For any m; n 2 N, the following
inclusions hold.

1. EXm
n � EXmC1

n � EX�n.
2. EXm

n � EXm
nC1 � EXm

� .

Theorem 2 Let n 2 N. Then EX�� � BCn �

BCnC1 � BC�.
These results provide a solution to Problem 1.

Refutability
In particular, refutability demands (in the
sense that every incorrect hypothesis should be
refutable; see [13]) are not applicable in the
theory of inductive inference; see Problem 2.

Formally, Case and Smith [4] consider
refutability as a property guaranteed by
Popperian machines, the latter being defined
as follows:

Definition 3 Suppose M is an inductive infer-
ence machine M . M is Popperian if, on any in-
put, M returns a program of a recursive function.

Results thereon include the following:

Theorem 3 There is an EX-identifiable class S

of recursive functions for which there is no Pop-
perian inductive inference machine witnessing its
EX-identifiability.

Corollary 2 There is an EX1-identifiable class S

of recursive functions for which there is no Pop-
perian inductive inference machine witnessing its
EX1-identifiability.

Additionally, in EX1-identification, Popper’s
refutability principle cannot be applied even if it
concerns only those hypotheses returned in the
limit.

Learning All Recursive Functions
Since the results above yield a hierarchy of in-
ference types with strictly growing collections of
learnable classes, there is also an implicit answer
to Problem 3: the class of recursive functions is
neither in EXn

m for any m; n 2 N [ f
g nor in
BCm for any m 2 N. In contrast to that, Case and
Smith [4] prove:

Theorem 4 The class of all recursive functions
is in BC�.

Applications

The work of Case and Smith [4] has been of high
impact in learning theory.

A consequence of the discussion of anomalies
is that refutability principles in general do not
hold for identification in the limit. This result
has given rise to later studies on methods and
techniques inductive inference machines might
apply in order to discover their errors [7] and
thus to further insights into the nature of inductive
inference.

Concerning the study of mind change hier-
archies, among others, their lifting to transfinite
ordinal numbers [8] is a notable extension.

Moreover, the theory of learning as proposed
by Case and Smith [4] has been applied for
the development of the theory of identifying re-
cursive [11] or recursively enumerable [10] lan-
guages.
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Open Problems

Among the currently open problems in induc-
tive inference, one key challenge is to find a
reasonable notion of the complexity of learning
problems (i.e., of classes of recursive functions)
involving the run-time complexity of learners as
well as the number of mind changes required to
learn the functions in a class. In particular, special
natural classes of functions should be analyzed in
terms of such a complexity notion.

Though of course the hierarchies EX0
m �

EX1
m � EX2

m � : : : for any m 2 N

reflect some increase of complexity in that
sense, a corresponding complexity notion
would not address the aspect of run-time
complexity of learners. Different complexity
notions have been introduced, such as the so-
called intrinsic complexity [2, 6] (neglecting run-
time complexity) and the “measure under the
curve” [5] (respecting the number of examples
required, but neglecting the number of mind
changes). In particular, for learning deterministic
finite automata, different notions of run-time
complexity have been discussed [12].

However, the definition of a more capacious
complexity notion remains an open issue.
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Problem Definition

A social network is a graph of relationships and
interactions within a set of individuals. Informa-
tion can spread within a social network by “word-
of-mouth” effects. In other words, information
diffuses from individuals to individuals in a social
network through the connections between them,
and if some information is spread by some initial
individuals, many individuals may believe in it
due to information diffusion. A social network
is denoted as G=(V; E; w), where V is a set of
vertexes with size n, E � V � V is a set of
edges with size m, and w W E ! Œ0; 1� is the
set of all w.u; v/ which is the weight of edge
(u; v).

Independent Cascade (IC) and Linear
Threshold (LT) Models
The IC and LT models [1] are two basic models of
influence diffusion in social networks, and there
are two vertex stages: inactive and active. The
influence always starts from a set of a set S

consists of seeds (initially active nodes). The time
is divided into discrete steps 0; 1; 2; : : : Denote
Si the set of active vertexes at step i (S0 D

S and S�1 D ;). In the IC model, influence
propagates as follows: Si is the union set of
Si�1 and other vertexes activated by vertexes in
Si�1 n Si�2 in step i . Each node u has only one
chance to activate each of its neighbors v with
probability w.u; v/ when u first becomes active.
In the LT model, influence propagates as follows:
at the beginning each vertex v picks a threshold

v uniformly at random from Œ0; 1� which is the
threshold of this vertex becoming active. In each
step i , Si D Si�1 [ fvj

P
u2Si�1

w.u; v/ � 
vg.
Both IC and LT models stop at the step t C1 when
the process reaches its maximum influence, i.e.,
StC1 D St .

Problem 1: Influence Maximization
Problem (InfMax) [1]

INPUT: A social network G D .V; E; w/ and k,
the number of seeds.

OUTPUT: The set S containing k seeds that
maximizes the influence I.S/.

Price-Related Propagation (PR) Frame
Adding monetary factor into the propagation
process of the IC and LT models makes this
price related (PR) propagation frame. In the
PR frame, only the individual who adopts a
product propagates this product’s influence,
and the adoption depends on the relationship
between the price offered and the individual’s
valuation about this product. In detail, every
vertex u has three stages: neutral, influenced,
and active. Vertex u being neutral means it
has no idea or positive attitude about this
product. When u becomes influenced, u holds
a positive attitude to the product but u hasn’t
adopted this product yet. Only if u further
turns into active stage, u adopts the product
and propagates the influence by telling its
network neighbors. The PR frame separates,
holding a positive attitude and propagating
influence, in which the two are the same in
traditional IC and LT models. This separation
comes from the fact that individuals in social
networks are independent human beings who not
only are influenced by the people around but
also have their own judgements. If someone
receives some information, surely he or she
should first evaluate the information before
spreading it.

The PR frame assumes that each individual
u has a valuation for the product, which is the
highest price this individual thinks the product is
worth. The rule of judging whether an influenced
individual turns into active is the following: only
if u is influenced and its valuation is higher than
the offered price, u will turn active, adopt this
product, and propagate the influence. The PR
frame is an extension to the IC and LT models;
it contains the PR-I model based on the IC and
the PR-L model based on the LT. The rules of
an individual turning from neutral to influenced
in PR-I and PR-L model are the same as the
rules of an individual turning from inactive to
active in IC and LT model, respectively. However
in the PR frame the influenced individuals do
not propagate influence, but only the active ones
do, and an influence individual turns to active
if and only if the offered price is lower than its
valuation.
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Pricing Strategies in the PR Frame
Since price is vitally significant in the PR frame,
we design two strategies to determine the prices
offered to the individuals. The first one is binary
pricing (BYC), in which all chosen seeds are
given free samples and all other individuals are
charged the same price, and the second one is
panoramic pricing (PAP), in which prices for
individuals including seeds are unconstrained dif-
ferent values that can be any value if needed.

In the PR frame, choosing node u as a seed
merely means turning u to influenced. However,
in BYC, any seed u must further become active
for each seed is offered a free sample, i.e., the of-
fered price is 0 and no greater than the valuation.
In PAP, on the other hand, a seed u may not be
active.

Price plays a vital role on the influence and
profit in the PR frame. High prices may bring
high profit but it hinders the influence propaga-
tion, and to enlarge the influence, some sacrifice
on profit is inevitable. Base on this observation,
a parameter � 2 Œ0; 1/ is adopted to denote
the decision maker’s preference toward influence
and profit, and the objective is the weighted sum
of influence and profit, which we call balanced
influence and profit (BIP).

Problem 2: Balanced Influence and Profit
Maximization Problem (BIPMax) [2]

INPUT: A social network G D .V; E; w/, the
distribution of customer evaluation, and � the
decision maker’s preference.

OUTPUT: The seed set S and the price p for all
individuals that maximize the objective func-
tion B.S; p/ D � �I.S; p/C .1��/ �R.S; p/

where I.S; p/ is the influence and R.S; p/ is
the profit.

Key Results

Result 1: InfMax under the IC and LT models is
both NP-hard. [1]

Result 2: BIPMax under the PR-I and PR-L
models is both NP-hard. [2]

The above two results show the difficulties
of solving InfMax and BIPMax, respectively. It
can be seen that both of them are “hard” to
solve. However, approximation algorithms may
exist, and the following two properties are used
to design and analyze algorithms. Suppose f is a
set function on subsets of V .

Submodularity and Monotony
1. Submodular function. f is called submodu-

lar if for every X � Y � V and ´ 2 V n Y ,
f .X [ f´g/ � f .X/ � f .Y [ f´g/ � f .Y /.

2. Monotone function. f is called monotone if
f .X [ f´g/ � f .X/ for any set X � V and
element ´ 2 V .

Result 3: Influence I.S/ under both IC and
LT models is submodular and monotone w.r.t.
S . [1]

Result 4: BIP B.S; p/ under both PR-I and PR-
L models is submodular w.r.t. S , if the prices
p are fixed and pi � c, where pi is the i th
element of p and c is the manufacturing cost
of the product. [2]

Remark 1 B.S; p/ under both PR-I and PR-L
models is non-monotone w.r.t. S . [2]

Algorithm for InfMax
Nemhauser et al. in [3] showed that greedy hill-
climbing algorithm has the approximation ratio
with 1 � 1=e of maximizing a submodular and
monotone set function f . The greedy algorithm
of maximizing influence is presented in Algo-
rithm 1: each time the vertex that brings the
highest marginal influence will be picked as a
new seed, until the desired number of seeds
are picked. Hence, according to Result 3, Algo-
rithm 1 has a constant performance ratio 1 � 1=e

solving InfMax.
Note that computing actual influence as well

as marginal influence is #P-hard [1]. To estimate
the influence in a reasonable time, Monte Carlo
simulation is usually adopted, generating a num-
ber of samples and calculating the average value
of all samples.
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Algorithm 1 Greedy algorithm
S  ; ;
while jS j < k do

u D arg max
u2V nS

fI.S [ fug/� I.S/g;

S  S [ u;
end while
output S ;

Algorithms for BIPMax
For a non-monotone submodular set function f ,
Feige et al. [4] devised a deterministic local-
search 1

3
-approximation and a randomized 2

5
-

approximation algorithm if f is nonnegative;
therefore, if the prices p are preknown and fixed,
the techniques in [4] may be ideal approximation
algorithms. However, usually prices p are to be
determined to achieve the maximum BIP, and
general algorithms need careful consideration.

To give a better pricing method for BIPMax,
both the manufacturing cost and local influence
should be considered. The manufacturing cost
is denoted by c. Individual vi ’s evaluation is a
random variable Xi whose cumulative distribu-
tion function (CDF) is denoted by Fi . (If vi is
influenced and being offered price q, then the
probability that vi turns active is Prob.xi � q/ D

1 � Fi .q/.) For vi itself, if it is chosen as the
only seed and offered price p, the expected profit
solely from vi is .1�Fi .p//.p�c/, what is more,
the expected influence to other nodes solely from
vi is .1�Fi .p// �I.vi ; p/. However, I.vi ; p/ de-
pends on other nodes’ prices; to ease the compu-
tation, the following simple one-hop estimation
is adopted:

P
8uj outneighbor of vi

w.vi ; u/=d out.vi /,
where d out.vi / is the outdegree of vi . Then the
optimal price p0i for vi is calculated as follows:

QBi .p/ D �.1 � Fi .p//
P w.vi ;u/

d out.vi /

C .1 � �/.1 � Fi .p//.p � c/; (1)

p0i D arg min
p2Œ0;1�

QBi .p/: (2)

Equation (1) considers both the manufacturing
cost and the network structure; however, the price
calculated by (2) is still myopic.

Determine the Seeds and Prices Under BYC
In BYC the prices can only be 0 or the full price;
for a company this strategy takes the least im-
plementation expense. ABYC is the algorithm for
BYC. ABYC contains two stages: first offering
every individual a same full price and second
determining the seeds whom free samples are
given to.

Equation (2) is not used in the first stage
since the obtained p0i may vary from vi . Instead
we calculate the universal optimal price: p0

U
D

arg min
p2Œ0;1�

nP

i

QBi .p/.

Greedy is used in the second stage of
determining seeds: every round for each non-seed
vertex u we compute the marginal BIP of picking
u as a seed, and choose the vertex that provides
the highest marginal gain. When no marginal BIP
gain can be bought by any vertex, ABYC stops.

Suppose the price vector p D .p1; : : : pn/;
denote .p�i ; q/ the vector obtained by altering
pi , the i th element of p to q, i.e., .p�i ; q/ D

.p1; : : : ; pi�1; q; piC1; : : : ; pn/.

Algorithm 2 ABYC: the algorithm for BYC
S  ;, p 0 ;
for 8vi 2 V do

pi  p0

U
;

end for
while true do

u arg max
vi 2V nS

fB.S [ fvig; .p
�i ; 0//� B.S; p/g;

if B.S [ fug; .p
�i ; 0//� B.S; p/ > 0 then

S  S [ fug; p .p
�i ; 0/;

else break;
end if

end while
output .S; p/;

Determine the Seeds and Prices Under PAP
BYC is easy to implement, however it is too
simple and constrained, PAP is much freer where
prices are assigned with no constraint. APAP is
the algorithm for PAP, and like ABYC it also
contains two stages. In the first stage, to obtain
p0i for every vi (2) is adopted. In the second stage,
the vertex with the maximum marginal BIP gain
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is picked step by step until no positive gain is
available.

The computation of the marginal BIP gain
under PAP when adding vi into the seed set S is
much more complex comparing to BYC, since
when choosing vi as a new seed a new price may
also be offered to it. Suppose the new price for vi

is q, then the marginal BIP gain of adding vi is:
B.S [fvi g; .p�i ; q//�B.S; p/. Since B.S; p/ is
a constant w.r.t. q, B.S [ fvi g; .p�i ; q// should
be maximized. When offering price q to vi , only
two outcomes exist in the sample space, outcome
!1 where vi accepts the price and turns active,
outcome !0 where vi rejects the price, stays
influenced and never spreads the influence. If !1

happens, the influence gain collected from vi is
1 and the profit gain collected from vi is q � c,
suppose the influence from other nodes is I1 and
the profit from other nodes is R1, then the BIP
gain is gi .q/ D �.I1 C1/C .1��/.q � c CR1/,
which is a linear function w.r.t. q. Else if !0

happens, the influence gain collected from vi

is 1 and the profit gain collected from vi is 0,
suppose the influence from other nodes is I0 and
the profit from other nodes is R0, then the BIP
gain is hi D �.I0 C 1/ C .1 � �/R0, a constant
independent of q. Prob.!1/ D 1 � Fi .q/ and
Prob.!0/ D Fi .q/. Hence the expected BIP is:

ıi .q/ D gi .q/ � .1 � Fi .q// C hi � Fi .q/ (3)

Algorithm 3 APAP: the algorithm for PAP
S  ;, p 0 ;
for 8vi 2 V do

pi  p0

i
D arg min

p2Œ0;1�

QBi .p/;

end for
while true do

for 8vi 2 V n S do
p�

i
 arg max

q2Œ0;1�

ıi .q/;

end for
u arg max

vi 2V nS

fB.S [ fvig; .p
�i ; p�

i
//� B.S; p/g;

if B.S [ fug; .p
�i ; p�

i
//� B.S; p/ > 0 then

S  S [ fug; p .p
�i ; p�

i
/;

else break;
end if

end while
output .S; p/;

To calculate I1 and R1, set vi turns active
with probability 1 and run Monte Carlo simula-
tions, and to calculate I0 and R0, set vi turns
active with probability 0 and run Monte Carlo
simulations. After obtaining I1, R1, I0, and R0,
p�i should be computed. If ıi .q/ is a closed
form, then p�i is easy to calculate. However
ıi .q/ may not be a close form. For example, if
the valuation follows normal distribution, then
Fi contains an integral term and ıi .q/ is not a
closed form. In this case, golden section search
[5] which works fast on finding the extremum
of a strictly unimodal function can be used. This
technique successively narrows the range inside
which the extremum exists to find it. Even if
ıi .q/ is not always unimodal, it is unimodel
in subintervals of Œ0; 1�. To reduce error, di-
vide the interval Œ0; 1� into several small inter-
vals with the same size and pick each small
interval’s midpoint as a sample qt . The search
starts with the interval that contains the sample
q0 D arg maxt ıi .qt / and stops when the interval
that contains p� is narrower than a predefined
threshold.
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Problem Definition

One of the fundamental problems in social net-
work is influence maximization. Informally, if
we can convince a small number of individuals
in a social network to adopt a new product or
innovation, and the target is to trigger a maximum
further adoptions, then which set of individuals
should we convince? Consider a social network
as a graph G.V; E/ consisting of individuals
(node set V ) and relationships (edge set E);
essentially influence maximization comes down
to the problem of finding important nodes or
structures in graphs.

Influence Diffusion
In order to address the influence maximization
problem, first it is needed to understand the in-
fluence diffusion process in social networks. In
other words, how does the influence propagate
over time through a social network? Assume
time is partitioned into discrete time slots, and
then influence diffusion can be modeled as the
process by which activations occur from neighbor
to neighbor. In each time slot, all previously
activated nodes remain active and others either
remain inactive or be activated by their neighbors
according to the activation constraints. The whole
process runs in a finite number of time slots and
stops at a time slot when no more activation
occurs. Let S denote the set of initially activated
nodes; we denote by f .S/ eventually the number
of activations, and the target is to maximize f .S/

with a limited budget.

Problem (Influence Maximization)
INPUT: A graph G.V; E/ where V is the set of

individuals and E is the set of relationships,
an activation model f , and a limited budget
number K.

OUTPUT: A set S of nodes where S � V such
that the final activations f .S/ is maximized
and jS j � K .

Activation Models
The influence maximization problem was first
proposed by Domingos et al. and Richardson
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Influence Maximization,
Fig. 1 Pseudo-code:
Greedy algorithm

Greedy Algorithm
1: let S ← ∅ (S holds the selected nodes);
2: while |S| ≤ K do
3: find v ∈ (V \ S) such that f(S ∪ {v}) is maximized;
4: let S ← S ∪ {v};
5: end while

et al. in [4] and [8], respectively, in which the
social networks are modeled as Markov random
field. After that, Kempe et al. ([6] and [7]) fur-
ther investigated this problem in two models:
Independent Cascade proposed by Goldenberg
et al. ([5] and [11]) and Linear Threshold pro-
posed by Granovetter et al. and Schelling et al.,
respectively, in [9] and [10].

In the Independent Cascade model, the ac-
tivations are independent among different indi-
viduals, i.e., each newly activated individual u
will have a chance, in the next time slot, to
activate his or her neighbors v with certain prob-
ability p.u; v/ which is independent with other
activations. In the Linear Threshold model, the
activation is based on a threshold manner; the
influence from an individual u to another indi-
vidual v is presented by a weight w.i; j / and
the individual v will be activated at the moment
when the sum of weights he or she receives
from previous activated neighbors exceeds the
threshold t .v/. It is worthy to note that there are
two ways to assign the thresholds to individuals:
random and deterministic. In the random model,
the thresholds are randomly selected at uniform
during the time, while in the deterministic model,
the thresholds are assigned to individuals at the
beginning and fixed for all time slots. For the
sake of simplicity, they are called Random Linear
Threshold and Deterministic Linear Threshold,
respectively.

Key Results

Greedy Algorithm
In [6], it has been found that the activation
function f under the Independent Cascade
model and the Random Linear Threshold model

is sub-modular. Therefore, the natural greedy
algorithm (Fig. 1), which selects the node with
the maximum marginal gain repeatedly, achieves
a
�
1 � 1

e

�
-approximation solution. However, the

problem of exactly calculating the activation
function f in a general graph G under the
Independent Cascade model or the Random
Linear Threshold model, respectively, is #P-hard
[1, 2], which indicates that the greedy algorithm
is not a polynomial time algorithm for the two
models. The time complexity directly follows
the pseudo-code (Fig. 1). Assume there exists an
oracle that can compute the activation function f

in � time, and then the greedy algorithm runs in
O.KjV j�/ time.

In [13], it has been found that the problem
of exactly calculating the activation function f

given an arbitrary set S under the Deterministic
Linear Threshold model can be solved in linear
time in terms of the number of edges. Therefore,
the greedy algorithm runs in O.KjV jjEj/ time.
However, it has no approximation guarantee un-
der this model.

Inapproximation Results
Under the Independent Cascade model or the
Random Linear Threshold model, it can be shown
by doing a gap-preserving reduction from the Set
Cover problem [3] that

�
1 � 1

e

�
is the best possi-

ble polynomial time approximation ratio for the
influence maximization problem; assume NP 6�

DTIME
�
nlog log n

�
. Under the Deterministic Lin-

ear Threshold model, it has been shown that there
is no polynomial time n1��-approximation al-
gorithm for the influence maximization problem
unless P = NP where n is the number of nodes and
0 < 	 < 1 [12].

Actually in the case that an individual can
be activated after one of his or her neighbors
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becomes active, the greedy algorithm achieves
a polynomial time

�
1 � 1

e

�
-approximation

solution, and even in the simple case that
an individual can be activated when one or
two of his or her neighbors become active,
the influence maximization problem under the
Deterministic Linear Threshold model is NP-
hard to approximate.

Degree-Bounded Graphs
A graph G.V; E/ is a .d1; d2/-degree-bounded
graph if every node in V has at most d1 incoming
edges and at most d2 outgoing edges.

For the sake of simplicity, the influence max-
imization problem over such a degree-bounded
graph is called .d1; d2/-influence maximization.
In [13], it has been found that for any constant
	 2 .0; 1/, there is no polynomial time n1��-
approximation algorithm for the .2; 2/-influence
maximization problem under the Deterministic
Linear Threshold model unless P = NP where n

is the number of nodes, which indicates that
the influence maximization problem under De-
terministic Linear Threshold model is NP-hard to
approximate to within any nontrivial factor, even
if an individual can be activated when at least two
of his or her neighbors become active.

Applications

Influence maximization would be of great interest
for corporations, such as Facebook, LinkedIn,
and Twitter, as well as individuals who desire to
spread their products, ideas, etc. The solutions
have a wide range of applications in various
fields, such as product promotions where corpo-
rations want to distribute sample products among
customers, political elections where candidates
want to spread their popularity or political ideas
among voters, and emergency situations where
emergency news like sudden earthquake needs
to spread to every resident in the community.
In addition, the solutions may be also applicable
in military defense where malicious information
which has already propagated dynamically needs
to be blocked.
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Problem Definition

This problem is concerned with efficiently find-
ing a set of documents that closely match a query
within a large corpus of documents (i.e., a search
engine). This is accomplished by producing an
index offline to the query processing and then
using the index to quickly answer the queries.
The indexing stage involves splitting the dataset
into tokens and then constructing an inverted
index which maps from each token to the list
of document identifiers of the documents that
contain that token (a postings list). The query
can then be executed by converting it to a set of
query tokens, using the inverted index to find the
corresponding postings lists, and intersecting the
lists to find the documents contained in all the
lists (conjunctive intersection or boolean AND).
A subsequent ranking step is used to restrict the
conjunctive intersection to a list of top-k results
that best answer the query.

Objective
Produce an efficient system to answer queries,
where efficiency is a space-time trade-off involv-
ing the storage of the inverted index (space) and
the intersection of the lists (time). If the inverted

index is stored on a slow medium, then efficiency
might also include the size of the lists required to
answer the query (transfer).

Design Choices
There are many degrees of freedom in designing
such a system:

1. Creating a document to internal identifier
mapping

2. Encoding of the inverted index mapping
3. Encoding of the postings lists
4. Using auxiliary structures in postings lists
5. Ordering of the internal identifiers in the post-

ings lists
6. Order and method of executing the list inter-

section

Variants
For queries where the conjunctive intersection is
too small, the intersection can be relaxed to find
documents containing a weighted portion of the
query tokens (see t-threashold or Weak-AND).
The query lists can be intersected using any
boolean operators, though the most commonly
added is the boolean NOT operator which can be
used to quickly reduce the number of conjunctive
results. The query results can also be reduced
by including token offset restrictions, such as
ensuring tokens appear as a phrase or within
some proximity. While many implementations
interleave the conjunctive intersection with the
calculation of the ranking, some also use ranking
information to prune documents from the inter-
section or to terminate the query early when the
correct results (or good enough results) have been
found.

Key Results

Traditionally, inverted indexes were stored on
disk, causing the reduction of transfer costs to
be the dominant objective. Modern systems often
store their inverted indexes in memory meaning
that reducing overall index size is important and
that implementation details of the intersection
algorithms can produce significant performance
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differences, thus leading to a more subtle space-
time trade-off. In either case, the mapping portion
of the inverted index (the dictionary or lexicon)
can be implemented using a data structure such
as a B-tree which is both fast and compact, so we
do not examine dictionary implementations in the
remainder of this article.

Multi-list Processing
Intersecting multiple lists can be implemented
by intersecting the two smallest lists and then
intersecting the result with the next smallest list
iteratively, thus producing a set versus set (svs)
or term-at-a-time (TAAT) approach. If the lists
are in sorted order, then each step of the svs
approach uses the merge algorithm, which takes
each element in the smaller list M and finds it in
the larger list N by executing a forward search
and then reports any elements that are found. The
M list could be encoded differently than the N

list, and indeed, after the first svs step, it is the
uncompressed result list of the previous step. The
sequential processing and memory accesses of
the svs approach allows the compiler and CPU
to optimize the execution, making this approach
extremely fast, even though temporary memory is
required for intermediate result accumulators. If
the lists are not sorted, then additional temporary
memory must be used to intersect the lists using
some equality-join algorithm.

Intersecting multiple lists can also be imple-
mented by intersecting all the lists at the same
time. If the lists are not in sorted order, using
this approach may require a large amount of
temporary space for the join structures and the
accumulators. If the lists are sorted, then we call
this a document-at-a-time (DAAT) approach, and
it requires very little temporary space: just one
pointer per list to keep track of its processing
location. The order that the lists are intersected
could be static, such as ascending term frequency
order (as done with svs), or it could adapt to
the processing. All of these non-svs approaches
jump among the lists that are stored at different
memory locations, so it is more difficult for the
compiler and CPU to optimize the execution. In
addition, the loop iterating over the lists for each
result item and the complications when using

different list encodings will slow down non-svs
implementations. Despite these limitations, many
of the optimizations for svs list intersection can
be applied to implementations using non-svs ap-
proaches. For systems that return the top-ranked
results, a small amount of additional memory is
needed for a top-k heap to keep track of the best
results. Instead of adding results that match all
the terms into a simple array of results, they are
added to the heap. At the end of query processing,
the content of the heap is output in rank order to
form the final top-k query results.

Uncompressed Lists
Storing the lists of document identifiers in an
uncompressed format simply means using a se-
quential array of integers. For fast intersection,
the integers in these lists are stored in order,
thus avoiding join structures and allowing many
methods of searching for a particular value in a
list. As a result, there are many fast algorithms
available for intersecting uncompressed integer
lists, but the memory used to store the uncom-
pressed lists is very large and probes into the
list can produce wasted or inefficient memory
access. All of these uncompressed intersection
algorithms rely on random access into the lists,
so they are inappropriate for compressed lists.
We present only three of the best performing
algorithms [2]:

Galloping svs (g-svs): Galloping forward
search probes into the list to find a point past
the desired value, where the probe distance
doubles each time, then the desired location is
found using binary search within the last two
probe points.

Galloping swapping svs (g-swsvs): In the pre-
vious galloping svs algorithm, values from
the smaller list are found in the larger list.
Galloping swapping svs, however, finds val-
ues from the list with the smaller number
of remaining integers in the other list, thus
potentially swapping the roles of the lists.

Sorted Baeza-Yates using adaptive binary for-
ward search (ab-sBY): The Baeza-Yates al-
gorithm is a divide and conquer approach that
finds the median value of the smaller list in the
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larger list, splits the lists, and recurses. Adding
matching values at the end of the recursion
produces a sorted result list. The adaptive bi-
nary forward search variant uses binary search
within the recursed list boundaries, rather than
using the original list boundaries.

Compressed Lists
There are a large variety of compression algo-
rithms available for sorted integer lists. The lists
are first converted into differences minus one
(i.e., deltas or d-gaps) to get smaller values, but
this removes the ability to randomly access ele-
ments in the list. Next, a variable length encoding
is used to reduce the number of bits needed to
store the values, often grouping multiple values
together to allow word or byte alignment of
the groups and faster bulk decoding. The most
common list compression algorithms are Variable
byte (vbyte), PForDelta (PFD), and Simple9 (S9).
Recent work has improved decoding, and delta
restore speeds for many list compression algo-
rithms using vectorization [7]. Additional gains
are possible by changing delta encoding to act
on groups of values, thus improving runtime at
the expense of using more space. Another re-
cent approach called quasi-succinct indexing [10]
first acts on the values as monotone sequences
and then incorporates some delta encoding more
deeply in the compression algorithm.

List Indexes
List indexes, also known as skip structures or
auxiliary indexes, can be included to jump over
values in the postings lists and thus avoid de-
coding, or even accessing, portions of the lists.
The desired jump points can be encoded in-
line with the lists, but they are better stored in
a separate contiguous memory location without
compression, allowing fast scanning through the
jump points. These list index algorithms can be
used with compressed lists by storing the deltas
of the jump points, but the block-based structure
causes complications if the jump point is not
byte or word aligned, as well as block aligned.
The actual list values that are found in the skip
structures can either be maintained within the
original compressed list (overlaid) preserving fast

iteration through the list, or the values could
be extracted (i.e., removed) from the original
compressed lists, giving a space reduction but
slower iteration through the list.

A simple list index algorithm (“skipper” [9])
groups by a fixed number of elements storing
every X th element in a separate array structure,
where X is a constant, so we refer to it as
skips(X). When intersecting lists, the skip struc-
ture is scanned linearly to find the appropri-
ate jump point into the compressed structure,
where the decoding can commence. Using vari-
able length skips is possible, such as tuning the
number of skipped values relative to the list size
n, perhaps using a multiple of

p
n or log.n/.

Another type of list index algorithm
(“lookup” [9]) groups by a fixed size document
identifier range using the top-level bits of
the value to index into an array storing the
desired location in the encoded list, similar to
a segment/offset scheme. Each list can pick the
number of bits in order to produce reasonable
jump sizes. We use D as the domain size and n as
the list size, giving a list’s density as y D n

D
.

If we assume randomized data and use the
parameter B to tune the system, then by usingl

log2

�
B
y

�m
bottom level bits will leave between

B
2

and B entries per segment in expectation. As a
result, we call this algorithm segment(B).

Bitvectors
When using a compact domain of integers, as we
are, the lists can instead be stored as bitvectors,
where the bit number is the integer value and
the bit is set if the integer is in the list. For
runtime performance benefits, this mapping from
the identifier to the bit location can be changed if
it remains a one-to-one mapping and is applied to
all bitvectors.

If all the lists are stored as bitvectors, conjunc-
tive list intersection can be easily implemented
by combining the bitvectors of the query terms
using bitwise AND (bvand), with the final step
converting the result to a list of integers (bvcon-
vert). Note, except for the last step, the result of
each step is a bitvector rather than an uncom-
pressed result list. The bvconvert algorithm can
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be implemented as a linear scan of the bits of
each word, but using a logarithmic check is faster
since the bitvectors being converted are typically
sparse. Encoding all the lists as bitvectors gives
good query runtime, but the space usage is very
large since there are many tokens.

To alleviate the space costs of using bitvectors,
the lists with density less than a parameter value
F can be stored using normal delta compression,
resulting in a hybrid bitvector algorithm [4]. This
hybrid algorithm intersects the delta-compressed
lists using merge and then intersects the remain-
der with the bitvectors by checking if the ele-
ments are contained in the first bitvector (bv-
contains), repeating this for each bitvector in the
query, with the final remaining values being the
query result. Bitvectors are faster than other ap-
proaches for dense lists, so this hybrid algorithm
is faster than non-bitvector algorithms. It can
also be more compact than other compression
schemes, because dense lists can be compactly
stored as bitvectors. In addition, large overlaid
skips can be used in the delta-compressed lists to
improve query runtime.

In order to store more postings in the faster
bitvector form, a semi-bitvector structure [5] en-
codes the front portion of a list as a bitvector and
the rest using skips over delta compression. By
skewing lists to have dense front portions, this
approach can improve both space and runtime.

Other Approaches
Quasi-succinct indices [10] store list values in
blocks with the lower bits of the values in an array
and the higher bits as deltas using unary encoding
combined with skips for fast access. This struc-
ture produces a good space-time trade-off when
the number of higher-level bits is limited. The list
intersection implementation can exploit the unary
encoding of the higher-level bits by counting the
number of ones in machine words to find values
quickly. The resultant space-time performance is
comparable to various skip-type implementations
for conjunctive list intersection, though indexing
speed may be slower.

The treap data structure combines the func-
tionality of a binary tree and a binary heap. This

treap data structure can implement list intersec-
tion [6] by storing each list as a treap where
the list values are used as the tree order and the
frequencies are used as the heap order. During
list intersection, subtrees can be pruned from
the processing if the frequency is too low to
produce highly ranked results. In order to make
this approach viable, low-frequency values are
stored in separate lists using delta-compression
with skips. This treap and frequency separated
index structure can produce some space-time per-
formance improvements compared to existing
ranking-based search systems.

Wavelet trees can also be used to implement
list intersection [8]. The postings lists are ordered
by frequency, and each value is assigned a global
location, so that each list can be represented
by a range of global locations. A series of bit
sequences represents a tree which starts with the
frequency-ordered lists of the global locations
and translates them into the actual document
identifiers. Each level of the tree splits the docu-
ment identifier domain ranges in half and encodes
the edges of the tree using the bit sequences
(left as 0 and right as 1). Multiple lists can be
intersected by following the translation of their
document ranges in this tree of bit sequences,
only following the branch if it occurs in all of the
list translations. After some careful optimization
of the translation code, the wavelet tree data
structure results in similar space usage, but faster
query runtimes than some existing methods for
conjunctive queries.

Ranking
Ranking algorithms are closely guarded trade se-
crets for large web search companies, so their de-
tails are not generally known. Many approaches,
however, add term frequencies and/or postings
offsets into the postings lists and combine this
with corpus statistics to produce good results, as
done in the standard BM25 approach. Unfortu-
nately, information such as frequencies cannot be
easily added to bitvector structures, thus limiting
their use. Data and link analysis can also help
by producing a global order, such as PageRank,
which can be factored into the ranking function
to improve results.
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Reordering
Document identifiers in postings lists can be
assigned to make the identifier deltas smaller
and more compressible. As a first stage, they are
assigned to form a compact domain of values,
while a second stage renumbers these identi-
fiers to optimize the system performance in a
process referred to as document reordering [3].
Reordering can improve space usage by placing
documents with similar terms close together in
the ordering, thus reducing the size of the deltas,
which can then be stored more compactly, among
other benefits.

Applications

Intersecting inverted lists is at the heart of search
engine query processing and top-k operators in
databases.

Open Problems

Going forward, main goal is to design list
representations which are provably optimal in
terms of space usage (entropy) together with
algorithms that achieve the optimal trade-off
between time and the space used by the given
representation.

Experimental Results

Most published works involving intersections of
inverted lists prove their results through experi-
mentation. Following this approach, we show the
relative performance of the described approaches
using an in-memory conjunctive list intersection
system that has document ordered postings lists
without any ranking-based structures or process-
ing. We run this system on the TREC GOV2 cor-
pus and execute 5,000 of the associated queries.
These experiments were executed on an AMD
Phenom II X6 1090T 3.6 GHz Processor with
6 GB of memory running Ubuntu Linux 2.6.32-
43-server. The code was compiled using the gcc
4.4.3 compiler with the -O3 command line pa-
rameter. Our results are presented in Fig. 1 using
a space-time (log-log) plot. For the configurations
considered, the block size of the encoding always
equals the skip size, X , and the bitvector config-
urations all use X D 256.

With compressed lists alone, intersection is
slow. On the other hand, uncompressed lists
are much larger than compressed ones, but
random access allows them to be fast. List
indexes when combined with the compressed
lists add some space, but their targeted access
into the lists allows them to be even faster
than the uncompressed algorithms. (For the list
indexes, we present the fastest configurations we
tested over the parameter ranges of X and B .)
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The performance of list indexes suggests that
the benefits of knowing where to probe into
the list (i.e., using skips rather than a probing
search routine) outweigh the cost of decoding
the data at that probe location. Using the hybrid
bitvector approach is much faster and somewhat
smaller than the other techniques. Adding large
overlaid skips to the delta-compressed lists
allows the bitvectors + skips algorithm to improve
performance.

Reordering the documents to be in URL
order gives significant space improvements.
This ordering also improves query runtimes
significantly, for all combinations of skips
and/or bitvectors. Splitting the documents into
eight groups by descending number of terms
in document, reordering within the groups by
URL ordering (td-g8-url), and using semi-
bitvectors produce additional improvements in
both space and runtime. This demonstration of
the superior performance of bitvectors suggests
that integrating them into ranking-based systems
warrants closer examination.

URLs to Code and Datasets

Several standard datasets and query workloads
are available from the Text REtreival Conference
(TREC at http://trec.nist.gov). Many implemen-
tations of search engines are available in the open
source community, including Wumpus (http://
www.wumpus-search.org), Zettair (http://www.
seg.rmit.edu.au/zettair/), and Lucene (http://
lucene.apache.org).
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Problem Definition

Algorithmic self-assembly [11] is the idea that
small self-assembling molecules can compute as
they grow structures. It gives programmers a set
of theoretical models in which to specify and
design target structures while trying to optimize
resources such as number of molecule types or
even construction time. The abstract Tile Assem-
bly Model [11] is one such model. An instance of
the model is called a tile assembly system and
is a triple T D .T; �; �/ consisting of a finite
set T of square tiles, a seed assembly � (one or
more tiles stuck together), and a temperature � 2

f1; 2; 3; : : :g, as shown in Fig. 1a. Each side of a
square tile has a glue (or color) g which in turn
has a strength s 2 f0; 1; 2; : : :g. Growth occurs on
the integer plane and begins from a seed assembly

(or a seed tile) placed at the origin, as shown
in Fig. 1b. A tile sticks to a partially formed
assembly if it can be placed next to the assembly
in such a way that enough of its glues match the
glues of the adjacent tiles on the assembly and the
sum of the matching glue strengths is at least the
temperature. Growth proceeds one tile at a time,
asynchronously and nondeterministically.

Here we discuss recent results and suggest
open questions on intrinsic universality and sim-
ulation as a method to compare self-assembly
models. Figure 2 gives an overview of these and
other results. For more details, see [12].

Simulation and Intrinsic Universality
Intuitively, one self-assembly model simulates
another if they grow the same structures, via
the same dynamical growth processes, possibly
with some spatial scaling. Let S and T be tile
assembly systems of the abstract Tile Assembly
Model described above. S is said to simulate T if
the following conditions hold: (1) each tile of T
is represented by one or more m � m blocks of
tiles in S called supertiles, (2) the seed assembly

seed seed seed

seed

m x m seed
assembly 

*

* ***

=2

*
U

a

b

c d

seed seed

Intrinsic Universality in Self-Assembly, Fig. 1 An in-
stance of the abstract Tile Assembly Model and an ex-
ample showing simulation and intrinsic universality. (a)
A tile assembly system T consists of a tile set, seed tile,
and a temperature � 2 N. Colored glues on the tiles’
sides have a natural number strength (shown here as 0,
1, or 2 colored tabs). (b) Growth begins from the seed
with tiles sticking to the growing assembly if the sum of
the strengths of the matching glues is at least � . (c) An

intrinsically universal tile set U . (d) When initialized with
a seed assembly (which encodes T ) and at temperature 2,
the intrinsically universal tile set simulates the dynamics
of T with each tile placement in T being simulated by the
growth of an m�m block of tiles. Single tile attachment is

denoted by!, and
�

! denotes multiple tile attachments.
Note that both systems have many other growth dynamics
that are not shown
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Intrinsic Universality in Self-Assembly, Fig. 2 Classes
of tile assembly systems and their relationship with re-
spect to simulation. There is an arrow from B to A if A
contains B with respect to simulation: that is, for each tile
assembly system B 2 B , there is a tile assembly system
AB 2 A that simulates B. Dashed arrows denote contain-
ment, solid arrows denote strict containment, a self-loop
denotes the existence of an intrinsically universal tile set
for a class and its omission implies that the existence of

such a tile set is an open problem. aTAM: abstract Tile
Assembly Model (growth from a seed assembly by single
tile addition in 2D), � denotes “temperature.” 2HAM:
Two-Handed Tile Assembly Model (assemblies of tiles
stick together in 2D). A 2HAM temperature hierarchy
is shown for some c 2 f2; 3; 4; : : :g and, in fact, for
each such c the set of temperatures fci ji 2 f2; 3; : : :gg
gives an infinite hierarchy of classes of strictly increasing
simulation power in the 2HAM

of T is represented by the seed assembly of S
(one or more connected m � m supertiles), and
(3) via supertile representation every sequence of
tile placements in the simulated system T has a
corresponding sequence of supertile placements
in the simulator system S, and vice versa. It
is worth pointing out that although the intuitive
idea of one assembly system simulating another
is fairly simple, the formal definition of simula-
tion [10] gets a little technical as the filling out of
supertiles in the simulator is an asynchronous and
nondeterministic distributed process with many
supertiles growing independently and in parallel
in the simulator system.

Key Results

The Abstract Tile Assembly Model Is
Intrinsically Universal
A class of tile assembly systems C is said to be
intrinsically universal if there exists a single set
of tiles U that simulates any instance of C . For
each such simulation, U should be appropriately
initialized as an instance (i.e., a tile assembly sys-
tem) of C itself. Figure 1d illustrates the concept.
For example, the abstract Tile Assembly Model
has been shown to be intrinsically universal [5].
Specifically, this means that there is a single set
of tiles U that when appropriately initialized is
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capable of simulating an arbitrary tile assembly
system T . To program such a simulation, tiles
from T are represented as m � m supertiles (built
from tiles in U ), and the seed assembly of T is
represented as a connected assembly �T of such
supertiles. Furthermore, the entire tile assembly
system T (a finite object) is itself encoded in
the supertiles of �T of U . Then if we watch all
possible growth dynamics in both T D .T; �; �/

and U D .U; �T ; 2/, we get that both systems
produce the same set of assemblies via the same
dynamics where we use a supertile representation
function to map from supertiles over U to tiles
from T . It is worth pointing out that in this
particular construction [5], the simulating system
is always (merely) at temperature � D 2 no
matter how large the temperature (� � 1) of the
simulated system.

This intrinsically universal tile set U has the
ability to simulate both the geometry and growth
order of any tile assembly system. Modulo spatial
rescaling U represents the full power and expres-
sivity of the entire abstract Tile Assembly Model.

Noncooperative Assembly Is Weaker than
Cooperative Assembly
The temperature 1, or noncooperative, model is a
restriction of the abstract Tile Assembly Model.
Despite its esoteric name, it models a fundamen-
tal and ubiquitous form of growth: asynchronous
growing and branching tips in Euclidian space
where each new tile is added if it matches on at
least one side. Separating the power of the nonco-
operative and cooperative models has presented
significant challenge to the community.

Recently it has been shown that the nonco-
operative model is provably weaker than the full
model [10] in that sense that it is not capable of
simulating arbitrary tile assembly systems. This
is the first fully general negative result about
temperature 1 that does not assume restrictions
on the model nor unproven hypotheses.

An interesting aspect of this result is that it
holds for 3D noncooperative systems; they too
cannot simulate arbitrary tile assembly systems.
This seems quite shocking, given that 3D nonco-
operative systems are Turing-universal [1]! So in
particular, 3D noncooperative systems can sim-

ulate 2D (or 3D) cooperative systems by sim-
ulating a Turing machine that in turn simulates
the cooperative system, but this loose style of
simulation ends up destroying the geometry and
dynamics of tile assembly by encoding every-
thing as “geometry-less” strings. Hence, Turing-
universal algorithmic behavior in self-assembly
does not imply the ability to simulate, in a di-
rect geometric fashion, arbitrary algorithmic self-
assembly processes.

One Tile to Rule Them All
As an example of a simulation result on a very
different model of self-assembly, Demaine, De-
maine, Fekete, Patitz, Schweller, Winslow, and
Woods [4] describe a sequence of simulations
that route from square tiles, to the intrinsically
universal tile set, to hexagons (with strength <

� , or weak, glues), to a single polygon that is
translatable, rotatable, and flipable. Their fixed-
sized polygon, when appropriately seeded, simu-
lates any tile assembly system from the abstract
Tile Assembly Model. They also show that with
translation only (i.e., no rotation), such results are
not possible with a small (size � 3) seed (al-
though with larger seeds, a single translation-only
polyomino simulates the space-time diagram of
a 1D cellular automaton). In the simpler setting
of Wang plane tiling, they give an easy method
to “compile” any tile set T (on the square or
hexagonal lattice) to a single regular polygon that
simulates exactly the tilings of T , except with
tiny gaps between the polygons.

Two Hands
It has been shown that the two-handed, or hi-
erarchical, model of self-assembly (where large
assemblies of tiles may come together in a single
step) is not intrinsically universal [3]. Specifically
there is no tile set that, in the two-handed model,
can simulate all two-handed systems for all tem-
peratures. However, for each � 2 f2; 3; 4; : : :g,
there is a tile set U� that is intrinsically universal
for the class of two-handed systems that work at
temperature � . Also, there is an infinite hierar-
chy of classes of such systems with each level
strictly more powerful than the one below. In fact
there are an infinite set of such hierarchies, as
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I

described in the caption of Fig. 2. These results
give a formalization of the intuition that multiple
long-range interactions are more powerful than
fewer long-range interactions in the two-handed
model.

Open Problems

Gaps in Fig. 2 (i.e., missing solid arrows and
missing models) suggest a variety of open ques-
tions. Also, it remains as future work to further
tease apart the power of restrictions of the ab-
stract Tile Assembly Model, for example, it re-
mains open whether 2D noncooperative systems
are intrinsically universal for themselves.

It is an open question whether or not the
hexagonal Tile Assembly Model [4], various
polygonal Tile Assembly Models [4, 7], the
Nubot model [13], and Signal-Passing Tile
Assembly Model [6,9] are intrinsically universal.
Furthermore, simulation could be used to tease
apart the power of subclasses of these models.

Gilbert et al. [7] investigate the computational
power of various kinds of polygonal tile assembly
systems, showing that regular polygon tiles with
>6 sides simulate Turing machines. What is the
relationship between tile geometry and simula-
tion power? Do more sides give strictly more
simulation power?

A desirable feature of a simulator is not only
that it simulates all possible dynamics of some
simulated system, but that the probability of a
given dynamics is roughly equal in both the
simulated system and the simulator. Is there an
intrinsically universal tile set with that property?
Here, the probability of seeing a given dynamics
or assembly in a simulator should be close to that
of the simulated system, where “close” means,
say, within a factor proportional to the spatial
scaling.

Does there exist a tile set U for the abstract
Tile Assembly Model, such that for any (adver-
sarially chosen) seed assembly � , at tempera-
ture 2, this tile assembly system simulates some
tile assembly system T ? Moreover, U should be
able to simulate all such members T of some
nontrivial class S . U is a tile set that can do

one thing and nothing else: simulate tile assembly
systems from the class S . This question about U

is inspired by the factor simulation question in
CA [2].

Many algorithmic tile assembly systems use
cooperative self-assembly to simulate Turing ma-
chines in a “zig-zag” fashion, as do a num-
ber of experimentally implemented systems. Can
the negative result of [10] be extended to show
2D temperature 1 abstract Tile Assembly Model
systems do not simulate zig-zag tile assembly
systems?

There are a number of future research
directions for the two-handed, or hierarchical,
self-assembly model. One open question [3, 8]
asks whether or not temperature � two-handed
systems can simulate temperature � � 1 two-
handed systems. Another direction involves
finding which aspects of the model (e.g.,
mismatches, excess binding strength, geometric
blocking) are required for intrinsic universality
at a given temperature, to better understand the
intricacies of this very powerful, but natural,
model.

Of course, there are many other ways to com-
pare the power of self-assembly models: shape
and pattern building, tile complexity, time com-
plexity, determinism versus nondeterminism, and
randomized (coin-flipping) algorithms in self-
assembly. It remains as important future work to
find relationships between these notions on the
one hand and intrinsic universality and simulation
on the other hand. Can ideas from intrinsic uni-
versality be used to answer questions about these
notions?
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Motivation

The problem of coordinating the access to a
shared medium is a central challenge in wire-
less networks. In order to solve this problem, a

proper medium access control (MAC) protocol is
needed. Ideally, such a protocol should not only
be able to use the wireless medium as effectively
as possible, but it should also be robust against
a wide range of interference problems includ-
ing jamming attacks. Interference problems from
outside sources are usually ignored in theory
but in practice it is important to take these into
account, particularly because the ISM frequency
band, which is the standard band used for wire-
less communication, is one of the most dirty
frequency bands as it is affected by many devices
like microwaves.

Problem Definition

We model inference from outside sources with
the help of an adversary. In the most general
model that we have published so far [9], our ad-
versarial model is based on the most widely used
model to capture interference problems, which is
known as the SINR (signal-to-interference-and-
noise ratio) model. In the SINR model, a message
sent by node u is correctly received by node v

if and only if Pv.u/=.N C
P

w2S Pv.w// � ˇ

where Px.y/ is the received power at node x

of the signal transmitted by node y, N is the
background noise, and S is the set of nodes w 6D

u that are transmitting at the same time as u. The
threshold ˇ > 1 depends on the desired rate, the
modulation scheme, etc. When using the standard
model for signal propagation, then this expres-
sion results in .P.u/=d.u; v/˛/=.N C

P
w2S
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P.w/=d.w; v/˛/ � ˇ where P.x/ is the strength
of the signal transmitted by x, d.x; y/ is the
Euclidean distance between x and y, and ˛ is
the path-loss exponent. We assume that all nodes
transmit with some fixed signal strength P and
that ˛ > 2 C � for some constant � > 0, which is
usually the case in an outdoors environment.

In most theory papers on MAC protocols, the
background noise N is either ignored (i.e., N D

0) or assumed to behave like a Gaussian variable.
This, however, is an oversimplification of the real
world. There are many sources of interference
producing a non-Gaussian noise such as elec-
trical devices, temporary obstacles, coexisting
networks, or jamming attacks. In order to capture
a very broad range of noise phenomena, we
model the background noise N (due to jamming
or to environmental noise) with the aid of an
adversary ADV that has a fixed energy budget
within a certain time frame for each node v. More
precisely, in our case, a message transmitted by a
node u will be successfully received by node v if
and only if

P=d.u; v/˛

ADV.v/ C
P

w2S P=d.w; v/˛
� ˇ; (1)

where ADV.v/ is the current noise level created
by the adversary at node v. The goal is to design
a MAC protocol that allows the nodes to success-
fully transmit messages under this model as long
as this is in principle possible.

For the formal description and analysis, we
assume a synchronized setting where time pro-
ceeds in synchronized time steps called rounds.
In each round, a node u may either transmit a
message or sense the channel, but it cannot do
both. A node which is sensing the channel may
either (i) sense an idle channel, (ii) sense a busy
channel, or (iii) receive a packet. In order to
distinguish between an idle and a busy channel,
the nodes use a fixed noise threshold # : if the
measured signal power exceeds # , the channel
is considered busy, otherwise idle. Whether a
message is successfully received is determined
by the SINR rule described above. To leave some
chance for the nodes to communicate, we restrict

the adversary to be .B; T /-bounded: for each
node v and time interval I of length T , a .B; T /-
bounded adversary has an overall noise budget of
B � T that it can use to increase the noise level at
node v and that it can distribute among the time
steps of I as it likes, depending on the current
state of the nodes. This adversarial noise model is
very general, since in addition to being adaptive,
the adversary is allowed to make independent
decisions on which nodes to jam at any point
in time (provided that the adversary does not
exceed its noise budget over a time window of
size T ).

Our goal is to design a symmetric local-control
MAC protocol (i.e., there is no central authority
controlling the nodes, and all the nodes are exe-
cuting the same protocol) that has a constant com-
petitive throughput against any .B; T /-bounded
adversary as long as certain conditions (that are
as general as possible) are met. In order to define
what we mean by “competitive,” we need some
notation. The transmission range of a node v is
defined as the disk with center v and radius r

with P=r˛ � ˇ# . Given a constant � > 0,
a time step is called potentially busy at some
node v if ADV.v/ � .1 � �/# (i.e., only a
little bit of additional interference by the other
nodes is needed so that v sees a busy channel).
For a not potentially busy time step, it is still
possible that a message sent by a node u within
v’s transmission range is successfully received
by v. Therefore, as long as the adversary is forced
to offer not potentially busy time steps due to
its limited budget and every node has a least
one other node in its transmission range, it is in
principle possible for the nodes to successfully
transmit messages. To investigate that formally,
we use the following notation. For any time frame
F and node v let fv.F / be the number of time
steps in F that are not potentially busy at v

and let sv.F / be the number of time steps in
which v successfully receives a message. We call
a protocol c-competitive for some time frame F if
P

v2V sv.F / � c
P

v2V fv.F /: An adversary is
uniform if at any time step, ADV.v/ D ADV.w/

for all nodes v; w 2 V , which implies that
fv.F / D fw.F / for all nodes.



Jamming-Resistant MAC Protocols for Wireless Networks 1001

J

Key Results

We presented a MAC protocol called SADE

which can achieve a c-competitive throughput
where c only depends on � and the path loss
exponent ˛ but not on the size of the network
or other network parameters [9]. The intuition
behind SADE is simple: each node v maintains a
parameter pv which specifies v’s probability of
accessing the channel at a given moment of time.
That is, in each round, each node u decides to
broadcast a message with probability pv . (This is
similar to classical random backoff mechanisms
where the next transmission time t is chosen uni-
formly at random from an interval of size 1=pv .)
The nodes adapt their pv values over time in a
multiplicative-increase multiplicative-decrease
manner, i.e., the value is lowered in times when
the channel is utilized (more specifically, we
decrease pv whenever a successful transmission
occurs) or increased during times when the
channel is idling. However, pv will never exceed
Op, for some sufficiently small constant Op > 0.

In addition to the probability value pv , each
node v maintains a time window estimate Tv and
a counter cv for Tv . The variable Tv is used to
estimate the adversary’s time window T : a good
estimation of T can help the nodes recover from a
situation where they experience high interference
in the network. In times of high interference, Tv

will be increased and the sending probability pv

will be decreased. Now we are ready to describe
SADE in full detail.

Initially, every node v sets Tv WD 1, cv WD

1, and pv WD Op. In order to distinguish
between idle and busy rounds, each node
uses a fixed noise threshold of # .

The SADE protocol works in synchro-
nized rounds. In every round, each node v

decides with probability pv to send a mes-
sage. If it decides not to send a message, it
checks the following two conditions:

• If v successfully receives a message,
then pv WD .1 C �/�1pv .

(continued)

• If v senses an idle channel (i.e., the total
noise created by transmissions of other
nodes and the adversary is less than #),
then pv WD minf.1 C �/pv; Opg; Tv WD

maxf1; Tv � 1g.

Afterward, v sets cv WD cv C 1. If cv > Tv

then it does the following – v sets cv WD 1

– and if there was no idle step among the
past Tv rounds, then pv WD .1 C �/�1pv

and Tv WD Tv C 2.

Given that � 2 O.1=.log T C log log n//, one
can show the following theorem, where n is the
number of nodes and N D maxfn; T g.

Theorem 1 When running SADE for at least
˝..T log N /=� C .log N /4=.��/2/ time steps,
SADE has a 2�O..1=�/2=.˛�2//-competitive
throughput for any ..1 � �/#; T /-bounded
adversary as long as (a) the adversary is
uniform and the transmission range of every
node contains at least one node or (b) there are
at least 2=� nodes within the transmission range
of every node.

SADE is an adaption of the MAC protocol
described in [6] for Unit Disk Graphs that works
in more realistic network scenarios considering
physical interference. Variants of SADE have also
been shown to be successful in other scenarios:

In [7] a variant called ANTIJAM is presented
for a simpler wireless model but a more severe
adversary called reactive adversary, which is an
adversary that can base the jamming decision
on the actions of the nodes in the current time
step and not just the initial state of the system
at the current time step. However, the adversary
can only distinguish between the cases that at
least one node is transmitting or no node is
transmitting, i.e., it cannot determine whether a
transmitted message is successfully received.

In [8] another variant called COMAC is pre-
sented for a simpler wireless model that can han-
dle coexisting networks. Even if these networks
cannot exchange any information and the number
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of these networks is unknown, the protocol is
shown to be competitive.

All of these results trace back to a first result
in [1] for a very simple wireless model and the
case of a single-hop wireless network.

Applications

Practical applications of our results are MAC
protocols that are much more robust to outside
interference and jamming than the existing
protocols like 802.11. In fact, it is known that
a much weaker jammer than the ones considered
by us already suffices to dramatically reduce
the throughput of the standard 802.11 MAC
protocol [2].

Open Problems

So far, we have not considered the case of power
control and multiple communication channels.
Multiple communication channels have been cov-
ered in several other works (e.g., [3–5]) but under
an adversary that is not as powerful as our adver-
sary. Also, several of our bounds are not tight yet,
so it remains to determine tight upper and lower
bounds on the competitiveness of MAC protocols
within our models.
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Experimental Results

We conducted various simulations to study the
robustness of SADE. When varying �, we found
out that the worst-case bound of Theorem 1 may
be too pessimistic in many scenarios, and the
throughput depends to a lesser extent on the con-
stant �. To be more specific, our results suggest
that the throughput depends only polynomially
on � (cf. the left-most image of Fig. 1), so more
work is needed here.
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Problem Definition

K-best enumeration problems are a type of
combinatorial enumeration in which, rather than
seeking a single best solution, the goal is to find
a set of k solutions (for a given parameter value
k) that are better than all other possible solutions.
Many of these problems involve finding
structures in a graph that can be represented
by subsets of the graph’s edges. In particular, the
k shortest paths between two vertices s and t in
a weighted network are a set of k distinct paths
that are shorter than all other paths, and other
problems such as the k smallest spanning trees of
a graph or the k minimum weight matchings in a
graph are defined in the same way.

Key Results

One of the earliest works in the area of k-best
optimization was by Hoffman and Pavley [10]
formulating the k-shortest path problem; their
paper cites unpublished work by Bock, Kantner,
and Hayes on the same problem. Later research
by Lawler [12], Gabow [7], and Hamacher and
Queyranne [8] described a general approach to
k-best optimization, suitable for many of these
problems, involving the hierarchical partitioning
of the solution space into subproblems. One way
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of doing this is to view the optimal solution to
a problem as a sequence of edges, and define
one subproblem for each edge, consisting of
the solutions that first deviate from the optimal
solution at that edge. Continuing this subdivision
recursively leads to a tree of subproblems,
each having a worse solution value than its
parent, such that each possible solution is the
best solution for exactly one subproblem in the
hierarchy. A best-first search of this tree allows
the k-best solutions to be found. Alternatively,
if both the first and second best solutions can be
found, and differ from each other at an edge e,
then one can form only two subproblems, one
consisting of the solutions that include e and
one consisting of the solutions that exclude e.
Again, the subdivision continues recursively;
each solution (except the global optimum) is the
second-best solution for exactly one subproblem,
allowing a best-first tree search to find the k-
best solutions. An algorithm of Frederickson [6]
solves this tree search problem in a number of
steps proportional to k times the degree of the
tree; each step involves finding the solution (or
second-best solution) to a single subproblem.

Probably the most important and heavily stud-
ied of the k-best optimization problems is the
problem of finding k shortest paths, first for-
mulated by Hoffman and Pavley [10]. In the
most basic version of this problem, the paths are
allowed to have repeated vertices or edges (unless
the input is acyclic, in which case repetitions are
impossible). An algorithm of Eppstein [4] solves
this version of the problem in the optimal time
bound O.m C n logn C k/, where m and n are
the numbers of edges and vertices in the given
graph; that is, after a preprocessing stage that is
dominated by the time to use Dijkstra’s algorithm
to find a single shortest-path tree, the algorithm
takes constant time per path. Eppstein’s algorithm
follows Hoffman and Pavley in representing a
path by its sequence of deviations, the edges that
do not belong to a tree T of shortest paths to
the destination node. The deviation edges that
can be reached by a path in T from a given
node v are represented as a binary heap (ordered
by how much additional length the deviation
would cause) and these heaps are used to define
a partition of the solution space into subprob-

lems, consisting of the paths that follow a certain
sequence of deviations followed by one more
deviation from a specified heap. The best path in a
subproblem is the one that chooses the deviation
at the root of its heap, and the remaining paths
can be partitioned into three sub-subproblems,
two for the children of the root and one for the
paths that use the root deviation but then continue
with additional deviations. In this way, Eppstein
constructs a tree of subproblems to which Freder-
ickson’s tree-searching method can be applied.

In a graph with cycles (or in an undirected
graph which, when its edges are converted to
directed edges, has many cycles), it is generally
preferable to list only the k shortest simple (or
loopless) paths, not allowing repetitions within a
path. This variation of the k shortest paths prob-
lem was formulated by Clarke et al. [3]. Yen’s
algorithm [14] still remains the one with the
best asymptotic time performance, O.kn.m C

n logn//; it is based on best-solution partition-
ing using Dijkstra’s algorithm to find the best
solution in each subproblem. A more recent al-
gorithm of Hershberger et al. [9] is often faster,
but is based on a heuristic that can sometimes
fail, causing it to become no faster than Yen’s
algorithm. In the undirected case, it is possible to
find the k shortest simple paths in timeO.k.mC

n logn// [11].
Gabow [7] introduced both the problem of

finding the k minimum-weight spanning trees
of an edge-weighted graph, and the technique of
finding a binary hierarchical subdivision of the
space of solutions, which he used to solve the
problem. In any graph, the best and second-best
spanning trees differ only by one edge swap (the
removal of one edge from a tree and its replace-
ment by a different edge that reconnects the two
subtrees formed by the removal), a property that
simplifies the search for a second-best tree as
needed for Gabow’s partitioning technique. The
fastest known algorithms for the k-best span-
ning trees problem are based on Gabow’s parti-
tioning technique, together with dynamic graph
data structures that keep track of the best swap
in a network as that network undergoes a se-
quence of edge insertion and deletion opera-
tions. To use this technique, one initializes a
fully-persistent best-swap data structure (one in
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which each update creates a new version of the
structure without modifying the existing versions,
and in which updates may be applied to any
version) and associates its initial version with
the root of the subproblem tree. Then, whenever
an algorithm for selecting the k best nodes of
the subproblem tree generates a new node (a
subproblem formed by including or excluding
an edge from the allowed solutions) the parent
node’s version of the data structure is updated
(by either increasing or decreasing the weight
of the edge to force it to be included or ex-
cluded in all solutions) and the updated ver-
sion of the data structure is associated with the
child node. In this way, the data structure can
be used to quickly find the second-best solu-
tion for each of the subproblems explored by
the algorithm. Based on this method, the k-best
spanning trees of a graph with n vertices and
m edges can be found (in an implicit repre-
sentation based on sequences of swaps rather
than explicitly listing all edges in each tree)
in time O.MST.m; n/ C kmin.n; k/1=2/ where
MST.m; n/ denotes the time for finding a single
minimum spanning tree (linear time, if random-
ized algorithms are considered) [5].

After paths and spanning trees, probably the
next most commonly studied k-best enumeration
problem concerns matchings. The problem of
finding the k minimum-weight perfect matchings
in an edge-weighted graph was introduced by
Murty [13]. A later algorithm by Chegireddy and
Hamacher [1] solves the problem in timeO.kn3/

(where n is the number of vertices in the graph)
using the technique of building a binary partition
of the solution space. Other problems whose
k-best solutions have been studied include the
Chinese postman problem, the traveling salesman
problem, spanning arborescences in a directed
network, the matroid intersection problem, binary
search trees and Huffman coding, chess strate-
gies, integer flows, and network cuts.

For many NP-hard optimization problems,
where even finding a single best solution is
difficult, an approach that has proven very
successful is parameterized complexity, in which
one finds an integer parameter describing the
input instance or its solution that is often
much smaller than the input size, and designs

algorithms whose running time is a fixed
polynomial of the input size multiplied by a non-
polynomial function of the parameter value. Chen
et al. [2] extend this paradigm to k-best problems,
showing that, for instance, many NP-hard k-best
problems can be solved in polynomial time per
solution for graphs of bounded treewidth.

Applications

The k shortest path problem has many appli-
cations. The most obvious of these are in the
generation of alternative routes, in problems in-
volving communication networks, transportation
networks, or building evacuation planning. In
bioinformatics, it has been applied to shortest-
path formulations of dynamic programming al-
gorithms for biological sequence alignment and
also applied in the reconstruction of metabolic
pathways, and reconstruction of gene regulation
networks. The problem has been used frequently
in natural language and speech processing, where
a path in a network may represent a hypothesis
for the correct decoding of an utterance or piece
of writing. Other applications include motion
tracking, genealogy, the design of power, com-
munications, and transportation networks, timing
analysis of circuits, and task scheduling.

The problem of finding the k-best spanning
trees has been applied to point process intensity
estimation, the analysis of metabolic pathways,
image segmentation and classification, the re-
construction of pedigrees from genetic data, the
parsing of natural-language text, and the analysis
of electronic circuits.
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Problem Definition

The theory of bidimensionality simultaneously
provides subexponential time parameterized al-
gorithms and efficient approximation schemes
for a wide range of optimization problems on
planar graphs and, more generally, on classes of
graphs excluding a fixed graph H as a minor.
It turns out that bidimensionality also provides
linear kernels for a multitude of problems on
these classes of graphs. The results stated here
unify and generalize a number of kernelization
results for problems on planar graphs and graphs
of bounded genus; see [2] for a more thorough
discussion.

Kernelization
Kernelization is a mathematical framework for
the study of polynomial time preprocessing of
instances of computationally hard problems. Let
G be the set of all graphs. A parameterized graph
problem is a subset ˘ of G � N. An instance
is a pair .G; k/ 2 G � N. The instance .G; k/
is a “yes”-instance of ˘ if .G; k/ 2 ˘ and a
“no”-instance otherwise. A strict kernel with ck
vertices for a parameterized graph problem ˘

and constant c > 0 is an algorithm A with the
following properties:

• A takes as input an instance .G; k/, runs in
polynomial time, and outputs another instance
.G0; k0/.

• .G0; k0/ is a “yes”-instance of˘ if and only if
.G; k/ is.

• jV.G0/j � c � k and k0 � k.

A linear kernel for a parameterized graph
problem is a strict kernel with ck vertices for
some constant c. We remark that our definition of
a linear kernel is somewhat simplified compared
to the classic definition [8], but that it is
essentially equivalent. For a discussion of the
definition of a kernel, we refer to the textbook of
Cygan et al. [4].
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Graph Classes
Bidimensionality theory primarily concerns itself
with graph problems where the input graph is
restricted to be in a specific graph class. A graph
class C is simply a subset of the set G of all
graphs. As an example, the set of all planar
graphs is a graph class. Another example of a
graph class is the set of all apex graphs. Here a
graphH is apex ifH contains a vertex v such that
deleting v from H leaves a planar graph. Notice
that every planar graph is apex.

A graph H is a minor of a graph G if H can
be obtained from G by deleting vertices, deleting
edges, or contracting edges. Here contracting the
edge fu; vg in G means identifying the vertices
u and v and removing all self-loops and dou-
ble edges. If H can be obtained from G just
by contracting edges, then H is a contraction
of G.

A graph class C is minor closed if every minor
of a graph in C is also in C. A graph class C is
minor-free if C is minor closed and there exists
a graph H … C. A graph class C is apex-minor-
free if C is minor closed and there exists an apex
graph H … C. Notice that H … C for a minor
closed class C implies that H cannot be a minor
of any graph G 2 C.

CMSO Logic
CMSO logic stands for Counting Monadic
Second Order logic, a formal language to
describe properties of graphs. A CMSO-sentence
is a formula  with variables for single vertices,
vertex sets, single edges and edge sets, existential
and universal quantifiers (9 and 8), logical
connectives _, ^ and :, as well as the following
operators:

• v 2 S , where v is a vertex variable and S is
a vertex set variable. The operator returns true
if the vertex v is in the vertex set S . Similarly,
CMSO has an operator e 2 X where e is an
edge variable and X is an edge set variable.

• v1 D v2, where v1 and v2 are vertex variables.
The operator returns true if v1 and v2 are the
same vertex of G. There is also an operator
e1 D e2 to check equality of two edge
variables e1 and e2.

• adj.v1; v2/ is defined for vertex variables v1

and v2 and returns true if v1 and v2 are
adjacent in G.

• inc.v; e/ is defined for a vertex variable v and
edge variable e. inc.v; e/ returns true if the
edge e is incident to the vertex v inG, in other
words, if v is one of the two endpoints of e.

• cardp;q.S/ is defined for every pair of inte-
gers p, q, and vertex or edge set variable S .
cardp;q.S/ returns true if jS j � q mod p.
For an example, card2;1.S/ returns true if jS j

is odd.

When we quantify a variable, we need to
specify whether it is a vertex variable, edge vari-
able, vertex set variable, or edge set variable. To
specify that an existentially quantified variable x
is a vertex variable we will write 9x 2 V.G/.
We will use 8e 2 E.G/ to universally quantify
edge variables and 9X � V.G/ to existentially
quantify vertex set variables. We will always use
lower case letters for vertex and edge variables
and upper case letters for vertex set and edge set
variables.

A graph G on which the formula  is true is
said to model  . The notation G ˆ  means
that G models  . As an example, consider the
formula

 1 D 8v 2 V.G/ 8x 2 V.G/ 8y 2 V.G/ 8´ 2 V.G/ W

.x D y/ _ .x D ´/ _ .y D ´/ _ :adj.v; x/ _ :adj.v; y/ _ :adj.v; ´/

The formula  1 states that for every four (not
necessarily distinct) vertices v, x, y, and ´, if x,
y, and ´ are distinct, then v is not adjacent to all

of fx; y; ´g. In other words, a graph G models
�1 if and only if the degree of every vertex G
is at most 2. CMSO can be used to express many
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graph properties, such asG having a Hamiltonian
cycle, G being 3-colorable, or G being planar.

In CMSO, one can also write formulas where
one uses free variables. These are variables that
are used in the formula but never quantified with
an 9 or 8 quantifier. As an example, consider the
formula

 DS D 8u 2 V.G/ 9v 2 V.G/ W

.v 2 S/ ^ .u D v _ adj.u; v//

The variable S is a free variable in  DS because
it is used in the formula, but is never quantified.
It does not make sense to ask whether a graph G
models  DS because when we ask whether the
vertex v is in S , the set S is not well defined.
However, if the set S � V.G/ is provided
together with the graph G, we can evaluate the
formula  DS .  DS will be true for a graph G
and set S � V.G/ if, for every vertex u 2 V.G/,
there exists a vertex v 2 V.G/ such that v is in S
and either u D v or u and v are neighbors inG. In
other words, the pair .G; S/models DS (written
.G; S/ ˆ  DS ) if and only if S is a dominating
set inG (i.e., every vertex not in S has a neighbor
in S ).

CMSO-Optimization Problems
We are now in position to define the parameter-
ized problems for which we will obtain kernel-
ization results. For every CMSO formula  with
a single free vertex set variable S , we define the
following two problems:
 -CMSO-Min (Max):

INPUT: Graph G and integer k.
QUESTION: Does there exist a vertex set S �

V.G/ such that .G; S/ ˆ  and jS j � k

(jS j � k for Max).

Formally,  -CMSO-MIN (MAX) is a parame-
terized graph problem where the “yes” instances
are exactly the pairs .G; k/ such that there exists
a vertex set S of size at most k (at least k)
and .G; S/ ˆ  . We will use the term CMSO-
optimization problems to refer to  -CMSO-MIN

(MAX) for some CMSO formula  .

Many well-studied and not so well-studied
graph problems are CMSO-optimization prob-
lems. Examples include VERTEX COVER, DOMI-
NATING SET, CYCLE PACKING, and the list goes
on and on (see [2]). We encourage the interested
reader to attempt to formulate the problems men-
tioned above as CMSO-optimization problems.
We will be discussing CMSO-optimization prob-
lems on planar graphs and on minor-free classes
of graphs.

Our results are for problems where the input
graph is promised to belong to a certain graph
class C. We formalize this by encoding member-
ship in C in the formula  . For an example,  DS -
CMSO-MIN is the well-studied DOMINATING

SET problem. If we want to restrict the problem to
planar graphs, we can make a new CMSO logic
formula  planar such that G ˆ  planar if and
only if G is planar. We can now make a new
formula

 0
DS D  DS ^  planar

and consider the problem  0
DS -CMSO-MIN.

Here .G; k/ is a “yes” instance if G has a
dominating set S of size at most k and G is
planar. Thus, this problem also forces us to
check planarity of G, but this is polynomial
time solvable and therefore not an issue with
respect to kernelization. In a similar manner, one
can restrict any CMSO-optimization problem to
a graph class C, as long as there exists a CMSO
formula  C such that G ˆ  C if and only if
G 2 C. Luckily, such a formula is known to exist
for every minor-free class C. We will say that a
parameterized problem ˘ is a problem on the
graph class C if, for every “yes” instance .G; k/
of ˘ , the graph G is in C.

For any CMSO-MIN problem˘ , we have that
.G; k/ 2 ˘ implies that .G; k0/ 2 ˘ for all
k0 � k. Similarly, for a CMSO-MAX problem˘ ,
we have that .G; k/ 2 ˘ implies that .G; k0/ 2

˘ for all k0 � k. Thus, the notion of “opti-
mality” is well defined for CMSO-optimization
problems. For the problem ˘ D  -CMSO-MIN,
we define

OPT˘ .G/ D min fk W .G; k/ 2 ˘g :
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If no k such that .G; k/ 2 ˘ exists, OPT˘ .G/

returns C1. Similarly, for the problem ˘ D  -
CMSO-MAX,

OPT˘ .G/ D max fk W .G; k/ 2 ˘g :

If no k such that .G; k/ 2 ˘ exists, OPT˘ .G/

returns �1. We define SOL˘ .G/ to be a func-
tion that given as input a graph G returns a set
S of size OPT˘ .G/ such that .G; S/ ˆ  and
returns null if no such set S exists.

Bidimensionality
For many problems, it holds that contracting an
edge cannot increase the size of the optimal
solution. We will say that such problems are con-
traction closed. Formally, a CMSO-optimization
problem ˘ is contraction closed if for any G
and uv 2 E.G/, OPT˘ .G=uv/ � OPT˘ .G/.
If contracting edges, deleting edges, and deleting
vertices cannot increase the size of the optimal
solution, we say that the problem is minor closed.

Informally, a problem is bidimensional if it is
minor closed and the value of the optimum grows
with both dimensions of a grid. In other words,
on a .k�k/-grid, the optimum should be approx-

imately quadratic in k. To formally define bidi-
mensional problems, we first need to define the
.k � k/-grid �k , as well as the related graph �k .

For a positive integer k, a k � k grid, denoted
by �k , is a graph with vertex set f.x; y/ W x; y 2

f1; : : : ; kgg. Thus, �k has exactly k2 vertices.
Two different vertices .x; y/ and .x0; y0/ are ad-
jacent if and only if jx�x0jCjy�y0j D 1. For an
integer k > 0, the graph �k is obtained from the
grid �k by adding in every grid cell the diagonal
edge going up and to the right and making the
bottom right vertex of the grid adjacent to all
border vertices. The graph �9 is shown in Fig. 1.

We are now ready to give the definition of
bidimensional problems. A CMSO-optimization
problem ˘ is contraction-bidimensional if it is
contraction closed, and there exists a constant
c > 0 such that OPT˘ .�k/ � ck2. Similarly,
˘ is minor-bidimensional if it is minor closed,
and there exists a constant c > 0 such that
OPT˘ .�k/ � ck2.

As an example, the DOMINATING SET prob-
lem is contraction-bidimensional. It is easy to
verify that contracting an edge may not increase
the size of the smallest dominating set of a graph
G and that �k does not have a dominating set of

size smaller than .k�2/2

7
.

Kernelization,
Bidimensionality
and Kernels, Fig. 1 The
graph �9
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Separability
Our kernelization algorithms work by recursively
splitting the input instance by small separators.
For this to work, the problem has to be somewhat
well behaved in the following sense. Whenever a
graph is split along a small separator into two in-
dependent sub-instances L and R, the size of the
optimum solution for the graph GŒL� is relatively
close to the size of the intersection betweenL and
the optimum solution to the original graph G. We
now proceed with a formal definition of what it
means for a problem to be well behaved.

For a set L � V.G/, we define @.L/ to be
the set of vertices in L with at least one neighbor
outside L. A CMSO-optimization problem ˘ is
linear separable if there exists a constant c � 0

such that for every set L � V.G/, we have

jSOL˘ .G/ \ Lj � c � j@.L/j � OPT˘ .GŒL�/

� jSOL˘ .G/ \ Lj C c � j@.L/j:

For a concrete example, we encourage the
reader to consider the DOMINATING SET prob-
lem and to prove that for DOMINATING SET the
inequalities above hold. The crux of the argument
is to augment optimal solutions ofG andGŒL� by
adding all vertices in @.L/ to them.

Key Results

We can now state our main theorem.

Theorem 1 Let ˘ be a separable CMSO-
optimization problem on the graph class C. Then,
if ˘ is minor-bidimensional and C is minor-free,
or if ˘ is contraction-bidimensional and C is
apex-minor-free, ˘ admits a linear kernel.

The significance of Theorem 1 is that it is, in
general, quite easy to formulate graph problems
as CMSO-optimization problems and prove that
the considered problem is bidimensional and sep-
arable. If we are able to do this, Theorem 1 imme-
diately implies that the problem admits a linear
kernel on all minor-free graph classes, or on all
apex-minor-free graph classes. As an example,
the DOMINATING SET problem has been shown

to have a linear kernel on planar graphs [1], and
the proof of this fact is quite tricky. However,
in our examples, we have shown that DOMINAT-
ING SET is a CMSO-MIN problem, that it is
contraction-bidimensional, and that it is separa-
ble. Theorem 1 now implies that DOMINATING

SET has a linear kernel not only on planar graphs
but on all apex-minor-free classes of graphs! One
can go through the motions and use Theorem 1 to
give linear kernels for quite a few problems. We
refer the reader to [9] for a non-exhaustive list.

We remark that the results stated here are
generalizations of results obtained by Bodlaender
et al. [2]. Theorem 1 is proved by combining
“algebraic reduction rules” (fully developed by
Bodlaender et al. [2]) with new graph decompo-
sition theorems (proved in [9]). The definitions
here differ slightly from the definitions in the
original work [9] and appear here in the way they
will appear in the journal version of [9].
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Problem Definition

Let r be an integer, let V D fv1; : : : ; vng be a set
of variables, each taking values �1 (TRUE) and 1
(FALSE), and let ˚ be a set of Boolean functions,
each involving at most r variables from V . In the
problem MAX-r-CSP, we are given a collection
F of m Boolean functions, each f 2 F being a
member of ˚ and each with a positive integral
weight. Our aim is to find a truth assignment

that maximizes the total weight of satisfied func-
tions from F . We will denote the maximum by
sat.F/:

Let A be the average weight (over all truth
assignments) of satisfied functions. Observe that
A is a lower bound for sat.F/: In fact, A is
a tight lower bound, whenever the family ˚ is
closed under replacing each variable by its com-
plement [1]. Thus, it is natural to parameterize
MAX-r-CSP as follows (AA stands for Above
Average).

MAX-r-CSP-AA

Instance: A collection F of m Boolean func-
tions, each f 2 F being a member of ˚ ,
each with a positive integral weight, and a
nonnegative integer k.

Parameter: k.
Question: sat.F/ � AC k?

If ˚ is the set of clauses with at most r literals,
then we get a subproblem of MAX-r-CSP-AA,
abbreviated MAX-r-SAT-AA, whose unparame-
terized version is simply MAX-r-SAT. Assign
�1 or 1 to each variable in V randomly and
uniformly. Since a clause c of an MAX-r-SAT-AA
instance can be satisfied with probability 1� 2rc ,
where rc is the number of literals in c, we have
A D

P
c2F .1 � 2rc /: Clearly, A is a tight lower

bound.
If ˚ is the set S of equations

Q
i2Ij

vi D bj ,
j D 1; : : : ; m, where vi ; bj 2 f�1; 1g, bj s are
constants, jIj j � r , then we get a subproblem of
MAX-r-CSP-AA, abbreviated MAX-r-LIN2-AA,
whose unparameterized version is simply MAX-
r-LIN2. Assign �1 or 1 to each variable in V
randomly and uniformly. Since each equation of
F can be satisfied with probability 1=2, we have
A D W=2, where W is the sum of the weights
of equations in F . For an assignment v D v0 of
values to the variables, let sat.S; v0/ denote the
total weight of equations of S satisfied by the
assignment. The difference sat.S; v0/ � W=2

is called the excess of x0. Let sat.S/ be
the maximum of sat.S; v0/ over all possible
assignments v0:
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The following notion was introduced in [1].
Let ˘ and ˘ 0 be parameterized problems. A
bikernel for ˘ is a polynomial-time algorithm
that maps an instance .I; k/ of ˘ to an instance
.I 0; k0/ of ˘ 0 such that (i) .I; k/ 2 ˘ if and only
if .I 0; k0/ 2 ˘ 0 and (ii) k0 � g.k/ and jI 0j �

g.k/ for some function g. The function g.k/ is
called the size of the bikernel. It is known that a
decidable problem is fixed-parameter tractable if
and only if it admits a bikernel [1]. However, in
general a bikernel can have an exponential size,
in which case the bikernel may not be useful as a
data reduction. A bikernel is called a polynomial
bikernel if both f .k/ and g.k/ are polynomials
in k.

When˘ D ˘ 0 we say that a bikernel for˘ is
simply a kernel of˘ . A great deal of research has
been devoted to decide whether a problem admits
a polynomial kernel.

The following lemma of Alon et al. [1] shows
that polynomial bikernels imply polynomial ker-
nels.

Lemma 1 Let ˘;˘ 0 be a pair of decidable pa-
rameterized problems such that the nonparam-
eterized version of ˘ 0 is in NP and the non-
parameterized version of ˘ is NP-complete. If
there is a bikernelization from˘ to˘ 0 producing
a bikernel of polynomial size, then ˘ has a
polynomial-size kernel.

Key Results

Following [2], for a Boolean function f of
weight w.f / and on r.f / � r Boolean variables
vi1 ; : : : ; vir.f /

; we introduce a polynomial
hf .v/; v D .v1; : : : ; vn/ as follows. Let
Sf � f�1; 1gr.f / denote the set of all satisfying
assignments of f . Then

hf .v/ D w.f /2r�r.f /

X

.a1;:::;ar.f //2Sf

2

4
r.f /Y

j D1

.1C vij aj / � 1

3

5:

Let h.v/ D
P

f 2F hf .v/: It is easy to see (cf.
[1]) that the value of h.v/ at some v0 is precisely

2r .U � A/, where U is the total weight of the
functions satisfied by the truth assignment v0.
Thus, the answer to MAX-r-CSP-AA is YES if
and only if there is a truth assignment v0 such
that h.v0/ � k2r :

Algebraic simplification of h.v/ will lead
us the following (Fourier expansion of h.v/,
cf. [7]):

h.v/ D
X

S2F
cS

Y

i2S

vi ; (1)

where F D f; ¤ S � f1; 2; : : : ; ng W

cS ¤ 0; jS j � rg. Thus, jF j � nr . The
sum

P
S2F cS

Q
i2S vi can be viewed as the

excess of an instance of MAX-r-LIN2-AA,
and, thus, we can reduce MAX-r-CSP-AA into
MAX-r-LIN2-AA in polynomial time (since
r is fixed, the algebraic simplification can be
done in polynomial time and it does not matter
whether the parameter of MAX-r-LIN2-AA is
k or k0 D k2r ). It is proved in [5] that MAX-
r-LIN2-AA has a kernel with O.k2/ variables
and equations. This kernel is a bikernel from
MAX-r-CSP-AA to MAX-r-LIN2-AA. Thus, by
Lemma 1, we obtain the following theorem of
Alon et al. [1].

Theorem 1 MAX-r-CSP-AA admits a polyno-
mial-size kernel.

Applying a reduction from MAX-r-LIN2-AA
to MAX-r-SAT-AA in which each monomial in
(1) is replaced by 2r�1 clauses, Alon et al. [1]
obtained the following:

Theorem 2 MAX-r-SAT-AA admits a kernel
with O.k2/ clauses and variables.

It is possible to improve this theorem with
respect to the number of variables in the kernel.
The following result was first obtained by Kim
and Williams [6] (see also [3]).

Theorem 3 MAX-r-SAT-AA admits a kernel
with O.k/ variables.

Crowston et al. [4] studied the following
natural question: How parameterized complexity
of MAX-r-SAT-AA changes when r is no longer
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a constant, but a function r.n/ of n. They proved
that MAX-r.n/-SAT-AA is para-NP-complete
for any r.n/ � dlogne: They also proved that
assuming the exponential time hypothesis, MAX-
r.n/-SAT-AA is not even in XP for any integral
r.n/ � log log n C �.n/, where �.n/ is
any real-valued unbounded strictly increasing
computable function. This lower bound on
r.n/ cannot be decreased much further as they
proved that MAX-r.n/-SAT-AA is (i) in XP
for any r.n/ � log logn � log log logn and
(ii) fixed-parameter tractable for any r.n/ �

log log n � log log logn � �.n/, where �.n/
is any real-valued unbounded strictly increasing
computable function. The proofs use some results
on MAXLIN2-AA.
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Problem Definition

Research on kernelization is motivated in two
ways. First, when solving a hard (e.g., NP-hard)
problem in practice, a common approach is to
first preprocess the instance at hand before run-
ning more time-consuming methods (like integer
linear programming, branch and bound, etc.). The
following is a natural question. Suppose we use
polynomial time for this preprocessing phase:
what can be predicted of the size of the instance
resulting from preprocessing? The theory of ker-
nelization gives us such predictions. A second
motivation comes from the fact that a decidable
parameterized problem belongs to the class FPT
(i.e., is fixed parameter tractable,) if and only if
the problem has kernelization algorithm.

A parameterized problem is a subset of ˙� �

N, for some finite set ˙ . A kernelization algo-
rithm (or, in short kernel) for a parameterized
problem Q � ˙� � N is an algorithm A that
receives as input a pair .x; k/ 2 ˙� � N and
outputs a pair .x0; k0/ D A.x; k/, such that:

• A uses time, polynomial in jxj C k.
• .x; k/ 2 Q, if and only if .x0; k0/ 2 Q.
• There are functions f , g, such that jx0j �

f .k/ and k0 � g.k/.
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In the definition above, f and g give an upper
bound on the size, respectively the parameter of
the reduced instance. Many well-studied prob-
lems have kernels with k0 � k. The running
time of an exact algorithm that starts with a
kernelization step usually is exponential in the
size of the kernel (i.e., f .k/), and thus small
kernels are desirable. A kernel is said to be poly-
nomial, if f and g are bounded by a polynomial.
Many well-known parameterized problems have
a polynomial kernel, but there are also many for
which such a polynomial kernel is not known.

Recent techniques allow us to show, under a
complexity theoretic assumption, for some pa-
rameterized problems that they do not have a
polynomial kernel. The central notion is that
of compositionality; with the help of transfor-
mations and cross compositions, a larger set of
problems can be handled.

Key Results

Compositionality
The basic building block of showing that prob-
lems do not have a polynomial kernel (assuming
NP 6� coNP=poly) is the notion of composi-
tionality. It comes in two types: or-composition
and and-composition.

Definition 1 An or-composition for a parameter-
ized problemQ � ˙��N is an algorithm that:

• Receives as input a sequence of in-
stances for Q with the same parameter
.s1; k/; .s2; k/; : : :, .sr ; k/

• Uses time, polynomial in k C
Pr

iD1 jsi j

• Outputs one instance forQ, .s0; k0/ 2 ˙� �N,
such that:

1. .s0; k0/ 2 Q, if and only if there is an i ,
1 � i � r , with .si ; k/ 2 Q.

2. k0 is bounded by a polynomial in k.

The notion of and-composition is defined sim-
ilarly, with the only difference that condition (1)
above is replaced by

.s0; k0/ 2 Q, if and only if for all i , 1 �

i � r : .si ; k/ 2 Q.

We define the classic variant of a parame-
terized problem Q � ˙� � N as the decision
problem, denoted Qc where we assume that the
parameter is encoded in unary, or, equivalently,
an instance .s; k/ is assumed to have size jsj C k.

Combining results of three papers gives the
following results.

Theorem 1 Let Q � ˙� � N be a parame-
terized problem. Suppose that the classic vari-
ant of Q, Qc is NP-hard. Assume that NP 6�

coNP=poly.

1. (Bodlaender et al. [3], Fortnow and
Santhanam [12]) If Q has an or-composition,
then Q has no polynomial kernel.

2. (Bodlaender et al. [3], Drucker [11]) IfQ has
an and-composition, then Q has no polyno-
mial kernel.

The condition that NP 6� coNP=poly is
equivalent to coNP 6� NP=poly; if it does not
hold, the polynomial time hierarchy collapses to
the third level [19].

For many parameterized problems, one can
establish (sometimes trivially, and sometimes
with quite involved proofs) that they are or-
compositional or and-compositional. Taking the
disjoint union of instances often gives a trivial
composition. A simple example is the LONG

PATH problem; it gets as input a pair .G; k/ with
G an undirected graph and asks whether G has a
simple path of length at least k.

Lemma 1 If NP 6� coNP=poly, then LONG

PATH has no kernel polynomial in k.

Proof LONG PATH is well known to be NP-
complete. Mapping .G1; k/; : : : ; .Gr ; k/ to
the pair .H; k/ with H the disjoint union of
G1; : : : ; Gr is an or-composition. So, the result
follows directly as a corollary of Theorem 1. �

The TREEWIDTH problem gets as input a
pair .G; k/ and asks whether the treewidth of
G is most k. As it is NP-hard to decide if the
treewidth of a given graph G is at most a given
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number k [1] and the treewidth of a graph is
the maximum of its connected components, tak-
ing the disjoint union gives an and-composition
for the TREEWIDTH problem and shows that
TREEWIDTH has no polynomial kernel unless
NP � coNP=poly. Similar proofs work for
many more problems. Many problems can be
seen to be and- or or-compositional and thus have
no polynomial kernels under the assumption that
NP 6� coNP=poly. See, e.g., [3, 5, 9, 17].

Transformations
Several researchers observed independently (see
[2,5,9]) that transformations can be used to show
results for additional problems. The formaliza-
tion is due to Bodlaender et al. [5].

Definition 2 A polynomial parameter transfor-
mation (ppt) from parameterized problem Q �

˙� � N to parameterized problem R � ˙� � N
is an algorithm A that:

• Has as input an instance of Q, .s; k/ 2 ˙� �

N.
• Outputs an instance of R, .s0; k0/ 2 ˙� � N.
• .s; k/ 2 Q if and only if .s0; k0/ 2 R.
• A uses time polynomial in jsj C k.
• k0 is bounded by a polynomial in k.

The differences with the well-known
polynomial time or Karp reductions from NP-
completeness theory are small: note in particular
that it is required that the new value of the
parameter is polynomially bounded in the old
value of the parameter. The following theorem
follows quite easily.

Theorem 2 (See [5,6]) LetR have a polynomial
kernel. If there is a ppt from Q to R, and a
polynomial time reduction from R to the classic
variant of Q, then Q has a polynomial kernel.

This implies that if we have a ppt fromQ toR,
Qc is NP-hard, Rc 2 NP , then when Q has no
polynomial kernel, R has no polynomial kernel.

Cross Composition
Bodlaender et al. [4] introduced the concept
of cross composition. It gives a more powerful

mechanism to show that some problems have
no polynomial kernel, assuming NP 6�

coNP=poly. We need first the definition of a
polynomial equivalence relation.

Definition 3 A polynomial equivalence relation
is an equivalence relation on ˙� that can be
decided in polynomial time and has for each n,
a polynomial number of equivalence classes that
contain strings of length at most n.

A typical example may be that strings repre-
sent graphs and two graphs are equivalent if and
only if they have the same number of vertices and
edges.

Definition 4 Let L be a language, R a polyno-
mial equivalence relation, andQ a parameterized
problem. An OR cross composition of L to Q
(w.r.t. R) is an algorithm that:

• Gets as input a sequence of instances
s1; : : : ; sr of L that belong to the same
equivalence class of R.

• Uses time, polynomial in
Pr

iD1 jsi j.
• Outputs an instance .s0; k/ of Q.
• k is polynomial in max jsi j C log k.
• .s0; k/ 2 Q if and only if there is an i with
si 2 L.

The definition for an AND cross composition
is similar; the last condition is replaced by

.s0; k/ 2 Q if and only if for all i with
si 2 L.

Theorem 3 (Bodlaender et al. [4]) If we have
an OR cross composition, or an AND cross com-
position from an NP-hard language L into a
parameterized problem Q, then Q does not have
a polynomial kernel, unless NP � coNP=poly.

The main differences with or-composition and
and-composition are we do not need to start with
a collection of instances from Q, but can use a
collection of instances of any NP-hard language;
the bound on the new value of k usually allows us
to restrict to collections of at most 2k instances,
and with the polynomial equivalence relation, we
can make assumptions on “similarities” between
these instances.
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For examples of OR cross compositions,
and of AND cross compositions, see, e.g.,
[4, 8, 13, 17].

Other Models and Improvements
Different models of compressibility and stronger
versions of the lower bound techniques have
been studied, including more general models of
compressibility (see [11] and [7]), the use of co-
nondeterministic composition [18], weak com-
position [15], Turing kernelization [16], and a
different measure for compressibility based on
witness size of problems in NP [14].

Problems Without Kernels
Many parameterized problems are known to be
hard for the complexity class W Œ1�. As decidable
problems are known to have a kernel, if and only
if they are fixed parameter tractable, it follows
that W Œ1�-hard problems do not have a kernel,
unless W Œ1� D FPT (which would imply that
the exponential time hypothesis does not hold).
See, e.g., [10].
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Problem Definition

Kernelization is the study of the power of
polynomial-time instance simplification and
preprocessing and relates more generally to
questions of compact information representation.
Given an instance x of a decision problem P ,
with an associated parameter k (e.g., a bound on
the solution size in x), a polynomial kernelization
is an algorithm which in polynomial time
produces an instance x0 of P , with parameter k0,
such that x 2 P if and only if x0 2 P and
such that both jx0j and k0 are bounded by p.k/
for some p.k/ D poly.k/. A polynomial
compression is the variant where the output x0

is an instance of a new problem P 0 (and may not
have any associated parameter).

Matroid theory provides the tools for a very
powerful framework for kernelization and more
general information-preserving sparsification. As

an example application, consider the following
question. You are given a graph G D .V;E/

and two sets S; T � V of terminal vertices,
where potentially jV j 	 jS j; jT j. The task is
to reduce G to a smaller graph G0 D .V 0; E 0/,
with S; T � V 0 and jV 0j bounded by a function
of jS j C jT j, such that for any sets A � S , B �

T , the minimum .A;B/-cut in G0 equals that
in G. Here, all cuts are vertex cuts and may
overlap A and B (i.e., the terminal vertices are
also deletable). It is difficult to see how to do this
without using both exponential time in jS j C jT j

(due to the large number of choices of A and B)
and an exponential dependency of jV 0j on jS j

and jT j (due to potentially having to include
one min cut for every choice of A and B), yet
using the appropriate tools from matroid the-
ory, we can in polynomial time produce such a
graphG0 with jV 0j D O.jS j � jT j � min.jS j; jT j//.
Call .G; S; T / a terminal cut system; we will
revisit this example later.

The main power of the framework comes from
two sources. The first is a class of matroids
known as gammoids, which enable the represen-
tation of graph-cut properties as linear indepen-
dence of vectors; the second is a tool known as
the representative sets lemma (due to Lovász [4]
via Marx [5]) applied to such a representation. To
describe these closer, we need to review several
definitions.

Background on Matroids
We provide only the bare essential definitions;
for more, see Oxley [6]. Also see the relevant
chapters of Schrijver [8] for a more computa-
tional perspective and Marx [5] for a concise,
streamlined, and self-contained presentation of
the issues most relevant to our concerns. For s 2

N, we let Œs� denote the set f1; : : : ; sg.
A matroid is a pair M D .V; I/ where V

is a ground set and I � 2V a collection of
independent sets, subject to three axioms:

1. ; 2 I.
2. If B 2 I and A � B , then A 2 I.
3. If A;B 2 I and jAj < jBj, then there exists

some b 2 .BnA/ such that A [ fbg 2 I.
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All matroids we deal with will be finite (i.e., have
finite ground sets). A set S � V is independent
in M if and only if S 2 I . A basis is a maximal
independent set in M ; observe that all bases of
a matroid have the same cardinality. The rank of
a set X � V is the maximum cardinality of an
independent set S � X ; again, observe that this
is well defined.

Linearly Represented Matroids
A prime example of a matroid is a linear matroid.
Let A be a matrix over some field F, and let V
index the column set of A. Let I contain exactly
those sets of columns of A that are linearly in-
dependent. Then M D .V; I/ defines a matroid,
denoted M.A/, known as a linear matroid. For
an arbitrary matroid M , if M is isomorphic to
a linear matroid M.A/ (over a field F), then M
is representable (over F), and the matrix A rep-
resents M . Observe that this is a compact rep-
resentation, as jIj would in the general case be
exponentially large, while the matrix A would
normally have a coding size polynomial in jV j.
In general, more powerful tools are available for
linearly represented matroids than for arbitrary
matroids (see, e.g., the MATROID MATCHING

problem [8]). In particular, this holds for the
representative sets lemma (see below).

Gammoids
The class of matroids central to our concern
is the class of gammoids, first defined by Per-
fect [7]. Let G D .V;E/ be a (possibly directed)
graph, S � V a set of source vertices, and T �

V a set of sink vertices (where S and T may
overlap). Let X � T be independent if and only
if there exists a collection of jX j pairwise vertex-
disjoint directed paths in G, each path starting
in S and ending in X ; we allow paths to have
length zero (e.g., we allow a path from a vertex
x 2 S\X to itself). This notion of independence
defines a matroid on the ground set T , referred
to as the gammoid defined by G, S , and T . By
Menger’s theorem, the rank of a set X � T

equals the cardinality of an .S;X/-min cut in G.
Gammoids are representable over any suffi-

ciently large field [6], although only randomized
procedures for computing a representation are

known. An explicit randomized procedure was
given in [2], computing a representation of the
gammoid .G; S; T / in space (essentially) cubic in
jS jCjT j. Hence, gammoids imply a polynomial-
sized representation of terminal cut systems, as
defined in the introduction. This has implications
in kernelization [2], though it is not on its own the
most useful form, since it is not a representation
in terms of graphs.

Representative Sets
Let M D .V; I/ be a matroid, and X and Y
independent sets in M . We say that Y extends X
if X [ Y is independent and X \ Y D ;. The
representative sets lemma states the following.

Lemma 1 ([4, 5]) Let M D .V; I/ be a linearly
represented matroid of rank r C s, and let S D

fS1; : : : ; Smg be a collection of independent sets,
each of size s. In polynomial time, we can com-
pute a set S� � S such that jS�j �

�
rCs

s

�
, and

for any independent set X , there is a set S 2 S
that extendsX if and only if there is a set S 0 2 S�

that extends X .

We refer to S� as a representative set for S
in M . This result is due to Lovász [4], made
algorithmic by Marx [5]; recently, Fomin et al. [1]
improved the running time and gave algorithmic
applications of the result. The power of the
lemma is extended by several tools which
construct new linearly represented matroids from
existing ones; see Marx [5]. For a particularly
useful case, for each i 2 Œs� let Mi D .Vi ; Ii / be
a matroid, where each set Vi is a new copy of an
original ground set V . Given a representation of
these matroids over the same field F, we can form
a represented matroid M D .V1 [ : : : [ Vs; I1 �

: : :� Is/ as a direct sum of these matroids, where
an independent set X in M is the union of an
independent set Xi in Mi for each i . For an
element v 2 V , let v.i/ denote the copy of v
in Vi . Then the set fv.1/; : : : ; v.s/g extends X D

X1 [ : : :[Xs if and only if fv.i/g extends Xi for
each i 2 Œs�. In other words, we have constructed
an AND operation for the notion of an
extending set.
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Closest Sets and Gammoids
We need one last piece of terminology. For
a (possibly directed) graph G D .V;E/ and
sets A;X � V , let RG.A;X/ be the set
of vertices reachable from A in GnX . The
set X is closest to A if there is no set X 0 such
that jX 0j � jX j and X 0 separates X from A,
i.e., X \RG.A;X

0/ D ;. This is equivalent to X
being the unique minimum .A;X/-vertex cut.
For every pair of sets A;B � V , there is a unique
minimum .A;B/-vertex cut closest to A, which
can be computed in polynomial time. Finally, for
sets S and X , the set X pushed towards S is the
unique minimum .S;X/-vertex cut closest to S ;
this operation is well defined and has no effect
if X is already closest to S . The following is
central to our applications.

Lemma 2 Let M be a gammoid defined from
a graph G D .V;E/ and source set S . Let X
be independent in M , and let X 0 be X pushed
towards S . For any v 2 V , the set fvg extends X
if and only if v 2 RG.S;X

0/.

Key Results

The most powerful version of the terminal cut
system result is the following.

Theorem 1 Let G D .V;E/ be a (possibly
directed) graph, and X � V a set of vertices.
In randomized polynomial time, we can find a
set Z � V of jZj D O.jX j3/ vertices such
that for every partition X D A[B[C [D, the
set Z contains a minimum .A;B/-vertex cut in
the graph GnD.

There is also a variant for cutting into more
than two parts, as follows.

Theorem 2 Let G D .V;E/ be an undirected
graph, and X � V a set of vertices. In random-
ized polynomial time, we can find a set Z � V

of jZj D O.jX jsC1/ vertices such that for every
partition of X into at most s parts, the set Z con-
tains a minimum solution to the corresponding
multiway cut problem.

We also have the following further kerneliza-
tion results; see [3] for problem statements.

Theorem 3 The following problems admit ran-
domized polynomial kernels parameterized by the
solution size: ALMOST 2-SAT, VERTEX MULTI-
CUT with a constant number of cut requests, and
GROUP FEEDBACK VERTEX SET with a constant-
sized group.

Applications

We now review the strategy behind kernelization
usage of the representative sets lemma.

Representative Sets: Direct Usage
There have been various types of applications of
the representative sets lemma in kernelization,
from the more direct to the more subtle. We
briefly review one more direct and one indirect.
The most direct one is for reducing constraint
systems. We illustrate with the DIGRAPH PAIR

CUT problem (which is closely related to a central
problem in kernelization [3]). Let G D .V;E/

be a digraph, with a source vertex s 2 V , and
let P � V 2 be a set of pairs. The task is to find
a set X of at most k vertices (with s … X ) such
thatRG.s; X/ does not contain any complete pair
from P . We show that it suffices to keep O.k2/

of the pairs P . For this, replace s by a set S
of k C 1 copies of s, and let M be the gammoid
of .G; S; V /. By Lemma 2, if X is closest to S
and jX j � k, then fu; vg � RG.s; X/ if and only
if both fug and fvg extend X in M . Hence, using
the direct sum construction, we can construct
a representative set P� � P with jP�j D

O.k2/ such that for any set X closest to S ,
the set RG.s; X/ contains a pair fu; vg 2 P
if and only if it contains a pair fu0; v0g 2 P�.
Furthermore, for an arbitrary set X , pushing X
towards S yields a set X 0 that can only be an im-
provement onX (i.e., the set of pairs inRG.s; X/

shrinks); hence for any set X with jX j � k,
either pushing X towards S yields a solution to
the problem, or there is a pair in P� witnessing
that X is not a solution. Thus, the set P� may be
used to replace P , taking the first step towards a
kernel for the problem.
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Indirect Usage
For more advanced applications, we “force” the
lemma to reveal some set Z of special vertices
in G, as follows. Let M be a linearly represented
matroid, and let S D fS.v/ W v 2 V g be
a collection of subsets of M of bounded size.
Assume that we have shown that for every ´ 2

Z, there is a carefully chosen set X.´/, such
that S.v/ extends X.´/ if and only if v D

´. Then, necessarily, the representative set S�

for S must contain S.´/ for every ´ 2 Z,
by letting X D X.´/ in the statement of the
lemma. Furthermore, we do not need to provide
the set X.´/ ahead of time, since the (possibly
non-constructive) existence of such a set X.´/
is sufficient to force S.´/ 2 S�. Hence, the
set V � D fv 2 V W S.v/ 2 S�g must contain Z,
among a polynomially bounded number of other
vertices. The critical challenge, of course, is to
construct the matroid M and sets S.v/ and X.´/
such that S.´/ indeed extends X.´/, while S.v/
fails to extend X.´/ for every v ¤ ´.

We illustrate the application to reducing ter-
minal cut systems. Let G D .V;E/ be an undi-
rected graph (the directed construction is similar),
with S; T � V , and define a set of vertices Z
where ´ 2 Z if and only if there are sets A �

S;B � T such that every minimum .A;B/-
vertex cut contains ´. We wish to learn Z. Let a
sink-only copy of a vertex v 2 V be a copy v0

of v with all edges oriented towards v0. Then
the following follows from Lemma 2 and the
definition of closest sets.

Lemma 3 Let A;B � V , and let X be a
minimum .A;B/-vertex cut. Then a vertex v 2

V is a member of every minimum .A;B/-vertex
cut if and only if fv0g extends X in both the
gammoid .G;A; V / and the gammoid .G;B; V /.

Via a minor modification, we can replace
the former gammoid by the gammoid .G; S; V /
and the latter by .G; T; V / (for appropriate
adjustments to the set X ); we can then compute
a set V � of O.jS j � jT j � k/ vertices (where k is
the size of an .S; T /-min cut) which contains Z.
From this, we may compute the sought-after
smaller graph G0, by iteratively bypassing
a single vertex v 2 V n .S [ T [ V �/ and

recomputing V �, until V � [ S [ T D V ;
observe that bypassing v does not change the
size of any .A;B/-min cut. Theorem 1 follows
by considering a modification of the graph G,
and Theorem 2 follows by a generalization of the
above, pushing into s different directions.

Further Applications
A polynomial kernel for MULTIWAY CUT (in the
variants with only s terminals or with deletable
terminals) essentially follows from the above, but
the further kernelization applications in Theo-
rem 3 require a few more steps. However, they
follow a common pattern: First, we find an ap-
proximate solution X of size poly.k/ to “boot-
strap” the process; second, we useX to transform
the problem into a more manageable form (e.g.,
for ALMOST 2-SAT, this manageable form is DI-
GRAPH PAIR CUT); and lastly, we use the above
methods to kernelize the resulting problem. This
pattern covers the problems listed in Theorem 3.

Finally, the above results have some
implications beyond kernelization. In particular,
the existence of the smaller graph G0 computed
for terminal cut systems, and correspondingly an
implementation of a gammoid as a graph with
poly.jS j C jT j/ vertices, was an open problem,
solved in [3].
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Problem Definition

In the problem MAX CUT, we are given a graph
G with n vertices and m edges, and asked to
find a bipartite subgraph of G with the maximum
number of edges.

In 1973, Edwards [5] proved that if G is
connected, then G contains a bipartite subgraph
with at least m

2
C n�1

4
edges, proving a conjec-

ture of Erdős. This lower bound on the size of
a bipartite subgraph is known as the Edwards-
Erdős bound. The bound is tight – for example,
it is an upper bound when G is a clique with odd
number of vertices. Thus, it is natural to consider

parameterized MAX CUT above this bound, as
follows (AEE stands for Above Edwards-Erdős).

MAX CUT AEE

Instance: A connected graph G with n ver-
tices and m edges, and a nonnegative inte-
ger k.

Parameter: k.
Question: Does G have a bipartite subgraph

with at least m
2

C n�1
4

C k edges?

Mahajan and Raman [6], in their first pa-
per on above-guarantee parameterizations, asked
whether this problem is fixed-parameter tractable.
As such, the problem was one of the first open
problems in above-guarantee parameterizations.

�-Extendibility and the Poljak-Turzík
Bound
In 1982, Poljak and Turzík [8] investigated ex-
tending the Edwards-Erdős bound to cases when
the desired subgraph is something other than
bipartite. To this end, they introduced the notion
of �-extendibility, which generalizes the notion
of “bipartiteness.” We will define the slightly
stronger notion of strong �-extendibility, intro-
duced in [7], as later results use this stronger
notion.

Recall that a block of a graph G is a maximal
2-connected subgraph of G. The blocks of a
graph form a partition of its edges, and a vertex
that appears in two or more blocks is a cut-vertex
of the graph.

Definition 1 For a family of graphs ˘ and 0 �

� � 1, we say ˘ is strongly �-extendible if the
following conditions are satisfied:

1. If G is connected and jGj D 1 or 2, then G 2

˘ .
2. G is in ˘ if and only if each of its blocks is in
˘ .

3. For any real-valued positive weight function w
on the edges of G, if X � V.G/ is such that
GŒX� is connected and GŒX�;G � X 2 ˘ ,
then G has a subgraph H 2 ˘ that uses all
the edges ofGŒX�, all the edges ofG�X , and
at least a fraction � (by weight) of the edges
between X and V.G/ nX .
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The definition of �-extendibility given in [8]
is the same as the above, except that the third
condition is only required when jX j D 2. Clearly
strong �-extendibility implies �-extendibility;
it is an open question whether the converse
holds.

The property of being bipartite is strongly
�-extendible for � D 1=2. Other strongly �-
extendible properties include being acyclic for
directed graphs (� D 1=2) and being r-colorable
(� D 1=r).

Poljak and Turzík [8] extended Edwards’
result by showing that for any connected
graph G with n vertices and m edges, and
any �-extendible property ˘ , G contains a
subgraph in ˘ with at least �m C 1��

2
.n � 1/

edges.
Thus, for any �-extendible property˘ , we can

consider the following variation of MAX CUT

AEE, for any �-extendible ˘ (APT stands for
Above Poljak-Turzík).

˘ -SUBGRAPH APT

Instance: A connected graph G with n ver-
tices and m edges, and a nonnegative inte-
ger k.

Parameter: k.
Question: DoesG have a subgraph in˘ with

at least �mC 1��
2
.n � 1/C k edges?

Key Results

We sketch a proof of the polynomial kernel result
for MAX CUT AEE, first shown in [2] (although
the method described here is slightly different to
that in [2]).

For a connected graph G with n vertices and
m edges, let ˇ.G/ denote the maximum number
of edges of a bipartite subgraph of G, let �.G/ D
m
2

C n�1
4

, and let ".G/ D ˇ.G/ � �.G/. Thus,
for an instance .G; k/, our aim is to determine
whether ".G/ � k.

Now consider a connected graph G with a set
X of three vertices such that G0 D G � X is
connected and GŒX� D P3, the path with two
edges. Note that GŒX� is bipartite. Let H 0 be a

subgraph of G0 with ˇ.G0/ edges. As bipartite-
ness is a 1=2-extendible property, we can create
a bipartite subgraph H of G using the edges
of H 0, the edges of GŒX�, and at least half of
the edges between X and G � X . It follows
that ˇ.G/ � ˇ.G0/ C jE.X;V.G/nX/j

2
C 2. As

�.G/ D �.G0/C jE.X;V.G/nX/jC2
2

C 3
4

, we have
that ".G/ D ˇ.G/ � �.G/ � ˇ.G0/ � �.G0/ C

2 � 2
2

� 3
4

D ".G0/C 1
4

.
Consider a reduction rule in which, if there

exists a set X as described above, we delete X
from the graph. If we were able to apply such a
reduction rule 4k times on a graph G, we would
end up with a reduced graph G0 such that G0 is
connected and ".G/ � ".G0/C 4k

4
� 0C k, and

therefore we would know that .G; k/ is a YES-
instance. Of course there may be many graphs for
which such a setX cannot be found. However, we
can adapt this idea as follows. Given a connected
graphG, we recursively calculate a set of vertices
S.G/ and a rational number t .G/ as follows:

• IfG is a clique orG is empty, then set S.G/ D

; and t .G/ D 0.
• If G contains a set X such that jX j D 3, G0 D

G �X is connected and GŒX� D P3, then set
S.G/ D S.G0/[X and set t .G/ D t .G0/C 1

4
.

• If G contains a cut-vertex v, then there exist
non-empty sets of vertices X; Y such thatX \

Y D fvg, GŒX� and GŒY � are connected, and
all edges of G are in GŒX� or GŒY �. Then set
S.G/ D S.GŒX�/ [ S.GŒY �/ and set t .G/ D

t .GŒX�/C t .GŒY �/.

It can be shown that for a connected graph
G, one of these cases will always hold, and so
S.G/ and t .G/ are well defined. In the first case,
we have that ".G/ � 0 by the Edwards-Erdős
bound. In the second case, we have already shown
that ".G/ � ".G0/ C 1

4
. In the third case, we

have that ".G/ D ".GŒX�/C ".GŒY �/ (note that
the union of a bipartite subgraph of GŒX� and a
bipartite subgraph ofGŒY � is a bipartite subgraph
ofG). It follows that ".G/ � t .G/. Note also that
jS.G/j � 12t.G/. If we remove S.G/ from G,
the resulting graph can be built by joining disjoint
graphs at a single vertex, using only cliques as the
initial graphs. Thus, G � S.G/ has the property
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that each of its blocks is a clique. We call such a
graph a forest of cliques.

We therefore get the following lemma.

Lemma 1 ([2]) Given a connected graphG with
n vertices and m edges, and an integer k, we can
in polynomial time either decide that .G; k/ is a
YES-instance of MAX CUT AEE, or find a set S
of at most 12k vertices such thatG�S is a forest
of cliques.

By guessing a partition of S and then using
a dynamic programming algorithm based on the
structure of G � S , we get a fixed-parameter
algorithm.

Theorem 1 ([2]) MAX CUT AEE can be solved
in time 2O.k/ � n4.

Using the structure of G � S and the fact that
jS j � 12k, it is possible (using reduction rules)
to show first that the number of blocks in G � S

must be bounded for any NO-instance, and then
that the size of each block must be bounded (see
[2]).

Thus, we get a polynomial kernel for MAX

CUT AEE.

Theorem 2 ([2]) MAX CUT AEE admits a ker-
nel with O.k5/ vertices.

Crowston et al. [3] were later able to improve
this to a kernel with O.k3/ vertices.

Extensions to ˘ -SUBGRAPH APT
A similar approach can be used to show polyno-
mial kernels for ˘ -SUBGRAPH APT, for other
1=2-extendible properties. In particular, the prop-
erty of being an acyclic directed graph is 1=2-
extendible, and therefore every directed graph
with n vertices and m arcs has an acyclic sub-
graph with at least m

2
C n�1

4
arcs. The problem of

deciding whether there exists an acyclic subgraph
with at least m

2
C n�1

4
Ck arcs is fixed-parameter

tractable, and has a O.k2/-vertex kernel [1].
The notion of a bipartite graph can be gener-

alized in the following way. Consider a graph G
with edges labeled either C or �. Then we say
G is balanced if there exists a partition V1; V2

of the vertices of G, such that all edges between
V1 and V2 are labeled � and all other edges are

labeled C. (Note that if all edges of a graph are
labeled �, then it is balanced if and only if it is
bipartite.) The property of being a balanced graph
is 1=2-extendible, just as the property of being
bipartite is. Therefore a graph with n vertices and
m vertices, and all edges labeled C or �, will
have a balanced subgraph with at least m

2
C n�1

4

edges. The problem of deciding whether there
exists a balanced subgraph with at least m

2
C

n�1
4

C k edges is fixed-parameter tractable and
has a O.k3/-vertex kernel [3].

Mnich et al. [7] showed that Lemma 1
applies not just for MAX CUT AEE, but for
˘ -SUBGRAPH APT for any ˘ which is strongly
�-extendible for some � (with the bound 12k

replaced with 6k
1��

). Thus, ˘ -SUBGRAPH APT
is fixed-parameter tractable as long as it is
fixed-parameter tractable on graphs which are
close to being a forest of cliques. Using this
observation, Mnich et al. showed fixed-parameter
tractability for a number of versions of ˘ -
SUBGRAPH APT, including when˘ is the family
of acyclic directed graphs and when ˘ is the set
of r-colorable graphs.

Crowston et al. [4] proved the existence of
polynomial kernels for a wide range of strongly
�-extendible properties:

Theorem 3 ([4]) Let 0 < � < 1, and let ˘
be a strongly �-extendible property of (possi-
bly oriented and/or labeled) graphs. Then ˘ -
SUBGRAPH APT has a kernel on O.k2/ vertices
if Condition 1 or 2 holds, and a kernel on O.k3/

vertices if only Condition 3 holds:

1. � ¤ 1
2

.
2. All orientations and labels (if applicable) of

the graph K3 belong to ˘ .
3. ˘ is a hereditary property of simple or ori-

ented graphs.

Open Problems

The Poljak-Turzík’s bound extends to edge-
weighted graphs. The weighted version is as
follows: for a graph G with nonnegative real
weights on the edges, and a �-extendible family
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of graphs ˘ , there exists a subgraph H of G
such that H 2 ˘ and H has total weight
� � w.G/ C 1��

2
� MST.G/, where w.G/ is the

total weight of G and MST.G/ is the minimum
weight of a spanning tree in G.

Thus, we can consider the weighted versions
of MAX CUT AEE and ˘ -SUBGRAPH APT. It
is known that a weighted equivalent of Lemma 1
holds (in which all edges in a block ofG�S have
the same weight), and as a result, the integer-
weighted version of MAX CUT AEE can be
shown to be fixed-parameter tractable. However,
nothing is known about kernelization results for
these problems. In particular, it remains an open
question whether the integer-weighted version of
MAX CUT AEE has a polynomial kernel.
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Problem Definition

The problem MAXLIN2 can be stated as fol-
lows. We are given a system of m equations
in variables x1; : : : ; xn where each equation is
Q

i2Ij
xi D bj , for some Ij � f1; 2; : : : ; ng

and xi ; bj 2 f�1; 1g and j D 1; : : : ; m. Each
equation is assigned a positive integral weight
wj . We are required to find an assignment of
values to the variables in order to maximize the
total weight of the satisfied equations. MAXLIN2
is a well-studied problem, which according to
Håstad [8] “is as basic as satisfiability.”
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Note that one can think of MAXLIN2 as con-
taining equations,

P
i2Ij

yi D aj over F2. This
is equivalent to the previous definition by letting
yi D 0 if and only if xi D 1 and letting yi D 1

if and only if xi D �1 (and aj D 1 if and only
if bj D �1 and aj D 0 if and only if bj D 1).
We will however use the original definition as this
was the formulation used in [1].

Let W be the sum of the weights of all equa-
tions in an instance, S , of MAXLIN2 and let
sat.S/ be the maximum total weight of equations
that can be satisfied simultaneously. To see that
W=2 is a tight lower bound on sat.S/, choose
assignments to the variables independently and
uniformly at random. Then W=2 is the expected
weight of satisfied equations (as the probabil-
ity of each equation being satisfied is 1=2) and
thus W=2 is a lower bound. It is not difficult
to see that this bound is tight. For example,
consider a system consisting of pairs of equations
of the form

Q
i2I xi D �1;

Q
i2I xi D 1 of

the same weight, for some nonempty sets I �

f1; 2; : : : ; ng.
As MAXLIN2 is an NP -hard problem, we

look for parameterized algorithms. We will
give the basic definitions of fixed-parameter
tractability (FPT) here and refer the reader to
[4, 5] for more information. A parameterized
problem is a subset L � ˙� � N over a finite
alphabet ˙ . L is fixed-parameter tractable (FPT,
for short) if membership of an instance .x; k/ in
˙� � N can be decided in time f .k/jxjO.1/;

where f is a function of the parameter k

only.
If we set the parameter, k, of an instance, S ,

of MAXLIN2 to sat.S/, then it is easy to see
that there exists an O.f .k/jS jc/ algorithm, due
to the fact that k D sat.S/ � W=2 � jS j=2.
Therefore, this parameter is not of interest (it
is never small in practice), and a better param-
eter would be k, where we want to decide if
sat.S/ � W=2 C k. Parameterizing above tight
lower bounds in this way was first introduced
in 1997 in [11]. This leads us to define the
following problem, where AA stands for Above
Average.

MAXLIN2-AA

Instance: A system S of equations
Q

i2Ij
xi D bj , where xi ; bj 2 f�1; 1g,

j D 1; : : : ; m and where each equation is
assigned a positive integral weight wj and
a nonnegative integer k.

Question: sat.S/ � W=2C k?

The above problem has also been widely stud-
ied when the number of variables in each equa-
tion is bounded by some constant, say r , which
leads to the following problem.

MAX-r-LIN2-AA

Instance: A system S of equations
Q

i2Ij
xi D bj , where xi ; bj 2 f�1; 1g,

jIj j � r , j D 1; : : : ; m; equation j is
assigned a positive integral weight wj and
a nonnegative integer k.

Question: sat.S/ � W=2C k?

Given a parameterized problem, ˘ , a kernel
of˘ is a polynomial-time algorithm that maps an
instance .I; k/ of ˘ to another instance, .I 0; k0/,
of ˘ such that (i) .I; k/ 2 ˘ if and only if
.I 0; k0/ 2 ˘ 0, (ii) k0 � f .k/, and (iii) jI 0j �

g.k/ for some functions f and g. The function
g.k/ is called the size of the kernel. It is well
known that a problem is FPT if and only if it has
a kernel.

A kernel is called a polynomial kernel if both
f .k/ and g.k/ are polynomials in k. A great deal
of research has been devoted to finding small-
sized kernels and in particular to decide if a
problem has a polynomial kernel.

We will show that both the problems stated
above are FPT and in fact contain kernels with a
polynomial number of variables. The number of
equations may be non-polynomial, so these ker-
nels are not real polynomial kernels. The above
problems were investigated in a number of pa-
pers; see [1–3, 6].
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Key Results

We will below outline the key results for both
MAXLIN2-AA and MAX-r-LIN2-AA. See [1] for
all the details not given here.

MAXLIN2-AA
Recall that MAXLIN2-AA considers a system S

of equations
Q

i2Ij
xi D bj , where xi ; bj 2

f�1; 1g, j D 1; : : : ; m and where each equation
is assigned a positive integral weight wj . Let F
denote the m different sets Ij in the equations
of S and let bIj

D bj and wIj
D wj for each

j D 1; 2; : : : ; m.
Let ".x/ D

P
I2F wIbI

Q
i2I xi and note

that ".x/ is the difference between the total
weight of satisfied and falsified equations.
Crowston et al. [3] call ".x/ the excess and the
maximum possible value of ".x/ the maximum
excess.

Remark 1 Observe that the answer to MAXLIN2-
AA and MAX-r-LIN2-AA is YES if and only if
the maximum excess is at least 2k.

Let A be the matrix over F2 corresponding to
the set of equations in S , such that aj i D 1 if
i 2 Ij and 0, otherwise. Consider the following
two reduction rules, where Rule 1 was introduced
in [9] and Rule 2 in [6].

Reduction Rule 1 ([9]) If we have, for a subset
I of f1; 2; : : : ; ng, an equation

Q
i2I xi D b0

I

with weight w0
I , and an equation

Q
i2I xi D b00

I

with weight w00
I , then we replace this pair by

one of these equations with weight w0
I C w00

I if
b0

I D b00
I and, otherwise, by the equation whose

weight is bigger, modifying its new weight to be
the difference of the two old ones. If the resulting
weight is 0, we delete the equation from the
system.

Reduction Rule 2 ([6]) Let t D rankA and
suppose columns ai1 ; : : : ; ait of A are linearly
independent. Then delete all variables not in
fxi1 ; : : : ; xit g from the equations of S .

Lemma 1 ([6]) Let S 0 be obtained from S by
Rule 1 or 2. Then the maximum excess of S 0 is
equal to the maximum excess of S . Moreover, S 0

can be obtained from S in time polynomial in n
and m.

If we cannot change a weighted system S

using Rules 1 and 2, we call it irreducible. Let
S be an irreducible system of MAXLIN2-AA.
Consider the following algorithm introduced in
[3]. We assume that, in the beginning, no equation
or variable in S is marked.

ALGORITHM H
While the system S is nonempty, do the fol-
lowing:

1. Choose an equation
Q

i2I xi D b and mark
a variable xl such that l 2 I .

2. Mark this equation and delete it from the
system.

3. Replace every equation
Q

i2I 0 xi D b0 in
the system containing xl by

Q
i2I�I 0 xi D

bb0, where I�I 0 is the symmetric differ-
ence of I and I 0 (the weight of the equation
is unchanged).

4. Apply Reduction Rule 1 to the system.

The maximum H-excess of S is the maximum
possible total weight of equations marked by H
for S taken over all possible choices in Step 1 of
H. The following lemma indicates the potential
power of H.

Lemma 2 ([3]) Let S be an irreducible system.
Then the maximum excess of S equals its maxi-
mum H-excess.

Theorem 1 ([1]) There exists an O.n2k

.nm/O.1//-time algorithm for MAXLIN2-AA[k]
that returns an assignment of excess of at least
2k if one exists, and returns NO otherwise.

In order to prove the above, the authors pick n
equations e1; : : : ; en such that their rows in A are
linearly independent. An assignment of excess at
least 2k must either satisfy one of these equations
or falsify them all. If they are all falsified, then the
value of all variables is completely determined.
Thus, by Lemma 2, algorithm H can mark one of
these equations, implying a search tree of depth
at most 2k and width at most k. This implies the
desired time bound.
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Theorem 2 below is proved usingM -sum-free
sets, which are defined as follows (see [3]). Let
K and M be sets of vectors in F

n
2 such that K �

M . We say K is M -sum-free if no sum of two
or more distinct vectors in K is equal to a vector
in M .

Theorem 2 ([1]) Let S be an irreducible system
of MAXLIN2-AA[k] and let k � 1: If 2k � m �

minf2n=.2k�1/ � 1; 2n � 2g, then the maximum
excess of S is at least 2k. Moreover, we can find
an assignment with excess of at least 2k in time
O.mO.1//.

Using the above, we can solve the problem
when 2k � m � 2n=.2k�1/ � 2 and when m �

n2k � 1 (using Theorem 1). The case when m <

2k immediately gives a kernel and the remaining
case when 2n=.2k�1/ � 2 � m � n2k � 2 can
be shown to imply that n 2 O.k2 log k/, thereby
giving us the main theorem and corollary of this
section.

Theorem 3 ([1]) The problem MAXLIN2-
AA[k] has a kernel with at most O.k2 log k/
variables.

Corollary 1 ([1]) The problem MAXLIN2-
AA[k] can be solved in time 2O.k log k/.nm/O.1/.

MAX-r-LIN2-AA
In [6] it was proved that the problem MAX-
r-LIN2-AA admits a kernel with at most
O.k2/ variables and equations (where r is
treated as a constant). The bound on the
number of variables can be improved and it
was done by Crowston et al. [3] and Kim and
Williams [10]. The best known improvement is
by Crowston et al. [1].

Theorem 4 ([1]) The problem MAX-r-LIN2-
AA admits a kernel with at most .2k � 1/r

variables.

Both Theorem 4 and a slightly weaker anal-
ogous result of the results in [10] imply the
following:

Lemma 3 ([1,10]) There is an algorithm of run-
time 2O.k/ CmO.1/ for MAX-r-LIN2-AA.

Kim and Williams [10] proved that the last re-
sult is best possible, in a sense, if the exponential
time hypothesis holds.

Theorem 5 ([10]) If MAX-3-LIN2-AA can be
solved in O.2�k2�m/ time for every � > 0, then
3-SAT can be solved in O.2ın/ time for every
ı > 0; where n is the number of variables.

Open Problems

The kernel for MAXLIN2-AA contains at most
O.k2 log k/ variables, but may contain an expo-
nential number of equations. It would be of in-
terest to decide if MAXLIN2-AA admits a kernel
that has at most a polynomial number of variables
and equations.
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Problem Definition

In parameterized complexity, each instance .I; k/
of a problem comes with an additional parame-
ter k which describes structural properties of the
instance, for example, the maximum degree of an
input graph. A problem is called fixed-parameter
tractable if it can be solved in f .k/�poly.n/ time,
that is, the super-polynomial part of the running
time depends only on k. Consequently, instances

of the problem can be solved efficiently if k is
small.

One way to show fixed-parameter tractability
of a problem is the design of a polynomial-time
data reduction algorithm that reduces any input
instance .I; k/ to one whose size is bounded
in k. This idea is captured by the notion of
kernelization.

Definition 1 Let .I; k/ be an instance of a pa-
rameterized problem P , where I 2 ˙� denotes
the input instance and k 2 N is a parameter.
Problem P admits a problem kernel if there
is a polynomial-time algorithm, called problem
kernelization, that computes an instance .I 0; k0/

of the same problem P such that:

• .I; k/ is a yes-instance if and only if .I 0; k0/ is
a yes-instance, and

• jI 0j C k0 � g.k/

for a function g of k only.

Kernelization gives a performance guarantee
for the effectiveness of data reduction: in-
stances .I; k/ with jI j > g.k/ are provably
reduced to smaller instances. Thus, one aim in
the design of kernelization algorithms is to make
the function g as small as possible. In particular,
one wants to obtain kernelizations where g is a
polynomial function. These algorithms are called
polynomial problem kernelizations.

For many parameterized problems, however,
the existence of such a polynomial problem ker-
nelization is considered to be unlikely (under
a standard complexity-theoretic assumption) [4].
Consequently, alternative models of parameter-
ized data reduction, for example Turing kernel-
ization, have been proposed.

The concept of partial kernelization offers a
further approach to obtain provably useful data
reduction algorithms. Partial kernelizations do
not aim for a decrease of the instance size but
for a decrease of some part or dimension of the
instance. For example, if the problem input is a
binary matrix withm rows and n columns, the in-
stance size is	.n �m/. A partial kernelization can
now aim for reducing one dimension of the input,
for example the number of rows n. Of course,
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such a reduction is worthwhile only if we can
algorithmically exploit the fact that the number
of rows n is small. Hence, the aim is to reduce
a dimension of the problem for which there are
fixed-parameter algorithms. The dimension can
thus be viewed as a secondary parameter.

Altogether, this idea is formalized as follows.

Definition 2 Let .I; k/ be an instance of a
parameterized problem P , where I 2 ˙�

denotes the input instance and k is a parameter.
Let d W ˙� ! N be a computable function such
that P is fixed-parameter tractable with respect
to d.I /. Problem P admits a partial problem ker-
nel if there is a polynomial-time algorithm, called
partial problem kernelization, that computes
an instance .I 0; k0/ of the same problem such
that:

• .I; k/ is a yes-instance if and only if .I 0; k0/ is
a yes-instance, and

• d.I 0/C k0 � g.k/

for a computable function g.

Any parameterized problem P which has a par-
tial kernel for some appropriate dimension d is
fixed-parameter tractable with respect to k: First,
one may reduce the original input instance .I; k/
to the partial kernel .I 0; k0/. In this partial kernel,
we have d.I 0/ � g.k/ and, since P can be solved
in f .d.I 0// � poly.n/ time, it can thus be solved
in f .g.k// � poly.n/ time.

Using partial problem kernelization instead of
classic problem kernelization can be motivated by
the following two arguments.

First, the function d in the partial problem ker-
nelization gives us a different goal in the design
of efficient data reduction rules. For instance, if
the main parameter determining the hardness of a
graph problem is the maximum degree, then an
algorithm that produces instances whose maxi-
mum degree isO.k/ but whose size is unbounded
might be more useful than an algorithm that
produces instances whose size is O.k4/ but the
maximum degree is ˝.k2/.

Second, if the problem does not admit a
polynomial-size problem kernel, then it might

still admit a partially polynomial kernel, that is,
a partial kernel in which d.I 0/C k0 � poly.k/.

We now give two examples for applications of
partial kernelizations.

Key Results

The partial kernelization concept was initially
developed to obtain data reduction algorithms
for consensus problems, where one is given a
collection of combinatorial objects and one is
asked to find one object that represents this col-
lection [2].

In the KEMENY SCORE problem, these objects
are permutations of a set U and the task is to
find a permutation that is close to these permu-
tations with respect to what is called Kendall’s
Tau distance, here denoted by 
 . The formal
definition of the (unparameterized) problem is as
follows.

Input: A multiset P of permutations of a ground
set U and an integer `.

Question: Is there a permutation P such thatP
P 0

2P �.P; P 0/ � `?

The parameter k under consideration is the aver-
age distance between the input partitions, that is,

k WD
X

fP;P 0g�P

.P; P 0/=

 
jPj

2

!

:

Observe that, since 
 can be computed efficiently,
KEMENY SCORE is fixed-parameter tractable
with respect to jU j: try all possible permutations
of U and choose the best one. Hence, if U is
small, then the problem is easy. Furthermore,
the number of input permutations is not such a
crucial feature since KEMENY SCORE is already
NP-hard for a constant number of permutations;
the partial kernelization thus aims for a reduction
of jU j and ignores the—less important—number
of input permutations.

This reduction is obtained by removing
elements in U that are, compared to the other
elements, in roughly the same position in many
input permutations. The idea is based on a
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generalization of the following observation:
If some element u is the first element of at
least 3jPj=4 input permutations, then this
element is the first element of an optimal
partition. Any instance containing such an
element u can thus be reduced to an equivalent
with one less element.

By removing such elements, one obtains a
sub-instance of the original instance in which
every element contributes a value of 16=3 to the
average distance k between the input permuta-
tions. This leads to the following result.

Theorem 1 ([3]) KEMENY SCORE admits a
partial kernel with jU j � 16=3k.

Further partial kernelizations for consensus
problems have been obtained for CONSENSUS

CLUSTERING [2, 7] and SWAP MEDIAN

PARTITION [2], the partial kernelization for
KEMENY SCORE has been experimentally
evaluated [3].

Another application of partial kernelization
has been proposed for covering problems such as
SET COVER [1].

Input: A family S of subsets of a ground set U .
Question: Is there a subfamily S0 � S of size

at most ` such that every element in U is
contained in at least one set of S0?

If ` � jU j, then SET COVER has a trivial solution.
Thus, a natural parameter is the amount that
can be saved compared to this trivial solution,
that is, k WD jU j � `. A polynomial prob-
lem kernelization for SET COVER parameterized
by k is deemed unlikely, again under standard
complexity-theoretic assumptions. There is, how-
ever, a partially polynomial problem kernel. The
dimension d is the universe size jU j. SET COVER

is fixed-parameter tractable with respect to jU j

as it can be solved in f .jU j/ � poly.n/ time, for
example, by dynamic programming.

The idea behind the partial kernelization is to
greedily compute a subfamily T � S of size k.
Then, it is observed that either this subfamily has
a structure that can be used to efficiently compute
a solution of the problem, or jU j � 2k2 � 2, or
there are elements in U whose removal yields an
equivalent instance. Altogether this leads to the
following.

Theorem 2 ([1]) SET COVER admits a partial
problem kernel with jU j � 2k2 � 2.

Open Problems

The notion of partial kernelization is quite recent.
Hence, the main aim for the near future is to iden-
tify further useful applications of the technique.
We list some problem areas that contain natural
candidates for such applications. Problems that
are defined on set families, such as SET COVER,
have two obvious dimensions: the number m
of sets in the set family and the size n of the
universe. Matrix problems also have two obvi-
ous dimensions: the number m of rows and the
number n of columns. For graph problems, useful
dimensions could be identified by examining the
so-called parameter hierarchy [6, 8]. Here, the
idea is to find dimensions whose value can be
much smaller than the number of vertices in the
graph. If the size jI j of the instance cannot be re-
duced to be smaller than poly.k/, then this might
be still possible for the smaller dimension d.I /.
A further interesting research direction could be
to study the relationship between partial kernel-
ization and other relaxed notions of kernelization
such as Turing kernelization.

For some problems, the existence of partially
polynomial kernels has been proven, but it is still
unknown whether polynomial kernels exist. One
such example is MAXLIN2-AA [5].
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Problem Definition

Let r be an integer and let V be a set of n
variables. An ordering ˛ is a bijection from V to
f1; 2; : : : ; ng; a constraint is an ordered r-tuple
.v1; v2; : : : ; vr / of distinct variables of V; ˛ sat-
isfies .v1; v2; : : : ; vr / if ˛.v1/ < ˛.v2/ < � � � <

˛.vr /: An instance of MAX-r-LIN-ORDERING

consists of a multiset C of constraints, and the ob-
jective is to find an ordering that satisfies the max-
imum number of constraints. Note that MAX-2-
LIN ORDERING is equivalent to the problem of
finding a maximum weight acyclic subgraph in an
integer-weighted directed graph. Since the FEED-
BACK ARC SET problem is NP-hard, MAX-2-
LIN ORDERING is NP-hard, and thus MAX-r-
LIN-ORDERING is NP-hard for each r � 2.

Let ˛ be an ordering chosen randomly and
uniformly from all orderings and let c 2 C be a
constraint. Then the probability that ˛ satisfies c
is 1=rŠ. Thus the expected number of constraints
in C satisfied by ˛ equals jCj=rŠ. This is a lower
bound on the maximum number of constraints
satisfied by an ordering, and, in fact, it is a
tight lower bound. This allows us to consider the
following parameterized problem (AA stands for
Above Average).

MAX-r-LIN-ORDERING-AA

Instance: A multiset C of constraints and a
nonnegative integer k.

Parameter: k:
Question: Is there an ordering satisfying at

least jCj=rŠC k constraints?

.1; 2; : : : ; r/ is the identity permutation of the
symmetric group Sr . We can extend MAX-r-
LIN-ORDERING by considering an arbitrary sub-
set of Sr rather than just f.1; 2; : : : ; r/g. Instead
of describing the extension for each arity r � 2,
we will do it only for r D 3, which is our main
interest, and leave the general case to the reader.

Let ˘ � S3 D f.1; 2; 3/; .1; 3; 2/; .2; 1; 3/;

.2; 3; 1/; .3; 1; 2/; .3; 2; 1/g be arbitrary. For an
ordering ˛W V ! f1; 2; : : : ; ng, a constraint
.v1; v2; v3/ 2 C is ˘ -satisfied by ˛ if there is
a permutation � 2 ˘ such that ˛.v�.1// <

˛.v�.2// < ˛.v�.3//. Given ˘ , the problem ˘ -
CSP is the problem of deciding if there exists an
ordering of V that ˘ -satisfies all the constraints.
Every such problem is called a Permutation CSP
of arity 3. We will consider the maximization
version of these problems, denoted by MAX-˘ -
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Kernelization, Permutation CSPs Parameterized above Average, Table 1 Permutation CSPs of arity 3 (after
symmetry considerations)

˘ � S3 Name Complexity

˘0 D f.123/g 3-LIN-ORDERING Polynomial

˘1 D f.123/; .132/g Polynomial

˘2 D f.123/; .213/; .231/g Polynomial

˘3 D f.132/; .231/; .312/; .321/g Polynomial

˘4 D f.123/; .231/g NP-comp.

˘5 D f.123/; .321/g BETWEENNESS NP-comp.

˘6 D f.123/; .132/; .231/g NP-comp.

˘7 D f.123/; .231/; .312/g CIRCULAR ORDERING NP-comp.

˘8 D S3 n f.123/; .231/g NP-comp.

˘9 D S3 n f.123/; .321/g NON-BETWEENNESS NP-comp.

˘10 D S3 n f.123/g NP-comp.

CSP, parameterized above the average number of
constraints satisfied by a random ordering of V
(which can be shown to be a tight bound).

It is easy to see that there is only one distinct
˘ -CSP of arity 2. Guttmann and Maucher [5]
showed that there are in fact only 13 distinct ˘ -
CSPs of arity 3 up to symmetry, of which 11

are nontrivial. They are listed in Table 1 together
with their complexity. Some of the problems
listed in the table are well known and have
special names. For example, the problem for
˘ D f.123/; .321/g is called the BETWEENNESS

problem.
Gutin et al. [4] proved that all 11 nontriv-

ial MAX-˘ -CSP problems are NP-hard (even
though four of the ˘ -CSP are polynomial).

Now observe that given a variable set V and
a constraint multiset C over V , for a random
ordering ˛ of V , the probability of a constraint
in C being ˘ -satisfied by ˛ equals j˘ j

6
. Hence,

the expected number of satisfied constraints from
C is j˘ j

6
jCj, and thus there is an ordering ˛

of V satisfying at least j˘ j
6

jCj constraints (and
this bound is tight). A derandomization argument
leads to j˘ j

6
-approximation algorithms for the

problems MAX-˘ -CSP [1]. No better constant
factor approximation is possible assuming the
Unique Games Conjecture [1].

We will study the parameterization of MAX-
˘ -CSP above tight lower bound:

˘ -ABOVE AVERAGE (˘ -AA)

Instance: A finite set V of variables, a multi-
set C of ordered triples of distinct variables
from V and a nonnegative integer k.

Parameter: k.
Question: Is there an ordering ˛ of V such

that at least j˘ j
6

jCj C k constraints of C are
˘ -satisfied by ˛?

Key Results

The following is a simple but important observa-
tion in [4] allowing one to reduce˘ -AA to MAX-
3-LIN-ORDERING-AA.

Proposition 1 Let ˘ be a subset of S3 such
that ˘ … f;;S3g. There is a polynomial
time transformation f from ˘ -AA to MAX-
3-LIN-ORDERING-AA such that an instance
.V; C; k/ of ˘ -AA is a Yes-instance if and only
if .V; C0; k/ D f .V; C; k/ is a Yes-instance of
MAX-3-LIN-ORDERING-AA.

Using a nontrivial reduction from MAX-3-
LIN-ORDERING-AA to a combination of MAX-
2-LIN-ORDERING-AA and BETWEENNESS-
AA and the facts that both problems admit
kernels with quadratic numbers of variables and
constraints (proved in [3] and [2], respectively),
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Gutin et al. [4] showed that MAX-3-LIN-
ORDERING-AA also admits a kernel with
quadratic numbers of variables and constraints.
Kim and Williams [6] partially improved this
result by showing that MAX-3-LIN-ORDERING-
AA admits a kernel with O.k/ variables.

The polynomial-size kernel result for MAX-3-
LIN-ORDERING-AA and Proposition 1 imply the
following (see [4] for details):

Theorem 1 ([4]) Let ˘ be a subset of S3

such that ˘ … f;;S3g. The problem ˘ -AA
admits a polynomial-size kernel with O.k2/

variables.

Open Problems

Similar to Proposition 1, it is easy to prove
that, for each fixed r every ˘ -AA can be re-
duced to LIN-r-ORDERING-AA. Gutin et al. [4]
conjectured that for each fixed r the problem
MAX-r-LIN-ORDERING-AA is fixed-parameter
tractable.
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Problem Definition

Several combinatorial optimization problems
on graphs involve identifying a subset of
nodes S , of the smallest cardinality, such that
the graph obtained after removing S satisfies
certain properties. For example, the VERTEX

COVER problem asks for a minimum-sized
subset of vertices whose removal makes the
graph edgeless, while the FEEDBACK VERTEX

SET problem involves finding a minimum-sized
subset of vertices whose removal makes the graph
acyclic. The F-DELETION problem is a generic
formulation that encompasses several problems
of this flavor.

Let F be a finite set of graphs. In the F-
DELETION problem, the input is an n-vertex
graph G and an integer k, and the question is if
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G has a subset S of at most k vertices, such that
G�S does not contain a graph from F as a minor.
The optimization version of the problem seeks
such a subset of the smallest possible size. The
PLANAR F-DELETION problem is the version
of the problem where F contains at least one
planar graph. The F-DELETION problem was
introduced by [3], who gave a non-constructive
algorithm running in time O.f .k/ � n2/ for some
function f .k/. This result was improved by [1] to
O.f .k/ � n/, for f .k/ D 22O.k log k/

.
For different choices of sets of forbidden mi-

nors F , one can obtain various fundamental prob-
lems. For example, when F D fK2g, a complete
graph on two vertices, this is the VERTEX COVER

problem. When F D fC3g, a cycle on three
vertices, this is the FEEDBACK VERTEX SET

problem. The cases of F being fK2;3; K4g, fK4g,
f�cg, and fK3; T2g, correspond to removing ver-
tices to obtain an outerplanar graph, a series-
parallel graph, a diamond graph, and a graph of
pathwidth one, respectively.

Tools
Most algorithms for the PLANAR F-DELETION

problem appeal to the notion of protrusions in
graphs. An r-protrusion in a graph G is a sub-
graph H of treewidth at most r such that the
number of neighbors ofH in G�H is at most r .
Intuitively, a protrusion H in a graph G may be
thought of as subgraph of small treewidth which
is cut off from the rest of the graph by a small
separator.

Usually, as a means of preprocessing, pro-
trusions are identified and replaced by smaller
ones, while maintaining equivalence. The notion
of graph replacement in this fashion originates in
the work of [4]. The modern notion of protru-
sion reductions have been employed in various
contexts [2, 5, 6, 12]. A widely used method for
developing a protrusion replacement algorithm
is via the notion of finite-integer index. Roughly
speaking, this property ensures that graphs can be
related under some appropriate notion of equiva-
lence with respect to the problem, and that there
are only finitely many equivalence classes. This
allows us to identify the class that the protrusion

belongs to and replace it with a canonical repre-
sentative for that class.

Key Results

The algorithms proposed for PLANAR

F-DELETION usually have the following
ingredients. First, the fact that F contains a
planar graph implies that any YES-instance
of the problem must admit a small subset of
vertices whose removal leads to a graph of small
treewidth. It turns out that such graphs admit a
convenient structure from the perspective of the
existence of protrusions. In particular, most of
the graph can be decomposed into protrusions.
From here, there are two distinct themes.

In the first approach, the protrusions
are replaced by smaller, equivalent graphs.
Subsequently, we have a graph that has no large
protrusions. For such instances, it can be shown
that if there is a solution, there is always one
that is incident to a constant fraction of the edges
in the graph, and this leads to a randomized
algorithm by branching. Notably, the protrusion
replacement can be performed by an algorithm
that guarantees the removal of a constant fraction
of vertices in every application. This helps in
ensuring that the overall running time of the
algorithm has a linear dependence on the size
of the input. This algorithm is limited to the case
when all graphs in F are connected, as is required
in demonstrating finite-integer index.

Theorem 1 ([8]) When every graph in F is con-
nected, there is a randomized algorithm solving
PLANAR F-DELETION in time 2O.k/ � n.

The second approach involves exploring the
structure of the instance further. Here, an O.k/-
sized subset of vertices is identified, with the key
property that there is a solution that lives within
it. The algorithm then proceeds to exhaustively
branch on these vertices. This technique requires
a different protrusion decomposition from the
previous one. The overall algorithm is imple-
mented using iterative compression. Since the
protrusions are not replaced, this algorithm works
for all instances of PLANAR F-DELETION, with-
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out any further assumptions on the family F .
While both approaches lead to algorithms that are
single-exponential in k, the latter has a quadratic
dependence on the size of the input.

Theorem 2 ([11]) PLANAR-F -DELETION can
be solved in time 2O.k/ � n2.

In the context of approximation algorithms,
the protrusion replacement is more intricate, be-
cause the notion of equivalence is now more
demanding. The replacement should preserve not
only the exact solutions, but also approximate
ones. By appropriately adapting the machinery of
replacements with lossless protrusion replacers,
the problem admits the following approximation
algorithm.

Theorem 3 ([8]) PLANAR F-DELETION admits
a randomized constant ratio approximation algo-
rithm.

The PLANAR F-DELETION problem also
admits efficient preprocessing algorithms.
Formally, a kernelization algorithm for the
problem takes an instance .G; k/ as input and
outputs an equivalent instance .H; k0/ where
the size of the output is bounded by a function
of k. If the size of the output is bounded by
a polynomial function of k, then it is called a
polynomial kernel. The reader is referred to the
survey [13] for a more detailed introduction to
kernelization.

The technique of protrusion replacement was
developed and used successfully for kernelization
algorithms on sparse graphs [2,5]. These methods
were also used for the special case of the PLANAR

F-DELETION problem when F is a graph with
two vertices and constant number of parallel
edges [6]. In the general setting of PLANAR

F-DELETION, kernelization involves anticipat-
ing protrusions, that is, identifying subgraphs that
become protrusions after the removal of some
vertices from an optimal solution. These “near-
protrusions” are used to find irrelevant edges,
i.e., an edge whose removal does not change
the problem, leading to natural reduction rules.
The process of finding an irrelevant edge appeals
to the well-quasi-ordering of a certain class of
graphs as a subroutine.

Theorem 4 ([8]) PLANAR F-DELETION admits
a polynomial kernel.

Applications

The algorithms for PLANAR F-DELETION

apply to any vertex deletion problem that
can be described as hitting minor models of
some fixed finite family that contains a planar
graph.

For a finite set of graphs F , let GF ;k be a
class of graphs such that for every G 2 GF ;k

there is a subset of vertices S of size at most
k such that G n S has no minor from F . The
following combinatorial result is a consequence
of the kernelization algorithm for PLANAR F-
DELETION.

Theorem 5 ([8]) For every set F that contains a
planar graph, every minimal obstruction for GF ;k

is of size polynomial in k.

Kernelization algorithms on apex-free and
H -minor-free graphs for all bidimensional
problems from [5] can be implemented in linear
time by employing faster protrusion reducers.
This leads to randomized linear time, linear
kernels for several problems.

In the framework for obtaining EPTAS on H -
minor-free graphs in [7], the running time of
approximation algorithms for many problems is
f .1="/ � nO.g.H//, where g is some function
of H only. The only bottleneck for improv-
ing polynomial-time dependence is a constant
factor approximation algorithm for TREEWIDTH

-DELETION. Using Theorem 3 instead, each
EPTAS from [7] runs in time O.f .1="/ � n2/.
For the same reason, the PTAS algorithms for
many problems on unit disk and map graphs
from [9] become EPTAS algorithms.

Open Problems

An interesting direction for further research is to
investigate PLANAR F-DELETION when none of
the graphs in F is planar. The most interesting
case here is when F D fK5; K3;3g, also known
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as the VERTEX PLANARIZATION problem. The
work in [10] demonstrates an algorithm with
running time 2O.k log k/n, which notably has a
linear-time dependence on n. It remains open
as to whether VERTEX PLANARIZATION can be
solved in 2O.k/n time. The question of poly-
nomial kernels in the non-planar setting is also
open, in particular, even the specific case of F D

fK5g is unresolved.
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Problem Definition

The work of Dell and van Melkebeek [4] refines
the framework for lower bounds for kernelization
introduced by Bodlaender et al. [1] and Fortnow
and Santhanam [6]. The main contribution is
that their results yield a framework for proving
polynomial lower bounds for kernelization rather
than ruling out all polynomial kernels for a prob-
lem; this, for the first time, gives a technique for
proving that some polynomial kernelizations are
actually best possible, modulo reasonable com-
plexity assumptions. A further important aspect
is that, rather than studying kernelization directly,
the authors give lower bounds for a far more
general oracle communication protocol. In this
way, they also obtain strong lower bounds for
sparsification, lossy compression (in the sense
of Harnik and Naor [7]), and probabilistically
checkable proofs (PCPs).

To explain the connection between kernel-
ization and oracle communication protocols, let
us first recall the following. A parameterized
problem is a language Q � ˙� � N; the second
component k of instances .x; k/ 2 ˙� � N is
called the parameter. A kernelization for Q with
size h W N ! N is an efficient algorithm that
gets as input an instance .x; k/ 2 ˙� � N and
returns an equivalent instance .x0; k0/, i.e., such
that .x; k/ 2 Q if and only if .x0; k0/ 2 Q,
with jx0j; k0 � h.k/. If h.k/ is polynomially
bounded in k, then we also call it a polynomial
kernelization.

One way to use a kernelization is to first
simplify a given input instance and then solve the
reduced instance by any (possibly brute-force)
algorithm; together this yields an algorithm for
solving the problem in question. If we abstract
out the algorithm by saying that the answer for
the reduced instance is given by an oracle, then
we arrive at a special case of the following com-
munication protocol.

Definition 1 (oracle communication protocol
[4]) An oracle communication protocol for a
language L is a communication protocol for two
players. The first player is given the input x and
has to run in time polynomial in the length of

the input; the second player is computationally
unbounded but is not given any part of x. At the
end of the protocol, the first player should be able
to decide whether x 2 L. The cost of the protocol
is the number of bits of communication from the
first player to the second player.

As an example, if Q has a kernelization with
size h, then instances .x; k/ can be solved by
a protocol of cost h.k/. It suffices that the first
player can compute a reduced instance .x0; k0/

and send it to the oracle who decides mem-
bership of .x0; k0/ in Q; this yields the desired
answer for whether .x; k/ 2 Q. Note that the
communication protocol is far more general than
kernelization because it makes no assumption
about what exactly is sent (or in what encod-
ing). More importantly, it also allows multiple
rounds of communication, and the behavior of
the oracle could also be active rather than just
answering queries for the first player. Thus, the
obtained lower bounds for oracle communication
protocols are very robust, covering also relaxed
forms of kernelization (like bikernels and com-
pressions), and also yield the other mentioned
applications.

Key Results

A central result in the work of Dell and van
Melkebeek [4] (see also [5]) is the following
lemma, called complementary witness lemma.

Lemma 1 (complementary witness lemma [4])
Let L be a language and t W N ! N n f0g be
polynomially bounded such that the problem of
deciding whether at least one out of t .s/ inputs
of length at most s belongs to L has an oracle
communication protocol of cost O.t.s/ log t .s//,
where the first player can be conondeterministic.
Then L 2 coNP=poly.

A previous work of Fortnow and San-
thanam [6] showed that an efficient algorithm
for encoding any t instances x1; : : : ; xt of size at
most s into one instance y of size poly.s/ such
that y 2 L if and only if at least one xi is in
L implies L 2 coNP=poly. (We recall that this
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settled the OR-distillation conjecture of Bodlaen-
der et al. [1] and allowed their framework to rule
out polynomial kernels under the assumption
that NP ª coNP=poly.) Lemma 1 is obtained
by a more detailed analysis of this result and
requires an encoding of the OR of t .s/ instances
into one instance of size O.t.s/ log t .s// rather
than allowing only size poly.s/ for all values of
t . This focus on the number t .s/ of instances
in relation to the maximum instance size s is
the key for getting polynomial lower bounds for
kernelization (and other applications). In this
overview, we will not discuss the possibility of
conondeterministic behavior of the first player,
but the interested reader is directed to [9, 10] for
applications thereof.

Before outlining further results of Dell and van
Melkebeek [4], let us state a lemma that cap-
tures one way of employing the complementary
witness lemma for polynomial lower bounds for
kernelization. The lemma is already implicit in
[4] and is given explicitly in follow-up work of
Dell and Marx [3] (it can also be found in the cur-
rent full version [5] of [4]). We recall that OR.L/

refers to the language of all tuples .x1; : : : ; xt /

such that at least one xi is contained in L.

Lemma 2 ([3, 5]) Suppose that a parameterized
problem ˘ has the following property for some
constant c: For some NP-complete language L,
there exists a polynomial-time mapping reduc-
tion from OR.L/ to ˘ that maps an instance
.x1; : : : ; xt / of OR.L/ in which each xi has size
at most s to an instance of ˘ with parameter
k � t1=cCo.1/ � poly.s/. Then ˘ does not have a
communication protocol of cost O.kc��/ for any
constant � > 0 unless NP � coNP=poly, even
when the first player is conondeterministic.

Intuitively, Lemma 2 follows from Lemma 1
because if the reduction and communication pro-
tocol in Lemma 2 both exist (for all t ), then
we can choose t .s/ large enough (but polyno-
mially bounded in s) such that for all s we
get an oracle communication protocol of cost
O.t.s// as required for Lemma 1. This implies
L 2 coNP=poly and, hence, NP � coNP=poly

(since L is NP-complete). As discussed earlier,
any kernelization yields an oracle communication
protocol with cost equal to the kernel size and,
thus, this bound carries over directly to kernel-
ization.

Let us now state the further results of Dell and
van Melkebeek [4] using the context of Lemma 2.
The central result is the following theorem on
lower bounds for vertex cover on d -uniform hy-
pergraphs.

Theorem 1 ([4]) Let d � 2 be an integer and
� a positive real. If NP ª coNP=poly, there is
no protocol of cost O.nd��/ to decide whether a
d -uniform hypergraph on n vertices has a vertex
cover of at most k vertices, even when the first
player is conondeterministic.

To prove Theorem 1, Dell and van Melkebeek
devise a reduction from OR.SAT / to CLIQUE

on d -uniform hypergraphs parameterized by the
number of vertices (fulfilling the assumption
of Lemma 2 for c D d ). This reduction relies
on an intricate lemma, the packing lemma,
that constructs a d -uniform hypergraph with t

cliques on s vertices each, but having only about
O.t1=dCo.1/ � s/ vertices and no further cliques of
size s. In follow-up work, Dell and Marx [3] give
a simpler proof for Theorem 1 without making
use of the packing lemma, but use the lemma for
another of their results.

Note that the stated bound for VERTEX COVER

in d -uniform hypergraphs follows by comple-
mentation. Furthermore, since every nontrivial
instance has k � n, this also rules out kernel-
ization to size O.kd��/. The following lower
bound for SATISFIABILITY is obtained by giving
a reduction from VERTEX COVER on d -uniform
hypergraphs with parameter n. In the reduction,
hyperedges of size d are encoded by positive
clauses on d variables (one per vertex), and an
additional part of the formula (which requires
d � 3) checks that at most k of these variables
are set to true.

Theorem 2 ([4]) Let d � 3 be an integer and �
a positive real. If NP ª coNP=poly, there is no
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protocol of cost O.nd��/ to decide whether an n-
variable d -CNF formula is satisfiable, even when
the first player is conondeterministic.

Finally, the following theorem proves that sev-
eral known kernelizations for graph modification
problems are already optimal. The theorem is
proved by a reduction from VERTEX COVER (on
graphs) with parameter k that is similar in spirit
to the classical result of Lewis and Yannakakis on
NP-completeness of the ˘ -VERTEX DELETION

problem for nontrivial hereditary properties ˘ .
Note that Theorem 3 requires that the property˘
is not only hereditary, i.e., inherited by induced
subgraphs, but inherited by all subgraphs.

Theorem 3 ([4]) Let˘ be a graph property that
is inherited by subgraphs and is satisfied by
infinitely many but not all graphs. Let � be a
positive real. If NP ª coNP=poly, there is no
protocol of cost O.k2��/ for deciding whether a
graph satisfying ˘ can be obtained from a given
graph by removing at most k vertices.

As an example, the theorem implies that
the FEEDBACK VERTEX SET problem does
not admit a kernelization with size O.k2��/.
This is in fact tight since a kernelization by
Thomassé [12] achieves O.k2/ vertices and
O.k2/ edges (cf. [4]); improving to O.k2��/

edges is ruled out since it would yield an
encoding in size O.k2��0

/. Similarly, the well-
known kernelization for VERTEX COVER to
2k vertices is tight and cannot, in general, be
expected to yield instances with less than the
trivial O.k2/ edges.

Applications

Several authors have used the present approach
to get polynomial lower bounds for kerneliza-
tions of certain parameterized problems; see, e.g.,
[2, 3, 8, 11]. Similarly, some results make use of
conondeterminism [9, 10] and the more general
setting of lower bounds for oracle communication
protocols [11].

Open Problems

Regarding applications it would be interesting to
have more lower bounds that use the full gen-
erality of the oracle communication protocols.
Furthermore, it is an open problem to relax the
assumption of NP ª coNP=poly to the minimal
P ¤ NP.
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Problem Definition

This work undertakes a theoretical study of pre-
processing for the NP-hard TREEWIDTH prob-
lem of finding a tree decomposition of width at
most k for a given graphG. In other words, given
G and k 2 N, the question is whether G has
treewidth at most k. Several efficient reduction
rules are known that provably preserve the correct
answer, and experimental studies show signifi-
cant size reductions [3, 5]. The present results
study these and further newly introduced rules
and obtain upper and lower bounds within the
framework of kernelization from parameterized
complexity.

The general interest in computing tree de-
compositions is motivated by the well-understood
approach of using dynamic programming on tree
decompositions that is known to allow fast al-
gorithms on graphs of bounded treewidth (but
with runtime exponential in the treewidth). A
bottleneck for practical applications is the need
for finding, as a first step, a sufficiently good tree
decomposition; the best known exact algorithm
due to Bodlaender [2] runs in time exponential in
k3 and is thus only of theoretical interest. This

motivates the use of heuristics and preprocessing
to find a reasonably good tree decomposition
quickly.

Tree Decompositions and Treewidth
A tree decomposition for a graph G D .V;E/

consists of a tree T D .N; F / and a family
X WD fXi j i 2 N;Xi � V g. The sets Xi are
also called bags and the vertices of T are usually
referred to as nodes to avoid confusion with G;
there is exactly one bag Xi associated with each
node i 2 N . The pair .T;X / must fulfill the
following three properties: (1) Every vertex of G
is contained in at least one bag; (2) For each edge
fu; vg 2 E there must be a bag Xi containing
both u and v; (3) For each vertex v of G the set
of nodes i of T with v 2 Xi induce a (connected)
subtree of T . The width of a tree decomposition
.T;X / is equal to the size of the largest bag
Xi 2 X minus one. The treewidth of a graph G,
denoted tw.G/, is the smallest width taken over
all tree decompositions of G.

Parameters
The framework of parameterized complexity al-
lows the study of the TREEWIDTH problem with
respect to different parameters. A parameter is
simply an integer value associated with each
problem instance. The standard parameter for
an optimization problem like TREEWIDTH is the
desired solution quality k and we denote this
problem by TREEWIDTH(k). Apart from this,
structural parameters are considered that capture
structural aspects of G. For example, the work
considers the behavior of TREEWIDTH when the
input graph G has a small vertex cover S , i.e.,
such that deletion of ` D jS j vertices yields
an independent set, with ` being used as the
parameter. Similarly, several other parameters are
discussed, foremost among them the feedback
vertex set number and the vertex deletion distance
to a single clique; the corresponding vertex sets
are called modulators, e.g., a feedback vertex set
is a modulator to a forest. We denote the aris-
ing parameterized problems by TREEWIDTH(vc),
TREEWIDTH(fvs), and TREEWIDTH(vc.G/). To
decouple the overhead of finding, e.g., a mini-
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mum vertex cover for G, all these variants as-
sume that an appropriate modulator is given along
with the input and the obtained guarantees are
in terms of the size of this modulator. Since
all studied parameters can be efficiently approx-
imated to within a constant factor of the opti-
mum, not providing an (optimal) modulator gives
only a constant-factor blowup in the obtained
results.

Kernelization
A kernelization for a problem with parameter ` is
an efficient algorithm that given an instance .x; `/
returns an equivalent instance .x0; `0/ of size and
parameter value `0 bounded by some computable
function of `. If the bound is polynomial in ` then
we have a polynomial kernelization. Specialized
to, for example, TREEWIDTH(vc) a polynomial
kernelization would have the following behavior:
It gets as input an instance .G; S; k/, asking
whether the treewidth of G is at most k, where
S is a vertex cover for G. In polynomial time it
creates an instance .G0; S 0; k0/ such that: (1) The
size of the instance .G0; S 0; k0/ and the parameter
value jS 0j are bounded polynomially in k; (2) The
set S 0 is a vertex cover ofG0; (3) The graphG has
treewidth at most k if and only ifG0 has treewidth
at most k0.

Key Results

The kernelization lower bound framework of
Bodlaender et al. [6] together with recent
results of Drucker [9] is known to imply
that TREEWIDTH(k) admits no polynomial
kernelization unless NP � coNP=poly and the
polynomial hierarchy collapses. The present
work takes a more detailed look at polynomial
kernelization for TREEWIDTH with respect to
structural parameters. The results are as follows.

Theorem 1 TREEWIDTH(vc) i.e., parameter-
ized by vertex cover number, admits a polynomial
kernelization to an equivalent instance with
O..vc.G//3/ vertices.

An interesting feature of this result is that
it uses only three simple reduction rules that
are well known and often used (cf. [5]). Two
rules address so-called simplicial vertices, whose
neighborhood is a clique, and a third rule inserts
edges between certain pairs of vertices that have a
large number of shared vertices. Analyzing these
empirically successful rules with respect to the
vertex cover number of the input graph yields a
kernelization. A fact that nicely complements the
observed experimental success.

Theorem 2 TREEWIDTH(fvs) i.e., parameter-
ized by feedback vertex set number, admits
a polynomial kernelization to an equivalent
instance with O..fvs.G//4/ vertices.

The feedback vertex set number of a graph
is upper bounded by its vertex cover number,
and forests have feedback vertex set number zero
but arbitrarily large vertex cover number. Thus,
for large families of input graphs, this second
result is stronger. The result again builds on sev-
eral known reduction rules (including the above
ones), among others, for handling vertices that
are almost simplicial, i.e., all but one neighboring
vertex form a clique. On top of these, several new
rules are added. One of them addresses a previ-
ously uncovered case of almost simplicial vertex
removal, namely, when the vertex has degree
exactly k C 1, where k is the desired treewidth
bound. Furthermore, these reduction rules lead
to a structure dubbed clique-seeing paths, which
takes a series of fairly technical rules and analysis
to reduce and bound. Altogether, this combina-
tion leads to the above result.

Theorem 3 TREEWIDTH.vc.G// i.e., parame-
terized by deletion distance to a single clique,
admits no polynomial kernelization unless
NP � coNP=poly and the polynomial hierarchy
collapses.

The proof uses the notion of a cross-
composition introduced by Bodlaender et al. [8],
which builds directly on the kernelization lower
bound framework of Bodlaender et al. [6]
and Fortnow and Santhanam [10]. The cross-
composition builds on the proof of NP-
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completeness of TREEWIDTH by Arnborg
et al. [1], which uses a Karp reduction
from CUTWIDTH to TREEWIDTH. This con-
struction is extended significantly to yield a
cross-composition of CUTWIDTH ON SUBCUBIC

GRAPHS (i.e., graphs of maximum degree three)
into TREEWIDTH, which, roughly, requires an
encoding of many CUTWIDTH instances into a
single instance of TREEWIDTH with sufficiently
small parameter.

Overall, together with previously known re-
sults, the obtained upper and lower bounds for
TREEWIDTH cover a wide range of natural pa-
rameter choices (see the discussion in [7]). If C is
any graph class that contains all cliques, then the
vertex deletion distance of a graphG to C is upper
bounded by vc.G/. Thus, TREEWIDTH parame-
terized by distance to C does not admit a poly-
nomial kernelization unless NP � coNP=poly.
This includes several well-studied classes like
interval graphs, cographs, and perfect graphs.
Since TREEWIDTH remains NP-hard on bipartite
graphs, the result for parameterization by feed-
back vertex set number cannot be generalized to
vertex deletion to a bipartite graph. It may, how-
ever, be possible to generalize this parameter to
vertex deletion distance to an outerplanar graph,
i.e., planar graphs having an embedding with
all vertices appearing on the outer face. Since
these graphs generalize forests, this value is upper
bounded by the feedback vertex set number.

Theorem 4 WEIGHTED TREEWIDTH(vc)
i.e., parameterized by vertex cover number,
admits no polynomial kernelization unless
NP � coNP=poly and the polynomial hierarchy
collapses.

In the WEIGHTED TREEWIDTH problem,
each vertex comes with an integer weight, and
the size of a bag in the tree decomposition
is defined as the sum of the weights of its
vertices. (To note, the present paper uses an
extra deduction of one such that treewidth and
weighted treewidth coincide for graphs with
all vertices having weight one.) The result is
proved by a cross-composition from TREEWIDTH

(to WEIGHTED TREEWIDTH parameterized by
vertex cover number) and complements the

polynomial kernelization for the unweighted
case. A key idea for the cross-composition is
to use a result of Bodlaender and Möhring [4] on
the behavior of treewidth under the join operation
on graphs. This is combined with replacing all
edges (in input graphs and join edges) by using
a small number of newly introduced vertices of
high weight.

Open Problems

A particular interesting case left open by existing
results on polynomial kernelization for structural
parameterizations of TREEWIDTH is the vertex
deletion distance to outerplanar graphs.
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Definition and Discussion

The basic definition of the field expresses ker-
nelization as a Karp (many-one) self-reduction.
Classical complexity and recursion theory offers
quite a lot of alternative and more general notions
of reducibilities. The most general notion, that
of a Turing reduction, motivates the following
definition:

Let .Q; �/ be a parameterized problem over a
finite alphabet ˙ .

• An input-bounded oracle for .Q; �/ is an ora-
cle that, for any given input x 2 ˙� of .Q; �/
and any bound t , first checks if jxj; j�.x/j � t ,
and if this is certified, it decides in constant
time whether the input x is a YES instance of
.Q; �/.

• A Turing kernelization (algorithm) for .Q; �/
is an algorithm that, provided with access to
some input-bounded oracle for .Q; �/, de-
cides on input x 2 ˙� in polynomial time
whether x is a YES instance of .Q; �/ or

not. During its computation, the algorithm can
produce (polynomially many) oracle queries
x0 with bound t D h.�.x//, where h is an
arbitrary computable function. The function h
is referred to as the size of the kernel.

If only one oracle access is permitted in a run
of the algorithm, we basically get the classical
notion of a (many-one or Karp) kernelization.

A more general definition was given in [4],
allowing access to a different (auxiliary) problem
.Q0; �0/. As long as there is a computable reduc-
tion from Q0 to Q, this does not make much of
a difference, as we could translate the queries to
Q0 into queries of Q. Therefore, we prefer to use
the definition given in [1].

Out-Branching: Showing
the Difference

In [1], the first example of a natural problem is
provided that admits a Turing kernel of polyno-
mial size, but (most likely) no Karp kernel of
polynomial size. We provide some details in the
following.

Problem Definition

A subdigraph T of a digraph D is an out-tree
if T is an oriented tree with only one vertex r
of indegree zero (called the root). The vertices
of T of outdegree zero are called leaves. If T
is a spanning out-tree, i.e., V.T / D V.D/,
then T is called an out-branching of D. The
DIRECTED MAXIMUM LEAF OUT-BRANCHING

problem is to find an out-branching in a given
digraph with the maximum number of leaves.
The parameterized version of the DIRECTED

MAXIMUM LEAF OUT-BRANCHING problem is
k-LEAF OUT-BRANCHING, where for a given
digraph D and integer k, it is asked to decide
whether D has an out-branching with at least
k leaves. If we replace “out-branching” with
“out-tree” in the definition of k-LEAF OUT-
BRANCHING, we get a problem called k-LEAF
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OUT-TREE. The parameterization � is set to k in
both problems. As the two problems are easily
translatable into each other, we focus on k-LEAF

OUT-BRANCHING as the digraph analogue of the
well-known MAXIMUM LEAF SPANNING TREE

problem.

Key Results

It is shown that the problem variant where an
explicit root is given as additional input, called
ROOTED k-LEAF OUT-BRANCHING, admits a
polynomial Karp kernel. Alternatively, this vari-
ant can be seen as a special case of k-LEAF OUT-
BRANCHING by adding one vertex of indegree
zero and outdegree one, pointing to the desig-
nated root of the original graph. By making a call
to this oracle for each of the vertices as potential
roots, this provides a Turing kernelization of
polynomial size for k-LEAF OUT-BRANCHING.
This result is complemented by showing that k-
LEAF OUT-TREE has no polynomial Karp kernel
unless coNP � NP=poly.

We list the reduction rules leading to the
polynomial-size kernel for the rooted version
in the following.

Reachability Rule:If there exists a vertex u which
is disconnected from the root r , then return
NO.

Useless Arc Rule:If vertex u disconnects a vertex
v from the root r , then remove the arc vu.

Bridge Rule:If an arc uv disconnects at least two
vertices from the root r , contract the arc uv.

Avoidable Arc Rule:If a vertex set S , jS j � 2,
disconnects a vertex v from the root r , vw 2

A.D/ and xw 2 A.D/ for all x 2 S , then
delete the arc vw.

Two Directional Path Rule:If there is a path P D

p1p2 : : : pl�1pl with l D 7 or l D 8 such
that

• p1 and pin 2 fpl�1; plg are the only
vertices with in-arcs from the outside of P

• pl and pout 2 fp1; p2g are the only vertices
with out-arcs to the outside of P

• The path P is the unique out-branching of
DŒV.P /� rooted at p1

• There is a path Q that is the unique out-
branching of DŒV.P /� rooted at pin and
ending in pout

• The vertex after pout on P is not the same
as the vertex after pl on Q

then delete R D P n fp1; pin; pout; plg and
all arcs incident to these vertices from D.
Add two vertices u and v and the arc set
fpoutu; uv; vpin; plv; vu; up1g to D.

This reduction was simplified and improved
in [2] by replacing the rather complicated
last reduction rule by a rule that shortens
induced bipaths of length four to length two.
Here, P D fx1; : : : ; xlg, with l � 3, is an
induced bipath of length l � 1 if the set of arcs
neighbored to fx2; : : : ; xl�1g in D is exactly
f.xi ; xiC1/; .xiC1; xi / j i 2 f1; : : : ; l � 1gg.
This yielded a Karp kernel with a quadratic
number of vertices (measured in terms of the
parameter k) for the rooted version. For directed
acyclic graphs (DAGs), even a Karp kernel with
a linear number of vertices is known for the
rooted version [3]. Notice that also for DAGs
(in fact, for quite restricted DAGs called willow
graphs), the unrooted problem versions have no
polynomial Karp kernel unless coNP � NP=poly,
as suggested by the hardness proof in [1].
Another direction of research is to obtain faster
kernelization algorithms, often by restricting
the use (and power) of reduction rules. For the
k-LEAF OUT-BRANCHING, this was done by
Kammer [6].

Hierarchies Based on Turing Kernels

Based on the notion of polynomial parametric
transformation, in [4] an intertwined WK/MK
hierarchy was defined, in analogy to the well-
known W/M hierarchy of (hard) parameterized
problems. The lowest level (MK[1]) corresponds
to (NP) problems with polynomial-size Karp ker-
nels. The second-lowest level is WK[1], and this
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does not equal MK[1] unless coNP � NP=poly.
Typical complete problems for WK[1] are:

• Given a graph G of order n and an integer k,
does G contain a clique of size k? Here, the
parameterization is �.G; k/ D k � log.n/.

• Given a nondeterministic Turing machine M
and an integer k, does M stop within k steps?
Here, the parameterization is �.M; k/ D k �

log.jM j/.

As noticed in [4], the CLIQUE problem provides
also another (less natural) example of a problem
without polynomial-size Karp kernel that has a
polynomial-size Turing kernel, taking as param-
eterization the maximum degree of the input
graph.

How Much Oracle Access Is Needed?

The examples we gave so far make use of oracles
in a very simple way. More precisely, a very
weak notion of truth-table reduction (disjunctive
reduction) is applied. The INDEPENDENT SET

problem on bull-free graphs [7] seems to provide
a first example where the power of Turing re-
ductions is used more extensively, as the oracle
input is based on the previous computation of
the reduction. Therefore, it could be termed an
adaptive kernelization [5]. Yet another way of
constructing Turing kernels was described by
Jansen [5]. There, in a first step, the instance is
decomposed (according to some graph decompo-
sition in that case), and then the fact is used that
either a solution is already obtained or it only
exists in one of the (small) components of the
decomposition. This framework is then applied
to deduce polynomial-size Turing kernels, e.g.,
for the problem of finding a path (or a cycle) of
length at least k in a planar graph G, where k is
the parameter of the problem.

Open Problems

One of the most simple open questions is whether
LONGEST PATH, i.e., the problem of finding a

path of length at least k, admits a polynomial-size
Turing kernel on general graphs.

Conversely, no tools have been developed
so far that allow for ruling out polynomial-size
Turing kernels. For the question of practical
applications of kernelization, this would be
a much stronger statement than ruling out
traditional Karp kernels of polynomial size, as
a polynomial number of polynomial-size kernels
can give a practical solution (see the discussion
of k-LEAF OUT-BRANCHING above).
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Problem Definition

Many application areas of algorithms research
involve objects in motion. Virtual reality,
simulation, air-traffic control, and mobile
communication systems are just some examples.
Algorithms that deal with objects in motion
traditionally discretize the time axis and compute
or update their structures based on the position of
the objects at every time step. If all objects move
continuously then in general their configuration
does not change significantly between time
steps – the objects exhibit spatial and temporal
coherence. Although time-discretization methods
can exploit spatial and temporal coherence they
have the disadvantage that it is nearly impossible
to choose the perfect time step. If the distance
between successive steps is too large, then
important interactions might be missed, if it is
too small, then unnecessary computations will
slow down the simulation. Even if the time step is
chosen just right, this is not always a satisfactory
solution: some objects may have moved only
slightly and in such a way that the overall data
structure is not influenced.

One would like to use the temporal coherence
to detect precisely those points in time when there
is an actual change in the structure. The kinetic
data structure (KDS) framework, introduced by
Basch et al. in their seminal paper [2], does
exactly that: by maintaining not only the structure
itself, but also some additional information, they

can determine when the structure will undergo
a “real” (combinatorial) change.

Key Results

A kinetic data structure is designed to maintain
or monitor a discrete attribute of a set of mov-
ing objects, for example, the convex hull or the
closest pair. The basic idea is, that although all
objects move continuously, there are only certain
discrete moments in time when the combinatorial
structure of the attribute changes (in the earlier
examples, the ordered set of convex-hull vertices
or the pair that is closest, respectively). A KDS
therefore contains a set of certificates that consti-
tutes a proof of the property of interest. Certifi-
cates are generally simple inequalities that assert
facts like “point c is on the left of the directed line
through points a and b.” These certificates are
inserted in a priority queue (event queue) based
on their time of expiration. The KDS then per-
forms an event-driven simulation of the motion
of the objects, updating the structure whenever
an event happens, that is, when a certificate fails
(see Fig. 1). It is part of the art of designing
efficient kinetic data structures to find a small set
of simple and easily updatable certificates that
serve as a proof of the property one wishes to
maintain.

A KDS assumes that each object has a known
motion trajectory or flight plan, which may be
subject to restrictions to make analysis tractable.
Two common restrictions would be translation
along paths parametrized by polynomials of fixed
degree d, or translation and rotation described
by algebraic curves. Furthermore, certificates are
generally simple algebraic equations, which im-
plies that the failure time of a certificate can be
computed as the next largest root of an algebraic
expression. An important aspect of kinetic data
structures is their on-line character: although the
positions and motions (flight plans) of the objects
are known at all times, they are not necessarily
known far in advance. In particular, any object
can change its flight plan at any time. A good
KDS should be able to handle such changes in
flight plans efficiently.
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Kinetic Data Structures,
Fig. 1 The basic structure
of an event based
simulation with a KDS
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Kinetic Data Structures, Fig. 2 Equivalent convex hull configurations (left and right), a proof that a; b; and c form
the convex hull of S (center)

Kinetic Data Structures,
Fig. 3 Certificate structure
for points a; b; and c being
stationary and point d
moving along a straight
line

l
l
l
l

l
l

l
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A detailed introduction to kinetic data struc-
tures can be found in Basch’s Ph. D. thesis [1] or
in the surveys by Guibas [3, 4]. In the following
the principles behind kinetic data structures are
illustrated by an easy example.

Consider a KDS that maintains the convex
hull of a set S of four points a; b; c; and d as
depicted in Fig. 2. A set of four simple certificates
is sufficient to certify that a; b; and c form indeed
the convex hull of S (see Fig. 2 center). This
implies, that the convex hull of S will not change
under any motion of the points that does not lead
to a violation of these certificates. To put it dif-
ferently, if the points move along trajectories that
move them between the configurations depicted
in Fig. 2 without the point d ever appearing on
the convex hull, then the KDS in principle does
not have to process a single event.

Now consider a setting in which the points
a; b; and c are stationary and the point d moves
along a linear trajectory (Fig. 3 left). Here the
KDS has exactly two events to process. At time
t1 the certificate “d is to the left of bc” fails as the

point d appears on the convex hull. In this easy
setting, only the failed certificate is replaced by
“d is to the right of bc” with failure time “never”,
generally processing an event would lead to the
scheduling and descheduling of several events
from the event queue. Finally at time t2 the
certificates “b is to the right of ad” fails as the
point b ceases to be on the convex hull and is
replaced by “b is to the left of ad” with failure
time “never.”

Kinetic data structures and their accompany-
ing maintenance algorithms can be evaluated and
compared with respect to four desired character-
istics.

Responsiveness. One of the most important per-
formance measures for a KDS is the time
needed to update the attribute and to repair the
certificate set when a certificate fails. A KDS
is called responsive if this update time is
“small”, that is, polylogarithmic.

Compactness. A KDS is called compact if the
number of certificates is near-linear in the
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total number of objects. Note that this is not
necessarily the same as the amount of storage
the entire structure needs.

Locality. A KDS is called local if every object is
involved in only a small number of certificates
(again, “small” translates to polylogarithmic).
This is important whenever an object changes
its flight plane, because one has to recompute
the failure times of all certificates this object
is involved in, and update the event queue
accordingly. Note that a local KDS is always
compact, but that the reverse is not necessarily
true.

Efficiency. A certificate failure does not auto-
matically imply a change in the attribute that
is being maintained, it can also be an internal
event, that is, a change in some auxiliary
structure that the KDS maintains. A KDS
is called efficient if the worst-case number
of events handled by the data structure for
a given motion is small compared to the num-
ber of combinatorial changes of the attribute
(external events) that must be handled for that
motion.

Applications

The paper by Basch et al. [2] sparked a large
amount of research activities and over the last
years kinetic data structures have been used to
solve various dynamic computational geometry
problems. A number of papers deal foremost with
the maintenance of discrete attributes for sets of
moving points, like the closest pair, width and di-
ameter, clusters, minimum spanning trees, or the
constrained Delaunay triangulation. Motivated by
ad hoc mobile networks, there have also been
a number of papers that show how to maintain
the connected components in a set of moving
regions in the plane. Major research efforts have
also been seen in the study of kinetic binary space
partitions (BSPs) and kinetic kd-trees for various
objects. Finally, there are several papers that
develop KDSs for collision detection in the plane
and in three dimensions. A detailed discussion
and an extensive list of references can be found
in the survey by Guibas [4].
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Problem Definition

For a given set of items N D f1; : : : ; ng with
nonnegative integer weights wj and profits pj ,
j D 1; : : : ; n, and a knapsack of capacity c, the
knapsack problem (KP) is to select a subset of
the items such that the total profit of the selected
items is maximized and the corresponding total
weight does not exceed the knapsack capacity c.
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Alternatively, a knapsack problem can be for-
mulated as a solution of the following linear
integer programming formulation:

.KP / maximize
nP

j D1

pixj (1)

subject to
nX

j D1

wjxj � c; (2)

xj 2 .0; 1/ ; j D 1; : : : ; n: (3)

The knapsack problem is the simplest nontrivial
integer programming model having binary vari-
ables, only a single constraint, and only positive
coefficients. A large number of theoretical and
practical papers have been published on this prob-
lem and its extensions. An extensive overview
can be found in the books by Kellerer, Pferschy,
and Pisinger [4] or Martello and Toth [7].

Adding the integrality condition (3) to the
simple linear program (1)–(2) already puts (KP)
into the class of NP-hard problems. Thus, (KP)
admits no polynomial time algorithms unless
P D NP holds.

Therefore, this entry will focus on approxi-
mation algorithms for (KP). A common method
to judge the quality of an approximation algo-
rithm is its worst-case performance. For a given
instance I , define by ´�.I / the optimal solution
value of (KP) and by ´H .I / the corresponding
solution value of a heuristic H . For " 2[0,1[,
a heuristic H is called a .1 � "/-approximation
algorithm for (KP) if for any instance I

´H .I / � .1 � "/ ´� .I /

holds. Given a parameter ", a heuristicH is called
a fully polynomial approximation scheme, or an
FTPAS, ifH is a .1�"/-approximation algorithm
for (KP) for any " 2[0,1[, and its running time
is polynomial both in the length of the encoded
input n and 1=". The first FTPAS for (KP) was
suggested by Ibarra and Kim [1] in 1975. It was
among the early FPTASes for discrete optimiza-
tion problems. It will be described in detail in the
following.

Key Results

(KP) can be solved in pseudopolynomial time
by a simple dynamic programming algorithm.
One possible variant is the so-called dynamic
programming by profits (DP-Profits). The main
idea of DP-Profits is to reach every possible total
profit value with a subset of items of minimal to-
tal weight. Clearly, the highest total profit value,
which can be reached by a subset of weight not
greater than the capacity c, will be an optimal
solution.

Let yj .q/ denote the minimal weight of a
subset of items from f1; : : : ; j g with total profit
equal to q. To bound the length of every array yj ,
an upper bound u on the optimal solution value
has to be computed. An obvious possibility would
be to use the upper bound ULP D

�
´LP

˘
from the

solution ´LP of the LP-relaxation of (KP) and set
U W D ULP. It can be shown that ULP is at most
twice as large as the optimal solution value ´�.
Initializing y0.0/ WD 0 and y0.q/ WD c C 1 for
q D 1; : : : ; U , all other values can be computed
for j D 1; : : : ; n and q D 0; : : : ; U by using the
recursion

yi .q/ WD

�
yi�1 .q/ if q < pj;

min .yi�1 .q/ ; .yi�1 .q/// if q � pj:

The optimal solution value is given by
maxfqjyn.q/ � cg and the running time of
DP-Profits is bounded by O(nU).

Theorem 1 (Ibarra, Kim) There is an FTPAS
for (KP) which runs in O.n lognC n="2/ time.

Proof The FTPAS is based on appropriate scal-
ing of the profit values pj and then running
DP-Profits with the scaled profit values. Scaling
means here that the given profit values pj are
replaced by new profits Qpj such that Qpj WD

�pj

K

˘

for an appropriate chosen constant K.
This scaling can be seen as a partitioning of

the profit range into intervals of length K with
starting points 0;K; 2K; : : : . Naturally, for every
profit value pj , there is some integer value i � 0

such that pj falls into the interval [iK; .i C 1/K[.
The scaling procedure generates for every pj the
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value Qpj as the corresponding index i of the
lower interval bound iK.

Running DP-Profits yields a solution set QX for
the scaled items which will usually be different
from the original optimal solution set X�. Evalu-
ating the original profits of item set QX yields the
approximate solution value ´H . The difference
between ´H and the optimal solution value can
be bounded as follows:

´H �
X

j 2 QX

K
jpj

K

k
�
X

j 2 QX�

K
jpj

K

k

�
X

j 2 QX�

K
�pj

K
� 1

�
D ´ 
 � jX
jK:

To get the desired performance guarantee of 1�",
it is sufficient to have

´ 
 �´H

´

�

jX
jK

´

� ":

To ensure this, K has to be chosen such that

K �
"´�

jX
j
: (4)

Since n � jX�j and ULP=2 � ´�, choosingK WD
"ULP
2n

satisfies condition (4) and thus guarantees
the performance ratio of 1 � ". Substituting U in
the O(nU) bound for DP-Profits by U=K yields
an overall running time of O.n2"/.

A further improvement in the running time is
obtained in the following way. Separate the items
into small items (having profit � "

2
ULP/ and large

items (having profit> "
2
ULP/. Then, perform DP-

Profits for the scaled large items only. To each en-
try q of the obtained dynamic programming array
with corresponding weight y.q/, the small items
are added to a knapsack with residual capacity
c � y.q/ in a greedy way. The small items shall
be sorted in nonincreasing order of their profit to
weight ratio. Out of the resulting combined profit
values, the highest one is selected. Since every
optimal solution contains at most 2=" large items,
jX�j can be replaced in (4) by 2=" which results
in an overall running timeO.n lognCn="2/. The
memory requirement of the algorithm is O.n C

1="3/.

Two important approximation schemes with
advanced treatment of items and algorithmic fine-
tuning were presented some years later. The clas-
sical paper by Lawler [5] gives a refined scal-
ing resp. partitioning of the items and several
other algorithmic improvements which results in
a running time O.n log.1="/ C 1="4/. A second
paper by Magazine and Oguz [6] contains among
other features a partitioning and recombination
technique to reduce the space requirements of
the dynamic programming procedure. The fastest
algorithm is due to Kellerer and Pferschy [2, 3]
with running time O.nminf logn; log.1="/g C

1="2 log.1="/ � min fn; 1=" log.1="/g/ and space
requirement O.nC 1="2/.

Applications

(KP) is one of the classical problems in combi-
natorial optimization. Since (KP) has this simple
structure and since there are efficient algorithms
for solving it, many solution methods of more
complex problems employ the knapsack problem
(sometimes iteratively) as a subproblem.

A straightforward interpretation of (KP) is an
investment problem. A wealthy individual or in-
stitutional investor has a certain amount of money
c available which he wants to put into profitable
business projects. As a basis for his decisions, he
compiles a long list of possible investments in-
cluding for every investment the required amount
wj and the expected net return pj over a fixed
period. The aspect of risk is not explicitly taken
into account here. Obviously, the combination of
the binary decisions for every investment such
that the overall return on investment is as large
as possible can be formulated by (KP).

One may also view the (KP) as a “cutting”
problem. Assume that a sawmill has to cut a log
into shorter pieces. The pieces must however be
cut into some predefined standard-lengths wj ,
where each length has an associated selling price
pj . In order to maximize the profit of the log,
the sawmill can formulate the problem as a (KP)
where the length of the log defines the capacity c.

Among the wide range of “real-world”
applications shall be mentioned two-dimensional
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cutting problems, column generation, separation
of cover inequalities, financial decision problems,
asset-backed securitization, scheduling problems,
knapsack cryptosystems, and most recent
combinatorial auctions. For a survey on
applications of knapsack problems, the reader
is referred to [4].
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Problem Definition

What is the role of knowledge in distributed
computing?

Actions taken by a process in a distributed
system can only be based on its local information
or local knowledge. Indeed, in reasoning about
distributed protocols, people often talk informally
about what processes know about the state of the
system and about the progress of the computa-
tion. Can the informal reasoning about knowl-
edge in distributed and multi-agent systems be
given a rigorous mathematical formulation, and
what uses can this have?

Key Results

In [4] Halpern and Moses initiated a theory
of knowledge in distributed systems. They
suggested that states of knowledge ascribed
to groups of processes, especially common
knowledge, have an important role to play.
Knowledge-based analysis of distributed
protocols has generalized well-known results
and enables the discovery of new ones. These
include new efficient solutions to basic problems,
tools for relating results in different models,
and proving lower bounds and impossibility
results. For example, the inability to attain
common knowledge when communication is
unreliable was established in [4] and shown to
imply and generalize the Coordinated Attack
problem. Chandy and Misra showed in [1] that in
asynchronous systems there is a tight connection
between the manner in which knowledge is
gained or lost and the message chains that underly
Lamport’s notion of potential causality.

Modeling Knowledge
In philosophy, knowledge is often modeled by
so-called possible-worlds semantics. Roughly
speaking, at a given “world,” an agent will know
a given fact to be true precisely if this fact holds at
all worlds that the agent “considers possible.” In
a distributed system, the agents are processes
or computing elements. A simple language
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for reasoning about knowledge is obtained by
starting out with a set ˚ D fp; q; p0; q0 : : :g

of propositions, or basic facts. The facts in ˚
will depend on the application we wish to study;
they may involve statements such as x D 0

or x > y concerning values of variables or
about other aspects of the computation (e.g., in
the analysis of mutual exclusion, a proposition
CS.i/ may be used to state that process i is in
the critical section). We obtain a logical language
LK

n D LK
n .˚/ for knowledge, which is a set of

formulas, by the following inductive definition.
First, p 2 LK

n for all propositions p 2 ˚ .
Moreover, for all formulas '; 2 LK

n , the
language contains the formulas :' (standing
for “not '”), ' ^  (standing for “' and  ”),
and Ki' (“process i knows '”), for every
process i 2 f1; : : : ; ng (Using the operators
“:” and “^,” we can express all of the Boolean
operators. Thus, ' _  (“' or  ”) can be
expressed as :.:' ^ : /, while ') (“'
implies  ”) is :' _  , etc.). The language
LK

n is the basis of a propositional logic of
knowledge. Using it, we can make formulas such
as K1CS.1/ ^ K1K2:CS.2/, which states that
“process 1 knows that it is in the critical section,
and it knows that process 2 knows that 2 is not in
the critical section.” LK

n determines the syntax of
formulas of the logic. A mathematical definition
of what the formulas mean is called its semantics.

A process will typically know different things
in different computations; even within a com-

putation, its knowledge changes over time as a
result of communication and of observing various
events. We refer to time t in a run (or computa-
tion) r by the pair .r; t/, which is called a point.
Formulas are considered to be true or false at a
point .r; t/, with respect to a set of runs R (we
callR a system). The set of points ofR is denoted
by Pts.R/.

The definition of knowledge is based on the
idea that at any given point .r; t/, each process
has a well-defined view, which depends on i ’s
history up to time t in r . This view may consist
of all events that i has observed, or on a much
more restricted amount of information, which is
considered to be available to i at .r; t/. In the
language of [3], this view can be thought of as
being process i ’s local state at .r; t/, which we
denote by ri .t/. Intuitively, a process is assumed
to be able to distinguish two points iff its local
state at one is different from its state in the other.
In a given system R, the meaning of the propo-
sitions in a set ˚ needs to be defined explicitly.
This is done by way of an interpretation � W ˚ �

Pts.R/ ! fTrue;Falseg. The pair I D .R; �/

is called an interpreted system. We denote the
fact that ' is satisfied, or true, at a point .r; t/ in
the system I by .I; r; t/ˆ'. Semantics of LK

n .˚/

with respect to an interpreted system I is given
by defining the satisfaction relation “ˆ” defined
by induction on the structure of the formulas, as
follows:

.I; r; t/ˆp iff �
�
p; .r; t/

�
D True, for a proposition p 2 ˚

.I; r; t/ˆ:' iff .I; r; t/ 6 ˆ'

.I; r; t/ˆ' ^  iff both .I; r; t/ˆ' and .I; r; t/ˆ 

.I; r; t/ˆKi' iff .I; r 0; t 0/ˆ' whenever r 0
i .t

0/ D ri .t/ and .r 0; t 0/ 2 Pts.R/

The fourth clause, which defines satisfaction
for knowledge formulas, can be applied repeat-
edly. This gives meaning to formulas involving
knowledge about formulas that themselves
involve knowledge, such as K2

�
CS.2/ ^

:K1:CS.2/
�
. Knowledge here is ascribed to

processes. The intuition is that the local state

captures all of the information available to the
process. If there is a scenario leading to another
point at which a fact ' is false and the process
has the same state as it has not, then the process
does not know '.

This notion of knowledge has fairly strong
properties that distinguish it from what one might
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consider a reasonable notion of, say, human
knowledge. For example, it does not depend
on computation, thoughts, or a derivation of
what the process knows. It is purely “information
based.” Indeed, any fact that holds at all elements
of Pts.R/ (e.g., the protocol that processes
are following) is automatically known to all
processes. Moreover, it is not assumed that a
process can report its knowledge or that its
knowledge is explicitly recorded in the local
state. This notion of knowledge can be thought of
as being ascribed to the processes by an external
observer and is especially useful for analysis by
a protocol designer.

Common Knowledge and Coordinated
Attack
A classic example of a problem for which the
knowledge terminology can provide insight is
Jim Gray’s Coordinated Attack problem. We
present it in the style of [4]:

The Coordinated Attack Problem
Two divisions of an army are camped on two hill-
tops, and the enemy awaits in the valley below.
Neither general will decide to attack unless he is
sure that the other will attack with him, because
only a simultaneous attack guarantees victory.

The divisions do not initially have plans to attack,
and one of the commanding generals wishes to
coordinate a simultaneous attack (at some time
the next day). The generals can only communi-
cate by means of a messenger. Normally, it takes
the messenger 1 h to get from one encampment
to the other. However, the messenger can lose his
way or be captured by the enemy. Fortunately, on
this particular night, everything goes smoothly.
How long will it take them to coordinate an
attack?

It is possible to show by induction that k trips
of the messenger do not suffice, for all k � 0,
and hence the generals will be unable to attack.
Gray used this example to illustrate the impact
of unreliable communication on the ability to
consistently update distinct sites of a distributed
database. A much stronger result that generalizes
this and applies directly to practical problems can
be obtained based on a notion called common
knowledge. Given a groupG � f1; : : : ; ng of pro-
cesses, we define two new logical operators EG

and CG , corresponding to everyone (in G) knows
and is common knowledge in G, respectively. We
shall denote E1

G'DEG' and inductively define
EkC1

G ' D EG.E
k
G'/. Satisfaction for the new

operators is given by

.I; r; t/ˆEG' iff .I; r; t/ˆKi' holds for all i 2 G

.I; r; t/ˆCG' iff .I; r; t/ˆEk
G' holds for all k � 1

Somewhat surprisingly, common knowledge
is not uncommon in practice. People shake hands
to signal that they attained common knowledge
of an agreement, for example. Similarly, a public
announcement to a class or to an audience is
considered common knowledge. Indeed, as we
now discuss, simultaneous actions can lead to
common knowledge.

Returning to the Coordinated Attack problem,
consider three propositions attackA, attackB ,
and delivered, corresponding, respectively, to
“general A is attacking,” “general B is attack-
ing,” and “at least one message has been de-
livered.” The fact that the generals do not have
a plan to attack can be formalized by saying

that at least one of them does not attack unless
delivered is true. Consider a set of runs R con-
sisting of all possible interactions of the generals
in the above setting. Suppose that the generals
follow the specifications, so they only ever attack
simultaneously at points of R. Then, roughly
speaking, since the generals’ actions depend on
their local state, general A knows when attackA

is true. But since they only attack simultaneously
and attackB is true whenever attackB is true,
KAattackB will hold whenever general A at-
tacks. Since B similarly knows when A attacks,
KBKAattackB will hold as well. Indeed, it can
be shown that when the generals attack in a sys-
tem that guarantees that attacks are simultaneous,
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they must have common knowledge that they are
attacking.

Theorem 1 (Halpern and Moses [4]) Let R be
a system with unreliable communication, let I D

.R; �/, let .r; t/ 2 Pts.R/, and assume that
jGj > 1. Then .I; r; t/ˆ:CGdelivered.

As in the case of Coordinated Attack, si-
multaneous actions must be common knowledge
when they are performed. Moreover, in cases in
which such actions require a minimal amount of
communication to be materialize, CGdelivered
must hold when they are performed. Theorem 1
implies that no such actions can be coordinated
when communication is unreliable. One immedi-
ate consequence is:

Corollary 1 Under a protocol that satisfies the
constraints of the Coordinated Attack problem,
the generals never attack.

The connection between common knowledge
and simultaneous actions goes even deeper. It can
be shown that when a fact that is not common
knowledge to G becomes common knowledge
toG, a state transition must occur simultaneously
at all sites in G. If simultaneity cannot be coor-
dinated in the system, common knowledge can-
not be attained. This raises some philosophical

issues: Events and transitions that are viewed as
being simultaneous in a system that is modeled
at a particular (“coarse”) granularity of time will
fail to be simultaneous when time is modeled at
a finer granularity. As discussed in [4], this is
not quite a paradox, since there are many settings
in which it is acceptable, and even desirable, to
model interactions at a granularity of time in
which simultaneous transitions do occur.

A Hierarchy of States of Knowledge and
Common Knowledge
Common knowledge is a much stronger state of
knowledge than, say, knowledge of an individ-
ual process. Indeed, it is best viewed as a state
of knowledge of a group. There is an essential
difference between Ek

G (everyone knows that ev-
eryone knows, for k levels), even for large k, and
CG (common knowledge). Indeed, for every k,
there are examples of tasks that can be achieved if
EkC1

G ' holds but not if Ek
G' does. This suggests

the existence of a hierarchy of states of group
knowledge, ranging from EG' to CG'. But it
is also possible to define natural states of knowl-
edge for a group that are weaker than these. One
is SG , where SG' is true if

W
i2G Ki' – someone

in G knows '. Even weaker is distributed knowl-
edge, denoted by DG , which is defined by

.I; r; t/ˆDG' iff .I; r 0; t 0/ˆ' for all .r 0; t 0/ satisfying r 0
i .t

0/ D ri .t/ for all i 2 G

Roughly speaking, the distributed knowledge
of a group corresponds to what follows from the
combined information of the group at a given
instant. Thus, for example, if all processes start
out with initial value 1, they will have distributed
knowledge of this fact, even if no single process
knows this individually. Halpern and Moses pro-
pose a hierarchy of states of group knowledge and
suggest that communication can often be seen as
the process of moving the state of knowledge up
the hierarchy:

CG') EkC1
G ' ) Ek

G' ) � � � ) EG'

) SG' ) DG':

Knowledge Gain and Loss in
Asynchronous Systems
In asynchronous systems there are no guarantees
about the pace at which communication is deliv-
ered and no guarantees about the relative rates
at which processes operate. This motivated Lam-
port’s definition of the happened-before relation
among events. It is based on the intuition that in
asynchronous systems only information obtained
via message chains can affect the activity at a
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given site. A crisp formalization of this intuition
was discovered by Chandy and Misra in [1]:

Theorem 2 (Chandy and Misra) Let I be an
asynchronous interpreted system, let ' 2 LK

n ,
and let t 0 > t . Then

Knowledge Gain: If .I; r; t/*Kj' and
.I; r; t 0/ˆKimKim�1

� � �Ki1', then there
is a message chain through processes
hi1; i2; : : : ; imi in r between times t and t 0.

Knowledge Loss: If .I; r; t/ˆKimKim�1
� � �

Ki1' and .I; r; t 0/*', then there is a message
chain through processes him; im�1; : : : ; i1i in
r between times t and t 0.

Note that the second clause implies that sending
messages can cause a process to lose knowledge
about other sites. Roughly speaking, the only
way a process can know a nontrivial fact about
a remote site is if this fact can only be changed
by explicit permission from the process.

Applications and Extensions
The knowledge framework has been used in sev-
eral ways. We have already seen its use for
proving impossibility results in the discussion of
the Coordinated Attack example. One interesting
use of the formalism is as a tool for expressing
knowledge-based protocols, in which programs
can contain tests such as if Ki .msg received/
then. . . , Halpern and Zuck, for example, showed
that distinct solutions to the sequence transmis-
sion problem under different assumptions regard-
ing communication faults were all implementa-
tions of the same knowledge-based protocol [5].

A knowledge-based analysis can lead to
the design of efficient, sometimes optimal,
distributed protocols. Dwork and Moses analyzed
when facts become common knowledge when
processes can crash and obtained an efficient and
optimal solution to simultaneous consensus in
which decisions are taken when initial values

become common knowledge [2]. Moses and
Tuttle showed that in a slightly harsher failure
model, similar optimal solutions exist, but
they are not computationally efficient, because
computing when values are common knowledge
is NP-hard [7]. A thorough exposition of
reasoning about knowledge in a variety of fields
including distributed systems, game theory, and
philosophy appears in [3], while a later discussion
of the role of knowledge in coordination, with
further references, appears in [6].
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Problem Definition

Treewidth is an important and a widely used
graph parameter. Informally, the treewidth of a
graph measures how close the graph is to being
a tree. In particular, low-treewidth graphs often
exhibit behavior somewhat similar to that of trees,
in that many problems can be solved efficiently
on such graphs, often by using dynamic program-
ming. The treewidth of a graph G D .V; E/

is typically defined via tree decompositions. A
tree decomposition for G consists of a tree T D

.V .T /; E.T // and a collection of sets fXv �

V gv2V.T / called bags, such that the following
two properties are satisfied: (i) for each edge

.a; b/ 2 E, there is some node v 2 V.T /

with both a; b 2 Xv , and (ii) for each vertex
a 2 V , the set of all nodes of T whose bags
contain a form a nonempty (connected) subtree
of T . The width of a given tree decomposition is
maxv2V.T /fjXvj�1g, and the treewidth of a graph
G, denoted by tw.G/, is the width of a minimum-
width tree decomposition for G.

In large-treewidth graph decompositions, we
seek to partition a given graph G into a large
number of disjoint subgraphs G1; : : : ; Gh, where
each subgraph Gi has a large treewidth. Specif-
ically, if k denotes the treewidth of G, h is the
desired number of the subgraphs in the decom-
position, and r is the desired lower bound on
the treewidth of each subgraph Gi , then we are
interested in efficient algorithms that partition
any input graph G of treewidth k into h disjoint
subgraphs of treewidth at least r each, and in
establishing the bounds on h and r in terms of
k, for which such a partition exists.

Key Results

The main result of [1] is summarized in the
following theorem.

Theorem 1 There is an efficient algorithm that,
given integers h; r; k � 0, where either hr2 �

k= poly log k or h3r � k= poly log k holds, and
a graph G of treewidth k, computes a partition of
G into h disjoint subgraphs of treewidth at least
r each.

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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Applications

While low-treewidth graphs can often be handled
well by dynamic programming, the major tool
for dealing with large-treewidth graphs so far has
been the Excluded Grid Theorem of Robertson
and Seymour [11]. The theorem states that there
is some function g W Z

C ! Z
C, such that

for any integer t , every graph of treewidth at
least g.t/ contains a .t � t /-grid as a minor
(we say that a graph H is a minor of G iff we
can obtain H from G by a sequence of edge
deletions and edge contractions). A long line of
work is dedicated to improving the upper and
the lower bounds on the function g [2, 6, 7,
9–12]. The best current bounds show that the
theorem holds for g.t/ D O.t98 �poly log.t// [2],
and the best negative result shows that g.t/ D

˝.t2 log t / must hold [12]. Robertson et al. [12]
suggest that g.t/ D �.t2 log t / may be suf-
ficient, and Demaine et al. [5] conjecture that
the bound of g.t/ D �.t3/ is both necessary
and sufficient. Large-treewidth graph decompo-
sition is a tool that allows, in several appli-
cations, to bypass the Excluded Grid Theorem
while obtaining stronger parameters. Such ap-
plications include Erdős-Pósa-type results and
fixed-parameter tractable algorithms that rely on
the bidimensionality theory. We note that the
Excluded Grid Theorem of Robertson and Sey-
mour provides a large-treewidth graph decom-
position with weaker bounds. The most recent
polynomial bounds for the Excluded Grid The-
orem of [2] only ensure that a partition exists
for any h; r where h49r98 � k= poly log k. Prior
to the work of [1], the state-of-the-art bounds
for the Grid-Minor Theorem could only guar-
antee that the partition exists whenever hr2 �

log k= log log k.
We now provide several examples where the

large-treewidth graph decomposition theorem
can be used to improve previously known bounds.

Erdős-Pósa-Type Results
A family F of graphs is said to satisfy the
Erdős-Pósa property, iff there is an integer-valued
function fF , such that for every graph G, either
G contains k disjoint subgraphs isomorphic to

members of F , or there is a set S of fF .k/ nodes,
such that G nS contains no subgraph isomorphic
to a member of F . In other words, S is a cover,
or a hitting set, for F in G. Erdős and Pósa [8]
showed such a property when F is the family of
cycles, with fF .k/ D �.k log k/.

The Excluded Grid Theorem has been widely
used in proving Erdős-Pósa-type results, where
the specific parameters obtained depend on the
best known upper bound on the function g.k/

in the Excluded Grid Theorem. The parameters
in many Erdős-Pósa-type results can be signifi-
cantly strengthened using Theorem 1, as shown
in the following theorem:

Theorem 2 Let F be any family of connected
graphs and assume that there is an integer r , such
that any graph of treewidth at least r is guaran-
teed to contain a subgraph isomorphic to a mem-
ber of F . Then fF .k/ � O.kr2poly log.kr//.

Combining Theorem 2 with the best current
bound for the Excluded Grid Theorem [2], we
obtain the following corollary.

Corollary 1 Let F be any family of connected
graphs, such that for some integer q, any graph
containing a q � q grid as a minor is guaranteed
to contain a subgraph isomorphic to a member of
F . Then fF .k/ � O.q98kpoly log.kq//.

For a fixed graph H , let F.H/ be the family of
all graphs that contain H as a minor. Robertson
and Seymour [11], as one of the applications
of their Excluded Grid Theorem, showed that
F.H/ has the Erdős-Pósa property iff H is pla-
nar. By directly applying Corollary 1, we get
the following improved near-linear dependence
on k.

Theorem 3 For any fixed planar graph H , the
family F.H/ of graphs has the Erdős-Pósa prop-
erty with fF.H/.k/ D O.k � poly log.k//.

Improved Running Times for
Fixed-Parameter Tractability
The theory of bidimensionality [3] is a
powerful methodology in the design of fixed-
parameter tractable (FPT) algorithms. It led
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to sub-exponential (in the parameter k) time
FPT algorithms for bidimensional parameters
in planar graphs and more generally graphs
that exclude a fixed graph H as a minor. The
theory is based on the Excluded Grid Theorem.
However, in general graphs, the weak bounds
of the Excluded Grid Theorem meant that one
could only derive FPT algorithms with running
time of the form 2kc

nO.1/, for some large
constant c, by using the results of Demaine
and Hajiaghayi [4], and the recent polynomial
bounds for the Excluded Grid Theorem [2].
Using Theorem 1, we can obtain algorithms with
running times of the form 2k poly log.k/nO.1/ for
the same class of problems as in [4].

Open Problems

The authors conjecture that there is an efficient
algorithm that, given integers k; r; h with hr �

k= poly log k, and any graph G of treewidth k,
finds a partition of G into h disjoint subgraphs of
treewidth at least r each. This remains an open
problem.

Experimental Results

None are reported.

URLs to Code and Data Sets

None are reported.
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Problem Definition

As the feature size keeps shrinking, there are in-
creasing difficulties to print circuit patterns using
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single litho exposure. For 32/22 nm technology
nodes, double patterning lithography (DPL) is
one of the most promising techniques for the
industry. In DPL, a layout is decomposed into
two masks, where each feature in the layout is
uniquely assigned to one of the masks. By using
two masks which go through two separate expo-
sures, better printing resolution can be achieved.
For 14/10 nm technology node and beyond, triple
patterning lithography (TPL) is one technique to
obtain qualified printing results. In TPL, a layout
is decomposed into three masks which further en-
hance the printing resolution. Currently, DPL and
TPL are the two most studied multiple patterning
techniques for advanced technology nodes [1–7].
Multiple patterning techniques such as quadruple
patterning lithography and beyond usually are not
investigated because of their increasing mask cost
and other technical issues.

For DPL/TPL, there is a minimum coloring
distance dmin. If the distance of two features is
less than dmin, they cannot be printed in the same
mask. dmin reflects the printing capabilities of
current technology and can be redeemed as a
constant in the problem. One practical concern of
DPL/TPL is feature splitting, in which a feature
is split into two or more parts for a legal color
assignment. Such a splitting is called a stitch,
which increases manufacturing cost and com-
plexity due to additional line ends and more tight
overlay control. Therefore, minimizing the num-
ber of stitches is a key objective for DPL/TPL
decompositions. Other concerns include mini-
mizing design rule violations, maximizing the
overlap length, and balancing the usage of differ-
ent colors. Among these concerns for DPL/TPL,
minimizing the number of stitches is the most
commonly studied one.

Multiple patterning decomposition is essen-
tially a graph k-coloring problem, where k D

2 for DPL and k D 3 for TPL. It is well
known that 3-coloring problem is NP-Complete,
even when the graph is planar. For the general
layout, ILP formulations are used in [1–3], and
some heuristics are proposed in [5–7]. In reality,
many industry designs are based on predesigned
standard cells, where the layout is usually in row
structures. All the cells are of exactly the same

height, with power rails going from the left most
of the cell to the right most of it. It is shown
that multiple patterning decomposition .k D 3/

for cell-based row structure layout is polynomial
time solvable [4]. The following discussions are
based on k D 3. The same concept can be easily
extended to other multiple patterning techniques
such as k D 2 or k > 3.

Problem: Multiple Patterning
Decomposition
Using k colors to represent the k masks, multiple
patterning decomposition can be defined as fol-
lows:

Input: Circuit layout and a minimum coloring
distance dmin.

Output: A coloring solution where all features
are assigned to one of the k colors.

Constraint: Any two features with the distance
less than dmin cannot be assigned to the same
color.

Key Results

Multiple Patterning Decomposition for
Standard Cell Designs
Given a layout, a conflict graph G D .V; E/ is
constructed, where (I) vertices V D fv1; : : : ; vng

represent the features in the layout and (II) E D

fe1; : : : ; emg represent conflicting relationships
between the features. A conflict edge exists if
the distance of the two features is within dmin.
Imagine a cutting line that goes vertically across
the cell, there are limited number of features
that intersect with the cutting line due to the
fixed height of the cell. Therefore, the coloring
solutions of each cutting can be enumerated in
polynomial time. The set of polygons that inter-
sect with the same cutting line is called a cutting
line set. An example of conflict graph, cutting
line, and cutting line set is shown in Fig. 1.

By using the left boundary of each feature as
the cutting line, the solutions of each cut line
are computed. Solutions of adjacent cut lines are
connected together, which leads to a solution
graph. Polygon dummy extension is performed
to ensure that the constructed solution graph is
legal. For each polygon, its right boundary is
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Fig. 2 (a) Input layout with polygon dummy extension.
(b) Solution graph. The highlighted path is a sample

decomposition. (c) Sample decomposition. Different
colors represent different masks

virtually extended to its right most conflicting
polygon. After extending the right boundaries
of the polygons, it is guaranteed that for any
polygon in a cutting line set, all its conflicting
polygons (with smaller x coordinates) appear
in the previous cutting line set. Therefore, the
solution graph can be incrementally constructed
and the correctness of the graph is guaranteed.

The solution graph is complete in the sense
that it explores all the solution space. It is proven
in [4] that every path in the solution graph cor-
responds to legal TPL decomposition and every
legal TPL decomposition corresponds to a path in
the solution graph. Figure 2 illustrates the overall
flow of their approach.

Minimizing Stitches
The approach can be extended to handle stitches.
All legal stitch candidates are computed for the
layout, where a polygon feature is decomposed
into a set of touching polygons by the stitch

candidates. Conflict graph G D .V; E/ is con-
structed to model the rectangular layout, where
(I) vertices V D fv1; : : : ; vng represent the
features in the layout and (II) E D fe1; : : : ; emg

represent different relationships between the fea-
tures. There are two types of edges in the graph:
conflict edges and stitch edges. A conflict edge
exists if the two features do not touch each other
and their distance is within dmin. A stitch edge
exists if the two features touch each other.

A weighted solution graph is constructed,
where the weight of an edge denotes the number
of stitches needed between the two vertices.
A shortest path algorithm is utilized to get the
decomposition with optimal number of stitches.

Multiple Patterning Coloring Constraint
In practice, there are additional coloring con-
straints such as balancing the usage of different
masks [4,8] and assigning the same pattern for the
same type of cells [9]. For standard cell designs,
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coloring balancing can be simply achieved by
using three global variables when parsing the
solution graph [4]. An efficient SAT formulation
with limited number of clauses is used to guar-
antee that the same type of cells has the same
coloring decomposition [9].

Applications

Products using DPL in 22 nm technology node
are already available in markets. TPL can be used
in 14/10 nm technology node.

Open Problems

None is reported.

Experimental Results

The authors in [1] show that as the minimum
coloring distance dmin increases, the number of
unsolved conflicts increases. They also observe
that the placement utilization has a very small
impact on the number of unsolved conflicts. The
results in [3] show that the speedup techniques
can greatly reduce the overall runtime without
adversely affecting the quality of the decompo-
sition. Better results on the same benchmarks
are reported in [5–7]. The authors in [4] show
that their algorithm is able to solve all TPL
decomposable benchmarks. For complex layout
with stitch candidates, their approach computes
a decomposition with the optimal number of
stitches.

URLs to Code and Data Sets

The NanGate Open Cell Library can be obtained
online for free.
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Problem Definition

Layout decomposition is a key stage in triple
patterning lithography manufacturing process,
where the original designed layout is divided into
three masks. There will be three exposure/etching
steps, through which the circuit layout can
be produced. When the distance between two
input features is less than certain minimum
distance mins , they need to be assigned to
different masks (colors) to avoid coloring
conflict. Sometimes coloring conflict can be
resolved by splitting a pattern into two different
masks. However, this introduces stitches, which
lead to yield loss because of overlay error.
Therefore, two of the main objectives in layout
decomposition are conflict minimization and
stitch minimization. An example of triple
patterning layout decomposition is shown in
Fig. 1, where all features are divided into three
masks without any conflict and one stitch is
introduced.

Given an input layout, a conflict graph is
constructed to transfer initial geometrical rela-
tionship into an undirected graph with a set of
vertices V and two sets of edges, which are
the conflict edges (CE) and stitch edges (SE),
respectively. V has one or more vertices for each

polygonal shape and each vertex is associated
with a polygonal shape. An edge is in CE iff the
two corresponding vertices are within minimum
coloring distance mins . An edge is in SE iff there
is a stitch candidate between the two vertices
which are associated with the same polygonal
shape.

Problem 1 (Layout Decomposition for Triple
Patterning)

INPUT: The decomposition graph where each
vertex represents one polygonal shape, and
all possible conflicts and stitches are in the
conflict edge set CE and the stitch edge set
SE, respectively.

OUTPUT: A three-color assignment to the con-
flict graph, such that the weighted cost of
conflicts and stitches are minimized. The ad-
ditional constraints may include color balanc-
ing, overlay control, and color preference.

Key Results

Given an input layout, the conflict graph is con-
structed. Based on the conflict graph, the layout
decomposition for triple patterning can be for-
mulated as an integer linear programming (ILP)
formulation [5]. As shown in (1), the objective
function in the ILP formulation is to minimize
the weighted cost function of conflict and stitch
numbers simultaneously:

min
X

eij 2CE

cij C ˛
X

eij 2SE

sij (1)

Layout Decomposition for Triple Patterning, Fig. 1 Layout decomposition for triple patterning lithography (TPL)
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where ˛ is a parameter for assigning relative cost
of stitch versus conflict. Typically, ˛ is much
smaller than 1, for example, 0.1, as resolving
conflict is the most important objective during
layout decomposition. Although the ILP formu-
lation can solve the above layout decomposition
problem optimally, it is not scalable to deal with
large layouts in modern VLSI designs as the ILP
problem is NP-complete.

In [5], a semidefinite programming (SDP)-
based algorithm was proposed to achieve
good runtime and solution quality. Instead of
using a two binary variables to represent three

masks, three unit vectors .1; 0/;
�
�1

2
;

p
3

2

�
,

and
�
�1

2
;�

p
3

2

�
are proposed to represent

them. Note that the angle between any two
vectors of the same color is 0, while the
angle between any two vectors with different
colors is 2�=3. The inner product of two
m-dimension vectors vi and vj is defined as
vi � vj D

P
k vikvjk . Then for any two vectors

vi; vj 2
n
.1; 0/;

�
�1

2
;

p
3

2

�
;
�
�1

2
;�

p
3

2

�o
, the

following property holds:

vi � vj D

�
1; vi D vj

�1
2
; vi ¤ vj

Based on the vector representation, the layout
decomposition for triple patterning problem can
be written as the following vector programming:

min
X

eij 2CE

2

3

�
vi �vjC

1

2

�
C

2˛

3

X

eij 2SE

�
1�vi � vj

�

(2)

s.t: vi 2

(
.1; 0/;

 
�

1

2
;

p
3

2

!
;

 
�

1

2
;�

p
3

2

!)

(2a)

It shall be noted that vi here is discrete, which
is very expensive to solve. Then the discrete
vector program is relaxed to the corresponding
continuous formulation, which can be solved as
a standard semidefinite programming (SDP), as
shown below:

min
X

eij 2CE

2

3

�
yi �yjC

1

2

�
C

2˛

3

X

eij 2SE

.1�yi � yj/

(3)

s.t: yi � yi D 1; 8i 2 V (3a)

�
1

2
� yi � yj; 8eij 2 CE (3b)

Y � 0 (3c)

The resulting matrix Y , where yij D yi �yi, es-
sentially provides the relative coloring guidance
between two layout features (nodes in the conflict
graph). It will be used to guide the final color
assignment. If yij is close to 1, nodes i and j

should be in the same mask; if yij is close to
�0:5, nodes i and j tend to be in different masks.
The results show that with reasonable threshold
such as 0:9 < yij � 1 for the same mask
and �0:5 � yij < �0:4 for different masks,
more than 80 % of nodes/polygons are decided
by the global SDP. For the rest values, heuristic
mapping algorithms will be performed to assign
all vertices to their final colors.

A set of graph simplification techniques have
been proposed to achieve speedup [1, 2, 5, 8]. For
example, one technique is called iterative vertex
removal, where all vertices with degree less than
or equal to two are detected and removed tem-
porarily from the conflict graph. After each vertex
removal, the degrees of other vertices would be
updated. This removing process will continue
until all the vertices have degree three or more.
All the vertices that are temporarily removed
are stored in a stack S . After the color assign-
ment of the remained conflict graph is solved,
the removed vertices in S are added back for
coloring assignment. For row-based structure lay-
out, specific graph-based algorithms are proposed
to provide fast layout decomposition solutions
[3, 7].

Triple patterning layout decomposition has
been actively studied in the last few years, with
many interesting results reported. In [5], the per-
formances between ILP- and SDP-based methods
were compared. As shown in Fig. 2, SDP-based
method can achieve the same optimal solutions
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Layout Decomposition for Triple Patterning, Fig. 2 For ISCAS benchmark suite, the results of ILP- and SDP-based
methods are very comparable

as obtained by ILP for 14 out of 15 test cases.
However, the runtime of ILP-based algorithm is
prohibitive when the problem size is big and the
layout is dense. Graph simplification techniques
are very effective to speed up the layout decom-
position process as that can effectively reduce
the ILP and SDP problem size. The coloring
density balance was integrated into the SDP for-
mulation in [6]. In [4], the SDP framework was
further extended to handle quadruple patterning
or more general multiple patterning lithography
with new vector definition and linear runtime
heuristic algorithms.

URLs to Code and Data Sets

Programs and benchmark suites can be
found through http://www.cerc.utexas.edu/utda/
download/MPLD/.
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Problem Definition

This problem is concerned with the learnability of
multiplicity automata in Angluin’s exact learning
model and applications to the learnability of func-
tions represented by small multiplicity automata.

The Learning Model
It is the exact learning model [2]: Let f be a
target function. A learning algorithm may pro-
pose to an oracle, in each step, two kinds of
queries: membership queries (MQ) and equiva-
lence queries (EQ). In a MQ it may query for the
value of the function f on a particular assignment
´. The response to such a query is the value f .´/.
(If f is Boolean, this is the standard membership
query.) In an EQ it may propose to the oracle
a hypothesis function h. If h is equivalent to
f on all input assignments, then the answer to
the query is YES and the learning algorithm
succeeds and halts. Otherwise, the answer to
the equivalence query is NO and the algorithm
receives a counterexample, i.e., an assignment ´

such that f .´/ ¤ h.´/. One says that the learner
learns a class of functions C, if for every function

Stefano Varricchio: deceased

f 2 C the learner outputs a hypothesis h that is
equivalent to f and does so in time polynomial
in the “size” of a shortest representation of f

and the length of the longest counterexample.
The exact learning model is strictly related to the
Probably Approximately Correct (PAC) model of
Valiant [19]. In fact, every equivalence query can
be easily simulated by a sample of random exam-
ples. Therefore, learnability in the exact learning
model also implies learnability in the PAC model
with membership queries [2, 19].

Multiplicity Automata
Let K be a field, † be an alphabet, and � be the
empty string. A multiplicity automaton (MA) A

of size r consists of j†j matrices f�� W � 2 †g,
each of which is an r � r matrix of elements
from K and an r-tuple E� D .�1; : : : ; �r / 2 Kr .
The automaton A defines a function fA W †� !

K as follows. First, define a mapping �, which
associates with every string in †� an r � r matrix
over K, by �.�/ , ID where ID denotes the
identity matrix, and for a string w D �1�2 : : : �n,
let �.!/ , ��1

� ��2
: : : ��n

. A simple property
of � is that �.x ı y/ D �.x/ � �.y/, where ı de-
notes concatenation. Now, fA.!/ , Œ�.!/�1 � E�

(where Œ�.w/�i denotes the i th row of the matrix
�.w/). Let f W †� ! K be a function. Associate
with f an infinite matrix F , where each of its
rows is indexed by a string x 2 †� and each of
its columns is indexed by a string y 2 †�. The
.x; y/ entry of F contains the value f .x ı y/.
The matrix F is called the Hankel Matrix of f .
The xth row of F is denoted by Fx . The .x; y/

entry of F may be therefore denoted as Fx.y/

and as Fx;y . The following result relates the size
of the minimal MA for f to the rank of F (cf. [4]
and references therein).

Theorem 1 Let f W †� ! K such that f 6	 0

and let F be its Hankel matrix. Then, the size r

of the smallest multiplicity automaton A such that
fA 	 f satisfies r D rank.F / (over the field K).

Key Results
The learnability of multiplicity automata has
been proved in [7] and, independently, in [17].
In what follows, let K be a field, f W †� ! K



Learning Automata 1067

L

be a function, and F its Hankel matrix such that
r D rank.F / (over K).

Theorem 2 ([4]) The function f is learnable by
an algorithm in time O.j†j�r �M.r/Cm�r3/ using
r equivalence queries and O..j†j C log m/r2/

membership queries, where m is the size of the
longest counterexample obtained during the exe-
cution of the algorithm and M.r/ is the complex-
ity of multiplying two r � r matrices.

Some extensions of the above result can be found
in [8, 13, 16]. In many cases of interest, the
domain of the target function f is not †� but
rather †n for some value n, i.e., f W †n ! K.
The length of counterexamples, in this case, is
always n and so m D n. Denote by F d the
submatrix of F whose rows are strings in †d

and whose columns are strings in †n�d and let
rmax D max n

dD0
rank.F d / (where rank is taken

over K).

Theorem 3 ([4]) The function f is learnable by
an algorithm in time O.j†jrn � M.rmax// using
O.r/ equivalence queries and O..j†jC log n/r �

rmax/ membership queries.

The time complexity of the two above results has
been recently further improved [9].

Applications

The results of this section can be found in [3–6].
They show the learnability of various classes
of functions as a consequence of Theorems 2
and 3. This can be done by proving that for every
function f in the class in question, the corre-
sponding Hankel matrix F has low rank. As is
well known, any nondeterministic automaton can
be regarded as a multiplicity automaton, whose
associated function returns the number of ac-
cepting paths of the nondeterministic automaton
on w. Therefore, the learnability of multiplicity
automata gives a new algorithm for learning de-
terministic automata and unambiguous automata.
(A nondeterministic automata is unambiguous
if for every w 2 †�, there is at most one
accepting path.) The learnability of deterministic
automata has been proved in [1]. By [14], the

class of deterministic automata contains the class
of O.log n/-term DNF, i.e., DNF formulae over
n Boolean variables with O.log n/ number of
terms. Hence, this class can be learned using
multiplicity automata.

Classes of Polynomials
Theorem 4 Let pi;j W † ! K be arbitrary
functions of a single variable .1 � i � t; 1 �

j � n/. Let gi W †n ! K be defined by
nQ

j D1

pi;j .´j /. Finally, let f W †n ! K be defined

by f D
tP

iD1

gi . Let F be the Hankel matrix

corresponding to f and F d the submatrices
defined in the previous section. Then, for every
0 � d � n, rank.F d / � t .

Corollary 1 The class of functions that can
be expressed as functions over GF.p/ with
t summands, where each summand Ti is a
product of the form pi;1.x1/ � � �pi;n.xn/ (and
pi;j W GF.p/ ! GF.p/ are arbitrary functions),
is learnable in time poly.n; t; p/.

The above corollary implies as a special case
the learnability of polynomials over GF.p/. This
extends the result of [18] from multi-linear poly-
nomials to arbitrary polynomials. The algorithm
of Theorem 3, for polynomials with n variables
and t terms, uses O.nt/ equivalence queries and
O.t2n log n/ membership queries. The special
case of the above class – the class of polynomials
over GF(2) – was known to be learnable before
[18]. Their algorithm uses O.nt/ equivalence
queries and O.t3n/ membership queries. The
following theorem extends the latter result to
infinite fields, assuming that the functions pi;j are
bounded-degree polynomials.

Theorem 5 The class of functions over a field K
that can be expressed as t summands, where each
summand Ti is of the form pi;1.x1/ � � �pi;n.xn/

and pi;j W K ! K are univariate polynomi-
als of degree at most k, is learnable in time
poly.n; t; k/. Furthermore, if jKj � nkC 1, then
this class is learnable from membership queries
only in time poly.n; t; k/ (with small probability
of error).
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Classes of Boxes
Let Œ`� denote the set f0; 1; : : : ; ` � 1g. A box in
Œ`�n is defined by two corners .a1; : : : ; an/ and
.b1; : : : ; bn/ (in Œ`�n) as follows:

Ba1;:::;an;b1;:::;bn
Df.x1; : : : ; xn/ W8i; ai�xi�big :

A box can be represented by its characteristic
function in Œ`�n. The following result concerns a
more general class of functions.

Theorem 6 Let pi;j W † ! f0; 1g be arbitrary
functions of a single variable .1 � i � t; 1 �

j � n/. Let gi W †n ! f0; 1g be defined by
nQ

j D1

pi;j .´j /. Assume that there is no point x 2

†n such that gi .x/ D 1 for more than s functions
gi . Finally, let f W †n ! f0; 1g be defined

by f D
tW

iD1

gi . Let F be the Hankel matrix

corresponding to f . Then, for every field K and

for every 0 � d � n; rank.F d / �
sP

iD1

�
t

i

�
.

Corollary 2 The class of unions of disjoint
boxes can be learned in time poly.n; t; `/ (where
t is the number of boxes in the target function).
The class of unions of O.log n/ boxes can be
learned in time poly.n; `/.

Classes of DNF Formulae
The learnability of DNF formulae has been
widely investigated. The following special case
of Corollary 1 solves an open problem of [18]:

Corollary 3 The class of functions that can be
expressed as exclusive OR of t (not necessar-
ily monotone) monomials is learnable in time
poly.n; t/.

While Corollary 3 does not refer to a subclass
of DNF, it already implies the learnability of
disjoint (i.e., satisfy-1) DNF. Since DNF is a
special case of union of boxes (with ` D 2), one
obtains also the learnability of disjoint DNF from
Corollary 2. Positive results for satisfy-s DNF
(i.e., DNF formulae in which each assignment
satisfies at most s terms) can be obtained, with
larger values of s. The following two important
corollaries follow from Theorem 6. Note that

Theorem 6 holds in any field. For convenience
(and efficiency), let K D GF.2/.

Theorem 7 Let f D T1 _ T2 _ : : : _ Tt be a
satisfy-s DNF (i.e., each Ti is a monomial). Let F

be the Hankel matrix corresponding to f . Then,

rank.F d / �
sP

iD1

�
t

i

�
� t s .

Corollary 4 The class of satisfy-s DNF formu-
lae, for s D O.1/, is learnable in time poly.n; t/.

Corollary 5 The class of satisfy-s, t -term
DNF formulae is learnable in time poly.n/

for the following choices of s and t W .1/ t D

O.log n/; .2/ t D poly log.n/ and s D

O.log n= log log n/; .3/ t D 2O.log n= log log n/

and s D O.log log n/.

Classes of Decision Trees
The algorithm of Theorem 3 efficiently learns the
class of disjoint DNF formulae. This includes the
class of decision trees. Therefore, decision trees
of size t on n variables are learnable using O.tn/

equivalence queries and O.t2n log n/ member-
ship queries. This is better than the best known
algorithm for decision trees [11] (which uses
O.t2/ equivalence queries and O.t2n2/ member-
ship queries). The following results concern more
general classes of decision trees.

Corollary 6 Consider the class of decision trees
that compute functions f W GF.p/n ! GF.p/ as
follows: each node v contains a query of the form
“xi 2 Sv?” for some Sv � GF.p/. If xi 2 Sv ,
then the computation proceeds to the left child of
v, and if xi …; Sv the computation proceeds to
the right child. Each leaf ` of the tree is marked
by a value �` 2 GF.p/ which is the output on all
the assignments which reach this leaf. Then, this
class is learnable in time poly.n; jLj; p/, where
L is the set of leaves.

The above result implies the learnability of de-
cision trees with “greater-than” queries in the
nodes, solving a problem of [11]. Every decision
tree with “greater-than” queries that computes a
Boolean function can be expressed as the union
of disjoint boxes. Hence, this case can also be
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derived from Corollary 2. The next theorem will
be used to learn more classes of decision trees.

Theorem 8 Let gi W †n ! K be arbitrary
functions .1 � i � `/. Let f W †n ! K be

defined by f D
Q̀

iD1

gi . Let F be the Hankel

matrix corresponding to f , and Gi be the Hankel
matrix corresponding to gi . Then, rank .F d / �
Q̀

iD1

rank.Gd
i /.

This theorem has some interesting applications.
The first application states that arithmetic circuits
of depth two with multiplication gate of fan-
in O.log n/ at the top level and addition gates
with unbounded fan-in in the bottom level are
learnable.

Corollary 7 Let C be the class of functions that
can be expressed in the following way: Let pi;j W

† ! K be arbitrary functions of a single vari-
able .1 � i � `; 1 � j � n/. Let ` D O.log n/

and gi W †n ! K.1 � i � `/ be defined
by †n

j D1pi;j .´j /. Finally, let f W †n ! K be

defined by f D
Q̀

iD1

gi . Then, C is learnable in

time poly.n; j†j/.

Corollary 8 Consider the class of decision trees
of depth s, where the query at each node v is a
Boolean function fv with rmax � t (as defined
in section “Key Results”) such that .t C 1/s D

poly.n/. Then, this class is learnable in time
poly.n; j†j/.

The above class contains, for example, all the de-
cision trees of depth O.log n/ that contain in each
node a term or a XOR of a subset of variables as
defined in [15] (in this case rmax � 2).

Negative Results
In [4] some limitation of the learnability via
the automaton representation has been proved.
One can show that the main algorithm does not
efficiently learn several important classes of func-
tions. More precisely, these classes contain func-
tions f that have no “small” automaton, i.e., by
Theorem 1, the corresponding Hankel matrix F

is “large” over every field K.

Theorem 9 The following classes are not learn-
able in time polynomial in n and the formula size
using multiplicity automata (over any field K):
DNF, monotone DNF; 2-DNF; read-once DNF;
k-term DNF, for k D !.log n/; satisfy-s DNF,
for s D !.1/; and read-j satisfy-s DNF, for
j D !.1/ and s D 	.log n/.

Some of these classes are known to be learn-
able by other methods, some are natural gener-
alizations of classes known to be learnable as
automata (O.log n/-term DNF [11, 12, 14], and
satisfy-s DNF for s D O.1/ (Corollary 4)) or
by other methods (read-j satisfy-s for js D

O.log n= log log n/ [10]), and the learnability of
some of the others is still an open problem.
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Problem Definition

This problem deals with learning “simple”
Boolean functions f W f0; 1gn ! f�1; 1g

from uniform random labeled examples. In the
basic uniform-distribution PAC framework, the
learning algorithm is given access to a uniform
random example oracle EX.f; U / which, when
queried, provides a labeled random example
.x; f .x// where x is drawn from the uniform
distribution U over the Boolean cube f0; 1gn:

Successive calls to the EX.f; U / oracle yield
independent uniform random examples. The
goal of the learning algorithm is to output a
representation of a hypothesis function h W

f0; 1gn ! f�1; 1g which with high probability
has high accuracy; formally, for any �; ı > 0,
given � and ı the learning algorithm should
output an h which with probability at least 1 � ı

has Prx2U Œh.x/ ¤ f .x/� � �:

Many variants of the basic framework
described above have been considered. In the
distribution-independent PAC learning model,
the random example oracle is EX.f;D/ where
D is an arbitrary (and unknown to the learner)
distribution over f0; 1gn; the hypothesis h should
now have high accuracy with respect to D,
i.e., with probability 1 � ı, it must satisfy
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Prx2DŒh.x/ ¤ f .x/� � �: Another variant that
has been considered is when the distribution D is
assumed to be an unknown product distribution;
such a distribution is defined by n parameters
0 � p1; : : : ; pn � 1, and a draw from D is
obtained by independently setting each bit xi to
1 with probability pi . Yet another variant is to
consider learning with the help of a membership
oracle: this is a “black box” oracle MQ.f / for
f which, when queried on an input x 2 f0; 1gn,
returns the value of f .x/: The model of uniform-
distribution learning with a membership oracle
has been well studied; see e.g. [7, 15].

There are many ways to make precise the
notion of a “simple” Boolean function; one com-
mon approach is to stipulate that the function be
computed by a Boolean circuit of some restricted
form. A circuit of size s and depth d consists
of s AND and OR gates (of unbounded fanin)
in which the longest path from any input literal
x1; : : : ; xn; x1; : : : ; xn to the output node is of
length d . Note that a circuit of size s and depth
2 is simply a CNF formula or DNF formula.
The complexity class consisting of those Boolean
functions computed by poly.n/-size, O.1/-depth
circuits is known as nonuniform AC 0.

Key Results

Positive Results
Linial et al. [16] showed that almost all of the
Fourier weight of any constant-depth circuit is on
“low-order” Fourier coefficients:

Lemma 1 Let f W f0; 1gn!f�1; 1g be a
Boolean function that is computed by an
AND/OR/NOT circuit of size s and depth d:

Then for any integer t � 0;

X

S�f1;:::;ng;jS j>t

Of .S/2 � 2s2�t1=d =20:

(Hastad [6] has given a refined version of
Lemma 1 with slightly sharper bounds; see
also [21] for a streamlined proof.) They also
showed that any Boolean function can be well
approximated by approximating its Fourier
spectrum.

Lemma 2 Let f W f0; 1gn ! f�1; 1g be any
Boolean Function and let g W f0; 1gn ! R be an
arbitrary function such that

P
S�f1;:::;ng.

Of .S/�

Og.S//2 � �: Then Prx2U Œf .x/¤ sign.g.x//�� �:

Using the above two results together with
a procedure that estimates all the “low-
order” Fourier coefficients, they obtained a
quasipolynomial-time algorithm for learning
constant-depth circuits:

Theorem 1 There is an nO..logd .n=�///-time al-
gorithm that learns any poly.n/-size, depth-d
Boolean AND/OR/NOT circuit to accuracy � with
respect to the uniform distribution, using uniform
random examples only.

Furst et al. [3] extended this result to learning
under constant-bounded product distributions. A
product distribution D is said to be constant
bounded if each of its n parameters p1; : : : ; pn

is bounded away from 0 and 1, i.e., satisfies
minfpi ; 1 � pig D ‚.1/:

Theorem 2 There is an nO..logd .n=�///-time
algorithm that learns any poly.n/-size, depth-
d Boolean AND/OR/NOT circuit to accuracy
� given random examples drawn from any
constant-bounded product distribution.

By combining the Fourier arguments of
Linial et al. with hypothesis boosting, Jackson
et al. [8] were able to extend Theorem 1 to a
broader class of circuits, namely, constant-depth
AND/OR/NOT circuits that additionally contain
(a limited number of) majority gates. A majority
gate over r Boolean inputs is a binary gate which
outputs “true” if and only if at least half of its r

Boolean inputs are set to “true.”

Theorem 3 There is an nlogO.1/.n=�/-time
algorithm that learns any poly.n/-size, constant-
depth Boolean AND/OR/NOT circuit that
additionally contains polylog.n/ many majority
gates to accuracy � with respect to the uniform
distribution, using uniform random examples
only.

A threshold gate over r Boolean inputs is a
binary gate defined by r real weights w1; : : : ; wr

and a real threshold 
 ; on input .x1; : : : ; xr /
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the value of the threshold gate is 1 if and
only if w1x1 C � � � C wrxr � 
 . Gopalan and
Servedio [4] observed that a conjecture of
Gotsman and Linial [5] bounding the average
sensitivity of low-degree polynomial threshold
functions implies Fourier concentration – and
hence quasipolynomial time learnability using
the original Linial et al. [16] algorithm – for
Boolean functions computed by polynomial-
size constant-depth AND/OR/NOT circuits
augmented with a threshold gate as the topmost
(output) gate. Combining this observation with
upper bounds on the noise sensitivity of low-
degree polynomial threshold functions given in
[2], they obtained unconditional sub-exponential
time learning for these circuits. Subsequent
improvements of these noise sensitivity results,
nearly resolving the Gotsman-Linial conjecture
and giving stronger unconditional running
times for learning these circuits, were given by
Kane [10]; see [2, 4, 10] for detailed statements
of these results.

Negative Results
Kharitonov [11] showed that under a strong but
plausible cryptographic assumption, the algorith-
mic result of Theorem 1 is essentially optimal.
A Blum integer is an integer N D P � Q where
both P and Q are congruent to 3 modulo 4.
Kharitonov proved that if the problem of factor-
ing a randomly chosen n-bit Blum integer is 2n�

-
hard for some fixed � > 0, then any algorithm
that (even weakly) learns polynomial-size depth-
d circuits must run in time 2log�.d/ n, even if
it is only required to learn under the uniform
distribution and can use a membership oracle.
This implies that there is no polynomial-time
algorithm for learning polynomial-size, depth-d
circuits (for d larger than some absolute con-
stant).

Using a cryptographic construction of Naor
and Reingold [18], Jackson et al. [8] proved a re-
lated result for circuits with majority gates. They
showed that under Kharitonov’s assumption, any
algorithm that (even weakly) learns depth-5 cir-
cuits consisting of logk n many majority gates
must run in time 2log�.k/ n time, even if it is only

required to learn under the uniform distribution
and can use a membership oracle.

Applications

The technique of learning by approximating
most of the Fourier spectrum (Lemma 2 above)
has found many applications in subsequent
work on uniform-distribution learning. It is a
crucial ingredient in the current state-of-the-
art algorithms for learning monotone DNF
formulas [20], monotone decision trees [19],
and intersections of half-spaces [12] from
uniform random examples only. Combined
with a membership oracle-based procedure
for identifying large Fourier coefficients, this
technique is at the heart of an algorithm for
learning decision trees [15]; this algorithm
in turn plays a crucial role in the celebrated
polynomial-time algorithm of Jackson [7] for
learning polynomial-size depth-2 circuits under
the uniform distribution.

The ideas of Linial et al. have also been ap-
plied for the difficult problem of agnostic learn-
ing. In the agnostic learning framework, there is
a joint distribution D over example-label pairs
f0; 1gn�f�1; 1g; the goal of an agnostic learning
algorithm for a class C of functions is to construct
a hypothesis h such that Pr.x;y/2DŒh.x/ ¤ y� �

minf 2C Pr.x;y/2DŒf .x/ ¤ y�C �. Kalai et al. [9]
gave agnostic learning algorithms for half-spaces
and related classes via an algorithm which may
be viewed as a generalization of Linial et al.’s
algorithm to a broader class of distributions.

Finally, there has been some applied work
on learning using Fourier representations as well
[17].

Open Problems

Perhaps the most outstanding open question re-
lated to this work is whether polynomial-size
circuits of depth two – i.e., DNF formulas –
can be learned in polynomial time from uniform
random examples only. Blum [1] has offered a
cash prize for a solution to a restricted version
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of this problem. A hardness result for learning
DNF would also be of great interest; recent work
of Klivans and Sherstov [14] gives a hardness
result for learning ANDs of majority gates, but
hardness for DNF (ANDs of ORs) remains an
open question.

Another open question is whether the
quasipolynomial-time algorithms for learning
constant-depth circuits under uniform dis-
tributions and product distributions can be
extended to the general distribution-independent
model. Known results in complexity theory
imply that quasipolynomial-time distribution-
independent learning algorithms for constant-
depth circuits would follow from the exis-
tence of efficient linear threshold learning
algorithms with a sufficiently high level of
tolerance to “malicious” noise. Currently no
nontrivial distribution-independent algorithms
are known for learning circuits of depth 3;
for depth-2 circuits the best known running
time in the distribution-independent setting is
the 2

QO.n1=3/-time algorithm of Klivans and
Servedio [13].

A third direction for future work is to ex-
tend the results of [8] to a broader class of
circuits. Can constant-depth circuits augmented
with MODp gates be learned in quasipolyno-
mial time? Jackson et al. [8] discusses the lim-
itations of current techniques to address these
extensions.

Experimental Results

None to report.

Data Sets

None to report.

URL to Code

None to report.
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Problem Definition

A disjunctive normal form (DNF) expression is
a Boolean expression written as a disjunction
of terms, where each term is the conjunction
of Boolean variables that may or may not be
negated. For example, .v1 ^ v2/ _ .v2 ^ v3/ is
a two-term DNF expression over three variables.
DNF expressions occur frequently in digital cir-
cuit design, where DNF is often referred to as
sum of products notation. From a learning per-
spective, DNF expressions are of interest because
they provide a natural representation for certain
types of expert knowledge. For example, the
conditions under which complex tax rules apply
can often be readily represented as DNFs. An-
other nice property of DNF expressions is their
universality: every n-bit Boolean function (the
type of function considered in this entry unless
otherwise noted) f W f0; 1gn ! f0; 1g can be
represented as a DNF expression F over at most
n variables.

In the basic probably-approximately correct
(PAC) learning model [24], n is a fixed positive
integer and a target distribution D over f0; 1gn

is assumed fixed. The learner will have black-
box access to an unknown arbitrary Boolean
f through an example oracle EX.f;D/ which,
when queried, selects x 2 f0; 1gn at random
according to D and returns the pair hx; f .x/i.
The DNF learning problem is then to design an
algorithm provably meeting the following speci-
fications.

Problem 1 (PAC-DNF)

INPUT: Positive integer n; �; ı > 0; oracle
EX.f;D/ for f W f0; 1gn ! f0; 1g express-
ible as DNF having at most s terms and for D
an arbitrary distribution over f0; 1gn.

OUTPUT: With probability at least 1� ı over the
random choices made by EX.f;D/ and the
algorithm (if any), a function h W f0; 1gn !

f0; 1g such that Prx�DŒh.x/ ¤ f .x/� < �

and such that h.x/ is computable in time
polynomial in n and s for each x 2 f0; 1gn.

RUN TIME: Polynomial in n, s, 1=�, and 1=ı.
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The PAC-DNF problem has not been resolved
at the time of this writing, and many believe
that no algorithm can solve this problem (see,
e.g., [2]). However, DNF has been shown to be
learnable in several models that relax the PAC
assumptions in various ways. In particular, all
polynomial-time learning results to date have
limited the choice of the target distribution D to
(at most) the class of constant-bounded product
distributions. For a constant c 2 .0; 1

2
�, a c-

bounded product distribution D� is defined by
fixing a vector � 2 Œc; 1 � c�n and having D�

correspond to selecting each bit xi of x indepen-
dently so that the mean value of xi is �i ; mathe-
matically, this distribution function can be written
as D�.x/ 	

Qn
iD1 .xi �i C .1 � xi /.1 � �i //.

In most learning models, the target distribution
is assumed to be selected by an unknown, even
adversarial, process from among the allowed dis-
tributions; thus, the limitation relative to PAC
learning is on the class of allowed distributions,
not on how a distribution is chosen. However, in
an alternative model of learning from smoothed
product distributions [17], the mechanism used to
choose the target distribution is also constrained
as follows. A constant c 2 .0; 1

2
� and an ar-

bitrary vector � 2 Œ2c; 1 � 2c�n are fixed, a
perturbation � 2 Œ�c; c�n is chosen uniformly
at random, and the target distribution is taken to
be the c-bounded product distribution D�0 such
that �0 D � C �. The learning algorithm now
needs to succeed with only high probability over
the choice of � (as well as over the usual choices,
and in the same run time as for PAC-DNF).

Problem 2 (SMOOTHED-DNF)

INPUT: Same as PAC-DNF except that oracle
EX.f;D�0/ has D�0 a smoothed product dis-
tribution.

OUTPUT: With probability at least 1� ı over the
random choice of �0 and the random choices
made by EX.f;D�0/ and the algorithm (if
any), a function h W f0; 1gn ! f0; 1g such that
Prx�D�0

Œh.x/ ¤ f .x/� < �.

Various more-informative oracles have also
been studied, and we will consider two in par-
ticular. A membership oracle MEM.f /, given

x, returns f .x/. A product random walk oracle
PRW.f;D�/ [15] is initialized by selecting an
internal state vector x at random according to a
fixed arbitrary constant-bounded product distri-
bution D�. Then, on each call to PRW.f;D�/, an
i 2 f1; 2; : : : ; ng is chosen uniformly at random
and bit xi in the internal vector x is replaced with
a bit b effectively chosen by flipping a �i -biased
coin, so that xi will be 1 with probability �i .
The oracle then returns the triple hi; x0; f .x0/i

consisting of the selected i , the resulting new
internal state vector x0, and the value that f

assigns to this vector. These oracles are used to
define two additional DNF learning problems.

Problem 3 (PMEM-DNF)

INPUT: Same as PAC-DNF except that the oracle
supplied is MEM.f / and the target distribu-
tion is a constant-bounded product distribution
D�.

OUTPUT: With probability at least 1 � ı over
the random choices made by the algorithm, a
function h such that Prx�D�

Œh.x/¤f .x/�< �.

Problem 4 (PRW-DNF)

INPUT: Same as PAC-DNF except that the or-
acle supplied is PRW.f;D�/ for a constant-
bounded product distribution D�.

OUTPUT: With probability at least 1 � ı over
the random choices made by PRW.f;D�/ and
the algorithm (if any), a function h such that
Prx�D�

Œh.x/ ¤ f .x/� < �.

Certain other DNF learning problems and as-
sociated results are mentioned briefly in the next
section.

Key Results

The first algorithm for efficiently learning arbi-
trary functions in time polynomial in their DNF
size was the Harmonic Sieve [13], which solved
the PMEM-DNF problem. This algorithm, like all
algorithms for learning arbitrary DNF functions
to date, relies in large part on Fourier analy-
sis for its proof of correctness. In particular,
a key component of the Sieve involves finding
heavy (large magnitude) Fourier coefficients of
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certain functions using a variation on an algo-
rithm discovered by Goldreich and Levin [11]
and first employed to obtain a learning result by
Kushilevitz and Mansour [22]. The original Sieve
also depends on a certain hypothesis boosting
algorithm [10]. Subsequent work on the PMEM-
DNF problem [5,7,8,18,21] has produced simpler
and/or faster algorithms. In the case of [18], the
result is somewhat stronger as the approximator
h is reliable: it rarely produces false positives.
The best run time for the PMEM-DNF problem
obtained thus far, QO.ns4=�/, is due to Feldman
[7].

Using a membership oracle is a form of ac-
tive learning in which the learning algorithm
is able to influence the oracle, as opposed to
passive learning—exemplified by learning from
an example oracle—where the learning algorithm
merely accepts the information provided by the
oracle. Thus, an apparently significant step in
the direction of a solution to PAC-DNF occurred
when Bshouty et al. [6] showed that PRW-DNF,
which is obviously a passive learning problem,
can be solved when the product distribution is
constrained to be uniform (the distribution is
c-bounded for c D 1

2
). Noise sensitivity anal-

ysis plays a key role in Bshouty et al.’s result.
Jackson and Wimmer [15] subsequently defined
the product random walk model and extended
the result of [6] to show that PRW-DNF can be
solved in general, not merely for uniform random
walks. Both results still rely to some extent on the
Harmonic Sieve, or more precisely on a slightly
modified version called the Bounded Sieve [3].

More recently, the SMOOTHED-DNF
problem has been defined and solved by Kalai,
Samorodnitsky, and Teng [17]. As an example
oracle is used by the algorithm solving this
problem, this result can be viewed as a partial
solution to PAC-DNF that applies when the
target distribution is chosen in a somewhat
“friendly,” rather than adversarial, way. Their
algorithm avoids the Sieve’s need for boosting
by combining a form of gradient projection
optimization [12] with reliable DNF learning
[18] in order to produce a good approximator
h, given only the heavy Fourier coefficients of
the function f to be approximated. Feldman [9]

subsequently discovered a simpler algorithm for
this problem.

Algorithms for efficiently learning DNF in a
few, less studied, models are mentioned only
briefly here due to space constraints. These
results include uniform-distribution learning of
DNF from a quantum example oracle [4] and
from two different types of extended statistical
queries [3, 14].

Finally, note that although the focus of this
entry is on learning arbitrary functions in time
polynomial in their DNF size, there is also a
substantial literature on polynomial-time learning
of restricted classes of functions representable
by constrained forms of DNF, such as monotone
DNF (functions expressible as a DNF having no
negated variables). For the most part, this work
predates the algorithms described here. [19] pro-
vides a good summary of many early restricted-
DNF results. See also Sellie’s algorithm [23]
that, roughly speaking, efficiently learns with
respect to the uniform target distribution most—
but not necessarily all—functions representable
by polynomial-size DNF given uniform random
examples of each function.

Applications

DNF learning algorithms have proven useful as
a basis for learning more expressive function-
representation classes. In fact, the Harmonic
Sieve, without alteration, can be used to learn
with respect to the uniform distribution arbitrary
functions in time polynomial in their size as
a majority of parity functions (see [13] for a
definition of the TOP class and a discussion
of its superior expressiveness relative to DNF).
In another generalization direction, a DNF
expression can be viewed as a union of rectangles
of the Boolean hypercube. Atici and Servedio [1]
have given a generalized version of the Harmonic
Sieve that can, among other things, efficiently
learn with respect to uniform an interesting
subset of the class of unions of rectangles over
f0; 1; : : : ; b � 1gn for non-constant b. Both of the
preceding results use membership queries. A few
quasipolynomial-time passive learning results
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for classes more expressive than DNF in various
learning models have also been obtained [15, 16]
by building on techniques employed originally in
DNF learning algorithms.

Open Problems

As indicated at the outset, a resolution, either
positively or negatively, of the PAC-DNF ques-
tion would be a major step forward. Several other
DNF questions are also of particular interest. In
the problem of agnostic learning [20] of DNF, the
goal, roughly, is to efficiently find a function h

that approximates arbitrary function f W f0; 1gn

nearly as well as the best s-term DNF, for any
fixed s. Is DNF agnostically learnable in any rea-
sonable model? Also welcome would be the dis-
covery of efficient algorithms for learning DNF
with respect to interesting classes of distributions
beyond product distributions. Finally, although
monotone DNF is not a universal function class,
it should be mentioned that an efficient example-
oracle algorithm for monotone DNF, even if re-
stricted to the uniform target distribution, would
be considered a breakthrough.
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Problem Definition

The Hamming distance dH(y, z) between two
binary strings y and z of the same length is the
number of entries in which y and z disagree. A bi-
nary error-correcting code of minimum distance d
is a mapping C W f0; 1gk ! f0; 1gn such that for
every two distinct inputs x; x0 2 f0; 1gk , the en-
codings C(x) and C.x0/ have Hamming distance
at least d. Error-correcting codes are employed
to transmit information over noisy channels. If
a sender transmits an encoding C(x) of a message
x via a noisy channel, and the recipient receives
a corrupt bit string y ¤ C.x/, then, provided
that y differs from C(x) in at most .d � 1/=2

locations, the recipient can recover y from C(x).
The recipient can do so by searching for the string
x that minimizes the Hamming distance between
C(x) and y: there can be no other string x0 such
that C.x0/ has Hamming distance .d � 1/=2 or
smaller from y, otherwise C(x) and C.x0/ would

be within Hamming distance d � 1 or smaller,
contradicting the above definition. The problem
of recovering the message x from the corrupted
encoding y is the unique decoding problem for the
error-correcting code C. For the above-described
scheme to be feasible, the decoding problem
must be solvable via an efficient algorithm. These
notions are due to Hamming [4].

Suppose that C is a code of minimum distance
d, and such that there are pairs of encodings
C(x), C.x0/ whose distance is exactly d. Further-
more, suppose that a communication channel is
used that could make a number of errors larger
than .d � 1/=2. Then, if the sender transmits
an encoded message using C, it is no longer
possible for the recipient to uniquely reconstruct
the message. If the sender, for example, trans-
mits C(x), and the recipient receives a string y
that is at distance d/2 from C(x) and at dis-
tance d/2 from C(x0), then, from the perspec-
tive of the recipient, it is equally likely that the
original message was x or x0. If the recipient
knows an upper bound e on the number of en-
tries that the channel has corrupted, then, given
the received string y, the recipient can at least
compute the list of all strings x such that C(x)
and y differ in at most e locations. An error-
correcting code C W f0; 1gk ! f0; 1gn is (e, L)-
list decodable if, for every string y 2 f0; 1gn,
the set fx 2 f0; 1gk W dH .C.x/; y/ � eg has car-
dinality at most L. The problem of reconstructing
the list given y and e is the list-decoding problem
for the code C. Again, one is interested in efficient
algorithms for this problem. The notion of list-
decoding is due to Elias [1].

A code C W f0; 1gk ! f0; 1gn is a Hadamard
code if every two encodings C.x/, C.x0/ differ in
precisely n/2 locations. In the Computer Science
literature, it is common to use the term Hadamard
code for a specific construction (the Reed–Muller
code of order 2) that satisfies the above prop-
erty. For a string a 2 f0; 1gk , define the function
`a W f0; 1gk ! f0; 1g as

`a.x/ WD
X

i

ai xi mod 2 :

Observe that, for a ¤ b, the two functions `a and
`b differ on precisely .2k/=2 inputs. For n D 2k ,
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the code H W f0; 1gk ! f0; 1gn maps a message
a 2 f0; 1gk into the n-bit string which is the truth-
table of the function `a. That is, if b1; : : : ; bn

is an enumeration of the n D 2k elements of
f0; 1gk , and a 2 f0; 1gk is a message, then the
encoding H(a) is the n-bit string that contains the
value `a(bi) in the i-th entry. Note that any two
encodings H(x), H.x0/ differ in precisely n/2 en-
tries, and so what was just defined is a Hadamard
code. From now on, the term Hadamard code will
refer exclusively to this construction.

It is known that the Hadamard code H W

f0; 1gk ! f0; 1g2
k

is . 1
2
� �; 1

4�2 /-list decodable
for every � > 0. The Goldreich–Levin results
provide efficient list-decoding algorithm.

The following definition of the Fourier
spectrum of a boolean function will be needed
later to state an application of the Goldreich–
Levin results to computational learning theory.
For a string a 2 f0; 1gk , define the function
�a W f0; 1gk ! f�1;C1g as �a.x/ WD .�1/`a.x/.
Equivalently, �a.x/ D .�1/

P
i ai xi . For two

functions f; g W f0; 1gk ! R, define their inner
product as

hf; gi WD
1

2k

X

x

f .x/ � g.x/ :

Then it is easy to see that, for every a ¤ b,
h�a; �bi D 0, and h�a; �ai D 1. This means that
the functions f�aga2f0;1gk form an orthonormal
basis for the set of all functions f W f0; 1gk ! R.
In particular, every such function f can be written
as a linear combination

f .x/ D
X

a

Of .a/�a.x/

where the coefficients Of .a/ satisfy Of .a/Dhf; �ai.
The coefficients Of .a/ are called the Fourier
coefficients of the function f.

Key Results

Theorem 1 There is a randomized algorithm GL
that, given in input an integer k and a parameter

� > 0, and given oracle access to a function
f W f0; 1gk ! f0; 1g, runs in time polynomial in
1=� and in k and outputs, with high probability
over its internal coin tosses, a set S � f0; 1gk

that contains all the strings a 2 f0; 1gk such that
`a and f agree on at least a 1=2C � fraction of
inputs.

Theorem 1 is proved by Goldreich and
Levin [3]. The result can be seen as a list-
decoding for the Hadamard code H W f0; 1gk !

f0; 1g2
k

; remarkably, the algorithm runs in time
polynomial in k, which is poly-logarithmic in the
length of the given corrupted encoding.

Theorem 2 There is a randomized algorithm
KM that given in input an integer k and parame-
ters �; ı > 0, and given oracle access to a func-
tion f W f0; 1gk ! f0; 1g, runs in time polyno-
mial in 1=�, in 1=ı, and in k and outputs a set
S � f0; 1gk and a value g(a) for each a 2 S .

With high probability over the internal coin
tosses of the algorithm,

1 S contains all the strings a 2 f0; 1gk such that
j Of .a/j � �, and

2 For every a 2 S , j Of .a/ � g.a/j � ı.

Theorem 2 is proved by Kushilevitz and
Mansour [5]; it is an easy consequence of the
Goldreich–Levin algorithm.

Applications

There are two key applications of the Goldreich–
Levin algorithm: one is to cryptography and the
other is to computational learning theory.

Application in Cryptography
In cryptography, a one-way permutation is
a family of functions fpngn�1 such that: (i) for
every n, pn W f0; 1gn ! f0; 1gn is bijective,
(ii) there is a polynomial time algorithm
that, given x 2 f0; 1gn, computes pn(x), and
(iii) for every polynomial time algorithm A and
polynomial q, and for every sufficiently large n,
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Px�f0;1gn ŒA.pn.x// D x� �
1

q.n/
:

That is, even though computing pn(x) given x is
doable in polynomial time, the task of computing
x given pn(x) is intractable. A hard core predicate
for a one-way permutation fpng is a family of
functions fBngn�1 such that: (i) for every n,
Bn W f0; 1gn ! f0; 1g, (ii) there is a polynomial
time algorithm that, given x 2 f0; 1gn, computes
Bn(x), and (iii) for every polynomial time algo-
rithm A and polynomial q, and for every suffi-
ciently large n,

Px�f0;1gn ŒA.pn.x// D Bn.x/� �
1

2
C

1

q.n/
:

That is, even though computing Bn(x) given x is
doable in polynomial time, the task of computing
Bn(x) given pn(x) is intractable.

Goldreich and Levin [3] use their algorithm to
show that every one-way permutation has a hard-
core predicate, as stated in the next theorem.

Theorem 3 Let fpng be a one-way permutation;
define fp0

ng such that p0
2n.x; y/ WD pn.x/; y

and let B2n.x; y/ WD
P

i xi yi mod 2. (For
odd indices, let p0

2nC1.´; b/ WD p0
2n.´/ and

B2nC1.´; b/ WD B2n.´/.)
Then fp0

ng is a one-way permutation and fBng

is a hard-core predicate for fp0
ng.

This result is used in efficient constructions of
pseudorandom generators, pseudorandom func-
tions, and private-key encryption schemes based
on one-way permutations. The interested reader
is referred to Chapter 3 in Goldreich’s mono-
graph [2] for more details.

There are also related applications in com-
putational complexity theory, especially in the
study of average-case complexity. See [7] for an
overview.

Application in Computational Learning
Theory
Loosely speaking, in computational learning
theory one is given an unknown function
f W f0; 1gk ! f0; 1g and one wants to compute,

via an efficient randomized algorithm, a repre-
sentation of a function g W f0; 1gk ! f0; 1g that
agrees with f on most inputs. In the PAC learning
model, one has access to f only via randomly
sampled pairs .x; f .x//; in the model of learning
with queries, instead, one can evaluate f at points
of one’s choice. Kushilevitz and Mansour [5]
suggest the following algorithm: using the
algorithm of Theorem 2, find a set S of large
coefficients and approximations g(a) of the
coefficients Of .a/ for a 2 S . Then define the
function g.x/ D

P
a2S g.a/�a.x/. If the error

caused by the absence of the smaller coefficients
and the imprecision in the larger coefficient is
not too large, g and f will agree on most inputs.
(A technical point is that g as defined above is
not necessarily a boolean function, but it can be
easily “rounded” to be boolean.) Kushilevitz and
Mansour show that such an approach works well
for the class of functions f for which

P
a j
Of .a/j

is bounded, and they observe that functions of
small decision tree complexity fall into this class.
In particular, they derive the following result.

Theorem 4 There is a randomized algorithm
that, given in input parameters k, m, " and
ı, and given oracle access to a function
f W f0; 1gk ! f0; 1g of decision tree complexity
at most m, runs in time polynomial in k, m, 1=�

and log 1=ı and, with probability at least 1 � ı

over its internal coin tosses, outputs a circuit
computing a function g W f0; 1gk ! f0; 1g that
agrees with f on at least a 1 � � fraction of
inputs.

Another application of the Kushilevitz–Mansour
technique is due to Linial, Mansour, and
Nisan [6].
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Problem Definition

Fourier transform is among the most widely
used tools in computer science. Computing the
Fourier transform of a signal of length N may be
done in time �.N log N / using the Fast Fourier
Transform (FFT) algorithm. This time bound
clearly cannot be improved below �.N /, because
the output itself is of length N. Nonetheless, it
turns out that in many applications it suffices to
find only the significant Fourier coefficients, i.e.,

Fourier coefficients occupying, say, at least 1 %
of the energy of the signal. This motivates the
problem discussed in this entry: the problem
of efficiently finding and approximating the
significant Fourier coefficients of a given signal
(SFT, in short). A naive solution for SFT is to first
compute the entire Fourier transform of the given
signal and then to output only the significant
Fourier coefficients; thus yielding no complexity
improvement over algorithms computing the
entire Fourier transform. In contrast, SFT can
be solved far more efficiently in running time
e�.log N / and while reading at most e�.log N /

out of the N signal’s entries [2]. This fast
algorithm for SFT opens the way to applications
taken from diverse areas including computational
learning, error correcting codes, cryptography,
and algorithms.

It is now possible to formally define
the SFT problem, restricting our attention
to discrete signals. Use functional notation
where a signal is a function f WG ! C

over a finite Abelian group G, its energy is

kf k22
def
D 1=jGj

P
x2G jf .x/j2, and its maximal

amplitude is kf k1
def
D maxfjf .x/j jx 2 Gg. (For

readers more accustomed to vector notation,
the authors remark that there is a simple
correspondence between vector and functional
notation. For example, a one-dimensional
signal .v1; : : : ; vN / 2 C

N corresponds to the
function f WZN ! C defined by f .i/ D vi for
all i D 1; : : : ; N . Likewise, a two-dimensional
signal M 2 C

N1�N2 corresponds to the function
f WZN1

� ZN2
! C defined by f .i; j / DMij

for all i D 1; : : : ; N1 and j D 1; : : : ; N2.) For
ease of presentation assume without loss of
generality that G D ZN1

� ZN2
� � � � � ZNk

for
N1; : : : ; Nk 2 Z

C (i.e., positive integers), and for
ZN is the additive group of integers modulo N.

The Fourier transform of f is the function
bf WG ! C defined for each ˛D.˛1; : : : ; ˛k/ 2 G

by

bf .˛/
def
D

1

jGj

X

.x1;:::;xk/2G

2

4f .x1; : : : ; xk/

kY

j D1

!
˛j xj

Nj

3

5 ;



1082 Learning Significant Fourier Coefficients over Finite Abelian Groups

where !Nj
D exp .i2�=Nj / is a primitive root

of unity of order Nj. For any ˛ 2 G, val˛ 2 C

and ; " 2 Œ0; 1�, say that ˛ is a  -significant
Fourier coefficient iffbjf .˛/j2 � kf k22, and say
that val˛ is an "-approximation for bf .˛/ iff
jval˛ � bf .˛/j < ".

Problem 1 (SFT)
INPUT: Integers N1; : : : ; Nk � 2 specifying
the group G D ZN1

� � � � � ZNk
, a thresh-

old  2 .0; 1/, an approximation parameter
" 2 .0; 1/, and oracle access (Say that an
algorithm is given oracle access to a function
f over G, if it can request and receive the value
f(x) for any x 2 G in unit time.) to f WG ! C.
OUTPUT: A list of all  -significant Fourier co-
efficients of f along with "-approximations for
them.

Key Results

The key result of this entry is an algorithm
solving the SFT problem which is much faster
than algorithms for computing the entire Fourier
transform. For example, for f a Boolean function
over ZN , the running time of this algorithm
is log N � poly.log log N; 1=; 1="/, in contrast
to the �.N log N / running time of the FFT
algorithm. This algorithm is named the SFT
algorithm.

Theorem 1 (SFT algorithm [2]) There is an
algorithm solving the SFT problem with run-
ning time log jGj�poly.log log jGj; kf k1=kf k2;

1=; 1="/ for jGj D
Qk

j D1 Nj the cardinality
of G.

Remarks

1. The above result extends to functions f over
any finite Abelian group G, as long as the
algorithm is given a description of G by its
generators and their orders [2].

2. The SFT algorithm reads at most log jGj �
poly.log log jGj; kf k1=kf k2; 1=; 1="/ out
of the jGj values of the signal.

3. The SFT algorithm is non adaptive, that is,
oracle queries to f are independent of the
algorithm’s progress.

4. The SFT algorithm is a probabilistic algorithm
having a small error probability, where prob-
ability is taken over the internal coin tosses
of the algorithm. The error probability can be
made arbitrarily small by standard amplifica-
tion techniques.

The SFT algorithm follows a line of works
solving the SFT problem for restricted function
classes. Goldreich and Levin [9] gave an
algorithm for Boolean functions over the
group Z

k
2 D f0; 1gk . The running time of their

algorithm is polynomial in k; 1= and 1=".
Mansour [10] gave an algorithm for complex
functions over groups G D ZN1

� � � � � ZNk

provided that N1; : : : ; Nk are powers of
two. The running time of his algorithm is
polynomial in log jGj; log.max˛2G jbf .˛/j/; 1=

and 1=". Gilbert et al. [6] gave an algorithm
for complex functions over the group ZN

for any positive integer N. The running
time of their algorithm is polynomial in
log N; log.maxx2ZN

f .x/=minx2ZN
f .x//; 1=

and 1=". Akavia et al. [2] gave an algorithm
for complex functions over any finite Abelian
group. The latter [2] improves on [6] even when
restricted to functions over ZN in achieving
log N � poly.log log N / rather than poly.log N /

dependency on N. Subsequent works [7]
improved the dependency of [6] on  and ".

Applications

Next, the paper surveys applications of the SFT
algorithm [2] in the areas of computational learn-
ing theory, coding theory, cryptography, and al-
gorithms.

Applications in Computational Learning
Theory
A common task in computational learning is to
find a hypothesis h approximating a function
f, when given only samples of the function f.
Samples may be given in a variety of forms, e.g.,
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via oracle access to f. We consider the following
variant of this learning problem: f and h are
complex functions over a finite Abelian group
G D ZN1

� � � � � ZNk
, the goal is to find h such

that kf � hk22 � �kf k22 for � > 0 an approxi-
mation parameter, and samples of f are given via
oracle access.

A straightforward application of the SFT
algorithm gives an efficient solution to the above
learning problem, provided that there is a small
set � � G s.t.

P
˛2�

bjf .˛/j2 > .1 � �=3/kf k22.
The learning algorithm operates as follows.
It first runs the SFT algorithm to find all
˛ D .˛1; : : : ; ˛k/ 2 G that are �=j� j-significant
Fourier coefficients of f along with their
�=j� jkf k1-approximations val˛ , and then
returns the hypothesis

h.x1; : : : ; xk/
def
D

X

˛ is �=j� j�significant

val˛ �
kY

j D1

!
˛j xj

Nj
:

This hypothesis h satisfies that kf � hk22 �

�kf k22. The running time of this learning
algorithm and the number of oracle queries
it makes is polynomially bounded by log jGj,
kf k1=kf k2, j� jkf k1=� .

Theorem 2 Let f WG ! C be a function over
G D ZN1

� � � � � ZNk
, and � > 0 an approx-

imation parameter. Denote t D minfj� j j� �
G s:t:

P
˛2� j

bf .˛/j2 > .1 � �=3/kf k22g. There
is an algorithm that given N1; : : : ; Nk , � , and
oracle access to f, outputs a (short) descrip-
tion of hWG ! C s.t. kf � hk22 < �kf k22.
The running time of this algorithm is log jGj �
poly.log log jGj; kf k1=kf k2; tkf k1=�/.

More examples of function classes that can be
efficiently learned using our SFT algorithm are
given in [3].

Applications in Coding Theory
Error correcting codes encode messages in a way
that allows decoding, that is, recovery of the
original message, even in the presence of noise.

When the noise is very high, unique decoding
may be infeasible, nevertheless it may still be
possible to list decode, that is, to find a short
list of messages containing the original message.
Codes equipped with an efficient list decoding
algorithm have found many applications (see [11]
for a survey).

Formally, a binary code is a subset C � f0; 1g�

of codewords each encoding some message.
Denote by CN;x 2 f0; 1gN a codeword of length
N encoding a message x. The normalized
Hamming distance between a codeword
CN;x and a received word w 2 f0; 1gN is

�.CN;x ; w/
def
D 1=N jfi 2 ZN jCN;x.i/ ¤ w.i/gj

where CN;x.i/ and w(i) are the ith bits of
CN;x and w, respectively. Given w 2 f0; 1gN

and a noise parameter � > 0, the list decoding
task is to find a list of all messages x such that
�.CN;x ; w/ < �. The received word w may be
given explicitly or implicitly; we focus on the
latter where oracle access to w is given. Goldreich
and Levin [9] give a list decoding algorithm for
Hadamard codes, using in a crucial way their
algorithm solving the SFT problem for functions
over the Boolean cube.

The SFT algorithm for functions over ZZN

is a key component in a list decoding algo-
rithm given by Akavia et al. [2]. This list de-
coding algorithm is applicable to a large class of
codes. For example, it is applicable to the code
Cmsb D fCN;x WZN ! f0; 1ggx2Z�

N
;N 2ZC

whose
codewords are CN;x.j / D msbN .j � x mod N /

for msbN .y/ D 1 iff y � N=2 and msbN .y/D0

otherwise. More generally, this list decoding al-
gorithm is applicable to any Multiplication code
CP for P a family of balanced and well concen-
trated functions, as defined below. The running
time of this list decoding algorithm is polynomial
in log N and 1=.1 � 2�/, as long as � < 1

2
.

Abstractly, the list decoding algorithm of [2]
is applicable to any code that is “balanced,”
“(well) concentrated,” and “recoverable,”
as defined next (and those Fourier coeffi-
cients have small greatest common divisor
(GCD) with N). A code is balanced if
Prj 2ZN

ŒCN;x.j / D 0� D Prj 2ZN
ŒCN;x.j / D 1�

for every codeword CN;x . A code is (well) con-
centrated if its codewords can be approximated
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by a small number of significant coefficients in
their Fourier representation (and those Fourier
coefficients have small greatest common divisor
(GCD) with N). A code is recoverable if there
is an efficient algorithm mapping each Fourier
coefficient ˛ to a short list of codewords for
which ˛ is a significant Fourier coefficient.
The key property of concentrated codes is that
received words w share a significant Fourier
coefficient with all close codewords CN;x . The
high level structure of the list decoding algorithm
of [2] is therefore as follows. First it runs the
SFT algorithm to find all significant Fourier
coefficients ˛ of the received word w. Second for
each such ˛, it runs the recovery algorithm to find
all codewords CN;x for which ˛ is significant.
Finally, it outputs all those codewords CN;x .

Definition 1 (Multiplication codes [2]) Let
P D fPN WZN ! f0; 1ggN 2ZC

be a family of
functions. Say that CP D fCN;x WZN !

f0; 1ggx2Z�

N
;N 2ZC

is a multiplication code for P
if for every N 2 Z

C and x 2 Z
�
N , the encoding

CN;x WZN ! f0; 1g of x is defined by

CN;x.j / D P.j � x mod N / :

Definition 2 (Well concentrated [2]) Let P D
fPN WZN ! CgN 2ZC

be a family of functions.
Say that P is well concentrated if 8N 2 Z

C; � >

0, 9� � ZN s.t. (i) j� j � poly.log N=�/,
(ii)

P
˛2�

bjPN .˛/j2 � .1 � �/kPN k
2
2, and

(iii) for all ˛ 2 � , gcd.˛; N / � poly.log N=�/

(where gcd.˛; N / is the greatest common divisor
of ˛ and N).

Theorem 3 (List decoding [2]) Let P D

fPN WZN ! f0; 1ggN 2ZC
be a family of effi-

ciently computable (PDfPN WZN!f0; 1ggN 2ZC

is a family of efficiently computable functions if
there is an algorithm that given any N 2 Z

C and
x 2 ZN outputs PN .x/ in time poly.log N /.),
well concentrated, and balanced functions. Let
CP D fCN;x WZN ! f0; 1ggx2Z�

N
;N 2ZC

be the
multiplication code for P. Then there is an
algorithm that, given N 2 Z

C
N , � < 1

2
and oracle

access to wWZN ! f0; 1g, outputs all x 2 Z
�
N for

which �.CN;x ; w/ < �. The running time of this
algorithm is polynomial in log N and 1=.1 � 2�/.

Remarks

1. The requirement that P is a family of effi-
ciently computable functions can be relaxed.
It suffices to require that the list decoding
algorithm receives or computes a set � � ZN

with properties as specified in Definition 2.
2. The requirement thatP is a family of balanced

functions can be relaxed. Denote bias.P/ D

minb2f0;1g infN 2ZC
Prj 2ZN

ŒPN .j / D b�.
Then the list decoding algorithm of [2] is
applicable to CP even when bias.P/ ¤ 1

2
, as

long as � < bias.P/.

Applications in Cryptography
Hard-core predicates for one-way functions are
a fundamental cryptographic primitive, which is
central for many cryptographic applications such
as pseudo-random number generators, semantic
secure encryption, and cryptographic protocols.
Informally speaking, a Boolean predicate P is
a hard-core predicate for a function f if P(x)
is easy to compute when given x, but hard to
guess with a non-negligible advantage beyond
50% when given only f(x). The notion of hard-
core predicates was introduced by Blum and
Micali [2]. Goldreich and Levin [9] showed a
randomized hardcore predicate for any one-way
function, using in a crucial way their algorithm
solving the SFT problem for functions over the
Boolean cube.

Akavia et al. [2] introduce a unifying frame-
work for proving that a predicate P is hard-
core for a one-way function f. Applying their
framework they prove for a wide class of predi-
cates – segment predicates – that they are hard-
core predicates for various well-known candidate
one-way functions. Thus showing new hard-core
predicates for well-known one-way function can-
didates as well as reproving old results in an
entirely different way.

Elaborating on the above, a segment predicate
is any assignment of Boolean values to an arbi-
trary partition of ZN into poly.log N / segments,
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or dilations of such an assignment. Akavia
et al. [2] prove that any segment predicate is
hard-core for any one-way function f defined over
ZN for which, for a non-negligible fraction of the
x’s in ZN , given f(x) and y, one can efficiently
compute f .xy/ (where xy is multiplication
in ZN ). This includes the following functions:
the exponentiation function EXPp;g WZp ! Z

�
p

defined by EXPp;g.x/ D gx mod p for each
prime p and a generator g of the group Z

�
p;

the RSA function RSAWZ�
N ! Z

�
N defined

by RSA.x/ D ex mod N for each N D pq

a product of two primes p, q, and e co-prime
to N; the Rabin function RabinWZ�

N ! Z
�
N

defined by Rabin.x/ D x2 mod N for each
N D pq a product of two primes p, q; and
the elliptic curve log function defined by
ECLa;b;p;Q D xQ for each elliptic curve
Ea;b;p.Zp/ and Q a point of high order on the
curve.

The SFT algorithm is a central tool in the
framework of [2]: Akavia et al. take a list decod-
ing methodology, where computing a hard-core
predicate corresponds to computing an entry in
some error correcting code, predicting a predicate
corresponds to access to an entry in a corrupted
codeword, and the task of inverting a one-way
function corresponds to the task of list decoding
a corrupted codeword. The codes emerging in [2]
are multiplication codes (see Definition 1 above),
which are list decoded using the SFT algorithm.

Definition 3 (Segment predicates [2]) Let
P D fPN WZN ! f0; 1ggN 2ZC

be a fam-
ily of predicates that are non-negligibly
far from constant (A family of functions
P D fPN WZN ! f0; 1ggN 2ZC

is non-negligibly
far from constant if 8N 2 Z

C and b 2 f0; 1g,
Prj 2ZN

ŒPN .j / D b� � 1 � poly.1= log N /).

• It can be sayed that PN is a basic t-segment
predicate if PN .x C 1/ ¤ PN .x/ for at most
t x’s in ZN .

• It can be sayed that PN is a t-segment predi-
cate if there exist a basic t-segment predicate
P0 and a 2 ZN which is co-prime to N s.t.
8x 2 ZN ; PN .x/ D P 0.x=a/.

• It can be sayed that P is a family of segment
predicates if 8N 2 Z

C, PN is a t(N)-segment
predicate for t .N / � poly.log N /.

Theorem 4 (Hardcore predicates [2]) Let P
be a family of segment predicates. Then, P is
hard-core for RSA, Rabin, EXP, ECL, under the
assumption that these are one-way functions.

Application in Algorithms
Our modern times are characterized by
information explosion incurring a need for faster
and faster algorithms. Even algorithms classically
regarded as efficient – such as the FFT algorithm
with its �.N log N ) complexity – are often too
slow for data-intensive applications, and linear
or even sub-linear algorithms are imperative.
Despite the vast variety of fields and applications
where algorithmic challenges arise, some basic
algorithmic building blocks emerge in many of
the existing algorithmic solutions. Accelerating
such building blocks can therefore accelerate
many existing algorithms. One of these recurring
building blocks is the Fast Fourier Transform
(FFT) algorithm. The SFT algorithm offers
a great efficiency improvement over the FFT
algorithm for applications where it suffices to
deal only with the significant Fourier coefficients.
In such applications, replacing the FFT building
block with the SFT algorithm accelerates the
�.N log N / complexity in each application of
the FFT algorithm to poly.log N / complex-
ity [1]. Lossy compression is an example of such
an application [1, 5, 8]. To elaborate, central
component in several transform compression
methods (e.g., JPEG) is to first apply Fourier (or
Cosine) transform to the signal, and then discard
many of its coefficients. To accelerate such algo-
rithms – instead of computing the entire Fourier
(or Cosine) transform – the SFT algorithm can be
used to directly approximate only the significant
Fourier coefficients. Such an accelerated
algorithm achieves compression guarantee as
good as the original algorithm (and possibly
better), but with running time improved to
poly.log N / in place of the former �.N log N /.
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Problem Definition

This problem is concerned with PAC learning
of concept classes when training examples are
affected by malicious errors. The PAC (prob-
ably approximately correct) model of learning
(also known as the distribution-free model of
learning) was introduced by Valiant [13]. This
model makes the idealized assumption that error-
free training examples are generated from the
same distribution which is then used to evaluate
the learned hypothesis. In many environments,
however, there is some chance that an erroneous
example is given to the learning algorithm. The
malicious noise model – again introduced by
Valiant [14] – extends the PAC model by allowing
example errors of any kind: it makes no assump-
tions on the nature of the errors that occur. In this
sense the malicious noise model is a worst-case
model of errors, in which errors may be generated
by an adversary whose goal is to foil the learning
algorithm. Kearns and Li [8,9] study the maximal
malicious error rate such that learning is still
possible. They also provide a canonical method
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to transform any standard learning algorithm into
an algorithm which is robust against malicious
noise.

Notations Let X be a set of instances. The goal
of a learning algorithm is to infer an unknown
subset C � X of instances which exhibit a cer-
tain property. Such subsets are called concepts. It
is known to the learning algorithm that the correct
concept C is from a concept class C � 2X , C 2

C. Let C.x/D 1 if x 2 C and C.x/D 0 if x 62 C .
As input the learning algorithm receives an ac-
curacy parameter " > 0, a confidence parameter
ı > 0, and the malicious noise rate ˇ � 0.
The learning algorithm may request a sample of
labeled instances S D h.x1; `1/; : : : ; .xm; `m/i,
xi 2 X , and `i 2 f0; 1g and produces a hypothe-
sis H � X . Let D be the unknown distribution of
instances in X . Learning is successful if H mis-
classifies an example with probability less than ",
errD.C; H/ WD D fx 2 X W C.x/ ¤ H.x/g < ".
A learning algorithm is required to be successful
with probability 1 � ı. The error of a hypothesis
H in respect to a sample S of labeled instances is
defined as err.S; H/ WD jf.x; `/ 2 S W H.x/ ¤

`gj=jS j.
The VC dimension VC.C/ of a concept class

C is the maximal number of instances x1; : : : ; xd

such that f.C.x1/; : : : ; C.xd // W C 2 Cg D
f0; 1gd . The VC dimension is a measure of the
difficulty to learn concept class C [4].

To investigate the computational complexity
of learning algorithms, sequences of concept
classes with increasing complexity .Xn; Cn/n D

h.X1; C1/; .X2; C2/; : : :i are considered. In this
case the learning algorithm receives also a
complexity parameter n as input.

Generation of Examples In the malicious noise
model, the labeled instances .xi ; `i / are gener-
ated independently from each other by the fol-
lowing random process:

(a) Correct examples: with probability 1 � ˇ,
an instance xi is drawn from distribution D
and labeled by the correct concept C , `i D

C.xi /.

(b) Noisy examples: with probability ˇ, an arbi-
trary example .xi ; `i / is generated, possibly
by an adversary.

Problem 1 (Malicious Noise Learning of
.X; C/)

INPUT: Reals "; ı > 0, ˇ � 0

OUTPUT: A hypothesis H � X

For any distribution D on X and any concept C 2

C, the algorithm needs to produce with probabil-
ity 1� ı a hypothesis H such that errD.C; H/ <

". The probability 1 � ı is taken in respect to the
random sample .x1; `1/; : : : ; .xm; `m/ requested
by the algorithm. The examples .xi ; `i / are gen-
erated as defined above.

Problem 2 (Polynomial Malicious Noise
Learning of .Xn; Cn/n)

INPUT: Reals "; ı > 0, ˇ � 0, integer n � 1

OUTPUT: A hypothesis H � Xn

For any distribution D on Xn and any con-
cept C 2 Cn, the algorithm needs to produce
with probability 1 � ı a hypothesis H such that
errD.C; H/ < ". The computational complexity
of the algorithm must be bounded by a polyno-
mial in 1=", 1=ı, and n.

Key Results

Theorem 1 ([9]) Let C be a nontrivial concept
class with two concepts C1; C2 2 C that are equal
on an instance x1 and differ on another instance
x2, C1.x1/ D C2.x1/, and C1.x2/ ¤ C2.x2/.
Then no algorithm can learn C with malicious
noise rate ˇ � "

1C"
.

Theorem 2 Let � > 0 and d D VC.C/.
For a suitable constant �, any algorithm which
requests a sample S of m � �

"d log 1=.�ı/

�2 labeled
examples and returns a hypothesis H 2 C which
minimizes err.S; H/ learns the concept class C
with malicious noise rate ˇ � "

1C"
��.

Lower bounds on the number of examples
necessary for learning with malicious noise were
derived by Cesa-Bianchi et al.



1088 Learning with Malicious Noise

Theorem 3 ([7]) Let � > 0 and d D VC.C/ �

3. There is a constant � such that any algorithm
which learns C with malicious noise rate ˇ D

"
1C"
� � by requesting a sample and returning

a hypothesis H 2 C which minimizes err.S; H/

needs a sample of size at least m � � "d
�2 .

A general conversion of a learning algorithm
for the noise-free model into an algorithm for
the malicious noise model was given by Kearns
and Li.

Theorem 4 ([9]) Let A be a (polynomial-time)
learning algorithm which learns concept classes
Cn from m."; ı; n/ noise-free examples, i.e., ˇ D

0. Then A can be converted into a (polynomial-
time) learning algorithm for Cn for any malicious
noise rate ˇ � log m."=8;1=2;n/

m."=8;1=2;n/
.

The next theorem relates learning with mali-
cious noise to a type of combinatorial optimiza-
tion problems.

Theorem 5 ([9]) Let r � 1 and ˛ > 0.

1. Let A be a polynomial-time algorithm which,
for any sample S , returns a hypothesis H 2 C
with err.S; H/ � r � minC 2C err.S; C /. Then
A learns concept class C for any malicious
noise rate ˇ � "

.1C˛/.1C"/r
in time polynomial

in 1=�, log 1=ı, VC.C/, and 1=˛.
2. Let A be a polynomial-time learning algo-

rithm for concept classes Cn which tolerates
a malicious noise rate ˇ D "

r
and returns a

hypothesis H 2 Cn. Then A can be converted
into a polynomial-time algorithm which for
any sample S , with high probability, returns
a hypothesis H 2 Cn such that err.S; H/ �

.1C ˛/r �minC 2C err.S; C /.

The computational hardness of several such
related combinatorial optimization problems was
shown by Ben-David, Eiron, and Long [3]. Some
particular concept classes for which learning with
malicious noise has been considered are monomi-
als, CNF and DNF formulas [9, 14], symmetric
functions and decision lists [9], multiple intervals
on the real line [7], and halfspaces [11].

Applications

Several extensions of the learning model with
malicious noise have been proposed, in particular
the agnostic learning model [10] and the statis-
tical query model [1]. The following relations
between these models and the malicious noise
model have been established:

Theorem 6 ([10]) If concept class C is
polynomial-time learnable in the agnostic model,
then C is polynomial-time learnable with any
malicious noise rate ˇ � "=2.

Theorem 7 ([1]) If C is learnable from (relative
error) statistical queries, then C is learnable with
any malicious noise rate ˇ � "= logp.1="/ for a
suitable large p independent of C.

Another learning model related to the mali-
cious noise model is learning with nasty noise [6].
In this model examples affected by malicious
noise are not chosen at random with probability
ˇ, but an adversary might manipulate an arbitrary
fraction of ˇm examples out of a given sample
of size m. The malicious noise model was also
considered in the context of online learning [2]
and boosting [12]. A variant of the malicious
noise model for unsupervised learning has been
investigated in [5]. In this model, noisy data
points are again replaced by arbitrary points pos-
sibly generated by an adversary. Still, a correct
clustering of the points can learned if the noise
rate is moderate.
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Problem Definition

In the exact learning model of Angluin [2], a
learning algorithm A must discover an unknown
function f W f0; 1gn ! f0; 1g that is a member
of a known class C of Boolean functions. The
learning algorithm can make at least one of the
following types of queries about f:

• Equivalence query EQf.g/, for a candidate
function g:
The reply is either “yes,” if g, f, or a coun-
terexample a with g.a/ ¤ f.a/, otherwise.

• Membership query MQf.a/, for some a 2

f0; 1gn:
The reply is the Boolean value f.a/.

• Subset query SubQf.g/, for a candidate func-
tion g:
The reply is “yes,” if g ) f, or a counterex-
ample a with f.a/ < g.a/, otherwise.

• Superset query SupQf.g/, for a candidate
function g:
The reply is “yes,” if f ) g, or a counterex-
ample a with g.a/ < f.a/, otherwise.

A disjunctive normal formula (DNF) is a
depth-2 OR-AND circuit whose size is given
by the number of its AND gates. Likewise, a
conjunctive normal formula (CNF) is a depth-
2 AND-OR circuit whose size is given by the
number of its OR gates. Any Boolean function
can be represented as both a DNF or a CNF
formula. A k-DNF is a DNF where each AND
gate has a fan-in of at most k; similarly, we may
define a k-CNF.

Problem For a given class C of Boolean
functions, such as polynomial-size Boolean
circuits or disjunctive normal form (DNF)
formulas, the goal is to design polynomial-time
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learning algorithms for any unknown f 2 C and
ask a polynomial number of queries. The output
of the learning algorithm should be a function
g of polynomial size satisfying g , f . The
polynomial functions bounding the running time,
query complexity, and output size are defined in
terms of the number of inputs n and the size of
the smallest representation (Boolean circuit or
DNF) of the unknown function f.

Key Results

One of the main results proved in [5] is that
Boolean circuits and disjunctive normal formulas
are exactly learnable using equivalence queries
and access to an NP oracle.

Theorem 1 The following tasks can be accom-
plished with probabilistic polynomial-time algo-
rithms that have access to an NP oracle and make
polynomially many equivalence queries:

• Learning DNF formulas of size s using equiv-
alence queries that are depth-3 AND-OR-
AND formulas of size O.sn2= log2 n/.

• Learning Boolean circuits of size s using
equivalence queries that are circuits of size
O.snC n log n/.

The idea behind this result is simple. Any class
C of Boolean functions is exactly learnable with
equivalence queries using the Halving algorithm
of Littlestone [11]. This algorithm asks equiva-
lence queries that are the majority of candidate
functions from C. These are functions in C that
are consistent with the counterexamples obtained
so far by the learning algorithm. Since each such
majority query eliminates at least half of the can-
didate functions, log2 jCj equivalence queries are
sufficient to learn any function in C. A problem
with using the Halving algorithm here is that
the majority query has exponential size. But, it
can be shown that a majority of a polynomial
number of uniformly random candidate functions
is a good enough approximator to the majority of
all candidate functions. Moreover, with access to

an NP oracle, there is a randomized polynomial
time algorithm for generating random uniform
candidate functions due to Jerrum, Valiant, and
Vazirani [7]. This yields the result.

The next observation is that subset and su-
perset queries are apparently powerful enough to
simulate both equivalence queries and the NP
oracle. This is easy to see since the tautology test
g, 1 is equivalent to SubQf.g/^SubQf.g/, for
any unknown function f; and, EQf.g/ is equiva-
lent to SubQf.g/ ^ SupQf.g/. Thus, the follow-
ing generalization of Theorem 1 is obtained.

Theorem 2 The following tasks can be accom-
plished with probabilistic polynomial-time algo-
rithms that make polynomially many subset and
superset queries:

• Learning DNF formulas of size s using equiv-
alence queries that are depth-3 AND-OR-
AND formulas of size O.sn2= log2 n/.

• Learning Boolean circuits of size s using
equivalence queries that are circuits of size
O.snC n log n/.

Stronger deterministic results are obtained by
allowing more powerful complexity-theoretic or-
acles. The first of these results employ techniques
developed by Sipser and Stockmeyer [12, 13].

Theorem 3 The following tasks can be accom-
plished with deterministic polynomial-time algo-
rithms that have access to an †

p
3 oracle and make

polynomially many equivalence queries:

• Learning DNF formulas of size s using equiv-
alence queries that are depth-3 AND-OR-
AND formulas of size O.sn2= log2 n/.

• Learning Boolean circuits of size s using
equivalence queries that are circuits of size
O.snC n log n/.

In the following result, C is an infinite class
of functions containing functions of the form f W
f0; 1g? ! f0; 1g. The class C is p-evaluatable if
the following tasks can be performed in polyno-
mial time:
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• Given y, is y a valid representation for any
function fy 2 C?

• Given a valid representation y and x 2

f0; 1g?, is fy.x/ D 1?

Theorem 4 Let C be any p-evaluatable class.
The following statements are equivalent:

• C is learnable from polynomially many equiv-
alence queries of polynomial size (and unlim-
ited computational power).

• C is learnable in deterministic polynomial
time with equivalence queries and access to
a †

p
5 oracle.

For exact learning with membership queries,
the following results are proved.

Theorem 5 The following tasks can be accom-
plished with deterministic polynomial-time algo-
rithms that have access to an NP oracle and make
polynomially many membership queries (in n,
DNF and CNF sizes of f, where f is the unknown
function):

• Learning monotone Boolean functions.
• Learning O.log n/-CNF

T
O.log n/-DNF.

The ideas behind the above result use tech-
niques from [2,4]. For a monotone Boolean func-
tion f, the standard closure algorithm uses both
equivalence and membership queries to learn f
using candidate functions g satisfying g ) f.
The need for membership can be removed us-
ing the following observation. Viewing :f as a
monotone function on the inverted lattice, we can
learn f and :f simultaneously using candidate
functions g; h, respectively, that satisfy g ) h.
The NP oracle is used to obtain an example a

that either helps in learning f or in learning :f;
when no such example can be found, we have
learned f.

Theorem 6 Any class C of Boolean functions
that is exactly learnable using a polynomial
number of membership queries (and unlimited
computational power) is exactly learnable in

expected polynomial time using a polynomial
number of membership queries and access to an
NP oracle.

Moreover, any p-evaluatable class C
that is exactly learnable from a polynomial
number of membership queries (and unlimited
computational power) is also learnable in
deterministic polynomial time using a polynomial
number of membership queries and access to a
†

p
5 oracle.

Theorems 4 and 6 showed that information-
theoretic learnability using equivalence and
membership queries can be transformed into
computational learnability at the expense of using
the †

p
5 and NP oracles, respectively.

Applications

The learning algorithm for Boolean circuits using
equivalence queries and access to an NP oracle
has found an application in complexity theory.
Watanabe (see [10]) showed an improvement
on a known theorem of Karp and Lipton
[8]: if NP has polynomial-size circuits, then
the polynomial-time hierarchy PH collapses
to ZPPNP. Subsequently, Aaronson (see [1])
showed that queries to the NP oracle used in
the learning algorithm (for Boolean circuits)
cannot be parallelized by any relativizing
techniques.

Some techniques developed in Theorem 5
for exact learning using membership queries
of monotone Boolean functions have found
applications in data mining [6].

Open Problems

It is unknown if there are polynomial-time
learning algorithms for Boolean circuits and
DNF formulas using equivalence queries
(without complexity-theoretic oracles). There
are strong cryptographic evidence that Boolean
circuits are not learnable in polynomial-time
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(see [3] and the references therein). The best
running time for learning DNF formulas is
2

QO.n1=3/ as given by Klivans and Servedio [9].
It is unclear if membership queries help in this
case.
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Problem Definition

In the last forty years, there has been a tremen-
dous progress in the field of computer algorithms,
especially within the core area known as com-
binatorial algorithms. Combinatorial algorithms
deal with objects such as lists, stacks, queues, se-
quences, dictionaries, trees, graphs, paths, points,
segments, lines, convex hulls, etc, and constitute
the basis for several application areas including
network optimization, scheduling, transport opti-
mization, CAD, VLSI design, and graphics. For
over thirty years, asymptotic analysis has been
the main model for designing and assessing the
efficiency of combinatorial algorithms, leading to
major algorithmic advances.

Despite so many breakthroughs, however, very
little had been done (at least until 15 years ago)
about the practical utility and assessment of this
wealth of theoretical work. The main reason for
this lack was the absence of a standard algorithm
library, that is, of a software library that contains
a systematic collection of robust and efficient im-
plementations of algorithms and data structures,
upon which other algorithms and data structures
can be easily built.

The lack of an algorithm library limits
severely the great impact which combina-
torial algorithms can have. The continuous
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re-implementation of basic algorithms and data
structures slows down progress and typically
discourages people to make the (additional)
effort to use an efficient solution, especially if
such a solution cannot be re-used. This makes the
migration of scientific discoveries into practice
a very slow process.

The major difficulty in building a library of
combinatorial algorithms stems from the fact that
such algorithms are based on complex data types,
which are typically not encountered in program-
ming languages (i.e., they are not built-in types).
This is in sharp contrast with other computing
areas such as statistics, numerical analysis, and
linear programming.

Key Results

The currently most successful algorithm library
is LEDA (Library for Efficient Data types and
Algorithms) [4, 5]. It contains a very large collec-
tion of advanced data structures and algorithms
for combinatorial and geometric computing. The
development of LEDA started in the early 1990s,
it reached a very mature state in the late 1990s,
and it continues to grow. LEDA has been written
in CCC and has benefited considerably from the
object-oriented paradigm.

Four major goals have been set in the design
of LEDA.

1. Ease of use: LEDA provides a sizable collec-
tion of data types and algorithms in a form
that they can be readily used by non-experts.
It gives a precise and readable specification for
each data type and algorithm, which is short,
general and abstract (to hide the details of im-
plementation). Most data types in LEDA are
parameterized (e.g., the dictionary data type
works for arbitrary key and information type).
To access the objects of a data structure by
position, LEDA has invented the item concept
that casts positions into an abstract form.

2. Extensibility: LEDA is easily extensible by
means of parametric polymorphism and can
be used as a platform for further software
development. Advanced data types are built

on top of basic ones, which in turn rest on
a uniform conceptual framework and solid
implementation principles. The main mecha-
nism to extend LEDA is through the so-called
LEDA extension packages (LEPs). A LEP
extends LEDA into a particular application
domain and/or area of algorithms that is not
covered by the core system. Currently, there
are 15 such LEPs; for details see [1].

3. Correctness: In LEDA, programs should
give sufficient justification (proof) for their
answers to allow the user of a program to
easily assess its correctness. Many algorithms
in LEDA are accompanied by program
checkers. A program checker C for a program
P is a (typically very simple) program that
takes as input the input of P, the output of P,
and perhaps additional information provided
by P, and verifies that the answer of P in
indeed the correct one.

4. Efficiency: The implementations in LEDA
are usually based on the asymptotically
most efficient algorithms and data structures
that are known for a problem. Quite
often, these implementations have been
fine-tuned and enhanced with heuristics
that considerably improve running times.
This makes LEDA not only the most
comprehensive platform for combinatorial
and geometric computing, but also a library
that contains the currently fastest implemen-
tations.

Since 1995, LEDA is maintained by the Al-
gorithmic Solutions Software GmbH [1] which is
responsible for its distribution in academia and
industry.

Other efforts for algorithm libraries include
the Standard Template Library (STL) [7], the
Boost Graph Library [2, 6], and the Computa-
tional Geometry Algorithms Library (CGAL) [3].

STL [7] (introduced in 1994) is a library of
interchangeable components for solving many
fundamental problems on sequences of elements,
which has been adopted into the CCC standard.
It contributed the iterator concept which pro-
vides an interface between containers (an object
that stores other objects) and algorithms. Each
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algorithm in STL is a function template param-
eterized by the types of iterators upon which it
operates. Any iterator that satisfies a minimum set
of requirements can be used regardless of the data
structure accessed by the iterator. The system-
atic approach used in STL to build abstractions
and interchangeable components is called generic
programming.

The Boost Graph Library [2, 6] is a CCC
graph library that applies the notions of generic
programming to the construction of graph algo-
rithms. Each graph algorithm is written not in
terms of a specific data structure, but instead in
terms of a graph abstraction that can be easily im-
plemented by many different data structures. This
offers the programmer the flexibility to use graph
algorithms in a wide variety of applications. The
first release of the library became available in
September 2000.

The Computational Geometry Algorithms Li-
brary [3] is another CCC library that focuses
on geometric computing only. Its main goal is
to provide easy access to efficient and reliable
geometric algorithms to users in industry and
academia. The CGAL library started in 1996 and
the first release was in April 1998.

Among all libraries mentioned above LEDA is
by far the best (both in quality and efficiency of
implementations) regarding combinatorial com-
puting. It is worth mentioning that the late ver-
sions of LEDA have also incorporated the iterator
concept of STL.

Finally, a notable effort concerns the Stony
Brook Algorithm Repository [8]. This is not
an algorithm library, but a comprehensive col-
lection of algorithm implementations for over
seventy problems in combinatorial computing,
started in 2001. The repository features imple-
mentations coded in different programming lan-
guages, including C, CCC, Java, Fortran, ADA,
Lisp, Mathematic, and Pascal.

Applications

An algorithm library for combinatorial and ge-
ometric computing has a wealth of applications
in a wide variety of areas, including: network

optimization, scheduling, transport optimization
and control, VLSI design, computer graphics, sci-
entific visualization, computer aided design and
modeling, geographic information systems, text
and string processing, text compression, cryp-
tography, molecular biology, medical imaging,
robotics and motion planning, and mesh partition
and generation.

Open Problems

Algorithm libraries usually do not provide an in-
teractive environment for developing and experi-
menting with algorithms. An important research
direction is to add an interactive environment into
algorithm libraries that would facilitate the devel-
opment, debugging, visualization, and testing of
algorithms.

Experimental Results

There are numerous experimental studies based
on LEDA, STL, Boost, and CGAL, most of
which can be found in the world-wide web. Also,
the web sites of some of the libraries contain
pointers to experimental work.

URL to Code

The afore mentioned algorithm libraries can be
downloaded from their corresponding web sites,
the details of which are given in the bibliography
(Recommended Reading).
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Problem Definition

Lossless data compression is concerned with
compactly representing data in a form that allows
the original data to be faithfully recovered.
Reduction in space can be achieved by exploiting
the presence of repetition in the data.

Many of the main solutions for lossless data
compression in the last three decades have been
based on techniques first described by Ziv and
Lempel [22,33,34]. These methods gained popu-
larity in the 1980s via tools like Unix compress
and the GIF image format, and today they per-
vade computer software, for example, in the zip,
gzip, and lzma compression utilities, in modem
compression standards V.42bis and V.44, and as
a basis for the compression used in information
retrieval systems [8] and Google’s BigTable [4]
database system. Perhaps the primary reason for
the success of Lempel and Ziv’s methods is their
powerful combination of compression effective-
ness and compression/decompression through-
put. We refer the reader to [3, 29] for a review of
related dictionary-based compression techniques.

Key Results

Let SŒ1 : : : n� be a string of n symbols drawn
from an alphabet ˙ . Lempel-Ziv-based compres-
sion algorithms work by parsing S into a se-
quence of substrings called phrases (or factors).
To achieve compression, each phrase is replaced
by a compact representation, as detailed below.

LZ78
Assume the encoder has already parsed
the phrases S1; S2; : : : ; Si�1, that is, S D

S1S2 : : : Si�1S 0 for some suffix S 0 of S . The
LZ78 [34] dictionary is the set of strings
obtained by adding a single symbol to one of
the strings Sj or to the empty string. The next
phrase Si is then the longest prefix of S 0 that
is an element of the dictionary. For example,
S D bbaabbbabbabbaab has an LZ78 parsing
of b, ba, a, bb, bab, babb, aa, b. Clearly, all
LZ78 phrases will be distinct, except possibly the
final one. Let S0 denote the empty string. If Si =
Sj ˛, where 0 � j < i and ˛ 2 ˙ , the code word
emitted by LZ78 for Si will be the pair .j; ˛/.
Thus, if LZ78 parses the string S into y words, its
output is bounded by y log yCy log j˙ jC�.y/

bits.
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LZ77
The LZ77 parsing algorithm takes a single posi-
tive integer parameter w, called the window size.
Say the encoder has already parsed the phrases
S1; S2; : : : ; Si�1, that is, S D S1S2 : : : Si�1S 0

for some suffix S 0 of S . The next phrase Si starts
at position q D jS1S2 : : : Si�1j C 1 in S and
is the shortest prefix of S 0 that does not have an
occurrence starting at any position q �w � pi <

q in S . Thus defined, LZ77 phrases have the form
t˛, where t (possibly empty) is the longest prefix
of S 0 that also has an occurrence starting at some
position q�w � pi < q in S and ˛ is the symbol
SŒq C jt j C 1�.

The version of LZ77 described above is of-
ten called sliding window LZ77: a text window
of length w that slides along the string during
parsing is used to decide the next phrase. In the
so-called infinite window LZ77, we enforce that
q � w is always equal to 0 – in other words,
throughout parsing the window stretches all the
way back to the beginning of the string. Infinite
window parsing is more powerful than sliding
window parsing, and for the remainder of this
entry, the term “LZ77” refers to infinite window
LZ77, unless explicitly stated.

For S D bbaabbbabbabbaab; the infinite
window LZ77 parsing is b, ba, ab, bbab,
babbaa, b. Note that phrases are allowed to
overlap their definitions, as is the case with phrase
S5 in our example. Like LZ78, all LZ77 phrases
are distinct, with the possible exception of the
last phrase. It is easy to see that infinite window
LZ77 will always produce a smaller number of
phrases than LZ78. If Si D t˛ with ˛ 2 ˙ , the
code word for Si is the triple .pi ; `i ; ˛/, where
pi is the position of a previous occurrence of t in
S1S2 : : : Si�1 and `i D jt j.

Finally, it is important to note that for a given
phrase Si D t˛; there is sometimes more than
one previous occurrence of t , leading to a choice
of pi value. If pi < q is the largest possi-
ble for every phrase, then we call the parsing
rightmost. In their study on the bit complexity
of LZ compression, Ferragina et al. [9] showed
that the rightmost parsing can lead to encodings
asymptotically smaller than what is achievable
otherwise.

Compression and Decompression
Complexity
The LZ78 parsing for a string of length n can
be computed in O.n/ time by maintaining the
phrases in a try. Doing so allows finding in time
proportional to its length the longest prefix of the
unparsed portion that is in the dictionary, and so
the time overall is linear in n. Compression in
sublinear time and space is possible using suc-
cinct dynamic tries [16]. Decoding is somewhat
symmetric – an explicit try is not needed, just
the parent pointers implicitly represented in the
encoded pairs.

Recovering the original string S from its
LZ77 parsing (i.e., decompression) is very easy:
.pi ; `i ; ˛/ is decoded by copying the symbols
of the substring SŒpi : : : pi C `i � 1� and then
appending ˛. By the definition of the parsing, any
symbol we need to copy will have already been
decoded (if we copy the strings left to right).

Obtaining the LZ77 parsing in the first place
is not as straightforward and has been the subject
of intense research since LZ77 was published.
Indeed, it seems safe to speculate that LZ78 and
sliding window LZ77 were invented primarily
because it was initially unclear how infinite win-
dow LZ77 could be computed efficiently. Today,
parsing is possible in worst-case O.n/ time, using
little more than n.log nC log j˙ j/ bits of space.
Current state-of-the-art methods [14, 15, 18, 19]
operate offline, combining the suffix array [24] of
the input string with data structures for answering
next and previous smaller value queries [10].
For online parsing, the current best algorithm
uses O.n log n/ time and O.n log j˙ j/ bits of
space [32].

Compression Effectiveness
It is well known that LZ converges to the entropy
of any ergodic source [6, 30, 31]. However, it is
also possible to prove compression bounds on
LZ-based schemes without probabilistic assump-
tions on the input, using the notion of empirical
entropy [25].

Convergence to Empirical Entropy
For any string S , the kth-order empirical entropy
Hk.S/ is a lower bound on the compression



Lempel-Ziv Compression 1097

L

achievable by any compressor that assigns code
words to symbols based on statistics derived from
the k letters preceding each symbol in the string.
In particular, the output of LZ78 (and so LZ77)
is upper-bounded by jS jHk.S/ C o.jS j log j˙ j/
bits [20] for any k D o.logj˙ j n/.

Relationship to Grammar Compression
The smallest grammar problem is the problem
of finding the smallest context-free grammar that
generates only a given input string S . The size g�

of the smallest grammar is a rather elegant mea-
sure of compressibility, and Charikar et al. [5]
established that finding it is NP-hard. They also
considered several approximation algorithms, in-
cluding LZ78. The LZ78 parsing of S can be
viewed as a context-free grammar in which for
each dictionary word Si D Sj ˛, there is a pro-
duction rule Xi D Xj ˛. LZ78’s approximation
ratio is rather bad: ˝.n2=3= log n/.

Charikar et al. also showed that g� is at least
the number of phrases ´ of the LZ77 parse of
S and used the phrases of the parsing to derive
a new grammar compression algorithm with ap-
proximation ratio O.log.jS j=g�//. The same re-
sult was discovered contemporaneously by Ryt-
ter [28] and later simplified by Jeż [17].

Greedy Versus Non-greedy Parsing
LZ78 and LZ77 are both greedy algorithms: they
select, at each step, the longest prefix of the
remaining suffix of the input that is in the dic-
tionary. For LZ77, the greedy strategy is optimal
in the sense that it yields the minimum number
of code words. However, if variable-length codes
are used to represent each element of the code
word triple, the greedy strategy does not yield
an optimal parsing, as Ferragina, Nitto, and Ven-
turini have recently established [9]. For LZ78,
greedy parsing does not always produce the min-
imum number of phrases. Indeed, in the worst
case, greedy parsing can produce a factor O.

p
n/

more than a simple non-greedy parsing strategy
that, instead of choosing the prefix that gives the
longest extension in the current iteration, chooses
the prefix that gives the longest extension in the
next iteration [26]. There are many, many variants
on LZ parsing that relax the greedy condition

with the aim of reducing the overall encoding size
in practice. Several of these non-greedy methods
are covered in textbooks (e.g., [3, 29]).

Applications

As outlined at the start of this entry, the major
applications of Lempel and Ziv’s methods are in
the fields of lossless data compression. However,
the deep connections of these methods to string
data mean the Lempel-Ziv parsing has also found
important applications in string processing: the
parsing reveals a great deal of information about
the repetitive structure of the underlying string,
and this can be used to design efficient algorithms
and data structures.

Pattern Matching in Compressed Space
A compressed full-text index for a string
SŒ1 : : : n� is a data structure that takes space
proportional to the entropy of S while
simultaneously supporting efficient queries over
S . The supported queries can be relatively
simple, such as random access to symbols of
S , or more complex, such as reporting all the
occurrences of a pattern P Œ1 : : : m� in S .

Arroyuelo et al. [2] describe a compressed
index based on LZ78. For any text S; their in-
dex uses .2 C �/nHk.S/ C o.n log j˙ j/ bits of
space and reports all c occurrences of P in S

in O.m2 log m C .m C c/ log n/ time. Their ap-
proach stores two copies of the LZ78 dictionary
represented as tries. One try contains the dictio-
nary phrases, and the other contains the reverse
phrases. The main trick to pattern matching is to
then split the pattern in two (in all m possible
ways) and then check for each half in the tries.

Kreft and Navarro [21] describe a compressed
index based on the LZ77 parsing. It requires
3´ log nCO.´ log j˙ j/C o.n/ bits of space and
supports extraction of ` symbols in O.`h/ time
and pattern matching in O.m2h C m log ´ C

c log ´/ time, where h �
p

n is the maximum
length of a referencing chain in the parsing (a
position is copied from another, that one from
another, and so on, h times). More recently,
Gagie et al. [12] describe a different LZ77-based
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index with improved query bounds that takes
O.´ log n log.n=´// bits of space and supports
extraction of ` symbols in O.` C log n/ time
and pattern matching in O.m log mCc log log n/

time. A related technique called indexing by ker-
nelization, which does not support access and
restricts the maximum pattern length that can be
searched for, has recently emerged as a promising
practical approach applicable to highly repetitive
data [11]. This technique uses an LZ parsing to
identify a subsequence (called a kernel) of the
text that is guaranteed to contain at least one
occurrence of every pattern the text contains. This
kernel string is then further processed to obtain an
index capable of searching the original text.

A related problem is the compressed matching
problem, in which the text and the pattern are
given together and the text is compressed. The
task here is to perform pattern matching in the
compressed text without decompressing it. For
LZ-based compressors, this problem was first
considered by Amir, Benson, and Farach [1].
Considerable progress has been made since then,
and we refer the reader to [13,27] (and to another
encyclopedia entry) for an overview of more
recent results.

String Alignment
Crochemore, Landau, and Ziv-Ukelson [7] used
LZ78 to accelerate sequence alignment: the prob-
lem of finding the lowest-cost sequence of edit
operations that transforms one string SŒ1 : : : n�

into another string T Œ1 : : : n�. Masek and Paterson
proposed an O.n2= log n/ time algorithm that
applies when the costs of the edit operations are
rational. Crochemore et al.’s method runs in the
same time in the worst case, but allows real-
valued costs, and obtains an asymptotic speedup
when the underlying texts are compressible.

The textbook solution to the string alignment
problem runs in O.n2/, using a straightforward
dynamic program that computes a matrix
MŒ1 : : : n; 1 : : : n�. The approach of the faster
algorithms is to break the dynamic program
matrix into blocks. Masek and Paterson use
blocks of uniform size. Crochemore et al. use
blocks delineated by the LZ78 parsing, the idea
being that whenever they need to solve a block

MŒi : : : i 0; j : : : j 0�, they can solve it in O.i 0�iC

j 0�j / time by essentially copying their solutions
to the previous blocks MŒi : : : i 0�1; j : : : j 0� and
MŒi : : : i 0; j : : : j 0 � 1�. A similar approach was
later used to speed up training of hidden Markov
models [23].

Open Problems

Ferragina, Nitto, and Venturini [9] provide an al-
gorithm for computing the rightmost LZ77 pars-
ing that takes O.n C n log j˙ j= log log n/ time
and O.n/ words of space to process a string of
length n. The existence of an O.n/ time algo-
rithm independent of the alphabet size is an open
problem.

As mentioned above, the size ´ of the LZ77
parsing is a lower bound on the size g� of the
smallest grammar for a given string. Proving
an asymptotic separation between g� and ´ (or,
alternatively, finding a way to produce grammars
of size ´) is a problem of considerable theoretical
interest.

URLs to Code and Data Sets

The source code of the gzip tool (based on
LZ77) is available at http://www.gzip.org, and
the related compression library zlib is available
at http://www.zlib.net. Source code for the more
efficient compressor LZMA is at: http://www.7-
zip.org/sdk.html.

Source code for more recent LZ parsing
algorithms (developed in the last 2 years) is
available at http://www.cs.helsinki.fi/group/
pads/. This code includes the current fastest LZ
parsing algorithms for both internal and external
memory.

The Pizza&Chili Corpus is a frequently used
test data set for LZ parsing algorithms; see http://
pizzachili.dcc.uchile.cl/repcorpus.html.
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Problem Definition

The Arrow-Debreu exchange market equilibrium
problem was first formulated by Léon Walras in
1954 [7]. In this problem, everyone in a popula-
tion of m traders has an initial endowment of a
divisible goods and a utility function for consum-
ing all goods – their own and others’. Every trader
sells the entire initial endowment and then uses
the revenue to buy a bundle of goods such that his
or her utility function is maximized. Walras asked
whether prices could be set for everyone’s goods
such that this is possible. An answer was given by

Arrow and Debreu in 1954 [1] who showed that,
under mild conditions, such equilibrium would
exist if the utility functions were concave. In gen-
eral, it is unknown whether or not an equilibrium
can be computed efficiently; see, e.g., �General
Equilibrium.

Consider a special class of Arrow-Debreu’s
problems, where each of the n traders has exactly
one unit of a divisible and distinctive good for
trade, and let trader i , i D 1; : : : ; n, bring good i ,
where the class of problems is called the pairing
class. For given prices pj on good j , consumer
i ’s maximization problem is

maximize ui .xi1; : : : ; xin/

subject to
P

j pj xij � pi ;

xij � 0; 8j;

(1)

where xij is the quantity of good j purchased
by trader i . Let x�

i denote a maximal solution
vector of (1). Then, vector p is called the Arrow-
Debreu price equilibrium if there exists an x�

i for
consumer i , i D 1; : : : ; n, to clear the market,
that is, X

i

x�
i D e;

where e is the vector of all ones representing
available goods on the exchange market.

The Leontief economy equilibrium problem is
the Arrow-Debreu equilibrium problem when the
utility functions are in the Leontief form:

ui .xi / D min
j W hij >0

�
xij

hij

	
;

where the Leontief coefficient matrix is given by

H D

0

BB@

h11 h12 : : : h1n

h21 h22 : : : h2n

: : : : : : : : : : : :

hn1 hn2 : : : hnn

1

CCA : (2)

Here, one may assume that

Assumption 1 H has no all-zero row, that is,
every trader likes at least one good.
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Key Results

Let ui be the equilibrium utility value of con-
sumer i and pi be the equilibrium price for good
i , i D 1; : : : ; n. Also, let U and P be diagonal
matrices whose diagonal entries are ui ’s and
pi ’s, respectively. Then, the Leontief economy
equilibrium p 2 Rn, together with u 2 Rn, must
satisfy

UHp D p;

P.e �H T u/ D 0;

H T u � e;

u; p � 0;

p ¤ 0:

(3)

One can prove:

Theorem 1 (Ye [8]) System (3) always has a
solution .u ¤ 0; p/ under Assumption 1 (i.e.,
H has no all-zero row). However, a solution to
System (3) may not be a Leontief equilibrium,
although every Leontief equilibrium satisfies Sys-
tem (3).

A solution to System (3) is called a quasi-
equilibrium. For example,

H T D

0

@
1 2 0

0 1 2

0 0 1

1

A

has a quasi-equilibrium pT D .1; 0; 0/ and
uT D .1; 0; 0/, but it is not an equilibrium.
This is because that trader 3, although with zero
budget, can still purchase goods 2 and 3 at zero
prices. In fact, check if H has an equilibrium that
is an NP-hard problem; see discussion later. How-
ever, under certain sufficient conditions, e.g., all
entries in H are positive, every quasi-equilibrium
is an equilibrium.

Theorem 2 (Ye [8]) Let B 
 f1; 2; : : : ; ng,
N D f1; 2; : : : ; ng n B , HBB be irreducible, and
uB satisfy the linear system

H T
BBuB D e; H T

BN uB � e; and uB > 0:

Then the (right) Perron-Frobenius eigenvector
pB of UBHBB together with pN D 0

will be a solution to System (3). And the
converse is also true. Moreover, there is always
a rational solution for every such B , that
is, the entries of price vector are rational
numbers, if the entries of H are rational.
Furthermore, the size (bit length) of the
solution is bounded by the size (bit length)
of H .

The theorem implies that the traders in block
B can trade among themselves and keep others
goods “free.” In particular, if one trader likes his
or her own good more than any other good, that
is, hi i � hij for all j , then ui D 1=hi i , pi D 1,
and uj D pj D 0 for all j ¤ i , that is,
B D fig, makes a Leontief economy equilibrium.
The theorem thus establishes, for the first time,
a combinatorial algorithm to compute a Leontief
economy equilibrium by finding a right block
B ¤ ;, which is actually a nontrivial solution
(u ¤ 0) to an LCP problem

H T uC v D e; uT v D 0; 0 ¤ u; v � 0: (4)

If H > 0, then any complementary solution u ¤
0, together with its support B D fj W uj > 0g,
of (4) induce a Leontief economy equilibrium
that is the (right) Perron-Frobenius eigenvector of
UBHBB , and it can be computed in polynomial
time by solving a linear equation. Even if H 6> 0,
any complementary solution u ¤ 0 and B D fj W

uj > 0g, as long as HBB is irreducible, induces
an equilibrium for System (3). The equivalence
between the pairing Leontief economy model and
the LCP also implies

Corollary 1 LCP (4) always has a nontrivial
solution u ¤ 0, where HBB is irreducible with
B D fj W uj > 0g, under Assumption 1 (i.e., H

has no all-zero row).

If Assumption 1 does not hold, the corollary may
not be true; see example below:

H T D

�
0 2

0 1

�
:
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Applications

Given an arbitrary bimatrix game, specified by a
pair of n � m matrices A and B , with positive
entries, one can construct a Leontief exchange
economy with n C m traders and n C m goods
as follows. In words, trader i comes to the market
with one unit of good i , for i D 1; : : : ; n C m.
Traders indexed by any j 2 f1; : : : ; ng receive
some utility only from goods j 2 fnC1; : : : ; nC

mg, and this utility is specified by parameters
corresponding to the entries of the matrix B .
More precisely the proportions in which the j -th
trader wants the goods are specified by the entries
on the j th row of B . Vice versa, traders indexed
by any j 2 fn C 1; : : : ; n C mg receive some
utility only from goods j 2 f1; : : : ; ng. In this
case, the proportions in which the j -th trader
wants the goods are specified by the entries on
the j -th column of A.

In the economy above, one can partition the
traders in two groups, which bring to the market
disjoint sets of goods and are only interested
in the goods brought by the group they do not
belong to.

Theorem 3 (Codenotti et al. [4]) Let .A; B/

denote an arbitrary bimatrix game, where one
assumes, w.l.o.g., that the entries of the matrices
A and B are all positive. Let

H T D

�
0 A

BT 0

�

describe the Leontief utility coefficient matrix
of the traders in a Leontief economy. There is
a one-to-one correspondence between the Nash
equilibria of the game .A; B/ and the market
equilibria H of the Leontief economy. Further-
more, the correspondence has the property that
a strategy is played with positive probability at a
Nash equilibrium if and only if the good held by
the corresponding trader has a positive price at
the corresponding market equilibrium.

The theorem implies that finding an equilibrium
for Leontief economies is at least as hard as find-
ing a Nash equilibrium for two-player nonzero
sum games, a problem recently proven PPAD-

complete (Chen and Deng [3]), where no poly-
nomial time approximation algorithm is known
today.

Furthermore, Gilboa and Zemel [6] proved a
number of hardness results related to the compu-
tation of Nash equilibria (NE) for finite games
in normal form. Since the NE for games with
more than two players can be irrational, these
results have been formulated in terms of NP-
hardness for multiplayer games, while they can
be expressed in terms of NP-completeness for
two-player games. Using a reduction to the NE
game, Codenotti et al. proved:

Theorem 4 (Codenotti et al. [4]) It is NP-hard
to decide whether a Leontief economy H has an
equilibrium.

On the positive side, Zhu et al. [9] recently
proved the following result:

Theorem 5 Let the Leontief utility matrix H be
symmetric and positive. Then there is a fully poly-
nomial time approximation scheme (FPTAS) for
approximating a Leontief equilibrium, although
the equilibrium set remains non-convex or non-
connected.

Cross-References

�Approximations of Bimatrix Nash Equilibria
�Complexity of Bimatrix Nash Equilibria
�General Equilibrium
�Non-approximability of Bimatrix Nash Equi-

libria
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[2] on how to compute equilibrium prices in
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hardness result of computing the bimatrix game;
Cottle et al. [5] for literature on linear comple-
mentarity problems; and all references listed in
[4] and [8] for the recent literature on computa-
tional equilibrium.
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Problem Definition

We provide a general method to prove the ex-
istence and compute efficiently elimination or-
derings in graphs. Our method relies on several
tools that were known before but that were not
put together so far: the algorithm LexBFS due to
Rose, Tarjan, and Lueker, one of its properties
discovered by Berry and Bordat, and a local

decomposition property of graphs discovered by
Maffray, Trotignon, and Vušković.

Terminology
In this paper, all graphs are finite and simple.
A graph G contains a graph F if F is isomorphic
to an induced subgraph of G. A class of graphs
is hereditary if for every graph G of the class, all
induced subgraphs of G belong to the class. A
graph G is F -free if it does not contain F . When
F is a set of graphs, G is F-free if it is F -free
for every F 2 F . Clearly every hereditary class
of graphs is equal to the class of F-free graphs
for some F (F can be chosen to be the set of all
graphs not in the class but all induced subgraphs
of which are in the class). The induced subgraph
relation is not a well quasi order (contrary, e.g.,
to the minor relation), so the set F does not need
to be finite.

When X � V.G/, we write GŒX� for the
subgraph of G induced by X . An ordering
.v1; : : : ; vn/ of the vertices of a graph G is an
F-elimination ordering if for every i D 1; : : : ; n,
NGŒfv1;:::;vi g�.vi / is F-free. Note that this is
equivalent to the existence, in every induced
subgraph of G, of a vertex whose neighborhood
is F-free.

Example
Let us illustrate our terminology on a classical
example. We denote by S2 the independent graph
on two vertices. A vertex is simplicial if its neigh-
borhood is S2-free, or equivalently is a clique. A
graph is chordal if it is hole-free, where a hole is
a chordless cycle of length at least 4.

Theorem 1 (Dirac [6]) Every chordal graph ad-
mits an fS2g-elimination ordering.

Theorem 2 (Rose, Tarjan, and Lueker [14])
There exists a linear-time algorithm that com-
putes an fS2g-elimination ordering of an input
chordal graph.

LexBFS
To explain the results, we need to define LexBFS.
It is a linear time algorithm of Rose, Tarjan, and
Lueker [14] whose input is any graph G together
with a vertex s and whose output is a linear
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ordering of the vertices of G starting at s. A linear
ordering of the vertices of a graph G is a LexBFS
ordering if there exists a vertex s of G such that
the ordering can be produced by LexBFS when
the input is G; s. The order from Theorem 2 is
in fact computed by LexBFS. We do not need
here to define LexBFS more precisely, because
the following result fully characterizes LexBFS
orderings.

Theorem 3 (Brandstädt, Dragan, and Nico-
lai [3]) An ordering � of the vertices of a graph
G D .V; E/ is a LexBFS ordering if and only
if it satisfies the following property: for all
a; b; c 2 V such that c � b � a, ca 2 E

and cb … E there exists a vertex d in G such that
d � c, db 2 E and da 62 E.

Key Results

The following property was introduced by Maf-
fray, Trotignon, and Vušković in [12] (where it
was called Property .?/).

Definition 1 Let F be a set of graphs. A graph G

is locally F-decomposable if for every vertex v

of G, every F 2 F contained in N.v/, and every
connected component C of G�N Œv�, there exists
y 2 F such that y has a non-neighbor in F and
no neighbors in C . A class of graphs C is locally
F-decomposable if every graph G 2 C is locally
F-decomposable.

It is easy to see that if a graph is locally F-
decomposable, then so are all its induced sub-
graphs. Therefore, for all sets of graphs F , the
class of graphs that are locally F-decomposable
is hereditary. The main result is the following.

Theorem 4 If F is a set of non-complete graphs,
and G is a locally F-decomposable graph, then
every LexBFS ordering of G is an F-elimination
ordering.

First Example of Application
Let us now illustrate how Theorem 4 can be
used with the simplest possible set made of non-
complete graphs F D fS2g, where S2 is the

independent graph on two vertices. The following
is well known and easy to prove.

Lemma 1 A graph G is locally fS2g-decomp-
osable if and only if G is chordal.

Hence, a proof for Theorems 1 and 2 is easily
obtained by using Lemma 1 and Theorem 4.

Sketch of Proof
The proof of Theorem 4 relies mainly on the
following.

Theorem 5 (Berry and Bordat [2]) If G is a
non-complete graph and ´ is the last vertex of
a LexBFS ordering of G, then there exists a
connected component C of G � N Œ´� such that
for every neighbor x of ´, either N Œx� D N Œ´� or
N.x/ \ C ¤ ;.

Equivalently, if we put ´ together with its
neighbors of the first type, the resultant set of
vertices is a clique, a homogeneous set, and its
neighborhood is a minimal separator. Such sets
are called moplexes in [2] and Theorem 5 is stated
in term of moplexes in [2]. Note that Theorem 5
can be proved from the following very convenient
lemma.

Lemma 2 Let � be a LexBFS ordering of a
graph G D .V; E/. Let ´ denote the last vertex
in this ordering. Then for all vertices a; b; c 2 V

such that c � b � a and ca 2 E, there exists
a path from b to c whose internal vertices are
disjoint from N Œ´�.

Truemper Configurations
To state the next results, we need special types of
graphs that are called Truemper configurations.
They play an important role in structural graph
theory; see [15]. Let us define them. A 3-path
configuration is a graph induced by three inter-
nally vertex disjoint paths of length at least 1,
P1 D x1 : : : y1, P2 D x2 : : : y2 and P3 D

x3 : : : y3, such that either x1 D x2 D x3 or
x1; x2; x3 are all distinct and pairwise adjacent
and either y1 D y2 D y3 or y1; y2; y3 are all
distinct and pairwise adjacent. Furthermore, the
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vertices of Pi [ Pj , i ¤ j induce a hole. Note
that this last condition in the definition implies
the following:

• If x1; x2; x3 are distinct (and therefore pair-
wise adjacent) and y1; y2; y3 are distinct, then
the three paths have length at least 1. In this
case, the configuration is called a prism.

• If x1 D x2 D x3 and y1 D y2 D y3, then the
three paths have length at least 2 (since a path
of length 1 would form a chord of the cycle
formed by the two other paths). In this case,
the configuration is called a theta.

• If x1 D x2 D x3 and y1; y2; y3 are distinct,
or if x1; x2; x3 are distinct and y1 D y2 D y3,
then at most one of the three paths has length
1, and the others have length at least 2. In this
case, the configuration is called a pyramid.

A wheel .H; v/ is a graph formed by a hole H ,
called the rim, and a vertex v, called the center,
such that the center has at least three neighbors
on the rim. A Truemper configuration is a graph
that is either a prism, a theta, a pyramid, or a
wheel.

A hole in a graph is a chordless cycle of length
at least 4. It is even or odd according to the parity
of the number of its edges. A graph is universally
signable if it contains no Truemper configuration.

Speeding Up of Known Algorithms
We now state the previously known optimization
algorithms for which we get better complexity by
applying our method. In each case, we prove the
existence of an elimination ordering, compute it
with LexBFS, and take advantage of the ordering
to solve the problem. Each time, we improve the
previously known complexity by at least a factor
of n:

• Maximum weighted clique in even-hole-free
graphs in time O.nm/

• Maximum weighted clique in universally
signable graphs in time O.nCm/

• Coloring in universally signable graphs in
time O.nCm/

New Algorithms
We now apply systematically our method to all
possible sets made of non-complete graphs of
order 3. For each such set F (there are seven of
them), we provide a class with a F-elimination
ordering.

To describe the classes of graphs that we
obtain, we need to be more specific about wheels.
A wheel is a 1-wheel if for some consecutive
vertices x; y; ´ of the rim, the center is adjacent
to y and nonadjacent to x and ´. A wheel is a
2-wheel if for some consecutive vertices x; y; ´

of the rim, the center is adjacent to x and y and
nonadjacent to ´. A wheel is a 3-wheel if for some
consecutive vertices x; y; ´ of the rim, the center
is adjacent to x, y and ´. Observe that a wheel
can be simultaneously a 1-wheel, a 2-wheel, and
a 3-wheel. On the other hand, every wheel is a 1-
wheel, a 2-wheel, or a 3-wheel. Also, any 3-wheel
is either a 2-wheel or a universal wheel (i.e., a
wheel whose center is adjacent to all vertices of
the rim).

Up to isomorphism, there are four graphs on
three vertices, and three of them are not com-
plete. These three graphs (namely, the indepen-
dent graph on three vertices denoted by S3, the
path of length 2 denoted by P3, and its com-
plement denoted by P3) are studied in the next
lemma.

Lemma 3 For a graph G, the following hold:

(i) G is locally fS3g-decomposable if and only
if G is {1-wheel, theta, pyramid}-free.

(ii) G is locally fP3g-decomposable if and only
if G is 3-wheel-free.

(iii) G is locally fP3g-decomposable if and only
if G is {2-wheel, prism, pyramid}-free.

Applying our method then leads to the next
result, that is, a description of eight classes of
graphs (one of them is the class of chordal
graphs, and one of them is the class of universally
signable graphs). They are described in Table 1:
the second column describes the forbidden
induced subgraphs that define the class and the
last column describes the neighborhood of the
last vertex of a LexBFS ordering.
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LexBFS, Structure, and Algorithms, Table 1 Eight classes of graphs

i Class Ci Fi Neighborhood

1 {1-wheel, theta, pyramid}-free No stable set of size 3

2 3-wheel-free Disjoint union of cliques

3 {2-wheel, prism, pyramid}-free Complete multipartite

4
{1-wheel, 3-wheel, theta,
pyramid}-free

Disjoint union of at most two
cliques

5
{1-wheel, 2-wheel, prism, theta,
pyramid}-free

Stable sets of size at most 2 with
all possible edges between them

6
{2-wheel, 3-wheel, prism,
pyramid}-free

Clique or stable set

7 {wheel, prism, theta, pyramid}-
free

Clique or stable set of size 2

8 hole-free Clique

LexBFS, Structure, and Algorithms, Table 2 Several
properties of classes defined in Table 1

i Max clique Coloring

1 NP-hard [13] NP-hard [9]

2 O.nm/ [14] NP-hard [11]

3 O.nm/ NP-hard [11]

4 O.n C m/ ?

5 O.nm/ ?

6 O.n C m/ NP-hard [11]

7 O.n C m/ O.n C m/

8 O.n C m/ [14] O.n C m/ [14]

Theorem 6 For i D 1; : : : ; 8, let Ci and Fi

be the classes defined as in Table 1. For i D

1; : : : ; 8, the class Ci is exactly the class of locally
Fi -decomposable graphs.

For each class Ci , we survey in Table 2 the
complexity of the maximum clique problem (for
which our method provides sometimes a fast
algorithm) and of the coloring problem.

Open Problems

Addario-Berry, Chudnovsky, Havet, Reed, and
Seymour [1] proved that every even-hole-free
graph admits a vertex whose neighborhood is the
union of two cliques. We wonder whether this
result can be proved by some search algorithm.

Our work suggests that a linear time algorithm
for the maximum clique problem might exist in
C2, but we could not find it.

We are not aware of a polynomial time color-
ing algorithm for graphs in C4 or C5.

Since class C1 generalizes claw-free graphs, it
is natural to ask which of the properties of claw-
free graphs it has, such as a structural descrip-
tion (see [4]), a polynomial time algorithm for
the maximum stable set (see [7]), approximation
algorithms for the chromatic number (see [10]),
and a polynomial time algorithm for the induced
linkage problem (see [8]).

In [5], an O.nm/ time algorithm is described
for the maximum weighted stable set problem in
C7. Since the class is a simple generalization of
chordal graphs, we wonder whether a linear time
algorithm exists.
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Problem Definition

In this article, we discuss the problem of testing
linearity of functions and, more generally, test-
ing whether a given function is a group homo-
morphism. An algorithm for this problem, given
by [9], is one of the most celebrated property
testing algorithms. It is part of or is a special
case of many important property testers for alge-
braic properties. Originally designed for program
checkers and self-correctors, it has found uses in
probabilistically checkable proofs (PCPs), which
are an essential tool in proving hardness of ap-
proximation.

We start by formulating an important spe-
cial case of the problem, testing the linearity of
Boolean functions. A function f W f0; 1gn !

f0; 1g is linear if for some a1; a2; : : : ; an 2

f0; 1g,

f .x1; x2; : : : ; xn/ D a1x1 C a2x2 C � � � anxn:

The operations in this definition are over F2.
That is, given vectors x D .x1; : : : ; xn/ and y D
.y1; : : : ; yn/, where x1; : : : ; xn; y1; : : : ; yn 2

f0; 1g, the vector x C y D .x1 C y1 mod
2; : : : ; xn C yn mod 2/. There is another,
equivalent definition of linearity of Boolean
functions over f0; 1gn: a function f is linear
if for all x; y 2 f0; 1gn,

f .x/C f .y/ D f .x C y/:

A generalization of a linear function, defined
above, is a group homomorphism. Given two
finite groups, .G; ı/ and .H; ?/, a group homo-
morphism from G to H is a function f W G ! H

such that for all elements x; y 2 G,

f .x/ ? f .y/ D f .x ı y/:
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We would like to test (approximately) whether
a given function is linear or, more generally, is a
group homomorphism. Next, we define the prop-
erty testing framework [12, 23]. Linearity testing
was the first problem studied in this framework.
The linearity tester of [9] actually preceded the
definition of this framework and served as an
inspiration for it. Given a proximity parameter
� 2 .0; 1/, a function is �-far from satisfying a
specific property P (such as being linear or being
a group homomorphism) if it has to be modified
on at least an � fraction of its domain in order
to satisfy P . A function is �-close to P if it is
not �-far from it. A tester for property P gets a
parameter � 2 .0; 1/ and an oracle access to a
function f . It must accept with probability (The
choice of error probability in the definition of
the tester is arbitrary. Using standard techniques,
a tester with error probability 1/3 can be turned
into a tester with error probability ı 2 .0; 1=3/

by repeating the original tester O.log 1
ı
/ times

and taking the majority answer.) at least 2/3 if
the function f satisfies property P and reject
with probability at least 2/3 if f is �-far from
satisfying P . Our goal is to design an efficient
tester for group homomorphism.

Alternative Formulation
Another way of viewing the same problem is in
terms of error-correcting codes. Given a function
f W G ! H , we can form a codeword corre-
sponding to f by listing the values of f on all
points in the domain. The homomorphism code
is the set of all codewords that correspond to
homomorphisms from G to H . This is an error-
correcting code with large distance because, for
two different homomorphisms f; g W G ! H ,
the fraction of points x 2 G on which f .x/ D

g.x/ is at most 1/2. In the special case when G

is f0; 1gn and H is f0; 1g, we get the Hadamard
code. Our goal can be formulated as follows:
design an efficient algorithm that tests whether a
given string is a codeword of a homomorphism
code (or �-far from it).

Key Results

The linearity (homomorphism) tester designed by
[9] repeats the following test several times, until

the desired success probability is reached, and
accepts iff all iterations accept.

Algorithm 1: BLR Linearity (Homomor-
phism) Test
input : Oracle access to an unknown function

f W G ! H .

1 Pick x; y 2 G uniformly and independently at
random.

2 Query f on x; y; and x C y to find out
f .x/; f .y/; and f .x C y/.

3 Accept if f .x/ C f .y/ D f .x C y/; otherwise,
reject.

Blum et al. [9] and Ben-Or et al. [7] showed
that O.1=�/ iterations of the BLR test suffice to
get a property tester for group homomorphism.
(The analysis in [9] worked for a special case of
the problem, and [7] extended it to all groups).
It is not hard to prove that ˝.1=�/ queries are
required to test for linearity and, in fact, any non-
trivial property, so the resulting tester is optimal
in terms of the query complexity and the running
time.

Lots of effort went into understanding the
rejection probability of the BLR test for functions
that are �-far from homomorphisms over various
groups and, especially, for the case F D f0; 1gn

(see [17] and references therein). A nice expo-
sition of the analysis for the latter special case,
which follows the Fourier-analytic approach of
[5], can be found in the book by [21].

Several works [8, 14, 24–26] showed how to
reduce the number of random bits required by
homomorphism tests. In the natural implementa-
tion of the BLR test, 2 log jGj random bits per
iteration are used to pick x and y. Shpilka and
Wigderson [25] gave a homomorphism test for
general groups that needs only .1Co.1// log2 jGj

random bits.
The case when G is a subset of an infinite

group, f is a real-valued function, and the oracle
query to f returns a finite-precision approxi-
mation to f .x/ has been considered in [2, 10,
11, 19, 20]. These works gave testers with query
complexity independent of the domain size (see
[18] for a survey).
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Applications

Self-Testing/Correcting Programs
The linearity testing problem was motivated
in [9] by applications to self-testing and self-
correcting of programs. Suppose you are given
a program that is known to be correct on most
inputs but has not been checked (or, perhaps,
is even known to be incorrect) on remaining
inputs. A self-tester for f is an algorithm that
can quickly verify whether a given program
that supposedly computes f is correct on most
inputs, without the aid of another program for f

that has already been verified. A self-corrector
for f is an algorithm that takes a program that
correctly computes f on most inputs and uses it
to correctly compute f on all inputs.

Blum et al. [9] used their linearity test to con-
struct self-testers for programs intended to com-
pute various homomorphisms. Such functions in-
clude integer, polynomial, matrix, and modular
multiplication and division. Once it is verified
that a program agrees on most inputs with some
homomorphism, the task of determining whether
it agrees with the correct homomorphism on most
inputs becomes much easier.

For programs intended to compute homomor-
phisms, it is easy to construct self-correctors:
Suppose a program outputs f .x/ on input x,
where f agrees on most inputs with a homomor-
phism g. Fix a constant c. Consider the algorithm
that, on input x, picks c log 1=ı values y from
the domain G uniformly at random, computes
f .x C y/ � f .y/; and outputs the value that is
seen most often, breaking ties arbitrarily. If f is
1
8

-close to g, then, since both y and x C y are
uniformly distributed in G, it is the case that for
at least 3=4 of the choices of y, both g.xC y/ D

f .x C y/ and g.y/ D f .y/, in which case
f .x C y/ � f .y/ D g.x/. Thus, it is easy to
show that there is a constant c such that if f is
1
8

-close to a homomorphism g, then for all x, the
above algorithm outputs g.x/ with probability at
least 1 � ı.

Probabilistically Checkable Proofs
We discussed an equivalent formulation of the
linearity testing problem in terms of testing

whether a given string is a codeword of a
Hadamard code. This formulation has been used
in proofs of hardness of approximation of some
NP-hard problems and to construct PCP systems
that can be verified with a few queries (see, e.g.,
[3, 13]).

The BLR Test as a Building Block
The BLR test has been generalized and extended
in many ways, as well as used as a building block
in other testers. One generalization, particularly
useful in PCP constructions, is to testing if a
given function is a polynomial of low degree (see,
e.g., [1, 15, 16]). Other generalizations include
tests for long codes [6, 13] and tests of linear
consistency among multiple functions [4]. An ex-
ample of an algorithm that uses the BLR test as a
building block is a tester by [22] for the singleton
property of functions f W f0; 1gn ! f0; 1g,
namely, the property that the function f .x/ D xi

for some i 2 Œ1; n�.

Open Problems

We discussed that the BLR test can be used
to check whether a given string is a Hadamard
codeword or far from it. For which other codes
can such a check be performed efficiently? In
other words, which codes are locally testable? We
refer the reader to the entry �Locally Testable
Codes.

Which other properties of functions can be
efficiently tested in the property testing model?
Some examples are given in the entries �Testing
Juntas and Related Properties of Boolean
Functions and �Monotonicity Testing. Testing
properties of graphs is discussed in the entries
�Testing Bipartiteness in the Dense-Graph
Model and �Testing Bipartiteness of Graphs
in Sublinear Time.

Cross-References

�Learning Heavy Fourier Coefficients of
Boolean Functions

�Locally Testable Codes
�Monotonicity Testing
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�Quantum Error Correction
�Testing Bipartiteness in the Dense-Graph

Model
�Testing Bipartiteness of Graphs in Sublinear

Time
�Testing if an Array Is Sorted
�Testing Juntas and Related Properties of

Boolean Functions
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Problem Definition

An object in languages such as Java and CCC is
a container for data. Each object provides a set
of methods that are the only way to to manipulate
that object’s internal state. Each object has a class
which defines the methods it provides and what
they do.

In the absence of concurrency, methods can be
described by a pair consisting of a precondition
(describing the object’s state before invoking the
method) and a postcondition, describing, once
the method returns, the object’s state and the
method’s return value. If, however, an object is
shared by concurrent threads in a multiprocessor
system, then method calls may overlap in time,
and it no longer makes sense to characterize
methods in terms of pre- and post-conditions.

Linearizability is a correctness condition for
concurrent objects that characterizes an object’s
concurrent behavior in terms of an “equivalent”
sequential behavior. Informally, the object be-
haves “as if” each method call takes effect instan-
taneously at some point between its invocation
and its response. This notion of correctness has
some useful formal properties. First, it is non-
blocking, which means that linearizability as such
never requires one thread to wait for another to
complete an ongoing method call. Second, it is
local, which means that an object composed of
linearizable objects is itself linearizable. Other
proposed correctness conditions in the literature
lack at least one of these properties.

Notation
An execution of a concurrent system is mod-
eled by a history, a finite sequence of method
invocation and response events. A subhistory of
a history H is a subsequence of the events of H.
A method invocation is written as hx:m.a�/Ai,
where x is an object, m a method name, a* a se-
quence of arguments, and A a thread. A method

response is written as hxW t .r�/Ai where t is
a termination condition and r* is a sequence of
result values.

A response matches an invocation if their
objects and thread names agree. A method call
is a pair consisting of an invocation and the next
matching response. An invocation is pending in
a history if no matching response follows the
invocation. If H is a history, complete(H) is the
subsequence of H consisting of all matching invo-
cations and responses. A history H is sequential if
the first event of H is an invocation, and each in-
vocation, except possibly the last, is immediately
followed by a matching response.

Let H be a a history. The thread subhistory
HjP is the subsequence of events in H with thread
name P. The object subhistory Hjx is similarly
defined for an object x. Two histories H and H0

are equivalent if for every thread A; H jA D

H 0jA. A history H is well-formed if each thread
subhistory HjA of H is sequential. Notice that
thread subhistories of a well-formed history are
always sequential, but object subhistories need
not be.

A sequential specification for an object is
a prefix-closed set of sequential object histories
that defines that object’s legal histories. A se-
quential history H is legal if each object subhis-
tory is legal. A method is total if it is defined
for every object state, otherwise it is partial.
(For example, a deq() method that blocks on an
empty queue is partial, while one that throws an
exception is total.)

A history H defines an (irreflexive) partial
order!H on its method calls: m0 !H m1 if the
result event of m0 occurs before the invocation
event of m1. If H is a sequential history, then!H

is a total order.
Let H be a history and x an object such that

H jx contains method calls m0 and m1. A call
m0 !x m1 if m0 precedes m1 in Hjx. Note that
!x is a total order.

Informally, linearizability requires that
each method call appear to “take effect”
instantaneously at some moment between
its invocation and response. An important
implication of this definition is that method
calls that do not overlap cannot be reordered:
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linearizability preserves the “real-time” order of
method calls. Formally,

Definition 1 A history H is linearizable if it can
be extended (by appending zero or more response
events) to a history H0 such that:

• L1 complete(H0) is equivalent to a legal se-
quential history S, and

• L2 If method call m0 precedes method call m1

in H, then the same is true in S.

S is called a linearization of H. (H may have
multiple linearizations.) Informally, extending H
to H0 captures the idea that some pending in-
vocations may have taken effect even though
their responses have not yet been returned to the
caller.

Key Results

The Locality Property
A property is local if all objects collectively
satisfy that property provided that each individual
object satisfies it.

Linearizability is local:

Theorem 1 H is linearizable if and only if Hjx is
linearizable for ever object x.

Proof The “only if” part is obvious.
For each object x, pick a linearization of Hjx.

Let Rx be the set of responses appended to Hjx
to construct that linearization, and let !x be
the corresponding linearization order. Let H0 be
the history constructed by appending to H each
response in Rx.

The !H and !x orders can be “rolled up”
into a single partial order. Define the relation!
on method calls of complete.H 0/: For method
calls m and Nm; m! Nm if there exist method calls
m0; : : : ; mn, such that m D m0; Nm D mn, and for
each i between 0 and n � 1, either mi !x miC1

for some object x, or mi !H miC1.
It turns out that ! is a partial order. Clearly,

! is transitive. It remains to be shown that! is
anti-reflexive: for all x, it is false that x ! x.

The proof proceeds by contradiction. If not,
then there exist method calls m0; : : : ; mn, such
that m0 ! m1 ! � � � ! mn; mn ! m0,
and each pair is directly related by some !x or
by!H.

Choose a cycle whose length is minimal. Sup-
pose all method calls are associated with the same
object x. Since !x is a total order, there must
exist two method calls mi�1 and mi such that
mi�1 !H mi and mi !x mi�1, contradicting
the linearizability of x.

The cycle must therefore include method calls
of at least two objects. By reindexing if necessary,
let m1 and m2 be method calls of distinct objects.
Let x be the object associated with m1. None
of m2; : : : ; mn can be a method call of x. The
claim holds for m2 by construction. Let mi be
the first method call in m3; : : : ; mn associated
with x. Since mi�1 and mi are unrelated by
!x, they must be related by !H, so the re-
sponse of mi�1 precedes the invocation of mi.
The invocation of m2 precedes the response of
mi�1, since otherwise mi�1 !H m2, yielding
the shorter cycle m2; : : : ; mi�1. Finally, the re-
sponse of m1 precedes the invocation of m2, since
m1 !H m2 by construction. It follows that the
response to m1 precedes the invocation of mi,
hence m1 !H mi , yielding the shorter cycle
m1; mi ; : : : ; mn.

Since mn is not a method call of x, but mn !

m1, it follows that mn !H m1. But m1 !H

m2 by construction, and because !H is tran-
sitive, mn !H m2, yielding the shorter cycle
m2; : : : ; mn, the final contradiction. �

Locality is important because it allows concur-
rent systems to be designed and constructed in
a modular fashion; linearizable objects can be im-
plemented, verified, and executed independently.
A concurrent system based on a non-local cor-
rectness property must either rely on a centralized
scheduler for all objects, or else satisfy addi-
tional constraints placed on objects to ensure
that they follow compatible scheduling protocols.
Locality should not be taken for granted; as
discussed below, the literature includes proposals
for alternative correctness properties that are not
local.
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The Non-blocking Property
Linearizability is a non-blocking property:
a pending invocation of a total method is never
required to wait for another pending invocation
to complete.

Theorem 2 Let inv(m) be an invocation of a total
method. If hx invP i is a pending invocation
in a linearizable history H, then there exists
a response hx resP i such that H � hx resP i is
linearizable.

Proof Let S be any linearization of H. If S in-
cludes a response hx resP i to hx invP i, the
proof is complete, since S is also a linearization
of H � hx resP i. Otherwise, hx invP i does not
appear in S either, since linearizations, by defini-
tion, include no pending invocations. Because the
method is total, there exists a response hx resP i

such that

S 0 D S � hx invP i � hx res P i

is legal. S0, however, is a linearization of
H � hx resP i, and hence is also a linearization
of H. �

This theorem implies that linearizability by
itself never forces a thread with a pending invoca-
tion of a total method to block. Of course, block-
ing (or even deadlock) may occur as artifacts
of particular implementations of linearizability,
but it is not inherent to the correctness property
itself. This theorem suggests that linearizability
is an appropriate correctness condition for sys-
tems where concurrency and real-time response
are important. Alternative correctness conditions,
such as serializability [1] do not share this non-
blocking property.

The non-blocking property does not rule
out blocking in situations where it is explicitly
intended. For example, it may be sensible for
a thread attempting to dequeue from an empty
queue to block, waiting until another thread
enqueues an item. The queue specification
captures this intention by making the deq()
method’s specification partial, leaving it’s effect
undefined when applied to an empty queue.

The most natural concurrent interpretation of
a partial sequential specification is simply to
wait until the object reaches a state in which the
method is defined.

Other Correctness Properties
Sequential Consistency [4] is a weaker correct-
ness condition that requires Property L1 but not
L2: method calls must appear to happen in some
one-at-a-time, sequential order, but calls that do
not overlap can be reordered. Every linearizable
history is sequentially consistent, but not vice
versa. Sequential consistency permits more con-
currency, but it is not a local property: a system
composed of multiple sequentially-consistent ob-
jects is not itself necessarily sequentially consis-
tent.

Much work on databases and distributed sys-
tems uses serializability as the basic correctness
condition for concurrent computations. In this
model, a transaction is a “thread of control” that
applies a finite sequence of methods to a set of
objects shared with other transactions. A history
is serializable if it is equivalent to one in which
transactions appear to execute sequentially, that
is, without interleaving. A history is strictly seri-
alizable if the transactions’ order in the sequen-
tial history is compatible with their precedence
order: if every method call of one transaction
precedes every method call of another, the former
is serialized first. (Linearizability can be viewed
as a special case of strict serializability where
transactions are restricted to consist of a single
method applied to a single object.)

Neither serializability nor strict serializability
is a local property. If different objects serialize
transactions in different orders, then there may be
no serialization order common to all objects. Se-
rializability and strict serializability are blocking
properties: Under certain circumstances, a trans-
action may be unable to complete a pending
method without violating serializability. A dead-
lock results if multiple transactions block one an-
other. Such transactions must be rolled back and
restarted, implying that additional mechanisms
must be provided for that purpose.
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Applications

Linearizability is widely used as the basic
correctness condition for many concurrent data
structure algorithms [5], particularly for lock-
free and wait-free data structures [2]. Sequential
consistency is widely used for describing
low-level systems such as hardware memory
interfaces. Serializability and strict serializability
are widely used for database systems in which
it must be easy for application programmers to
preserve complex application-specific invariants
spanning multiple objects.

Open Problems

Modern multiprocessors often support very weak
models of memory consistency. There are many
open problems concerning how to model such
behavior, and how to ensure linearizable object
implementations on top of such architectures.
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Problem Definition

One of the central trade-offs in the theory of
error-correcting codes is the one between the
amount of redundancy needed and the fraction of
errors that can be corrected. (This entry deals
with the adversarial or worst-case model of
errors�no assumption is made on how the errors
and error locations are distributed beyond an
upper bound on the total number of errors that
may be caused.) The redundancy is measured by
the rate of the code, which is the ratio of the the
number of information symbols in the message
to that in the codeword – thus, for a code with
encoding function E W ˙k ! ˙n, the rate equals
k / n. The block length of the code equals n, and
† is its alphabet.

The goal in decoding is to find, given a noisy
received word, the actual codeword that it could
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have possibly resulted from. If the target is to
correct a fraction ¡ of errors (¡ will be called
the error-correction radius), then this amounts to
finding codewords within (normalized Hamming)
distance ¡ from the received word. We are guar-
anteed that there will be a unique such code-
word provided the distance between every two
distinct codewords is at least 2�, or in other words
the relative distance of the code is at least 2�.
However, since the relative distance • of a code
must satisfy ı � 1 �R where R is the rate of the
code (by the Singleton bound), if one insists on
an unique answer, the best trade-off between ¡

and R is � D �U .R/ D .1 �R/=2. But this is an
overly pessimistic estimate of the error-correction
radius, since the way Hamming spheres pack in
space, for most choices of the received word there
will be at most one codeword within distance
¡ from it even for ¡ much greater than ı=2.
Therefore, always insisting on a unique answer
will preclude decoding most such received words
owing to a few pathological received words that
have more than one codeword within distance
roughly ı=2 from them.

A notion called list decoding, that dates
back to the late 1950s [1, 9], provides a clean
way to get around this predicament, and yet
deal with worst-case error patterns. Under list
decoding, the decoder is required to output a list
of all codewords within distance ¡ from the
received word. Let us call a code C .�; L/ -list
decodable if the number of codewords within
distance ¡ of any received word is at most L.
To obtain better trade-offs via list decoding,
.�; L/-list decodable codes are needed where
L is bounded by a polynomial function of the
block length, since this an a priori requirement
for polynomial time list decoding. How large can
¡ be as a function of R for which such .�; L/-
list decodable codes exist? A standard random
coding argument shows that � � 1 �R � o.1/

can be achieved over large enough alphabets,
cf. [2, 10], and a simple counting argument
shows that ¡ must be at most 1 �R. Therefore
the list decoding capacity, i.e., the information-
theoretic limit of list decodability, is given by
the trade-off �cap.R/ D 1 �R D 2�U .R/. Thus
list decoding holds the promise of correcting

twice as many errors as unique decoding, for
every rate. The above-mentioned list decodable
codes are non-constructive. In order to realize the
potential of list decoding, one needs explicit
constructions of such codes, and on top of
that, polynomial time algorithms to perform list
decoding.

Building on works of Sudan [8], Guruswami
and Sudan [6] and Parvaresh and Vardy [7],
Guruswami and Rudra [5] present codes that
get arbitrarily close to the list decoding capacity
�cap.R/ for every rate. In particular, for every
1 > R > 0 and every � > 0, they give explicit
codes of rate R together with polynomial time
list decoding algorithm that can correct up to
a fraction 1 �R � � of errors. These are the
first explicit codes (with efficient list decoding
algorithms) that get arbitrarily close to the list
decoding capacity for any rate.

Description of the Code
Consider a Reed�Solomon (RS) code
C D RSF;F� Œn; k� consisting of evaluations of
degree k polynomials over some finite field F

at the set F
� of nonzero elements of F. Let

q D jFj D nC 1. Let ” be a generator of the
multiplicative group F

�, and let the evaluation
points be ordered as 1; �; �2; : : : ; �n�1. Using
all nonzero field elements as evaluation points is
one of the most commonly used instantiations of
Reed�Solomon codes.

Let m � 1 be an integer parameter called the
folding parameter. For ease of presentation, it
will assumed that m divides n D q � 1.

Definition 1 (Folded Reed�Solomon Code)
The m-folded version of the RS code C, denoted
FRSF;�;m;k , is a code of block length N D n=m

over F
m. The encoding of a message f(X),

a polynomial over F of degree at most k, has as
its j’th symbol, for 0 � j < n=m, the m-tuple
.f .�jm/; f .�jmC1/; � � � ; f .�jmCm�1//. In
other words, the codewords of C 0 D FRSF;�;m;k

are in one-one correspondence with those of the
RS code C and are obtained by bundling together
consecutive m-tuple of symbols in codewords
of C.
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Key Results

The following is the main result of Guruswami
and Rudra.

Theorem 1 ([5]) For every � > 0 and 0 < R < 1,
there is a family of folded Reed�Solomon codes
that have rate at least R and which can be list
decoded up to a fraction 1 �R � � of errors
in time (and outputs a list of size at most)
.N=�2/O.��1 log.1=R// where N is the block length
of the code. The alphabet size of the code as
a function of the block length N is .N=�2/O.1=�2/.

The result of Guruswami and Rudra also works
in a more general setting called list recovering,
which is defined next.

Definition 2 (List Recovering) A code C � ˙n

is said to be .�; l; L/-list recoverable if for every
sequence of sets S1,� � � ,Sn where each Si � ˙

has at most l elements, the number of codewords
c 2 C for which ci 2 Si for at least �n positions
i 2 f1; 2; : : : ; ng is at most L.

A code C � ˙n is said to .�; l/-list recov-
erable in polynomial time if it is .�; l; L.n//-
list recoverable for some polynomially bounded
function L.�/, and moreover there is a polynomial
time algorithm to find the at most L(n) codewords
that are solutions to any .�; l; L.n//-list recover-
ing instance.

Note that when l D 1, .�; 1; �/-list recovering is
the same as list decoding up to a .1 � �/ fraction
of errors. Guruswami and Rudra have the follow-
ing result for list recovering.

Theorem 2 ([5]) For every integer l � 1, for
all R, 0 < R < 1 and � > 0, and for every
prime p, there is an explicit family of folded
Reed�Solomon codes over fields of characteristic
p that have rate at least R and which can be
.RC �; l/-list recovered in polynomial time. The
alphabet size of a code of block length N in the
family is .N=�2/O.��2 log l=.1�R//.

Applications

To get within – of capacity, the codes in Theo-
rem 1 have alphabet size N ˝.1=�2/ where N is
the block length. By concatenating folded RS
codes of rate close to 1 (that are list recover-
able) with suitable inner codes followed by re-
distribution of symbols using an expander graph
(similar to a construction for linear-time unique
decodable codes in [3]), one can get within –

of capacity with codes over an alphabet of size
2O.��4 log.1=�//. A counting argument shows that
codes that can be list decoded efficiently to within
– of the capacity need to have an alphabet size of
2˝.1=�/.

For binary codes, the list decoding capacity is
known to be �bin.R/ D H �1.1 �R/ where H.�/

denotes the binary entropy function. No explicit
constructions of binary codes that approach this
capacity are known. However, using the Folded
RS codes of Guruswami Rudra in a natural con-
catenation scheme, one can obtain polynomial
time constructable binary codes of rate R that can
be list decoded up to a fraction �Zyab.R/ of errors,
where �Zyab.R/ is the “Zyablov bound”.

See [5] for more details.

Open Problems

The work of Guruswami and Rudra could be
improved with respect to some parameters. The
size of the list needed to perform list decoding
to a radius that is within – of capacity grows as
N O.��1 log.1=R// where N and R are the block
length and the rate of the code respectively.
It remains an open question to bring this list
size down to a constant independent of n (the
existential random coding arguments work with
a list size of O.1=�/). The alphabet size needed
to approach capacity was shown to be a constant
independent of N. However, this involved a brute-
force search for a rather large (inner) code,
which translates to a construction time of about
N O.��2 log.1=�// (instead of the ideal construction
time where the exponent of N does not depend on
–). Obtaining a “direct” algebraic construction
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over a constant-sized alphabet, such as the
generalization of the Parvaresh-Vardy framework
to algebraic-geometric codes in [4], might help
in addressing these two issues.

Finally, constructing binary codes that ap-
proach list decoding capacity remains open.
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Problem Definition

Let L be a linked list of n vertices x1; x2; : : : ; xn

such that every vertex xi stores a pointer succ.xi /

to its successor in L. As with any linked list,
we assume that no two vertices have the same
successor, any vertex can reach the tail of the list
by following successor pointers, and we denote
the head of the list the vertex that no other
vertex in L points to and the tail the vertex
whose successor is nul l . Given the head xh of
L, the list-ranking problem is to find the rank, or
distance, of each vertex xi in L from the head of
L: that is, rank.xh/ D 0 and rank.succ.xi // D

rank.xi / C 1; refer to Fig. 1. A generalization
of this problem is to consider that each vertex xi

stores, in addition to succ.xi /, a weight w.xi /;
in this case the list is given as a set of tuples
f.xi ; w.xi /; succ.xi //g and we want to compute
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List Ranking, Fig. 1 (a)
An instance of the LR
problem, with the ranks
shown in (b)

heada

b

3 7 2 4 0 8 65 1

head

rank.xh/ D w.xh/, and rank.succ.xi // D

rank.xi /C w.succ.xi //.

Key Results

List ranking is one of the fundamental prob-
lems in the external memory model (EM or I/O-
model) which requires nontrivial techniques and
illustrates the differences (and connection) be-
tween the models of computation, namely, the
random access machine (RAM), its parallel ver-
sion PRAM, and the parallel external memory
model (PEM). It also illustrates how ideas from
parallel algorithms are used in serial external
memory algorithms and the idea of using geomet-
rically decreasing sizes to get an algorithm that in
total is as fast as sorting. Furthermore list ranking
is the main ingredient in the Euler Tour technique,
which is one of the main techniques for obtaining
I/O-efficient solutions for fundamental problems
on graphs and trees.

In internal memory, list ranking can be solved
in O.n/ time with a straightforward algorithm
that starts from the head of the list and follows
successor pointers. In external memory, the same
algorithm may use ˝.n/ I/Os – the intuition is
that in the worst case, the vertices are arranged in
such an order that following a successor pointer
will always require loading a new block from disk
(one I/O). If the vertices were arranged in order
of their ranks, then traversing the list would be
trivial, but arranging them in this order would
require knowing their ranks, which is exactly the
problem we are trying to solve.

The external memory model (see also chap-
ter � I/O-Model) has been extended to a parallel
version, the PEM model, which models a private
cache shared memory architecture, where the
shared memory (external memory) is organized
in blocks of size B , each cache (internal memory)
has size M , and there are P processors. The
cost of executing an algorithm is the number of
parallel I/Os. When we use asymptotic notation,
we think of M; B , and P as arbitrary nonde-
creasing functions depending on n, the number
of elements constituting the input. Similar to the
PRAM, there are different versions of the model,
depending on the possibility of concurrent read
and write. In the following we assume a Concur-
rent Read Exclusive Write (CREW) policy [2].
For M D 2; B D 1 the PEM model is a PRAM
model, and for P D 1 the EM model.

Similar to the EM model (see chapter
�External Sorting and Permuting), sorting
is an important building block for the PEM
having complexity sort.n/ D O. n

PB
logd

n
B

/

for d D max
˚
2; min

˚
n

PB
; M

B




if P � n

B
[7].

The complexity of permuting in the PEM
model is that of sorting unless the direct algo-
rithm with O. n

P
/ I/Os is faster, i.e., for B smaller

than the logarithmic term.
In the RAM model, permuting and list ranking

have scanning complexity, while (comparison-
based) sorting is more expensive. In the PRAM
model, this changes slightly: permuting still has
scanning complexity, while list ranking has sort-
ing complexity (like any function where a single
output depends on all inputs it needs n=P C log n

time). In the external memory model, list ranking
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has permuting complexity which is higher than
scanning unless B D O.1/, and usually it is
sorting complexity. In contrast, for many proces-
sors and large B (more precisely P D M D

2B D
p

n) and a restricted model where the
input is only revealed to the algorithm if certain
progress has been made, list ranking has com-
plexity ˝.log2 n/ [8].

List-Ranking Algorithms in Parallel
External Memory
A solution for list ranking that runs in O.sort.n//

I/Os was described by Chiang et al. [4]. The
general idea is based on a PRAM algorithm by
Cole and Vishkin and consists of the following
steps:

1. Find an independent set I of L (a set of
vertices such that no two vertices in I are
adjacent in L) consisting of �.n/ vertices.

2. Compute a new list L � I by removing the
vertices in I from L; that is, all vertices x

in I are bridged out: let y be the vertex with
succ.y/ D x, and then we set succ.y/ WD

succ.x/; additionally the weight of x is added
to the weight of succ.x/. This ensures that the
rank of any vertex in L � I is the same as its
rank in L.

3. Compute the ranks recursively on L � I .
4. Compute the ranks of the vertices in I from

the ranks of the neighbors in L � I .

The key idea of the algorithm is finding an
independent set of size ˝.c �n/ for some constant
c 2 .0; 1/ and thus recursing on a list of size
O..1 � c/ � n/. The first step, finding a large
independent set, can be performed in O.sort.n//

I/Os and is described in more detail below. The
second and fourth step can be performed in a
couple of scanning and sorting passes in over-
all O.sort.n// I/Os. For example, to update the
weights of vertices in L� I , it suffices to sort the
vertices in I by their successor, sort the vertices
in L � I by their vertex ID, and then scan the
two sorted lists, and for each pair .x0; x/ in I

with x D succ.x0/, and .x; succ.x// in L � I ,
we update the weight of x to include the deleted
vertex x0: w.x/ D w.x/ C w.x0/. Similarly, to

update the successors of vertices in L � I , it
suffices to sort I by vertex ID, sort the vertices
in L � I by their successor, and then scan the
two sorted lists. Once the ranks of the vertices
in L � I are computed, it suffices to sort I by
vertex ID, sort L � I by successor, and then
scan the two lists to update the rank of each
vertex x 2 I . Overall, the I/O-complexity of this
list-ranking algorithm is given by the recurrence
T .n/ � O.sort.n//C T .c � n/, for some constant
c 2 .0; 1/, with solution O.sort.n// I/Os. This
is due to the convexity of the I/O behavior of
sorting, i.e., sort.c �n/ � c �sort.n/. The algorithm
can be used in the parallel setting as well because
the scanning here works on pairs of elements that
are stored in neighboring cells. For moderately
large number of processors, sorting the original
instance still dominates the overall running times,
and more processors lead to an additional log
factor in the number of parallel I/Os [8].

Computing a Large Independent Set of L
There are several algorithms for finding an inde-
pendent set of a list L that run in O.sort.n// I/Os.
The simplest one is a randomized algorithm by
Chiang et al. [4], based on a PRAM algorithm by
Anderson and Miller. The idea is to flip a coin
for each vertex and then select the vertices whose
coin came up heads and their successor’s coin
came up tail. This produces an independent set
of expected size .n � 1/=4 D �.n/.

In the serial setting, a different way to compute
an independent set of L is to 3-color the vertices
in L (assign one of the three colors to each
vertex such that no two adjacent vertices have
same color) and then pick the most popular of the
three colors, an independent set of at least n=3

vertices. This can be implemented in O.sort.n//

I/Os using time-forward processing [4]. A more
direct algorithm, also based on time-forward pro-
cessing, is described in [11].

In the parallel setting, time-forward process-
ing is not available. Instead deterministic coin
tossing can be used. With permuting complexity,
any k-coloring of a list can be transformed to a
log k coloring by what is known as deterministic
coin tossing [5]. This immediately leads to a par-
allel deterministic algorithm with an additional
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log� n factor in the number of parallel I/Os.
Alternatively, as long as sorting is still convex
in n, a technique called delayed pointer process-
ing [3] can be used. This can be understood as a
parallel version of time-forward processing for a
DAG of depth log log n.

Alternatively, all the CREW-PRAM list-
ranking algorithm can be executed on the PEM
leading to one parallel I/O per step.

Lower Bounds
There is a permuting complexity lower bound
for list ranking, showing that the above-explained
algorithm is asymptotically optimal for a large
range of the parameters. This was sketched in [4]
for the serial case and made precise in [8] by
the indivisibility assumption that edges have to
be treated as atoms and extended to the parallel
case. Observe that in the PEM model, superlinear
speedups in the number of processors are possible
(the overall available fast memory increases), and
hence a lower bound for the serial case does not
imply a good lower bound the parallel case.

If the number of processors is high (or for
parallel computational models where permuting
is easy like BSP or map-reduce), list ranking
seems to become more difficult than permuting.
All known algorithms are a factor O.log n/ more
expensive than permuting. One attempt at an
explanation is a lower bound in the mentioned
setting where the instance is only gradually re-
vealed (depending on the algorithm already hav-
ing solved certain other parts of the instance) [8].
For this particular parameter setting, the lower
bound shows that the described sorting-based
algorithm is optimal.

Applications

List ranking in external memory is particularly
useful in connection with Euler tours [4]. An
Euler tour of an undirected tree T D .V; E/ is
a traversal of T that visits every edge twice, once
in each direction. Such a traversal is represented
as a linear list L of edges and can be obtained
I/O-efficiently as follows: after fixing an order of
the edges fv; w1g; : : : ; fv; wkg incident to each

node v of T , we set the successor of fwi ; vg in
L to be fv; wiC1g and the successor of fwk ; vg in
L to be fv; w1g. We break the resulting circular
list at some root node r by choosing an edge
fv; rg with successor fr; wg, setting the successor
of fv; rg to be null and marking fr; wg to be the
first edge of the traversal list L. List ranking on
L is then applied in order to lay out the Euler
tour on disk in a way that about B consecutive
list elements are kept in each block. As an Euler
tour reflects the structure of its underlying tree T ,
many properties of T can be derived from a few
scanning and sorting steps on the edge sequence
of the Euler tour once it has been stored in a way
suitable for I/O-efficient traversal. In fact, this
technique is not restricted to external memory
but has already been used earlier [9] for parallel
(PRAM) algorithms, where the scanning steps are
replaced by parallel prefix computations.

Classic tree problems solved with the Euler
tour technique include tree rooting (finding the
parent-child direction of tree edges after a vertex
of an unrooted and undirected tree has been
chosen to become the root), assigning pre-/post-
/inorder numbers, and computing node levels or
number of descendants. Euler tours and hence
list ranking are also useful for non-tree graphs.
For example, they are a basic ingredient of a
clustering preprocessing step [1] for I/O-efficient
breadth first search (BFS) on sparse undirected
graphs G: after obtaining a spanning tree T for
G, an Euler tour around T is used in order to de-
terministically obtain low diameter clusters of G.

Experimental Results

Despite their theoretical sorting complexity I/O
bound, external-memory list-ranking implemen-
tations based on independent set removal suffer
from non-negligible constant factors. For small
to medium input sizes featuring n < M 2=.4 �

B/, Sibeyn modifies his connected components
algorithm [10] in order to solve practical list-
ranking problems in scanning complexity with a
small constant factor (22 � n=B I/Os). The algo-
rithm splits the input list into at most M=.2 � B/

subproblems of M=2 consecutive node indices
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each and processes these subproblems in two
passes (the first one running from high to low
index ranges and the second one vice versa).

For all nodes of the current range, Sibeyn’s
algorithm follows the links leading to the nodes
of the same sublists and updates the information
on their final node and the number of links
to it. For all nodes with links running outside
the current sublist, the required information is
requested in a batched fashion from the sub-
problems containing the nodes to which they are
linked. Phase-one-requests from and phase-two-
answers to the sublists are processed only when
the wave through the data hits the corresponding
subproblem. Due to the overall size restriction,
a buffer of size �.B/ can be kept in main
memory for each subproblem in order to facilitate
I/O-efficient information transfer between the
subproblems.

The implementation of Sibeyn’s algorithm in
the STXXL [6] framework has been used as
a building block in the engineering of many
graph traversal algorithms [1]. For example, the
improved clustering preprocessing based on list
ranking and Euler tours helped in reducing the
I/O wait time for BFS by up to two orders
of magnitude compared to a previous clustering
method.
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Problem Definition

The paper of Graham [8] was published in the
1960s. Over the years, it served as a common
example of online algorithms (though the original
algorithm was designed as a simple approxima-
tion heuristic). The following basic setting is
considered.

A sequence of n jobs is to be assigned to m

identical machines. Each job should be assigned
to one of the machines. Each job has a size asso-
ciated with it, which can be seen as its processing
time or its load. The load of a machine is the
sum of sizes of jobs assigned to it. The goal is to
minimize the maximum load of any machine, also
called the makespan. We refer to this problem as
JOB SCHEDULING.

If jobs are presented one by one and each
job needs to be assigned to a machine in tur,
without any knowledge of future jobs, the prob-
lem is called online. Online algorithms are typ-
ically evaluated using the (absolute) competitive
ratio, which is similar to the approximation ratio
of approximation algorithms. For an algorithm
A, we denote its cost by A as well. The cost
of an optimal offline algorithm that knows the
complete sequence of jobs is denoted by OPT.
The competitive ratio of an algorithm A is the
infimum R � 1 such that for any input, A �
R � OPT.

Key Results

In paper [8], Graham defines an algorithm called
LIST SCHEDULING (LS). The algorithm receives
jobs one by one. Each job is assigned in turn to a
machine which has a minimal current load. Ties
are broken arbitrarily.

The main result is the following:

Theorem 1 LS has a competitive ratio of 2� 1
m

.

Proof Consider a schedule created for a given
sequence. Let ` denote a job that determines
the makespan (that is, the last job assigned to a
machine i that has a maximum load), let L denote
its size, and let X denote the total size of all
other jobs assigned to i . At the time when L was

assigned to i , this was a machine of minimum
load. Therefore, the load of each machine is at
least X . The makespan of an optimal schedule
(i.e., a schedule that minimizes the makespan) is
the cost of an optimal offline algorithm and thus
is denoted by OPT. Let P be the sum of all job
sizes in the sequence.

The two following simple lower bounds on
OPT can be obtained:

OPT � L: (1)

OPT �
p

m
�

m �X C L

m
D X C

L

m
: (2)

Inequality (1) follows from the fact that {OPT}
needs to run job ` and thus at least one machine
has a load of at least L. The first inequality in
(2) is due to the fact that at least one machine
receives at least a fraction 1

m
of the total size

of jobs. The second inequality in (2) follows
from the comments above on the load of each
machine.

This proves that the makespan of the algo-
rithm, X C L can be bounded as follows:

XCL �OPTC
m � 1

m
L � OPTC

m � 1

m
OPT

D .2 � 1=m/ OPT:

(3)

The first inequality in (3) follows from (2) and the
second one from (1).

To show that the analysis is tight, consider
m.m � 1/ jobs of size 1 followed by a single
job of size m. After the smaller jobs arrive,
LS obtains a balanced schedule in which every
machine has a load of m � 1. The additional job
increases the makespan to 2m � 1. However, an
optimal offline solution would be to assign the
smaller jobs to m�1 machines and the remaining
job to the remaining machine, getting a load
of m.

A natural question was whether this bound is
best possible. In a later paper, Graham [9] showed
that applying LS with a sorted sequence of jobs
(by nonincreasing order of sizes) actually gives
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a better upper bound of 4
3
� 1

3m
on the approxi-

mation ratio. A polynomial time approximation
scheme was given by Hochbaum and Shmoys
in [10]. This is the best offline result one could
hope for as the problem is known to be NP hard
in the strong sense.

As for the online problem, it was shown in
[5] that no (deterministic) algorithm has a smaller
competitive ratio than 2 � 1

m
for the cases m = 2

and m = 3. On the other hand, it was shown in
a sequence of papers that an algorithm with a
smaller competitive ratio can be found for any
m �4, and even algorithms with a competitive
ratio that does not approach 2 for large m were
designed.

The best such result is by Fleischer and Wahl
[6], who designed a 1.9201-competitive algo-
rithm. Lower bounds of 1.852 and 1.85358 on the
competitive ratio of any online algorithm were
shown in [1,7]. Rudin [13] claimed a better lower
bound of 1.88.

Applications

As the study of approximation algorithms and
specifically online algorithms continued, the
analysis of many scheduling algorithms used
similar methods to the proof above. Below,
several variants of the problem where almost
the same proof as above gives the exact same
bound are mentioned.

Load Balancing of Temporary Tasks
In this problem, the sizes of jobs are seen as loads.
Time is a separate axis. The input is a sequence
of events, where every event is an arrival or a
departure of a job. The set of active jobs at time
t is the set of jobs that have already arrived at
this time and have not departed yet. The cost of
an algorithm at a time t is its makespan at this
time. The cost of an algorithm is its maximum
cost over time. It turns out that the analysis above
can be easily adapted for this model as well.
It is interesting to note that in this case, the
bound 2 � 1

m
is actually best possible, as shown

in [2].

Scheduling with Release Times and
Precedence Constraints
In this problem, the sizes represent processing
times of jobs. Various versions have been studied.
Jobs may have designated release times, which
are the times when these jobs become available
for execution. In the online scenario, each job
arrives and becomes known to the algorithm only
at its release time. Some precedence constraints
may also be specified, defined by a partial order
on the set of jobs. Thus, a job can be run only
after its predecessors complete their execution. In
the online variant, a job becomes known to the
algorithm only after its predecessors have been
completed. In these cases, LS acts as follows.
Once a machine becomes available, a waiting job
that arrived earliest is assigned to it. (If there is
no waiting job, the machine is idle until a new
job arrives).

The upper bound of 2 � 1
m

on the competitive
ratio can be proved using a relation between the
cost of an optimal schedule and the amount of
time when at least one machine is idle (See [14]
for details).

This bound is tight for several cases. For the
case where there are release times, no prece-
dence constraints, and processing times (sizes)
are not known upon arrival, Shmoys, Wein, and
Williamson [15] proved a lower bound of 2 � 1

m
.

For the case where there are only precedence
constraints (no release times, and sizes of jobs
are known upon arrival), a lower bound of the
same value appeared in [4]. Note that the case
with clairvoyant scheduling (i.e., sizes of jobs
are known upon arrival), release times, and no
precedence constraints is not settled. For m = 2, it
was shown by Noga and Seiden [11] that the tight
bound is .5 �

p
5/=2 � 1:38198, and the upper

bound is achieved using an algorithm that applies
waiting with idle machines rather than scheduling
a job as soon as possible, as done by LS.

Open Problems

The most challenging open problem is to find the
best possible competitive ratio for this basic on-
line problem of job scheduling. The gap between
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the upper bound and the lower bound is not large,
yet it seems very difficult to find the exact bound.
A possibly easier question would be to find the
best possible competitive ratio for m = 4. A lower
bound of

p
3 � 1:732 has been shown by [12],

and the currently known upper bound is 1.733
by [3]. Thus, it may be the case that this bound
would turn out to be

p
3.
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Problem Definition

The pairwise local alignment problem is con-
cerned with identification of a pair of similar
substrings from two molecular sequences. This
problem has been studied in computer science
for four decades. However, most problem mod-
els were generally not biologically satisfying or
interpretable before 1974. In 1974, Sellers devel-
oped a metric measure of the similarity between
molecular sequences. [9] generalized this metric
to include deletions and insertions of arbitrary
length which represent the minimum number of
mutational events required to convert one se-
quence into another.

Given two sequences S and T , a pairwise
alignment is a way of inserting space characters
‘_’ in S and T to form sequences S 0 and T 0

respectively with the same length. There can be
different alignments of two sequences. The score
of an alignment is measured by a scoring metric
•.x; y/. At each position i where both x and
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y are not spaces, the similarity between S 0Œi �

and T 0Œi � is measured by •.S 0Œi �; T 0Œj �/. Usually,
•.x; y/ is positive when x and y are the same and
negative when x and y are different. For positions
with consecutive space characters, the alignment
scores of the space characters are not considered
independently; this is because inserting or delet-
ing a long region in molecular sequences is more
likely to occur than inserting or deleting several
short regions. Smith and Waterman use an affine
gap penalty to model the similarity at positions
with space characters. They define a consecutive
substring with spaces in S 0 or T 0 as a gap. For
each length l gap, they give a linear penalty
Wk D Ws C l �Wp for some predefined positive
constants Ws and Wp . The score of an align-
ment is the sum of the score at each position i

minus the penalties of each gap. For example,
the alignment score of the following alignment
is •.G; G/ C •.C; C / C •.C; C / C •.U; C / C

•.G; G/ � .Ws C 2 �Wp/.

S W GCCAU UG

T W GCC __CG

The optimal global alignment of sequences S and
T is the alignment of S and T with the maximum
alignment score.

Sometimes we want to know whether
sequences S and T contain similar substrings
instead of whether S and T are similar. In this
case, they solve the pairwise local alignment
problem, which wants to find a substring U in S

and another substring V in T such that the global
alignment score of U and V is maximized.

Pairwise Local Alignment Problem
Input: Two sequences SŒ1 : : : n� and T Œ1 : : : m�.

Output: A substring U in S and a substring V in
T such that the optimal global alignment of U

and V is maximized.

O(mn) time and O(mn) space algorithm is
based on dynamic programming.

The pairwise local alignment problem can be
solved in O(mn) time and O(mn) space by dy-
namic programming. The algorithm needs to fill
in the 4 m�n tables H , HN , HS , and HT , where
each entry takes constant time. The individual
meanings of these 4 tables are as follows.

H.i; j /: maximum score of the global align-
ment of U and V over all suffixes U in
SŒ1 : : : i � and all suffixes V in T Œ1 : : : j �.

HN .i; j /: maximum score of the global align-
ment of U and V over all suffixes U in
SŒ1 : : : i � and all suffixes V in T Œ1 : : : j �, with
the restriction that SŒi � and T Œj � must be
aligned.

HS .i; j /: maximum score of the global align-
ment of U and V over all suffixes U in
SŒ1 : : : i � and all suffixes V in T Œ1 : : : j �, with
SŒj � aligned with a space character.

HT .i; j /: maximum score of the global align-
ment of U and V over all suffixes U in
SŒ1 : : : i � and all suffixes V in T Œ1 : : : j �, with
T Œj � aligned with a space character.

The optimal local alignment score of S and T

will be max{H.i; j /}, and the local alignment of
S and T can be found by tracking back table H .

In the tables, each entry can be filled in by the
following recursion in constant time.

Basic Step

H.i; 0/ D H.0; j / D 0; 0 6 i 6 n; 0 6 i 6 m

HN .i; 0/ D HN .0; j / D �1; 0 6 i 6 n; 0 6 i 6 m

Hs.i; 0/ D HT .0; j / D Ws CWp; 0 6 i 6 n; 0 6 i 6 m

Hs.0; j / D HT .i; 0/ D �1; 0 6 i 6 n; 0 6 i 6 m
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Recursion Step

H.i; j /DmaxfHN .i; j/; Hs.i; j/; HT .i; j /; 0g;

1 6 i 6 n; 1 6 i 6 m

HN .i; j / D H.i � 1; j � 1/C ı.SŒi �; T Œj �/;

1 6 i 6 n; 1 6 i 6 m

Hs.i; j / D maxfH.i � 1; j / � .Ws CWp/;

HS .i � 1; j / �Wpg;

1 6 i 6 n; 1 6 i 6 m

HT .i; j / D maxfH.i; j � 1/ � .Ws CWp/;

HT .i; j � 1/ �Wpg;

1 6 i 6 n; 1 6 i 6 m

Applications

Local alignment with affine gap penalty can
be used for protein classification, phylogenetic
footprinting, and identification of functional
sequence elements.

URL to Code

http://bioweb.pasteur.fr/seqanal/interfaces/water.
html
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Problem Definition

This work of Miller and Myers [11] deals with the
problem of pairwise sequence alignment in which
the distance measure is based on the gap penalty
model. They proposed an efficient algorithm to
solve the problem when the gap penalty is a
concave function of the gap length.

Let X and Y be two strings (sequences) of
alphabet †. The pairwise alignment A of X and
Y maps X , Y into strings X 0, Y 0 that may contain
spaces (not in †) such that (1) jX 0j D jY 0j D `;
(2) removing spaces from X 0 and Y 0 returns X

and Y , respectively; and (3) for any 1 � i � `,
X 0Œi � and Y 0Œi � cannot be both spaces where X 0Œi �

denotes the i th character in X 0.
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To evaluate the quality of an alignment, there
are many different measures proposed (e.g., edit
distance, scoring matrix [12]). In this work, they
consider the gap penalty model.

A gap in an alignment A of X and Y is a
maximal substring of contiguous spaces in either
X 0 or Y 0. There are gaps and aligned characters
(both X 0Œi � and Y 0Œi � are not spaces) in an align-
ment. The score for a pair of aligned characters is
based on a distance function ı.a; b/ where a; b 2

†. Usually ı is a metric, but this assumption is
not required in this work. The penalty of a gap
of length k is based on a nonnegative function
W.k/. The score of an alignment is the sum of
the scores of all aligned characters and gaps. An
alignment is optimal if its score is the minimum
possible.

The penalty function W.k/ is concave if
4W.k/ � 4W.k C 1/ for all k �1, where
4W.k/ D W.k C 1/ �W.k/.

The penalty function W.k/ is affine if W.k/ D

aC bk where aandb are constants. Affine func-
tion is a special case of concave function. The
problem for affine gap penalty has been consid-
ered in [1, 7].

The penalty function W.k/ is a P-piece affine
curve if the domain of W can be partitioned into
P intervals, .1 D 1; �1/; .2; �2/; : : : ; .p; �p D

1/, where i D �i�1 C 1 for all 1 < i � p,
such that for each interval, the values of W

follow an affine function. More precisely, for
any k 2 .i ; �i /; W.k/ D ai C bi k for some
constants ai ; bi .

Problem

Input: Two strings X and Y , the scoring func-
tion ı, and the gap penalty function W.k/.

Output: An optimal alignment of X and Y .

Key Results

Theorem 1 If W.k/ is concave, they provide an
algorithm for computing an optimal alignment
that runs in O.n2 log n/ time where n is the
length of each string and uses O.n/ expected
space.

Corollary 1 If W.k/ is an affine function, the
same algorithm runs in O.n2/ time.

Theorem 2 For some special types of gap
penalty functions, the algorithm can be modified
to run faster.

• If W.k/ is a P -piece affine curve, the algo-
rithm can be modified to run in O.n2 log P /

time.
• For logarithmic gap penalty function, W.k/ D

a C b log k, the algorithm can be modified to
run in O.n2/ time.

• If W.k/ is a concave function when k >

K, the algorithm can be modified to run in
O.K C n2 log n/ time.

Applications

Pairwise sequence alignment is a fundamental
problem in computational biology. Sequence
similarity usually implies functional and
structural similarity. So, pairwise alignment can
be used to check whether two given sequences
have similar functions or structures and to predict
functions of newly identified DNA sequence. One
can refer to Gusfield’s book for some examples
on the importance of sequence alignment (pp.
212–214 of [8]).

The alignment problem can be further divided
into the global alignment problem and the local
alignment problem. The problem defined here is
the global alignment problem in which the whole
input strings are required to align with each other.
On the other hand, for local alignment, the main
interest lies in identifying a substring from each
of the input strings such that the alignment score
of the two substrings is the minimum among all
possible substrings. Local alignment is useful in
aligning sequences that are not similar, but con-
tain a region that are highly conserved (similar).
Usually this region is a functional part (domain)
of the sequences. Local alignment is particu-
larly useful in comparing proteins. Proteins in
the same family from different species usually
have some functional domains that are highly
conserved while the other parts are not similar
at all. Examples are the homeobox genes [4] for
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which the protein sequences are quite different
in each species except the functional domain
homeodomain.

Conceptually, the alignment score is used to
capture the evolutionary distance between the
two given sequences. Since a gap of more than
one space can be created by a single mutational
event, considering a gap of length k as a unit
instead of k different point mutation may be more
appropriate in some cases. However, which gap
penalty function should be used is a difficult
question to answer and sometimes depends on
the actual applications. Most applications, such
as BLAST, uses the affine gap penalty which is
still the dominate model in practice. On the other
hand, Benner et al. [2] and Gu and Li [9] sug-
gested to use the logarithmic gap penalty in some
cases. Whether using a concave gap penalty func-
tion in general is meaningful is still an open issue.

Open Problem

Note that the results of this paper have been
independently obtained by Galil and Giancarlo
[6], and for affine gap penalty, Gotoh [7] also
gave an O.n2/ algorithm for solving the align-
ment problem. In [5], Eppstein gave a faster
algorithm that runs in O.n2/ time for solving the
same sequence alignment problem with concave
gap penalty function. Whether a subquadratic
algorithm exists for solving this problem remains
open. As a remark, subquadratic algorithms do
exist for solving the sequence alignment problem
if the measure is not based on the gap penalty

model, but is computed as
P̀
iD1

ı.X10Œi �; Y 0Œi �/

based only on a scoring function ı.a; b/ where
a; b 2 † [ f_g where ‘_’ represents the space
[3, 10].

Experimental Results

They have performed some experiments to com-
pare their algorithm with Waterman’s O.n3/ al-
gorithm [13] on a number of different concave
gap penalty functions. Artificial sequences are
generated for the experiments. Results from their

experiments lead to their conjectures that Water-
man’s method runs in O.n3/ time when the two
given strings are very similar or the score for
mismatch characters is small and their algorithm
runs in O.n2/ time if the range of the function
W.k/ is not functionally dependent on n.
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Problem Definition

A local algorithm is a distributed algorithm on
a network with a running time which is inde-
pendent or almost independent of the network’s
size or diameter. Usually, a distributed algorithm
is called local if its time complexity is at most
polylogarithmic in the size n of the network.
Because the time needed to send information
from one node of a network to another is at
least proportional to the distance between the two
nodes, in such an algorithm, each node’s com-
putation is based on information from nodes in
a close vicinity only. Although all computations
are based on local information, the network as
a whole typically still has to achieve a global
goal. Having local algorithms is inevitable to ob-
tain time-efficient distributed protocols for large-
scale and dynamic networks such as peer-to-peer
networks or wireless ad hoc and sensor networks.

In [2, 6, 7], Kuhn, Moscibroda, and Watten-
hofer describe upper and lower bounds on the
possible trade-off between locality (time com-
plexity) of distributed algorithms and the quality
(approximation ratio) of the achievable solution
for an important class of problems called cover-

ing and packing problems. Interesting covering
and packing problems in the context of net-
works include minimum dominating set, mini-
mum vertex cover, maximum matching, as well
as certain flow maximization problems. All the
results given in [2, 6, 7] hold for general network
topologies. Interestingly, it is shown by Kuhn,
Moscibroda, Nieberg, and Wattenhofer in [3, 4, 5]
that covering and packing problems can be solved
much more efficiently when assuming that the
network topology has special properties which
seem realistic for wireless networks.

Distributed Computation Model
In [2, 3, 4, 5, 6, 7], the network is modeled
as an undirected and except for [5] unweighted
graph G D .V; E/. Two nodes u; v 2 V of the
network are connected by an edge .u; v/ 2 E

whenever there is a direct bidirectional com-
munication channel connecting u and v. In the
following, the number of nodes and the maximal
degree of G are denoted by n D jV j and by �.

For simplicity, communication is assumed to
be synchronous. That is, all nodes start an al-
gorithm simultaneously and time is divided into
rounds. In each round, every node can send an
arbitrary message to each of its neighbors and
perform some local computation based on the
information collected in previous rounds. The
time complexity of a synchronous distributed al-
gorithm is the number of rounds until all nodes
terminate.

Local distributed algorithms in the described
synchronous model have first been considered
in [8] and [9]. As an introduction to the above
and similar distributed computation models, it is
also recommended to read [11].

Distributed Covering and Packing
Problems
A fractional covering problem (P) and its dual
fractional packing problem (D), are linear pro-
grams (LPs) of the canonical forms

min cTx max bTy

s:t: A � x � b .P/ s:t: AT � y � c .D/

x � 0 y � 0
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where all aij, bi, and ci are non-negative. In
a distributed context, finding a small (weighted)
dominating set or a small (weighted) vertex cover
of the network graph are the most important
covering problems. A dominating set of a graph G
is a subset S of its nodes such that all nodes of G
either are in S or have a neighbor in S. The domi-
nating set problem can be formulated as covering
integer LP by setting A to be the adjacency
matrix with 1s in the diagonal, by setting b to be
a vector with all 1s and if c is the weight vector.
A vertex cover is a subset of the nodes such that
all edges are covered. Packing problems occur in
a broad range of resource allocation problems.
As an example, in [1] and [10], the problem of
assigning flows to a given fixed set of paths is
described. Another common packing problem is
(weighted) maximum matching, the problem of
finding a largest possible set of pairwise non-
adjacent edges.

While computing a dominating set, vertex
cover, or matching of the network graph are
inherently distributed tasks, general covering
and packing LPs have no immediate distributed
meaning. To obtain a distributed version of these
LPs, two dual LPs (P) and (D) are mapped to
a bipartite network as follows. For each primal
variable xi and for each dual variable yj, there
are nodes vi

p and vj
d, respectively. There is an

edge between two nodes vi
p and vj

d whenever
aj i 6D 0, i.e., there is an edge if the ith variable
of an LP occurs in its jth inequality.

In most real-world examples of distributed
covering and packing problems, the network
graph is of course not equal to the described
bipartite graph. However, it is usually straight-
forward to simulate an algorithm which is
designed for the above bipartite network on the
actual network graph without affecting time and
message complexities.

Bounded Independence Graphs
In [3, 4, 5], local approximation algorithms for
covering and packing problems for graphs oc-
curing in the context of wireless ad hoc and
sensor networks are studied. Because of scale,
dynamism and the scarcity of resources, these

networks are a particular interesting area to apply
local distributed algorithms.

Wireless networks are often modeled as unit
disk graphs (UDGs): Nodes are assumed to be
in a two-dimensional Euclidean plane and two
nodes are connected by an edge iff their dis-
tance is at most 1. This certainly captures the
inherent geometric nature of wireless networks.
However, unit disk graphs seem much too restric-
tive to accurately model real wireless networks.
In [3, 4, 5], Kuhn et. al. therefore consider two
generalizations of the unit disk graph model,
bounded independent graphs (BIGs) and unit ball
graphs (UBGs). A BIG is a graph where all local
independent sets are of bounded size. In particu-
lar, it is assumed that there is a function I(r) which
upper bounds the size of the largest independent
set of every r-neighborhood in the graph. Note
that the value of I(r) is independent of n, the
size of the network. If I(r) is a polynomial in r,
a BIG is said to be polynomially bounded. UDGs
are BIGs with I.r/ 2 O.r2/. UBGs are a natural
generalization of UDGs. Given some underlying
metric space (V, d) two nodes u; v 2 V are con-
nected by an edge iff d.u; v/ � 1. If the metric
space (V, d) has constant doubling dimension,
(The doubling dimension of a metric space is
the logarithm of the maximal number of balls
needed to cover a ball Br(x) in the metric space
with balls Br=2.y/ of half the radius), a UBG is
a polynomially bounded BIG.

Key Results

The first algorithms to solve general distributed
covering and packing LPs appear in [1, 10].
In [1], it is shown that it is possible to
find a solution which is within a factor of
1C " of the optimum in O.log3.�n/="3/

rounds where ¡ is the ratio between the
largest and the smallest non-zero coefficient
of the LPs. The result of [1] is improved and
generalized in [6, 7] where the following result is
proven:

Theorem 1 In k rounds, (P) and (D) can be
approximated by a factor of .��/O.1=

p
k/
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using messages of size at most O.log.��//.
An .1C "/-approximation can be found in time
O.log2.��/="4/.

The algorithm underlying Theorem 1 needs only
small messages of size O.log.��// and ex-
tremely simple and efficient local computations.
If larger messages and more complicated (but
still polynomial) local computations are allowed,
it is possible to improve the result of Theorem 1:

Theorem 2 In k rounds, LPs of the form
(P) or (D) can be approximated by a factor
of O.nO.1=k//. This implies that a constant
approximation can be found in time O.log n/.

Theorems 1 and 2 only give bounds on the quality
of distributed solutions of covering and packing
LPs. However, many of the practically relevant
problems are integer versions of covering and
packing LPs. Combined with simple randomized
rounding schemes, the following upper bounds
for dominating set, vertex cover, and matching
are proven in [6, 7]:

Theorem 3 Let � be the maximal degree of
the given network graph. In k rounds, minimum
dominating set can be approximated by a factor

of O.�O.1=
p

k/ � log �/ in expectation by using
messages of size O.�/. Without bound on the
message size, an expected approximation ratio
of O.nO.1=k/ � log �/ can be achieved. Minimum
vertex cover and maximum matching can both be
approximated by a factor of O.�1=k/ in k rounds.

In [2, 7], it is shown that the upper bounds
on the trade-offs between time complexity and
approximation ratio given by Theorems 1–3 are
almost optimal:

Theorem 4 In k rounds, it is not possi-
ble to approximate minimum vertex cover
better than by factors of ˝.�1=k=k/ and
˝.n˝.1=k2/=k/. This implies time lower bounds
of ˝.log �= log log �/ and ˝.

p
log n= log log n/

for constant or even poly-logarithmic approxima-
tion ratios. The same bounds hold for minimum
dominating set, for maximum matching, as well
as for the underlying LPs.

While Theorem 4 shows that the results given by
Theorems 1–3 are close to optimal for worst-case
network topologies, the problems might be much
simpler if restricted to networks which actually
occur in reality. In fact, it is shown in [3, 4, 5]
that the above results can indeed be improved
if the network graph is assumed to be a BIG or
a UBG with constant doubling dimension. In [5],
the following result for UBGs is proven:

Theorem 5 Assume that the network graph
G D .V; E/ is a UBG with underlying metric
(V, d). If (V, d) has constant doubling dimension
and if all nodes know the distances to their
neighbors in G up to a constant factor, it is
possible to find constant approximations for
minimum dominating set, minimum vertex cover,
maximum matching, as well as for general LPs of
the forms (P) and (D) in O.log� n/ rounds. (The
log-star function log� n is an extremely slowly
increasing function which gives the number of
times the logarithm has to be taken to obtain
a number smaller than 1.)

While the algorithms underlying the results
of Theorems 1 and 2 for solving covering
and packing LPs are deterministic or straight-
forward to be derandomized, all known efficient
algorithms to solve minimum dominating set
and more complicated integer covering and
packing problems are randomized. Whether
there are good deterministic local algorithms for
dominating set and related problems is a long-
standing open question. In [3], it is shown that
if the network is a BIG, efficient deterministic
distributed algorithms exist:

Theorem 6 On a BIG it is possible to find con-
stant approximations for minimum dominating
set, minimum vertex cover, maximum matching,
as well as for LPs of the forms (P) and (D)
deterministically in O.log � � log� n/ rounds.
In [4], it is shown that on polynomially bounded
BIGs, one can even go one step further and
efficiently find an arbitrarily good approximation
by a distributed algorithm:

Theorem 7 On a polynomially bounded BIG,
there is a local approximation scheme which
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computes a .1C "/-approximation for minimum
dominating set in time O.log � log�.n/=" C

1="O.1//. If the network graph is a UBG with
constant doubling dimension and nodes know
the distances to their neighbors, a .1C "/-
approximation can be computed in O.log�.n/="C

1="O.1// rounds.

Applications

The most important application environments for
local algorithms are large-scale decentralized
systems such as wireless ad hoc and sensor
networks or peer-to-peer networks. On such
networks, only local algorithms lead to scalable
systems. Local algorithms are particularly
well-suited if the network is dynamic and
computations have to be repeated frequently.

A particular application of the minimum dom-
inating set problem is the task of clustering the
nodes of wireless ad hoc or sensor networks. As-
signing each node to an adjacent node in a dom-
inating set induces a simple clustering of the
nodes. If the nodes of the dominating set (i.e., the
cluster centers) are connected with each other by
using additional nodes, the resulting structure can
be used as a backbone for routing.

Open Problems

There are a number of open problems related
to the distributed approximation of covering and
packing problems in particular and to distributed
approximation algorithms in general. The most
obvious open problem certainly is to close the
gaps between the upper bounds of Theorems 1,
2, and 3 and the lower bounds of Theorem 4.
It would also be interesting to see how well
other optimization problems can be approximated
in a distributed manner. In particular, the dis-
tributed complexity of more general classes of
linear programs remains completely open. A very
intriguing unsolved problem is to determine to
what extent randomization is needed to obtain
time-efficient distributed algorithms. Currently,
the best determinic algorithms for finding a dom-

inating set of reasonable size and for many other
problems take time 2O.

p
log n/ whereas the time

complexity of the best randomized algorithms
usually is at most polylogarithmic in the number
of nodes.
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Problem Definition

In many ways, familiar distributed computing
communication models such as the message
passing model do not describe the harsh
conditions faced in wireless ad hoc and sensor
networks closely enough. Ad hoc and sensor net-
works are multi-hop radio networks and hence,
messages being transmitted may interfere with
concurrent transmissions leading to collisions
and packet losses. Furthermore, the fact that all
nodes share the same wireless communication
medium leads to an inherent broadcast nature of
communication. A message sent by a node can
be received by all nodes in its transmission range.
These aspects of communication are modeled by
the radio network model, e.g., [2].

Definition 1 (Radio Network Model) In the
radio network model, the wireless network is
modeled as a graph G D .V; E/. In every time-
slot, a node u 2 V can either send or not send
a message. A node v, .u; v/ 2 E, receives the
message if and only exactly one of its neighbors
has sent a message in this time-slot.

While communication primitives such as
broadcast, wake-up, or gossiping, have been

widely studied in the literature on radio networks
(e.g., [1, 2, 8]), less is known about the
computation of local network coordination
structures such as clusterings or colorings. The
most basic notion of a clustering in wireless
networks boils down to the graph-theoretic notion
of a dominating set.

Definition 2 (Minimum Dominating Set
(MDS)) Given a graph G D .V; E/. A domi-
nating set is a subset S � V such that every node
is either in S or has at least one neighbor in S.
The minimum dominating set problem asks for
a dominating set S of minimum cardinality.

A dominating set S � V in which no two
neighboring nodes are in S is a maximal inde-
pendent set (MIS). The distributed complexity of
computing a MIS in the message passing model
has been of fundamental interest to the distributed
computing community for over two decades
(e.g., [11–13]), but much less is known about the
problem’s complexity in radio network models.

Definition 3 (Maximal Independent Set (MIS))
Given a graph G D .V; E/. An independent set
is a subset of pair-wise non-adjacent nodes in G.
A maximal independent set in G is an indepen-
dent set S � V such that for every node u … S ,
there is a node v 2 � .u/ in S.

Another important primitive in wireless networks
is the vertex coloring problem, because associ-
ating different colors with different time slots in
a time-division multiple access (TDMA) scheme;
a correct coloring corresponds to a medium ac-
cess control (MAC) layer without direct interfer-
ence, that is, no two neighboring nodes send at
the same time.

Definition 4 (Minimum Vertex Coloring)
Given a graph G D .V; E/. A correct vertex
coloring for G is an assignment of a color c(v) to
each node v 2 V , such that c.u/ ¤ c.v/ any two
adjacent nodes .u; v/ 2 E. A minimum vertex
coloring is a correct coloring that minimizes the
number of used colors.
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In order to capture the especially harsh
characteristics of wireless multi-hop networks
immediately after their deployment, the
unstructured radio network model makes
additional assumptions. In particular, a new
notion of asynchronous wake-up is considered,
because, in a wireless, multi-hop environment,
it is realistic to assume that some nodes
join the network (e.g., become deployed,
or switched on) later than others. Notice
that this is different from the notion of
asynchronous wake-up defined and studied
in [8] and subsequent work, in which nodes
are assumed to be “woken up” by incoming
messages.

Definition 5 (Unstructured Radio Network
Model) In the unstructured radio network
model, the wireless network is modeled as a unit
disk graph (UDG) G D .V; E/. In every time-
slot, a node u 2 V can either send or not send
a message. A node v, .u; v/ 2 E, receives the
message if and only exactly one of its neighbors
has sent a message in this time-slot. Additionally,
the following assumptions are made:

• Asynchronous wake-up: New nodes can wake
up/join in asynchronously at any time. Before
waking-up, nodes do neither receive nor send
any messages.

• No global clock: Nodes only have access to
a local clock that starts increasing after wake-
up.

• No collision detection: Nodes cannot distin-
guish between the event of a collision and
no message being sent. Moreover, a sending
node does not know how many (if any at
all!) neighbors have received its transmission
correctly.

• Minimal global knowledge: At the time of
their wake-up, nodes have no information
about their neighbors in the network and they
do not whether some neighbors are already
awake, executing the algorithm. However,

nodes know an upper bound for the maximum
number of nodes n D jV j.

The measure that captures the efficiency of an
algorithm defined in the unstructured radio net-
work model is its time-complexity. Since every
node can wake up at a different time, the time-
complexity of an algorithm is defined as the
maximum number of time-slots between a node’s
wake-up and its final, irrevocable decision.

Definition 6 (Time Complexity) The running
time Tv of a node v 2 V is defined as the number
of time slots between v’s waking up and the
time v makes an irrevocable final decision on the
outcome of its protocol (e.g., whether or not it
joins the dominating set in a clustering algorithm,
or which color to take in a coloring algorithm,
etc.). The time complexity T .Q/ of algorithm Q
is defined as the maximum running time over all
nodes in the network, i.e., T .Q/ WD maxv2V Tv .

Key Results

Naturally, algorithms for such uninitialized,
chaotic networks have a different flavor
compared to “traditional” algorithms that operate
on a given network graph that is static and well-
known to all nodes. Hence, the algorithmic
difficulty of the following algorithms partly
stems from the fact that since nodes wake
up asynchronously and do not have access
to a global clock, the different phases of the
algorithm may be arbitrarily intertwined or
shifted in time. Hence, while some nodes may
already be in an advanced stage of the algorithm,
there may be nodes that have either just woken
up, or that are still in early stage. It was proven
in [9] that even in single-hop networks (G is the
complete graph), no efficient algorithms exist if
nodes have no knowledge on n.

Theorem 1 If nodes have no knowledge of n,
every (possibly randomized) algorithm requires
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up to ˝.n= log n/ time slots before at least one
node can send a message in single-hop networks.

In single-hop networks, and if n is globally
known, [8] presented a randomized algorithm
that selects a unique leader in time O.n log n/,
with high probability. This result has subse-
quently been improved to O.log2n/ by Jurdziński
and Stachowiak [9]. The generalized wake-up
problem in multi-hop radio network was first
studied in [4].

The complexity of local network structures
such as clusterings or colorings in unstructured
multi-hop radio networks was first studied
in [10]: A good approximation to the minimum
dominating set problem can be computed in
polylogarithmic time.

Theorem 2 In the unstructured radio network
model, an expected O(1)-approximation to the
dominating set problem can be computed in ex-
pected time O.log2n/. That is, every node de-
cides whether to join the dominating set within
O.log2n/ time slots after its wake-up.

In a subsequent paper [18], it has been shown that
the running time of O.log2n/ is sufficient even
for computing the more sophisticated MIS struc-
ture. This result is asymptotically optimal be-
cause – improving on a previously known bound
of ˝.log2n= log log n/ [9] –, a corresponding
lower bound of ˝.log2n/ has been proven in [6].

Theorem 3 With high probability, a maximal in-
dependent set (MIS) can be computed in expected
time O.log2n/ in the unstructured radio network
model. This is asymptotically optimal.

It is interesting to compare this achievable upper
bound on the harsh unstructured radio network
model with the best known time lower bounds in
message passing models: ˝.log�n/ in unit disk
graphs [12] and ˝.

p
log n= log log n/ in general

graphs [11]. Also, a time bound of O.log2n/ was
also proven in [7] in a radio network model with-
out asynchronous wake-up and in which nodes
have a-priori knowledge about their neighbor-
hood.

Finally, it is also possible to efficiently color
the nodes of a network as shown in [17], and sub-
sequently improved and generalized in Chap. 12
of [15].

Theorem 4 In the unstructured radio network
model, a correct coloring with at most O.�/

colors can be computed in time O.� log n/ with
high probability.

Similar bounds for a model with collision detec-
tion mechanisms are proven in [3].

Applications

In wireless ad hoc and sensor networks, local
network coordination structures find important
applications. In particular, clusterings and color-
ings can help in facilitating the communication
between adjacent nodes (MAC layer protocols)
and between distant nodes (routing protocols), or
to improve the energy efficiency of the network.

The following mentions two specific exam-
ples of applications: Based on the MIS algo-
rithms of Theorem 3, a protocol is presented
in [5], which efficiently constructs a spanner,
i.e., a more sophisticated initial infrastructure that
helps in structuring wireless multi-hop network.
In [16], the same MIS algorithm is used as an in-
gredient for a protocol that minimizes the energy
consumption of wireless sensor nodes during the
deployment phase, a problem that has been first
studied in [14].
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Problem Definition

Consider some massive dataset represented as a
function f W D 7! R, where D is discrete and
R is an arbitrary range. This dataset could be as
varied as an array of numbers, a graph, a matrix,
or a high-dimensional function. Datasets are of-
ten useful because they possess some property of
interest. An array might be sorted, a graph might
be connected, a matrix might be orthogonal, or a
function might be convex. These properties are
critical to the use of the dataset. Yet, due to
unavoidable errors (say, in storing the dataset),
these properties might not hold any longer. For
example, a sorted array could become unsorted
because of roundoff errors.
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Can we find a function g W D 7! R that
satisfies the property and is “sufficiently close” to
f ? Let us formalize this question. Let P denote
a property, which we define as a subset of func-
tions. We define a distance between functions,
dist.f; g/ D jfxjf .x/ ¤ g.x/gj=jDj. In words,
this is the fraction of domain points where f

and g differ (the relative Hamming distance).
This definition naturally extends to properties:
dist.f;P/ D minh2P dist.f; h/. This is the min-
imum amount of change f must undergo to have
property P . Our aim is to construct g 2 P
such that dist.f; g/ is “small.” The latter can
be quantified by comparing with the baseline,
dist.f;P/.

The offline reconstruction problem involves
explicitly constructing g from f . But this is
prohibitively expensive if f is a large dataset.
Instead, we wish to locally construct g, meaning
we want to quickly compute g.x/ (for x 2 D)
without constructing g completely.

Local filters [13]: A local filter for property P
is an algorithm A satisfying the following con-
ditions. The filter has oracle access to function
f W D 7! R, meaning that it can access f .x/ for
any x 2 D. Each such access is called a lookup.
The filter takes as input an auxiliary random seed
� and x 2 D. For fixed f; �, A runs determinis-
tically on input x to produce an output Af;
.x/.
Note that Af;
 specifies a function on domain D,
which will be the desired function g.

1. For each f and �, Af;
 always satisfies P .
2. For each f , with high probability over �, the

function Af;
 is suitably close to f .
3. For each x, Af;
.x/ can be computed with

very few lookups.
4. The size of the random seed � should be much

smaller than D.

Let g be Af;
. Condition 2 has been
formalized in at least two different ways. The
original definition demanded that dist.f; g/ �

c � dist.f;P/, where c is a fixed constant [13].
Other results only enforce Condition 2 when
f 2 P [3, 9]. One could imagine desiring
jdist.f; g/� dist.f;P/j < ı, for input parameter

ı. Conditions 3 and 4 typically demand that
the lookup complexity and random seed lengths
are o.jDj/ (sometimes we desire them to be
poly.log jDj/ or even constant).

Connections with Other Models
The notion of reconstruction through filters was
first proposed by Ailon et al. in [1], though
the requirements were less stringent. There is a
sequence x1; x2; : : : of domain points generated
online. Given xi , the filter outputs value g.xi /.
The filter is allowed to store previous outputs
to ensure consistency. Saks and Seshadhri [13]
defined local filters to address two concerns with
this model. First, the storage of all previous
queries and answers is a massive space overhead.
Second, different runs of the filter construct dif-
ferent g’s (because the filter is randomized). So
we cannot instantiate multiple copies of the filter
to handle queries independently and consistently.

Independent of this line of work, Brakerski
defined local restorers [6], which are basically
equivalent to filters with an appropriate setting
of Conditions 1 and 2. A major generalization
of local filters, called local computation algo-
rithms, was subsequently proposed by Rubinfeld
et al. [12]. This model considers computation on
a large input where the output itself is large (e.g.,
one may want a maximal independent set of a
massive graph). The aim is to locally compute the
output, by an algorithm akin to a filter.

Depending on how Property 2 is instantiated,
filters can easily be used for tolerant testing and
distance approximation [11]. If the filter ensures
that dist.f; g/ is comparable to dist.f;P/, then
it suffices to estimate dist.f; g/ for distance ap-
proximation.

A special case of local reconstruction that has
received extensive attention is decoding of error
correcting codes. Here, f is some string, and
P is the set of all valid code words. In local
decoding, there is either one correct output or a
sparse list of possible correct outputs. For general
properties, there may be many (possibly infinitely
many) ways to construct a valid reconstruction
g. This creates challenges for designing filters.
Once the random seed is fixed, all query answers
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provided by the filter must be consistent with a
single function having the property.

Key Results

Over the past decade, there have been numerous
results on local reconstruction, over a variety of
domains.

Monotonicity
The most studied property for local reconstruc-
tion is monotonicity [1, 3, 5, 13]. Consider f W

Œn�d 7! R, where d; n are positive integers and
Œn� D f1; 2; : : : ; ng. The domain is equipped with
the natural coordinate-wise partial order. Namely,
x � y if x ¤ y and all coordinates of x are
less than or equal those of y. A function f is
monotone if: 8x � y, f .x/ � f .y/. When
d D 1, monotone functions are exactly sorted
arrays.

Most initial work on local filters focused ex-
clusively on monotonicity. There exists a filter
of running time .log n/O.d/ with dist.f; g/ �

2O.d/dist.f;P/ [13]. There are nearly matching
lower bounds that are extremely strong; even for
relaxed versions of Condition 2 [3].

Lipschitz Continuity
Let n; d be positive integers and c be a positive
real number. A function f W Œn�d 7! R is c-
Lipschitz if 8x; y, jf .x/ � f .y/j � ckx � yk1.
This is a fundamental property of functions and
appears in functional analysis, statistics, and op-
timization. Recently, Lipschitz continuity was
studied from a property testing perspective by
Jha and Raskhodnikova [9]. Most relevant to this
essay, they gave an application of local Lipschitz
filters for differential privacy. The guarantees on
their filter are analogous to monotonicity (with
a weaker form of Property 2). Awasthi, Jha,
Molinaro, and Raskhodnikova [3] gave matching
lower bounds for these reconstruction problems.

Dense Graph Properties
Dense graphs are commonly studied in property
testing, where the input is given as a binary adja-
cency matrix. Brakerski’s work on local restorers

provides filters for bipartiteness and existence
of large cliques. Large classes of dense graphs
are known to be tolerant testable. These results
have been extended to local filters for hypergraph
properties by Austin and Tao [2]. This work was
developed independently of all the previous work
on filters, and their algorithms are called “repair”
algorithms.

Connectivity Properties of Sparse Graphs
In the sparse graph setting, the input G is an
adjacency list of a bounded-degree graph. Filters
have been given for several properties regarding
connectivity. Campagna, Guo, and Rubinfeld [7]
provide reconstructors for k-connectivity and the
property of having low diameter. Local recon-
structors for the property of expansion were given
by Kale and Seshadhri [10].

Convexity in 2, 3-Dimensions
Chazelle and Seshadhri [8] studied reconstruction
in the geometric setting. They focus on convex
polygon and 3D convex polytope reconstruction.
These results were in the online filter setting
of [1], though their 3D result is a local filter.

Open Problems

For any property tester, one can ask if the as-
sociated property has a local filter. Given the
breadth of this area, we cannot hope to give a
good summary of open problems. Nonetheless,
we make a few suggestions.

The Curse of Dimensionality for
Monotonicity and Lipschitz
Much work has gone into understanding local
filters for monotonicity, but it is not clear how to
remove the exponential dependence on d . Can
we find a reasonable setting for filters where a
poly.d; log n/ lookup complexity is possible?
One possibility is requiring only “additive error”
in Condition 2. For some parameter ı > 0,
we only want jdist.f; g/ � dist.f;P/j �

ı. Is there a filter with lookup complexity
poly.d; log n; 1=ı/? This definition would avoid
previous lower bounds [3].
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Filters for Convexity
Filters for convexity could have a great impact
on optimization. A local filter would implicitly
represent a close enough convex function to an
input non-convex function, which would be ex-
tremely useful for (say) minimization. For this
application, it would be essential to handle high-
dimensional functions. Unfortunately, there are
no known property testers for convexity in this
setting, so designing local filters is a distant goal.

Filters for Properties of Bounded-Degree
Graphs
The large class of minor-closed properties (such
as planarity) is known to be testable for bounded-
degree graphs [4]. Can we get local filters for
these properties? This appears to be a challenging
question, since even approximating the distance
to planarity is a difficult problem. Nonetheless,
the right relaxations of filter conditions could lead
to positive results for filters.
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Problem Definition

Clustering is a form of unsupervised learning,
where the goal is to “learn” useful patterns in
a data set D of size n. It can also be thought of
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as a data compression scheme where a large data
set is represented using a smaller collection of
“representatives”. Such a scheme is characterized
by specifying the following:

1. A distance metric d between items in the data
set. This metric should satisfy the triangle
inequality: d.i; j / � d.j; k/C d.k; i/ for
any three items i; j; k 2 D. In addition,
d.i; j / D d.j; i/ for all i; j 2 S and
d.i; i/ D 0. Intuitively, if the distance between
two items is smaller, they are more similar.
The items are usually points in some high
dimensional Euclidean space Rd . The
commonly used distance metrics include the
Euclidean and Hamming metrics, and the
cosine metric measuring the angle between
the vectors representing the items.

2. The output of the clustering process is
a partitioning of the data. This chapter
deals with center-based clustering. Here,
the output is a smaller set C 
 Rd of
centers which best represents the input data
set S 
 Rd . It is typically the case that
jCj  jDj. Each item j 2 D is mapped to or
approximated by the the closest center i 2 C,
implying d.i; j / � d.i 0; j / for all i 0 2 C.
Let � W D! C denote this mapping. This is
intuitive since closer-by (similar) items will
be mapped to the same center.

3. A measure of the quality of the clustering,
which depends on the desired output. There
are several commonly used measures for the
quality of clustering. In each of the cluster-
ing measures described below, the goal is to
choose C such that jCj D k and the objective
function f .C/ is minimized.

k-center: f .C/ D maxj 2D d.j; �.j //.
k-median: f .C/ D

P
j 2D d.j; �.j //.

k-means: f .C/ D
P

j 2D d.j; �.j //2.

All the objectives described above are NP-
HARD to optimize in general metric spaces d,
leading to the study of heuristic and approxi-
mation algorithms. In the rest of this chapter,
the focus is on the k-median objective. The ap-
proximation algorithms for k-median clustering

are designed for d being a general possibly non-
Euclidean metric space. In addition, a collec-
tion F of possible center locations is given as
input, and the set of centers C is restricted to
C � F . From the perspective of approximation,
the restriction of the centers to a finite set F
is not too restrictive – for instance, the optimal
solution which is restricted to F D D has ob-
jective value at most a factor 2 of the optimal
solution which is allowed arbitrary F . Denote
jDj D n, and jF j D m. The running times of the
heuristics designed will be polynomial in m n,
and a parameter " > 0. The metric space d is now
defined over D [F .

A related problem to k-medians is its
Lagrangean relaxation, called FACILITY LOCA-
TION. In this problem, there is a again collection
F of possible center locations. Each location
i 2 F has a location cost ri. The goal is to choose
a collection C � F of centers and construct the
mapping � W S! C from the items to the centers
such that the following function is minimized:

f .C/ D
X

j 2D
d.j; �.j //C

X

i2C
ri :

The facility location problem effectively gets
rid of the hard bound k on the number of cen-
ters in k-medians, and replaces it with the cen-
ter cost term

P
i2C ri in the objective function,

thereby making it a Lagrangean relaxation of the
k-median problem. Note that the costs of centers
can now be non-uniform.

The approximation results for both the k-
median and facility location problems carry
over as is to the weighted case: Each item
j 2 D is allowed to have a non-negative
weight wj. In the objective function f .C/,
the term

P
j 2D d.j; �.j // is replaced withP

j 2D wj � d.j; �.j //. The weighted case is
especially relevant to the FACILITY LOCATION

problem where the item weights signify user
demands for a resource, and the centers denote
locations of the resource. In the remaining
discussion, “items” and “users” are used inter-
changably to denote members of the set D.
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Key Results

The method of choice for solving both the k-
median and FACILITY LOCATION problems are
the class of local search heuristics, which run
in “local improvement” steps. At each step t,
the heuristic maintains a set Ct of centers. For
the k-median problem, this collection satisfies
jCt j D k. A local improvement step first gener-
ates a collection of new solutions EtC1 from Ct .
This is done such that jEtC1j is polynomial in the
input size. For the k-median problem, in addition,
each C 2 EtC1 satisfies jCj D k. The improve-
ment step sets CtC1 D argminC2EtC1

f .C/. For
a pre-specified parameter " > 0, the improve-
ment iterations stop at the first step T where
f .CT / � .1 � "/f .CT �1/.

The key design issue is the specification of the
start set C0, and the construction ofEtC1 from Ct .
The key analysis issues are bounding the number
of steps T till termination, and the quality of the
final solution f .CT / against the optimal solution
f .C�/. The ratio .f .CT //=.f .C�// is termed the
“locality gap” of the heuristic.

Since each improvement step reduces the
value of the solution by at least a factor of
.1 � "/, the running time in terms of number
of improvement steps is given by the following
expression (here D is the ratio of the largest
to smallest distance in the metric space over
D [F).

T� log1=.1�"/

�
f .C0/

f .CT /

�
�

log
�

f .C0/
f .CT /

�

"
�

log.nD/

"

which is polynomial in the input size. Each im-
provement step needs computation of f .C/ for
C 2 Et . This is polynomial in the input size since
jEt j is assumed to be polynomial.

k-Medians
The first local search heuristic with provable
performance guarantees is presented in the work
of Arya et al. [1]. The is the natural p-swap
heuristic: Given the current center set Ct of size
k, the set EtC1 is defined by:

EtC1 D f.Ct nA/ [ B ;

where A�Ct ;B � F n Ct ; jAjDjBj�pg:

The above simply means swap at most p centers
from Ct with the same number of centers from
F n Ct . Recall that jDj D n and jF j D m.
Clearly, jEtC1j � .k.m � k//p � .km/p . The
start set C0 is chosen arbitrarily. The value p
is a parameter which affects the running time
and the approximation ratio. It is chosen to be
a constant, so that jEt j is polynomial in m.

Theorem 1 ([1]) The p-swap heuristic achieves
locality gap .3C 2=p/C " in running time
O.nk.log.nD//=".mk/p/. Furthermore, for
every p there is a k-median instance where
the p-swap heuristic has locality gap exactly
.3C 2=p/.

Setting p D 1=", the above heuristic achieves
a 3C " approximation in running time
QO.n.mk/O.1="//.

Facility Location
For this problem, since there is no longer a con-
straint on the number of centers, the local im-
provement step needs to be suitably modified.
There are two local search heuristics both of
which yield a locality gap of 3C " in polynomial
time.

The “add/delete/swap” heuristic proposed by
Kuehn and Hamburger [10] either adds a center
to Ct , drops a center from Ct , or swaps a center
in Ct with one in F n Ct . The start set C0 is again
arbitrary.

EtC1Df.Ct nA/[B; where A�Ct ;B�Fn Ct ;

jAj D 0; jBj D 1 or jAj D 1; jBj D 0; or

jAj D 1; jBj D 1g

Clearly, jEtC1j D O.m2/, making the running
time polynomial in the input size and 1=".
Korupolu, Plaxton, and Rajaraman [9] show that
this heuristic achieves a locality gap of at most
5C ". Arya et al. [1] strengthen this analysis to
show that this heuristic achieves a locality gap
of 3C ", and that bound this is tight in the sense
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that there are instances where the locality gap is
exactly 3.

The “add one/delete many” heuristic proposed
by Charikar and Guha [2] is slightly more in-
volved. This heuristic adds one facility and drops
all facilities which become irrelevant in the new
solution.

EtC1 D f.Ct [ fig/ n I.i/;

where i 2 F n Ct ; I.i/ � Ctg

The set I(i) is computed as follows: Let W denote
the set of items closer to i than to their assigned
centers in Ct . These items are ignored from the
computation of I(i). For every center s 2 Ct ,
let Us denote all items which are assigned to s. If
fs C

P
j 2UsnW dj d.j; s/ >

P
j 2UsnW dj d.j; i/,

then it is cheaper to remove location s and
reassign the items in Us nW to i. In this case, s
is placed in I(i). Let N denote mC n. Computing
I(i) is therefore a O(N) time greedy procedure,
making the overall running time polynomial.
Charikar and Guha [2] show the following
theorem:

Theorem 2 ([2]) The local search heuristic
which attempts to add a random center
i … Ct and remove set I(i), computes a 3C "

approximation with high probability within
T D O.N log N.log N C 1="// improvement
steps, each with running time O(N).

Capacitated Variants
Local search heuristics are also known for ca-
pacitated variants of the k-median and facility
location problems. In this variant, each possible
location i 2 F can serve at most ui number of
users. In the soft capacitated variant of facility
location, some ri � 0 copies can be opened at
i 2 F so that the facility cost is fi ri and the
number of users served is at most ri ui . The
optimization goal is now to decide the value of
ri for each i 2 F so that the assignment of users
to the centers satisfies the capacity constraints at
each center, and the cost of opening the centers
and assigning the users is minimized. For this

variant, Arya et al. [1] show a local search heuris-
tic with a locality gap of 4C ".

In the version of facility location with hard
capacities, location i 2 F has a hard bound ui on
the number of users that can be assigned here.
If all the capacities ui are equal (uniform case),
Korupolu, Plaxton, and Rajaraman [9] present an
elegant local search heuristic based on solving
a transshipment problem which achieves a 8C "

locality gap. The analysis is improved by Chu-
dak and Williamson [4] to show a locality gap
6C ". The case of non-uniform capacities re-
quires significantly new ideas – Pál, Tardos, and
Wexler [14] present a network flow based local
search heuristic that achieves a locality gap of
9C ". This bound is improved to 8C " by Mah-
dian and Pál [12], who generalize several of the
local search techniques described above in order
to obtain a constant factor approximation for
the variant of facility location where the facility
costs are arbitrary non-decreasing functions of
the demands they serve.

Related Algorithmic Techniques
Both the k-median and facility location prob-
lems have a rich history of approximation re-
sults. Since the study of uncapacitated facility
location was initiated by Cornuejols, Nemhauser,
and Wolsey [5], who presented a natural lin-
ear programming (LP) relaxation for this prob-
lem, several constant-factor approximations have
been designed via several techniques, ranging
from rounding of the LP solution [11, 15], local
search [2, 9], the primal-dual schema [7], and
dual fitting [6]. For the k-median problem, the
first constant factor approximation [3] of 62

3
was

obtained by rounding the natural LP relaxation
via a generalization of the filtering technique
in [11]. This result was subsequently improved
to a 4 approximation by Lagrangean relaxation
and the primal-dual schema [2, 7], and finally to
a .3C "/ approximation via local search [1].

Applications

The facility location problem has been widely
studied in operations research [5, 10], and forms
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a fundamental primitive for several resource lo-
cation problems. The k-medians and k-means
metrics are widely used in clustering, or un-
supervised learning. For clustering applications,
several heuristic improvements to the basic lo-
cal search framework have been proposed: k-
Medioids [8] selects a random input point and
replaces it with one of the existing centers if there
is an improvement; the CLARA [8] implemen-
tation of k-Medioids chooses the centers from
a random sample of the input points to speed up
the computation; the CLARANS [13] heuristic
draws a fresh random sample of feasible centers
before each improvement step to further improve
the efficiency.
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Problem Definition
In the context of distributed network computing,
an important concern is the ability to design
local algorithms, that is, distributed algorithms
in which every node (Each node is a computing
entity, which has the ability to exchange mes-
sages with its neighbors in the network along its
communication links.) of the network can deliver
its result after having consulted only nodes in
its vicinity. The word “vicinity” has a rather
vague interpretation in general. Nevertheless, the
objective is commonly to design algorithms in
which every node outputs after having exchanged
information with nodes at constant distance from
it (i.e., at distance independent of the number
of nodes n in the networks) or at distance at
most polylogarithmic in n, but certainly signifi-
cantly smaller than n or than the diameter of the
network.

The tasks to be solved by distributed algo-
rithms acting in networks can be formalized as
follows. The network itself is modeled by an
undirected connected graph G with node set
V.G/ and edge set E.G/, without loops and
double edges. In the sequel, by graph we are
only referring to this specific type of graphs.
Nodes are labeled by a function ` W V !

f0; 1g� that assigns to every node v its label
`.v/. A pair .G; `/, where G is a graph and
` is a labeling of G, is called configuration,
and a collection L of configurations is called
a distributed language. A typical example of a
distributed language is: Lproperly colored D f.G; `/ W

`.v/ ¤ `.v0/ for all fv; v0g 2 E.G/g.
Unless specified otherwise, we are always as-

suming that the considered languages are decid-
able in the sense of classical (sequential) com-
putability theory. To every distributed language L
can be associated a construction task which con-
sists in computing the appropriate labels for a
given network (Here, we are restricting ourselves
to input-free construction tasks, but the content
of this chapter can be generalized to tasks with
inputs, in which case the labels are input-output
pairs, and, given the inputs, the nodes must pro-
duce the appropriate outputs to fit in the consid-
ered language.):

Problem 1 (Construction Task for L)

INPUT: A graph G (in which nodes haves no
labels);

OUTPUT: A label `.v/ at each node v, such that
.G; `/ 2 L.

For instance, the construction task for
Lproperly colored consists, for each node of a graph
G, to output a color so that any two adjacent
nodes do not output the same color. To every
distributed language L can also be associated a
decision task, which consists in having nodes
deciding whether any given configuration .G; `/

is in L (in this case, every node v is given its
label `.v/ as inputs). This type of tasks finds
applications whenever it is desired to check the
correctness of a solution produced by another
algorithm or, say, by some black box that may
act incorrectly. The decision rule, motivated by
various considerations including termination
detection, is as follows: if .G; `/ 2 L, then
all nodes must accept the configuration, while if
.G; `/ … L, then at least one node must reject
that configuration. In other words:

Problem 2 (Decision Task for L)

INPUT: A configuration .G; `/ (i.e., each node
v 2 V.G/ has a label `.v/);

OUTPUT: A boolean b.v/ at each node v such
that:

.G; `/ 2 L ”
^

v2V.G/

b.v/ D true:

For instance, a decision algorithm for
Lproperly colored consists, for each node v, of a
graph G with input some color `.v/, to accept if
all its neighbors have colors distinct from `.v/,
and to reject otherwise. Finally, the third type of
tasks can be associated to distributed languages,
called verification tasks, which can also be seen
as a nondeterministic variant of the decision
tasks. In the context of verification, in addition
to its label `.v/, every node v 2 V.G/ is also
given a certificate c.v/. This provides G with a
global distributed certificate c W V.G/ ! f0; 1g�
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that is supposed to attest to the fact that the
labels are correct. If this is indeed the case, i.e.,
if .G; `/ 2 L, then all nodes must accept the
instance (provided with the due certificate). Note
that a verification algorithm is allowed to reject
a configuration .G; `/ 2 L in case the certificate
is not appropriate for that configuration since
for every configuration .G; `/ 2 L, one just
asks for the existence of at least one appropriate
certificate. In addition, to prevent the nodes to be
fooled by some certificate on an illegal instance,
it is also required that if .G; `/ … L, then for
every certificate, at least one node must reject
that configuration. In other words:

Problem 3 (Verification Task for L)

INPUT: A configuration .G; `/, and a distributed
certificate c;

OUTPUT: A boolean b.v; c/ at each node v,
which may indeed depend on c, such that:

.G; `/2L ”
_

c02f0;1g�

^

v2V.G/

b.v; c0/D true:

For instance, cycle-freeness cannot be locally
decided, as even cycles and paths cannot be lo-
cally distinguished. However, cycle-freeness can
be locally verified, using certificates on O.log n/

bits, as follows. The certificate of node v in
a cycle-free graph G is its distance in G to
some fixed node v0 2 V.G/. The verification
algorithm essentially checks that every node v

with c.v/ > 0 has a unique neighbor v0 with
c.v0/ D c.v/ � 1 and all its other neighbors w
with c.w/ D c.v/ C 1, while a node v with
c.v/ D 0 checks that all its neighbors w satisfy
c.w/ D 1. If G has a cycle, then no certificates
can pass these tests. As in sequential computabil-
ity theory, the terminology “verification” comes
from the fact that a distributed certificate can be
viewed as a (distributed) proof that the current
configuration is in the language, and the role of
the algorithm is to verify this proof. The ability
to simultaneously construct a labeling ` for G as
well as a proof c certifying the correctness of ` is
a central notion in the design of distributed self-

stabilizing algorithms – in which variables can be
transiently corrupted.

Locality in distributed graph algorithms
is dealing with the design and analysis of
distributed network algorithms solving any of
the above three kinds of tasks.

Computational Model
The study of local algorithms is usually tackled
in the framework of the so-called LOCAL model,
formalized and thoroughly studied in [13]. In this
model, every node v is a Turing machine which is
given an identity, i.e., a nonnegative integer id.v/.
All identities given to the nodes of any given net-
work are pairwise distinct. All nodes execute the
same algorithm. They wake up simultaneously,
and the computation performs in synchronous
rounds, where each round consists in three phases
executed by each node: (1) send a message to
all neighboring nodes in the network, (2) receive
the messages sent by the neighboring nodes in
the network, and (3) perform some individual
computation. The complexity of an algorithm in
the LOCAL model is measured in term of number
of rounds until all nodes terminate. This number
of rounds is actually simply the maximum, taken
over all nodes in the network, of the distance
at which information is propagated from a node
in the network. In fact, an algorithm performing
in t rounds can be rewritten into an algorithm in
which every node, first, collects all data from the
nodes at distance at most t from it in G and,
second, performs some individual computation
on these data.

Observe that the LOCAL model is exclusively
focusing on the locality issue and ignores several
aspects of the computation. In particular, it is
synchronous and fault-free. Also, the model is
oblivious to the amount of individual computa-
tion performed at each node, and it is oblivi-
ous to the amount of data that are transmitted
between neighbors at each round. An impor-
tant consequence of these facts is that lower
bounds derived in this model are very robust, in
the sense that they are not resulting from clock
drifts, crashes, nor from any kind of limitation
on the individual computation or on the volume
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of transmitted data. Instead, lower bounds in the
LOCAL model result solely from the fact that
every node is unaware of what is lying beyond a
certain horizon in the network and must cope with
this uncertainty (Most upper bounds are however
based on algorithms that perform polynomial-
time individual computations at each node and
exchange only a polylogarithmic amount of bits
between nodes.).

Note also that the identities given to the nodes
may impact the result of the computation. In
particular the label ` produced by a construction
algorithm may not only depend on G but also
on the identity assignment id W V.G/ ! N.
The same holds for decision and verification
algorithms, in which the accept/reject decision
at a node may be impacted by its identity (thus,
for an illegal configuration, the nodes that reject
may differ depending on the identity assignment
to the nodes). However, in the case of verifica-
tion, it is desirable that the certificates given to
the nodes do not depend on their identities, but
solely on the current configuration. Indeed, the
certificates should rather be solely depending on
the given configuration with respect to the con-
sidered language and should better not depend
on implementation factors such as, say, the IP
address given to a computer (The theory of proof-
labeling scheme [7] however refers to scenarios
in which it is fully legitimate that certificates may
also depend on the node identities).

Classical Tasks
Many tasks investigated in the framework of
network computing are related to classical graph
problems, including computing proper colorings,
independent sets, matchings, dominating sets,
etc. Optimization problems are however often
weakened. For instance, the coloring problem
considered in the distributed setting is typically
.�C1/-coloring, where � denotes the maximum
node degree of the current network. Similarly,
instead of looking for a minimum dominating set,
or for a maximum independent set, one typically
looks for dominating sets (resp., independent
sets) that are minimal (resp., maximal) for
inclusion. There are at least two reasons for

such relaxations, besides the fact that the relaxed
versions are sequentially solvable in polynomial
time by simple greedy algorithms while the
original versions are NP-hard. First, one can
trivially locally decide whether a solution of the
aforementioned relaxed problems satisfies the
constraints of the relaxed variants, which yield
the question of whether one can also construct
their solutions locally (Instead, problems like
minimum-weight spanning tree construction
cannot be checked locally as the presence
of an edge in the solution may depend of
another edge, arbitrarily far in the network.).
Second, these relaxed problems already involve
one of the most severe difficulties distributed
computing has to cope with, that is, symmetry
breaking.

Key Results

In this section, we say that a distributed algorithm
is local if and only if it performs in a constant
number of rounds in the LOCAL model, and we
are interested in identifying distributed languages
that are locally constructible, locally decidable,
and/or locally verifiable.

Local Algorithms
Naor and Stockmeyer [11] have thoroughly stud-
ied the distributed languages that can be lo-
cally constructed. They established that it is TM-
undecidable whether a distributed language can
be locally constructed, and this holds even if
one restricts the problem to distributed languages
that can be locally decided (On the other hand,
it appears to be not easy to come up with a
nontrivial example of a distributed language that
can be constructed locally. One such nontriv-
ial example is given in [11]: weak coloring,
in which every non-isolated node must have at
least one neighbor colored differently, is locally
constructible for a large class of graphs. This
problem is related to some resource allocation
problem.). The crucial notion of order-invariant
algorithms, defined as algorithms such that the
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output at every node is identical for every two
identity assignments that preserve the relative
ordering of the identities, was also introduced
in [11]. Using Ramsey theory, it is proved that
in networks with constant maximum degree, for
every locally decidable distributed language L
with constant-size labels, if L can be constructed
by a local algorithm, then L can also be con-
structed by a local order-invariant algorithm. This
result has many important consequences. One is
for instance the impossibility to solve .� C 1/-
coloring and maximal independent set (MIS) in
a constant number of rounds. This follows from
the fact that a t -round order-invariant algorithm
cannot solve these problems in rings where nodes
are consecutively labeled from 1 to n, because
adjacent nodes with identities in Œt C 1; n �

t � 1� must produce the same output. Another
important consequence of the restriction to order-
invariant algorithms is the derandomization theo-
rem in [11] stating that, in constant degree graphs,
for every locally decidable distributed language L
with constant-size label, if L can be constructed
by a randomized Monte Carlo local algorithm,
then L can also be constructed by a deterministic
local algorithm.

The distributed languages that can be locally
decided, or verified, have been studied by Fraig-
niaud, Korman, and Peleg in [6]. Several com-
plexity classes are defined and separated, and
complete languages are identified for the local
reduction. It is also shown in [6] that the class
of all distributed languages that can be locally
verified by a randomized Monte Carlo algorithm

with success probability
p

5�1
2

includes all dis-
tributed languages. The impact of randomiza-
tion is however somehow limited, at least for
the class of distributed languages closed under
node deletion. Indeed, [6] establishes that for any
such language L, if L can be locally decided
by a randomized Monte Carlo algorithm with

success probability greater than
p

5�1
2

, then L can
be locally decided by a deterministic algorithm.
Finally, [6] additionally discusses the power of
oracles providing nodes with information about
the current network, like, typically, its number of
nodes.

Almost Local Algorithms
Linial [8] proved that constructing a .� C 1/-
coloring, or, equivalently, a MIS, requires
˝.log� n/ rounds, where log� x is the number
of times one should iterate the log function,
starting from x, for reaching a value less than 1.
The log� function grows quite slowly (e.g.,
log� 10100 D 5), but is not constant. This lower
bound holds even for n-node rings in which
identities are in Œ1; n�, nodes know n, and nodes
share a consistent notion of clockwise direction.
Linial’s lower bound is tight, as a 3-coloring
algorithm performing in O.log� n/ rounds can be
obtained by adapting the algorithm by Cole and
Vishkin [5] originally designed for the PRAM
model to the setting of the lower bound. Also,
Linial [8] describes a O.log� n/-round algorithm
for �2-coloring. Note that the ˝.log� n/-round
lower bound for .� C 1/-coloring extends to
randomized Monte Carlo algorithms [10]. On the
other hand, the best known upper bounds on the
number of rounds to solve .� C 1/-coloring in
arbitrary graphs are 2O.

p
log n/ for deterministic

algorithms [12] and expected O.log n/ for
randomized Las Vegas algorithms [1, 9].

By expressing the complexity of local
algorithms in terms of both the size n of
the network and its max-degree �, one can
distinguish the impact of these two parameters.
For instance, Linial’s O.log� n/-round algorithm
for �2-coloring [8] can be adapted to produce an
O.�2 C log� n/-round algorithm for .� C 1/-
coloring. This bound has been improved by a
series of contributions, culminating to the cur-
rently best known algorithm for .�C1/-coloring
performing in O.� C log� n/ rounds [3]. Also,
there is a randomized .�C1/-coloring algorithms

performing in expected O
�

log �C
p

log n
�

rounds [14]. This algorithm was recently
improved to another algorithm performing in

O
�

log �C eO.
p

log log n/
�

rounds [4].

Additional Results
The reader is invited to consult the monograph [2]
for more inputs on local distributed graph col-
oring algorithms, the survey [15] for a detailed
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survey on local algorithms, as well as the text-
book [13] for the design of distributed graph algo-
rithms in various contexts, including the LOCAL

model.

Open Problems

As far as local construction tasks are concerned,
in a way similar to what happens in sequential
computing, the theory of local distributed
computing lacks lower bounds. (Celebrated
Linial’s lower bound [8] is actually one of the
very few examples of a nontrivial lower bound
for local computation). As a consequence, one
observes large gaps between the numbers of
rounds of the best known lower bounds and
of the best known algorithms. This is typically
the case for .� C 1/-coloring. One of the most
important open problems in this field is in fact to
close these gaps for coloring as well as for many
other graph problems. Similarly, although studied
in depth by, e.g., Naor and Stockmeyer [11],
the power of randomization is still not fully
understood in the context of local computation. In
general, the best known randomized algorithms
are significantly faster than the best known
deterministic algorithms, as witnessed by the
case of .� C 1/-coloring. Nevertheless, it is not
known whether this is just an artifact of a lack of
knowledge or an intrinsic separation between the
two classes of algorithms.

In the context of local decision and verification
tasks, the interplay between the ability to decide
or verify locally and the ability to search (i.e.,
construct) locally is not fully understood. The
completeness notions for local decision in [6]
do not seem to play the same role as the com-
pleteness notions in classical complexity theory.
In particular, in the context of local computing,
one has not yet observed phenomena similar to
self-reduction for NP-complete problems. Yet,
the theory of local decision and verification is
in its infancy, and it may be too early for draw-
ing conclusions about its impact on distributed
local search. An intriguing question is related
to generalizing decision and verification tasks
in a way similar to the polynomial hierarchy in

sequential computing, by adding more alternating
quantifiers in the specification of Problem 3. For
instance, it would then be interesting to figure
out whether each level of the hierarchy has a
“natural” language as representative.
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Problem Definition

Classical error-correcting codes allow one to en-
code a k-bit message x into an n-bit codeword
C.x/; in such a way that x can still be accurately
recovered even if C.x/ gets corrupted in a small
number of coordinates. The traditional way to
recover even a small amount of information con-
tained in x from a corrupted version of C.x/ is
to run a traditional decoder for C , which would
read and process the entire corrupted codeword,
to recover the entire original message x. The
required information or required piece of x can
then be read off. In the current digital age where
huge amounts of data need to be encoded and
decoded, even running in linear time to read
the entire encoded data might be too wasteful,

and the need for sublinear algorithms for error
correction is greater than ever. Specially if one is
only interested in recovering a single bit or a few
bits of x; it is possible to have codes with much
more efficient decoding algorithms, which allow
for the decoding to take place by only reading a
sublinear number of code positions. Such codes
are known as locally decodable codes (LDCs).
Locally decodable codes allow reconstruction of
an arbitrary bit xi with high probability by only
reading t  k randomly chosen coordinates of
(a possibly corrupted) C.x/:

The two main interesting parameters of a
locally decodable code are (1) the codeword
length n (as a function of the message length k)
which measures the amount of redundancy that
is introduced into the message by the encoder
and (2) the query complexity of local decoding
which counts the number of bits that need to be
read from a (corrupted) codeword in order to
recover a single bit of the message. Ideally, one
would like to have both of these parameters
as small as possible. One cannot, however,
simultaneously minimize both of them; there
is a trade-off. On one end of the spectrum,
we have LDCs with the codeword length
close to the message length, decodable with
somewhat large query complexity. Such codes
are useful for data storage and transmission.
On the other end we have LDCs where the
query complexity is a small constant, but the
codeword length is large compared to the
message length. Such codes find applications
in complexity theory, derandomization, and
cryptography (and this was the reason they
were originally studied [15]). The true shape
of the trade-off between the codeword length
and the query complexity of LDCs is not known.
Determining it is a major open problem (see [23]
for an excellent recent survey of the LDC
literature).

Natural variants of locally decodable codes
are locally correctable codes (LCCs) where every
symbol of the true codeword can be recovered
with high probability by reading only a small
number of locations of the corrupted codeword.
When the underlying code is linear, it is known
that every LCC is also an LDC.
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Notation and Formal Definition
For a set ˙ and two vectors c; c0 2 ˙n, we
define the relative Hamming distance between
c and c0, which we denote by �.c; c0/, to be
the fraction of coordinates where they differ:
�.c; c0 D Pri2Œn�Œci ¤ c0

i �:

An error-correcting code of length n over the
alphabet ˙ is a subset C � ˙n. The rate of C is
defined to be log jCj

n log j˙ j
. The (minimum) distance of

C is defined to be the smallest ı > 0 such that for
every distinct c1; c2 2 C, we have �.c1; c2/ � ı.

For an algorithm A and a string r , we will use
Ar to represent that A is given query access to r .

We now define locally decodable codes.

Definition 1 (Locally Decodable Code) Let
C � ˙n be a code with jCj D j˙ jk . Let
E W ˙k ! C be a bijection (we refer to E

as the encoding map for C; note that k=n equals
the rate of the code C). We say that .C; E/ is
locally decodable from a ı0-fraction of errors
with t queries if there is a randomized algorithm
A, such that:

• Decoding: Whenever a message x 2 ˙k

and a received word r 2 ˙n are such that
�.r; E.x// < ı0, then, for each i 2 Œk�,

PrŒAr .i/ D xi � � 2=3:

• Query complexity t : Algorithm Ar .i/ always
makes at most t queries to r .

Key Results

Locally decodable codes have been implicitly
studied in coding theory for a long time,
starting with Reed’s “majority-logic decoder” for
binary Reed-Muller codes [18]. They were first
formally defined by Katz and Trevisan [15] (see
also [19]). Since then, the quest for understanding
locally decodable codes has generated many
developments.

As mentioned before, there are two main
regimes in which LDCs have been studied.
The first regime, on which most prior work
has focused, is the regime where the query

complexity is small – even a constant. In this
setting, the most interesting question is to
construct codes with rate as large as possible
(though it is known that some significant loss in
rate is inevitable). The second regime, which has
been the focus of more recent work, is the high-
rate regime. In this regime, one insists on the rate
of the code being very close to 1 and then tries
to obtain as low-query complexity as possible.
We now discuss the known results in both
regimes.

Low-Query Regime
A significant body of work on LDCs has focused
on local decoding with a constant number of
queries. Local decoding with 2 queries is almost
fully understood. The Hadamard code is a 2-
query LDC with codeword length n D 2k .
Moreover, it was shown in [9,14] that any 2-query
locally decodable code (that is decodable from
some small fixed constant fraction of errors) must
have n D 2˝.k/.

For a long time, it was generally believed
that for decoding with any constant number of
queries, this exponential blowup is needed: a
k-bit message must be encoded into at least
exp.k�/ bits, for some constant � > 0. This
is precisely the trade-off exhibited by the Reed-
Muller codes, which were believed to be optimal.
Recently, in a surprising and beautiful sequence
of works [6, 8, 17, 22], a new family of codes
called matching vector codes was constructed,
and they were shown to have local decoding
parameters surprisingly much better than that of
Reed-Muller codes! This family of codes gives
constant query locally decodable codes which en-
code k bits into as few as n D exp.exp.log�.k///

bits for some small (Parameter � can be chosen
arbitrarily close to 0 by increasing the number of
queries as a function of �.) constant � > 0 and are
locally decodable from some fixed small constant
fraction of errors.

There has also been considerable work [9,
14, 15, 20, 21] on lower bounds on the length
of low-query locally decodable codes. However,
there is still a huge gap in our understanding of
the best rate achievable for any query complex-
ity that is at least 3. For instance, for 3-query
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LDCs that decode from a fixed small constant
fraction of errors, the best lower bounds we
know are of the form n D ˝.k2/ [21]. The
best upper bounds on the other hand only give
constructions with n D exp.exp.logO.1/.k///.
For codes locally decodable for general query
complexity t , it is known [15] that n D k1C˝.1=t/

(again, a really long way off from the upper
bounds). Thus, in particular, for codes of constant
rate, local decoding requires at least ˝.log k/

queries.

High-Rate Regime
In the high-rate regime, one fixes the rate to be
constant, i.e., n D O.k/ or even .1 C ˛/k, for
some small constant ˛ and then tries to construct
locally decodable codes with the smallest query
complexity possible. Reed-Muller codes in this
regime demonstrate the following setting of
parameters: for any constant � > 0, there is a
family of Reed-Muller codes of rate D exp.1=�/

that is decodable with n� queries. Till recently
this was the best trade-off for parameters known
in this regime, and in fact we did not know any
family of codes of rate > 1=2 with any sublinear
query complexity.

In the last few years, three very different fam-
ilies of codes have been constructed [10–12] that
go well beyond the parameters of Reed-Muller
codes. These codes show that for arbitrary ˛; � >

0, and for every finite field F, for infinitely many
n, there is a linear code over F of length n with
rate 1 � ˛, which is locally decodable (and even
locally correctable) from a constant fraction (This
constant is positive and is a function of only ˛

and �.) of errors with O.n�/ queries. Codes with
such parameters were in fact conjectured not to
exist, and this conjecture, if it were true, would
have yielded progress on some well-known open
questions in arithmetic circuit complexity [7].

Even more recently, it was shown that one can
achieve even subpolynomial query complexity
while keeping rate close to 1. In [13], it was
shown that, for any ˛ > 0 and for every finite
field F, for infinitely many n, there is a code
over F of length n with rate 1 � ˛, which is
locally decodable (and even locally correctable)
from a constant fraction (This constant is positive

and is a function of only ˛.) of errors with
2O.

p
log n log log n/ queries.

On the lower bound front, all we know are
the n D k1C˝.1=t/ lower bounds by [15]. Thus,
in particular, it is conceivable that for any small
constant ˛, one could have a family of codes
of rate 1 � ˛ that are decodable with O.log n/

queries.

Applications

In theoretical computer science, locally de-
codable codes have played an important
part in the proof-checking revolution of the
early 1990s [1, 2, 4, 16], as well as in other
fundamental results in hardness amplification
and pseudorandomness [3, 5, 19]. Variations of
locally decodable codes are also beginning to
find practical applications in data storage and
data retrieval.

Open Problems

In the constant query regime, the most important
question is to get the rate to be as large as
possible, and the major open question in this
direction is the following:

Question 1 Do there exist LDCs with polyno-
mial rate, i.e., n D kO.1/, that are decodable with
O.1/ queries?

In the high-rate regime, the best query lower
bounds we know are just logarithmic, and the
main challenge is to construct codes with im-
proved query complexity, hopefully coming close
to the best lower bounds we can prove.

Question 2 Do there exist LDCs of rate 1 � ˛ or
even ˝.1/ that are decodable with poly.log n/

queries?

Given the recent constructions of new fam-
ilies of codes in both the high-rate and low-
query regimes with the strengthened parameters,
it doesn’t seem all that farfetched to imagine
that we might soon be able to give much better
answers to the above questions.
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Problem Definition

Locally testable codes (LTC) are error-correcting
codes that support algorithms which can distin-
guish valid codewords from words that are “far”



Locally Testable Codes 1153

L

from all codewords by probing a given word only
at a sublinear (typically constant) number of loca-
tions. LTCs are useful in the following scenario.
Suppose data is transmitted by encoding it using
a LTC. Then, one could check if the received data
is nearly uncorrupted or has been considerably
corrupted by making very few probes into the
received data.

An error-correcting code C W f0; 1gk !

f0; 1gn is a function mapping k-bit messages
to n-bit codewords. The ratio k=n is referred to
as the rate of the code C. The Hamming distance
between two n-bit strings x and y, denoted by
�.x; y/, is the number of locations where x and
y disagree, i.e., �.x; y/ D fi 2 Œn� j xi ¤ yig.
The relative distance between x and y, denoted
by ı.x; y/, is the normalized distance, i.e.,
ı.x; y/ D �.x; y/=n. The distance of the code
C, denote by d.C/, is the minimum Hamming
distance between two distinct codewords, i.e.,
d.C/ D minx¤y �.C.x/; C.y//. The distance of
a string w from the code C, denoted by �.w; C/,
is the distance of the nearest codeword to w,
i.e., �.w; C/ D minx �.w; C.x//. The relative
distance of a code and the relative distance of a
string w to the code are the normalized versions
of the corresponding distances.

Definition 1 (locally testable code (LTC)) A
code C W f0; 1gk ! f0; 1gn is said to be .q; ı; "/-
locally testable if there exists a probabilistic
oracle algorithm T , also called a tester that, on
oracle access to an input string w 2 f0; 1gn,
makes at most q queries (A query models a probe
into the input string w in which one symbol (here
a bit) of w is read.) to the string w and has the
following properties:

Completeness: For every message x 2 f0; 1gk ,
with probability 1 (over the tester’s internal
random coins), the tester T accepts the word
C.x/. Equivalently,

8x 2 f0; 1gk ; PrŒT C.x/ accepts � D 1:

Soundness: For every string w 2 f0; 1gn such
that �.w; C/ � ın, the tester T rejects the
word w with probability at least " (despite
reading only q bits of the word w). Equiva-
lently,

8w 2 f0; 1gn;

�.w; C/ � ın H) PrŒT w accepts � � 1 � ":

Local testability was first studied in the
context of program checking by Blum, Luby,
and Rubinfeld [8] who showed that the
Hadamard code is locally testable (Strictly,
speaking Blum et al. only showed that “Reed-
Muller codes of order 1,” a strict subclass of
Hadamard codes are locally testable, while
later Kaufman and Litsyn [15] demonstrated
the local testability of the entire class of
Hadamard codes.) and Gemmell et al. [11]
who showed that the Reed-Muller codes are
locally testable. The notion of LTCs is implicit
in the work on locally checkable proofs by
Babai et al. [2] and subsequent works on PCP.
The explicit definition appeared independently
in the works of Rubinfeld and Sudan [17],
Friedl and Sudan [10], Arora’s PhD thesis [1]
(under the name of “probabilistically checkable
proofs”), and Spielman’s PhD thesis [18] (under
the name of “checkable codes”). A formal
study of LTCs was initiated by Goldreich and
Sudan [14].

The following variants of the above definition
of locally testability have also been studied.

• 2-sided vs. 1-sided error: The above defini-
tion of LTCs has perfect completeness, in the
sense that every valid codeword is accepted
with probability exactly 1. The tester, in this
case, is said to have 1-sided error. A 2-sider
error tester, on the other hand, accepts valid
codewords with probability at least c for some
c 2 .1� "; 1�. However, most constructions of
LTCs have perfect completeness.

• Strong/robust LTCs: The soundness require-
ment in Definition 1 can be strengthened in
the following sense. We can require that there
exists a constant � 2 .0; 1/ such that for every
string w 2 f0; 1gn which satisfies �.w; C/ �

d , we have

PrŒT w accepts � � 1 �
�d

n
:
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In other words, non-codewords which are at
least a certain minimum distance from the
code are not only rejected with probability at
least " but are in fact rejected with probabil-
ity proportional to the distance of the non-
codeword from the code. Codes that have such
testers are called .q; �/-strong locally testable
codes. They are sometimes also referred to as
.q; �/-robust locally testable codes. Most con-
structions of LTCs satisfy the stronger sound-
ness requirement.

• Adaptive vs. nonadaptive: The q queries of
the tester T could either be adaptive or non-
adaptive. Almost all constructions of LTCs are
nonadaptive.

• Tolerant testers: Tolerant LTCs are codes with
testers that accept not only valid codewords
but also words which are close to the code,
within a particular tolerance parameter ı0 for
ı0 � ı.

LTCs are closely related to probabilistically
checkable proofs (PCPs). Most known construc-
tions of PCPs yield LTCs with similar parame-
ters. In fact, there is a generic transformation to
convert a PCP of proximity (which is a PCP with
more requirements) into an LTC with comparable
parameters [7,19]. See a survey by Goldreich [13]
for the interplay between PCP and LTC construc-
tions.

Locally decodable codes (LDCs), in contrast
to LTCs, are codes with sublinear time decoders.
Informally, such decoders can recover each mes-
sage entry with high probability by probing the
word at a sublinear (even constant) number of
locations provided that the codeword has not been
corrupted at too many locations. Observe that
LTCs distinguish codewords from words that are
far from the code while LDCs allow decoding
from words that are close to the code.

Key Results

Local Testability of Hadamard Codes
As a first example, we present the seminal result
of Blum, Luby, and Rubinfeld [8] that showed

that Hadamard codes are locally testable. In this
setting, we are given a string f 2 f0; 1g2

k
and we

would like to test if f is a Hadamard codeword.
It will be convenient to view the 2k-bit long
string f as a function f W f0; 1gk ! f0; 1g. In
this alternate view, Hadamard codewords (strictly
speaking, “Reed-Muller codewords of order 1”)
correspond to linear functions, i.e., they satisfy
8x; y 2 f0; 1gk ; f .x/Cf .y/ D f .xCy/ (Here
addition “+” refers to bitwise xor. In other words,
b1 C b2 WD b1 ˚ b2 for b1; b2 2 f0; 1g and
x C y D .x1; x2 : : : ; xk/ C .y1; y2 : : : ; yk/ WD

.x1˚y1; x2˚y2 : : : ; xk˚yk/ for x; y 2 f0; 1gk).
The following test is due to Blum, Luby, and Ru-
binfeld. The accompanying theorem shows that
this is in fact a robust characterization of linear
functions.

BLR-Test
Input: Parameter k and oracle access to f W

f0; 1gk ! f0; 1g:

1. Choose x; y 2R f0; 1gk uniformly at ran-
dom.

2. Query f at locations x; y and x C y.
3. Accept iff f .x/C f .y/ D f .x C y/.

Clearly, the BLR-test always accepts all lin-
ear functions (i.e., Hadamard codewords). Blum,
Luby, and Rubinfeld (with subsequent improve-
ments due to Coppersmith) showed that if f

has relative distance at least ı from all linear
functions, then BLR-test rejects with probability
at least minfı=2; 2=9g. Their result was more
general in the sense that it applied to all additive
groups and not just f0; 1g. For the special case
of f0; 1g, Bellare et al. [3] obtained the following
stronger result:

Theorem 1 ([3,8]) If f is at relative distance at
least ı from all linear functions, then the BLR-test
rejects f with probability at least ı.

Local Testability of Reed-Muller Codes
Rubinfeld and Sudan [17] considered the prob-
lem of local testability of the Reed-Muller codes.
Here, we consider codes over non-Boolean al-
phabets and the natural extension of LTCs to
this non-Boolean setting. Given a field F and
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parameters d and m (where d C 1 < jFj), the
Reed-Muller code consists of codewords which
are evaluations of m-variate polynomials of total
degree at most d . Let ˛0; ˛1; ˛2; : : : ; ˛dC1 be
.d C 2/ distinct elements in the field F (recall
that d C 1 < jFj). The following test checks if a
given f W Fm ! F is close to the Reed-Muller
code.

RS-test
Input: Field F, parameter d , and oracle access to

f W Fm ! F:

1. Choose x; y 2R F
m uniformly at random.

2. Query f at locations .x C ˛i � y/; i D

1; : : : ; d C 1.
3. Interpolate to construct a univariate poly-

nomial q W F! F of degree at most d such
that q.˛i / D f .xC˛i �y/; i D 1; : : : ; dC1.

4. If q.˛0/ D f .xC˛0 �y/ accept, else reject.

The above test checks that the restriction of
the function f to the line l.t/ D x C ty is
a univariate polynomial of degree at most d .
Clearly, multivariate polynomials of degree at
most d are always accepted by the RS-test.

Theorem 2 ([17]) There exists a constant c such
that if jFj � 2d C 2 and ı < c=d 2, then the
following holds for every (positive) integer m. If
f has relative distance at least ı from all m-
variate polynomials of total degree at most d ,
then the RS-test rejects f with probability at least
ı=2.

Open Problems

The Hadamard code is testable with three queries
but has inverse exponential rate, whereas the
Reed-Muller code (for certain setting of param-
eters d; m, and F) has polylogarithmic query
complexity and inverse polynomial rate. We can
ask if there exist codes good with respect to both
parameters. In other words, do there exist codes
with inverse polynomial rate and linear distance
which are testable with a constant number of
queries? Such a construction, with nearly linear

rate, was obtained by Ben-Sasson and Sudan [5]
and Dinur [9].

Theorem 3 ([5,9]) There exists a constant q and
an explicit family of codes fCkgk where Ck W

f0; 1gk ! f0; 1gk	poly log n that have linear dis-
tance and are q-locally testable.

This construction is obtained by combining
the algebraic PCP of proximity-based construc-
tions due to Ben-Sasson and Sudan [5] with
the gap amplification technique of Dinur [9].
Meir [16] obtained a LTC with similar parameters
using a purely combinatorial construction, albeit
a non-explicit one.

It is open if this construction can be fur-
ther improved. In particular, it is open if there
exist codes with constant rate and linear rela-
tive distance (such codes are usually referred
to as good codes) that are constant query lo-
cally testable. We do not know of even a non-
explicit code with such properties. To the con-
trary, it is known that random low-density par-
ity check matrix (LDPC) codes are in fact not
locally testable [6]. For a more detailed survey
on LTCs, their constructions, and limitations,
the interested reader is directed to excellent sur-
veys by Goldreich [13], Trevisan [19], and Ben-
Sasson [4].
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Problem Definition

Consider a weighted connected multigraph G D

.V; E; ¨/, where ¨ is a function from the edge
set E of G into the set of positive reals. For
a path P in G, the weight of P is the sum of
weights of edges that belong to the path P . For
a pair of vertices u; v 2 V , the distance between
them in G is the minimum weight of a path
connecting u and v in G. For a spanning tree
T of G, the stretch of an edge (u,v/ 2 E is
defined by

stretchT .u; v/ D
distT .u; v/

distG.u; v/
;

and the average stretch over all edges of E is
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avestr.G; T / D
1

jEj

X

.u;v/2E

stretchT .u; v/:

The average stretch of a multigraph G D

.V; E; ¨/ is defined as the smallest average
stretch of a spanning tree T of G, avestr.G; T /.
The average stretch of a positive integer n,
avestr.n/, is the maximum average stretch of
an n-vertex multigraph G. The problem is to
analyze the asymptotic behavior of the function
avestr.n/.

A closely related (dual) problem is to con-
struct a probability distribution D of spanning
trees for G, so that

expstr.G;D/ D max
eD.u;v/2E

ET 2D.stretchT .u; v//

is small as possible. Analogously, expstr.G/ D

min
D
fexpstr.G;D/g, where the minimum is over

all distributions D of spanning trees of G, and
expstr.n/ D maxGfexpstr.G/}, where the maxi-
mum is over all n-vertex multigraphs.

By viewing the problem as a 2-player zero-
sum game between a tree player that aims to
minimize the payoff and an edge player that aims
to maximize it, it is easy to see that for every
positive integer n, avestr.n/ D expstr.n/ [3]. The
probabilistic version of the problem is, however,
particularly convenient for many applications.

Key Results

The problem was studied since 1960s [9, 14, 16,
17]. A major progress in its study was achieved
by Alon et al. [3], who showed that

	.log n/ D avestr.n/ D expstr.n/

D exp
�
O
�p

log n � log log n
��

:

Elkin et al. [10] improved the upper bound and
showed that

avestr.n/ D expstr.n/ D O
�
log2 n � log log n

�
:

Applications

One application of low-stretch spanning trees
is for solving symmetric diagonally dominant
linear systems of equations. Boman and Hen-
drickson [6] were the first to discover the sur-
prising relationship between these two seemingly
unrelated problems. They applied the spanning
trees of [3] to design solvers that run in time
m3=22O.

p
log n log log n/ log.1=�/. Spielman and Teng

[15] improved their results by showing how to
use the spanning trees of [3] to solve diagonally
dominant linear systems in time

m2O.
p

log n log log n/ log.1=�/:

By applying the low-stretch spanning trees de-
veloped in [10], the time for solving these linear
systems reduces to

m logO.1/ n log.1=�/;

and to O.n.log n log log n/2 log.1=�// when the
systems are planar. Applying a recent reduction
of Boman, Hendrickson, and Vavasis [7], one
obtains a O.n.log n log log n/2 log.1=�// time
algorithm for solving the linear systems that arise
when applying the finite element method to solve
two-dimensional elliptic partial differential equa-
tions.

Chekuri et al. [8] used low-stretch spanning
trees to devise an approximation algorithm
for nonuniform buy-at-bulk network design
problem. Their algorithm provides a first
polylogarithmic approximation guarantee for this
problem.

Abraham et al. [2] use a technique of Star
decomposition introduced by Elkin et al. [10]
to construct embeddings with a constant average
stretch, where the average is over all pairs of
vertices, rather than over all edges. The result of
Abraham et al. [2] was, in turn, already used in
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a yet more recent work of Elkin et al. [11] on
fundamental circuits.

Open Problems

Abraham and Neiman [1] subsequently devised
an algorithm for constructing a spanning tree with
average stretch O.log n log log n/. The most ev-
ident open problem is to close the gap between
this algorithm and the 	.log n/ lower bound.
Another intriguing subject is the study of low-
stretch spanning trees for various restricted fam-
ilies of graphs. Progress in this direction was
recently achieved by Emek and Peleg [12] that
constructed low-stretch spanning trees with av-
erage stretch O.log n/ for unweighted series-
parallel graphs. Discovering other applications of
low-stretch spanning trees is another promising
venue of study.

Finally, there is a closely related relaxed no-
tion of low-stretch Steiner or Bartal trees. Unlike
a spanning tree, a Steiner tree does not have to
be a subgraph of the original graph, but rather
is allowed to use edges and vertices that were
not present in the original graph. It is, however,
required that the distances in the Steiner tree
will be no smaller than the distances in the
original graph. Low-stretch Steiner trees were
extensively studied [4, 5, 13]. Fakcharoenphol et
al. [13] devised a construction of low-stretch
Steiner trees with an average stretch of O.log n/.
It is currently unknown whether the techniques
used in the study of low-stretch Steiner trees can
help in improving the bounds for the low-stretch
spanning trees.
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The Exponential Time Hypothesis
and Its Consequences

In 2001, Impagliazzo, Paturi, and Zane [5, 6]
introduced the Exponential Time Hypothesis
(ETH): a complexity assumption saying that there
exists a constant c > 0 such that no algorithm for
3-SAT can achieve the running time of O.2cn/,
where n is the number of variables of the input
formula. In particular, this implies that there is
no subexponential-time algorithm for 3-SAT,
that is, one with running time 2o.n/. The key
result of Impagliazzo, Paturi, and Zane is the
Sparsification Lemma, proved in [6]. Without
going into technical details, the Sparsification
Lemma provides a reduction that allows us to

assume that the input instance of 3-SAT is sparse
in the following sense: the number of clauses is
linear in the number of variables. Thus, a direct
consequence is that, assuming ETH, there is a
constant c > 0 such that there is no algorithm for
3-SAT with running time O.2c.nCm//. Hence, an
algorithm with running time 2o.nCm/ is excluded
in particular.

After the introduction of the Exponential Time
Hypothesis and the Sparsification Lemma, it
turned out that ETH can be used as a robust
assumption for proving sharp lower bounds on
the time complexity of various computational
problems. For many classic NP-hard graph
problems, like VERTEX COVER, 3-COLORING,
or HAMILTONIAN CYCLE, the known NP-
hardness reductions from 3-SAT are linear,
i.e., they transform an instance of 3-SAT with
n variables and m clauses into an instance of the
target problem whose total size is O.n C m/.
Consequently, if any of these problems admitted
an algorithm with running time 2o.N CM/, where
N and M are the numbers of vertices and edges
of the graph, respectively, then the composition
of the reduction and such an algorithm would
yield an algorithm for 3-SAT with running
time 2o.nCm/, thus contradicting ETH. As all
these problems indeed can be solved in time
2O.N /, this shows that the single-exponential
running time is essentially optimal. The same
problems restricted to planar graphs have NP-
hardness reductions from 3-SAT with a quadratic
size blowup, which excludes the existence of
2o.

p
N CM/ algorithms under ETH. Again, this is

matched by 2O.
p

N / algorithms obtained using
the Lipton-Tarjan planar separator theorem.

Of particular interest to us are applications
in parameterized complexity. Recall that a pa-
rameterized problem is fixed-parameter tractable
(FPT) if there is an algorithm solving it in time
f .k/ � nc , where n is the total input size, k is
the parameter, f is some computable function,
and c is a universal constant. Observe that if
we provide a reduction from 3-SAT to a pa-
rameterized problem where the output parameter
depends linearly on n C m, then assuming ETH
we exclude the existence of a subexponential
parameterized algorithm, i.e., one with running
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time 2o.k/ �nO.1/. If the dependence of the output
parameter on nCm is different, then we obtain a
lower bound for a different function f . This idea
has been successfully applied for many various
parameterizations and different running times.
For example, Lokshtanov et al. [8] introduced a
framework for proving lower bounds excluding
the running time of the form 2o.k log k/ �nO.1/. The
framework can be used to show the optimality
of known FPT algorithm for several important
problems, with a notable example of CLOSEST

STRING.
More information on lower bounds based on

ETH can be found in the survey of Lokshtanov
et al. [7] or in the PhD thesis of the current
author [9].

Problem Definition

In the EDGE CLIQUE COVER problem, we are
given a graph G and an integer k, and the ques-
tion is whether one can find k complete sub-
graphs C1; C2; : : : ; Ck of G such that E.G/ DSk

iD1 E.Ci /. In other words, we have to cover
the whole edge set of G using k complete sub-
graphs of G. Such a selection of k complete
subgraphs is called an edge clique cover.

The study of the parameterized complexity of
EDGE CLIQUE COVER was initiated by Gramm
et al. [3]. The main observation of Gramm et al.
is the applicability of the following data reduction
rule: as long as in G there exists a pair of perfect
twins (i.e., adjacent vertices having exactly the
same neighborhood), then it is safe to remove
one of them (and decrement the parameter k

in the case when these twins form an isolated
edge in G). Once there are no perfect twins
and no isolated vertices in the graph (the latter
ones can be also safely removed), then one can
easily show the following: there is no edge clique
cover of size less than log jV.G/j. Consequently,
instances with k < log jV.G/j can be discarded
as no-instances, and we are left with instances
satisfying jV.G/j � 2k . In the language of
parameterized complexity, this is called a kernel

with 2k vertices. By applying a standard covering
dynamic programming algorithm on this kernel,
we obtain an FPT algorithm for EDGE CLIQUE

COVER with running time 22O.k/
C jV.G/jO.1/;

the second summand is the time needed to apply
the data reduction rule exhaustively.

Given the striking simplicity of the approach
of Gramm et al. [3], the natural open question was
whether the obtained double-exponential running
time of the algorithm for EDGE CLIQUE COVER

could be improved.

Key Results

This question has been resolved by Cygan
et al. [1], who showed that, under ETH, the
running time obtained by Gramm et al. [3] is
essentially optimal. More precisely, they proved
the following result:

Lemma 1 There exists a polynomial-time algo-
rithm that, given an instance ' of 3-SAT with n

variables and m clauses, constructs an equiva-
lent EDGE CLIQUE COVER instance .G; k/ with
k D O.log n/ and jV.G/j D O.nCm/.

Thus, by considering a composition of the
reduction of Lemma 1 with a hypothetical al-
gorithm for EDGE CLIQUE COVER with running
time 22o.k/

� jV.G/jO.1/, we obtain the following
lower bound:

Theorem 1 Unless ETH fails, there is no algo-
rithm for EDGE CLIQUE COVER with running
time 22o.k/

� jV.G/jO.1/.

Curiously, Lemma 1 can be also used to
show that the kernelization algorithm of Gramm
et al. [3] is also essentially optimal. More
precisely, we have the following theorem.

Theorem 2 There exists a universal constant
" > 0 such that, unless P D NP, there is no
constant � and a polynomial-time algorithm A
that takes an instance .G; k/ of EDGE CLIQUE

COVER and outputs an equivalent instance
.G0; k0/ of EDGE CLIQUE COVER with binary
encoding of length at most � � 2"k .
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The idea of the proof of Theorem 2 is to
consider the composition of three algorithms: (i)
the reduction of Lemma 1, (ii) a hypothetical
algorithm as in the statement of Theorem 2 for
a very small " > 0, and (iii) a polynomial-time
reduction from EDGE CLIQUE COVER to 3-SAT,
whose existence follows from the fact that the
former problem is in NP and the latter one is NP-
hard. Since the constants hidden in the bounds
for algorithms (i) and (iii) are universal, for some
very small " > 0 this composition would result
in an algorithm that takes any instance of 3-
SAT on n variables and shrinks it to an instance
that has total bitsize o.n/, i.e., sublinear in n.
Hence, by applying this algorithm multiple times,
we would eventually shrink the instance at hand
to constant size, and then we could solve it
by brute force. As all the algorithms involved
run in polynomial time, this would imply that
P D NP.

We remark that Theorem 2 was not observed
in the original work of Cygan et al. [1], but
its proof can be found in the PhD thesis of the
current author [9], and it will appear in the up-
coming journal version of [1]. Also, in an earlier
work, Cygan et al. [2] proved a weaker state-
ment that EDGE CLIQUE COVER does not admit
a polynomial kernel unless NP � coNP=poly.
Theorem 2 shows that even a subexponential
kernel is unlikely under the weaker assumption
of P ¤ NP.

Let us now shed some light on the proof of
Lemma 1, which is the crucial technical ingredi-
ent of the results. The main idea is to base the
reduction on the analysis of the cocktail party
graph: for an integer n > 1, the cocktail party
graph H2n is defined as a complete graph on
2n vertices with a perfect matching removed.
Observe that H2n does not contain any perfect
twins, so it is immune to the data reduction rule of
Gramm et al. [3] and the minimum size of an edge
clique cover in H2n is at least 1 C log n. On the
other hand, it is relatively easy to construct a large
family of edge clique covers of H2n that have size
2dlog ne. Actually, the question of determining
the minimum size of an edge clique cover in H2n

was studied from a purely combinatorial point
of view: Gregory and Pullman [4] proved that
it is equal to inffk W n �

�
k�1

dk=2e

�
g, answering an

earlier question of Orlin. Note that this value is
larger than 1C log n only by an additive factor of
O.log log n/.

Thus, the cocktail party graph provides a natu-
ral example of a hard instance where the parame-
ter is logarithmic. The crux of the construction is
to start with the cocktail party graph H2n and, by
additional gadgeteering, force the solution inside
it to belong to the aforementioned family of edge
clique covers of size 2dlog ne. The behavior of
these edge clique covers (called twin covers) can
be very well understood, and we can encode
the evaluation of the variables of the input 3-
SAT formula as a selection of a twin cover to
cover H2n. In order to verify that the clauses
of the input formula are satisfied, we construct
additional clause gadgets. This involves only a
logarithmic number of additional cliques and
is based on careful constructions using binary
encodings.

Discussion

After announcing the results of Cygan et al. [1],
there was some discussion about their actual
meaning. For instance, some authors suggested
that the surprisingly high lower bound for EDGE

CLIQUE COVER may be a argument against the
plausibility of the Exponential Time Hypothesis.
Our view on this is quite different: the double-
exponential lower bound suggests that EDGE

CLIQUE COVER is an inherently hard problem,
even though it may not seem as such at first
glance. The relevant parameter in this problem
is not really the number of cliques k, but
rather 2k , the number of possible different
neighborhoods that can arise in a graph that
is a union of k complete graphs. The lower
bound of Cygan et al. [1] intuitively shows
that one cannot expect to significantly reduce
the number of neighborhoods that needs to be
considered.
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Problem Definition

The dynamic connectivity problem requests
maintenance of a graph G subject to the following
operations:

insert(u, v): insert an undirected edge (u,
v) into the graph.
delete(u, v): delete the edge (u, v) from the
graph.
connected(u, v): test whether u and v lie in
the same connected component.

Let m be an upper bound on the number of
edges in the graph. This entry discusses cell-
probe lower bounds for this problem. Let tu be
the complexity of insert and delete and tq
the complexity of query.

The Partial-Sums Problem
Lower bounds for dynamic connectivity are inti-
mately related to lower bounds for another classic
problem: maintaining partial sums. Formally, the
problem asks one to maintain an array AŒ1::n�

subject to the following operations:

update.k; �/: let AŒk� �.
sum.k/: returns the partial sum

Pk
iD1 AŒi�.

testsum.k; �/: returns a boolean value indi-
cating whether sum.k/ D � .

To specify the problem completely, let elements
AŒi� come from an arbitrary group G containing
at least 2ı elements. In the cell-probe model with
b-bit cells, let t˙

u be the complexity of update
and t˙

q the complexity of testsum (which is
also a lower bound on sum).

The tradeoffs between t˙
u and t˙

q are well
understood for all values of b and •. However,
this entry only considers lower bounds under
the standard assumptions that b D ˝.lg n/ and
tu � tq . It is standard to assume b D ˝.lg n/ for
upper bounds in the RAM model; this assumption
also means that the lower bound applies to the
pointer machine. Then, Pătraşcu and Demaine [6]
prove:

Theorem 1 The complexity of the partial-sums
problems satisfies:t˙

q � lg.t˙
u =t˙

q /D˝.ı=b � lg n/.
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Observe that this matches the textbook upper
bound using augmented trees. One can build
a balanced binary tree over AŒ1�; : : : ; AŒn� and
store in every internal node the sum of its subtree.
Then, updates and queries touch O.lg n/ nodes
(and spend O.dı=be/ time in each one due to the
size of the group). To decrease the query time,
one can use a B-tree.

Relation to Dynamic Connectivity
We now clarify how lower bounds for
maintaining partial sums imply lower bounds
for dynamic connectivity. Consider the partial-
sums problem over the group G D Sn, i.e., the
permutation group on n elements. Note that
ı D lg.nŠ/ D ˝.n lg n/. It is standard to set
b D �.lg n/, as this is the natural word size used
by dynamic connectivity upper bounds. This
implies t˙

q lg.t˙
u =t˙

q / D ˝.n lg n/.
The lower bound follows from implementing

the partial-sums operations using dynamic con-
nectivity operations. Refer to Fig. 1. The vertices
of the graph form an integer grid of size n � n.
Each vertex is incident to at most two edges,
one edge connecting to a vertex in the previous
column and one edge connecting to a vertex
in the next column. Point .x; y1/ in the grid
is connected to point .x C 1; AŒx�.y1//, i.e.,the
edges between two adjacent columns describe the
corresponding permutation from the partial-sums
vector.

To implement update .x; �/, all the edges
between column x and x C 1 are first deleted and
then new edges are inserted according to  . This
gives t˙

u D O.2n � tu/. To implement testsum
.x; �/, one can use n connected queries be-

tween the pairs of points .1; y/ Ý .x C 1; �.y//.
Then, t˙

q D O.n � tq/. Observe that the sum
query cannot be implemented as easily. Dynamic
connectivity is the main motivation to study the
testsum query.

The lower bound of Theorem 1 translates
into ntq � lg.2ntu=ntq/ D ˝.n lg n/; hence
tq lg.tu=tq/ D ˝.lg n/. Note that this lower
bound implies maxftu; tqg D ˝.lg n/. The
best known upper bound (using amortization
and randomization) is O.lg n.lg lg n/3/ [9]. For
any tu D ˝.lg n.lg lg n/3/, the lower bound
tradeoff is known to be tight. Note that the
graph in the lower bound is always a disjoint
union of paths. This implies optimal lower
bounds for two important special cases: dynamic
trees [8] and dynamic connectivity in plane
graphs [2].

Key Results

Understanding Hierarchies

Epochs
To describe the techniques involved in the
lower bounds, first consider the sum query and
assume ı D b. In 1989, Fredman and Saks [3]
initiated the study of dynamic cell-probe lower
bounds, essentially showing a lower bound
of t˙

q lg t˙
u D ˝.lg n/. Note that this implies

maxft˙
q ; t˙

u g D ˝.lg n= lg lg n/.
At an intuitive level, their argument proceeded

as follows. The hard instance will have n random
updates, followed by one random query. Leave
r � 2 to be determined. Looking back in time

Lower Bounds for
Dynamic Connectivity,
Fig. 1 Constructing an
instance of dynamic
connectivity that mimics
the partial-sums problem
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from the query, one groups the updates into expo-
nentially growing epochs: the latest r updates are
epoch 1, the earlier r2 updates are epoch 2, etc.
Note that epoch numbers increase going back in
time, and there are O.logr n/ epochs in total.

For some epoch i, consider revealing to the
query all updates performed in all epochs differ-
ent from i. Then, the query reduces to a partial-
sums query among the updates in epoch i. Unless
the query is to an index below the minimum index
updated in epoch i, the answer to the query is
still uniformly random, i.e., has • bits of entropy.
Furthermore, even if one is given, say, r i ı=100

bits of information about epoch i, the answer
still has ˝.ı/ bits of entropy on average. This
is because the query and updates in epoch i are
uniformly random, so the query can ask for any
partial sum of these updates, uniformly at ran-
dom. Each of the ri partial sums is an independent
random variable of entropy •.

Now one can ask how much information is
available to the query. At the time of the query,
let each cell be associated with the epoch during
which it was last written. Choosing an epoch i
uniformly at random, one can make the following
intuitive argment:

1. No cells written by epochs i C 1; i C 2; : : :

can contain information about epoch i, as they
were written in the past.

2. In epochs 1; : : : ; i � 1, a number of bt˙
u �Pi�1

j D1 rj � bt˙
u � 2r i�1 bits were written.

This is less than r i ı=100 bits of information
for r > 200t˙

u (recall the assumption ı D b).
By the above, this implies the query answer
still has ˝.ı/ bits of entropy.

3. Since i is uniformly random among �.logr n/

epochs, the query makes an expected
O.t˙

q = logr n/ probes to cells from epoch i.
All queries that make no cell probes to epoch i
have a fixed answer (entropy 0), and all other
queries have answers of entropy � ı. Since
an average query has entropy ˝.ı/, a query
must probe a cell from epoch i with constant
probability. That means t˙

q = logr n D ˝.1/,
and

P
D ˝.logr n/ D ˝.lg n= lg t˙

u /.

One should appreciate the duality between the
proof technique and the natural upper bounds
based on a hierarchy. Consider an upper bound
based on a tree of degree r. The last r random
updates (epoch 1) are likely to be uniformly
spread in the array. This means the updates touch
different children of the root. Similarly, the r2

updates in epoch 2 are likely to touch every node
on level 2 of the tree, and so on. Now, the lower
bound argues that the query needs to traverse
a root-to-leaf path, probing a node on every level
of the tree (this is equivalent to one cell from
every epoch).

Time Hierarchies
Despite considerable refinement to the lower
bound techniques, the lower bound of
˝.lg n= lg lg n/ was not improved until 2004.
Then, Pătraşcu and Demaine [6] showed an
optimal bound of t˙

q lg.t˙
u =t˙

q / D ˝.lg n/, im-
plying maxft˙

u ; t˙
q g D ˝.lg n/. For simplicity,

the discussion below disregards the tradeoff and
just sketches the ˝.lg n/ lower bound.

Pătraşcu and Demaine’s [6] counting
technique is rather different from the epoch
technique; refer to Fig. 2. The hard instance
is a sequence of n operations alternating between
updates and queries. They consider a balanced
binary tree over the time axis, with every leaf
being an operation. Now for every node of the
tree, they propose to count the number of cell
probes made in the right subtree to a cell written
in the left subtree. Every probe is counted exactly
once, for the lowest common ancestor of the read
and write times.

Now focus on two sibling subtrees, each con-
taining k operations. The k/2 updates in the left
subtree, and the k/2 queries in the right subtree,
are expected to interleave in index space. Thus,
the queries in the right subtree ask for ˝.k/ dif-
ferent partial sums of the updates in the left sub-
tree. Thus, the right subtree “needs” ˝.kı/ bits
of information about the left subtree, and this in-
formation can only come from cells written in the
left subtree and read in the right one. This implies
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Lower Bounds for
Dynamic Connectivity,
Fig. 2 Analysis of cell
probes in the
a epoch-based and
b time-hierarchy
techniques

a

b

a lower bound of ˝.k/ probes, associated with
the parent of the sibling subtrees. This bound is
linear in the number of leaves, so summing up
over the tree, one obtains a total ˝.n lg n/ lower
bound, or ˝.lg n/ cost per operation.

An Optimal Epoch Construction
Rather surprisingly, Pătraşcu and Tarniţă [7] man-
aged to reprove the optimal tradeoff of Theorem 1
with minimal modifications to the epoch argu-
ment. In the old epoch argument, the information
revealed by epochs 1; : : : ; i � 1 about epoch i
was bounded by the number of cells written in
these epochs. The key idea is that an equally good
bound is the number of cells read during epochs
1; : : : ; i � 1 and written during epoch i.

In principle, all cell reads from epoch
i � 1 could read data from epoch i, making
these two bounds identical. However, one can
randomize the epoch construction by inserting
the query after an unpredictable number of
updates. This randomization “smooths” out
the distribution of epochs from which cells
are read, i.e., a query reads O.t˙

q = logr n/

cells from every epoch, in expectation over the
randomness in the epoch construction. Then,
the O.r i�1/ updates in epochs 1; : : : ; i � 1

only read O.r i�1 � t˙
u = logr n/ cells from

epoch i. This is not enough information if
r � t˙

u = logr n D �.t˙
u =t˙

q /, which implies
t˙
q D ˝.logr n/ D ˝.lg n= lg.t˙

u =t˙
q //.

Technical Difficulties

Nondeterminism
The lower bounds sketched above are based on
the fact that the sum query needs to output ˝.ı/

bits of information about every query. If dealing
with the decision testsum query, an argument
based on output entropy can no longer work.

The most successful idea for decision queries
has been to convert them to queries with non-
boolean output, in an extended cell-probe model
that allows nondeterminism. In this model, the
query algorithm is allowed to spawn an arbitrary
number of computation threads. Each thread can
make tq cell probes, after with it must either ter-
minate with a ‘reject’ answer, or return an answer
to the query. All nonrejecting threads must return
the same output. In this model, a query with
arbitrary output is equivalent to a decision query,
because one can just nondeterministically guess
the answer, and then verify it.

By the above, the challenge is to prove good
lower bounds for sum even in the nondeter-
minstic model. Nondeterminism shakes our view
that when analyzing epoch i, only cell probes
to epoch i matter. The trouble is that the query
may not know which of its probes are actually
to epoch i. A probe that reads a cell from a pre-
vious epoch provides at least some information
about epoch i: no update in the epoch decided to
overwrite the cell. Earlier this was not a prob-
lem because the goal was only to rule out the
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case that there are zero probes to epoch i. Now,
however, different threads can probe any cell in
memory, and one cannot determine which threads
actually avoid probing anything in epoch i. In
other words, there is a covert communication
channel between epoch i and the query in which
the epoch can use the choice of which cells to
write in order to communicate information to the
query.

There are two main strategies for handling
nondeterministic query algorithms. Husfeldt
and Rauhe [4] give a proof based on some
interesting observations about the combinatorics
of nondeterministic queries. Pătraşcu and
Demaine [6] use the power of nondeterminism
itself to output a small certificate that rules out
useless cell probes. The latter result implies
the optimal lower bound of Theorem 1 for
testsum and, thus, the logarithmic lower bound
for dynamic connectivity.

Alternative Histories
The framework described above relies on fixing
all updates in epochs different from i to an av-
erage value and arguing that the query answer
still has a lot of variability, depending on updates
in epoch i. This is true for aggregation problems
but not for search problems. If a searched item is
found with equal probability in any epoch, then
fixing all other epochs renders epoch i irrelevant
with probability 1 � 1=.logr n/.

Alstrup et al. [1] propose a very inter-
esting refinement to the technique, proving
˝.lg n= lg lg n/ lower bounds for an impressive
collection of search problems. Intuitively, their
idea is to consider O.logr n/ alternative histories
of updates, chosen independently at random.
Epoch i is relevant in at least one of the histories
with constant probability. On the other hand,
even if one knows what epochs 1 through i � 1

learned about epoch i in all histories, answering
a random query is still hard.

Bit-Probe Complexity
Intuitively, if the word size is b D 1, the lower
bound for connectivity should be roughly
˝.lg2 n/, because a query needs ˝.lg n/

bits from every epoch. However, ruling out
anything except zero probes to an epoch turns
out to be difficult, for the same reason that
the nondeterministic case is difficult. Without
giving a very satisfactory understanding of this
issue, Pătraşcu and Tarniţă [7] use a large bag
of tricks to show an ˝..lg n=lg lg n/2/ lower
bound for dynamic connectivity. Furthermore,
they consider the partial-sums problem in Z2 and
show an ˝.lg n=lg lg lg n/ lower bound, which is
a triply-logarithmic factor away from the upper
bound!

Applications

The lower bound discussed here extends by easy
reductions to virtually all natural fully dynamic
graph problems [6].

Open Problems

By far, the most important challenge for future
research is to obtain a lower bound of !.lg n/

per operation for some dynamic data structure
in the cell-probe model with word size �.lg n/.
Miltersen [5] specifies a set of technical con-
ditions for what qualifies as a solution to such
a challenge. In particular, the problem should be
a dynamic language membership problem.

For the partial-sums problem, though sum is
perfectly understood, testsum still lacks tight
bounds for certain ranges of parameters [6]. In
addition, obtaining tight bounds in the bit-probe
model for partial sums in Z2 appears to be rather
challenging.
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Problem Definition

In the online bin packing problem, a sequence
of items with sizes in the interval .0; 1� arrive
one by one and need to be packed into bins,

so that each bin contains items of total size
at most 1. Each item must be irrevocably as-
signed to a bin before the next item becomes
available. The algorithm has no knowledge about
future items. There is an unlimited supply of bins
available, and the goal is to minimize the total
number of used bins (bins that receive at least one
item).

The most common performance measure for
online bin packing algorithms is the asymptotic
performance ratio, or asymptotic competitive ra-
tio, which is defined as

RASY.A/ WD lim sup
n!1

�
max

L

�
A.L/

n

ˇ̌
ˇ̌OPT.L/Dn

		
:

(1)

Hence, for any input L, the number of bins used
by an online algorithm A is compared to the
optimal number of bins needed to pack the same
input. Note that calculating the optimal num-
ber of bins might take exponential time; more-
over, it requires that the entire input is known in
advance.

Key Results

Yao showed that no online algorithm has per-
formance ratio less than 3

2
[7]. The following

construction is very important in the context of
proving lower bounds for online algorithms. Start
with an item of type 1 and size 1=2C ", for some
very small " > 0. Now, in each step, add an item
of the largest possible size of the form 1=s C "

that can fit with all previous items into a single
bin. That is, the second item has size 1=3 C ",
the third item has size 1=7 C ", etc. To be more
precise, it can be shown that the sizes in this input
sequence are given by 1=ti C " (i � 1), where ti
is defined by

t1 D 2; tiC1 D ti .ti � 1/C 1 i � 1:

The first few numbers of this sequence are
2; 3; 7; 43; 1;807. This sequence was first
examined by Sylvester [5].
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Since we allow an additive constant to the
competitive ratio, in order to turn the above
set of items into an input that can be used to
prove a lower bound for any online algorithm,

we need to repeat each item in the input N times
for some arbitrarily large N . To summarize the
preceding discussion, the input has the following
form:

N �

�
1

2
C "

�
; N �

�
1

3
C "

�
; N �

�
1

7
C "

�
; N �

�
1

43
C "

�
; N �

�
1

1;807
C "

�
; : : : ; (2)

where the items are given to the algorithm in
order of nondecreasing size.

Brown and Liang independently gave a lower
bound to 1.53635 [2, 3], using the sequence (2).
Van Vliet showed how to use the input defined
by (2) to prove a lower bound of 1.54014. Van
Vliet set up a linear programming formulation to
define all possible online algorithms for this input
to prove the lower bound.

This works by characterizing online algo-
rithms by which patterns they use and by how
frequently they use them. A pattern is a multiset
of items which fit together in one bin (have
total size at most 1). As N tends to infinity, an
online algorithm can be fully characterized by the
fraction of bins that it packs according to each
pattern.

As an example, consider the two largest item
sizes in (2). The only valid patterns are .1; 0/;

.1; 1/; .0; 2/, where .x; y/ means that there are
x items of size 1

2
C " and y items of size 1

3
C " in

the bin. The N smallest items arrive first, and the
online algorithm will pack them into bins with

patterns .1; 1/ and .0; 2/ (where the first choice
means that one item is now packed into it, and in
the future only one item of size 1

2
C " is possibly

packed with it). Say it uses x1 bins with pattern
.1; 1/ and x2 with pattern .0; 2/; then we must
have x1 C 2x2 � N or x1=N C 2x2=N � 1. In
the linear program, we use variables x0

i D xi =N ,
thus eliminating the appearance of the number N

altogether.
The input (2) appeared to be “optimal” to

make life hard for online algorithms: the smallest
items arrive first, and the input is constructed in
such a way that each item is as large as possible
given the larger items (that are defined first).
Intuitively, larger items are more difficult to
handle by online algorithms than smaller items.
Surprisingly, however, in 2012 Balogh et al. [1]
managed to prove a lower bound of 248=161 �

1:54037 using a slight modification of the input.
Instead of using 1=43 as the fourth item size, they
use 1=49 and then continue the construction in
the same manner as before. We get the following
input:

N �

�
1

2
C "

�
; N �

�
1

3
C "

�
; N �

�
1

7
C "

�
; N �

�
1

49
C "

�
; N �

�
1

343
C "

�
; : : : ; (3)

For the input that consists only of the first four
phases of this input, the resulting lower bound is
now slightly lower than before, but this is more
than compensated for by the next items.

Open Problems

Other variations of the input sequence (2) do not
seem to give better lower bounds. Yet there is

still a clear gap to the best known upper bound
of 1.58889 by Seiden [4]. Can we give a stronger
lower bound using some other construction?
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Problem Definition

One of the most fundamental algorithmic prob-
lems on trees is how to find the lowest common
ancestor (LCA) of a pair of nodes. The LCA of
nodes u and v in a tree is the shared ancestor
of u and v that is located farthest from the

root. More formally, the lowest common ancestor
(LCA) problem is:

Preprocess: A rooted tree T having n nodes.
Query: For nodes u and v of tree T , query

LCAT .u; v/ returns the least common ancestor
of u and v in T , that is, it returns the node
farthest from the root that is an ancestor of
both u and v. (When the context is clear, we
drop the subscript T on the LCA.)

The goal is to optimize both the preprocessing
time and the query time. We will therefore refer
to the running time of an algorithm with prepro-
cessing time TP .N / and query time of TQ.N / as
having run time hTP .N /; TQ.N /i.

The LCA problem has been studied inten-
sively both because it is inherently beautiful al-
gorithmically and because fast algorithms for
the LCA problem can be used to solve other
algorithmic problems.

Key Results

In [7], Harel and Tarjan showed the surprising re-
sult that LCA queries can be answered in constant
time after only linear preprocessing of the tree
T . This result was simplified over the course of
several papers, and current solutions are based on
combinations of four themes:

1. The LCA problem is equivalent to the
range minimum query (RMQ) problem,
defined below, in that they can be reduced
to each other in linear preprocessing time and
constant query time. Thus, an optimal solution
for one yields an optimal solution for the
other.

2. The LCA of certain trees, notably complete
binary trees and trees that are linear paths,
can be computed quickly. General trees can
be decomposed into special trees. Similarly,
the RMQ of certain classes of arrays can be
computed quickly.

3. Nodes can be labeled to capture information
about their position in the tree. These labels
can be used to compute the label of the LCA
of two nodes.
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Harel and Tarjan [7] showed that LCA
computation has a lower bound of ˝.log log n/

on a pointer machine. Therefore, the fast
algorithms presented here will all require
operations on O.log n/-bit words. We will see
how to use this assumption not only to make
queries O.1/ time but to improve preprocessing
from O.n log n/ to O.n/ via Four Russians
encoding of small problem instances.

Below, we explore each of these themes for
LCA computation.

RMQ

The range minimum query (RMQ) problem,
which seems quite different from the LCA
problem, is, in fact, intimately linked. It is defined
as:

Preprocess: A length n array A of numbers.
Query: For indices i and j between 1 and n,

query RMQA.x; y/ returns the index of the
smallest element in the subarray AŒi : : : j �.
(When the context is clear, we drop the sub-
script A on the RMQ.)

The following two lemmas give linear reduc-
tions between LCA and RMQ.

Reducing LCA to RMQ
Lemma 1 ([3]) If there is a hf .n/; g.n/i-time
solution for RMQ, then there is a hf .2n � 1/C

O.n/; g.2n � 1/CO.1/i-time solution for
LCA.

Proof Let T be the input tree. The reduction
relies on one key observation:

Observation 1 The LCA of nodes u and v is the
shallowest node encountered between the visits to
u and to v during a depth-first search traversal
of T .

Therefore, the reduction proceeds as follows.

1. Let array EŒ1; : : : ; 2n � 1� store the nodes
visited in an Euler tour of the tree T . (The
Euler tour of T is the sequence of nodes we
obtain if we write down the label of each node
each time it is visited during a DFS. The array
of the Euler tour has length 2n�1 because we

start at the root and subsequently output a node
each time we traverse an edge. We traverse
each of the n � 1 edges twice, once in each
direction.) That is, EŒi� is the label of the i th
node visited in the Euler tour of T .

2. Let the level of a node be its distance from the
root. Compute the Level Array LŒ1; : : : ; 2n �

1�, where LŒi� is the level of node EŒi� of the
Euler tour.

3. Let the representative of a node in an Euler
tour be the index of the first occurrence of the
node in the tour (In fact, any occurrence of i

will suffice to make the algorithm work, but
we consider the first occurrence for the sake
of concreteness.); formally, the representative
of i is argminj fEŒj � D ig. Compute the
Representative Array RŒ1; : : : ; n�, where RŒi�

is the index of the representative of node i .

Each of these three steps takes O.n/

time, yielding O.n/ total time. To compute
LCAT .x; y/, we note the following:

– The nodes in the Euler tour between the first
visits to u and to v are EŒRŒu�; : : : ; RŒv�� (or
EŒRŒv�; : : : ; RŒu��).

– The shallowest node in this subtour is at index
RMQL.RŒu�; RŒv�/, since LŒi� stores the level
of the node at EŒi� and the RMQ will thus
report the position of the node with minimum
level.

– The node at this position is EŒRMQL.RŒu�;

RŒv�/�, which is thus the output of LCAT .u; v/,
by Observation 1.

Thus, we can complete our reduction by prepro-
cessing Level Array L for RMQ. As promised,
L is an array of size 2n � 1, and building it takes
time O.n/. The total preprocessing is f .2n�1/C

O.n/. To calculate the query time, observe that an
LCA query in this reduction uses one RMQ query
in L and three array references at O.1/ time each,
for a total of g.2n�1/CO.1/ time, and we have
completed the proof of the reduction. �

Reducing RMQ to LCA
Lemma 2 ([6]) If there is a hf .n/; f .1/i solu-
tion for LCA, then there is a hf .n/CO.n/; g.n/

CO.1/i solution for RMQ.
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Proof Let AŒ1; : : : ; n� be the input array.
The Cartesian tree of an array is defined as fol-

lows. The root of a Cartesian tree is the minimum
element of the array, and the root is labeled with
the position of this minimum. Removing the root
element splits the array into two pieces. The left
and right children of the root are the recursively
constructed Cartesian trees of the left and right
subarrays, respectively.

A Cartesian tree can be built in linear time
as follows. Suppose Ci is the Cartesian tree of
AŒ1; : : : ; i �. To build CiC1, we notice that node
iC1 will belong to the rightmost path of CiC1, so
we climb up the rightmost path of Ci until finding
the position where i C 1 belongs. Each compar-
ison either adds an element to the rightmost path
or removes one, and each node can only join the
rightmost path and leave it once. Thus, the total
time to build Cn is O.n/.

The reduction is as follows.

– Let C be the Cartesian tree of A. Recall that
we associate with each node in C the index i

corresponding to AŒi�.

Claim RMQA.i; j / D LCAC .i; j /.

Proof Consider the least common ancestor, k, of
i and j in the Cartesian tree C . In the recursive
description of a Cartesian tree, k is the first
node that separates i and j . Thus, in the array
A, element AŒk� is between elements AŒi� and
AŒj �. Furthermore, AŒk� must be the smallest
such element in the subarray AŒi; : : : ; j � since,
otherwise, there would be a smaller element k0 in
AŒi; : : : ; j � that would be an ancestor of k in C ,
and i and j would already have been separated
by k0.

More concisely, since k is the first element
to split i and j , it is between them because it
splits them, and it is minimal because it is the first
element to do so. Thus, it is the RMQ. �

We can complete our reduction by preprocess-
ing the Cartesian tree C for LCA. Tree C takes
time O.n/ to build, and because C is an n node
tree, LCA preprocessing takes f .n/ time, for a
total of f .n/C O.n/ time. The query then takes
f .n/ C O.1/, and we have completed the proof
of the reduction. �

An Algorithm for RMQ
Observe that RMQ has a solution with complex-
ity hO.n2/; O.1/i: build a table storing answers
to all of the

�
n
2

�
possible queries. To achieve

O.n2/ preprocessing rather than the O.n3/ naive
preprocessing, we apply a trivial dynamic pro-
gram. Notice that answering an RMQ query now
requires just one array lookup.

To improve the hO.n2/; O.1/i-time brute-
force table algorithm for RMQ to hO.n log n/;

O.1/i, precompute the result of all queries with
a range size that is a power of two. That is, for
every i between 1 and n and every j between
1 and log n, find the minimum element in the
block starting at i and having length 2j , that is,
compute MŒi; j � D argminkDi :::iC2j �1fAŒk�g.
Table M therefore has size O.n log n/, and it can
be filled in time O.n log n/ by using dynamic
programming. Specifically, find the minimum
in a block of size 2j by comparing the two
minima of its two constituent blocks of size
2j �1. More formally, MŒi; j � D MŒi; j � 1� if
AŒMŒi; j � 1�� � MŒi C 2j �1 � 1; j � 1�, and
MŒi; j � DMŒi C 2j �1 � 1; j � 1� otherwise.

How do we use these blocks to compute an
arbitrary RMQ.i; j /? We select two overlapping
blocks that entirely cover the subrange: let 2k be
the size of the largest block that fits into the range
from i to j , that is, let k D blog.j � i/c. Then
RMQ.i; j / can be computed by comparing the
minima of the following two blocks: i to iC2k�1

(M.i; k/) and j �2kC1 to j (M.j �2kC1; k/).
These values have already been computed, so we
can find the RMQ in constant time.

This gives the Sparse Table (ST) algorithm for
RMQ, with complexity hO.n log n/; O.1/i.

LCA on Special Trees and RMQ on
Special Arrays

In this section, we consider special cases of LCA
and RMQ that have fast solutions. These can be
used to build optimal algorithms.

Paths and Balanced Binary Trees
If a tree is a path, that is, every node has outdegree
1, then computing the LCA is quite trivial. In that
case, the depth of each node can be computed in
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O.n/ time, and the LCA of two nodes is the node
with smaller depth.

For a complete binary tree, the optimal algo-
rithm is somewhat more involved. In this case,
each node can be assigned a label of length
O.log n/ from which the LCA can be computed
in constant time. This labeling idea can be ex-
tended to general trees, as we will see in sec-
tion “Labeling Schemes.”

Consider the following node labeling: for any
node v of depth d.v/, the label L.v/ is obtained
by assigning to the first d.v/ bits of the code the
left-right path from the root, where a left edge is
coded with a 0 and a right edge is coded with a 1.
The d.v/C1st bit is 1, and all subsequent bits, up
to 1C log n are 0.

Now let x D L.u/ XOR L.v/ and let w D
LCA.u; v/. The first d.w/ bits of x are 0, since
u and v share the same path until then. The next
bit differs so the d.w/ C 1st bit of x is the first
bit that is 1. Thus, by computing blog xc, we find
the depth of w. Then we can construct the label
of w by taking the first d.w/ bits of L.u/, then
a 1 at position d.w/ C 1, and then 0s. All these
operations take constant time, and all labels can
be computed in linear time.

The first optimal LCA algorithm, by Harel and
Tarjan [7], decomposed arbitrary trees into paths
and balanced binary trees, using optimal labeling
algorithms for each part. Such labeling schemes
have been used as components in many of the
subsequent algorithms. It turns out that there is an
O.log n/-bit labeling scheme for arbitrary trees
where the LCA can be computed in constant time
just from labels. This algorithm will be discussed
in section “Labeling Schemes.”

An hO.n/; O.1/i-Time Algorithm for
˙1RMQ
We have already seen an hO.n log n/; O.1/i-
time algorithm for RMQ, which thus yields an
LCA algorithm of the same complexity. However,
it is possible to do better, via a simple observa-
tion, plus the Four Russians technique.

Consider the RMQ problem generated by the
reduction given in Lemma 1. The level tour of a
tree is not an arbitrary instance of RMQ. Rather,
we note that all entries are integers and adjacent

entries differ by one. We call this special case
˙1RMQ.

If we can show an hO.n/; O.1/i-time algo-
rithm for ˙1RMQ, we directly get an algorithm
of the same complexity for LCA, by Lemma 1,
but we also get an algorithm of the same com-
plexity for general RMQ by Lemma 2. Thus, to
solve an arbitrary RMQ problem optimally, first
compute the Cartesian tree and then the Euler and
Level tours, thus reducing an arbitrary RMQ to a
˙1RMQ in linear time.

In order to improve the preprocessing of
˙1RMQ, we will use a table lookup technique
to precompute answers on small subarrays,
for a log-factor speedup. To this end, partition
A into blocks of size log n

2
. Define an array

A0Œ1; : : : ; 2n= log n�, where A0Œi � is the minimum
element in the i th block of A. Define an equal size
array B , where BŒi� is a position in the i th block
in which value A0Œi � occurs. Recall that RMQ
queries return the position of the minimum and
that the LCA to RMQ reduction uses the position
of the minimum, rather than the minimum itself.
Thus, we will use array B to keep track of where
the minima in A0 came from.

The ST algorithm runs on array A0 in time
hO.n/; O.1/i. Having preprocessed A0 for RMQ,
consider how we answer any query RMQ.i; j / in
A. The indices i and j might be in the same
block, so we have to preprocess each block to
answer RMQ queries. If i < j are in different
blocks, then we can answer the query RMQ.i; j /

as follows. First compute the values:

1. The minimum from i forward to the end of its
block

2. The minimum of all the blocks between i ’s
block and j ’s block

3. The minimum from the beginning of j ’s block
to j

The query will return the position of the mini-
mum of the three values computed. The second
minimum is found in constant time by an RMQ
on A0, which has been preprocessed using the ST
algorithm. But we need to know how to answer
range minimum queries inside blocks to compute
the first and third minima and thus to finish off the
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algorithm. Thus, the in-block queries are needed
whether i and j are in the same block or not.

Therefore, we focus now only on in-block
RMQs. If we simply performed RMQ prepro-
cessing on each block, we would spend too much
time in preprocessing. If two blocks were iden-
tical, then we could share their preprocessing.
However, it is too much to hope for that blocks
would be so repeated. The following observation
establishes a much stronger shared-preprocessing
property.

Observation 2 If two arrays XŒ1; : : : ; k� and
Y Œ1; : : : ; k� differ by some fixed value at each
position, that is, there is a c such that XŒi� D

Y Œi � C c for every i , then all RMQ answers will
be the same for X and Y . In this case, we can use
the same preprocessing for both arrays.

Thus, we can normalize a block by subtracting
its initial offset from every element. We now use
the ˙1 property to show that there are very few
kinds of normalized blocks.

Lemma 3 There are O.
p

n/ kinds of normalized
blocks.

Proof Adjacent elements in normalized blocks
differ by C1 or �1. Thus, normalized blocks are
specified by a˙1 vector of length .1=2�log n/�1.
There are 2.1=2	log n/�1 D O.

p
n/ such vectors.�

We are now basically done. We create O.
p

n/

tables, one for each possible normalized block.
In each table, we put all .

log n
2

/2 D O.log2 n/

answers to all in-block queries. This gives a total
of O.

p
n log2 n/ total preprocessing of normal-

ized block tables and O.1/ query time. Finally,
compute, for each block in A, which normalized
block table it should use for its RMQ queries.
Thus, each in-block RMQ query takes a single
table lookup.

Overall, the total space and preprocessing used
for normalized block tables and A0 tables is O.n/

and the total query time is O.1/. This gives an
optimal algorithm for LCA and RMQ. This algo-
rithm was first presented as a PRAM algorithm
by Berkman et al. [3]. Although this algorithm
is quite simple, and easily implementable, for
many years after its publication, LCA computa-

tion was still considered to be too complicated
to implement. The algorithm presented here is
somewhat streamlined compared to Berkman et
al.’s algorithm, because they had the added goal
of making a parallelizable algorithm. Thus, for
example, they used two levels of encoding to
remove the log factor from the preprocessing,
with the first level breaking the RMQ into blocks
of size log n and in the second level breaking
the blocks up into mini-blocks of size log log n.
Similarly, the sparse table algorithm was some-
what different and required binary-tree LCA as a
subroutine.

It is possible, even probably, that the slight
complexities of the PRAM version of this al-
gorithm obscured its elegance. This theory was
tested by Bender and Farach-Colton [2], who
presented the sequential version of the same algo-
rithm with the simplified Sparse Table and RMQ
blocking scheme presented here, with the goal of
establishing the practicality of LCA computation.
This seems to have done the trick, and many
variants and implementations of this algorithm
now exist.

Labeling Schemes

We have already seen a labeling scheme that
allows for the fast computation of LCA on com-
plete binary trees. But labels can be used to solve
the LCA problem on arbitrary trees, as shown by
Alstrup et al. [1].

To be specific, the goal is to assign to every
node an O.log n/-bit label so that the label of the
LCA of two nodes can be computed in constant
time from their labels. We have seen how to do
this for a complete binary tree, but the problem
there was simplified by the fact that the depth of
such a tree is O.log n/ and the branching factor
is two. Here, we consider the general case of
arbitrary depth and degree.

Begin by decomposing the tree into heavy
paths. To do so, let the weight w.v/ of any
node v be the number of nodes in the subtree
rooted at that node. All edges between a node
and its heaviest child are called heavy edges
and all other edges are called light edges.
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Ties are broken arbitrarily. Note that there
are O.log n/ light edges on any root-leaf
path.

A path to a node can be specified by alternately
specifying how far one traverses a heavy path
before exiting to a light edge and the rank of
the light edge at the point of exit. Each such
code takes O.log n/ bits yielding O.log2 n/ bits
in total.

To reduce the number of bits to O.log n/,
Alstrup et al. applied alphabetic codes, which
preserve lexicographic ordering but are of vari-
able length. In particular, they used a code with
the following properties:

– Let Y D y1; y2; : : : ; yk be a sequence of
integers with

Pk
iD1 yi D s.

– There exists an alphabetic sequence B D

b1; b2; : : : ; bk for Y such that, for all i , jbi j �

dlog se � blog yic.

The idea now is that large trees get short
codes and small trees get large codes. By cleverly
building alphabetic codes that depend on the size
of the trees, the code lengths telescope, giving a
final code of length O.log n/. We refer the reader
to the paper or to the excellent presentation by
Bille [4] for details.

Succinct Representations

There have been several extensions of the
LCA/RMQ problem. The one that has received
the most attention is that of succinct structures
to compute the LCA or RMQ. These structures
are succinct because they use O.n/ bits of extra
space, as opposed to the structures above, which
use ˝.n/ words of memory, or ˝.n log n/ bits.

The first succinct solution for LCA was due
to Sadakane [10], who gave an optimal LCA al-
gorithm using 2nCO.n.log log n/2= log n/ bits.
The main approach of this algorithm is to replace
the Sparse Table algorithm with a more bit-
efficient variant.

The first succinct solution for RMQ was also
due to Sadakane [9]. His algorithm takes 4n C

o.n/ bits. The main idea, once again, follows the

Sparse Table algorithm. By using a ternary Carte-
sian tree which stores values not in internal nodes
but in leaves, the preorders of nodes coincide the
orders of the values.

The current best solution is by Fischer [5],
who uses 2n C o.n/ bits, which is shown to be
optimal up to lower-order terms. The structure
using the least known o.n/-bit term [8] uses
2n C O.n= logc n/ bits, for any constant c. All
the succinct solutions are O.1/ time.
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Problem Definition

Linear and integer programs have played a crucial
role in the theory of approximation algorithms for
combinatorial optimization problems. While they
have also been central in identifying polynomial
time solvable problems, it is only recently that
these tools have been put to use in designing exact
algorithms for NP-complete problems. Following
the paradigm of above-guarantee parameteriza-
tion in fixed-parameter tractability, these efforts
have focused on designing algorithms where the
exponential component of the running time de-
pends only on the excess of the solution above
the optimum value of a linear program for the
problem.

Method Description
The linear program obtained from a given integer
linear program (ILP) by relaxing the integrality
conditions on the variables is called the stan-
dard relaxation of the ILP or the standard LP.
Similarly, the linear program obtained from the
ILP by restricting the domain of the variables
to the set of all half integers is called the half-
integral relaxation of the ILP or the half-integral

LP. The standard LP is said to have a half-
integral optimum if the optimum values of the
standard relaxation and half-integral relaxation
coincide.

The VERTEX COVER problem provides one of
the simplest illustrations of this method. In this
problem, the objective is to find a minimum-sized
subset of vertices whose removal makes a given
graph edgeless. In the well-known integer lin-
ear programming formulation (ILP) for VERTEX

COVER, given a graph G, a feasible solution is
defined as a function x W V ! f0; 1g satisfying
the edge constraints x.u/ C x.v/ � 1 for every
edge .u; v/. The objective of the linear program is
to minimize ˙u2V x.u/ over all feasible solutions
x. The value of the optimum solution to this ILP
is denoted by vc.G/. In the standard relaxation
of the above ILP, the constraint x.v/ 2 f0; 1g is
replaced with x.v/ � 0, for all v 2 V . For a
graph G, this relaxation is denoted by LPVC(G),
and the minimum value of LPVC(G) is denoted
by vc�.G/.

It is known that LPVC(G) has a half-integral
optimum [10] and that LPVC(G) is persistent
[11], that is, if a variable is assigned 0 (respec-
tively 1) in an optimum solution to the stan-
dard LP, then it can be discarded from (respec-
tively included into) an optimum vertex cover
of G. Based on the persistence of LPVC(G),
a polynomial time preprocessing procedure for
VERTEX COVER immediately follows. More pre-
cisely, as long as there is an optimum solu-
tion to the standard LP which assigns 0 or 1
to a vertex of G, one may discard or include
this vertex in the optimum solution. When this
procedure cannot be executed any longer, an
arbitrary vertex of G is selected, and the al-
gorithm branches into 2 exhaustive cases based
on this vertex being included or excluded in an
optimum vertex cover of G. Standard analysis
shows that this is an algorithm running in time
O.4.vc.G/�vc�.G//jGjO.1//.

Key Results

This method was first used in the context of
fixed-parameter tractability by Guillemot [5]
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who used it to give FPT algorithms for path-
transversal and cycle-transversal problems.
Subsequently, Cygan et al. [4] improved upon
this result to give an FPT algorithm for the
MULTIWAY CUT problem parameterized above
the LP value. In this problem, the objective is
to find a smallest set of vertices which pair-wise
separates a given subset of vertices of a graph. As
a consequence of this algorithm, they were able
to obtain the current fastest FPT algorithm for
MULTIWAY CUT parameterized by the solution
size.

Theorem 1 ([4]) There is an algorithm for
MULTIWAY CUT running in time O.2kjGjO.1//,
where k is the size of the solution.

Following this work, Narayanaswamy
et al. [9] and Lokshtanov et al. [8] considered the
VERTEX COVER problem and built upon these
methods with several additional problem-specific
steps to obtain improved FPT algorithms for
several problems, with the most notable among
them being the ODD CYCLE TRANSVERSAL

problem – the problem of finding a smallest set
of vertices to delete in order to obtain a bipartite
graph. These results were the first improvements
over the very first FPT algorithm for this problem
given by Reed, Smith, and Vetta [12].

Theorem 2 ([8]) There is an algorithm for
ODD CYCLE TRANSVERSAL running in time
O.2:32k jGjO.1//, where k is the size of the
solution.

Iwata et al. [7] applied this method to
several problems to improve the polynomial
dependence of the running times on the input
size. Using network-flow-based linear time
algorithms for solving the half-integral Vertex
Cover LP (LPVC), they obtained an FPT
algorithm for ODD CYCLE TRANSVERSAL

with a linear dependence on the input size.
Most recently, using tools from the theory of
constraint satisfaction, Wahlstrom [13] extended
this approach to a much broader class of
problems with half-integral LPs and obtained
improved FPT algorithms for a number of
problems including node-deletion UNIQUE

LABEL COVER and GROUP FEEDBACK VERTEX

SET. The UNIQUE LABEL COVER problem plays
a central role in the theory of approximation
and was studied from the point of view of
parameterized complexity by Chitnis et al. [2].
The GROUP FEEDBACK VERTEX SET problem
is a generalization of the classical FEEDBACK

VERTEX SET problem. The fixed-parameter
tractability of this problem was proved in [5]
and [3].

Theorem 3 ([2]) There is an algorithm for
node-deletion UNIQUE LABEL COVER running
in time O.j˙ j2kjGjO.1// and an algorithm for
GROUP FEEDBACK VERTEX running in time
O.4kjGjO.1//. In the first case, ˙ denotes the
size of the alphabet, and in either case, k denotes
the size of the solution.

Applications

This method relies crucially on the half integral-
ity of a certain LP for the problem at hand. The
most well-known problems with this property are
VERTEX COVER, MULTIWAY CUT, and certain
problems for which Hochbaum [6] defined a par-
ticular kind of ILPs, referred to as IP2. However,
the work of Wahlstrom [13] lifts this approach to
a more general class of problems by interpreting
a half-integral relaxation as a polynomial-time
solvable problem on the discrete search space of
f0; 1

2
; 1g.

Open Problems

A primary challenge here is to build upon these
LP-based tools to design an FPT algorithm for
ODD CYCLE TRANSVERSAL with a provably
optimal dependence on the parameter under ap-
propriate complexity theoretic assumptions.

Experimental Results

Experimental results comparing algorithms for
VERTEX COVER based on this method with other
state-of-the art empirical methods are given in
[1].
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Problem Definition

Error-correcting codes are fundamental tools
used to transmit digital information over
unreliable channels. Their study goes back to the
work of Hamming and Shannon, who used them
as the basis for the field of information theory.
The problem of decoding the original information
up to the full error-correcting potential of the
system is often very complex, especially for
modern codes that approach the theoretical limits
of the communication channel.

LP decoding [4, 5, 8] refers to the appli-
cation of linear programming (LP) relaxation
to the problem of decoding an error-correcting
code. Linear programming relaxation is a stan-
dard technique in approximation algorithms and
operations research, and is central to the study of
efficient algorithms to find good (albeit subopti-
mal) solutions to very difficult optimization prob-
lems [13]. LP decoders have tight combinatorial
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characterizations of decoding success that can be
used to analyze error-correcting performance.

The codes for which LP decoding has received
the most attention are low-density parity-check
(LDPC) codes [9], due to their excellent error-
correcting performance. The LP decoder is par-
ticularly attractive for analysis of these codes
because the standard message-passing algorithms
such as belief propagation (see [15]) used for
decoding are often difficult to analyze, and indeed
the performance of LP decoding is closely tied to
these methods.

Error-Correcting Codes
and Maximum-Likelihood Decoding
This section begins with a very brief overview of
error-correcting codes, sufficient for formulating
the LP decoder. Some terms are not defined
for space reasons; for a full treatment of error-
correcting codes in context, the reader is referred
to textbooks on the subject (e.g., [11]).

A binary error-correcting code is a subset
C � f0; 1gn. The rate of the code C is
r D log.jC j/=n. A linear binary code is a linear
subspace of f0; 1gn. A codeword is a vector
y 2 C . Note that 0n is always a codeword of
a linear code, a fact that will be useful later. When
the code is used for communication, a codeword
Py 2 C is transmitted over a noisy channel,
resulting in some received word Oy 2 ˙n, where
˙ is some alphabet that depends on the channel
model. Generally in LP decoding a memoryless,
symmetric channel is assumed. One common
such channel is the binary symmetric channel
(BSC) with parameter p, which will be referred
to as BSCp , where 0 < p < 1=2. In the BSCp ,
the alphabet is ˙ D f0; 1g, and for each i, the
received symbol Oyi is equal to Pyi with probability
p, and Oyi D 1 � Pyi otherwise. Although LP
decoding works with more general channels,
this chapter will focus on the BSCp .

The maximum-likelihood (ML) decoding
problem is the following: given a received
word Oy 2 f0; 1gn, find the codeword y� 2 C

that is most likely to have been sent over the
channel. Defining the vector � 2 f�1;C1gn

where �i D 1 � 2 Oyi , it is easy to show:

y� D arg min
y2C

X

i

�i yi : (1)

The complexity of the ML decoding problem de-
pends heavily on the code being used. For simple
codes such as a repetition code C D f0n; 1ng, the
task is easy. For more complex (and higher-rate)
codes such as LDPC codes, ML decoding is NP-
hard [1].

LP Decoding
Since ML decoding can be very hard in general,
one turns to sub-optimal solutions that can be
found efficiently. LP decoding, instead of trying
to solve (1), relaxes the constraint y 2 C , and
instead requires that y 2 P for some succinctly
describable linear polytope P � Œ0; 1�n, resulting
in the following linear program:

yLP D arg min
y2P

nX

iD1

�i yi : (2)

It should be the case that the polytope includes all
the codewords, and does not include any integral
non-codewords. As such, a polytope P is called
proper for code C if P \ f0; 1gn D C:

The LP decoder works as follows. Solve the
LP in (2) to obtain yLP 2 Œ0; 1�n. If yLP is integral
(i.e., all elements are 0 or 1), then output yLP.
Otherwise, output “error”. By the definition of
a proper polytope, if the LP decoder outputs
a codeword, it is guaranteed to be equal to the
ML codeword y� . This fact is known as the ML
certificate property.

Comparing with ML Decoding
A successful decoder is one that outputs the orig-
inal codeword transmitted over the channel, and
so the quality of an algorithm is measured by the
likelihood that this happens. (Another common
non-probabilistic measure is the worst-case per-
formance guarantee, which measures how many
bit-flips an algorithm can tolerate and still be
guaranteed to succeed.) Note that y� is the one
most likely to be the transmitted codeword Py, but
it is not always the case that y� D Py. However, no
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LP Decoding, Fig. 1
A decoding polytope P
(dotted line) and the
convex hull C (solid line)
of the codewords Py, y1,
y2, and y3. Also shown
are the four possible cases
(a–d) for the objective
function, and the normal
cones to both P and C

decoder can perform better than an ML decoder,
and so it is useful to use ML decoding as a basis
for comparison.

Figure 1 provides a geometric perspective of
LP decoding, and its relation to exact ML de-
coding. Both decoders use the same LP objec-
tive function, but over different constraint sets.
In exact ML decoding, the constraint set is the
convex hull C of codewords (i.e., the set of points
that are convex combinations of codewords from
C), whereas relaxed LP decoding uses the larger
polytope P. In Fig. 1, the four arrows labeled
(a)–(d) correspond to different “noisy” versions
of the LP objective function. (a) If there is very
little noise, then the objective function points to
the transmitted codeword Py, and thus both ML
decoding and LP decoding succeed, since both
have the transmitted codeword Py as the optimal
point. (b) If more noise is introduced, then ML
decoding succeeds, but LP decoding fails, since
the fractional vertex y0 is optimal for the relax-
ation. (c) With still more noise, ML decoding
fails, since y3 is now optimal; LP decoding still
has a fractional optimum y0, so this error is in
some sense “detected”. (d) Finally, with a lot of
noise, both ML decoding and LP decoding have
y3 as the optimum, and so both methods fail
and the error is “undetected”. Note that in the
last two cases (c, d), when ML decoding fails,
the failure of the LP decoder is in some sense
the fault of the code itself, as opposed to the
decoder.

Normal Cones and C-Symmetry
The (negative) normal cones at Py (also called the
fundamental cone [10]) is defined as follows:

N Py.P/D
˚
�2Rn W

X

i

�i .yi� Pyi /�0 for all y2P


;

N Py.C/D
˚
�2Rn W

X

i

�i .yi� Pyi /�0 for all y2C


:

Note that N Py.P/ corresponds to the set of cost
vectors � such that Py is an optimal solution
to (2). The set N Py.C/ has a similar interpretation
as the set of cost vectors � for which Py is the
ML codeword. Since P 
 C, it is immediate
from the definition that Ny.C/ � Ny.P/ for all
y 2 C . Fig. 1 shows these two cones and their
relationship.

The success probability of an LP decoder is
equal to the total probability mass of N Py.P/,
under the distribution on cost vectors defined
by the channel. The success probability of ML
decoding is similarly related to the probability
mass in the normal cone Ny.C/. Thus, the dis-
crepancy between the normal cones of P and C
is a measure of the gap between exact ML and
relaxed LP decoding.

This analysis is specific to a particular trans-
mitted codeword Py, but one would like to apply it
in general. When dealing with linear codes, for
most decoders one can usually assume that an
arbitrary codeword is transmitted, since the de-
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cision region for decoding success is symmetric.
The same holds true for LP decoding (see [4] for
proof), as long as the polytope P is C-symmetric,
defined as follows:

Definition 1 A proper polytope P for the
binary code C is C-symmetric if, for all
y 2 P and Py 2 C , it holds that y0 2 P, where
y0

i D jyi � Pyi j.

Using a Dual Witness to Prove Error
Bounds
In order to prove that LP decoding succeeds,
one must show that Py is the optimal solution to
the LP in (2). If the code C is linear, and the
relaxation is proper and C-symmetric, one can
assume that Py D 0n, and then show that 0n is
optimal. Consider the dual of the decoding LP
in (2). If there is a feasible point of the dual LP
that has the same cost (i.e., zero) as the point 0n

has in the primal, then 0n must be an optimal
point of the decoding LP. Therefore, to prove that
the LP decoder succeeds, it suffices to exhibit
a zero-cost point in the dual. (Actually, since the
existence of the zero-cost dual point only proves
that 0n is one of possibly many primal optima,
one needs to be a bit more careful, a minor
issue deferred to more complete treatments of this
material.)

Key Results

LP decoders have mainly been studied in the
context of Low-Density Parity-Check codes [9],
and their generalization to expander codes [12].
LP decoders for Turbo codes [2] have also been
defined, but the results are not as strong. This
summary of key results gives bounds on the word
error rate (WER), which is the probability, over
the noise in the channel, that the decoder does
not output the transmitted word. These bounds
are relative to specific families of codes, which
are defined as infinite set of codes of increasing
length whose rate is bounded from below by
some constant. Here the bounds are given in
asymptotic form (without constants instantiated),
and only for the binary symmetric channel.

Many other important results that are not listed
here are known for LP decoding and related
notions. Some of these general areas are surveyed
in the next section, but there is insufficient space
to reference most of them individually; the reader
is referred to [3] for a thorough bibliography.

Low-Density Parity-Check Codes
The polytope P for LDPC codes, first defined
in [4, 8, 10], is based on the underlying Tanner
graph of the code, and has a linear number of
variables and constraints. If the Tanner graph
expands sufficiently, it is known that LP decoding
can correct a constant fraction of errors in the
channel, and thus has an inverse exponential error
rate. This was proved using a dual witness:

Theorem 1 ([6]) For any rate r > 0, there is
a constant � > 0 such that there exists a rate
r family of low-density parity-check codes with
length n where the LP decoder succeeds as long
as at most �n bits are flipped by the channel. This
implies that there exists a constant �0 > 0 such
that the word error rate under the BSCp with
p < �0 is at most 2�˝.n/.

Expander Codes
The capacity of a communication channel bounds
from above the rate one can obtain from a family
of codes and still get a word error rate that goes
to zero as the code length increases. The notation
Cp is used to denote the capacity of the BSCp .
Using a family of codes based on expanders [12],
LP decoding can achieve rates that approach
capacity. Compared to LDPC codes, however,
this comes at the cost of increased decoding
complexity, as the size of the LP is exponential
in the gap between the rate and capacity.

Theorem 2 ([7]) For any p > 0, and any rate
r < Cp , there exists a rate r family of expander
codes with length n such that the word error
rate of LP decoding under the BSCp is at most
2�˝.n/.

Turbo Codes
Turbo codes [2] have the advantage that they can
be encoded in linear time, even in a streaming
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fashion. Repeat-accumulate codes are a simple
form of Turbo code. The LP decoder for Turbo
codes and their variants was first defined in [4, 5],
and is based on the trellis structure of the com-
ponent convolutional codes. Due to certain prop-
erties of turbo codes it is impossible to prove
bounds for turbo codes as strong as the ones for
LDPC codes, but the following is known:

Theorem 3 ([5]) There exists a rate 1=2 � o.1/

family of repeat-accumulate codes with length n,
and a constant � > 0, such that under the BSCp

with p < �, the LP decoder has a word error rate
of at most n�˝.1/.

Applications

The application of LP decoding that has received
the most attention so far is for LDPC codes. The
LP for this family of codes not only serves as
an interesting alternative to more conventional
iterative methods [15], but also gives a useful
tool for analyzing those methods, an idea first
explored in [8, 10, 14]. Iterative methods such
as belief propagation use local computations on
the Tanner graph to update approximations of the
marginal probabilities of each code bit. In this
type of analysis, the vertices of the polytopeP are
referred to as pseudocodewords, and tend to coin-
cide with the fixed points of this iterative process.
Other notions of pseudocodeword-like structures
such as stopping sets are also known to coincide
with these polytope vertices. Understanding these
structures has also inspired the design of new
codes for use with iterative and LP decoding.
(See [3] for a more complete bibliography of this
work).

The decoding method itself can be extended
in many ways. By adding redundant informa-
tion to the description of the code, one can de-
rive tighter constraint sets to improve the error-
correcting performance of the decoder, albeit at
an increase in complexity. Adaptive algorithms
that try to add constraints “on the fly” have also
been explored, using branch-and-bound or other
techniques. Also, LP decoding has inspired the
use of other methods from optimization theory in

decoding error-correcting codes. (Again, see [3]
for references.)

Open Problems

The LP decoding method gives a simple, efficient
and analytically tractable approach to decoding
error-correcting codes. The results known to this
point serve as a proof of concept that strong
bounds are possible, but there are still important
questions to answer. Although LP decoders can
achieve capacity with decoding time polynomial
in the length of the code, the complexity of the
decoder still depends exponentially on the gap
between the rate and capacity (as is the case
for all other known provably efficient capacity-
achieving decoders). Decreasing this dependence
would be a major accomplishment, and perhaps
LP decoding could help. Improving the fraction
of errors correctable by LP decoding is also an
important direction for further research.

Another interesting question is whether there
exist constant-rate linear-distance code families
for which one can formulate a polynomial-sized
exact decoding LP. Put another way, is there
a constant-rate linear-distance family of codes
whose convex hulls have a polynomial number
of facets? If so, then LP decoding would be
equivalent to ML decoding for this family. If not,
this is strong evidence that suboptimal decoding
is inevitable when using good codes, which is
a common belief.

An advantage to LP decoding is the ML cer-
tificate property mentioned earlier, which is not
enjoyed by most other standard suboptimal de-
coders. This property opens up the possibility for
a wide range of heuristics for improving decoding
performance, some of which have been analyzed,
but largely remain wide open.

LP decoding has (for the most part) only
been explored for LDPC codes under memoryless
symmetric channels. The LP for turbo codes has
been defined, but the error bounds proved so
far are not a satisfying explanation of the ex-
cellent performance observed in practice. Other
codes and channels have gotten little, if any,
attention.
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Problem Definition

Majority rule is arguably the best decision mech-
anism for public decision-making, which is em-
ployed not only in public management but also in
business management. The concept of majority
equilibrium captures such a democratic spirit in
requiring that no other solutions would please
more than half of the voters in comparison to
it. The work of Chen, Deng, Fang, and Tian
[1] considers a public facility location problem
decided via a voting process under the majority
rule on a discrete network. This work distin-
guishes itself from previous work by applying

the computational complexity approach to the
study of majority equilibrium. For the model with
a single public facility located in trees, cycles,
and cactus graphs, it is shown that the majority
equilibrium can be found in linear time. On the
other hand, when the number of public facili-
ties is taken as the input size (not a constant),
finding a majority equilibrium is shown to be
NP-hard.

Consider a network G D ..V; ¨/; .E; l// with
vertex and edge- weight functions ¨ W V ! RC
and l W E ! RC, respectively. Each vertex i 2
V represents a community, and ¨.i/ represents
the number of voters that reside there. For each
e 2 E, l.e/ > 0 represents the length of the road
e D .i; j / connecting two communities i and j .
For two vertices i; j 2 V , the distance between
i and j , denoted by dG.i; j /, is the length of
a shortest path joining them. The location of
a public facility such as a library, community
center, etc., is to be determined by the public
via a voting process under the majority rule.
Here, each member of the community desires to
have the public facility close to himself, and the
decision has to be agreed upon by a majority
of the voters. Denote the vertex set of G by
V D fv1; v2; : : : ; vng. Then each vi 2 V has a
preference order�i on V induced by the distance
on G. That is, x �i y if and only if dG.vi ; x/ �
dG.vi ; y/ for two vertices x; y 2 V ; similarly,
x >i y if and only if dG.vi ; x/ < dG.vi ; y/.
Based on such a preference profile, four types of
majority equilibrium, called Condorcet winners,
are defined as follows.

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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Definition 1 Let v0 2 V , then v0 is called:

1. A weak quasi-Condorcet winner, if for every
u 2 V distinct of v0,

!.f�i 2 V W �0 �i ug/ �
X

�i2V

!.�i /=2I

2. A strong quasi-Condorcet winner, if for every
u 2 V distinct of v0,

!.f�i 2 V W �0 �i ug/ >
X

�i2V

!.�i /=2I

3. A weak Condorcet winner, if for every u 2 V

distinct of v0,

!.f�i 2 V W�0 >
i

ug/ � !.f�i 2 V W u >
i

�0g/I

4. A strong Condorcet winner, if for every u 2 V

distinct of v0,

!.f�i 2 V W�0 >
i

ug/ > !.f�i 2 V W u >
i

�0g/:

Under the majority voting mechanism described
above, the problem is to develop efficient ways
for determining the existence of Condorcet win-
ners and finding such a winner when one exists.

Problem 1 (Finding Condorcet Winners) IN-
PUT: A network G D ..V; w/; .E; l//. OUTPUT:
A Condorcet winner v 2 V or nonexistence of
Condorcet winners.

Key Results

The mathematical results on the Condorcet
winners depend deeply on the understanding of
combinatorial structures of underlying networks.
Theorems 1–3 below are given for weak quasi-
Condorcet winners in the model with a single
facility to be located. Other kinds of Condorcet
winners can be discussed similarly.

Theorem 1 Every tree has one weak quasi-
Condorcet winner or two adjacent weak

quasi-Condorcet winners, which can be found
in linear time.

Theorem 2 Let Cn be a cycle of order n with
vertex-weight function ¨ W V.Cn/ ! RC. Then
v 2 V.Cn/ is a weak quasi-Condorcet winner
of Cn if and only if the weight of each bnC1

2
c-

interval containing v is at least 1
2

P
�2Cn

!.v/.

Furthermore, the problem of finding a weak
quasi-Condorcet winner of Cn is solvable in
linear time.

Given a graph G D .V; E/, a vertex v of G

is a cut vertex if E.G/ can be partitioned into
two nonempty subsets E1 and E2 such that the
induced graphs GŒE1� and GŒE2� have just the
vertex v in common. A block of G is a connected
subgraph of G that has no cut vertices and is
maximal with respect to this property. Every
graph is the union of its blocks. A graph G is
called a cactus graph, if G is a connected graph
in which each block is an edge or a cycle.

Theorem 3 The problem of finding a weak
quasi-Condorcet winner of a cactus graph with
vertex-weight function is solvable in linear
time.

In general, the problem can be extended to
the cases where a number of public facilities are
required to be located during one voting process,
and the definitions of Condorcet winners can also
be extended accordingly. In such cases, the public
facilities may be of the same type or different
types; and the utility functions of the voters may
be of different forms.

Theorem 4 If there are a bounded constant
number of public facilities to be located at one
voting process under the majority rule, then the
problem of finding a Condorcet winner (any of
the four types) can be solved in polynomial time.

Theorem 5 If the number of public facilities to
be located is not a constant but considered as
the input size, the problem of finding a Condorcet
winner is NP-hard; and the corresponding deci-
sion problem: deciding whether a candidate set
of public facilities is a Condorcet winner is co-
NP-complete.
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Applications

Damange [2] first reviewed continuous and dis-
crete spatial models of collective choice, aim-
ing at characterizing the public facility location
problem as a result of the pubic voting process.
Although the network models in Chen et al. [1]
have been studied for some problems in eco-
nomics [3,4], the main point of Chen et al.’s work
is the computational complexity and algorithmic
approach. This approach can be applied to more
general public decision-making processes.

For example, consider a public road repair
problem, pioneered by Tullock [5] to study re-
distribution of tax revenue under a majority rule
system. An edge-weighted graph G D .V; E; w/

represents a network of local roads, where the
weight of each edge represents the cost of repair-
ing the road. There is also a distinguished vertex
s 2 V representing the entry point to the highway
system. The majority decision problem involves
a set of agents A � V situated at vertices of the
network who would choose a subset F of edges.
The cost of repairing F , which is the sum of the
weights of edges in F , will be shared by all n

agents, each an n-th of the total. In this model,
a majority stable solution under the majority rule
is a subset F � E that connects s to a subset
A1 � A of agents with jA1j > jAj=2 such that
no other solution H connecting s to a subset
of agents A2 � A with jA2jAj=2 satisfies the
conditions that

P
e2H

w.e/ � P
e2F

w.e/, and for

each agent in A2, its shortest path to s in solution
H is not longer than that in solution F , and at
least one of the inequalities is strict. It is shown
in Chen et al. [1] that for this model, finding
a majority equilibrium is NP-hard for general
networks and is polynomially solvable for tree
networks.
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Problem Definition

With the widespread of sensing and Internet tech-
nologies, a large number of numeric attributes
for a physical or cyber phenomenon can now
be collected. If each attribute is viewed as a
coordinate, an instance in the collection can be
viewed as a point in R

d for some large d . When
the physical or cyber phenomenon is governed by
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only a few latent parameters, it is often postu-
lated that the data points lie on some unknown
smooth compact manifold M of dimension k,
where k � d . The goal is to reconstruct a
faithful representation of M from the data points.
Reconstruction problem are ill-posed in general.
Therefore, the data points are assumed to be
dense enough so that it becomes theoretically
possible to obtain a faithful reconstruction. The
quality of the reconstruction is measured in sev-
eral ways: the Hausdorff distance between the
reconstruction and M, the deviation between the
normal spaces of the reconstruction and M at
nearby points, and whether the reconstruction and
M are topologically equivalent.

Key Results

It is clear that more data points are needed in
some parts of M than others, and this is captured
well by the concepts of medial axis and local
feature size. The medial axis of M is the closure
of the set of points in R

d that are at the same
distances from two or more closest points in M.
For every point x 2M, its local feature f .x/ is
the distance from x to the medial axis of M. The
input set S of data points in M is an �-sample
if for every point x 2 M, d.x; S/ � � f .x/.
The input set S is a uniform �-sample if for
every point x 2 M, d.x; S/ � ", assuming
that the ambient space has been scaled such that
minx2M f .x/ D 1. Furthermore, for every pair
of points p; q 2 S , if d.p; q/ � ıf .p/ or
d.p; q/ � ı for some constant ı, then we call

S an .�; ı/-sample or a uniform .�; ı/-sample,
respectively. Most reconstruction results in the
literature are about what theoretical guarantees
can be offered when � is sufficiently small.

Cocone Complex
Cheng, Dey, and Ramos [7] gave the first proof
that a faithful homeomorphic simplicial complex
can be constructed from the data points. First,
the dimension k of M and the tangent spaces
at the data points are estimated using known
algorithms in the literature (e.g., [4, 8, 10]). Let
� be some appropriately small constant angle.
The �-cocone at a point p 2 S is the subset of
points ´ 2 R

d such that p´ makes an angle at
most � with the estimated tangent space at p.
Consider the Delaunay triangulation of S . Let
� be a Delaunay simplex and let V� be its dual
Voronoi cell. The cocone complex K of S is the
collection of Delaunay simplices � such that V�

intersects the �-cocones of the vertices of � . It
turns out that if the simplices in the Delaunay
triangulation of S have bounded aspect ratio,
then K is a k-dimensional simplicial complex
homeomorphic to M. Moreover, the Hausdorff
distance between K and M is at most " times
the local feature size, and the angle deviation
between the normal spaces of K and M at nearby
points is O.�/. A difficult step of the algorithm
is the generalization of sliver removal [6] in R

3

to R
d in order to ensure that the simplices have

bounded aspect ratio. The intuition is simple, but
the analysis is quite involved. Figure 1 shows a
sliver pqrs. View the Delaunay triangulation as a
weighted Delaunay triangulation with all weights

p q

r
s

p q

r
s

p q

r
s

Manifold Reconstruction, Fig. 1 As the weight of p increases, the orthoball becomes larger and moves away from p
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equal to zero. If the weight of p is increased,
the orthoball of pqrs – the ball at zero power
distances from all its vertices – moves away from
p and becomes larger. Therefore, the ball will
become so large that it contains some other points
in S , thereby eliminating the sliver pqrs from the
weighted Delaunay triangulation.

Theorem 1 ([7]) There exist constants � and ı

such that if S is an .�; ı/-sample of a smooth
compact manifold of dimension k in R

d , a simpli-
cial complex K can be constructed such that:

• K is homeomorphic to M.
• Let � be a j -dimensional simplex of K. Let p

be a vertex of � . For every point q 2 M, if
d.p; q/ D O.� f .p//, then for every normal
vector n at q, � has a normal vector v that
makes an O.�/ angle with n.

• For every point x in K, its distance from the
nearest point y 2M is O.� f .y//.

The running time of the algorithm is exponential
in d .

Boissonnat, Guibas, and Oudot [3] show that
the Voronoi computation can be avoided if one
switches to the weighted witness complex. More-
over, given an �-sample without the lower bound
on the interpoint distances, they can construct a
family of plausible reconstructions of dimensions
1; 2; : : : ; k and let the user choose an appropriate
one. The sliver issue is also encountered [3] and
resolved in an analogous manner.

Čech Complex
Betti numbers are informative topological in-
variants of the shape. There are d C 1 betti
numbers, ˇi for i 2 Œ0; d �. The zeroth betti
number ˇ0 is the number of connected compo-
nents in M. In three dimensions (i.e., d D 3),
ˇ2 is the number of voids in M (i.e., bounded
components in R

3 nM), and ˇ1 is the number
of independent one-dimensional cycles in M
that cannot be contracted within M to a single
point. Two cycles are homologous if one can
be deformed into the other continuously. Two
overlapping cycles can be combined by eliminat-

ing the overlap. A set of cycles are independent
if no cycle can be obtained by continuously de-
forming and combining some other cycles in the
set. A tunnel is physically accommodated in the
complement of M, and its existence is witnessed
by a one-dimensional cycle in M that “circles
around” the tunnel (i.e., cannot be contracted in
M to a single point). Therefore, the number of
independent one-dimensional cycles that cannot
be contracted to a single point measures the num-
ber of “independent tunnels.” In fact, voids live
in the complement of M too and their number
is measured by the number of independent 2-
dimensional cycles that cannot be contracted to
a single point. In general, ˇi is the number of
independent i -dimensional cycles that cannot be
contracted in M to a single point. Alternatively,
ˇi is the rank of the i th homology group. Note
that ˇi D 0 for i > k as M is k-dimensional.

Numerical procedures are known to compute
the betti numbers of a simplicial complex
(e.g., [11]) and only the incidence relations
among the elements in the complex are needed.
Therefore, given a homeomorphic simplicial
complex K of M, the betti numbers of K and
hence of M can be computed. In fact, K and M
have the same homology (groups). But requiring
a homeomorphic complex is an overkill. Let B
be a set of balls of the same radius r . For every
subset of balls in B, connect the ball centers in
the subset to form a simplex if these balls have a
nonempty common intersection. The resulting
collection of simplices is known as a Čech
complex C. Niyogi, Smale, and Weinberger [12]
proved that if S is a dense sample from a
uniform probability distribution on M and r is
set appropriately, then C has the same homology
as M with high probability.

Theorem 2 ([12]) Let S be a set of n points
drawn in i.i.d. fashion according to the uniform
probability measure on M. Assume that r < 1=2.
There exists constants ˛1 and ˛2 depending on
M such that if n > ˛1.log ˛2 C log.1=ı//, then
C has the same homology as M with probability
greater than 1 � ı.

In general the Čech complex contains many
simplices. Niyogi, Smale, and Weinberger
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showed that the same result also holds when
the probability distribution has support near M
instead of exactly on M. Subsequently, similar
results have also been obtained for the Vietoris-
Rips complex [1].

Tangential Delaunay Complex
Although the cocone complex gives a homeomor-
phic reconstruction, the running time is exponen-
tial in d . It is natural to ask whether the running
time can be made to depend exponentially on k

instead. Boissonnat and Ghosh [2] answered this
question affirmatively by introducing a new local
Delaunay reconstruction.

Let S be a dense .�; ı/-sample of M. Sup-
pose that the tangent spaces at the data points
in S have been estimated with an O.�/ angular
error. Take a point p 2 S . Let Hp be the
estimated tangent space at p. Let Vp be the
Voronoi cell owned by p. Identify the set star.p/

of Delaunay simplices that are incident to p

and whose dual Voronoi faces intersect Hp . The
collection of all such stars form the tangential
Delaunay complex. The bisectors between p and
the other points in S intersect Hp in .k � 1/-
dimensional affine subspaces. These affine sub-
spaces define a Voronoi diagram in Hp , and
star.p/ is determined by the cell owned by p in
this Voronoi diagram in Hp . Therefore, no data
structure of dimension higher than k is needed in
the computation.

The tangential Delaunay complex is not a
triangulated manifold in general though due to
some inconsistencies. For example, if � is a
simplex in star.p/, it is not necessarily true that
� is in star.q/ for another vertex q of � . Such
inconsistencies can be removed by assigning
weights to the points in S appropriately as in
the case of eliminating slivers from the cocone
complex.

Theorem 3 ([2]) The guarantees in Theorem 1
can be obtained by an algorithm that runs in
O.dn2C d2O.k2/n/ time, where n is the number
of data points.

More theoretical guarantees are provided
in [2].

Implicit Function
The complexes in the previous methods are either
very large or not so easy to compute in practice.
An alternative approach is to approximate M by
the zero-set of an implicit function ' W Rd !
R

d�k that is defined using the data points in S ,
assuming that S is a uniform �-sample:

'.x/ D
X

p2S

!.x; p/ � B t
';x � .x � p/;

• Let c � 3. Define !.x; p/ D �.d.x; p//=P
p2S �.d.x; q//, where

�.s/D
( �

1 � s
kc�

�2k �2s
c�
C 1

�
; if s2Œ0; kc��;

0; if s>kc�:

Notice that '.x/ depends only on the points in
S within a distance kc� from x.

• For every point p 2 S , let Tp be a d 	 k

matrix with orthonormal columns such that its
column space is an approximate tangent space
at p with angular error O.�/. For every point
x 2 R

d , let Cx D P
p2S !.x; p/ � TpT t

p.
Therefore, the space Lx spanned by the eigen-
vectors of Cx corresponding to the smallest
d � k eigenvalues is a “weighted average”
of the approximate normal spaces at the data
points. Define B';x to be a d 	 .d �k/ matrix
with linearly independent columns such that
its column space is Lx . It turns out the zero-
set of ' is independent of the choices of B';x .

The weight function ! makes local recon-
struction possible without a complete sampling
of M. Moreover, the construction of ' is com-
putational less intensive than the construction of
a complex. The following guarantees are offered.

Theorem 4 ([5]) Let OM be the set of points at
distance �� or less from M for any fixed � 2
.1; 2/. Let S' denote the zero-set of '. Let 	

denote the map that sends a point in R
d to the

nearest point in M.

• For a small enough �, the restriction of 	 to
S'\ OM is a homeomorphism between S'\ OM
and M.
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• For every x 2 S' \ OM, the angle between the
normal space of M at 	.x/ and the normal
space of S' at x is O.�.��1/=2/.

A provably good iterative projection operator
is also known for ' [9].
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Problem Definition

This chapter studies market games for their per-
formance and convergence of the equilibrium
points. The main application is the content dis-
tribution in cellular networks in which a service
provider needs to provide data to users. The
service provider can use several cache locations
to store and provide the data. The assumption is
that cache locations are selfish agents (resident
subscribers) who want to maximize their own
profit. Most of the results apply to a general
framework of monotone two-sided markets.

Uncoordinated Two-Sided Markets
Various economic interactions can be modeled as
two-sided markets. A two-sided market consists
of two disjoint groups of agents: active agents
and passive agents. Each agent has a preference
list over the agents of the other side, and can
be matched to one (or many) of the agents in
the other side. A central solution concept to
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these markets are stable matchings, introduced
by Gale and Shapley [5]. It is well known that
stable matchings can be achieved using a central-
ized polynomial-time algorithm. Many markets,
however, do not have any centralized match-
ing mechanism to match agents. In those mar-
kets, matchings are formed by actions of self-
interested agents. Knuth [9] introduced unco-
ordinated two-sided markets. In these markets,
cycles of better or best responses exist, but ran-
dom better response and best response dynamics
converge to a stable matching with probability
one [2, 10, 14]. Our model for content distri-
bution corresponds to a special class of unco-
ordinated two-sided markets that is called the
distributed caching games.

Before introducing the distributed caching
game as an uncoordinated two-sided market,
the distributed caching problem and some game
theoretic notations are defined.

Distributed Caching Problem
Let U be a set of n cache locations with given
available capacities Ai and given available band-
widths Bi for each cache location i. There are k
request types; (Request type can be thought of as
different files that should be delivered to clients.)
each request type t has a size at (1 � t � k).
Let H be a set of m requests with a reward Rj,
a required bandwidth bj, a request type tj for
each request j, and a cost cij for connecting each
cache location i to each request j. The profit
of providing request j by cache location i is
fij D Rj � cij . A cache location i can service
a set of requests Si, if it satisfies the band-
width constraint:

P
j2Si

bj � Bi , and the capac-
ity constraint:

P
t2ftj jj2Si g at � Ai (this means

that the sum of the sizes of the request types
of the requests in cache location i should be
less than or equal to the available capacity of
cache location i). A set Si of requests is feasible
for cache location i if it satisfies both of these
constraints. The goal of the DCP problem is to
find a feasible assignment of requests to cache
locations to maximize the total profit; i.e., the
total reward of requests that are provided minus
the connection costs of these requests.

Strategic Games
A strategic game G is defined as a tuple
G.U; fFi ji 2 U g; f˛i ./ji 2 U g/ where
(i) U is the set of n players or agents, (ii) Fi

is a family of feasible (pure) strategies or
actions for player i and (iii) ˛i W ˘i2U Fi !
R
C [ f0g is the (private) payoff or utility

function for agent i, given the set of strategies
of all players. Player i’s strategy is denoted
by si 2 Fi . A strategy profile or a (strategy)
state, denoted by S D .s1; s2; : : : ; sn/, is
a vector of strategies of players. Also let
S ˚ s0i WD .s1; : : : ; si�1; s0i ; siC1; : : : ; sk/.

Best-ResponseMoves
In a non-cooperative game, each agent wishes
to maximize its own payoff. For a strategy
profile S D .s1; s2; : : : ; sn/, a better response
move of player i is a strategy s0i such that
˛i .S ˚ s0i / � ˛i .S/. In a strict better response
move, the above inequality is strict. Also, for
a strategy profile S D .s1; s2; : : : ; sn/ a best
response of player i in S is a better response
move s�i 2 Fi such that for any strategy si 2 Fi ,
˛i .S ˚ s�i / � ˛i .S ˚ si /.

Nash Equilibria
A pure strategy Nash equilibrium (PSNE) of
a strategic game is a strategy profile in which each
player plays his best response.

State Graph
The state graph, D D .F ;E/, of a strategic game
G, is an arc-labeled directed graph, where the
vertex set F corresponds to the set of strategy
profiles or states in G, and there is an arc from
state S to state S 0 with label i if the only difference
between S and S 0 is in the strategy of player i; and
player i plays one of his best responses in strategy
profile S 0. A best-response walk is a directed
walk in the state graph.

Price of Anarchy
Given a strategic game, G.U; fFi ji 2 U g;
f˛./ji 2 U g/, and a maximization social function
� W ˘i2U Fi ! R, the price of anarchy, denoted
by poa.G; �/, is the worst ratio between the
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social value of a pure Nash equilibrium and the
optimum.

Distributed Caching Games
The distributed caching game can be formalized
as a two-sided market game: active agents
correspond to n resident subscribers or cache
locations, and passive agents correspond to m
requests from transit subscribers. Formally, given
an instance of the DCP problem, a strategic
game G.U; fFi ji 2 U g; f˛i ji 2 U g/ is defined
as follows. The set of players (or active agents)
U is the set of cache locations. The family of
feasible strategies Fi of a cache location i is
the family of subsets si of requests such thatP

j2si
bj � Bi and

P
t2ftj jj2si g at � Ai . Given

a vector S D .s1; s2; : : : ; sn/ of strategies of
cache locations, the favorite cache locations
for request j, denoted by FAV.j /, is the set of
cache locations i such that j 2 si and fij has the
maximum profit among the cache locations that
have request j in their strategy set, i.e., fij � fi 0j

for any i 0 such that j 2 si 0 . For a strategy profile
SD.s1; : : : ; sn/ ˛i.S/DPj Wi2FAV.j /fij =jFAV.j /j.
Intuitively, the above definition implies that
the profit of each request goes to the cache
locations with the minimum connection cost (or
equivalently with the maximum profit) among the
set of cache locations that provide this request. If
more than one cache location have the maximum
profit (or minimum connection cost) for a request
j, the profit of this request is divided equally
between these cache locations. The payoff of
a cache location is the sum of profits from the
requests it actually serves. A player i serves
a request j if i 2 FAV.j /. The social value of
strategy profile S, denoted by ”(S), is the sum of
profits of all players. This value ”(S) is a measure
of the efficiency of the assignment of requests
and request types to cache locations.

Special Cases
In this paper, the following variants and special
cases of the DCP problem are also studied:
The CapDCP problem is a special case of
DCP problem without bandwidth constraints.
The BanDCP problem is a special case of
DCP problem without capacity constraints.

In the uniform BanDCP problem, the bandwidth
consumption of all requests is the same. In the
uniform CapDC problem, the size of all request
types is the same.

Many-to-One Two-SidedMarkets with Ties
In the distributed caching game, active and pas-
sive agents correspond to cache locations and
requests respectively. The set of feasible strate-
gies for each active agent correspond to a set of
solutions to a packing problem. Moreover, the
preferences of both active and passive agents is
determined from the profit of requests to cache
locations. In many-to-one two-sided markets, the
preference of passive and active agents as well as
the feasible family of strategies are arbitrary. The
preference list of agents may have ties as well.

Monotone and Matroid Markets
In monotone many-to-one two-sided markets, the
preferences of both active and passive agents
are determined based on payoffs pij D pj i for
each active agent i and passive agent j (similar
to the DCP game). An agent i prefers j to j 0
if pij > pij 0 . In matroid two-sided markets, the
feasible set of strategies of each active agent is the
set of independent sets of a matroid. Therefore,
uniform BanDCP game is a matroid two-sided
market game.

Key Results

In this section, the known results for these prob-
lems are summarized.

Centralized Approximation Algorithm
The distributed caching problem generalizes the
multiple knapsack problem and the generalized
assignment problem [3] and as a result is an APX-
hard problem.

Theorem 1 ([4]) There exists a linear program-
ming based 1 � 1

e -approximation algorithm and
a local search 1

2
-approximation algorithm for the

DCP problem.
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The 1 � 1
e -approximation for this problem

is based on rounding an exponentially large
configuration linear program [4]. On the
basis of some reasonable complexity theoretic
assumptions, this approximation factor of 1 � 1

e
is tight for this problem. More formally,

Theorem 2 ([4]) For any � > 0, there exists no
1 � 1

e � �-approximation algorithm for the DCP
problem unless NP � DTIME.nO.log log n//.

Price of Anarchy
Since the DCP game is a strategic game, it
possesses mixed Nash equilibria [12]. The DCP
game is a valid-utility game with a submodular
social function as defined by Vetta [16]. This
implies that the performance of any mixed Nash
equilibrium of this game is at least 1

2
of the

optimal solution.

Theorem 3 ([4, 11]) The DCP game is a valid-
utility game and the price of anarchy for mixed
Nash equilibria is 1

2
. Moreover, this result holds

for all monotone many-to-one two-sided markets
with ties.

A direct proof of the above price of anarchy
bound for the DCP game can be found in [11].

Pure Nash Equilibria: Existence
and Convergence
This part surveys known results for existence and
convergence of pure Nash equilibria.

Theorem 4 ([11]) There are instances of the
IBDC game that have no pure Nash equilibrium.

Since, IBDC is a special case of CapDCP, the
above theorem implies that there are instances
of the CapDCP game that have no pure Nash
equilibrium. In the above theorem, the bandwidth
consumption of requests are not uniform, and
this was essential in finding the example. The
following gives theorems for the uniform variant
of these games.

Theorem 5 ([1, 11]) Any instance of the uni-
form BanDCP game does not contain any cycle

of strict best-response moves, and thus possess
a pure Nash equilibrium. On the other hand, there
are instances of the uniform CapDCP game with
no pure Nash equilibria.

The above result for the uniform BanDCP game
can be generalized to matroid two-sided markets
with ties as follows.

Theorem 6 ([1]) Any instance of the monotone
matroid two-sided market game with ties is a po-
tential game, and possess pure Nash equilib-
ria. Moreover, any instance of the matroid two-
sided market game with ties possess pure Nash
equilibria.

Convergence Time to Equilibria
This section proves that there are instances of the
uniform CapDCP game in which finding a pure
Nash equilibrium is PLS-hard [8]. The definition
of PLS-hard problems can be found in papers by
Yannakakis et al. [8, 15].

Theorem 7 ([11]) There are instances of the
uniform CapDCP game with pure Nash equi-
libria (It is also possible to say that finding a
sink equilibrium is PLS-hard. A sink equilibrium
is a set of strategy profiles that is closed un-
der best-response moves. A pure equilibrium is
a sink equilibrium with exactly one profile. This
equilibrium concept is formally defined in [7].)
for which finding a pure Nash equilibrium is
PLS-hard.

Using the above proof and a result of Schaffer
and Yannakakis [13, 15], it is possible to show
that in some instances of the uniform CapDCP
game, there are states from which all paths of best
responses have exponential length.

Corollary 1 ([11]) There are instances of the
uniform CapDCP game that have pure Nash
equilibria with states from which any sequence
of best-response moves to any pure Nash equi-
librium (or sink equilibrium) has an exponential
length.

The above theorems show exponential conver-
gence to pure Nash equilibria in general DCP
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games. For the special case of the uniform
BanDCP game, the following is a positive result
for the convergence time to equilibria.

Theorem 8 ([2]) The expected convergence time
of a random best-response walk to pure Nash
equilibria in matroid monotone two-sided mar-
kets (without ties) is polynomial.

Since the uniform BanDCP game is a special
case of matroid monotone two-sided markets
with ties, the above theorem indicates that for
the BanDCP game with no tie in the profit
of requests, the convergence time of a random
best-response walk is polynomial. Finally, we
state a theorem about the convergence time of
the general (non-monotone) matroid two-sided
market games.

Theorem 9 ([2]) In the matroid two-sided mar-
kets (without ties), a random best response dy-
namic of players may cycle, but it converges to
a Nash equilibrium with probability one. How-
ever, it may take exponential time to converge to
a pure Nash equilibrium.

Pure Nash equilibria of two-sided market
games correspond to stable matchings in two-
sided markets and vice-versa [2]. The fact that
better response dynamics of players in two-sided
market games may cycle, but will converge to
a stable matching has been proved in [9, 14].
Ackermann et al. [2] extend these results for best-
response dynamics, and show an exponential
lower bound for expected convergence time to
pure Nash equilibria.

Applications

The growth of the Internet, the World Wide Web,
and wide-area wireless networks allow an in-
creasing number of users to access vast amounts
of information in different geographic areas. As
one of the most important functions of the service
provider, content delivery can be performed by
caching popular items in cache locations close
to the users. Performing such a task in a decen-
tralized manner in the presence of self-interested

entities in the system can be modeled as an
uncoordinated two-sided market game.

The 3G subscriber market can be categorized
into groups with shared interest in location-based
services, e.g., the preview of movies in a theater
or scenes of the mountain nearby. Since the 3G
radio resources are limited, it is expensive to
repeatedly transmit large quantities of data over
the air interface from the base station (BS). It
is more economical for the service provider to
offload such repeated requests on to the ad-hoc
network comprised of its subscribers where some
of them recently acquired a copy of the data. In
this scenario, the goal for the service provider
is to give incentives for peer subscribers in the
system to cache and forward the data to the
requesting subscribers. Since each data item is
large in size and transit subscribers are mobile,
we assume that the data transfer occurs in a close
range of a few hops.

In this setting, envision a system consisting
of two groups of subscribers: resident and transit
subscribers. Resident subscribers are less mo-
bile and mostly confined to a certain geograph-
ical area. Resident subscribers have incentives to
cache data items that are specific to this geo-
graphical region since the service provider gives
monetary rewards for satisfying the queries of
transit subscribers. Transit subscribers request
their favorite data items when they visit a partic-
ular region. Since the service provider does not
have knowledge of the spatial and temporal distri-
bution of requests, it is difficult if not impossible
for the provider to stipulate which subscriber
should cache which set of data items. Therefore,
the decision of what to cache is left to each indi-
vidual subscriber. The realization of this content
distribution system depends on two main issues.
First, since subscribers are selfish agents, they
may act to increase their individual payoff and
decrease the performance of the system. Here, we
provide a framework for which we can prove that
in an equilibrium situation of this framework, we
use the performance of the system efficiently. The
second issue is that the payoff of each request
for each agent must be a function of the set of
agents that have this request in their strategy,
since these agents compete on this request and
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the profit of this request should be divided among
these agents in an appropriate way. Therefore,
each selfish agent may change the set of items
it cached in response to the set of items cached
by others. This model leads to a non-cooperative
caching scenario that can be modeled on a two-
sided market game, studied and motivated in the
context of market sharing games and distributed
caching games [4, 6, 11].

Open Problems

It is known that there exist instances of the dis-
tributed caching game with no pure Nash equilib-
ria. It is also known that best response dynamics
of players may take exponential time to converge
to pure Nash equilibria. An interesting question
is to study the performance of sink equilibria [7,
11] or the price of sinking [7, 11] for these
games. The distributed caching game is a valid-
utility game. Goemans, Mirrokni, and Vetta [7]
show that despite the price of anarchy of 1

2

for valid-utility games, the performance of sink
equilibria (or price of sinking) for these games
is 1

n
. We conjecture that the price of sinking

for DCP games is a constant. Moreover, it is
interesting to show that after polynomial rounds
of best responses of players the approximation
factor of the solution is a constant. We know
that one round of best responses of players is
not sufficient to get constant-factor solutions. It
might be easier to show that after a polynomial
number of random best responses of players, the
expected total profit of players is at least a con-
stant factor of the optimal solution. Similar pos-
itive results for sink equilibria and random best
responses of players are known for congestion
games [7, 11].

The complexity of verifying if a given state
of the distributed caching game is in a sink
equilibrium or not is an interesting question to
explore. Also, given a distributed caching game
(or a many-to-one two-sided market game), an
interesting problem is to check if the set of all
sink equilibria is pure Nash equilibria or not.
Finally, an interesting direction of research is
to classify classes of two-sided market games

for which pure Nash equilibria exists or best-
response dynamics of players converge to a pure
Nash equilibrium.
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Problem Definition

Let G D .V; E/ be an undirected graph on n D
jV j vertices and m D jEj edges. A matching in G

is a set of edges M � E such that no two edges
in M share any vertex. Matching has been one
of the most well-studied problems in algorithmic
graph theory for decades [4]. A matching M is
called maximum matching if the number of edges
in M is maximum. The fastest known algorithm

for maximum matching, due to Micali and Vazi-
rani [5], runs in O.m

p
n/. A matching is said to

be maximal if it is not strictly contained in any
other matching. It is well known that a maximal
matching achieves a factor 2 approximation of the
maximum matching.

Key Result

We address the problem of maintaining maxi-
mal matching in a fully dynamic environment –
allowing updates in the form of both insertion
and deletion of edges. Ivković and Llyod [3]
designed the first fully dynamic algorithm for
maximal matching with O..nCm/0:7072/ update
time. In this entry, we present a fully dynamic
algorithm for maximal matching that achieves
O.log n/ expected amortized time per update.

Ideas Underlying the Algorithm

We begin with some terminologies and notations
that will facilitate our description and also pro-
vide some intuition behind our approach. Let
M denote a matching in the given graph at any
instant – an edge .u; v/ 2M is called a matched
edge where u is referred to as a mate of v and
vice versa. An edge in EnM is an unmatched
edge. A vertex x is matched if there exists an edge
.x; y/ 2M; otherwise it is free or unmatched.

In order to maintain a maximal matching, it
suffices to ensure that there is no edge .u; v/ in
the graph such that both u and v are free with
respect to the matching M. Therefore, a natural
technique for maintaining a maximal matching
is to keep track of each vertex if it is matched
or free. When an edge .u; v/ is inserted, we add
.u; v/ to the matching if u and v are free. For the
case when an unmatched edge .u; v/ is deleted,
no action is required. Otherwise, for both u and v,
we search their neighborhoods for any free vertex
and update the matching accordingly. It follows
that each update takes O.1/ computation time ex-
cept when it involves deletion of a matched edge;
in this case the computation time is of the order
of the sum of the degrees of the two endpoints of
the deleted edge. So this trivial algorithm is quite
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efficient for small degree vertices, but could be
expensive for large degree vertices. An alternate
approach could be to match a free vertex u with
a randomly chosen neighbor, say v. Following
the standard adversarial model, it can be ob-
served that an expected deg.u/=2 edges incident
to u will be deleted before deleting the matched
edge .u; v/. So the expected amortized cost per

edge deletion for u is roughly O
�

deg.u/Cdeg.v/
deg.u/=2

�
.

If deg.v/ < deg.u/, this cost is O.1/. But if
deg.v/ 
 deg.u/, then it can be as bad as the
trivial algorithm. To circumvent this problem, we
introduce an important notion, called ownership
of edges. Intuitively, we assign an edge to that
endpoint which has higher degree.

The idea of choosing a random mate and the
trivial algorithm described above can be com-
bined together to design a simple algorithm for
maximal matching. This algorithm maintains a
partition of the vertices into two levels. Level
0 consists of vertices which own fewer edges,
and we handle the updates there using the triv-
ial algorithm. Level 1 consists of vertices (and
their mates) which own larger number of edges,
and we use the idea of random mate to handle
their updates. This 2� LEVEL algorithm achieves
O.
p

n/ expected amortized time per update. A
careful analysis of the 2 � LEVEL algorithm
suggests that a finer partition of vertices could
help in achieving a faster update time. This leads
to our log2 n � LEVEL algorithm that achieves
expected amortized O.log n/ time per update.

Our algorithm uses randomization very cru-
cially in order to handle the updates efficiently.
The matching maintained (based on the random
bits) by the algorithm at any stage is not known
to the adversary for it to choose the updates
adaptively. This oblivious adversarial model is
no different from randomized data structures like
universal hashing.

The 2-LEVEL Algorithm

The algorithm maintains a partition of the set
of vertices into two levels. Each edge present in
the graph will be owned by one or both of its
endpoints as follows. If both the endpoints of an

edge are at level 0, then it is owned by both of
them. Otherwise it will be owned by exactly that
endpoint which lies at a higher level. If both the
endpoints are at level 1, the tie will be broken
suitably by the algorithm. Let Ou denote the set
of edges owned by a vertex u at any instant of the
algorithm. With a slight abuse of the notation, we
will also use Ou to denote fvj.u; v/ 2 Oug. As the
algorithm proceeds, the vertices will make transi-
tion from one level to another and the ownership
of edges will also change accordingly.

The algorithm maintains the following three
invariants after each update:

1. Every vertex at level 1 is matched. Every free
vertex at level 0 has all its neighbors matched.

2. Every vertex at level 0 owns less than
p

n

edges at any stage.
3. Both endpoints of every matched edge are at

the same level.

It follows from the first invariant that the
matching M is maximal at each stage. The sec-
ond and third invariants help in incorporating the
two ideas of our algorithm efficiently.

Handling Insertion of an Edge
Let .u; v/ be the edge being inserted. If either u
or v are at level 1, there is no violation of any
invariant. However, if both u and v are at level 0,
then we proceed as follows. Both u and v become
the owner of the edge .u; v/. If u and v are free,
then we add .u; v/ to M. Notice that the insertion
of .u; v/ also leads to increase of jOuj and jOvj
by one and so may lead to violation of Invariant
2. We process the vertex that owns more edges;
let u be that vertex. If jOuj D pn, then Invariant
2 has got violated. In order to restore it, u moves
to level 1 and gets matched to some vertex, say
y, selected uniformly at random from Ou. Vertex
y also moves to level 1 to satisfy Invariant 3. If
w and x were, respectively, the earlier mates of u
and y at level 0, then the matching of u with y has
rendered w and x free. Both w and x search for
free neighbors at level 0 and update the matching
accordingly. It is easy to observe that in all these
cases, it takes O.

p
n/ time to handle an edge

insertion.
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Handling Deletion of an Edge
Let .u; v/ be an edge that is deleted. If .u; v/ …
M, all the invariants are still valid. Let us con-
sider the more important case of .u; v/ 2M – the
deletion of .u; v/ has caused u and v to become
free. Therefore, the first invariant might have got
violated for u and v. If edge .u; v/ was at level
0, then both u and v search for a free neighbor
and update the matching accordingly. This takes
O.
p

n/ time. If edge .u; v/ was at level 1, then u
(similarly v) is processed as follows.

First, u disowns all its edges whose other
endpoint is at level 1. If jOuj is still greater than
or equal to

p
n, then u stays at level 1 and selects

a random mate from Ou. However, if jOuj has
fallen below

p
n, then u moves to level 0 and

gets matched to a free neighbor (if any). For each
neighbor of u at level 0, the transition of u from
level 1 to 0 is, effectively, like insertion of a new
edge. This transition leads to an increase in the
number of owned edges by each neighbor of u
at level 0. As a result, the second invariant for
each such neighbor at level 0 may get violated if
the number of edges it owns now becomes

p
n.

To take care of these scenarios, we proceed as
follows. We scan each neighbor of u at level 0,
and for each neighbor w, with jOwj D pn, a mate
is selected randomly from Ow and w is moved to
level 1 along with its mate. This concludes the
deletion procedure of edge .u; v/.

Analysis of the Algorithm
It may be noted that, unlike insertion, the deletion
of an edge could potentially lead to moving of
many vertices from level 0 to 1 and this may in-
volve significant computation. However, we will
show that the expected amortized computation
per update is O.

p
n/.

We analyze the algorithm using the concept of
epochs.

Definition 1 At any time t , let .u; v/ be any edge
in M. Then the epoch of .u; v/ at time t is the
maximal time interval containing t during which
.u; v/ 2M.

The entire life span of an edge .u; v/ can
be viewed as a sequence of epochs when it
is matched, separated by periods when it is

unmatched. Any edge update that does not
change the matching is processed in O(1) time.
An edge update that changes the matching results
in the start of new epoch(s) or the termination of
some existing epoch(s). And it is only during
the creation or termination of an epoch that
significant computation is involved. For the
purpose of analyzing the update time (when
matching is affected), we assign the computation
performed to the corresponding epochs created or
terminated. It is easy to see that the computation
associated with an epoch at level 0 is O.

p
n/. The

computation associated with an epoch at level 1 is
of the order of sum of the degrees of the endpoints
of the corresponding matched edge which may
be 
.n/. When a vertex moves from level 0 to 1,
although it owns

p
n edges, this may grow later

to O.n/. So the computation associated with an
epoch at level 1 can be quite high. We will show
that the expected number of such epochs that get
terminated during any arbitrary sequence of edge
updates will be relatively small. The following
lemma plays a key role.

Lemma 1 The deletion of an edge .u; v/ at level
1 terminates an epoch with probability � 1=

p
n.

Proof The deletion of edge .u; v/ will lead to
termination of an epoch only if .u; v/ 2 M. If
edge .u; v/ was owned by u at the time of its
deletion, note that u owned at least

p
n edges at

the moment of start of its epoch. Since u selected
its matched edge uniformly at random from these
edges, the (conditional) probability is 1p

n
. The

same argument applies if v was the owner, so
.u; v/ is a matched edge at the time of deletion
of .u; v/ with probability at most 1=

p
n. ut

Consider any sequence of m edge updates.
We analyze the computation associated with all
the epochs that get terminated during these m

updates. It follows from Lemma 1 and the lin-
earity of expectation that the expected number
of epochs terminated at level 1 will be m=

p
n.

As discussed above, computation associated with
each epoch at level 1 is O.n/. So the expected
computation associated with the termination of
all epochs at level 1 is O.m

p
n/. The number of

epochs destroyed at level 0 is trivially bounded by
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O.m/. Each epoch at level 0 has O.
p

n/ compu-
tation associated with it, so the total computation
associated with these epochs is also O.m

p
n/.

We conclude the following.

Theorem 1 Starting with a graph on n vertices
and no edges, we can maintain maximal match-
ing for any sequence of m updates in expected
O.m
p

n/ time.

The log2 n � LEVEL Algorithm
The key idea for improving the update time lies
in the second invariant of our 2 � LEVEL algo-
rithm. Let ˛.n/ be the threshold for the maximum
number of edges that a vertex at level 0 can own.
Consider an epoch at level 1 associated with some
edge, say .u; v/. The computation associated with
this epoch is of the order of the number of edges u
and v own which can be ‚.n/ in the worst case.
However, the expected duration of the epoch is
of the order of the minimum number of edges u
can own at the time of its creation, i.e., ‚.˛.n//.
Therefore, the expected amortized computation
per edge deletion at level 1 is O.n=˛.n//. Bal-
ancing this with the ˛.n/ update time at level 0
yields ˛.n/ D pn.

In order to improve the running time of our
algorithm, we need to decrease the ratio between
the maximum and the minimum number of edges
a vertex can own during an epoch at any level. It is
this ratio that determines the expected amortized
time per edge deletion. This observation leads us
to a finer partitioning of the ownership classes.
When a vertex creates an epoch at level i , it
owns at least 2i edges, and during the epoch,
it is allowed to own at most 2iC1 � 1 edges.
As soon as it owns 2iC1 edges, it migrates to a
higher level. Notice that the ratio of maximum
to minimum edges owned by a vertex during an
epoch gets reduced from

p
n to a constant leading

to about log2 n levels. Though the log2 n�LEVEL

algorithm can be seen as a natural generalization
of our 2 � LEVEL algorithm, there are many in-
tricacies that make the algorithm and its analysis
quite involved. For example, a single edge update
may lead to a sequence of falls and rise of many
vertices across the levels of the data structure.
Moreover, there may be several vertices trying
to fall or rise at any time while processing an

update. Taking a top-down approach in process-
ing these vertices simplifies the description of the
algorithm. The analysis of the algorithm becomes
easier when we analyze each level separately.
This analysis at any level is quite similar to the
analysis of LEVEL�1 in our 2�LEVEL algorithm.
We recommend the interested reader to refer
to the journal version of this paper in order to
fully comprehend the algorithm and its analysis.
The final result achieved by our log2 n � LEVEL

algorithm is stated below.

Theorem 2 Starting with a graph on n vertices
and no edges, we can maintain maximal match-
ing for any sequence of m updates in expected
O.m log n/ time.

Using standard probability tools, it can be
shown that the bound on the update time as stated
in Theorem 2 holds with high probability, as well
as with limited independence.

Open Problems

There have been new results on maintaining ap-
proximate weighted matching [2] and .1 C �/-
approximate matching [1, 6] for � < 1. The
interested reader should study these results. For
any � < 1, whether it is possible to maintain .1C
�/-approximate matching in poly-logarithmic up-
date time is still an open problem.
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Problem Definition

The study of matching market equilibrium was
initiated by Shapley and Shubik [13] in an assign-
ment model. A classical instance of the matching
market involves a set B of n unit-demand buyers
and a set Q of m indivisible items, where each
buyer wants to buy at most one item and each
item can be sold to at most one buyer. Each
buyer i has a valuation vij � 0 for each item
j , representing the maximum amount that i is
willing to pay for item j . Each item j has a
reserve price rj � 0, below which it won’t be
sold. Without loss of generality, one can assume
there is a null item whose value is zero to all
buyers and whose price is always zero.

An output of the matching market is a tuple
(p, x), where p D .p1; : : :; pm/ � 0 is a price

vector with pj denoting the price charged for
item j and x D .x1; : : :; xn/ � 0 is an allocation
vector with xi denoting the item that i wins. If
i does not win any item, xi D ;. An output
is essentially a bipartite matching with monetary
transfers between the matched parties (buyers and
items). A feasible price vector is any vector p �
r D .r1: : :rm/. Given an outcome (p, x), the
utility (payoff) to a buyer i who gets item j and
pays pj is ui .px/ D vij � pj (assume linear
surplus) and ui .px/ D 0 if i gets nothing. At
price p, the demand set for buyer i is Di .p/ D˚
j 2 arg maxj 0.vij 0 � pj 0/

ˇ̌
vij � pj � 0

�

A tuple (p, x) is called a competitive equilib-
rium if:

• For any item j , pj D rj if no one wins j in
allocation x.

• If buyer i wins item j .xi D j /, then j 2 Di

(p).
• If buyer i does not win any item .xi D ;/,

then for every item j , vij – pj � 0.

The first condition above is a market clearance
(efficiency) condition, which says that all
unallocated items are priced at the given reserve
prices. The second and third conditions ensure
envy-freeness (fairness), implying that each
buyer is allocated with an item that maximizes
his utility at these prices. In a market competitive
equilibrium, all items with prices higher than
the reserve prices are sold out and everyone
gets his maximum utility at the corresponding
allocation.

An outcome (p, x) is called a minimum
competitive equilibrium if it is a competitive
equilibrium and for any other competitive
equilibrium .p0; x0/, pj � p0j for every item
j . It represents the interests of all buyers in terms
of their total payment. Similarly, an outcome (p,
x) is called a maximum competitive equilibrium
if it is a competitive equilibrium and for any
other competitive equilibrium (p0, x0), pj � p0j
for every item j . It represents the interests of
all sellers in terms of total payment received.
Maximum and minimum equilibria represent the
contradictory interests of the two parties in a
two-sided matching market at the two extremes.
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The solution concept of competitive equilib-
rium is closely related to the well-established
stability solution concept initiated by Gale and
Shapley [9] in pure two-sided matching markets
without money. To define stability in a multi-
item matching market with money, we need to
have a definition of preferences. Buyers prefer
items with larger utility .vij � pj /, and sellers
(items) prefer buyers with larger payment. Given
an outcome (p, x), where pj is the price of item
j and xi is the allocation of buyer i , we say
.i; j / is a blocking pair if there is p0j such that
p0j > pj (item j can receive more payment)
and the utility that i obtains in (p, x) is less than
vij �p0j (by payment p0j to item j buyer i can get
more utility). An outcome (p, x) is stable if it has
no blocking pairs, that is, no unmatched buyer-
seller pair can mutually benefit by trading with
each other instead of their current partners.

Key Results

For any given matching market, Shapley and
Shubik [13] formulate an efficient matching mar-
ket outcome as a linear program of maximizing
the social welfare of the allocation. The duality
theorem then shows the existence of competi-
tive equilibrium. They also prove that there is a
unique minimum (maximum) equilibrium price
vector.

Theorem 1 (Shapley and Shubik [13]) A
matching market competitive equilibrium always
exits. The set of competitive equilibrium price
vectors p form a lattice in R

m�0.

Shapley and Shubik [13] also establish the
connections between stability and competitive
equilibrium.

Theorem 2 (Shapley and Shubik [13]) In
a multi-item market, an outcome .p; x/ is a
competitive equilibrium if and only if it is stable.

However, they did not define an adjustment
process like the deferred-acceptance algorithm by
Gale and Shapley [9]. Crawford and Knoer [5]
study a more generalized setup with firms and
workers, where firms can hire multiple workers
while each worker can be employed by at most

one firm. It is essentially a many-to-one matching
framework, where firms can be considered as
buyers with multi-unit demand while buyers can
be considered as items. They describe a salary
adjustment process, which is essentially a version
of the deferred-acceptance algorithm. They also
show that for arbitrary capacities of the firms
(buyers), when ties are ruled out, it always con-
verges to a minimum competitive equilibrium.
They provide an alternative proof of Shapley and
Shubik’s [13] result and allow significant gener-
alization of it. However, the analysis in Crawford
and Knoer [5] is flawed by two unnecessarily
restrictive assumptions. Later, Kelso and Craw-
ford [10] relax these assumptions and propose
a modification to the salary adjustment process,
which works as follows (firms are essentially
buyers with multi-unit demand and workers are
the items):

Salary Adjustment Process
(Kelso-Crawford [10])

1. Firms begin by facing a set of
initially very low salaries
(reserve prices).

2. Firms make offers to their most
preferred set of workers. Any offer
previously made by a firm to a
worker that was not rejected must
be honored.

3. Each worker who receives one or
more offers rejects all but his
favorite, which he tentatively
accepts.

4. Offers not rejected in previous
periods remain in force. For
each rejected offer a firm made,
increase the feasible salary
for the rejecting worker. Firms
continue to make offers to their
favorite sets of workers.

5. The process stops when no
rejections are made. Workers then
accept the offers that remain in
force from the firms they have not
rejected.

An important assumption underlying the
algorithm is that workers are gross substitutes
from the standpoint of the firm. That is, when
the price of one worker goes up, demand for
another worker should not go down. As the salary
adjustment process goes on, for firms, the set of
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feasible offers is reduced as some offers are
rejected. For workers, the set of offers grows
as more offers come up. Therefore, there is a
monotonicity of offer sets in opposite directions.
Alternatively, we can have a worker-proposing
algorithm, where workers all begin by offering
their services at the highest possible wage at their
most preferred firm.

Theorem 3 (Kelso and Crawford [10]) The
salary adjustment process converges to a
minimum competitive equilibrium, provided that
all workers are gross substitutes from each firm’s
standpoint. In other words the final competitive
equilibrium allocation is weakly preferred by
every firm to any other equilibrium allocation.

Taking a different perspective, Demange,
Gale, and Sotomayor [7] propose an ascending
auction-based algorithm (called “exact auction
mechanism” in their original paper) that
converges to a minimum competitive equilibrium
for the original one-to-one matching problem. It
is a variant of the so-called Hungarian method
by Kuhn [11] for solving the optimal assignment
problem. The algorithm works as the following:

Exact Auction Mechanism
(Demange-Gale-Sotomayor [7])

1. Assume (for simplicity) that
valuations vij are all integers.

2. Set the initial price vector, p0,
to the reserve prices, p0 D r

3. At round t when current prices
are pt, each buyer i declares his
demand set, Di .pt/.

4. If there is no over-demanded set
of items, terminate the process.
A market equilibrium at prices
pt exists, and a corresponding
allocation can be found by maximum
matching.

5. If there exits over-demanded
set(s), find a minimal
over-demanded set S, and for all
j 2 S, p

tC1

j
D pt

j
C 1. Set t D t C 1,

and go to step 3.

Theorem 4 (Demange, Gale, and Sotomayor
[7]) The exact auction mechanism always
finds a competitive equilibrium. Moreover, the
equilibrium it finds is the minimum competitive
equilibrium.

This auction outcome can be computed effi-
ciently since we can compute (minimal) over-
demanded sets in P -time. It is not necessary to
increment prices by one unit in each iteration. In-
stead, one can raise prices in the over-demanded
set until the demand set of one of the respective
bidders enlarges. It turns out that the payments
(minimum price equilibrium) are precisely the
VCG payments. Therefore, the mechanism is
incentive compatible, and for every buyer, it is a
dominant strategy to specify his true valuations.
Moreover, this mechanism is even group strategy-
proof, meaning that no strict subset of buyers who
can collude have an incentive to misrepresent
their true valuations.

Demange, Gale, and Sotomayor [7] also pro-
pose an approximation algorithm, called “ap-
proximate auction mechanism” for computing a
minimum competitive equilibrium. It is a version
of the deferred-acceptance algorithm proposed by
Crawford and Knoer [5], which in turn is a special
case of the algorithm of Kelso and Crawford [10].
The algorithm works as follows.

Approximate Auction Mechanism
(Demange-Gale-Sotomayor [7])

1. Set the initial price vector, p0,
to the reserve prices, p0 D r

2. At round t when current prices
are pt, each buyer i may bid for
any item. When he does so, he is
committed to that item, which means
he commits himself to possibly
buying the item at the announced
price. The item is (tentatively)
assigned to that bidder.

3. At this point, any uncommitted
bidder may:

• Bid for some unassigned item, in
which case he becomes committed
to it at its initial price.

• Bid for an assigned item, in
which case he becomes committed
to that item, its price increase
by some fixed amount ı, and the
bidder to whom it was assigned
becomes uncommitted

• Drop out of the bidding.
4. When there are no more uncommitted

bidders, the auction terminates.
Each committed bidder buys the
item assigned to him at its current
price.
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This approximate auction mechanism would
be appealing to the buyers since it does not
require them to decide in advance exactly what
their bidding behavior will be. Instead, at each
stage, a buyer can make use of present and past
stages of the auction to decide his next bid. If
buyers behave in accordance with linear valua-
tions, the final price will differ from the minimum
equilibrium price by at most kı units, where
k is the minimum of the number of items and
bidders. Thus, by making ı (the unit by which
bids are increased) sufficiently small, one can
get arbitrarily close to the minimum equilibrium
price.

Theorem 5 (Demange, Gale, and Sotomayor
[7]) Under the approximate auction mechanism,
the final price of an item will differ from the
minimum equilibrium price by at most kı, where
k D min.m; n/.

The mechanisms discussed so far (approxi-
mately) compute a minimum competitive equi-
librium. These approaches can be easily trans-
formed to compute a maximum competitive equi-
librium. Chen and Deng [3] discuss a combinato-
rial algorithm which iteratively increases prices
to converge to a maximum competitive equilib-
rium starting from an arbitrary equilibrium.

Applications

The assignment model is used by Becker [2] to
study marriage and household economics. Based
on the fact that stable outcomes all correspond
to optimal assignments, he studies which men
are matched to which women under different
assumptions of the assignment matrix.

Extensions

The existence of competitive equilibrium has
later been established by Crawford and Knoer
[5], Gale [8], and Quinnzi [12] for more general
utility functions rather than the linear surplus,
provided uij .�/ is strictly decreasing and continu-
ous everywhere.

Under a minimum competitive equilibrium
mechanism, it is a dominant strategy for every
buyer to report his true valuation. On the other
hand, under a maximum competitive equilibrium
mechanism, while the sellers will be truthful, it
is possible that some buyer bids a false value to
obtain more utility. In a recent study, Chen and
Deng [3] show the convergence from the max-
imum competitive equilibrium toward the mini-
mum competitive equilibrium in a deterministic
and dynamic setting.

Another strand of recent studies focus on the
assignment model with budget constraints, which
is applicable to many marketplaces such as online
and TV advertising markets. An extra budget con-
straint introduces discontinuity in the utility func-
tion, which fundamentally changes the properties
of competitive equilibria. In such setups, a com-
petitive equilibrium does not always exist. Aggar-
wal et al. [1] study the problem of computing a
weakly stable matching in the assignment model
with quasi-linear utilities subject to a budget
constraint. However, a weakly stable matching
does not possess the envy-freeness property of a
competitive equilibrium. Chen et al. [4] establish
a connection between competitive equilibrium in
the assignment model with budgets and strong
stability. Then they give a strong polynomial
time algorithm for deciding existence of and
computing a minimum competitive equilibrium
for a general class of utility functions in the
assignment model with budgets.
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Problem Definition

In recent years matroids have been used in the
fields of parameterized complexity and exact al-
gorithms. Many of these works mainly use a
computation of representative families. Let M D
.E; I/ be a matroid and S D fS1; : : : ; Stg � I
be a family of independent sets of size p. A
subfamily OS � S is called a q-representative
family for S (denoted by OS �q

rep S), if for every
Y � E of size at most q, if there exists a set
S 2 S disjoint from Y with S [ Y 2 I, then
there exists a set OS 2 OS disjoint from Y with OS [
Y 2 I. The basic algorithmic question regarding
representative families is, given a matroid M D
.E; I/, a family S � I of independent sets of
size p and a positive integer q, compute OS �q

rep

S of size as small as possible in time as fast as
possible.

The Two-Families Theorem of Bollobás [1]
for extremal set systems implies that every family
of independent sets of size p in a uniform matroid
has a q-representative family with at most

�
pCq

p

�

sets. The generalization of Two-Families Theo-
rem to subspaces of a vector space by Lovász [5]
implies that every family of independent sets of
size p in a linear matroid has a q-representative
family with at most

�
pCq

p

�
sets. In fact one

can show that the cardinality
�

pCq
p

�
of a q-

representative family of a family of independent
sets of size p is optimal. It is important to note
that the size of the q-representative family of a
family of sets of size p in a uniform or linear
matroid only depends on p and q and not on the
cardinality of ground set of the matroid, and this
fact is used to design parameterized and exact
algorithms.

Key Results

For uniform matroids, Monien [8] gave an algo-
rithm for computing a q-representative family of
size at most

Pq
iD0 pi in time O.pq �Pq

iD0 pi � t/
and Marx [6] gave another algorithm, for com-
puting a q-representative families of size at most�

pCq
p

�
in time O.pq � t2/. For uniform matroids,

Fomin et al. [2] proved the following theorem.
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Theorem 1 ([2, 9]) Let S D fS1; : : : ; Stg be
a family of sets of size p over a universe of
size n and let 0 < x < 1. For a given q,
a q-representative family bS �q

rep S with at
most x�p.1 � x/�q � 2o.pCq/ log n sets can be
computed in time O..1�x/�q �2o.pCq/ � t � log n/.

In [3], Fomin, Lokshtanov, and Saurabh
proved Theorem 1 for x D p

pCq
. That is, a

q-representative family OS �q
rep S with at most�

pCq
p

� � 2o.pCq/ � log n sets can be computed

in time O.. pCq
q

/q � 2o.pCq/ � t � log n/. Later
Fomin et al. [2] observed that the proof in [3]
can be modified to work for every 0 < x < 1

and allows an interesting trade-off between the
size of the computed representative families and
the time taken to compute them, and this trade-
off can be exploited algorithmically to speed
up “representative families based” algorithms.
Independently, at the same time, Shachnai and
Zehavi [9] also observed that the proof in [3]
can be generalized to get Theorem 1. We
would like to mention that in fact a variant of
Theorem 1 is proved in [2, 9] which computes a
weighted q-representative family. The proof of
Theorem 1 uses algorithmic variant of “random
permutation” proof of Bollobás Lemma and an
efficient construction of a variant of universal
sets called n-p-q-separating collections.

For linear matroids, Marx [7] showed that
Lovász’s proof can be transformed into an algo-
rithm computing a q-representative family:

Theorem 2 ( [7]) Given a linear representation
AM of a matroid M D .E; I/, a family
fS1; : : : ; Stg of independent sets of size p and a
positive integer q, there is an algorithm which
computes OS �q

rep S of size
�

pCq
p

�
in time

2O.p log.pCq// � �pCq
p

�O.1/
.jjAM jjt/O.1/ where

jjAM jj is the size of AM .

Fomin, Lokshtanov, and Saurabh [3] gave an
efficient computation of representative families in
linear matroids:

Theorem 3 ([3]) Let M D .E; I/ be a linear
matroid of rank p C q D k given together with
its representation matrix AM over a field F. Let
S D fS1; : : : ; Stg be a family of independent sets

of size p. Then OS �q
rep S with at most

�
pCq

p

�
sets

can be computed in O
��

pCq
p

�
tp! C t

�
pCq

q

�!�1
�

operations over F, where ! < 2:373 is the matrix
multiplication exponent.

We would like to draw attention of the reader
that in Theorems 3 and 2, the cardinality of the
computed q-representative family is optimal and
polynomial in p and q if one of p or q is a
constant, unlike in Theorem 1. As in the case
of Theorem 1, Theorem 3 is also proved for a
weighted q-representative family.

Most of the algorithms using representative
families are dynamic programming algorithms.
A class of families which often arise in dynamic
programming are product families. A family F is
called product of two families A and B, where A
and B are families of independent sets in a ma-
troid M D .E; I/, if F D fA[ B j A 2 A; B 2
B; A \ B D ;; A [ B 2 Ig. Fomin et al. [2]
gave two algorithms to compute q-representative
family of a product family F , one in case of
uniform matroid and other in case of linear ma-
troid. These algorithms significantly outperform
the naive way of computing the product family F
first and then a representative family of it.

Applications

Representative families are used to design effi-
cient algorithms in parameterized complexity and
exact algorithms.

Parameterized and Exact Algorithms
In this subsection we list some of the parameter-
ized and exact algorithms obtained using repre-
sentative families.

1. `-MATROID INTERSECTION. In this prob-
lem we are given ` matroids M1 D
.E; I1/; : : : ; M` D .E; I`/ along with their
linear representations AM1

; : : : ; AM`
over the

same field F and a positive integer k. The
objective is to find a k element subset of
E, which is independent in all the matroids
M1; : : : ; M`. Marx [7] gave a randomized
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algorithm for the problem running in time

f .k; l/
�P`

iD1 jjAMi
jj
�O.1/

, where f is a

computable function. By giving an algorithm
for deterministic truncation of linear matroids,
Lokshtanov et al. [4] gave a deterministic
algorithm for the problem running in time

2!k`
�P`

iD1 jjAMi
jj
�O.1/

, where ! is the

matrix multiplication exponent.
2. LONG DIRECTED CYCLE. In the LONG DI-

RECTED CYCLE problem, we are interested in
finding a cycle of length at least k in a directed
graph. Fomin et al. [2] and Shachnai and
Zehavi [9] gave an algorithm of running time
O.6:75kCo.k/mn2 log2 n/ for this problem.

3. SHORT CHEAP TOUR. In this problem we
are given an undirected n-vertex graph G, w W
E.G/ ! N and an integer k. The objective
is to find a path of length k with minimum
weight. Fomin et al. [2] and Shachnai and
Zehavi [9] gave a O.2:619knO.1/ log W / time
algorithm for SHORT CHEAP TOUR, where W

is the largest edge weight in the given input
graph.

4. MULTILINEAR MONOMIAL DETECTION.
Here the input is an arithmetic circuit C over
Z
C representing a polynomial P.X/ over

Z
C. The objective is to test whether P.X/

construed as a sum of monomials contain a
multilinear monomial of degree k. For this
problem Fomin et al. [2] gave an algorithm of
running time O.3:8408k2o.k/s.C /n log2 n/,
where s.C / is the size of the circuit.

5. MINIMUM EQUIVALENT GRAPH(MEG). In
this problem we are seeking a spanning sub-
digraph D0 of a given n-vertex digraph D

with as few arcs as possible in which the
reachability relation is the same as in the
original digraph D. Fomin, Lokshtanov, and
Saurabh [3] gave the first single-exponential
exact algorithm, i.e., of running time 2O.n/, for
the problem.

6. Dynamic Programming Over Graphs of
Bounded Treewidth. Fomin et al. [2] gave
algorithms with running time
O
�
.1C 2!�1 � 3/twtwO.1/n

�
for FEEDBACK

VERTEX SET and STEINER TREE, where tw
is the treewidth of the input graph, n is the

number of vertices in the input graph, and !

is the matrix multiplication exponent.

Open Problems

1. Can we improve the running time for the com-
putation of representative families in linear
matroids or in specific matroids like graphic
matroids?
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Problem Definition

Given an undirected edge-weighted graph, G D
.V; E/, the maximum cut problem (MAX CUT) is
to find a bipartition of the vertices that maximizes
the weight of the edges crossing the partition. If
the edge weights are non-negative, then this prob-
lem is equivalent to finding a maximum weight
subset of the edges that forms a bipartite sub-
graph, i.e., the maximum bipartite subgraph prob-
lem. All results discussed in this article assume
non-negative edge weights. MAX CUT is one
of Karp’s original NP-complete problems [20].
In fact, it is NP-hard to approximate to within a
factor better than 16

17
[17, 35].

For nearly 20 years, the best-known approx-
imation factor for MAX CUT was half, which
can be achieved by a very simple algorithm:
form a set S by placing each vertex in S with
probability half. Since each edge crosses the cut
.S; V n S/ with probability half, the expected
value of this cut is half the total edge weight.
This implies that for any graph, there exists a cut
with value at least half of the total edge weight.
In 1976, Sahni and Gonzalez presented a deter-
ministic half-approximation algorithm for MAX

CUT, which is essentially a de-randomization of
the aforementioned randomized algorithm [31]:
iterate through the vertices and form sets S and NS
by placing each vertex in the set that maximizes
the weight of cut .S; NS/ thus far. After each
iteration of this process, the weight of this cut
will be at least half of the weight of the edges
with both endpoints in S [ NS .

This simple half-approximation algorithm
uses the fact that for any graph with non-negative
edge weights, the total edge weight of a given
graph is an upper bound on the value of its
maximum cut. There exist classes of graphs
for which a maximum cut is arbitrarily close
to half the total edge weight, i.e., graphs for
which this “trivial” upper bound can be close to
twice the true value of an optimal solution. An
example of such a class of graphs is complete
graphs on n vertices, Kn. In order to obtain an
approximation factor better than half, one must
be able to compute an upper bound on the value
of a maximum cut that is better, i.e., smaller, than
the trivial upper bound for such classes of graphs.

Linear Programming Relaxations
For many optimization (maximization) problems,
linear programming has been shown to yield
better (upper) bounds on the value of an optimal
solution than can be obtained via combinatorial
methods. There are several well-studied linear
programming relaxations for MAX CUT. For ex-
ample, a classical integer program has a variable
xe for each edge and a constraint for each odd
cycle, requiring that an odd cycle C contribute at
most jC j � 1 edges to an optimal solution.
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max
X

e2E

wexe

X

e2C

xe � jC j � 1 8 odd cycles C

xe 2 f0; 1g:

The last constraint can be relaxed so that each
xe is required to lie between 0 and 1, but need
not be integral, i.e., 0 � xe � 1. Although
this relaxation may have exponentially many con-
straints, there is a polynomial-time separation
oracle (equivalent to finding a minimum weight
odd cycle), and thus, the relaxation can be solved
in polynomial time [14]. Another classical integer
program contains a variable xij for each pair of
vertices. In any partition of the vertices, either
zero or two edges from a three-cycle cross the
cut. This requirement is enforced in the following
integer program. If edge .i; j / … E, then wij is
set to 0.

max
X

i;j2V

wij xij

xij C xjk C xki � 2 8i; j; k 2 V

xij C xjk � xki � 0 8i; j; k 2 V

xij 2 f0; 1g:

Again, the last constraint can be relaxed so that
each xij is required to lie between 0 and 1. In
contrast to the aforementioned cycle-constraint-
based linear program, this linear programming re-
laxation has a polynomial number of constraints.

Both of these relaxations actually have the
same optimal value for any graph with non-
negative edge weights [3,26,30]. (For a simplified
proof of this, see [25].) Poljak showed that the
integrality gap for each of these relaxations is
arbitrarily close to 2 [26]. In other words, there
are classes of graphs that have a maximum cut
containing close to half of the edges, but for
which each of the above relaxations yields an
upper bound close to all the edges, i.e., no better
than the trivial “all-edges” bound. In particular,
graphs with a maximum cut close to half the
edges and with high girth can be used to demon-
strate this gap. A comprehensive look at these

linear programming relaxations is contained in
the survey of Poljak and Tuza [30].

Another natural integer program uses vari-
ables for vertices rather than edges:

max
X

.i;j /2E

wij

�
xi .1�xj /Cxj .1�xi /

�
(1)

xi 2 f0; 1g 8i 2 V: (2)

Replacing (2) with xi 2 Œ0; 1� results in a nonlin-
ear relaxation that is actually just as hard to solve
as the integer program. This follows from the
fact that any fractional solution can be rounded
to obtain an integer solution with at least the
same value. Indeed, for any vertex h 2 V with
fractional value xh, we can rewrite the objective
function (1) as follows. Edges adjacent to vertex
h are denoted by ı.h/. For ease of notation, let
us momentarily assume the graph is unweighted,
although the argument works for non-negative
edge weights.

X

.i;j /2Enı.h/

xi .1 � xj /C xj .1 � xi /C

xh

A‚ …„ ƒX

j2ı.h/

.1 � xj /C.1 � xh/

B‚ …„ ƒX

j2ı.h/

xj : (3)

If A � B , we round x` to 1, otherwise we round
it to 0. Repeating this process for all vertices
results in an integral solution whose objective
value is no less than the objective value of the
initial fractional solution.

Eigenvalue Upper Bounds
Delorme and Poljak [8] presented an eigenvalue
upper bound on the value of a maximum cut,
which was a strengthened version of a previous
eigenvalue bound considered by Mohar and Pol-
jak [24]. Computing Delorme and Poljak’s upper
bound is equivalent to solving an eigenvalue min-
imization problem. They showed that their bound
is computable in polynomial time with arbitrary
precision. In a series of work, Delorme, Poljak
and Rendl showed that this upper bound behaves
“differently” from the linear programming-based



1208 Max Cut

upper bounds. For example, they studied classes
of sparse random graphs (e.g., G.n; p/ with p D
50=n) and showed that their upper bound is close
to optimal on these graphs [9]. Since graphs of
this type can also be used to demonstrate an
integrality gap arbitrarily close to 2 for the afore-
mentioned linear programming relaxations, their
work highlighted contrasting behavior between
these two upper bounds. Further computational
experiments on other classes of graphs gave more
evidence that the bound was indeed stronger than
previously studied bounds [27, 29]. Delorme and
Poljak conjectured that the five cycle demon-
strated the worst-case behavior for their bound: a
ratio of 32

25C5
p

5
� 0:88445 between their bound

and the optimal integral solution. However, they
could not prove that their bound was strictly less
than twice the value of a maximum cut in the
worst case.

Key Result

In 1994, Goemans and Williamson presented a
randomized 0:87856-approximation algorithm
for MAX CUT [12]. Their breakthrough work was
based on rounding a semidefinite programming
relaxation and was the first use of semidefinite
programming in approximation algorithms.
Poljak and Rendl showed that the upper bound
provided by this semidefinite relaxation is
equivalent to the eigenvalue bound of Delorme
and Poljak [28]. Thus, Goemans and Williamson
proved that the eigenvalue bound of Delorme and
Poljak is no more than 1:138 times the value of a
maximum cut.

A Semidefinite Relaxation
MAX CUT can be formulated as the following
quadratic integer program, which is NP-hard to
solve. Each vertex i 2 V is represented by a
variable yi , which is assigned either 1 or �1

depending on which side of the cut it appears.

max
1

2

X

.i;j /2E

wij .1 � yi yj /

yi 2 f�1; 1g 8i 2 V:

Goemans and Williamson considered the follow-
ing relaxation of this integer program, in which
each vertex is represented by a unit vector.

max
1

2

X

.i;j /2E

wij .1 � vi � vj /

vi � vi D 1 8i 2 V

vi 2 Rn 8i 2 V:

They showed that this relaxation is equivalent to
a semidefinite program. Specifically, consider the
following semidefinite relaxation:

max
1

2

X

.i;j /2E

wij .1 � yij /

yi i D 1 8i 2 V

Y positive semidefinite:

The equivalence of these two relaxations is due
to the fact that a matrix Y is positive semidefinite
if and only if there is a matrix B such that
BT B D Y . The latter relaxation can be solved to
within arbitrary precision in polynomial time via
the ellipsoid algorithm, since it has a polynomial-
time separation oracle [15]. Thus, a solution to
the first relaxation can be obtained by finding a
solution to the second relaxation and finding a
matrix B such that BT B D Y . If the columns
of B correspond to the vectors fvi g, then yij D
vi � vj , yielding a solution to the first relaxation.

Random-Hyperplane Rounding
Goemans and Williamson showed how to round
the semidefinite programming relaxation of MAX

CUT using a new technique that has since become
known as “random-hyperplane rounding” [12].
First obtain a solution to the first relaxation,
which consists of a set of unit vectors fvi g, one
vector for each vertex. Then choose a random
vector r 2 Rn in which each coordinate of r

is chosen from the standard normal distribution.
Finally, set S D fi j vi � r � 0g and output the cut
.S; V n S/.
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The probability that a particular edge .i; j / 2
E crosses the cut is equal to the probability
that the dot products vi � r and vj � r differ in
sign. This probability is exactly equal to �ij =� ,
where �ij is the angle between vectors vi and
vj . Thus, the expected weight of edges crossing
the cut is equal to

P
.i;j /2E �ij =� . How large is

this compared to the objective value given by the
semidefinite programming relaxation, i.e., what is
the approximation ratio?

Define ˛gw as the worst-case ratio of the
expected contribution of an edge to the cut, to
its contribution to the objective function of the
semidefinite programming relaxation. In other
words: ˛gw D min0����

2
�

�
1�cos �

. It can be
shown that ˛gw > 0:87856. Thus, the expected
value of a cut is at least ˛gw � SDPOP T , resulting
in an approximation ratio of at least 0:87856 for
MAX CUT. The same analysis applies to weighted
graphs with non-negative edge weights.

This algorithm was de-randomized by Maha-
jan and Hariharan [23]. Goemans and Williamson
also applied their random-hyperplane rounding
techniques to give improved approximation guar-
antees for other problems such as MAX-DICUT

and MAX-2SAT.

Integrality Gap and Hardness
Karloff showed that there exist graphs for which
the best hyperplane is only a factor ˛gw of the
maximum cut [19], showing that there are graphs
for which the analysis in [12] is tight. Since the
optimal SDP value for such graphs equals the
optimal value of a maximum cut, these graphs
cannot be used to demonstrate an integrality gap.
However, Feige and Schechtman showed that
there exist graphs for which the maximum cut is
a ˛gw fraction of the SDP bound [10], thereby
establishing that the approximation guarantee of
Goemans and Williamson’s algorithm matches
the integrality gap of their semidefinite program-
ming relaxation. Recently, Khot, Kindler, Mos-
sel, and O’Donnell [22] showed that if the Unique
Games Conjecture of Khot [21] is true, then it is
NP-hard to approximate MAX CUT to within any
factor larger than ˛gw.

Better-than-Half Approximations
Without SDPs
Since Goemans and Williamson presented an
˛gw-approximation algorithm for MAX CUT, it
has been an open question if one can obtain a
matching approximation factor or even an ap-
proximation ratio of 1

2
C � for some constant

� > 0 without using SDPs. Trevisan presented an
algorithm based on spectral partitioning with run-
ning time QO.n2/ and an approximation guarantee
of 0.531 [34], which was subsequently improved
to 0.614 by Soto [32].

Applications

The work of Goemans and Williamson paved
the way for the further use of semidefinite
programming in approximation algorithms,
particularly for graph partitioning problems.
Methods based on the random-hyperplane
technique have been successfully applied to many
optimization problems that can be categorized
as partition problems. A few examples are
3-COLORING [18], MAX-3-CUT [7,11,13], MAX-
BISECTION [16], CORRELATION CLUSTER-
ING [5,33], and SPARSEST CUT [2]. Additionally,
some progress has been made in extending
semidefinite programming techniques outside
the domain of graph partitioning to problems
such as BETWEENNESS [6], BANDWIDTH [4],
and LINEAR EQUATIONS mod p [1].
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Problem Definition

The MAX LEAF SPANNING TREE problem asks
us to find a spanning tree with at least k leaves
in an undirected graph. The decision version of
parameterized MAX LEAF SPANNING TREE is
the following:

MAX LEAF SPANNING TREE
INPUT: A connected graph G, and an integer k.
PARAMETER: An integer k.
QUESTION: Does G have a spanning tree with at
least k leaves?

The parameterized complexity of the
nondeterministic polynomial-time complete
MAX LEAF SPANNING TREE problem has been
extensively studied [2, 3, 9, 11] using a variety
of kernelization, branching and other fixed-
parameter tractable (FPT) techniques. The au-
thors are the first to propose an extremal structure
method for hard computational problems. The
method, following in the sense of Grothendieck
and in the spirit of the graph minors project of
Robertson and Seymour, is that a mathematical
project should unfold as a series of small steps in
an overall trajectory that is described by the ap-
propriate “mathematical machine.” The authors

are interested in statements of the type: Every
connected graph on n vertices that satisfies a cer-
tain set of properties has a spanning tree with at
least k leaves, and this spanning tree can be found
in time O.f .k/C nc/, where c is a constant
(independent of k) and f is an arbitrary function.

In parameterized complexity, the value k is
called the parameter and is used to capture some
structure of the input or other aspect of the
computational objective. For example, k might
be the number of edges to be deleted in order
to obtain a graph with no cycles, or k might
be the number of DNA sequences to be aligned
in an alignment, or k may be the maximum
type-declaration nesting depth of a compiler, or
k D 1=� may be the parameterization in the anal-
ysis of approximation, or k might be a composite
of several variables.

There are two important ways of comparing
FPT algorithms, giving rise to two FPT races.
In the “f(k)” race, the competition is to find
ever more slowing growing parameter functions
f(k) governing the complexity of FPT algorithms.
The “kernelization race” refers to the following
lemma stating that a problem is in FPT if and
only if the input can be preprocessed (kernelized)
in “ordinary” polynomial time into an instance
whose size is bounded by a function of k only.

Lemma 1 A parameterized problem … is in
FPT if and only if there is a polynomial-time
transformation (in both n and k) that takes (x, k)
to .x0; k0/ such that:

(1) (x, k) is a yes-instance of … if and only if
.x0; k0/ is a yes-instance of …,

(2) k0 � k, and
(3) jx0j � g.k/ for some fixed function g.

In the situation described by the lemma, say that
we can kernelize to instances of size at most
g(k). Although the two races are often closely
related, the result is not always the same. The
current best FPT algorithm for MAX LEAF is due
to Bonsma [1] (following the extremal structure
approach outlined by the authors) with a running
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time of O�.8:12k/ to determine whether a graph
G on n vertices has a spanning tree with at least
k leaves; however the authors present the FPT
algorithm with the smallest kernel size.

The authors list five independent deliverables
associated to the extremal structure theory, and
illustrate all of the objectives for the MAX LEAF

problem. The five objectives are:

(A) Better FPT algorithms as a result of deeper
structure theory, more powerful reduction
rules associated with that structure theory,
and stronger inductive proofs of improved
kernelization bounds.

(B) Powerful preprocessing (data reduc-
tion/kernelization) rules and combinations
of rules that can be used regardless of
whether the parameter is small and that can
be combined with other approaches, such
as approximation and heuristics. These are
usually easy to program.

(C) Gradients and transformation rules for local
search heuristics.

(D) Polynomial-time approximation algorithms
and performance bounds proved in a system-
atic way.

(E) Structure to exploit for solving other prob-
lems.

Key Results

The key results are programmatic, providing
a method of extremal structure as a systematic
method for designing FPT algorithms. The five
interrelated objectives listed above are surveyed,
and each is illustrated using the MAX LEAF

SPANNING TREE problem.

Objective A: FPT Algorithms
The objective here is to find polynomial-time
preprocessing (kernelization) rules where g(k) is
as small as possible. This has a direct payoff in
terms of program objective B.

Rephrased as a structure theory question, the
crucial issue is: What is the structure of graphs
that do not have a subgraph with k leaves?

Max Leaf Spanning Tree, Fig. 1 Reduction rules were
developed in order to reduce this Kleitman–West graph
structure

A graph theory result due to Kleitman and
West shows that a graph of minimum degree
at least 3, that excludes a k-leaf subgraph,
has at most 4.k � 3/ vertices. Figure 1 shows
that this is the best possible result for this
hypothesis. However, investigating the structure
using extremal methods reveals the need for
the reduction rule of Fig. 2. About 20 different
polynomial-time reduction rules (some much
more complex and “global” in structure than
the simple local reduction rule depicted) are
sufficient to kernelize to a graph of minimum
degree 2 having at most 3:5k vertices.

In general, an instance of a parameterized
problem consists of a pair (x, k) and a “boundary”
which is located by holding x fixed and varying
k and regarding whether the outcome of the
decision problem is yes or no. Of interest is the
boundary when x is reduced. A typical boundary
lemma looks like the following.

Lemma 2 Suppose (G, k) is a reduced instance
of MAX LEAF, WITH (G, k) a yes-instance and
.G; k C 1/ a no-instance. Then jGj � ck. (Here
c is a small constant that becomes clarified dur-
ing the investigation.)

A proof of a boundary lemma is by minimum
counterexample. A counterexample would be
a graph such that (1) (G, k) is reduced, (2) (G, k)
is a yes-instance of MAX LEAF, (3) .G; k C 1/ is
a no-instance, and (4) jGj > ck.

The proof of a boundary lemma unfolds grad-
ually. Initially, it is not known what bound will
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k’ = k-1

Max Leaf Spanning Tree, Fig. 2 A reduction rule for the Kleitman–West graph

eventually succeed and it is not known exactly
what is meant by reduced. In the course of an
attempted proof, these details are worked out. As
the arguments unfold, structural situations will
suggest new reduction rules. Strategic choices
involved in a boundary lemma include:

(1) Determining the polarity of the boundary, and
setting up the boundary lemma.

(2) Choosing a witness structure.
(3) Setting inductive priorities.
(4) Developing a series of structural claims that

describe the situation at the boundary.
(5) Discovering reduction rules that can act in

polynomial-time on relevant structural situa-
tions at the boundary.

(6) As the structure at the boundary becomes
clear, filling in the blank regarding the ker-
nelization bound.

The overall structure of the argument is “by
minimum counterexample” according to the pri-
orities established by choice 3, which generally
make reference to choice 2. The proof proceeds
by a series of small steps consisting of structural
claims that lead to a detailed structural picture at
the “boundary”– and thereby to the bound on the
size of G that is the conclusion of the lemma. The
complete proof assembles a series of claims made
against the witness tree, various sets of vertices,
and inductive priorities and sets up a master
inequality leading to a proof by induction, and
a 3:5k problem kernel.

Objective B: Polynomial-Time
Preprocessingand Data-Reduction
Routines
The authors have designed a table for tracing
each possible boundary state for a possible solu-
tion. Examples are given that show the surprising
power of cascading data-reduction rules on real

input distributions and that describe a variety of
mathematical phenomena relating to reduction
rules. For example, some reduction rules, such as
the Kleitman–West dissolver rule for MAX LEAF

(Fig. 2), have a fixed “boundary size” (in this
case 2), whereas crown-type reduction rules do
not have a fixed boundary size.

Objective C: Gradients and Solution
Transformations for Local Search
A generalization of the usual setup for local
search is given, based on the mathematical power
of the more complicated gradient in obtaining
superior kernelization bounds. Idea 1 is that lo-
cal search be conducted based on maintaining
a “current witness structure” rather than a full
solution (spanning tree). Idea 2 is to use the list
of inductive priorities to define a “better solution”
gradient for the local search.

Objective D: Polynomial-Time
Approximation Algorithms
The polynomial-time extremal structure theory
leads directly to a constant-factor p-time approx-
imation algorithm for MAX LEAF. First, reduce
G using the kernelization rules. The rules are
approximation-preserving. Take any tree T (not
necessarily spanning) in G. If all of the structural
claims hold, then (by the boundary lemma argu-
ments) the tree T must have at least n/c leaves
for c D 3:75. Therefore, lifting T back along the
reduction path, we obtain a c-approximation.

If at least one of the structural claims does not
hold, then the tree T can be improved against one
of the inductive priorities. Notice that each claim
is proved by an argument that can be interpreted
as a polynomial-time routine that improves T,
when the claim is contradicted.

These consequences can be applied to the
original T (and its successors) only a polyno-
mial number of times (determined by the list of
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Max Leaf Spanning Tree, Table 1 The complexity ecology of parameters

TW BW VC DS G ML

TW FPT W[1]-hard FPT FPT ? FPT

BW FPT W[1]-hard FPT FPT ? FPT

VC FPT ? FPT FPT ? FPT

DS ? ? W[1]-hard W[1]-hard ? ?

G W[1]-hard W[1]-hard W[1]-hard W[1]-hard FPT ?

ML FPT ? FPT FPT FPT ?

inductive priorities) until one arrives at a tree
T 0 for which all of the various structural claims
hold. At that point, we must have a c-approximate
solution.

Objective E: Structure To Exploitin The
Ecology of Complexity
The objective here is to understand how every
input-governing problem parameter affects the
complexity of every other problem. As a small
example, consider Table 1 using the shorthand
TW is TREEWIDTH, BW is BANDWIDTH, VC
is VERTEX COVER, DS is DOMINATING SET,
G is GENUS and ML is MAX LEAF. The entry
in the second row and fourth column indicates
that there is an FPT algorithm to optimally solve
the DOMINATING SET problem for a graph G of
bandwidth at most k. The entry in the fourth row
and second column indicates that it is unknown
whether BANDWIDTH can be solved optimally by
an FPT algorithm when the parameter is a bound
on the domination number of the input.

MAX LEAF applies to the last row of the
table. For graphs of max leaf number bounded
by k, the maximum size of an independent set
can be computed in time O�.2:972k/ based on
a reduction to a kernel of size at most 7k. There
is a practical payoff for using the output of one
problem as the input to another.

Applications

The MAX LEAF SPANNING TREE problem has
motivations in computer graphics for creating
triangle strip representations for fast interactive
rendering [5]. Other applications are found in the

area of traffic grooming and network design, such
as the design of optical networks and the uti-
lization of wavelengths in order to minimize net-
work cost, either in terms of the line-terminating
equipment deployed or in terms of electronic
switching [6]. The minimum-energy problem in
wireless networks consists of finding a trans-
mission radius vector for all stations in such
a way that the total transmission power of the
whole network is the least possible. A restricted
version of this problem is equivalent to the MAX

LEAF SPANNING TREE problem [7]. Finding
spanning trees with many leaves is equivalent to
finding small connected dominating sets and is
also called the MINIMUM CONNECTED DOMI-
NATING problem [13].

Open Problems

Branching Strategies
While extremal structure is in some sense the
right way to design an FPT algorithm, this is
not the only way. In particular, the recipe is
silent on what to do with the kernel. An open
problem is to find general strategies for employ-
ing “parameter-appropriate structure theory” in
branching strategies for sophisticated problem
kernel analysis.

Turing Kernelizability
The polynomial-time transformation of (x, k) to
the simpler reduced instance .x0; k0/ is a many:1
transformation. One can generalize the notion
of many:1 reduction to Turing reduction. How
should the quest for p-time extremal theory un-
fold under this “more generous” FPT?
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Algorithmic Forms of The Boundary
Lemma Approach
The hypothesis of the boundary lemma that (G,
k) is a yes-instance implies that there exists a wit-
ness structure to this fact. There is no assumption
that one has algorithmic access to this structure,
and when reduction rules are discovered, these
have to be transformations that can be applied
to (G, k) and a structure that can be discovered
in (G, k) in polynomial time. In other words,
reduction rules cannot be defined with respect to
the witness structure. Is it possible to describe
more general approaches to kernelization where
the witness structure used in the proof of the
boundary lemma is polynomial-time computable,
and this structure provides a conditional context
for some reduction rules? How would this change
the extremal method recipe?

Problem Annotation
One might consider a generalized MAX LEAF

problem where vertices and edges have various
annotations as to whether they must be leaves (or
internal vertices) in a solution, etc. Such a gen-
eralized form of the problem would generally be
expected to be “more difficult” than the vanilla
form of the problem. However, several of the
“best known” FPT algorithms for various prob-
lems, are based on these generalized, annotated
forms of the problems. Examples include PLA-
NAR DOMINATING SET and FEEDBACK VER-
TEX SET [4]. Should annotation be part of the
recipe for the best possible polynomial-time ker-
nelization?
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Problem Definition

In a scheduling problem we have to find an opti-
mal schedule of jobs. Here we consider the paral-
lel machines case, where m machines are given,
and we can use them to schedule the jobs. In the
most fundamental model, each job has a known
processing time, and to schedule the job we have
to assign it to a machine, and we have to give its
starting time and a completion time, where the
difference between the completion time and the
starting time is the processing time. No machine

may simultaneously run two jobs. If no further
assumptions are given then the machines can
schedule the jobs assigned to them without an idle
time and the total time required to schedule the
jobs on a machine is the sum of the processing
times of the jobs assigned to it. We call this value
the load of the machine.

Concerning the machine environment three
different models are considered. If the processing
time of a job is the same for each machine, then
we call the machines identical machines. If each
machine has a speed si , the jobs have a processing
weight pj and the processing time of job j on the
i -th machine is pj =si , then we call the machines
related machines. If the processing time of job
j is given by an arbitrary positive vector Pj D
.pj .1/; : : : ; pj .m//, where the processing time
of the job on the i -th machine is pj .i/, then we
call the machines unrelated machines. Here we
consider the identical machine case unless it is
stated otherwise.

Many objective functions are considered for
scheduling problems. Here we consider only such
models where the goal is the maximization of
the minimal load which problem was proposed
in [4]. We note that the most usual objective
function is minimizing the maximal load which
is called makespan. This objective is the dual of
the makespan in some sense but both objective
functions require to balance the loads of the
machines.

A straightforward reduction from the well-
known NP-hard partition problem shows that the
investigated problem is NP-hard. Therefore one
main research question is to develop polynomial
time approximation algorithms which cannot en-
sure the optimal solution but always give a solu-
tion which is not much worse than the optimal
one. These approximation algorithms are usually
evaluated by the approximation ratio. In case of
maximization problems an algorithm is called
c-approximation if the objective value given by
the algorithm is at least c-times as large than
the optimal objective value. If we have a poly-
nomial time 1 � "-approximation algorithm for
every " > 0, then this class of algorithms is
called polynomial approximation scheme (PTAS
in short). If these algorithms are also polynomial
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in 1=", then we call them fully polynomial ap-
proximation scheme (FPTAS in short).

Key Results

Approximation Algorithms
Since we plan to balance the load on the ma-
chines, a straightforward idea to find a solution
is to use some greedy method to schedule the
jobs. If we schedule the jobs one by one, then
a greedy algorithm assigns the job to the ma-
chine with the smallest load. Unfortunately if
we schedule the jobs in arbitrary order, then this
algorithm does not have constant approximation
ratio. In the worst inputs the problem is caused by
the large jobs which are scheduled at the end of
the input. Therefore, the next idea is to order the
jobs by decreasing size and schedule them one
by one assigning the actual job to the machine
with the smallest load. This algorithm is called
LPT (longest processing time) and analyzed in
[4] and [3]. The first analysis was presented in
[4], where the authors proved that the algorithm
is 3=4-approximation and also proved that no
greater approximation ratio can be given for the
algorithm as the number of machines tends to1.
In [3] a more sophisticated analysis is given, the
authors proved that the exact competitive ratio is
.3m � 1/=.4m � 2/. Later in [7] a PTAS was
presented for the problem. The time complexity
of the algorithm is O.c" � n � m/ where c" is
a constant which depends exponentially on ".
Thus the presented class of algorithms is not
an FPTAS. But it worths noting that we cannot
expect an FPTAS for the problem. It belongs
to the class of strongly NP-complete problems;
thus an FPTAS would yield PDNP. The case of
unrelated machines is much more difficult. In [2]
it is proved that no better than 1=2 approximation
algorithm exists unless P = NP; therefore we can-
not expect a PTAS in this case.

Online and Semi-online Problem
In many applications we do not have a priori
knowledge about the input and the algorithms
must make their decision online based only on
the past information. These algorithms are called
online algorithms. In scheduling problems this

means that the jobs arrive one by one and the
algorithm has to schedule the arriving job without
any knowledge about the further ones. This area
is very similar to the area of approximation
algorithms, again we cannot expect algorithms
which surely find optimal solutions. In approxi-
mation algorithms the problem is that we do not
have exponential time for computation; in online
algorithms it is the lack of information. The
algorithms are also analyzed by a similar method,
but in the area of online algorithms it is called
competitive ratio. For maximization problems an
online algorithm is called c-competitive if the
objective value given by the algorithm is at least
c-times as large than the optimal objective value.

The online version of scheduling maximizing
the minimal load is studied in [1]. The most
straightforward online algorithm is the above-
mentioned List algorithm which assigns the ac-
tual job to the machine with the smallest load.
It is 1=m-competitive and it is easy to see (con-
sidering m jobs of size 1 and if they are assigned
to different machines m�1 further jobs of size m)
that no better deterministic online algorithm can
be given. In [1] randomized algorithms are stud-
ied, the authors presented an 1=O.

p
m log m/-

competitive randomized algorithm and proved
that no randomized algorithm can have better
competitive ratio than 1=˝.

p
m/. The case of

related machines is also studied and it is proved
that no algorithm exists which has a competitive
ratio depending on the number of machines.

In semi-online problems usually some extra
information is given to the algorithm. The first
such model is also studied in [1]. The authors
studied the version where the optimal value
is known in advance and they presented an
m=.2m � 1/-competitive algorithm and they
proved that if m D 2 or m D 3 then no semi-
online algorithm in this model with better com-
petitive ratio exists. In case of related machines
and known optimal value, an 1=m-competitive
algorithm is given. Several further semi-online
version is studied in the literature. In [5] the
semi-online version where the maximal job size
is known in advance, in [6] the version where
total processing time of all jobs and the largest
processing time is known in advance is studied.
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Applications

The first paper [4] mentions an application as the
motivation of the model. It is stated that the prob-
lem was motivated by modeling the sequencing
of maintenance actions for modular gas turbine
aircraft engines. If a fleet of M identical machines
(engines) are given and they must be kept opera-
tional for as long as possible, then we obtain the
objective to maximize the minimal load.
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Problem Definition

Consider two rooted trees T1 and T2 with n leaves
each. The internal nodes of each tree have at least
two children each. The leaves in each tree are
labeled with the same set of labels, and further, no
label occurs more than once in a particular tree.
An agreement subtree of T1 and T2 is defined as
follows. Let L1 be a subset of the leaves of T1 and
let L2 be the subset of those leaves of T2 which
have the same labels as leaves in L1. The subtree
of T1 induced by L1 is an agreement subtree
of T1 and T2 if and only if it is isomorphic to
the subtree of T2 induced by L2. The maximum
agreement subtree problem (henceforth called
MAST) asks for the largest agreement subtree of
T1 and T2.

The terms induced subtree and isomorphism
used above need to be defined. Intuitively, the
subtree of T induced by a subset L of the leaves
of T is the topological subtree of T restricted
to the leaves in L, with branching information
relevant to L preserved. More formally, for any
two leaves a; b of a tree T , let lcaT .a; b/ denote
their lowest common ancestor in T . If a D b,
lcaT .a; b/ D a. The subtree U of T induced by
a subset L of the leaves is the tree with leaf set
L and interior node set flcaT .a; b/ j a; b 2 Lg
inheriting the ancestor relation from T , that is,
for all a; b 2 L, lcaU .a; b/ D lcaT .a; b/.

Intuitively, two trees are isomorphic if the
children of each node in one of the trees can
be reordered so that the leaf labels in each tree
occur in the same order and the shapes of the
two trees become identical. Formally, two trees
U1 and U2 with the same leaf labels are said
to be isomorphic if there is a 1–1 mapping �

between their nodes, mapping leaves to leaves
with the same labels, and such that for any two
different leaves a; b of U1, �.lcaU1.a; b// D
lcaU 2.�.a/; �.b//.
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Key Results

Previous Work
Finden and Gordon [8] gave a heuristic algorithm
for the MAST problem on binary trees which had
an O.n5/ running time and did not guarantee
an optimal solution. Kubicka, Kubicki, and
McMorris [12] gave an O.n.5C�/ log n/ algorithm
for the same problem. The first polynomial time
algorithm for this problem was given by Steel
and Warnow [14]; it had a running time of
O.n2/. Steel and Warnow also considered the
case of nonbinary and unrooted trees. Their
algorithm takes O.n2/ time for fixed-degree
rooted and unrooted trees and O.n4:5 log n/

for arbitrary-degree rooted and unrooted trees.
They also give a linear reduction from the rooted
to the unrooted case. Farach and Thorup gave

an O
�
nc
p

log n
�

time algorithm for the MAST

problem on binary trees; here c is a constant
greater than 1. For arbitrary-degree trees, their

algorithm takes O
�
n2c
p

log n
�

time for the

unrooted case [6] and O.n1:5 log n/ time for
the rooted case [7]. Farach, Przytycka, and
Thorup [4] obtained an O.n log3 n/ algorithm
for the MAST problem on binary trees. Kao [11]
obtained an algorithm for the same problem
which takes O.n log2 n/ time. This algorithm

takes O.minfnd 2 log d log2 n; nd
3
2 log3 ng/ for

degree d trees.
The MAST problem for more than two trees

has also been studied. Amir and Keselman [1]
showed that the problem is NP-hard for even 3
unbounded degree trees. However, polynomial
bounds are known [1, 5] for three or more
bounded degree trees.

Our Contribution
An O.n log n/ algorithm for the MAST prob-
lem for two binary trees is presented here. This
algorithm is obtained by improving upon the
O.n log3 n/ algorithm from [4] (in fact, the final
journal version [3] combines both papers). The
O.n log3 n/ algorithm of [4] can be viewed as
taking the following approach (although the au-
thors do not describe it this way). It identifies two

special cases and then solves the general case by
interpolating between these cases.

Special Case 1
The internal nodes in both trees form a path. The
MAST problem reduces to essentially a size n

Longest Increasing Subsequence problem in this
case. As is well known, this can be solved in
O.n log n/ time.

Special Case 2
Both trees T1 and T2 are complete binary trees.
For each node v in T2, only certain nodes u in T1

can be usefully mapped to v, in the sense that the
subtree of T1 rooted at u and the subtree of T2

rooted at v have a nonempty agreement subtree.
There are O.n log2 n/ such pairs .u; v/. This can
be seen as follows. Note that for .u; v/ to be
such a pair, the subtree of T1 rooted at u and the
subtree of T2 rooted at v must have a leaf label in
common. For each label, there are only O.log2 n/

such pairs obtained by pairing each ancestor of
the leaf with this label in T1 with each ancestor
of the leaf with this label in T2. The total number
of interesting pairs is thus O.n log2 n/. For each
pair, computing the MAST takes O(1) time, as it
is simply a question of deciding the best way of
pairing their children.

The interpolation process takes a centroid de-
composition of the two trees and compares pairs
of centroid paths, rather than individual nodes
as in the complete tree case. The comparison of
a pair of centroid paths requires finding match-
ings with special properties in appropriately de-
fined bipartite graphs, a nontrivial generalization
of the Longest Increasing Subsequence prob-
lem. This process creates O.n log2 n/ interesting
.u; v/ pairs, each of which takes O.log n/ time to
process.

This work provides two improvements, each
of which gains a log n factor.

Improvement 1
The complete tree special case is improved to
O.n log n/ time as follows. A pair of nodes
.u; 	/; u 2 T1; 	 2 T2, is said to be interesting
if there is an agreement subtree mapping u to
	. As is shown below, for complete trees, the



1220 Maximum Agreement Subtree (of 2 Binary Trees)

total number of interesting pairs .u; 	/ is just
O.n log n/. Consider a node 	 in T2. Let L2 be
the set of leaves which are descendants of 	. Let
L1 be the set of leaves in T1 which have the same
labels as the leaves in L2. The only nodes that
may be mapped to 	 are the nodes u in the subtree
of T1 induced by L1. The number of such nodes
u is O(size of the subtree of T2 rooted at v).
The total number of interesting pairs is thus the
sum of the sizes of all subtrees of T2, which is
O.n log n/.

This reduces the number of interesting pairs
.u; 	/ to O.n log n/. Again, processing a pair
takes O(1) time (this is less obvious, for identify-
ing the descendants of u which root the subtrees
with which the two subtrees of 	 can be matched
is nontrivial). Constructing the above induced
subtree itself can be done in O.jL1 j/ time, as
will be detailed later. The basic tool here is to
preprocess trees T1 and T2 in O.n/ time so
that the least common ancestor queries can be
answered in O(1) time.

Improvement 2
As in [4], when the trees are not complete bi-
nary trees, the algorithm takes centroid paths and
matches pairs of centroid paths. The O.log n/

cost that the algorithm in [4] incurs in processing
each such interesting pair of paths arises when
there are large (polynomial in n size) instances of
the generalized Longest Increasing Subsequence
problem. At first sight, it is not clear that large
instances of these problems can be created for
sufficiently many of the interesting pairs; unfor-
tunately, this turns out to be the case. However,
these problem instances still have some useful
structure. By using (static) weighted trees, pairs
of interesting vertices are processed in O(1) time
per pair, on the average, as is shown by an
appropriately parametrized analysis.

The Multiple Degree Case
The techniques can be generalized to higher de-
gree bounds d > 2 by combining it with tech-
niques from [6, Sect. 2] for unbounded degrees.
This appears to yield an algorithm with run-
ning time O.minfnpd log2 n; nd log n log d g/.

The conjecture, however, is that there is an algo-
rithm with running time O.n

p
d log n/.

Applications

Motivation
The MAST problem arises naturally in biology
and linguistics as a measure of consistency be-
tween two evolutionary trees over species and
languages, respectively. An evolutionary tree for
a set of taxa, either species or languages, is a
rooted tree whose leaves represent the taxa and
whose internal nodes represent ancestor informa-
tion. It is often difficult to determine the true
phylogeny for a set of taxa, and one way to gain
confidence in a particular tree is to have different
lines of evidence supporting that tree. In the
biological taxa case, one may construct trees from
different parts of the DNA of the species. These
are known as gene trees. For many reasons, these
trees need not entirely agree, and so one is left
with the task of finding a consensus of the various
gene trees. The maximum agreement subtree is
one method of arriving at such a consensus.
Notice that a gene is usually a binary tree, since
DNA replicates by a binary branching process.
Therefore, the case of binary trees is of great
interest.

Another application arises in automated trans-
lation between two languages (Grishman and
Yangarber, NYU, Private Communication). The
two trees are the parse trees for the same meaning
sentences in the two languages. A complication
that arises in this application (due in part to
imperfect dictionaries) is that words need not
be uniquely matched, i.e., a word at the leaf of
one tree could match a number (usually small)
of words at the leaves of the other tree. The
aim is to find a maximum agreement subtree;
this is done with the goal of improving context-
using dictionaries for automated translation. So
long as each word in one tree has only a con-
stant number of matches in the other tree (possi-
bly with differing weights), the algorithm given
here can be used, and its performance remains
O.n log n/. More generally, if there are m word
matches in all, the performance becomes O..mC
n/ log n/. Note, however, that if there are two
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collections of equal-meaning words in the two
trees of sizes k1 and k2 respectively, they induce
k1k2 matches.
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Problem Definition

The maximum agreement subtree problem for k

trees (k-MAST) is a generalization of a similar
problem for two trees (MAST). Consider a tuple
of k rooted leaf-labeled trees (T1; T2 : : : Tk). Let
A D fa1; a2; : : : ang be the set of leaf labels.
Any subset B � A uniquely determines the so-
called topological restriction T jB of the three T

to B . Namely, T jB is the topological subtree of
T spanned by all leaves labeled with elements
from B and the lowest common ancestors of all
pairs of these leaves. In particular, the ancestor
relation in T jB is defined so that it agrees with
the ancestor relation in T . A subset B of A such
T 1 jB; : : : ; T k jB are isomorphic is called an
agreement set.

Problem 1 (k-MAST) INPUT: A tuple ET D
.T 1; : : : ; T k/ of leaf-labeled trees, with a
common set of labels A D fa1; : : : ; ang, such
that for each tree T i there exists one-to-one
mapping between the set of leaves of that tree
and the set of labels A.

OUTPUT: k-MAST( ET ) is equal to the maxi-
mum cardinality agreement set of ET .

Key Results

In the general setting, k-MAST problem is NP-
complete for k � 3 [1]. Under the assumption
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that the degree of at least one of the trees is
bounded, Farach et al. proposed an algorithm
leading to the following theorem:

Theorem 1 If the degree of the trees in the tuple
ET D .T 1; : : : ; T k/ is bounded by d , then the k-
MAST. ET / can be computed in O.kn3Cnd / time.

In what follows, the problem is restricted to
finding the cardinality of the maximum agree-
ment set rather than the set itself. The extension
of this algorithm to an algorithm that finds the
agreement set (and subsequently the agreement
subtree) within the same time bounds is relatively
straightforward.

Recall that the classical O.n2/ dynamic
programming algorithm for MAST of two
binary trees [11] processes all pairs of internal
nodes of the two trees in a bottom-up fashion.
For each pair of such nodes, it computes the
MAST value for the subtrees rooted at this pair.
There are O.n2/ pairs of nodes, and the MAST
value for the subtrees rooted at a given pair of
nodes can be computed in constant time from
MAST values of previously processed pairs of
nodes.

To set the stage for the more general case,
let k-MAST(Ev) be the solution to the k-MAST
problem for the subtrees of T 1.	1/; : : : ; T k.	k/

where T i .	i / is the subtree if T i rooted at
	 i . If, for all i , u i is a strict ancestor of 	i

in T i , then, Ev is dominated by Eu (denoted
Ev � Eu).

A naive extension of the algorithm for two
trees to an algorithm for k trees would require
computing k-MAST(Ev) for all possible tuples Ev
by processing these tuples in the order consistent
with the domination relation. The basic idea that
allows to avoid 
.nk/ complexity is to replace
the computation of k-MAST(Ev) with the com-
putation of a related value, mast.Ev/, defined to
be the size of the maximum agreement set for
the subtrees of (T 1; : : : ; T k) rooted at (	1; : : : 	k)
subject to the additional restriction that the agree-
ment subtrees themselves are rooted at 	1; : : : 	k ,
respectively. Clearly

k-MAST.T 1; : : : ; T k/ D maxEv mast.Ev/:

The benefit of computing mast rather than k-
MAST follows from the fact that most of mast
values are zero and it is possible to identify (very
efficiently) Ev with nonzero mast values.

Remark 1 If mast.Ev/ > 0 then Ev D .lcaT 1

.a; b/;

: : : lcaT k

.a; b// for some leaf labels a; b where
lcaTi.a; b/ is the lowest common ancestor of
leaves labeled by a and b in the tree T i .

A tuple Ev such that Ev D .lcaT 1

.a; b/; : : : lcaT k

.a; b// for some a; b 2 A is called an lca-
tuple. By Remark 1 it suffices to compute mast
values for the lca-tuples only. Just like in the
naive approach, mast.Ev/ is computed from mast
values of other lca-tuples dominated by Ev. An-
other important observation is that only some lca-
tuples dominated by Ev are needed to compute
mast.Ev/. To capture this, Farach et al. define the
so-called proper domination relation (introduced
formally below) and show that the mast value
for any lca-tuple Ev can be computed from mast
values of lca-tuples properly dominated by Ev
and that the proper domination relation has size
O.n3/.

Proper Domination Relation

Index the children of each internal node of any
tree in an arbitrary way. Given a pair Ev; Ew of
lca-tuples such that Ew � Ev the correspond-
ing domination relation has associated with it
direction EıEw�Ev D .ı1; : : : ; ık/ where wi de-
scends from the child of 	i indexed with ıi .
Let 	i .j / be the child of 	i with index j . The
direction domination is termed active is if the
subtrees rooted at the 	1.ı1/; : : : ; 	k.ık/ have
at least one leaf label in common. Note that
each leaf label can witness only one active di-
rection, and consequently each lca-tuple can have
at most n active domination directions. Two di-
rections EıEw�Ev and EıEu�Ev are called compatible if
and only if the direction vectors differ in all
coordinates.

Definition 1 Ev properly denominates Eu (denoted
Eu < Ev) if Ev dominates Eu along an active direction
Eı and there exists another tuple Ew which is also
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dominated by Ev along an active direction Eı?
compatible with ı.

From the definition of proper domination and
from the fact that each leaf label can witness only
one active domination direction, the following
observations can be made:

Remark 2 The strong domination relation < on
lca-tuples has size O.n3/. Furthermore, the rela-
tion can be computed in O.kn3/ time.

Remark 3 For any lca-tuple Ev, if mast.Ev/ > 0

then either Ev is an lca-tuple composed of leaves
with the same label or Ev properly dominates some
lca-tuple.

It remains to show how the values mast.Ev/

are computed. For each lca-tuple Ev, the so-called
compatibility graph G.Ev/ is constructed. The
nodes of G.Ev/ are active directions from Ev and
there is an edge between two such nodes if and
only if corresponding directions are compatible.
The vertices of G.Ev/ are weighted and the weight
of a vertex corresponding to an active direction
Eı equals the maximum mast value of a lca-tuple
dominated by Ev along the this direction. Let
MWC.G.Ev// be the maximum weight clique in
G.Ev/.

The bottom-up algorithm for computing
nonzero mast values based on the following
recursive dependency whose correctness follows
immediately from the corresponding definitions
and Remark 3:

Lemma 1 For any lca-tuple Ev

mast.Ev/Dmax

�
1 if all elements of Ev are leaves
MWC.G.Ev// otherwise

:

(1)

The final step is to demonstrate that once the
lca-tuples and the strong domination relation
is precomputed, the computation all nonzero
mast values can be preformed in O.nd / time.
This is done by generating all possible cliques
for all G.Ev/. Using the fact that the degree
of at least one tree is bounded by d , one can
show that all the cliques can be generated in

O

� P
l�d

�
n
l

�	 D O.d 3.ne=d/d / time and that

there is O.d.ne=d/d / of them [6].

Applications

The k-MAST problem is motivated by the need
to compare evolutionary trees. Recent advances
in experimental techniques in molecular biology
provide diverse data that can be used to con-
struct evolutionary trees. This diversity of data
combined with the diversity of methods used to
construct evolutionary trees often leads to the
situation when the evolution of the same set
of species is explained by different evolutionary
trees. The maximum agreement subtree prob-
lem has emerged as a measure of the agreement
between such trees and as a method to iden-
tify subtree which is common for these trees.
The problem was first defined by Finden and
Gordon in the context of two binary trees [7].
These authors also gave a heuristic algorithm
to solve the problem. The O.n2/ dynamic pro-
gramming algorithm for computing MAST val-
ues for two binary trees has been given in [11].
Subsequently, a number of improvements leading
to fast algorithms for computing MAST value
of two trees under various assumptions about
rooting and tree degrees [5, 8, 10] and references
therein.

The MAST problem for three or more un-
bounded degree trees is NP-complete [1]. Amir
and Keselman report an O.kndC1 C n2d / time
algorithm for the agreement of k bounded de-
gree trees. The work described here provides a
O.kn3 C nd / for the case where the number of
trees is k and the degree of at least one tree
is bounded by d . For d D 2 the complex-
ity of the algorithm is dominated by the first
term. An O.kn3/ algorithm for this case was
also given by Bryant [4] and O.n2 log k�1n/

implementation of this algorithm was proposed
in [9].

k-MAST problem is a fixed parameter
tractable in p, the smallest number of leaf labels
such that the removal of the corresponding leaves
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produces agreement (see [2] and references
therein). The approximability of the MAST
and related problem has been studied in [3] and
references therein.

Cross-References

�Maximum Agreement Subtree (of 2 Binary
Trees)

�Maximum Agreement Supertree
�Maximum Compatible Tree

Acknowledgments This work was supported by the In-
tramural Research Program of the National Institutes of
Health, National Library of Medicine.

Recommended Reading

1. Amir A, Keselman D (1997) Maximum agreement
subtree in a set of evolutionary trees: metrics and ef-
ficient algorithms. SIAM J Comput 26(6):1656–1669

2. Berry V, Nicolas F (2006) Improved parameter-
ized complexity of the maximum agreement subtree
and maximum compatible tree problems. IEEE/ACM
Trans Comput Biol Bioinform 3(3):289–302

3. Berry V, Guillemot S, Nicolas F, Paul C (2005) On
the approximation of computing evolutionary trees.
In: COCOON, Kunming, pp 115–125

4. Bryand D (1997) Building trees, hunting for trees,
and comparing trees: theory and methods in phylo-
genetic analysis. Ph.D. thesis, Department of Mathe-
matics, University of Canterbury

5. Cole R, Farach-Colton M, Hariharan R, Przytycka
T, Thorup M (2001) An o.n log n/ algorithm for
the maximum agreement subtree problem for binary
trees. SIAM J Comput 1385–1404

6. Farach M, Przytycka TM, Thorup M (1995) On
the agreement of many trees. Inf Process Lett
55(6):297–301

7. Finden CR, Gordon AD (1985) Obtaining common
pruned trees. J Classif 2:255–276

8. Kao M-Y, Lam T-W, Sung W-K, Ting H-F (2001)
An even faster and more unifying algorithm for
comparing trees via unbalanced bipartite matchings.
J Algorithms 40(2):212–233

9. Lee C-M, Hung L-J, Chang M-S, Tang C-Y (2004)
An improved algorithm for the maximum agreement
subtree problem. In: BIBE, Taichung, p 533

10. Przytycka TM (1998) Transforming rooted agree-
ment into unrooted agreement. J Comput Biol
5(2):335–349

11. Steel MA, Warnow T (1993) Kaikoura tree theorems:
computing the maximum agreement subtree. Inf Pro-
cess Lett 48(2):77–82

MaximumAgreement Supertree

Jesper Jansson1 and Wing-Kin Sung2

1Laboratory of Mathematical Bioinformatics,
Institute for Chemical Research, Kyoto
University, Gokasho, Uji, Kyoto, Japan
2Department of Computer Science, National
University of Singapore, Singapore, Singapore

Keywords

Fixed-parameter tractability; Maximum agree-
ment supertree; NP-hardness; Phylogenetic tree;
Rooted triplet

Years and Authors of Summarized
Original Work

2005; Jansson, Ng, Sadakane, Sung
2007; Berry, Nicolas
2010; Guillemot, Berry
2011; Hoang, Sung

Problem Definition

A phylogenetic tree is a rooted, unordered tree
whose leaves are distinctly labeled and whose
internal nodes have degree at least two. By dis-
tinctly labeled, we mean that no two leaves in the
tree have the same label. Let T be a phylogenetic
tree with a leaf label set S . For any subset S 0 of S ,
the topological restriction of T to S 0 (denoted by
T jS 0) is the tree obtained from T by deleting all
nodes which are not on any path from the root
to a leaf in S 0 along with their incident edges
and then contracting every edge between a node
having just one child and its child. See Fig. 1
for an illustration. For any phylogenetic tree T ,
denote its set of leaf labels by .T /.

The maximum agreement supertree problem
(MASP) [12] is defined as follows.

Problem 1 Let T D fT1; T2; : : : ; Tkg be an
input set of phylogenetic trees, where the sets
.Ti / may overlap. The maximum agreement su-
pertree problem (MASP) asks for a phylogenetic
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Maximum Agreement Supertree, Fig. 1 Let T be the
phylogenetic tree on the left. Then T j fa; c; dg is the
phylogenetic tree shown on the right

tree Q with leaf label set .Q/ � S
Ti2T .Ti /

such that j.Q/j is maximized and for each
Ti 2 T , it holds that Ti j.Q/ is isomorphic to
Q j.Ti /.

The following notation is used below:
n D ˇ̌S

Ti2T .Ti /
ˇ̌
, k D jT j, and D D

maxTi2T
˚
deg.Ti /

�
, where deg.Ti / is the degree

of Ti (i.e., the maximum number of children of
any node belonging to Ti ).

A problem related to MASP is the maximum
compatible supertree problem (MCSP) [2]:

Problem 2 Let T D fT1; T2; : : : ; Tkg be an
input set of phylogenetic trees, where the sets
.Ti / may overlap. The maximum compatible
supertree problem (MCSP) asks for a phylo-
genetic tree W with leaf label set .W / �S

Ti2T .Ti / such that j.W /j is maximized
and for each Ti 2 T , it holds that Ti j.W / can
be obtained from W j.Ti / by applying a series
of edge contractions.

For information about MCSP, refer to [2, 11].

Key Results

The special case of the maximum agreement su-
pertree problem in which .T1/ D .T2/ : : : D
.Tk/ has been well studied in the literature and

is also known as the maximum agreement subtree
problem (MAST). By utilizing known results for
MAST, several results can be obtained for various
special cases of MASP. Firstly, it is known that
MAST can be solved in O.

p
Dn log.2n=D//

time when k D 2 (see [13]) or in O.kn3 C nD/

time when k � 3 (see [4, 6]), which leads to the
following theorems.

Theorem 1 ([12]) When k D 2, MASP can
be solved in O.TMAST C n/ time, where
TMAST is the time required to solve MAST
for two O.n/-leaf trees. Note that TMAST D
O
�p

D n log.2n=D/
�
.

Theorem 2 ([2]) For any fixed k � 3, if
every leaf appears in either 1 or k trees,
MASP can be solved in O.T 0MAST C kn/

time, where T 0MAST is the time required to
solve MAST for fT1jL; T2jL; : : : ; TkjLg, where
L D T

Ti2T .Ti /. Note that T 0MAST D
O.kjLj3 C jLjD/.

On the negative side, the maximum agree-
ment supertree problem is NP-hard in general,
as shown by the next theorem. (A rooted triplet
is a binary phylogenetic tree with exactly three
leaves.)

Theorem 3 ([2,12]) For any fixed k � 3, MASP
with unbounded D is NP-hard. Furthermore,
MASP with unbounded k remains NP-hard even
if restricted to rooted triplets, i.e., D D 2.

The inapproximability results for MAST by
Hein et al. [9] and Ga̧sieniec et al. [7] immedi-
ately carry over to MASP with unbounded D as
follows.

Theorem 4 ([2, 12]) cannot be approxi-
mated within a factor of 2logı n in polyno-
mial time for any constant ı < 1, unless
NP � DTIME[2polylog n], even when restricted
to k D 3. Also, MASP cannot be approximated
within a factor of n" for any constant " where
0 � " < 1

9
in polynomial time unless P =

NP, even for instances containing only trees of
height 2.

Although MASP is difficult to approximate
in polynomial time, a simple approximation
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algorithm based on a technique from [1] achieves
an approximation factor that is close to the
bounds given in Theorem 4.

Theorem 5 ([12]) MASP can be approximated
within a factor of n

log n
in O.n2/ � min

˚
O.k �

.log log n/2/; O.k C log n � log log n/
�

time.
MASP restricted to rooted triplets can be
approximated within a factor of n

log n
in

O.k C n2 log2 n/ time.

Fixed-parameter tractable algorithms for solv-
ing MASP also exist. In particular, for binary
phylogenetic trees, Jansson et al. [12] first gave
an O.k.2n2/3k2

/-time algorithm. Later, Guille-
mot and Berry [8] improved the time complex-
ity to O..8n/k/. Hoang and Sung [11] further
improved the time complexity to O..6n/k/, as
summarized in Theorem 6.

Theorem 6 ([11]) MASP restricted to D D 2

can be solved in O..6n/k/ time.

For the case where each tree in T has degree at
most D, Hoang and Sung [11] gave the following
fixed-parameter polynomial-time solution.

Theorem 7 ([11]) MASP restricted to phyloge-
netic trees of degree at most D can be solved in
O..kD/kDC3.2n/k/ time.

For unbounded n, k, and D, Guillemot and
Berry [8] proposed a solution that is efficient
when the input trees are similar.

Theorem 8 ([8]) MASP can be solved in
O..2k/pkn2/ time, where p is an upper bound
on the number of leaves that are missing fromS

Ti2T .Ti / in a MASP solution.

Applications

One challenge in phylogenetics is to develop
good methods for merging a collection of phy-
logenetic trees on overlapping sets of taxa into
a single supertree so that no (or as little as
possible) branching information is lost. Ideally,
the resulting supertree can then be used to deduce
evolutionary relationships between taxa which
do not occur together in any one of the in-

put trees. Supertree methods are useful because
most individual studies investigate relatively few
taxa [15] and because sample bias leads to certain
taxa being studied much more frequently than
others [3]. Also, supertree methods can combine
trees constructed for different types of data or
under different models of evolution. Furthermore,
although computationally expensive methods for
constructing reliable phylogenetic trees are in-
feasible for large sets of taxa, they can be ap-
plied to obtain highly accurate trees for smaller,
overlapping subsets of the taxa which may then
be merged using computationally less intense,
supertree-based techniques (see, e.g., [5, 10, 14]).

Since the set of trees which is to be combined
may in practice contain contradictory branching
structure (e.g., if the trees have been constructed
from data originating from different genes or if
the experimental data contains errors), a supertree
method needs to specify how to resolve conflicts.
One intuitive idea is to identify and remove a
smallest possible subset of the taxa so that the
remaining taxa can be combined without con-
flicts. In this way, one would get an indication of
which ancestral relationships can be regarded as
resolved and which taxa need to be subjected to
further experiments. The above biological prob-
lem can be formalized as MASP.

Open Problems

An open problem is to improve the time complex-
ity of the currently fastest algorithms for solving
MASP. Moreover, the existing fixed-parameter
polynomial-time algorithms for MASP are not
practical, so it could be useful to provide heuris-
tics that work well on real data.

Cross-References

�Maximum Agreement Subtree (of 2 Binary
Trees)

�Maximum Agreement Subtree (of 3 or More
Trees)

�Maximum Compatible Tree
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Problem Definition

The input to an instance of the classical stable
marriage problem consists of a set of n men and
n women. Additionally, each person provides a
strictly ordered preference list of the opposite set.
The goal is to find a complete matching of men
to women that is also stable, i.e., a matching
having the property that there does not exist a
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man and a woman who prefer each other over
their matched assignment. In their seminal work,
Gale and Shapley [2] showed that every instance
of the stable marriage problem admits at least
one stable matching and showed that one can
be found in polynomial time (see entry � Stable
Marriage). In fact, stable marriage instances can
have exponentially many stable matchings [18].

More general settings arise when relaxations
of Gale and Shapley’s original version are permit-
ted. In the stable marriage problem with incom-
plete lists (SMI), men and women may deem ar-
bitrary members of the opposite set unacceptable,
prohibiting the pair from being matched together.
In the stable marriage problem with ties (SMT),
preference lists need not be strictly ordered but
may instead contain subsets of agents all having
the same rank. Instances of SMT and SMI always
admit a stable matching, and, crucially, all stable
matchings for a fixed instance have the same
cardinality. Interestingly, when both ties and in-
complete lists are allowed (denoted SMTI, see
entry � Stable Marriage with Ties and Incomplete
Lists), stable matchings again exist but can differ
in cardinality. How can we find one of maximum
cardinality?

Key Results

Benchmark Results
Manlove et al. [20] established two key bench-
marks for the problem of computing a maximum
cardinality stable matching (MAX-SMTI). First,
they showed that the problem is NP-hard under
the following two simultaneous restrictions. One
set of agents, say, the men, all have strictly
ordered preference lists, while each woman’s
preference list is either strictly ordered or is a tie
of length two. Second, they showed that MAX-
SMTI is approximable within a factor of 2 by
arbitrarily breaking the ties and finding any stable
matching in the resulting SMI instance.

Since then, researchers have focused on im-
proving the approximability bounds for MAX-
SMTI. The severity of the restrictions in Manlove
et al.’s hardness results has led researchers to
study not only the general version but a number
of special cases of MAX-SMTI as well.

Upper Bounds: The General Case
For the general case of MAX-SMTI, Iwama et al.

[12] gave a 2�c
�

log n
n

�
approximation algorithm,

where c is a positive constant. This algorithm was
subsequently improved to yield a performance
guarantee of 2 � c0p

n
, where c0 is a positive

constant which is at most 1=4
p

6 [14]. The first
approximation algorithm to achieve a constant
performance guarantee better than two was given
by Iwama et al. [13], establishing a performance
ratio of 15=8. Next, Király [16] devised a new
approximation algorithm with a bound of 5/3. Fi-
nally, McDermid [21] obtained 3/2, which is cur-
rently the best known approximation ratio. Later,
Paluch [22] and Király [17] also obtained approx-
imation algorithms with the same performance
guarantee of 3/2; however, their algorithms have
the advantage of running in linear time. Király’s
has the extra benefit of requiring only “local”
preference list information. The following theo-
rem summarizes the best known upper bound for
the general case.

Theorem 1 There is a 3/2-approximation algo-
rithm for MAX-SMTI.

Upper Bounds: Special Cases
The special case of MAX-SMTI that has received
the most attention is that in which ties may only
appear in one set only. We let 1S-MAX-SMTI
denote this problem. Halldórsson et al. [3] gave
a .2=.1 C T �2//-approximation algorithm for
1S-MAX-SMTI, where T is the length of the
longest tie. This bound was improved to 13/7
for MAX-SMTI instances in which ties are re-
stricted to be of size at most 2 [3]. They later
showed that 10/7 is achievable for 1S-MAX-
SMTI [4] via a randomized approximation al-
gorithm. Irving and Manlove [11] described a
5/3-approximation algorithm for 1S-MAX-SMTI
instances in which lists may have at most one tie
that may only appear at the end of the preference
list. One of the most important results in this
area was that of Király [16], who provided a par-
ticularly simple and elegant 3/2-approximation
algorithm with an equally transparent analysis
for 1S-MAX-SMTI (with no further restrictions
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on the problem). Since then, further improve-
ments have been obtained for 1S-MAX-SMTI
by Iwama, Miyazaki, and Yanagisawa [15], who
exploited a linear programming relaxation to ob-
tain a 25=17-approximation. Huang and Kavitha
[10] used different techniques to improve upon
this, giving a linear-time algorithm with a ratio
of 22=15. Radnai [23] tightened their analysis to
show that 41=28 is in fact achieved. Finally, Dean
and Jalasutram [1] showed that the algorithm
given in [15] actually achieves 19=13 through an
analysis using a factor-revealing LP. The follow-
ing theorem summarizes the best known upper
bounds for the special cases of MAX-SMTI.

Theorem 2 There is a 19/13-approximation al-
gorithm for 1S-MAX-SMTI. When all ties have
length at most two, there is a (randomized) 10/7-
approximation algorithm for MAX-SMTI.

Lower Bounds
The best lower bounds on approximability are
due to Yanagisawa [24] and Iwama et al. [5].
Yanagisawa [24] showed that MAX-SMTI is NP-
hard to approximate within 33/29 and UGC-
hard to approximate within 4/3. 1S-MAX-SMTI
was shown by Iwama et al. [5] to be NP-hard
to approximate within 21/19 and UGC-hard to
approximate within 5/4. The next theorem sum-
marizes these results.

Theorem 3 It is NP-hard to approximate MAX-
SMTI (1S-MAX-SMTI) within 33/29 (21/19). It is
UGC-hard to approximate MAX-SMTI (1S-MAX-
SMTI) within 4/3 (5/4).

Applications

Stable marriage research is a fascinating subset
of theoretical computer science not only for its
intrinsic interest but also for its widespread ap-
plication to real-world problems. Throughout the
world, centralized matching schemes are used in
various contexts such as the assignment of stu-
dents to schools and graduating medical students
to hospitals. We direct the reader to [19, Section
1.3.7] for a comprehensive overview (see also
entry �Hospitals/Residents Problem). Perhaps

the most famous of these is the National Resident
Matching Program (NRMP) [7] in the United
States, which allocates over 35,000 graduating
medical students to their first job at a hospital.
Similar schemes exist in Canada [8], Scotland
[9], and Japan [6]. In one way or another, all
of these matching schemes require one or both
of the sets involved to produce preference lists
ranking the other set. Methods similar to the
Gale-Shapley algorithm are then used to create
the assignments.

Both economists and computer scientists alike
have influenced the design and implementation
of such matching schemes. In fact, the 2012
Nobel Prize for Economic Sciences was awarded
to Alvin Roth and Lloyd Shapley, in part for
their contribution to the widespread deployment
of matching algorithms in practical settings. Re-
searchers Irving and Manlove at the School of
Computing Science at the University of Glasgow
led the design and implementation of algorithms
for the Scottish Foundation Allocation Scheme
that have been used by NHS Education for Scot-
land to assign graduating medical students to
hospital programs [19, Section 1.3.7]. This set-
ting has actually yielded true instances of MAX-
SMTI, as hospital programs have been allowed to
have ties in their preference lists.
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Problem Definition

This problem is a pattern matching problem on
leaf-labeled trees. Each input tree is considered
as a branching pattern inducing specific groups
of leaves. Given a set of input trees with identical
leaf sets, the goal is to find the largest subset
of leaves on the branching pattern of which the
input trees do not disagree. A maximum com-
patible tree is a tree on such a leaf set and
with a branching pattern respecting that of each
input tree (see below for a formal definition).
The maximum compatible tree problem (MCT)
is to find such a tree or, equivalently, its leaf
set. The main motivation for this problem is in
phylogenetics, to measure the similarity between
evolutionary trees or to represent a consensus
of a set of trees. The problem was introduced
in [10] and [11, under the MRST acronym].
Previous related works concern the well-known
maximum agreement subtree problem (MAST).
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MaximumCompatible Tree, Fig. 1 Three unrooted trees. A tree T , a tree T 0 such that T 0 D T jfa; c; eg, and a tree
T 00 such that T 00 D T

Solving MAST is finding the largest subset of
leaves on which all input trees exactly agree.
The difference between MAST and MCT is that
MAST seeks a tree whose branching information
is isomorphic to that of a subtree in each of the
input trees, while MCT seeks a tree that contains
the branching information (i.e., groups) of the
corresponding subtree of each input tree. This
difference allows the tree obtained for MCT to
be more informative, as it can include branch-
ing information present in one input tree but
not in the others, as long as this information
is compatible (in the sense of [14]) with the
latters. Both problems are equivalent when all
input trees are binary. Ganapathy and Warnow [6]
were the first to give an algorithm to solve MCT

in its general form. Their algorithm relies on a
simple dynamic programming approach similar
to a work on MAST [13] and has a running time
exponential in the number of input trees and in
the maximum degree of a node in the input trees.
Later, [1] proposed a fixed-parameter algorithm
using one parameter only. Approximation results
have also been obtained, [3,7] proposing low-cost
polynomial-time algorithms that approximate the
complement of MCT within a constant factor.

Notations Trees considered here are evolution-
ary trees (phylogenies). Such a tree T has its
leaf set L.T / in bijection with a label set and
is either rooted, in which case all internal nodes
have at least two children each, or unrooted, in
which case internal nodes have a degree of at
least three. Given a set L of labels and a tree
T , the restriction of T to L, denoted T jL, is
the tree obtained in taking the smallest induced
subgraph of T that connects leaves with labels

in L \ L.T / and then removing any degree-two
(non-root) node to make the tree homeomorphi-
cally irreducible. Two trees T , T 0 are isomorphic,
denoted T D T 0, if and only if there is a graph
isomorphism T 7! T 0 preserving leaf labels
(and the roots if both trees are rooted). A tree T

refines a tree T 0, denoted T D T 0, whenever T

can be transformed into T 0 by collapsing some
of its internal edges (collapsing an edge means
removing it and merging its extremities). See
Fig. 1 for examples of these relations between
trees. Note that a tree T properly refining another
tree T 0 agrees with the entire evolutionary history
of T 0 while containing additional information
absent from T 0: at least one high-degree node of
T 0 is replaced in T by several nodes of lesser
degree; hence, T contains more information than
T 0 on which species belong together.

Given a collection T D fT1; T2; : : : ; Tkg of
input trees with identical leaf sets L, a tree T

with leaves in L is said to be compatible with
T if and only if 8Ti 2 T , T D Ti jL.T /. If
there is a tree T compatible with T such that
L.T / D L, then the collection T is said to
be compatible. Knowing whether a collection is
compatible is a problem for which linear-time
algorithms have been known for a long time
(e.g., [9]). The MAXIMUM COMPATIBLE TREE

problem is a natural optimization version of this
problem to deal with incompatible collections of
trees.

Problem 1 (MAXIMUM COMPATIBLE TREE –
MCT )

INPUT: A collection T of trees with the same
leaf sets.
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Maximum Compatible Tree, Fig. 2 An incompatible
collection of two input trees fT1; T2g and their maximum
compatible tree, T D MCT .T1; T2/. Removing the
leaf d renders the input trees compatible, hence L.T / D
fa; b; c; eg. Here, T strictly refines T2 restricted to

L.T /, which is expressed by the fact that a node in T2

(the blue one) has its child subtrees distributed between
several connected nodes of T (blue nodes). Note also that
here jMCT .T1; T2/j > jMAST .T1; T2/j

OUTPUT: A tree compatible with T having the
largest number of leaves. Such a tree is de-
noted MC T .T /.

See Fig. 2 for an example. Note that 8T ,
jMC T .T /j � jMAST .T /j and that MCT is
equivalent to MAST when the input trees are
binary. Note also that instances of MCT and MAST

can have several optimum solutions.

Key Results

Exact Algorithms
The MCT problem was shown to be NP-hard on 6
trees by [10] and then on 2 trees by [11]. The NP-
hardness holds as long as one of the input trees is
not of bounded degree. For two bounded-degree
trees, Hein et al. [11] mention a polynomial-time
algorithm based on aligning trees. Ganapathy and
Warnow propose an exponential algorithm for
solving MCT in the general case [6]. Given two
trees T1; T2, they show how to compute a binary
MCT of any pair of subtrees .S1 2 T1; S2 2 T2/

by dynamic programming. Subtrees whose root is
of high degree are handled by considering every
possible partition of the roots’s children in two
sets. This leads the complexity bound to have
a term exponential in d , the maximum degree
of a node in the input trees. When dealing with
k input trees, k-tuples of subtrees are consid-
ered, and the simultaneous bipartitions of the

roots’s children for k subtrees are considered.
Hence, the complexity bound is also exponential
in k.

Theorem 1 ([6]) Let L be a set of n leaves.
The MCT problem for a collection of k rooted
trees on L in which each tree has degree
at most d C 1 can be solved in O.22kd nk/

time.

The result easily extends to unrooted trees
by considering each of the n leaves in
turn as a possible root for all trees of the
collection.

Theorem 2 ([6]) Given a collection of k un-
rooted trees with degree at most d C 1 on an
n-leaf set, the MCT problem can be solved in
O.22kd nkC1/.

Let T be a collection on a set L of n leaves,
[1] considered the following decision problem
denoted MCTp: given T and p 2 Œ0; n�, does
jMC T .T /j � n � p?

Theorem 3 ([1])

1. MCTp on rooted trees can be solved in
O.minf3pkn; 2:27p C kn3g/ time.

2. MCTp on unrooted trees can be solved in
O
�
.pC 1/	minf3pkn; 2:27p C kn3g� time.

The 3pkn term comes from an algorithm that
first identifies in O.kn/ time a 3-leaf set S
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on which the input trees conflict and then re-
cursively obtains a maximum compatible tree
T1, resp. T2, T3 for each of the three col-
lections T1, resp. T2; T3 obtained by removing
from the input trees a leaf in S and lastly re-
turning the Ti such that jMCT.Ti /j is maximum
(with i 2 Œ1; 3�). The 2:27p C kn3 term comes
from an algorithm using a reduction of MCT

to 3-HITTING SET. Negative results have been
obtained by Guillemot and Nicolas concerning
the fixed-parameter tractability of MCT with re-
gard to the maximum degree D of the input
trees:

Theorem 4 ([8])

1. MCT is W Œ1�-hard with respect to D.
2. MCT cannot be solved in O.N o.2D=2// time

unless SNP � SE, where N denotes the input
length, i.e., N D O.kn/.

The MCT problem also admits a variant
that deals with supertrees, i.e., trees having
different (but overlapping) sets of leaves. The
resulting problem is W Œ2�-hard with respect to
p [2].

Approximation Algorithms
The idea of locating and then eliminating suc-
cessively all the conflicts between the input trees
has also led to approximation algorithms for the
complement version of the MCT problem, denoted
CMCT. Let L be the leaf set of each tree in
an input collection T ; CMCT aims at selecting
the smallest number of leaves S � L such
that the collection fTi j.L � S/ W Ti 2 T g is
compatible.

Theorem 5 ([7]) Given a collection T of k

rooted trees on an n-leaf set L, there is a 3-
approximation algorithm for CMCT that runs in
O.k2n2/ time.

The running time of this algorithm was later
improved:

Theorem 6 ([3, 5]) There is an O.kn C n2/

time 3-approximation algorithm for CMCT on a
collection of k rooted trees with n leaves.

Note also that working on rooted or unrooted
trees does not change the achievable approxima-
tion ratio for CMCT [3].

Applications

In bioinformatics, the MCT problem (and sim-
ilarly MAST) is used to reach different prac-
tical goals. The first motivation is to measure
the similarity of a set of trees. These trees can
represent RNA secondary structures [11, 12] or
estimates of a phylogeny inferred from differ-
ent datasets composed of molecular sequences
(e.g., genes) [14]. The gap between the size of
a maximum compatible tree and the number of
input leaves indicates the degree of disimilarity
of the input trees. Concerning the phylogenetic
applications, quite often some edges of the trees
inferred from the datasets have been collapsed
due to insufficient statistical support, resulting in
some higher-degree nodes in the trees considered
by MCT. Each such node does not indicate a
multi-speciation event but rather the uncertainty
with respect to the branching pattern to be chosen
for its child subtrees. In such a situation, the
MCT problem is to be preferred to MAST, as
it correctly handles high-degree nodes, enabling
them to be resolved according to branching infor-
mation present in other input trees. As a result,
more leaves are conserved in the output tree;
hence, a larger degree of similarity is detected
between the input trees. Note also that a low
similarity value between the input trees can be
due to horizontal gene transfers. When these
events are not too numerous, identifying species
subject to such effects is done by first suspecting
leaves discarded from a maximum compatible
tree.

The shape of a maximum compatible tree,
i.e., not just its size, also has an application in
systematic biology to obtain a consensus of a set
of phylogenies that are optimal for some tree-
building criterion. For instance, the maximum
parsimony and maximum likelihood criteria can
provide several dozens (sometimes hundreds) of
optimal or near-optimal trees. In practice, these
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trees are first grouped into islands of neighboring
trees, and a consensus tree is obtained for each
island by resorting to a classical consensus tree
method, e.g., the majority-rule or strict consen-
sus. The trees representing the islands form a
collection of which a consensus is then sought.
However, consensus methods keeping all input
leaves tend to create poorly resolved trees. An
alternative approach lies in proposing a represen-
tative tree that contains a largest possible subset
of leaves on the position of which the trees of
the collection agree. Again, MCT is more suited
than MAST as the input trees can contain some
high-degree nodes, with the same meaning as
discussed above.

Open Problems

A direction for future work would be to exam-
ine the variant of MCT where some leaves are
imposed in the output tree. This question arises
when a biologist wants to ensure that the species
central to his study are contained in the output
tree. For MAST on two trees, this constrained
variant of the problem was shown in a natural
way to be of the same complexity as the regu-
lar version [4]. For MCT however, such a con-
straint can lead to several optimization problems
that need to be sorted out. Another important
work to be done is a set of experiments to mea-
sure the range of parameters for which the algo-
rithms proposed to solve or approximate MCT are
useful.

URLs to Code and Datasets

A Perl program can be asked to the author of this
entry.
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Problem Definition

Energy resources are very limited in wireless
sensor networks since the wireless devices are
small and battery powered. There are two ways
to deploy wireless sensor networks. One is de-
terministic [1] deployment, and the other one is
stochastic or random deployment [2]. In deter-
ministic deployment, the goal is to minimize the
number of sensors. In the latter one, the goal is
to improve coverage ratio. Normally, in random
or stochastic deployment, one target is covered
by several sensors. It is unnecessary and a waste
of energy to activate all sensors around the tar-
get to monitor it. We can prolong the coverage
duration through making sleep/activate schedules
in wireless sensor networks when we don’t have
abundant energy resources. In Fig. 1, t1, t2, and t3
are three targets. s1, s2, and s3 are three sensors.

s1

s2

s3

t1

t2
t3

Target

a

b

Sensor

s1

s2

s3

t1

t2
t3

Maximum Lifetime Coverage, Fig. 1 Network model
and comparison of disjoint and non-disjoint coverage [3]

s1 can cover t1 and t2. s2 can cover t1 and t3. s3

can cover t2 and t3. Assume each sensor can be
active for 1 h. s1 and s2 can collaborate to cover
all targets, and the coverage duration will be 1 h.
After 1 h, there are no enough sensors to cover
all targets. The coverage lifetime in this case is
1 h, and s3 is sleep within this 1 h. There can be
another coverage choice. s1 and s2 collaborate for
0:5 h to cover all targets while s3 sleeps. s2 and
s3 collaborate for 0:5 h while s1 sleeps. s1 and
s3 collaborate for 0:5 h while s2 sleeps. The total
coverage lifetime will become 1:5 h. The problem
is how to divide sensors into groups and how long
each group should work to prolong the coverage
lifetime. One sensor can appear in several groups.
But the total active time of one sensor should
satisfy its battery capacity.

We model a wireless sensor network as a graph
G.S; T; E; W; L/. The sensor set is denoted as
S . T represents the set of targets in the network.
If one target t 2 T can be covered by s 2 S ,
then there is an edge .s; t/ in G. In Fig. 1b, there
is an edge between t1 and s1 since t1 is in s1’s
sensing range. All of these edges are stored in E.
Heterogeneous sensors are considered. Different
sensors may have different energy consumption
to do the same tasks. In general, we have different
weights of sensors. W denotes the weights of
all sensors, and L denotes the energy capacity
of all sensors in G. Based on the definition of
G, the formal definition of MLCP is defined as
follow.
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Formal Definition of MLCP

Definition 1 (MLCP[3]) MLCP is that given
G D .S; T ; E ;W ;L/, find a set of sen-
sor subsetsets and duration of each subset
.S1; L1/; .S2; L2/; : : : ; .Sk; Lk/ in G to
maximize

Pk
iD1 Li , where Si represents the

sensor subset in G and Li represents the time
duration of Si , satisfying:

1. 8i 2 f1; 2; : : : ; kg, Si satisfies full coverage.
8 t 2 T and 8Si , 9s 2 Si satisfying .t; s/ 2
E .

2. For each sensor, the total active time should be
smaller or equal to its power constraint.

It is a long-standing open problem whether
Maximum Lifetime Coverage Problem (MLCP)
has a polynomial-time constant-approximation
algorithm [3].

Based on primal-dual method (PD method),
Minimum Weight Sensor Coverage Problem
(MWSCP) is used to help to solve MLCP.
The formal definition of MWSCP is given in
Definition 2.

Definition 2 (MWSCP[3]) MWSCP is to find
a sensor subset SC in G D .S; T ; E ;W ;L/

to minimize
P

s2SC w.s/, where w.s/ represents
the weight of sensor s, such that 8 t 2 T , 9s 2
SC satisfying .t; s/ 2 E .

Key Results

1. Heuristic linear programming without perfor-
mance guarantee [4]

2. Pure heuristic algorithm better than heuristic
linear programming

3. One 4-approximation algorithms for MLCP
with improvement from 1 C ln n, where n is
the number of sensors

4. One 4-approximation algorithms for MWSCP

Integer Linear Programming and Heuristic
Algorithms Proposed by Cardei et al. [4]
Cardei et al. prove that MLCP is NP-hard. Two
algorithms are proposed [4]. The first algorithm

m
xm

Maximum Lifetime Coverage, Fig. 2 Double partition
and shifting [3]

is to model MLCP as an integer linear program-
ming. To solve it, the authors first relax the
integer variables to real values and get the opti-
mal solution to the relaxed linear programming.
Find the maximum time duration of each group
based on the optimal solution to the relaxed lin-
ear programming. Update all sensors’ remaining
battery capacity. A new MLCP is formed with
different remaining sensor power abilities after
previous round. Finally, a maximum lifetime will
be achieved in the network.

The second algorithm is a heuristic algorithm.
Find a sensor group which can cover all targets.
The lifetime of this group is determined by the
minimum power ability of sensors in the group.
Update all sensors’ energy level and choose sen-
sor group again till no such group can be found.
The final lifetime is the sum of time duration of
all sensor groups.

Performance-Guaranteed Approximation
Algorithm Proposed by Ling et al. [3]
Ling et al. use primal-dual method to solve
MCLP. The primal problem is MWSCP [5].
To get a constant-approximation algorithm for
MWSCP, double partition and shifting are used.
As shown in Fig. 2, the area is divided into cells
with size m�rp

2
	 m�rp

2
, where r represents sensing

range of sensors and m is a predetermined value.
r D 1 in Fig. 2. Each cell is further divided into
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small squares of size rp
2
	 rp

2
which means

there will be m 	 m small squares in each cell.
After twice partition, there will be m horizontal
strips and m vertical strips in each cell. Using
dynamic programming, the optimal solution to
MWSCP can be found in each cell. Combined
all the optimal solutions to each cell, we can get
an approximation algorithm to MWSCP for the
whole area. To solve the sensors on the border of
each cell, the small squares are shifted to purple
position in Fig. 2 and then to yellow position. The
shift will stop after m times. The final result will
be achieved by taking average of the solutions to
black partition, purple partition, yellow partition,
and other shifts. It is proved in [3] that the final
result of MWSCP has a constant performance
ratio 4. The running time of the algorithm is
determined by the predetermined value m. If
m is big, the result will be more precise, but
the running time is high. If m is small, the
running time is small, but the performance will
drop.

Based on the idea of primal-dual method,
the solution to MWSCP will help to derive the
solution to MCLP with the same performance
ratio. The solution to MWSCP is derived iteration
by iteration. In each iteration, find the MWSCP
firstly and then determine the time duration of
the sensor set. Update the lifetime and weight of
each sensors. The algorithm will stop if there is
no such a sensor set exists.

Experimental Results

Cardei et al. demonstrate that their pure heuristic
algorithm outperforms their heuristic linear pro-
gramming algorithm in running time and lifetime.

Ding et al. [3] conducts their experimental
comparisons in an area of 6

p
26
p

2 and m D 6.
They deploy sensors and targets randomly in that
area. All sensors have the same sensing range of
2. The initial power capacity is 1 of each sensor.
To show the density’s effect on the performance,
they increase the sensors from 15 to 70 by 5 and
increase the number of targets from 5 to 10. Ling
et al. compare their algorithm to Cardei’s pure
heuristic algorithm. If there are more sensors and
the number of targets is fixed, the lifetime will be
increased because there are more sensor groups
(Fig. 3).
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Problem Definition

Let G D .V; E/ be an undirected graph, and
let n D jV j, m D jEj. A matching in G is
a subset M � E, such that no two edges of
M have a common endpoint. A perfect match-
ing is a matching of cardinality n=2. The most
basic matching related problems are finding a
maximum matching (i.e., a matching of maximum
size) and, as a special case, finding a perfect
matching if one exists. One can also consider the
case where a weight function w W E ! R is given
and the problem is to find a maximum weight
matching.

The maximum matching and maximum
weight matching are two of the most fundamental
algorithmic graph problems. They have also
played a major role in the development of
combinatorial optimization and algorithmics.

An excellent account of this can be found in a
classic monograph [11] by Lovász and Plummer
devoted entirely to matching problems. A more
up-to-date but also more technical discussion of
the subject can be found in [19].

Classical Approach
Solving the maximum matching problem in time
polynomial in n is a highly nontrivial task. The
first such solution was given by Edmonds [3] in
1965 and has time complexity O.n3/. Edmond’s
ingenious algorithm uses a combinatorial ap-
proach based on augmenting paths and blossoms.
Several improvements followed, culminating in
the algorithm with complexity O.m

p
n/ given

by Micali and Vazirani [12] in 1980 (a complete
proof of the correctness of this algorithm was
given much later by Vazirani [21], a nice exposi-
tion of the algorithm and its generalization to the
weighted case can be found in a work of Gabow
and Tarjan [4]). Beating this bound proved very
difficult, several authors managed to achieve only
a logarithmic speed-up for certain values of m

and n. All these algorithms essentially follow the
combinatorial approach introduced by Edmonds.

The maximum matching problem is much
simpler for bipartite graphs. The complexity of
O.m
p

n/ was achieved for this case already in
1971 by Hopcroft and Karp [7], while the key
ideas of the first polynomial algorithms date back
to the 1920s and the works of König and Egerváry
(see [11] and [19]).

Algebraic Approach
Around the time Micali and Vazirani introduced
their matching algorithm, Lovász gave a random-
ized (Monte Carlo) reduction of the problem of
testing whether a given n-vertex graph has a
perfect matching to the problem of computing
a certain determinant of a n 	 n matrix. Using
the Hopcroft-Bunch fast Gaussian elimination
algorithm [1], this determinant can be computed
in time MM.n/ D O.n¨/ – time required to
multiply two n 	 n matrices. Since ¨ < 2:38

(see [2, 20]), for dense graphs, this algorithm is
asymptotically faster than the matching algorithm
of Micali and Vazirani.
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However, Lovász’s algorithm only tests for
perfect matching, it does not find it. Using it to
find perfect/maximum matchings in a straightfor-
ward fashion yields algorithm with complexity
O.mn¨/ D O.n4:38/. A major open problem in
the field was thus: can maximum matchings be
actually found in O.n¨/ time?

The first step in this direction was taken in
1989 by Rabin and Vazirani [16]. They showed
that maximum matchings can be found in time
O.n¨C1/ D O.n3:38/.

Key Results

The following theorems state the key results of
[13].

Theorem 1 Maximum matching in a n-vertex
graph G can be found in O.n3/ time (Las Vegas)
by performing Gaussian elimination on a certain
matrix related to G.

Theorem 2 Maximum matching in an n-vertex
bipartite graph can be found in QO.n¨/ time
(Las Vegas) by performing a Hopcroft-Bunch fast
Gaussian elimination on a certain matrix related
to G.

Theorem 3 Maximum matching in an n-vertex
graph can be found in QO.n¨/ time (Las Vegas).

Note: QO notation suppresses polylogarithmic
factors, so QO.f .n// means O.f .n/logk.n// for
some k.

Let us briefly discuss these results. Theorem 1
shows that effective matching algorithms
can be simple. This is in large contrast
to augmenting paths-/blossoms-based algo-
rithms which are generally regarded as quite
complicated.

The other two theorems show that, for dense
graphs, the algebraic approach is asymptotically
faster than the combinatorial one.

The algorithm for the bipartite case is very
simple. It’s only nonelementary part is the fast
matrix multiplication algorithm used as black
box by the Hopcroft-Bunch algorithm. The gen-
eral algorithm, however, is complicated and uses
strong structural results from matching theory.

A natural question is whether or not it is pos-
sible to give a simpler and/or purely algebraic
algorithm. This has been positively answered by
Harvey [5].

Several other related results followed. Mucha
and Sankowski [14] showed that maximum
matchings in planar graphs can be found in
time QO.n¨=2/ D O.n1:19/ which is currently
fastest known. Yuster and Zwick [22] extended
this to any excluded minor class of graphs.
Harvey [6] described a significantly simpler
and purely algebraic version of the algorithm
for general graphs. Sankowski [17] gave an
RNC work-efficient matching algorithm (see
also Mulmuley et al. [15] and Karp et al. [9] for
earlier, less efficient RNC matching algorithms,
and Karloff [8] for a description of a general
technique for making such algorithm Las Vegas).
He also generalized Theorem 2 to the case of
weighted bipartite graphs with integer weights
from Œ0; : : : ; W �, showing that in this case
maximum weight matchings can be found in
time QO.W n¨/ (see [18]).

Applications

The maximum matching problem has numerous
applications, both in practice and as a subroutine
in other algorithms. A nice discussion of practical
applications can be found in the monograph [11]
by Lovász and Plummer. It should be noted,
however, that algorithms based on fast matrix
multiplication are completely impractical, so the
results discussed here are not really useful in
these applications.

On the theoretical side, faster maximum
(weight) matching algorithms yield faster
algorithms for related problems: disjoint s � t

paths problem, the minimum (weight) edge
cover problem, the (maximum weight) b-
matching problem, the (maximum weight) b-
factor problem, the maximum (weight) T-join,
or the Chinese postman problem. For detailed
discussion of all these applications, see [11]
and [19].

The algebraic algorithm of Theorem 1 also has
a significant educational value. The combinato-
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rial algorithms for the general maximum match-
ing problem are generally regarded too com-
plicated for an undergraduate course. That is
definitely not the case with the algebraic O.n3/

algorithm.

Open Problems

One of the most important open problems in
the area is generalizing the results discussed
above to weighted graphs. Sankowski [18] gives
a QO.W n¨/ algorithm for bipartite graphs with
integer weights from the interval Œ0 : : : W �. The
complexity of this algorithm is really bad in terms
of W . No effective algebraic algorithm is known
for general weighted graphs.

Another interesting but most likely very hard
problem is the derandomization of the algorithms
discussed.
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Problem Definition

Given a sequence of numbers, ADha1;a2;: : : ; ani,
and two positive integers L, U , where 1� L �
U � n, the maximum-density segment problem
is to find a consecutive subsequence, i.e., a
segment or substring, of A with length at least L

and at most U such that the average value of the
numbers in the subsequence is maximized.

Key Results

If there is no length constraint, then obviously
the maximum-density segment is the maximum
number in the sequence. Let’s first consider the
problem where only the length lower bound L

is imposed. By observing that the length of the
shortest maximum-density segment with length
at least L is at most 2L � 1, Huang [9] gave an
O(nL)-time algorithm. Lin et al. [13] proposed a
new technique, called the right-skew decomposi-
tion, to partition each suffix of A into right-skew
segments of strictly decreasing averages. The
right-skew decomposition can be done in O.n/

time, and it can answer, for each position i , a con-
secutive subsequence of A starting at that position
such that the average value of the numbers in the

subsequence is maximized. On the basis of the
right-skew decomposition, Lin et al. [13] devised
an O.n log L/-time algorithm for the maximum-
density segment problem with a lower bound L,
which was improved to O.n/ time by Goldwasser
et al. [8]. Kim [11] gave another O.n/-time algo-
rithm by reducing the problem to the maximum-
slope problem in computation geometry. As for
the problem which takes both L and U into
consideration, Chung and Lu [6] bypassed the
construction of the right-skew decomposition and
gave an O.n/-time algorithm.

It should be noted that a closely related prob-
lem in data mining, which basically deals with a
binary sequence, was independently formulated
and studied by Fukuda et al. [7].

An Extension to Multiple Segments
Given a sequence of numbers, A D ha1; a2;

: : : ; ani, and two positive integers L and k, where

k � n

L
, let d.AŒi; j �/ denote the density of

segment AŒi; j �, defined as .ai C aiC1 C � � � C
aj /=.j � iC1/. The problem is to find k disjoint
segments fs1; s2; : : : ; skg of A, each has a length
of at least L, such that

P
1�i�k

d.si / is maximized.

Chen et al. [5] proposed an O(nkL)-time algo-
rithm and an improved O.nL C k2L2/-time al-
gorithm was given by Bergkvist and Damaschke
[2]. Liu and Chao [14] gave an O.nCk2L log L/-
time algorithm.

Applications

In all organisms, the GC base composition of
DNA varies between 25–75 %, with the greatest
variation in bacteria. Mammalian genomes typi-
cally have a GC content of 45–50 %. Nekrutenko
and Li [15] showed that the extent of the com-
positional heterogeneity in a genomic sequence
strongly correlates with its GC content. Genes
are found predominantly in the GC-richest iso-
chore classes. Hence, finding GC-rich regions is
an important problem in gene recognition and
comparative genomics.
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Given a DNA sequence, one would attempt to
find segments of length at least L with the highest
C+G ratio. Specifically, each of nucleotides C and
G is assigned a score of 1, and each of nucleotides
A and T is assigned a score of 0.
DNA sequence: ATGACTCGAGCTCGTCA
Binary sequence: 00101011011011010 The
maximum-average segments of the binary
sequence correspond to those segments with
the highest GC ratio in the DNA sequence.
Readers can refer to [1, 3, 4, 11–13, 16–18] for
more variants and applications.

Open Problems

The best asymptotic time bound of the algo-
rithms for the multiple maximum-density seg-
ments problem is O.n C k2L log L/. Can this
problem be solved in O.n/ time?
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Problem Definition

Given a sequence of numbers, A D ha1; a2;

: : : ; ani, and two positive integers L, U , where
1 � L � U � n, the maximum-sum segment
problem is to find a consecutive subsequence, i.e.,
a segment or substring, of A with length at least
L and at most U such that the sum of the numbers
in the subsequence is maximized.

Key Results

The maximum-sum segment problem without
length constraints is linear-time solvable by using
Kadane’s algorithm [2]. Huang extended the
recurrence relation used in [2] for solving the
maximum-sum segment problem and derived
a linear-time algorithm for computing the
maximum-sum segment with length at least L.
Lin et al. [13] proposed an O.n/-time algorithm
for the maximum-sum segment problem with
both L and U constraints, and an online version
was given by Fan et al. [10].

An Extension toMultiple Segments

Computing the k largest sums over all possible
segments is a natural extension of the maximum-
sum segment problem. This extension has been
considered from two perspectives, one of which
allows the segments to overlap, while the other
disallows.

Linear-time algorithms for finding all the
nonoverlapping maximal segments were given
in [5, 15]. On the other hand, one may focus on
finding the k maximum-sum segments whose
overlapping is allowed. A naïve approach is to
choose the k largest from the sums of all possible
contiguous subsequences which requires O.n2/

time. Bae and Takaoka [1] presented an O.kn/-
time algorithm for the k maximum segment

problem. Liu and Chao [14] noted that the k

maximum-sum segment problem can be solved
in O.n C k/ time [9] and gave an O.n C k/-
time algorithm for the length-constrained k

maximum-sum segment problem.

Applications

The algorithms for the maximum-sum segment
problem have applications in finding GC-rich re-
gions in a genomic DNA sequence, postprocess-
ing sequence alignments, and annotating multiple
sequence alignments. Readers can refer to [3–8,
11,13,15–18] for more variants and applications.

Open Problems

It would be interesting to consider the higher
dimensional cases.

Cross-References

�Maximum-Average Segments

Recommended Reading

1. Bae SE, Takaoka T (2004) Algorithms for the prob-
lem of k maximum sums and a VLSI algorithm for
the k maximum subarrays problem. In: Proceedings
of the 7th international symposium on parallel ar-
chitectures, algorithms and networks, Hong Kong,
pp 247–253

2. Bentley J (1986) Programming pearls. Addison-
Wesley, Reading

3. Burton BA (2011) Searching a bitstream in linear
time for the longest substring of any given density.
Algorithmica 61:555–579

4. Burton BA, Hiron M (2013) Locating regions in a
sequence under density constraints. SIAM J Comput
42:1201–1215

5. Chen K-Y, Chao K-M (2004) On the range
maximum-sum segment query problem. In: Pro-
ceedings of the 15th international symposium on
algorithms and computation, Hong Kong. LNCS,
vol 3341, pp 294–305

6. Chen K-Y, Chao K-M (2005) Optimal algorithms for
locating the longest and shortest segments satisfying
a sum or an average constraint. Inf Process Lett
96:197–201



1244 Max-Min Allocation

7. Cheng C-H, Chen K-Y, Tien W-C, Chao K-M (2006)
Improved algorithms for the k maximum-sum prob-
lems. Theor Comput Sci 362:162–170
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Problem Definition

The max-min allocation problem has the follow-
ing setting. There is a set A of m agents and a
set I of n items. Each agent i 2 A has utility
uij 2 R�0 for item j 2 I. Given a subset of items
S � I , the utility of this set to agent i is denoted
as ui .S/ WD P

j2S uij . The max-min allocation
problem is to find an allocation of items to agents
such that the minimum utility among the agents is
maximized. That is, mini2A ui .Si / is maximized,
where Si � I is the set of items allocated to agent
i and Si \ Si 0 D ;.

The problem naturally arises as an approach to
maximize fairness. Fairness is an important con-
cept arising in numerous settings ranging from
border disputes in political science to frequency
allocations in spectrum auctions. Max-min fair-
ness is one of the standard notions of fairness
and has been an object of study for decades [6].
Most of the older works, however, have focussed
on divisible settings, that is, situations where the
resource can be infinitely divided and allocated.
Furthermore, the computational perspective, that
is, how efficiently can one find a fair allocation,
has not been a primary viewpoint. The max-min
allocation problem is a combinatorial allocation
problem where the items cannot be divided, and
the interest is in designing polynomial time algo-
rithms to obtain fair, or near-fair, allocations.

Key Results

The max-min allocation problem is NP-hard and
the focus is on designing approximation algo-
rithms. Let OPT be the optimum value of a
certain instance. A �-approximate solution, for
� > 1, is an allocation where each agent gets
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utility at least OPT=�. A �-approximation al-
gorithm returns a �-approximate solution given
any instance. An algorithm is a polynomial time
approximation scheme (PTAS) if for any constant
" > 0, it returns an .1C "/-approximate solution
in polynomial time.

Woeginger [11] obtained a PTAS for the max-
min allocation problem when the utility of an
item is the same for all agents. Bezakova and
Dani [5] gave the first nontrivial .n � m C 1/-
approximation algorithm for the general max-min
allocation problem and also showed that it is NP-
hard to obtain a better than 2-approximation al-
gorithm for the problem. The latter result remains
the best hardness known till date.

Bansal and Sviridenko [3] introduced a
restricted version of the max-min allocation
problem which they called the Santa Claus
problem. In this version, each item has an
inherent utility uj , however, it can only be
allocated to an agent in a certain subset
Aj � A. Equivalently, for each item j , uij 2
fuj ; 0g. Bansal and Sviridenko [3] described
an O.log log m= log log log m/-approximation
algorithm for the Santa Claus problem. Soon
after, Feige [8] described an algorithm which
estimates the value of the optimum of the Santa
Claus problem up to O.1/-factor in polynomial
time, although at the time no efficient algorithm
was known to construct the allocation. Following
constructive versions of the Lovasz local lemma
due to Moser and Tardos [10] and Haeupler
et al. [9], there now exists a polynomial time
O.1/-approximation algorithm for the Santa
Claus problem. The constant, however, is
necessarily quite large and to our knowledge
has not been explicitly specified in any published
work. In contrast, Asadpour et al. [2] described
a local search algorithm which returns a 4-
approximate solution to the Santa Claus problem;
however, it is not known whether the procedure
terminates in polynomial time or not.

Asadpour and Saberi [1] described a
polynomial time O.

p
m log3 m/ approximation

algorithm for the general max-min allocation
problem. Bateni et al. [4] obtained an O.m"/-
approximation algorithm running in mO.1="/

time for certain special cases of the max-

min allocation problem; in their special cases,
utilities uij lay in the set f0; 1;1g, and
furthermore, for each item j there exists at
most one agent i with uij D 1. Chakrabarty
et al. [7] designed an O.n"/-approximation
algorithm for the general max-min allocation
problem which runs in nO.1="/-time, for any
" >

9 log log n
log n

. This implies quasi-polynomial

time O.log10 n/-approximation algorithm
and O.m"/-approximation algorithm, for any
constant " > 0, for the max-min allocation
problem. An algorithm runs in quasi-polynomial
time, if the logarithm of its running time is upper
bounded by a polynomial in the bit length of the
data.

Sketch of the Techniques
Almost all algorithms for the max-min allocation
problem follow by rounding linear programming
(LP) relaxations of the problem. One starts with a
guess T of the optimum OPT. Using this, one
writes an LP which has a feasible solution if
OPT � T. The nontrivial part is to round this
LP solution to obtain an allocation with every
agent getting utility � T=�. Since, by doing a
binary search over the guesses, one can get T

very close to OPT, the rounding step implies a �-
approximation algorithm. Henceforth, we assume
that T has been guessed to be OPT, and further-
more, by scaling all utility values appropriately,
we assume OPT D 1.

The first LP relaxation one may think of is
the following. First one clips each utility value
at 1; uij D min.1; uij /. If OPT D 1, then the
following LP is feasible.

X
j2I

uij xij � 1; 8i 2 A (1)

X
i2A

xij D 1; 8j 2 I (2)

The first inequality states that every agent gets
utility at least OPT D 1, and the second states
that each item is allocated. It is not hard to
find instances, and in fact Santa Claus instances,
where the LP is feasible for OPT D 1, but
in any allocation, some agent will obtain util-
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ity at most 1=m. In other words, the integrality
gap of this LP relaxation is (at least) m.

There is a considerably stronger LP relaxation
which is called the configuration LP relaxation.
The variables in this LP are of the form yi;C

where i 2 A and C � I where
P

j2C uij �
1. .i; C / is called a feasible configuration in
this case. C denotes the collection of all feasible
configurations.

X
C

yi;C D 1; 8i 2 A

(3)
X

i2A

X
C W.i;C /2C;j2C

yi;C D 1; 8j 2 I

(4)

The first inequality states that each agent
precisely gets one subset of items, and the
second states that each item is in precisely
one feasible configuration. Although the LP
has possibly exponentially variables, the dual
has only polynomially many variables and can
be solved to arbitrary accuracy via the ellipsoid
method. We refer the reader to [3] for details.
Bansal and Sviridenko [3] show that in the
Santa Claus problem, a solution above LP can be
rounded to give an allocation where every agent

obtains utility � D ˝
�

log log log n
log log n

�
. To do this,

the authors partition the items into big, if uj � �

and small otherwise. A solution is �-approximate
if any agent gets either one big item or � 1=�

small items. The big items are taken care of via a
“matching like” procedure, while the small items
are allocated by randomized rounding. Bansal
and Sviridenko [3] use the Lovasz local lemma
(LLL) to analyze the randomized algorithm.
Feige [8] uses a more sophisticated randomized
rounding in phases along with an LLL analysis
to obtain a constant factor approximation to the
value of the optimum. At the time, no algorithmic
proofs of LLL were known; however, following
works of [9, 10], a polynomial time O.1/-
approximation algorithm is now known for the
Santa Claus problem.

In the general max-min allocation, the main
problem in generalizing the above technique is
that the same item could be big for one agent and

small for another agent. Asadpour and Saberi [1]
give a two-phase rounding algorithm. In the first
phase, a random matching is obtained between
agents and their big items with roughly the
property that each item is allocated with the same
probability that the configuration LP prescribes.
In the second phase, each agent i randomly
selects a set C of items with probability yi;C .
Since there are m agents, at most m items are
allocated in the first phase. This allows [1] to
argue that, with high probability, there is enough
(roughly 1=

p
m) utility remaining among the

unmatched items in C . Finally, they also show
that the same item is not “claimed” by not more
than O.log m/ agents.

The integrality gap of the configuration LP
is ˝.

p
m/. Therefore a new LP relaxation is

required to go beyond the Asadpour-Saberi re-
sult. We now briefly sketch the technique of
Chakrabarty et al. [7]. First, they show that any
instance can be “reduced” to a canonical instance
where agents are either heavy or light. Heavy
agents have utility 1 for a subset of big items and
0 for the rest. Light agents have a unique private
item which give them utility 1, and the rest of
the items either are small and give utility 1=K or
give utility 0. Here K � n" is a large integer.
The LP of [7] is parametrized by a maximum
matching M between heavy agents and their
big items. If all heavy agents are matched, then
there is nothing to be done since light agents
can allocate their private item. Otherwise, there
is a reassignment strategy: where a light agent is
allocated K small items upon which he “frees”
his private item, which is then again allocated
to another agent and so on, till an unmatched
heavy agent gets a big item. This reassignment
can be seen as a directed in-arborescence whose
depth can be argued is at most 1=" since at each
level we encounter roughly K new light agents.
The LP encodes this reassignment as a flow with
a variable for each flow path of length at most
1="; this implies the number of variables is at
most nO.1="/ and a similar number of constraints.
Therefore, the LP can be solved in nO.1=�/ time
which dominates the running time. If the instance
has OPT D 1, then the LP has a feasible solution.
One would then expect that given such a feasible
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solution, one can obtain an allocation with every
heavy agent getting a big item and each light
agent getting either his private item or n" small
items. Unfortunately, this may not be true. What
Chakrabarty et al. [7] show is that if the LP has
a feasible solution, then a “partial” allocation
can be found where some light agents obtain
sufficiently many small items, and their private
items can be used to obtain a larger matching M 0
among heavy agents and big items. The process
is then repeated iteratively, with a new LP at
each step guiding the partial allocation, till one
matches every heavy agent.

Summary
In summary, the best polynomial time algorithms
for the general max-min allocation problem, as of
the date this article is written, have approximation
factors which are a polynomial in the input data.
On the other hand, even a 2-approximation for
the problem has not been ruled out. Closing
this gap is a confounding problem in the area
of approximation algorithms. A constant factor
approximation algorithm is known for the special
case called the Santa Claus problem; even here,
getting a polynomial time algorithm achieving a
“small” constant factor is an interesting problem.
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Problem Definition

Mechanism design and private data analysis both
study the question of performing computations
over data collected from individual agents while
satisfying additional restrictions. The focus in
mechanism design is on performing computa-
tions that are compatible with the incentives of
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the individual agents, and the additional restric-
tions are toward motivating agents to participate
in the computation (individual rationality) and
toward having them report their true data (in-
centive compatibility). The focus in private data
analysis is on performing computations that limit
the information leaked by the output on each
individual agent’s sensitive data, and the addi-
tional restriction is on the influence each agent
may have on the outcome distribution (differen-
tial privacy). We refer the reader to the sections
on algorithmic game theory and on differential
privacy for further details and motivation.

Incentives and privacy. In real-world settings,
incentives influence how willing individuals are
to part with their private data. For example, an
agent may be willing to share her medical data
with her doctor, because the utility from sharing
is greater than the loss of utility from privacy con-
cerns, while she would probably not be willing to
share the same information with her accountant.

Furthermore, privacy concerns can also cause
individuals to misbehave in otherwise incentive-
compatible, individually rational mechanisms.
Consider for example a second-price auction:
the optimal strategy in terms of payoff is to
truthfully report valuations, but an agent may
consider misreporting (or abstaining) because
the outcome reveals the valuation of the second-
price agent, and the agent does not want to risk
their valuation being revealed. In studies based
on sensitive information, e.g., a medical study
asking individuals to reveal whether they have
syphilis, a typical individual with syphilis may be
less likely to participate than a typical individual
without the disease, thereby skewing the overall
sample. The bias may be reduced by offering
appropriate compensation to participating agents.

The framework. Consider a setting with n in-
dividual agents, and let xi 2 X be the private
data of agent i for some type set X . Let f W
Xn ! Y be a function of the joint inputs of
the agents x D .x1; : : : ; xn/. Our goal is to build
a mechanism M that computes f .x/ accurately
and is compatible with incentives and privacy as
we will now describe.

We first fix a function v that models the gain
in utility that an agent derives from the outcome
of the mechanism. We restrict our attention to
a setting where this value can only depend
on the agent’s data and the outcome y of the
mechanism:

vi D v.xi ; y/:

We also fix a function � that models the loss in
utility that an agent incurs because information
about her private data is leaked by the outcome
of the mechanism. Importantly, � depends on the
mechanism M , as the computation M performs
determines the leakage. The loss can also depend
on how much the agent values privacy, described
by a parameter pi (a real number in our model-
ing), on the actual data of all the individuals, on
the outcome, as well as other parameters such as
the strategy of the agent:

�i D �.M; pi ; x�i ; xi ; y; : : :/:

The overall utility that agent i derives from par-
ticipating in the computation of M is

ui D vi � �i : (1)

With this utility function in mind, our goal
will be to construct truthful mechanisms M that
compute f accurately. We note that in Eq. 1 we
typically think about both vi and �i as positive
quantities, but we do not exclude either of them
being negative, so either quantity may result in a
gain or a loss in utility.

We can now define the mechanism M W
Xn 	 R

n ! Y to be a randomized function
taking as inputs the private inputs of the agents x
and their privacy valuations p and returns a value
in the set Y .

Modeling the privacy loss. In order to analyze
specific mechanisms, we will need to be able to
control the privacy loss �. Toward this end, we
will need to assume that � has some structure,
and so we now discuss the assumptions we make
and their justifications.

One view of privacy loss is to consider a
framework of sequential games: an individual
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is not only participating in mechanism M , but
she will also participate in other mechanisms
M 0; M 00; : : : in the future, and each participation
will cause her to gain or lose in utility. Because
her inputs to these functions may be correlated,
revealing her private inputs in M may cause her
to obtain less utility in the future. For example,
an individual may hesitate to participate in a
medical study because doing so might reveal
she has a genetic predisposition to a certain
disease, which may increase her insurance
premiums in the future. This view is general
and can formalize many of the concerns we
typically associate with privacy: discrimination
because of medical conditions, social ostracism,
demographic profiling, etc.

The main drawback of this view is that it is
difficult to know what the future mechanisms
M 0; M 00; : : : may be. However, if M is differen-
tially private, then participating in M entails a
guarantee that remains meaningful even without
knowing the future mechanisms. To see this, we
will use the following definition that is equivalent
to the definition of �-differential privacy [3]:

Definition 1 (Differential privacy) A (random-
ized) mechanism M W Xn ! Y is �-differentially
private if for all x; x0 2 Xn that differ on one
entry, and for all g W Y ! Œ0;1/, it holds that

ExpŒg.M.x//� � e� � ExpŒg.M.x0//�;

where the expectation is over the randomness
introduced by the mechanism M .

Note that e� � 1 C � for small �; thus, if
g.y/ models the expected utility of an individual
tomorrow given that the result of M.x/ D y

today, then by participating in a differentially
private mechanism, the individual’s utility will
change by at most �.

Fact 1 . Let g W Y ! Œ�1; 1�. If M is
�-differential private, then ExpŒg.M.x0//� �
ExpŒg.M.x//� � 2.e� � 1/ � 2� for all
x; x0 2 Xn that differ on one entry.

To see why this is true, let g�.y/ D
max.0;�g.y// and gC.y/ D max.0; g.y//.
From Definition 1 and the bound on the

outcome of g, we get that ExpŒgC.M.x0//� �
ExpŒgC.M.x//� � .e� � 1/ � ExpŒgC.M.x//� �
e� � 1 and, similarly, ExpŒg�.M.x//� �
ExpŒg�.M.x0//� � e� � 1. As g.y/ D gC.y/ �
g�.y/, we conclude that ExpŒg.M.x0//� �
ExpŒg.M.x//� � 2.e� � 1/.

With this in mind, we typically view � as being
“bounded by differential privacy” in the sense
that if M is �-differentially private, then j�i j �
pi � �, where pi (a positive real number) is an
upper bound on the maximum value of 2jg.y/j.
In certain settings we make even more specific
assumptions about �i , and these are discussed in
the sequel.

Generic Problems
We will discuss two generic problems for which
key results will be given in the next section:

Privacy-aware mechanism design. Given an
optimization problem q W Xn 	 Y ! R, con-
struct a privacy-aware mechanism whose output
Oy approximately maximizes q.x; �/. Using the
terminology above, this corresponds to setting
f .x/ D argmaxyq.x; y/, and the mechanism
is said to compute f ./ with accuracy ˛ if (with
high probability) q.x; f .x// � q.x; Oy/ � ˛.
We mention two interesting instantiations of q./.
When q.x; y/ D P

i v.xi ; y/, the problem is
of maximizing social welfare. When xi corre-
sponds to how agent i values a digital good and
Y D R

C is interpreted as a price for the good,
setting q.x; y/ D y � ji W xi � yj corresponds to
maximizing the revenue from the good.

Purchasing privacy. Given a function f W
Xn ! Y , construct a mechanism computing
payments to agents for eliciting permission to use
(some of) the entries of x in an approximation for
f .x/. Here it is assumed that the agents cannot
lie about their private values (but can misreport
their privacy valuations). We will consider two
variants of the problem. In the insensitive value
model, agents only care about the privacy of
their private values x. In the sensitive value
model, agents also care about the privacy of their
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privacy valuations p, e.g., because there may be
a correlation between xi and pi .

Basic Differentially Private Mechanisms
We conclude this section with two differentially
private mechanisms that are used in the construc-
tions presented in the next section.

The Laplace mechanism [3]. The Laplace dis-
tribution with parameter 1=�, denoted Lap.1=�/,
is a continuous probability distribution with zero
mean and variance 2=�. The probability density
function of Lap.1=�/ is h.´/ D �

2
e��j´j. For

� � 0 we get PrZ�Lap.1=�/ŒjZj > �� D e���.

Fact 2 . The mechanism MLap that on input x 2
f0; 1gn outputs y D #fi W xi D 1g C Z where
Z � Lap.1=�/ is �-differentially private. From
the properties of the Laplace distribution, we get
that

Pr
y�MLap.x/

Œjy � #fi W xi D 1gj > �� � e���:

The exponential mechanism [8]. Consider the
optimization problem defined by q W Xn 	 Y !
R, where q satisfies jq.x; y/ � q.x0; y/j � 1 for
all y 2 Y and all x; x0 that differ on one entry.

Fact 3 . The mechanism MExp that on input x 2
Xn outputs y 2 Y chosen according to

PrŒy D t � D exp
�

�
2
q.x; t/

�
P

`2Y exp
�

�
2
q.x; `/

� (2)

is �-differentially private. Moreover,

Pr
y�MExp.x/

Œq.x; y/ � opt.x/���

� 1 � jY j � exp .�� ��=2/ ;

(3)

where opt.x/ D maxy 2 Y .q.x; y//.

Notation. For two n-entry vectors x; x0, we write
x �i x0 to denote that they agree on all but the i -
th entry. We write x � x0 if x �i x0 for some i .

Key Results

The work of McSherry and Talwar [8] was
first to realize a connection between differential
privacy and mechanism design. They observed
that (with bounded utility from the outcome) a
mechanism that preserves �-differential privacy
is also �-truthful, yielding �-truthful mechanisms
for approximately maximizing social welfare
or revenue. Other works in this vein – using
differential privacy but without incorporating the
effect of privacy loss directly into the agent’s
utility function – include [6, 10, 12].

Privacy-Aware Mechanism Design
The mechanisms of this section share the follow-
ing setup assumptions:

Optimization problem. q W Xn 	 Y ! Œ0; n� and
a utility function U W X 	 Y ! Œ0; 1�.

Input. n players each having an input xi 2 X

and a privacy valuation pi . The players may
misreport xi .

Output. The mechanism outputs an element y 2
Y approximately maximizing q.x; y/.

Utility. Each player obtains utility U.xi ; y/� �i

where the assumptions on how the privacy loss
�i behaves vary for the different mechanisms
below and are detailed in their respective sec-
tions.

Accuracy. Let opt.x/ D maxy2Y .q.x; y//. A
mechanism is .�; ı/-accurate for all x if it
chooses y 2 Y such that PrŒopt.x/�q.x; y/ �
�� � 1 � ı where the probability is taken
over the random coins of the mechanism. (One
can also define accuracy in terms of opt.x/ �
ExpŒq.x; y/�.)

Worst-Case Privacy Model
In the worst-case privacy model, the privacy loss
of mechanism M is only assumed to be upper
bounded by the mechanisms’ privacy parameter,
as in the discussion following Fact 1 [9]:

0 � �i � pi � � where �

D maxx0�x;y2Y ln
PrŒM.x/ D y�

PrŒM.x0/ D y�
: (4)
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Nissim, Orlandi, and Smorodinsky [9] give
a generic construction of privacy-aware mecha-
nisms assuming an upper bound on the privacy
loss as in Eq. 4. The fact �i is only upper bounded
and excludes the possibility of punishing mis-
reporting via privacy loss (compare with Algo-
rithms 3 and 4 below), and hence, the generic
construction resorts to a somewhat nonstandard
modeling from [10]. To illustrate the main com-
ponents of the construction, we present a specific
instantiation in the context of pricing a digital
good, where such a nonstandard modeling is not
needed.

Pricing a digital good. An auctioneer selling
digital good wishes to design a single price mech-
anism that would (approximately) optimize her
revenue. Every agent i has a valuation xi 2 X D
f0; 0:01; 0:02; : : : ; 1g for the good and privacy
preference pi . Agents are asked to declare xi to
the mechanism, which chooses a price y 2 Y D
f0:01; 0:02; : : : ; 1g. Let x0i be the report of agent
i . If x0i < y, then agent i does not pay nor
receives the good and hence gains zero utility, i.e.,
vi D 0. If x0i � y, then agent i gets the good and
pays y and hence gains in utility. We let this gain
be vi D x0i � y C 0:005, where the additional
0:005 can be viewed as modeling a preference to
receive the good (technically, this breaks the tie
between the cases x0i D y and x0i D y � 1). To
summarize,

v.xi ; x0i ; y/ D
�

xi � y C 0:005 if y < x0i
0 otherwise

Algorithm 1 (ApxOptRev)
Auxiliary input: privacy parameter �, probability

0 < 	 < 1.
Input: x0 D .x01; : : : ; x0n/ 2 Xn.

ApxOptRev executes M1 with probability 1� 	
and M2 otherwise, where M1; M2 are:

M1: Choose y2Y using the exponential mechanism,
MExp (Fact 3), i.e.,

PrŒy D t
D exp
�

�
2
	 t 	 ˇ̌fi W x0

i
� tgˇ̌�

P
`2Y exp

�
�
2
	 ` 	 ˇ̌fi W x0

i
� `gˇ̌� :

M2: Choose y 2 Y uniformly at random.

The privacy loss for agent i is from the informa-
tion that may be potentially leaked on x0i via the
chosen price y. The auctioneer’s optimal revenue
is opt.x/ D maxt2Y .t � jfi W xi � tgj/, and the
revenue she obtains when the mechanism chooses
price y is y � jfi W x0i � ygj. The mechanism is
presented in Algorithm 1.

Agent utility. To analyze agent behavior,
compare the utility of a misreporting agent
to a truthful agent. (i) As Algorithm 1 is �-
differentially private, by our assumption on
�i , by misreporting agent i may reduce her
disutility due to information leakage by at most
pi � �. (ii) Note that v.xi ; x0i ; y/ � v.xi ; xi ; y/.
Using this and Fact 1, we can bound the
expected gain due to misreporting in M1 as
follows:

Expy�M1.x0
�i

;x0
i
/Œv.xi ; x0i ; y/� � Expy�M1.x0

�i
;xi /Œv.xi ; xi ; y/� �

Expy�M1.x0
�i

;x0
i
/Œv.xi ; x0i ; y/� � Expy�M1.x0

�i
;xi /Œv.xi ; x0i ; y/� � 2 � �:

(iii) On the other hand, in M2, agent i loses
at least g D 0:01 � 0:005 in utility whenever
x0i 6D x0i ; this is because y falls in the set fxi C
0:01; : : : ; x0i g with probability x0i � xi � 0:01

when xi < x0i , in which case she loses at least
0:005 in utility and, similarly, y falls in the set
fx0i ; : : : ; xi � 0:01g with probability xi � x0i �
0:01 when xi < x0i , in which case she loses at
least 0:005 in utility.

We hence get that agent i strictly prefers to
report truthfully when

2 � � � � � g C pi � � < 0: (5)

Designer utility. Let m be the number of agents
for which Eq. 5 does not hold. We have opt.x0/ �
opt.x/ � m, and hence, using Fact 3, we get
that
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y�ApxOptRev.x0/



y � ˇ̌fi W x0i � ygˇ̌ < opt.x/ �m ��

� � jY j � exp.���=2/C �

D 100 � exp.���=2/C �:

We omit from this short summary the discus-
sion of how to choose the parameters � and � (this
choice directly affects m). One possibility is to
assume the pi has nice properties [9].

Per-Outcome Privacy Model
In the output specific model, the privacy loss of
mechanism M is evaluated on a per-output basis
[2]. Specifically, on output y 2 Y is assumed
that

j�i .x; y/j � pi � Fi .x; y/ where Fi .x; y/

D maxx0;x00�i x ln
PrŒM.x0/ D y�

PrŒM.x00/ D y�
:

(6)

To interpret Eq. 6, consider an Bayesian ad-
versary that has a prior belief � on xi and fix
x�i . After seeing y D M.x�i ; xi /, the Bayesian
adversary updates her belief to �0. For every
event E defined over xi , we get that

�0.E/ D �.EjM.x�i ; xi / D y/

D �.E/ � PrŒM.x�i ; xi / D yjE�

PrŒM.x�i ; xi / D y�

2 �0.E/ � e˙Fi .x;y/:

This suggests that �i models harm that is “con-
tinuous” in the change in adversarial belief about
i , in the sense that a small adversarial change in
belief entails small harm. (Note, however, that
this argument is restricted to adversarial beliefs
on xi given x�i .)

Comparisonwith Worst-Case Privacy
Note that if M is �-differentially private, then
Fi .x; y/ � � for all x; y. Equation 6 can hence be
seen as a variant of Eq. 4 where the fixed value �

is replaced with the output specific Fi .x; y/. One
advantage of such a per-outcome model is that
the typical gain from misreporting is significantly
smaller than �. In fact, for all x 2 Xn and x0i 2 X ,

ˇ̌
ˇExpy�M.x/ ŒFi .x; y/� � Expy�M.x�i ;x0

i
/ ŒFi .x; y/�

ˇ̌
ˇ D O.�2/:

On the other hand, the modeled harm is somewhat
weaker, as (by Fact 1) Eq. 4 also captures harm
that is not continuous in beliefs (such as decisions
based on the belief crossing a certain threshold).

Assuming privacy loss is bounded as in Eq. 6,
Chen, Chong, Kash, Moran, and Vadhan [2]
construct truthful mechanisms for an election
between two candidates, facility location, and a
VCG mechanism for public projects (the latter
uses payments). Central to the constructions is
the observation that Fi is large exactly when
agent i has influence on the outcome of M./.
To illustrate the main ideas in the construction,
we present here the two-candidate election
mechanism.

Two-candidate election. Consider the setting of
an election between two candidates. Every agent
i has a preference xi 2 X D fA; Bg and privacy
preference pi . Agents are asked to declare xi to
the mechanism, which chooses an outcome y 2
Y D fA; Bg. The utility of agent i is then

v.xi ; y/ D
�

1 if x D y

0 otherwise

The privacy loss for agent i is from the infor-
mation that may be potentially leaked on her re-
ported x0i via the outcome y. The designer’s goal
is to (approximately) maximize the agents’ social
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Algorithm 2 ApxMaj
Auxiliary input: privacy parameter �.
Input: x0 D .x01; : : : ; x0n/ 2 Xn.

ApxMaj performs the following:

1. Sample a value Z from Lap.1=�/.
2. Choose y D A if
jfj W x0

j
DAgj > jfj W x0

j
DBgj CZ and yDB

otherwise.

welfare (i.e., total utility from the outcome). The
mechanism is presented in Algorithm 2.

Agent utility. To analyze agent behavior, we
compare the utility of a misreporting agent to
a truthful agent. Notice that once the noise Z

is fixed if agent i affects the outcome, then her
disutility from information leakage is at most
pi � � and her utility from the outcome decreases
by 1. If agent i cannot affect the outcome, then
misreporting does not change either. We hence
get that agent i strictly prefers to report truthfully
when

pi � � < 1: (7)

Note that by our analysis, Eq. 7 implies universal
truthfulness – agent i prefers to report truthfully
for every choice of the noise Z. In contrast, Eq. 5
only implies truthfulness in expectation.

Social welfare. Letting m be the number of
agents for which Eq. 7 does not hold, and using
Fact 2, we get that Algorithm ApxMaj maximizes
social welfare up to error m C log 1=ı

�
with prob-

ability 1 � ı. As in the previous section, we omit
from this short summary the discussion of how
to choose � (this choice affects m and hence the
accuracy of the mechanism).

Purchasing Privacy
The mechanisms of this section share the follow-
ing setup assumptions, unless noted otherwise:

Input. n players each having a data bit xi 2
f0; 1g and a privacy valuation pi > 0. The
players may misreport pi but cannot misreport

xi . We will assume for convenience of nota-
tion that p1 � p2 � : : : � pn.

Intermediate outputs. The mechanism selects a
subset of participating players S � Œn� and a
scaling factor t and a privacy parameter �.

Output. The mechanism uses the Laplace
mechanism to output an estimate s D
1
t

�P
i2ŒS
 xi CZ

�
where Z � Lap.1=�/

and payments vi for i 2 Œn�.
Utility. Each player obtains utility vi � �i where

the assumptions on how the privacy loss �i be-
haves vary for the different mechanisms below
and are detailed in their respective sections.

Accuracy. A mechanism is ˛-accurate if PrŒjs �
f .x/j � ˛n� � 2=3 where the probability
is taken over the random coins of the mech-
anism.

We focus on designing mechanisms that approx-
imate the sum function f .x/ D Pn

iD1 xi where
each xi 2 f0; 1g, which has been the most widely
studied function in this area. As one can see
from the above setup assumptions, the crux of
the mechanism design problem is in selecting
the set S , choosing a privacy parameter �, and
computing payments for the players. We note that
several of the works we describe below gener-
alize beyond the setting we describe here (i.e.,
computing different f , fewer assumptions, etc.).
The following presentation was designed to give
a unified overview (sacrificing some generality),
but to preserve the essence both of the challenges
posed by the problem of purchasing private data
and each mechanism’s idea in addressing the
challenges.

Insensitive Valuation Model
In the insensitive valuation model, the privacy
loss �i of a mechanism M is assumed to be [5]

�i D pi � �i where �i

D maxx;x0�i x;p;s ln
PrŒM.x; p/ D s�

PrŒM.x0; p/ D s�
: (8)

It is named the insensitive valuation model be-
cause �i only measures the effect on privacy of
changing player i ’s data bit, but not the effect of
changing that player’s privacy valuation.
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Algorithm 3 (FairQuery)
Auxiliary input: budget constraint B > 0.

1. Let k 2 Œn
 be the largest integer such that
pk.n� k/ � B=k.

2. Select S D f1; : : : ; kg and set � D 1
n�k

.
Set the scaling factor t D 1.

3. Set payments vi D 0 for all i > k and
vi D minfB

k
; pkC1�g for all i � k.

Algorithm 4 MinCostAuction
Auxiliary input: accuracy parameter ˛ 2 .0; 1/.

1. Set ˛0 D ˛
1=2Cln 3

and k D .1� ˛0/n.

2. Select S D f1; : : : ; kg and � D 1
n�k

. Set the
scaling factor t D 1.

3. Set payments viD0 for i>k and viDpkC1� for
all i � k.

Mechanisms. Two mechanisms are presented
in the insensitive value model in [5], listed in
Algorithms 3 and 4. Algorithm 3 (FairQuery) is
given a hard budget constraint and seeks to opti-
mize accuracy under this constraint; Algorithm 4
(MinCostAuction) is given a target accuracy re-
quirement and seeks to minimize payouts under
these constraints.

Guarantees. Algorithms 3 and 4 are individ-
ually rational and truthful. Furthermore, Algo-
rithm 3 achieves the best possible accuracy (up
to constant factors) for the class of envy-free
and individually rational mechanisms, where the
sum of payments to players does not exceed B .
Algorithm 4 achieves the minimal payout (up to
constant factors) for the class of envy-free and
individually rational mechanisms that achieve ˛-
accuracy.

Sensitive Value Model
Ghosh and Roth [5] also defined the sensitive
value model where �1 is as in Eq. 8, except that
�i is defined to equal

maxx;p;.x0;p0/�i .x;p/;s ln
PrŒM.x; p/ D s�

PrŒM.x0; p0/ D s�
:

(9)

Namely, we also measure the effect on the
outcome distribution of the change in a single
player’s privacy valuation. It was shown in [5]
and subsequent generalizations [11] that in
this model and various generalizations where
the privacy valuation itself is sensitive, it
is impossible to build truthful, individually
rational, and accurate mechanisms with worst-
case guarantees and making finite payments.
To bypass these impossibility results, several
relaxations were introduced.

Bayesian relaxation [4]. Fleischer and Lyu use
the sensitive notion of privacy loss given in Eq. 9.
In order to bypass the impossibility results about
sensitive values, they assume that the mechanism
designer has knowledge of prior distributions
P 0; P 1 for the privacy valuations. They assume
that all players with data bit b have privacy val-
uation sampled independently according to P b ,

namely, that pi
R P xi , independently for all i .

Their mechanism is given in Algorithm 5.

Algorithm 5 Bayesian mechanism from [4]
Auxiliary input: privacy parameter �.

1. Compute c D 1� 2
�2n

. Compute ˛b for
b 2 f0; 1g such that Pr

p
R
 P b

Œp � ˛b
 D c.

2. Set S be the set of players i such that pi�˛xi
.

Set the scaling factor t D c.
3. For each player i 2 S , pay �˛xi

. Pay the other
players 0.

Algorithm 5 is truthful and individually ratio-
nal. Assuming that the prior beliefs are correct,
the mechanism is O. 1

�n
/-accurate. The key use of

knowledge of the priors is in accuracy: the prob-
ability of a player participating is c independent
of its data bit.

Take-it-or-leave-it mechanisms [7]. Ligett and
Roth put forward a setting where the privacy loss
is decomposed into two parts

�i D �
p
i C �x

i ;
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where �
p
i is the privacy loss incurred by leaking

information of whether or not an individual is
selected to participate (i.e., whether individual i

is in the set S ), and where �x
i is the privacy loss

incurred by leaking information about the actual
data bit.

The interpretation is that a surveyor
approaches an individual and offers them vi

to participate. The individual cannot avoid
responding to this question and so unavoidably
incurs a privacy loss �

p
i without compensation.

If he chooses to participate, then he loses an
additional �x

i , but in this case he receives vi in
payment. While this is the framework we have
been working in all along, up until now we have
not distinguished between these two sources of
privacy loss, rather considering only the overall
loss. By explicitly separating them, [7] can make
more precise statements about how incentives
relate to each source of privacy loss.

In this model the participation decision of
an individual is a function (only) of its privacy
valuation, and so we define

�
p
i D pi�

p
i where �

p
i

D maxx;p;p0�i p;s ln
PrŒM.x; p/ D s�

PrŒM.x; p0/ D s�
:

(10)

We define �x
i D pi �

x
i where �x

i is as in the
insensitive model, Eq. 8. The mechanism is given
in Algorithm 6.

Algorithm 6 is ˛-accurate. It is not individu-
ally rational since players cannot avoid the take-
it-or-leave-it offer, which leaks information about
their privacy valuation that is not compensated.
However, it is “one-sided truthful” in the sense
that rational players will accept any offer vi

satisfying vi � �
p
i � �x

i . [7] also proves that
for appropriately chosen �, the total payments
made by Algorithm 6 are not much more than
that of the optimal envy-free mechanism mak-
ing the same take-it-or-leave-it offers to every
player.

Monotonic valuations [11]. Nissim, Vadhan,
and Xiao [11] study a relaxation of sensitive

Algorithm 6 (Take-it-or-leave-it mechanism
[7])
Auxiliary input: accuracy parameter ˛ 2 .0; 1/,

payment increment 	 > 0.

1. Set j D 1 and � D ˛.
2. Repeat the following:

(a) Set Ej D 100.log j C 1/=˛2 and Sj D ;.
(b) For i D 1 until Ej :

i. Sample without replacement i
R Œn
.

ii. Offer player i a payment of .1C 	/j .
iii. If player i accepts, set Sj D Sj [ fig.

(c) Sample �
R �.1=�/. If

jSj j C � � .1� ˛=8/Ej , then break and
output selected set S D Sj , privacy
parameter �, and normalizing factor t D Ej .
For every j 0 � j , pay .1C 	/j 0 to each
player that accepted in round j 0 and pay 0 to
all other players.

(d) Otherwise, increment j and continue.

values that they call monotonic valuations, where
it is assumed that

�i .x; p/ � pi � �mon
i .x; p/ where �mon

i .x; p/

D max.x0;p0/�mon
i

.x;p/;s

ln
PrŒM.x; p/Ds�

PrŒM.x0; p0/Ds�
: (11)

Here, .x0; p0/ �mon
i .x; p/ denotes that

.x0; p0/; .x; p/ are identical in all entries except
the i ’th entry, and in the i ’th entry, it holds that
either xi > x0i and pi � p0i both hold or xi < x0i
and pi � p0i both hold.

The intuition behind the definition is that for
many natural settings, xi D 1 is more sensitive
than xi D 0 (e.g., if xi represents whether an
individual tested positive for syphilis), and it is
therefore reasonable to restrict attention to the
case where the privacy valuation when xi D 1

is at least the privacy valuation when xi D 0.
There are two other aspects in which this

notion is unlike those used in the earlier works on
purchasing privacy: (i) the definition may depend
on the input, so the privacy loss may be smaller
on some inputs than others, and (ii) we assume
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only an upper bound on the privacy loss, since
�mon

i does not say which information is leaked
about player i , and so it may be that the harm
done to player i is not as severe as �mon

i would
suggest. The mechanism is given in Algorithm 7.

Algorithm 7 (Mechanism for monotonic val-
uations [11])
Auxiliary inputs: budget constraint B > 0, privacy

parameter � > 0.

1. Set � D B
2�n

.
2. Output selected set S D fi j pi � �g, output

privacy parameter �, and scaling factor t D 1.
3. Pay B=n to players in S , pay 0 to others.

Algorithm 7 is individually rational for all
players and truthful for all players satisfying pi �
� . Assuming all players are rational, on inputs
where there are h players having pi > � , the
mechanism is .O. 1

�n
/ C h/-accurate. The accu-

racy guarantee holds regardless of how the play-
ers with pi > � report their privacy valuations.
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Problem Definition

Mutual exclusion is a fundamental concurrent
programming problem (see �Concurrent Pro-
gramming, Mutual Exclusion entry), in which a
set of processes must coordinate their access to
a critical section so that, at any point in time, at
most a single process is in the critical section.

To a large extent, shared-memory mutual ex-
clusion research focused on busy-waiting mu-
tual exclusion, in which, while waiting for the
critical section to be freed, processes repeatedly
test the values of shared-memory variables. A
significant portion of this research over the last
two decades was devoted to local-spin algorithms
[2], in which all busy-waiting is done by means
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of read-only loops that repeatedly test locally
accessible variables.

Local-Spin Algorithms and the RMRs
Metric
A natural way to measure the time complex-
ity of algorithms in shared-memory multiproces-
sors is to count the number of memory accesses
they require. This measure is problematic for
busy-waiting algorithms because, in this case, a
process may perform an unbounded number of
memory accesses while busy-waiting for another
process holding the lock. Moreover, Alur and
Taubenfeld [1] have shown that even the first
process to enter the critical section can be made
to perform an unbounded number of accesses.

As observed by Anderson, Kim, and Her-
man [6], “most early shared-memory algorithms
employ. . . busy-waiting loops in which many
shared variables are read and written. . . Under
contention, such busy-waiting loops generate
excessive traffic on the processors-to-memory
interconnection network, resulting in poor
performance.”

Contemporary shared-memory mutual exclu-
sion research focuses on local-spin algorithms,
which avoid this problem as they busy-wait by
means of performing read-only loops that repeat-
edly test locally accessible variables (see, e.g.,
[4, 5, 7, 9, 11, 13, 14]). The performance of these
algorithms is measured using the remote memory
references (RMRs) metric.

The classification of memory accesses into
local and remote depends on the type of multipro-
cessor. In the distributed shared-memory (DSM)
model, each shared variable is local to exactly one
processor and remote to all others. In the cache-
coherent (CC) model, each processor maintains
local copies of shared variables inside a cache;
the consistency of copies in different caches is en-
sured by a coherence protocol. At any given time,
a variable is local to a processor if the coherence
protocol guarantees that the corresponding cache
contains an up-to-date copy of the variable and is
remote otherwise.

Anderson was the first to present a local-spin
mutual exclusion algorithm using only reads and
writes with bounded RMR complexity [3]. In

his algorithm, a process incurs O.n/ RMRs to
enter and exit its critical section, where n is the
maximum number of processes participating in
the algorithm. Yang and Anderson improved on
that and presented an O.log n/ RMRs mutual
exclusion algorithm based on reads and writes
[20]. This is asymptotically optimal under both
the CC and DSM models [7].

Read-Modify-Write Operations
The system’s hardware or operating system pro-
vides primitive operations (or simply operations)
that can be applied to shared variables. The sim-
plest operations, which are always assumed, are
the familiar read and write operations. Modern
architectures provide stronger read-modify-write
operations (a.k.a. fetch-and-ˆ operations). The
most notable of these is compare and swap (ab-
breviated CAS), which takes three arguments: an
address of a shared variable, an expected value,
and a new value. The CAS operation atomically
does the following: if the variable stores the
expected value, it is replaced with the new value;
otherwise, it is unchanged. The success or failure
of the CAS operation is then reported back to
the program. It is crucial that this operation is
executed atomically; thus, an algorithm can read
a datum from memory, modify it, and write it
back only if no other process modified it in the
meantime.

Another widely implemented RMW operation
is the swap operation, which takes two argu-
ments: an address of a shared variable and a
new value. When applied, it atomically stores
the new value to the shared variable and returns
the previous value. The CAS operation may be
viewed as a conditional version of swap, since it
performs a swap operation only if the value of
the variable to which it is applied is the expected
value.

Architectures supporting strong RMW opera-
tions admit implementations of mutual exclusion
that are more efficient in terms of their RMR
complexity as compared with architectures that
support only read and write operations. In work
that preceded the introduction of the MCS lock,
Anderson [2] and Graunke and Thakkar [12]
presented lock algorithms, using strong RMW
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operations such as CAS and swap, that incur only
a constant number of RMRs on CC multiproces-
sors. However, these algorithms are not local spin
on DSM multiprocessors and the amount of pre-
allocated memory per lock is linear in the number
of processes that may use it.

Key Results
Mellor-Crummey and Scott’s algorithm [18] is
the first local-spin mutual exclusion algorithm in
which processes incur only a constant number of
RMRs to enter and exit the critical section, in
both CC and DSM multiprocessors. The amount
of memory that needs to be pre-allocated by
locks using this algorithm (often called MCS
locks) is constant rather than a function of the
maximum number of processes that may use the
lock. Moreover, MCS locks guarantee a strong
notion of fairness called first-in, first-out (FIFO,

Algorithm 1 Mellor-Crummey and Scott
algorithm

1 Qnode: structure {bit locked, Qnode* next};
2 shared Qnode nodes[0 : : : n� 1], Qnode* tail

ch605:initially null;
3 local Qnode* myNode initially &nodes[i],

successor, pred;

Entry code for process i

5 myNode.next null;
6 pred swap(tail, myNode);
7 if pred¤ null then
8 myNode.locked true;
9 pred.next myNode;

10 repeat while myNode.locked = true;
end

Critical Section;

Exit code for process i;

14 if myNode.next = null then
15 if compare-and-swap(tail, myNode, null) =

false then
16 repeat while myNode.next = null ;
17 successor myNode.next;
18 succcessor.locked false ;

end
else

21 successor myNode.next;
22 succcessor.locked false;

end

a.k.a. first-come-first-served). Informally, FIFO
ensures that processes succeed in capturing the
lock in the order in which they start waiting for it
(see [15] for a more formal definition of the FIFO
property).

The Algorithm
Pseudocode of the algorithm is presented in Al-
gorithm 1. The key data structure used by the
algorithm is the nodes array (statement 2), where
entry i is owned by process i , for i 2 f0; : : : ; n�
1g. This array represents a queue of processes
waiting to enter the critical section. Each array
entry is a Qnode structure (statement 1), com-
prising a next pointer to the structure of the
next process in the queue and a locked flag on
which a process waits until it is signaled by its
predecessor. Shared variable tail points to the end
of the queue and either stores a pointer to the
structure of the last process in the queue or is null
if the queue is empty.

Before entering the critical section, a process
p first initializes the next pointer of its Qnode
structure to null (statement 5), indicating that it
is about to become the last process in the queue.
It then becomes the last queue process by atom-
ically swapping the values of tail and its local
Qnode structure (statement 6); the previous value
of tail is stored to local variable pred. If the queue
was previously empty (statement 7), p enters the
critical section immediately. Otherwise, p initial-
izes its Qnode structure (statement 8), writes a
pointer to its Qnode structure to the next field of
its predecessor’s Qnode structure (statement 9),
and then busy-waits until it is signaled by its
predecessor (statement 10).

To exit the critical section, process p first
checks whether its queue successor (if any) has
set the next pointer of its Qnode structure (state-
ment 14), in which case p signals its successor
to enter the critical section (statements 21–22).
Even if no process has set p’s next pointer yet,
it is still possible that p does have a successor q

that executed the swap of statement 6 but did not
yet update p’s next pointer in statement 9. Also
in this case, p must signal q before it is allowed
to exit the critical section. To determine whether
or not this is the case, p attempts to perform a
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CAS operation that will swap the value of tail
back to null if p is the single queue process. If the
CAS fails, then p does have a successor and must
therefore wait until its next pointer is updated by
the successor. Once this happens, p signals its
successor and exits (statements 16–18).

Mellor-Crummey and Scott’s paper won the
2006 Edsger W. Dijkstra Prize in Distributed
Computing. Quoting from the prize announce-
ment, the MCS lock is “. . . probably the most
influential practical mutual exclusion algorithm
of all time.”

Cross-References

�Concurrent Programming, Mutual Exclusion
�Transactional Memory
�Wait-Free Synchronization

Further Reading

For a comprehensive discussion of local-spin mu-
tual exclusion algorithms, the reader is referred
to the excellent survey by Anderson, Kim, and
Herman [6]. Craig, Landin, and Hagersten [8,17]
presented another queue lock – the CLH lock.
The algorithm underlying CLH locks is simpler
than the MCS algorithm and, unlike MCS, only
requires the swap strong synchronization opera-
tion. On the downside, CLH locks are not local
spin on DSM multiprocessors.

In many contemporary multiprocessor archi-
tectures, processors are organized in clusters and
intercluster communication is much slower than
intra-cluster communication. Hierarchical locks
take into account architecture-dependent consid-
erations such as inter- and intra-cluster laten-
cies and may thus improve lock performance
on nonuniform memory architectures (NUMA).
The idea underlying hierarchical locks is that
intercluster lock transfers should be favored. A
key challenge faced by hierarchical lock imple-
mentations is that of ensuring fairness.

Radovic and Hagersten presented the first hi-
erarchical lock algorithms [19], based on the idea
that a process busy-waiting for a lock should back

off for a short duration if the lock is held by
a process from its own cluster and for a much
longer duration otherwise; this is a simple way of
ensuring that intra-cluster lock transfers become
more likely. Several works pursued this line of
research by presenting alternative NUMA-aware
lock algorithms (e.g., [10,16]). For alternatives to
lock-based concurrent programming, the reader
is referred to [Wait-free Synchronization, Trans-
actional Memory].
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Problem Definition

This field of research evolves around the design
of algorithms in the presence of memory con-
straints. Research on this topic has been going
on for over 40 years [16]. Initially, this was
motivated by the high cost of memory space.
Afterward, the topic received a renewed interest

with appearance of smartphones and other types
of handheld devices for which large amounts of
memory are either expensive or not desirable.

Although many variations of this principle
exist, the general idea is the same: the input is in
some kind of read-only data structure, the output
must be given in a write-only structure, and in
addition to these two structures, we can only use a
fixed amount of memory to compute the solution.
This memory should be enough to cover all
space requirements of the algorithm (including
the variables directly used by the algorithm, space
needed to make recursion, invoking procedures,
etc.). In the following we list the most commonly
considered limitations for both the input and the
workspace.

Considerations on the Input
One of the most restrictive models that has been
considered is the one-pass (or streaming) model.
In this setting the elements of the input can only
be scanned once in a sequential fashion. Given
the limitations, the usual aim is to approximate
the solution and ideally obtain some kind of
worst-case approximation ratio with respect to
the optimal solution.

The natural extension of the above constraint
is the multi-pass model, in which the input can be
scanned sequentially a constant number of times.
In here we look for trade-off between the number
of passes and either the size of the workspace or
the quality of the approximation.

The next natural step is to allow input to be
scanned any number of times and even allowing
random access to the input values. Research for
this model focuses on either computability (i.e.,
determining whether or not a particular problem
is solvable with a workspace of fixed size) or the
design of efficient algorithms whose running time
is not much worse (when compared to the case in
which no space constraints exist).

A more generous model considered is the in-
place one. In this model, the values of the input
can be rearranged (or sometimes even overwrit-
ten). Note that the input need not be recoverable
after an execution of the algorithm. By making
an appropriate permutation of the input, we can
usually encode different data structures. Thus,
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algorithms under this model often achieve the
running times comparable to those in uncon-
strained settings.

Considerations on the Workspace
The most natural way to measure the space re-
quired by the algorithms is simply the number of
bits used. On many cases it is simpler to count the
number of words (i.e., the minimum amount of
space needed to store a variable, a pointer to some
position in the input, or simply a counter) used by
the algorithm. It is widely accepted that a word
needs �.log n/ bits; thus it is easy to alternate
between both approaches.

Most of the literature focuses in the case in
which the workspace can only fit O.log n/ bits.
This workspace (combined with random access
to the input) defines the heavily studied log-space
complexity class within computational complex-
ity. Within this field the main focus of research
is to determine whether or not a problem can be
solved (without considering other properties such
as the running time of the algorithm). Due to the
logarithmic bit-word equivalence, an algorithm
that uses O.log n/ bits is also referred to as a
constant workspace algorithm.

There has also been an interest in the design
of algorithms whose workspace depends on some
parameter determined by the user. In this case
the aim is to obtain an algorithm whose running
time decreases as the space increases (this is often
referred to as a time-space trade-off ).

Key Results

Selection and Sorting in Multi-pass Models
One of the most studied problems under the
multi-pass model is sorting. That is, given a list
of n distinct numbers, how fast can we sort them?
How many passes of the input are needed when
our total amount of memory is limited? Whenever
workspace is not large enough to hold the sorted
list, the aim is to simply report the values of the
input in ascending order.

The first time-space trade-off algorithm for
sorting under the multi-pass model was given
by Munro and Paterson [13], where several up-

per and lower space bounds were given (as a
function on the number of times we can scan
the input). The bounds were afterward improved
and extended for the random access model: it
is known that the running time of an algorithm
that uses O.b/ bits must be at least ˝.n2=b/ [8].
Matching upper bounds for the case in which b 2
˝.log n/ \ O.n= log n/ were shown by Pagter
and Rauhe [15] (where b denotes the size of the
workspace, in bits).

Selection
Another closely related topic is selection. In ad-
dition to the list of n numbers, we are given an
integer k � n. The aim is to compute the number
whose rank is k (i.e., the kth smallest value). It is
well-known that this problem can be solved in
linear time when no space constraints exist [7].
Munro and Patterson [13] presented a time-space
trade-off algorithm for the multi-pass model. For
any w 2 ˝.log2 n/ \ O.n= log n/, the algorithm
runs in O.n logw nCn log w/ time and uses O.w/

words of space.
The algorithm stores two values – called filters

– for which we know that the element to select
lies in between (initially, the filters are simply
set to ˙1, respectively). Thus, the aim is to
iteratively scan the input shrinking the distance
between the filters. At each iteration we look for
an element whose rank is as close as possible
to k (ignoring elements that do not lie within
the filters). Once we have a candidate, we can
compute its exact rank in linear time by com-
paring its value with the other elements of the
input and update either the upper or lower filter
accordingly. The process is repeated until O.w/

elements remain between the filters.
The key of this algorithm lies in a good choice

of an approximation so that a large amount of
values are filtered. The method of Munro and
Patterson [13] first constructs a sample of the
input as follows: for a block of up to w

log n
el-

ements, its sample simply consists of these el-
ements sorted in increasing value. For larger
blocks B (say, 2i w

log n
elements for some i 2

f1; : : : ; dlog.n=w/eg), partition the block into two
equally sized sub-blocks and construct their sam-
ples inductively. Then, the sample of B is created
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by selecting one every other element of each of
the samples of the two sub-blocks and sorting the
obtained list. The sample of the whole input can
be constructed in a bottom-up fashion that uses
at most O. w

log n
/ words in each level (thus, O.w/

in total). Once we have computed the sample
of the input, we can extract its approximation
by selecting the corresponding value within the
sample.

Randomized Algorithms
The previous approach can be drastically simpli-
fied under randomized environments. Simply se-
lect an element of the input uniformly at random,
compute its rank, and update one of the filters ac-
cordingly. With high probability after a constant
number of iterations, a constant fraction of the
input will be discarded. Thus, overall O.log n/

iterations (and a constant number of words) will
be needed to find the solution. Chan [9] improved
this idea, obtaining an algorithm that runs in
O.n log logw n/ time and uses O.w/ words (for
any w � n).

Improvements
For most values of w, the algorithm of Munro and
Patterson is asymptotically tight, even if we allow
random access to the input. Thus, further research
focused in extending the range space for which
optimality is known. Frederickson [11] increased
the optimality range for the selection problem to
any w 2 ˝.log n2/ \ O.2log n= log� n/. Recently,
Elmasry et al. [10] gave a linear time algorithm
that only uses O.n/ bits (i.e., they preserve the
linear running time of [7] and reduce the size of
the workspace by a logarithmic factor). Raman
and Ramnath [17] used a similar approximate
median approach for the case in which o.log n/

words fit in the workspace.

Undirected Graph Connectivity in the
Random Access Model
Given an undirected graph G D .V; E/ and two
vertices s; t 2 V , the undirected s–t connectivity
problem is to decide whether or not there exists a
path from s to t in G. This problem can be easily
solved in linear time using linear space (with
either breadth-first search or width-first search

schemes) in unrestricted models. However, deter-
mining the existence of a deterministic algorithm
that only uses O.log n/ bits space was a long-
standing open problem in the field of complexity
theory.

Problem Background
Aleliunas et al. [1] showed that the problem can
be easily solved with a randomized algorithm.
Essentially they show that a sufficiently long ran-
dom walk will traverse all vertices of a connected
graph. Thus, if we start at s and do not reach t

after a polynomially bounded number of steps,
we can conclude that with high probability, s and
t are not connected.

The connectivity problem can also be solved
with a nondeterministic logspace algorithm
(where the certificate is simply the path
connecting s and t). Thus, Savitch’s theorem [19]
can transform it to a deterministic algorithm
that uses O.log2 n/ bits (and superpolynomial
time). The space requirements were afterward
reduced to O.log3=2 n/ [14] and O.log4=3 n/ [2].
Recently, Reingold [18] positively answered
the question by giving a deterministic logspace
algorithm. Although no discussion on the running
time is explicitly mentioned, it is well known that
Reingold’s algorithm runs in polynomial time.
This is due to the fact that a Turing machine with
a logarithmic space constraint can have at most
2O.log n/ D O.nO.1// different configurations.

Reingold’s Algorithm
Conceptually, the algorithm aims to transform G

into a graph in which all vertices have degree
three. This is done by virtually replacing each
vertex of degree k > 3 by a cycle of k vertices
each of which is adjacent to one of the neighbors
of the previous graph (and adding self-loops to
vertices of low degree).

The algorithm then combines the squaring
and the zig-zag product operations. The squaring
operation connects vertices whose distance in the
original graph is at most two, while the zig-zag
product between two graphs G and H essentially
replaces every vertex of G with a copy of H (and
connects vertices of two copies of H if and only
if the original vertices were adjacent in G).
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Intuitively speaking, the squaring operation
will reduce the diameter while the zig-zag
product keeps the degree of the vertices bounded
(for this algorithm, H consists of a sparse graph
of constant degree and small diameter). After
repeating this process a logarithmic number
of times, the resulting graph has bounded
degree, logarithmic diameter and preserves the
connectivity between the corresponding vertices.
In particular, we can determine the connectivity
between u and v by exhaustively looking through
all paths of logarithmic length starting from u.
Since each vertex has bounded degree, the paths
can be encoded without exceeding the space
bounds. The algorithm will stop as soon as v is
found in any of these paths or after all paths have
been explored.

Even though we cannot store the transforma-
tion of G explicitly, the only operation that is
needed during the exhaustive search is to de-
termine the i th clockwise neighbor of a vertex
after j transformation steps have been done on
G (for some i and j 2 O.log n/). Reingold
provided a method to answer such queries using
constant number of bits on the graph resulting
after doing j�1 transformation steps on G. Thus,
by repeating the process inductively, we can find
the solution to our query without exceeding the
space bounds.

Other Models of Note
The study of memory constrained algorithms has
received a lot of interest by the computational ge-
ometry community. Most of them use random ac-
cess to the input, use a constant number of words,
and aim to reporting fundamental geometric data
structures. For example, Jarvis march [12] (also
known as the gift-wrapping algorithm) computes
the convex hull of a set of n points in O.nh/ time
(where h is the number of vertices on the convex
hull). Asano and Rote [3] showed how to com-
pute the Voronoi diagram and minimum spanning
tree of a given set of points in O.n2/ and O.n3/

time, respectively. Similarly, several time-space
trade-off algorithms have been designed for clas-
sic problems within a simple polygon, such as
triangulation [4], shortest path computation [4],
or visibility [5]. These algorithms use properties

of the problem considered so as to somehow com-
pute the solution using local information when-
ever possible. In most cases, this ends up in an
algorithm that is completely different from those
used when no memory constraints exist.

Compressed Stack
A different approach was taken by Barba
et al. [6], where the class of stack algorithms
is considered. This class consists of deterministic
algorithms that have a one-pass access to the
input and can use a constant number of words.
In addition, they allow the usage of a stack so as
to store elements of the input. At any instant of
time, only the top element of the stack is available
to the algorithm. Note that with this additional
stack, we can store up to �.n/ values of the
input. Hence, the model is not strictly speaking
memory constrained.

Although this model may seem a bit artificial,
Barba et al. give several examples of well-known
programs that fit into this class of algorithms
(such as computing the convex hull of a simple
polygon or computing the visibility of a point
inside a simple polygon). More interestingly, they
show how to remove the auxiliary stack, effec-
tively transforming any stack algorithm into a
memory constrained algorithm that uses O.w/

words (for any w 2 f1; : : : ; ng).

Block Reconstruction
The key to this approach lies in the fact that por-
tions of the stack can be reconstructed efficiently:
let ai ; aiC1; : : : ; aj be a set of consecutive ele-
ments of the input (for some i < j ) such that
we know that ai and aj are in the stack after
aj has been processed. Then, we can determine
which values in between ai and aj are also in the
stack by re-executing the algorithm restricting the
input to the ai ; : : : ; aj interval (thus, taking time
proportional to O.j � i/).

Using this idea, we can avoid explicitly storing
the whole stack by using a compressed stack
data structure that never exceeds the size of the
workspace. For the particular case in which w D
�.
p

n/, the algorithm virtually partitions the
input into blocks of size

p
n. The invariant of

the data structure is that the portions of the
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stack corresponding to the last two blocks that
have pushed elements into the stack are stored,
whereas for any other block, we only store the
first and last elements that are in the stack, if
any. By using a charging scheme, they show that
each block triggers at most one reconstruction,
and each reconstruction takes time proportional
to the size of the destroyed block. In all, the com-
pressed stack data structure reduces the size of
the workspace to �.

p
n/ without asymptotically

increasing the running time.
In the general case, the input is split

into p equally sized blocks (where p D
maxf2; w= log ng), and each block is further sub-
partitioned into blocks until the blocks of the
lowermost level can be explicitly stored (or the
recursion exceeds size of the workspace). The
smaller the size of the workspace, the higher
the number of levels it will have and thus more
time will be spent in reconstructing blocks. This
creates a time-space trade-off for any stack

algorithm whose running time is O.
n2 log n

2w /

time for any workspace of w 2 o.log n/ words.
For larger workspaces, the algorithm runs in
O.n1C1= log p/ time and uses O.p logp n/ words
(for 2 � p � n).
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Problem Definition

The Model: A mobile robotic sensor (or simply
sensor) is modeled as a computational unit with
sensorial capabilities: it can perceive the spatial
environment within a fixed distance V > 0,
called visibility range, it has its own local work-
ing memory, and it is capable of performing local
computations [3, 4].

Each sensor is a point in its own local Carte-
sian coordinate system (not necessarily consistent
with the others), of which it perceives itself as the
center. A sensor can move in any direction, but
it may be stopped before reaching its destination,
e.g. because of limits to its motion energy; how-
ever, it is assumed that the distance traveled in
a move by a sensor is not infinitesimally small
(unless it brings the sensor to its destination).

The sensors have no means of direct commu-
nication: any communication occurs in an im-
plicit manner, by observing the other sensors’
positions. Moreover, they are autonomous (i.e.,
without a central control) identical (i.e., they
execute the same protocol), and anonymous (i.e.,
without identifiers that can be used during the
computation).

The sensors can be active or inactive. When
active, a sensor performs a Look-Compute-Move
cycle of operations: it first observes the portion
of the space within its visibility range obtaining
a snapshot of the positions of the sensors in its
range at that time (Look); using the snapshot as
an input, the sensor then executes the algorithm to
determine a destination point (Compute); finally,
it moves toward the computed destination, if
different from the current location (Move). After
that, it becomes inactive and stays idle until the
next activation. Sensors are oblivious: when a
sensor becomes active, it does not remember
any information from previous cycles. Note that

several sensors could actually occupy the same
point; we call multiplicity detection the ability of
a sensor to see whether a point is occupied by a
single sensor or by more than one.

Depending on the degree of synchronization
among the cycles of different sensors, three sub-
models are traditionally identified: synchronous,
semi-synchronous, and asynchronous. In the syn-
chronous (FSYNC) and in the semi-synchronous
(SSYNC) models, there is a global clock tick
reaching all sensors simultaneously, and a sen-
sor’s cycle is an instantaneous event that starts at
a clock tick and ends by the next. In FSYNC, at
each clock tick all sensors become active, while
in SSYNC only a subset of the sensors might
be active in each cycle. In the asynchronous
model (ASYNC), there is no global clock and
the sensors do not have a common notion of
time. Furthermore, the duration of each activity
(or inactivity) is finite but unpredictable. As a
result, sensors can be seen while moving, and
computations can be made based on obsolete
observations.

Let S.t/ D fs1.t/; : : : ; sn.t/g denote the set
of the n sensors’ at time t . When no ambigu-
ity arises, we shall omit the temporal index t .
Moreover, with an abuse of notation we indicate
by si both a sensor and its position. Let Si .t/

denote the set of sensors that are within distance
V from si at time t , that is, the set of sensors
that are visible from si . At any point in time
t , the sensors induce a visibility graph G.t/ D
.N; E.t// defined as follows: N D S and 8r; s 2
N , .r; s/ 2 E.t/ iff r and s are at distance no
more than the visibility range V .

The Problem: In this setting, one of the most
basic coordination and synchronization task is
Gathering: the sensors, initially placed in arbi-
trary distinct positions in a 2-dimensional space,
must congregate at a single location (the choice
of the location is not predetermined) within finite
time. In the following, we assume n > 2. A prob-
lem closely related to Gathering is Convergence,
where the sensors need to be arbitrarily close to
a common location, without the requirement of
ever reaching it. A special type of convergence
(also called Near-Gathering or collisionless con-
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vergence) requires the sensors to converge with-
out ever colliding with each other.

Key Results

Basic Impossibility Results
First of all, neither Convergence nor Gathering
can be achieved from arbitrary initial placements
if the initial visibility graph G.0/ is not con-
nected. So, in all the literature, G.0/ is always
assumed to be connected. Furthermore, if the
sensors have neither agreement on the coordinate
system nor multiplicity detection, then Gathering
is not solvable in SSYNC (and thus in ASYNC), re-
gardless of the range of visibility and the amount
of memory that they may have.

Theorem 1 ([8]) In absence of multiplicity de-
tection and of any agreement on the coordinate
systems, Gathering is deterministically unsolv-
able in SSYNC.

Given this impossibility result, the natural
question is whether the problem can be solved
with common coordinate systems.

Gathering with Common Coordinate
Systems
Assuming that the sensors agree on a common
coordinate system, Gathering has been shown
to be solvable under the weakest of the three
schedulers (ASYNC) [2].

Let R be the rightmost vertical axis where
some sensor initially lie. The idea of the algo-
rithm is to make the sensors move toward R, in
such a way that, after a finite number of steps,
they will reach it and gather at the bottommost
position occupied by a sensor at that time. Let the
Look operation of sensor si at time t return Si .t/.
The computed destination point of si depends
on the positions of the visible sensors. Once the
computation is completed, si moves toward its
destination (but it may stop before the destination
is reached). Informally,l

• If si sees sensors to its left or above on the
vertical axis passing through its position (this

axis will be referred to as its vertical axis), it
does not move.

• If si sees sensors only below on its vertical
axis, it moves down toward the nearest sensor.

• If si sees sensors only to its right, it moves
horizontally toward the vertical axis of the
nearest sensor.

• If si sees sensors both below on its vertical
axis and on its right, it computes a destination
point and performs a diagonal move to the
right and down, as explained below.

To describe the diagonal movement we intro-
duce some notation (refer to Fig. 1). Let AA0 be
the vertical diameter of Si .t/ with A0 the top
and A the bottom end point; let Li denote the
topologically open region (with respect to AA0)
inside Si .t/ and to the right of si and let S D si A

and S 0 D si A0, where neither S 0 and S include
si . Let � be the vertical axis of the horizontally
closest sensor (if any) in Li .

Diagonal_Movement(�)

B WD upper intersection between Si .t/ and
� ;

C WD lower intersection between Si .t/ and
� ;

2ˇ D AbsiB;
If ˇ < 60ı then .B; �/ WD
Rotate(si ; B);

H WD Diagonal_Destination(�;A;B);
Move towards H .

where Rotate() and Diagonal_Destina-
tion() are as follows:

– Rotate(si ; B) rotates the segment si B in
such a way that ˇ D 60ı and returns the
new position of B and � . This angle choice
ensures that the destination point is not outside
the circle.

– Diagonal_Destination(�; A; B)
computes the destination of si as follows:
the direction of si ’s movement is given
by the perpendicular to the segment AB;
the destination of si is the point H on the
intersection of the direction of its movement
and of the axis � .



Memoryless Gathering of Mobile Robotic Sensors 1267

M

Li

Li

si si si

sisj

sj
sj

β β
h

β

A

A

a b c

A A

C C

H

H

B B

A Ψ Ψ

S

S

Memoryless Gathering of Mobile Robotic Sensors, Fig. 1 From [4]: (a) Notation. (b) Horizontal move. (c)
Diagonal move

Memoryless Gathering
of Mobile Robotic
Sensors, Fig. 2 From [4]:
Notation for algorithm
CONVERGENCE [1]

V/2
V/2lj

θjsi(t)
si(t) sj(t)

ci(t)

sj(t)

mj
mj

cj
cj

dj

a b

Theorem 2 ([2]) With common coordinate sys-
tems, Gathering is possible in ASYNC.

Gathering has been shown to be possible in
SSYNC also when compasses are unstable for
some arbitrary long periods, provided they have
a common clockwise notion, and that they even-
tually stabilize, and assuming the total number of
sensors is known [9].

Convergence and Near-Gathering

Convergence in SSYNC
The impossibility result does not apply to the case
of Convergence. In fact, it is possible to solve it in
SSYNC in the basic model (i.e., without common
coordinate systems) [1].

Let SCi .t/ denote the smallest enclosing cir-
cle of the set fsj .t/jsj 2 S.t/g of positions
of sensors in S.t/; let ci .t/ be the center of
SCi .t/.

CONVERGENCE

Assumptions: SSYNC.

If Si .t/ D fsi g, then gathering is completed.
8sj 2 Si .t/ n fsig:

dj WD dist.si .t/; sj .t//,

�j WD ci .t/bsi .t/sj .t/,
lj WD .dj =2/ cos �j Cp

.V=2/2 � ..dj =2/ sin �j /2,

limit WD minsj2Si .t/nfsi gflj g,
goal WD dist.si .t/; ci .t//,
D WD minfgoal; limitg,
p WD point on si .t/ci .t/ at distance D from

si .t/.
Move towards p.

Everytime si becomes active, it moves to-
ward ci .t/, but only up to a certain distance.
Specifically, if si does not see any sensor other
than itself, then si does not move. Otherwise,
its destination is the point p on the segment
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si .t/ci .t/ that is closest to ci .t/ and that satisfies
the following condition: For every sensor sj 2
S.t/, p lies in the disk Cj whose center is the
midpoint mj of si .t/ and sj .t/ and whose range
is V=2 (see Fig. 2). This condition ensures that si

and sj will still be visible after the movement of
si , and possibly of sj .

Theorem 3 ([1]) Convergence is possible in
SSYNC.

Convergence in ASYNC

Convergence has been shown to be possible also
in ASYNC, but under special schedulers: partial
ASYNC [6] and 1-fair ASYNC [5]. In partial
ASYNC the time spent by a sensor performing the
Look, Compute, and Sleep operations is bounded
by a globally predefined amount and the time
spent in the Move operation by a locally pre-
defined amount; in 1-fair ASYNC between two
successive activations of each sensor, all the other
sensors are activated at most once. Finally, Con-
vergence has been studied also in presence of
perception inaccuracies (radial errors in locating
a sensor) and it has been shown how to reach
convergence in FSYNC for small inaccuracies.

Near-Gathering
Slight modifications can make the algorithm of
[1] described above collisionless, thus solving
also the collisionless Convergence problem (i.e.,
Near-Gathering) in SSYNC. Near-Gathering can
be achieved also in ASYNC, with two additional
assumptions [7]: 1) the sensors must partially
agree on a common coordinate system (one axis
is sufficient) and 2) the initial visibility graph
must be well connected, that is, the subgraph of
the visibility graph that contains only the edges
corresponding to sensors at distance strictly
smaller than V must be connected.

Open Problems

The existing results for Gathering and Conver-
gence leave several problems open. For example,

Gathering in SSYNC (and thus ASYNC) has been
proven impossible when neither multiplicity de-
tection nor an orientation are available. While
common orientation suffices, it is not known
whether the presence of multiplicity detection
alone is sufficient to solve the problem. Also,
the impossibility result does not apply to FSYNC;
however no algorithm is known in such a setting
that does not make use of orientation. Finally, it is
not known whether Convergence (collisionless or
not) is solvable in ASYNC without additional as-
sumptions: so far no algorithm has been provided
nor an impossibility proof.
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Problem Definition

The class of piecewise smooth complex (PSC)
includes geometries that go beyond smooth sur-
faces. They contain polyhedra, smooth and non-
smooth surfaces with or without boundaries, and
more importantly non-manifolds. Thus, provable
mesh generation algorithms for this domain ex-
tend the scope of mesh generation to a wide
variety of domains. Just as in surface mesh gener-
ation, we are required to compute a set of points
on the input complex and then connect them with
a simplicial complex which is geometrically close
and is topologically equivalent to the input. One
challenge that makes this task harder is that the
PSCs allow arbitrary small input angles, a notori-
ous well-known hurdle for mesh generation.

A PSC is a set of cells, each being a smooth,
connected manifold, possibly with boundary. The
0-cells, 1-cells, and 2-cells are called corners,
ridges, and patches, respectively. A PSC could
also contain 3-cells that designate regions to be

meshed with tetrahedra, if we are interested in a
volume mesh.

Definition 1 (ridge; patch) A ridge is a closed,
connected subset of a smooth 1-manifold without
boundary in R

3. A patch is a 2-manifold that is a
closed, connected subset of a smooth 2-manifold
without boundary in R

3.

Definition 2 A piecewise smooth complex S is
a finite set of vertices, ridges, and patches that
satisfy the following conditions.

1. The boundary of each cell in S is a union of
cells in S.

2. If two distinct cells c1 and c2 in S intersect,
their intersection is a union of cells in S
included in the boundary of c1 or c2.

Our goal is to generate a triangulation of a
PSC. Element quality is not a primary issue here
though a good radius-edge ratio can be obtained
by additional refinement except near the small
input angles. The definition below makes our no-
tion of triangulation of a PSC precise. Recall that
jT j denotes the underlying space of a complex T

(Fig. 1).

Definition 3 (triangulation of a piecewise
smooth complex) A simplicial complex T

is a triangulation of a PSC S if there is a
homeomorphism h from jSj to jT j such that
h.v/ D v for each vertex v 2 S and for each cell
� 2 S, there is a subcomplex T � T such that h

is a homeomorphism from � to jT j.

Key Results

To generate a mesh for a PSC with theoretical
guarantees, we use Delaunay refinement as in
the smooth surface meshing. For a point set
P � R

3, let Vor P and Del P denote the Voronoi
diagram and Delaunay triangulation of P , respec-
tively. The restricted Delaunay complex as in the
smooth surface meshing plays an important role
in sampling the PSCs.
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Meshing Piecewise Smooth Complexes, Fig. 1 Example meshes of PSC: (left) a piecewise smooth surface, a non-
manifold, a surface with non-trivial topology

Let V denote the dual Voronoi face of a De-
launay simplex � in Del P . The restricted Voronoi
face of V with respect to X � R

3 is the inter-
section V jX D V \ X. The restricted Voronoi
diagram and restricted Delaunay triangulation of
P with respect to X are

Vor P jX D fV jX j V jX 6D ;g and Del P jX
D f� j V jX 6D ;g respectively.

In words, Del P jX consists of those Delaunay
simplices in Del P whose dual Voronoi face in-
tersects X. We call these simplices restricted.
For a restricted triangle, its dual Voronoi edge
intersects the domain in a single or multiple
points. These are the centers of surface Delaunay
balls that circumscribe the vertices of the triangle.

In smooth surface meshing, the restricted tri-
angles violating certain desirable properties are
refined by the addition of the surface Delaunay
ball centers. It turns out that this process can-
not continue forever because the inserted points
maintain a fixed lower bound on their distances
from the existing points. This argument breaks
down if non-smoothness is allowed. In particular,
ridges and corners where several patches meet
cause the local feature size to be zero in which
case inserted points with a lower bound on local
feature size may come arbitrarily close to each
other. Nevertheless, Boissonnat and Oudot [1]
showed that the Delaunay refinement that they
proposed for smooth surfaces can be extended
to a special class of piecewise smooth surfaces

called Lipschitz surfaces. Their algorithm may
break down for domains with small angles. The
analysis requires that the input angles subtended
by the tangent planes of the patches meeting at
the ridges or a corner are close to 180ı.

The first guaranteed algorithm for PSCs
with small angles is due to Cheng, Dey,
and Ramos [3]. They introduced the idea of
using weighted vertices as protecting balls
in a weighted Delaunay triangulation. In this
triangulation each point p is equipped with
a weight wp which can also be viewed as a
ball Op D B.p; wp/ centered at p with radius
wp. The squared weighted distance between
two points .p; wp/ and .q; wq/ is measured as
kp�qk2�w2

p�w2
q . Notice that the weight can be

zero in which case the weighted point is a regular
point. One can define a Voronoi diagram and
its dual Delaunay triangulation for a weighted
point set just like their Euclidean counterparts
by replacing Euclidean distances with weighted
distances. To emphasize the weighted case, let
us denote a weighted point set P with P Œw�

and its weighted Delaunay triangulation with
Del P Œw�.

The algorithm of Cheng, Dey, and Ramos [3]
has two phases, the protection phase and the
refinement phase. In the protection phase, it com-
putes a set of protecting balls centered at the
ridges and corners of the input PSC. The union of
the protecting balls cover the ridges and corners
completely. Let P Œw� be the weighted points
representing the protecting balls. The algorithm
computes Del P Œw� and the restricted Delaunay
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triangles in Del P Œw�jS . In the refinement phase,
it refines the restricted triangles if either they
have a large surface Delaunay ball (albeit in the
weighted sense), or they fail to form a topological
disk around each vertex on each patch adjoining
the vertex. The algorithm guarantees that the final
mesh is a triangulation of the input PSC and
the two are related by a homeomorphism. The
proof of the homeomorphism uses an extension
of the topological ball property of Edelsbrunner
and Shah [6] to accommodate PSCs.

The algorithm of Cheng et al. [3] requires
difficult geometric computations such as feature
size estimates. Cheng, Dey, and Levine [2] sim-
plified some of these computations at the expense
of weakening the topological guarantees. Like
the smooth surface meshing algorithm in [4],
they guarantee that each input patch and ridge
is approximated with output simplices that form
a manifold of appropriate dimension. The al-
gorithm is supplied with a user-specified size
parameter. If this size parameter is small enough,
the output is a triangulation of the PSC in the
sense of Definition 3. In a subsequent paper, Dey
and Levine [5] proposed a strategy to combine
the protection phase with refinement phase which
allowed to adjust the ball sizes on the fly rather
than computing them beforehand by estimating
feature sizes. Cheng, Dey, and Shewchuk [4]
refined this strategy even further to have an im-
proved algorithm with detailed analysis.

Theorem 1 ([4]) There is a Delaunay refine-
ment algorithm that runs with a parameter
� > 0 on an input PSC S and outputs a mesh
T D Del P Œw�jS with the following guarantees:

1. For each patch � 2 S, jDel P Œw�j� j is a
2-manifold with boundary, and every vertex
in Del P Œw�j� lies on � . The boundary of
jDel P Œw�j� j is homeomorphic to Bd � ,
the boundary of � , and every vertex in
Del P Œw�jBd � lies on Bd � .

2. If � is sufficiently small, then T is a triangu-
lation of S (recall Definition 3). Furthermore,
there is a homeomorphism h from jSj to jT j
such that for every i -dimensional cell � 2 Si

with i 2 Œ0; 2�, h is a homeomorphism from

� to
ˇ̌
Del P Œw�j

ˇ̌
, every vertex in Del P Œw�j

lies on �, and the boundary of
ˇ̌
Del P Œw�j j isˇ̌

Del P Œw�jBd 

ˇ̌

Notice that the above guarantee specifies
that the homeomorphism between the input and
the output respects the stratification of corners,
ridges, and patches and thus preserves these
features. Once a mesh for the surface patches is
completed, Delaunay refinement algorithms can
further refine the mesh to improve the quality
of the surface triangles or the tetrahedra they
enclose. The algorithm can only attack triangles
and tetrahedra with large orthoradius-edge ratios;
some simplices with large circumradius-edge
ratios may survive. The tetrahedral refinement
algorithm should be careful in that if inserting
a vertex at the circumcenter of a poor-quality
tetrahedron destroys some surface triangle, the
algorithm simply should opt not to insert the new
vertex. This approach has the flaw that tetrahedra
with large radius-edge ratios sometimes survive
near the boundary.

URLs to Code and Data Sets

CGAL(http://cgal.org), a library of geometric al-
gorithms, contains software for mesh generation
of piecewise smooth surfaces. The DelPSC soft-
ware that implements the PSC meshing algorithm
as described in [4] is available from http://web.
cse.ohio-state.edu/~tamaldey/delpsc.html.
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Problem Definition: The Notion of a
Message Adversary

Message adversaries have been introduced by N.
Santoro and P. Widmayer in a paper titled Time
is not a healer [15] to model and understand
what they called dynamic transmission failures in
the context of synchronous systems. Then, they
extended their approach in [16] where they used
the term ubiquitous failures. The terms heard-
of communication [5], transient link failure [17],
and mobile failure [12] have later been used by
other authors to capture similar network behav-
iors in synchronous or asynchronous systems.

The aim of this approach is to consider mes-
sage losses as a normal link behavior (as long as
messages are correctly transmitted). The notion
of a message adversary is of a different nature
than the notion of the fair link assumption. A fair
link assumption is an assumption on each link
taken separately, while the message adversary
notion considers the network as a whole; its aim
is not to build a reliable network but to allow
the statement of connectivity requirements that
must be met for problems to be solved. Mes-
sage adversaries allow us to consider topology
changes not as anomalous network behaviors, but
as an essential part of the deep nature of the
system.

Reliable Synchronous Systems
A fully connected synchronous system is made
up of n computing entities (processes) denoted
p1; : : : ; pn, where each pair of processes is
connected by a bidirectional link. The progress
of the processes is ruled by a global clock which
generates a sequence of rounds. During a round,
each process (a) first sends a message to all the
other processes (broadcast), (b) then receives a
message from each other process, and (c) finally
executes a local computation. The fundamental
property of a synchronous system is that the
messages sent at a round r are received during
the very same round r . As we can see, this type
of synchrony is an abstraction that encapsulates
(and hides) specific timing assumptions (there are
bounds on message transfer delays and process-
ing times, and those are known and used by the
underlying system level to generate the sequence
of synchronized rounds [13]).

In the case of a reliable synchronous system,
both processes and links are reliable, i.e., no
process deviates from its specification, and all
the messages that are sent, and only them, are
received (exactly once) by each process.

Message Adversary
A message adversary is a daemon which, at
each round, can suppress messages (hence, these
messages are never received). The adversary is
not prevented from having a read access to the
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local states of the processes at the beginning of
each round.

It is possible to associate a directed graph Gr

with each round r . Its vertices are the processes,
and there is an edge from pi to pj if the message
sent at round r by pi to pj is not suppressed
by the adversary. There is a priori no relation
on the consecutive graphs Gr , GrC1, etc. As an
example, the daemon can define GrC1 from the
local states of the processes at the end of round r .

Let SMPnŒadv W AD� denote the syn-
chronous system whose communications are
under the control of an adversary-denoted AD.
SMPnŒadv W ;� denotes the synchronous system
in which the adversary has no power (it can
suppress no message), while SMPnŒadv W 1�

denotes the synchronous system in which the
adversary can suppress all the messages at
every round. It is easy to see that, from a
message adversary and computability point of
view, SMPnŒadv W ;� is the most powerful
synchronous system model, while SMPnŒadv W
1� is the weakest. More generally, the more
constrained the message adversary AD, the more
powerful the synchronous system.

Key Results

Key Results in Synchronous Systems

The Spanning Tree Adversary
Let TREE be the message adversary defined by
the following constraint: at every round r , the
graph Gr is an undirected spanning tree, i.e.,
the adversary cannot suppress the two messages
– one in each direction – sent on the edges
of Gr . Let SMPnŒadv W TREE� denote the
corresponding synchronous system. As already
indicated, for any r and r 0 ¤ r , Gr and Gr0 are
not required to be related; they can be composed
of totally different sets of links.

Let us assume that each process pi has an ini-
tial input vi . It is shown in [11] that SMPnŒadv W
TREE� allows the processes to compute any com-
putable function on their inputs, i.e., functions on
the vector Œv1; : : : ; vn�.

Solving this problem amounts to ensure that
each input vi attains each process pj despite the
fact that the spanning tree can change arbitrarily
from a round to the next one. This follows from
the following observation. At any round r , the set
of processes can be partitioned into two subsets:
the set yesi which contains the processes that
have received vi , and the set noi which contains
the processes that have not yet received vi . As
Gr is an undirected spanning tree (the tree is
undirected because no message is suppressed on
each of its edges), it follows that there is an edge
of Gr that connects a process of the set yesi to
a process that belongs to the set noi . So during
round r , there at least one process of the set noi

which receives a copy of vi and will consequently
belong to the set yesi of the next round. It follows
that at most .n�1/ rounds are necessary for vi to
attain all the processes.

Consensus in the Presence of Message
Adversaries
In the consensus problem, each process proposes
a value and has to decide a value v such that
v was proposed by a process, and no two pro-
cesses decide different values. This problem is
addressed in [2, 6, 8, 12, 17] in the message ad-
versary context.

Impossibility Agreement-Related Results
As presented in [15], the k-process agreement
problem (which must not be confused with the
k-set agreement problem) is defined as follows.
Each process pi proposes an input value vi 2
f0; 1g, and at least k processes have to decide
the same proposed value v. Let us observe that
this problem can be trivially solved without any
communication when k � dn

2
e (namely, each

process decides its input value). Let us also notice
that if k > dn

2
e, there is at most one decision

value.
It is shown in [15] that the k-process

agreement problem cannot be solved for k >

dn
2
e, if the message adversary is allowed to

suppress up to .n � 1/ messages at every round.
Other impossibility results are presented in [16].
More results can be found in [3].
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d-Solo Executions
A process runs solo when it computes its local
output without receiving any information from
other processes, either because they crashed or
they are too slow. This corresponds to a mes-
sage adversary that suppresses all the messages
sent to some subset of processes (which conse-
quently run solo). The computability power of
models in which several processes may run solo
is addressed in [9]. This paper introduces the
concept of d -solo model, 1 � d � n (syn-
chronous round-based wait-free models where up
to d processes may run solo in each round),
and characterizes the colorless tasks that can
be solved in a d -solo model. Among other re-
sults, this paper shows that the .d; �/-solo ap-
proximate agreement task (which generalizes �-
approximate agreement) can be solved in the d -
solo model, but cannot be solved in the .d C 1/-
solo model. Hence, the d -solo models define a
strict hierarchy.

Key Results in Asynchronous Systems
In a very interesting way, message adversaries
allows the establishment of equivalences between
synchronous systems and asynchronous systems.

These equivalences, which are depicted in
Fig. 1 (from [14]), concern tasks. A task is the
distributed analogous of a mathematical func-
tion [10], in the sense that each process has
an input and must compute an output, and the
processes need to cooperate to compute their in-

dividual outputs (this cooperation is inescapable,
which makes the task distributed).

A 'T B means that any task that can be
computed in the model A can be computed in the
model B and vice versa. An arrow from A to B

means that, from a task solvability point of view,
the model A is strictly stronger than the model B

(there are tasks solvable in A and not in B , and
all the tasks solvable in B are solvable in A).

Let ARWn;n�1Œfd W ;� (resp. AMPn;n�1

Œfd W ;�) denote the basic asynchronous read/write
(resp. message-passing) system model in which
up to .n � 1/ processes may crash (premature
halting). These models are also called wait-free
models. The notation Œfd W ;� means that these
systems are not enriched with additional compu-
tational power. Differently, ARWn;n�1Œfd W FD�

(resp. AMPn;n�1Œfd W FD�) denotes ARWn;n�1

Œfd W ;� (resp. AMPn;n�1Œfd W ;�) enriched with
a failure detector FD (see below).

• The message adversary-denoted TOUR (four
tournament) has been introduced By Afek and
Gafni in [1]. At any round, this adversary can
suppress one message on each link but not
both: for any pair of processes .pi ; pj /, either
the message from pi to pj or the message
from pj to pi or none of them can be sup-
pressed.

The authors have shown the following
model equivalence: SMPnŒadv W TOUR�

'T ARWn;n�1Œfd W ;�. This is an important
result as it established for the first time a

[14]: SMPn[adv : SOURCE, QUORUM]     T AMPn,n−1[fd : Σ, Ω]

[14]: SMPn[adv : QUORUM]     T AMPn,n−1[fd : Σ]    [14]: SMPn[adv : SOURCE, TOUR]    T ARWn,n−1[fd : Ω]

[14]: SMPn[adv : SOURCE]    T AMPn,n−1[fd : Ω]

SMPn[adv : ∞]     T AMPn,n−1[fd : ∅]

[1]: SMPn[adv : TOUR]    T ARWn,n−1[fd : ∅] 

Message Adversaries, Fig. 1 A message adversary-hierarchy based on task equivalence and failure detectors
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very strong relation linking message-passing
synchronous systems where no process
crashes, but messages can be lost according
to the adversary TOUR, with the basic
asynchronous wait-free read/write model.

• The other model equivalences, from a task
solvability point of view, are due to Raynal
and Stainer [14], who considered two failure
detectors and introduced two associated mes-
sage adversaries.

A failure detector is an oracle that provides
processes with information on failures. The
failure detector 
, called “eventual leader,”
was introduced in [4]. It is the failure detec-
tor that provides the minimal information on
failures that allow consensus to be solved in
ARWn;n�1Œfd W ;� and in AMPn;n�1Œfd W ;�
where a majority of processes do not crash.
The failure detector †, which is called “quo-
rum”, was introduced in [7]. It is the failure
detector that provides the minimal information
on failures that allow a read/write register to
be built on top of an asynchronous message-
passing system prone to up to .n � 1/ process
crashes.

The message adversary SOURCE is con-
strained by the following property: there is a
process px and a round r such that, at any
round r 0 > r , the adversary does not suppress
the message sent by px to the other processes.
The message adversary QUORUM captures
the message patterns that allow to obtain the
quorums defined by †.

As indicated, the corresponding model
equivalences are depicted on Fig. 1. As an ex-
ample, when considering distributed tasks, the
synchronous message-passing model where
no process crashes and where the message
adversary is constrained by SOURCE and
TOUR (SMPnŒadv W SOURCE, TOUR�) and
the basic wait-free asynchronous read/write
model enriched with 
 (ARWn;n�1Œfd W 
�)
have the same computability power.

When looking at the figure, it is easy to
see that the suppression of the constraint
TOUR from the model SMPnŒadv W
SOURCE, TOUR� gives the model SMPn

Œadv W SOURCE�, which is equivalent
to AMPn;n�1Œfd W 
�. Hence, sup-
pressing TOUR weakens the model from
ARWn;n�1Œfd W 
� to AMPn;n�1Œfd W 
�

(i.e., from asynchronous read/write with 
 to
asynchronous message-passing with 
).

Applications

Message adversaries are important because they
allow network changes in synchronous systems
to be easily captured. Message losses are no
longer considered as link or process failures,
but as a normal behavior generated by process
mobility and wireless links. Message adversaries
provide us with a simple way to state assumptions
(and sometimes minimal assumptions) on link
connectivity which allow distributed computing
problems to be solved in synchronous systems.
They also allow the statement of equivalences
relating (a) synchronous systems weakened
by dynamically changing topology and (b)
asynchronous read/write (or message-passing)
systems enriched with distinct types of failure
detectors.
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Problem Definition

The Traveling Salesman Problem (TSP) is the
following optimization problem:

Input: A complete loopless undirected graph
GD.V; E; w/ with a weight function wW
E ! Q�0 that assigns to each edge a non-
negative weight.

Feasible solutions: All Hamiltonian tours, i.e.,
the subgraphs H of G that are connected, and
each node in them that has degree two.

Objective function: The weight function
w.H/ DPe2H w.e/ of the tour.

Goal: Minimization.

The TSP is an NP-hard optimization problem.
This means that a polynomial time algorithm
for the TSP does not exist unless P D NP. One
way out of this dilemma is provided by ap-
proximation algorithms. A polynomial time algo-
rithm for the TSP is called an ’-approximation
algorithm if the tour H produced by the algo-
rithm fulfills w.H/ � ˛ � OPT.G/. Here OPT(G)
is the weight of a minimum weight tour of G.
If G is clear from the context, one just writes
OPT. An ’-approximation algorithm always pro-
duces a feasible solution whose objective value
is at most a factor of ’ away from the optimum
value. ’ is also called the approximation factor
or performance guarantee. ’ does not need to be



Metric TSP 1277

M

a constant; it can be a function that depends on
the size of the instance or the number of nodes n.

If there exists a polynomial time approxi-
mation algorithm for the TSP that achieves
an exponential approximation factor in n, then
P D NP [6]. Therefore, one has to look at
restricted instances. The most natural restriction
is the triangle inequality, that means,

w.u; v/ � w.u; x/C w.x; v/ for all u; v; x 2 V:

The corresponding problem is called the Met-
ric TSP. For the Metric TSP, approximation al-
gorithms that achieve a constant approximation
factor exist. Note that for the Metric TSP, it is
sufficient to find a tour that visits each vertex
at least once: Given such a tour, we can find
a Hamiltonian tour of no larger weight by skip-
ping every vertex that we already visited. By
the triangle inequality, the new tour cannot get
heavier.

Key Results

A simple 2-approximation algorithm for the
Metric TSP is the tree doubling algorithm.
It uses minimum spanning trees to compute
Hamiltonian tours. A spanning tree T of a graph
G D .V; E; w/ is a connected acyclic subgraph of
G that contains each node of V. The weight w(T)
of such a spanning tree is the sum of the weights
of the edges in it, i.e., w.T / DPe2T w.e/.
A spanning tree is called a minimum spanning
tree if its weight is minimum among all
spanning trees of G. One can efficiently compute
a minimum spanning tree, for instance via Prim’s
or Kruskal’s algorithm, see e.g., [5].

The tree doubling algorithm seems to be folk-
lore. The next lemma is the key for proving the
upper bound on the approximation performance
of the tree doubling algorithm.

Lemma 1 Let T be a minimum spanning tree of
G D .V; E; w/. Then w.T / � OPT.

Proof If one deletes any edge of a Hamiltonian
tour of G, one gets a spanning tree of G. �

Algorithm 1 Tree doubling algorithm

Theorem 2 Algorithm 1 alwaysreturns a Hamil-
tonian tour whose weight is at most twice the
weight of an optimum tour. Its running time is
polynomial.

Proof By Lemma 1, w.T / � OPT. Since one
duplicates each edge of T, the weight of T0 equals
w.T 0/ D 2w.T / � 2OPT. When taking shortcuts
in step 3, a path in T0 is replaced by a single edge.
By the triangle inequality, the sum of the weights
of the edges in such a path is at least the weight
of the edge it is replaced by. (Here, the algorithm
breaks down for arbitrary weight functions.) Thus
w.H/ � w.T 0/. This proves the claim about the
approximation performance.

The running time is dominated by the time
needed to compute a minimum spanning tree.
This is clearly polynomial. �

Christofides’ algorithm (Algorithm 2) is a clever
refinement of the tree doubling algorithm. It
first computes a minimum spanning tree. On
the nodes that have an odd degree in T, it then
computes a minimum weight perfect matching.
A matching M of G is called a matching on
U � V if all edges of M consist of two nodes
from U. Such a matching is called perfect if
every node of U is incident with an edge of M.

Lemma 3 LetU � V; #U even. Let M be
a minimum weight perfect matching on U. Then
w.M / � OPT=2.
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Algorithm 2 Christofides’ algorithm

Proof Let H be an optimum Hamiltonian tour of
G. One takes shortcuts in H to get a tour H0 on
GjU as follows: H induces a permutation of the
nodes in U, namely the order in which the nodes
are visited by H. One connects the nodes of U
in the order given by the permutation. To every
edge of H0 corresponds a path in H connecting the
two nodes of this edge. By the triangle inequality,
w.H 0/ � w.H/. Since #U is even, H0 is the union
of two matchings. The lighter one of these two
has a weight of at most w.H 0/=2 � OPT=2. �

One can compute a minimum weight perfect
matching in time O(n3), see for instance [5].

Theorem 4 Algorithm 2 is a 3/2-approximation
algorithm with polynomial running time.

Proof First observe that the number of odd
degree nodes of the spanning tree is even, since
the sum of the degrees of all nodes equals
2.n� 1/, which is even. Thus a perfect matching
on U exists. The weight of the Eulerian tour
is obviously w.T /C w.M /. By Lemma 1,
w.T / � OPT. By Lemma 3, w.M / � OPT=2.

The weight w(H) of the computed tour H is
at most the weight of the Eulerian tour by the
triangle inequality, i.e., w.H/ � 3

2
OPT. Thus the

algorithm is a 3/2-approximation algorithm. Its
running time is O(n3). �

Applications

Experimental analysis shows that Christofides’
algorithm itself deviates by 10 % to 15 % from
the optimum tour [3]. However, it can serve as
a good starting tour for other heuristics like the
Lin–Kernigham heuristic.

Open Problems

The analysis of Algorithm 2 is tight; an exam-
ple is the metric completion of the graph de-
picted in Fig. 1. The unique minimum spanning
tree consists of all solid edges. It has only two
nodes of odd degree. The edge between these two
nodes has weight .1C �/.nC 1/. No shortcuts
are needed, and the weight of the tour produced
by the algorithm is �3n. An optimum tour con-
sists of all dashed edges plus the leftmost and
rightmost solid edge. The weight of this tour is
.2n� 1/.1C �/C 2 � 2n.

The question whether there is an approxima-
tion algorithm with a better performance guar-
antee is a major open problem in the theory of
approximation algorithms.

Held and Karp [2] design an LP based algo-
rithm that computes a lower bound for the weight
of an optimum TSP tour. It is conjectured that
the weight of an optimum TSP tour is at most
a factor of 4/3 larger than this lower bound, but
this conjecture is unproven for more than three
decades. An algorithmic proof of this conjecture

Metric TSP, Fig. 1 A tight example for Christofides’ algorithm. There are 2nC 1 nodes. Solid edges have a weight of
one, dashed ones have a weight of 1C �
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would yield an 4/3-approximation algorithm for
the Metric TSP.

Experimental Results

See e.g., [3], where a deviation of 10 % to 15 %
of the optimum (more precisely of the Held–Karp
bound) is reported for various sorts of instances.

Data Sets

The webpage of the 8th DIMACS implemen-
tation challenge, www.research.att.com/~dsj/
chtsp/, contains a lot of instances.
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Problem Definition

Metrical task systems (MTS), introduced
by Borodin, Linial, and Saks [5], is a cost
minimization problem defined on a metric space
(X, dX) and informally described as follows:
A given system has a set of internal states X. The
aim of the system is to serve a given sequence
of tasks. The servicing of each task has a certain
cost that depends on the task and the state of
the system. The system may switch states before
serving the task, and the total cost for servicing
the task is the sum of the service cost of the
task in the new state and the distance between
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the states in a metric space defined on the set
of states. Following Manasse, McGeoch, and
Sleator [11], an extended model is considered
here, in which the set of allowable tasks may be
restricted.

Notation
Let T � denote the set of finite sequences of
elements from a set T. For x; y 2 T �, x ı y is the
concatenation of the sequences x and y, and jxj is
the length of the sequence x.

Definition 1 (Metrical Task System) Fix a met-
ric space (X, dX). Let � D f.rx/x2X W 8x 2 X;

r.x/ 2 Œ0;1�g be the set of all possible tasks.
Let T � � be a subset of tasks, called allowable
tasks.
MTS((X, dX), T, a0 2 X ):
INPUT: A finite sequence of tasks � D
.�1; : : : ; �m/ 2 T �.
OUTPUT: A sequence of points a D
.a1; : : : ; am/ 2 X�,
jaj D j� j.
OBJECTIVE: minimize

cost.�; a/ D
mX

iD1

.dX .ai�1; ai /C �i .ai //:

When T D � , the MTS problem is called gen-
eral.

When X is finite and the task sequence � 2 T � is
given in advance, a dynamic programming algo-
rithm can compute an optimal solution in space
O.jX j/ and time O.j� j � jX j/. MTS, however, is
most interesting in an online setting, where the
system must respond to a task � i with a state
ai 2 X without knowing the future tasks in � .
Formally,

Definition 2 (Online algorithms for MTS)
A deterministic algorithm for a MTS((X, dX),
T, a0) is a mapping S W T � ! X� such that
for every � 2 T , jS.�/j D j� j. A deterministic
algorithm S W T � ! X� is called online if for
every �; � 2 T �, there exists a 2 X�, jaj D j� j
such that S.� ı �/ D S.�/ ı a. A randomized
online algorithm is a probability distribution over
deterministic online algorithms.

Online algorithms for MTS are evaluated us-
ing (asymptotic) competitive analysis, which is,
roughly speaking, the worst ratio of the algo-
rithm’s cost to the optimal cost taken over all
possible task sequences.

Definition 3 A randomized online algorithm
R for MTS((X, dX), a0) is called c-competitive
(against oblivious adversaries) if there exists
b D b.X/ 2 R such that for any task sequence
� 2 T �, and any point sequence a 2 X�,
jaj D j� j,

EŒcost.�; R.�//� � c � cost.�; a/C b;

where the expectation is taken over the distribu-
tion R.

The competitive ratio of an online algorithm R
is the infimum over c � 1 for which R is c-
competitive. The deterministic [respectively, ran-
domized] competitive ratio of MTS((X, dX), T,
a0) is the infimum over the competitive ratios
of all deterministic [respectively, randomized]
online algorithms for this problem. Note that
because of the existential quantifier over b, the
asymptotic competitive ratio (both randomized
and deterministic) of a MTS((X, dX), T, a0) is
independent of a0, and it can therefore be dropped
from the notation.

Key Results

Theorem 1 ([5]) The deterministic competitive
ratio of the general MTS problem on any n-point
metric space is 2n � 1.

In contrast to the deterministic case, the under-
standing of randomized algorithms for general
MTS is not complete, and generally no sharp
bounds such as Theorem 1 are known.

Theorem 2 ([5, 10]) The randomized compet-
itive ratio of the general MTS problem on n-
point uniform space (where all distances are
equal) is at least Hn DPn�1

iD1 i�1, and at most
.1C o.1//Hn.
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The best bounds currently known for general n-
point metrics are proved in two steps: First the
given metric is approximated by an ultrametric,
and then a bound on the competitive ratio of
general MTS on ultrametrics is proved.

Theorem 3 ([8, 9]) For any n-point metric space
(X, dX), there exists an O.log2 n log log n/ com-
petitive randomized algorithm for the general
MTS on (X, dX).

The metric approximation component in the
proof of Theorem 3 is called probabilistic
embedding. An optimal O.log n/ probabilistic
embedding is shown by Fakcheroenphol, Rao and
Talwar before [8] improving on results by Alon,
Karp, Peleg, and West and by Bartal, where this
notion was invented. A different type of metric
approximation with better bounds for metrics of
low aspect ratio is given in [3].

Fiat and Mendel [9] show a O.log n log log n/

competitive algorithm for n-point ultrametrics,
improving (and using) a result of Bartal, Blum,
Burch, and Tomkins [1], where the first poly-
logarithmic (or even sublinear) competitive ran-
domized algorithm for general MTS on general
metric spaces is presented.

Theorem 4 ([2, 12]) For any n-point metric
space (X, dX), the randomized competitive ra-
tio of the general MTS on (X, dX) is at least
˝.log n= log log n/.

The metric approximation component in the
proof of Theorem 4 is called Ramsey subsets.
It was first used in this context by Karloff,
Rabani, and Ravid, later improved by Blum,
Karloff, Rabani and Saks, and Bartal, Bollobás,
and Mendel [2]. A tight result on Ramsey subsets
is proved by Bartal, Linial, Mendel, and Naor.
For a simpler (and stronger) proof, see [12].

A lower bound of ˝.log n= log log n/ on the
competitive ratio of any randomized algorithm
for general MTS on n-point ultrametrics is proved
in [2], improving previous results of Karloff,
Rabani, and Ravid, and Blum, Karloff, Rabani
and Saks.

The last theorem is the only one not concern-
ing general MTSs.

Theorem 5 ([6]) It is PSPACE hard to determine
the competitive ratio of a given MTS instance
..X; dX/; a0 2 X; T /, even when dX is the uni-
form metric. On the other hand, when dX is
uniform, there is a polynomial time deterministic
online algorithm for MTS ..X; dX/; a0 2 X; T /

whose competitive ratio is O.log jX j/ times the
deterministic competitive ratio of the MTS((X,
dX), a0, T). Here it is assumed that the instance
((X, dX), a0, T) is given explicitly.

Applications

Metrical task systems were introduced as an ab-
straction for online computation, they generalize
many concrete online problems such as paging,
weighted caching, k-server, and list update. His-
torically, it served as an indicator for a general
theory of competitive online computation.

The main technical contribution of the MTS
model is the development of the work function
algorithm used to prove the upper bound in The-
orem 1. This algorithm was later analyzed by
Koutsoupias and Papadimitriou in the context
of the k-server problem, and was shown to be
2k � 1 competitive. Furthermore, although the
MTS model generalizes the k-server problem,
the general MTS problem on the n-point met-
ric is essentially equivalent to the .n � 1/-server
problem on the same metric [2]. Hence, lower
bounds on the competitive ratio of general MTS
imply lower bounds for the k-server problem, and
algorithms for general MTS may constitute a first
step in devising an algorithm for the k-server
problem, as is the case with the work function
algorithm.

The metric approximations used in The-
orem 3, and Theorem 4 have found other
algorithmic applications.

Open Problems

There is still an obvious gap between the upper
bound and lower bound known on the random-
ized competitive ratio of general MTS on general
finite metrics. It is known that, contrary to the
deterministic case, the randomized competitive
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ratio is not constant across all metric spaces of
the same size. However, in those cases where
exact bounds are known, the competitive ratio is
�.log n/. An obvious conjecture is that the ran-
domized competitive is �.log n/ for any n-point
metric. Arguably, the simplest classes of metric
spaces for which no upper bound on the random-
ized competitive ratio better than O.log2 n/ is
known, are paths and cycles.

Also lacking is a “middle theory” for MTS.
On the one hand, general MTS are understood
fairly well. On the other hand, specialized MTS
such as list update, deterministic k-server algo-
rithms, and deterministic weighted-caching, are
also understood fairly well, and have a much
better competitive ratio than the corresponding
general MTS. What may be missing are “in
between” models of MTS that can explain the low
competitive ratios for some of the concrete online
problems mentioned above.

It would be also nice to strengthen Theorem 5,
and obtain a polynomial time deterministic online
algorithm whose competitive ratio on any MTS
instance on any n-point metric space is at most
poly-log(n) times the deterministic competitive
ratio of that MTS instance.
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Problem Definition

MINHASH sketches (also known as min-wise
sketches) are randomized summary structures of
subsets which support set union operations and
approximate processing of cardinality and simi-
larity queries.

Set-union support, also called mergeability,
means that a sketch of the union of two sets
can be computed from the sketches of the two
sets. In particular, this applies when the second
set is a single element. The queries supported
by MINHASH sketches include cardinality (of a
subset from its sketch) and similarity (of two
subsets from their sketches).

Sketches are useful for massive data analysis.
Working with sketches often means that instead
of explicitly maintaining and manipulating very
large subsets (or equivalently 0/1 vectors), we can
instead maintain the much smaller sketches and
can still query properties of these subsets.

We denote the universe of elements by U and
its size by n D jU j. We denote by S.X/ the
sketch of the subset X � U .

Set Operations
• Inserting an element: Given a set X and

element y 2 U , a sketch S.X [ fyg/ can be
computed from S.X/ and y.

• Merging two sets: For two (possibly overlap-
ping) sets X and Y , we can obtain a sketch of
their union S.X [ Y / from S.X/ and S.Y /.

Support for insertion makes the sketches suit-
able for streaming, where elements (potentially
with repeated occurrences) are introduced se-
quentially. Support for merges is important for
parallel or distributed processing: We can sketch
a data set that has multiple parts by sketching
each part and combining the sketches. We can
also compute the sketches by partitioning the data
into parts, sketching each of the parts concur-
rently, and finally merging the sketches of the
parts to obtain a sketch of the full data set.

Queries
From the sketches of subsets, we would like to
(approximately) answer queries on the original

data. More precisely, for a set pf subsets fXig, we
are interested in estimating a function f .fXig/.
To do this, we apply an estimator Of to the
respective set of sketches fS.Xi/g.

We would like our estimators to have certain
properties: When estimating nonnegative quan-
tities (such as cardinalities or similarities), we
would want the estimator to be nonnegative as
well. We are often interested in unbiased estima-
tors and always in admissible estimators, which
are Pareto optimal in terms of variance (variance
on one instance cannot be improved without
increasing variance on another). We also seek
good concentration, meaning that the probability
of error decreases exponentially with the relative
error.

We list some very useful queries that are
supported by MINHASH sketches:

• Cardinality: The number of elements in the
set f .X/ D jX j.

• Similarity: The Jaccard coefficient f .X; Y / D
jX\Y j=jX[Y j, cosine similarity f .X; Y / D
jX \ Y j=pjX jjY j, or cardinality of the union
f .X; Y / D jX [ Y j.

• Complex relations: Cardinality of the union
of multiple sets jSi Xi j, number of elements
occurring in at least 2 sets jfj j 9i1 6D i2; j 2
Xi1 \ Xi2gj, set differences, etc.

• Domain queries: When elements have asso-
ciated metadata (age, topic, activity level), we
can include this information in the sketch,
which becomes a random sample of the set.
Including this information allows us to pro-
cess domain queries, which depend on the
matadata. For example, “the number of Cali-
fornians in the union of two (or more) sets.”

Key Results

MINHASH sketches had been proposed as sum-
mary structures which satisfy the above require-
ments. There are multiple variants of the MIN-
HASH sketch, which are optimized for different
applications. The common thread is that the el-
ements x 2 U of the universe U are assigned
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random rank values r.x/ (which are typically
produced by a random hash function). The MIN-
HASH sketch S.X/ of a set X includes order
statistics (maximum, minimum, or top-/bottom-
k values) of the set of ranks fr.x/ j x 2
Xg. Note that when we sketch multiple sets, the
same random rank assignment is common to all
sketches (we refer to this as coordination).

Before stating precise definitions for the dif-
ferent MINHASH sketch structures, we provide
some intuition for the power of order statistics.
We first consider cardinality estimation. The min-
imum rank value minx2X r.x/ is the minimum of
jX j independent random variables, and therefore,
its expectation should be smaller when the car-
dinality jX j is larger. Thus, the minimum rank
carries information on jX j. We next consider
the sketches of two sets X and Y . Recall that
they are computed with respect to the same as-
signment r . Therefore, the minimum rank values
carry information on the similarity of the sets:
in particular, when the sets are more similar,
their minimum ranks are more likely to be equal.
Finally, the minimum rank element of a set is
a random sample from the set and, therefore,
as such, can support estimation of statistics of
the set.

The variations of MINHASH sketches differ in
the particular structure: how the rank assignment
is used and the domain and distribution of the
ranks r.x/ � D.

Structure
MINHASH sketches are parameterized by an inte-
ger k � 1, which controls a trade-off between the
size of the sketch representation and the accuracy
of approximate query results.

MINHASH sketches come in the following
three common flavors:

• A k-mins sketch [6, 13] includes the smallest
rank in each of k independent rank assign-
ments. There are k different rank functions
ri and the sketch S.X/ D .�1; : : : ; �k/ has
�i D miny2X ri .y/. When viewed as a sam-
ple, it corresponds to sampling k times with
replacement.

• A k-partition sketch [13, 14, 18], which in
the context of cardinality estimation is called
stochastic averaging, uses a single rank as-
signment together with a uniform at random
mapping of items to k buckets. We use b W
U ! Œk� for the bucket mapping and r for the
rank assignment. The sketch .�1; : : : ; �k/ then
includes the item with minimum rank in each
bucket. That is, �i D miny2X jb.y/Di ri .y/. If
the set is empty, the entry is typically defined
as the supremum of the domain of r .

• A bottom-k sketch [4, 6] �1 < � � � < �k

includes the k items with smallest rank in
fr.y/ j y 2 Xg. Interpreted as a sample, it
corresponds to sampling k elements without
replacement. Related uses of the same method
include KMV sketch [2], coordinated order
samples [3, 19, 21], or conditional random
sampling [17].

Note that all three flavors are the same when
k D 1.

With all three flavors, the sketch represents k

random elements of D. When viewed as random
samples, MINHASH sketches of different subsets
X are coordinated, since they are generated using
the same random rank assignments to the domain
U . The notion of coordination is very power-
ful. It means that similar subsets have similar
sketches (a locality sensitive hashing property).
It also allows us to support merges and similarity
estimation much more effectively. Coordination
in the context of survey sampling was introduced
in [3] and was applied for sketching data in [4,6].

Rank Distribution
Since we typically use a random hash function
H.x/ � D to generate the ranks, it always
suffices to store element identifiers instead of
ranks, which means the representation of each
rank value is dlog2 ne bits and the bit size of the
sketch is at most k log n. This representation size
is necessary when we want to support domain
queries – the sketch of each set should identify
the element associated with each included rank,
so we can retrieve the metadata needed to evalu-
ate a selection predicate.
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For the applications of estimating cardinalities
or pairwise similarities, however, we can work
with ranks that are not unique to elements and, in
particular, come from a smaller discrete domain.
Working with smaller ranks allows us to use
sketches of a much smaller size and also replace
the dependence of the sketch on the domain size
(O.log n/ per entry) by dependence on the subset
sizes. In particular, we can support cardinality
estimation and similarity estimation of subsets of
size at most m with ranks of size O.log log m/.
Since the k rank values used in the sketch are typ-
ically highly correlated, the sketch S.X/ can be
stored using O.log log mC k/ bits in expectation
(O.log log mC k log k/ bits for similarity). This
is useful when we maintain sketches of many sets
and memory is at a premium, as when collecting
traffic statistics in IP routers.

For analysis, it is often convenient to work
with continuous ranks, which without loss of
generality are r � U Œ0; 1� [6], since there is a
monotone (order preserving) transformation from
any other continuous distribution. Using ranks
of size O.log n/ is equivalent to working with
continuous ranks.

In practice, we work with discrete ranks, for
example, values restricted to 1=2i for integral
i > 0 [13] or more generally using a base b > 1

and using 1=bi . This is equivalent to drawing
a continuous rank and rounding it down to the
largest discrete point of the form 1=bi .

Streaming: Number of Updates
Consider now maintaining a MINHASH sketch
in the streaming model. We maintain a sketch
S of the elements X that we had seen until
now. When we process a new element y, then
if y 2 X , the sketch is not modified. We can
show that the number of times the sketch is
modified is in expectation at most k ln n, where
n D jX j is the number of distinct elements in
the prefix. We provide the argument for bottom-
k sketches. It is similar with other flavors. The
probability that a new element has a rank value
that is smaller than the kth smallest rank in X

is the probability that it is in one of the first
k positions in a permutation of size n C 1.
That is, the probability is 1 if n < k and is

k=.nC 1 otherwise. Summing over new distinct
elements n D 1; : : : ; jX j, we obtain

Pn
iD1 k=i �

k ln n.

Inserting an Element
We now consider inserting an element y,
that is, obtaining a sketch S.X [ fyg/ from
S.X/ and y. The three sketch flavors have
different properties and trade-offs in terms
of insertion costs. We distinguish between
insertions that result in an actual update of the
sketch and insertions where the sketch is not
modified.

• k-mins sketch: We need to generate the rank
of y, ri .y/, in each of k different assignments
(k hash computations). We can then compare,
coordinate-wise, each rank with the respective
one in the sketch, taking the minimum of the
two values. This means that each insertion,
whether the sketch is updated or not, results
in O.k/ operations.

• Bottom-k sketch: We apply our hash function
to generate r.y/. We then compare r.y/ with
�k . If the sketch contains fewer than k ranks
(jS j < k or �k is the rank domain supremum),
then r.y/ is inserted to S .

Otherwise, the sketch is updated only if
r.y/ < �k . In this case, the largest sketch
entry �k is discarded and r.y/ is inserted to
the sketch S . When the sketch is not modified,
the operation is O.1/. Otherwise, it can be
O.log k/.

• k-partition sketch: We apply the hash func-
tions to y to determine the bucket b.y/ 2 Œk�

and the rank r.y/. To determine if an update
is needed, we compare r.y/ and �b.y/. If the
latter is empty (�b.y/ is the domain supremum)
or if r.y/ < �b.y/, we assign �b.y/  r.y/.

Merging
We now consider computing the sketch S.X [
Y / from the sketches S.X/ and S.Y / of two sets
X; Y .

For k-mins and k-partition sketches, the
sketch of S.X [ Y / is simply the coordinate-
wise minimum .minf�1; � 01g; : : : ; minf�k; � 0

k
g/
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of the sketches S.X/ D .�1; : : : ; �k/ and
S.Y / D .� 01; : : : ; � 0

k
/. For bottom-k sketches,

the sketch of S.X [ Y / includes the k smallest
rank values in S.X/[ S.Y /.

Estimators
Estimators are typically specifically derived for a
given sketch flavor and rank distribution.

Cardinality estimators were pioneered by Fla-
jolet and Martin [13], continuous ranks were con-
sidered in [6], and lower bounds were presented
in [1]. State-of-the-art practical solutions include
[7, 14]. Cardinality estimation can be viewed in
the context of the theory of point estimation:
estimating the parameter of a distribution (the
cardinality) from the sketch (the “outcome”).
Estimation theory implies that current estimators
are optimal (minimize variance) for the sketch
[7]. Recently, historic inverse probability (HIP)
estimators were proposed, which apply with all
sketch types and improve variance by maintain-
ing an approximate count alongside the MIN-
HASH sketch [7], which is updated when the
sketch is modified.

Estimators for set relations were first consid-
ered in [6] (cardinality of union, by computing
a sketch of the union and applying a cardinality
estimator) and [4] (the Jaccard coefficient, which
is the ratio of intersection to union size). The
Jaccard coefficient can be estimated on all sketch
flavors (when ranks are not likely to have colli-
sions) by simply looking at the respective ratio
in the sketches themselves. In general, many set
relations can be estimated from the sketches, and
state-of-the-art derivation is given in [8, 10].

Applications

Approximate distinct counters are widely used
in practice. Applications include statistics collec-
tion at IP routers and counting distinct search
queries [15].

An important application of sketches, and
their first application to estimate set relations,
was introduced in [6]. Given a directed graph,
and a node v, we can consider the set R.v/ of

all reachable nodes. It turns out that sketches
S.R.v// for all nodes v in a graph can be
computed very efficiently, in nearly linear time.
The approach naturally extends to sketching
neighborhoods in a graph. The sketches of nodes
support efficient estimation of important graph
properties, such as the distance distribution, node
similarities (compare their relations to other
nodes), and influence of a set of nodes [11, 12].

Similarity estimation using sketches was ap-
plied to identify near-duplicate Web pages by
sketching “shingles” that are consecutive lists or
words [4]. Since then, MINHASH sketches are
extensively applied for similarity estimation of
text documents and other entities.

Extensions

Weighted Elements
MINHASH sketches are summaries of sets or of
0/1 vectors. In many applications, each element
x 2 U has a different intrinsic nonnegative
weight w.x/ > 0, and queries are formulated
with respect to these weights: Instead of cardi-
nality estimates we can consider the respective
weighted sum

P
x2X w.x/. Instead of the Jac-

card for the similarity of two sets X and Y ,
we may be interested in the weighted versionP

x2X\Y w.x/=
P

x2X[Y w.x/. When this is the
case, to obtain more accurate query results, we
use sketches so that the inclusion probability of
an element increases with its weight. The sketch
in this case would correspond to a weighted sam-
ple. This is implemented by using ranks which
are drawn from a distribution that depends on the
weights w.y/ [6, 9, 19–21].

Hash Functions
We assumed here the availability of truly random
hash function. In practice, observed performance
is consistent with this assumption. We mention
however that the amount of independence needed
was formally studied using min-wise independent
hash functions [5, 16].
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Problem Definition

Let G be a graph on n vertices and m edges.
An edge is written xy (equivalently yx). A
dominating set in G is a set of vertices D
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such that every vertex of G is either in D or
is adjacent to some vertex of D. It is said to
be minimal if it does not contain any other
dominating set as a proper subset. For every
vertex x, let N Œx� be fxg [ fyjxy 2 Eg and for
every S � V let N ŒS� WD

[

x2S

N Œx�. For S � V

and x 2 S we call any y 2 N Œx�nN ŒSnx�, a
private neighbor of x with respect to S . The set
of minimal dominating sets of G is denoted by
D.G/. We are interested in an output-polynomial
algorithm for enumerating D.G/, i.e., listing,
without repetitions, all the elements of D.G/

in time bounded by p

0

@nCm;
X

D2D.G/

jDj
1

A

(DOM-ENUM for short).
It is easy to see that DOM-ENUM is a

special case of HYPERGRAPH DUALIZATION.
Let N .G/, called the closed neighborhood
hypergraph, be the hypergraph with hyper-
edges fN Œx�jx 2 V g. It is easy to see that D

is a dominating set of G if and only if D is a
transversal of N .G/. Hence, DOM-ENUM is a
special case of HY-PERGRAPH DUALIZATION.
For several graph classes their closed neighbor-
hood hypergraphs are subclasses of hypergraph
classes where an output-polynomial algorithm
is known for HYPERGRAPH DUALIZATION,
e.g., minor-closed classes of graphs, graphs of
bounded degree, graphs of bounded conformality,
graphs of bounded degeneracy, graphs of
logarithmic degeneracy [11, 12, 19]. So, DOM-
ENUM seems more tractable than HYPERGRAPH

DUALIZATION since there exist families of
hypergraphs that are not closed neighborhoods of
graphs [1].

Key Results

Contrary to several special cases of HYPER-
GRAPH DUALIZATION in graphs, (e.g., enumera-
tion of maximal independent sets, enumeration of
spanning forests, etc.) DOM-ENUM is equivalent
to HYPERGRAPH DUALIZATION. Indeed, it is
proved in [14] that with every hypergraph H,
one can associate a co-bipartite graph B.H/

such that every minimal dominating set of
B.H/ is either a transversal of H or has size
at most 2. A consequence is that there exists a
polynomial delay polynomial space algorithm
for HYPERGRAPH DUALIZATION if and only
if there exists one for DOM-ENUM, even in
co-bipartite graphs. The reduction is moreover
asymptotically tight (with respect to polynomial
delay reductions as defined in [19]) in the sense
that there exist hypergraphs H such that for
every graph G we cannot have t r.H/ D D.G/

[14]. This intriguing result has the advantage of
bringing tools from graph structural theory to
tackle the difficult and widely open problem
HYPERGRAPH DUALIZATION. Furthermore,
until recently the most graph classes where DOM-
ENUM is known to be tractable were those for
which closed neighborhood hypergraphs were
subclasses of some of the tractable hypergraph
classes for HYPERGRAPH DUALIZATION. We
will give examples of graph classes where graph
theory helps a lot to solve DOM-ENUM, and
sometimes allows to introduce new techniques
for the enumeration.

It is widely known now that every monadic
second-order formula can be checked in poly-
nomial time in graph classes of bounded clique-
width [3,20]. Courcelle proved in [2] that one can
also enumerate, with linear delay linear space,
the solutions of every monadic second-order for-
mula. Since one can express in monadic second-
order logic that a subset D of vertices is a
minimal dominating set, DOM-ENUM has a linear
delay linear space in graph classes of bounded
clique-width. The algorithm by Courcelle is quite
ingenious: it firsts constructs a DAG, some sub-
trees of which correspond to the positive runs of
the tree-automata associated with the formula on
the given graph and then enumerate these sub-
trees.

Many graph classes do not have bounded
clique-width (interval graphs, permutation
graphs, unit-disk graphs, etc.) and many such
graph classes have nice structures that helped in
the past for solving combinatorial problems, e.g.,
the clique-tree of chordal graphs, permutation
models, etc. For some of these graph classes
structural results can help to solve DOM-ENUM.
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A common tool in enumeration area is the
parsimonious reduction. One wants to enumer-
ate a set of objects O and instead constructs
a bijective function b W O ! T such that
there is an efficient algorithm to enumerate T .
For instance it is proved in [11, 14] that ev-
ery minimal dominating set D of a split graph
G can be characterized by D \ C.G/ where
C.G/ is the clique of G. A consequence is
that in a split graph G there is a bijection be-
tween D.G/ and the set fS � C.G/j8x 2
S; x has a private neighborg, and since this latter
set is an independent system, DOM-ENUM in split
graphs admits a linear delay polynomial space
algorithm.

One can obtain other parsimonious reductions
using graph structures. For instance, it is easy to
check that every minimal dominating set in an
interval graph is a collection of paths. Moreover,
using the interval model (and ordering intervals
from their left endpoints) every minimal domi-
nating set can be constructed greedily by keeping
track of the last two chosen vertices. Indeed it is
proved in [13] that with every interval graph G

one can associate a DAG, the maximal paths of
which are in bijection with the minimal dominat-
ing sets of G. The nodes of the DAG are pairs
.x; y/ such that x < y and such that x and y

can be both in a minimal dominating set, and the
arcs are ..x; y/; .y; ´// such that (1) fx; y; ´g
can be in a minimal dominating set, (2) there is
no vertex between y and ´ that is not dominated
by y or ´, sources are pairs .x; y/ where every
interval before x is dominated by x, and sinks
are pairs .x; y/ where every interval after y is
dominated by y. This reduction to maximal paths
of a DAG can be adapted to several other graph
classes having a linear structure similar to the
interval model, e.g. permutation graphs, circular-
arc graphs [13]. In general, if for every graph G

in a graph class C one can associate an ordering
of the vertices such that for every subset S � V

the possible ways to extend S into a minimal
dominating set depends only on the last k vertices
of S , for some fixed constant k depending only on
C, then for every G 2 C the enumeration of D.G/

can be reduced to the enumeration of paths in a
DAG as for interval graphs and thus DOM-ENUM

is tractable in C [19]. This seems for instance to
be the case for d-trapezoid graphs.

Parsimonious reductions between graph
classes can be also defined. For instance, the
completion of a graph G, i.e., the set of edges
that can be added to G without changing D.G/

are characterized in [11,14], this characterization
lead the authors to prove that the completion
of every P6-free chordal graph is a split graph,
which results in a linear delay polynomial space
algorithm for DOM-ENUM in P6-free chordal
graphs.

The techniques developed by the HYPER-
GRAPH DUALIZATION community combined
with graph structural theory can give rise to new
tractable cases of DOM-ENUM. For instance,
the main drawback of Berge’s algorithm is that
at some level computed transversals are not
necessarily subsets of solutions and this prevents
from obtaining an output-polynomial algorithm
since the computed set may be arbitrary large
compared to the solution set [21]. One way to
overcome this difficulty consists in choosing
some levels l1 : : : ; lk of Berge’s algorithm such
that every computed set at level lj is a subset
of a solution at level ljC1. A difficulty with
that scheme is to compute all the descendants
in level ljC1 of a transversal in level lj . This
idea combined with the structure of minimal
dominating sets in line graphs is used to derive a
polynomial delay polynomial space algorithm for
DOM-ENUM in line graphs [15]. A consequence
is that there is a polynomial delay polynomial
space algorithm to list the set of minimal edge
dominating sets in graphs.

Another famous technique in enumeration
area is the back tracking. Start from the empty
set, and in each iteration choose a vertex x and
partition the problem into two sub-problems:
the enumeration of minimal dominating sets
containing x and the enumeration of those
not containing x, at each step we have a
set X to include in the solution and a set
Y not to include. If at each step one can
solve the EXTENSION PROBLEM, i.e., whether
there is a minimal dominating set containing
X and not intersecting Y , then DOM-ENUM

admits a polynomial delay polynomial space



1290 Minimal Dominating Set Enumeration

algorithm. However, the EXTENSION PROBLEM

is NP-complete in general [19] and even in
split graphs [16]. But, sometimes structure
helps. For instance, in split graphs whenever
X [ Y � C.G/, the EXTENSION PROBLEM

is polynomial [11, 14] and was the key for the
linear delay algorithm. Another special case
of the EXTENSION PROBLEM is proved to be
polynomial in chordal graphs using the clique
tree of chordal graphs and is also the key
to prove that DOM-ENUM in chordal graphs
admits a polynomial delay polynomial space
algorithm [16]. The algorithm uses deeply the
clique tree and is a nested combination of several
enumeration algorithms.

Open Problems

1. The first major challenge is to find an output-
polynomial algorithm for DOM-ENUM, even
in co-bipartite graphs. One way to address
this problem is to understand the structure of
minimal dominating sets in a graph. Failing
to solve this problem, can graphs help to
improve the quasi-polynomial time algorithm
by Fredman and Khachiyan [7]?

2. Until now if the techniques used to solve
DOM-ENUM in many graph classes are well-
known, deep structural theory of graphs is not
used and the used graph structures are more or
less ad hoc. Can we unify all these results and
obtain at the same time new positive results?
Indeed, there are several well-studied graph
classes where the status of DOM-ENUM is
still open: bipartite graphs, unit-disk graphs,
graphs of bounded expansion to cite a few.
Are developed tools sufficient to address these
graph classes?

3. There are several well-studied variants of the
dominating set problem, in particular total
dominating set and connected dominating set
(see the monographs [9, 10]). It is proved in
[14] that the enumeration of minimal total
dominating sets and minimal connected dom-
inating sets in split graphs is equivalent to
HYPERGRAPH DUALIZATION. This is some-
how surprising and we do not yet understand

why such small variations make the problem
difficult even in split graphs. Can we explain
this situation?

4. From [14] we know that the enumeration of
minimal connected dominating sets is harder
than HYPERGRAPH DUALIZATION. Are both
problems equivalent? Can we find a graph
class C where each graph in C has a non-
exponential number of minimal connected
dominating sets, but minimum connected
dominating set is NP-complete? Notice that
if a class of graphs C has a polynomially
bounded number of minimal separators,
then the enumeration of minimal connected
dominating sets can be reduced to DOM-
ENUM [14].

5. A related question to DOM-ENUM is a tight
bound for the number of minimal dominat-
ing sets in graphs. The best upper bound is
O.1:7159n/ and the best lower bound is 15n=6

[6]. For several graph classes, tight bounds
were obtained [4, 8]. Prove that 15n=6 is the
upper bound or find the tight bound.

6. Another related subject to DOM-ENUM is the
counting of (minimal) dominating sets in time
polynomial in the input graph. If the counting
of dominating sets is a #P-hard problem and
have been investigated in the past [5, 17, 18],
not so much is known for the counting of min-
imal dominating sets, one can cite few exam-
ples: graphs of bounded clique-width [2], and
interval, permutation and circular-arc graphs
[13]. If we define for G the minimal domina-
tion polynomial MD.G; x/ that is the gener-
ating function of its minimal dominating sets,
for which graph classes this polynomial can
be computed? Does it have a (linear) recursive
definition? For which values x can we evalu-
ate it?
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Problem Definition

A minimal perfect hash function (MPHF) is a
(data structure providing a) bijective map from a
set S of n keys to the set of the first n natural
numbers. In the static case (i.e., when the set S

is known in advance), there is a wide spectrum of
solutions available, offering different trade-offs in
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terms of construction time, access time, and size
of the data structure.

Problem Formulation
Let Œx� denote the set of the first x natural num-
bers. Given a positive integer u D 2w, and a set
S � Œu� with jS j D n, a function h W S ! Œm� is
perfect if and only if it is injective and minimal if
and only if m D n. An (M)PHF is a data structure
that allows one to evaluate a (minimal) perfect
function of this kind.

When comparing different techniques for
building MPHFs, one should be aware of the
trade-offs between construction time, evaluation
time, and space needed to store the function. A
general tenet is that evaluation should happen
in constant time (with respect to n), whereas
construction is only required to be feasible in a
practical sense.

Space is often the most important aspect when
a construction is taken into consideration; usu-
ally space is computed in an exact (i.e., non-
asymptotic) way. Some exact space lower bounds
for this problem are known (they are pure space
bounds and do not consider evaluation time):
Fredman and Komlós proved [4] that no MPHF
can occupy less than n log eClog log uCO.log n/

bits, as soon as u � n2C�; this bound is essen-
tially tight [9, Sect. III.2.3, Thm. 8], disregarding
evaluation time.

Key Results

One fundamental question is how close to the
space lower bound n log e C log log u one can
stay if the evaluation must be performed in con-
stant time. The best theoretical results in this
direction are given in [6], where an n log e C
log log uCO.n.log log n/2= log nClog log log u/

technique is provided (optimal up to an additive
factor) whose construction takes linear time in
expectation. The technique is only of theoretical
relevance, though, as it yields a low number of
bits per key only for unrealistically large values
of n.

We will describe two practical solutions: the
first one provides a structure that is simple, con-

stant time, and asymptotically space optimal (i.e.,
O.n/); its actual space requirement is about twice
the lower bound. The second one can potentially
approach the lower bound, even if in practice this
would require an unfeasibly long construction
time; nonetheless, it provides the smallest known
practical data structure – it occupies about 1:44

times the lower bound.
We present the two constructions in some

detail below; they both use the idea of building
an MPHF out of a PHF that we explain first.

From a PHF to a MPHF
Given a set T � Œm� of size jT j D n, define
rankT W Œm�! Œn� by letting

rankT .p/ D jfi 2 T j i < pgj:

Clearly, every PHF g W S ! Œm� can be
combined with rankg.S/ W Œm� ! Œn� to ob-
tain an MPHF. Jacobson [7] offers a constant-
time implementation for the rank data structure
that uses o.m/ additional bits besides the set T

represented as an array of m bits; furthermore,
constant-time solutions exist that require as little
as O.n=.log n/c/ (for any desired c) over the
information-theoretical lower bound log

�
m
n

�
[10].

For practical solutions, see [5, 11]. For very
sparse sets T , the Elias-Fano scheme can be
rewarding in terms of space, but query time
becomes O.log.m=n//.

The Hypergraph-BasedConstruction
We start by recalling the hypergraph-based
construction presented in [8]. Their method,
albeit originally devised only for order-
preserving MPHF, can be used to store compactly
an arbitrary r-bit function f W S ! Œ2r �.
The construction draws three hash functions
h0; h1; h2 W S ! Œ�n� (with � � 1:23)
and builds a 3-hypergraph with one hyperedge
.h0.x/; h1.x/; h2.x// for every x 2 S . With
positive probability, this hypergraph does not
have a nonempty 2-core, that is, its hyperedges
can be sorted in such a way that every hyperedge
contains (at least) a vertex that never appeared
before, called the hinge. Equivalently, the set of
equations (in the variables ai )
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f .x/ D �ah0.x/ C ah1.x/ C ah2.x/

�
mod 2r

has a solution that can be found by a hypergraph-
peeling process in time O.n/. Storing the func-
tion consists in storing �n integers of r bits each
(the array ai ), so �rn bits are needed (excluding
the bits needed for the hash functions); function
evaluation takes constant time.

In [3] the authors (which were not aware
of [8]) present a “mutable Bloomier filter,” which
is formed by a PHF and a data storage indexed
by the output of the PHF. The idea is to let
r D 2 and to decide f after the hinges have
been successfully determined, letting f .x/ be the
index of the hinge of the hyperedge associated
with x, that is, the index i 2 f0; 1; 2g such that
hi .x/ is the hinge of .h0.x/; h1.x/; h2.x//. This
way, the function g W S ! Œm� defined by g.x/ D
hf .x/.x/ is a PHF, and it is stored in 2�n bits.

The fact that combining such a construction
with a ranking data structure might actually pro-
vide an MPHF was noted in [2] (whose authors
did not know [3]). An important implementation
trick that makes it possible to get �2.65 bits per
key is the fact that r D 2, but actually we need to
store three values. Thus, when assigning values to
hinges, we can use 3 (which modulo 3 is equiva-
lent to zero) in place of 0: in this way, hinges are
exactly associated to those ai that are nonzero,
which makes it possible to build a custom ranking
structure that does not use an additional bit vec-
tor, but rather ranks directly nonzero pairs of bits.

The “Hash, Displace, and Compress”
Construction
A completely different approach is suggested
in [1]: once more, they first build a PHF h W S !
Œm� where m D .1 C �/n for some � > 0. The
set S is first divided into r buckets by means of
a first-level hash function g W S ! Œr�; the r

buckets g�1.0/; : : : ; g�1.r�1/ are sorted by their
cardinalities, with the largest buckets first.

Let B0; : : : ; Br�1 be the buckets and let
�0; �1; �2; : : : be a sequence of independent
fully random hash functions S ! Œm�. For every
i D 0; : : : ; r � 1, the construction algorithm
determines the smallest index pi such that �pi

is injective when applied to Bi and moreover
�pi

.Bi / is disjoint from[j <i�pj
.Bj /. A careful

analysis shows that this construction takes linear
time in expectation (the choice of r impacts on
construction time) and that the expected pi is
bounded by a constant, so the indices can be
stored in O.log.1=�/n/ space.

In practice, if r is chosen so that the average
bucket size is �5, it is possible to obtain an
MPHF using �2.05 bits per key with a construc-
tion time that is still feasible, albeit an order
of magnitude larger than the hypergraph-based
construction.

The authors of [1] also discuss a variant that
can directly build MPHFs, but the construction
time is no longer linear in expectation; moreover,
from a practical viewpoint it is useful to enlarge
slightly the buckets so that they have a prime size
(this makes it easier to generate a good sequence
of hash functions [1]).

Open Problems

Improving construction and query time in prac-
tice and getting closer to the space lower bound
keeping the construction feasible are the main
open problems about MPHFs, as there are al-
ready known constructions that close the gap
asymptotically.

URLs to Code and Data Sets

The Sux4J library (http://sux4j.di.unimi.it/)
provides Java implementations of the methods
we discussed. The CMPH library (http://cmph.
sourceforge.net/) provides C implementations.
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Problem Definition

Overview
Minimum bisection is a basic representative of
a family of discrete optimization problems deal-
ing with partitioning the vertices of an input
graph. Typically, one wishes to minimize the
number of edges going across between the dif-
ferent pieces, while keeping some control on the
partition, say by restricting the number of pieces
and/or their size. (This description corresponds
to an edge-cut of the graph; other variants cor-
respond to a vertex-cut with similar restrictions.)
In the minimum bisection problem, the goal is to
partition the vertices of an input graph into two
equal-size sets, such that the number of edges
connecting the two sets is as small as possible.

In a seminal paper in 1988, Leighton and
Rao [14] devised for MINIMUM-BISECTION

a logarithmic-factor bicriteria approximation
algorithm. (A bicriteria approximation algorithm
partitions the vertices into two sets each
containing at most 2/3 of the vertices, and its
value, i.e., the number of edges connecting the
two sets, is compared against that of the best
partition into equal-size sets.) Their algorithm
has found numerous applications, but the
question of finding a true approximation with
a similar factor remained open for over a decade
later. In 1999, Feige and Krauthgamer [6]
devised the first polynomial-time algorithm that
approximates this problem within a factor that is
polylogarithmic (in the graph size).

Cuts and Bisections
Let G D .V; E/ be an undirected graph with
n D jV j vertices, and assume for simplicity that
n is even. For a subset S of the vertices, let
NS D V n S . The cut (also known as cutset) .S; NS/

is defined as the set of all edges with one endpoint
in S and one endpoint in NS . These edges are said
to cross the cut, and the two sets S and NS are
called the two sides of the cut.
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Assume henceforth that G has nonnegative
edge-weights. (In the unweighted version, every
edge has a unit weight.) The cost of a cut .S; NS/

is then defined to be the total edge-weight of all
the edges crossing the cut.

A cut .S; NS/ is called a bisection of G if
its two sides have equal cardinality, namely
jS j D j NS j D n=2. Let b(G) denote the minimum
cost of a bisection of G.

Problem 1 (MINIMUM-BISECTION)
INPUT: An undirected graph G with nonnegative
edge-weights.
OUTPUT: A bisection .S; NS/ of G that has mini-
mum cost.

This definition has a crucial difference from the
classical MINIMUM-CUT problem (see e.g., [10]
and references therein), namely, there is a restric-
tion on the sizes of the two sides of the cut. As
it turns out, MINIMUM-BISECTION is NP-hard
(see [9]), while MINIMUM-CUT can be solved in
polynomial time.

Balanced Cuts and Edge Separators
The above rather basic definition of mini-
mum bisection can be extended in several
ways. Specifically, one may require only an
upper bound on the size of each side. For
0 < ˇ < 1, a cut .S; NS/ is called ˇ-balanced if
maxfjS j; j NS jg � ˇn. Note the latter requirement
implies minfjS j; j NS jg � .1 � ˇ/n. In this
terminology, a bisection is a 1/2-balanced cut.

Problem 2 (ˇ-BALANCED-CUT)
INPUT: An undirected graph G with nonnegative
edge-weights.
OUTPUT: A ˇ-balanced cut .S; NS/ of G with
maxfjS j; j NS jg � ˇn, that has cost as small as
possible.

The special case of ˇ D 2=3 is commonly refered
to as the EDGE-SEPARATOR problem.

In general, the sizes of the two sides may be
specified in advance arbitrarily (rather than being
equal); in this case the input contains a number
k, and the goal is to find a cut .S; NS/ such
that jS j D k. One may also wish to divide the
graph into more than two pieces of equal size

and then the input contains a number r � 2, or
alternatively, to divide the graph into r pieces of
whose sizes are k1, : : : ,kr, where the numbers ki

are prescribed in the input; in either case, the
goal is to minimize the number of edges crossing
between different pieces.

Problem 3 (PRESCRIBED-PARTITION)
INPUT: An undirected graph G D .V; E/ with
nonnegative edge-weights, and integers k1, : : : ,kr

such that
P

i ki D jV j.
OUTPUT: A partition V D V1 [ � � � [ Vr of G
with jVi j D ki for all i, such that the total edge-
weight of edges whose endpoints lie in different
sets Vi is as small as possible.

Key Results

The main result of Feige and Krauthgamer [6]
is an approximation algorithm for MINIMUM-
BISECTION. The approximation factor they orig-
inally claimed is O.log2 n/, because it used the
algorithm of Leighton and Rao [14]; however,
by using instead the algorithm of [2], the factor
immediately improves to O.log1:5 n/.

Theorem 1 Minimum-Bisection can be approx-
imated in polynomial time within O.log1:5 n/

factor. Specifically, the algorithm produces for an
input graph G a bisection .S; NS/ whose cost is at
most O.log1:5 n/ � b.G/.

The algorithm immediately extends to similar
results for related and/or more general problems
that are defined above.

Theorem 2 ˇ-Balanced-Cut (and in particular
Edge-Separator) can be approximated in polyno-
mial time within O.log1:5 n/ factor.

Theorem 3 Prescribed-Partition can be approx-
imated in time nO.r/ to within O.log1:5 n/ factor.

For all three problems above, the approximation
ratio improves to O.log n/ for the family of
graphs excluding a fixed minor (which includes
in particular planar graphs). For simplicity, this
result is stated for Minimum-Bisection.
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Theorem 4 In graphs excluding a fixed graph
as a minor (e.g., planar graphs), the problems
(i) Minimum-Bisection, (ii) “-Balanced-Cut, and
(iii) Prescribed-Partition with fixed r can all be
approximated in polynomial time within factor
O.log n/.

It should be noted that all these results can be
generalized further, including vertex-weights and
terminals-vertices (s � t pairs), see [Sect. 5 in 6].

Related Work
A bicriteria approximation algorithm for ˇ-
balanced cut returns a cut that is ˇ0-balanced
for a predetermined ˇ0 > ˇ. For bisection, for
example, ˇ D 1=2 and typically ˇ0 D 2=3.

The algorithms in the above theorems use
(in a black-box manner) an approximation
algorithm for a problem called minimum
quotient-cuts (or equivalently, sparsest-cut with
uniform-demands). For this problem, the best
approximation currently known is O.

p
log n/

for general graphs due to Arora, Rao, and
Vazirani [2], and O(1) for graphs excluding
a fixed minor due to Klein, Plotkin, and
Rao [13]. These approximation algorithms
for minimum quotient-cuts immediately give
a polynomial time bicriteria approximation
(sometimes called pseudo-approximation)
for MINIMUM-BISECTION. For example, in
general graphs the algorithm is guaranteed to
produce a 2/3-balanced cut whose cost is at
most O.

p
log n/ � b.G/. Note however that

a 2/3-balanced cut does not provide a good
approximation for the value of b(G). For instance,
if G consists of three disjoint cliques of equal
size, an optimal 2/3-balanced cut has no edges,
whereas b.G/ D ˝.n2/. For additional related
work, including approximation algorithms for
dense graphs, for directed graphs, and for other
graph partitioning problems, see [Sect. 1 in 6]
and the references therein.

Applications

One major motivation for MINIMUM-BISECTION,
and graph partitioning in general, is a divide-

and-conquer approach to solving a variety of
optimization problems, especially in graphs,
see e.g., [15, 16]. In fact, these problems
arise naturally in a wide range of practical
settings such as VLSI design and image
processing; sometimes, the motivation is
described differently, e.g., as a clustering task.

Another application of MINIMUM-BISECTION

is in assignment problems, of a form that is
common in parallel systems and in scientific
computing: jobs need to be assigned to machines
in a balanced way, while assigning certain pairs
of jobs the same machine, as much as possible.
For example, consider assigning n jobs to 2
machines, when the amount of communication
between every two jobs is known, and the goal
is to have equal load (number of jobs) on
each machine, and bring to minimum the total
communication that goes between the machines.
Clearly, this last problem can be restated as
MINIMUM-BISECTION in a suitable graph.

It should be noted that in many of these
settings, a true approximation is not absolutely
necessary, and a bicriteria approximation may
suffice. Nevertheless, the algorithms stated in
section “Key Results” have been used to design
algorithms for other problems, such as (1) an
approximation algorithm for minimum bisection
in k-uniform hypergraphs [3]; (2) an approxi-
mation algorithm for a variant of the minimum
multicut problem [17]; and (3) an algorithm that
efficiently certifies the unsatisfiability of random
2k-SAT with sufficiently many clauses [5].

From a practical perspective, numerous
heuristics (algorithms without worst-case
guarantees) for graph partitioning have been
proposed and studied, see [1] for an extensive
survey. For example, one of the most famous
heuristics is Kerninghan and Lin’s local search
heuristic for minimum bisection [11].

Open Problems

Currently, there is a large gap between the
O.log1:5 n/ approximation ratio for MINIMUM-
BISECTION achieved by Theorem 1 and the
hardness of approximation results known for
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it. As mentioned above, MINIMUM-BISECTION

is known to be NP-hard (see [9]).
The problem is not known to be APX-hard

but several results provide evidence towards this
possibility. Bui and Jones [4] show that for every
fixed � > 0, it is NP-hard to approximate the
minimum bisection within an additive term of
n2�� . Feige [7] showed that if refuting 3SAT
is hard on average on a natural distribution of
inputs, then for every fixed " > 0 there is no
4=3� " approximation algorithm for minimum
bisection. Khot [12] proved that minimum bisec-
tion does not admit a polynomial-time approxi-
mation scheme (PTAS) unless NP has random-
ized sub-exponential time algorithms.

Taking a broader perspective, currently there
is a (multiplicative) gap of O.log n/ between the
approximation ratio for MINIMUM-BISECTION

and that of minimum quotient-cuts (and thus also
to the factor achieved by bicriteria approxima-
tion). It is interesting whether this gap can be
reduced, e.g., by using the algorithm of [2] in
a non-black box manner.

The vertex-cut version of MINIMUM-
BISECTION is defined as follows: the goal is
to partition the vertices of the input graph into
V D A [ B [ S with jS j as small as possible,
under the constraints that maxfjAj; jBjg � n=2

and no edge connects A with B. It is not known
whether a polylogarithmic factor approximation
can be attained for this problem. It should be
noted that the same question regarding the
directed version of MINIMUM-BISECTION was
answered negatively by Feige and Yahalom [8].

Cross-References

See entry on the paper by Arora, Rao, and Vazi-
rani [2].

� Separators in Graphs
� Sparsest Cut

Recommended Reading

1. Alpert CJ, Kahng AB (1995) Recent directions in
netlist partitioning: a survey. Integr VLSI J 19(1–
2):1–81

2. Arora S, Rao S, Vazirani U (2004) Expander
flows, geometric embeddings, and graph
partitionings. In: 36th annual symposium on
the theory of computing, Chicago, June 2004,
pp 222–231

3. Berman P, Karpinski M (2003) Approximability of
hypergraph minimum bisection. ECCC report TR03-
056, Electronic Colloquium on Computational Com-
plexity, vol 10

4. Bui TN, Jones C (1992) Finding good approximate
vertex and edge partitions is NP-hard. Inform Process
Lett 42(3):153–159

5. Coja-Oghlan A, Goerdt A, Lanka A, Schädlich F
(2004) Techniques from combinatorial approxima-
tion algorithms yield efficient algorithms for random
2k-SAT. Theory Comput Sci 329(1–3):1–45

6. Feige U (2002) Relations between average case com-
plexity and approximation complexity. In: 34th an-
nual ACM symposium on the theory of computing,
Montréal, 19–21 May 2002, pp 534–543

7. Feige U, Krauthgamer R (2006) A polylogarithmic
approximation of the minimum bisection. SIAM Rev
48(1):99–130, Previous versions appeared in Pro-
ceedings of 41st FOCS, 1999; and in SIAM J Comput
2002

8. Feige U, Yahalom O (2003) On the complexity
of finding balanced oneway cuts. Inf Process Lett
87(1):1–5

9. Garey MR, Johnson DS (1979) Computers and in-
tractability: a guide to the theory of NP-completeness.
W.H. Freeman

10. Karger DR (2000) Minimum cuts in near-linear time.
J ACM 47(1):46–76

11. Kernighan BW, Lin S (1970) An efficient heuristic
procedure for partitioning graphs. Bell Syst Tech J
49(2):291–307

12. Khot S (2004) Ruling out PTAS for graph min-
bisection, densest subgraph and bipartite clique. In:
45th annual IEEE symposium on foundations of
computer science, Georgia Institute of Technology,
Atlanta, 17–19 Oct 2004, pp 136–145

13. Klein P, Plotkin SA, Rao S (1993) Excluded mi-
nors, network decomposition, and multicommodity
flow. In: 25th annual ACM symposium on the-
ory of computing, San Diego, 16–18 May 1993,
pp 682–690

14. Leighton T, Rao S (1999) Multicommodity max-
flow min-cut theorems and their use in designing
approximation algorithms. J ACM 46(6):787–832,
29th FOCS, 1988

15. Lipton RJ, Tarjan RE (1980) Applications of a
planar separator theorem. SIAM J Comput 9(3):
615–627

16. Rosenberg AL, Heath LS (2001) Graph separators,
with applications. Frontiers of computer science.
Kluwer/Plenum, New York

17. Svitkina Z, Tardos É (2004) Min-Max multiway cut.
In: 7th international workshop on approximation al-
gorithms for combinatorial optimization (APPROX),
Cambridge, 22–24 Aug 2004, pp 207–218



1298 Minimum Congestion Redundant Assignments

Minimum Congestion Redundant
Assignments

Dimitris Fotakis1 and Paul (Pavlos) Spirakis2;3;4

1Department of Information and
Communication Systems Engineering,
University of the Aegean, Samos, Greece
2Computer Engineering and Informatics,
Research and Academic Computer Technology
Institute, Patras University, Patras, Greece
3Computer Science, University of Liverpool,
Liverpool, UK
4Computer Technology Institute (CTI), Patras,
Greece

Keywords

Maximum fault-tolerant partition; Minimum
fault-tolerant congestion

Years and Authors of Summarized
Original Work

2002; Fotakis, Spirakis

Problem Definition

This problem is concerned with the most efficient
use of redundancy in load balancing on faulty
parallel links. More specifically, this problem
considers a setting where some messages need
to be transmitted from a source to a destination
through some faulty parallel links. Each link fails
independently with a given probability, and in
case of failure, none of the messages assigned
to it reaches the destination. (This assumption
is realistic if the messages are split into many
small packets transmitted in a round-robin fash-
ion. Then the successful delivery of a message
requires that all its packets should reach the
destination.) An assignment of the messages to
the links may use redundancy, i.e., assign mul-
tiple copies of some messages to different links.
The reliability of a redundant assignment is the
probability that every message has a copy on

some active link, thus managing to reach the
destination. Redundancy increases reliability, but
also increases the message load assigned to the
links. A good assignment should achieve high
reliability and keep the maximum load of the
links as small as possible.

The reliability of a redundant assignment de-
pends on its structure. In particular, the reliability
of different assignments putting the same load
on every link and using the same number of
copies for each message may vary substantially
(e.g., compare the reliability of the assignments
in Fig. 1). The crux of the problem is to find an
efficient way of exploiting redundancy in order to
achieve high reliability and low maximum load.
(If one does not insist on minimizing the max-
imum load, a reliable assignment is constructed
by assigning every message to the most reliable
links.)

The work of Fotakis and Spirakis [1] for-
mulates the scenario above as an optimization
problem called Minimum Fault-Tolerant Conges-
tion and suggests a simple and provably effi-
cient approach of exploiting redundancy. This
approach naturally leads to the formulation of
another interesting optimization problem, namely
that of computing an efficient fault-tolerant parti-
tion of a set of faulty parallel links. [1] presents
polynomial-time approximation algorithms for
computing a fault-tolerant partition of the links
and proves that combining fault-tolerant parti-
tions with standard load balancing algorithms
results in a good approximation to Minimum
Fault-Tolerant Congestion. To the best knowl-
edge of the entry authors, this work is the first to
consider the approximability of computing a re-
dundant assignment that minimizes the maximum
load of the links subject to the constraint that
random faults should be tolerated with a given
probability.

Notations and Definitions
Let M denote a set of m faulty parallel links
connecting a source s to a destination t, and
let J denote a set of n messages to be trans-
mitted from s to t. Each link i has a rational
capacity ci � 1 and a rational failure probabil-
ity fi 2 .0; 1/. Each message j has a rational
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Minimum Congestion Redundant Assignments, Fig.
1 Two redundant assignments of 4 unit size messages to
8 identical links. Both assign every message to 4 links
and 2 messages to every link. The corresponding graph
is depicted below each assignment. The assignment on
the left is the most reliable 2-partitioning assignment �2.
Lemma 3 implies that for every failure probability

f, �2 is at least as reliable as any other assign-
ment � with Cong.�/ � 2. For instance, �2 is at
least as reliable as the assignment on the right. In-
deed the reliability of the assignment on the right
is 1� 4f 4 C 2f 6 C 4f 7 � 3f 8, which is bounded
from above by Rel.�2/ D 1� 2f 4 C f 8 for all
f 2 Œ0; 1


size sj � 1. Let fmax � maxi2M ffig denote the
failure probability of the most unreliable link.
Particular attention is paid to the special case of
identical capacity links, where all capacities are
assumed to be equal to 1.

The reliability of a set of links M 0, denoted
Rel.M 0/, is the probability that there is an active
link in M 0. Formally, Rel.M 0/ � 1 �Qi2M 0 fi .
The reliability of a collection of disjoint link
subsets M D fM1; : : : ; M�g, denoted Rel.M/, is
the probability that there is an active link in every
subset of M. Formally,

Rel.M/ �
�Y

`D1

Rel.M`/ D
�Y

`D1

0

@1 �
Y

i2M`

fi

1

A :

A redundant assignment � W J 7! 2M n ; is
a function that assigns every message j to a non-
empty set of links �.j / �M . An assignment
� is feasible for a set of links M 0 if for every
message j, �.j / \M 0 ¤ ;. The reliability of an
assignment �, denoted Rel.�/, is the probability
that � is feasible for the actual set of active links.
Formally,

Rel.�/ �
X

M 0
M
8j2J; �.j /\M 0¤;

0

@
Y

i2M 0

.1�fi /
Y

i2MnM 0
fi

1

A

The congestion of an assignment �, denoted
Cong.�/, is the maximum load assigned by � to
a link in M. Formally,

Cong.�/ � max
i2M

8
<

:
X

j W i2�.j /

sj

ci

9
=

; :

Problem 1 (Minimum Fault-Tolerant Conges-
tion)
INPUT: A set of faulty parallel links MDf.c1; f1/;

: : : ; .cm; fm/g, a set of messages JDfs1; : : : ; sng,
and a rational number � 2 .0; 1/.
OUTPUT: A redundant assignment �WJ 7!2M n ;
with Rel.�/ � 1 � � that minimizes Cong.�/.

Minimum Fault-Tolerant Congestion is NP-hard
because it is a generalization of minimizing
makespan on (reliable) parallel machines. The
decision version of Minimum Fault-Tolerant
Congestion belongs to PSPACE, but it is not
clear whether it belongs to NP. The reason is
that computing the reliability of a redundant
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assignment and deciding whether it is a feasible
solution is #P-complete.

The work of Fotakis and Spirakis [1] presents
polynomial-time approximation algorithms for
Minimum Fault-Tolerant Congestion based on
a simple and natural class of redundant assign-
ments whose reliability can be computed easily.
The high level idea is to separate the reliability as-
pect from load balancing. Technically, the set of
links is partitioned in a collection of disjoint sub-
sets M D fM1; : : : ; M�g with Rel.M/ � 1 � �.
Every subset M` 2M is regarded as a reliable
link of effective capacity c.M`/ � mini2M`

fcig.
Then any algorithm for load balancing on reliable
parallel machines can be used for assigning the
messages to the subsets of M, thus computing
a redundant assignment � with Rel.�/ � 1 � �.

The assignments produced by this approach
are called partitioning assignments. More
precisely, an assignment � W J 7! 2M n ; is
a 	-partitioning assignment if for every pair
of messages j; j 0, either �.j / D �.j 0/ or
�.j / \ �.j 0/ D ;, and � assigns the messages
to 	 different link subsets.

Computing an appropriate fault-tolerant
collection of disjoint link subsets is an
interesting optimization problem by itself.
A feasible solution M satisfies the constraint
that Rel.M/ � 1 � �. For identical capacity
links, the most natural objective is to maximize
the number of subsets in M (equivalently,
the number of reliable links used by the load
balancing algorithm). For arbitrary capacities,
this objective generalizes to maximizing the total
effective capacity of M.

Problem 2 (Maximum Fault-Tolerant Parti-
tion)
INPUT: A set of faulty parallel links MDf.c1;

f1/; : : : ; .cm; fm/g, and a rational number
� 2 .0; 1/.
OUTPUT: A collection M D fM1; : : : ; M�g of
disjoint subsets of M with Rel.M/ � 1 � � that
maximizes

P�
`D1 c.M`/.

The problem of Maximum Fault-Tolerant
Partition is NP-hard. More precisely, given m
identical capacity links with rational failure
probabilities and a rational number � 2 .0; 1/,

it is NP-complete to decide whether the links
can be partitioned into sets M1 and M2 with
Rel.M1/ � Rel.M2/ � 1 � �.

Key Results

Theorem 1 There is a 2-approximation algo-
rithm for Maximum Fault-Tolerant Partition of
identical capacity links. The time complexity of
the algorithm is O..m�Pi2M ln fi / ln m/.

Theorem 2 For every constant ı > 0, there is
a .8Cı/-approximation algorithm for Maximum
Fault-Tolerant Partition of capacitated links. The
time complexity of the algorithm is polynomial in
the input size and 1=ı.

To demonstrate the efficiency of the partitioning
approach for Maximum Fault-Tolerant Conges-
tion, Fotakis and Spirakis prove that for cer-
tain instances, the reliability of the most reliable
partitioning assignment bounds from above the
reliability of any other assignment with the same
congestion (see Fig. 1 for an example).

Lemma 3 For any positive integers ; 	; � and
any rational f 2 .0; 1/, let � be a redundant as-
signment of 	 unit size messages to 	� identical
capacity links with failure probability f. Let ��

be the 	-partitioning assignment that assigns 

messages to each of 	 disjoint subsets consisting
of � links each. If Cong.�/ �  D Cong.��/,
then Rel.�/ � .1 � f �/� D Rel.��/.

Based on the previous upper bound on the relia-
bility of any redundant assignment, [1] presents
polynomial-time approximation algorithms for
Maximum Fault-Tolerant Congestion.

Theorem 4 There is a quasi-linear-time
4-approximation algorithm for Maximum Fault-
Tolerant Congestion on identical capacity links.

Theorem 5 There is a polynomial-time 2

dln.m=�/= ln.1=fmax/e-approximation algorithm
for Maximum Fault-Tolerant Congestion on
instances with unit size messages and capacitated
links.
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Applications

In many applications dealing with faulty
components (e.g., fault-tolerant network
design, fault-tolerant routing), a combinatorial
structure (e.g., a graph, a hypergraph) should
optimally tolerate random faults with respect
to a given property (e.g., connectivity, non-
existence of isolated points). For instance,
Lomonosov [5] derived tight upper and
lower bounds on the probability that a graph
remains connected under random edge faults.
Using the bounds of Lomonosov, Karger [3]
obtained improved theoretical and practical
results for the problem of estimating the
reliability of a graph. In this work, Lemma 3
provides a tight upper bound on the probability
that isolated nodes do not appear in a not
necessarily connected hypergraph with 	

nodes and 	� “faulty” hyperedges of cardinal-
ity .

More precisely, let � be any assignment of
	 unit size messages to 	� identical links
that assigns every message to � links and 

messages to every link. Then � corresponds
to a hypergraph H� , where the set of nodes
consists of 	 elements corresponding to the
unit size messages and the set of hyperedges
consists of 	� elements corresponding to
the identical links. Every hyperedge contains
the messages assigned to the corresponding
link and has cardinality  (see Fig. 1 for
a simple example with  D 2, 	 D 2, and
� D 4). Clearly, an assignment � is feasible
for a set of links M 0 �M iff the removal of
the hyperedges corresponding to the links in
M nM 0 does not leave any isolated nodes (For
a node v, let degH .v/ � jfe 2 E.H/ W v 2 egj.
A node v is isolated in H if degH .v/ D 0)
in H� . Lemma 3 implies that the hypergraph
corresponding to the most reliable 	-partitioning
assignment maximizes the probability that
isolated nodes do not appear when hyperedges
are removed equiprobably and independently.

The previous work on fault-tolerant network
design and routing mostly focuses on the worst-
case fault model, where a feasible solution must
tolerate any configuration of a given number of

faults. The work of Gasieniec et al. [2] studies the
fault-tolerant version of minimizing congestion
of virtual path layouts in a complete ATM net-
work. In addition to several results for the worst-
case fault model, [2] constructs a virtual path
layout of logarithmic congestion that tolerates
random faults with high probability. On the other
hand, the work of Fotakis and Spirakis shows
how to construct redundant assignments that tol-
erate random faults with a probability given as
part of the input and achieve a congestion close
to optimal.

Open Problems

An interesting research direction is to determine
the computational complexity of Minimum Fault-
Tolerant Congestion and related problems. The
decision version of Minimum Fault-Tolerant
Congestion is included in the class of languages
decided by a polynomial-time non-deterministic
Turing machine that reduces the language to
a single call of a #P oracle. After calling the
oracle once, the Turing machine rejects if the
oracle’s outcome is less than a given threshold
and accepts otherwise. This class is denoted
NP#PŒ1;comp
 in [1]. In addition to Minimum
Fault-Tolerant Congestion, NP#PŒ1;comp
 includes
the decision version of Stochastic Knapsack
considered in [4]. A result of Toda and
Watanabe [6] implies that NP#PŒ1;comp
 contains
the entire Polynomial Hierarchy. A challenging
open problem is to determine whether the
decision version of Minimum Fault-Tolerant
Congestion is complete for NP#PŒ1;comp
.

A second direction for further research
is to consider the generalizations of other
fundamental optimization problems (e.g.,
shortest paths, minimum connected subgraph)
under random faults. In the fault-tolerant version
of minimum connected subgraph for example,
the input consists of a graph whose edges fail
independently with given probabilities, and
a rational number � 2 .0; 1/. The goal is to
compute a spanning subgraph with a minimum
number of edges whose reliability is at least
1 � �.
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Problem Definition

Nowadays, the sensor exists everywhere. The
wireless sensor network has been studied exten-
sively. In view of this type of networks, there
are two most important properties, coverage and
connectivity. In fact, the sensor is often used
for collecting information, and hence, its sensing
area has to cover the target (points or area).
Usually, for a wireless sensor, its sensing area is
a disk with the center at the sensor. The radius
of this disk is called the sensing radius. After
information is collected, the sensor has to send to
central station for analysis. This requires all ac-
tive sensors to form a connected communication
network. Actually, every sensor has also a com-
munication function, and it can send information
to other sensors located in its communication
area, which is also a disk with center at the sensor.
The radius of the communication disk is called
the communication radius.

The sensor is often very small and energy is
often supplied with batteries. Therefore, energy
efficiency is a big issue in the study of wireless
sensor networks. A sensor network is said to be
homogeneous if all sensors in the network have
the same size of sensing radius and the same size
of communication radius. For a homogeneous
wireless sensor network, the energy consumption
can be measured by the number of active sensors.
The minimum connected sensor cover problem
is a classic optimization problem based on the
above consideration in the study of wireless sen-
sor networks, which is described as follows.

Consider a homogeneous wireless sensor net-
work in the Euclidean plane. Given a connected
target area ˝ , find the minimum number of sen-
sors satisfying the following two conditions:

[Coverage] The target area ˝ is covered by
selected sensors.

[Connectivity] Selected sensors induce a con-
nected network.
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A subset of sensors is called a sensor cover
if it satisfies the coverage condition and called a
connected sensor cover if it satisfies both the cov-
erage condition and the connectivity condition.

The minimum connected sensor cover prob-
lem is NP-hard. The study on approximation
solutions of this problem has attracted many
researchers.

Key Results

The minimum connected sensor cover problem
was first proposed by Gupta, Das, and Gu [8].
They presented a greedy algorithm with perfor-
mance ratio O.r ln n/ where n is the number of
sensors and r is the link radius of the sensor
network, i.e., for any two sensors with over-
lapping sensing disks, their hop distance in the
communication network is at most r .

Zhang and Hou [12] studied a special case
that the communication radius is at least twice of
the sensing radius, and they showed that in this
case, the coverage of a connected region implied
the connectivity. In this case, they presented a
polynomial-time constant-approximation.

Das and Gupta [13] and Xing et al. [11]
explored more about the relationship between
coverage and connectivity. Bai et al. [2] studied a
sensor deployment problem regarding the cover-
age and connectivity. Alam and Haas [1] studied
the minimum connected sensor cover problem in
three-dimensional sensor networks.

Funke et al. [5] allow sensors to vary
their sensing radius. With variable sensing
radius and communication radius, Zhou,
Das, and Gupta [14] designed a polynomial-
time approximation with performance ratio
O.log n/. Chosh and Das [6] designed a greedy
approximation using the maximal independent
set and Voronoi diagram. They determined the
size of connected sensor cover produced by their
algorithm. However, no comparison with optimal
solution, that is, no analysis on approximation
performance ratio, is given. In fact, none of
the above efforts give an improvement on the
approximation performance ratio O.r log n/

given by Gupta, Das, and Gu [8].

Wu et al. [10] made the first improvement.
They present two polynomial-time approxi-
mations. The first one has performance ratio
O.r/. This approximation is designed based on
a polynomial-time constant-approximation [4] or
a polynomial-time approximation scheme [9] for
the minimum target coverage problem as follows:
given a homogeneous set of sensors and a set of
target points in the Euclidean plane, find the
minimum number of sensors covering all given
target points.

The O.r/-approximation consists of three
steps. In the first step, it replaces the target
area by O.n2/ target points such that the target
area is covered by a subset of sensors if and
only if those target points are all covered by
this subset of sensors. In the second step, it
computes a constant-approximation solution,
say c-approximation solution S for the minimum
target coverage problem with those target points
as input. Since the optimal solution for the
minimum connected sensor cover problem must
be a feasible solution for the minimum target
coverage problem. jS j is within a factor c of the
size of a minimum connected sensor cover, i.e.,
jS j � c � optmcsc.

In the third step, the algorithm employs a
polynomial-time 1.39-approximation algorithm
for the network Steiner tree problem [3], and
apply this algorithm on the input consisting of
a graph with unit weight for each edge, which
is the communication network of sensors, and
a terminal set S . Note that in a graph with unit
weight for each edge, the total edge weight of a
tree is the number of vertices in the tree minus
one. Therefore, the result obtained in the third
step is a connected sensor cover with cardinality
upper bounded by jS j plus .1C 1:39 	 (size of
minimum network Steiner tree on S )).

To estimate the size of minimum network
Steiner tree on S , consider a minimum connected
sensor cover S�. Let T be a spanning tree in
the subgraph induced by S�. For each sensor
s 2 S , there must exist a sensor s0 2 S� with
sensing disk overlapping with the sensing disk of
s. Therefore, there is a path Ps , with distance at
most r , connecting s and s0 in the communication
network. Clearly, T [ .[s2SPs/ is a Steiner
tree on S . Hence, the size of minimum network
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Steiner tree on S is at most jS j � 1 C jS j � r .
Therefore, the connected sensor cover obtained
in the third step has size at most

jS j C 1C 1:39 � .jS j.r C 1/� 1/

� jS j.1:39r C 2:39/

� c.1:39r C 2:39/ � optmcsc

D O.r/ � optmcsc:

The second polynomial-time approximation
designed by Wu et al. [10] is a random algo-
rithm with performance ratio O.log3 n/. This
approximation is obtained by the following two
observations: (1) The minimum connected sensor
cover problem is a special case of the minimum
connected set cover problem. (2) The minimum
connected set-cover problem has a close relation-
ship to the group Steiner tree. Therefore, some
results on group Steiner trees can be transformed
into connected sensor covers.

In conclusion, Wu et al. [10] obtained the
following:

Theorem 1 There exists a polynomial-time
O.r/-approximation for the minimum connected
sensor cover problem. There exists also a
polynomial-time random algorithm with per-
formance O.log3 n/ for the minimum connected
sensor cover problem.

Open Problems

For two approximations in Theorem 1, one has
performance ratio O.r/ independent from n and
the other one has performance ratio O.log3 n/

independent from r . This fact suggests that ei-
ther n or r is closely related or there exists a
polynomial-time constant-approximation. There-
fore, we have the following conjecture:

Conjecture 1 There exists a polynomial-time
O.1/-approximation for the minimum connected
sensor cover problem.
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Problem Definition

In the most common model for wireless net-
works, stations are represented by points in R

d .
They are equipped with a omnidirectional trans-
mitter and receiver which enables them to com-
municate with other stations. In order to send
a message from a station s to a station t, station
s needs to emit the message with enough power
such that t can receive it. It is usually assumed
that the power required by a station s to trans-
mit data directly to station t is kstk˛ , for some
constant ˛ � 1, where kstk denotes the distance
between s and t.

Because of the omnidirectional nature of the
transmitters and receivers, a message sent by
a station s with power r˛ can be received by
all stations within a disc of radius r around s.
Hence the energy required to send a message
from a station s directly to a set of stations S 0 is
determined by maxv2S 0 ksvk˛ .

An instance of the minimum energy broadcast
routing problem in wireless networks (MEBR)
consists of a set of stations S and a constant
˛ � 1. One of the stations in S is designated as the
source station s0. The goal is to send a message at
minimum energy cost from s0 to all other stations
in S. This operation is called broadcast.

In the case ˛ D 1, the optimal solution is to
send the message directly from s0 to all other
stations. For ˛ > 1, sending the message via
intermediate stations which forward it to other
stations is often more energy efficient.

A solution of the MEBR instance can be
described in terms of a so-called broadcast tree.
That is, a directed spanning tree of S which con-
tains directed paths from s0 to all other vertices.
The solution described by a broadcast tree T is the
one in which every station forwards the message
to all its out-neighbors in T.

Problem 1 (MEBR)
INSTANCE: A set S of points in Rd, s0 2 S

designated as the source, and a constant ˛.
SOLUTION: A broadcast tree T of S.
MEASURE: The objective is to minimize the
total energy needed to broadcast a message from
s0 to all other nodes,which can be expressed by

X

u2S

max
v2ı.u/

kuvk˛ ; (1)

where ı.u/ denotes the set of out-neighbors of
station u in T.

The MEBR problem is known to be NP-hard for
d � 2 and ˛ > 1 [2]. APX-hardness is known for
d � 3 [5].

Key Results

Numerous heuristics have been proposed for this
problem. Only a few of them have been ana-
lyzed theoretically. The one which attains the best
approximation guarantee is the so-called MST-
heuristic [12].

MST-HEURISTIC: Compute a minimum
spanning tree of S (mst(S)) and turn it into an
broadcast tree by directing the edges.

Theorem 1 ([1]) In the Euclidean plane, the
MST-heuristic is a 6 approximation algorithm for
MEBR for all ˛ � 2.
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Minimum Energy Broadcasting in Wireless Geometric Networks, Fig. 1 Illustration of the first and second
approach for bounding w(S). In both approaches, w(S) is bounded in terms of the total area covered by the shapes

Theorem 2 ([9]) In the Euclidean three-
dimensional space, the MST-heuristic is a 18.8
approximation algorithm for MEBR for all
˛ � 3.

For ˛ < d , the MST-heuristic does not
provide a constant approximation ratio. The
d-dimensional kissing numbers represent lower
bounds for the performance of the MST-heuristic.
Hence the analysis for d D 2 is tight, whereas for
d D 3 the lower bound is 12.

Analysis
The analysis of the MST-heuristic is based on
good upper bounds for

w.S/ WD
X

e2mst.S/

kek˛ ; (2)

which obviously is an upper bound on (1). The
radius of an instance of MEBR is the distance
between s0 to the station furthest from s0. It turns
out that the MST-heuristic performs worst on
instances of radius 1 whose optimal solution is
to broadcast the message directly from s0 to all
other stations. Since the optimal value for such
instances is 1, the approximation ratio follows
from good upper bounds on w(S) for instances
with radius 1.

The rest of this section focuses on the case
d D ˛ D 2. There are two main approaches for
upper bounding w(S). In both approaches, w(S) is
upper bounded in terms of the area of particular

kinds of shapes associated with either the stations
or with the edges of the MST.

In the first approach, the shapes are disks
of radius m=2 placed around every station of S,
where m is the length of the longest edge of
mst(S). Let A denote the area covered by the
disks. One can prove w.S/ � 4

�

�
A� �.m=2/2

�
.

Assuming that S has radius 1, one can prove
w.S/ � 8 quite easily [4]. This approach can
even be extended to obtain w.S/ � 6:33 [8], and
it can be generalized for d � 2.

In the second approach [7, 11], w(S) is ex-
pressed in terms of shapes associated with the
edges of mst(S), e.g., diamond shapes as shown
on the right of Fig. 1. The area of a diamond
for an edge e is equal to kek2=.2

p
3/. Since one

can prove that the diamonds never intersect, one
obtains w.S/ D A=.2

p
3/. For instances with ra-

dius 1, one can get w.S/ � 12:15.
For the 2-dimensional case, one can even ob-

tain a matching upper bound [1]. The shapes used
in this proof are equilateral triangles, arranged
in pairs along every edge of the MST. As can
be seen on the left of Fig. 2, these shapes do
intersect. Still one can obtain a good upper bound
on their total area by means of the convex hull
of S:

Let the extended convex hull of S be the convex
hull of S extended by equilateral triangles along
the border of the convex hull. One can prove
that the total area generated by the equilateral
triangle shapes along the edges of mst(S) is upper
bounded by the area of the extended convex hull
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Minimum Energy Broadcasting in Wireless Geomet-
ric Networks, Fig. 2 Illustration of the tight bound for
d D 2. The total area of the equilateral triangles on the

left is bounded by its extended convex hull shown in the
middle. The point set that maximizes area of the extended
convex hull is the star shown on the right

of S. By showing that for instances of radius 1
the area of the extended convex hull is maximized
by the point configuration shown on the right of
Fig. 2, the matching upper bound of 6 can be
established.

Applications

The MEBR problem is a special case of a large
class of problems called range assignment prob-
lems. In all these problems, the goal is to assign
a range to each station such that a certain type
of communication operation such as broadcast,
all-to-1 (gathering), all-to-all (gossiping), can be
accomplished. See [3] for a survey on range
assignment problems.

It is worth noting that the problem of upper
bounding w(S) has already been considered in
different contexts. The idea of using diamond
shapes to upper bound the length of an MST has
already been used by Gilbert and Pollak in [6].
Steele [10] makes use of space filling curves to
bound w(S).

Open Problems

An obvious open problem is to close the gap in
the analysis of the MST-heuristic for the three
dimensional case. This might be very difficult, as
the lower bound from the kissing number might
not be tight.

Even in the plane, the approximation ratio of
the MST-heuristic is quite large. It would be inter-
esting to see a different approach for the problem,
maybe based on LP-rounding. It is still not known
whether MEBR is APX-hard for instances in the
Euclidean plane. Hence there might exist a PTAS
for this problem.
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Problem Definition

Ad hoc wireless networks have received signifi-
cant attention in recent years due to their poten-
tial applications in battlefield, emergency disaster
relief and other applications [11, 15]. Unlike
wired networks or cellular networks, no wired
backbone infrastructure is installed in ad hoc
wireless networks. A communication session is
achieved either through a single-hop transmission
if the communication parties are close enough,
or through relaying by intermediate nodes oth-
erwise. Omni-directional antennas are used by
all nodes to transmit and receive signals. They
are attractive in their broadcast nature. A single
transmission by a node can be received by many
nodes within its vicinity. This feature is extremely
useful for multicasting/broadcasting communica-
tions. For the purpose of energy conservation,
each node can dynamically adjust its transmitting
power based on the distance to the receiving node
and the background noise. In the most common
power-attenuation model [10], the signal power
falls as 1

r� , where r is the distance from the trans-
mitter antenna and � is a real constant between
2 and 4 dependent on the wireless environment.
Assume that all receivers have the same power
threshold for signal detection, which is typically
normalized to one. With these assumptions, the
power required to support a link between two
nodes separated by a distance r is r� . A key
observation here is that relaying a signal between
two nodes may result in lower total transmission
power than communicating over a large distance
due to the nonlinear power attenuation. They
assume the network nodes are given as a finite
point (The terms node, point and vertex are in-
terchangeable here: node is a network term, point
is a geometric term, and vertex is a graph term.)
set P in a two-dimensional plane. For any real
number �, they use G.�/ to denote the weighted
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complete graph over P in which the weight of an
edge e is kek� .

The minimum-energy unicast routing is es-
sentially a shortest-path problem in G.�/. Con-
sider any unicast path from a node p D p0 2 P

to another node q D pm 2 P : p0p1 � � �pm�1pm.
In this path, the transmission power of each
node pi , 0 � i � m � 1, is kpi piC1k� and the
transmission power of pm is zero. Thus the to-
tal transmission energy required by this path isPm�1

iD0 kpi piC1k� , which is the total weight of
this path in G� . So by applying any shortest-path
algorithm such as the Dijkstra’s algorithm [5],
one can solve the minimum-energy unicast rout-
ing problem.

However, for broadcast applications (in
general multicast applications), Minimum-
Energy Routing is far more challenging. Any
broadcast routing is viewed as an arborescence
(a directed tree) T, rooted at the source node
of the broadcasting, that spans all nodes. Use
fT .p/ to denote the transmission power of the
node p required by T. For any leaf node p of T,
fT .p/ D 0. For any internal node p of T,

fT .p/ D max
pq2T
kpqk� ;

in other words, the �-th power of the longest
distance between p and its children in T. The
total energy required by T is

P
p2P fT .p/. Thus

the minimum-energy broadcast routing problem
is different from the conventional link-based
minimum spanning tree (MST) problem. Indeed,
while the MST can be solved in polynomial
time by algorithms such as Prim’s algorithm
and Kruskal’s algorithm [5], it is NP-hard [4]
to find the minimum-energy broadcast routing
tree for nodes placed in two-dimensional plane.
In its general graph version, the minimum-
energy broadcast routing can also be shown to
be NP-hard [7], and even worse, it can not be
approximated within a factor of .1 � �/ log �,
unless NP � DTIME



nO.log log n/

�
, by an

approximation-preserving reduction from the
Connected Dominating Set problem [8], where
� is the maximal degree and � is any arbitrary
small positive constant.

Three greedy heuristics have been proposed
for the minimum-energy broadcast routing prob-
lem by [15]. The MST heuristic first applies the
Prim’s algorithm to obtain a MST, and then orient
it as an arborescence rooted at the source node.
The SPT heuristic applies the Dijkstra’s algo-
rithm to obtain a SPT rooted at the source node.
The BIP heuristic is the node version of Dijkstra’s
algorithm for SPT. It maintains, throughout its
execution, a single arborescence rooted at the
source node. The arborescence starts from the
source node, and new nodes are added to the
arborescence one at a time on the minimum incre-
mental cost basis until all nodes are included in
the arborescence. The incremental cost of adding
a new node to the arborescence is the minimum
additional power increased by some node in the
current arborescence to reach this new node. The
implementation of BIP is based on the standard
Dijkstra’s algorithm, with one fundamental dif-
ference on the operation whenever a new node
q is added. Whereas the Dijkstra’s algorithm
updates the node weights (representing the cur-
rent knowing distances to the source node), BIP
updates the cost of each link (representing the
incremental power to reach the head node of
the directed link). This update is performed by
subtracting the cost of the added link pq from the
cost of every link qr that starts from q to a node r
not in the new arborescence.

Key Results

The performance of these three greedy heuristics
have been evaluated in [15] by simulation studies.
However, their analytic performances in terms of
the approximation ratio remained open until [13].
The work of Wan et al. [13] derived the bounds
on their approximation ratios.

Let us begin with the SPT algorithm. Let �

be a sufficiently small positive number. Consider
m nodes p1; p2; � � � ; pm evenly distributed on
a cycle of radius 1 centered at a node o. For
1 � i � m, let qi be the point in the line segment
opi with koqik D �. They consider a broadcast-
ing from the node o to these n D 2m nodes
p1; p2; � � � ; pm; q1; q2; � � � ; qm. The SPT is the
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superposition of paths oqi pi , 1 � i � m. Its to-
tal energy consumption is �2 Cm .1 � �/2. On
the other hand, if the transmission power of
node o is set to 1, then the signal can reach
all other points. Thus the minimum energy con-
sumed by all broadcasting methods is at most
1. So the approximation ratio of SPT is at least
�2 Cm .1 � �/2. As � �! 0, this ratio converges
to n

2
D m.

They [13] also proved that

Theorem 1 The approximation ratio of MST is
at least 6 for any � � 2.

Theorem 2 The approximation ratio of BIP is at
least 13

3
for any � D 2.

They then derived the upper bounds by exten-
sively using the geometric structures of Euclidean
MSTs (EMST). They first observed that as long
as the cost of a link is an increasing function
of the Euclidean length of the link, the set of
MSTs of any point set coincides with the set
of Euclidean MSTs of the same point set. They
proved a key result about an upper bound on the
parameter

P
e2MST .P / kek2 for any finite point

set P inside a disk with radius one.

Theorem 3 Let c be the supreme of
P

e2MST .P /

kek2 over all such point sets P. Then 6 � c � 12.

The following lemma proved in [13] is used to
bound the energy cost for broadcast when each
node can dynamically adjust its power.

Lemma 4 For any point set P in the plane, the
total energy required by any broadcasting among
P is at least 1

c

P
e2MST .P / kek� .

Lemma 5 For any broadcasting among a point
set P in a two-dimensional plane, the total energy
required by the arborescence generated by the
BIP algorithm is at most

P
e2MST .P / kek� .

Thus, they conclude the following two theorems.

Theorem 6 The approximation ratio of EMST is
at most c, and therefore is at most 12.

Theorem 7 The approximation ratio of BIP is at
most c, and therefore is at most 12.

Later, Wan et al. [14] studied the energy efficient
multicast for wireless networks when each node
can dynamically adjust its power. Given a set
of receivers Q, the problem Min-Power Asym-
metric Multicast seeks, for any given communi-
cation session, an arborescence T of minimum
total power which is rooted at the source node
s and reaches all nodes in Q. As a generaliza-
tion of Min-Power Asymmetric Broadcast Rout-
ing, Min-Power Asymmetric Multicast Routing
is also NP-hard. Wieselthier et al. [15] adapted
their three broadcasting heuristics to three mul-
ticasting heuristics by a technique of pruning,
which was called as pruned minimum spanning
tree (P-MST), pruned shortest-path tree (P-SPT),
and pruned broadcasting incremental power (P-
BIP), respectively in [14]. The idea is as follows.
They first obtain a spanning tree rooted at the
source of a given multicast session by applying
any of the three broadcasting heuristics. They
then eliminate from the spanning arborescence
all nodes which do not have any descendant in
Q. They [14] show by constructing examples that
all structures P-SPT, P-MST and P-BIP could
have approximation ratio as large as �.n/ in the
worst case for multicast. They then further pro-
posed a multicast scheme with a constant approx-
imation ratio on the total energy consumption.
Their protocol for Min-Power Asymmetric Mul-
ticast Routing is based on Takahashi-Matsuyama
Steiner tree heuristic [12]. Initially, the multicast
tree T contains only the source node. At each
iterative step, the multicast tree T is grown by
one path from some node in T to some destination
node from Q that is not yet in the tree T. The path
must have the least total power among all such
paths from a node in T to a node in Q � T . This
procedure is repeated until all required nodes are
included in T. This heuristic is referred to as
Shortest Path First (SPF).

Theorem 8 For asymmetric multicast communi-
cation, the approximation ratio of SPF is between
6 and 2c, which is at most 24.
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Applications

Broadcasting and multicasting in wireless ad hoc
networks are critical mechanisms in various ap-
plications such as information diffusion, wireless
networks, and also for maintaining consistent
global network information. Broadcasting is of-
ten necessary in MANET routing protocols. For
example, many unicast routing protocols such as
Dynamic Source Routing (DSR), Ad Hoc On
Demand Distance Vector (AODV), Zone Routing
Protocol (ZRP), and Location Aided Routing
(LAR) use broadcasting or a derivation of it to
establish routes. Currently, these protocols all
rely on a simplistic form of broadcasting called
flooding, in which each node (or all nodes in
a localized area) retransmits each received unique
packet exactly one time. The main problems
with flooding are that it typically causes un-
productive and often harmful bandwidth conges-
tion, as well as inefficient use of node resources.
Broadcasting is also more efficient than sending
multiple copies the same packet through uni-
cast. It is highly important to use power-efficient
broadcast algorithms for such networks since
wireless devises are often powered by batteries
only.

Open Problems

There are some interesting questions left for fur-
ther study. For example, the exact value of the
constant c remains unsolved. A tighter upper
bound on c can lead to tighter upper bounds on
the approximation ratios of both the link-based
MST heuristic and the BIP heuristic. They con-
jecture that the exact value for c is 6, which seems
to be true based on their extensive simulations.
The second question is what is the approximation
lower bound for minimum energy broadcast? Is
there a PTAS for this problem?

So far, all the known theoretically good al-
gorithms either assume that the power needed
to support a link uv is proportional to kuvk�
or is a fixed cost that is independent of the
neighboring nodes that it will communicate with.
In practice, the energy consumption of a node

is neither solely dependent on the distance to its
farthest neighbor, nor totally independent of its
communication neighbor. For example, a more
general power consumption model for a node
u would be c1 C c2 � kuvk� for some constants
c1 � 0 and c2 � 0 where v is its farthest com-
munication neighbor in a broadcast structure. No
theoretical result is known about the approxi-
mation of the optimum broadcast or multicast
structure under this model. When c2 D 0, this
is the case where all nodes have a fixed power
for communication. Minimizing the total power
used by a reliable broadcast tree is equivalent to
the minimum connected dominating set problem
(MCDS), i.e., minimize the number of nodes that
relay the message, since all relaying nodes of
a reliable broadcast form a connected dominating
set (CDS). Notice that recently a PTAS [2] has
been proposed for MCDS in UDG graph.

Another important question is how to find
efficient broadcast/multicast structures such that
the delay from the source node to the last node
receiving message is bounded by a predetermined
value while the total energy consumption is min-
imized. Notice that here the delay of a broad-
cast/multicast based on a tree is not simply the
height of the tree: many nodes cannot transmit
simultaneously due to the interference.
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Problem Definition

The problem is concerned with efficiently
scheduling jobs on a system with multiple
resources to provide a good quality of service. In
scheduling literature, several models have been
considered to model the problem setting, and
several different measures of quality have been
studied. This note considers the following model:
There are several identical machines, and jobs
are released over time. Each job is characterized
by its size, which is the amount of processing
it must receive to be completed, and its release
time, before which it cannot be scheduled. In this
model, Leonardi and Raz studied the objective
of minimizing the average flow time of the jobs,
where the flow time of a job is the duration
of time since it is released until its processing
requirement is met. Flow time is also referred
to as response time or sojourn time and is a
very natural and commonly used measure of the
quality of a schedule.

Notations
Let J D f1; 2; : : : ; ng denote the set of jobs in
the input instance. Each job j is characterized by
its release time rj and its processing requirement
pj . There is a collection of m identical machines,
each having the same processing capability. A
schedule specifies which job executes at what
time on each machine. Given a schedule, the
completion time cj of a job is the earliest time
at which job j receives pj amount of service.
The flow time fj of j is defined as cj � rj . A
schedule is said to be preemptive if a job can be
interrupted arbitrarily and its execution can be re-
sumed later from the point of interruption without
any penalty. A schedule is non-preemptive if a
job cannot be interrupted once it is started. In the
context of multiple machines, a schedule is said
to be migratory if a job can be moved from one
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machine to another during its execution without
any penalty. In the off-line model, all the jobs J

are given in advance. In scheduling algorithms,
the online model is usually more realistic than the
off-line model.

Key Results

For a single machine, it is a folklore result that
the Shortest Remaining Processing Time (SRPT)
policy that at any time works on the job with
the least remaining processing time is optimal
for minimizing the average flow time. Note that
SRPT is an online algorithm and is a preemptive
scheduling policy.

If no preemption is allowed, Kellerer, Taut-
enhahn, and Woeginger [6] gave an O.n1=2/

approximation algorithm for minimizing the flow
time on a single machine and also showed that
no polynomial time algorithm can have an ap-
proximation ratio of n1=2�© for any © > 0 unless
PDNP.

Leonardi and Raz [8] gave the first nontrivial
results for minimizing the average flow time on
multiple machines. Later, a simpler presentation
of this result was given by Leonardi [7]. The main
result of [8] is the following.

Theorem 1 ([8]) On multiple machines, the
SRPT algorithm is O.min.log.n=m/; log P //

competitive for minimizing average flow time,
where P is the maximum to minimum job size
ratio.

They also gave a matching lower bound (up to
constant factors) on the competitive ratio.

Theorem 2 ([8]) For the problem of mini-
mizing flow time on multiple machines, any
online algorithm has a competitive ratio of

.min.log.n=m/; log P //, even when random-
ization is allowed.

Note that minimizing the average flow time
is equivalent to minimizing the total flow time.
Suppose each job pays $1 at each time unit it
is alive (i.e., unfinished), then the total payment
received is equal to the total flow time. Summing
up the payment over each time step, the total

flow time can be expressed as the summation
over the number of unfinished jobs at each time
unit. As SRPT works on jobs that can be finished
as soon as possible, it seems intuitively that
it should have the least number of unfinished
jobs at any time. While this is true for a single
machine, it is not true for multiple machines (as
shown in an example below). The main idea of
[8] was to show that at any time, the number
of unfinished jobs under SRPT is “essentially”
no more than O(min(log P // times that under
any other algorithm. To do this, they developed
a technique of grouping jobs into a logarithmic
number of classes according to their remaining
sizes and arguing about the total unfinished work
in these classes. This technique has found a lot of
uses since then to obtain other results. To obtain
a guarantee in terms of n, some additional ideas
are required.

The instance below shows how SRPT
could deviate from optimum in the case of
multiple machines. This instance is also the
key component in the lower bound construction
in Theorem 2 above. Suppose there are two
machines, and three jobs of size 1, 1, and 2
arrive at time t D 0. SRPT would schedule the
two jobs of size 1 at t D 0 and then work on
size 2 job at time t D 1. Thus, it has one unit of
unfinished work at t D 2. However, the optimum
could schedule the size 2 job at time 0 and finish
all these jobs by time 2. Now, at time t D 2,
three more jobs with sizes 1/2, 1/2, and 1 arrive.
Again, SRPT will work on size 1/2 jobs first, and
it can be seen that it will have two unfinished
jobs with remaining work 1/2 each at t D 3,
whereas the optimum can finish all these jobs by
time 3. This pattern is continued by giving three
jobs of size 1/4, 1/4, and 1/2 at t D 3 and so on.
After k steps, SRPT will have k jobs with sizes
1=2; 1=4; 1=8; : : : ; 1=2k�2; 1=2k�1; 1=2k�1,
while the optimum has no jobs remaining. Now
the adversary can give 2 jobs of size 1=2k each
every 1=2k time units for a long time, which
implies that SRPT could be 
(log P / worse than
optimum.

Leonardi and Raz also considered off-line al-
gorithms for the non-preemptive setting in their
paper.
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Theorem 3 ([8]) There is a polynomial time off-
line algorithm that achieves an approximation
ratio of O.n1=2 log n=m/ for minimizing average
flow time on m machines without preemption.

To prove this result, they give a general tech-
nique to convert a preemptive schedule to a non-
preemptive one at the loss of an O.n1=2/ factor
in the approximation ratio. They also showed an
almost matching lower bound. In particular,

Theorem 4 ([8]) No polynomial time algorithm
for minimizing the total flow time on multiple
machines without preemption can have an ap-
proximation ratio of O.n1=3�©/ for any © > 0,
unless PDNP.

Extensions
Since the publication of these results, they have
been extended in several directions. Recall
that SRPT is both preemptive and migratory.
Awerbuch, Azar, Leonardi, and Regev [2]
gave an online scheduling algorithm that is
nonmigratory and still achieves a competitive
ratio of O(min(log(n=m/,log P //. Avrahami
and Azar [1] gave an even more restricted
O(min(log P ,log(n=m//) competitive online
algorithm. Their algorithm, in addition to being
nonmigratory, dispatches a job immediately to
a machine upon its arrival. Recently, Garg and
Kumar [4, 5] have extended these results to a
setting where machines have nonuniform speeds.
Other related problems and settings such as
stretch minimization (defined as the flow time
divided by the size of a job), weighted flow time
minimization, general cost functions such as
weighted norms, and the non-clairvoyant setting
where the size of a job is not unknown upon its
arrival have also been investigated. The reader
is referred to the relatively recent survey [9] for
more details.

Applications

The flow time measure considered here is one of
the most widely used measures of quality of ser-
vice, as it corresponds to the amount of time one
has to wait to get the job done. The scheduling
model considered here arises very naturally when

there are multiple resources and several agents
that compete for service from these resources.
For example, consider a computing system with
multiple homogeneous processors where jobs are
submitted by users arbitrarily over time. Keeping
the average response time low also keeps the
frustration levels of the users low. The model is
not necessarily limited to computer systems. At
a grocery store, each cashier can be viewed as a
machine, and the users lining up to check out can
be viewed as jobs. The flow time of a user is time
spent waiting until she finishes her transaction
with the cashier. Of course, in many applications,
there are additional constraints such as it may be
infeasible to preempt jobs or, if customers expect
a certain fairness, such people might prefer to be
serviced in a first-come-first-served manner at a
grocery store.

Open Problems

The online algorithm of Leonardi and Raz is also
the best-known off-line approximation algorithm
for the problem. In particular, it is not known
whether an O(1) approximation exists even for
the case of two machines. Settling this would
be very interesting. In related work, Bansal [3]
considered the problem of finding nonmigratory
schedules for a constant number of machines.
He gave an algorithm that produces a .1 C ©/-
approximate solution for any © > 0 in time
nO.log n=©2/. This suggests the possibility of a
polynomial time approximation scheme for the
problem, at least for the case of a constant number
of machines.
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Problem Definition

Let S be a set of n points in d -dimensional
real space where d � 1 is an integer con-
stant. A minimum spanning tree (MST) of S is

a connected acyclic graph with vertex set S of
minimum total edge length. The length of an edge
equals the distance between its endpoints under
some metric. Under the so-called Lp metric, the
distance between two points x and y with co-
ordinates .x1; x2; : : : ; xd / and .y1; y2; : : : ; yd /,
respectively, is defined as the pth root of the sum

dP
iD1

jxi � yi jp.

Key Results

Since there is a very large number of papers
concerned with geometric MSTs, only a few of
them will be mentioned here.

In the common Euclidean L2 metric, which
simply measures straight-line distances, the MST
problem in two dimensions can be solved opti-
mally in time O.nlog n/, by using the fact that the
MST is a subgraph of the Delaunay triangulation
of the input point set. The latter is in turn the
dual of the Voronoi diagram of S , for which
there exist several O.nlog n/-time algorithms.
The term “optimally” here refers to the algebraic
computation tree model. After computation of the
Delaunay triangulation, the MST can be com-
puted in only O.n/ additional time, by using a
technique by Cheriton and Tarjan [6].

Even for higher dimensions, i.e., when d > 2,
it holds that the MST is a subgraph of the dual
of the Voronoi diagram; however, this fact cannot
be exploited in the same way as in the two-
dimensional case, because this dual may contain

.n2/ edges. Therefore, in higher dimensions,
other geometric properties are used to reduce the
number of edges which have to be considered.
The first subquadratic-time algorithm for higher
dimensions was due to Yao [15]. A more efficient
algorithm was later proposed by Agarwal et al.
[1]. For d D 3, their algorithm runs in random-
ized expected time O..nlog n/4=3/ and for d �
4, in expected time O

�
n2�2=.dd=2e/C1C�

�
, where

© stands for an arbitrarily small positive constant.
The algorithm by Agarwal et al. builds on

exploring the relationship between computing
an MST and finding a closest pair between n

red points and m blue points, which is called
the bichromatic closest pair problem. They
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showed that if Td .n; m/ denotes the time to
solve the latter problem, then an MST can be
computed in O.Td .n; n/logd n/ time. Later,
Callahan and Kosaraju [4] improved this bound to
O.Td .n; n/log n/. Both methods achieve running
time O.Td .n; n//; if Td .n; n/ D 
.n1C˛/, for
some ˛ > 0. Finally, Krznaric et al. [11] showed
that the two problems, i.e., computing an MST
and computing the bichromatic closest pair, have
the same worst-case time complexity (up to
constant factors) in the commonly used algebraic
computation tree model and for any fixed Lp

metric. The hardest part to prove is that an MST
can be computed in time O.Td .n; n//. The other
part, which is that the bichromatic closest pair
problem is not harder than computing the MST,
is easy to show: if one first computes an MST
for the union of the n C m red and blue points,
one can then find a closest bichromatic pair in
linear time, because at least one such pair has to
be connected by some edge of the MST.

The algorithm proposed by Krznaric et al. [11]
is based on the standard approach of joining trees
in a forest with the shortest edge connecting two
different trees, similar to the classical Kruskal’s
and Prim’s MST algorithms for graphs. To reduce
the number of candidates to be considered as
edges of the MST, the algorithm works in a
sequence of phases, where in each phase only
edges of equal or similar length are considered,
within a factor of 2.

The initial forest is the set S of points, that is,
each point of the input constitutes an individual
edgeless tree. Then, as long as there is more than
one tree in the forest, two trees are merged by
producing an edge connecting two nodes, one
from each tree. After this procedure, the edges
produced comprise a single tree that remains in
the forest, and this tree constitutes the output of
the algorithm.

Assume that the next edge that the algorithm
is going to produce has length l . Each tree T in
the forest is partitioned into groups of nodes, each
group having a specific node representing the
group. The representative node in such a group
is called a leader. Furthermore, every node in a
group including the leader has the property that it
lies within distance � � l from its leader, where ©

is a real constant close to zero.

Instead of considering all pairs of nodes which
can be candidates for the next edge to produce,
first, only pairs of leaders are considered. Only if
a pair of leaders belong to different trees and the
distance between them is approximately l , then
the closest pair of points between their two re-
spective groups is computed, using the algorithm
for the bichromatic closest pair problem.

Also, the following invariant is maintained: for
any phase producing edges of length ‚.l/ and
for any leader, there is only a constant number
of other leaders at distance ‚.l/. Thus, the total
number of pairs of leaders to consider is only
linear in the number of leaders.

Nearby leaders for any given leader can be
found efficiently by using bucketing techniques
and data structures for dynamic closest pair
queries [3], together with extra artificial points
which can be inserted and removed for probing
purposes at various small boxes at distance ‚.l/

from the leader. In order to maintain the invariant,
when moving to subsequent phases, one reduces
the number of leaders accordingly, as pairs of
nearby groups merge into single groups. Another
tool which is also needed to consider the right
types of pairs is to organize the groups according
to the various directions in which there can be
new candidate MST edges adjacent to nodes in
the group. For details, please see the original
paper by Krznaric et al. [11].

There is a special version of the bichromatic
closest point problem which was shown by Krz-
naric et al. [11] to have the same worst-case time
complexity as computing an MST, namely, the
problem for the special case when both the set
of red points and the set of blue points have a
very small diameter compared with the distance
between the closest bichromatic pair. This ratio
can be made arbitrarily small by choosing a suit-
able © as the parameter for creating the groups and
leaders mentioned above. This fact was exploited
in order to derive more efficient algorithms for
the three-dimensional case.

For example, in the L1 metric, it is possible to
build in time O.nlog n/ a special kind of a planar
Voronoi diagram for the blue points on a plane
separating the blue from the red points having
the following property: for each query point q in
the half-space including the red points, one can
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use this Voronoi diagram to find in time O.log n/

the blue point which is closest to q under the
L1 metric. (This planar Voronoi diagram can
be seen as defined by the vertical projections
of the blue points onto the plane containing the
diagram, and the size of a Voronoi cell depends
on the distance between the corresponding blue
point and the plane.) So, by using subsequently
every red point as a query point for this data
structure, one can solve the bichromatic closest
pair problem for such well-separated red-blue
sets in total O.nlog n/ time.

By exploiting and building upon this idea,
Krznaric et al. [11] showed how to find an MST
of S in optimal O.nlog n/ time under the L1

and L1 metrics when d D 3. This is an im-
provement over previous bounds due to Gabow
et al. [10] and Bespamyatnikh [2], who proved
that, for d D 3, an MST can be computed in
O.nlog nlog log n/ time under the L1 and L1
metrics.

The main results of Krznaric et al. [11] are
summarized in the following theorem.

Theorem In the algebraic computation tree
model, for any fixed Lp metric and for any fixed
number of dimensions, computing the MST has
the same worst-case complexity, within constant
factors, as solving the bichromatic closest pair
problem. Moreover, for three-dimensional space
under the L1 and L1 metrics, the MST (as well
as the bichromatic closest pair) can be computed
in optimal O.nlog n/ time.

Approximate and Dynamic Solutions

Callahan and Kosaraju [4] showed that a span-
ning tree of length within a factor 1C � from that
of an MST can be computed in time O.n.log nC
��d=2 log ��1//. Approximation algorithms with
worse trade-off between time and quality had
earlier been developed by Clarkson [7], Vaidya
[14] and Salowe [13]. In addition, if the input
point set is supported by certain basic data struc-
tures, then the approximate length of an MST
can be computed in randomized sublinear time
[8]. Eppstein [9] gave fully dynamic algorithms
that maintain an MST when points are inserted or
deleted.

Applications

MSTs belong to the most basic structures in com-
putational geometry and in graph theory, with a
vast number of applications.

Open Problems

Although the complexity of computing MSTs
is settled in relation to computing bichromatic
closest pairs, this means also that it remains
open for all cases where the complexity of com-
puting bichromatic closest pairs remains open,
e.g., when the number of dimensions is greater
than 3.

Experimental Results

Narasimhan and Zachariasen [12] have reported
experiments with computing geometric MSTs via
well-separated pair decompositions. More recent
experimental results are reported by Chatterjee,
Connor, and Kumar [5].
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Problem Definition

The following classical optimization problem
is considered: for a given undirected weighted
geometric network, find its minimum-cost
subnetwork that satisfies a priori given multi-
connectivity requirements. This problem
restricted to geometric networks is considered
in this entry.

Notations
Let G D .V; E/ be a geometric network, whose
vertex set V corresponds to a set of n points
in R

d for certain integer d , d � 2 and whose
edge set E corresponds to a set of straight-line
segments connecting pairs of points in V . G is
called complete if E connects all pairs of points
in V .

The cost ı.x; y/ of an edge connecting a pair
of points x; y 2 R

d is equal to the Euclidean dis-
tance between points x and y, that is, ı.x; y/ DqPd

iD1.xi � yi /2, where x D .x1; : : : ; xd / and
y D .y1; : : : ; yd /. More generally, the cost
ı.x; y/ could be defined using other norms, such
as `p norms for any p > 1, i.e., ı.x; y/ D�Pp

iD1.xi � yi /
p
�1=p

. The cost of the network is
equal to the sum of the costs of the edges of the
network, cost.G/ DP.x;y/2E ı.x; y/.

A network G D .V; E/ spans a set S of points
if V D S . G D .V; E/ is k-vertex connected
if for any set U � V of fewer than k vertices,
the network .V n U; E \ ..V n U / 	 .V n U ///

is connected. Similarly, G is k-edge connected if
for any set E � E of fewer than k edges, the
network .V; E n E/ is connected.



Minimum k-Connected Geometric Networks 1319

M

The (Euclidean) minimum-cost k-vertex-
connected spanning network problem: for a
given set S of n points in the Euclidean space
R

d , find a minimum-cost k-vertex-connected
Euclidean network spanning points in S .

The (Euclidean) minimum-cost k-edge-
connected spanning network problem: for a
given set S of n points in the Euclidean space
R

d , find a minimum-cost k-edge-connected
Euclidean network spanning points in S .

A variant that allows parallel edges is also
considered:

The (Euclidean) minimum-cost k-edge-
connected spanning multi-network problem:
for a given set S of n points in the Euclidean
space R

d , find a minimum-cost k-edge-
connected Euclidean multi-network spanning
points in S (where the multi-network can have
parallel edges).

The concept of minimum-cost k-connectivity
naturally extends to include that of Euclidean
Steiner k-connectivity by allowing the use of
additional vertices, called Steiner points. For a
given set S of points in R

d , a geometric network
G is a Steiner k-vertex connected (or Steiner k-
edge connected) for S if the vertex set of G is a
superset of S and for every pair of points from
S there are k internally vertex-disjoint (edge-
disjoint, respectively) paths connecting them in
G.

The (Euclidean) minimum-cost Steiner k-
vertex/edge connectivity problem: find a
minimum-cost network on a superset of S that is
Steiner k-vertex/edge connected for S .

Note that for k D 1, it is simply the Steiner
minimal tree problem, which has been very ex-
tensively studied in the literature (see, e.g., [15]).

In a more general formulation of multi-
connectivity graph problems, nonuniform
connectivity constraints have to be satisfied.

The survivable network design problem: for a
given set S of points in R

d and a connectiv-
ity requirement function r W S 	 S ! N,
find a minimum-cost geometric network span-

ning points in S such that for any pair of ver-
tices p; q 2 S the subnetwork has rp;q in-
ternally vertex-disjoint (or edge-disjoint, respec-
tively) paths between p and q.

In many applications of this problem, often
regarded as the most interesting ones [10, 14],
the connectivity requirement function is specified
with the help of a one-argument function which
assigns to each vertex p its connectivity type
rv 2 N. Then, for any pair of vertices p; q 2 S ,
the connectivity requirement rp;q is simply given
as minfrp; rqg [13, 14, 18, 19]. This includes the
Steiner tree problem (see, e.g., [2]), in which
rp 2 f0; 1g for any vertex p 2 S .

A polynomial-time approximation scheme
(PTAS) is a family of algorithms fA"g such that,
for each fixed " > 0, A" runs in time polynomial
in the size of the input and produces a .1 C "/-
approximation.

Related Work
For a very extensive presentation of results
concerning problems of finding minimum-
cost k-vertex- and k-edge-connected spanning
subgraphs, nonuniform connectivity, connectivity
augmentation problems, and geometric problems,
see [1, 3, 4, 12, 16].

Despite the practical relevance of the multi-
connectivity problems for geometrical networks
and the vast amount of practical heuristic results
reported (see, e.g., [13, 14, 18, 19]), very little
theoretical research had been done towards de-
veloping efficient approximation algorithms for
these problems until a few years ago. This con-
trasts with the very rich and successful theoretical
investigations of the corresponding problems in
general metric spaces and for general weighted
graphs. And so, until 1998, even for the sim-
plest and most fundamental multi-connectivity
problem that of finding a minimum-cost 2-vertex-
connected network spanning a given set of points
in the Euclidean plane, obtaining approximations
achieving better than a 3

2
ratio had been elusive

(the ratio 3
2

is the best polynomial-time approxi-
mation ratio known for general networks whose
weights satisfy the triangle inequality [9]; for
other results, see, e.g., [5, 16]).
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Key Results

The first result is an extension of the well-
known NP-hardness result of minimum-cost
2-connectivity in general graphs (see, e.g., [11])
to geometric networks.

Theorem 1 The problem of finding a minimum-
cost 2-vertex-/2-edge-connected geometric net-
work spanning a set of n points in the plane is
NP-hard.

Next result shows that if one considers the
minimum-cost multi-connectivity problems in an
enough high dimension, the problems become
APX-hard.

Theorem 2 ([6]) There exists a constant � > 0

such that it is NP-hard to approximate within
1 C � the minimum-cost 2-connected geometric
network spanning a set of n points in R

dlog2 ne

This result extends also to any `p norm.

Theorem 3 ([6]) For integer d � log n and for
any fixed p � 1, there exists a constant � > 0

such that it is NP-hard to approximate within
1 C � the minimum-cost 2-connected network
spanning a set of n points in the `p metric in R

d .

Since the minimum-cost multi-connectivity
problems are hard, the research turned into
the study of approximation algorithms. By
combining some of the ideas developed for the
polynomial-time approximation algorithms for
TSP due to Arora [2] (see also [17]) together
with several new ideas developed specifically for
the multi-connectivity problems in geometric
networks, Czumaj and Lingas obtained the
following results.

Theorem 4 ([6, 7]) Let k and d be any integers,
k; d � 2, and let " be any positive real. Let S be a
set of n points in R

d . There is a randomized algo-

rithm that in time n�.log n/.kd="/O.d/ �22.kd="/O.d/

with probability at least 0:99 finds a k-vertex-
connected (or k-edge-connected) spanning net-
work for S whose cost is at most .1 C "/-time
optimal.

Furthermore, this algorithm can be deran-
domized in polynomial time to return a k-vertex-
connected (or k-edge-connected) spanning net-

work for S whose cost is at most .1 C "/ times
the optimum.

Observe that when all d , k, and " are constant,
then the running times are n � logO.1/ n.

The results in Theorem 4 give a PTAS for
small values of k and d .

Theorem 5 (PTAS for vertex/edge connectivity
[6,7]) Let d � 2 be any constant integer. There is
a certain positive constant c < 1 such that for all
k such that k � .log log n/c , the problems of find-
ing a minimum-cost k-vertex-connected spanning
network and a k-edge-connected spanning net-
work for a set of points in R

d admit PTAS.

The next theorem deals with multi-networks
where feasible solutions are allowed to use paral-
lel edges.

Theorem 6 ([7]) Let k and d be any integers,
k; d � 2, and let " be any positive real. Let S

be a set of n points in R
d . There is a randomized

algorithm that in time n � log n � .d="/O.d/ C n �
22.kO.1/

�.d="/O.d2//
, with probability at least 0:99

finds a k-edge-connected spanning multi-network
for S whose cost is at most .1 C "/ times the
optimum. The algorithm can be derandomized in
polynomial time.

Combining this theorem with the fact that par-
allel edges can be eliminated in case k D 2, one
obtains the following result for 2-connectivity in
networks.

Theorem 7 (Approximation schemes for 2-
connected graphs, [7]) Let d be any integer,
d � 2, and let " be any positive real. Let S be
a set of n points in R

d . There is a randomized
algorithm that in time n � log n � .d="/O.d/ C
n � 2.d="/O.d2/

with probability at least 0:99

finds a 2-vertex-connected (or 2-edge-connected)
spanning network for S whose cost is at most
.1C "/ times the optimum. This algorithm can be
derandomized in polynomial time.

For constant d , the running time of the
randomized algorithms is n log n � .1="/O.1/ C
2.1="/O.1/

.

Theorem 8 ([8]) Let d be any integer, d � 2,
and let " be any positive real. Let S be a set
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of n points in R
d . There is a randomized al-

gorithm that in time n � log n � .d="/O.d/ C n �
2.d="/O.d2/Cn �22ddO.1/

with probability at least
0:99 finds a Steiner 2-vertex-connected (or 2-
edge-connected) spanning network for S whose
cost is at most .1C"/ times the optimum. This al-
gorithm can be derandomized in polynomial time.

Theorem 9 ([8]) Let d be any integer, d � 2,
and let " be any positive real. Let S be a set of
n points in R

d . There is a randomized algorithm

that in time n � log n � .d="/O.d/Cn �2.d="/O.d2/C
n � 22ddO.1/

with probability at least 0:99 gives a
.1C "/-approximation for the geometric network
survivability problem with rv 2 f0; 1; 2g for any
v 2 V . This algorithm can be derandomized in
polynomial time.

Applications

Multi-connectivity problems are central in algo-
rithmic graph theory and have numerous applica-
tions in computer science and operation research,
see, e.g., [1, 12, 14, 19]. They also play very
important role in the design of networks that
arise in practical situations, see, e.g., [1, 14].
Typical application areas include telecommuni-
cation, computer, and road networks. Low degree
connectivity problems for geometrical networks
in the plane can often closely approximate such
practical connectivity problems (see, e.g., the dis-
cussion in [14, 18, 19]). The survivable network
design problem in geometric networks also arises
in many applications, e.g., in telecommunication,
communication network design, VLSI design,
etc. [13, 14, 18, 19].

Open Problems

The results discussed above lead to efficient algo-
rithms only for small connectivity requirements
k; the running time is polynomial only for the
value of k up to .log log n/c for certain positive
constant c < 1. It is an interesting open problem
if one can obtain polynomial-time approximation
scheme algorithms also for large values of k.

It is also an interesting open problem if the
multi-connectivity problems in geometric net-
works can have practically fast approximation
schemes.
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Problem Definition

The minimum spanning tree (MST) problem is,
given a connected, weighted, and undirected
graph G D .V; E; w/, to find the tree with
minimum total weight spanning all the vertices
V . Here, w W E ! R is the weight function. The
problem is frequently defined in geometric terms,
where V is a set of points in d -dimensional space
and w corresponds to Euclidean distance. The
main distinction between these two settings is the
form of the input. In the graph setting, the input
has size O.mCn/ and consists of an enumeration
of the n D jV j vertices and m D jEj edges and
edge weights. In the geometric setting, the input
consists of an enumeration of the coordinates of

each point (O.dn/ space): all

�
V

2

	
edges are

implicitly present and their weights implicit in
the point coordinates. See [16] for a discussion of
the Euclidean minimum spanning tree problem.

History
The MST problem is generally recognized [7,12]
as one of the first combinatorial problems studied
specifically from an algorithmic perspective. It
was formally defined by Borůvka in 1926 [1]
(predating the fields of computability theory and
combinatorial optimization and even much of
graph theory), and since his initial algorithm,
there has been a sustained interest in the problem.
The MST problem has motivated research in
matroid optimization [3] and the development
of efficient data structures, particularly priority
queues (aka heaps) and disjoint set structures
[2, 18].

Related Problems
The MST problem is frequently contrasted with
the traveling salesman and minimum Steiner tree
problems [6]. A Steiner tree is a tree that may
span any superset of the given points; that is,
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additional points may be introduced that reduce
the weight of the minimum spanning tree. The
traveling salesman problem asks for a tour (cycle)
of the vertices with minimum total length. The
generalization of the MST problem to directed
graphs is sometimes called the minimum branch-
ing [5]. Whereas the undirected and directed
versions of the MST problem are solvable in
polynomial time, traveling salesman and mini-
mum Steiner tree are NP-complete [6].

Optimality Conditions
A cut is a partition .V 0; V 00/ of the vertices V . An
edge .u; v/ crosses the cut .V 0; V 00/ if u 2 V 0 and
v 2 V 00. A sequence .v0; v1; : : : ; vk�1; v0/ is a
cycle if .vi ; viC1. mod k// 2 E for 0 � i < k.

The correctness of all MST algorithms is es-
tablished by appealing to the dual cut and cycle
properties, also known as the blue rule and red
rule [18].

Cut Property An edge is in some minimum span-
ning tree if and only if it is the lightest edge
crossing some cut.

Cycle Property An edge is not in any minimum
spanning tree if and only if it is the sole
heaviest edge on some cycle.

It follows from the cut and cycle properties
that if the edge weights are unique, then there
is a unique minimum spanning tree, denoted
MST .G/. Uniqueness can always be enforced
by breaking ties in any consistent manner.
MST algorithms frequently appeal to a useful
corollary of the cut and cycle properties called
the contractibility property. Let GnC denote
the graph derived from G by contracting the
subgraph C , that is, C is replaced by a single
vertex c and all edges incident to exactly one
vertex in C become incident to c; in general,
GnC may have more than one edge between two
vertices.
Contractibility Property If C is a subgraph such

that for all pairs of edges e and f with exactly
one endpoint in C , there exists a path P � C

connecting e f with each edge in P lighter
than either e or f , then C is contractible. For
any contractible C , it holds that MST .G/ D
MST.C / [MST.GnC /.

The Generic Greedy Algorithm
Until recently, all MST algorithms could be
viewed as mere variations on the following
generic greedy MST algorithm. Let T consist
initially of n trivial trees, each containing a
single vertex of G. Repeat the following step
n � 1 times. Choose any T 2 T and find the
minimum weight edge .u; v/ with u 2 T and v

in a different tree, say T 0 2 T . Replace T and T 0
in T with the single tree T [ f.u; v/g [ T 0. After
n � 1 iterations, T D fMST .G/g. By the cut
property, every edge selected by this algorithm is
in the MST.

Modeling MST Algorithms
Another corollary of the cut and cycle properties
is that the set of minimum spanning trees of a
graph is determined solely by the relative order
of the edge weights – their specific numerical
values are not relevant. Thus, it is natural to
model MST algorithms as binary decision trees,
where nodes of the decision tree are identified
with edge weight comparisons and the children of
a node correspond to the possible outcomes of the
comparison. In this decision tree model, a trivial
lower bound on the time of the optimal MST
algorithm is the depth of the optimal decision
tree.

Key Results

The primary result of [14] is an explicit MST
algorithm that is provably optimal even though its
asymptotic running time is currently unknown.

Theorem 1 There is an explicit, deterministic
minimum spanning tree algorithm whose running
time is on the order of DMST.m; n/, where m is the
number of edges, n the number of vertices, and
DMST.m; n/ the maximum depth of an optimal
decision tree for any m-edge n-node graph.

It follows that the Pettie-Ramachandran algo-
rithm [14] is asymptotically no worse than any
MST algorithm that deduces the solution through
edge weight comparisons. The best known upper
bound on DMST.m; n/ is O.m˛.m; n//, due to
Chazelle [2]. It is trivially 
.m/.
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Let us briefly describe how the Pettie-
Ramachandran algorithm works. An .m; n/

instance is a graph with m edges and n vertices.
Theorem 1 is proved by giving a linear time
decomposition procedure that reduces any .m; n/

instance of the MST problem to instances of
size .m�; n�/ ; .m1; n1/ ; : : : ; .ms; ns/, where
m D m� C P

i

mi , n D P
i

ni , n� �
n= log log log n, and each ni � log log log n.
The .m�; n�/instance can be solved in O.mC n/

time with existing MST algorithms [2]. To solve
the other instances, the Pettie-Ramachandran
algorithm performs a brute-force search to find
the minimum depth decision tree for every
graph with at most log log log n vertices. Once
these decision trees are found, the remaining
instances are solved in O.

P
i

DMST .mi ; ni // D
O.DMST.m; n// time. Due to the restricted size
of these instances .ni � log log log n/, the time
for a brute-force search is a negligible o.n/.
The decomposition procedure makes use of
Chazelle’s soft heap [2] (an approximate priority
queue) and an extension of the contractibility
property.

Approximate Contractibility Let G0 be derived
from G by increasing the weight of some
edges. If C is contractible w.r.t. G0, then
MST .G/ DMST.MST.C /[MST.GnC /[
E�/, where E�is the set of edges with in-
creased weights.

A secondary result of [14] is that the running
time of the optimal algorithm is actually linear on
nearly every graph topology, under any permuta-
tion of the edge weights.

Theorem 2 Let G be selected uniformly at ran-
dom from the set of all n-vertex, m-edge graphs.
Then regardless of the edge weights, MST .G/

can be found in O.m C n/ time with probability
1 � 2��.m=˛2/, where ˛ D ˛.m; n/ is the slowly
growing inverse Ackermann function.

Theorem 1 should be contrasted with the results
of Karger, Klein, and Tarjan [9] and Chazelle [2]
on the randomized and deterministic complexity
of the MST problem.

Theorem 3 ([9]) The minimum spanning forest
of a graph with m edges can be computed by a
randomized algorithm in O.m/ time with proba-
bility 1 � 2��.m/.

Theorem 4 ([2]) The minimum spanning tree of
a graph can be computed in O.m˛.m; n// time
by a deterministic algorithm, where ˛ is the
inverse Ackermann function.

Applications

Borůvka [1] invented the MST problem while
considering the practical problem of electrify-
ing rural Moravia (present-day Czech Republic)
with the shortest electrical network. MSTs are
used as a starting point for heuristic approxi-
mations to the optimal traveling salesman tour
and optimal Steiner tree, as well as other net-
work design problems. MSTs are a component
in other graph optimization algorithms, notably
the single-source shortest path algorithms of Tho-
rup [19] and Pettie-Ramachandran [15]. MSTs
are used as a tool for visualizing data that is
presumed to have a tree structure; for example,
if a matrix contains dissimilarity data for a set
of species, the minimum spanning tree of the
associated graph will presumably group closely
related species; see [7]. Other modern uses of
MSTs include modeling physical systems [17]
and image segmentation [8]; see [4] for more
applications.

Open Problems

The chief open problem is to determine the de-
terministic complexity of the minimum spanning
tree problem. By Theorem 1, this is tantamount
to determining the decision tree complexity of the
MST problem.

Experimental Results

Moret and Shapiro [11] evaluated the perfor-
mance of greedy MST algorithms using a variety
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of priority queues. They concluded that the best
MST algorithm is Jarník’s [7] (also attributed
to Prim and Dijkstra; see [3, 7, 12]) as imple-
mented with a pairing heap [13]. Katriel, Sanders,
and Träff [10] designed and implemented a non-
greedy randomized MST algorithm based on that
of Karger et al. [9]. They concluded that on
moderately dense graphs, it runs substantially
faster than the greedy algorithms tested by Moret
and Shapiro.
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Problem Definition

Given a set S of n points in the Euclidean
plane, a triangulation T of S is a maximal set
of nonintersecting straight-line segments whose
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endpoints are in S . The weight of T is defined
as the total Euclidean length of all edges in T .
A triangulation that achieves minimum weight
is called a minimum weight triangulation, often
abbreviated MWT, of S .

Key Results

Since there is a very large number of papers and
results dealing with minimum weight triangula-
tion, only relatively very few of them can be
mentioned here.

Mulzer and Rote have shown that MWT is NP-
hard [12]. Their proof of NP-completeness is not
given explicitly; it relies on extensive calculations
which they performed with a computer. Remy
and Steger have shown a quasi-polynomial time
approximation scheme for MWT [13]. These re-
sults are stated in the following theorem:

Theorem 1 The problem of computing the MWT
(minimum weight triangulation) of an input set
S of n points in the plane is NP-hard. However,
for any constant � > 0, a triangulation of S

achieving the approximation ratio of 1 C �, for
an arbitrarily small positive constant �, can be
computed in time nO.log8 n/.

The complexity status of the symmetric prob-
lem of finding the maximum weight triangulation
is still open, but there exists a quasi-polynomial
time approximation scheme for it [10].

The Quasi-Greedy Triangulation
Approximates the MWT
Levcopoulos and Krznaric showed that a trian-
gulation of total length within a constant factor
of MWT can be computed in polynomial time
for arbitrary point sets [7]. The triangulation
achieving this result is a modification of the so-
called greedy triangulation. The greedy triangu-
lation starts with the empty set of diagonals and
keeps adding a shortest diagonal not intersecting
the diagonals which have already been added,
until a full triangulation is produced. The greedy
triangulation has been shown to approximate the
minimum weight triangulation within a constant
factor, unless a special case arises where the

greedy diagonals inserted are “climbing” in a
special, very unbalanced way along a relatively
long concave chain containing many vertices and
with a large empty space in front of it, at the same
time blocking visibility from another, opposite
concave chain of many vertices. In such “bad”
cases, the worst-case ratio between the length
of the greedy and the length of the minimum
weight triangulation is shown to be ‚

�p
n
�
.

To obtain a triangulation which always approx-
imates the MWT within a constant factor, it
suffices to take care of this special bad case in
order to avoid the unbalanced “climbing,” and
replace it by a more balanced climbing along
these two opposite chains. Each edge inserted
in this modified method is still almost as short
as the shortest diagonal, within a factor smaller
than 1.2. Therefore, the modified triangulation
which always approximates the MWT is named
the quasi-greedy triangulation. In a similar way
as the original greedy triangulation, the quasi-
greedy triangulation can be computed in time
O.n log n/ [8]. Gudmundsson and Levcopoulos
[5] showed later that a variant of this method
can also be parallelized, thus achieving a constant
factor approximation of MWT in O.log n/ time,
using O.n/ processors in the CRCW PRAM
model. Another by-product of the quasi-greedy
triangulation is that one can easily select in linear
time a subset of its edges to obtain a convex
partition which is within a constant factor of the
minimum length convex partition of the input
point set. This last property was crucial in the
proof that the quasi-greedy triangulation approx-
imates the MWT. The proof also uses an older
result that the (original, unmodified) greedy trian-
gulation of any convex polygon approximates the
minimum weight triangulation [9]. Some of the
results from [7] and from [8] can be summarized
in the following theorem:

Theorem 2 Let S be an input set of n points
in the plane. The quasi-greedy triangulation
of S , which is a slightly modified version of
the greedy triangulation of S , has total length
within a constant factor of the length of the MWT
(minimum weight triangulation) of S and can
be computed in time O.n log n/. Moreover, the
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(unmodified) greedy triangulation of S has length
within O

�p
n
�

of the length of MWT of S , and
this bound is asymptotically tight in the worst
case.

Computing the Exact MinimumWeight
Triangulation
Below, three approaches to compute the exact
MWT are shortly discussed. These approaches
assume that it is numerically possible to effi-
ciently compare the total length of sets of line
segments in order to select the set of smallest
weight. This is a simplifying assumption, since
this is an open problem per se. However, the prob-
lem of computing the exact MWT remains NP-
hard even under this assumption [12]. The three
approaches differ with respect to the creation and
selection of subproblems, which are then solved
by dynamic programming.

The first approach, sketched by Lingas [11],
employs a general method for computing optimal
subgraphs of the complete Euclidean graph. By
developing this approach, it is possible to achieve
subexponential time 2O.

p
n log n/. The idea is to

create the subproblems which are solved by dy-
namic programming. This is done by trying all
(suitable) planar separators of length O

�p
n
�
,

separating the input point set in a balanced way,
and then to proceed recursively within the result-
ing subproblems.

The second approach uses fixed-parameter
algorithms. So, for example, if there are only
O.log n/ points in the interior of the convex hull
of S , then the MWT of S can be computed in
polynomial time [4]. This approach extends also
to compute the minimum weight triangulation
under the constraint that the outer boundary
is not necessarily the convex hull of the input
vertices; it can be an arbitrary polygon. Some
of these algorithms have been implemented; see
Grantson et al. [2] for a comparison of some
implementations. These dynamic programming
approaches take typically cubic time with respect
to the points of the boundary but exponential time
with respect to the number of remaining points.
So, for example, if k is the number of hole points
inside the boundary polygon, then an algorithm,

which has also been implemented, can compute
the exact MWT in time O.n3 � 2k � k/ [2].

In an attempt to solve larger problems, a dif-
ferent approach uses properties of MWT which
usually help to identify, for random point sets,
many edges that must be, respectively cannot be,
in MWT. One can then use dynamic program-
ming to fill in the remaining MWT edges. For
random sets consisting of tens of thousands of
points from the uniform distribution, one can thus
compute the exact MWT in minutes [1].

Applications

The problem of computing a triangulation arises,
for example, in finite element analysis, terrain
modeling, stock cutting, and numerical approxi-
mation [3, 6]. The minimum weight triangulation
has attracted the attention of many researchers,
mainly due to its natural definition of optimality,
and because it has proved to be a challenging
problem over the past 30 years, with unknown
complexity status until the end of 2005.

Open Problems

All results mentioned leave open problems.
For example, can one find a simpler proof
of NP-completeness, which can be checked
without running computer programs? It would
be desirable to improve the approximation
constant which can be achieved in polynomial
time (to simplify the proof, the constant
shown in [7] is not explicitly calculated and it
would be relatively large, if the proof is not
refined). The time bound for the approximation
scheme could hopefully be improved. It could
also be possible to refine the software which
computes efficiently the exact MWT for large
random point sets, so that it can handle
efficiently a wider range of input, i.e., not
only completely random point sets. This could
perhaps be done by combining this software with
implementations of fixed-parameter algorithms,
as the ones reported in [2, 4], or with other
approaches. It is also open whether or not the
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subexponential exact method can be further
improved.

Experimental Results

Please see the last paragraph under the section
about key results.

URL to Code

Link to code used to compare some dynamic
programming approaches in [2]: http://fuzzy.cs.
unimagdeburg.de/~borgelt/pointgon.html
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Problem Definition

The minimum weighted completion time prob-
lem involves (i) a set J of n jobs, a positive
weight wj for each job j 2 J , and a release
date rj before which it cannot be scheduled;
(ii) a set of m machines, each of which can
process at most one job at any time; and (iii) an
arbitrary set of positive values {pi;j }, where pi;j

denotes the time to process job j on machine i . A
schedule involves assigning jobs to machines and
choosing an order in which they are processed.
Let Cj denote the completion time of job j for a
given schedule. The weighted completion time of
a schedule is defined as

P
j2J

wj Cj , and the goal

is to compute a schedule that has the minimum
weighted completion time.

In the scheduling notation introduced by Gra-
ham et al. [8], a scheduling problem is denoted
by a 3-tuple ˛jˇj� , where ˛ denotes the machine
environment, ˇ denotes the additional constraints
on jobs, and � denotes the objective function.
In this article, we will be concerned with the
˛-values 1, P , R, and Rm, which respectively
denote one machine, identical parallel machines
(i.e., for a fixed job j and for each machine i , pi;j

equals a value pj that is independent of i/, unre-
lated machines (the pi;j ’s are dependent on both
job i and machine j /, and a fixed number m (not
part of the input) of unrelated machines. The field
ˇ takes on the values rj , which indicates that the
jobs have release dates, and the value pmtn, which
indicates that preemption of jobs is permitted.
Further, the value prec in the field ˇ indicates that
the problem may involve precedence constraints
between jobs, which poses further restrictions
on the schedule. The field � is either

P
wj Cj

or
P

Cj , which denote total weighted and total
(unweighted) completion times, respectively.

Some of the simpler classes of the weighted
completion time scheduling problems admit
optimal polynomial-time solutions. They include
the problem P jjPCj , for which the shortest-
job-first strategy is optimal, the problem
1 jjPwj Cj , for which Smith’s rule [14]
(scheduling jobs in their nondecreasing order
of pj =wj values) is optimal, and the problem

RjjPCj , which can be solved via matching
techniques [3, 10]. With the introduction of
release dates, even the simplest classes of the
weighted completion time minimization problem
becomes strongly nondeterministic polynomial-
time (NP)-hard. In this article, we focus on
the work of Afrati et al. [1], whose main
contribution is the design of polynomial-time
approximation schemes (PTASs) for several
classes of scheduling problems to minimize
weighted completion time with release dates.
Prior to this work, the best solutions for
minimizing weighted completion time with
release dates were all O(1)-approximation
algorithms (e.g., [5, 6, 12]); the only known
PTAS for a strongly NP-hard problem involving
weighted completion time was due to Skutella
and Woeginger [13], who developed a PTAS
for the problem P jjPwj Cj . For an excellent
survey on the minimum weighted completion
time problem, we refer the reader to Chekuri
and Khanna [4]. Another important objective
is the flow time, which is a generalization of
completion time; a recent breakthrough of Bansal
and Kulkarni shows how to approximate the total
flow time and maximum flow time to within
polylgarithmic factors [2].

Key Results

Afrati et al. [1] were the first to develop PTASs
for weighted completion time problems involving
release dates. We summarize the running times of
these PTASs in Table 1.

The results presented in Table 1 were obtained
through a careful sequence of input transforma-
tions followed by dynamic programming. The in-
put transformations ensure that the input becomes
well structured at a slight loss in optimality, while
dynamic programming allows efficient enumera-
tion of all the near-optimal solutions to the well-
structured instance.

The first step in the input transformation is
geometric rounding, in which the processing
times and release dates are converted to powers
of 1 C � with at most 1 C � loss in the overall
performance. More significantly, the step (i)
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MinimumWeighted Completion Time, Table 1 Summary of results of Afrati et al. [1]

Problem Running time of polynomial-time approximation schemes

1 jrj jPwj Cj O
�
2poly. 1

e /nC n log n
�

P jrj jPwj Cj O
�
.mC 1/

poly. 1
e / nC n log n

�

P jrj ,pmtn jPwj Cj O
�
2poly. 1

e /nC n log n
�

Rm jrj jPwj Cj O
�
f
�
m; 1

�

�
poly .n/

�

Rm jrj ,pmtn jPwj Cj O
�
f
�
m; 1

�

�
nC n log n

�

Rm jjPwj Cj O
�
f
�
m; 1

�

�
nC log n

�

ensures that there are only a small number of
distinct processing times and release dates to
deal with, (ii) allows time to be broken into
geometrically increasing intervals, and (iii) aligns
release dates with start and end times of intervals.
These are useful properties that can be exploited
by dynamic programming.

The second step in the input transformation is
time stretching, in which small amounts of idle
time are added throughout the schedule. This step
also changes completion times by a factor of at
most 1 C O.�/ but is useful for cleaning up the
scheduling. Specifically, if a job is large (i.e.,
occupies a large portion of the interval where it
executes), it can be pushed into the idle time of
a later interval where it is small. This ensures
that most jobs have small sizes compared with the
length of the intervals where they execute, which
greatly simplifies schedule computation. The next
step is job shifting. Consider a partition of the
time interval [0,1/ into intervals of the form
Ix D Œ.1 C �/x; .1 C �/xC1/ for integral values
of x. The job-shifting step ensures that there is a
slightly suboptimal schedule in which every job j

gets completed within O.log1C�.1C 1
�
// intervals

after r j . This has the following nice property: If
we consider blocks of intervals B0;B1; : : :, with
each block Bi containing O.log1C�.1C 1

�
// con-

secutive intervals, then a job j starting in block
Bi completes within the next block. Further, the
other steps in the job-shifting phase ensure that
there are not too many large jobs which spill
over to the next block; this allows the dynamic
programming to be done efficiently.

The precise steps in the algorithms and their
analysis are subtle, and the above description is

clearly an oversimplification. We refer the reader
to [1] or [4] for further details.

Applications

A number of optimization problems in parallel
computing and operations research can be for-
mulated as machine scheduling problems. When
precedence constraints are introduced between
jobs, the weighted completion time objective can
generalize the more commonly studied makespan
objective and hence is important.

Open Problems

Some of the major open problems in this area are
to improve the approximation ratios for schedul-
ing on unrelated or related machines for jobs
with precedence constraints. The following prob-
lems in particular merit special mention. The
best known solution for the 1 j prec jPwj Cj

problem is the 2-approximation algorithm due to
Hall et al. [9]; improving upon this factor is a
major open problem in scheduling theory. The
problem R jprecjP

j

wj Cj in which the prece-

dence constraints form an arbitrary acyclic graph
is especially open – the only known results in
this direction are when the precedence constraints
form chains [7] or trees [11].

The other open direction is inapproximability
– there are significant gaps between the known
approximation guarantees and hardness factors
for various problem classes. For instance, the
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RjjPwj Cj and Rjrj jPwj Cj are both known
to be approximable-hard, but the best known
algorithms for these problems (due to Skutella
[12]) have approximation ratios of 3/2 and 2,
respectively. Closing these gaps remains a signif-
icant challenge.
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�Approximation Schemes for Makespan Mini-
mization

� Flow Time Minimization
�List Scheduling
�Minimum Flow Time
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Problem Definition

The min sum set cover (MSSC) problem is a
latency version of the set cover problem. The
input to MSSC consists of a collection of sets
fSigi2Œm
 over a universe of elements Œn� WD
f1; 2; 3; : : : ; ng. The goal is to schedule elements,
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one at a time, to hit all sets as early on average
as possible. Formally, we would like to find a
permutation � W Œn� ! Œn� of the elements Œn�

(�.i/ is the i th element in the ordering) such that
the average (or equivalently total) cover time of
the sets fSigi2Œm
 is minimized. The cover time
of a set Si is defined as the earliest time t such
that �.t/ 2 Si . For convenience, we will say that
we schedule/process element �.i/ at time i .

Since MSSC was introduced in [4], several
generalizations have been studied. Here we dis-
cuss two of them. In the generalized min sum set
cover (GMSSC) problem [2], each set Si has a
requirement �i . In this generalization, a set Si is
covered at the first time t when �i elements are
scheduled from Si , i.e., jf�.1/; �.2/; : : : ; �.t/g\
Si j � �i . Note that MSSC is a special case of
GMSSC when �i D 1 for all i 2 Œn�.

Another interesting generalization is sub-
modular ranking (SR) [1]. In SR, each set Si

is replaced with a nonnegative and monotone
submodular function fi W 2Œn
 ! Œ0; 1� with
fi .Œn�/ D 1; function f is said to be submodular
if f .A [ B/ C f .A \ B/ � f .A/ C f .B/ for
all A; B � Œn� and monotone if f .A/ � f .B/

for all A � B . The cover time of each function
fi is now defined as the earliest time t such
that fi .f�.1/; �.2/; : : : ; �.t/g/ D 1. Note
that GMSSC is a special case of SR when
fi .A/ D minfjSi \ Aj=�i ; 1g. Also it is worth
noting that SR generalizes set cover.

Key Results

We summarize main results known for MSSC,
GMSSC, and SR.

Theorem 1 ([4]) There is a 4-approximation for
MSSC, and there is a matching lower bound 4��

unless P D NP .

Interestingly, the tight 4-approximation was
achieved by a very simple greedy algorithm that
schedules an element at each time that covers the
largest number of uncovered sets. The analysis
in [4] introduced the notion of “histograms”; see
below for more detail.

Theorem 2 ([3, 6, 7]) There is an O.1/-
approximation for GMSSC.

Azar and Gamzu gave the first nontrivial ap-
proximation for GMSSC whose guarantee was
O.log maxi �i / [2]. The analysis was also based
on histograms and was inspired by the work
in [4]. Bansal et al. [3] showed that the anal-
ysis of the greedy algorithm in [2] is essen-
tially tight and used a linear programming relax-
ation and randomized rounding to give the first
O.1/-approximation for GMSSC; the precise ap-
proximation factor obtained was 485. The LP
used in [3] was a time-indexed LP strengthened
with knapsack covering inequalities. The round-
ing procedure combined threshold rounding and
randomized “boosted-up” independent rounding.
The approximation was later improved to 28 by
[7], subsequently to 12:4 by [6]. The key idea for
these improvements was to use ˛-point rounding
to resolve conflicts between elements, which is
popular in the scheduling literature.

Theorem 3 ([1, 5]) There is an O.log.1=�//-
approximation for SR where � is the minimum
marginal positive increase of any function fi .

Note that this result immediately implies an
O.log maxi �i /-approximation for GMSSC. The
algorithm in [1] is an elegant greedy algorithm
which schedules an element e at time t with the
maximum

P
i .fi .A[feg/�fi.A//=.1�fi.A//

– here A denotes all elements scheduled by time
t � 1, and if fi .A/ D 1, then fi is excluded from
the summation. Note that this algorithm becomes
the greedy algorithm in [4] for the special case
of MSSC. The analysis was also based on his-
tograms. Later, Im et al. [5] gave an alternative
analysis of this greedy algorithm which was in-
spired by the analysis of other latency problems.
We note that the algorithm that schedules element
e that gives the maximum total marginal increase
of ffi g has a very poor approximation guarantee,
as observed in [1].

As we discussed above, there are largely
three analysis techniques used in this line
of work: histogram-based analysis, latency
argument-based analysis, and LP rounding.
We will sketch these techniques following
[3–5] closely – we chose these papers since
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they present the techniques in a relatively
simpler way, though they do not necessarily
give the best approximation guarantees or most
general results. We begin with the analysis tools
developed for greedy algorithms. To present
key ideas more transparently, we will focus on
MSSC.

Histogram-Based Analysis
We sketch the analysis of the 4-approximation in
[4]. Let Rt denote the uncovered sets at time t and
Nt the sets that are first covered at time t . Observe
that

P
t2Œn
 jRt j is the algorithm’s total cover

time. In the analysis, we represent the optimal
and the algorithm’s solutions using histograms.
First, in the optimal solution’s histogram sets
are ordered in increasing order of their cover
times, and set Si has width 1 and height equal
to its cover time. In the algorithm’s solution, as
before, sets are ordered in increasing order of
their cover times, but set Si has height equal to
jRt j=jNt j where t is Si ’s cover time. Here, the
increase in the algorithm’s objective at time t is
uniformly distributed to sets Nt that are newly
covered at time t . Note that the areas of both
histograms are equal to the optimal cost and the
algorithm’s cost, respectively. Then we can show
that after shrinking the algorithm’s histogram by
a factor of 2, both horizontally and vertically,
one can place it completely inside the optimal
solution’s histogram. This analysis is very simple
and is based on a clever observation on the greedy
solution’s structure. This type of analysis was
also used in [1, 2].

Latency Argument-Based Analysis
This analysis does not seem to yield tight ap-
proximation guarantees, but could be more flex-
ible since it does not compare two histograms
directly. The key idea is to show that if we
can’t charge the number of uncovered sets in
our algorithm’s schedule at time t to the anal-
ogous number in the optimal schedule, then our
algorithm must have covered a lot of sets during
the time interval Œt=2; t �. In other words, if our
algorithm didn’t make enough progress recently,
then our algorithm’s current status can be shown
to be comparable to the optimal solution’s status.
Intuitively, if our algorithm is not comparable
to the optimal solution, then the algorithm can
nearly catch up with the optimal solution by
following the choices the optimal solution has
made. For technical reasons, we may have to
compare our algorithm’s status to the optimal
solution’s earlier status. This analysis is easily
generalized to GMSSC, SR, and more general
metric settings [5].

We now discuss the linear programming-
based approach. Bansal et al. discussed why
greedy algorithms are unlikely to yield an O.1/-
approximation for GMSSC [3].

LP and Randomized Rounding
Consider the following time-indexed integer pro-
gram (IP) used in [3]: variable xet is an indicator
variable that is 1 if element e is scheduled at time
t , otherwise 0. Variable yi t is 1 if Si is covered
by time t , otherwise 0. The IP is relaxed into an
LP by allowing x; y to be fractional.

min
X

t2Œn


X

i2Œm


.1 � yi t /

s:t:
X

t2Œn


xet D 1 8e 2 Œn�

X

e2Œn


xet D 1 8t 2 Œn�

X

e2SinA

X

1�t 0<t

xet 0 � .�i � jAj/ � yi t 8i 2 Œm�; A � Si ; t 2 Œn�

0 � y � 1

x � 0:
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Note that for integral solutions, the objective
is exactly the total cover time since each set Si

uncovered at time t adds 1 to the objective. The
first two constraints say that every element must
be scheduled and exactly one element must be
scheduled at a time. If we use the most natural
constraint

P
e2Si

P
1�t 0<t xet 0 � �i yi t (it says

that if set Si is covered by time t , then there
must be at least �i elements scheduled from Si

by time t), the LP has a large integrality gap [3].
Hence, [3] strengthened the LP with the above
knapsack covering inequalities. There is an easy
separation oracle for the last constraint; hence we
can solve the LP in polynomial time. The analysis
is done by showing that the expected cover time
of each set Si is at most O.1/ factor larger than
the earliest time � when the set Si is covered by
the LP by at least a half, i.e., yi� � 1=2. This
is sufficient to give an O.1/-approximation since
the LP pays at least �=2 for set Si .

Applications

The MSSC problem and its closely related prob-
lems have various applications in adaptive query
processing and distributed resource allocation
problems. Also GMSSC has applications in
Web page ranking and broadcast scheduling.
For details, see [1, 4]. Perhaps it would be no
stretch to say that min sum set cover problems
are at least loosely connected to all problems
whose goal is to satisfy multiple demands with
the overall minimum latency.

Open Problems

An outstanding open problem is to settle the ap-
proximability of GMSSC. As mentioned before,
GMSSC captures MSSC (all �i D 1), for which
there is a tight 4-approximation known [4]. The
other extreme case is when �i D jSi j for all
i . This problem is essentially equivalent to a
classic precedence constrained scheduling prob-
lem 1jprecjPj wj Cj for which there are several
2-approximations known; see [3] for pointers.
However, the current best approximation factor
known for GMSSC is 12.4. Im et al. conjectured
that GMSSC admit a 4-approximation [6].
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Problem Definition

The frequent items problem is to process a stream
of items and find all items occurring more than
a given fraction of the time. It is one of the
most heavily studied problems in data stream
algorithms, dating back to the 1980s. Many ap-
plications rely directly or indirectly on finding
the frequent items, and implementations are in
use in large-scale industrial systems. Informally,
given a sequence of items, the problem is simply
to find those items which occur most frequently.
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Typically, this is formalized as finding all items
whose frequency exceeds a specified fraction of
the total number of items. Variations arise when
the items have weights and further when these
weights can also be negative.

Definition 1 Given a stream S of n items
t1 : : : tn, the frequency of an item i is
fi D jfj jtj D igj. The exact �-frequent items
comprise the set fi jfi > �ng.
Example The stream S D .a; b; a; c; c; a; b; d/

has fa D 3; fb D 2; fc D 2; fd D 1. For � D
0:2, the frequent items are a; b, and c.

A streaming algorithm which solves this prob-
lem must use a linear amount of space, even for
large values of �: given an algorithm that claims
to solve this problem, we could insert a set S

of N items, where every item has frequency 1.
Then, we could also insert N copies of item i . If
i is then reported as a frequent item (occurring
more than 50 % of the time), then i 2 S , else i 62
S . Consequently, since set membership requires
˝.N / space, ˝.N / space is also required to
solve the frequent items problem. Instead, an ap-
proximate version is defined based on a tolerance
for error �.

Definition 2 Given a stream S of n items, the �-
approximate frequent items problem is to return
a set of items F so that for all items i 2 F , fi >

.���/n, and there is no i 62 F such that fi > �n.

Since the exact (� D 0) frequent items prob-
lem is hard in general, we will use “frequent
items” or “the frequent items problem” to refer
to the �-approximate frequent items problem. A
related problem is to estimate the frequency of
items on demand.

Definition 3 Given a stream S of n items defin-
ing frequencies fi as above, the frequency esti-
mation problem is to process a stream so that,
given any i , an Ofi is returned satisfying Ofi �
fi � Ofi C �n.

Key Results

The problem of frequent items dates back at least
to a problem first studied by Moore in 1980 [5].

It was published as a “problem” in the Journal
of Algorithms in the June 1981 issue [17], to
determine if there was a majority choice in a list
of n votes.

Preliminaries: The Majority Algorithm
In addition to posing the majority question as
a problem, Moore also invented the MAJORITY

algorithm along with Boyer in 1980, described
in a technical report from early 1981 [4]. A
similar solution with proof of the optimal number
of comparisons was provided by Fischer and
Salzburg [9]. MAJORITY can be stated as follows:
store the first item and a counter, initialized to 1.
For each subsequent item, if it is the same as the
currently stored item, increment the counter. If it
differs and the counter is zero, then store the new
item and set the counter to 1; else, decrement the
counter. After processing all items, the algorithm
guarantees that if there is a majority vote, then
it must be the item stored by the algorithm.
The correctness of this algorithm is based on a
pairing argument: if every non-majority item is
paired with a majority item, then there should still
remain an excess of majority items. Although not
posed as a streaming problem, the algorithm has
a streaming flavor: it takes only one pass through
the input (which can be ordered arbitrarily) to find
a majority item. To verify that the stored item
really is a majority, a second pass is needed to
simply count the true number of occurrences of
the stored item.

Algorithm 1: MISRA-GRIES(k)

n 0IT  ;I
for each i W

do

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

n nC 1I
if i 2 T

then ci  ci C 1I
else if jT j < k � 1

then
�

T  T [ figI
ci  1I

else for all j 2 T

do

8
<

:

cj  cj � 1I
if cj D 0

then T  T nfj gI
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Misra-Gries Summary
The Misra-Gries summary is a simple algorithm
that solves the frequent items problem. It can be
viewed as a generalization of MAJORITY to track
multiple frequent items.

Instead of keeping a single counter and item
from the input, the MISRA-GRIES summary
stores k � 1 (item, counter) pairs. The natural
generalization of MAJORITY is to compare
each new item against the stored items T and
increment the corresponding counter if it is
among them. Else, if there is some counter with
count zero, it is allocated to the new item and the
counter set to 1. If all k�1 counters are allocated
to distinct items, then all are decremented by 1. A
grouping argument is used to argue that any item
which occurs more than n=k times must be stored
by the algorithm when it terminates. Example
pseudocode to illustrate this algorithm is given
in Algorithm 1, making use of set notation to
represent the operations on the set of stored items
T : items are added and removed from this set
using set union and set subtraction, respectively,
and we allow ranging over the members of this
set (thus, implementations will have to choose
appropriate data structures which allow the
efficient realization of these operations). We
also assume that each item j stored in T has
an associated counter cj . For items not stored in
T , then cj is defined as 0 and does not need to be
explicitly stored.

This n=k generalization was first proposed
by Misra and Gries [16]. The time cost of the
algorithm is dominated by the O.1/ dictionary
operations per update and the cost of decre-
menting counts. Misra and Gries use a balanced
search tree and argue that the decrement cost is
amortized O.1/; Karp et al. propose a hash table
to implement the dictionary [11]; and Demaine
et al. show how the cost of decrementing can be
made worst case O.1/ by representing the counts
using offsets and maintaining multiple linked
lists [8].

Bose et al. [3] observed that executing this
algorithm with k D 1=� ensures that the count
associated with each item on termination is at
most �n below the true value. The bounds on
the accuracy of the structure were tightened by

Berinde et al. to show that the error depends only
on the “tail”: the total weight of items outside the
top-k most frequent, rather than the total weight
of all items [2]. This gives a stronger accuracy
guarantee when the input distribution is skewed,
for example, if the frequencies follow a Zipfian
distribution. They also show that the algorithm
can be altered to tolerate updates with weights,
rather than assuming that each item has equal unit
weight.

A similar data structure called SPACESAVING

was introduced by Metwally et al. [15]. This
structure also maintains a set of items and coun-
ters, but follows a different set of update rules.
Recently, it was shown that the SPACESAVING

structure is isomorphic to MISRA-GRIES: the
state of both structures can be placed in corre-
spondence as each update arrives [1]. The dif-
ferent representations reflect that SPACESAVING

maintains an upper bound on the count of stored
items, while MISRA-GRIES keeps a lower bound.
In studies, the upper bound tends to be closer to
the true count, but it is straightforward to switch
between the two representations.

Moreover, Agarwal et al. [1] showed that
the MISRA-GRIES summary is mergeable. That
is, two summaries of different inputs of size
k can be combined together to obtain a new
summary of size k that summarizes the union
of the two inputs. This merging can be done
repeatedly, to summarize arbitrarily many inputs
in arbitrary configurations. This allows the
summary to be used in distributed and parallel
environments.

Lastly, the concept behind the algorithm
of tracking information on k representative
elements has inspired work in other settings.
Liberty [12] showed how this can be used to track
an approximation to the best k-rank summary
of a matrix, using k rows. This was extended
by Ghashami and Phillips [10] to offer better
accuracy by keeping more rows.

Applications

The question of tracking approximate counts
for a large number of possible objects arises in
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a number of settings. Many applications have
arisen in the context of the Internet, such as
tracking the most popular source, destinations, or
source-destination pairs (those with the highest
amount of traffic) or tracking the most popular
objects, such as the most popular queries to a
search engine, or the most popular pieces of
content in a large content host. It forms the basis
of other problems, such as finding the frequent
itemsets within a stream of transactions: those
subsets of items which occur as a subset of many
transactions. Solutions to this problem have used
ideas similar to the count and prune strategy of
the Misra-Gries summary to find approximate
frequent itemsets [14]. Finding approximate
counts of items is also needed within other stream
algorithms, such as approximating the entropy of
a stream [6].

Experimental Results

There have been a number of experimental stud-
ies of Misra-Gries and related algorithms, for a
variety of computing models. These have shown
that the algorithm is accurate and fast to exe-
cute [7, 13].

URLs to Code and Data Sets

Code for this algorithm is widely available:

http://www.cs.rutgers.edu/~muthu/massdal-
code-index.html

http://hadjieleftheriou.com/sketches/index.html
https://github.com/cpnielsen/twittertrends
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Problem Definition

How can a network be explored efficiently with
the help of mobile agents? This is a very broad
question and to answer it adequately it will be
necessary to understand more precisely what mo-
bile agents are, what kind of networked environ-
ment they need to probe, and what complexity
measures are interesting to analyze.

Mobile Agents
Mobile agents are autonomous, intelligent com-
puter software that can move within a network.
They are modeled as automata with limited mem-
ory and computation capability and are usually
employed by another entity (to which they must
report their findings) for the purpose of collecting
information. The actions executed by the mobile
agents can be discrete or continuous and tran-
sitions from one state to the next can be either
deterministic or non-deterministic, thus giving
rise to various natural complexity measures de-
pending on the assumptions being considered.

Network Model
The network model is inherited directly from the
theory of distributed computing. It is a connected

graph whose vertices comprise the computing
nodes and edges correspond to communication
links. It may be static or dynamic and its re-
sources may have various levels of accessibility.
Depending on the model being considered, nodes
and links of the network may have distinct labels.
A particularly useful abstraction is an anonymous
network whereby the nodes have no identities,
which means that an agent cannot distinguish
two nodes except perhaps by their degree. The
outgoing edges of a node are usually thought
of as distinguishable but an important distinc-
tion can be made between a globally consistent
edge-labeling versus a locally independent edge-
labeling.

Efficiency Measures for Exploration
Efficiency measures being adopted involve the
time required for completing the exploration task,
usually measured either by the number of edge
traversals or nodes visited by the mobile agent.
The interplay between time required for explo-
ration and memory used by the mobile agent
(time/memory tradeoffs) are key parameters con-
sidered for evaluating algorithms. Several re-
searchers impose no restrictions on the mem-
ory but rather seek algorithms minimizing ex-
ploration time. Others, investigate the minimum
size of memory which allows for exploration
of a given type of network (e.g., tree) of given
(known or unknown) size, regardless of the ex-
ploration time. Finally, several researchers con-
sider time/memory tradeoffs.

Main Problems
Given a model for both the agents and the net-
work, the graph exploration problem is that of
designing an algorithm for the agent that allows
it to visit all of the nodes and/or edges of the
network. A closely related problem is where the
domain to be explored is presented as a region of
the plane with obstacles and exploration becomes
visiting all unobstructed portions of the region in
the sense of visibility. Another related problem
is that of rendezvous where two or more agents
are required to gather at a single node of a net-
work.
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Key Results

Claude Shannon [17] is credited with the first
finite automaton algorithm capable of exploring
an arbitrary maze (which has a range of 5 	 5

squares) by trial and error means. Exploration
problems for mobile agents have been exten-
sively studied in the scientific literature and the
reader will find a useful historical introduction in
Fraigniaud et al. [11].

Exploration in General Graphs
The network is modeled as a graph and the agent
can move from node to node only along the
edges. The graph setting can be further specified
in two different ways. In Deng and Papadim-
itriou [8] the agent explores strongly connected
directed graphs and it can move only in the
direction from head to tail of an edge, but not
vice-versa. At each point, the agent has a map
of all nodes and edges visited and can recognize
if it sees them again. They minimize the ratio of
the total number of edges traversed divided by
the optimum number of traversals, had the agent
known the graph. In Panaite and Pelc [15] the
explored graph is undirected and the agent can
traverse edges in both directions. In the graph
setting it is often required that apart from com-
pleting exploration the agent has to draw a map
of the graph, i.e., output an isomorphic copy of it.
Exploration of directed graphs assuming the exis-
tence of labels is investigated in Albers and Hen-
zinger [1] and Deng and Papadimitriou [8]. Also
in Panaite and Pelc [15], an exploration algorithm
is proposed working in time e CO.n/, where
is n the number of nodes and e the number of
links. Fraigniaud et al. [11] investigate memory
requirements for exploring unknown graphs (of
unknown size) with unlabeled nodes and locally
labeled edges at each node. In order to explore
all graphs of diameter D and max degree d a mo-
bile agent needs ˝.D log d/ memory bits even
when exploration is restricted to planar graphs.
Several researchers also investigate exploration
of anonymous graphs in which agents are allowed
to drop and remove pebbles. For example in
Bender et al. [4] it is shown that one pebble
is enough for exploration, if the agent knows

an upper bound on the size of the graph, and
�.log log n/ pebbles are necessary and sufficient
otherwise.

Exploration in Trees
In this setting it is assumed the agent can dis-
tinguish ports at a node (locally), but there is
no global orientation of the edges and no mark-
ers available. Exploration with stop is when the
mobile agent has to traverse all edges and stop
at some node. For exploration with return the
mobile agent has to traverse all edges and stop
at the starting node. In perpetual exploration the
mobile agent has to traverse all edges of the tree
but is not required to stop. The upper and lower
bounds on memory for the exploration algorithms
analyzed in Diks et al. [9] are summarized in
the table, depending on the knowledge that the
mobile agent has. Here, n is the number of nodes
of the tree, N � n is an upper bound known to
the mobile agent, and d is the maximum degree
of a node of the tree.

Exploration Knowledge Lower bounds Upper bounds

Perpetual ; None O.log d/

w/Stop n � N ˝.log log log n/ O.log N /

w/Return ; ˝.log n/ O.log2 n/

Exploration in a Geometric Setting
Exploration in a geometric setting with unknown
terrain and convex obstacles is considered by
Blum et al. [5]. They compare the distance
walked by the agent (or robot) to the length
of the shortest (obstacle-free) path in the scene
and describe and analyze robot strategies that
minimize this ratio for different kinds of scenes.
There is also related literature for exploration
in more general settings with polygonal and
rectangular obstacles by Deng et al. [7] and
Bar-Eli et al. [3], respectively. A setting that
is important in wireless networking is when
nodes are aware of their location. In this case,
Kranakis et al. [12] give efficient algorithms for
navigation, namely compass routing and face
routing that guarantee delivery in Delaunay and
arbitrary planar geometric graphs, respectively,
using only local information.
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Rendezvous
The rendezvous search problem differs from
the exploration problem in that it concerns two
searchers placed at different nodes of a graph that
want to minimize the time required to rendezvous
(usually) at the same node. At any given time
the mobile agents may occupy a vertex of the
graph and can either stay still or move from
vertex to vertex. It is of interest to minimize
the time required to rendezvous. A natural
extension of this problem is to study multi-
agent mobile systems. More generally, given
a particular agent model and network model, a set
of agents distributed arbitrarily over the nodes of
the network are said to rendezvous if executing
their programs after some finite time they all
occupy the same node of the network at the same
time. Of special interest is the highly symmetric
case of anonymous agents on an anonymous
network and the simplest interesting case is
that of two agents attempting to rendezvous on
a ring network. In particular, in the model studied
by Sawchuk [16] the agents cannot distinguish
between the nodes, the computation proceeds in
synchronous steps, and the edges of each node
are oriented consistently. The table summarizes
time/memory tradeoffs known for six algorithms
(see Kranakis et al. [13] and Flocchini et al. [10])
when the k mobile agents use indistinguishable
pebbles (one per mobile agent) to mark their
position in an n node ring.

Memory Time Memory Time

O.k log n/ O(n) O.log n/ O(n)

O.log n/ O(kn) O.log k/ O(n)

O.k log log n/ O
�

n log n

log log n

�
O.log k/ O.n log k/

Kranakis et al. [14] show a striking computa-
tional difference for rendezvous in an oriented,
synchronous, n 	 n torus when the mobile agents
may have more indistinguishable tokens. It is
shown that two agents with a constant number
of unmovable tokens, or with one movable token
each cannot rendezvous if they have o.log n/

memory, while they can perform rendezvous with
detection as long as they have one unmovable
token and O.log n/ memory. In contrast, when

two agents have two movable tokens each then
rendezvous (respectively, rendezvous with de-
tection) is possible with constant memory in
a torus. Finally, two agents with three movable to-
kens each and constant memory can perform ren-
dezvous with detection in a torus. If the condition
on synchrony is dropped the rendezvous problem
becomes very challenging. For a given initial
location of agents in a graph, De Marco et al. [6]
measure the performance of a rendezvous al-
gorithm as the number of edge traversals of
both agents until rendezvous is achieved. If the
agents are initially situated at a distance D in an
infinite line, they give a rendezvous algorithm
with cost O.DjLminj2/ when D is known and
O..D C jLmaxj/3/ if D is unknown, where jLminj
and jLmaxj are the lengths of the shorter and
longer label of the agents, respectively. These re-
sults still hold for the case of the ring of unknown
size but then they also give an optimal algorithm
of cost O.njLminj/, if the size n of the ring is
known, and of cost O.njLmaxj/, if it is unknown.
For arbitrary graphs, they show that rendezvous is
feasible if an upper bound on the size of the graph
is known and they give an optimal algorithm of
cost O.DjLminj/ if the topology of the graph and
the initial positions are known to the agents.

Applications

Interest in mobile agents has been fueled by two
overriding concerns. First, to simplify the com-
plexities of distributed computing, and second
to overcome the limitations of user interface ap-
proaches. Today they find numerous applications
in diverse fields such as distributed problem solv-
ing and planning (e.g., task sharing and coordina-
tion), network maintenance (e.g., daemons in net-
working systems for carrying out tasks like mon-
itoring and surveillance), electronic commerce
and intelligence search (e.g., data mining and
surfing crawlers to find products and services
from multiple sources), robotic exploration (e.g.,
rovers, and other mobile platforms that can ex-
plore potentially dangerous environments or even
enhance planetary extravehicular activity), and
distributed rational decision making (e.g., auction
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protocols, bargaining, decision making). The in-
terested reader can find useful information in sev-
eral articles in the volume edited by Weiss [18].

Open Problems

Specific directions for further research would
include the study of time/memory tradeoffs in
search game models (see Alpern and Gal [2]).
Multi-agent systems are particularly useful for
content-based searches and exploration, and fur-
ther investigations in this area would be fruitful.
Memory restricted mobile agents provide a rich
model with applications in sensor systems. In
the geometric setting, navigation and routing in
a three dimensional environment using only local
information is an area with many open problems.
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Problem Definition

The verification of monadic second-order (MSO)
graph properties, equivalently, the model-
checking problem for MSO logic over finite
binary relational structures, is fixed-parameter
tractable (FPT) where the parameter consists of
the formula that expresses the property and the
tree-width or the clique-width of the input graph
or structure. How to build usable algorithms for
this problem? The proof of the general theorem
(an algorithmic meta-theorem, cf. [12]) is based
on the description of the input by algebraic terms
and the construction of finite automata that accept
the terms describing the satisfying inputs. But
these automata are in practice much too large
to be constructed [11, 14]. A typical number
of states is 2210

, and lower bounds match this
number. Can one use automata and overcome
this difficulty?

Key Results

We propose to use fly-automata (FA) [3]. They
are automata whose states are described and not
listed and whose transitions are computed on
the fly and not tabulated. When running on a
term of size 1,000, a fly-automaton with 2210

states computes only 1,000 transitions if it is
deterministic. FA can have infinitely many states.
For example, a state can record, among other
things, the (unbounded) number of occurrences
of a particular symbol in the input term. FA can

thus check certain graph properties that are not
monadic second-order expressible. An example
is regularity, the fact that all vertices have the
same degree. Furthermore, an FA equipped with
an output function that maps the set of accept-
ing states to an effectively given domain D can
compute a value, for example, the number of k-
colorings of the given graph G or the minimum
cardinality of one of the k color classes if G

is k-colorable (this number measures how close
this graph is to be .k � 1/-colorable). We have
implemented and tested an FA that computes the
number of 3-colorings of a graph.

Tree-width and clique-width are graph com-
plexity measures that serve as parameters in many
FPT algorithms [7, 8, 10]. Both are based on
hierarchical decompositions of graphs that can
be expressed by terms written with the opera-
tion symbols of appropriate graph algebras [6].
The model-checking automata take such terms
as inputs. We will present results concerning
graphs of bounded clique-width. The similar re-
sults for graphs of bounded tree-width reduce
to them as we will explain at the end of this
section.

Graph Algebras and Monadic
Second-Order Logic
Graphs are finite, undirected, and without loops
and multiple edges. The extension to directed
graphs, possibly with loops and/or labels, is
straightforward. A graph G is identified with
the relational structure hVG ; edgGi where edgG

is a binary symmetric relation representing
adjacency.

Rather than giving a formal definition of
monadic second-order (MSO) logic, we present
the closed formula expressing 3-colorability (an
NP-complete property). It is 9X; Y:Col.X; Y /

where Col.X; Y / is the formula

X \ Y D ; ^ 8u; v:fedg.u; v/ H)
Œ:.u 2 X ^ v 2 X/ ^ :.u 2 Y ^ v 2 Y / ^ :.u … X [ Y ^ v … X [ Y /�g:

This formula expresses that X; Y and VG �
.X[Y / are the three color classes of a 3-coloring.

The corresponding colors are respectively 1, 2,
and 3.
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Definition 1 (The graph algebra G)

(a) We will use NC as a set of labels called
port labels. A p-graph is a triple G D
hVG; edgG ; �Gi where �G is a mapping:
VG ! NC. If �G.x/ D a; we say that x is
an a-port. The set �.G/ of port labels of G

is its type. By using a default label, say 1, we
make every nonempty graph into a p-graph
of type f1g.

(b) We let Fk be the following finite set of
operations on p-graphs of type included in
C WD f1; : : : ; kg � NC W
• The binary symbol ˚ denotes the union

of two disjoint p-graphs,
• The unary symbol relaba!b denotes the

relabelling that changes every port label
a into b (where a; b 2 C ),

• The unary symbol adda;b , for a < b,
a; b 2 C; denotes the edge addition that
adds an edge between every a-port x and
every b-port y (unless there is already an
edge between them, our graphs have no
multiple edges),

• For each a 2 C; the nullary symbol a
denotes an isolated a-port.

(c) Every term t in T .Fk/ (the set of finite terms
written with Fk) is called a k-expression. Its
value is a p-graph, val.t/, that we now define.
For each position u of t (equivalently, each
node u of the syntax tree of t), we define
a p-graph val.t/=u, whose vertex set is the
set of leaves of t below u. The definition
of val.t/=u is, for fixed t , by bottom-up
induction on u:
• If u is an occurrence of a, then val.t/=u

has vertex u as an a-port and no edge,
• If u is an occurrence of ˚ with sons u1

and u2, then val.t/=u WD val.t/=u1 ˚
val.t/=u2 (note that val.t/=u1 and
val.t/=u2 are disjoint),

• If u is an occurrence of relaba!b with son
u1; then val.t/=u WD relaba!b.val.t/=u1/;

• If u is an occurrence of adda;b with son
u1; then val.t/=u WD adda;b.val.t/=u1/:

Finally, val.t/ WD val.t/=roott . Its vertex
set is the set of all leaves (occurrences of
nullary symbols). For an example, let

t WDadd1
b;c.add2

a;b.a3 ˚4 b5/˚6 relab7
b!c

.add8
a;b.a9 ˚10 b11///

where the superscripts 1–11 number the
positions of t . The p-graph val.t/ is
3a � 5b � 11c � 9a where the subscripts
a; b; c indicate the port labels. (For clarity,
port labels are letters in examples.) If
u WD 2 and w WD 8, then t=u D t=w D
adda;b.a ˚ b/; however, val.t/=u is the p-
graph 3a � 5b and val.t/=w is 9a � 11b,
isomorphic to val.t/=u.

(d) The clique-width of a graph G, denoted by
cwd.G/; is the least integer k such that G is
isomorphic to val.t/ for some t in T .Fk/. We
denote by Gk the set val.T .Fk// of p-graphs
that are the value of a term over Fk : We let F

be the union of the sets Fk and G be the union
of the sets Gk . Every p-graph is isomorphic to
a graph in G, hence, has a clique-width.

(e) An F-congruence is an equivalence relation
� on p-graphs such that:
• Two isomorphic p-graphs are equivalent,

and
• If G � G0 and H � H 0, then

�.G/ D �.G0/, G ˚ H � G0 ˚
H 0, adda;b.G/ � adda;b.G0/ and
relaba!b.G/ � relaba!b.G0/.

(f) A set of graphs L is recognizable if it is a
union of classes of an F -congruence such
that, for each finite type C � NC, the
number of equivalence classes of p-graphs of
type C is finite.

Definition 2 (Fly-automata)

(a) Let H be a finite or countable, effectively
given, signature. A fly-automaton over H

(in short, an FA over H ) is a 4-tuple A D
hH; QA; ıA; AccAi such that QA is the fi-
nite or countable, effectively given, set of
states; AccA is the set of accepting states, a
decidable subset of QA; and ıA is a com-
putable function that defines the transition
rules: for each tuple .f; q1; : : : ; qm/ with
q1; : : : ; qm 2 QA, f 2 H , �.f / D m � 0,
ıA.f; q1; : : : ; qm/ is a finite set of states. We
write f Œq1; : : : ; qm�! q (and f ! q if f is
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nullary) to mean that q 2 ıA.f; q1; : : : ; qm/.
We say that A is finite if H and QA are finite.

(b) Runs and recognized languages are defined
as usual; see [1]. A deterministic FA A
(by “deterministic” we mean “deterministic
and complete”) has a unique run on each term
t , and qA.t/ is the state reached at the root
of t . The mapping qA is computable, and the
membership in L.A/ of a term t 2 T .H/ is
decidable.

(c) Every FA A that is not deterministic can
be determinized by an easy extension of the
usual construction, see [3]; it is important
that the sets ıA.f; q1; : : : ; qm/ be finite.

(d) A deterministic FA over H with output func-
tion is a 4-tuple A D hH; QA; ıA; OutAi
that is a deterministic FA where AccA is
replaced by a total and computable output
function OutA: QA ! D such that D is
an effectively given domain. The function
computed by A is Comp.A/ W T .H/ ! D
such that Comp.A/.t/ WD OutA.qA.t//.

Example 1 The number of accepting runs of an
automaton.

Let A D hH; QA; ıA; AccAi be a nondeter-
ministic FA. We construct a deterministic FA B
that computes the number of accepting runs of A
on any term in T .H/. As set of states QB, we
take the set of finite subsets of QA 	 NC: The
transitions are defined so that B reaches state ˛

at the root of t 2 T .H/ if and only if ˛ is the
finite set of pairs .q; n/ 2 QA 	 NC such that
n is the number of runs of A that reach state q

at its root. This number is finite and ˛ can be
seen as a partial function: QA ! NC having
a finite domain. For a symbol f of arity 2, B
has the transition: f Œ˛; ˇ� ! � where � is the
set of pairs .q; n/ such that n is the sum of the
integers np :nr over all pairs .p; r/ 2 QA 	QA
such that .p; np/ 2 ˛, .r; nr / 2 ˇ and q 2
ıA.f; p; r/. The transitions for other symbols are

defined similarly. The function OutA maps a state
˛ to the sum of the integers n such that .q; n/ 2
˛ \ .AccA 	 NC/:ut
Example 2 An FA for checking 3-colorability.

In order to construct an FA that accepts the
terms t 2 T .F / such that val.t/ is 3-colorable,
we first construct an FA A for the property
Col.X; Y /. For this purpose, we transform F

into F .2/ by replacing each nullary symbol a by
the four nullary symbols .a; ij /, i; j 2 f0; 1g.
A term t 2 T .F .2// defines, first, the graph
val.t 0/ where t 0 is obtained from t by removing
the Booleans i; j from the nullary symbols and,
second, the pair .VX ; VY / such that VX is the set
of vertices u (leaves of t) that are occurrences
of .a; 1j / for some a and j and VY is the set
of those that are occurrences of .a; i1/ for some
a and i . The set of terms t 2 T .F .2// such
that Col.VX ; VY / holds in val.t 0/ is defined by a
deterministic FA A that we now specify. Its states
are Error and the finite subsets of NC 	 f1; 2; 3g.
Their meanings are as follows:

• At position u of t; the automaton reaches state
Error if and only if val.t 0/=u has a vertex in
VX \ VY or an edge between two vertices,
either both in VX or both in VY or both in
VG � .VX [ VY /, hence of the same color,
respectively 1, 2, or 3;

• It reaches state ˛ � NC 	 f1; 2; 3g if and only
if these conditions do not hold and ˛ is the set
of pairs .a; i/ such that val.t 0/=u has an a-port
of color i .

All states except Error are accepting. Here are
the transitions of A:

.a; 00/! f.a; 3/g; .a; 10/! f.a; 1/g;

.a; 01/! f.a; 2/g; .a; 11/! Error:

For ˛; ˇ � NC 	 f1; 2; 3g, A has transitions:

˚ Œ˛; ˇ�! ˛ [ ˇ;

adda;bŒ˛�! Error; if .a; i/ and .b; i/ belong to ˛ for some i D 1; 2; 3;

adda;bŒ˛�! ˛; otherwise ;

relaba!bŒ˛�! ˇ; obtained by replacing a by b in each pair of ˛:
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Its other transitions are ˚Œ˛; ˇ� ! Error if
˛ or ˇ is Error, adda;bŒError� ! Error, and
relaba!bŒError�! Error.

This FA checks Col.X; Y /. To check,
9X; Y:Col.X; Y /; we build a nondeterministic
FA B by deleting the state Error, by replacing
the first three rules of A by a ! f.a; 3/g; a !
f.a; 1/g; a ! f.a; 2/g, and by deleting those
that yield Error. All states are accepting, but on
some terms, no run can reach the root, and these
terms are rejected. Furthermore, the construction
of Example 1 shows how to make B into a
deterministic FA that computes the number of
3-colorings, because the 3-colorings of val.t/
are in bijection with the accepting runs of B
on t . ut

Recognizability Theorem: The set of graphs
that satisfy a closed MSO formula ' is
F -recognizable.

Weak Recognizability Theorem: For every
closed MSO formula ', for every k, the set of
graphs in Gk that satisfy ' is Fk-recognizable.

About proofs: The Recognizability Theorem
is Theorem 5.68 of [6]. Its proof shows that
the equivalence defined by the fact that the two
considered p-graphs have the same type and sat-
isfy the same closed MSO formulas of quantifier
height at most that of ' satisfies the conditions
of Definition 1(f). (These formulas have unary
predicates for expressing port labels.) The Weak
Recognizability Theorem follows from the for-
mer one. It can be proved directly by constructing
an FA over F [3]. (We construct a single FA, not
a particular FA for each subsignature Fk as in
Theorem 6.35 of [6].) This construction can be
implemented, at least in a number of nontrivial
cases. The proof of the strong theorem does not
provide any usable automaton.

Counting and Optimizing Automata
Let P.X1; : : : ; Xs/ be an MSO property of vertex
sets X1; : : : ; Xs . We denote .X1; : : : ; Xs/ by X

and t ˆ P.X/ means that X satisfies P in the
graph val.t/ defined by a term t . We are interested
not only to check the validity of 9X:P.X/ but

also to compute from a term t the following
values:

#X:P.X/, defined as the number of assignments
X such that t ˆ P.X/,
SpX:P.X/, the spectrum of P.X/, defined as the
set of tuples of the form .jX1j; : : : ; jXsj/ such
that t ˆ P.X/,
MSpX:P.X/, the multispectrum of P.X/, de-
fined as the multiset of tuples .jX1j; : : : ; jXs j/
such that t ˆ P.X/.

These computations can be done by FA. The
construction for #X:P.X/ is similar to that of
Example 1. We obtain in this way FPT or XP
algorithms [8, 10].

Edge Set Quantifications and Tree-Width
The two recognizability theorems and the corre-
sponding constructions of FA yielding FPT and
XP algorithms hold and can be done for graphs
of bounded tree-width and MSO formulas with
edge set quantifications: it suffices to replace
a graph G by its incidence graph Inc.G/, a
bipartite graph whose vertices are those of G

and its edges, to observe that the clique-width
of Inc.G/ is bounded in terms of the tree-width
of G and that an MSO formula with edge set
quantifications over G can be translated into an
MSO formula over Inc.G/. Another approach is
in [2].

BeyondMS Logic
The property that the considered graph is the
union of two disjoint regular graphs with possibly
some edges between these two subgraphs is not
MSO expressible but can be checked by an FA.
An FA can also compute the minimal number of
edges between X and VG � X such that GŒX�

and GŒVG�X� are connected, when such a set X

exists.

Open Problems

The parsing problem for graphs of clique-
width at most k is NP-complete (with k in
the input) [9]. Good heuristics remain to be
developed.
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Experimental Results

These constructions have been implemented and
tested [3–5]. We have computed the number of
optimal colorings of graphs of clique-width at
most 8 for which the chromatic polynomial is
known, which allows to verify the correctness of
the automaton. We can verify in, respectively, 35
and 105 min that the 20	 20 and the 6	 60 grids
are 3-colorable. In 29 min, we can verify that the
McGee graph (24 vertices) given by a term over
F10 is acyclically 3-colorable.

A different approach using games is presented
in [13].
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Problem Definition

Many complex networks of interests such as the
Internet, social, and biological networks exhibit
the community structure where nodes are natu-
rally clustered into tightly connected communi-
ties, with only sparser connections between them.
The modularity maximization is concerned with
finding such community structures in a given
complex network.

Consider a network represented as an undi-
rected graph G D .V; E/ consisting of n D jV j
vertices and m D jEj edges. The adjacency
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matrix of G is denoted by A D �
Aij

�
, where

Aij is the weight of edge .i; j / and Aij D 0 if
.i; j / … E. We also denote the (weighted) degree
of vertex i , the total weights of edges incident at
i , by deg.i/ or, in short, di .

Community structure (CS) is a division of
the vertices in V into a collection of disjoint
subsets of vertices C D fC1; C2; : : : ; Clg (with
unspecified l) where

Sl
iD1 Ci D V . Each subset

Ci � V is called a community, and we wish to
have more edges connecting vertices in the same
communities than edges that connect vertices in
different communities. The modularity [7] of C
is the fraction of the edges that fall within the
given communities minus the expected number of
such fraction if edges were distributed at random.
The randomization of the edges is done so as to
preserve the degree of each vertex. If vertices i

and j have degrees di and dj , then the expected

number of edges between i and j is di dj

2M
. Thus,

the modularity, denoted by Q, is then

Q.C/ D 1

2M

X

ij

�
Aij � didj

2M

	
ıij (1)

where M is the total edge weights and the ele-
ment ıij of the membership matrix ı is defined
as

ıij D
(

1; if i and j are in the same community

0; otherwise

The modularity values can be either positive
or negative, and the higher (positive) modular-
ity values indicate stronger community structure.
Therefore, the maximizing modularity problem
asks us to find a division C which maximizes the
modularity value Q.C/.

Key Results

Computational Complexity
This problem is different from the partition
problem as we do not know the total number
of partitions beforehand. That being said, l is
unspecified. Somewhat surprisingly, modularity

maximization is still NP-complete on trees, one
of the simplest graph classes.

Theorem 1 Modularity maximization on trees is
NP-complete.

The proof has been presented in [3], reducing
from the subset-sum problem. Furthermore, for
dense graphs, namely, for the complements of
3-regular graphs, DasGupta and Desai have pro-
vided a .1C�/-inapproximability of the modular-
ity maximization problem [1], stated as follows.

Theorem 2 It is NP-hard to approximate the
modularity maximization problem on .n � 4/�
regular graphs within a factor of i C � for some
constant � > 0.

The proof has been presented in [1], reduc-
ing from the maximum-cardinality-independent
set problem for 3-regular graphs (3-MIS). The
basic intuition behind this proof is that large-size
cliques must be properly contained within the
communities.

Exact Solutions
Although the problem is in NP class, efficient
algorithms to obtain optimal solutions for small
size networks are still of interest. Dinh and Thai
have presented an exact algorithm with a run-
ning time of O.n5/ to the problem on uniform-
weighted trees [3]. The algorithm is based on
the dynamic programming, which exploits the
relationship between maximizing modularity and
minimizing the sum of squares of component
volumes, where volume of a component S is
defined as vol.S/ DPv2S dv.

When the input graph is not a tree, an exact
solution based on integer linear programming
(ILP) is provided by Dinh and Thai [3]. Note that
in the ILP for modularity maximization, there is
a triangle inequality xij C xjk � xik � 0 to
guarantee the values of xij be consistent to each
other. Here xij D 0 if i and j are in the same
community; otherwise xij D 0. Therefore, the
ILP has 3

�
n
3

� D �.n3/ constraints, which is about
half a million constraints for a network of 100
vertices. As a consequence, the sizes of solved
instances were limited to few hundred nodes.
Along this direction, Dinh and Thai have pre-
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sented a sparse metric, which reduces the number
of constraints to O.n2/ in sparse networks where
m D O.n/ [3].

Approximation Algorithms
When G is a tree, the problem can be solved by a
polynomial time approximation scheme (PTAS)
with a running time of O.n�C1/ for � > 0

[3]. The PTAS is solely based on the following
observation. Removing k � 1 edges in G will
yield k connected communities and Qk � .1 �
1
k

/Qopt where Qk is the maximum modularity of
a community structure with k communities and
Qopt is the optimal solution.

When G having the degree distribution fol-
lows the power law, i.e., the fraction of nodes
in the network having k degrees is proportional
to k�� , where 1 < � � 4, the problem can
be approximated to a constant factor for � > 2

and up to an O.1= log n/ when 1 < � � 2 [2].
The details of this algorithm, namely, low-degree
following (LDF), is presented in Algorithm 1.

Algorithm 1 Low-degree following algorithm
(parameter d0 2 N

C)
1. L WD ;; M WD ;; O WD ;; pi D 0 8i D 1::n
2. for each vertex i 2 V do
3. if .ki � d0/&.i … L[M/ then
4. if N.i/ nM ¤ ; then
5. Select a vertex j 2 N.i/ nM
6. Let

M DM [ fig; L D L[ fj g; pi D j
7. else
8. Select a vertex t 2 N.i/
9. O D O [ fig; pi D t

10. L D ;
11. for each vertex i 2 V n .M [O/ do
12. CiDfig [ fj 2M jpj D ig[ft 2 O j ppt

D ig
13. L D L[ fCi g
14. Return L

The selection of d0 is important to derive
the approximation factor as d0 needs to be a
sufficient large constant that is still relative small
to n when n tends to infinity. In an actual im-
plementation of the algorithm, Dinh and Thai
have designed an automatic selection of d0 to
maximize Q. LDF can be extended to solve the
problem in directed graphs [2].

Theorem 3 ([1]) There exists an O.log d/-
approximation for d -regular graphs with
d < n

2 ln n
and O.log dmax/-approximation for

weighted graphs dmax <
p

n

16 ln n
.

Modularity in Dynamic Networks
Networks in real life are very dynamic, which
requires us to design an adaptive approximation
algorithm to solve the problem. In this approach,
the community structure (CS) at time t is detected
based on the community structure at time t �
1 and the changes in the network, instead of
recomputing it from scratch. Indeed, the above
LDF algorithm can be enhanced to cope with
this situation [4]. At first LDF is run to find the
base CS at time 0. Then at each time step, we
adaptively follow and unfollow the nodes that
violate the condition 3 in Algorithm 1.

Applications

Finding community structures has applications in
vast domains. For example, a community in bi-
ology networks often consists of proteins, genes,
or subunits with functional similarity. Thus, find-
ing communities can help to predict unknown
proteins. Likewise, in online social networks, a
community can be a group of users having com-
mon interests; therefore, obtaining CS can help
to predict user interests. Furthermore, detect-
ing CS finds itself extremely useful in deriving
social-based solutions for many network prob-
lems, such as forwarding and routing strategies
in communication networks, Sybil defense, worm
containment on cellular networks, and sensor
reprogramming. In the network visualization per-
spective, finding CS helps display core network
components and their mutual interactions, hence
presents a more compact and understandable de-
scription of the network as a whole.
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Problem Definition

A minimal perfect hash function is a (data struc-
ture providing a) bijective map from a set S of
n keys to the set of the first n natural numbers.
In the static case (i.e., when the set S is known

in advance), there is a wide spectrum of solutions
available, offering different trade-offs in terms of
construction time, access time, and size of the
data structure.

An important distinction is whether any bi-
jection will be suitable or whether one wants it
to respect some specific property. A monotone
minimal perfect hash function (MMPHF) is one
where the keys are bit vectors and the function is
required to preserve their lexicographic order.

Sometimes in the literature, this situation is
identified with the one in which the set S has
some predefined linear order and the bijection is
required to respect the order: in this case, one
should more precisely speak of order-preserving
minimal perfect hash functions; for this scenario,
a ready-made ˝.n log n/ space lower bound is
trivially available (since all the nŠ possible key
orderings must be representable). This is not true
in the monotone case, so the distinction between
monotone and order preserving is not moot.

Problem Formulation
Let Œx� denote the set of the first x natural num-
bers. Given a positive integer u D 2w, and a set
S � Œu� with jS j D n, a function h W S ! Œm�

is perfect iff it is injective, minimal iff m D n,
and monotone iff x � y implies h.x/ � h.y/.
In the following, we assume to work in the RAM
model with words of length w. For simplicity, we
will describe only the case in which the keys have
fixed length w; the results can be extended to the
general case [2].

Key Results

One key building block that is needed to describe
the possible approaches to the problem is that
of storing an arbitrary r-bit function h W S !
Œ2r � in a succinct way (i.e., using rn C o.n/

bits and guaranteeing constant access time). A
practical (although slightly less efficient) method
for storing a succinct function f W S ! Œ2r � was
presented in [8]. The construction draws three
hash functions h0; h1; h2 W S ! Œ�n� (with
� � 1:23) and builds a 3-hypergraph with one
hyperedge .h0.x/; h1.x/; h2.x// for every x 2
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B0 B1 B2 B3

s0 0001001000000 s3 0010011000000 s6 0010011010100 s9 0010011110110
s1 0010010101100 s4 0010011001000 s7 0010011010101 s10 0100100010000
s2 0010010101110 s5 0010011010010 s8 0010011010110

MonotoneMinimal Perfect Hash Functions, Fig. 1 A
toy example: S D fs0; : : : ; s10g is divided into three
buckets of size three (except for the last one that contains

just two elements), whose delimiters D D fs2; s5; s8g
appear in boldface

d0 W

s0 2
s1 2
s2 2
s3 8
s4 8
s5 8
s6 11
s7 11
s8 11
s9 1
s10 1

d1 W
00 0
00100110 1
001001101012
0 3

Monotone Minimal Perfect Hash Functions, Fig. 2
Bucketing with longest common prefix for the set S of
Fig. 1: d0 maps each element x of S to the length of the
longest common prefix of the bucket to which x belongs;
d1 maps each longest common prefix to the bucket index

S . With positive probability, this hypergraph does
not have a nonempty 2-core; or, equivalently, the
set of equations (in the variables ai )

f .x/ D �ah0.x/ C ah1.x/ C ah2.x/

�
mod 2r

has a solution that can be found by a hypergraph-
peeling process in time O.n/. Storing the func-
tion amounts to storing �n integers of r bits each
(the array ai ), so �rn bits are needed (excluding
the bits required to store the hash functions),
and it is possible to improve this amount to
�n C rn using standard techniques [2]; function
evaluation takes constant time (one essentially
just needs to evaluate three hash functions). We
shall refer to this data structure as an MWHC
function (from the name of the authors). Alterna-
tive, asymptotically more efficient data structures
for the same purpose are described in [3, 4].

Trivial Solution
MWHC functions can themselves be used to
store a MMPHF (setting r D dlog ne and using
the appropriate function f ). This idea (requiring
�ndlog ne bits) is also implied in the original
paper [8], where the authors actually present their

construction as a solution to the order-preserving
minimal perfect hash function problem.

A Constant-Time,O.n log w/-Space
Solution
More sophisticated approaches are based on the
general technique of bucketing: a distributor
function f W S ! Œm� is stored, which divides
the set of keys into m buckets respecting the
lexicographic order; then, for every bucket
i 2 Œm�, a MMPHF gi on f �1.i/ is stored as
a succinct function. Different choices for the
distributor and the bucket sizes provide different
space/time trade-offs.

A constant-time solution can be obtained
using buckets of equal size b D O.log n/. Let
B0; : : : ; Bm�1 be the unique order-preserving
partition of S into buckets of size b and pi

be the longest common prefix of the keys in
Bi ; Fig. 1 shows an example with b D 3. It is
easy to see that the pi ’s are all distinct, which
allows us to build a succinct function d1 mapping
pi 7! i . Moreover, we can store a succinct
function d0 W S ! Œw� mapping x to the length
of the longest common prefix pi of the bucket
Bi containing x. The two functions together
form the distributor (given x one applies d1

to the prefix of x of length d0.x/); see Fig. 2.
The space required by d0 and d1 is O.n log w/

and O..n=b/ log.n=b// D O.n/, respectively.
The functions gi ’s require

P
i O.jBi j log b/ D

O.n log log n/ D O.n log w/ bits. The overall
space requirement is thus O.n log w/; optimal
values for b when using MWHC functions are
computed in [2].

AO.log w/-Time,O.n log log w/-Space
Solution
In search for a better space bound, we note that
an obvious alternative approach to the bucketing
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Monotone Minimal Perfect Hash Functions, Fig. 3
The standard compacted trie built from the set D of Fig. 1.
This data structure can be used to rank arbitrary elements
of the universe with respect to D: when the trie is visited
with an element not in D, the visit will terminate at an exit

node, determining that the given element is to the left (i.e.,
smaller than) or to the right (i.e., larger than) all the leaves
that descend from that node. The picture shows, for each
element of S , the node where the visit would end

problem is by ranking. Given a set of strings X ,
a ranking data structure provides, for each string
s 2 Œu�, the number of strings in X that are
smaller than s, that is, jf x 2 X j x < s gj.
If you consider the set D of delimiters (i.e., the
set containing the last string of each bucket), a
distributor can be built using any data structure
that provides the rank of an arbitrary string with
respect to D.

For instance, a trivial way to obtain such
rank information is to build a compacted trie [7]
containing the strings in D (see Fig. 3). Much
more sophisticated data structures are obviously
available today (e.g., [6]), but they all fail to
meet their purpose in our case. They occupy too
much space, and we do not really need to rank
all possible strings: we just need to rank strings
in S . We call this problem the relative ranking
problem: given sets D � S , we want to rank a
string s w.r.t. D under the condition that s belongs
to S .

The relative ranking problem can be
approached in different ways: in particular, a
static probabilistic z-fast trie [1] provides a O.n/-
space, O.log w/-time solution for buckets of size
O.log w/ (the trie can actually provide a wrong
output for a small set of keys; their correct output
needs to be stored separately – see [1] for details).

The functions gi ’s require O.n log log w/ bits,
which dominates the space bound.

Different Approaches
Other theoretical and practical solutions, corrob-
orated with experimental data, were described
in [2].

Open Problems

Currently, the main open problem about mono-
tone minimal perfect hashing is that all known
lower bounds are trivial; in particular, the lower
bound n log e C log w � O.log n/ by Fredman
and Komlós (provided that u D 2w � n2C�

for some fixed � > 0) for minimal perfect hash
functions [5] is of little help – it is essentially
independent from the size of the universe. We
already know that the dependence on the size
of the universe can be really small (as small as
O.n log log w/ bits), but it is currently conjec-
tured that there is no monotone minimal perfect
hashing scheme whose number of bits per key is
constant in the size of the universe.
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URLs to Code and Datasets

The most comprehensive implementation of
MMPHFs is contained in the Sux4J Java
free library (http://sux4j.di.unimi.it/). A good
collection of datasets is available by the LAW
(http://law.di.unimi.it/) under the form of list of
URLs from web crawls and list of ids from social
networks (e.g., Wikipedia): these are typical use
cases of a MMPHF.
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Problem Definition

A real-valued function f W D ! R defined over
a partially ordered set (poset) D is monotone if
f .x/ � f .y/ for any two points x � y. In
this article, we focus on the poset induced by
the coordinates of a d -dimensional, n-hypergrid,
Œn�d , where x � y iff xi � yi for all integers
1 � i � d . Here, we have used Œn� as a shorthand
for f1; : : : ; ng. The hypercube, f0; 1gd , and the n-
line, Œn�, are two special cases of this.

Monotonicity testing is the algorithmic prob-
lem of deciding whether a given function is
monotone. The algorithm has query access to the
function, which means that it can query f at any
domain point x and obtain the value of f .x/.
The performance of the algorithm is measured
by the number of queries it makes. Although the
running time of the algorithm is also important,
we ignore this parameter in this article because
in most relevant cases it is of the same order of
magnitude as the query complexity. We desire
algorithms whose query complexity is bounded
polynomially in d and log n.

Monotonicity is a fundamental property. In
one dimension, monotone functions correspond
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to sorted arrays. In many applications it may be
useful to know if an outcome of a procedure
monotonically changes with some or all of its
attributes. In learning theory, for instance, mono-
tone concepts are known to require fewer samples
to learn; it is useful to test beforehand if a concept
is monotone or not.

Property Testing Framework
It is not too hard to see that, without any extra
assumptions, monotonicity testing is infeasible
unless almost the entire input is accessed. There-
fore, the problem is studied under the property
testing framework where the goal is to distinguish
monotone functions from those which are “far”
from monotone. A function f is said to be �-far
from being monotone if it needs to be modified on
at least �-fraction of the domain points to make it
monotone.

Formally, the monotonicity testing problem
is defined as follows. Given an input distance
parameter �, the goal is to design a q.d; n; �/-
query tester which is a randomized algorithm that
queries the function on at most q.d; n; �/ points
and satisfies the following requirements:

(a) If the function is monotone, the algorithm
accepts.

(b) If the function is �-far from being monotone,
the algorithm rejects.

The tester can err in each of the above cases but
the error probability should be at most 1=3. If a
tester never rejects a monotone function, then it is
called a one-sided error tester. If the queries made
by the tester do not depend on the function values
returned by the previous queries, then the tester
is called a nonadaptive tester. The function q is
called the query complexity of the monotonicity
tester, and one is interested in (ideally matching)
upper and lower bounds for it.

Key Results

Monotonicity testing was first studied by Ergun
et al. [7] for functions defined on the n-line, that

is, the case when d D 1. The authors designed an
O.��1 log n/-query tester.

Goldreich et al. [9] studied monotonicity
testing over the hypercube f0; 1gn and designed
an O.��1d/-query tester for Boolean functions.
These are functions whose range is f0; 1g.
This tester repeats the following edge test
O.��1d/ times: sample an edge of the hypercube
uniformly at random, query the function values
at its endpoints, and check if these two points
violate monotonicity. That is, if x � y and
f .x/ > f .y/, where x; y are the queried points.
If at any time a violation is found, the tester
rejects; otherwise it accepts. Clearly, this tester is
nonadaptive and with one-sided error. Goldreich
et al. [9] also demonstrated an O.��1d log n/-
query tester for Boolean functions defined over
the d -dimensional n-hypergrid. This tester also
defines a distribution over comparable pairs (not
necessarily adjacent) of points, that is, points
x; y with x � y. In each iteration, it samples a
pair from the distribution, queries the function
value on these points, and checks for a violation
of monotonicity. Such testers are called pair
testers.

Goldreich et al. [9] showed a range reduction
theorem which states that if there exists a
pair tester for Boolean functions over the
hypergrid whose query complexity has linear
dependence on �, that is q.d; n; �/ D ��1q.d; n/,
then such a tester could be extended to
give an O.��1q.d; n/jRj/-query tester for
real-valued functions, where R is the range
of the real-valued function. Note that jRj
could be as large as 2n. Dodis et al. [6]
obtained a stronger range reduction theorem
and showed an O.��1q.d; n/ log jRj/-query
tester under the same premise. This implied an
O.��1d log n log jRj/-query monotonicity tester
for the hypergrid.

Recently, Chakrabarty and Seshadhri [3] re-
moved the dependence on the range size exhibit-
ing an O.��1d log n/-query monotonicity tester
for any real-valued function. In fact, the tester
in their paper is the same as the tester defined
in [9] alluded to above. In a separate paper, the
same authors [4] complemented the above result
by showing that any tester (adaptive and with
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two-sided error) for monotonicity with distance
parameter � must make ˝.��1d log n/-queries.

Sketch of the Techniques
In this section, we sketch some techniques used
in the results mentioned above. For simplicity,
we restrict ourselves to functions defined on the
hypercube.

To analyze their tester, Goldreich et al. [9]
used the following shifting technique from com-
binatorics to convert a Boolean function f to a
monotone function. Pick any dimension i and
look at all the violated edges whose endpoints
differ precisely in this dimension. If .x � y/ is
a violation, then since f is Boolean, it must be
that f .x/ D 1 and f .y/ D 0. For every such
violation, redefine f .x/ D 0 and f .y/ D 1. Note
that once dimension i is treated so, there is no vi-
olation across dimension i . The crux of the argu-
ment is that for any other dimension j , the num-
ber of violated edges across that dimension can
only decrease. Therefore, once all dimensions are
treated, the function becomes monotone, and the
number of points at which it has been modified
is at most twice the number of violated edges in
the beginning. In other words, if f is �-far, then
the number of violated edges is at least �2d�1.
Therefore, the edge test succeeds with probability
at least �=d since the total number of edges is
d2d�1.

The fact that treating one dimension does not
increase the number of violated edges across any
other dimension crucially uses the fact that the
function is Boolean and is, in general, not true
for all real-valued functions. The range reduction
techniques of [6,9] convert a real-valued function
to a collection of Boolean ones with certain
properties, and the size of the collection, which
is jRj in [9] and O.log jRj/ in [6], appears as the
extra multiplicative term in the query complexity.

The technique of Chakrabarty and Se-
shadhri [3] to handle general real-valued
functions departs from the above in that it does
not directly fix a function to make it monotone.
Rather, they use the connection between the
distance to monotonicity and matchings in the
violation graph Gf which was defined by [6].
The vertices of Gf are the domain points, and

.x; y/ is an edge in Gf if and only if .x; y/ is a
violation to monotonicity of f . A folklore result,
which appears in print in [8], is that the distance
to monotonicity of f is precisely the cardinality
of the minimum vertex cover of Gf divided by
the domain size. This, in turn, implies that if f

is �-far, then any maximal matching in Gf must
have cardinality at least �2d�1.

Chakrabarty and Seshadhri [3] introduce the
notion of the weighted violation graph Gf where
the weight of .x � y/ is defined as .f .x/ �
f .y//. They prove that the number of violated
edges of the hypercube is at least the size of the
maximum weight matching M � in Gf . Since M �
is also maximal, this shows that the number of
violated edges is at least �2d�1. The proof of [3]
follows by charging each matched pair of points
in M � differing in the i th dimension to a distinct
violated edge across the i th dimension.

BooleanMonotonicity Testing
Let us go back to Boolean functions defined over
the hypercube. Recall that Goldreich et al. [9]
designed an O.��1d/-query tester for such
functions. Furthermore, their analysis is tight:
there are functions for which the edge tester’s
success probability is �.�=d/. The best known
lower bound [8], however, is that any nonadaptive
tester with one-sided error with respect to a
specific constant distance parameter requires
˝.
p

d/ queries, and any adaptive, one-sided
error tester required ˝.log d/-queries.

Chakrabarty and Seshadhri [2] obtained
the first o.d/-query tester: they describe an
O.d 7=8��3=2 ln.1=�// query tester for Boolean
functions defined over the hypercube. The tester
is a combination of the edge test and what the
authors call the path test – in each step one of
the two is performed with probability 1=2. The
path test is the following. Orient all edges in
the hypercube to go from the point with fewer
1s to the one with more 1s. Sample a random
directed path from the all-0s point to the all-
1s point. Sample two points x; y on this path
which (a) have “close” to d=2 ones, and (b)
are “sufficiently” far away from each other.
Query f .x/; f .y/ and check for a violation to
monotonicity.
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Chakrabarty and Seshadhri [2] obtain the fol-
lowing result for the path tester. If in the hyper-
cube (and not the violation graph), there exists
a matching of violated edges whose cardinality
equals �2d , then the path test catches a violation
with probability roughly ˝.�3=

p
d/. Although

this is good if � is large, say a constant, the
analysis above does not give better testers for
functions with small � . The authors circumvent
this via the following dichotomy theorem. Given
a function f with distance parameter �, let the
number of violated edges be ı2n; from the result
of Goldreich et al. [9], we know that ı � �.
Chakrabarty and Seshadhri [2] prove that if for
any function f the quantity � is small, then
ı must be large. In particular, they prove that
ı� � �2=32. Therefore, for any function, either
the edge test or the path test succeeds with prob-
ability !.1=d/.

Very recent work settles the question of non-
adaptive, Boolean monotonicity testing. Chen,
De, Servedio, and Tan [5] prove that any non-
adaptive, monotonicity tester for Boolean func-
tions needs to make ˝.d

1
2�c/-queries for any

constant c > 0, even if it is allowed to have two-
sided error. Khot, Minzer, and Safra [10] gener-
alize the dichotomy theorem of Chakrabarty and
Seshadhri [2] to obtain a O.d 1=2��2/-query, non-
adaptive monotonicity tester with one-sided error.

Open Problems

The query complexity of adaptive monotonicity
testers for Boolean valued functions is not well
understood. The best upper bounds are that of
nonadaptive testers, while the best lower bound
is only ˝.log d/. Understanding whether adap-
tivity helps in Boolean monotonicity testing or
not is an interesting open problem. Recent work
of Berman, Raskhodnikova, and Yaroslavtsev [1]
sheds some light: they show that any nonadaptive,
one-sided error monotonicity tester for functions
f W Œn� 	 Œn� ! f0; 1g, that is, functions
defined over the two-dimensional grid, requires
˝. 1

�
log

�
1
�

�
/ queries where � is the distance

parameter; on the other hand, they also demon-

strate an adaptive, one-sided error monotonicity
tester for such functions which makes only O. 1

�
/

queries.
In this article, we only discussed the poset

defined by the n-hypergrid. The best known tester
for functions defined over a general N -element
poset is an O.

p
N=�/ tester, while the best lower

bound is ˝.N
1

log log N / for nonadaptive testers.
Both results are due to Fischer et al. [8], and
closing this gap is a challenging problem.
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Problem Definition

A multi-armed bandit is a sequential decision
problem defined on a set of actions. At each time
step, the decision maker selects an action from
the set and obtains an observable payoff. The
goal is to maximize the total payoff obtained in
a sequence of decisions. The name bandit refers
to the colloquial term for a slot machine (“one-
armed bandit” in American slang) and to the
decision problem, faced by a casino gambler, of
choosing which slot machine to play next. Ban-
dit problems naturally address the fundamental
trade-off between exploration and exploitation
in sequential experiments. Indeed, the decision
maker must use a strategy (called allocation pol-
icy) able to balance the exploitation of actions
that did well in the past with the exploration
of actions that might give higher payoffs in the

future. Although the original motivation came
from clinical trials [14] (when different treat-
ments are available for a certain disease and
one must decide which treatment to use on the
next patient), bandits have often been used in
industrial applications, for example, to model the
sequential allocation of a unit resource to a set of
competing tasks.

Definitions and Notation
A bandit problem with K � 2 actions is specified
by the processes hXi;ti that, at each time step
t D 1; 2; : : : , assign a payoff Xi;t to each action
i D 1; : : : ; K . An allocation policy selects at
time t an action It 2 f1; : : : ; Kg, possibly using
randomization, and receives the associated payoff
XIt ;t . Note that the index It of the action selected
by the allocation policy at time t can only depend
on the set XI1;1; : : : ; XIt�1;t�1 of previously ob-
served payoffs (and on the policy’s internal ran-
domization). It is this information constraint that
creates the exploration vs. exploitation dilemma
at the core of bandit problems.

The performance of an allocation policy over
a horizon of T steps is typically measured against
that of the policy that consistently plays the
optimal action for this horizon. This notion of
performance, called regret, is formally defined by

RT D max
iD1;:::;K

E

"
TX

tD1

Xi;t �
TX

tD1

XIt ;t

#
: (1)

The expectation in (1) is taken with respect to
both the policy’s internal randomization and the
potentially stochastic nature of the payoff pro-
cesses. Whereas we focus here on payoff pro-
cesses that are either deterministic or stochastic
i.i.d., other choices have been also considered.
Notable examples are the Markovian payoff pro-
cesses [8] or the more general Markov decision
processes studied in reinforcement learning.

If the processes hXi;ti are stochastic i.i.d. with
unknown expectations �1; : : : ; �K , as in Rob-
bins’ original formalization of the bandit prob-
lem [13], then
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max
iD1;:::;K

E

"
TX

tD1

Xi;t

#
D T

�
max

iD1;:::;K
�i

	
D T��

where �� D maxi �i is the highest expected
payoff. In this case, the regret (1) becomes the
stochastic regret

RIID
T D T�� �

TX

tD1

E


�It

�
: (2)

On the other hand, if the payoff processes hXi;ti
are fixed, deterministic sequences of unknown
numbers xi;t , then (1) becomes the nonstochastic
regret

RDET
T D max

iD1;:::;K

TX

tD1

xi;t �
TX

tD1

E


xIt ;t

�
(3)

where the expectation is only with respect to
the internal randomization used by the allocation
policy. This nonstochastic version of the bandit
problem is directly inspired by the problem of
playing repeatedly an unknown game – see the
pioneering work of Hannan [9] and Blackwell [5]
on repeated games and also the recent literature
on online learning.

The analyses in [2, 3] assume bounded pay-
offs, Xi;t 2 Œ0; 1� for all i and t . Under this
assumption, RT D O.T / irrespective of the
allocation policy being used. The main problem
is to determine the optimal allocation policies
(the ones achieving the slowest regret growth)
for the stochastic and the deterministic case. The
parameters that are typically used to express the
regret bounds are the horizon T and the number
K of actions.

Key Results

Consider first the stochastic i.i.d. bandits
with K � 2 actions and expected payoffs
EŒXi;t � D �i for i D 1; : : : ; K and t � 1.
Also, let �i D �� � �i (where, as before,
�� D maxiD1;:::;K �i ). A simple instance of
stochastic bandits are the Bernoulli bandits,

where payoffs Xi;1; Xi;2; : : : for each action
are i.i.d. Bernoulli random variables. Lai and
Robbins [11] prove the following asymptotic
lower bound on RT for Bernoulli bandits.
Let Ni;T D ˇ̌ft D 1; : : : ; T g It D i

ˇ̌
be the

number of times the allocation policy selected
action i within horizon T , and let KL.�; �0/ be
the Kullback-Leibler divergence between two
Bernoulli random variables of parameter � and
�0.

Theorem 1 ([11]) Consider an allocation policy
that, for any Bernoulli bandit with K � 2 actions,
for any action i with �i < ��, and for any a > 0,
satisfies EŒNi;T � D o

�
T a
�
. Then, for any choice

of �1; : : : ; �K ,

lim inf
T!1

RIID
T

ln T
�

X

i W�i >0

�i

KL.�i ; ��/
:

This shows that when �1; : : : ; �K are fixed and
T ! 1, no policy can have a stochastic regret
growing slower than �.K ln T / in a Bernoulli
bandit. For any fixed horizon T , the following
stronger lower bound holds.

Theorem 2 ([3]) For all K � 2 and any horizon
T , there exist �1; : : : ; �K such that any allo-
cation policy for the Bernoulli bandit with K

actions suffers a stochastic regret of at least

RIID
T �

1

20

p
KT : (4)

Note that Yao’s minimax principle immediately
implies the lower bound ˝

�p
KT

�
on the non-

stochatic regret RDET
T .

Starting with [11], several allocation policies
have been proposed that achieve a stochastic
regret of optimal order K ln T . The UCB algo-
rithm of [2] is a simple policy achieving this
goal nonasymptotically. At each time step t , UCB
selects the action i , maximizing X i;tCCi;t . Here
X i;t is the sample average of payoffs in previous
selections of i , and Ci;t is an upper bound on the
length of the confidence interval for the estimate
of �i at confidence level 1 � 1

t
.
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Theorem 3 ([2]) There exists an allocation pol-
icy that for any Bernoulli bandit with K � 2

actions satisfies

RIID
T �

X

i W�i >0

�
8

�i

ln T C 2

	
for all T .

The same result also applies to any stochastic
i.i.d. bandit with payoffs bounded in Œ0; 1�. A
comparison with Theorem 2 can be made by
removing the dependence on �i in the upper
bound of Theorem 3. Once rewritten in this way,
the bound becomes RIID

T � 2
p

KT ln T , showing
optimality (up to log factors) of UCB even when
the values �1; : : : ; �K can be chosen as a func-
tion of a target horizon T .

A bound on the nonstochastic regret matching
the lower bound of Theorem 2 up to log fac-
tors is obtained via the randomized Exp3 policy
introduced in [3]. At each time step t , Exp3
selects each action i with probability propor-
tional to exp

�
�t
bX i;t

�
, where bX i;t is an impor-

tance sampling estimate of the cumulative payoff
xi;1 C � � � C xi;t�1 (recall that xi;t is only ob-
served if It D i ) and the parameter �t is set top

.ln K/=.tK/.

Theorem 4 ([3]) For any bandit problem with
K � 2 actions and deterministic payoffs hxi;ti,
the regret of the Exp3 algorithm satisfies RDET

T �
2
p

KT ln K for all T .

Variants
The bandit problem has been extended in several
directions. For example, in the pure exploration
variant of stochastic bandits [6], a different notion
of regret (called simple regret) is used. In this
setting, at the end of each step t , the policy has to
output a recommendation Jt for the index of the
optimal action. The simple regret of the policy for
horizon T is then defined by rT D �� � E�JT

.
The term adaptive adversary is used to de-

note a generalized nonstochastic bandit problem
where the payoff processes of all actions are rep-
resented by a deterministic sequence f1; f2; : : :

of functions. The payoff at time t of action
i is then defined by ft .I1; : : : ; It�1; i /, where
I1; : : : ; It�1 is the sequence of actions selected

by the policy up to time t�1. In the presence of an
adaptive adversary, the appropriate performance
measure is policy regret [1].

In the setting of contextual bandits [15], at
each time step the allocation policy has access
to side information (e.g., in the form of a feature
vector). Here regret is not measured with respect
to the best action, but rather with respect to the
best mapping from side information to actions in
a given class of such mappings.

If the set of action in a regular bandit is very
large, possibly infinite, then the regret can be
made small by imposing dependencies on the
payoffs. For instance, the payoff at time t of
each action a is defined by ft .a/, where ft is an
unknown function. Control on the regret is then
achieved by making specific assumptions on the
space of actions a and on the payoff functions
ft (e.g., linear, Lipschitz, smooth, convex, etc.)
– see, e.g., [4, 7] for early works in this direction.

Applications

Bandit problems have an increasing number of
industrial applications particularly in the area
of online services, where one can benefit from
adapting the service to the individual sequence of
requests. A prominent example of bandit appli-
cation is online advertising. This is the problem
of deciding which advertisement to display on
the web page delivered to the next visitor of a
website. A related problem is website optimiza-
tion, which deals with the task of sequentially
choosing design elements (font, images, layout)
of the web page to be displayed to the next
visitor. Another important application area is that
of personalized recommendation systems, where
the goal is to choose what to show from multiple
content feeds in order to match the user’s interest.
In these applications, the payoff is associated
with the users’s actions, e.g., click-throughs or
other desired behaviors – see, e.g., [12]. Bandits
have been also applied to the problem of source
routing, where a sequence of packets must be
routed from a source host to a destination host in
a given network, and the network protocol allows
to choose a specific source-destination path for
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each packet to be sent. The (negative) payoff is
the time it takes to deliver a packet and depends
additively on the congestion of the edges in the
chosen path – see, e.g., [4]. A further application
area is computer game playing, where each move
is chosen by simulating and evaluating many
possible game continuations after the move. Al-
gorithms for bandits (more specifically, for a tree-
based version of the bandit problem) can be used
to explore more efficiently the huge tree of game
continuations by focusing on the most promising
subtrees. This idea has been successfully imple-
mented in the MoGo player, which plays Go at
the world-class level. MoGo is based on the UCT
strategy for hierarchical bandits [10], which in
turn builds on the UCB allocation policy.
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Problem Definition

Three related optimization problems derived
from the classical edge disjoint paths problem
(EDP) are described. An instance of EDP
consists of an undirected graph G D .V; E/

and a multiset T D fs1t1; s2t2; : : : ; sk tkg of k
node pairs. EDP is a decision problem: can the
pairs in T be connected (alternatively routed)
via edge-disjoint paths? In other words, are there
paths P1; P2; : : : ; Pk such that for 1 � i � k; Pi

is path from si to ti, and no edge e 2 E is in
more than one of these paths? EDP is known
to be NP-Complete. This article considers there
maximization problems related to EDP.

• Maximum Edge-Disjoint Paths Problem
(MEDP). Input to MEDP is the same as for
EDP. The objective is to maximize the number
of pairs in T that can be routed via edge-
disjoint paths. The output consists of a subset
S � f1; 2; : : : ; kg and for each i 2 S a path
Pi connecting si to ti such that the paths are
edge-disjoint. The goal is to maximize jSj.

• Maximum Edge-Disjoint Paths Problem
with Congestion (MEDPwC). MEDPwC is
a relaxation of MEDP. The input, in addition
to G and the node pairs, contains an integer
congestion parameter c. The output is the
same for MEDP; a subset S � f1; 2; : : : ; kg
and for each i 2 S a path Pi connecting si

to ti. However, the paths Pi ; 1 � i � k are
not required to be edge-disjoint. The relaxed
requirement is that for each edge e 2 E,
the number of paths for the routed pairs that
contain e is at most c. Note that MEDPwC
with c D 1 is the same as MEDP.

• All-or-Nothing Multicommodity Flow
Problem (ANF). ANF is a different relaxation
of MEDP obtained by relaxing the notion of
routing. A pair si ti is now said to be routed
if a unit flow is sent from si to ti (potentially
on multiple paths). The input is the same as
for MEDP. The output consists of a subset
S � f1; 2; : : : ; kg such that there is a feasible
multicommodity flow in G that routes one
unit of flow for each pair in S. The goal is to
maximize jSj.

In the rest of the article, graphs are assumed
to be undirected multigraphs. Given a graph
G D .V; E/ and S � V , let ıG(S) denote
the set of edges with exactly one end point
in S. Let n denote the number of vertices in the
input graph.

Key Results

A few results in the broader literature are re-
viewed in addition to the results from [5]. EDP
is NP-Complete when k is part of the input.
A highly non-trivial result of Robertson and Sey-
mour yields a polynomial time algorithm when k
is a fixed constant.

Theorem 1 ([16]) There is a polynomial time
algorithm for EDP when k is a fixed constant
independent of the input size.

Using Theorem 1 it is easy to see that
MEDP and MEDPwC have polynomial time
algorithms for fixed k. The same holds for
ANF by simple enumeration since the decision
version is polynomial-time solvable via linear
programming.

The focus of this article is on the case when k
is part of the input, and in this setting, all three
problems considered are NP-hard. The starting
point for most approximation algorithms is the
natural multicommodity flow relaxation given
below. This relaxation is valid for both MEDP
and ANF. The end points of the input pairs are
referred to as terminals and let X denote the set
of terminals. To describe the relaxation as well as
simplify further discussion, the following simple
assumption is made without loss of generality;
each node in the graph participates in at most
one of the input pairs. This assumption implies
that the input pairs induce a matching M on the
terminal set X. Thus the input for the problem can
alternatively given as a triple .G; X; M /.

For the given instance .G; X; M /, let Pi de-
note the set of paths joining si and ti in G and let
P D [iPi . The LP relaxation has the following
variables. For each path P 2 P there is a variable
f(P) which is the amount of flow sent on P. For
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each pair si ti there is a variable xi to indicate the
total flow that is routed for the pair.

.MCF � LP/ max
kX

iD1

xi s:t

xi �
X

P2Pi

f .P / D 0 1 � i � k

X

P We2P

f .P / � 1 8e 2 E

xi ; f .P / 2 Œ0; 1�1 � i � k; P 2 P

The above path formulation has an exponential
(in n) number of variables, however it can still
be solved in polynomial time. There is also an
equivalent compact formulation with a polyno-
mial number of variables and constraints. Let
OPT denote the value of an optimum solution to
a given instance. Similarly, let OPT-LP denote the
value of an optimum solution the LP relaxation
for the given instance. It can be seen that OPT-
LP � OPT. It is known that the integrality gap
of (MCF-LP) is ˝.

p
n/ [10]; that is, there is

an infinite family of instances such that OP T �
LP=OP T D ˝.

p
n. The current best approx-

imation algorithm for MEDP is given by the
following theorem.

Theorem 2 ([7]) The integrality gap of (MCF-
LP) for MEDP is �.

p
n/ and there is an O.

p
n/

approximation for MEDP.

For MEDPwC the approximation ratio improves
with the congestion parameter c.

Theorem 3 ([18]) There is an O.n1=c/ approx-
imation for MEDPwC with congestion parame-
ter c. In particular there is a polynomial time
algorithm that routes ˝.OPT � LP=n1=c/ pairs
with congestion at most c.

The above theorem is established via randomized
rounding of a solution to (MCF-LP). Similar
results, but via simpler combinatorial algorithms,
are obtained in [2, 15].

In [5] a new framework was introduced to
obtain approximation algorithm for routing prob-
lems in undirected graphs via (MCF-LP). A key

part of the framework is the so-called well-linked
decomposition that allows a reduction of an arbi-
trary instance to an instance in which the termi-
nals satisfy a strong property.

Definition 1 Let G D .V; E/ be a graph. A sub-
set X � V is cut-well-linked in G if for every
S � V , jıG.S/j � minfjS \X j; j.V nS/\X jg.
X is flow-well-linked if there exists a feasible frac-
tional multicommodity flow in G for the instance
in which there is a demand of 1/jXj for each
unordered pair uv; u; v 2 X .

The main result in [5] is the following.

Theorem 4 ([5]) Let .G; X; M / be an instance
of MEDP or ANF and let OPT-LP be the
value of an optimum solution to (MCF-LP)
on .G; X; M /. There there is a polynomial
time algorithm that obtains a collection of
instances .G1; X1; M1/; .G2; X2; M2/; : : : ;

.Gh; Xh; Mh/ with the following properties:

• The graphs G1; G2; : : : ; Gh are node-disjoint
induced subgraphs of G. For 1 � i � h; Xi �
X and Mi �M .

• For 1 � i � h; Xi is flow-well-linked in Gi.
•
Ph

iD1 jXi j D ˝.OPT� LP= log2 n/.

For planar graphs and graphs that exclude a fixed
minor, the above theorem gives a stronger
guarantee:

Ph
iD1 jXi j D ˝.OPT � LP= log n/.

A well-linked instance satisfies a strong
symmetry property based on the following
observation. If A is flow-well-linked in G then
for any matching J on X, OPT-LP on the instance
.G; A; J / is ˝.jAj/. Thus the particular matching
M of a given well-linked instance .G; X; M / is
essentially irrelevant. The second part of the
framework in [5] consists of exploiting the well-
linked property of the instances produced by the
decomposition procedure. At a high level this
is done by showing that if G has a well-linked
set X, then it contains a “crossbar” (a routing
structure) of size ˝.jX j=poly.log n//. See [5]
for more precise definitions. Techniques for the
second part vary based on the problem as well as
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the family of graphs in question. The following
results are obtained using Theorem 4 and other
non-trivial ideas for the second part [3–5, 8].

Theorem 5 ([5]) There is an O.log2 n/ approx-
imation for ANF. This improves to an O.log n/

approximation in planar graphs.

Theorem 6 ([5]) There is an O.log n/ approxi-
mation for MEDPwC in planar graphs for c � 2.
There is an O.log n/ approximation for ANF in
planar graphs.

Theorem 7 ([8]) There is an O.r log n log r/

approximation for MEDP in graphs of treewidth
at most r.

Generalizations and Variants
Some natural variants and generalizations of the
problems mentioned in this article are obtained
by considering three orthogonal aspects: (i) node
disjointness instead of edge-disjointness, (ii) ca-
pacities on the edges and/or nodes, and (iii) de-
mand values on the pairs (each pair si ti has an
integer demand di and the objective is to route di

units of flow between si and ti). Results similar to
those mentioned in the article are shown to hold
for these generalizations and variants [5]. Capac-
ities and demand values on pairs are somewhat
easier to handle while node-disjoint problems
often require additional non-trivial ideas. The
reader is referred to [5] for more details.

For some special classes of graphs (trees,
expanders and grids to name a few), constant
factor or poly-logarithmic approximation ratios
are known for MEDP.

Applications

Flow problems are at the core of combinatorial
optimization and have numerous applications in
optimization, computer science and operations
research. Very special cases of EDP and MEDP
include classical problems such as single-
commodity flows, and matchings in general
graphs, both of which have many applications.
EDP and variants arise most directly in telecom-
munication networks and VLSI design. Since
EDP captures difficult problems as special cases,
there are only a few algorithmic tools that can
address the numerous applications in a unified
fashion. Consequently, empirical research tends
to focus on application specific approaches to
obtain satisfactory solutions. The flip side of the
difficulty of EDP is that it offers a rich source of
problems, the study of which has led to important
algorithmic advances of broad applicability, as
well as fundamental insights in graph theory,
combinatorial optimization, and related fields.

Open Problems

A number of very interesting open problems
remain regarding the approximability of the prob-
lems discussed in this article. Table 1 gives the
best known upper and lower bounds on the ap-
proximation ratio as well as integrality gap of
(MCF-LP). All the inapproximability results in
Table 1, and the integrality gap lower bounds
for MEDPwC and ANF, are from [1]. The inap-
proximability results are based on the assumption
that NP 6� ZTIME.npoly.log n//. Closing the gaps
between the lower and upper bounds are the
major open problems.

Multicommodity Flow, Well-linked Terminals
and Routing Problems, Table 1 Known bounds for
MEDP, ANF and MEDPwC in general undirected graphs.

The best upper bound on the approximation ratio is the
same as the upper bound on the integrality gap of (MCF-
LP)

Integrality gap of (MCF-LP) Approximation ratio

Upper bound Lower bound Lower bound

MEDP O.
p

n/ ˝.
p

n/ ˝.log1=2�� n/

MEDPwC O.n1=c/ ˝.log.1��/=.cC1/ n/ ˝.log.1��/=.cC1/ n/

ANF O.log2 n/ ˝.log1=2�� n/ ˝.log1=2�� n/
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Problem Definition

The Multicut problem is a natural generalization
of the s-t mincut problem – given an undirected
capacitated graph G D .V; E/ with k pairs of
vertices fsi ; ti g; the goal is to find a subset
of edges of the smallest total capacity whose
removal from G disconnects si from ti for every
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i 2 f1; � � � ; kg. However, unlike the Mincut
problem which is polynomial-time solvable, the
Multicut problem is known to be NP-hard and
APX-hard for k � 3 [6].

This problem is closely related to the Multi-
Commodity Flow problem. The input to the latter
is a capacitated network with k commodities
(source-sink pairs); the goal is to route as much
total flow between these source-sink pairs as pos-
sible while satisfying capacity constraints. The
maximum multi-commodity flow in a graph can
be found in polynomial time via linear program-
ming, and there are also several combinatorial
FPTASes known for this problem [7, 9, 11].

It is immediate from the definition of Multi-
cut that the multicommodity flow in a graph is
bounded above by the capacity of a minimum
multicut in the graph. When there is a single
commodity to be routed, the max-flow min-cut
theorem of Ford and Fulkerson [8] states that
the converse also holds: the maximum s-t flow
in a graph is exactly equal to the minimum s-
t cut in the graph. This duality between flows
and cuts in a graph has many applications and, in
particular, leads to a simple algorithm for finding
the minimum cut in a graph.

Given its simplicity and elegance, several at-
tempts have been made to extend this duality
to other classes of flow and partitioning prob-
lems. Hu showed, for example, that the min-
multicut equals the maximum multi-commodity
flow when there are only two commodities in
the graph [12]. Unfortunately, this property does
not extend to graphs with more than two com-
modities. The focus has therefore been on obtain-
ing approximate max-multicommodity flow min-
multicut theorems. Such theorems would also
imply a polynomial-time algorithm for approxi-
mately computing the capacity of the minimum
multicut in a graph.

Key Results

Garg, Vazirani and Yannakakis [10] were the first
to obtain an approximate max-multicommodity
flow min-multicut theorem. They showed that
the maximum multicommodity flow in a graph

is always at least an O.log k/ fraction of the
minimum multicut in the graph. Moreover, their
proof of this result is constructive. That is, they
also provide an algorithm for computing a mul-
ticut for a given graph with capacity at most
O.log k/ times the maximum multicommodity
flow in the graph. This is the best approxima-
tion algorithm known to date for the Multicut
problem.

Theorem 1 Let M denote the minimum multicut
in a graph with k commodities and f denote
the maximum multicommodity flow in the graph.
Then

M

O.log k/
� f �M :

Moreover, there is a polynomial time algorithm
for finding an O.log k/-approximate multicut in
a graph.

Furthermore, they show that this theorem is tight
to within constant factors. That is, there are fam-
ilies of graphs in which the gap between the
maximum multicommodity flow and minimum
multicut is �.log k/.

Theorem 2 There exists a infinite family of mul-
ticut instances f.Gk; Pk/g such that for all k, the
graph Gk D .Vk ; Ek/ contains k vertices and
Pk � Vk	Vk is a set of ˝(k 2) source-sink pairs.
Furthermore, the maximum multicommodity flow
in the instance .Gk; Pk/ is O.k= log k/ and the
minimum multicut is ˝(k).

Garg et al. also consider the Sparsest Cut problem
which is another partitioning problem closely
related to Multicut, and provided an approxima-
tion algorithm for this problem. Their results for
Sparsest Cut have subsequently been improved
upon [3, 15]. The reader is referred to the entry
on � Sparsest Cut for more details.

Applications

A key application of the Multicut problem is
to the 2CNF � Deletion problem. The latter is
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a constraint satisfaction problem in which given
a weighted set of clauses of the form P � Q,
where P and Q are literals, the goal is to delete
a minimum weight set of clauses so that the re-
maining set is satisfiable. The 2CNF � Deletion
problem models a number of partitioning prob-
lems, for example the Minimum Edge-Deletion
Graph Bipartization problem – finding the mini-
mum weight set of edges whose deletion makes
a graph bipartite. Klein et al. [14] showed that
the 2CNF � Deletion problem reduces in an ap-
proximation preserving way to Multicut. There-
fore, a �-approximation to Multicut implies a �-
approximation to 2CNF � Deletion. (See the
survey by Shmoys [16] for more applications.)

Open Problems

There is a big gap between the best-known
algorithm for Multicut and the best hardness
result (APX-hardness) known for the prob-
lem. Improvements in either direction may
be possible, although there are indications
that the O.log k/ approximation is the best
possible. In particular, Theorem 2 implies
that the integrality gap of the natural linear
programming relaxation for Multicut is �.log k/.
Although improved approximations have been
obtained for other partitioning problems using
semi-definite programming instead of linear
programming, Agarwal et al. [1] showed that
similar improvements cannot be achieved for
Multicut – the integrality gap of the natural SDP-
relaxation for Multicut is also �.log k/. On the
other hand, there are indications that the APX-
hardness is not tight. In particular, assuming the
so-called Unique Games conjecture, it has been
shown that Multicut cannot be approximated to
within any constant factor [4, 13]. In light of these
negative results, the main open problem related
to this work is to obtain a super-constant hardness
for the Multicut problem under a standard
assumption such as P ¤ NP .

The Multicut problem has also been
studied in directed graphs. The best known
approximation algorithm for this problem is
an O.n11=23 logO.1/ n/-approximation due to

Aggarwal, Alon and Charikar [2], while on the
hardness side, Chuzhoy and Khanna [5] show that
there is no 2˝.log1�� n/ approximation, for any
� > 0, unless NP�ZPP. Chuzhoy and Khanna
also exhibit a family of instances for which the
integrality gap of the natural LP relaxation of
this problem (which is also the gap between the
maximum directed multicommodity flow and the
minimum directed multicut) is ˝.n1=7/.
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Problem Definition

Let c be a given compression algorithm, and let
c(D) be the result of c compressing data D. The

compressed search problem with compression al-
gorithm c is defined as follows.

INPUT: Compressed text c.T / and pattern P.
OUTPUT: All locations in T where pattern P
occurs.

A compressed matching algorithm is optimal if
its time complexity is O.jc.T /j/.

Although optimality in terms of time is al-
ways important, when dealing with compres-
sion, the criterion of extra space is perhaps
more important (Ziv, Personal communication,
1995). Applications employ compression tech-
niques specifically because there is a limited
amount of available space. Thus, it is not suffi-
cient for a compressed matching algorithm to be
optimal in terms of time, it must also satisfy the
given space constraints. Space constraints may
be due to limited amount of disk space (e.g., on
a server), or they may be related to the size of the
memory or cache. Note that if an algorithm uses
as little extra space as the size of the cache, the
runtime of the algorithm is also greatly reduced
as no cache misses will occur [13]. It is also
important to remember that in many applications,
e.g., LZ compression on strings, the compression
ratio – jS j=jc.S/j – is a small constant. In a case
where the compression ratio of the given text
is a constant, an optimal compressed matching
performs no better than the naive algorithm of
decompressing the text. However, if the con-
stants hidden in the “big O” are smaller than the
compression ratio, then the compressed matching
does offer a practical benefit. If those constants
are larger than the optimal the compressed search
algorithm may, in fact, be using more space than
the uncompressed text.

Definition 1 (inplace) A compressed matching
is said to be inplace if the extra space used is
proportional to the input size of the pattern.

Note that this definition encompasses the com-
pressed matching model (e.g., [2]) where the
pattern is input in uncompressed form, as well
as the fully compressed model [10], where the
pattern is input in compressed form. The inplace
requirement allows the extra space to be the input
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size of the pattern, whatever that size may be.
However, in many applications the compression
ratio is a constant; therefore, a stronger space
constraint is defined.

Definition 2 Let AP be the set of all patterns
of size m, and let c.AP/ be the set of all com-
pressed images of AP. Let m0 be the length of
the smallest pattern in c.AP/. A compressed
matching algorithm with input pattern P of length
m is called strongly inplace if the amount of extra
space used is proportional to m0.

The problem as defined above is equally
applicable to textual (one-dimensional), image
(two-dimensional), or any type of data, such as
bitmaps, concordances, tables, XML data, or any
possible data structure.

The compressed matching problem is consid-
ered crucial in image databases, since they are
highly compressible. The initial definition of the
compressed matching paradigm was motivated
by the two dimensional run-length compression.
This is the compression used for fax transmis-
sions. The run-length compression is defined as
follows.

Let S D s1s2 � � � sn be a string over some al-
phabet ˙ . The run-length compression of string
S is the string S 0 D �

r1

1 �
r2

2 � � ��rk

k
such that (1)

�i ¤ �iC1 for 1 � i < k and (2) S can be de-
scribed as the concatenation of k segments, the
symbol �1 repeated r1 times, the symbol �2

repeated r2 times, : : :, and the symbol �k repeated
rk times. The two-dimensional run-length com-
pression is the concatenation of the run-length
compression of all the matrix rows (or columns).

The two-dimensional run-length compressed
matching problem is defined as follows:
INPUT: Text array T of size n 	 n, and pattern
array P of size m 	m both in two-dimensional
run-length compressed form.
OUTPUT: All locations in T of occurrences of P.
Formally, the output is the set of locations (i, j)
such that T Œi C k; j C l�DP Œk C 1; l C 1�k; lD
0 : : : m � 1 .

Another ubiquitous lossless two-dimensional
compression is CompuServe’s GIF standard,
widely used on the World Wide Web. It uses

LZW [19] (a variation of LZ78) on the image
linearized row by row.

The two-dimensional LZ compression is
formally defined as follows. Given an image
T Œ1 : : : n; 1 : : : n�, create a string Tlin Œ1 : : : n2�

by concatenating all rows of T. Compressing
Tlin with one-dimensional LZ78 yields the two-
dimensional LZ compression of the image T.

The two-dimensional LZ compressed match-
ing problem is defined as follows:
INPUT: Text array T of size n 	 n, and pattern
array P of size m 	m both in two-dimensional
LZ compressed form.
OUTPUT: All locations in T of occurrences of
P. Formally, the output is the set of locations (i,
j) such that T Œi C k; j C l� D P Œk C 1; l C 1�

k; l D 0 : : : m � 1.

Key Results

The definition of compressed search first ap-
peared in the context of searching for two di-
mensional run-length compression [1, 2]. The
following result was achieved there.

Theorem 1 (Amir and Benson [3]) There exists
an O.jc.T /j log jc.T /j/ worst-case time solution
to the compressed search problem with the two
dimensional run-length compression algorithm.

The above mentioned paper did not succeed
in achieving either an optimal or an inplace
algorithm. Nevertheless, it introduced the
notion of two-dimensional periodicity. As in
strings, periodicity plays a crucial rôle in two-
dimensional string matching, and its advent has
provided solutions to many longstanding open
problems of two-dimensional string matching.
In [5], it was used to achieve the first linear-
time, alphabet-independent, two-dimensional
text scanning. Later, in [4, 16] it was used in
two different ways for a linear-time witness table
construction. In [7] it was used to achieve the
first parallel, time and work optimal, CREW
algorithm for text scanning. A simpler variant of
periodicity was used by [11] to obtain a constant-
time CRCW algorithm for text scanning. A recent
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further attempt has been made [17] to generalize
periodicity analysis to higher dimensions.

The first optimal two-dimensional compressed
search algorithm was the following.

Theorem 2 (Amir et al. [6]) There exists an
O.jc.T /j/ worst-case time solution to the com-
pressed search problem with the two-dimensional
run-length compression algorithm.

Optimality was achieved by a concept the authors
called witness-free dueling. The paper proved
new properties of two-dimensional periodicity.
This enables duels to be performed in which no
witness is required. At the heart of the dueling
idea lies the concept that two overlapping occur-
rences of a pattern in a text can use the content
of a predetermined text position or witness in
the overlap to eliminate one of them. Finding
witnesses is a costly operation in a compressed
text; thus, the importance of witness-free dueling.

The original algorithm of Amir et al. [6]
takes time O.jc.T /j C jP j log �/, where ¢ is
min.jP j; j˙ j/, and ˙ is the alphabet. However
with the witness table construction of Galil and
Park [12] the time is reduced to O.jc.T /j C jP j/.
Using known techniques, one can modify their
algorithm so that its extra space is O.jP j/. This
creates an optimal algorithm that is also inplace,
provided the pattern is input in uncompressed
form. With use of the run-length compression,
the difference between jP j and jc.P /j can be
quadratic. Therefore it is important to seek an
inplace algorithm.

Theorem 3 (Amir et al. [9]) There exists an
O.jc.T /j C jP j log �/ worst-case time solution
to the compressed search problem with the two-
dimensional run-length compression algorithm,
where � ismin.jP j; j˙ j/, and ˙ is the alphabet,
for all patterns that have no trivial rows (rows
consisting of a single repeating symbol). The
amount of space used isO.jc.P /j/.

This algorithm uses the framework of the non-
compressed two dimensional pattern matching
algorithm of [6]. The idea is to use the dueling
mechanism defined by Vishkin [18]. Applying
the dueling paradigm directly to run-length com-

pressed matching has previously been considered
impossible since the location of a witness in the
compressed text cannot be accessed in constant
time. In [9], a way was shown in which a witness
can be accessed in (amortized) constant time,
enabling a relatively straightforward application
of the dueling paradigm to compressed matching.

A strongly inplace compressed matching algo-
rithm exists for the two-dimensional LZ compres-
sion, but its preprocessing is not optimal.

Theorem 4 (Amir et al. [8]) There exists an
O.jc.T /j C jP j3 log �/ worst-case time solution
to the compressed search problem with the two-
dimensional LZ compression algorithm, where
� ismin.jP j; j˙ j/, and ˙ is the alphabet. The
amount of space used is O(m), for anm 	m size
pattern. O(m) is the best compression achiev-
able for anym 	m sized pattern under the two-
dimensional LZ compression.

The algorithm of [8] can be applied to any two-
dimensional compressed text, in which the com-
pression technique allows sequential decompres-
sion in small space.

Applications

The problem has many applications since two-
dimensional data appears in many different types
of compression. The two compressions discussed
here are the run-length compression, used by fax
transmissions, and the LZ compression, used by
GIF.

Open Problems

Any lossless two-dimensional compression used,
especially one with a large compression ratio,
presents the problem of enabling the search with-
out uncompressing the data for saving of both
time and space.

Searching in two-dimensional lossy compres-
sions will be a major challenge. Initial steps in
this direction can be found in [14, 15], where
JPEG compression is considered.
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Problem Definition

Given two two-dimensional arrays, the text
T Œ1 : : : n; 1 : : : n� and the pattern P Œ1 : : : m;

1 : : : m�, m � n, both with element values from
alphabet ˙ of size � , the basic two-dimensional
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string matching (2DSM) problem is to find all
occurrences of P in T , i.e., all m	m subarrays of
T that are identical to P . In addition to the basic
problem, several types of generalizations are
considered: approximate matching (allow local
errors), invariant matching (allow global trans-
formations), and multidimensional matching.

In approximate matching, an occurrence is a
subarray S of the text, whose distance d.S; P /

from the pattern does not exceed a threshold
k. Different distance measures lead to different
variants of the problem. When no distance is
explicitly mentioned, the Hamming distance, the
number of mismatching elements, is assumed.

For one-dimensional strings, the most com-
mon distance is the Levenshtein distance, the
minimum number of insertions, deletions, and
substitutions for transforming one string into the
other. A simple generalization to two dimen-
sions is the Krithivasan–Sitalakshmi (KS) dis-
tance, which is the sum of row-wise Leven-
shtein distances. Baeza-Yates and Navarro [6]
introduced several other generalizations, one of
which, the RC distance, is defined as follows. A
two-dimensional array can be decomposed into
a sequence of rows and columns by removing
either the last row or the last column from the
array until nothing is left. Different decomposi-
tions are possible depending on whether a row
or a column is removed at each step. The RC
distance is the minimum cost of transforming a
decomposition of one array into a decomposition
of the other, where the minimum is taken over
all possible decompositions as well as all possi-
ble transformations. A transformation consists of
insertions, deletions, and modifications of rows
and columns. The cost of inserting or deleting
a row/column is the length of the row/column,
and the cost of modification is the Levenshtein
distance between the original and the modified
row/column.

The invariant matching problems search
for occurrences that match the pattern after
some global transformation of the pattern. In
the scaling invariant matching problem, an
occurrence is a subarray that matches the pattern
scaled by some factor. If only integral scaling
factors are allowed, the definition of the problem
is obvious. For real-valued scaling, a refined

model is needed, where the text and pattern
elements, called pixels in this case, are unit
squares on a plane. Scaling the pattern means
stretching the pixels. An occurrence is a matching
M between text pixels and pattern pixels. The
scaled pattern is placed on top of the text with
one corner aligned, and each text pixel T Œr; s�,
whose center is covered by the pattern, is matched
with the covering pattern pixel P Œr 0; s0�, i.e.,
.Œr; s�; Œr 0; s0�/ 2M .

In the rotation invariant matching problem,
too, an occurrence is a matching between text
pixels and pattern pixels. This time the center of
the pattern is placed at the center of a text pixel,
and the pattern is rotated around the center. The
matching is again defined by which pattern pixels
cover which text pixel centers.

All the problems can be generalized to more
than two dimensions. In the d -dimensional prob-
lem, the text is an nd array and the pattern an
md array. The focus is on two dimensions, but
multidimensional generalizations of the results
are mentioned when they exist.

Many other variants of the problems are omit-
ted here due to a lack of space. Some of them as
well as some of the results in this entry are sur-
veyed by Amir [1]. A wider range of problems as
well as traditional image processing techniques
for solving them can be found in [9].

Key Results

The classical solution to the 2DSM problem by
Bird [8] and independently by Baker [7] reduces
the problem to one-dimensional string matching.
It has two phases:

1. Find all occurrences of pattern rows on
the text rows and mark them. This takes
O.n2 log min.m; �// time using the Aho–
Corasick algorithm. On an integer alphabet
˙ D f0; 1; : : : ; � � 1g, the time can be
improved to O.n2Cm2 min.m; �/C�/ using
O.m2 min.m; �/C �/ space.

2. The pattern is considered a sequence of m

rows and each n 	 m subarray of the text a
sequence of n rows. The Knuth–Morris–Pratt
string matching algorithm is used for finding



Multidimensional String Matching 1371

M

the occurrences of the pattern in each subarray.
The algorithm makes O.n/ row comparisons
for each of the n �mC 1 subarrays. With the
markings from Step 1, a row comparison can
be done in constant time, giving O.n2/ time
complexity for Step 2.

The time complexity of the Bird–Baker
algorithm is linear if the alphabet size � is
constant. The algorithm of Amir, Benson, and
Farach [4] (with improvements by Galil and
Park [13]) achieves linear time independent of
the alphabet size using a quite different kind of
algorithm based on string matching by duels and
two-dimensional periodicity.

Theorem 1 (Bird [8]; Baker [7]; Amir, Benson,
and Farach [4]) The 2DSM problem can be
solved in the optimal O.n2/ worst-case time.

The Bird–Baker algorithm generalizes
straightforwardly into higher dimensions by
repeated application of Step 1 to reduce a
problem in d dimensions into n�mC1 problems
in d � 1 dimensions. The time complexity
is O.dnd log md /. The Amir–Benson–Farach
algorithm has been generalized to three
dimensions with the time complexity O.n3/ [14].

The average-case complexity of the 2DSM
problem was studied by Kärkkäinen and Ukko-
nen [16], who proved a lower bound and gave an
algorithm matching the bound.

Theorem 2 (Kärkkäinen and Ukkonen [16])
The 2DSM problem can be solved in the optimal
O.n2.log� m/=m2/ average-case time.

The result (both lower and upper bound)
generalizes to the d -dimensional case with
the �.nd log� m=md / average-case time
complexity.

Amir and Landau [3] give algorithms for ap-
proximate 2DSM problems for both the Ham-
ming distance and the KS distance. The RC
model was developed and studied by Baeza–
Yates and Navarro [6].

Theorem 3 (Amir and Landau [3]; Baeza–
Yates and Navarro [6]) The approximate 2DSM
problem can be solved in O.kn2/ worst-case time
for the Hamming distance, in O.k2n2/ worst-

case time for the KS distance, and in O.k2mn2/

worst-case time for the RC distance.

The results for the KS and RC distances gener-
alize to d dimensions with the time complexities
O.k.k C d/nd / and O.d Šm2d nd /, respectively.

Approximate matching algorithms with
good average-case complexity are described by
Kärkkäinen and Ukkonen [16] for the Hamming
distance and by Baeza–Yates and Navarro [6] for
the KS and RC distances.

Theorem 4 (Kärkkäinen and Ukkonen [16];
Baeza–Yates and Navarro [6]) The ap-
proximate 2DSM problem can be solved in
O.kn2.log� m/=m2/ average-case time for the
Hamming and KS distances and in O.n2=m/

average-case time for the RC distance.

The results for the Hamming and the RC
distance have d -dimensional generalizations with
the time complexities O.knd .log� md /=md /

and O.knd =md�1/, respectively.
The scaling and rotation invariant 2DSM

problems involve a continuous valued parameter
(scaling factor or rotation angle). However, the
corresponding matching between text and pattern
pixels changes only at certain points, and there
are only O.nm/ effectively distinct scales and
O.m3/ effectively distinct rotation angles. A
separate search for each distinct scale or rotation
would give algorithms with time complexities
O.n3m/ and O.n2m3/, but faster algorithms
exist.

Theorem 5 (Amir and Chencinski [2]; Amir,
Kapah, and Tsur [5]) The scaling invariant
2DSM problem can be solved in O.n2m/ worst-
case time, and the rotation invariant 2DSM prob-
lem in O.n2m2/ worst-case time.

Fast average-case algorithms for the rotation
invariant problem are described by Fredriksson,
Navarro, and Ukkonen [12]. They also consider
approximate matching versions.

Theorem 6 (Fredriksson, Navarro, and Ukko-
nen [12]) The rotation invariant 2DSM problem
can be solved in the optimal O.n2.log� m/=m2/

average-case time. The rotation invariant approx-
imate 2DSM problem can be solved in the optimal
O.n2.k C log� m/=m2/ average-case time.
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Fredriksson, Navarro, and Ukkonen [12] also
consider rotation invariant matching in d dimen-
sions.

Hundt, Liśkiewicz, and Nevries [15] show that
there are O.n4m2/ effectively distinct combina-
tions of scales and rotations and give an O.n6m2/

time algorithm for finding the best match under a
distance that generalizes the Hamming distance
implying the following result.

Theorem 7 (Hundt, Liśkiewicz, and Nevries [15])
The scaling and rotation invariant 2DSM and
approximate 2DSM problems can be solved in
O.n6m2/ time.

Applications

The main application area is pattern matching in
images, particularly applications where the point
of view in the image is well defined, such as aerial
and astronomical photography, optical character
recognition, and biomedical imaging. Even three-
dimensional problems arise in biomedical appli-
cations [10].

Open Problems

There may be some room for improving the
results under the combined scaling and rota-
tion invariance using techniques similar to those
in Theorems 5 and 6. Many combinations of
the different variants of the problem have not
been studied. With rotation invariant approximate
matching under the RC distance even the problem
needs further specification.

Experimental Results

No conclusive results exist though some experi-
ments are reported in [10, 11, 15, 16].
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Problem Definition

The problem is concerned with scheduling dy-
namically arriving jobs in the scenario when the
processing requirements of jobs are unknown
to the scheduler. This is a classic problem that
arises, for example, in CPU scheduling, where
users submit jobs (various commands to the op-
erating system) over time. The scheduler is only
aware of the existence of the job and does not
know how long it will take to execute, and the
goal is to schedule jobs to provide good quality of
service to the users. Formally, this note considers
the average flow time measure, defined as the
average duration of time since a job is released
until its processing requirement is met.

Notations

Let J D f1; 2; : : : ; ng denote the set of jobs in
the input instance. Each job j is characterized by
its release time rj and its processing requirement
pj . In the online setting, job j is revealed to the
scheduler only at time rj . A further restriction
is the non-clairvoyant setting, where only the
existence of job j is revealed at rj , in particular
the scheduler does not know pj until the job
meets its processing requirement and leaves the
system. Given a schedule, the completion time

cj of a job is the earliest time at which job j

receives pj amount of service. The flow time fj

of j is defined as cj �rj . A schedule is said to be
preemptive, if a job can be interrupted arbitrarily,
and its execution can be resumed later from
the point of interruption without any penalty. It
is well known that preemption is necessary to
obtain reasonable guarantees even in the offline
setting [4].

There are several natural non-clairvoyant algo-
rithms such as first come first served, processor
sharing (work on all current unfinished jobs at
equal rate), and shortest elapsed time first (work
on job that has received least amount of service
thus far). Coffman and Kleinrock [2] proposed
another natural algorithm known as the multi-
level feedback queueing (MLF). MLF works as
follows: there are queues Q0; Q1; Q2; : : : and
thresholds 0 < t0 < t1 < t2: : :. Initially upon
arrival, a job is placed in Q0. When a job in
Qi receives ti amount of cumulative service, it is
moved to QiC1. The algorithm at any time works
on the lowest numbered nonempty queue. Coff-
man and Kleinrock analyzed MLF in a queuing
theoretic setting, where the jobs arrive according
to a Poisson process and the processing require-
ments are chosen identically and independently
from a known probability distribution.

Recall that the online shortest remaining
processing time (SRPT) algorithm that at any
time works on the job with the least remaining
processing time produces an optimum schedule.
However, SRPT requires the knowledge of job
sizes and hence is not non-clairvoyant. Since a
non-clairvoyant algorithm only knows a lower
bound on a jobs size (determined by the amount
of service it has received thus far), MLF tries to
mimic SRPT by favoring jobs that have received
the least service thus far.

Key Results

While non-clairvoyant algorithms have been
studied extensively in the queuing theoretic set-
ting for many decades, this notion was considered
relatively recently in the context of competitive
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analysis by Motwani, Phillips, and Torng [5].
As in traditional competitive analysis, a non-
clairvoyant algorithm is called c-competitive if
for every input instance, its performance is no
worse than c times that of the optimum offline
solution for that instance. Motwani, Phillips, and
Torng showed the following.

Theorem 1 ([5]) For the problem of minimizing
average flow time on a single machine, any
deterministic non-clairvoyant algorithm must
have a competitive ratio of at least 
.n1=3/,
and any randomized algorithm must have a
competitive ratio of at least 
.log n/, where
n is number of jobs in the instance.

It is not too surprising that any deterministic
algorithm must have a poor competitive ratio.
For example, consider MLF where the thresholds
are powers of 2, i.e., 1; 2; 4; : : :. Say n D 2k

jobs of size 2k C 1 each arrive at times 0; 2k; 2 �
2k; : : :; .2k � 1/2k, respectively. Then, it is easily
verified that the average flow time under MLF is

.n2/, where as the average flow time is under
the optimum algorithm is 
.n/.

Note that MLF performs poorly on the above
instance since all jobs are stuck till the end with
just one unit of work remaining. Interestingly,
Kalyanasundaram and Pruhs [3] designed a ran-
domized variant of MLF (known as RMLF) and
proved that its competitive ratio is almost opti-
mum. For each job j , and for each queue Qi , the
RMLF algorithm sets a threshold ti;j randomly
and independently according to a truncated expo-
nential distribution. Roughly speaking, setting a
random threshold ensures that if a job is stuck in
a queue, then its remaining processing is a rea-
sonable fraction of its original processing time.

Theorem 2 ([3]) The RMLF algorithm is
O.log n log log n/ competitive against an
oblivious adversary. Moreover, the RMLF
algorithm is O.log n log log n/ competitive
even against an adaptive adversary provided the
adversary chooses all the job sizes in advance.

Later, Becchetti and Leonardi [1] showed that
in fact the RMLF is optimally competitive up to
constant factors. They also analyzed RMLF on
identical parallel machines.

Theorem 3 ([1]) The RMLF algorithm is
O.log n/ competitive for a single machine. For
multiple identical machines, RMLF achieves a
competitive ratio of O.log n log . n

m
//, where m

is the number of machines.

Applications

MLF and its variants are widely used in operating
systems [6, 7]. These algorithms are not only
close to optimum with respect to flow time but
also have other attractive properties such as the
amortized number of preemptions is logarithmic
(preemptions occur only if a job arrives or departs
or moves to another queue).

Open Problems

It is not known whether there exists a o.n/-
competitive deterministic algorithm. It would be
interesting to close the gap between the upper
and lower bounds for this case. Often in real
systems, even though the scheduler may not know
the exact job size, it might have some information
about its distribution based on historical data.
An interesting direction of research could be
to design and analyze algorithms that use this
information.
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Problem Definition

The topic of this article is the parameterized
multilinear monomial detection problem:

k-MLD: Given an arithmetic circuit C

representing a polynomial P.X/ over ZC,
decide whether P.X/ construed as a sum of
monomials contains a multilinear monomial
of degree k.

An arithmetic circuit is a directed acyclic graph
with nodes corresponding to addition and mul-
tiplication gates, sources labeled with variables
from a set X or positive integers, and one special
terminal corresponding to the output gate. A
monomial of degree k is a product of exactly k

variables from X , and it is called multilinear if
these k variables are distinct.

The k-MLD problem is arguably a funda-
mental problem, encompassing as special cases
many natural and well-studied parameterized
problems. Along with the algorithm for its
solution, k-MLD provides a general framework
for designing parameterized algorithms [11, 15].
The framework has yielded the fastest known
algorithms for many parameterized problems,
including all parameterized decision problems
that were previously known to be solvable via
dynamic programming combined with the color-
coding method [2].

Key Results

Theorem 1 The k-MLD problem can be solved
by a randomized algorithm with one-sided error
in O�.2k/ time and polynomial space. (The O�.�/
notation hides factors polynomial in the size of
the input.)

The algorithm claimed in Theorem 1 always
reports the correct answer when the input poly-
nomial does not contain a degree-k multilinear
monomial. In the opposite case, it reports a cor-
rect answer with probability at least 1=4.

Overview of the Algorithm
The algorithm utilizes a set of commutative ma-
trices M � Z

2k�2k

2 , with the following proper-
ties:

(i) For each M 2M, we have M 2 D 0 mod 2.
(ii) If M1; : : : ; Mk are randomly selected matri-

ces from M, then their product is equal to
the “all-ones” matrix 12k�2k

, with probabil-
ity at least 1=4, and 0 mod 2 otherwise.

The construction of M is based on matrix rep-
resentations of the group Z

k
2 , i.e., the abelian

group of k-dimensional 0–1 vectors with addition
mod 2 [11].

To simplify our discussion, let us assume that
all monomials in P.X/ have total degree k. The
role of M is then almost self-evident: evaluating
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P.X/ on a random assignment NX W X !M will
annihilate (mod 2) all non-multilinear monomials
in P.X/ due to property (i). On the other hand,
each degree-k multilinear monomial will “sur-
vive” the assignment with constant probability,
due to property (ii).

However, property (ii) clearly does not suffice
for P.X/ to evaluate to nonzero (with some prob-
ability) in the presence of multilinear monomials.
The main reason is that the coefficients of all
multilinear monomials in P.X/ may be equal
to 0 mod 2. The solution is the introduction of
a new set A of “fingerprint” variables in order
to construct an extended polynomial QP .X; A/

over Z2. The key property of QP .X; A/ is that
its multilinear monomials are in a one-to-one
correspondence with copies of the multilinear
monomials in P.X/. Specifically, each copy of
a multilinear monomial �.X/ of P.X/ gets its
own distinct multilinear monomial of the form
q.A/�.X/ in QP .X; A/. The extended polynomial
is constructed by applying simple operations on
C . In most cases it is enough to attach a dis-
tinct “multiplier” variable from A to each edge
of C ; in the general case, some more work is
needed that may increase the size of C by a
quadratic factor in the worst case. We can then
consider what is the effect of evaluating QP .X; A/

on NX : (i) If P.X/ does not contain any degree-
k multilinear monomial, then each monomial of
QP .X; A/ contains a squared variable from X .

Hence QP . NX; A/ is equal to 0 mod 2. On the other
hand, if P.X/ does contain a degree-k multilin-
ear monomial, then, by construction, the diagonal
entries of QP . NX; A/ are all equal to a nonzero
polynomial Q.A/, with probability at least 1=4.
Due to its size, we cannot afford to write down
Q.A/, but we do have “black-box” access to it
via evaluating it. We can thus test it for identity
with zero via the Schwartz-Zippel Lemma [14].
This requires only a single evaluation of Q.A/ on
a random assignment NA W A ! GF Œ2log2 kC10�.
Overall, the algorithm returns a “yes” if and only
if P. NX; NA/ ¤ 0 mod 2.

By the properties of M, it suffices to compute
the trace of P. NX; NA/ or equivalently the sum of
its eigenvalues. As observed in [11, 13], this can
be done with 2k evaluations of P.X; A/ over the

ring of polynomials ZŒA�. This yields the O�.2k/

time and polynomial space claims.
The construction of an extended polynomial
QP .X; A/ was used in [11, 15] for two special

cases, but it can be generalized to arbitrary poly-
nomials as claimed in [13]. The idea to use the
Schwartz-Zippel Lemma in order to test Q.A/ for
identity with zero appeared in [15].

A Negative Result
The matrices in M together with multiplication
and addition modulo 2 form a commutative ma-
trix algebra A which has 22k

elements. Com-
putations with this algebra require time at least
2k, since merely describing one element of A
requires 2k bits. One may ask whether there
is another significantly smaller algebra that can
replaceA in this evaluation-based framework and
yield a faster algorithm. The question was an-
swered in the negative in [13], for the special but
important case when k D jX j. Concretely, it was
shown that there is no evaluation-based algorithm
that can detect a multilinear term of degree n in
an n-variate polynomial in o.2n=

p
n/ time.

A Generalization
The CONSTRAINED k-MLD problem is a gener-
alization of k-MLD that was introduced in [12].
The set X is a union of t mutually disjoint sets
of variables X1; : : : ; Xt , each associated with a
positive number �i . The sets Xi and the numbers
�i , for i D 1; : : : ; t are part of the input. A
multilinear monomial is permissible if it contains
at most �i variables from Xi , for all i . The
problem is then defined as follows:

CONSTRAINED k-MLD: Given an arithmetic
circuit C representing a polynomial P.X/

over ZC, decide whether P.X/ construed as
a sum of monomials contains a permissible
multilinear monomial of degree k.

Theorem 2 The CONSTRAINED k-MLD prob-
lem can be solved by a randomized algorithm
with one-sided error in O�.2k/ time and polyno-
mial space.

Theorem 2 was shown in [5]. It is worth noting
that the algorithm in the proof of Theorem 2 does
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not rely on matrix algebras. Thus, it provides an
alternative proof for Theorem 1.

Applications

Many parameterized problems are reducible to
the k-MLD problem. For several of these prob-
lems, the fastest – in terms of the exponen-
tial dependence on k – known algorithms are
composed by a relatively simple reduction to
a k-MLD instance and a subsequent invocation
of the algorithm for its solution. Such prob-
lems include the k-TREE problem on directed
graphs and certain packing problems [11, 13,
15].

The k-MLD framework provides an expo-
nentially faster alternative to the color-coding
method [2] for parameterized decision problems.
As noted in [8], color-coding-based algorithms
consist canonically of a random assignment of k

colors to entities of the input (e.g., to the vertices
of graph) followed by a dynamic programming
procedure. From the steps of the dynamic pro-
gramming procedure, one can delineate the con-
struction of a k-MLD instance. This task was, for
example, undertaken in [9], giving improved al-
gorithms for all subgraph containment problems
previously solved via color coding.

The algebraic language provided by the
k-MLD framework has simplified the design
of parameterized algorithms, yielding faster
algorithms even for problems for which the
applicability of color coding was not apparent
due to the more complicated underlying
dynamic programming procedures. This includes
partial graph domination problems [13] and
parameterized string problems in computational
biology [6].

All algebraizations used in [11, 13] construct
polynomials whose monomials are in one-to-one
correspondence with potential solutions of the
underlying combinatorial problem (e.g., length-
k walks). The actual solutions (e.g., k-paths) are
mapped to multilinear monomials, while nonso-
lutions are mapped to non-multilinear monomi-
als. Andreas Björklund introduced a significant
departure from this approach [4]. He viewed

modulo 2 computations as a resource rather as
a nuisance and worked on sharper algebraiza-
tions using appropriate determinant polynomi-
als. These polynomials do contain multilinear
monomials corresponding to nonsolutions, unlike
previous algebraizations; however, these come
in pairs and they cancel out modulo 2. On the
other hand, with the appropriate use of “finger-
print” variables, the multilinear monomials cor-
responding to valid solutions appear with a coef-
ficient of 1. Björklund’s novel ideas led initially
to a faster algorithm for d -dimensional match-
ing problems [4] and subsequently to the break-
through O.1:67n/ time algorithm for the HAMIL-
TONIAN PATH problem on n-vertex graphs [3],
breaking below the O�.2n/ barrier and marking
the first progress in the problem after nearly
50 years of stagnation.

Modulo 2 cancelations were also explicitly
exploited in the design of the first single-
exponential time algorithms for various
graph connectivity problems parameterized by
treewidth [7]. For example, the HAMILTONIAN

PATH problem can now be solved in O�.4t / time
for n-vertex graphs, assuming a tree decomposi-
tion of width at most t is given as input. The pre-
viously fastest algorithm runs in O�.tO.t// time.

Open Problems

The following problems are open:

• Color coding stood until recently as the fastest
deterministic algorithm for the k-MLD prob-
lem, running in O�..2e/k/ time, the currently
fastest deterministic algorithm in O�.2:85k/

time [10]. Is there a deterministic algorithm
for k-MLD that runs in O�.2k/ time?

• The known deterministic algorithms can also
solve the weighted version of k-PATH which
asks for a k-path of minimum weight, in
O�.2:85k log W / time, where W is the largest
edge weight in the graph. The algorithm for
k-MLD can be adapted to solve weighted
k-PATH in O�.2kW / time. Is there an
O�.2k log W / time algorithm for weighted
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k-PATH and, more generally, for weighted
versions of k-MLD?

• Color coding with balanced hashing families
has been used to approximately count k-paths
in a graph, in O�..2e/k/ time [1]. Is there an
O�.2k/ approximate counting algorithm?

• Finally, is there an algorithm for k-MLD that
runs in O�.2�k/ time, for any � < 1? Such
an algorithm would constitute major progress
in exact and parameterized algorithms for NP-
hard problems.
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Problem Definition

Given a finite set of k pattern strings P D
fP 1; P 2; : : : ; P kg and a text string T D
t1t2 : : : tn, T and the P i s being sequences
over an alphabet ˙ of size � , the multiple
string matching (MSM) problem is to find
one or, more generally, all the text positions
where a P i occurs in T . More precisely the
problem is to compute the set fj j 9i; P i D
tj tjC1 : : : tjCjP i j�1g, or equivalently the set
fj j 9i; P i D tj�jP i jC1tj�jP i jC2 : : : tj g. Note
that reporting all the occurrences of the patterns
may lead to a quadratic output (e.g., when P i s
and T are drawn from a one-letter alphabet). The
length of the shortest pattern in P is denoted by
`min. This problem is an extension of the exact
string matching problem.

Both worst- and average-case complexities are
considered. For the latter one assumes that pattern
and text are randomly generated by choosing
each character uniformly and independently from
˙ . For simplicity and practicality the assumption
jP i j D o.n/ is made, for 1 � i � k, in this entry.

Key Results

A first solution to the multiple string match-
ing problem consists in applying an exact string
matching algorithm for locating each pattern in
P . This solution has an O.kn/ worst-case time
complexity. There are more efficient solutions
along two main approaches. The first one, due
to Aho and Corasick [1], is an extension of the
automaton-based solution for matching a sin-
gle string. The second approach, initiated by
Commentz-Walter [5], extends the Boyer-Moore
algorithm to several patterns.

The Aho-Corasick algorithm first builds a trie
T .P/, a digital tree recognizing the patterns of P .
The trie T .P/ is a tree whose edges are labeled by
letters and whose branches spell the patterns of
P . A node p in the trie T .P/ is associated with

the unique word w spelled by the path of T .P/

from its root to p. The root itself is identified with
the empty word ". Notice that if w is a node in
T .P/, then w is a prefix of some P i 2 P . If in
addition a 2 ˙ , then child.w; a/ is equal to wa if
wa is a node in T .P/; it is equal to NIL otherwise.

During a second phase, when patterns are
added to the trie, the algorithm initializes an out-
put function out. It associates the singleton fP i g
with the nodes P i (1 � i � k) and associates the
empty set with all other nodes of T .P/.

Finally, the last phase of the preprocessing
consists in building a failure link for each node of
the trie and simultaneously completing the output
function. The failure function fail is defined on
nodes as follows (w is a node): fail.w/ D u where
u is the longest proper suffix of w that belongs to
T .P/. Computation of failure links is done dur-
ing a breadth-first traversal of T .P/. Completion
of the output function is done while computing
the failure function fail using the following rule:
if fail.w/ D u, then out.w/ D out.w/[ out.u/.

To stop going back with failure links during
the computation of the failure links, and also to
overpass text characters for which no transition is
defined from the root during the searching phase,
a loop is added on the root of the trie for these
symbols. This finally produces what is called a
pattern matching machine or an Aho-Corasick
automaton (see Fig. 1).

After the preprocessing phase is completed,
the searching phase consists in parsing the text
T with T .P/. This starts at the root of T .P/

and uses failure links whenever a character in T

does not match any label of outgoing edges of the
current node. Each time a node with a nonempty
output is encountered, this means that the patterns
of the output have been discovered in the text,
ending at the current position. Then, the position
is output.

Theorem 1 (Aho and Corasick [1]) After pre-
processing P , searching for the occurrences of
the strings of P in a text T can be done in time
O.n	 log �/. The running time of the associated
preprocessing phase is O.jP j 	 log �/. The extra
memory space required for both operations is
O.jP j/.
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7 8 9

10 11 12 13

14 15 16 17 18

c s, e, a, c}
s e a r c h

e a r

a

r c hc

h a r t

state 0 1 2 3 4 5 6
prefix ε s se sea sear searc search
fail 0 0 7 8 9 12 13
out {ear} {search,arch}
state 7 8 9 10 11 12 13
prefix e ea ear a ar arc arch
fail 0 10 11 0 0 14 15
out {ear} {arch}
state 14 15 16 17 18 19
prefix c ch cha char chart
fail 0 0 10 11 0
out {chart}

Multiple StringMatching, Fig. 1 The pattern matching
machine or Aho-Corasick automaton for the set of strings
fsearch;ear;arch;chartg

The Aho-Corasick algorithm is actually a gen-
eralization to a finite set of strings of the Morris-
Pratt exact string matching algorithm.

Commentz-Walter [5] generalized the Boyer-
Moore exact string matching algorithm to mul-
tiple string matching. Her algorithm builds a
trie for the reverse patterns in P together with
two shift tables and applies a right to left scan
strategy. However, it is intricate to implement and
has a quadratic worst-case time complexity.

The DAWG-match algorithm [6] is a general-
ization of the BDM exact string matching algo-
rithms. It consists in building an exact indexing
structure for the reverse strings of P such as
a factor automaton or a generalized suffix tree,
instead of just a trie as in the Aho-Corasick and
Commentz-Walter algorithms (see Fig. 2). The
overall algorithm can be made optimal by using
both an indexing structure for the reverse patterns
and an Aho-Corasick automaton for the patterns.
Then, searching involves scanning some portions
of the text from left to right and some other
portions from right to left. This enables to skip
large portions of the text T .

0123456

7

8

9

1011121314

h

c

s

r

a

e

t

craes

a

e

h

s

rahc

Multiple String Matching, Fig. 2 An example of
DAWG, index structure used for matching the set of
strings fsearch;ear;arch;chartg. The automaton
accepts the reverse prefixes of the strings

Theorem 2 (Crochemore et al. [6]) The
DAWG-match algorithm performs at most 2n

symbol comparisons. Assuming that the sum
of the length of the patterns in P is less than
`mink , the DAWG-match algorithm makes on
average O..n log� `min/=`min/ inspections of
text characters.

The bottleneck of the DAWG-match algorithm
is the construction time and space consumption of
the exact indexing structure. This can be avoided
by replacing the exact indexing structure by a
factor oracle for a set of strings. A factor or-
acle is a simple automaton that may recognize
a few additional strings comparing to exact in-
dexing structure. When the factor oracle is used
alone, it gives the Set Backward Oracle Matching
(SBOM) algorithm [2]. It is an exact algorithm
that behaves almost as well as the DAWG-match
algorithm.

The bit-parallelism technique can be used to
simulate the DAWG-match algorithm. It gives
the MultiBNDM algorithm of Navarro and Raf-
finot [9]. This strategy is efficient when k 	 `min
bits fit in a few computer words. The prefixes of
strings of P of length `min are packed together
in a bit vector. Then, the search is similar to the
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BNDM exact string matching and is performed
for all the prefixes at the same time.

The use of the generalization of the bad-
character shift alone as done in the Horspool
exact string matching algorithm gives poor per-
formances for the MSM problem due to the
high probability of finding each character of the
alphabet in one of the strings of P .

The algorithm of Wu and Manber [13] consid-
ers blocks of length `. Blocks of such a length
are hashed using a function h into values less
than maxvalue. Then shiftŒh.B/� is defined as the
minimum between jP i j � j and `min � ` C 1

with B D pi
j�`C1

: : : pi
j for 1 � i � k and

1 � j � jP i j. The value of ` varies with the
minimum length of the strings in P and the size of
the alphabet. The value of maxvalue varies with
the memory space available.

The searching phase of the algorithm consists
in reading blocks B of length `. If shiftŒh.B/� >

0, then a shift of length shiftŒh.B/� is applied.
Otherwise, when shiftŒh.B/� D 0, the patterns
ending with block B are examined one by one
in the text. The first block to be scanned is
t`min�`C1 : : : t`min. This method is incorporated in
the agrep command [12].

Recent works have been devoted to multiple
string matching on packed strings where each
symbol is encoded using log � bits. In this
context, Belazzougui [3] gave an efficient
algorithm that works in O.n C ..log k C
log `minClog log jP j/=`minC.log �/=!/Cocc/

where ! is the size of the machine word and occ
is the number of occurrences of patterns of P in
T . On average it is possible to solve the problem
in O.n=`min/ time using O.jP j log jP j/ bits of
space [4].

Applications

MSM algorithms serve as basis for multidimen-
sional pattern matching and approximate pattern
matching with wildcards. The problem has many
applications in computational biology, database
search, bibliographic search, virus detection in
data flows, and several others.

Experimental Results

The book of G. Navarro and M. Raffinot [10] is
a good introduction to the domain. It presents
experimental graphics that report experimental
evaluation of multiple string matching algorithms
for different alphabet sizes, pattern lengths, and
sizes of pattern set.

URLs to Code and Data Sets

Well-known packages offering efficient MSM
are agrep (https://github.com/Wikinaut/agrep)
and grep with the -F option (http://www.gnu.org/
software/grep/grep.html).

Cross-References

�Multidimensional String Matching is the case
where the text dimension is greater than one.

�Regular Expression Matching is the more com-
plex case where the pattern can be a regular
expression;

�String Matching is the version where a single
pattern is searched for in a text;

�Suffix Trees and Arrays refers to the case where
the text can be preprocessed;

Further information can be found in the three
following books: [7, 8] and [11].

Recommended Reading

1. Aho AV, Corasick MJ (1975) Efficient string
matching: an aid to bibliographic search. C ACM
18(6):333–340

2. Allauzen C, Crochemore M, Raffinot M (1999) Fac-
tor oracle: a new structure for pattern matching.
In: SOFSEM’99. LNCS, vol 1725, Milovy, Czech
Republic, pp 291–306

3. Belazzougui D (2012) Worst-case efficient single and
multiple string matching on packed texts in the word-
ram model. J Discret Algorithms 14:91–106

4. Belazzougui D, Raffinot M (2013) Average optimal
string matching in packed strings. In: Spirakis PG,
Serna MJ (eds) Proceedings of the 8th international
conference on algorithms and complexity (CIAC



1382 Multiple Unit Auctions with Budget Constraint

2013), Barcelona. Lecture notes in computer science,
vol 7878. Springer, Barcelona, Spain, pp 37–48

5. Commentz-Walter B (1979) A string matching al-
gorithm fast on the average. In: Proceedings of
ICALP’79. Lecture notes in computer science vol 71.
Springer, Graz, Austria, pp 118–132

6. Crochemore M, Czumaj A, Ga̧sieniec L, Lecroq T,
Plandowski W, Rytter W (1999) Fast practical multi-
pattern matching. Inf Process Lett 71(3–4):107–113

7. Crochemore M, Hancart C, Lecroq T (2007) Algo-
rithms on strings. Cambridge University Press, Cam-
bridge, New York

8. Gusfield D (1997) Algorithms on strings, trees and
sequences. Cambridge University Press, Cambridge,
New York

9. Navarro G, Raffinot M (2000) Fast and flexible string
matching by combining bit-parallelism and suffix
automata. ACM J Exp Algorithms 5:4

10. Navarro G, Raffinot M (2002) Flexible pattern match-
ing in strings – practical on-line search algorithms for
texts and biological sequences. Cambridge University
Press, Cambridge

11. Smyth WF (2002) Computing patterns in strings.
Addison Wesley Longman, Harlow

12. Wu S, Manber U (1992) Agrep – a fast approximate
pattern-matching tool. In: Proceedings of USENIX
winter 1992 technical conference. USENIX Associ-
ation, San Francisco, CA, pp 153–162

13. Wu S, Manber U (1994) A fast algorithm for multi-
pattern searching. Report TR-94-17, Department of
Computer Science, University of Arizona, Tucson

Multiple Unit Auctions with Budget
Constraint

Tian-Ming Bu
Software Engineering Institute, East China
Normal University, Shanghai, China

Keywords

Auction design; Optimal mechanism design

Years and Authors of Summarized
Original Work

2005; Borgs, Chayes, Immorlica, Mahdian,
Saberi

2006; Abrams

Problem Definition

In this problem, an auctioneer would like to sell
an idiosyncratic commodity with m copies to n

bidders, denoted by i D 1; 2; : : : ; n. Each bidder
i has two kinds of privately known information:
tu
i 2 R

C, tb
i 2 R

C. tu
i represents the price buyer

i is willing to pay for per copy of the commodity
and tb

i represents i ’s budget.
Then a one-round sealed-bid auction proceeds

as follows. Simultaneously, all the bidders submit
their bids to the auctioneer. When receiving the
reported unit value vector u D .u1; : : : ; un/ and
the reported budget vector b D .b1 : : : ; bn/ of
bids, the auctioneer computes and outputs the
allocation vector x D .x1; : : : ; xn/ and the price
vector p D .p1; : : : ; pn/. Each element of the
allocation vector indicates the number of copies
allocated to the corresponding bidder. If bidder
i receives xi copies of the commodity, he pays
the auctioneer pixi . Then bidder i ’s total payoff
is .tu

i � pi /xi if xi pi � tb
i and �1 otherwise.

Correspondingly, the revenue of the auctioneer is
A.u; b; m/ DPi pi xi .

If each bidder submits his privately true unit
value tu

i and budget tb
i to the auctioneer, the

auctioneer can determine the single price pF (i.e.,
8i , pi D pF ) and the allocation vector which
maximize the auctioneer’s revenue. This optimal
single price revenue is denoted by F.u; b; m/.

Interestingly, in this problem, we assume bid-
ders have free will and have complete knowl-
edge of the auction mechanism. Bidders would
just report the bid (maybe different from his
corresponding privately true values) which could
maximize his payoff according to the auction
mechanism.

So the objective of the problem is to design
a truthful auction satisfying voluntary participa-
tion to raise the auctioneer’s revenue as much as
possible. An auction is truthful if for every bidder
i , bidding his true valuation would maximize his
payoff, regardless of the bids submitted by the
other bidders [7,8]. An auction satisfies voluntary
participation if each bidder’s payoff is guaran-
teed to be nonnegative if he reports his bid truth-
fully. The success of the auction A is determined
by competitive ratio ˇ which is defined as the
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upper bound of F.u;b;m/
A.u;b;m/

[6]. Clearly, the smaller
competitive ratio ˇ is, the better the auction A is.

Definition 1 (Multiple-Unit Auctions with
Budget Constraint)

INPUT: the number of copies m, the submitted
unit value vector u, and the submitted budget
vector b.

OUTPUT: the allocation vector x and the price
vector p.

CONSTRAINTS:

(a) Truthful;
(b) Voluntary participation;
(c)

P
i xi � m.

Key Results

Let bmax denote the largest budget among the
bidders receiving copies in the optimal solution
and define ˛ D F

bmax
.

Theorem 1 ([3]) A truthful auction satisfying
voluntary participation with competitive ratio

1= max0<ı<1

n
.1 � ı/.1 � 2e�˛ı2

36 /
o

can be

designed.

Theorem 2 ([1]) A truthful auction satisfying
voluntary participation with competitive ratio
4˛

˛�1
can be designed.

Theorem 3 ([1]) If ˛ is known in advance, then
a truthful auction satisfying voluntary partici-
pation with competitive ratio .x˛C1/˛

.x˛�1/2 can be

designed, where x D ˛�1C..˛�1/2�4˛/1=2

2˛
.

Theorem 4 ([1]) For any truthful randomized
auction A satisfying voluntary participation, the
competitive ratio is at least 2 � � when ˛ � 2.

Applications

This problem is motivated by the development of
IT industry and the popularization of auctions,
especially, auctions on the Internet. Multiple copy
auctions of relatively low-value goods, such as
the auction of online ads for search terms to
bidders with budget constraints, is assuming a
very important role. Companies such as Google
and Yahoo!’s revenue depends almost on certain

types of auctions. There are many papers includ-
ing [2, 4, 5] which focus on different facets of the
same model.
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Problem Definition

This problem is motivated by an important and
timely application in computational biology that
arises in whole-genome shotgun sequencing.
Shotgun sequencing is a high throughput
technique that has resulted in the sequencing
of a large number of bacterial genomes as
well as Drosophila (fruit fly) and Mouse and
the celebrated Human genome (at Celera) (see,
e.g., [8]). In all such projects, one is left with
a collection of DNA fragments. These fragments
are subsequently assembled, in-silico, by a com-
putational algorithm. The typical assembly algo-
rithm repeatedly merges overlapping fragments
into longer fragments called contigs. For various
biological and computational reasons some re-
gions of the DNA cannot covered by the contigs.
Thus, the contigs must be ordered and oriented
and the gaps between them must be sequenced
using slower, more tedious methods. For further
details see, e.g., [3]. When the number of gaps
is small (e.g., less than ten) biologists often use
combinatorial PCR. This technique initiates a set
of “bi-directional molecular walks” along the
gaps in the sequence; these walks are facilitated
by PCR. In order to initiate the molecular walks
biologists use primers. Primers are designed so
that they bind to unique (with respect to the entire
DNA sequence) templates occurring at the end
of each contig. A primer (at the right temperature
and concentration) anneals to the designated
unique DNA substring and promotes copying of
the template starting from the primer binding site,
initiating a one-directional walk along the gap in
the DNA sequence. A PCR reaction occurs, and
can be observed as a DNA ladder, when two
primers that bind to positions on two ends of the
same gap are placed in the same test tube.

If there are N contigs, the combinatorial (ex-
haustive) PCR technique tests all possible pairs
(quadratically many) of 2N primers by placing

two primers per tube with the original uncut DNA
strand. PCR products can be detected using gels
or they can be read using sequencing technology
or DNA mass-spectometry. When the number
of gaps is large, the quadratic number of PCR
experiments is prohibitive, so primers are pooled
using K > 2 primers per tube; this technique is
called multiplex PCR [4]. This problem deals
with finding optimal strategies for pooling the
primers to minimize the number of biological
experiments needed in the gap-closing process.

This problem can be modeled as the problem
of identifying or learning a hidden matching
given a vertex set V and an allowed query opera-
tion: for a subset F � V , the query QF is “does
F contain at least one edge of the matching”? In
this formulation each vertex represents a primer,
an edge of the matching represents a reaction, and
the query represents checking for a reaction when
a set of primers are combined in a test tube. The
objective is to identify the matching asking as few
queries as possible, that is performing as few tests
as possible. For further discussion of this model
see [3, 7].

This problem is of interest even in the
deterministic, fully non-adaptive case. A family
F of subsets of a vertex set V solves the matching
problem on V if for any two distinct matchings
M1 and M2 on V there is at least one F 2 F
that contains an edge of one of the matchings and
does not contain any edge of the other. Obviously,
any such family enables learning an unknown
matching deterministically and non-adaptively,
by asking the questions QF for each F 2 F .
The objective here is to determine the minimum
possible cardinality of a family that solves the
matching problem on a set of n vertices.

Other interesting variants of this problem are
when the algorithm may be randomized, or when
it is adaptive, that is when the queries are asked
in k rounds, and the queries of each round may
depend on the answers from the previous rounds.

Key Results

In [2], the authors study the number of queries
needed to learn a hidden matching in several
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models. Following is a summary of the main
results presented in this paper.

The trivial upper bound on the size of a family
that solves the matching problem on n vertices is�

n
2

�
, achieved by the family of all pairs of vertices.

Theorem 1 shows that in the deterministic non-
adaptive setting one cannot do much better than
this, namely, that the trivial upper bound is tight
up to a constant factor. Theorem 2 improves this
upper bound by showing a family of approxi-
mately half that size that solves the matching
problem.

Theorem 1 For every n > 2, every family F
that solves the matching problem on n vertices
satisfies

jF j � 49

153

 
n

2

!
:

Theorem 2 For every n there exists a family of
size

�
1

2
C o.1/

	 
n

2

!

that solves the matching problem on n vertices.

Theorem 3 shows that one can do much better
using randomized algorithms. That is, one can
learn a hidden matching asking only O.n log n/

queries, rather than order of n2. These random-
ized algorithms make no errors, however, they
might ask more queries with some small proba-
bility.

Theorem 3 The matching problem on n vertices
can be solved by probabilistic algorithms with the
following parameters:

• 2 rounds and .1=.2 ln 2//n log n.1C o.1//

� 0:72n log n queries
• 1 round and .1= ln 2/n log n.1C o.1//

� 1:44n log n queries.

Finally, Theorem 4 considers adaptive algo-
rithms. In this case there is a tradeoff between
the number of queries and the number of rounds.
The more rounds one allows, the fewer tests

are needed, however, as each round can start only
after the previous one is completed, this increases
the running time of the entire procedure.

Theorem 4 For all 3 � k � log n, there is a de-
terministic k-round algorithm for the matching
problem on n vertices that asks

O
�
n1C 1

2.k�1/ .log n/1C 1
k�1

�

queries per round.

Applications

As described in section “Problem Definition”,
this problem was motivated by the application of
gap closing in whole-genome sequencing, where
the vertices correspond to primers, the edges to
PCR reactions between pairs of primers that bind
to the two ends of a gap, and the queries to tests
in which a set of primers are combined in a test
tube.

This gap-closing problem can be stated more
generally as follows. Given a set of chemicals,
a guarantee that each chemical reacts with at most
one of the others, and an experimental mech-
anism to determine whether a reaction occurs
when several chemicals are combined in a test
tube, the objective is to determine which pairs of
chemicals react with each other with a minimum
number of experiments.

Another generalization which may have more
applications in molecular biology is when the
hidden subgraph is not a matching but some
other fixed graph, or a family of graphs. The
paper [2], as well as some other related works
(e.g., [1, 5, 6]), consider this generalization for
other graphs. Some of these generalizations have
other specific applications in molecular biology.

Open Problems

• Determine the smallest possible constant c
such that there is a deterministic non-adaptive
algorithm for the matching problem on n ver-
tices that performs c

�
n
2

�
.1C o.1// queries.
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• Find more efficient deterministic k-round al-
gorithms or prove lower bounds for the num-
ber of queries in such algorithms.

• Find efficient algorithms and prove lower
bounds for the generalization of the problem
to graphs other than matchings.
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Problem Definition

Tolerance graphs model interval relations in such
a way that intervals can tolerate a certain degree
of overlap without being in conflict. A graph
G D .V; E/ on n vertices is a tolerance graph
if there exists a collection I D fIv j v 2 V g
of closed intervals on the real line and a set
t D ftv j v 2 V g of positive numbers, such that
for any two vertices u; v 2 V , uv 2 E if and only
if jIu \ Ivj � minftu; tvg, where jI j denotes the
length of the interval I .

Tolerance graphs have been introduced in [3],
in order to generalize some of the well-known ap-
plications of interval graphs. If in the definition of
tolerance graphs we replace the operation “min”
between tolerances by “max,” we obtain the class
of max-tolerance graphs [7]. Both tolerance and
max-tolerance graphs have attracted many re-
search efforts (e.g., [4, 5, 7–10]) as they find
numerous applications, especially in bioinfor-
matics, constraint-based temporal reasoning, and
resource allocation problems, among others [4,
5, 7, 8]. In particular, one of their applications
is in the comparison of DNA sequences from
different organisms or individuals by making use
of a software tool like BLAST [1].

In some circumstances, we may want to
treat different parts of the genomic sequences
in BLAST nonuniformly, since for instance some
of them may be biologically less significant or we
have less confidence in the exact sequence due to
sequencing errors in more error-prone genomic
regions. That is, we may want to be more
tolerant at some parts of the sequences than at
others. This concept leads naturally to the notion
of multitolerance (known also as bitolerance)
graphs [5, 11]. The main idea is to allow two
different tolerances to each interval, one to the
left and one to the right side, respectively. Then,
every interval tolerates in its interior part the
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intersection with other intervals by an amount
that is a convex combination of these two border
tolerances.

Formally, let I D Œl; r� be a closed interval on
the real line and lt ; rt 2 I be two numbers be-
tween l and r , called tolerant points; note that it
is not necessary that lt � rt . For every � 2 Œ0; 1�,
we define the interval Ilt ;rt

.�/ D Œl C .rt � l/�;

lt C .r � lt /��, which is the convex combination
of Œl; lt � and Œrt ; r�. Furthermore, we define the set
I.I; lt ; rt / D fIlt ;rt

.�/ j � 2 Œ0; 1�g of intervals.
That is, I.I; lt ; rt / is the set of all intervals that
we obtain when we linearly transform Œl; lt � into
Œrt ; r�. For an interval I , the set of tolerance inter-
vals � of I is defined either as � D I.I; lt ; rt / for
some values lt ; rt 2 I of tolerant points or as � D
fRg. A graph G D .V; E/ is a multitolerance
graph if there exists a collection I D fIv j v 2 V g
of closed intervals and a family t D f�v j v 2 V g
of sets of tolerance intervals, such that for any two
vertices u; v 2 V , uv 2 E if and only if there
exists an element Qu 2 �u with Qu � Iv or there
exists an element Qv 2 �v with Qv � Iu. Then,
the pair hI; ti is called a multitolerance represen-
tation of G. Tolerance graphs are a special case
of multitolerance graphs.

Note that, in general, the adjacency of two
vertices u and v in a multitolerance graph G

depends on both sets of tolerance intervals �u

and �v. However, since the real line R is not
included in any finite interval, if �u D fRg for
some vertex u of G, then the adjacency of u with
another vertex v of G depends only on the set
�v of v. If G has a multitolerance representa-
tion hI; ti, in which �v ¤ fRg for every v 2
V , then G is called a bounded multitolerance
graph. Bounded multitolerance graphs coincide
with trapezoid graphs, i.e., the intersection graphs
of trapezoids between two parallel lines L1 and
L2 on the plane, and have received considerable
attention in the literature [5, 11]. However, the
trapezoid intersection model cannot cope with
general multitolerance graphs, in which it can be
�v D fRg for some vertices v. Therefore, the only
way until now to deal with general multitolerance
graphs was to use the inconvenient multitolerance
representation, which uses an infinite number of
tolerance intervals.

Key Results

In this entry we introduce the first nontrivial inter-
section model for general multitolerance graphs,
given by objects in the 3-dimensional space,
called trapezoepipeds. This trapezoepiped repre-
sentation unifies in a simple and intuitive way
the widely known trapezoid representation for
bounded multitolerance graphs and the paral-
lelepiped representation for tolerance graphs [9].
The main idea is to exploit the third dimension
to capture the information of the vertices with
�v D fRg as the set of tolerance intervals.
This intersection model can be constructed ef-
ficiently (in linear time), given a multitolerance
representation.

Apart from being important on its own, the
trapezoepiped representation can be also used to
design efficient algorithms and structural results.
Given a multitolerance graph with n vertices and
m edges, we present algorithms that compute
a minimum coloring and a maximum clique in
O.n log n/ time (which turns out to be opti-
mal), and a maximum-weight independent set
in O.m C n log n/ time (where ˝.n log n/ is
a lower bound for the complexity of this prob-
lem [2]). Moreover, a variation of this algorithm
can compute a maximum-weight independent set
in optimal O.n log n/ time, when the input is a
tolerance graph, thus closing the complexity gap
of [9].

Given a multitolerance representation of
a graph G D .V; E/, vertex v 2 V is called
bounded if �v D I.Iv; ltv ; rtv / for some values
ltv ; rtv 2 Iv . Otherwise, v is unbounded.
VB and VU are the sets of bounded and
unbounded vertices in V , respectively. Clearly
V D VB [ VU .

Definition 1 For a vertex v 2 VB (resp. v 2 VU )
in a multitolerance representation of G, the val-
ues tv;1 D ltv � lv and tv;2 D rv � rtv (resp.
tv;1 D tv;2 D1) are the left tolerance and the
right tolerance of v, respectively. Moreover, if
v 2 VU , then tv D 1 is the tolerance of v.

It can be easily seen by Definition 1 that if
we set tv;1 D tv;2 for every vertex v 2 V , then
we obtain a tolerance representation, in which
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tv;1 D tv;2 is the (unique) tolerance of v. Let now
L1 and L2 be two parallel lines at unit distance
in the plane.

Definition 2 Given an interval Iv D Œlv; rv� and
tolerances tv;1; tv;2, T v is the trapezoid in R

2

defined by the points cv; bv on L1 and av; dv

on L2, where av D lv, bv D rv, cv D
min frv; lv C tv;1g, and dv D max flv; rv � tv;2g.
The values �v;1 D arc cot .cv � av/ and �v;2 D
arc cot .bv � dv/ are the left slope and the right
slope of T v, respectively. Moreover, for every
unbounded vertex v 2 VU , �v D �v;1 D �v;2

is the slope of T v.

Note that, in Definition 2, the endpoints
av; bv; cv; dv of any trapezoid T v (on the
lines L1 and L2) lie on the plane ´ D 0

in R
3. Therefore, since we assumed that the

distance between the lines L1 and L2 is one,
these endpoints of T v correspond to the points
.av; 0; 0/, .bv; 1; 0/, .cv; 1; 0/, and .dv; 0; 0/ in
R

3, respectively. For the sake of presentation, we
may not distinguish in the following between
these points in R

3 and the corresponding
real values av; bv; cv; dv , whenever this
slight abuse of notation does not cause any
confusion.

We are ready to give the main definition of this
entry, namely, the trapezoepiped representation.
For a set X of points in R

3, denote by Hconvex.X/

the convex hull defined by the points of X . That
is, T v D Hconvex.av; bv; cv; dv/ for every vertex
v 2 V by Definition 2, where av; bv; cv; dv are
points of the plane ´ D 0 in R

3.

Definition 3 (trapezoepiped representa-
tion) Let G D .V; E/ be a multitolerance
graph with a multitolerance representation
fIv D Œav; bv�; �v j v 2 V g and �Dmaxfbv j v 2
V g � minfav j v 2 V g be the greatest distance
between two interval endpoints. For every vertex
v 2 V , the trapezoepiped Tv of v is the convex
set of points in R

3 defined as follows:

(a) If tv;1; tv;2 � jIvj (i.e., v is bounded), then
Tv D Hconvex.T v; a0v; b0v; c0v; d 0v/.

(b) If tv D tv;1 D tv;2 D 1 (i.e., v is
unbounded), then Tv D Hconvex.a0v; c0v/.

Where a0v D .av; 0; � � cot �v;1/, b0v D
.bv; 1; � � cot �v;2/, c0v D .cv; 1; � � cot �v;1/,
and d 0v D .dv; 0; � � cot �v;2/. The set of
trapezoepipeds fTv j v 2 V g is a trapezoepiped
representation of G (Fig. 1).

Theorem 1 Let G D .V; E/ be a multitolerance
graph with a multitolerance representation
fIv D Œav ; bv�; �v j v 2 V g. Then for every
u; v 2 V , uv 2 E if and only if Tu \ Tv ¤ ;.

Efficient Algorithms
As one of our main tools towards providing
efficient algorithms on multitolerance graphs,
we refine Definition 3 by introducing the
notion of a canonical trapezoepiped represen-
tation. A trapezoepiped representation R of a
multitolerance graph G D .V; E/ is called
canonical if the following is true: for every
unbounded vertex v 2 VU in R, if we replace
Tv by Hconvex.T v; a0v; c0v/ in R, we would
create a new edge in G. Note that replacing
Tv by Hconvex.T v; a0v; c0v/ in R is equivalent to
replacing in the corresponding multitolerance
representation of G the infinite tolerance tv D 1
by the finite tolerances tv;1 D tv;2 D jIvj,
i.e., to making v a bounded vertex. Clearly,
every trapezoepiped representation R can be
transformed to a canonical one by iteratively
replacing unbounded vertices with bounded ones
(without introducing new edges), as long as this
is possible. Using techniques from computational
geometry, we can prove the next theorem.

Theorem 2 Every trapezoepiped representation
of a multitolerance graph G with n vertices can
be transformed to a canonical representation of
G in O.n log n/ time.

The main idea for the proof of Theorem 2
is the following. We associate with every un-
bounded vertex v 2 VU an (appropriately de-
fined) point pv and with every bounded vertex
u 2 VB three points pu;1; pu;2; pu;3 in the plane.
Furthermore we associate with every bounded
vertex u 2 VB the two line segments `u;1 and `u;2

in the plane, which have the points fpu;1; pu;2g
and fpu;2; pu;3g as endpoints, respectively. We
can prove that an unbounded vertex v 2 VU can
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Multitolerance Graphs, Fig. 1 (a) A multitolerance
graph G and (b) a trapezoepiped representation R of G.
Here, hvi ;j D �� cot �vi ;j for every bounded vertex

vi 2 VB and j 2 f1; 2g, while hvi
D �� cot �vi

for
every unbounded vertex vi 2 VU

be replaced by a bounded vertex without intro-
ducing a new edge if and only if, in the above
construction, the point pv lies above the lower
envelope Env.L/ of the line segments L D
f`u;1; `u;2 W u 2 VBg. Since jLj D O.n/, we
can compute Env.L/ in O.n log n/ time using the
algorithm of [6].

In the resulting canonical representation R0
of G, for every unbounded vertex v 2 VU ,
there exists at least one bounded vertex u 2 VB

such that uv … E and Tv lies “above” Tu in
R0. Moreover, we can prove that in this case
N.v/ � N.u/, and thus there exists a minimum
coloring of G where u and v have the same color.
The main idea for our (optimal) O.n log n/-time
minimum coloring algorithm is the following.
We first compute in O.n log n/ time a minimum
coloring of the induced subgraph GŒVB � using
the coloring algorithm of [2] for trapezoid graphs.
Then, given this coloring, we assign in linear time
a color to all unbounded vertices. Furthermore,
using Theorem 2, the maximum clique algorithm
of [2] for trapezoid graphs, and the fact that

multitolerance graphs are perfect, we provide
an (optimal) O.n log n/-time maximum clique
algorithm for multitolerance graphs.

Our O.mC n log n/-time maximum-weight
independent set algorithm for multitolerance
graphs is based on dynamic programming. Dur-
ing its execution, the algorithm uses binary search
trees to maintain two finite sets M and H of O.n/

weighted markers each, which are appropriately
sorted on the real line. For the case where the
input graph G is a tolerance graph, this algorithm
can be slightly modified to compute a maximum-
weight independent set in (optimal) O.n log n/

time, thus closing the complexity gap of [9].

Classification of Multitolerance Graphs
Apart from its use in devising efficient algo-
rithms, the trapezoepiped representation proved
useful also in classifying multitolerance graphs
inside the hierarchy of perfect graphs that is
given in [5, Figure 2.8]. The resulting hierarchy
of classes of perfect graphs is complete, i.e., all
inclusions are strict.
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Open Problems

The trapezoepiped representation provides ge-
ometric insight for multitolerance graphs, and
it can be expected to prove useful in deriving
new algorithmic as well as structural results. It
remains open to close the gap between the lower
bound of ˝.n log n/ and the upper bound of
O.mC n log n/ for the weighted independent set
on general multitolerance graphs. Furthermore,
interesting open problems for further research in-
clude the weighted clique problem, the Hamilto-
nian cycle problem, the dominating set problem,
as well as the recognition problem of general
multitolerance graphs.
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Problem Definition

Given an undirected graph with edge costs and
a subset of k nodes called terminals, a multiway
cut is a subset of edges whose removal discon-
nects each terminal from the rest. MULTIWAY

CUT is the problem of finding a multiway cut of
minimum cost.

Previous Work
Dahlhaus, Johnson, Papadimitriou, Seymour, and
Yannakakis [6] initiated the study of MULTIWAY

CUT and proved that MULTIWAY CUT is MAX
SNP-hard even when restricted to instances with
three terminals and unit edge costs. Therefore,
unless P D NP , there is no polynomial-time
approximation scheme for MULTIWAY CUT. For
k D 2, the problem is identical to the undirected
version of the extensively studied s�t min-cut
problem of Ford and Fulkerson, and thus has
polynomial-time algorithms (see, e.g., [1]). Prior
to this paper, the best (and essentially the only)
approximation algorithm for k � 3 was due to
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the above-mentioned paper of Dahlhaus et al.
They give a very simple combinatorial isolation
heuristic that achieves an approximation ratio of
2.1� 1=k/. Specifically, for each terminal i, find
a minimum-cost cut separating i from the remain-
ing terminals, and then output the union of the
k � 1 cheapest of the k cuts. For k D 4 and for
k D 8, Alon (see [6]) observed that the isolation
heuristic can be modified to give improved ratios
of 4/3 and 12/7, respectively.

In special cases, far better results are known.
For fixed k in planar graphs, the problem is
solvable in polynomial time [6]. For trees and
2-trees, there are linear-time algorithms [5]. For
dense unweighted graphs, there is a polynomial-
time approximation scheme [2, 8].

Key Results

Theorem 1 ([3]) There is a deterministic poly-
nomial time algorithm that finds a multiway cut
of cost at most (1:5� 1=k) times the optimum
multiway cut.

The approximation algorithm from Theorem 1 is
based on a novel linear programming relaxation
described later. On the basis of the same
linear program, the approximation ratio was
subsequently improved to 1.3438 by Karger,
Klein, Stein, Thorup, and Young [10]. For three
terminals, [10] and Cheung, Cunningham, and
Tang [4] give very different 12/11-approximation
algorithms.

Two variations of the problem have been con-
sidered in the literature: Garg, Vazirani, and Yan-
nakakis [9] obtain a .2 � 2=k/-approximation
ratio for the node-weighted version, and Naor
and Zosin [11] obtain 2-approximation for the
case of directed graphs. It is known that any
approximation ratio for these variations translates
immediately into the same approximation ratio
for VERTEX COVER, and thus it is hard to get any
significant improvement over the approximation
ratio of 2.

The algorithm from Theorem 1 appears next,
giving a flavor of how this result is obtained. The

complete proof of the approximation ratio is not
long and appears in [3] or the book [12].

Notation
Let G D .V; E/ be an undirected graph on
V D f1; 2; : : : ; ng in which each edge uv 2 E

has a non-negative cost c.u; v/ D c.v; u/, and
let T D f1; 2; : : : ; kg � V be a set of terminals.
MULTIWAY CUT is the problem of finding a min-
imum cost set C � E such that in .V; EŸC /,
each of the terminals 1; 2; : : : ; k is in a different
component. Let MWC D MWC.G/ be the value
of the optimal solution to MULTIWAY CUT.

�k denotes the .k � 1/-simplex, i.e., the
.k� 1/-dimensional convex polytope in R

k given
by fx 2 R

kj.x � 0/ ^ .
P

i xi D 1/g.
For x 2 R

k , kxk is its L1 norm: kxk DPi jxi j.
For j D 1; 2; : : : ; k, ej 2 R

k denotes the unit
vector given by .ej /j D 1 and .ej /i D 0 for all
i ¤ j .

LP-Relaxation
The simplex relaxation for MULTIWAY CUT with
edge costs has as variables k-dimensional real
vectors xu, defined for each vertex u 2 V :

Minimize
1

2

X

uv2E

c.u; v/ � kxu � xvk

Subject to:

xu 2 �k 8u 2 V

xt D et 8t 2 T:

In other words, the terminals stay at the ver-
tices of the .k � 1/-simplex, and the other nodes
anywhere in the simplex, and measure an edge’s
length by the total variation distance between its
endpoints. Clearly, placing all nodes at simplex
vertices gives an integral solution: the lengths of
edges are either 0 (if both endpoints are at the
same vertex) or 1 (if the endpoints are at different
vertices), and the removal of all unit length edges
disconnects the graph into at least k components,
each containing at most one terminal.

To solve this relaxation as a linear program,
new variables are introduced: yuv, defined for all
uv 2 E, and xu

i , defined for all u 2 V and i 2 T .
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Also new variables are yuv
i , defined for all i 2 T

and uv 2 E . Then one writes the linear program:

Minimize
1

2

X

uv2E

c.u; v/yuv

Subject to W
xu 2 �k 8u 2 V

xt D et 8t 2 T

yuv D
X

i2T

yuv
i 8uv 2 E

yuv
i � xu

i � xv
i 8uv 2 E ; i 2 T

yuv
i � xv

i � xu
i 8uv 2 E ; i 2 T :

It is easy to see that this linear program op-
timally solves the simplex relaxation above, by
noticing that an optimal solution to the linear
program can be assumed to put yuv

i D jxu
i � xv

i j
and yuv D kxu � xvk. Thus, solving the simplex
relaxation can be done in polynomial time. This
is the first step of the approximation algorithm.
Clearly, the value Z� of this solution is a lower
bound on the cost of the minimum multiway cut
MWC.

The second step of the algorithm is a rounding
procedure which transforms a feasible solution of
the simplex relaxation into an integral feasible
solution. The rounding procedure below differs
slightly from the one given in [3], but can be
proven to give exactly the same solution. This
variant is easier to present, although if one wants
to prove the approximation ratio then the only
way we know of is by showing that indeed this
variant gives the same solution as the more com-
plicated algorithm given in [3].

Rounding
Set B.i; �/ D fu 2 V j xu

i > 1 � �g, the set
of nodes suitably “close” to terminal i in
the simplex. Choose a permutation � D
h�1; �2; : : : ; �ki to be either h1; 2; 3; : : : ; k �
1; ki or hk � 1; k � 2; k � 3; : : : ; 1; ki with
probability 1=2 each. Independently, choose
� 2 .0; 1/ uniformly at random. Then, process the
terminals in the order �.1/; �.2/; �.3/; : : : ; �.k/.

Algorithm 1 The rounding procedure

For each j from 1 to k � 1, place the nodes that
remain in B.�j ; �/ at e�j . Place whatever nodes
remain at the end at ek. The following code
specifies the rounding procedure more formally.
Nx denotes the rounded (integral) solution.

To derandomize and implement this algorithm
in polynomial time, one tries both permutations �

and at most k.nC 1/ values of ¡. Indeed, for any
permutation � , two different values of ¡, �1 < �2,
produce combinatorially distinct solutions only
if there is a terminal i and a node u such that
xu

i 2 .1 � �2; 1 � �1�. Thus, there are at most
k.nC 1/ “interesting” values of ¡, which can be
determined easily by sorting the nodes accord-
ing to each coordinate separately. The resulting
discrete sample space for .�; �/ has size at most
2k.nC 1/, so one can search it exhaustively.

The analysis of the algorithm, however, is
based on the randomized algorithm above, as the
proof shows that the expected total cost of edges
whose endpoints are at different vertices of �k in
the rounded solution Nx is at most 1:5 Z�. To get
an .1:5 � 1=k/Z� upper bound, one must rename
the terminals such that terminal k maximizes
a certain quantity given by the simplex relaxation,
or alternatively randomly pick a terminal as the
last element of the permutation (the order of
the first k � 1 terminals does not matter as long
as both the increasing and the decreasing per-
mutations are tried by the rounding procedure).
Exhaustive search of the sample space produces
one integral solution whose cost does not exceed
the average.
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Applications

MULTIWAY CUT is used in Computer Vision, but
unless one can solve the instance exactly, algo-
rithms for the generalization METRIC LABELING

are needed. MULTIWAY CUT has applications in
parallel and distributed computing, as well as in
chip design.

Open Problems

The improvements of [10, 4] are based on bet-
ter rounding procedures and both compare the
integral solution obtained to Z�. This leads to
the natural question: what is the supremum, over
multiway cut instances G, of Z�.G/=MWC.G/.
This supremum is called integrality gap or in-
tegrality ratio. For three terminals, [10] and [4]
show that the integrality gap is exactly 12/11,
while for general k, Freund and Karloff [7] give
a lower bound of 8/7. The best-known upper
bound is 1.3438, achieved by an approximation
algorithm of [10].
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Problem Definition

Protein phosphorylation plays an important
role in various biological functions and cellular
processes. Identifying potential phosphorylation
sites in a protein often helps to reveal functional
details at the molecular level and was always
performed by in vivo or in vitro experiments.
Since the last decade, bioinformatics has been
contributing significantly in characterizing
protein structures and functionalities solely from
its primary information, which also sheds light
on phosphorylation site prediction. As per our
expectation, in silico prediction should not only
provide an alternative way to identify protein
phosphorylation sites at lower cost but also with
much higher throughput (e.g., proteome-wide
screening), so that biologists can quickly pinpoint
the potential sites for further experiments from
a long list of targets. Therefore, it is soon
becoming valuable and imperative to build such a
bioinformatics tool or framework that can predict
general and kinase-specific phosphorylation sites
in proteins.

In definition, protein phosphorylation predic-
tion is a computational approach to determine
whether a certain amino acid in a protein se-
quence can be potentially phosphorylated or not.
More specifically, given a protein (or peptide)
sequence P D Œai� i D 1; : : : n (where n is
the sequence length, with amino acid ai at ith
position), the prediction algorithm is to tell if
each of ai (especially when ai is serine, threonine,
or tyrosine) can be phosphorylated in P or not.
In a kinase-specific format, this question is asked
with a proposed kinase name or kinase family.
Moreover, this question can also be asked in a
species-specific or condition-specific format.

Key Results

Machine Learning Approach
The algorithm we designed to fulfill this predic-
tion task is able to resolve the association be-
tween phosphorylation and sequence information
from the experimentally identified phosphoryla-

tion sites. Thus, it is formulated as a machine
learning approach rather than an ab initio method.
The collected experimental data need to be split
into training and testing set to generate, tune,
and validate our machine learning models. These
machine learning models are then capable of
predicting general or kinase-specific phospho-
rylation site for proteins with unknown sites.
The general or specific prediction models are
very dependent on the correspondent data sets in
training. For example, kinase-specific prediction
requires kinase-specific training data sets. After
different preprocessing steps applied on data sets
for general or specific purposes, the prediction
models are generated from the same machine
learning method (i.e., support vector machine
[1–3] in our framework).

Technically speaking, per site prediction can
be modeled as a binary classification problem,
where the class label Y is eitherC1 for identified
phosphorylation site or �1 for unidentified
site, with X as its feature vector. A machine
learning model can be considered as a map
function from feature space X to the class label,
i.e., M W g.X/ ! Y, obtained from the training
data set{(X1; Y1/; .X2; Y2/: : :; .Xm; Ym/}. The
prediction for the unknown X� is simply
calculated through Y� D g.X�/.

In our case, Xi is a feature vector from the
protein sequence, extracted from a flanking pep-
tide surrounding i-th amino acid ai. The flanking
sequence is often centralized by ai and is a sub-
string of the original protein sequence, denoted as
p.ai/ D Œai�w; : : :ai; : : :; aiCw�, where w is called
the window size.

Support vector machine (SVM) then generates
our prediction model M by maximizing the mar-
gin of the classification boundary.

Features
K nearest neighbor (KNN) scores, disorder
scores, and amino acid information are used as
the features in our SVM-based machine learning
approach.

For amino acid ai, k nearest neighbors are
defined as the top k most similar peptides
(within smallest distances) to the target peptide
p.ai/ in the training data set. Besides size k,
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the neighborhood can be also defined as a
certain percentage of the whole training data
set (e.g., 1 % of the total population). KNN
score is then the ratio between the numbers of
positive and negative sites within this predefined
neighborhood.

Notice that the peptide similarity needs to be
defined and normalized. In a more clear illustra-
tion, the two flanking sequences centralized by
amino acid ai and aj are represented as p.ai/ D
Œai�w; ai�wC1; : : :; ai; : : :; aiCw�1; aiCw� and
p.aj/ D



aj�w; aj�wC1; : : :; aj; : : :; ajCw�1; ajCw

�
,

respectively.
The distance D.p.ai/; p.aj// between peptides

p.ai/ and p.aj/ is calculated by

D.p.ai /; p.aj // D 1 �

wP
kD�w

S.aiCk; ajCk/

2wC 1

where w is the window size, and the function S(.)
is to calculate the amino acid similarity between
ai and aj based on the normalized amino acid
substitution matrix Q. More specifically,

S.ai ; aj / D Q.ai ; aj /�min.Q/

max.Q/�min.Q/

where ai and aj are two amino acids, Q is the
substitution matrix, and max(Q) and min(Q) rep-
resent the maximal and minimal values in the
matrix Q. By default, BLOSUM62 is used as the
most general substitution matrix. In fact, Q can
also be directly calculated from the training data
set and then KNN score is very specific to the
training samples.

Disorder score per amino acid site reflects the
stability of the local structure and is calculated by
VSL2B [4]. By considering the disorder property
as a more neighborhood-dependent and contin-
uous feature, we correct (smooth) the disorder
score at the position ai using the mean value
across the flanking peptide p.ai/, i.e.,

Disorder.ai / D average.p.ai //

D 1

2wC 1

wX

kD�w

disorder.aiCk/

Amino acid information for flanking sequence
p.ai/ can refer to both composition and position
information. At one extreme, amino acid fre-
quency reflects composition information but no
position information. The amino acid preference
in phosphorylated peptides [5] can be revealed by
this frequency feature. The size of this frequency
vector is 20, which stores the normalized counts
for each amino acid type within the range of
the flanking peptide p.ai/. On the other extreme,
amino acid binary vector can provide position-
specific information by bookkeeping a 0-1 vector
for each amino acid at each position. The length
of amino acid binary vector is 20*w, much longer
than the frequency, which may potentially cause
over-fitting in machine learning when the sample
size is small. Therefore, selecting the right way to
encode and represent the amino acid information
is a trade-off between the losslessness of the po-
sitional information and the length of the feature
vector.

Bootstrap and Aggregation
Since the under-identified phosphorylation sites
(negative data) are always overwhelming the
identified ones (positive data) in the training
data set, we resolved this problem with bootstrap
procedures to avoid the potential bias in the final
classifier due to this unbalancing situation. The
bootstrap step is a randomized resampling to
get a balanced training data each time, which is
repeated many times in order to explore the whole
sample space thoroughly. So we will get many
models based on the actual number of bootstrap
steps, such as M1; : : :; Mk, and k could be up to
thousands. Then, we do the final classification
based on the voting or mean value from these
many models, i.e., G W GŒg1.X/; : : :gk.X/�, where
G is called the aggregation step. The aggregated
model is thus unbiased despite the imbalance of
the labels in the training data.

Cross Validation
With the trained model, the testing result is often
displayed as a trade-off between specificity and
sensitivity, e.g., by a receiver-operating character-
istic (ROC) curve. Specificity and sensitivity are
defined as follows:
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specificity D TN

TN C FP

sensitivity D TP

TP C FN

where TN represents true negative, FP false posi-
tive, TP true positive, and FN false negative.

Cross validation is a way to measure if the
power of the phosphorylation prediction model
trained from the known data can be well extended
to the unknown. Usually, the cross validation can
be performed with leave-one-out strategy (for
small data set, i.e., kinase-specific data set) or
from non-overlapped testing and training sets
with x folds settings (for general phosphorylation
site).

Musite as a Toolkit
Musite is an open-source software toolkit de-
signed for large-scale phosphorylation prediction
for both general and kinase-specific cases [6, 7].
The framework is quite flexible, so that user can
take advantage of different preprocessing steps
for specifying training or testing data, as well as
picking different features and tuning parameters.
By default, Musite provides general phosphory-
lation prediction models, several popular kinase-
specific models, and multiple species-specific
predictions (e.g., a plant-specific tool was build
using our in-house plant protein phosphorylation
database P3DB [8–10]). Moreover, trained with
users’ specific data sets, Musite is also capable of
generating customized models to do precise pre-
diction particularly on their own research focus.

Applications

This tool or framework can be used as a quick
filter on a long list of candidate proteins for
experimental biologists to narrow down the
phosphorylation sites to perform biochemical
assay. It can also help to evaluate or compare the
experimental observations in discovery studies.
On the other hand, the computational experts can
use this tool to do comparative studies, by fast
and cheap computer screening across multiple
proteomes. This tool can be easily and freely

incorporated into any translational bioinformatics
pipeline to characterize or annotate protein func-
tionality within large scale proteomics studies.

Open Problems

1. The current version is an alignment free
method. Is it possible or necessary to consider
alignment, i.e., allowing indels for peptides
similarity calculation?

2. The current features are more or less local.
Are there any feasible features representing
long distance association with phosphoryla-
tion site?

3. Can we extract any interesting biological rules
from the machine learning models for general
or specific phosphorylation events?

URLs to Code

The source code can be downloaded from Source-
Forge.
http://musite.sourceforge.net/
The online prediction Web services are available
at:
http://musite.net/
http://p3db.org/prediction.php
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Problem Definition

This problem is concerned with the multicast
routing and cost sharing in a selfish network
composed of relay terminals and receivers. This
problem is motivated by the recent observation
that the selfish behavior of the network could
largely degraded existing system performance,
even dysfunction. The work of Wang, Li and
Chu [7] first presented some negative results of
the strategyproof mechanism in multicast routing

and sharing, and then proposed a new solution
based on Nash Equilibrium that could greatly
improve the performance.

Wang, Li and Chu modeled a network by a link
weighted graph G D .V; E; c/, where V is the set
of all nodes and c is the cost vector of the set E of
links. For a multicast session, let Q denote the set
of all receivers. In game theoretical networking
literatures, usually there are two models for the
multicast cost/payment sharing.

Axiom Model (AM) All receivers must re-
ceive the service, or equivalently, each receiver
has an infinity valuation [3]. In this model, a shar-
ing method Ÿ computes how much each receiver
should pay when the receiver set is R and cost
vector is c.

Valuation Model (VM) There is a set Q D

fq1; q2; � � � ; qrg of r possible receivers. Each re-
ceiver qi 2 Q has a valuation �i for receiving the
service. Let � D .�1; �2; : : : ; �r / be the valuation
vector and �R be the valuation vector of a set
R � Q of receivers. In this model, they are in-
terested in a sharing mechanism S consisting of
a selection scheme �.�; c/ and a sharing method
�.�; c/. �i .�; c/ denotes whether receiver i re-
ceives the service or not, and �i .�; c/ computes
how much the receiver qi should pay for the
multicast service. Let P.�; c/ be the total payment
for providing the service to the receiver set.

In the valuation model, a receiver who is
willing to receive the service is not guaranteed to
receive the service. For notational simplicity,
�.�; c/ is used to denote the set of actual
receivers. Under the Valuation Model, a fair

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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Algorithm 1 The multicast system � DM D
.MDM;SDM/ based on multicast tree LCPT

sharing according to the following criteria is
studied.

• Budget Balance: For the receiver set
R D �.�; c/, P.�; c/ D

P
qi 2Q �i .�; c/. If

˛ � P.�; c/ �
P

i2R �i .�; c/ � P.�; c/,
for some given parameter 0 < ˛ � 1, then
S D .�; �/ is called ’-budget-balance. If
budget balance is not achievable, then
a sharing scheme S may need to be ’-budget-
balance instead of budget balance.

• No Positive Transfer (NPT): Any receiver
qi’s sharing should not be negative.

• Free Leaving: (FR) The potential receivers
who do not receive the service should not pay
anything.

• Consumer Sovereignty (CS): For any re-
ceiver qi, if �i is sufficiently large, then qi is
guaranteed to be an actual receiver.

• Group-Strategyproof (GS): Assume that
� is the valuation vector and �0 6D �. If
�i .�

0; c/ � �i .�; c/ for each qi 2 �, then
�i .�

0; c/ D �i .�; c/.

Notations
The path with the lowest cost between two odes
s and t is denoted as LCP.s; t; c/, and its cost
is dented as jLCP.s; t; c/j. Given a simple path
P in the graph G with cost vector c, the sum

Algorithm 2 FPA Mechanism MAUC

of the cost of links on path P is denoted as
jP.c/j. For a simple path P D vi  vj , if
LCP.s; t; c/

T
P D fvi ; vj g, then P is called

a bridge over LCP.s; t; c/. This bridge P covers
link ek if ek 2 LCP.vi ; vj ; c/. Given a link ei 2

LCP.s; t; c/, the path with the minimum cost that
covers ei is denoted as Bmin.ei ; c/. The bridge
Bmm.s; t; c/ D maxei 2LCP.s;t;c/ Bmin.ei ; c/ is the
max-min cover of the path LCP.s; t; c/.

A bridge set B is a bridge cover for
LCP.s; t; c/, if for every link ei 2 LCP.s; t; c/,
there exists a bridge B 2 B such that ei 2 LCP
.vs.B/; vt.B/; c/. The weight of a bridge
cover B.s; t; c/ is defined as jB.s; t; c/j D
P

B2B.s;t;c/

P
ei 2B ci . A bridge cover is a least

bridge cover (LB), denoted by LB.s; t; c/, if it
has the smallest weight among all bridge covers
that cover LCP.s; t; c/.

Key Results

Theorem 1 If � D .M;S/ is an ˛-stable multi-
cast system, then ˛ � 1=n.

Theorem 2 Multicast system � DM is 1=.r � n/-
stable, where r is the number of receivers.

Theorem 1 gives an upper bound for ’ for any
’-stable unicast system � . It is not difficult to
observe that even the receivers are cooperative,
Theorem 1 still holds. Theorem 2 showed that
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Algorithm 3 FPA based unicast system

there exists a multicast system is 1=.r � n/-stable.
When r D 1, the problem become traditional
unicast system and the bound is tight. When
relaxing the dominant strategy to the Nash Equi-
libria requirement, a First Price Auction (FPA)
mechanism is proposed by Wang et al. under the
Axiom Model that has many nice properties.

Theorem 3 There exists NE for FPA mechanism
MAUC and for any NE, (a) each link bids his true
cost as the first bid bi, (b) the actual shortest path
is always selected, (c) the total cost for different
NE differs at most 2 times.

Based on the FPA Mechanism � AUC, Wang, Li
and Chu design a unicast system as follows.

Theorem 4 The FPA based unicast system not
only has Nash Equilibria, but also is 1

2
-NE-stable

with � additive, for any given �.

By treating each receiver as a separate receiver
and applying the similar process as in the unicast
system, Wang, Li and Chu extended the unicast
system to a multicast system.

Theorem 5 The FPA based multicast system not
only has Nash Equilibria, but also is 1=.2 � r/-
NE-stable with � additive, for any given �.

Applications

More and more research effort has been done
to study the non-cooperative games recently.
Among these various forms of games, the
unicast/multicast routing game [2, 5, 6] and
multicast cost sharing game [1, 3, 4] have
received a considerable amount of attentions

over the past few year due to its application in the
Internet. However, both unicast/multicast routing
game and multicast cost sharing game are one
folded: the unicast/multicast routing game does
not take the receivers into account while the
multicast cost sharing game does not treat the
links as non-cooperative. In this paper, they study
the scenario, which was called multicast system,
in which both the links and the receivers could
be non-cooperative. Solving this problem paving
a way for the real world commercial multicast
and unicast application. A few examples are, but
not limited to, the multicast of the video content
in wireless mesh network and commercial WiFi
system; the multicast routing in the core Internet.

Open Problems

A number of problems related to the work of
Wang, Li and Chu [7] remain open. The first and
foremost, the upper bound and lower bound on ’

still have a gap of r if the multicast system is ’-
stable; and a gap of 2r if the multicast system is
’-Nash stable.

The second, Wang, Li and Chu only showed
the existence of the Nash Equilibrium under their
systems. They have not characterized the conver-
gence of the Nash Equilibrium and the strategies
of the user, which are not only interesting but also
important problems.
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Problem Definition

In this entry, the authors state results on some
transformation-based distances for evolutionary

trees. Several distance models for evolutionary
trees have been proposed in the literature. Among
them, the best known is perhaps the nearest
neighbor interchange (nni) distance introduced
independently in [10] and [9]. The authors will
focus on the nni distance and a closely related
distance called the subtree-transfer distance
originally introduced in [5, 6]. Several papers
that involved DasGupta, He, Jiang, Li, Tromp,
and Zhang essentially showed the following
results:

• A correspondence between the nni distance
and the linear-cost subtree-transfer distance on
unweighted trees.

• Computing the nni distance is NP-hard, but
admits a fixed-parameter tractability and a
logarithmic ratio approximation algorithms.

• A 2-approximation algorithm for the linear-
cost subtree-transfer distance on weighted
evolutionary trees.

The authors first define the nni and linear-cost
subtree-transfer distances for unweighted trees.
Then the authors extend the nni and linear-cost
subtree-transfer distances to weighted trees. For
the purpose of this entry, an evolutionary tree
(also called phylogeny) is an unordered tree, has
uniquely labeled leaves and unlabeled interior
nodes, can be unrooted or rooted, can be un-
weighted or weighted, and has all internal nodes
of degree 3.

Unweighted Trees
An nni operation swaps two subtrees that are
separated by an internal edge (u, v), as shown in
Fig. 1.

The nni operation is said to operate on this
internal edge. The nni distance, Dnni.T1; T2/,
between two trees T1 and T2 is defined as the
minimum number of nni operations required to
transform one tree into the other.

An nni operation can also be viewed as mov-
ing a subtree past a neighboring internal node.
A more general operation is to transfer a sub-
tree from one place to another arbitrary place.
Figure 2 shows such a subtree-transfer operation.

The subtree-transfer distance between two
trees T1 and T2 is the minimum number of
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Nearest Neighbor
Interchange and Related
Distances, Fig. 1 The two
possible nni operations on
an internal edge (u, v):
exchange B $ C or
B $ D

A

B

B C
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D
u v

A

C

B

D
u v

A

D

C

B
u v

B D

s1 s2 s3

s5 s5

s4

one subtree transfer

s1 s2 s3 s4

Nearest Neighbor Interchange and Related Dis-
tances, Fig. 2 An example of subtree-transfer

subtrees one needs to move to transform T1

into T2 [5–7]. It is sometimes appropriate in
practice to discriminate among subtree-transfer
operations as they occur with different frequen-
cies. In this case, one can charge each subtree-
transfer operation a cost equal to the distance
(the number of nodes passed) that the subtree
has moved in the current tree. The linear-cost
subtree-transfer distance, Dlcst.T1; T2/, between
two trees T1 and T2 is then the minimum total
cost required to transform T1 into T2 by subtree-
transfer operations [1, 3].

Weighted Trees
Both the linear-cost subtree-transfer and nni mod-
els can be naturally extended to weighted trees.
The extension for nni is straightforward: an nni
operation is simply charged a cost equal to the
weight of the edge it operates on. For feasibil-
ity of weighted nni transformation between two
given weighted trees T1 and T2, one also requires
that the following conditions are satisfied: (1) for
each leaf label a, the weight of the edge in T1

incident on a is the same as the weight of the
edge in T2 incident on a and (2) the multisets of
weights of internal edges of T1 and T2 are the
same (Fig. 3).

In the case of linear-cost subtree-transfer, al-
though the idea is immediate, i.e., a moving sub-
tree should be charged for the weighted distance
it travels, the formal definition needs some care
and is given below. Consider (unrooted) trees
in which each edge e has a weight w.e/ � 0.
To ensure feasibility of transforming a tree into
another, one requires the total weight of all edges
to equal one. A subtree-transfer is now defined
as follows. Select a subtree S of T at a given
node u and select an edge e 62 S . Split the edge e

into two edges e1 and e2 with weights w.e1/ and
w.e2/ (w.e1/, w.e2/ � 0, w.e1/Cw.e2/ D w.e//,
and move S to the common end point of e1 and
e2. Finally, merge the two remaining edges e0

and e00 adjacent to u into one edge with weight
w.e0/ C w.e00/. The cost of this subtree-transfer
is the total weight of all the edges over which S

is moved. Figure 3 gives an example. The edge-
weights of the given tree are normalized so that
their total sum is 1. The subtree S is transferred
to split the edge e4 to e6 and e7 such that w.e6/,
w.e7/ � 0 and w.e6/ C w.e7/ D w.e4/; finally,
the two edges e1 and e2 are merged to e5 such that
w.e5/ D w.e1/ C w.e2/. The cost of transferring
S is w.e2/ C w.e3/ C w.e6/.

Note that for weighted trees, the linear-cost
subtree-transfer model is more general than the
nni model in the sense that one can slide a subtree
along an edge with subtree-transfers. Such an
operation is not realizable with nni moves.
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e1
a be2

S
S

e3 e4 e5 e3 e6 e7

Nearest Neighbor Interchange and Related Distances, Fig. 3 Subtree-transfer on weighted phylogenies. Tree (b)
is obtained from tree (a) with one subtree-transfer

Key Results

Let T1 and T2 be the two trees, each with n nodes,
that are being used in the distance computation.

Theorem 1 ([1,2,4]) Assume that T1 and T2 are
unweighted. Then, the following results hold:

• Dnni.T1; T2/ D Dlcst.T1; T2/.
• Computing Dnni.T1; T2/ is NP-complete.
• Suppose that Dnni.T1; T2/ � d . Then, an opti-

mal sequence of nni operations transforming
T1 into T2 can be computed in O.n2log n C n�

223d=2/ time.
• Dnni.T1; T2/ can be approximated to within a

factor of log n C O.1/ in polynomial time.

Theorem 2 ([1–4]) Assume that T1 and T2 are
weighted. Then, the following results hold:

• Dnni.T1; T2/ can be approximated to within a
factor of 6 + 6log n in O.n2log n/ time.

• Assume that T1 and T2 are allowed to have
leaves that are not necessarily uniquely la-
beled. Then, computing Dlcst.T1; T2/ is NP-
hard.

• Dlcst.T1; T2/ can be approximated to within a
factor of 2 in O.n2log n/ time.

Applications

The results reported here are on transformation-
based distances for evolutionary trees. Such a
tree can be rooted if the evolutionary origin is
known and can be weighted if the evolutionary
length on each edge is known. Reconstructing the

correct evolutionary tree for a set of species is
one of the fundamental yet difficult problems in
evolutionary genetics. Over the past few decades,
many approaches for reconstructing evolution-
ary trees have been developed, including (not
exhaustively) parsimony, compatibility, distance,
and maximum likelihood approaches. The out-
comes of these methods usually depend on the
data and the amount of computational resources
applied. As a result, in practice they often lead to
different trees on the same set of species [8]. It
is thus of interest to compare evolutionary trees
produced by different methods or by the same
method on different data.

Another motivation for investigating the
linear-cost subtree-transfer distance comes from
the following motivation. When recombination
of DNA sequences occurs in an evolution, two
sequences meet and generate a new sequence,
consisting of genetic material taken left of the
recombination point from the first sequence and
right of the point from the second sequence
[5, 6]. From a phylogenetic viewpoint, before
the recombination, the ancestral material on
the present sequence was located on two
sequences, one having all the material to the
left of the recombination point and another
having all the material to the right of the
breaking point. As a result, the evolutionary
history can no longer be described by a single
tree. The recombination event partitions the
sequences into two neighboring regions. The
history for the left and the right regions could
be described by separate evolutionary trees. The
recombination makes the two evolutionary trees
describing neighboring regions differ. However,
two neighbor trees cannot be arbitrarily different,



Negative Cycles in Weighted Digraphs 1405

N

one must be obtainable from the other by a
subtree-transfer operation. When more than
one recombination occurs, one can describe an
evolutionary history using a list of evolutionary
trees, each corresponds to some region of the
sequences and each can be obtained by several
subtree-transfer operations from its predecessor
[6]. The computation of a linear-cost subtree-
transfer distance is useful in reconstructing such
a list of trees based on parsimony [5, 6].

Open Problems

1. Is there a constant ratio approximation
algorithm for the nni distance on unweighted
evolutionary trees or is the O(log n/-
approximation the best possible?

2. Is the linear-cost subtree-transfer distance NP-
hard to compute on weighted evolutionary
trees if leaf labels are not allowed to be
nonunique?

3. Can one improve the approximation ratio
for linear-cost subtree-transfer distance on
weighted evolutionary trees?
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Problem Definition

Let G D .V; E/ be an n-vertex, m-edge directed
graph (digraph), whose edges are associated with
a real-valued cost function wt W E ! R. The
cost, wt .P /, of a path P in G is the sum of the
costs of the edges of P. A simple path C whose
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starting and ending vertices coincide is called
a cycle. If wt .C / < 0, then C is called a negative
cycle. The goal of the negative cycle problem is
to detect whether there is such a cycle in a given
digraph G with real-valued edge costs, and if
indeed exists to output the cycle.

The negative cycle problem is closely related
to the shortest path problem. In the latter, a min-
imum cost path between two vertices s and t is
sought. It is easy to see that an s-t shortest path
exists if and only if no s-t path in G contains
a negative cycle [1, 13]. It is also well-known
that shortest paths from a given vertex s to all
other vertices form a tree called shortest path
tree [1, 13].

Key Results

For the case of general digraphs, the best algo-
rithm to solve the negative cycle problem (or to
compute the shortest path tree, if such a cycle
does not exist) is the classical Bellman�Ford
algorithm that takes O.nm/ time (see e.g., [1]).
Alternative methods with the same time complex-
ity are given in [4, 7, 12, 13]. Moreover, in [11,
Chap. 7] an extension of the Bellman�Ford algo-
rithm is described which, in addition to detecting
and reporting the existing negative cycles (if any),
builds a shortest path tree rooted a some vertex
s reaching those vertices u whose shortest s-u
path does not contain a negative cycle. If edge
costs are integers larger than �L (L � 2), then
a better algorithm was given in [6] that runs
in O.m

p
n log L/ time, and it is based on bit

scaling.
A simple deterministic algorithm that runs in

O.n2 log n/ expected time with high probabil-
ity is given in [10] for a large class of input
distributions, where the edge costs are chosen
randomly according to the endpoint-independent
model (this model includes the common case
where all edge costs are chosen independently
from the same distribution).

Better results are known for several important
classes of sparse digraphs (i.e., digraphs with
m D O.n/ edges) such as planar digraphs, out-
erplanar digraphs, digraphs of small genus, and
digraphs of small treewidth.

For general sparse digraphs, an algorithm is
given in [8] that solves the negative cycle problem
in O.n C Q�1:5 log Q�/ time, where Q� is a topolog-
ical measure of the input sparse digraph G, and
whose value varies from 1 up to �.n/. Infor-
mally, Q� represents the minimum number of out-
erplanar subgraphs, satisfying certain separation
properties, into which G can be decomposed. In
particular, Q� is proportional to �.G/ C q, where
G is supposed to be embedded into an orientable
surface of genus �.G/ so as to minimize the
number q of faces that collectively cover all
vertices. For instance, if G is outerplanar, then
Q� D 1, which implies an optimal O(n) time al-
gorithm for this case. The algorithm in [8] does
not require such an embedding to be provided
by the input. In the same paper, it is shown
that random Gn;p graphs with threshold function
1=n are planar with probability one and have an
expected value for Q� equal to O(1). Furthermore,
an efficient parallelization of the algorithm on the
CREW PRAM model of computation is provided
in [8].

Better bounds for planar digraphs are as fol-
lows. If edge costs are integers, then an algo-
rithm running in O.n4=3 log.nL// time is given
in [9]. For real edge costs, an O.n log3 n/-time
algorithm was given in [5].

An optimal O(n)-time algorithm is given in [3]
for the case of digraphs with small treewidth
(and real edge costs). Informally, the treewidth
t of a graph G is a parameter which measures
how close is the structure of G to a tree. For
instance, the class of graphs of small treewidth
includes series-parallel graphs (t D 2) and outer-
planar graphs (t D 2). An optimal parallel algo-
rithm for the same problem, on the EREW PRAM
model of computation, is provided in [2].

Applications

Finding negative cycles in a digraph is a funda-
mental combinatorial and network optimization
problem that spans a wide range of applications
including: shortest path computation, two dimen-
sional package element, minimum cost flows,
minimal cost-to-time ratio, model verification,
compiler construction, software engineering,
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VLSI design, scheduling, circuit production,
constraint programming and image processing.
For instance, the isolation of negative feedback
loops is imperative in the design of VLSI circuits.
It turns out that such loops correspond to negative
cost cycles in the so-called amplifier-gain graph
of the circuit. In constraint programming, it
is required to check the feasibility of sets of
constraints. Systems of difference constraints
can be represented by constraint graphs, and
one can show that such a system is feasible if
and only if there are no negative cost cycles
in its corresponding constraint graph. In zero-
clairvoyant scheduling, the problem of checking
whether there is a valid schedule in such
a scheduling system can be reduced to detecting
negative cycles in an appropriately defined
graph. For further discussion on these and other
applications see [1, 12, 14].

Open Problems

The negative cycle problem is closely related
to the shortest path problem. The existence
of negative edge costs makes the solution of
the negative cycle problem or the computation
of a shortest path tree more difficult and
thus more time consuming compared to the
time required to solve the shortest path tree
problem in digraphs with non-negative edge
costs. For instance, for digraphs with real edge
costs, compare the O.nm/-time algorithm in
the former case with the O.m C n log n/-time
algorithm for the latter case (Dijkstra’s algorithm
implemented with an efficient priority queue; see
e.g., [1]).

It would therefore be interesting to try to
reduce the gap between the above two time com-
plexities, even for special classes of graphs or the
case of integer costs.

The only case where these two complexities
coincide concerns the digraphs of small
treewidth [3], making it the currently most
general such class of graphs. For planar digraphs,
the result in [5] is only a polylogarithmic factor
away from the O(n)-time algorithm in [9] that
computes a shortest path tree when the edge
costs are non-negative.

Experimental Results

An experimental study for the negative cycle
problem is conducted in [4]. In that paper, several
methods that combine a shortest path algorithm
(based on the Bellman�Ford approach) with a cy-
cle detection strategy are investigated, along with
some new variations of them. It turned out that the
performance of algorithms for the negative cycle
problem depends on the number and the size of
the negative cycles. This gives rise to a collection
of problem families for testing negative cycle
algorithms.

A follow-up of the above study is presented
in [14], where two new heuristics are introduced
and are incorporated on three of the algorithms
considered in [4] (the original Bellman�Ford and
the variations in [13] and [7]), achieving dramatic
improvements. The data sets considered in [14]
are those in [4].

Data Sets

Data set generators and problem families are
described in [4], and are available from http://
www.avglab.com/andrew/soft.html.

URL to Code

The code used in [4] is available from http://
www.avglab.com/andrew/soft.html.
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Problem Definition

Over the last few decades, a wide variety of
networks have emerged. The general structure
of these networks including their global con-
nectivity properties has been studied extensively.
On the other hand, strategic aspects of them
are also very interesting to explore by consid-
ering the nodes as independent agents. The ex-
citing area of network creation games attempts
to understand how real-world networks (such as
the Internet) develop when multiple independent
agents (e.g., ISPs) build pieces of the network to
selfishly improve their own objective functions
which heavily depend on their connectivity prop-
erties.

We start by elaborating on these connectivity
objectives and its relation to the global design
and structure of the network. Network design is
a fundamental family of problems at the intersec-
tion between computer science and operations re-
search, amplified in importance by the sustained
growth of computer networks such as the Inter-
net. Traditionally, the goal is to find a minimum-
cost (sub) network that satisfies some specified
property such as k-connectivity or connectivity
on terminals (as in the classic Steiner tree prob-
lem). Such a formulation captures the (possibly
incremental) creation cost of the network but does
not incorporate the cost of actually using the
network. By contrast, network routing has the
goal of optimizing the usage cost of the network
but assumes that the network has already been
created. The network creation game attempts to
unify the network design and network routing
problems by modeling both creation and usage
costs. Specifically, each node in the system is
an independent selfish agent that can create a
link (edge) to any other node, at a cost of ˛.
In addition to these creation costs, each node
incurs a usage cost related to the distances to
the other nodes. In the model introduced by
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Fabrikant, Luthra, Maneva, Papadimitriou, and
Shenker [11], the usage cost incurred by a node
is the sum of distances to all other nodes. Equiva-
lently, if we divide the cost (and thus ˛) by the
number n of nodes, the usage cost is the aver-
age distance to other nodes. In another natural
model, the usage cost incurred by a node is the
maximum distance to all other nodes: this model
captures the worst-case instead of average-case
behavior of routing. To model the dominant be-
havior of large-scale networking scenarios such
as the Internet, we consider each node to be an
agent (player) [12] that selfishly tries to minimize
its own creation and usage costs [1, 6, 11]. In
this context, the price of anarchy [14, 15, 17] is
the worst possible ratio of the total cost found
by some independent selfish behavior and the
optimal total cost possible by a centralized, so-
cial welfare-maximizing solution. The price of
anarchy is a well-studied concept in algorithmic
game theory for problems such as load balancing,
routing, and network design; see, e.g., [1, 3–
7, 11, 15, 16].

Equilibria To model the dominant behavior of
large-scale networking scenarios such as the In-
ternet, we consider the case where every node
(player) selfishly tries to minimize its own cre-
ation and usage cost. This game-theoretic setting
naturally leads to the various kinds of equilibria
and the study of their structure. Two frequently
considered notions are Nash equilibrium, where
no player can change its strategy (which edges to
buy) to locally improve its cost, and strong Nash
equilibrium, where no coalition of players can
change their collective strategy to locally improve
the cost of each player in the coalition. Nash
equilibria capture the combined effect of both
selfishness and lack of coordination, while strong
Nash equilibria separate these issues, enabling
coordination and capturing the specific effect
of selfishness. However, the notion of strong
Nash equilibrium is extremely restrictive in our
context, because all players can simultaneously
change their entire strategies, abusing the local
optimality intended by original Nash equilibria
and effectively forcing globally near-optimal so-
lutions. Thus it makes sense to focus on weaker
notions of equilibria.

Structure of equilibria What structural proper-
ties can be predicted about equilibria in net-
work creation games? For example, Fabrikant
et al. [11] conjectured that equilibrium graphs in
the unilateral model were all trees, but this is not
always the case as shown by Albers et al. [1]
One particularly interesting structural feature is
whether all equilibrium graphs have small di-
ameter (say, polylogarithmic), analogous to the
small-world phenomenon. A closely related issue
is the price of anarchy, that is, the worst possible
ratio of the total cost of an equilibrium (found
by independent selfish behavior) and the optimal
total cost possible by a centralized solution (max-
imizing social welfare). The price of anarchy is a
well-studied concept in algorithmic game theory
for problems such as load balancing, routing,
and network design. Upper bounds on diameter
of equilibrium graphs translate to approximately
equal upper bounds on the price of anarchy but
not necessarily vice versa.

Notation
Formally, we define four games depending on
the objective (sum or max) and the consent
(unilateral or bilateral). In all versions, we have
n players; call them 1; 2; : : : ; n. The strategy
of player i is specified by a subset si of
1; 2; : : : ; n n i , which corresponds to the set
of neighbors to which player i forms a link.
Together, let s D fs1; s2; : : : ; sng denote the
strategies of all players.

To define the cost of a strategy, we intro-
duce an undirected graph Gs with vertex set
f1; 2; : : : ; ng. In the unilateral game, Gs has an
edge .i; j / if either i 2 sj or j 2 si . In the
bilateral game, Gs has an edge .i; j / if both
i 2 sj and j 2 si . Define ds.i; j / to be
the distance (the number of edges in a shortest
path) between vertices i and j in graph Gs .
In the sum game, the cost incurred by player i

is ci .s/ D ˛jsi j C
Pn

j D1 ds.i; j /, and in the max
game, the cost incurred by player i is ci .s/ D

˛jsi j C maxn
j D1ds.i; j /. In both cases, the total

cost incurred by strategy s is c.s/ D
Pn

iD1 ci .s/.
In the unilateral game, a (pure) Nash equilibrium
is a strategy s such that ci .s/ � ci .s

0/ for all
strategies s0 that differ from s in only one player i .
The price of anarchy is then the maximum cost of
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a Nash equilibrium divided by the minimum cost
of any strategy (called the social optimum).

In the bilateral game, Nash equilibria are not
so interesting because the game requires coalition
between two players to create an edge (in gen-
eral). For example, if every player i chooses the
empty strategy si D ;, then we obtain a Nash
equilibrium inducing an empty graph Gs , which
has an infinite cost c.s/. To address this issue,
Corbo and Parkes [6] use the notion of pairwise
stability [13]: a strategy is pairwise stable if (1)
for any edge .i; j / of Gs , both ci .s/ � ci .s

0/ and
cj .s/ � cj .s0/ where s0 differs from s only in
deleting edge .i; j / from Gs and (2) for any non-
edge .i; j / of Gs , either ci .s/ < ci .s

0/ or cj .s/ <

cj .s0/ where s0 differs from s only in adding
edge .i; j / to Gs0 . The price of anarchy is then
the maximum cost of a pairwise-stable strategy
divided by the social optimum (the minimum cost
of any strategy).

Key Results

We start by the sum unilateral games. Fabrikant
et al. [11] introduce these games and prove an
upper bound of O.

p
˛/ on the price of anarchy

for all ˛. Albers et al. [1] prove that the price
of anarchy is constant for ˛ D O.

p
n/, as

well as for the larger range ˛ � 12n lg.n/.
In addition, Albers et al. prove a general upper

bound of 15

�

1 C
�

minf ˛2

n
; n2

˛
g
�1=3

�

. The lat-

ter bound shows the first sublinear worst-case
bound, O.n1=3/, for all ˛. Demaine et al. [10]
prove the first o.n�/ upper bound on the price

of anarchy for general ˛, namely, 2O.
p

log.n//.
They also prove that price of anarchy is con-
stant for ˛ D O.n1�/ for any fixed � > 0,
substantially reducing the range of ˛ for which
constant bounds have not been obtained. Demain
et al. also prove that in the max unilateral games,
the price of anarchy is at most 2 for ˛ � n,

O
�

minf4
p

log.n/; .n=˛/1=3g
�

for 2
p

log.n/ �

˛ � n, and O.n2=˛/ for ˛ < 2
p

log.n/.
Alon et al. [2] consider a natural version of
network creation games in which nodes only can

switch their edges instead of drastically changing
their strategies. In these simpler games, they
achieve similar bounds on the price of anarchy.
The advantage of their model is its simplic-
ity in both agents strategies at each point and
the fact that there is no ˛ to be considered in
their model.

The bilateral variation on the network cre-
ation game, considered by Corbo and Parkes [6],
requires both nodes to agree before they can
create a link between them. In the sum bilateral
network creation game, Corbo and Parkes prove
that the price of anarchy is O.minf

p
˛; n=

p
˛g/.

Demaine et al. [10] prove that this upper bound
is tight by showing a matching lower bound
of ˝.minf

p
˛; n=

p
˛g/. For the max bilateral

case, Demaine et al. show that the price of an-
archy is �. n

1C˛
/ for ˛ � n and at most 2 for

˛ > n.
Finding a polylogarithmic upper bound on

price of anarchy for all values of ˛ in these
four network creation settings remains an open
problem. In an effort to reduce the upper bounds,
Demaine et al. [9] introduce the cooperative net-
work creation games in which all agents can con-
tribute in the construction of any edge even if they
are not an endpoint of the edge. They prove that
in the sum cooperative network creation game
the price of anarchy is at most polylogarithmic
in terms of the number of nodes. As a result,
they exhibit the small-world phenomenon (poly-
logarithmic diameter) in the equilibrium graphs
of these games. To reduce the price of anarchy
even further, Demaine et al. [8] consider a special
version of network creation games, and using
some kind of an advertising campaign, they show
that the price of anarchy is a constant number
independent of the number of nodes.

Techniques
To keep this survey of results short, we just
overview some of the nice combinatorial tech-
niques in this area. Albers et al. [1] observe that
any node u has the option of just connecting to
another node v and exploits the BFS tree rooted
at v. In an equilibrium graph Gs , this should not
be a better strategy for u. Applying this trick and
summing up all these inequalities for different
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choices of u, Albers et al. prove that for any Nash
equilibrium s and any vertex v in Gs , the cost c.s/

is at most 2˛.n � 1/ CnDist.v/ C .n�1/2 where
Dist.v/ D

P
v02V.Gs/ ds.v; v0/.

Demaine et al. use this lemma to prove that
price of anarchy is O.D/ where D is the diameter
of the graph. To upper bound the diameter, they
develop different techniques for different ranges
of ˛. For instance, for ˛ D O.n1��/, they
prove that the neighborhood sizes around any
node grows exponentially with a rate of n=˛ D

˝.n�/. Formally, they prove that when the radius
of the neighborhood around a node is doubled,
the number of nodes inside the neighborhood
is multiplied by n=˛ until this radius becomes
comparable with the diameter of the graph D.
Clearly, it takes O.1=�/ rounds of doubling the
neighborhood radius to cover all nodes which
means that the diameter is at most exponentially
growing in 1=� which is a constant for a fixed �.
For other ranges of ˛, more complicated bounds
are needed.
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Problem Definition

In this entry, the following two problems are
considered: (1) the problem of finding an approx-
imate Nash equilibrium in a positively normal-
ized bimatrix (or two-player) game; and (2) the
smoothed complexity of finding an exact Nash
equilibrium in a bimatrix game. It turns out that
these two problems are strongly correlated [3].

Let G D .A; B/ be a bimatrix game, where
A D .ai;j / and B D .bi;j / are both n � n matri-

ces. Game G is said to be positively normalized,
if 0 � ai;j; bi;j � 1 for all 1 � i; j � n.

Let Pn denote the set of all probability vectors
in R

n, i.e., non-negative vectors whose entries
sum to 1. A Nash equilibrium [8] of G D .A; B/

is a pair of mixed strategies .x� 2 P
n; y� 2 P

n/

such that for all x; y 2 P
n,

.x�/TAy� � xTAy� and .x�/TBy� � .x�/TBy;

while an �-approximate Nash equilibrium is
a pair .x� 2 P

n; y� 2 P
n/ that satisfies

.x�/TAy� � xTAy� � � and

.x�/TBy� � .x�/TBy � �; for all x; y 2 P
n:

In the smoothed analysis [11] of bimatrix
games, a perturbation of magnitude � > 0 is
first applied to the input game: For a positively
normalized n � n game G D .A; B/, let A and B
be two matrices with

ai;j D ai;j C rA
i;j and bi;j D bi;j C rB

i;j ;

81 � i; j � n;

while rA
i;j and rB

i;j are chosen independently and
uniformly from interval Œ��; �	 or from Gaussian
distribution with variance �2. These two kinds
of perturbations are referred to as � -uniform
and � -Gaussian perturbations, respectively. An
algorithm for bimatrix games has polynomial
smoothed complexity (under � -uniform or
� -Gaussian perturbations) [11], if it finds a Nash
equilibrium of game .A; B/ in expected time poly
.n; 1=�/, for all .A; B/.

Key Results

The complexity class PPAD [9] is defined in
entry �Complexity of Bimatrix Nash Equilibria.
The following theorems are proved in [3].

Theorem 1 For any constant c > 0, the prob-
lem of computing a 1=nc-approximate Nash
equilibrium of a positively normalized n � n bi-
matrix game is PPAD-complete.
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Theorem 2 The problem of computing a Nash
equilibrium in a bimatrix game is not in smoothed
polynomial time, under uniform or Gaussian per-
turbations, unless PPAD � RP.

Corollary 1 The smoothed complexity of the
Lemke-Howson algorithm is not polynomial, un-
der uniform or Gaussian perturbations, unless
PPAD � RP.

Applications

See entry �Complexity of Bimatrix Nash Equi-
libria.

Open Problems

There remains a complexity gap on the approxi-
mation of Nash equilibria in bimatrix games: The
result of [7] shows that, an �-approximate Nash
equilibrium can be computed in nO.log n=�2/-time,
while [3] show that no algorithm can find an
�-approximate Nash equilibrium in poly.n; 1=�/-
time for � of order 1=poly.n/, unless PPAD is in
P. However, the hardness result of [3] does not
cover the case when � is a constant between 0
and 1. Naturally, it is unlikely that the problem
of finding an �-approximate Nash equilibrium is
PPAD-complete when � is an absolute constant,
for otherwise, all the search problems in PPAD
would be solvable in nO.log n/-time, due to the
result of [7]. An interesting open problem is that,
for every constant � > 0, is there a polynomial-
time algorithm for finding an �-approximate Nash
equilibrium? The following conjectures are pro-
posed in [3]:

Conjecture 1 There is an O.nkC��c
/-time algo-

rithm for finding an �-approximate Nash equilib-
rium in a bimatrix game, for some constants c
and k.

Conjecture 2 There is an algorithm to find
a Nash equilibrium in a bimatrix game
with smoothed complexity O.nkC��c

/ under

perturbations with magnitude � , for some
constants c and k.

It is also conjectured in [3] that Corollary 1
remains true without any complexity assumption
on class PPAD. A positive answer would extend
the result of [10] to the smoothed analysis frame-
work.
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Problem Definition

Phylogenies are binary trees whose leaves are
labeled with distinct leaf labels. This problem
in this article is concerned with a well-known
measurement, called non-shared edge distance,
for comparing the dissimilarity between two phy-
logenies. Roughly speaking, the non-shared edge
distance counts the number of edges that differ-
entiate one phylogeny from the other.

Let e be an edge in a phylogeny T . Removing
e from T splits T into two subtrees. The leaf
labels are partitioned into two subsets according
to the subtrees. The edge e is said to induce
a partition of the set of leaf labels. Given two
phylogenies T and T 0 having the same number
of leaves with the same set of leaf labels, an
edge e in T is shared if there exists some edge
e0 in T 0 such that the edges e and e0 induce the
same partition of the set of leaf labels in their

corresponding tree. Otherwise, e is non-shared.
Notice that T and T 0 have the same number of
edges, so that the number of non-shared edges in
T (with respect to T 0/ is the same as the number
of non-shared edges in T 0 (with respect to T /.
Such a number is called the non-shared edge
distance between T and T 0. Two problems are
defined as follows:

Non-shared Edge Distance Problem
INPUT: Two phylogenies on the same set of leaf

labels
OUTPUT: The non-shared edge distance between

the two input phylogenies

All-Pairs Non-shared Edge Distance
Problem
INPUT: A collection of phylogenies on the same

set of leaf labels
OUTPUT: The non-shared edge distance between

each pair of the input phylogenies

Extension
Phylogenies that are commonly used in practice
have weights associated to the edges. The notion
of non-shared edge can be easily extended for
edge-weighted phylogenies. In this case, an edge
e will induce a partition of the set of leaf labels as
well as the multi-set of edge weights (here, edge
weights are allowed to be non-distinct). Given
two edge-weighted phylogenies R and R0 having
the same set of leaf labels and the same multi-
set of edge weights, an edge e in R is shared
if there exists some edge e0 in R0 such that the
edges e and e0 induce the same partition of the set
of leaf labels and the multi-set of edge weights.
Otherwise, e is non-shared. The non-shared edge
distance between R and R0 is similarly defined,
giving the following problem:

General Non-shared Edge Distance
Problem
INPUT: Two edge-weighted phylogenies on the

same set of leaf labels and same multi-set of
edge weights

OUTPUT: The non-shared edge distance between
the two input phylogenies
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Key Results

Day [3] proposed the first linear-time algorithm
for the Non-shared Edge Distance Problem.

Theorem 1 Let T and T 0 be two input phylo-
genies with the same set of leaf labels and n be
the number of leaves in each phylogeny. The non-
shared edge distance between T and T 0 can be
computed in O.n/ time.

Let 
 be a collection of k phylogenies on
the same set of leaf labels and n be the number
of leaves in each phylogeny. The All-Pairs Non-
shared Edge Distance Problem can be solved by
applying Theorem 1 on each pair of phylogenies,
thus solving the problem in a total of O.k2n/

time. Pattengale and Moret [9] proposed a ran-
domized result based on [7] to solve the problem
approximately, whose running time is faster when
n � k � 2n.

Theorem 2 Let " be a parameter with " > 0.
Then, there exists a randomized algorithm such
that with probability at least 1 � k�2, the non-
shared edge distance between each pair of phylo-
genies in 
 can be approximated within a factor
of .1 C "/ from the actual distance; the running
time of the algorithm is O.k.n2 C k log k/ = "2/.

For general phylogenies, let R and R0 be two
input phylogenies with the same set of leaf labels
and the same multi-set of edge weights and n

be the number of leaves in each phylogeny. The
General Non-shared Edge Distance Problem can
be solved easily in O.n2/ time by applying The-
orem 1 in a straightforward manner. The running
time is improved by Hon et al. in [5].

Theorem 3 The non-shared edge distance be-
tween R and R0 can be computed in O.n log n/

time.

Applications

Phylogenies are commonly used by biologists
to model the evolutionary relationship among
species. Many reconstruction methods (such as
maximum parsimony, maximum likelihood, com-

patibility, distance matrix) produce different phy-
logenies based on the same set of species, and it is
interesting to compute the dissimilarities between
them. Also, through the comparison, information
about rare genetic events such as recombinations
or gene conversions may be uncovered. The most
common dissimilarity measure is the Robinson-
Foulds metric [11], which is exactly the same as
the non-shared edge distance.

Other dissimilarity measures, such as the
nearest-neighbor interchange (NNI) distance
and the subtree-transfer (STT) distance (see [2]
for details), are also proposed in the literature.
These measures are sometimes preferred by the
biologists since they can be used to deduce the
biological events that create the dissimilarity.
Nevertheless, these measures are usually difficult
to compute. In particular, computing the NNI
distance and the STT distance is shown to be NP-
hard by DasGupta et al. [1, 2]. Approximation
algorithms are devised for these problems
(NNI, [4, 8]; STT, [1, 6]). Interestingly, all
these algorithms make use of the non-shared
edge distance to bound their approximation
ratios.
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Problem Definition

Many common computational problems on
directed graphs are computationally intractable;
they are NP-complete and sometimes even
harder. Examples include domination problems
such as directed dominating set, Kernel, directed
Steiner networks, directed disjoint paths, and
many other problems.

For undirected graphs, there is an extensive
structure theory available to help dealing with this
computational intractability. In particular, there
is a well-developed hierarchy of classes of undi-

rected graphs and a rich set of algorithmic tools
which allow to solve hard computational prob-
lems on these classes of graphs. Most notably in
this context are classes of graphs of bounded tree
width, planar graphs or graphs embeddable on
any other fixed surface, classes excluding a fixed
minor, and many other graph classes. This theory
is closely related to parameterized complexity
theory.

For directed graphs, to date, there is no compa-
rable theory available. A directed version of tree
width was introduced by Reed [9] and Johnson
et al. [4]. Further proposals for “tree width”-like
width measures for directed graphs have been
made in the literature; see, e.g., references in
[1]. Algorithmically, the main application is that
on classes of bounded directed tree width, the
directed k-disjoint paths problem can be solved
in polynomial time for any fixed value of k.

Almost all of these proposals have in com-
mon that the class of acyclic digraphs (DAGs)
have small width, i.e., acyclic digraphs are taken
as particularly simple digraphs. While this is
certainly useful for problems such as directed dis-
joint paths, problems such as directed dominat-
ing set remain NP-complete and fixed-parameter
intractable on acyclic directed graphs.

What is needed, therefore, are digraph param-
eters and structural classes of digraphs which
separate acyclic digraphs into simple and hard
instances. Nowhere crownful classes propose a
solution to this problem based on the concept of
excluded directed minors.

Key Results

While there is a well-defined concept of a mi-
nor for undirected graphs, there is as yet no
commonly agreed concept of directed minors. A
widely used, and very conservative, version of di-
rected minor is a butterfly minor (see, e.g., [4]) in
which a directed edge .u; v/ is contractible if it is
the only outgoing edge of u or the only incoming
edge of v. In [5] a much more general concept of
directed minors is used to give a classification of
classes of digraphs in terms of shallow directed
minors. For the sake of brevity, we introduce
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directed minors here only for digraphs called
crowns, which is enough for defining nowhere
crownful classes of digraphs.

An out-branching is a digraph H whose un-
derlying undirected graph is a tree and in which
there is a unique vertex r , the root of H , such
that all edges are oriented away from the root,
i.e., every vertex in H is reachable by a unique
directed path from the root. An in-branching is
the same as an out-branching but all edges are
oriented towards the root.

Definition 1 A crown of order q, for q > 0, is
the graph Sq with

• V.Sq/ WD fv1; : : : ; vqg P[ fui;j W 1 � i < j �

qg and
• E.Sq/ WD f.ui;j ; vi /; .ui;j ; vj / W 1 � i <

j � qg.

Definition 2 Let H with V.H/ WD fv1; : : : ; vqg
P[ fui;j W 1 � i < j � qg be a crown of order
q, for some q > 0. A digraph G contains H as a
directed minor, if for every vi , 1 � i � q, there
is an in-branching Ti � G and for every ui;j ,
1 � i < j � q, there is an out-branching Si;j �

G such that all subgraphs Ti , Si;j are pairwise
vertex disjoint and for all 1 � i < j � q, there
are edges ei ; ej from a vertex in Si;j to a vertex
in Ti and Tj , respectively.

H is a depth-r-minor of G, or an r-shallow
minor of G, denoted H�d

r G, for some r � 0, if
all Si;j and all Ti are of height at most r .

Definition 3 A class C of directed graphs is
nowhere crownful if for every r � 0 there exists
a q D q.r/ so that Sq 6 �d

r G for all G 2 C. If
the function taking each r to q.r/ as above is
computable, then we call C effectively nowhere
crownful.

Nowhere crownful classes of digraphs are very
general. For instance, if C is a class of digraphs
and QC is the class of underlying undirected graphs
(obtained from digraphs in C by ignoring edge
direction), then if QC has bounded genus, excludes
a fixed minor, or is nowhere dense, then C is
nowhere crownful. But there are nowhere crown-
ful classes C of digraphs such that QC does not

have any of the properties above. On the other
hand, the class of acyclic digraphs is not nowhere
crownful as it contains every crown.

Nowhere crownful classes of digraphs can be
characterized equivalently as follows. Let G be
a digraph and d � 0. A set U � V.G/ is d -
scattered if there is no v 2 V.G/ and u 6D u0 2 U

with u; u0 2 N C
d

.v/. That is, no two elements of
U can be reached from a single vertex v by paths
of length at most d .

Definition 4 A class C of directed graphs is
uniformly quasi-wide if there are functions
s W N ! N and N W N � N ! N such that for
every G 2 C and all d; m 2 N and W � V.G/

with jW j > N.d; m/, there is a set S � V.G/

with jS j � s.d/ and a set U � W with jU j D m

such that U is d -scattered in G�S . The functions
s; N are called the margin of C. If s and N are
computable, then we call C effectively uniformly
quasi-wide.

Theorem 1 A class C of digraphs is nowhere
crownful if, and only if, it is directed uniformly
quasi-wide.

Nowhere crownful classes of digraphs were
defined as a directed analogue to the concept
of nowhere dense classes of undirected graphs,
for which a similar equivalence to uniformly
quasi-wideness can be proved. See [2, 3, 6–
8] for nowhere dense classes of graphs and
algorithmic applications. As mentioned above,
nowhere crownful classes properly generalise
nowhere denseness to digraphs.

Applications

A directed dominating set in a digraph G is a set
X � V.G/ such that every u 2 V.G/ n X is
the out-neighbour of a vertex in X . A distance-d
directed dominating set is a set X � V.G/ such
that every vertex v 2 V.G/ can be reached from a
vertex in X by a directed path of length at most d .
An important variant of the undirected dominat-
ing set problem is the connected dominating set
problem, where we are asked to find a dominating
set D of size k such that D induces a connected
subgraph. There are various natural translations
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of this problem to the directed case: we can
require the dominating set to induce a strongly
connected subgraph or we can simply require it
to induce an out-branching. The second variation,
which we call dominating out-branching, still
captures the idea that information can flow from
the root to all vertices in the dominating set.

There is an easy reduction from the undirected
dominating set problem to its directed counter-
part proving that the directed dominating set
problem is fixed-parameter intractable and NP-
complete. In fact, the problem to decide whether
an undirected graph G contains a dominating
set of order k can be reduced to the question
whether an acyclic digraph contains a directed
dominating set of order k. The result of the
reduction is a crown (plus one extra vertex). So,
classes of digraphs where this problem and its
extension to distance-d versions are to become
tractable should exclude crowns. This observa-
tion was one of the motivations for defining and
studying nowhere crownful classes of digraphs.
Furthermore, if besides the directed dominating
set we also want to solve its distance-d version,
we need to exclude crown minors in some form.

However, excluding shallow-crowns is
sufficient for these problems to become fixed-
parameter tractable.

Theorem 2 Let C be a class of directed graphs
which is nowhere crownful. Then the directed
(independent or unrestricted) dominating set
problem, the dominating out-branching problem,
as well as their distance-d versions are fixed-
parameter tractable on C.

In the same way, several other similar
problems can be shown to become tractable on
nowhere crownful classes.

Open Problems

As mentioned before, nowhere crownful classes
are modelled after nowhere dense classes of
undirected graphs. For such classes, many
other equivalent characterizations and powerful
algorithmic applications are known. For instance,
nowhere dense classes of graphs allow for very

efficient sparse neighborhood covers (and this is
again if, and only if) and can be defined by a
game yielding bounded search tree techniques.
Furthermore, there is a close connection between
nowhere dense classes of graphs and generalized
colouring numbers (see, e.g., [8]).

It is open in how far these characterizations
and applications can be generalized to the digraph
setting.

A particular open problem is the tractability of
strongly connected Steiner networks and strongly
connected dominating set on nowhere crownful
classes of digraphs.

Nowhere crownful classes provide a way for
dealing with domination-type problems. Directed
tree width on the other hand provides a way of
dealing with linkage problems such as disjoint
paths. It is open how to bring the two concepts
together.
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6. Nešetřil J, Ossona de Mendez P (2008) Grad and
classes with bounded expansion I–III. Eur J Comb 29.
Series of 3 papers appearing in volumes .3/ and .4/



Nucleolus 1419

N
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Problem Definition

Cooperative game theory considers how to dis-
tribute the total income generated by a set of
participants in a joint project to individuals. The
Nucleolus, trying to capture the intuition of min-
imizing dissatisfaction of players, is one of the
most well-known solution concepts among var-
ious attempts to obtain a unique solution. In
Deng, Fang, and Sun’s work [3], they study
the Nucleolus of flow games from the algorithmic
point of view. It is shown that, for a flow game
defined on a simple network (arc capacity being
all equal), computing the Nucleolus can be done
in polynomial time, and for flow games in general
cases, both the computation and the recognition
of the Nucleolus are NP-hard.

A cooperative (profit) game .N; v/ consists of
a player set N D f1; 2; � � � ; ng and a characteris-
tic function v W 2N ! R with v.;/ D 0, where

the value v.S/.S � N / is interpreted as the profit
achieved by the collective action of players in S .
Any vector x 2 Rn with

P

i2N

xi D v.N / is an

allocation. An allocation x is called an imputation
if xi � v.fig/ for all i 2 N . Denote by I.v/ the
set of imputations of the game.

Given an allocation x, the excess of a coalition
S.S � N / at x is defined as

e.S; x/ D x.S/ � v.S/;

where x.S/ D
P

i2S

xi for S � N . The value

e.S; x/ can be interpreted as a measure of sat-
isfaction of coalition S with the allocation x.
The core of the game .N; v/, denoted by C.v/,
is the set of allocations whose excesses are all
nonnegative. For an allocation x of the game
.N; v/, let ™.x/ denote the .2n � 2/-dimensional
vector whose components are the nontrivial ex-
cesses e.S; x/, ; ¤ S ¤ N , arranged in a
non-decreasing order. That is, ™i .x/ � ™j .x/,
for 1 � i < j � 2n � 2. Denote by 	 l

the “lexicographically greater than” relationship
between vectors of the same dimension.

Definition 1 The Nucleolus ˜.v/ of game
.N; v/ is the set of imputations that lexico-
graphically maximize ™.x/ over all imputations
x 2 I.v/. That is,

�.v/Dfx 2 I.v/ W�.x/	l �.y/ for all y 2 I.v/g:

Even though, the Nucleolus may contain mul-
tiple points by the definition, it was proved by
Schmeidler [14] that the Nucleolus of a game
with nonempty imputation set contains exactly
one element. Kopelowitz [12] proposed that the
Nucleolus can be obtained by recursively solving
sequential linear programs (SLP):

LPk W

max "

x.S/ D v.S/ C "r 8S 2 Jr

r D 0; 1; � � � ; k � 1

x.S/ � v.S/ C " 8S 2 2N n
k�1S

rD0

Jr

x 2 I.v/:
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Here, J0 D f;; N g and ©0 D 0 initially;
the number ©r is the optimum value of the r th
program (LPr ) and Jr D fS 2 2N W x.S/ D

v.S/ C "r for every x 2 Xr , where Xr D fx 2

I.v/ W .x; "r / is an optimal solution to LPrg. It
can be shown that after at most n � 1 iterations,
one arrives at a unique optimal solution (x�; ©k/,
where x� is just the Nucleolus of the game. In
addition, the set of optimal solutions X1 to the
first program LP1 is called the least core of the
game.

The definition of the Nucleolus entails com-
parisons between vectors of exponential length.
And with linear programming approach, each
linear programs in SLP may possess exponential
size in the number of players. Clearly, both do not
provide an efficient solution in general.

Flow games, first studied in Kailai and Zemel
[9, 10], arise from the profit distribution problem
related to the maximum flow in a network. Let
D D .V; EI ¨I s; t/ be a directed flow network,
where V is the vertex set, E is the arc set, ¨ W

E ! RC is the arc capacity function, and s

and t are the source and the sink of the network,
respectively. The network D is simple if ¨.e/ D

1 for each e 2 E, which is denoted briefly by
D D .V; EI s; t/.

Definition 2 The flow game �f D .E; / as-
sociated with network D D .V; EI ¨I s; t/ is
defined by:

(i) The player set is E.
(ii) 8S � E, .S/ is the value of a maximum

flow from s to t in the subnetwork of D

consisting only of arcs belonging to S .

Problem 1 (Computing the Nucleolus)

INSTANCE: A flow network D D .V; EI ¨I s; t/.
QUESTION: Is there a polynomial time algo-

rithm to compute the Nucleolus of the flow
game associated with D?

Problem 2 (Recognizing the Nucleolus)

INSTANCE: A flow network D D .V; EI ¨I s; t/

and y W E ! RC.
QUESTION: Is it true that y is the Nucleolus of

the flow game associated with D?

Key Results

Theorem 1 Let D D .V; EI s; t/ be a simple
network and �f D .E; �/ be the associated flow
game. Then the Nucleolus ˜.�/ can be computed
in polynomial time.

By making use of duality technique in linear
programming, Kalai and Zemel [10] gave a char-
acterization on the core of a flow game. They
further conjectured that their approach may serve
as a practical basis for computing the Nucleolus.
In fact, the proof of Theorem 1 in the work of
Deng, Fang, and Sun [3] is just an elegant appli-
cation of Kalai and Zemel’s approach (especially
the duality technique) and hence settling their
conjecture.

Theorem 2 Given a flow game �f D .E; �/ de-
fined on network D D .V; EI ¨I s; t/, computing
the Nucleolus ˜.�/ is NP-hard.

Theorem 3 Given a flow game �f D .E; �/

defined on network D D .V; EI ¨I s; t/ and an
imputation y 2 I./, checking whether y is the
Nucleolus of �f is NP-hard.

Although a flow game can be formulated as a
linear production game [2], the size of reduc-
tion may in general be exponential in space,
and consequently, their complexity results on the
Nucleolus are independent. However, in the NP-
hardness proof of Theorems 2 and 3, the flow
game constructed possesses a polynomial size
formulation of linear production game [3]. There-
fore, as a direct corollary, the same NP-hardness
conclusions for linear production games are ob-
tained. That is, both computing and recognizing
the Nucleolus of a linear production game are
NP-hard.

Applications

As an important solution concept in economics
and game theory, the Nucleolus and related so-
lution concepts have been applied to insurance
policies, real estate and bankruptcy, etc. However,
it is a challenging problem to decide what classes
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of cooperative games permit polynomial time
computation of the Nucleolus.

The first polynomial time algorithm for
Nucleolus in a special tree game was proposed
by Megiddo [13], in advocation of efficient
algorithms for cooperative game solutions.
Subsequently, some efficient algorithms have
been developed for computing the Nucleolus,
such as for assignment games [15] and matching
games [1, 11]. On the negative side, NP-
hardness result was obtained for minimum cost
spanning tree games [5] and weighted voting
games [4].

Granot, Granot, and Zhu [8] observed that
most of the efficient algorithms for computing
the Nucleolus are based on the fact that the
information needed to completely characterize
the Nucleolus is much less than that dictated
by its definition. Therefore, they introduced the
concept of a characterization set for the Nu-
cleolus to embody the notion of “minimum”
relevant information needed for the Nucleolus.
Furthermore, based on the sequential linear pro-
grams (SLP), they established a general relation-
ship between the size of a characterization set
and the complexity of computing the Nucleo-
lus. Following this approach, some known effi-
cient algorithms for computing the Nucleolus are
derived directly.

Another approach to computing the Nucleolus
is taken by Faigle, Kern, and Kuipers [6], which
is motivated by Schmeidler’s observation that the
Nucleolus of a game lies in the kernel [14]. In
the case where the kernel of the game contains
exactly one core vector and the minimum excess
for any given allocation can be computed effi-
ciently, their approach derives a polynomial time
algorithm for the Nucleolus. However, their algo-
rithm uses the ellipsoid method as a subroutine,
implying that the efficiency of the algorithm is of
a more theoretical kind.

Open Problems

The field of combinatorial optimization has much
to offer for the study of cooperative games. It
is usually the case that the values of subgroups

can be obtained via a combinatorial optimization
problem, where the game is called a combinato-
rial optimization game. This class of games leads
to the applications of a variety of combinatorial
optimization techniques in design and analysis
of algorithms, as well as establishing complexity
results. One of the most interesting result is
the LP duality characterization of the core [2].
However, little work dealt with the Nucleolus by
using the duality technique so far. Hence, the
work of Deng, Fang, and Sun [3] on computing
the Nucleolus may be of independent interest.

There are still many unsolved complexity
questions concerning the Nucleolus. For the
computation of the Nucleolus of matching
games, Kern and Paulusma [11] proposed an
efficient algorithm in unweighted case and
conjectured that it is in general NP-hard.
Biro, Kern, and Paulusma [1] partly settled the
conjecture by showing that in weighted case,
when the matching game has a nonempty core,
the Nucleolus can be computed in polynomial
time. Since both the flow game and the matching
game fall into the class of packing/covering
games, it is interesting to know the complexity of
computing the Nucleolus for other game models
in this class, such as vertex covering games and
minimum coloring games.

For cooperative games arising from NP-hard
combinatorial optimization problems, the com-
putation of the Nucleolus may in general be a
hard task. For example, in a traveling salesman
game, nodes of the graph are the players and an
extra node 0, and the value of a subgroup S of
players is the length of a minimum Hamiltonian
tour in the subgraph induced by S [ f0g [2]. It
would not be surprising if one shows that both the
computation and the recognition of the Nucleolus
for this game model are NP-hard. However,
this is not known yet. The same questions are
proposed for facility location games [7], though
there have been efficient algorithms for some
special cases.

Moreover, when the computation of the Nu-
cleolus is difficult, it is also interesting to seek for
meaningful approximation concepts of the Nucle-
olus, especially from the political and economic
background.
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Problem Definition

Here is a precise definition of BST algorithms and
their costs. This model is implied by most BST
papers and developed in detail by Wilber [22].
A static set of n keys is stored in the nodes of
a binary tree. The keys are from a totally ordered
universe, and they are stored in symmetric order.
Each node has a pointer to its left child, to its
right child, and to its parent. Also, each node may
keep o.log n/ bits of additional information but
no additional pointers.

A BST algorithm is required to process a se-
quence of m accesses (without insertions or dele-
tions), S D s1; s2; s3; s4 : : : sm. The i th access
starts from the root and follows pointers until si

is reached. The algorithm can update the fields in
any node or rotate any edges that it touches along
the way. The cost of the algorithm to execute an
access sequence is defined to be the number of
nodes touched plus the number of rotations. A
BST algorithm is on-line if it processes access
si without making use of anything after si in the
access sequence.

Let A be any online BST algorithm, and define
A.S/ to be the cost to algorithm A of processing
sequence S and OPT(S; T0) to be the minimum
possible (online or off-line) cost to process the se-
quence S , starting from an initial tree T0. The al-
gorithm A is T -competitive if for all possible se-
quences S , A.S/ � T � OPT.S; T0/CO.mCn/.

Since the number of rotations needed to
change any binary tree of n keys into another
one (with the same n keys) is at most 2n � 6

[4,5,12,13,15], it follows that OPT(S; T0) differs
from OPT(S; T0

0) by at most 2n � 6. Thus, if
m > n, then the initial tree can only affect the
constant factor.

Key Results

The interleave bound is a lower bound on
OPT(S; T0) that depends only on S . Consider
any binary search tree P of all the elements
in T0. For each node y in P , define the left side

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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of y to include all nodes in y’s left subtree and y.
And define the right side of y to include all nodes
in y’s right subtree. For each node y, label each
access si in S by whether it is in the left or right
side of y, ignoring all accesses not in y’s subtree.
Denote the number of times the label changes
for y as IB(S; y). The interleave bound IB(S ) is
P

y

IB.S; y/.

Theorem 1 (Interleave Lower Bound [6, 22])
IB.S/=2 � n is a lower bound on OPT.S; T0/.

Demaine et al. observe that it is impossible to
use this lower bound to improve the competitive
ratio beyond �.log log n/.

Theorem 2 (Tango is O(log log n)-competitive
BST [6]) The running time of Tango BST on a
sequence S of m accesses is O...OPT.S; T0//C

n/�.1C log log n//.

Applications

Binary search tree (BST) is one of the oldest
data structures in the history of computer science.
It is frequently used to maintain an ordered set
of data. In the last 40 years, many specialized
binary search trees have been designed for spe-
cific applications. Almost every one of them sup-
ports access, insertion, and deletion in worst-case
O.log n/ time on average for random sequences
of access. This matches the best theoretically
possible worst-case bound. For most of these data
structures, a random sequence of m accesses will
use �.m log n/ time.

While it is impossible to have better asymp-
totic performance for a random sequence of m ac-
cesses, many of the real-world access sequences
are not random. For instance, if the set of accesses
are randomly drawn from a small subset of k

element, it’s possible to answer all the accesses
in O.m log k/ time. A notable binary search tree
is splay tree. It is proved to perform well for many
access patterns [2, 3, 8, 14, 16–18]. As a result,
Sleator and Tarjan [14] conjectured that splay tree
is O(1)-competitive to the optimal off-line BST.
After more than 20 years, the conjecture remains
an open problem.

Over the years, several restricted types of
optimality have been proved. Many of these re-
strictions and usage patterns are based on real-
world applications. If each access is drawn inde-
pendently at random from a fixed distribution, D,
Knuth [11] constructed a BST based on D that is
expected to run in optimal time up to a constant
factor. Sleator and Tarjan [14] achieve the same
bound without knowing D ahead of time. Other
types includes key-independent optimality [10]
and BST with free rotations [1].

In 2004, Demaine et al. suggested searching
for alternative BST algorithms that have small
but nonconstant competitive factors [6]. They
proposed Tango, the first data structure proved
to achieve a nontrivial competitive factor of
O.log log n/. This is a major step toward
developing a O(1)-competitive BST, and this
line of research could potentially replace a large
number of specialized BSTs.

Extensions and Promising Research
Directions

Following this paper, several new O.log log n/-
competitive BSTs have emerged [9, 21]. A
notable example is multi-splay trees [21]. It
generalizes the interleave bound to include
insertions and deletions. Multi-splay trees also
have many theorems analogous to splay trees
[20, 21], such as the access lemma and the
working set theorem. Wang [21] conjectured
that multi-splay trees is O(1)-competitive, but it
remains an open problem.

Returning to the original motivation for this
research, the problem of finding an o.log log n/-
competitive online BST remains open. Several
attempts have been made to improve the lower
bound [6, 7, 22], but none of them have led
to a lower competitive ratio. Even in the off-
line model, the problem of finding an O(1)-
competitive BST is difficult. The best known off-
line constant competitive algorithm uses dynamic
programming and requires exponential time.

In 2009 Demaine et al. [23] described a geo-
metric view of BST algorithms. This is an equiv-
alent model of BST algorithms, but sufficiently
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different that it has allowed progress to be made
in a number of directions. First of all it has
simplified and unified BST lower bounds. It has
also allowed progress to be made toward proving
a different algorithm to be O(1) competitive.
The algorithm is called GreedyFuture and was
proposed as an off-line algorithm in 1988 by Joan
Lucas [24]. After each access, the algorithm re-
structures the access path according to the future
accesses. Specifically if the next access is on this
path, then that node is made the new root and the
left and right sides are built in a similar fashion
recursively. If the next access is to a subtree of
that path, then the path node to the left of that
subtree is made the root, and the path node to
the right of it is made the right child of the root,
and the process again continues recursively. A
remarkable result of the geometric view is that
it shows how the GreedyFuture algorithm can
actually be implemented as an online algorithm.
At the moment, this seems to be the most likely
candidate to be proven to be O(1) competitive.
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Problem Definition

Consider a communication network, for exam-
ple, the network of cities across the country
connected by communication links. There are
several sender-receiver pairs on this network that
wish to communicate by sending traffic across
the network. The problem deals with routing all
the traffic across the network such that no link
in the network is overly congested. That is, no
link in the network should carry too much traffic
relative to its capacity. The obliviousness refers
to the requirement that the routes in the network
must be designed without the knowledge of the
actual traffic demands that arise in the network,
i.e., the route for every sender-receiver pair stays
fixed irrespective of how much traffic any pair
chooses to send. Designing a good oblivious

routing strategy is useful since it ensures that the
network is robust to changes in the traffic pattern.

Notations
Let G D .V; E/ be an undirected graph with
nonnegative capacities c.e/ on edges e 2 E. Sup-
pose there are k source-destination pairs .si ; ti /

for i D 1; : : : ; k, and let di denote the amount of
flow (or demand) that pair i wishes to send from
si to ti . Given a routing of these flows on G, the
congestion of an edge e is defined as u.e//c.e/,
the ratio of the total flow crossing edge e divided
by its capacity. The congestion of the overall rout-
ing is defined as the maximum congestion over
all edges. The congestion minimization problem
is to find the routing that minimizes the maximum
congestion. Observe that specifying a flow from
si to ti is equivalent to finding a probability dis-
tribution (not necessarily unique) on a collection
of paths from si to ti .

The congestion minimization problem can be
studied in many settings. In the offline setting,
the instance of the flow problem is provided in
advance, and the goal is to find the optimum
routing. In the online setting, the demands arrive
in an arbitrary adversarial order, and a flow must
be specified for a demand immediately upon
arrival; this flow is fixed forever and cannot be
rerouted later when new demands arrive. Several
distributed approaches have also been studied
where each pair routes its flow in a distributed
manner based on some global information such
as the current congestion on the edges.

In this note, the oblivious setting is considered.
Here, a routing scheme is specified for each pair
of vertices in advance without any knowledge
of which demands will actually arrive. Note that
an algorithm in the oblivious setting is severely
restricted. In particular, if di units of demand
arrive for pair (si ,ti /, the algorithm must neces-
sarily route this demand according to the pre-
specified paths irrespective of the other demands
or any other information such as congestion of
other edges. Thus, given a network graph G,
the oblivious flows need to be computed just
once. After this is done, the job of the routing
algorithm is trivial; whenever a demand arrives, it
simply routes it along the precomputed path. An
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oblivious routing scheme is called ccompetitive if
for any collection of demands D, the maximum
congestion of the oblivious routing is no more
than c times the congestion of the optimum of-
fline solution for D. Given this stringent require-
ment on the quality of oblivious routing, it is not a
priori clear that any reasonable oblivious routing
scheme should exist at all.

Key Results

Oblivious routing was first studied in the con-
text of permutation routing where the demand
pairs form a permutation and have unit value
each. It was shown that any oblivious routing
that specifies a single path (instead of a flow)
between every two vertices must necessarily per-
form badly. This was first shown by Borodin and
Hopcroft [6] for hypercubes, and the argument
was later extended to general graphs by Kakla-
manis, Krizanc, and Tsantilas [10], who showed
the following.

Theorem 1 ([6, 10]) For every graph G of size
n and maximum degree d and every oblivious
routing strategy using only a single path for every
source-destination pair, there is a permutation
that causes an overlap of at least .n=d/1=2 paths
at some node. Thus, if each edge in G has
unit capacity, the edge congestion is at least
.n=d/1=2=d .

Since there exists constant degree graphs such
as the butterfly graphs that can route any permuta-
tion with logarithmic congestion, this implies that
such oblivious routing schemes must necessarily
perform poorly on certain graphs.

Fortunately, the situation is substantially better
if the single path requirement is relaxed and a
probability distribution on paths (equivalently a
flow) is allowed between each pair of vertices. In
a seminal paper, Valiant and Brebner [13] gave
the first oblivious permutation routing scheme
with low congestion on the hypercube. It is in-
structive to consider their scheme. Consider an
hypercube with N D 2n vertices. Represent
vertex i by the binary expansion of i . For any
two vertices s and t , there is a canonical path (of

length at most n = log N / from s to t obtained
by starting from s and flipping the bits of s

in left to right order to match with that of t .
Consider routing scheme that for a pair s and t , it
first chooses some node p uniformly at random,
routes the flow from s to p along the canonical
path, and then routes it again from p to t along the
canonical path (or equivalently it sends 1=N units
of flow from s to each intermediate vertex p and
then routes it to t /. A relatively simple analysis
shows that

Theorem 2 ([13]) The above oblivious routing
scheme achieves a congestion of O(1) for hyper-
cubes.

Subsequently, oblivious routing schemes were
proposed for few other special classes of net-
works. However, the problem of designing oblivi-
ous routing schemes for general graphs remained
open until recently, when in a breakthrough result
Räcke showed the following.

Theorem 3 ([11]) For any undirected capaci-
tated graph G D .V; E/, there exist an oblivious
routing scheme with congestion O.log3 n/ where
n is the number of vertices in G.

The key to Räcke’s theorem is a hierarchical
decomposition procedure of the underlying graph
(described in further detail below). This hierar-
chical decomposition is a fundamental combi-
natorial result about the cut structure of graphs
and has found several other applications, some of
which are mentioned in section “Applications.”
Räcke’s proof of Theorem 3 only showed the
existence of a good hierarchical decomposition
and did not give an efficient polynomial time
algorithm to find it. In subsequent work, Har-
relson, Hildrum, and Rao [9] gave a polynomial
time procedure to find the decomposition and
improved the competitive ratio of the oblivious
routing to O(log 2nlog log n/.

Theorem 4 ([9]) There exists an O.log2 n log
log n/-competitive oblivious routing scheme for
general graphs, and moreover, it can be found in
polynomial time.

Recently, Räcke [12] has given a tight O(log
n)-competitive oblivious routing scheme together
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with an efficient algorithm to find it. His al-
gorithm is based on an elegant connection to
probabilistic embedding of arbitrary metrics into
tree metrics.

Interestingly, Azar et al. [4] show that the
problem of finding the optimum oblivious rout-
ing for a graph can be formulated as a linear
program. They consider a formulation with expo-
nentially many constraints, one for each possible
demand matrix that has optimum congestion 1
that enforces that the oblivious routing should
have low congestion for this demand matrix.
Azar et al. [4] give a separation oracle for this
problem, and hence, it can be solved using the
ellipsoid method. A more practical polynomial
size linear program was given later by Applegate
and Cohen [2]. Bansal et al. [5] considered a
more general variant referred to as the online
oblivious routing that can also be used to find an
optimum oblivious routing. However, note that
without Räcke’s result, it would not be clear
whether these optimum routings were any good.
Moreover, these techniques do not give a hier-
archical decomposition and hence may be less
desirable in certain contexts. On the other hand,
they may be more useful sometimes since they
produce an optimum routing (while [9] implies
an O(log 2nlog log n/-competitive routing for
any graph, the best oblivious routing could have
a much better guarantee for a specific graph).

Oblivious routing has also been studied for
directed graphs; however, the situation is much
worse here. Azar et al. [4] show that there exist
directed graphs where any oblivious routing is
�.
p

n/ competitive. Some positive results are
also known. Hajiaghayi et al. [7] show a sub-
stantially improved guarantee of O(log 2n/ for
directed graphs in the random demands model.
Here, each source-sink pair has a distribution
(which is known by the algorithm) from which it
chooses its demand independently. A relaxation
of oblivious routing known as semi-oblivious
routing has also been studied recently [8].

Techniques
This section describes the high-level idea
of Räcke’s result. For a subset S � V ,
let cap(S/ denote the total capacity of the

edges that cross the cut (S ,V nS/, and let
dem(S/ denote the total demand that must be
routed across the cut (S ,V nS/. Observe that
q = max S�V dem(S//cap(S/ is a lower bound on
the congestion of any solution. On the other hand,
the key result [3, 13] relating multicommodity
flows and cuts implies that there is a routing
such that the maximum congestion is at most
O.qlog k/ where k is the number of distinct
source sink pairs. However, note that this by itself
does not suffice to obtain good oblivious routings,
since a pair (si ,ti / can have different routing for
different demand sets. The main idea of Räcke
was to impose a treelike structure for routing
on the graph to achieve obliviousness. This
is formalized by a hierarchical decomposition
described below.

Consider a hierarchical decomposition of the
graph G = (V ,E/ as follows. Starting from the set
S = V , the sets are partitioned successively until
each set becomes singleton vertex. This hierar-
chical decomposition can be viewed naturally as
a tree T , where the root corresponds to the set V

and leaves corresponds to the singleton sets {v}.
Let Si denote the subset of V corresponding to
node i in T . For an edge (i ,j / in the tree where
i is the child of j , assign it a capacity equal to
cap(Si ) (note that this is the capacity from Si to
the rest of G and not just capacity between Si and
Sj in G/. The tree T is used to simulate routing
in G and vice versa. Given a demand from u to v

in G, consider the corresponding (unique) route
among leaves corresponding to {u} and {v} in T .
For any set of demands, it is easily seen that the
congestion in T is no more than the congestion
in G. Conversely, Räcke showed that there also
exists a tree T where the routes in T can be
mapped back to flows in G, such that for any
set of demands, the congestion in G is at most
O(log 3n/ times that in T . In this mapping, a
flow along the (i ,j / in the tree T corresponds to a
suitably constructed flow between sets Si and Sj

in G. Since route between any two vertices in T

is unique, this gives an oblivious routing in G.
Räcke uses very clever ideas to show the

existence of such a hierarchical decomposition.
Describing the construction is beyond the scope
of this note, but it is instructive to understand the
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properties that must be satisfied by such a de-
composition. First, the tree T should capture the
bottlenecks in G, i.e., if there is a set of demands
that produces high congestion in G, then it should
also produce a high congestion in T . A natural
approach to construct T would be to start with
V , split V along a bottleneck (formally, along
a cut with low sparsity), and recurse. However,
this approach is too simple to work. As discussed
below, T must also satisfy two other natural con-
ditions, known as the bandwidth property and the
weight property which are motivated as follows.
Consider a node i connected to its parent j in T .
Then, i needs to route dem(Si / flow out of Si ,
and it incurs congestion dem(Si //cap(Si / in T .
However, when T is mapped back to G, all the
flow going out of Si must pass via Sj . To ensure
that the edges from Si to Sj are not overloaded, it
must be the case that the capacity from Si to Sj

is not too small compared to the capacity from
Si to the rest of the graph V nSi . This is referred
to as the bandwidth property. Räcke guarantees
that this is ratio is always �.1= log n/ for every
Si and Sj corresponding to edges .i; j / in the
tree. The weight property is motivated as follows.
Consider a node j in T with children i1; : : : ; ip;
then the weight property essentially requires that
the sets Si1; : : : ; Sip should be well connected
among themselves even when restricted to the
subgraph Sj . To see why this is needed, consider
any communication between, say, nodes i1 and i2
in T . It takes the route i1 to j to i2, and hence,
in G,Si1 cannot use edges that lie outside Sj to
communicate with Si2. Räcke shows that these
conditions suffice and that a decomposition can
be obtained that satisfies them.

The factor O(log 3n/ in Räcke’s guarantee
arises from three sources. The first logarithmic
factor is due to the flow-cut gap [3, 13]. The
second is due to the logarithmic height of the tree,
and the third is due to the loss of a logarithmic
factor in the bandwidth and weight properties.

Applications

The problem has widespread applications to rout-
ing in networks. In practice, it is often required

that the routes must be a single path (instead of
flows). This can often be achieved by random-
ized rounding techniques (sometimes under an
assumption that the demands to capacity ratios be
not too large). The flow formulation provides a
much cleaner framework for studying the prob-
lems above.

Interestingly, the hierarchical decomposition
also found widespread uses in other seemingly
unrelated areas such as obtaining good precon-
ditioners for solving systems of linear equations,
finding edge-disjoint paths and multicommod-
ity flow problems, online network optimization,
speeding up the running time of graph algo-
rithms, and so on.
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Problem Definition

This entry surveys some of the applications of
“oblivious subspace embeddings,” introduced by
Sarlós in [19], to problems in linear algebra.

Definition 1 ([19]) Given 0 < " < 1=2 and a d -
dimensional subspace E � R

n, we say an m � n

matrix ˘ is an "-subspace embedding for E if

8x 2 E .1 � "/kxk22 � k˘xk22 � .1C "/kxk22:

The goal is to have m small so that ˘ provides
dimensionality reduction for E.

Given 0 < "; ı < 1=2, and integers 1 � d �

n, an ."; ı; d; n/-oblivious subspace embedding
(OSE) is a distribution D over m � n matrices
such that for every d -dimensional linear subspace
E � R

N of dimension d ,

P
˘�D

.˘ is an "-subspace embedding forE/>1�ı:

Sometimes we omit a subset of the variables
"; ı; d; n if they are understood from context.

In the definition of an OSE, note that we can
write E D fUx W x 2 R

d g where U 2 R
n�d

and U T U D I . That is, the columns of U form
an orthonormal basis for E. Therefore, we would
like that k˘Uxk22 � kUxk22 D xT U T Ux D

kxk22 for all x 2 R
d . Letting k � k denote operator

norm and noting that kAk D supx jx
T Axj for

any real symmetric A, we see that being an OSE
as above is equivalent to the following holding for
all U 2 R

n�d with orthonormal columns:

P
˘�D

�
k.˘U /T .˘U / � Ik > "

�
< ı: (1)

Sarlós introduced OSEs [19] to provide faster
approximate algorithms for least squares regres-
sion and low-rank approximation. In these prob-
lems, the input is a tall and skinny matrix A 2

R
n�d (n	 d ). For regression, we also are given

b 2 R
n. The goal is to solve some computational

problem given A, and naturally the running time
depends on both n and d . The basic idea is
to instead run the computation on ˘A for ˘

sampled from an OSE and (1) prove that the
quality of solution found is near optimal if " is
small and (2) enjoy faster computation time to
find a solution since the dimensionality of the
problem is reduced (˘A is m � d , whereas A is
n � d , m
 n).
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Key Results

As mentioned above, Sarlós showed how to use
OSEs to speed up least squares regression and
low-rank approximation. Below we first discuss
constructions of OSEs, and then we elaborate on
applications.

Constructing OSEs
One OSE is to pick the entries of ˘ 2 R

m�n

i.i.d. from a Gaussian distribution with mean
zero and variance 1=m, where m D �..d C

log.1=ı//="2/. In fact it suffices to pick any
“Johnson-Lindenstrauss transform,” i.e., a ˘

which preserves the Euclidean norms of a certain
set of 2O.d/ vectors up to 1 C " (see [7]). This
setting of m is optimal for any OSE [17]. The
downside of such constructions is multiplying
˘A then takes time �.nmd/, which is in
fact worse than the time to solve the problems
considered here.

Sarlós remedied this by picking ˘ from the
“Fast Johnson-Lindenstrauss” distribution [1],
which improved this time to O.nd log n/ C

poly.d/="2. A related construction, the “Sub-
sampled Randomized Hadamard Transform”
(SRHT), with improved bounds for OSEs was
analyzed in [14, 21] using matrix concentration
inequalities. In this construction, one chooses
˘ D

p
n=m � SHD where D 2 R

n�n is
diagonal with random signs on the diagonal, H

is any bounded orthonormal system that supports
matrix-vector multiplication in O.n log n/

time (i.e., H should be orthogonal with
maxi;j jHi;j j D O.1=

p
n/), and S is a sampling

matrix with m rows. That is, the rows of S are
independent, and each row of S has exactly a
single 1 in a uniformly random location and
zeroes elsewhere. The works [14, 21] showed
one can take m D O.d log.d=ı/="2/. Note we
can multiply ˘A in time O.nd log n C m/ by
individually multiplying ˘ by each column of A.

Subsequently, Clarkson and Woodruff [7]
showed that the Thorup-Zhang sketch [20]
provides an OSE with small m. In particular,
consider a random ˘ with independent columns
where in each column there is a single nonzero
entry placed in a uniformly random location.

The value of this nonzero is uniform in f�1; 1g.
Note that with this construction, one can multiply
˘A in time O.nnz.A//, where nnz.�/ counts
nonzero entries. They showed this distribution is
an OSE for m D O.d 2 log6.d="/=."2ı//. This
bound was improved independently in [15, 16]
to m D O.d 2=."2ı// via the moment method
(see also an observation of NguyQOen [12, Remark
6.4]). Note also a valid OSE is the product of
the SRHT with this construction, yielding m

as for the SRHT and with multiplication time
O.nnz.A/C d 3 log.d=."ı//="2/ to apply to A.

Nelson and NguyQOen [16] analyzed the “Sparse
Johnson-Lindenstrauss Transform” (SJLT) of
[12] in the context of OSEs. In particular, they
showed one can choose an OSE with m D

O.d log6.d=ı/="2/ and s D O.log3.d=ı/="/

nonzero entries per column. See also [5]. Note
˘A can be computed in time O.s � nnz.A//.
One could also choose m D O.d 1C� ="2/; s D

O.1="/ for any fixed constant 0 < � < 1,
in which case ı D 1=d c for any desired
constant c > 0. A conjecture of [16] is that
m D O..dC log.1=ı//="2/; s D O.log.d=ı/="/

suffices.

Applying OSEs

Least Squares Regression
The input is A 2 R

n�d , b 2 R
n. The goal is to

compute

x� D argminx2Rd kAx � bk2:

By optimality of x�, Ax� must be the projection
of b onto the column span of A. Write the sin-
gular value decomposition (SVD) A D U˙V T ,
where U 2 R

n�r ; V 2 R
d�r have orthonormal

columns, and r is the rank of A. Also, ˙ 2 R
r�r

is diagonal with strictly positive entries on the
diagonal (the “singular values” of A). Then the
column spans of U and of A are identical, and so
Ax� D U U T b is the desired projection. Thus,
we can choose x� D V ˙�1U T b. Alternatively
one can write x� D .AT A/CAT b, where the
pseudoinverse of a matrix B with SVD LDW T

is BC D WD�1LT .
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Simply computing AT A in the formula for
x� naively takes O.nd 2/ time (or O.nd !�1/ if
using fast matrix multiplication). Note the follow-
ing observation.

Observation 1 Let E be the subspace spanned
by b and the columns of A. Let ˘ be an "-
subspace embedding for E, and write Qx D

argminx k˘Ax �˘bk2. Then

kA Qx � bk2 �

r
1C "

1 � "
� kAx� � bk2

Proof By optimality of Qx, k˘A Qx � ˘bk2 �

k˘Ax� � ˘bk2. Furthermore, since A Qx �

b; Ax� � b 2 E, we have .1 � "/kA Qx � bk22 �

k˘A Qx � ˘bk22 and k˘Ax� � ˘bk22 �

.1C "/kAx� � bk22. The claim follows.

The above observation informs us that mini-
mizing k˘Ax�˘bk2 for a subspace embedding
˘ is sufficient to obtain a high-quality solution to
the original problem. Using an OSE with m rows,
one can compute Qx in O.md 2/ time (or faster
using fast matrix multiplication).

Sarlós also provided another method of using
OSEs for least squares regression. First we pro-
vide a definition.

Definition 2 We call a distribution D over Rm�n

an ."; ı/-AMMF distribution if, for every pair of
matrices A; B each with n rows,

P
˘�D

.k.˘A/T .˘B/�AT Bk> "kAkF kBkF / < ı

where kAkF D .
P

i;j A2
i;j /1=2 is the Frobenius

norm of A. (“AMM” here stands for “approxi-
mate matrix multiplication.”)

The work [10] was the first to propose using
AMMF and (non-oblivious) subspace embed-
dings in the context of low-rank approximation.
Sarlós showed that any Johnson-Lindenstrauss
(JL) distribution also provides AMMF , but with
ı increased by some factor involving the di-
mensions of A; B . This factor was removed for
random sign matrices in [8] and later for a fairly
general class of JL distributions in [12, Theorem

6.2]. We state the relevant definition and theorem
for this general class.

Definition 3 ([12]) We say a distribution D over
R

m�n has ."; ı; p/-JL moments if for any x 2 R
n

of unit Euclidean norm,

E
˘�D

ˇ
ˇk˘xk22 � 1

ˇ
ˇp < "pı:

Theorem 1 ([12]) Given "; ı 2 .0; 1=2/, let D
be any distribution with the ."; ı; p/-JL moment
property for some p � 2. Then D is a .3"; ı/-
AMMF distribution.

For constant ı, for example, it thus follows
from [20] that the Thorup-Zhang sketch with
m D O.1="2/ provides AMMF . Sarlós then
proved the following.

Theorem 2 Suppose Qx D argmin k˘Ax �

˘bk2 where the distribution ˘ is drawn from
is (1) an .O.1/; ı/-OSE for d -dimensional sub-
spaces (with a distortion parameter independent
of "), and (2) a .

p
"=d ; ı/-AMMF distribution.

Then with probability 1 � 2ı,

kA Qx � bk2 � .1CO."//kAx� � bk2:

The above theorem combined with [16] al-
lows, for example, picking ˘ as the SJLT with
m D O.d 1C�Cd="/, s D O.1/ for any constant
0 < � < 1 to achieve .1C "/-multiplicative error
for least squares regression.

Low-Rank Approximation
The input is A 2 R

n�d and positive integer k,
and the goal is to compute

Ak D argmin
BWrank.B/�k

kA � BkF :

Given the SVD A D U˙V T , the Schmidt
approximation theorem (later rediscovered as
the Eckart-Young theorem) yields that Ak D

U˙kV T , where ˙k retains only the k largest
elements of ˙ and zeroes out the rest. Up to
terms logarithmic in dimension and precision, the
SVD can be computed in time nd!�1 [9] where
! is the exponent of square matrix multiplication.
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Thus, low-rank approximation can be solved in
the same time bound.

A scheme based on OSEs and AMMF

was given by Sarlós. For matrices B; S , let
ProjS;k.B/ denote the best rank-k approximation
to B in the column span of S . Equivalently, it
is the best rank-k approximation to the matrix
formed by projecting each column of B to the
column span of S . Sarlós’ theorem is as follows.

Theorem 3 ([19]) Let ˘ be drawn from a
distribution which is (1) an .O.1/; ı/-OSE for
k-dimensional subspaces and (2) a .

p
"=k; ı/-

AMMF distribution. Then with probability 1�2ı,

kA�ProjA˘T ;k.A/kF � .1CO."//kA�AkkF :

The above theorem has led to low-rank
approximation algorithms with .1 C "/-
multiplicative error running in time O.nnz.A//C
QO.nk2=poly."// [7,15,16] or even O.nnz.A//C
QO.nk!�1=poly."// [16]. Here QO.�/ hides

logarithmic factors. These algorithms, in these
running times, can output a decomposition
L 2 R

n�k ; D 2 R
k�k ; W 2 R

d�k with D

diagonal and L; W having orthonormal columns
such that

kA � LDW T kF � .1C "/kA � AkkF :

Other Applications
OSEs have also found other applications, e.g., to
approximating leverage scores [11], distributed
principle component analysis [13], k-means clus-
tering [6], canonical correlation analysis [3], sup-
port vector machines [18], `p regression [22],
ridge regression [14], CUR matrix factorization
[4], and streaming approximation of eigenvalues
[2]. The reader may investigate these references
for more details.
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Problem Definition

Wireless sensor networks are composed of many
small devices called sensor nodes with sensing,
computing and radio frequency communication
capabilities. Sensor nodes are typically deployed
in an ad hoc manner and use their sensors to col-
lect environmental data. The emerging network
collectively processes, aggregates and propagates
data to regions of interest, e.g., from a region
where an event is being detected to a base station
or a mobile user. This entry is concerned with the
data propagation duty of the sensor network in the
presence of obstacles.

For different reasons, including energy conser-
vation and limited transmission range of sensor
nodes, information propagation is achieved via
multi-hop message transmission, as opposed to
single-hop long range transmission. As a con-
sequence, message routing becomes necessary.
Routing algorithms are usually situated at the
network layer of the protocol stack where the
most important component is the (dynamic) com-
munication graph.

Definition 1 (Communication graph) A wire-
less sensor network is viewed as a graph
G D .V; E/ where vertexes correspond to sensor
nodes and edges represent wireless links between
nodes.

Wireless sensor networks have stringent con-
straints that make classical routing algorithms
inefficient, unreliable or even incorrect. There-
fore, the specific requirements of wireless sensor
networks have to be addressed [2] and geographic
routing offers the possibility to design particu-
larly well adapted algorithms.

Geographic Routing
A geographic routing algorithm takes advantage
of the fact that sensor nodes are location aware,
i.e., they know their position in a coordinate
system following the use of a localization proto-
col [7]. Although likely to introduce a significant
overhead, the use of a localization protocol is also
likely to be inevitable in many applications where
environmental data collected by the sensors
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would be useless if not related to some geograph-
ical information. For those applications, node
location awareness can be assumed to be avail-
able for routing purposes at no additional cost.

The Power of Simple Geographic Routing
The early “most forward within range” (MFR)
or greedy geographic routing algorithms [14]
route messages by maximizing, at each hop, the
progress on a projected line towards the destina-
tion or, alternatively, minimizing the remaining
distance to the message’s destination. Both of
these greedy heuristics are referred to as greedy
forwarding (GF). Greedy forwarding is a very
appealing routing technique for wireless sensor
networks. Among explanations for the attrac-
tiveness of GF are the following. (1) GF, as is
almost imperatively required, is fully distributed.
(2) It is lightweight in the sense that it induces
no topology control overhead. (3) It is all-to-
all (as opposed to all-to-one). (4) Making no
assumptions on the structure of the communi-
cation graph, which can be directed, undirected,
stable or dynamic (e.g., nodes may be mobile
or wireless links may appear and disappear, for
example following environmental fluctuation or
as a consequence of lower protocol stack layers
such as sleep/awake schemes for energy saving
purposes), it is robust. (5) It is on-demand: no
routing table or gradient has to be built prior to
message propagation. (6) Efficiency is featured as
messages find short paths to their destination in
terms of hop count. (7) It is very simple and thus
easy to implement. (8) It is memory efficient in
the sense that (8a) the only information stored in
the message header is the message’s destination
and that (8b) it is “ecologically sound” because
no “polluting” information is stored on the sensor
nodes visited by messages.

Problem Statement
Although very appealing, GF suffers from a ma-
jor flaw: when a message reaches a local min-
imum where no further progress towards the
destination is possible the routing algorithm fails.
There are two major reasons for the occurrence of
local minimums: routing holes [1] and obstacles.

Definition 2 The so called routing holes are low
density regions of the network where no sensor
nodes are available for next-hop forwarding.

Even in uniform-randomly deployed networks,
routing holes appear as the manifestation of sta-
tistical variance of node density. Although in-
creasing as network density diminishes, routing
holes have a severe impact on the performance of
GF even for very high density networks [12].

Definition 3 A transmission blocking obstacle is
a region of the network where no sensors are
deployed and through which radio signals do not
propagate.

Clearly, large obstacles lying between a message
and its destination tend to make GF fail.

The problem reported in this entry is to
find a geographic routing algorithm that main-
tains the advantages of greedy forwarding listed
in section “Geographic Routing” such as sim-
plicity, light weight, robustness and efficiency
while overcoming its weaknesses: the inability to
escape local minimum nodes created by routing
holes and large transmission blocking obstacles
such as those seen in Fig. 1.

Problem 1 (Escaping routing holes) The first
problem is to route messages out of the many
routing holes which are statistically doomed to
occur even in dense networks.

Problem 2 (Contouring obstacles) The second
problem is to design a protocol capable of rout-
ing messages around large transmission blocking
obstacles.

Problem 1 can be considered a simplified instance
of Problem 2. Lightweight solutions to problem 1
have been previously proposed, usually using
limited backtracking [6] or controlled flooding
combined with a GF heuristic [4, 13]. However,
as shown in [5] where an integrated model for
obstacles is proposed and where different algo-
rithms are compared with respect to their obsta-
cle avoidance capability, those solutions do not
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Obstacle Avoidance Algorithms in Wireless Sensor Networks, Fig. 1 Typical path followed by GRIC to bypass
certain obstacles

satisfactorily solve Problem 2 in the sense that
only small and simple obstacles are efficiently
bypassed.

Key Results

In [12] a new geographic routing around ob-
stacles (GRIC) algorithm was proposed to ad-
dress the problems described in the previous
section.

Basic Idea of the Algorithm
In GF, the strategy is to always propagate the
message to the neighbor that maximizes progress
towards the destination. Similarly, GRIC also
maximizes progress in a chosen direction.
However, this direction is not necessarily the
message’s destination but an ideal direction of
progress which has to be computed according to
one of two possible strategies: the inertia mode or
the rescue mode described below. Finally, it was
found that performance is better in the presence
of slightly unstable networks, cf. Result 4,
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and thus in the case where the communication
graph is very stable it is recommended to use
a randomized version of GRIC where nodes
about to take a routing decision randomly
mark as either passive or active each outbound
wireless link of the communication graph. Only
active wireless links can be used for message
propagation, and link status is re-evaluated each
time a new routing decision is taken. Marking
links as active with a probability of p D 0:95

was found to be a good choice for practical
purposes [12].

Inertia Mode
The idea of the inertia mode is that a message
should have a strong incentive to go towards its
destination but this incentive should be moder-
ated by one to follow the straight ahead direction
of current motion “ : : : like a celestial body in
a planet system : : : ” [12]. The inertia mode aims
at making messages follow closely the perimeter
of routing holes and obstacles in order to even-
tually bypass them and ensure final routing to
the destination. To implement the inertia mode,
a single additional assumption is made: sensor
nodes should be aware of the position of the node
from which they receive a message. As an ex-
ample, this could be done by piggy-backing this
1-hop away routing path history in the message
header. Knowing its own position p, the mes-
sage’s destination and the 1-hop away previous
position of the message a sensor node can com-
pute the vectors vcur and vdst starting at position
p and pointing in the direction of current motion
and the direction to the message’s destination
respectively. The inertia mode defines the ideal
direction of progress, vidl, as a vector starting at
point p and lying “somewhere in between” vcur

and vdst. More precisely, let ˛ be the only angle
in Œ��; �Œ such that vdst is obtained by applying
a rotation of angle ˛ to vcur, then vidl is the vector
obtained by applying a rotation of angle ˛0 to
vcur, where ˛0 D sign.˛/ � min

˚
�
6

; j˛j
�
. Finally,

the message is greedily forwarded to the neighbor
node maximizing progress in the computed ideal
direction of progress vidl.

Rescue Mode
In order to improve overall performance and
to bypass complex obstacles, the rescue mode
imitates the right-hand rule (RHR) which is a well
known wall follower technique to find one’s way
out of a maze. A high-level description of the
RHR component of GRIC is given below while
details will be found in [12]. In GRIC, the RHR
makes use of a virtual compass and a flag. The
virtual compass assigns to vcur a cardinal point
value, treating the message’s destination as the
north. Considering the angle ˛ defined in the
previous section, the compass returns a string
x-y with x equal to north or south if j˛j is
smaller or greater than �

2
respectively, while

y is equal to west or east if ˛ is negative or
positive respectively. The first time the compass
returns a south value, the flag is raised and tagged
with the .x; y/ value of the compass. Raising
the flag means that the message is being routed
around an obstacle using the RHR rule if the
compass indicates south-west. In the case where
the compass indicates south-east, a symmetric
case not discussed here for brevity is applied
using the left-hand rule (LHR) instead of the
RHR. Once the flag is raised, it stays up with its
tag unchanged until the compass indicates north,
meaning that the obstacle has been bypassed.
In fact, a small optimization can be made by
lowering the flag only if the compass points to
the north-west (in the case of the RHR) and not
if it points north-east, but cf. [12] for details.
According to the RHR the obstacle’s perimeter
should be followed closely and kept on the right
side of the message’s current direction. If ever the
compass and the flag’s tag disagree, i.e., if the
flag is tagged with south-west and the compass
returns south-east, it is assumed that the message
is turning left too much, that it risks going away
from the obstacle and that the RHR is at risk of
being violated (a symmetric case applies for the
LHR). When this is so, GRIC responds by calling
the rescue mode which changes the default way
of computing vidl: in rescue mode the message is
forced to turn right (or left if the LHR is applied),
by defining vidl as the vector obtained by applying
to vcur a rotation of angle ˛00 (instead of ˛0 in in-
ertia mode) where ˛00 D �sign.˛/.2� � j˛j/=6.
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Main Findings
The performance of GRIC was evaluated through
simulations. The main parameters were the
presence (or absence) of different shapes of
large communication blocking obstacles and the
network density which ranged from very low
to very high and controls the average degree of
the communication graph and the occurrence of
routing holes. The main performance metrics
were the success rate, i.e., the percentage
of messages routed to destination, and the
path length. The main findings are that GRIC
efficiently, i.e., using short paths, bypasses
routing holes and obstacles but that in the
presence of hard obstacles, the performance
decreases with network density. In Fig. 1. typical
routing paths found by GRIC for different
obstacle shapes are illustrated, cf. [12] for details
on the simulation environment.

Result 1 In the absence of obstacles, routing
holes are bypassed for every network density: The
success rate is close to 100 % as long as the
source and the destination are connected. Also,
routing is efficient in the sense that path lengths
are very short.

Result 2 Some convex obstacles such as the
one in Fig. 1b are bypassed with almost 100%
success rate and using short paths, even for
low densities. When the density gets very low
performance diminishes: If the density gets be-
low the critical level guaranteeing the commu-
nication graph to be connected with high prob-
ability, then the success probability diminishes
quickly and successful routings use longer rout-
ing paths.

Result 3 Some large concave obstacles such
as those in Fig. 1c and d are efficiently
bypassed. However, when facing such obstacles
performance becomes more sensitive to network
density. The success rate drops and routing paths
become longer when the density gets below
a certain level depending on the exact obstacle
shape.

Result 4 (Robustness) Similarly to GF, GRIC
is robust to link instability. Furthermore, it was
observed that limited link instability has a signif-
icantly positive impact on performances. This can
be understood as the fact that messages are less
likely to enter endless routing loops in a “hot”
system than in a “cold” system.

Applications

Replacement for Greedy Forwarding
Because it makes no compromise with the advan-
tages of GF except the fact that it may be some-
how more complicated to implement and because
it overcomes GF’s main limitations, GRIC can
probably replace GF for most routing scenar-
ios including but not exclusively wireless sensor
networks. As an example opportunistic-routing
strategies [11] could be applied to GRIC rather
than to GF.

Wireless Sensor Networks with Large
Obstacles
GRIC successfully bypasses large communi-
cation blocking obstacles. However, it does so
efficiently only if the network density is high
enough. This suggests that the obstacle avoidance
feature of GRIC may be more useful for dense
wireless networks than for sparse networks.
Wireless sensor networks are an example of
networks which are usually considered to be
dense.

Dynamic Networks
There exist some powerful alternatives to GRIC
such as the celebrated guaranteed delivery proto-
cols GFG [3], GPSR [8] or GOAFR [10]. Those
protocols rely on a planarization phase such as
the lazy cross-link detection protocol (CLDP) [9].
LCR implies significant topology maintenance
overhead which would be amortized over time if
the network is stable enough. On the contrary,
if the network is highly dynamic the necessity
for frequent updates could make this topology
maintenance overhead prohibitive. GRIC may
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thus be a preferable choice for dynamic networks
where the communication graph is not a stable
structure.

Open Problems

(1) Hard concave obstacles such as the one in
Fig. 1d are still a challenge for lightweight
protocol since in this configuration GRIC’s
performance is strongly dependent on network
density. (2) Low to very low densities are
challenging when combined with large obstacles,
even when they are “simple” convex obstacles
like the one in Fig. 1b. (3) The problem reported
in this entry in the case of 3-dimensional
networks is open. Inertia may be of some
help, however the virtual compass and the
right-hand rule seem quite strongly depend-
ant on the 2-dimensional plane. (4) GRIC is
not loop free. A mechanism to detect loops
or excessively long routing paths would be
quite important for practical purposes. (5) The
understanding of GRIC could be improved.
Analytical results are lacking and new metrics
could be considered such as network lifetime,
energy consumption or traffic congestion.
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Problem Definition

Online interval coloring is a graph coloring prob-
lem. In such problems the vertices of a graph are
presented one by one. Each vertex is presented in
turn, along with a list of its edges in the graph,
which are incident to previously presented ver-
tices. The goal is to assign colors (which without
loss of generality are assumed to be nonnegative
integers) to the vertices, so that two vertices
which share an edge receive different colors and
the total number of colors used (or alternatively,
the largest index of any color that is used) is
minimized. The smallest number of colors, for
which the graph still admits a valid coloring, is
called the chromatic number of the graph.

The interval coloring problem is defined as
follows. Intervals on the real line are presented
one by one, and the online algorithm must assign
each interval a color before the next interval ar-
rives, so that no two intersecting intervals receive
the same color. The goal is again to minimize
the number of colors used to color any interval.
The last problem is equivalent to coloring of
interval graphs. These are graphs which have a
representation (or realization) where each inter-
val represents a vertex and two vertices share an
edge if and only if they intersect. It is assumed
that the interval graph arrives online together with
its realization.

Given an interval graph, denote the size of the
largest cardinality clique (complete subgraph) in
it by !. Interval graphs have the special property
that in a realization, the set of vertices in a clique
have a common point in which they all intersect.

Before discussing the online problem, some
properties of interval graphs need to be stated.
There exists a simple offline algorithm which
produces an optimal coloring of interval graphs.
An algorithm applies First Fit, if each time it
needs to assign a color to an interval, it assigns a
smallest index color which still produces a valid
coloring. The optimal algorithm simply considers

intervals sorted from left to right by their left end
points and applies First Fit. Note that the resulting
coloring never uses more than ! colors. Indeed,
interval graphs are perfect. A graph G is perfect
if any induced subgraph of G, G0 (including G),
can be colored using !.G0/ colors, where !.G0/

is the size of the largest cardinality clique in G0.
(For any graph, ! is a clear lower bound on its
chromatic number.)

However, once intervals arrive in an arbitrary
order, it is impossible to design an optimal color-
ing. Consider a simple example where the two in-
tervals Œ1; 3� and Œ6; 8� are introduced. If they are
colored using two distinct colors, this is already
suboptimal, since using the same color for both
of them is possible. However, if the sequence of
intervals is augmented with Œ2; 5� and Œ4; 7�, these
two new intervals cannot receive the color of the
previous intervals or the same color for both new
intervals. Thus, three colors are used, even though
a valid coloring using two colors can be designed.
Note that even if it is known in advance that the
input can be colored using exactly two colors, not
knowing whether the additional intervals are as
defined above, or alternatively, a single interval
Œ2; 7� arrives instead, leads to the usage of three
colors instead of only two.

Online coloring is typically hard, which
already applies to some simple graph classes
such as trees. This is due to the lower bound
of ˝.log n/ (where n is the number of
vertices), given by Gyárfás and Lehel [9] on
the competitive ratio of online coloring of
trees. There are very few classes for which
constant bounds are known. One such class is
line graphs, for which Bar-Noy, Motwani, and
Naor [3] showed that First Fit is 2-competitive
(specifically it uses at most 2 � OPT � 1 colors,
where OPT is the number of colors in an optimal
coloring), and this is the best possible bound. This
result was later generalized to k � OPT� kC 1 for
.k C 1/-claw-free graphs by [8] (note that line
graphs are 3-claw-free).

Key Results

The paper of Kierstead and Trotter [11] provides
a solution to the online interval coloring problem.
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They show that the best possible competitive
ratio is 3 which is achieved by an algorithm they
design. More accurately, the following theorem is
proved in the paper.

Theorem 1 Given an interval graph which is in-
troduced online and presented via its realization,
any online algorithm uses at least 3! � 2 colors
to color the graph, and there exists an algorithm
which achieves this bound.

The algorithm does not need to know ! in
advance. Moreover, even though the algorithm
is deterministic, it was shown in [13] that the
lower bound of 3 on the competitive ratio of
online algorithms for interval coloring holds for
randomized algorithms as well. Thus, [11] gives
a complete solution for the problem.

The main idea of the algorithm is creation of
“levels.” At the time of arrival of an interval, it
is classified into a level as follows. Denote by
Ak the union of sets of intervals which currently
belong to all levels 1; : : : ; k. Intervals are classi-
fied so that the largest cardinality clique in Ak

is of size k. Thus, A1 is simply a set of non-
intersecting intervals. On arrival of an interval,
the algorithm finds the smallest k such that the
new interval can join level k, without violating
the rule above. It can be shown that each level
can be colored using two colors by an offline
algorithm. Since the algorithm defined here is
online, such a coloring cannot be found in general
(see example above). However it is shown in
[11] that at most three colors are required for
each such level, and a coloring using three colors
can be found by applying First Fit on each level
(with disjoint sets of colors). Moreover, the first
level can always be colored using a single color,
and ! is equal exactly to the number of levels.
Thus a total number of colors, which is at most
3.! � 1/C 1 D 3! � 2, is used.

Applications

In this section, both real-world applications of
the problem and applications of the methods of
Kierstead and Trotter [11] to related problems are
discussed.

Many applications arise in various commu-
nication networks. The need for connectivity
all over the world is rapidly increasing. On the
other hand, networks are still composed of very
expensive parts. Thus application of optimization
algorithms is required in order to save costs.

Consider a network with a line topology that
consists of links. Each connection request is for
a path between two nodes in the network. The
set of requests assigned to a channel must consist
of disjoint paths. The goal is to minimize the
number of channels (colors) used. A connection
request from a to b corresponds to an interval
Œa; b�, and the goal is to minimize the number of
required channels to serve all requests.

Another network-related application is that if
the requests have constant duration c and all
requests have to be served as fast as possible.
In this case the colors correspond to time slots,
and the total number of colors corresponds to the
schedule length. The problem can be described as
a scheduling problem as well, and it is clearly of
theoretical interest being a natural online graph
coloring problem. Two later studies are of pos-
sible interest here, both due to their relevance to
the original problem and for the usage of related
methods.

The applications in networks stated above
raise a generalized problem studied in the recent
years. In these applications, it is assumed that
once a connection request between two points is
satisfied, the channel is blocked at least for the
duration of this request. An interesting question
that was raised by Adamy and Erlebach [1] is
the following. Assume that a request consists
not only of a requested interval but also from
a bandwidth requirement. That is, a customer
of a communication channel specifies exactly
how much of the channel is needed. Thus, in
some cases it is possible to have overlapping
requests sharing the same channel. It is required
that at every point, the sum of all bandwidth
requirements of requests sharing a color cannot
exceed the value 1, which is the capacity of
the channel. This problem is called online
interval coloring with bandwidth. In the paper
[1], a (large) constant competitive algorithm was
designed for the problem. The original interval
coloring problem is a special case of this problem
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where all bandwidth requests are 1. Note that this
problem is a generalization of bin packing as
well, since bin packing is the special case of the
problem where all requests have a common point.
Azar et al. [2] designed an algorithm of compet-
itive ratio of at most 10 for this problem. This
was done by partitioning the requests into four
classes based on their bandwidth requirements
and coloring each such class separately. The
class of requests with bandwidth in . 1

2
; 1� was

colored using the basic algorithm of [11], since
no two such requests colored with one color can
overlap. The two other classes, which are .0; 1

4
�

and . 1
4
; 1

2
�, were colored using adaptations of

the algorithm of [11]. Epstein and Levy [6,7] de-
signed improved lower bounds on the competitive
ratio, showing that online interval coloring with
bandwidth is harder than online interval coloring.

Another problem related to coloring is the
max coloring problem [5, 14, 15]. In this prob-
lem each interval is given a nonnegative weight.
Given a coloring, the weight of a color is the
maximum weight of any vertex of this color. The
goal is to minimize the sum of weights of the
used colors. Note that if all weights are 1, max
coloring reduces to the graph coloring problem.
Several papers [5, 15], starting with that of Pem-
maraju, Raman, and Varadarajan [15], designed
algorithms for max coloring that are based on the
algorithm of [11] (sometimes as a black box).

Open Problems

Since the paper [11] provided a nice and clean
solution to the online interval coloring problem,
it does not directly raise open problems. Yet, one
related problem is of interest to researchers over
the last 30 years, which is the performance of
First Fit on this problem. It was shown by Kier-
stead [10] that First Fit uses at most 40! colors,
thus implying that First Fit has a constant com-
petitive ratio. The quest after the exact competi-
tive ratio was never completed. The best current
published results are an upper bound of 10! by
[15] and a lower bound of 4:4! by Chrobak and
Slusarek [4]. See [16] for recent developments. It
particular, it is mentioned that a lower bound of

4:99999!�C (for a fixed C > 0) was proved by
Kierstead and Trotter in 2004, later improved to a
lower bound of .5�"/! for any " > 0, implying a
lower bound of 5 on the competitive ratio of First
Fit [12]. It is interesting to note that for online
interval coloring with bandwidth, First Fit has an
unbounded competitive ratio [1].
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Problem Definition

Suppose we are going to invest in a stock market.
Our neighbor, for mysterious reasons, happens
to know how the market evolves. But he can-
not change his portfolio (proportions of holding
stocks) once committed (to avoid being caught by
regulators, say). On the other hand, we, the nor-
mal investor, do not have any inside information
but can sell and buy at will. If we and our pre-
scient neighbor invest the same amount of money,
is there a (computationally feasible) way for us to
perform comparably well to our neighbor, with-
out knowing his investing strategy? Surprisingly
(as contrary to our real-life experience perhaps),
the answer is yes, and we will see it through the

lens of online learning. Disclaimer: The reader
is at his own risk if he decides to practice the
beautiful theoretical results we describe below.

The online learning problem is best described
as a multi-round two-person game between the
“learner” and the “environment,” following the
protocol:

The Online Learning Protocol

For t D 1; : : : ; T

Learner predicts xt 2 D;
Environment responds with a cost

function ft W D ! R;
Learner suffers an immediate cost

ft .xt /;
Learner learns some information of ft .

Through the multi-round interactions with the
environment, the learner tries to learn the be-
havior of the environment so as to minimize its
cumulative cost in the time horizon t 2 Œ1; T �,
where we could allow the game to continue
indefinitely, i.e., T D1.

The online learning framework is particularly
relevant in real applications where (1) sequential
decisions are needed, (2) average good perfor-
mance is desired, and (3) the process is too
complicated to be modeled statistically. In our
stock example above, the learner will be us (nor-
mal stock holder), and the environment will be
the market. Each day we submit our portfolio
xt , carefully constructed based on the past in-
formation and perhaps also mingled with some
randomness (coin tosses for luck). The market
responds with rises and falls of the stock prices,
represented as the cost function ft . We suffer the
loss ft .xt / and learn something about the market
(e.g., ft ), and the life moves on to the next day.
(If it feels more comfortable, one can negate f

and call it gain. We shall not do this, because
“a true warrior faces her bleak life bravely.”) Our
adventure ends at day T , which is prefixed. (For
T D 1, the adventure never ends.) Of course,
the goal is to earn on average as much money
as possible; it is OK if we lose occasionally.
Also, for an average person (us), it is perhaps too
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complicated to have a clear idea what is exactly
going on in that stock market. As mentioned,
we would like to compete against our “prescient
neighbor.” This is formalized as the regret below.

To evaluate the performance of the learner, the
following notion of regret plays a central role:

RT .x/ WD

TX

tD1

�
ft .xt / � ft .x/

�
; 8x 2 C � D:

(1)

Intuitively, the learner compares itself with the
baseline (e.g., the “prescient” neighbor) that con-
stantly predicts x 2 C in each round. We are
interested in bounding the learner’s regret with
respect to the “best” competitor in the set C (al-
though our notation drops the dependence on C ):

RT WD sup
x2C

E.RT .x//; (2)

where the expectation E.�/ is taken with respect
to any internal randomization the learner or the
environment might use. The learner is said to be
(Hannan) consistent if

RT

T
! 0; as T !1; i.e., RT D o.T /:

In other words, the learner performs, on average,
as well as the best constant competitor in the long
run.

We adopted the notion of regret not because
we believe a constant (unchanging) predictor is
the best strategy for our problem. Instead, the
regret should be interpreted as a bare minimum
requirement: If there does exist a constant pre-
dictor that performs reasonably well on our task,
it would be unacceptable if our algorithm is
not even on par with it. More often than not,
we would like to do better than any constant
predictor, but this can be highly nontrivial (either
computationally or statistically).

We have allowed the learner to operate on a
larger set D than its “competitors” (which are
restricted to C ). Of course this buys the learner
some advantage, which sometimes is necessary

for consistency, particularly when C is a noncon-
vex set. For instance, consider the game where
the sets C D D D f0; 1g and the cost functions

ft .x/ D

(
1; if x D xt

0; otherwise
: (3)

Recall that in our online learning protocol, we
have no control on how the environment reacts. In
the very worst case, the environment may appear
to be completely “hostile.” For instance, the cost
function ft in (3) is thus defined to make the
learner always suffer unit cost in each round. On
the other hand, the best constant competitor in
C suffers cost at most T=2 in T rounds. Hence,
RT

T
� 1

2
for all T , meaning that any learner

that follows our protocol cannot be consistent.
The lesson is, of course, that we cannot compete
under a very adversarial environment. However,
if we allow the learner to randomize its decisions
and correspondingly pay expected cost, then it is
again possible to devise consistent learners for
this game [8], provided that the environment is
oblivious, i.e., it does not adapt to the learner’s
randomization, thus constraining its “hostility.”
Intuitively, randomization and averaging smooth
out the possible worst-case (but oblivious) reac-
tions of the environment. This is also equivalent
to allowing the learner to operate on D D Œ0; 1�,
the convex hull of C D f0; 1g. Indeed, for binary
x we can interpret the cost function in (3) as
ft .x/ D jx � yt j, where in the worse case the
environment could happen to choose yt D 1� xt

from the set C . In the randomized setting, the
learner first picks x 2 D, the convex hull of C ,
and then chooses 1 with probability x and 0 other-
wise. Provided that the environment still chooses
(however adversarial) yt 2 C , the expected cost
the learner suffers is again ft .x/ D jx � yt j, but
this time extended to the convex domain D. The
claim that there exists a consistent learner under
this randomized setting follows from Theorem 2
below. Intuitively, now the learner sits in the
middle (x D 1=2) and leans toward the better
constant predictor fast enough.

The previous example shows that consistency
may not always be achievable. Consequently, the
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interesting questions in online learning include
(but are not limited to) the following:

• Identifying settings under which consistency
can be achieved

• Determining the correct order of the regret
tending to infinity

• Devising computationally efficient and order
optimal learners

These questions heavily depend on what the
learner can learn in each round. For instance, in
the full information setting, the learner observes
the entire cost function ft ; in the bandit setting,
the learner only observes its incurred cost ft .xt /,
while in the partial monitoring setting, the
learner only observes some quantity related to
its cost. The geometry of the decision set D and
the competitor set C , as well as the structural
property (such as convexity, smoothness, etc.) of
the cost functions, also play a significant role. In
the next section, we will consider a special case
where a particularly simple algorithm known as
online gradient descent suffices to achieve the
optimal regret. For more complete and thorough
discussions, please refer to the excellent book [3]
and surveys [2, 8].

Online Convex Programming
We further simplify our online learning protocol
as follows:

Online Convex Programming (on the real
line)

• D � R is a closed convex set, with r D

maxx;y2D jx � yj <1;
• 8t � T , ft is convex and differentiable

on some open set containing D;
• The gradient is uniformly bounded:

supx2D;t�T jrft .x/j �M <1;
• The learner gets to observe rft .xt / in

round t .

The third condition is satisfied if each ft is M -
Lipschitz continuous, i.e.,

8x; y 2 D; jft .x/ � ft .y/j �M � jx � yj;

(4)

while the last condition is certainly met if the
cost function ft is revealed to the learner in
each round. Under this setting, Zinkevich [9] first
analyzed the online learner that simply follows
the (projected) gradient update:

8t � 1; xtC1 D PD.xt � �trft .xt //; (5)

where �t � 0 is a small step size that we
determine later and

PD.x/ D argmin
y2D

jx � yj; (6)

is the (Euclidean) projection of x onto the closed
set D, i.e., the closest point in D to x. The
projection is needed since the learner’s prediction
xtC1 is restricted to the decision set D.

Before we analyze the regret of the above
online gradient algorithm, let us first observe that

RT .x/ D

TX

tD1

�
ft .xt / � ft .x/

�

�

TX

tD1

�
rft .xt / � .xt � x/

�

�M

TX

tD1

jxt � xj; (7)

where the first inequality follows from the con-
vexity of ft . Interestingly, the right-hand side is
the worst-case regret for the special case where
each ft is a linear function, say, wt xt for some
jwt j � M . In other words, we could have re-
stricted the game to linear cost functions, instead
of the seemingly more general convex functions.

The regret of an online learner can be bounded
by analyzing its progress with respect to some
potential function. Here we choose the familiar
quadratic potential. Note that for any x 2 C �

D, clearly PD.x/ D x; hence,
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jxtC1 � xj2 D jPD.xt � �trft .xt // � PD.x/j2

� jxt � �trft .xt / � xj2

� jxt � xj2 � 2�trft .xt /

� .xt � x/C �2
t M 2

� jxt � xj2 � 2�t .ft .xt /

� ft .x//C �2
t M 2; (8)

where the first inequality follows from the 1-
Lipschitz continuity of the projection PD.�/ and
the last inequality is due to the convexity of ft .
Dividing (8) by 2�t , summing the indices from
t D 1 to t D T , and rearranging, we have

RT .x/ D

TX

tD1

�
ft .xt / � ft .x/

�

�

TX

tD1

1

2�t

.jxt � xj2 � jxtC1 � xj2/

CM 2

TX

tD1

�t

2
(9)

�
1

2�1

jx1 � xj2 C

TX

tD2

�
1

2�t

�
1

2�t�1

�

jxt � xj2 CM 2

TX

tD1

�t

2
: (10)

Setting the step size �t properly leads to our key
results, summarized in the next section.

Key Results

If the horizon T is finite and known in advance,
then we can use a constant step size �t � �.
Optimizing with respect to � � 0 from (10) yields

Theorem 1 (e.g., [8, 9]) Let �t � � D c

M
p

T
for

some constant c > 0; then the online gradient
learner achieves sublinear regret

RT .x/ �M
p

T
c2 C jx � x1j

2

2c

�M
p

T
c2 C r2

2c
(11)

for the online convex programming problem.

If the horizon is not know in advance, inspired
by the step size in Theorem 1, we can try setting
�t D

c

M
p

t
. Note that �t is decreasing with

respect to t . Continuing from (10):

RT .x/ � r2

 
1

2�1

C

TX

tD2

� 1

2�t

�
1

2�t�1

�
!

C cM

TX

tD1

1

2
p

t
:

Using integration,
PT

tD1
1

2
p

t
�

R T

0
1

2
p

t
dt �

p
T . Thus, we have proved

Theorem 2 (Zinkevich [9]) Let �t D
c

M
p

t
for

some constant c > 0; then the online gradient
learner achieves sublinear regret (simultaneously
for all T )

RT .x/ �M
p

T
2c2 C r2

2c
(12)

for the online convex programming problem.

Comparing to Theorem 1, we only lose a
constant 2 in Theorem 2, but the result now holds
simultaneously for all T – a property sometimes
called anytime. Theorems 1 and 2 not only imply
the consistency of the online gradient learner but
also demonstrate that RT D O.

p
T /, since the

right-hand sides of (11) and (12) are independent
of the competitor x. In fact, this rate is optimal,
i.e., there exists an instantiation where no learner
(efficient or not) can do better; see, e.g., [6].
Thanks to the convexity assumption on ft (and
the decision set D), the online gradient algorithm
can be efficiently implemented if the gradient
rft and the projection PD.�/ can be efficiently
computed.

Doubling Trick When the horizon T is not
known in advance, we can also use the doubling
trick, which divides the time into exponentially
increasing phases
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dlog2.T C1/e[

iD1

f2i�1; : : : ; 2i � 1g;

and on the i th phase, we use the constant step size
�i D O.1=

p
2i�1/ suggested in Theorem 1. The

overall regret is bounded by

dlog2.T C1/eX

iD1

O.
p

2i�1/ D

p
2

p
2 � 1

O.
p

T C 1/:

So asymptotically we only lose a factor of
p

2p
2�1
� 3:41.

Other Rates It is possible to tighten the regret
rate if the cost functions are more “regular.”
Intuitively, this means the environment is more
constrained hence can only be less adversarial.
Indeed, if ft �

�
2
j � j2 is convex, namely, ft is � -

strongly convex, Hazan et al. [6] showed that the
online gradient learner equipped with a smaller
step size �t /

1
�t

suffers only logarithmic regret
O.log.T // – an exponential improvement com-
pared to Theorem 2. Just like the time horizon, it
is possible to achieve the same logarithmic regret
without knowing the parameter � ; see [1]. Sim-
ilarly, if ft is so-called exponentially concave, a
similar logarithmic regret can be achieved using
a second-order Newton-type learner [6].

Extension to High Dimensions The above anal-
ysis easily extends to high dimensions. In fact,
Theorems 1 and 2 hold in any abstract Hilbert
space, with virtually the same proof (provided
that we replace the absolute value with the Hilbert
norm). The cost functions ft need not be differ-
entiable either; picking an arbitrary subgradient
in the subdifferential @ft .xt / would suffice.

Extension to Composite Functions The regret
can be extended to include a penalty function g

as follows:

RT .x/ D

TX

tD1

.ft .xt /C g.xt / � ft .x/ � g.x//:

(13)

Our previous definition in (1) corresponds to the
setting where g.x/ D 0 iff x 2 D (otherwise the
regret is set to1). We could simply treat ftCg as
a whole and apply the online gradient algorithm
without any modification. A different approach,
resulting in a similar regret bound, upgrades the
projection to the proximity operator (of g):

P�
g.x/ D argmin

y

1
2�
jx � yj2 C g.y/; (14)

where � > 0 is the step size to be chosen ap-
propriately. The latter approach is not only more
general but also leads to more structured inter-
mediate predictions [4]. For instance, if g.x/ D
P

i jxi j is the `1 norm, then ŒP�
g.x/�i D sign.xi /�

maxfjxi j � �; 0g, which would be exactly zero
if jxi j is small and � is large. In contrast, if we
apply online gradient descent directly to ft C g,
we would almost never get sparse intermediate
predictions.

Without Projections The online gradient
learner is computationally efficient only when
the projection PD.�/ in (6) (or more generally the
proximity operator in (14)) can be efficiently
implemented. In some applications, this is
unfortunately not the case. Instead, Hazan
and Kale [5] proposed a different learner that
bypasses the projection step. Basically, the
learner iteratively finds the vertexes of the
decision set D and then takes suitable convex
combinations of them to make progress.

Connection to Stochastic Optimization The
regret bound in Theorem 2 is closely related to
some results in stochastic optimization, for the
following problem [7]:

inf
x2D

f .x/; where f .x/ WD E�.F.x; 	//; (15)

and 	 is some random variable. The stochastic
(sub)gradient method is a popular iterative algo-
rithm for optimizing (15). In each iteration, it
randomly draws an independent sample 	t and
follows the projected (sub)gradient update:

xtC1 D PD.xt � �trxF.xt ; 	t //;
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for some small step size �t � 0. The similarity
to the online gradient learner is apparent once
we identify ft .x/ WD F.x; 	t /. Thus, the regret
bound in Theorem 2 implies

O

�
1
p

T

�

D sup
x2D

1

T
E
h TX

tD1

�
ft .xt / � ft .x/

�i

D sup
x2D

1

T
E
h TX

tD1

�
F.xt ; 	t / � F.x; 	t /

�i

D E

 
1

T

TX

tD1

f .xt /

!

� inf
x2D

f .x/

� E

 

f

 
1

T

TX

tD1

xt

!!

� inf
x2D

f .x/;

provided that the random sample 	t is
independent of xt and F.�; 	/ is convex for
(almost) every realization of 	. In other words,
the ergodic mean 1

T

PT
tD1 xt approaches, in

expectation, the infimum in (15) at the rate
O.1=

p
T /.
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Problem Definition

List update is one of the classic problems in
the context of online computation. The main
motivation for the study of the problem is self-
adjusting lists. Consider a linear list which rep-
resents a dictionary abstract data type. There
are three elementary operations in the dictionary,
namely, insertion, deletion, and lookup (search).
To perform these operations on an item x, an
algorithm needs to search for x, i.e., examine the
list items, one by one, to find x. For the case
of an insertion, all items should be sequentially
checked to ensure that the inserted item is not
already in the list. A deletion also requires finding
the item that is being deleted. In this manner, all
operations can be translated into a sequence of
lookups or accesses to the items in the list. To
access an item at index i , an algorithm examines
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i items and therefore incurs an access cost of i .
Immediately after the access, the algorithm can
move the accessed item to any position closer to
the front of the list at no extra cost; this is called
a free exchange. It is also possible to exchange
any two consecutive items at a cost of 1 through a
paid exchange. The objective is to organize the
list, using free and paid exchanges, so that the
total cost (for accesses and paid exchanges) is
minimized.

The list update is naturally an online problem,
i.e., at the time of accessing an item, it is not clear
what items will be requested in the future. An
online algorithm has to take its decision without
any knowledge about the forthcoming requests.
For example, Move-To-Front (MTF) is a well-
known list update algorithm which moves an
accessed item to front using a free exchange. In
taking its decision, MTF does not rely on any
information about future requests. Among other
classic list update algorithms, we might mention
Transpose (TRANS) and Frequency Count (FC).
After accessing an item, TRANS moves it one step
closer to the front, i.e., it exchanges the position
of x with its preceding item. FC maintains the list
in a way that more frequent items appear closer
to the front. In doing so, it maintains a counter
for each item x which indicates the number of
previous requests to x.

Competitive analysis is the standard method
for the study and classification of list update algo-
rithms. An algorithm is said to be c-competitive
if the cost of serving any request sequence never
exceeds c times the optimal cost of an offline
algorithm OPT which knows the entire sequence
in advance. More precisely, an algorithm A is c-
competitive if A.�/ � c OPT.�/ C b for any
sequence � . Here, A.�/ and OPT.�/ respectively
denote the costs of A and OPT for serving � , and
c and b are constants.

Key Results

List update algorithms were initially studied in
regard to their typical behavior on sequences that
follow probability distributions. The average cost
ratio of an algorithm A is the ratio between the
expected cost of A for a random sequence and

the cost of an optimal offline algorithm which
arranges items in nonincreasing order by proba-
bility. Under this setting, the ratio achieved by FC

is 1 [14], while that of MTF is �=2 [7]. Moreover,
there are distributions in which TIMESTAMP has a
better ratio than MTF [14]. These results indicate
that FC and TIMESTAMP are better than MTF.
However, in practice, MTF has an advantage over
the other algorithms. This is partially because the
input sequences do not necessarily follow a fixed
probability distribution.

In their seminal paper, Sleator and Tarjan
proved that MTF is 2-competitive, while TRANS

and FC do not achieve a constant competitive
ratio [15]. At the same time, for sufficiently long
lists, no algorithm can achieve a competitive ratio
better than 2. For a while, MTF was the only
algorithm with optimal competitive ratio until
Albers introduced the TIMESTAMP algorithm [1].
After accessing an item x, TIMESTAMP inserts
x in front of the first item y that is before x in
the list and is requested at most once since the
last request for x. If there is no such item y, or
if this is the first access to x, TIMESTAMP does
not reorganize the list. TIMESTAMP is also 2-
competitive [1].

Randomized Algorithms
No randomized list update algorithm can be bet-
ter than 2-competitive against adaptive adver-
saries. However, there are randomized algorithms
with better competitive ratios against oblivious
adversaries. Reingold et al. introduced a random-
ized algorithm called BIT which assigns a bit to
each item x and initially sets it, uniformly and
randomly, to be 0 or 1. At the time of an access to
an element x, the bit of x is complemented, and if
it becomes 1, the algorithm moves x to the front.
BIT has a competitive ratio of 1.75 [13]. Albers
et al. proposed a hybrid algorithm, called COMB,
which randomly selects between TIMESTAMP

and BIT strategies [4]. Upon a request to an item,
the algorithm applies BIT strategy with proba-
bility 0.8 and TIMESTAMP with probability 0.2.
COMB has a competitive ratio of 1.6 [4] which is
the best among existing algorithms. Teia proved
that no randomized algorithm can be better than
1.5-competitive [16].
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Locality of Reference
Real-life sequences usually exhibit locality
of reference which implies that the currently
requested item is more likely to be requested
again. One model of locality is concave analysis
in which the sequences are consistent with a
concave function f so that the number of distinct
requests in any window of size 
 is at most
f .
/. MTF is the unique optimal solution under
bijective analysis for sequences that have locality
of reference with respect to concave analysis [6].
Bijective analysis is an alternative to competitive
analysis that directly compares two algorithms
based on their worst-case and average-case
behavior (see [6] for details).

Inspired by the concave analysis, Dorrigiv
et al. [8] defined the nonlocality of a sequence
� of length n, denoted by O�.�/, as

Pn
iD1 di in

which di is the number of distinct items requested
since the last request to the i th item in � . For the
first request to an item, di is equal to the length
l of the list. For any sequence � , the cost of any
online algorithm is at least O�.�/, while MTF has
the same cost of O�.�/. The cost of TIMESTAMP

is at least 2 O�.�/, and TRANS and FC both have a
cost of at least l=2� O�.�/ [8]. These results imply
an advantage for MTF when sequences have high
locality.

Albers and Lauer defined an alternative lo-
cality model which assigns a value � 2 Œ0; 1�

for each sequence [2]. The larger values for �

imply a higher locality. Using this notion of
locality, the competitive ratio of MTF is at most

2
1C�

, i.e., for sequences with high locality, MTF

is 1-competitive. The ratio of TIMESTAMP does
not improve on request sequences satisfying �

locality, i.e., it remains 2-competitive. The same
holds for algorithm COMB, i.e., it remains 1.6-
competitive. However, for the algorithm BIT the
competitive ratio improves to minf1:75; 2C�

1C�
g.

Applications

As mentioned earlier, the basic application of
the list update is in maintaining self-adjusting
lists. Martínez and Roura [11], and also Munro

[12], observed that a complete rearrangement
of items which precede an item at position i is
proportional to i rather than i2. For example,
accessing the item at the end of a list and
reversing the list can be done in linear time, while
under the standard model, it has a quadratic cost.
In the MRM model, after an access to an item at
index i , the preceding items can be arranged free
of charge. It is known that any online algorithm
has a competitive ratio of ˝.l= lg l/ for a list
of length l under the MRM model [11, 12], i.e.,
under this practical setting of the problem, no
online algorithm can be competitive (see [9] for
details).

List update is widely used for compression
purposes. Consider each character of a text as
an item in the list and the text as the input
sequence. A compression algorithm writes an
arbitrary initial configuration in the compressed
file, as well as the access costs of a list update
algorithm A for serving each character. In the
decompression phase, the algorithm starts from
the same initial configuration and follows the
steps of the algorithm by reading the access cost
written in the compressed file. In order to enhance
the performance of the compression schemes, the
Burrows-Wheeler Transform (BWT) can be ap-
plied to the input string to increase the locality of
the input. The bzip2 compression program which
applies MTF after BWT transform outperforms
the widely used gzip program by more than 5 %
on the standard Canterbury corpus.

To theoretically study the list update problem
in the context of compression, it is better to
assume the cost of accessing an item at index
i is �.log i/ rather than �.i/. This is because,
when an item is accessed in the i th position,
the value of i is written as a binary code rather
than unary. Sleator and Tarjan show that MTF

is 2-competitive if the access cost is a convex
function. On the other hand, some algorithms are
competitive when the access cost is linear and
noncompetitive when the access cost is �.log i/.
However, it is not the case for MTF and it has
been shown that MTF is 2-competitive when the
access cost is logarithmic [10]. In other words,
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MTF is useful for compression, even for the
sequences (files) generated by an adversary.

Open Problems

The competitive ratio of the best randomized
algorithm lies in the range Œ1:5; 1:6�. Closing this
gap is an important direction for future research.
Almost all existing algorithms have the projective
property which informally means that the relative
position of any two items in the lists maintained
by these algorithms only depend on the requests
to these items. Projective algorithms are analyzed
under the partial cost model where the cost of
accessing an item at index i is i � 1. It is known
that no online algorithm with the projective prop-
erty can achieve a competitive ratio better than
1.6 under the partial cost model [5]. Hence, to
introduce an algorithm with competitive ratio
better than 1.6 of BIT, one needs to deviate from
the projective property.

Reingold et al. introduced another model,
called d -paid exchange model, in which the
cost of paid exchanges is scaled up by a value
d � 1, while free exchanges are not allowed [13].
Under this model, no deterministic algorithm
can be better than 3-competitive [13], while
the best existing algorithm is 4.56-competitive
(reported in [3]). For the particular case of
d D 1, the best lower and upper bound are,
respectively, 3 and 4 (MTF is 4-competitive).
Closing these gaps is another direction for future
research.
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Problem Definition

Load balancing of temporary tasks is an on-
line problem. In this problem, arriving tasks (or
jobs) are to be assigned to processors, which
are also called machines. In this entry, determin-
istic online load balancing of temporary tasks
with unknown duration is discussed. The input
sequence consists of departures and arrivals of
tasks. If the sequence consists of arrivals only, the
tasks are called permanent. Events happen one
by one, so that the next event appears after the
algorithm completes dealing with the previous
event.

Clearly, the problem with temporary tasks is
different from the problem with permanent tasks.
One such difference is that for permanent tasks,
the maximum load is always achieved in the end
of the sequence. For temporary tasks, this is not
always the case. Moreover, the maximum load
may be achieved at different times for different
algorithms.

In the most general model, there are m ma-
chines 1,: : : ; m. The information of an arriving
job j is a vector pj of length m, where pi

j is the
load or size of job j if it is assigned to machine
i . As stated above, each job is to be assigned to a

machine before the next arrival or departure. The
load of a machine i at time t is denoted by Lt

i

and is the sum of the loads (on machine i ) of jobs
which are assigned to machine i that arrived by
time t and did not depart by this time. The goal
is to minimize the maximum load of any machine
over all times t . This machine model is known
as unrelated machines (see [3] for a study of the
load-balancing problem of permanent tasks on
unrelated machines). Many more specific models
were defined. In the sequel, a few such models
are described.

For an algorithm A, denote its cost by A as
well. The cost of an optimal offline algorithm
that knows the complete sequence of events in
advance is denoted by OPT. Load balancing is
studied in terms of the (absolute) competitive
ratio. The competitive ratio of A is the infimum
R such that for any input, A � R � OPT. If the
competitive ratio of an online algorithm is at most
C, it is also called C-competitive.

Uniformly related machines [3, 12] are ma-
chines with speeds associated with them; thus,
machine i has speed si , and the information
that a job j needs to provide upon its arrival is
just its size, or the load that it incurs on a unit
speed machine, which is denoted by pj . Then, let
pi

j D pj =si . If all speeds are equal, this results
in identical machines [13].

Restricted assignment [8] is a model where
each job may be run only on a subset of the
machines. A job j is associated with running
time, which is the time to run it on any of its
permitted machines Mj . Thus, if i 2 Mj , then
pi

j D pj , and otherwise, pi
j D1.

Key Results

The known results in all four models are surveyed
below.

Identical Machines
Interestingly, the well-known algorithm of Gra-
ham [13], List Scheduling, which is defined for
identical machines, is valid for temporary tasks as
well as permanent tasks. This algorithm greedily
assigns a new job to the least loaded machine.
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The competitive ratio of this algorithm is 2�1=m,
which is best possible (see [5]). Note that the
competitive ratio is the same as for permanent
tasks, but for permanent tasks, it is possible to
achieve a competitive ratio which does not tend
to 2 for large m, see, e.g., [11].

Uniformly Related Machines
The situation for uniformly related machines is
not very different. In this case, the algorithms of
Aspnes et al. [3] and of Berman et al. [12] cannot
be applied as they are, and some modifications
are required. The algorithm of Azar et al. [7]
has competitive ratios of at most 20, and it is
based on the general method introduced in [3].
The algorithm of [3] keeps a guess value �, which
is an estimation of the cost of an optimal offline
algorithm OPT. An invariant that must be kept is
� � 2OP T . At each step, a procedure is applied
for some value of � (which can be initialized as
the load of the first job on the fastest machine).
The procedure for a given value of � is applied
until it fails, and some job cannot be assigned
while satisfying all conditions. The procedure is
designed so that if it fails, then it must be the
case that OP T > �, the value of � is doubled,
and the procedure is reinvoked for the new value,
ignoring all assignments that were done for small
values of �. This method is called doubling and
results in an algorithm with a competitive ratio
which is at most four times the competitive ratio
achieved by the procedure. The procedure for a
given � acts as follows. Let c be a target com-
petitive ratio for the procedure. The machines are
sorted according to speed. Each job is assigned
to the first machine in the sorted order such that
the job is assignable to it. A job j arriving at time
t is assignable to machine i if pj =si � � and
Lt�1

i Cpj =si � c�. It is shown in [7] that c D 5

allows the algorithm to succeed in the assignment
of all jobs (i.e., to have at least one assignable
machine for each job) as long as OP T � �.
Note that the constant c for permanent tasks used
in [3] is 2. As for lower bounds, it is shown in
[7] that the competitive ratio R of any algorithm
satisfies R � 3 � o.1/. The upper bound has
been improved to 6C 2

p
5 � 10:47 by Bar-Noy

et al. [9].

Restricted Assignment
As for restricted assignment, temporary tasks
make this model much more difficult than per-
manent tasks. The competitive ratio O.log m/

which is achieved by a simple greedy algorithm
(see [8]) does not hold in this case. In fact,
the competitive ratio of this algorithm becomes
�.m

2
3/ [4]. Moreover, in the same paper, a lower

bound of �
p

m on the competitive ratio of any
algorithm was shown. The construction was quite
involved; however, Ma and Plotkin [14] gave a
simplified construction which yields the same
result.

The construction of [14] selects a value
p, which is the largest integer that satisfies
p C p2 � m. Clearly, p D ‚

�p
m
�
. The lower

bound uses two sets of machines, p machines
which are called “the small group” and p2

machines which are called “the large group.”
The construction consists of p2 phases, each of
which consists of p jobs and is dedicated to one
machine in the large group. In phase i , job k of
this phase can run either on the k-th machine of
the small group or the i -th machine of the large
group. After this arrival, only one of these p jobs
does not depart. An optimal offline algorithm
assigns all jobs in each phase to the small group
except for the one job that will not depart. Thus,
when the construction is completed, it has one
job on each machine of the large group. The
maximum load ever achieved by OP T is 1.
However, the algorithm does not know at each
phase which job will not depart. If no job is
assigned to the small group in phase i , then the
load of machine i becomes p. Otherwise, a job
that the algorithm assigns to the small group is
chosen as the one that will not depart. In this way,
after p phases, a total load of p2 is accumulated
on the small group, which means that at least one
machine there has load p. This completes the
construction.

An alternative algorithm called ROBIN HOOD

was designed in [7]. This algorithm keeps a lower
bound on OP T , which is the maximum between
the following two functions. The first one is the
maximum average machine load over time. The
second is the maximum job size that has ever
arrived. Denote this lower bound at time t (after
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t events have happened) by B t . A machine i is
called rich at time t if Lt

i �
p

mB t . Otherwise,
it is called poor. The windfall time of a rich
machine i at time t is the time t 0 such that i is
poor at time t 0 � 1 and rich at times t 0; : : : ; t , i.e.,
the last time that machine i became rich. Clearly,
machines can become poor due to an update of
B t or departure of jobs. A machine can become
rich due to arrival of jobs that are assigned to it.

The algorithm assigns a job j to a poor ma-
chine in M.j / if such a machine exists. Other-
wise, j is assigned to the machine in M.j / with
the most recent windfall time. The analysis makes
use of the fact that at most

p
m machines can be

rich simultaneously.
Note that for small values of m (m � 5), the

competitive ratio of the greedy algorithm is still
best possible, as shown in [1]. In this paper, it was
shown that these bounds are .mC 3/=2 for m D

3; 4; 5. It is not difficult to see that for m D 2, the
best bound is 2.

Unrelated Machines
The most extreme difference occurs for unre-
lated machines. Unlike the case of permanent
tasks, where an upper bound of O.log m/ can
be achieved [3], it was shown in [2] that any
algorithm has a competitive ratio of �.m=log m/.
Note that a trivial algorithm, which assigns each
job to the machine where it has a minimum load,
has a competitive ratio of at most m [3].

Applications

In [10], a hierarchical model was studied. This
is a special case of restricted assignment where
for each job j; M.j / is a prefix of the machines.
They showed that even for temporary tasks, an
algorithm of constant competitive ratio exists for
this model.

In [6], which studied resource augmentation in
load balancing, temporary tasks were considered
as well. Resource augmentation is a type of
analysis where the online algorithm is compared
to an optimal offline algorithm which has less
machines.

Open Problems

Small gaps still remain for both uniformly re-
lated machines and for unrelated machines. For
unrelated machines, it could be interesting to
find if there exists an algorithm of competitive
ratio o.m/ or whether the simple algorithm stated
above has optimal competitive ratio (up to a
multiplicative factor).
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Problem Definition

We are given an undirected graph G D .V; E/

offline, where node v has a given weight wv .
Initially, the output graph H � G is the empty
graph. In the generic online Steiner network de-
sign problem, each online step has a connectivity
request Ci and the online algorithm must aug-
ment the output graph H to meet the new request.
We will consider the following problems in this
domain:

• Steiner tree. Each connectivity request Ci

comprises a new vertex ti 2 V (called a
terminal) that must be connected in H to all
previous terminals. (The first terminal t0 is
often called the root and the constraint Ci can
then be restated as connecting terminal ti to
the root.)

• Steiner forest. Each connectivity request Ci

comprises a new vertex pair .si ; ti / (called a
terminal pair) that must be connected in H .

• Group Steiner tree. Each connectivity request
Ci comprises a new set (group) of vertices
Ti � V (called a terminal group). The first
terminal group T0 is a single vertex r called
the root. At least one vertex in each terminal
group must be connected in H to the root.

• Group Steiner forest. Each connectivity re-
quest Ci comprises a new pair of sets (groups)
of vertices .Si ; Ti / (called a terminal group
pair). For each terminal group pair, at least
one vertex in Si must be connected in H to
at least one vertex in Ti .

• Prize-collecting Steiner tree (resp., Prize-
collecting Steiner forest). Each connectivity
request comprises a new terminal ti (resp.,
a new terminal pair .si ; ti /) and a penalty
�i > 0; the algorithm must either pay the
penalty �i or augment graph H to connect
terminal ti to the root (resp., augment graph
H to connect the terminal pair .si ; ti /).

In the (group) Steiner tree and (group) Steiner
forest problems, the objective is to minimize the
total weight (i.e., sum of weights of vertices) of
graph H . In the prize-collecting versions of these
problems, the objective is to minimize the sum of
the total weight of H and the sum of penalties
paid by the algorithm.

Key Results

The following theorem was obtained by Naor
et al. [7] for the online node-weighted Steiner tree
problem.

Theorem 1 There is a randomized online algo-
rithm for the node-weighted Steiner tree problem
that has a competitive ratio of O.log2 k log n/

and runs in polynomial time.

This was the first result to obtain a polyloga-
rithmic competitive ratio for the online node-
weighted Steiner tree problem. The competitive
ratio for this problem was later improved to
O.log k log n/ (see [5]), which is tight up to
constants.
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The lower bound follows from the observation
that the online set cover problem is a special case
of the online node-weighted Steiner tree prob-
lem. For the online set cover problem, a lower

bound of �
�

log m log n
log log mClog log n

�
for deterministic

algorithms was obtained by Alon et al. [1], where
m is the number of sets and n is the number
of elements. This was later improved and ex-
tended to a lower bound of �.log m log n/ for
randomized algorithms by Korman [6]. An online
set cover instance can be encoded as an online
node-weighted Steiner tree instance where the
terminals are the elements and the nonterminals
are the sets. This encoding yields a lower bound
of �.log k log n/ for the online node-weighted
Steiner tree problem and its generalizations dis-
cussed below.

In addition to the Steiner tree problem, Naor
et al. [7] also considered the online node-
weighted Steiner forest problem and the online
node-weighted group Steiner tree problem.
In fact, they obtained the following theorem
for the online node-weighted group Steiner
forest problem which generalizes both these
problems.

Theorem 2 There is a randomized online algo-
rithm for the node-weighted group Steiner forest
problem that has a competitive ratio polyloga-
rithmic in n and k and runs in quasi-polynomial
time.

For edge-weighted graphs, the same competitive
ratio was obtained with a polynomial-time
algorithm.

Subsequent to this work, Hajiaghayi et al. [4]
investigated the online node-weighted Steiner
forest problem and obtained the first polynomial-
time algorithm with a polylogarithmic competi-
tive ratio.

Theorem 3 There is a randomized online
algorithm for the node-weighted Steiner forest
problem that has a competitive ratio of
O.log2 k log n/ and runs in polynomial time.

The competitive ratio is tight up to a logarithmic
factor owing to the online set cover lower bound
described above. For graphs with an excluded

minor (such as planar graphs), they gave an
improved competitive ratio of O.log n/ for this
problem, which is tight up to constants. More-
over, the result can be extended to all f0; 1g-
proper functions which were introduced by Goe-
mans and Williamson [3] to capture a broad range
of connectivity problems and extended later to
node-weighted graphs by Demaine et al. [2].

For the prize-collecting variants of the online
node-weighted Steiner tree and Steiner forest
problems, Hajiaghayi et al. [5] gave the first
algorithms with a polylogarithmic competitive
ratio by showing that these problems can be
reduced to the fractional versions of their non
prize-collecting variants while losing only a log-
arithmic factor in the competitive ratio. This led
to the following results.

Theorem 4 There is a randomized online al-
gorithm for the prize-collecting node-weighted
Steiner tree problem that has a competitive ratio
of O.log k log2 n/. For the node-weighted prize-
collecting Steiner forest problem, there is a ran-
domized online algorithm that has a competitive
ratio of O.log2 k log2 n/. Both these algorithms
run in polynomial time.

Corresponding results for edge-weighted graphs
were previously known [8].

Applications

Online node-weighted Steiner problems have
broad applications in designing communication
networks where the clientele grows over
time.

Open Problems

Suppose we are given a node-weighted
undirected graph G D .V; E/. In the online
edge-connectivity (resp., vertex connectivity)
version of the survivable network design problem
(SNDP), the online connectivity requirement
Ci comprises a pair of terminals .si ; ti / and an
integer requirement ri > 0. The online algorithm
must augment the output graph H so that there
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are ri edge-disjoint (resp., node-disjoint) paths
between si and ti in H . The objective is to
minimize the total weight of H .

An interesting open problem is to obtain an
algorithm with competitive ratio O.r˛

max logˇ n/

for any constants ˛; ˇ for the online node-
weighted SNDP problem with either edge
or vertex connectivity requirements, where
rmax D maxi ri .

Experimental Results

No experimental results are known.
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Problem Definition

A file-caching problem instance specifies a cache
size k (a positive integer) and a sequence of
requests to files, each with a size (a positive
integer) and a retrieval cost (a nonnegative num-
ber). The goal is to maintain the cache to satisfy
the requests while minimizing the retrieval cost.
Specifically, for each request, if the file is not
in the cache, one must retrieve it into the cache
(paying the retrieval cost) and remove other files
to bring the total size of files in the cache to k

or less. Weighted caching or weighted paging is
the special case when each file size is 1. Paging
is the special case when each file size and each
retrieval cost is 1 (then the retrieval cost is the
number of cache misses, and the fault rate is the
average retrieval cost per request).

An algorithm is online if its response to
each request is independent of later requests.
In practice this is generally necessary. Standard
worst-case analysis is not meaningful for online
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algorithms – any algorithm will have some input
sequence that forces a retrieval for every request.
Yet worst-case analysis can be done meaningfully
as follows. An algorithm is c.h; k/-competitive if
on any sequence � the total (expected) retrieval
cost incurred by the algorithm using a cache
of size k is at most c.h; k/ times the minimum
cost to handle � with a cache of size h (plus a
constant independent of � ). Then the algorithm
has competitive ratio c.h; k/. The study of com-
petitive ratios is called competitive analysis. (In
the larger context of approximation algorithms
for combinatorial optimization, this ratio is
commonly called the approximation ratio.)

Algorithms. Here are definitions of a number
of caching algorithms; first is LANDLORD.
LANDLORD gives each file “credit” (equal to
its cost) when the file is requested and not in
cache. When necessary, LANDLORD reduces
all cached file’s credits proportionally to file
size, then evicts files as they run out of credit.

File-caching algorithm LANDLORD

Maintain real value creditŒf � with each file f

(creditŒf � D 0 if f is not in the cache).
When a file g is requested:
1. if g is not in the cache:
2. until the cache has room for g:
3. for each cached file f : decrease
creditŒf � by � � sizeŒf �,
4. where � D

minf 2cache creditŒf �=sizeŒf �.
5. Evict from the cache any subset
of the zero-credit files f .
6. Retrieve g into the cache; set
creditŒg� cost.g/.
7. else Reset creditŒg� anywhere between its
current value and cost.g/.

For weighted caching, file sizes equal 1. GREEDY

DUAL is LANDLORD for this special case.
BALANCE is the further special case obtained
by leaving credit unchanged in line 7.

For paging, files sizes and costs equal 1.
FLUSH-WHEN-FULL is obtained by evicting all
zero-credit files in line 5; FIRST-IN-FIRST-OUT

is obtained by leaving credits unchanged in line
7 and evicting the file that entered the cache
earliest in line 5; LEAST-RECENTLY-USED is
obtained by raising credits to 1 in line 7 and
evicting the least-recently requested file in line 5.
The MARKING algorithm is obtained by raising
credits to 1 in line 7 and evicting a random zero-
credit file in line 5. (LANDLORD generalizes to
arbitrary covering problems with submodular
costs as described in [10].)

Key Results

This entry focuses on competitive analysis of
paging and caching strategies as defined above.
Competitive analysis has been applied to many
problems other than paging and caching, and
much is known about other methods of analysis
(mainly empirical or average case) of paging and
caching strategies, but these are outside scope of
this entry.

Paging
In a seminal paper, Sleator and Tarjan showed
that LEAST-RECENTLY-USED, FIRST-IN-FIRST-
OUT, and FLUSH-WHEN-FULL are k

k�hC1
-

competitive [13]. Sleator and Tarjan also showed
that this competitive ratio is the best possible
for any deterministic online algorithm. Fiat
et al. showed that the MARKING algorithm is
2Hk-competitive and that no randomized online
algorithm is better than Hk-competitive [6].
Here Hk D 1 C 1=2 C � � � C 1=k �

0:58 C ln k. McGeoch and Sleator gave an
optimal Hk-competitive randomized online
paging algorithm [12].

Weighted Caching
For weighted caching, Chrobak et al. showed that
the deterministic online BALANCE algorithm is
k-competitive [4]. Young showed that GREEDY

DUAL is k
k�hC1

-competitive and that GREEDY

DUAL is a primal-dual algorithm – it generates
a solution to the linear-programming dual which
proves the near-optimality of the primal solu-
tion [14]. Bansal et al., resolving a long-standing
open problem, used the primal-dual framework to



Online Paging and Caching 1459

O

give an O.log k/-competitive randomized algo-
rithm for weighted caching [2].

File Caching
When each cost equals 1 (the goal is to minimize
the number of retrievals), or when each file’s cost
equals the file’s size (the goal is to minimize
the total number of bytes retrieved), Irani gave
O.log2 k/-competitive randomized online algo-
rithms [7].

For general file caching, Irani and Cao
showed that a restriction of LANDLORD is k-
competitive [3]. Independently, Young showed
that LANDLORD is k

k�hC1
-competitive [15].

Other Theoretical Models
Practical performance can be better than the
worst case studied in competitive analysis.
Refinements of the model have been proposed
to increase realism. Borodin et al. [1], to model
locality of reference, proposed the access-
graph model (see also [8, 9]). Koutsoupias and
Papadimitriou proposed the comparative ratio
(for comparing classes of online algorithms
directly) and the diffuse-adversary model (where
the adversary chooses requests probabilistically
subject to restrictions) [11]. Young showed that
any k

k�hC1
-competitive algorithm is also loosely

O.1/-competitive: for any fixed "; ı > 0, on any
sequence, for all but a ı-fraction of cache sizes k,
the algorithm either is O.1/-competitive or pays
at most " times the sum of the retrieval costs [15].

Analyses of Deterministic Algorithms
Here is a competitive analysis of GREEDY DUAL

for weighted caching.

Theorem 1 GREEDY DUAL is k
k�hC1

-
competitive for weighted caching.

Proof Here is an amortized analysis (in the spirit
of Sleator and Tarjan, Chrobak et al., and Young;
see [14] for a different primal-dual analysis).
Define potential

˚ D .h � 1/ �
X

f 2GD

creditŒf �

C k �
X

f 2OPT

�
cost.f / � creditŒf �

�
;

where GD and OPT denote the current caches of
GREEDY DUAL and OPT (the optimal off-line
algorithm that manages the cache to minimize
the total retrieval cost), respectively. After each
request, GREEDY DUAL and OPT take (some
subset of) the following steps in order.

OPT evicts a file f : Since creditŒf � �

cost.f /, ˚ cannot increase.
OPT retrieves requested file g: OPT pays

cost.g/; ˚ increases by at most k cost.g/.
GREEDY DUAL decreases creditŒf � for all

f 2 GD: The cache is full and the requested file
is in OPT but not yet in GD. So jGDj D k and
jOPT \ GDj � h � 1. Thus, the total decrease in
˚ is �Œ.h � 1/jGDj � k jOPT \ GDj� � �Œ.h �

1/k � k.h � 1/� D 0.
GREEDY DUAL evicts a file f : Since

creditŒf � D 0, ˚ is unchanged.
GREEDY DUAL retrieves requested file g

and sets creditŒg� to cost.g/: GREEDY DUAL

pays c D cost.g/. Since g was not in GD but
is in OPT, creditŒg� D 0 and ˚ decreases by
�.h � 1/c C k c D .k � hC 1/c.

GREEDY DUAL resets creditŒg� between its
current value and cost.g/: Since g 2 OPT and
creditŒg� only increases, ˚ decreases.

So, with each request: (1) when OPT retrieves
a file of cost c, ˚ increases by at most kc;
(2) at no other time does ˚ increase; and (3)
when GREEDY DUAL retrieves a file of cost c, ˚

decreases by at least .k � hC 1/c. Since initially
˚ D 0 and finally ˚ � 0, it follows that GREEDY

DUAL’s total cost times k�hC1 is at most OPT’s
cost times k.

Extension to File Caching
Although the proof above easily extends to
LANDLORD, it is more informative to analyze
LANDLORD via a general reduction from file
caching to weighted caching:

Corollary 1 LANDLORD is k
k�hC1

-competitive
for file caching.

Proof Let W be any deterministic c-competitive
weighted-caching algorithm. Define file-caching
algorithm FW as follows. Given request sequence
� , FW simulates W on weighted-caching se-
quence � 0 as follows. For each file f , break f
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into size.f / “pieces” ffig each of size 1 and cost
cost.f /=size.f /. When f is requested, give a
batch .f1; f2; : : : ; fs/N C1 of requests for pieces
to W . Take N large enough so W has all pieces
ffig cached after the first sN requests of the
batch.

Assume that W respects equivalence: after
each batch, for every file f , all or none of f ’s
pieces are in W ’s cache. After each batch, make
FW update its cache correspondingly to ff W

fi 2 cache.W /g. FW ’s retrieval cost for � is at
most W ’s retrieval cost for � 0, which is at most
c OPT.� 0/, which is at most c OPT.�/. Thus, FW

is c-competitive for file caching.
Now, observe that GREEDY DUAL can be

made to respect equivalence. When GREEDY

DUAL processes a batch of requests .f1; f2; : : : ;

fs/N C1 resulting in retrievals, for the last s

requests, make GREEDY DUAL set creditŒfi � D

cost.fi / D cost.f /=s in line 7. In general,
restrict GREEDY DUAL to raise credits of
equivalent pieces fi equally in line 7. After each
batch the credits on equivalent pieces fi will be
the same. When GREEDY DUAL evicts a piece fi ,
make GREEDY DUAL evict all other equivalent
pieces fj (all will have zero credit).

With these restrictions, GREEDY DUAL

respects equivalence. Finally, taking W to be
GREEDY DUAL above, FW is LANDLORD.

Analysis of the Randomized MARKING

Algorithm.
Here is a competitive analysis of the MARKING

algorithm

Theorem 2 The MARKING algorithm is 2Hk-
competitive for paging.

Proof Given a paging request sequence � , par-
tition � into contiguous phases as follows. Each
phase starts with the request after the end of the
previous phase and continues as long as possible
subject to the constraint that it should contain
requests to at most k distinct pages. (Each phase
starts when the algorithm runs out of zero-credit
files and reduces all credits to zero.)

Say a request in the phase is new if the item re-
quested was not requested in the previous phase.
Let mi denote the number of new requests in the

i th phase. During phases i � 1 and i , k C mi

distinct files are requested. OPT has at most k of
these in cache at the start of the i � 1st phase,
so it will retrieve at least mi of them before the
end of the i th phase. So OPT’s total cost is at least
maxf

P
i m2i ;

P
i m2iC1g �

P
i mi =2.

Say a non-new request is redundant if it is
to a file with credit 1 and nonredundant oth-
erwise. Each new request costs the MARKING

algorithm 1. The j th nonredundant request costs
the MARKING algorithm at most mi =.k � j C 1/

in expectation because, of the k�jC1 files that if
requested would be nonredundant, at most mi are
not in the cache (and each is equally likely to be in
the cache). Thus, in expectation MARKING pays
at most mi C

Pk�mi

j D1 mi =.k � j C 1/ � mi Hk

for the phase and at most Hk

P
i mi total.

Applications

Variants of GREEDY DUAL and LANDLORD have
been incorporated into file-caching software such
as Squid [5].

Open Problems

None to report.

Experimental Results

For a study of competitive ratios on practical
inputs, see, for example, [3, 5, 14].
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Problem Definition

We consider an online version of the classical
problem of preemptive scheduling on uniformly
related machines.

We are given m machines with speeds s1 �

s2 � � � � � sm and a sequence of jobs, each
described by its processing time (length). The
actual time needed to process a job with length
p on a machine with speed s is p=s. In the
preemptive version, each job may be divided
into several pieces, which can be assigned to
different machines in disjoint time slots. (A job
may be scheduled in several time slots on the
same machine, and there may be times when
a partially processed job is not running at all.)
The objective is to find a schedule of all jobs in
which the maximal completion time (makespan)
is minimized.

In the online problem, jobs arrive one by one
and the algorithm needs to assign each incoming
job to some time slots on some machines, without
any knowledge of the jobs that arrive later. This
problem, also known as list scheduling, was first
studied by Graham [8] for identical machines
(i.e., s1 D � � � D sm D 1), without preemption.
In the preemptive version, upon the arrival of a
job, its complete assignment at all times must
be given and the algorithm is not allowed to
change this assignment later. In other words, the
online nature of the problem is in the order of the
input sequence, and it is not related to possible
preemptions and the time in the schedule.

Key Results

The main result is an optimal online algorithm
RatioStretch for preemptive scheduling on
uniformly related machines [4]. RatioStretch
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achieves the best possible competitive ratio not
only in the general case but also for any number
of machines and any particular combination
of machine speeds. Although RatioStretch
is deterministic, its competitive ratio matches
the best competitive ratio of any randomized
algorithm. This proves that randomization does
not help for this variant of preemptive scheduling.

For any fixed set of speeds, the competitive
ratio of the algorithm RatioStretch can be com-
puted by solving a linear program. However,
its worst-case value over all speed combinations
is not known. Nevertheless, using the fact that
there exists an e-competitive randomized algo-
rithm [5], it is possible to conclude that Ra-
tioStretch also achieves the ratio of at most
e � 2:718. The best lower bound shows that
RatioStretch (and thus any algorithm) is not
better than 2:112-competitive, by providing an
explicit numerical instance on 200 machines [3].

Key Techniques

The idea of the algorithm RatioStretch is fairly
natural. Suppose that the algorithm is given a
ratio R which we are trying to achieve. For each
arriving job, RatioStretch computes the optimal
makespan for jobs that have arrived so far and
runs the incoming job as slow as possible so
that it finishes at R times the computed optimal
makespan. There are many ways of creating such
a schedule given the flexibility of preemptions.
RatioStretch chooses a particular one based on
the notion of a virtual machine from [5]. Given
a schedule, the i th virtual machine at each time
corresponds to the i th fastest real machine that is
idle. (In particular, before the first job, the virtual
machines are the real machines.) This assignment
of the real machines to the virtual machines can
vary at different times in the schedule. Due to pre-
emption, a virtual machine can be thought of and
used as a single machine with changing speed.
The key idea of RatioStretch is to schedule each
job on two adjacent virtual machines.

If RatioStretch fails on some input for a
given R, it is possible to use the lower bound
technique from [7] and show that there is no R-
competitive algorithm. This implies that if the

algorithm knows the optimal competitive ratio R,
it never fails and thus it is R-competitive.

It remains to find the optimal competitive ratio
R. Since the lower bound technique from [7]
results in a linear condition, one can show that
R can be computed by a linear program for each
combination of speeds.

Semi-online Scheduling

The algorithm RatioStretch can be extended to
semi-online scenarios [6]. This term encompasses
situations where some partial information about
the input is given to the scheduler in advance.
Already Graham [9] studied a semi-online variant
of scheduling on identical machines: he proved
that if the jobs are presented in non-increasing
order of their processing times, the approxima-
tion ratio of list scheduling decreases from 2 to
4=3. Since then numerous semi-online models
of scheduling have been studied; typical exam-
ples include (sequences of) jobs with decreasing
processing times, jobs with bounded processing
times, sequences with known total processing
time of jobs, and so on. Most of these models can
be viewed as online algorithms on a restricted set
of input sequences.

RatioStretch can be generalized so that it is
optimal for any chosen semi-online restriction.
This means not only the cases listed above – the
restriction can be given as an arbitrary set of se-
quences that are allowed as inputs. Again, for any
semi-online restriction, RatioStretch achieves
the best possible approximation ratio for any
number of machines and any particular combina-
tion of machine speeds; it is deterministic, but its
approximation ratio matches the best possible ap-
proximation ratio of any randomized algorithm.
This result also provides a clear separation be-
tween the design of the algorithm and the analysis
of the optimal approximation ratio. While the
algorithm is always the same, the analysis of the
optimal ratio depends on the studied restrictions.

For typical semi-online restrictions, the opti-
mal ratio can again be computed by linear pro-
grams (with machine speeds as parameters). Then
we can study the relations between the optimal
approximation ratios for different semi-online
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restrictions and give some bounds for a large
number of machines by analysis of these linear
programs. One interesting result is that the overall
ratio with known sum of processing times is the
same as in the purely online case – even though
for a small fixed number of machines, knowing
the sum provides a significant advantage.

Some basic restrictions form an inclusion
chain: the inputs where the first job has the
maximal processing time (which is equivalent
to known maximal processing time) include the
inputs with non-increasing processing times,
which in turn include the inputs with all
jobs of equal processing time. The restriction
to non-increasing processing times gives the
same approximation ratio as when all jobs
have equal processing times, even for any
particular combination of speeds. The overall
approximation ratio of these two equivalent
problems is at most 1:52. For known maximal
processing time of a job, there exists a computer-
generated hard instance with approximation ratio
1:88 with 120 machines. Thus, restricting the
jobs to be non-increasing helps the algorithm
much more than just knowing the maximal
processing time of a job. This is very different
from identical machines, where knowing the
maximal processing time is equally powerful as
knowing that all the jobs are equal; see [10].

Small Number of Machines

For two, three, and sometimes four machines, it is
possible to give an exact formula for the competi-
tive ratio for any speed combination [2,3]. This is
a fairly routine task which can be simplified (but
not completely automated) using standard math-
ematical software. Once the solution is known,
verification amounts to checking the given primal
and dual solutions for the linear program.

Open Problems

The main remaining open problem is to develop
techniques for determining or bounding the over-
all competitive ratio of the optimal algorithm

RatioStretch. In particular, it would be interest-
ing to obtain a tight bound in the online case.

It is also open if similar techniques can be used
for the non-preemptive problem. In this case,
the currently best algorithms were obtained by a
doubling approach. This means that a competi-
tive algorithm is designed for the case when the
optimum is approximately known in advance, and
then, without this knowledge, it is used in phases
with geometrically increasing guesses of the op-
timum. Such an approach probably cannot lead to
an optimal algorithm for this type of scheduling
problems. The best lower and upper bounds for
non-preemptive scheduling on uniformly related
machines are 2:438 and 5:828 for deterministic
algorithms (see [1]) and 2 and 4:311 for random-
ized algorithms (see [1, 7]). Thus, it is still open
whether randomized algorithms are better than
deterministic.
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Problem Definition

With the ever-increasing reach of the Internet,
crowdsourcing contests have become an increas-
ingly convenient alternative for completing tasks,
compared to traditional hire-and-pay methods.
There are several websites dedicated to providing
users a platform for creating their own crowd-
sourcing contests. For instance, Taskcn.com al-
lows users to post tasks, collect submissions from
registered users, and provide a monetary reward
to the best submission. The reach of crowdsourc-
ing is far beyond tedious/labor-intensive tasks.
Netflix, for instance, issued a million-dollar con-
test for developing a collaborative filtering algo-
rithm to predict user ratings for films, instead
of hiring an in-house research team to develop
this. The Indian Government used a crowdsourc-
ing contest to pick a new symbol for its rupee
currency.

The Questions
In designing a crowdsourcing contest, a principal,
with a preallocated sum of monetary reward in
hand, seeks to identify the format of the contest
that optimizes the quality of the best submission.
For instance, Topcoder.com issues 2/3 of the re-
ward to the best submission and 1/3 of the reward
to the second-best submission. Is this the format
best suited to optimize the best submission? Or
should the entire award be given to the winner?
More generally, should the precise division of
rewards be even announced prior to the contest,
or should they be announced only as a function
of the quality of the submissions received? In a
different direction, crowdsourcing contests make
several people to expend efforts in producing
submissions, but often only the best submission is
put to use. How much effort is getting “burnt” in
this process compared to conventional hire-and-
pay?

The Model
Formally, let there be n contestants, and let the
monetary reward be normalized to $1. Contes-
tants enter their submissions which are ranked
according to their qualities. Agent i ’s submission
quality pi is a function of their skill vi and their
effort ei , given by pi D vi � ei . The skill vi can
be interpreted as the rate at which agent i can
do useful work. The contest designer can observe
only the submission qualities pi ’s and not the
skills vi ’s. However, the distribution F from
which the vi ’s are drawn (independently) is com-
mon knowledge to all contestants and the contest
designer. Every contestant’s goal is to maximize
their utility, namely, their reward minus the effort
they expended. If xi is the probability that agent
i gets the reward, then their utility is given by
xi � ei D xi �

pi

vi
.

We model crowdsourcing contests as all-pay
auctions, following the contest architecture liter-
ature [4, 6]. In an all-pay auction with n bidders,
a seller auctions a good that bidder i values at
vi . The value vi is private to bidder i , but the
distribution F from which vi ’s are independently
drawn is common knowledge to the seller and
the bidders. The seller solicits sealed bids from
the agents, and all bidders agree to pay their
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bids regardless of which bidder gets the good
(corresponding to all contestants losing their ef-
fort irrespective of which contestant wins the
contest). Which agent gets the good depends on
the allocation rule of the auction. Given the rules
of the auction, each bidder aims to maximize
his utility. If xi is the probability that agent i

receives the good, then agent i maximizes his
utility of vi xi � pi . Note that this utility is
precisely vi times the utility of a contestant in
the crowdsourcing contest defined in the previous
paragraph. From agent i ’s perspective, vi is just
a constant. Thus, the incentives in the contest and
the all-pay auction are identical. Thus, designing
a contest to maximize the quality of the best
submission, namely, maximize maxi pi , is the
same as designing an all-pay auction to maximize
the maximum payment. Thus, we have an all-
pay auction design problem where the objective
is not the traditional one of maximizing revenue�P

i pi

�
but requires maximizing maxi pi .

We assume that the space of possible valua-
tions V is an interval and the density f .�/ of the
value distribution is nonzero everywhere in this
interval.

Bayesian Nash Equilibrium
In an all-pay auction it is not strategic for an agent
to bid his true value v: the probability he wins
the good is at most 1 (in which case he gets a
value v), where he is sure to lose his bid. Thus,
agents submit bids smaller than their true value.
An agent’s bidding function bi .�/ maps their true
value to bids. A profile of bidding functions
.b1.�/; : : : ; bn.�// is a Bayesian Nash equilibrium
(BNE) if the bidding functions are mutual best
responses, i.e., if values are drawn from F and
other agents bid according to their bidding func-
tions, agent i weakly prefers following his own
bidding strategy bi .�/ over submitting any other
bid. For a given outcome xi .v/, let xi .vi / D

Ev
�i

Œxi .v/�, and let pi .vi / D Ev
�i

Œpi .v/�.
We will appeal to the following result from [2]

that shows that for most of the all-pay auctions
that we discuss, there exists a unique Bayesian
Nash equilibrium, and it is also symmetric. That
is, in the unique BNE, all agents have the same
bidding function.

Theorem 1 ([2]) In the all-pay auction param-
eterized by a reserve price and a nonincreasing
sequence of rewards a1; : : : ; an, where the agents
whose bids meet the reserve are assigned to the
rewards in decreasing order of bids, a symmetric
BNE exists and is the unique equilibrium.

Key Results

We now present the key results concerning
the design of optimal crowdsourcing contests
(from [3]).

Rank-Based-Reward Contests
Consider the class of contests that predetermine
the division of rewards into fractions a1; : : : ; an,
s.t.

P
i ai D 1, ak � akC1, and ai � 0. That

is, agents are ordered by submission qualities and
the i th best submission receives ai fraction of the
reward. In this notation, Topcoder’s contest will
be a1 D 2=3, a2 D 1=3, and ak D 0 for k > 2.
The first key result is that if the goal is to maxi-
mize the maximum payment, the optimal all-pay
auction is to award the good completely to the
highest bidder. In contest language, the optimal
contest is a winner-takes-all contest. Note that by
Theorem 1 this contest format has a unique BNE.

Theorem 2 When the contestant skills are
distributed i.i.d., the optimal rank-based-reward
contest is a winner-takes-all contest.

Optimal Symmetric Contest
Is there an even better contest in the larger space
of contests? Suppose we allow contests that an-
nounce rewards as a function of agents’ submis-
sion qualities, what is the optimal contest? We
focus on the class of symmetric contests and opti-
mize over their symmetric equilibria. For a large
class of distributions, including distributions that
satisfy the monotone hazard rate property (e.g.,
uniform, normal, exponential), the optimal auc-
tion will turn out to have a unique equilibrium
that is also symmetric.

Theorem 3 When the contestant skills are
distributed i.i.d. from a distribution that satisfies
the monotone hazard rate condition, the optimal
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symmetric contest is highest-submission-wins
contest subject to a minimum submission quality.

Proof (Sketch) We prove this result through an
argument that mirrors Myerson’s revenue opti-
mal auction argument [8]. Recall that in auc-
tion theory terms, we have to prove that the
optimal auction is a highest-bidder-wins auction
subject to a minimum bid reserve. Writing out the
expression for the expected maximum payment
and using the characterization of BNE payments
in terms of allocation, we realize that the ex-
pected maximum payment is just the expected
virtual welfare. That is, let .�/ be a distribution-
dependent transformation that is applied to each
agent’s value vi to obtain .vi / D vi F.vi /

n�1 �
1�F .vi /n�1

nf .vi /
. The expected virtual welfare of an

outcome is just Ev
	P

i .vi /xi .v/


. If this is

the quantity to maximize, it is immediate that
the optimal outcome is to allocate completely to
the agent with the highest virtual value subject
to the highest virtual value being nonnegative. If
the virtual value transformation were a strictly
increasing function (whenever it is positive), the
bidder with the highest value, and hence also the
highest bid because of our focus on symmetric
equilibria, will also be the bidder with the high-
est virtual value. Thus the highest-bidder-wins
auction subject to a minimum bid reserve will
implement the desired outcome. Now, for the
distribution-dependent transformation .�/ to be
strictly increasing, it is enough for the distribution
to satisfy the monotone hazard rate condition.
Finally, this contest has a unique BNE from
Theorem 1.

Theorem 4 For any setting with i.i.d. values,
the optimal symmetric contest is defined by a
minimum submission quality and a subset of
submission qualities called forbidden qualities
that has the following format: the contest solicits
submissions and rounds them down to the nearest
non-forbidden quality; it then distributes the re-
ward equally among the highest submissions sub-
ject to the submissions being above the minimum
submission quality.

Proof (Sketch) Continuing with the proof of
Theorem 3, if the virtual value transformation

were not increasing, allocating to the highest
virtual value is no more a BNE outcome. In
this case, the transformation  is “ironed” to
obtain a nondecreasing function N.�/, such that
the expected maximum payment is equal to the
expected ironed virtual surplus. To optimize
this quantity, the outcome should be to allocate
completely to the agent with the highest ironed
virtual value subject to it being nonnegative.
In case of a tie, all agents with the highest
ironed virtual value get equal allocations. Such an
allocation will result in a discontinuous allocation
function and hence a discontinuous payment
function. That is, some payments are forbidden.
Correspondingly to ensure that some bids are
forbidden, the auction explicitly says that bids
in certain regions will be rounded down so that
no rational agent will bid inside that interval.
This explains the format of the optimal contest
specified in the theorem.

Utilization Ratio of Crowdsourcing
In a crowdsourcing contest, which is like an all-
pay auction, every agent’s submission is col-
lected, but only the best submission is used. In
contrast, in conventional contracting, which is
like first- or second-price auctions, only the win-
ner makes any submission at all, and thus there
is no underutilization. One way of measuring
the amount of work that actually gets utilized in
crowdsourcing as opposed to getting “burnt” is
to study the ratio of the maximum payment and
the sum of all payments in an all-pay auction. It
turns out that the utilization ratio in a large class
of contests is at least a 1=2.

Theorem 5 In any highest-submission-wins
contest with a minimum submission quality, the
quality of the best submission is at least half of the
sum total of the qualities of all the submissions.

Related Work
Other objectives that have been studied in
contest design include maximizing the sum of
submission qualities instead of the maximum
submission quality [5–7] and maximizing the
sum of submission qualities less the normalized
reward [1]. The rank-based-reward result in
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Theorem 2 is quite robust and continues to hold in
many of these other models as well. Moldovanu
and Sela [7] study multi-round contests and show
that there are situations where it is better to split
contestants into two divisions and to have a final
among the divisional winners. DiPalantino and
Vojnovic [4] study crowdsourcing websites as a
matching market. Yang et al. [9] and DiPalantino
and Vojnovic [4] study contestant behavior from
contest website Taskcn.com and observe that
experienced contestants strategize well.

Open Problems

Multi-round Contests
The optimality result discussed here is restricted
to single-round contests. If one were allowed
to do a tournament-style multi-round contest,
what is the optimal contest in this large class
of contests? How significant is the difference in
objective value when one is allowed to organize
more than one round of contest? How does the
objective value grow with the number of rounds?
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Problem Definition

The Byzantine agreement problem (BA) is con-
cerned with multiple processors (parties, “play-
ers”) all starting with some initial value, agree-
ing on a common value, despite the possible
disruptive or even malicious behavior of some
them. BA is a fundamental problem in fault-
tolerant distributed computing and secure multi-
party computation.

The problem was introduced by Pease,
Shostak and Lamport in [17], who showed that
the number of faulty processors must be less
than a third of the total number of processors
for the problem to have a solution. They also
presented a protocol matching this bound, which
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requires a number of communication rounds
proportional to the number of faulty processors –
exactly t C 1, where t is the number of faulty
processors. Fischer and Lynch [10] later showed
that this number of rounds is necessary in
the worst-case run of any deterministic BA
protocol. Furthermore, the above assumes that
communication takes place in synchronous
rounds. Fischer, Lynch and Patterson [11] proved
that no completely asynchronous BA protocol
can tolerate even a single processor with the
simplest form of misbehavior – namely, ceasing
to function at an arbitrary point during the
execution of the protocol (“crashing”).

To circumvent the above-mentioned lower
bound on the number of communication rounds
and impossibility result, respectively, researchers
beginning with Ben-Or [1] and Rabin [18], and
followed by many others (e.g., [3, 5]) explored
the use of randomization. In particular, Rabin
showed that linearly resilient BA protocols
in expected constant rounds were possible,
provided that all the parties have access to
a “common coin” (i.e., a common source of
randomness) – essentially, the value of the coin
can be adopted by the non-faulty processors
in case disagreement at any given round is
detected, a process that is repeated multiple
times. This line of research culminated in the
unconditional (or information-theoretic) setting
with the work of Feldman and Micali [9],
who showed an efficient (i.e., polynomial-time)
probabilistic BA protocol tolerating the maximal
number of faulty processors (Karlin and Yao,
Probabilistic lower bounds for the byzantine
generals problem, unpublished manuscript
showed that the maximum number of faulty
processors for probabilistic BA is also t < n

3
,

where n is the total number of processors.) that
runs in expected constant number of rounds. The
main achievement of the Feldman–Micali work
is to show how to obtain a shared random coin
with constant success probability in the presence
of the maximum allowed number of misbehaving
parties “from scratch”.

Randomization has also been applied to BA
protocols in the computational (or cryptographic)

setting and for weaker failure models. See [6] for
an early survey on the subject.

Notations
Consider a set P D fP1; P2; � � � ; Png of proces-
sors (probabilistic polynomial-time Turing ma-
chines) out of which t, t < n may not follow the
protocol, and even collude and behave in arbitrary
ways. These processors are called faulty; it is
useful to model the faulty processors as being
coordinated by an adversary, sometimes called
a t-adversary.

For 1 � i � n, let bi, bi 2 f0; 1g denote party
Pi’s initial value. The work of Feldman and Mi-
cali considers the problem of designing a proba-
bilistic BA protocol in the model defined below.

System Model
The processors are assumed to be connected by
point-to-point private channels. Such a network
is assumed to be synchronous, i.e., the processors
have access to a global clock, and thus the com-
putation of all processors can proceed in a lock-
step fashion. It is customary to divide the com-
putation of a synchronous network into rounds.
In each round, processors send messages, receive
messages, and perform some local computation.

The t-adversary is computationally un-
bounded, adaptive (i.e., it chooses which
processors to corrupt on the fly), and decides
on the messages the faulty processors send
in a round depending on the messages sent
by the non-faulty processors in all previous
rounds, including the current round (this is called
a rushing adversary).

Given the model above, the goal is to solve the
problem stated in the �Byzantine Agreement;
that is, for every set of inputs and any behavior
of the faulty processors, to have the non-faulty
processors output a common value, subject to
the additional condition that if they all start the
computation with the same initial value, then
that should be the output value. The difference
with respect to the other entry is that, thanks to
randomization, BA protocols here run in expected
constant rounds.
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Problem 1 (BA)
INPUT: Each processor Pi, 1 � i � n, has bit bi.
OUTPUT: Eventually, each processor Pi,
1 � i � n, outputs bit di satisfying the following
two conditions:

• Agreement: For any two non-faulty processors
Pi and Pj, di D dj.

• Validity: If bi D bj D b for all non-faulty pro-
cessors Pi and Pj, then di D b for all non-
faulty processors Pi.

In the above definition input and output values
are from f0; 1g. This is without loss of generality,
since there is a simple two-round transformation
that reduces a multi-valued agreement problem to
the binary problem [19].

Key Results

Theorem 1 Let t < n
3

. Then there exists
a polynomial-time BA protocol running in
expected constant number of rounds.

The number of rounds of the Feldman–Micali
BA protocol is expected constant, but there is
no bound in the worst case; that is, for every
r, the probability that the protocol proceeds for
more than r rounds is very small, yet greater
than 0 – in fact, equal to 2�O.r/. Further, the
non-faulty processors may not terminate in the
same round. (Indeed, it was shown by Dwork and
Moses [7] that at least t C 1 rounds are necessary
for simultaneous termination. In [13], Goldreich
and Petrank combine “the best of both worlds” by
showing a BA protocol running in expected con-
stant number of rounds which always terminates
within t CO.log t / rounds.)

The Feldman–Micali BA protocol assumes
synchronous rounds. As mentioned above, one
of the motivations for the use of randomization
was to overcome the impossibility result due
to Fischer, Lynch and Paterson [11] of BA in
asynchronous networks, where there is no global
clock, and the adversary is also allowed to sched-
ule the arrival time of a message sent to a non-

faulty processor (of course, faulty processors may
not send any message(s)). In [8], Feldman men-
tions that the Feldman–Micali BA protocol can
be modified to work on asynchronous networks,
at the expense of tolerating t < n

4
faults. In [4],

Canetti and Rabin present a probabilistic asyn-
chronous BA protocol for t < n

3
that differs from

the Feldman–Micali approach in that it is a Las
Vegas protocol – i.e., it has non-terminating runs,
but when it terminates, it does so in constant
expected rounds.

Applications

There exists a one-to-one correspondence,
possibility- and impossibility-wise between BA
in the unconditional setting as defined above
and a formulation of the problem called the
“Byzantine generals” by Lamport, Shostak and
Pease [15], where there is a distinguished source
among the parties sending a value, call it bs, and
the rest of the parties having to agree on it. The
Agreement condition remains unchanged; the
Validity condition becomes

• VALIDITY: If the source is non-faulty, then
di D bs for all non-faulty processors Pi.

A protocol for this version of the problem realizes
a functionality called a “broadcast channel” on
a network with only point-to-point connectivity.
Such a tool is very useful in the context of
cryptographic protocols and secure multi-party
computation [12]. Probabilistic BA is particularly
relevant here, since it provides a constant-
round implementation of the functionality. In
this respect, without any optimizations, the
reported actual number of expected rounds of
the Feldman–Micali BA protocol is at most
57. Recently, Katz and Koo [14] presented
a probabilistic BA protocol with an expected
number of rounds at most 23.

BA has many other applications. Refer to the
�Byzantine Agreement, as well as to, e.g., [16]
for further discussion of other application areas.
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Problem Definition

The classical stable marriage problem (SM), first
studied by Gale and Shapley [5], is introduced in
� Stable Marriage. An instance of SM comprises
a set M D fm1; : : : ; mng of n men and a set
W D fw1; : : : ; wng of n women and for each
person a preference list, which is a total order
over the members of the opposite sex. A man’s
(respectively woman’s) preference list indicates
his (respectively her) strict order of preference
over the women (respectively men). A matching
M is a set of n man-woman pairs in which each
person appears exactly once. If the pair .m; w/ is
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in the matching M , then m and w are partners
in M , denoted by w D M.m/ and m D M.w/.
Matching M is stable if there is no man m and
woman w such that m prefers w to M.m/ and w
prefers m to M.w/.

The key result established in [5] is that at
least one stable matching exists for every instance
of SM. In general, there may be many stable
matchings, so the question arises as to what is
an appropriate definition for the “best” stable
matching and how such a matching may be found.

Gale and Shapley described an algorithm to
find a stable matching for a given instance of
SM. This algorithm may be applied either from
the men’s side or from the women’s side. In the
former case, it finds the so-called man-optimal
stable matching, in which each man has the
best partner, and each woman the worst partner,
that is possible in any stable matching. In the
latter case, the woman-optimal stable matching
is found, in which these properties are inter-
changed. For some instances of SM, the man-
optimal and woman-optimal stable matchings co-
incide, in which case this is the unique stable
matching. In general, however, there may be
many other stable matchings between these two
extremes. Knuth [13] was first to show that the
number of stable matchings can grow exponen-
tially with n.

Because of the imbalance inherent, in general,
in the man-optimal and woman-optimal solu-
tions, several other notions of optimality in SM
have been proposed.

A stable matching M is egalitarian if the sum

X

i

r.mi ; M.mi //C
X

j

r.wj ; M.wj //

is minimized over all stable matchings, where
r.m; w/ represents the rank, or position, of w
in m’s preference list and similarly for r.w; m/.
An egalitarian stable matching incorporates an
optimality criterion that does not overtly favor the
members of one sex – though it is easy to con-
struct instances having many stable matchings in
which the unique egalitarian stable matching is in
fact the man (or woman) optimal.

A stable matching M is minimum regret if
the value max(r.p; M.p//) is minimized over all
stable matchings, where the maximum is taken
over all persons p. A minimum-regret stable
matching involves an optimality criterion based
on the least happy member of the society, but
again, minimum regret can coincide with man
optimal or woman optimal in some cases, even
when there are many stable matchings.

A stable matching is rank maximal (or lexico-
graphically maximal) if, among all stable match-
ings, the largest number of people have their first
choice partner and, subject to that, the largest
number have their second choice partner and so
on.

A stable matching M is sex equal if the differ-
ence

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

i

r.mi ; M.mi // �
X

j

r.wj ; M.wj //

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

is minimized over all stable matchings. This def-
inition is an explicit attempt to ensure that one
sex is treated no more favorably than the other,
subject to the overriding criterion of stability.

In the weighted stable marriage problem
(WSM), each person has, as before, a strictly
ordered preference list, but the entries in this
list have associated costs or weights – wt .m; w/

represents the weight associated with woman
w in the preference list of man m and likewise
for wt .w; m/. It is assumed that the weights are
strictly increasing along each preference list.

A stable matching M in an instance of WSM
is optimal if

X

i

wt .mi ; M.mi //C
X

j

wt .wj ; M.wj //

is minimized over all stable matchings.
A stable matching M in an instance of WSM

is balanced if

max

0

@
X

i

wt .mi ; M.mi //;
X

j

wt .wj ; M.wj //

1

A
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is minimized over all stable matchings.
These same forms of optimality may be de-

fined in the more general context of the sta-
ble marriage problem with incomplete preference
lists (SMI); see � Stable Marriage for a formal
definition of this problem.

Again as described in �Stable Marriage, the
stable roommates problem (SR) is a non-bipartite
generalization of SM, also introduced by Gale
and Shapley [5]. In contrast to SM, an instance
of SR may or may not admit a stable matching.
Irving [9] gave the first polynomial-time algo-
rithm to determine whether an SR instance admits
a stable matching and if so to find one such
matching.

There is no concept of man or woman optimal
in the SR context, and nor is there any analogue
of sex-equal or balanced matching. However, the
other forms of optimality introduced above can
be defined also for instances of SR and WSR
(weighted stable roommates).

A comprehensive treatment of many aspects of
the stable marriage problem, as of 1989, appears
in the monograph of Gusfield and Irving [8], and
a more recent detailed exposition is given by
Manlove [14].

Key Results

The key to providing efficient algorithms for the
various kinds of optimal stable matching is an
understanding of the algebraic structure underly-
ing an SM instance and the discovery of methods
to exploit this structure. Knuth [13] attributes to
Conway the observation that the set of stable
matchings for an SM instance forms a distribu-
tive lattice under a natural dominance relation.
Irving and Leather [10] characterized this lattice
in terms of the so-called rotations – essentially
minimal differences between lattice elements –
which can be efficiently computed directly from
the preference lists. The rotations form a natural
partial order, the rotation poset, and there is a
one-to-one correspondence between the stable
matchings and the closed subsets of the rotation
poset.

Building on these structural results, Gusfield
[6] gave a O.n2/ algorithm to find a Minimum-
regret stable matching, improving an earlier
O.n4/ algorithm described by Knuth [13] and
attributed to Selkow. Irving et al. [11] showed
how the application of network flow methods to
the rotation poset yields efficient algorithms for
egalitarian and rank-maximal stable matchings as
well as for an optimal stable matching in WSM.
These algorithms have complexities O.n4/,
O.n5 log n log n/ and O.n4 log n/; respectively.
Subsequently, by using an interpretation of
a stable marriage instance as an instance of
2-SAT and with the aid of a faster network
flow algorithm exploiting the special structure
of networks representing SM instances, Feder
[3, 4] reduced these complexities to O.n3/,
O.n3:5/; and O.min.n;

p
K/n2 log.K=n2C2//;

respectively, where K is the weight of an optimal
solution.

By way of contrast, and perhaps surprisingly,
the problems of finding a sex-equal stable match-
ing for an instance of SM and of finding a
balanced stable matching for an instance of WSM
have been shown to be NP-hard [2, 12].

The following theorem summarizes the cur-
rent state of knowledge regarding the various
flavors of optimal stable matching in SM and
WSM.

Theorem 1 For an instance of SM:

1. A minimum-regret stable matching can be
found in O.n2/ time.

2. An egalitarian stable matching can be found
in O.n3/ time.

3. A rank-maximal stable matching can be found
in O.n3:5/ time.

4. The problem of finding a sex-equal stable
matching is NP-hard.

For an instance of WSM:

1. An optimal stable matching can be found in
O.min.n;

p
K/n2 log.K=n2C2// time, where

K is the weight of an optimal solution.
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2. The problem of finding a balanced stable
matching is NP-hard, but can be approximated
within a factor of 2 in O.n2/ time.

Among related problems that can also be solved
efficiently by exploitation of the rotation structure
of an instance of SM are the following [6]:

• All stable pairs, i.e., pairs that belong to at
least one stable matching, can be found in
O.n2/ time.

• All stable matchings can be enumerated in
O.n2 C kn/ time, where k is the number of
such matchings.

Results analogous to those of Theorem 1 are
known for the more general SMI problem. In
the case of the stable roommates problem (SR),
some of these problems appear to be harder, as
summarized in the following theorem.

Theorem 2 For an instance of SR:

1. A minimum-regret stable matching can be
found in O.n2/ time [7].

2. The problem of finding an egalitarian stable
matching is NP-hard. It can be approximated
in polynomial time within a factor of ˛ if and
only if minimum vertex cover can be approxi-
mated within ’ [1, 2].

For an instance of WSR (weighted stable room-
mates):

1. The problem of finding an optimal stable
matching is NP-hard, but can be approximated
within a factor of 2 in O.n2/ time [3].

Applications

The best known and most important applications
of stable matching algorithms are in centralized
matching schemes in the medical and educa-
tional domains. �Hospitals/Residents Problem
includes a summary of some of these applica-
tions.

Open Problems

There remains the possibility of improving the
complexity bounds for some of the optimiza-
tion problems discussed and for finding better
polynomial-time approximation algorithms for
the various NP-hard problems.
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Problem Definition

Let S be a set of n points or vertices in R
2.

An edge is a closed line segment connecting two
points. Let E be a collection of edges determined
by vertices of S . The graph G D .S; E/ is a plane
geometric graph if (i) no edge contains a vertex
other than its endpoints, that is, ab \ S D fa; bg

for every edge ab 2 E, and (ii) no two edges
cross, that is, ab \ cd 2 fa; bg for every two
edges ab ¤ cd in E. A triangulation of S

is a plane geometric graph T D .S; E/ with
E being maximal. Here maximality means that
edges in E bound the convex hull of S , i.e., the
smallest convex set in R

2 that contains S , and
subdivide its interior into disjoint faces bounded
by triangles.

A plane geometric graph G D .S; E/ can
be augmented with an edge set E 0 so that it
is a triangulation T D .S; E [ E 0/, referred
to as a triangulation of G. In this case, E is
the set of constraining edges if it is not empty.

Some triangulations of G are classified as optimal
triangulations according to various shape criteria.
Many of these criteria are defined as max-min,
short for maximizing the minimum, or min-max,
short for minimizing the maximum. The first
quantifier is over all possible triangulations of
G while the second one is over all measures
(e.g., angles) � of triangles of a triangulation. For
example, in the case of a min-max � criterion,
we define the measure of a triangulation A as
�.A/ D maxf�.t/ W t is a triangle of Ag. If A
and B are two triangulations of G, then B is called
an improvement of A if either �.B/ < �.A/

or �.B/ D �.A/ and the set of triangles t

of B with �.t/ D �.B/ is a proper subset of
that of A. Triangulation A is optimal for �, i.e.,
a min-max � triangulation of G, if there exists
no improvement of A. Hence, the computational
problem addressed here is to find a specific op-
timal triangulation for a given plane geometric
graph G.

Key Results

There are a few algorithmic paradigms or ap-
proaches to solve the optimal triangulation prob-
lems in R

2.

The Edge-Flip Approach
The most notable one is the edge-flip ap-
proach [11] to solve the max-min angle
triangulation problem of a point set S . Given
a triangulation A of G D .S;;/, edge-flip is a
local optimization method that operates on two
adjacent triangles whose union forms a convex
polygon. It replaces (or flips) the edge bd shared
by triangles abd and cdb with the edge ac

when the smallest angle of these triangles is
smaller than that of abc and acd . In effect,
an edge-flip replaces two existing triangles
with two new triangles to (possibly) obtain an
improvement of A. By repeating the edge-flip
until no such an edge bd exists, the algorithm
produces a specific max-min angle triangulation
of S , known as the Delaunay triangulation, in
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O(n2) time. Besides being a max-min angle
triangulation [3], Delaunay triangulation is also
the min-max circumscribed circle and the min-
max smallest enclosing circle [2] triangulation.
Note that other approaches exist to compute
the Delaunay triangulation more efficiently in
�.n log n/ time [3].

The Edge-Insertion Approach
The edge-insertion approach is considered as an
extension of the edge-flip approach, to replace
one or more edges in each operation. The basic
idea is to iteratively improve a current triangu-
lation A by an edge-insertion step which adds
an appropriate, new edge say qs to A, deleting
edges in A that cross qs and re-triangulating the
resulting polygons to the left and the right of qs.
In other words, the method starts by constructing
an arbitrary triangulation A of G and then subse-
quently applies the edge-insertion steps until no
further improvement exists. Same as in the case
of edge-flip, this does not work for all measures
� as some may lead to suboptimal solutions.
The approach is known to be applicable if the
conditions of the so-called Cake-Cutting Lemma,
which guarantees the existence of an improve-
ment, are fulfilled; see [1, 5] for details. The next
theorem summarizes the results obtained by the
edge-insertion approach.

Theorem 1 For a plane geometric graph G D
.S; E/ of n D jS j vertices:

1. A min-max angle triangulation of G can be
computed in time O(n2 log n) and storage
O(n).

2. A max-min height triangulation of G can be
computed in time O(n2 log n) and storage
O(n).

3. A min-max eccentricity triangulation of G can
be computed in time O(n3) and storage O(n2).

4. A min-max slope triangulation of G can be
computed in time O(n3) and storage O(n2).

Let us go through those measures mentioned
in the theorem. The height of a triangle is the
minimum distance from a vertex to the opposite

edge. The eccentricity of a triangle is the infimum
over all distances between the center of the cir-
cumcircle of the triangle and points in its closure.
To define the slope of a triangle, the triangulation
is given as a 2D projection of a 2.5D piecewise-
linear surface where each vertex of S has a third
coordinate, and the slope of each triangle is its
slope in R

3.

The Subgraph Approach
The subgraph approach constructs a desired
optimal triangulation by first computing a
substructure of the optimal triangulation and then
completes the computation by solving the smaller
problems defined by the substructure. This
approach works when (i) the substructure can
be computed efficiently and (ii) the substructure
subdivides the problem into smaller problems
such as polygons that can be solved efficiently.
For instance, the approach has successfully
solved the min-max length triangulation problem
using a substructure called relative neighborhood
graph [4]. Here the length of a triangle is the
length of its longest edge.

Theorem 2 A min-max length triangulation of a
set of n points in R

2 can be constructed in O(n2)
time and storage.

Note that the theorem is formulated with ref-
erence to a set of n points instead of the general
plane geometric graph. In fact, this theorem is
valid for the latter provided the minimization
condition is defined over all edges (of trian-
gles) including those constraining edges. In both
cases, the correctness of the theorem follows
from the fact that every point set S in R

2 has
a min-max length triangulation mlt.S/ such that
rng.S/ [ ch.S/ � mlt.S/ where rng.S/ is the
relative neighborhood graph of S and ch.S/ is
the set of edges bounding the convex hull of S .
Since rng.S/ and ch.S/ can each be computed
in O(n log n) time, and rng.S/ [ ch.S/ is a con-
nected graph of S , the min-max length triangula-
tion problem can be solved by first constructing
rng.S/ [ ch.S/ and then computing an opti-
mal triangulation within each polygon defined by
edges of rng.S/[ ch.S/. The latter is solvable in
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O(n2) time. Besides Euclidean metric, Theorem
2 can be extended to general normed metrics as
stated in the next theorem.

Theorem 3 Let S be a set of n points in R
2

equipped with a normed metric. Given the
relative neighborhood graph, a min-max length
triangulation of S can be constructed in time
O(n2).

Examples of normed metrics are the `p-
metrics, for p D 1; 2; 3; : : :, and the so-called
A-metric used in VLSI applications. Note that the
relative neighborhood graph under the `p-metrics
can be computed in O.n log n/ time. As for the
other normed metrics, a relative neighborhood
graph can be constructed in time O.n3/ with a
trivial approach to test all

�
n
2

�
edges, each in time

O.n).
We note that min-max length is currently the

only nontrivial length criterion known to be solv-
able in polynomial time. The max-min length
triangulation problem for an input point set is
shown to be NP-complete, while the same prob-
lem for a convex polygon is known to be solvable
in linear time [6]. Another related problem is
to find the minimum weight triangulation of G,
where the weight of a triangulation is the sum of
length of its edges. This problem is proven to be
NP-hard [12].

Applications

Triangulation is a prominent meshing method
that decomposes a domain into a collection of tri-
angles. Such decomposition is used in many areas
of engineering and scientific applications such as
physics simulation, visualization, approximation
theory, numerical analysis, computer-aided geo-
metric design, etc. It is desirable to obtain an opti-
mal triangulation, often with respect to the angle,
edge length, aspect ratio, etc., as the quality of the
subsequent computation depends on the shapes of
the triangles. Two popular techniques that greatly
depend on such optimal triangulations are finite
element analysis and surface interpolation; see,
for example, the survey in [7].

Open Problems

There are a few other interesting measures one
can define over a triangulation, such as area,
aspect ratio, and vertex degree. The min-max
area and max-min area triangulation problems for
a point set are still open, though the special case
of a convex polygon can be solved in polynomial
time [10]. The problem to triangulate a plane
geometric graph with degree at most seven is
known to be NP-complete [8], and the min-
max degree problem for an arbitrary biconnected
plane geometric graph is also NP-complete [9].
Its general problem without any constraining
edges is still open.

URLs to Code and Data Sets

A version of the edge-insertion approach was
implemented by Roman Waupotitsch. It is known
to be available at: ftp://ftp.ncsa.uiuc.edu/SGI/
MinMaxer/
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Problem Definition

Find a minimal sum-of-products expression
for a Boolean function. Consider a Boolean
algebra with elements False and True. A Boolean
function f .y1; y2; : : : ; yn/ of n Boolean input
variables specifies, for each combination of input
variable values, the function’s value. It is possible
to represent the same function with various

expressions. For example, the first and last
expressions in Table 1 correspond to the same
function. Assuming access to complemented
input variables, straightforward implementations
of these expressions would require two AND

gates and an OR gate for
�
a ^ b

�
_ .a ^ b/ and

only a wire for a. Although the implementation
efficiency depends on target technology, in
general terser expressions enable greater
efficiency. Boolean minimization is the task of
deriving the tersest expression for a function.
Elegant and optimal algorithms exist for solving
the variant of this problem in which the
expression is limited to two levels, i.e., a layer
of AND gates followed by a single OR gate or a
layer of OR gates followed by a single AND gate.

Key Results

This survey will start by introducing the Kar-
naugh Map visualization technique, which will
be used to assist in the subsequent explanation
of the Quine–McCluskey algorithm for two-level
Boolean minimization. This algorithm is optimal
for its constrained problem variant. It is one of the
fundamental algorithms in the field of computer-
aided design and forms the basis or inspiration
for many solutions to more general variants of the
Boolean minimization problem.

Karnaugh Maps
Karnaugh Maps [4] provide a method of visual-
izing adjacency in Boolean space. A Karnaugh
Map is a projection of an n-dimensional hyper-
cube onto a two-dimensional surface such that
adjacent points in the hypercube remain adjacent
in the two-dimensional projection. Figure 1 illus-
trates Karnaugh Maps of 1, 2, 3, and 4 variables:
a, b, c, and d .

A literal is a single appearance of a comple-
mented or uncomplemented input variable in a
Boolean expression. A product term or impli-
cant is the Boolean product, or AND, of one or
more literals. Every implicant corresponds to the
repeated balanced bisection of Boolean space,
or of the corresponding Karnaugh Map, i.e., an
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Optimal Two-Level Boolean Minimization, Table 1 Equivalent representations with different implementation
complexities

Expression Meaning in English Boolean Logic Identity

a ^ b _ a ^ b not a and not b or not a and b Distributivity

a ^ .b _ b/ Not a and either not b or b Complements
a ^ T rue Not a and True Boundeness
a not a

a
0 1 0 1

a

b

a

00 01

10 11

0

2

1

3
a

b

c

a

b

0 1

2 3

4

6

5

7 7

a

b

c a

b

c

d 0 1

2 3

5

7

4

6

8 9

10 11

31 21

51 41a

b

c

d

Optimal Two-Level Boolean Minimization, Fig. 1 Boolean function spaces from one to four dimensions and their
corresponding Karnaugh Maps

implicant is a rectangle in a Karnaugh Map with
width m and height n where m D 2j and n D 2k

for arbitrary nonnegative integers j and k, e.g.,
the ovals in Fig. 2(ii–v). An elementary implicant
is an implicant in which, for each variable of
the corresponding function, the variable or its
complement appears, e.g., the circles in Fig. 2(ii).
Implicant A covers implicant B if every elemen-
tary implicant in B is also in A.

Prime implicants are implicants that are not
covered by any other implicants, e.g., the ovals
and circle in Fig. 2(iv). It is unnecessary to con-
sider anything but prime implicants when seek-
ing a minimal function representation because,
if non-prime implicants could be used to cover
some set of elementary implicants, there is guar-
anteed to exist a prime implicant that covers those
elementary implicants and contains fewer literals.
One can draw the largest implicants covering
each elementary implicant and covering no posi-
tions for which the function is False, thereby us-
ing Karnaugh Maps to identify prime implicants.
One can then manually seek a compact subset of

prime implicants covering all elementary impli-
cants in the function.

This Karnaugh Map-based approach is effec-
tive for functions with few inputs, i.e., those
with low dimensionality. However, representing
and manipulating Karnaugh Maps for functions
of many variables is challenging. Moreover, the
Karnaugh Map method provides no clear set of
rules to follow when selecting a minimal subset
of prime implicants to implement a function.

The Quine–McCluskey Algorithm
The Quine–McCluskey algorithm provides a
formal, optimal way of solving the two-level
Boolean minimization problem. W. V. Quine laid
the essential theoretical groundwork for optimal
two-level logic minimization [7, 8]. However, E.
J. McCluskey first proposed a precise algorithm
to fully automate the process [6]. Both are built
upon the ideas of M. Karnaugh [4].

The Quine–McCluskey method has two
phases: (1) produce all prime implicants and
(2) select a minimal subset of prime implicants
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Optimal Two-Level Boolean Minimization, Fig. 2 (i) Karnaugh Map of function f .a; b; c; d/, (ii) elementary
implicants, (iii) second-order implicants, (iv) prime implicants, and (v) a minimal cover

covering the function. In the first phase, the
elementary implicants of a function are iteratively
combined to produce implicants with fewer
literals. Eventually, all prime implicants are
thus produced. In the second phase, a minimal
subset of prime implicants covering the on-set
elementary implicants is selected using unate
covering [5].

The Quine–McCluskey method may be illus-
trated using an example. Consider the function
indicated by the Karnaugh Map in Fig. 2(i) and
the truth table in Table 2. For each combination
of Boolean input variable values, the function
f .a; b; c; d/ is required to output a 0 (False), a
1 (True), or has no requirements. The lack of
requirements is indicated with an X, or don’t-care
symbol.

Expanding implicants as much as possible will
ultimately produce the prime implicants. To do
this, combine on-set and don’t-care elementary
implicants using the reduction theorem (ab _

ab D b) shown in Table 1. The elementary
implicants are circled in Fig. 2(ii) and listed in the

Optimal Two-Level Boolean Minimization, Table 2
Truth table of function f .a; b; c; d/

Elementary
implicant
(a; b; c; d/

Function
value
(a; b; c; d/

Elementary
implicant

Function
value

0000 X 1000 0
0001 0 1001 0
0010 1 1010 0
0011 1 1011 1
0100 0 1100 1
0101 0 1101 1
0110 0 1110 X
0111 0 1111 0

second column of Table 3. In this figure, 0s indi-
cate complemented variables, and 1s indicate un-
complemented variables, e.g., 0010 corresponds
to abcd . It is necessary to determine all possible
combinations of implicants. It is impossible to
combine nonadjacent implicants, i.e., those that
differ in more than one variable. Therefore, it
is not necessary to consider combining any pair
of implicants with a number of uncomplemented
variables differing by any value other than 1. This
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Optimal Two-Level Boolean Minimization, Table 3
Identifying prime implicants

Number of
ones

Elementary
Implicant
(a; b; c; d/

Second-order
Implicant

Third-order
Implicant

0 0000 X 00X0

1 0010 X 001X

2
0011 X X011

11XX1100 X 110X X
11X0 X

3

1011 X 1X11

1101 X 11X1 X
1110 X 111X X

4 1111 X

fact can be exploited by organizing the implicants
based on the number of ones they contain, as indi-
cated by the first column in Table 3. All possible
combinations of implicants in adjacent subsets
are considered. For example, consider combining
0010 with 0011, which results in 001X or abc,
and also consider combining 0010 with 1100,
which is impossible due to differences in more
than one variable. Whenever an implicant is suc-
cessfully merged, it is marked. These marked im-
plicants are clearly not prime implicants because
the implicants they produced cover them and con-
tain fewer literals. Note that marked implicants
should still be used for subsequent combinations.
The merged implicants in the third column of
Table 3 correspond to those depicted in Fig. 2(iii).

After all combinations of elementary impli-
cants have been considered, and successful com-
binations listed in the third column, this process is
repeated on the second-order merged implicants
in the third column, producing the implicants
in the fourth column. Implicants that contain
don’t-care marks in different locations may not
be combined. This process is repeated until a
column yielding no combinations is arrived at.
The unmarked implicants in Table 3 are the prime
implicants, which correspond to the implicants
depicted in Fig. 2(iv).

After a function’s prime implicants have been
identified, it is necessary to select a minimal
subset that covers the function. The problem can

Optimal Two-Level Boolean Minimization, Table 4
Solving unate covering problem to select minimal cover

Requirements
(elementary
implicants)

Resources (prime implicants)

00X0 001X X011 1X11 11XX

0010 X X
0011 X X
1011 X X
1100 X
1101 X
1111 X X

be formulated as unate covering. As shown in
Table 4, label each column of a table with a prime
implicant; these are resources that may be used
to fulfill the requirements of the function. Label
each row with an elementary implicant from the
on-set; these rows correspond to requirements.
Do not add rows for don’t cares. Don’t cares im-
pose no requirements, although they were useful
in simplifying prime implicants. Mark each row–
column intersection for which the elementary
implicant corresponding to the row is covered by
the prime implicant corresponding to the column.
If a column is selected, all the rows for which
the column contains marks are covered, i.e., those
requirements are satisfied. The goal is to cover
all rows with a minimal-cost subset of columns.
McCluskey defined minimal cost as having a
minimal number of prime implicants, with ties
broken by selecting the prime implicants contain-
ing the fewest literals. The most appropriate cost
function depends on the implementation tech-
nology. One can also use a similar formulation
with other cost functions, e.g., minimize the total
number of literals by labeling each column with
a cost corresponding to the number of literals in
the corresponding prime implicant.

One can use a number of heuristics to acceler-
ate solution of the unate covering problem, e.g.,
neglect rows that have a superset of the marks of
any other row, for they will be implicitly covered
and neglect columns that have a subset of the
marks of any other column if their costs are as
high, for the other column is at least as useful.
One can easily select columns as long as there



Orienteering Problems 1481

O

exists a row with only one mark because the
marked column is required for a valid solution.
However, there exist problem instances in which
each row contains multiple two marks. In the
worst case, the best existing algorithms are re-
quired to make tentative decisions, determine the
consequences, and then backtrack and evaluate
alternative decisions.

The unate covering problem appears in many
applications. It is NP-complete [5], even for
the instances arising during two-level minimiza-
tion [9]. Its use in the Quine–McCluskey method
predates its categorization as an NP-complete
problem by 16 years. A detailed treatment of this
problem would go well beyond the scope of this
entry. However, Gimpel [3] as well as Coudert
and Madre [2] provide good starting points for
further reading.

Some families of logic functions have opti-
mal two-level representations that grow in size
exponentially in the number of inputs, but have
more compact multilevel implementations. These
families are frequently encountered in arithmetic,
e.g., a function indicating whether the number of
on inputs is odd. Efficient implementation of such
functions requires manual design or multilevel
minimization [1].

Applications

Digital computers are composed of precisely two
things: (1) implementations of Boolean logic
functions and (2) memory elements. The Quine–
McCluskey method is used to permit efficient
implementation of Boolean logic functions in a
wide range of digital logic devices, including
computers. The Quine–McCluskey method
served as a starting point or inspiration for most
currently used logic minimization algorithms. Its
direct use is contradicted when functions are not
amenable to efficient two-level implementation,
e.g., many arithmetic functions.
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Problem Definition

The Orienteering problem and its variants are
in the large class of vehicle routing problems,
also containing the traveling salesperson problem
(TSP), in which the goal is to find a short route
that visits several potential destinations. Typi-
cally, the input is represented by a graph G.V; E/

with an associated length function `WE ! RC,
where each destination is a vertex v 2 V , and an
edge e D .u; v/ has length `.e/ representing the
distance between u and v or the time it takes to
travel between them. Unlike TSP, where the goal
is to find a short tour visiting all vertices, Orien-
teering and its variants typically involve finding
short walks that visit many vertices; having to
choose the set of vertices to visit adds additional
complexity to the problem.

In Orienteering, we are given a bound on the
maximum length of the walk (also referred to
as a budget), and the goal is to visit as many
vertices as possible. A closely related problem is
k-Stroll; here, we are given an integer k, and the
goal is to find a walk that is as short as possible,
subject to visiting at least k vertices. For both
these problems, the walks are allowed to traverse
an edge multiple times; the length of a walk W is
P

e2W `.e/. Hence, w.l.o.g., one can assume that
the input graph is complete (by working with its
metric completion) or, equivalently, that the input
is represented by a metric.

We focus mainly on the “point-to-point” ver-
sions of these problems, in which the start and
end vertices of the walk are also specified; here,
the goal is to find a short walk from the specified
start vertex to the specified end vertex that visits
many other vertices. One can also consider the
variant in which only the start vertex is specified
(and the algorithm can choose where to end the
walk) or the one in which neither the start nor
the end vertex is specified. These are referred to
as the “rooted” and “unrooted” variants, respec-
tively. We define the problems formally below.

Problem 1 (Orienteering)

INPUT: Graph G.V; E/, with an associated
length function `WE ! RC, start and

end vertices s; t 2 V , and a budget/length
bound L.

OUTPUT: An s-t walk of total length at most L.
OBJECTIVE: Maximize the number of distinct

vertices in the walk.

Problem 2 (k-Stroll)
INPUT: Graph G.V; E/, with an associated

length function `WE ! RC, start and end
vertices s; t 2 V , and an integer k.

OUTPUT: An s-t walk containing at least k dis-
tinct vertices.

OBJECTIVE: Minimize the total length of the
walk.

Orienteering and k-Stroll are “dual” problems.
They are equivalent in terms of exact solvability;
a polynomial-time optimal algorithm for one can
be used to obtain a polynomial-time optimal
algorithm for the other. However, this is not
true from the standpoint of approximability; an
˛-approximation for one does not immediately
imply an ˛-approximation for the other.

Orienteering with time windows (Orient-TW)
is a generalization of Orienteering in which each
vertex v has an associated time interval or win-
dow ŒR.v/; D.v/�, and a vertex is considered
“visited” (i.e., is counted toward the objective)
only if the total length of the walk from the start
vertex up to v is in the range ŒR.v/; D.v/�. (For
intuition, if the length of an edge is interpreted
as the time taken to traverse it, then the vertex
is counted if the time at which it is visited falls
within its time window.) R.v/ and D.v/ are re-
ferred to as the release time and deadline of vertex
v, respectively. A special case of this problem
(sometimes called orienteering with deadlines or
even deadline-TSP) is when R.v/ D 0 for all
vertices v.

Problem 3 (Orienteering with Time Windows)

INPUT: Graph G.V; E/, with an associated
length function `WE ! RC, start and end
vertices s; t 2 V , a budget/length bound L,
and a time interval ŒR.v/; D.v/� for each
vertex v 2 V .

OUTPUT: An s-t walk of total length at most L.
OBJECTIVE: Maximize the number of distinct

vertices in the walk that are visited during
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their time intervals. A vertex is counted as
visited only if the walk visits v at a time
t 2 ŒR.v/; D.v/�; we assume it takes ` units
of time to cross an edge of length `.

See [9] for an overview and applications of
many vehicle routing problems related to Orien-
teering and its variants.

Key Results

Orienteering is both NP-hard and APX-hard [3];
the same applies for k-Stroll, as a generalization
of TSP. Therefore, we focus primarily on approx-
imability.

Undirected Graphs
Arkin et al. [1] gave a 2-approximation for rooted
Orienteering in the Euclidean plane. Chen and
Har-Peled [7] improved this to a PTAS for the
plane and higher-dimensional Euclidean metrics.

For general undirected graphs (i.e., symmetric
metrics), the first constant-factor approximation
for rooted Orienteering was given by Blum et al.
[3]. They obtained many of the key insights
used in subsequent papers, reducing Orienteering
to k-Stroll. Blum et al. [3] showed that an ˛-
approximation to k-Stroll gives a 1C d3˛

2
� 1

2
e-

approximation for rooted Orienteering. This was
improved by Bansal et al. [2] to d3˛

2
� 1

2
e even

for the harder point-to-point variant. Since there
is a 2 C "-approximation for k-Stroll due to
[4], this gives a 3-approximation for Orienteer-
ing. Chekuri et al. [6] reduced Orienteering to
a bicriteria version for k-Stroll; this gives the
current best 2C"-approximation for Orienteering,
matching the ratio for k-Stroll.

A key challenge in Orienteering is the hard
constraint on the total length of the walk L. In
particular, if the shortest path from the source s

to the destination t has length close to L, then
even a small detour from the shortest path to visit
a cluster of many vertices might result in reaching
t after the deadline L. Roughly speaking, [3]
shows that an optimum walk can be broken down
into segments which are “monotonic,” meaning
that they visit vertices in increasing order of their

(shortest path) distance from s, and segments
which are “non-monotonic,” in which case the
length of the segment is at least 3 times the
shortest path between its endpoints. To find a
good walk, one can use a dynamic program to
“enumerate” all relevant segmentations of the
optimal path; for each monotonic segment, one
can find the optimum sub-path using dynamic
programming. For the non-monotonic segments,
one can “skip” the reward from some of them,
which saves considerable distance since the de-
tours taken by the path in such segments are
large. This saving allows one to take a little extra
distance to collect reward in the remaining non-
monotonic segments (using an approximation al-
gorithm for k-Stroll) while still keeping the total
length of the walk at most L.

Directed Graphs
Orienteering is more challenging in directed
graphs, or asymmetric metrics. The first poly-
logarithmic approximation algorithms were due
independently to [6, 8]; the former gave an
O.log2 n= log log n/-approximation using an
LP-based approach, while the latter gave an
O.log2 OPT/-approximation using combinatorial
techniques. The ratio of [6] is better when OPT,
the number of vertices visited by an optimal
walk, is much less than n and is slightly worse
otherwise; on the other hand, the LP of [8] is
based on the well-known Held-Karp relaxation
for asymmetric TSP, and a conjectured improved
upper bound on the integrality gap of this
relaxation would immediately give an improved
approximation ratio for directed Orienteering.
Both these papers also obtain poly-logarithmic
approximations for the closely related problem-
Directed k-TSP, which is the special case of
k-Stroll when s D t .

Chekuri and Pál [5] gave a quasi-polynomial-
time O.log n/-approximation for directed Ori-
enteering and several generalizations, including
Orient-TW. This algorithm is based on repeatedly
“guessing” the midpoint of sub-paths, and hence
it does not appear easy to obtain a polynomial-
time equivalent.



1484 Orthogonal Range Searching on Discrete Grids

Orienteering with Time Windows
Orient-TW in undirected graphs, with arbitrary
distinct release times and deadlines for each ver-
tex, was first studied by [2], which gave an
O.log n/-approximation for the case with only
deadlines (i.e., where R.v/ D 0 for all v)
and O.log2 n/ for the general problem. Chekuri
et al. [6] later gave an O.maxflog OPT; log Rg/-
approximation for Orient-TW, where R denotes
the ratio between the length of the longest and
shortest time windows; when all time windows
are polynomially bounded, this is an O.log n/-
approximation. (For directed graphs, via [6, 8],
we lose additional poly-logarithmic factors).

The general approach taken by these papers,
following [2], is to use combinatorial techniques
to reduce the given instance of the problem to a
collection of subproblems in which all vertices
have identical or disjoint time windows. For a
set of vertices with identical time windows, these
windows can be effectively ignored, yielding an
instance of Orienteering; walks for different sets
with disjoint time windows can be combined
using dynamic programming. Thus, Orient-TW
can be reduced to Orienteering with the loss of
logarithmic factors in the approximation ratio.

Open Problems

There are several natural open problems related
to Orienteering.

1. Is there a PTAS for Orienteering in undirected
planar graphs? In recent years, PTASes have
been obtained for many related problems, in-
cluding TSP, STEINER TREE, and their prize-
collecting versions, but extending these tech-
niques to Orienteering and k-Stroll (or even
the easier k-MST problem) seems challeng-
ing.

2. Can one obtain an O.log n/ or even O.1/-
approximation for directed Orienteering? The
quasi-polynomial-time approximation of [5]
provides some evidence that it may be possi-
ble. Can one obtain any poly-logarithmic ap-
proximation for directed k-Stroll? Currently,
only bicriteria approximations are known.

3. Is there an O.log n/-approximation for
Orient-TW?
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Problem Definition

Let S be a set of n d -dimensional points. In
the orthogonal range searching problem we keep
S in a data structure, so that for an arbitrary
query rectangle Q D Œa1; b1� � � � � � Œad ; bd �

information about points in Q \ S can be found.
Range searching is a fundamental computational
geometry problem with numerous applications in
data bases, text indexing, string processing, and
network analysis. In computational geometry it
is frequently assumed that point coordinates are
real and the data structure works in the real RAM
model. In a vast majority of practical situations
we can, however, make a stronger assumption
that point coordinates are discrete values. This
scenario is captured by the word RAM model
of computation: all coordinates are integers that
fit into a machine word and standard operations
on words can be performed in constant time. In
this case, we say that points are on an integer
grid. If point coordinates are also bounded by a
parameter U , we say that points are on a grid of
size U (also called a U � U grid if points are
two-dimensional).

The discrete grid assumption leads to im-
proved results for many range searching prob-
lems. In this entry we consider several such prob-
lems. We remark that a problem on an integer grid
can be always reduced to the same problem on a
grid of size n using the technique called reduction
to rank space [1, 8]. This reduction takes O.n/

additional space and increases the query time by
an additive term pred.n; U /, where pred.n; U / D

O.min.log log U;
p

log n= log log n// is the time
needed to answer a predecessor query [2, 21].

Unless specified otherwise, we will assume that
all points are on a grid of size n. Throughout this
entry, the space usage of described data structures
is measured in words; each word consists of w �
log n bits and can hold a coordinate of any point
from the input set.

Key Results

Orthogonal Range Reporting

Two Dimensions
The problem is to keep a set of points S in a data
structure, so that all points in Q\S for any query
rectangle Q can be reported. Overmars [17] was
the first to consider this problem in the discrete
grid scenario. His data structure needs O.n log n/

words of space and supports two-dimensional
queries on U � U grid in O.log log U C k/

time, where k is the number of reported points.
Alstrup et al. [1] improved the space usage and
described a data structure that uses O.n log" n/

space and supports queries in O.log log n C k/

time. Henceforth, " denotes an arbitrarily small
positive constant. There are also data structures
that use less space but need more than constant
time per reported point. Chan et al. [6] describe
an O.n/-space data structure that answers two-
dimensional queries in O..k C 1/ log" n/ time
and an O.n log log n/-space data structure that
answers queries in O..kC1/ log log n/ time. Any
data structure that uses n logO.1/ n space needs
˝.log log nCk/ time to answer two-dimensional
range reporting queries. This follows from the re-
duction of two-dimensional range reporting prob-
lem to the predecessor problem [12] and the
lower bound for the predecessor problem [20].

In the special case of three-sided range re-
porting queries, the query range is bounded on
three sides. Thus, a three-sided query range is
a product of a closed interval and a half-open
interval. Three-sided range reporting queries can
be answered in O.k C 1/ time using a linear
space data structure [1]. The restriction on point
coordinates can be relaxed for one dimension
in the case of three-sided queries: there is a
linear-space data structure for points on n�N grid
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that answers queries of the form Œa; b�� .�1; d �

or Œa; b� � Œc;C1/ in O.k C 1/ time. Symmet-
rically, there is also a linear-space data structure
for points on N � n grid that answers queries
Œa;C1/� Œc; d � or .�1; b�� Œc; d � in O.kC 1/

time. We list the best currently known results
for two-dimensional orthogonal range reporting
in rows 1–4 of Table 1.

Three Dimensions
Three-dimensional queries can be answered in
optimal O.log log nCk/ time and O.n log1C" n/

space [6]. There is also an O.n log n.log log n/3/-
space data structure that answers queries in
O..log log n/2 C k log log n/ time; this result
is achieved by combining the approach of
[11] with the point location data structure of
[4]. Alternatively, there is a data structure that
uses O.n log n/ space and answers queries in
O.log1C" n C k log" n/ time [7]. Better space
bounds can be achieved for some special cases. A
three-dimensional query that is a product of three
closed intervals, Q D Œa; b� � Œc; d � � Œe; f �,
is called a .2; 2; 2/-sided query; this is the most

general case of three-dimensional queries. We
say that a three-dimensional orthogonal range
reporting query Q is a .2; 2; 1/-sided query if
it is a product of two closed intervals and one
half-open interval: Q D Œa; b�� Œc; d �� Œe;C1/.
There exists a data structure that uses O.n log" n/

space and answers .2; 2; 1/-sided queries in
O.log log n C k/ time [6]. Since .2; 2; 1/-
sided queries are not easier to answer than
two-dimensional queries, this query time is
optimal. There is also a data structure that uses
O.n.log log n/3/ space and answers .2; 2; 1/-
sided queries in O..log log n/2 C k log log n/

time; this result is obtained by combining
the approach of Karpinski and Nekrich [11]
with the point location data structure of
Chan [4]. Finally, we can also answer .2; 2; 1/-
sided queries in O.log1C" n C k log" n/

time using a linear-space data structure [7].
A .1; 1; 1/-sided query (also known as dominance
query) Q is a product of three half-open
intervals: Q D .�1; a� � .�1; b� � .�1; c�.
Chan [4] describes a linear space data structure
that answers .1; 1; 1/-sided queries in optimal
O.log log nC k/ time. See Table 2.

Orthogonal Range Searching on Discrete Grids, Table 1 Two-dimensional orthogonal range reporting. Four-sided
queries denote general two-dimensional queries

Ref. Space Query time Grid Remarks

[1] O.n/ O.k C 1/ n � N 3-sided

[1] O.n log" n/ O.log log n C k/ n � n 4-sided

[6] O.n log log n/ O..k C 1/ log log n/ n � n 4-sided

[6] O.n/ O..k C 1/ log" n/ n � n 4-sided

[16] O.n log" n/ O.log log n C k0/ n � n Sorted 4-sided

[22] O.n log log n/ O..k0 C 1/ log log n/ n � n Sorted 4-sided

[16] O.n/ O..k0 C 1/ log" n/ n � n Sorted 4-sided

Orthogonal Range Searching on Discrete Grids, Table 2 Three-dimensional orthogonal range reporting

Ref. Space Query time Query type

[6] O.n log1C" n/ O.log log n C k/ .2; 2; 2/-sided

[11] + [4] O.n log n.log log n/3/ O..log log n/2 C k log log n/ .2; 2; 2/-sided

[7] O.n log n/ O.log1C" n C k log" n/ .2; 2; 2/-sided

[6] O.n log" n/ O.log log n C k/ .2; 2; 1/-sided

[11] + [4] O.n.log log n/3/ O..log log n/2 C k log log n/ .2; 2; 1/-sided

[7] O.n/ O.log1C" n C k log" n/ .2; 2; 1/-sided

[4] O.n/ O.log log n C k/ .1; 1; 1/-sided
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Multi-dimensional Queries
Using range trees [3], we can extend the
three-dimensional data structures so that d -
dimensional queries for any integer constant
d can be answered. The query time and
space usage grow by O.logd�3 n/. We can
also increase the arity of range trees, so that
each internal node has O.log"=.2.d�3// n/

children. In this case, the query time grows by
O..log n= log log n/d�3/ and the space usage
grows by O.logd�3C" n/. Thus, there is a data
structure that uses O.n log2C" n/ space and
answers four-dimensional range reporting queries
in O.log n C k/ time [6]. This result almost
matches the lower bound of Pǎtraşcu [19] stating
that any n logO.1/ n-space data structure answers
four-dimensional orthogonal range reporting
queries in ˝.log n= log log n/ time. The best
currently known d -dimensional data structure
needs O..log n= log log n/d�3 log log nCk/ time
and uses O.n logd�2C" n/ space [6].

Emptiness Queries and One-Reporting
Queries
An orthogonal range emptiness query Q asks
whether Q contains any points of the input set
S . A one-reporting query Q asks for an arbitrary
point p in Q\ S if Q\ S 6D ;; if Q\ S D ;, a
special N ULL value is returned. We can employ
all data structures described above for answering
emptiness and one-reporting queries. Any previ-
ously described data structure that answers range
reporting queries in time O.q.n/C k � q0.n// can
be used to answer emptiness and one-reporting
queries (for the same dimension and the same
query type) in O.q.n// time and O.q.n/Cq0.n//

time, respectively.

Two-Dimensional Range Successor and Sorted
Range Reporting Queries
An orthogonal range successor (also known as
range next value) query Q D Œa; b� � Œc; d �

asks for the leftmost point in S \Q. In [16] the
authors considered the following generalization
of range successor queries: for a query range
Q D Œa; b� � Œc; d � report all points in Q \ S in
left-to-right order. Sorted range reporting queries
can also be answered in online modus: a query

can be terminated when the k0 leftmost points
in Q \ S are reported for any k0 � jQ \ S j

and k0 can be specified at query time. Nekrich
and Navarro [16] describe data structures that use
O.n/ and O.n log" n/ space and answer sorted
range reporting queries in O..k0C 1/ log" n/ and
O.log log n C k0/ time, respectively. The data
structure of [22] needs O.n log log n/ time and
supports queries in O..k0 C 1/ log log n/ time.
See Table 1. Sorted range reporting queries for
k0 D 1 are equivalent to range successor queries.
Thus, data structures for sorted range reporting
match the complexity of the best currently known
structures for standard two-dimensional point re-
porting (respectively, the data structures for range
successor queries match data structures for one-
reporting in two dimensions).

Orthogonal Range Counting
The problem is to keep a set of points S

in a data structure so that for any query
rectangle Q, the number of points in Q \ S

can be computed. The data structure of [10]
uses O.n.log n= log log n/d�2/ space and
answers d -dimensional dominance counting
queries (i.e., counts points in a range that
is a product of d half-open intervals) in
O..log n= log log n/d�1/ time. We can count
points in any d -dimensional rectangle by answer-
ing O.2d / d -dimensional dominance queries.
Hence, d -dimensional range counting queries
can also be answered in O..log n= log log n/d�1/

time and O.n.log n= log log n/d�2/ space for
any constant d . Dynamic data structures that
use O.n/ space, answer two-dimensional range
counting queries in O..log n= log log n/2/ time,
and support updates in poly-logarithmic time
are described in [14] and [9]. Query time of
the static data structure is optimal for d D 2

dimensions: by the lower bound of [18], any two-
dimensional data structure that uses n logO.1/ n

space needs ˝.log n= log log n/ time to answer
queries.

We can, however, reduce the query cost if k

is small, where k D jQ \ S j is the number of
points in a query range. Chan and Wilkinson [5]
describe a data structure that uses O.n log log n/

words of space and answers two-dimensional
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range counting queries in optimal O.log log nC

logw k/ time, where w is the size of the machine
word. Nekrich [15] describes a data structure
that uses O.n/ words and counts the number
of points in a two-dimensional three-sided range
in optimal O.logw k/ time. There are also data
structures that provide an approximate answer
for two- and three-dimensional range counting
queries [5, 13, 15]. These data structures return
a value k such that .1 � ı/k � k � .1 C ı/k

for an arbitrary query Q and some fixed constant
ı > 0. We can answer two-dimensional ap-
proximate counting queries in O.log log n/ time
using an O.n log log n/-space data structure [5];
we can answer three-sided approximate counting
queries in O.1/ time using an O.n/-space data
structure [15]. An approximate answer to a three-
dimensional dominance counting query can be
obtained in O..log log n/3/ time using an O.n/-
space data structure; we can estimate the number
of points in any three-dimensional range within
the same time using an O.n log3 n/-space data
structure [13]. If we plug the point location data
structure of [4] into the data structure of [13], then
the query time of approximate three-dimensional
queries is reduced to O..log log n/2/.

Open Problems

In spite of extensive research and significant
achievements, many important questions are still
open. The best currently known data structure
that supports two-dimensional reporting queries
in optimal time needs O.n log" n/ space [1].
Existence of a data structure that uses o.n log" n/

space for any " > 0 and achieves optimal query
time is an interesting open question. Another
important problem is improving the space com-
plexity of d -dimensional range reporting for d >

2 dimensions and query time of d -dimensional
range reporting for d > 4 dimensions.
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Problem Definition

This problem is concerned with efficiently de-
signing a serverless infrastructure for a federation
of hosts to store, index and locate information,
and for efficient data dissemination among the
hosts. The key services of peer-to-peer (P2P)
overlay networks are:

1. A keyed lookup protocol locates information
at the server(s) that hold it.

2. Data store, update and retrieve operations
maintain a distributed persistent data
repository.

3. Broadcast and multicast support information
dissemination to multiple recipients.

Because of their symmetric, serverless nature,
these networks are termed P2P networks. Below,
we often refer to hosts participating in the net-
work as peers.

The most influential mechanism in this area
is consistent hashing, pioneered in a paper by
Karger et al. [21]. The idea is roughly the fol-
lowing. Frequently, a good way of arranging
a lookup directory is a hash table, giving a fast
O(1)-complexity data access. In order to scale
and provide highly available lookup services,
we partition the hash table and assign different
chunks to different servers. So, for example,
if the hash table has entries 1 through n, and
there are k participating servers, we can have
each server select a virtual identifier from 1 to
n at random. Server i will then be responsi-
ble for key values that are closer to i than to
any other server identifier. With a good random-
ization of the hash keys, we can have a more
or less balanced distribution of information be-
tween our k servers. In expectation, each server
will be responsible for .n=k/ keys. Furthermore,
the departure/arrival of a server perturbs only
one or two other servers with adjacent virtual
identifiers.

© Springer Science+Business Media New York 2016
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A network of servers that implement
consistent hashing is called a distributed hash
table (DHT). Many current-generation resource
sharing networks, and virtually all academic
research projects in the area, are built around
a DHT idea.

The challenge in maintaining DHTs is two-
fold:

Overlay routing Given a hash key i, and starting
from any node r in the network, the problem is
to find the server s whose key range contains
i. The key name i bears no relation to any
real network address, such as the IP address
of a node, and therefore we cannot use the
underlying IP infrastructure to locate s. An
overlay routing network links the nodes, and
provides them with a routing protocol, such
that r can route toward s using the routing
target i.

Dynamic maintenance DHTs must work in
a highly dynamic environment in which the
size of the network is not known a priori,
and where there are no permanent servers
for maintaining either the hash function or
the overlay network (all servers are assumed
to be ephemeral). This is especially acute in
P2P settings, where the servers are transient
users who may come and go as they wish.
Hence, there must be a decentralized protocol,
executed by joining and leaving peers, that
incrementally maintains the structure of the
system. Additionally, a joining peer should be
able to correctly execute this protocol while
initially only having knowledge of a single,
arbitrary participating network node.

One of the first overlay network projects was
Chord [35], after which this encyclopedia
entry is named (2001; Stoica, Morris, Karger,
Kaashoek, Balakrishnan). More details about
Chord are given below.

Key Results

The P2P area is very dynamic and rapidly evolv-
ing. The current entry provides a mere snapshot,

covering dominant and characteristic strategies,
but not offering an exhaustive survey.

Unstructured Overlays
Many of the currently deployed widespread
resource-sharing networks have little or no
particular overlay structure. More specifically,
early systems such as Gnutella version 0.4 had
no overlay structure at all, and allowed every
node to connect to other nodes arbitrarily. This
resulted in severe load and congestion problems.

Two-tier networks were introduced to
reduce communication overhead and solve
the scalability issues that early networks like
Gnutella version 0.4 had. Two-tier networks
consist of one tier of relatively stable and
powerful nodes, called servers (superpeers,
ultrapeers), and a larger tier of clients that
search the network though servers. Most current
networks, including Edonkey/Emule, KaZaa,
and Gnutella, are built using two tiers. Servers
provide directory store and search facilities.
Searching is either limited to servers to which
clients directly connect (eDonkey/eMule) or done
by limited-depth flooding among the servers
(Gnutella). The two-tier design considerably
enhances the scalability and reliability of P2P
networks. Nevertheless, the connections among
servers and between clients/servers is done
in a completely ad hoc manner. Thus, these
networks provide no guarantee for the success
of searches, nor a bound on their costs.

Structured Overlays Without Locality
Awareness

Chord
The Chord system was built at MIT and is
currently being developed under FNSF’s IRIS
project (http://project-iris.net/). Several aspects
of the Chord [35] design have influenced
subsequent systems. We briefly explain the core
structure of Chord here. Nodes have binary
identifiers, assigned uniformly at random. Nodes
are arranged in a linked ring according to their
virtual identifiers. In addition, each node has
shortcut links to other nodes along the ring, link
i to a node 2i away in the virtual identifier space.
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In this way, one can move gradually to the target
by decreasing the distance by half at every step.
Routing takes on average log n hops to reach
any target, in a network containing n nodes.
Each node maintains approximately log n links,
providing the ability to route to geometrically
increasing distances.

Constant Per-Node State
Several overlay network algorithms were devel-
oped with the goal of pushing the amount of
network state kept by each node in the overlay to
a minimum. We refer to the state kept by a node
as its degree, as it mostly reflects the number
of connections to other nodes. Viceroy [23] was
the first to demonstrate a dynamic network in
which each node stores only five links to other
network nodes, and routes to any other node in
a logarithmic number of hops, log n for a net-
work of n nodes. Viceroy provided a dynamic
emulation of a butterfly network (see [11] for
a textbook exposition of interconnect networks
like butterfly). Later, several emulations of De
Bruijn networks emerged, including the generic
one of Abraham et al. (AAABMP) [1], the
distance halving network [26], D2B [13], and
Koorde [20]. Constant-degree overlay networks
are too fragile for practical purposes, and may
easily degrade in performance or even partition in
the face of failures. A study of overlay networks
under churn demonstrated these points [18]. In-
deed, to the best of our knowledge, none of these
constant-degree networks were built. Their main
contribution, and the main reason for mentioning
these works here, is to know that it is possible
in principle to bring the per-node state to a bare,
small constant.

Content Addressable Network
The Content Addressable Network (CAN) [31]
developed at ICSI builds the network as vir-
tual d-dimensional space, giving every node a
d-dimensional identifier. The routing topology
resembles a d-dimensional torus. Routing is done
by following the Euclidean coordinates in every
dimension, yielding a dn1=d hop routing strategy.
The parameter d can be tuned by the network
administrator. Note that for d D log n, CAN’s

features are the same as in Chord, namely, loga-
rithmic degree and logarithmic routing hop count.

Overlay Routing Inspired by “Small-World”
Networks
The Symphony [24] algorithm emulates rout-
ing in a small world. Nodes have k links to
nodes whose virtual identifiers are chosen at ran-
dom according to a routable small-world distribu-
tion [22]. With k links, Symphony is expected to
find a target in log2 =k hops.

Overlay Networks Supporting Range Queries
One of the deficiencies of DHTs is that they
support only exact key lookup; hence, they do
not address well the need to locate a range of
keys, or to have a fuzzy search, e.g., search
for any key that matches some prefix. Skip-
Graphs [4] and the SkipNet [19] scheme from
Microsoft (project Herald) independently devel-
oped a similar DHT based on a randomized
skip list [28] that supports range queries over
a distributed network. The approach in both of
these networks is to link objects into a double-
linked list, sorted by object names, over which
“shortcut” pointers are built. Pointers from each
object skip to a geometric sequence of distances
in the sorted list, i.e., the first pointer jumps two
items away, the second four items, and so on,
up to pointer log n � 1, which jumps over half
of the list. Logarithmic, load-balanced lookup is
achieved in this scheme in the same manner as in
Chord. Because the identifier space is sorted by
object names, rather than hash identifiers, ranges
of objects can be scanned efficiently simply by
routing to the lowest value in the range; the
remaining range nodes reside contiguously along
the ring.

By prefixing organization names to object
names, SkipNet achieves contiguity of nodes
belonging to a single organization along the ring,
and the ability to map objects on nodes in their
local organizations. In this way SkipNet achieves
resource proximity and isolation the only system
besides RP [33] to have this feature.

Whereas the SkipGraphs work focuses on ran-
domized load-balancing strategies and proofs,
the SkipNet system considers issues of dynamic
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P2P, Table 1 Comparison of various measures of lookup schemes with no locality awareness

Overlay lookup scheme Topology resemblance Hops Degree

Chord Hypercube log n log n

Viceroy Butterfly log n 5

AAABMP, Distance-halving, Koorde, D2B De Bruijn log n 4

Symphony Small world log2 n=k k

SkipGraphs/SkipNet Skip list log n log n

CAN Torus dn1=d d

maintenance, variable base sizes, and adopts the
locality-awareness strategy of Pastry [33], which
is described below.

Summary of Non-Locality-Aware Networks
Each of the networks mentioned above is dis-
tinct in one or more of the following properties:
The (intuitive) emulated topology; the expected
number of hops required to reach a target; and
the per-node degree. Table 1 summarizes these
properties.

Locality Awareness
The problem with the approaches listed above is
that they ignore the proximity of nodes in the
underlying networks, and allow hopping back and
forth across large physical distances in search
of content. Recent studies of scalable content
exchange networks [17] have indicated that up to
80 % of Internet searches could be satisfied by
local hosts within one’s own organization. There-
fore, even one far hop might be too costly. The
next systems we encounter consider proximity
relations among nodes in order to obtain locality
awareness, i.e., that lookup costs are proportional
to the actual distance of interacting parties.

Growth-Bounded Networks
Several locality-aware lookup networks were
built around a bit-fixing protocol that borrows
from the seminal work of Plaxton et al. [27]
(PRR). The growth bounded network model for
which this scheme is aimed views the network
as a metric space, and assumes that the densities
of nodes in different parts of the network are
not terribly different. The PRR [27] lookup
scheme uses prefix routing, similar to Chord.

It differs from Chord in that a link for flipping the
ith identifier bit connects with any node whose
length-i prefix matches the next hop. In this way,
the scheme favors the closest one in the network.
This strategy builds geometric routing, whose
characteristic is that the routing steps toward
a target increase geometrically in distance. This is
achieved by having large flexibility in the choice
of links for each prefix at the beginning of a route,
and narrowing it down as the route progresses.
The result is an overlay routing scheme that finds
any target with a cost that is proportional to the
shortest-distance route.

The systems that adopt the PRR algorithm are
Pastry [33], Tapestry [36], and Bamboo [32].
A very close variant is Kademlia [25], in which
links are symmetric. It is worth mentioning that
the LAND scheme [2] improves PRR in provid-
ing a nearly optimal guaranteed locality guaran-
tee; however, LAND has not been deployed.

Applications

Caching
The Coral network [14] from NYU, built on top
of DSHT [15], has been operational since around
2004. It provides free content delivery services
on top of the PlanetLab-distributed test bed [9],
similar to the commercial services offered by
the Akamai network. People use it to provide
multiple, fast access points to content they wish
to publish on the Web.

Coral optimizes access locality and down-
load rate using locality-aware lookup provided by
DSHT. Within Coral, DSHT is utilized to support
locality-aware object location in two applica-
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tions. First, Coral contains a collection of HTTP
proxies that serve as content providers; DSHT
is used by clients for locating a close-by proxy.
Second, proxy servers themselves use DSHT to
locate a near-by copy of content requested by the
client, thus making use of copies of the content
that are stored in the network, rather than going
to the source of the content.

Multicast
Several works deploy an event notification or
publish–subscribe service over an existing rout-
ing overlay by building reverse-routing multicast
paths from a single “target” to all “sources.”
For example, multicast systems built in this way
include the Bayeux network [38], which is built
over Tapestry [36], and SCRIBE [5], which is
built over Pastry. In order to publish a file, the
source advertises using flooding a tuple which
contains the semantic name of a multicast session
and a unique ID. This tuple is hashed to obtain
a node identifier which becomes the session root
node. Each node can join this multicast session by
sending a message to the root. Nodes along the
way maintain membership information, so that
a multicast tree is formed in the reverse direction.
The file content (and any updates) is flooded
down the tree. Narada [8] is built with the same
general architecture, but differs in its choice of
links, and the maintenance of data.

Routing Infrastructure
A DHT can serve well to store routing and (po-
tentially dynamic) location information of virtual
host names. This idea has been utilized in a num-
ber of projects. A naming system for the Internet
called CoDoNS [30] was built at Cornell Uni-
versity over the BeeHive overlay [29]. CoDoNS
provides a safety net and is a possible replace-
ment for the Domain Name System, the current
service for looking up host names. Support for
virtual IPv6 network addresses is provided in [37]
by mapping names to their up-to-date, reachable
IPv4 address. The Internet Indirection Infrastruc-
ture [34] built at the University of California,
Berkeley provides support for virtual Internet
host addresses that allows mobility.

Collaborative Content Delivery
Recent advances provide collaborative content
delivery solutions that address both load balance
and resilience via striping. The content is split
into pieces (quite possibly with some redundancy
through error-correcting codes). The source
pushes the pieces of the file to an initial group
of nodes, each of which becomes a source of
a distribution tree for its piece, and pushes it
to all other nodes. These works demonstrate
clearly the advantages of data striping, i.e.,
of simultaneously exchanging stripes of data,
over a tree-based dissemination of the full
content.

SplitStream [6] employs the Pastry routing
overlay in order to construct multiple trees, such
that each participating node is an inner node in
only one tree. It then supports parallel download
of stripes within all trees. SplitStream [6] strives
to obtain load balancing between multicast nodes.
It achieves that by splitting the published content
into several parts, called stripes, and publishing
each part separately. Each stripe is published
using a tree-based multicast. The workload is
divided between the participating nodes by send-
ing each stripe using a different multicast tree.
Load balance is achieved by carefully choosing
the multicast trees so that each node serves as an
interior node in at most one tree. This reduces
the number of “free riders” who only receive
data.

A very popular file-distribution network is the
BitTorrent system [10]. Nodes in BitTorrent are
divided into seed nodes and clients. Seed nodes
contain the desired content in full (either by
being original providers, or by having completed
a recent download of the content). Client nodes
connect with a seed node or several seed nodes,
as well as a tracker node, whose goal is to
keep track of currently downloading clients. Each
client selects a group (currently, of size about
20) of other downloading clients, and exchanges
chunks of data obtained from the seed(s) with
them. BitTorrent employs several intricate strate-
gies for selecting which chunks to request from
what other clients, in order to obtain fair load
sharing of the content distribution and, at the
same time, achieve fast download.
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BitTorrent currently does not contain P2P-
searching facilities. It relies on central sites
known as “trackers” to locate content, and to
coordinate the BitTorrent download process.
Recent announcements by Bram Cohen (the
creator of BitTorrent) and creators of other
BitTorrent clients state that new protocols based
on BitTorrent will be available soon, in which the
role of trackers is eliminated, and searching and
coordination is done in a completely P2P manner.

Experience with BitTorrent and similar sys-
tems indicates that the main problem with this
approach is that towards the end of a download,
many peers may be missing the same rare chunks,
and the download slows down. Fairly sophisti-
cated approaches were published in an attempt to
overcome this issue.

Recently, a number of works at Microsoft
Research have demonstrated the benefits of net-
work coding in efficient multicast, e.g., [7] and
Avalanche [16]. We do not cover these techniques
in detail here, but only briefly state the principal
ideas that underlie them.

The basic approach in network coding is to re-
encode all the chunks belonging to the file, so
that each one that is shared is actually a linear
combination of all the pieces. The blocks are
then distributed with a description of the content.
Once a node obtains these re-encoded chunks, it
can generate new combinations from the ones it
has, and can send those out to other peers. The
main benefit is that peers can make use of any
new piece, instead of having to wait for specific
chunks that are missing. This means no one peer
can become a bottleneck, since no piece is more
important than any other. Once a peer collects
sufficiently many such chunks, it may use them
to reconstruct the whole file.

It is worth noting that in unstructured settings,
it was recently shown that network coding offers
no advantage [12].

Cross-References

�Geometric Spanners
�Routing
� Sparse Graph Spanners

Recommended Reading

1. Abraham I, Awerbuch B, Azar Y, Bartal Y, Malkhi D,
Pavlov E (2003) A generic scheme for building over-
lay networks in adversarial scenarios. In: Proceedings
of the international parallel and distributed processing
symposium (IPDPS 2003)

2. Abraham I, Malkhi D, Dobzinski O (2004) LAND:
stretch (1 C ") locality aware networks for DHTs.
In: Proceedings of the ACM-SIAM symposium on
discrete algorithms (SODA’04)

3. Abraham I, Badola A, Bickson D, Malkhi D, Maloo
S, Ron S (2005) Practical locality-awareness for large
scale information sharing. In: The 4th annual interna-
tional workshop on peer-to-peer systems (IPTPS’05)

4. Aspnes J, Shah G (2003) Skip graphs. In: Four-
teenth annual ACM-SIAM symposium on discrete
algorithms, Baltimore, pp 384–393

5. Castro M, Druschel P, Rowstron A (2002) Scribe: a
large-scale and decentralised application-level mul-
ticast infrastructure. IEEE J Sel Areas Commun
(JSAC) 20(8):1489–1499, Spec Issue Netw Support
Multicast Commun, ISSN:0733-8716

6. Castro M, Druschel P, Kermarrec A-M, Nandi A,
Rowstron A, Singh A (2003) Splitstream: high-
bandwidth multicast in a cooperative environment. In:
SOSP’03

7. Chou P, Wu Y, Jain K (2004) Network coding for the
internet. In: IEEE communication theory workshop

8. Chu Y, Rao SG, Zhang H (2000) A case for end
system multicast. In: Proceedings of ACM SIGMET-
RICS, Santa Clara, pp 1–12

9. Chun B, Culler D, Roscoe T, Bavier A, Peterson
L, Wawrzoniak M, Bowman M (2003) Planetlab:
an overlay testbed for broadcoverage services. ACM
SIGCOMM Comput Commun Rev 33:3–12

10. Cohen B (2003) Incentives build robustness in bittor-
rent. In: Proceedings of P2P economics workshop

11. Cormen TH, Leiserson CE, Rivest RL (1990) Intro-
duction to algorithms. MIT

12. Fernandess Y, Malkhi D (2006) On collaborative
content distribution using multi-message gossip. In:
Twentieth IEEE international parallel and distributed
processing symposium (IPDPS’06), Greece

13. Fraigniaud P, Gauron P (2003) The content-
addressable network D2B. Technical report 1349,
LRI, University Paris-Sud

14. Freedman MJ, Freudenthal E, Mazières D (2004)
Democratizing content publication with coral. In:
Proceedings of the 1st USENIX/ACM symposium
on networked systems design and implementation
(NSDI’04)

15. Freedman MJ, Mazières D (2003) Sloppy hashing
and self-organizing clusters. In: Proceedings of the
2nd international workshop on peer-to-peer systems
(IPTPS’03)

16. Gkantsidis C, Rodriguez P (2005) Network
coding for large scale content distribution. In:
IEEE/INFOCOM



PAC Learning 1497

P

17. Gummadi KP, Dunn RJ, Saroiu S, Gribble SD, Levy
HM, Zahorjan J (2003) Measurement, modeling, and
analysis of a peer-to-peer file-sharing workload. In:
Proceedings of the nineteenth ACM symposium on
Operating systems principles, ACM, pp 314–329

18. Gummadi K, Gummadi R, Gribble S, Ratnasamy
S, Shenker S, Stoica I (2003) The impact of DHT
routing geometry on resilience and proximity. In:
Proceedings of the 2003 conference on applications,
technologies, architectures, and protocols for com-
puter communications, ACM, pp 381–394

19. Harvey NJA, Jones MB, Saroiu S, Theimer M, Wol-
man A (2003) Skipnet: a scalable overlay network
with practical locality properties. In: Proceedings of
fourth USENIX symposium on internet technologies
and systems (USITS’03)

20. Kaashoek F, Karger DR (2003) Koorde: a simple
degree-optimal hash table. In: 2nd international work-
shop on peer-to-peer systems (IPTPS’03)

21. Karger D, Lehman E, Leighton FT, Levine M, Lewin
D, Panigrahy R (1997) Consistent hashing and ran-
dom trees: distributed caching protocols for relieving
hot spots on the world wide web. In: Proceedings
of the 29th annual ACM symposium on theory of
computing (STOC’97), pp 654–663

22. Kleinberg J (2000) The small-world phenomenon:
an algorithmic perspective. In: Proceedings of the
32nd ACM symposium on theory of computing
(STOC’00), pp 163–170

23. Malkhi D, Naor M, Ratajczak D (2002) Viceroy:
a scalable and dynamic emulation of the butterfly.
In: Proceedings of the 21st ACM symposium on
principles of distributed computing (PODC’02), pp
183–192

24. Manku GS, Bawa M, Raghavan P (2003) Symphony:
distributed hashing in a small world. In: Proceedings
of the 4th USENIX symposium on internet technolo-
gies and systems (USITS’03), pp 127–140

25. Maymounkov P, Mazières D (2002) Kademlia: a
peer-to-peer information system based on the XOR-
metric. In: Proceedings of the 1st international
workshop on peer-to-peer systems (IPTPS’02), pp
53–65

26. Naor M, Wieder U (2003) Novel architectures for p2p
applications: the continuous-discrete approach. In:
The fifteenth annual ACM symposium on parallelism
in algorithms and architectures (SPAA’03)

27. Plaxton C, Rajaraman R, Richa A (1997) Accessing
nearby copies of replicated objects in a distributed en-
vironment. In: Proceedings of the ninth annual ACM
symposium on parallel algorithms and architectures
(SPAA’97), pp 311–320

28. Pugh W (1989) Skip lists: a probabilistic alternative
to balanced trees. In: Workshop on algorithms and
data structures, pp 437–449

29. Ramasubramanian V, Sirer EG (2004) Beehive: O(1)
lookup performance for power-law query distribu-
tions in peer-to-peer overlays. In: Proceedings of net-
worked system design and implementation (NSDI)

30. Ramasubramanian V, Sirer EG (2004) The de-
sign and implementation of a next generation
name service for the internet. In: Proceedings of
SIGCOMM

31. Ratnasamy S, Francis P, Handley M, Karp R, Shenker
S (2001) A scalable content-addressable network. In:
Proceedings of the ACM SIGCOMM 2001 Technical
Conference

32. Rhea S, Geels D, Roscoe T, Kubiatowicz J
(2003) Handling churn in a dht. Technical report,
UCB//CSD-03-1299. The University of California,
Berkeley

33. Rowstron A, Druschel P (2001) Pastry: scalable,
distributed object location and routing for large-
scale peer-to-peer systems. In: IFIP/ACM interna-
tional conference on distributed systems platforms
(Middleware), pp 329–350

34. Stoica I, Adkins D, Zhuang S, Shenker S, Surana
S (2002) Internet indirection infrastructure. In: Pro-
ceedings of ACM SIGCOMM, pp 73–88

35. Stoica I, Morris R, Karger D, Kaashoek MF, Bal-
akrishnan H (2001) Chord: a scalable peer-to-peer
lookup service for internet applications. In: Proceed-
ings of the SIGCOMM

36. Zhao BY, Huang L, Stribling J, Rhea SC, Joseph AD,
Kubiatowicz J (2003) Tapestry: a resilient global-
scale overlay for service deployment. IEEE J Sel
Areas Commun

37. Zhou L, van Renesse R, Marsh M (2002) Imple-
menting IPv6 as a peer-to-peer overlay network. In:
Proceedings of the 21st IEEE symposium on reliable
distributed systems (SRDS’02), p 347

38. Zhuang SQ, Zhao BY, Joseph AD, Katz RH, Kubia-
towicz J (2001) Bayeux: an architecture for scalable
and fault-tolerant widearea data dissemination. In:
Proceedings of the eleventh international workshop
on network and operating system support for digital
audio and video (NOSSDAV’01)

PAC Learning

Joel Ratsaby
Department of Electrical and Electronics
Engineering, Ariel University of Samaria, Ariel,
Israel

Keywords

Computational learning theory; Probably
approximately correct learning



1498 PAC Learning

Years and Authors of Summarized
Original Work

1984; Valiant

Problem Definition

Valiant’s work defines a model for representing
the general problem of learning a Boolean con-
cept from examples. The motivation comes from
classical fields of artificial intelligence [2], pat-
tern classification [8], and machine learning [13].
Classically, these fields have employed numerous
heuristics for representing knowledge and defin-
ing criteria by which computer algorithms can
learn. The pioneering work of [16, 17] provided
the leap from heuristic-based approaches to a rig-
orous statistical theory of pattern recognition (see
also [1, 7, 14]). Their main contribution was the
introduction of probabilistic upper bounds on the
generalization error which hold uniformly over a
whole class of concepts. Valiant’s main contri-
bution is in formalizing this probabilistic theory
into a general model for computational inference.
This model which is known as the Probably Ap-
proximately Correct (PAC) model of learnability
is concerned with computational complexity of
learning. In his formulation, learning is depicted
as an interaction between a teacher and a learner
with two main procedures, one which provides
randomly drawn examples x of the concept c

that is being learned and the second acts as an
oracle which provides the correct classification
label c.x/. Based on a finite number of such
examples drawn identically and independently
according to any fixed probability distribution,
the aim of the learner is to infer an approximation
of c which is correct with high confidence. Using
the terminology of [12] suppose X denotes the
space of instances, i.e., objects which a learner
can obtain as training examples. A concept over
X is a Boolean mapping from X to {0,1}. Let P
be any fixed probability distribution over X and
c a fixed target concept to be learned. For any
hypothesis concept h over X define by L.h/ D

P.c.x/ ¤ h.x// the error of h, i.e., the proba-
bility that h disagrees with c on a test instance x

which is drawn according to P. Then according
to Valiant, an algorithm A for learning c is one
which runs in time t and with a sample of size m

where both t and m are polynomials with respect
to some parameters (to be specified below) and
produces a hypothesis concept h such that with
high confidence L.h/ is small.

Key Results

The main result of Valiant’s work is a formal def-
inition of what constitutes a learnable problem.
Formally, this is stated as follows: let H be a
class of concepts over X . Then H is learnable
if there exists an algorithm A with the following
property: for every possible target concept c 2

H, for every probability distribution P on X

(this is sometimes referred to as the “distribution-
independence” assumption), for all values of a
confidence parameter 0 < • < 1=2 and an
approximation accuracy parameter 0 < � < 1=2,
if A receives as input the value of ı; � and a
sample S D f.xi ; c.xi //giD1

m of cardinality m

(which may depend on © and •/ which consists of
examples xi that are randomly drawn according
to P and labeled by an oracle as c.xi ), then with
probability 1� •, A outputs a hypothesis concept
h 2 H such that the error L.h/ � �. That – can
be arbitrarily close to zero follows from what is
known as the “noise-free” assumption, i.e., that
the labels comprise the true value of the target
concept. If A runs in time t and if t and m are
polynomial in 1=� and 1=• (and possibly other
relevant parameters, such as n if the space of
instance X is {0,1}n or Rn), then H is efficiently
PAC learnable.

Valiant has shown that the following classes
are all efficiently PAC learnable: the class of con-
junctive normal form expressions with a bounded
number of literals in each clause, the class of
monotone disjunctive normal form expressions
(here the learner requires in addition to S also
an oracle that can answer membership queries,
i.e., provide the true label c.x/ for an x in
question), and the class of arbitrary expressions in
which each variable occurs just once (using more
powerful oracles). The work following Valiant’s
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paper (see [11] for references) has shown that the
classes of k-DNF, k-CNF, and k-decision lists are
efficiently PAC learnable for each fixed k. Under
suitable complexity-theoretic hardness assump-
tions, the class of concepts in the form of a dis-
junction of two conjunctions is not PAC learnable
and neither is the class of existential conjunctive
concepts on structural instance spaces with two
objects. Linear threshold concepts (perceptrons)
are PAC learnable on both Boolean and real-
valued instance spaces, but the class of concepts
in the form of a conjunction of two linear thresh-
old concepts is not PAC learnable. The same
holds for disjunctions and linear thresholds of lin-
ear thresholds (i.e., multilayer perceptrons with
two hidden units). If the weights are restricted to
1 and 0 (but the threshold is arbitrary), then linear
threshold concepts on Boolean instance spaces
are not PAC learnable.

It should be noted that the notion of PAC
learnability discussed throughout this entry is
sometimes referred to as “proper” PAC learn-
ability because of the requirement that, when
learning a concept class H, the learning algorithm
must output a hypothesis that also belongs to H.
Several of the negative results mentioned above
can be circumvented in a model of “improper”
PAC learning, where the learning algorithm is
allowed to output hypotheses from a broader class
of functions than H. This is sometimes referred to
as agnostic PAC learnability (see [15], Ch. 3, [12]
and the proceedings of the COLT conferences for
many results of this type).

Applications

Valiant’s paper is a milestone in the history
of the area known as Computational Learning
Theory (see proceedings of COLT conferences).
The PAC model has been criticized in that the
distribution-independence assumption and the
notion of target concepts with noise-free training
data are unrealistic in practice, e.g., in machine
learning and AI. There has thus been much
work on learning models that relax several of
the assumptions in Valiant’s PAC model. These
include models which allow noisy labels or

remove the assumptions on the independence
of training examples, relax the assumption on
the probability distribution to be fixed, allow
the bounds to be distribution dependent, permit
the training sample to be picked by the learner
and labeled by the oracle instead of the random
sample or chosen by a helpful teacher, allow
learning regression, and use generalized loss
functions. For references, see Sec. 2.6 of [1]
and Ch. 3 of [15]. An important follow-up of
Valiant’s model was the work of [6] who unified
his model with the uniform convergence results
of [16]. They showed the important dependence
between the notion of learnability and certain
combinatorial properties of concept classes, one
of which is known as the Vapnik-Chervonenkis
(VC) dimension (see Sec. 3.4 of [1] for history
on the VC-dimension).
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Problem Definition

A collection of packets need to be routed from
a set of specified sources to a set of specified
destinations in an arbitrary network. Leighton,
Maggs and Rao [5] looked at a model where
this task is divided into two separate tasks: the
first is the path selection task, where for each
specified packet i with source si and packet
destination ti, a simple (meaning edges don’t
repeat) path Pi through the network from si to ti
is pre-selected. Packets traverse the network in
a store and forward manner: each time a packet
is forwarded it travels along the next link in the
pre-selected path. It is assumed that only one
packet can cross each individual link at each
given global (synchronous) timestep. Thus, when
there is contention for a link, packets awaiting
traversal are stored in the local link’s queue
(special source and sink queues of unbounded
size are also defined that store packets at their
origins and destinations). Thus, the second
task, and the focus of the Leighton, Maggs and
Rao result (henceforth called the LMR result)
is the scheduling task: a determination, when
a link’s queue is not empty, of which packet
gets to traverse the link in the next timestep
(where it is assumed to immediately join the
link queue for its next hop). The goal is to
schedule the packets so that the maximum time
that it takes any packet to reach its destination is
minimized.

There are two parameters of the network to-
gether with the pre-selected paths that are clearly
relevant. One is the congestion c, defined as the
maximum number of paths that all use the same
link. The other is the dilation d, which is simply
the length of the longest path that any packet
traverses in the network. Clearly each of c and
d is a lower-bound on the length of any schedule
that routes all the packets to their destinations. It
is easy to see that a schedule of length at most cd
always exists. In fact, any schedule that never lets
a link go idle if there is a packet that can use that
link at that timestep is guaranteed to terminate in
cd steps, because each packet traverses at most d
links, and at any link can be delayed by at most
c � 1 other packets.
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Key Results

The surprising and beautiful result of LMR is as
follows:

Theorem ([5]) For any network G with a pre-
specified set of paths P with congestion c and
dilation d, there exists a schedule of length O.cC

d/, where the queue sizes at each edge are always
bounded by a constant.

The original proof of the LMR paper is non-
constructive. That is, it uses the Local Lemma [3]
to prove the existence of such a schedule, but
does not give a way to find it. In his book [10],
Scheideler showed that in fact, a O.c C d/

schedule exists with edge queue sizes bounded
by 2 (and gave a simpler proof of the original
LMR result). A subsequent paper of Leighton,
Maggs and Richa in 1999 [6] provides a con-
structive version of the original LMR paper as
follows:

Theorem ([6]) For any network G with a pre-
specified set of paths P with congestion c and
dilation d, there exists a schedule of length
O.c C d/. Furthermore, such a schedule can
be found in O.p log1C� p log�.c C d// time for
any �>0, where p is the sum of the lengths of the
paths taken by the packets and " is incorporated
into the constant hidden by the big-O in the
schedule length.

The algorithm in the paper is a randomized one,
though the authors claim that it can be deran-
domized using the method of conditional proba-
bilities. However, even though the algorithm of
Leighton, Maggs and Richa is constructive, it
is still an offline algorithm: namely, it requires
full knowledge of all packets in the network
and the precise paths that each will traverse
in order to construct the schedule. The original
LMR paper also gave a simple randomized online
algorithm, that, by assigning delays to packets
independently and uniformly at random from an
appropriate interval, results in a schedule which
is much better than greedy schedules, though not
as good as the offline constructions.

Theorem ([5]) There is a simple randomized on-
line algorithm for producing, with high proba-
bility, a schedule of length O.c C d log.Nd//

using queues of size O.log.Nd//, where c is the
congestion, d is the dilation, and N is the number
of packets.

In the special case where it is assumed that all
packets follow shortest paths in the network,
Meyer, auf der Heide and Vöcking produced
a simple randomized online algorithm that pro-
duces, with high probability, a schedule of length
O.c C d C log Nd/ steps, but queues can be as
large as O.c/ [7]. For arbitrary paths, the LMR
online result was ultimately improved to O.c C

d C log1C� N / steps, for any �>0 with high
probability, in a series of two papers by Rabani
and Tardos [9], and Rabani and Ostrovsky [8].
Online protocols have also been studied in a set-
ting where additional packets are dynamically
injected into the network in adversarial settings,
see [10] for a survey.

The discussion is briefly returned to the first
task, namely to pre-construct the set of paths.
Clearly, the goal is to find, for a particular set
of packets with pre-specified sources and des-
tinations, a set of paths that minimizes c C d .
Srinivasan and Teo [12] designed an off-line algo-
rithm that produces a set of paths whose c C d

is provably within a constant factor of optimal.
Together with the offline LMR result, that gives
a constant-factor approximation problem for the
offline store-and-forward packet routing problem.
Note that the approach of trying to minimize
c C d rather than c alone seems crucial; produc-
ing schedules within a constant factor of optimal
congestion c is hard, and in fact has been shown
to be related to the integrality gap for multicom-
modity flow [1, 2].

Applications

Network Emulations
Typically, a guest network G is emulated by
a host network H by embedding G into H. Nodes
of G are mapped to nodes of H, while edges of
G are mapped to paths in H. If P is the set of
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e paths (each corresponding to an edge in the
guest network G), the congestion and dilation
can be defined analogously as in the main result
for the set of paths P, namely c denotes the
maximum number of paths that use any one edge
of H, and d is the length of the longest path in
P. In addition, the load l is defined to be the
maximum number of nodes in G that are mapped
to a single node of H. Once G is embedded in
H, H can emulate G as follows: Each node of
H emulates the local computations performed by
the l (or fewer) nodes mapped to it in O(l) time.
Then for each packet sent along an edge of G, H
sends a packet along the corresponding path in
the embedding; using the offline LMR result this
takes O.c C d/ steps. Thus, H can emulate each
step of G in O.c C d C l/ steps.

Job Shop Scheduling
Consider a scheduling problem with jobs
j1; : : : jr and machines m1; : : : ; ms for which
each job must be performed on a specified
sequence of machines (in a specified order).
Assume each job spends unit time on each
machine, and that no machine has to work on
any job more than once (In the language of
job-shop scheduling, this is the non-preemptive,
acyclic, job-shop scheduling problem, with unit
jobs). There is a mapping of sequences of
machines to paths and jobs to packets so that
this becomes an encoding of the main packet
routing problem, where if c is now to be the
maximum number of jobs that have to be run on
any one machine, and d to be the maximum
number of different machines that work on
any single job, there becomes O(c) congestion
and O(d) dilation for the corresponding packet-
routing instance. Then the offline LMR result
shows that there is a schedule that completes
all jobs in O.c C d/ steps, where in addition,
each job waits at most a constant number of
steps in between consecutive machines (and the
queue of jobs waiting for any particular machine
will always be bounded by a constant). Similar
techniques to those developed in the LMR paper
have subsequently been applied to more general
instances of Job-Shop Scheduling; see [4, 11].

Open Problems

The main open problem is whether there is a ran-
domized online packet scheduling that matches
the offline LMR bound of O.c C d/. The bound
of [8] is close, but still grows logarithmically with
the total number of packets.

For job shop scheduling, it is unknown
whether the constant-factor approximation
algorithm for the non-preemptive acyclic job-
shop scheduling problem with unit length jobs
implied by LMR can be improved to a PTAS. It is
also unknown whether there is a constant-factor
approximation in the case of arbitrary-length
jobs.
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Problem Definition

A multi-queue network switch serves m incoming
queues by transmitting data packets arriving at
m input ports through one single output port. In
each time step, an arbitrary number of packets
may arrive at the input ports, but only one packet
can be passed through the common output port.
Each packet is marked with a value indicating its
priority in the Quality of Service (QoS) network.
Since each queue has bounded capacity B and the
rate of arriving packets can be much higher than
the transmission rate, packets can be lost due to
insufficient queue space. The goal is to maximize
the throughput which is defined as the total value
of transmitted packets. The problem comprises
two dependent questions: buffer management,
namely which packets to admit into the queues,
and scheduling, i.e., which (FIFO) queue to use
for transmission in each time step.

Two scenarios are distinguished: (a) unit
packet value (All packets have the same value.),
(b) arbitrary packet values.

The problem is considered as an online prob-
lem, i.e., at time step t, only the packet arrivals
until t are known, but nothing about future packet
arrivals. The online switch performance in QoS
based networks is studied by using competitive
analysis in which the throughput of the online
algorithm is compared to the throughput of an op-
timal offline algorithm knowing the whole arrival
sequence in advance.

If not stated otherwise, the admission control
is assumed to allows preemption, i.e., packets
once enqueued need not necessarily be transmit-
ted, but can be discarded.

Problem 1 (Unit Value Problem) All packets
have value 1. Since all packets are thus equally
important, the admission control policies sim-
plify: All arriving packets are to be enqueued;
in the case of buffer overflow, it does not matter
which packets are stored in the queue and which
packets are discarded.

Problem 2 (General problem) Each packet has
its individual value where usually a range Œ1; ˛�

is given for all packets. A special case consists
in the two value model where the values are
restricted to f1; ˛g.

Key Results

Unit Value Packets

Deterministic Algorithms

Theorem 1 ([1]) For any buffer size B, the com-
petitive ratio of each deterministic online algo-
rithm is not smaller than .eBC

2
B

/=.eB �1C 1
B

/

� e
e�1
� 1:58 where eB D ..B C 1/=B/B .

Theorem 2 ([4]) Every work-conserving online
algorithm is 2-competitive.

Theorem 3 ([1]) For any buffer size B, the com-
petitive ratio of any greedy algorithm, which
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always serves a longest queue (LQF), is at least
2 � 1

B
if m� B .

Algorithm: SGR (Semi-Greedy) In each time
step, the algorithm executes the first rule that
applies to the current buffer configuration.

1. If there is a queue buffering more than bB=2c

packets, serve the queue currently having the
maximum load.

2. If there is a queue the hitherto maximum load
of which is less than B, serve among these
queues the one currently having the maximum
load.

3. Serve the queue currently having the maxi-
mum load.

Ties are broken by choosing the queue with the
smallest index. The hitherto maximum load is
reset to 0 for all queues whenever all queues are
unpopulated in SGR’s configuration.

Theorem 4 ([1]) If B is even, then SGR is
17
9
� 1:89-competitive. If B is odd, then SGR

is . 17
9
C ıB

9
/-competitive where ıB D

2
BC1

.

Theorem 5 ([3]) Algorithm EM
OEP

0

(not
stated in detail due to space limitation),
which is based on a water level algorithm
and uses a fractional matching in an online
constructed graph, achieves a competitiveness
of e=.e � 1/.1C .bHm C 1c/=B/, where Hm de-

notes the mth harmonic number. Thus, EM
OEP

0

is
asymptotically e

e�1
-competitive for B � log m.

Randomized Algorithms

Theorem 6 ([1]) The competitive ratio of
each randomized online algorithm is at least
% D 1:4659 for any buffer size B ( % D 1C 1

˛C1

where ˛ is the unique positive root of
e˛ D ˛ C 2).

Theorem 7 (Generalizing technique [9]) If
there is a randomized c-competitive algorithm
A for B D 1, then there is a randomized c-
competitive algorithm QA for all B.

Algorithm: RS (Random Schedule)

1. The algorithm uses m auxiliary queues
Q1; : : : ; Qm of sizes B1; : : : ; Bm (different
buffer sizes at the distinct ports are allowed),
respectively. These queues contain real
numbers from the range (0,1), where each
number is labeled as either marked or
unmarked. Initially, these queues are empty.

2. Packet arrival: If a new packet arrives at queue
qi, then the algorithm chooses uniformly at
random a real number from the range (0,1)
that is inserted into queue Qi and labeled as
unmarked. If queue Qi was full when the
packet arrived, the number at the head of the
queue is deleted prior to the insertion of the
new number.

3. Packet transmission: Check whether queues
Q1; : : : ; Qm contain any unmarked number.
If there are unmarked numbers, let Qi be the
queue containing the largest unmarked num-
ber. Change the label of the largest number to
“marked” and select queue qi for transmission.
Otherwise (no unmarked number), transmit
a packet from any non-empty queue if such
exists.

Theorem 8 ([4]) Randomized algorithm RS is
e

e�1
� 1:58-competitive.

Algorithm: RP (Random Permutation) Let P be
the set of permutations of f1; : : : ; mg, denoted
as m-tuples. Choose � 2 P according to the uni-
form distribution and fix it. In each transmission
step, choose among the populated queues that
one whose index is most to the front in the
m-tuple  .

Theorem 9 ([9]) Randomized algorithm RP
is 3

2
-competitive for B D 1. By Theorem 7,

there is a randomized algorithm QRP that is
3
2

-competitive for arbitrary B.

Arbitrary Value Packets

Definition 1 A switching algorithm ALG is
called comparison-based if it bases its decisions
on the relative order between packet values (by
performing only comparisons), with no regard to
the actual values.
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Theorem 10 (Zero-one principle [5]) Let ALG
be a comparison-based switching algorithm (de-
terministic or randomized). ALG is c-competitive
if and only if ALG achieves a c-competitiveness
for all packet sequences whose values are re-
stricted to f0; 1g for every possible way of break-
ing ties between equal values.

Algorithm: GR (Greedy) Enqueue a new packet
if

• the queue is not full
• or a packet with the smallest value in the

queue has a lower value then the new packet.
In this case, a smallest value packet is dis-
carded and the new packet in enqueued.

Algorithm: TLH (Transmit Largest Head)

1. Buffer management: Use algorithm GR inde-
pendently in all m incoming queues.

2. Scheduling: At each time step, transmit the
packet with the largest value among all pack-
ets at the head of the queues.

Theorem 11 ([5]) Algorithm TLH is 3-
competitive.

Algorithm: TL (Transmit Largest)

1. Buffer management: Use algorithm GR inde-
pendently in all m incoming queues.

2. Scheduling: At each time step, transmit the
packet with the largest value among all pack-
ets stored in the queues.

Algorithm: GSA (Generic Switch)

1. Buffer management: Apply buffer manage-
ment policy A to all m incoming queues.

2. Scheduling: Run a simulation of algorithm TL
(in the preemptive relaxed model) with the
online input sequence ¢ . Adopt all scheduling
decisions of TL, i.e., at each time step, transmit
the packet at the head of the queue used by TL
simulation.

Theorem 12 (General reduction [4]) Let
GSA denote the algorithm obtained by running

algorithm GS with the event-driven single-queue
buffer management policy A (preemptive or
non-preemptive) and let cA be the competitive
ratio of A. The competitive ratio of GSA satisfies
cGSA � 2 � cA.

Applications

The unit value scenario models most current
networks, e.g., IP networks which only support
a “best effort” service in which all packet streams
are treated equally, whereas the scenario with
arbitrary packet values integrates full QoS capa-
bilities.

The general reduction technique allows
to restrict oneself to investigate single-queue
buffer problems. It can be applied to a 1.75-
competitive algorithm named PG by Bansal
et al. [7], which achieves the best ratio known
today, and yields an algorithm GSP G that is 3.5-
competitive for multi-queue buffers (3.5 is still
higher than 3 which is the competitive ratio of
TLH). In the 2-value preemptive model, Lotker
and Patt-Shamir [8] presented a mark&flush
algorithm mf that is 1.30-competitive for single
queue buffers and that the general reduction
technique transforms into a 2.60-competitive
algorithm GSmf for multi-queue buffers.

For the general non-preemptive model,
Andelman et al. [2] presented a policy for a single
queue called Exponential-Interval Round-Robin
(EIRR), which is .edln ˛e/-competitive, and
showed also a lower bound of �.log ˛/. In the
multi-queue buffer case, the general reduction
technique provides a non-preemptive .edln ˛e/-
competitive algorithm.

Open Problems

It is known from Theorem 3 that the competitive
ratio of any greedy algorithm in the unit value
model is at least 2 if m� B . Which is the
tight upper bound for greedy algorithms in the
opposite case B � m?

The proof of the lower bound e=.e � 1/ in
Theorem 1 uses m� B whereas Theorem 5
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achieves e=.e � 1/ as an upper bound for
B � log m. In [4], a lower bound of 1.366
is shown, independent of B and m. Which is
the optimal competitive ratio for arbitrary B
and m?

Due to the general reduction technique in
Theorem 7, the competitive ratio for multi-queue
buffer algorithms can be improved if better com-
petitiveness results for single queue buffer algo-

rithms are achieved. Currently,
p

13C5
6
� 1:43 [2]

and 1.75 [7] are the best known lower and up-
per bounds, respectively. How to reduce this
gap?
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Problem Definition

In this entry, consider a quality-of-service (QoS)
buffering system that is able to hold B packets.
Time is slotted. At the beginning of a time step, a
set of packets (possibly empty) arrives, and at the
end of the time step, a single packet may leave
the buffer to be transmitted. Since the buffer has
a bounded size, at some point packets may need
to be dropped. The buffer management algorithm
has to decide at each step which of the packets
to drop and which packets to transmit, subject
to the buffer capacity constraint. The value of a
packet p is denoted by v.p/. The system obtains
the value of the packets it sends and gains no
value otherwise. The aim of the buffer manage-
ment algorithm is to maximize the total value of
transmitted packets.

In the FIFO model, the packet transmitted at
time t is always the first (oldest) packet in the
buffer.

In the nonpreemptive model, packets accepted
to the queue will be transmitted eventually and
cannot be dropped. In this model, the best com-
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petitive ratio achievable is ‚.log ˛/, where ˛ is
the ratio of the maximum value of a packet to the
minimum [1, 2].

In the preemptive model, packets can also
be dropped at some later time before they are
served. The rest of this entry focuses on this
model. Mansour, Patt-Shamir, and Lapid [11]
were the first to study preemptive queuing
policies for a single FIFO buffer, proving that
the natural greedy algorithm (see definition
in Fig. 1) maintains a competitive ratio of at
most 4. This bound was improved to the tight
value of 2 by Kesselman, Lotker, Mansour,
Patt-Shamir, Schieber, and Sviridenko [8]. An
alternative proof of the 2-competitiveness, due
to Kimbrel [9], is presented in Epstein and van
Stee’s survey on buffer management [5].

The greedy algorithm is not optimal since it
never preempts a packet until the buffer is full and
this might be too late. The first algorithm with a
competitive ratio strictly below 2 was presented
by Kesselman, Mansour, and van Stee [7]. This
algorithm uses a parameter ˇ and introduces an
extra rule for processing arrivals that is executed

before rules (1) and (2) of the greedy algorithm.
This rule is formulated in Fig. 2.

It is shown in [7] that by taking “ D 15, the
algorithm preemptive greedy (PG) has a com-
petitive ratio of 1.983. The analysis is rather
complicated and is done by assigning the value of
packets served by the offline algorithm to packets
served by PG.

A lower bound of 5/4 for this problem was
shown in [11]. This was improved to

p
2 in [2]

and then to 1.419 in [7].

Key Results

A modification of PG was presented by Bansal,
Fleischer, Kimbrel, Mahdian, Schieber, and
Sviridenko [3]. It changes rule 0 to rule 00

(Fig. 3).
Thus, the modification compared to PG is that

this algorithm finds a “locally optimal” packet to
evict. We will denote modified preemptive greedy
by MPG.

Packet Switching in
Single Buffer, Fig. 1 The
natural greedy algorithm

The Greedy Algorithm.
When a packet of value n (p) arrives:
1. Accept p if there is free space in the buffer.
2. Otherwise, reject (drop or preempt) the packet p�
   that has minimal value among p and the packets in
   the buffer. If p� ≠ p, accept p.

0. Preempt (drop) the first packet p� in the FIFO order
   such that n ( p�) ≤ n ( p)/b, if any (p preempts p�).

Packet Switching in Single Buffer, Fig. 2 Extra rule for the preemptive greedy algorithm

Packet Switching in
Single Buffer, Fig. 3
Modified preemptive
greedy

0’. Find the first (i.e., closest to the front of the buffer)
   packet p� such that p� has value less than n (p)/b and
   not more than the value of the packet after p� in the
    buffer (if any). If such a packet exists, drop it (p pre-
    empts p�).
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Theorem 1 ([3]) For ˇ D 4, MPG has a com-
petitive ratio of 1.75.

The proof begins by showing that in order to
analyze the performance of MPG, it is sufficient
to consider only input instances in which the
value of each packet is either 0 or ˇi for some
i � 0, but ties are allowed to be broken by the
adversary.

The authors then define an interval structure
for input instances. An interval I is said to be
of type i if at every step t 2 I , MPG outputs a
packet of value at least “i , and I is a maximal
interval with this property.

Ii is the collection of maximal intervals of
type i , and I is the union of all Ii ’s. This is
a multiset, since an interval of type i can also
be contained in an interval of one or more types
j < i .

This induces an interval structure which is a
sequence of ordered rooted trees in a natural way:
The root of each tree is an interval in I0, and the
children of each interval I 2 Ii are all the max-
imal intervals of type i C 1 which are contained
in I . These children are ordered from left to right
based on time, as are the trees themselves. The
intervals of type i (and the vertices that represent
them) are distinguished by whether or not an
eviction of a packet of value at least ˇi occurred
during the interval.

To complete the proof, the authors show that
for every interval structure T , the competitive
ratio of MPG on instances with interval structure
T can be bounded by the solution of a linear
program indexed by T . Finally, it is shown that
for every T and every “ � 4, the solution of this
program is at most 2 � 1=“.

Applications

In recent years, there has been a lot of interest
in quality-of-service networks. In regular IP net-
works, packets are indistinguishable, and in case
of overload, any packet may be dropped. In a
commercial environment, it is much more prefer-
able to allow better service to higher-paying cus-
tomers or customers with critical requirements.

The idea of quality-of-service guarantees is that
packets are marked with values which indicate
their importance.

This naturally leads to decision problems at
network switches when many packets arrive and
overload occurs. The algorithm presented in this
entry can be used to maximize network perfor-
mance in a network which supports quality of
service.

Open Problems

Despite substantial advances in improving the
upper bound for this problem, a fairly large gap
remains. Sgall (quoted in Jawor [6]) showed that
the performance of PG is as good as that of MPG.
Englert and Westermann [4] showed that PG has
a competitive ratio of at most

p
3 � 1:732 and

at least 1 C 1=2
p

2 � 1:707. Thus, to improve
further, a different algorithm will be needed.

The authors also note that Lotker and Patt-
Shamir [10] studied the special case of two packet
values and derived a 1.3-competitive algorithm,
which closely matches the corresponding lower
bound of 1.28 from Mansour et al. [11].
An open problem is to close the remaining
small gap.
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Problem Definition

Given a user query, current web search services
retrieve all web pages that contain the query
terms resulting in a huge number of web pages
for the majority of searches. Thus it is cru-
cial to reorder or rank the resulting documents
with the goal of placing the most relevant docu-
ments first. Frequently, ranking uses two types of
information: (1) query-specific information and
(2) query-independent information. The query-
specific part tries to measure how relevant the
document is to the query. Since it depends to
a large part on the content of the page, it is
mostly under the control of the page’s author.
The query-independent information tries to es-
timate the quality of the page in general. To
achieve an objective measure of page quality,
it is important that the query-independent infor-
mation incorporates a measure that is not con-
trolled by the author. Thus the problem is to
find a measure of page quality that: (a) cannot
be easily manipulated by the web page’s author
and (b) works well for all web pages. This is
challenging as web pages are extremely hetero-
geneous.

Key Results

The hyperlink structure of the web is a good
source for basing such a measure as it is hard
for one author or a small set of authors to influ-
ence the whole structure, even though they can
manipulate a subset of the web pages. Brin and
Page showed that a relatively simple analysis of
the hyperlink structure of the web can be used
to produce a quality measure for web documents
that leads to large improvements in search qual-
ity. The measure is called the PageRank mea-
sure.

Linear Algebra-Based Definition
Let n be the total number of web pages. The
PageRank vector is an ndimensional vector with
one dimension for each web page. Let d be a
small constant, like 1/8, let deg(p) denote the
number of hyperlinks in the body text of page p,
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and let PR.p/ denote the PageRank value of page
p. Assume first that every page contains at least
one hyperlink. In such a collection of web pages,

the PageRank vector is computed by solving a
system of linear equations that contains for each
page p the equation

PR.p/ D d=nC .1 � d/ �
X

q has hyperlink to p

PR.q/=deg.q/

In matrix notation, the PageRank vector is the
Eigenvector with 1Norm one of the matrix A with
d=n C .1 � d/=deg.q/ for entry Aqp if q has a
hyperlink to p and d=n otherwise.

If web pages without hyperlinks are allowed
in this linear system, then they might become
“PageRank sinks”, i.e., they would “receive”
PageRank from the pages pointing to them, but
would not “give out” their PageRank, potentially
resulting in an “unusually high” PageRank value
for themselves. Brin and Page proposed two ways
to deal with web pages without out-links, namely
either to recursively delete them until no such
web pages exist anymore in the collection or to
add a hyperlink from each such page to every
other page.

Random Surfer Model
Let the web graph G D .V; E/ be a directed
graph such that each node corresponds to a web
page and every hyperlink corresponds to a di-
rected edge from the referencing node to the
referenced node. The PageRank can also be in-
terpreted as the following random walk in the
web graph. The random walk starts at a random
node in the graph. Assume in step k it visits
page q. Then it flips a biased coin, and with
probability d or if q has no out-edges, it selects
a random node out of V and visits it in step
k C 1. Otherwise it selects a random out-edge
of the current node and visits it in step k C 1.
(Note that this corresponds to adding a directed
edge from every page without hyperlink to ev-
ery node in the graph.) Under certain conditions
(which do not necessarily hold on the web) the
stationary distribution of this random walk cor-
responds to the PageRank vector. See [1, 4] for
details.

Brin and Page also suggested computing the
PageRank vector approximately using the power
method, i.e., by setting all initial values to 1=n

and then repeatedly using the PageRank vector of
the previous iteration to compute the PageRank
vector of the current iteration using the above
linear equations. After a hundred iterations,
barely any values change and the computation
is stopped.

Applications

The PageRank measure is used as one of the
factors by Google in its ranking of search results.
The PageRank computation can be applied to
other domains as well. Two examples are repu-
tation management in P2P networks and learning
word dependencies in natural language process-
ing. In relational databases PageRank was used
to weigh database tuples in order to improve
keyword searching when a user does not know the
schema. Finally, in rank aggregation PageRank
can be used to find a permutation that minimally
violates a set of given orderings. See [1] for more
details.

Variations of PageRank were studied as well.
Personalizing the PageRank computation such
that the values reflect the interest of a user has
received a lot of attention. See [3] for a survey on
this topic. It can also be modified to be used for
detecting web search spam, i.e., web pages that
try to manipulate web search results [1].
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Problem Definition

In the general form of multiprocessor precedence
scheduling problems a set of n tasks to be exe-
cuted on m processors is given. Each task requires
exactly one unit of execution time and can run on
any processor. A directed acyclic graph specifies
the precedence constraints where an edge from
task x to task y means task x must be completed
before task y begins. A solution to the problem
is a schedule of shortest length indicating when
each task is started. The work of Jung, Serna,
and Spirakis provides a parallel algorithm (on

a PRAM machine) that solves the above problem
for the particular case that m D 2, that is where
there are two parallel processors.

The two processor precedence constraint
scheduling problem is defined by a directed
acyclic graph (dag) G D .V; E/. The vertices
of the graph represent unit time tasks, and the
edges specify precedence constraints among
the tasks. If there is an edge from node x to
node y then x is an immediate predecessor of
y. Predecessor is the transitive closure of the
relation immediate predecessor, and successor
is its symmetric counterpart. A two processor
schedule is an assignment of the tasks to time
units 1; : : : ; t so that each task is assigned exactly
one time unit, at most two tasks are assigned to
the same time unit, and if x is a predecessor of y
then x is assigned to a lower time unit than y. The
length of the schedule is t. A schedule having
minimum length is an optimal schedule. Thus the
problem is the following:

Name Two processor precedence constraint
scheduling

Input A directed acyclic graph
Output A minimum length schedule preserv-

ing the precedence constraints.

Preliminaries
The algorithm assume that tasks are partitioned
into levels as follows:

(i) Every task will be assigned to only one
level

(ii) Tasks having no successors will be as-
signed to level 1 and

(iii) For each level i, all tasks which are imme-
diate predecessors of tasks in level i will
be assigned to level i C 1.

Clearly topological sort will accomplish the
above partition, and this can be done by an
NC algorithm that uses O(n3) processors and
O.log n/ time, see [3]. Thus, from now on, it is
assumed that a level partition is given as part of
the input. For sake of convenience two special
tasks, t0 and t� are added, in such a way that
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the original graph could be taught as the graph
formed by all tasks that are successors of t0 and
predecessors of t�. Thus t0 is a predecessor of
all tasks in the system (actually an immediate
predecessor of tasks in level the highest level
L(G)) and t� is a successor of all tasks in
the system (an immediate successor of level 1
tasks).

Notice that if two tasks are at the same level
they can be paired. But when x and y are at
different levels, they can be paired only when
neither of them is a predecessor of the other.
Let L(G) denote the number of levels in a given
precedence graph G. A level schedule schedules
tasks level by level. More precisely, suppose lev-
els L.G/; : : : ; i C 1 have already been scheduled
and there are k unscheduled tasks remaining on
level i. When k is even, those tasks with are paired
with each other. When k is odd, k � 1 of the tasks
are paired with each other, while the remaining
task may (but not necessarily) be paired with
a task from a lower level.

Given a level schedule level i jumps to level i 0

(i 0 < i) if the last time step containing a task from
level i also contains a task from level i 0. If the
last task from level i is scheduled with an empty
slot, it is said that level i jumps to level 0. The
jump sequence of a level schedule is the list of
levels jumped to. A lexicographically first jump
schedule is a level schedule whose jump sequence
is lexicographically greater than any other jump
sequence resulting from a level schedule.

Given a graph G a level partition of G is
a partition of the nodes in G into two sets in
such a way that levels 0; : : : ; k are contained in
one set (the upper part) denoted by U, and levels
k C 1; : : : ; L in the other (the lower part) denoted
by L. Given a graph G and a level i, the i-partition
of G (or the partition at level i) is formed by
the graphs Ui and Li defined as Ui contains all
nodes x such that level.x/ < i and Li contains
all nodes x with level.x/ > i . Note that each i-
partition determines two different level partitions
depending on whether level i nodes are assigned
to the upper or the lower part. A task x 2 Ui is
called free with respect to a partition at level i if x
has no predecessors in Li.

Auxiliary Problems
The algorithm for the two processors precedence
constraint scheduling problem uses as a building
block an algorithm for solving a matching prob-
lem in a particular graph class.

A full convex bipartite graph G is a triple
.V; W; E/, where V D fv1; : : : ; vkg and
W D fw1; : : : ; wk0g are disjoint sets of vertices.
Furthermore the edge set E satisfies the following
property: If .vi ; wj / 2 E then .vq; wj / 2 E for
all q � i . Thus, from now on it is assumed that
the graph is connected.

A set F 	 E is a matching in the graph
G D .V; W; E/ iff no two edges in F have a com-
mon endpoint. A maximal matching is a matching
that cannot be extended by the addition of any
edge in G. A lexicographically first maximal
matching is a maximal matching whose sorted
list of edges is lexicographically first among all
maximal matchings in G.

Key Results

When the number of processors m is arbitrary
the problem is known to be NP-complete [8].
For any m � 3, the complexity is open [6]. Here
the case of interest has been m D 2. For two
processors a number of efficient algorithms has
been given. For sequential algorithms see [2, 4,
5] among others. The first deterministic parallel
algorithm was given by Helmbold and Mayr [7],
thus establishing membership in the class NC.
Previously [9] gave a randomized NC algorithm
for the problem. Jung, Serna and Spirakis present
a new parallel algorithm for the two processors
scheduling problem that takes time O.log2 n/ and
uses O(n3) processors on a CREW PRAM. The
algorithm improves the number of processors of
the algorithm given in [7] from O.n7L.G/2/,
where L(G) is the number of levels in the prece-
dence graph, to O(n3). Both algorithms compute
a level schedule that has a lexicographically first
jump sequence.

To match jumps with tasks it is used a solution
to the problem of computing the lexicographi-
cally first matching for a special type of convex



Parallel Algorithms for Two Processors Precedence Constraint Scheduling 1513

P

bipartite graphs, here called full convex bipartite
graphs. A geometric interpretation of this prob-
lem leads to the discovery of an efficient parallel
algorithm to solve it.

Theorem 1 The lexicographically first maximal
matching of full convex bipartite graphs can be
computed in time O.log n/ on a CREW PRAM
with O.n3= log n/ processors, where n is the
number of nodes.

The previous algorithm is used to solve efficiently
in parallel two related problems.

Theorem 2 Given a precedence graph G, there
is a PRAM parallel algorithm that computes all
levels that jump to level 0 in the graph Li and all
tasks in level i � 1 that can be scheduled together
with a task in level i, for i D 1; : : : ; L.G/, using
O(n3) processors and O.log2 n/ time.

Theorem 3 Given a level partition of a graph
G together with the levels in the lower part in
which one task remains to be matched with some
other task in the upper part of the graph. There
is a PRAM parallel algorithm that computes
the corresponding tasks in time O.log n/ using
n3= log n processors.

With those building blocks the algorithm for two
processor precedence constraint scheduling starts
by doing some preprocessing and after that an
adequate decomposition that insure that at each
recursive call a number of problems of half size
are solved in parallel. This recursive schema is
the following:

Algorithm Schedule

0. Preprocessing
1. Find a level i such that jUi j � n=2 and
jLi j � n=2.

2. Match levels that jump to free tasks in level i.
3. Match levels that jump to free tasks in Ui.
4. If level i (or i C 1) remain unmatched try to

match it with a non free task.
5. Delete all tasks used to match jumps.
6. Apply (1)–(5) in parallel to Li and the modi-

fied Ui.

Algorithm Schedule stops whenever the corre-
sponding graph has only one level.

The correction an complexity bounds for algo-
rithm Schedule follows from the previous results,
leading to:

Theorem 4 There is an NC algorithm which
finds an optimal two processors schedule for any
precedence graph in time O.log2 n/ using O(n3)
processors.

Applications

A fundamental problem in many applications is
to devise a proper schedule to satisfy a set of
constrains. Assigning people to jobs, meetings
to rooms, or courses to final exam periods are
all different examples of scheduling problems.
A key and critical algorithm in parallel process-
ing is the one mapping tasks to processors. In
the performance of such an algorithm relies many
properties of the system, like load balancing, total
execution time, etc. Scheduling problems differ
widely in the nature of the constraints that must
be satisfied, the type of processors, and the type
of schedule desired.

The focus on precedence-constrained schedul-
ing problems for directed acyclic graphs has
a most direct practical application in problems
arising in parallel processing. In particular in
systems where computations are decomposed,
prior to scheduling into approximately equal
sized tasks and the corresponding partial ordering
among them is computed. These constraints must
define a directed acyclic graph, acyclic because
a cycle in the precedence constraints represents
a Catch situation that can never be resolved.

Open Problems

The parallel deterministic algorithm for the two
processors scheduling problem presented here
improves the number of processors of the Helm-
bold and Mayr algorithm for the problem [7].
However, the complexity bounds are far from
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optimal: recall that the sequential algorithm given
in [5] uses time O.e C n˛.n//, where e is the
number of edges in the precedence graph and
˛.n/ is an inverse Ackermann’s function. Such
an optimal algorithm might have a quite different
approach, in which the levelling algorithm is not
used.

Interestingly enough computing the lexico-
graphically first matching for full convex bipartite
graphs is in NC, in contraposition with the results
given in [1] which show that many problems de-
fined through a lexicographically first procedure
in the plane are P-complete. It is an interesting
problem to show whether all these problems fall
in NC when they are convex.
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Problem Definition

Given a weighted undirected graph G with n ver-
tices and m edges, compute a minimum spanning
tree (or spanning forest) of G on a parallel ran-
dom access machine (PRAM) without concurrent
write capability.

A minimum spanning tree of a graph is a
spanning tree with the smallest possible sum
of edge weights. The parallel random access
machine (PRAM) is an abstract model for
designing parallel algorithms and understanding
the power of parallelism. In this model,
processors (each being a random access machine)
work in a synchronous manner and communicate
through a shared memory. PARM can be further
classified according to whether it is allowed for
more than one processor to read and write into the
same shared memory location simultaneously.
The strongest model is CRCW (concurrent-read,
concurrent-write) PRAM, and the weakest is
EREW (exclusive-read, exclusive-write) PRAM.
For an introduction to PRAM algorithms, one can
refer to Karp and Ramachandran [8] and JáJá [5].

The input graph G is assumed to be given in
the form of adjacency lists. Furthermore, isolated
(degree-0) vertices are removed, and hence it is
assumed that m � n.
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Key Results

The MST problem is related to the connected
component (CC) problem, which is to find the
connected components of an undirected graph.
Sequential algorithms for solving the CC prob-
lem and the MST problem in O.m/ time and
O.m log n/ time, respectively, were known a few
decades ago. A number of more efficient MST
algorithms have since been published, the most
recent of which is Pettie and Ramachandran’s
algorithm [9], which is provably optimal.

In the parallel context, both problems are often
solved in a similar way. With respect to CRCW
PRAM, the two problems can be solved using
O.log n/ time and n C m processors (see, e.g.,
Cole and Vishkin [3]). Using randomization, .nC

m/= log n processors are sufficient to solve these
problems in O.log n/ expected time [2, 10].

For EREW PRAM, O.log2 n/ time algorithms
for the CC and MST problems were developed
in the early 1980s. For a while, it was believed
that the exclusive write models (including both
concurrent read and exclusive read) could not
overcome the O.log2 n/ time bound [8]. The first
breakthrough was due to Johnson and Metaxas
[6]; they devised O.log1:5 n/ time algorithms for
the CC problem and the MST problem. These
results were soon improved to O.log n log log n/

time by Chong and Lam. If randomization is
allowed, the time complexity can be improved to
O.log n/ expected time and optimal work [7, 10,
11]. Finally, Chong, Han, and Lam [1] obtained
an algorithm for MST (and CC) using O.log n/

time and n C m processors. This algorithm does
not need randomization. Notice that ‚.log n/

is optimal since these graphs’ problems are at
least as hard as computing the OR of n bits,
and Cook et al. [4] have proven that the latter
requires �.log n/ time on exclusive-write PRAM
no matter how many processors are used.

Below is a sketch of some ideas for computing
a minimum spanning tree in parallel without
using concurrent write.

Without loss of generality, assume that the
edge weights are all distinct. Thus, G has a
unique minimum spanning tree, which is denoted
by T �G . Let B be a subset of edges in G which

contains no cycle. B induces a set of trees F D

fT1; T2; � � � ; Tlg in a natural sense – two vertices
in G are in the same tree if they are connected
by an edge of B . B is said to be a �-forest if each
tree T 2 F has at least � vertices. For example, if
B is the empty set, then B is a 1forest; a spanning
tree is an n-forest.

Suppose that B is a �-forest and its edges are
all found in T �G . Then B can be augmented to give
a 2�-forest using a greedy approach: Let F 0 be an
arbitrary subset of F including all trees T 2 F

with fewer than 2� vertices. For every tree in F 0,
pick its minimum external edge (i.e., the smallest-
weight edge connecting to a vertex outside the
tree). Denote B 0 as this set of edges. It can be
proven that B 0 consists of edges in T �G only and
B [ B 0 is a 2�-forest. The above idea allows us
to find T �G in blog nc stages as follows:

1. B  	

2. For i D 1 to blog nc do /* Stage i */
1. Let F be the set of trees induced by B on

G. Let F 0 be an arbitrary subset of F such
that F 0 includes all trees T 2 F with fewer
than 2 i vertices.

2. Bi  fe j e is the minimum external edge
of T 2 F 0gIB  B [ Bi

3. returnB

Different strategies for choosing the set F 0 in
Step 1(a) may lead to different Bi ’s. Never-
theless, BŒ1; i � is always a subset of T �G and
induces a 2i -forest. In particular, BŒ1; blog nc�

induces exactly one tree, which is exactly T �G .
Using standard parallel algorithmic techniques,
each stage can be implemented in O.log n/ time
on EREW PRAM using a linear number of pro-
cessors (see, e.g., [5],). Therefore, T �G can be
found in O.log2 n/ time. In fact, most parallel
algorithms for finding MST are based on a similar
approach. These parallel algorithms are “sequen-
tial” in the sense that the computation of Bi starts
only after Bi�1 is available.

The O.log n/-time EREW algorithm in [1] is
based on some structural properties related to
MST and can compute the Bi ’s in a more par-
allel fashion. In this algorithm, there are blog nc

concurrent threads (a thread is simply a group
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of processors). For 1 � i � blog nc, Thread i

aims at computing Bi , and it actually starts long
before Thread i � 1 has computed Bi�1, and it
receives the output of Threads 1 to i � 1 (i.e.,
B1; � � � ; Bi�1) incrementally. More specifically,
the algorithm runs in blog nc supersteps, where
each superstep lasts O(1) time. Thread i delivers
Bi at the end of the i th superstep. The compu-
tation of Thread i is divided into blog ic phases.
Let us first consider a simple case when i is a
power of 2. Phase 1 of Thread i starts at the
.i=2 C 1/th superstep, i.e., when B1; � � � ; Bi=2

are available. Phase 1 takes no more than i=4

supersteps, ending at the (i=2C i=4)th superstep.
Phase 2 starts at the (i=2C i=4C 1)th superstep
(i.e., when Bi=2C1; � � � ; Bi=2Ci=4 are available)
and uses i /8 supersteps. Each subsequent phase
uses half as many supersteps as the preceding
phase. The last phase (Phase log i ) starts and
ends within the i th superstep; note that Bi�1 is
available after (i � 1)th superstep.

Applications

Finding connected components or MST is a key
step in several parallel algorithms for other graph
problems. For example, the Chong-Han-Lam
algorithm implies an O.log n/ time algorithm
for finding ear decomposition and biconnectivity
without using concurrent write.
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Problem Definition

Computational Social Choice is an interdisci-
plinary research area involving Economics, Po-
litical Science, and Social Science on the one
side and Mathematics and Computer Science
(including artificial intelligence and multi-agent
systems) on the other side. Concrete questions
addressed in this area include the following three:
How efficiently can one determine the winner of
an election, given a number of votes with prefer-
ences over a number of alternatives? Is it possible
to obtain a desirable outcome of an election
by executing a number of campaigning actions?
(Formally, such problems are often modeled as
bribery.) Can the chair of an election influence
the result of an election by modifying the set
of available alternatives (e.g., by encouraging
some alternatives (candidates) to participate in
the run)?

The main objective of parameterized complex-
ity is to analyze computationally hard problems
with respect to multiple input parameters and
to classify these problems according to their in-
herent difficulty when “viewed through different
parameterizations.” The complexity of a problem
typically depends on the values of a multitude of
input parameters, so this approach allows to clas-
sify NP-hard problems on a much finer scale than
in classical complexity theory (where the com-
plexity of a problem is only measured relative
to the input size). In particular, a parameterized
problem consisting of an input instance I and a
parameter k is called fixed-parameter tractable
if it can be solved in f .k/ � jI jO.1/ time for a
computable function f which typically grows at
least exponentially in k. This still means, how-
ever, that the problem is efficiently solvable for
small parameter values.

Parameterized complexity analysis, which
still adheres to a worst-case complexity scenario,
has been successfully applied in many areas.
Computational Social Choice, although being
a more recent application area [5], is among
the most natural ones. To make this more
precise, we next discuss in more detail three
prominent voting problems that were already
briefly mentioned in the introductory part: winner
determination, campaign management/bribery,
and control.

An election E WD .C; V / consists of a set C

of m alternatives c1; c2; : : : ; cm and a list V of
n voters v1; v2; : : : ; vn. Each voter v has a linear
order 
v over the set C which we call a pref-
erence order. For example, if C D fc1; c2; c3g,
then the preference order c1 
v c2 
v c3 of
voter v indicates that v likes c1 most (the 1st
position), then c2, and c3 least (the 3rd position).
For any two distinct alternatives c and c0, we
write c 
v c0 if voter v prefers c over c0. For
an election E D .C; V /, an alternative c 2 C is
a Condorcet winner if any other alternative c0 2

C n fcg satisfies

jfv 2 V j c 
v c0gj > jfv 2 V j c0 
v cgj.

It is important to note that voting problems typi-
cally come along with many natural parameter-
izations, the two most obvious ones being the
number of candidates (which is typically small in
political elections, say) or the number of voters
(which is often small in applications concerning
multi-agent systems or decision making by com-
mittees). A further, standard type of parameter
refers to the size (or the value) of the solution that
we seek.

We now give an example of a winner deter-
mination problem, focusing on the voting rule
due to Dodgson (also known as the writer Lewis
Carroll). In Dodgson’s system, the score of a
candidate is the smallest number of swaps of
adjacent candidates needed to ensure that this
candidate is a Condorcet winner. In the DODG-
SON SCORE problem we ask about the score of a
given candidate in an election:
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Input: An election E WD .C; V /, a distinguished
alternative c2 C , and a nonnegative integer k.

Question: Can one make c the Condorcet
winner by swapping a total number of at
most k pairs of neighboring alternatives
(i.e., k “bubble sort operations”) in the voters’
preference orders?

Our campaign management/bribery example
is based on the t -Approval voting rule. In t -
Approval, every voter can assign one point to
each of t most preferred alternatives, and the al-
ternatives with maximum total number of points
win. Notably, 1-Approval simply is the frequently
used Plurality voting rule. Now, the NP-hard
problem SWAP BRIBERY FOR t -APPROVAL reads
as follows.

Input: An election E WD .C; V /, a distinguished
alternative c 2 C , a cost function assigning
a nonnegative integer cost to every swap-of-
consecutive-candidates operation, and a non-
negative integer ˇ called the budget.

Question: Can one make c a winner by swap
operations of total cost at most ˇ?

Intuitively, each swap operation means a cam-
paigning effort that convinces the voter that one
candidate is better than the other and comes at a
given cost (measured in time or money or some
other way).

Finally, our control example focuses on con-
trol by adding alternatives in an election based on
the plurality voting role. Note that other control
actions include, for example, deleting alternatives
or adding/deleting voters (assuming a powerful
and corrupted chair of an election). The goal of
the chair can either be to ensure someone’s vic-
tory (constructive control) or preclude someone
from winning (destructive control); we focus on
the former. The NP-hard problem PLURALITY

CONSTRUCTIVE CONTROL BY ADDING ALTER-
NATIVES reads as follows:

Input: An election E WD .C; V /, a distinguished
alternative c 2 C , a set of “spoiler alterna-
tives” for possible addition, and a nonnegative
integer k.

Question: Can one make c a winner by adding
at most k spoiler alternatives?

Note that we assume that every voter has a clear
linear order over all alternatives (including the
spoiler alternatives) and that this is known by the
manipulating election chair.

Key Results

We again start with our winner determination
example. Bartholdi, Tovey, and Trick [1] were the
first to provide an “ILP-based” fixed-parameter
tractability result in the context of Computational
Social Choice (actually the result was stated
implicitly). They developed an integer linear
program (ILP) to solve the NP-hard DODGSON

SCORE problem and gave a running time bound
based on a famous result of Lenstra, concerning
the exact solvability of integer linear programs
with “few” variables. Without having explicitly
stated this in their publication, this implies fixed-
parameter tractability for DODGSON SCORE

with respect to the parameter number m of
alternatives.

Bartholdi et al. [1]’s integer linear program for
DODGSON SCORE reads as follows. It computes
the Dodgson score of an alternative c.

min
X

i;j

j � xi;j subject to

8i 2 QV W
X

j

xi;j D Ni ;

8y 2 C W
X

i;j

ei;j;y � xi;j � dy ;

xi;j � 0:

Here, QV denotes the set of preference order
types (i.e., the set of different preference orders
in the given election), Ni denotes the number of
voters of type i , xi;j denotes the number of voters
with preference order of type i for which alter-
native c will be moved upward by j positions,
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ei;j;y is 1 if the result of moving alternative c by j

positions upward in a preference order of type i

is that c gains an additional voter support against
alternative y, and 0 otherwise. Furthermore, dy is
the deficit of c with respect to alternative y, that
is, the minimum number of voter supports that
c must gain against y to defeat y in a pairwise
comparison. If c already defeats y, then dy D 0.
Altogether, the integer linear program contains
at most m � mŠ variables xi;j , where m denotes
the number of alternatives. Thus, the number
of variables in the described integer linear pro-
gram is upper-bounded by a function in parame-
ter m, yielding fixed-parameter tractability due to
Lenstra’s result.

We remark that beyond the above parame-
terization by the number m of alternatives, it
is also known that DODGSON SCORE is fixed-
parameter tractable with respect to the parameter
total number of swaps [4] (this is an exam-
ple of a parameter that measures the solution
value).

Now we briefly discuss some parameterized
complexity results for SWAP BRIBERY FOR

t -APPROVAL due to Dorn and Schlotter [8].
The SWAP BRIBERY problem was introduced
by Elkind et al. [9], who have shown that the
problem is NP-complete for a variety of voting
rules, including t -Approval (for t � 2). Dorn and
Schlotter provided a detailed discussion of the
complexity of the problem for t -Approval, and,
in particular, they have shown that the problem
is fixed-parameter tractable when parameterized
by the number of voters. On the contrary, if
we take t to be the parameter (i.e., the problem
no longer considers a single, fixed voting rule
but a whole family of them), then the problem
is W[1]-hard (and, unless unlikely complexity
class collapses occur, the problem is not fixed-
parameter tractable).

The complexity of control problems was first
studied by Bartholdi, Tovey, and Trick [2], who
– in particular – have shown that PLURALITY

CONSTRUCTIVE CONTROL BY ADDING AL-
TERNATIVES (PCCAC) is NP-complete. Control
problems have received relatively little attention

from the parameterized complexity perspective.
For example, among other issues, Betzler and
Uhlmann [3] considered parameterization by
the number of voters (for Copeland voting rule,
which we do not discuss here). Liu et al. [10]
considered the parameterization by the solution
size (i.e., the number of candidates to be
added) and, among other results, obtained W[2]-
hardness for PCCAC (in essence, this already
follows from the proof of Bartholdi, Tovey, and
Trick).

Open Problems

1. We sketched the ILP-based fixed-parameter
tractability result for DODGSON SCORE. A
key question for this and many other prob-
lems shown to be fixed-parameter tractable
using Lenstra’s result is whether the (imprac-
tical) ILP formulation can be replaced by
a direct combinatorial algorithm (still pro-
viding fixed-parameter tractability); we point
to a recent survey [6] for a broader exposi-
tion on that. Concerning DODGSON SCORE,
it is also interesting to settle its parameterized
complexity with respect to the number of
votes [4].

2. One of the most intriguing questions regarding
the complexity of SWAP BRIBERY is whether
the problem (for some given voting rule) is
fixed-parameter tractable when parameterized
by the number of candidates (or, if not,
then if at least there is a fixed-parameter
tractable approximation scheme; interestingly,
for SHIFT BRIBERY, a significantly simpler
variant of the problem, such an approximation
scheme indeed exists [7]). Dorn and
Schlotter [8] showed that this problem is
fixed-parameter tractable, but their proof only
applies (in essence) to the case where each
swap has the same cost.

3. While there is quite a number of NP-
completeness results regarding control
problems and various voting rules, there are
relatively few parameterized results. Can one
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turn some of these NP-completeness results
into fixed-parameter tractability results for
some natural parameters?

A recent survey article [6] contains several more
research challenges concerning the parameter-
ized complexity of problems from Computational
Social Choice.

Recommended Reading

1. Bartholdi JJ III, Tovey CA, Trick MA (1989)
Voting schemes for which it can be difficult to
tell who won the election. Soc Choice Welf 6(2):
157–165

2. Bartholdi JJ III, Tovey CA, Trick MA (1992) How
hard is it to control an election? Math Comput Model
16(8/9):27–40

3. Betzler N, Uhlmann J (2009) Parameterized com-
plexity of candidate control in elections and re-
lated digraph problems. Theor Comput Sci 410(52):
43–53

4. Betzler N, Guo J, Niedermeier R (2010) Pa-
rameterized computational complexity of Dodg-
son and Young elections. Inf Comput 208(2):
165–177

5. Betzler N, Bredereck R, Chen J, Niedermeier R
(2012) Studies in computational aspects of vot-
ing – a parameterized complexity perspective. In:
Bodlaender HL, Downey R, Fomin FV, Marx D
(eds) The multivariate algorithmic revolution and
beyond. LNCS, vol 7370. Springer, Berlin/New York,
pp 318–363

6. Bredereck R, Chen J, Faliszewski P, Guo J,
Niedermeier R, Woeginger GJ (2014) Parameter-
ized algorithmics for computational social choice:
nine research challenges. Tsinghua Sci Technol
19(4):358–373

7. Bredereck R, Chen J, Nichterlein A, Faliszewski P,
Niedermeier R (2014) Prices matter for the parame-
terized complexity of shift bribery. In: Proceedings
of the 28th Conference on Artificial Intelligence
(AAAI’14), Quebéc City, pp 1398–1404

8. Dorn B, Schlotter I (2012) Multivariate com-
plexity analysis of swap bribery. Algorithmica
64(1):126–151

9. Elkind E, Faliszewski P, Slinko A (2009) Swap
bribery. In: Proceedings of the 2nd International
Symposium on Algorithmic Game Theory (SAGT
’09). LNCS, vol 5814. Springer, Berlin/Heidelberg,
pp 299–310

10. Liu H, Feng H, Zhu D, Luan J (2009) Parame-
terized computational complexity of control prob-
lems in voting systems. Theor Comput Sci 410(27–
29):2746–2753

Parameterized Algorithms
for Drawing Graphs

Henning Fernau
Fachbereich 4, Abteilung Informatik
wissenschaften, University of Trier, Trier,
Germany
Institute for Computer Science, University of
Trier, Trier, Germany

Years and Authors of Summarized
Original Work

2004; Dujmovic, Whitesides

Problem Definition

ONE-SIDED CROSSING MINIMIZATION (OSCM)
can be viewed as a specific form of drawing
a bipartite graph G D .V1; V2; E/, where all ver-
tices from partition Vi are assigned to the same
line (also called layer) Li in the plane, with L1

and L2 being parallel. The vertex assignment to
L1 is fixed, while that to L2 is free and should
be chosen in a way to minimize the number of
crossings between etdes drawn as straight-line
segments.

Notations
A graph G is described by its vertex set
V and its edge set E, i.e., GD(V, E), with
E 	 V � V . The (open) neighborhood of
a vertex v, denoted N(v), collects all vertices that
are adjacent to v. N Œv� D N.v/ [ fvg denotes
the closed neighborhood of v. deg.v/ D jN.v/j

is the degree of v. For a vertex set S,
N.S/ D

S
v2S N.v/, and N ŒS� D N.S/ [ S .

GŒS� denotes the graph induced by vertex set S,
i.e., GŒS� D .S; E \ .S � S//. A graph G D (V,
E) with vertex set V and edge set E 	 V � V is
bipartite if there is a partition of V into two sets
V1 and V2 such that V D V1 [ V2, V1 \ V2 D ;,
and E 	 V1 � V2. For clarity, G D .V1; V2; E/

is written in this case.
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A two-layer drawing of a bipartite graph G D

.V1; V2; E/ can be described by two linear orders
<1 on V1 and <2 on V2. This drawing can
be realized as follows: the vertices of V1 are
placed on a line L1 (also called layer) in the
order induced by <1 and the vertices of V2 are
placed on a second layer L2 (parallel to the first
one) in the order induced by <2; then, draw
a straight-line segment for each edge e D .u1; u2/

in E connecting the points that represent u1 and
u2, respectively. A crossing is a pair of edges
e D .u1; u2/ and f D .v1; v2/ that cross in the
realization of a two-layer drawing .G; <1; <2/. It
is well-known that two edges cross if and only
if u1 <1 v1 and v2 <2 u2; in other word, this
notion is a purely combinatorical object, inde-
pendent of the concrete realization of the two-
layer drawing. cr.G; <1; <2/ denotes the number
of crossings in the described two-layer drawing.
In the graph drawing context, it is of course
desirable to draw graphs with few crossings.
In its simplest (yet probably most important)
form, the vertex order in one layer is fixed,
and the aim is to minimize crossings by choos-
ing an order of the second layer. Formally, this
means:

Problem 1 (k–OSCM)
INPUT: A simple n-vertex bipartite graph
G D .V1; V2; E/ and a linear order <1 on V1,
a nonnegative integer k (the parameter).

OUTPUT: If possible, a linear order <2 on V2 such
that cr.G; <1; <2/ � k. If no such order exists,
the algorithm should tell so.

Given an instance G D .V1; V2; E/ and <1 of
OSCM and two vertices u; v 2 V2,

cuv D cr.GŒN Œfu; vg��; <1 \.N.fu; vg/

�N.fu; vg//; f.u; v/g/ :

Hence, the closed neighborhoods of u and v are
considered when assuming the ordering u <2 v.

Consider the following as a running example:

Example 1 In Fig. 1, a concrete drawing of
a bipartite graph is shown. Is this drawing optimal
with respect to the number of crossings, assuming
the ordering of the upper layer being fixed? At
some points, more than two edges cross; in that
case, a number is shown to count the crossings.
All crossings are emphasized by a surrounding
box.

Let us now compute the crossing number ma-
trix .cuv/ for this graph.

cuv a b c d e

a � 4 5 0 1

b 1 � 1 0 0
c 3 3 � 0 1

d 3 2 3 � 1

e 2 3 2 0 �

Parameterized
Algorithms for Drawing
Graphs, Fig. 1 The
running example for
OSCM
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The number of crossings in the given drawing
can be hence computed as

cab C cac C cad C cae C cbc C cbd C cbe

C ccd C cce C cde D 13:

Key Results

Exact exponential-time algorithms are mostly
interesting when dealing with problems for which
no polynomial-time algorithm is expected to
exist.

Theorem 1 ([6]) The decision problem corre-
sponding to k-OSCM is NP-complete.

In the following, to state the results, let
G D .V1; V2; E/ be an instance of OSCM, where
the ordering <1 of V1 is fixed.

It can be checked in polynomial time if an
order of V2 exists that avoids any crossings.
This observation can be based on either of the
following graph-theoretic characterizations:

Theorem 2 ([3]) cr.G; <1; <2/ D 0 if and only
if G is acyclic and, for every path .x; a; y/ of
G with x; y 2 V1, it holds: for all u 2 V1 with
x <1 u <1 y, the only edge incident to u (if any)
is (u, a).

The previously introduced notion is crucial due to
the following facts:

Lemma 3
P

u;v2V2;u<2v cuv D cr.G; <1; <2/:

Theorem 4 ([9]) If k is the minimum number
of edge crossings in an OSCM instance
.G D .V1; V2; E/; <1/, then

X

u;v2V2;u¤v

minfcuv; cvug � k < 1:4664

X

u;v2V2;u¤v

minfcuv; cvug :

In fact, Nagamochi also presented an approx-
imation algorithm with a factor smaller than
1.4664.

Furthermore, for any u 2 V2 with deg.u/ > 0,
let lu be the leftmost neighbor of u on L1, and
ru be the rightmost neighbor of u. Two vertices
u; v 2 V2 are called unsuited if there exists some
x 2 N.u/ with lv <1 x <1 rv , or there exists
some x 2 N.v/ with lu <1 x <1 ru. Otherwise,
they are called suited. Observe that, for fu; vg

suited, cuv � cvu D 0. Dujmović and Whitesides
have shown:

Lemma 5 ([5]) In any optimal ordering <2 of
the vertices of V2, u <2 v is found if ru �1 lv .

This means that all suited pairs appear in their
natural ordering.

This already allows us to formulate a first
parameterized algorithm for OSCM, which is
a simple search tree algorithm. In the course of
this algorithm, a suitable ordering <2 on V2 is
gradually constructed; when settling the order-
ing between u and v on V2, u <2 v or v <2 u
is committed. A generalized instance of OSCM
therefore contains, besides the bipartite graph
G D .V1; V2; E/, a partial ordering <2 on V2.
A vertex v 2 V2 is fully committed if, for all
u 2 V2 n fu; vg, fu; vg is committed.

Lemma 5 allows us to state the following rule:

RR1: For every pair of vertices fu; vg from V2

with cuv D 0, commit u <2 v. In the example, d
would be fully committed by applying RR1, since
the d-column in the crossing number matrix is all
zeros; hence, ignore d in what follows.

Algorithm 1 is a simple search tree algorithm
for OSCM that repeatedly uses Rule RR1.

Lemma 6 OSCM can be solved in time O�.2k/.

Proof Before any branching can take place, the
graph instance is reduced, so that every pair of
vertices fu; vg from V2 which is not committed
satisfies minfcuv; cvug � 1. Therefore, each re-
cursive branch reduces the parameter by at least
one. �

It is possible to improve on this very simple
search tree algorithm. A first observation is that
it is not necessary to branch at fx; yg � V2 with
cxy D cyx . This means two modifications to Al-
gorithm 1:



Parameterized Algorithms for Drawing Graphs 1523

P

Algorithm 1 A search tree algorithm solving OSCM, called OSCM-ST-simple

• Line 5 should exclude cxy D cyx .
• Line 12 should arbitrary commit some
fx; yg � V2 that are not yet committed and
recurse; only if all fx; yg � V2 are committed,
YES is to be returned.

These modifications immediately yield an
O�.1:6182k/ algorithm for OSCM. This is also
the core of the algorithm proposed by Dujmović
and Whitesides [5]. There, more details are
discussed, as, for example:

• How to efficiently calculate all the crossing
numbers cxy in a preprocessing phase.

• How to integrate branch and cut elements
in the algorithm that are surely helpful from
a practical perspective.

• How to generalize the algorithm for instances
that allow integer weights on the edges (mul-
tiple edges).

Further improvements are possible if one gives
a deeper analysis of local patterns fx; yg 2 V2

such that cxycyx � 2. This way, it has been
shown:

Theorem 7 ([4]) OSCM can be solved in time
O�.1:4656k/.

Parameterized Algorithms for Drawing Graphs,
Fig. 2 A search tree example for OSCM

A possible run of the improved search tree algo-
rithm is displayed in Fig. 2, with the (optimal)
outcome shown in Fig. 3.

Variants and Related Problems have been dis-
cussed in the literature.

1. Change the goal of the optimization: mini-
mize the number of edges involved in cross-
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Parameterized
Algorithms for Drawing
Graphs, Fig. 3 An
optimal solution to the
example instance

ings (ONE-LAYER PLANARIZATION (OLP)).
As observed in [7, 10], Theorem 2 almost
immediately leads to an O�.3k/ algorithm for
OLP that was subsequently improved down to
O�.2k/ in [10].

2. One could allow more degrees of freedom
by considering two (or more) layer assign-
ments at the same time. For both the cross-
ing minimization and the planarization vari-
ants, parameterized algorithms are reported in
[3, 7, 10].

3. One can consider other additional constraints
on the drawings or the admissible orderings;
in [8], parameterized algorithms for two-layer
assignment problems are discussed where the
admissible orderings are restricted by binary
trees.

Applications

Besides seeing the question of drawing bipartite
graphs as an interesting problem in itself, e.g.,
for nice drawings of relational diagrams, this
question quite naturally shows up in the so-called
Sugiyama approach to hierarchical graph draw-
ing, see [12]. This very popular approach tackles
the problem of laying out a hierarchical graph in
three phases: (1) cycle removal (2) assignment
of verticesto layers, (3) assignment of vertices

to layers. The last phase is usually performed
in a sweep-line fashion, intermediately solving
many instances of OSCM. The third variant in
the discussion above has important applications
in computational biology.

Open Problems

As with all exponential-time algorithms, it is
always a challenge to further improve on the
running times of the algorithms or to prove lower
bounds on those running times under reason-
able complexity theoretic assumptions. Let us
notice that the tacit assumptions underlying the
approach by parameterized algorithmics are well
met in this application scenario: e.g., one would
not accept drawings with many crossings any-
ways (if such a situation is encountered in prac-
tice, one would switch to another way of rep-
resenting the information); so, one can safely
assume that the parameter is indeed small.

This is also true for other NP-hard sub-
problems that relate to the Sugiyama approach.
However, no easy solutions should be expected.
For example, the DIRECTED FEEDBACK ARC

SET PROBLEM [1] that is equivalent to the first
phase is not known to admit a nice parameterized
algorithm, see [2].
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Experimental Results

Suderman [10] reports on experiments with
nearly all problem variants discussed above, also
see [11] for a better accessible presentation of
some of the experimental results.

URL to Code

Suderman presents several JAVA applets related
to the problems discussed in this article, see
http://cgm.cs.mcgill.ca/~msuder/.
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Problem Definition

Parameterized strings, or p-strings, are strings
that contain both ordinary symbols from an al-
phabet † and parameter symbols from an alpha-
bet …. Two equal-length p-strings s and s0 are a
parameterized match, or p-match, if one p-string
can be transformed into the other by applying a
one-to-one function that renames the parameter
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symbols. The following example of a p-match is
one with both ordinary and parameter symbols.
The ordinary symbols are in lowercase and the
parameter symbols are in uppercase:

s D A b A b C A d b A C d d

s0 D D b D b E D d b D E d d

In some of the problems to be considered, it
will be sufficient to solve for p-strings in which
all symbols are parameter symbols, as this is
the more difficult part of the problem. In other
words, the case in which † DØ. In this case, the
definition can be reformulated so that s and s0 are
a p-match if there exists a bijection � :…s ! …0s ,
such that �.s/ D s0, where �.s/ is the renaming
of each character of s via � .

The following problems will be considered.
Parameterized matching – given a parameterized
pattern p of length m and parameterized text t ,
find all locations i of a parameterized text t for
which p p-matches ti : : : tiCm�1, where m D jpj.
The same problem is also considered in two di-
mensions. Approximate parameterized matching
– find all substrings of a parameterized text t

that are approximate parameterized matches of
a parameterized pattern p (to be fully defined
later).

Key Results

Baker [4] introduced parameterized matching in
the framework of her seminal work on discover-
ing duplicate code within large programs for the
sake of code minimization. An example of two
code fragments that p-match taken from the X
Windows system can be found in [4].

Parameterized Suffix Trees
In [4] and in the follow-up journal versions [6,7],
a novel method was presented for parameterized
matching by constructing parameterized suffix
trees. The advantage of the parameterized suf-
fix tree is that it supports indexing, i.e., one
can preprocess a text and subsequently answer

parameterized queries p in O(jpj) time. In order
to achieve parameterized suffix trees, it is nec-
essary to introduce the concept of a predecessor
string. A predecessor string of a string s has at
each location i the distance between i and the
location containing the previous appearance of
the symbol. The first appearance of each symbol
is replaced with a 0. For example, the predecessor
string of aabbaba is 0,1,0,1,3,2,2. A simple and
well-known fact is that:

Observation 1 ([7]) s and s0 p-match if and only
if they have the same predecessor string.

Notice that this implies transitivity of parame-
terized matching, since if s and s0 p-match and
s0 and s00 p-match, then, by the observation, s

and s0 have the same predecessor string and,
likewise, s0 and s00 have the same predecessor
string. This implies that s and s00 have the same
predecessor string and hence, by the observation,
p-match.

Moreover, one may also observe that if r is a
prefix of s, then the predecessor string of r , by
definition, is exactly the jr j-length prefix of the
predecessor string of s. Hence, similar to regular
pattern matching, a parameterized pattern p p-
matches at location i of t if and only if the jpj-
length predecessor string of p is equal to the
jpj-length prefix of the predecessor string of the
suffix ti : : : tn. Combining these observations, it is
natural to do as follows: create a (parameterized
suffix) tree with a leaf for each suffix where the
path from the root to the leaf corresponding to
a given suffix will have its predecessor string
labeling the path. Branching in the parameterized
suffix tree, as with suffix trees, occurs according
to the labels of the predecessor strings. See [4, 6,
7] for an example.

Baker’s method essentially mimics the Mc-
Creight suffix tree construction [18]. However,
while the suffix tree and the parameterized suffix
tree are very similar, there is a slight hitch. A
strong component of the suffix tree construction
is the suffix link. This is used for the construction
and, sometimes, for later pattern searches. The
suffix link is based on the distinct right context
property, which does not hold for the parameter-
ized suffix tree. In fact, the node that is pointed
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to by the suffix link may not even exist. The main
parts of [6, 7] are dedicated to circumventing this
problem.

In [7] Baker added the notion of “bad” suf-
fix links, which point to the vertex just above,
i.e., closer to the root than the desired place,
and of updating them with a lazy evaluation
when they are used. The algorithm runs in time
O.nj…j log j†j/. In [6] (which is chronologically
later than [7] despite being the first to appear)
Baker changed the definition of “bad” suffix links
to point to just below the desired place. This
turns out to have nice properties, and one can use
more sophisticated data structures to improve the
construction time to O.n.j…j C logj†j//.

Kosaraju [16] made a careful analysis of
Baker’s properties utilized in the algorithm
of [6] which suffer from the j…j factor. He
pointed out two sources for this large factor. He
handled these two issues by using a concatenable
queue and maintaining it in a lazy manner.
This is sufficient to reduce the j…j factor to
a log j…j factor, yielding an algorithm of time
O.n.log j…j C log j†j//.

Obviously if the alphabet or symbol set is
large, the construction time may be O.n log n/.
Cole and Hariharan [9] showed how to construct
the parameterized suffix trees in randomized
O.n/ time for alphabets and parameters
taken from a polynomially sized range, e.g.,
Œ1; : : : ; nc �. They did this by adding additional
nodes to the tree in a back-propagation manner
which is reminiscent of fractional cascading.
They showed that this adds only O.n/ nodes and
allows the updating of the missing suffix links.
However, this causes other problems and one
may find the details of how this is handled in
their paper.

More Methods for Parameterized
Matching
Obviously the parameterized suffix tree
efficiently solves the parameterized matching
problem. Nevertheless, a couple of other
results on parameterized matching are worth
mentioning.

First, in [6] it was shown how to construct the
parameterized suffix tree for the pattern and then
to run the parameterized text through it, giving an
algorithm with O.m/ space instead of O.n/.

Amir et al. [2] presented a simple method
to solve the parameterized matching problem
by mimicking the algorithm of Knuth, Morris,
and Pratt. Their algorithm works in O.n �

min.log j…j; m// time independent of the alpha-
bet size .j†j/. Moreover, they proved that the log
factor cannot be avoided for large symbol sets.

In [5] parameterized matching was solved
with a Boyer-Moore type algorithm. In [10]
the problem was solved with a Shift-Or
type algorithm. Both handle the average case
efficiently. In [10] emphasis was also put on
the case of multiple parameterized matching,
which was previously solved in [14] with an
Aho-Corasick automaton-style algorithm.

Two-Dimensional Parameterized Matching
Two-dimensional parameterized matching arises
in applications of image searching; see [13] for
more details. Two-dimensional parameterized
matching is the natural extension of param-
eterized matching where one seeks pmatches
of a two-dimensional parameterized pattern p

within a two-dimensional parameterized text t .
It must be pointed out that classical methods
for two-dimensional pattern matching, such as
the L-suffix tree method, fail for parameterized
matching. This is because known methods tend to
cut the text and pattern into pieces to avoid going
out of boundaries of the pattern. This is fine
because each pattern piece can be individually
evaluated (checked for equality) to a text piece.
However, in parameterized matching, there is a
strong dependency between the pieces.

In [1] an innovative solution for the problem
was given based on a collection of lineariza-
tions of the pattern and text with the property
to be currently described. Consider a lineariza-
tion. Two elements with the same character, say
“a,” in the pattern are defined to be neighbors
if there is no other “a” between them in this
linearization. Now take all the “a”s of the pat-
tern and create a graph Ga with “a”s as the
nodes and edges between the two if they are
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neighbors in some linearization. We say that two
“a”s are chained if there is a path from one
to the other in Ga. Applying one-dimensional
parameterized matching on these linearizations
ensures that any two elements that are chained
will be evaluated to map to the same text value
(the parameterized property). A collection of lin-
earizations has the fully chained property if every
two locations in p with the same character are
chained. It was shown in [1] that one can obtain
a collection of log m linearizations that is fully
chained and that does not exceed pattern bound-
ary limits. Each such linearization is solved with
a convolution-based pattern-matching algorithm.
This takes O.n2 log m/ time for each lineariza-
tion, where the text size is n2. Hence, overall the
time is O.n2 log2 m/.

A different solution was proposed in [13],
where it was shown that it is possible to solve the
problem in O.n2 C m2:5polylog m/, where the
text size is O.n2/ and the pattern size is O.m2/.
Clearly, this is more efficient for large texts.

Approximate Parameterized Matching
Our last topic relates to parameterized matching
in the presence of errors. Errors occur in various
applications and it is natural to consider param-
eterized matching with the Hamming distance
metric or the edit distance metric.

In [8] the parameterized matching problem
was considered in conjunction with the edit dis-
tance. Here the definition of edit distance was
slightly modified so that the edit operations are
defined to be insertion, deletion, and parame-
terized replacements, i.e., the replacement of a
substring with a string that p-matches it. An
algorithm for finding the “parameterized edit dis-
tance” of two strings was devised whose effi-
ciency is close to the efficiency of the algorithms
for computing the classical edit distance.

However, it turns out that the operation of
parameterized replacement relaxes the problem
to an easier problem. The reason that the prob-
lem becomes easier is that two substrings that
participate in two parameterized replacements are
independent of each other (in the parameterized
sense).

A more rigid, but more realistic, definition for
the Hamming distance variant was given in [3].
For a pair of equal-length strings s and s0 and
a bijection � defined on the alphabet of s, the
�-mismatch is the Hamming distance between
the image under � of s and s0. The minimal �-
mismatch over all bijections � is the approximate
parameterized match. The problem considered in
[3] is to find for each location i of a text t the
approximate parameterized match of a pattern p

with the substring beginning at location i . In [3]
the problem was defined and linear-time algo-
rithms were given for the case where the pattern is
binary or the text is binary. However, this solution
does not carry over to larger alphabets.

Unfortunately, under this definition, the
methods for classical string matching with
errors for the Hamming distance, also known
as pattern matching with mismatches, seem to
fail. Following is an outline of a classical method
[17] for pattern matching with mismatches that
uses suffix trees.

The pattern is compared separately with each
suffix of the text, beginning at locations 1� i �

n�mC 1. Using a suffix tree of the text and pre-
computed longest common ancestor information
(which can be computed once in linear time [11]),
one can find the longest common prefix of the
pattern and the corresponding suffix (in constant
time). There must be a mismatch immediately af-
terwards. The algorithm jumps over the mismatch
and repeats the process, taking into consideration
the offsets of the pattern and suffix.

When attempting to apply this technique to
a parameterized suffix tree, it fails. To illustrate
this, consider the first matching substring (up un-
til the first error) and the next matching substring
(after the error). Both of these substrings p-match
the substring of the text that they are aligned
with. However, it is possible that combined they
do not form a p-match. See the example below.
In the example abab p-matches cdcd followed
by a mismatch and subsequently followed by
abaa p-matching efee. However, different �’s are
required for the local p-matches. This example
also emphasizes why the definition of [8] is a sim-
plification. Specifically, each local p-matching
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substring is one replacement, i.e., abab with cdcd
is one replacement and abaa with efee is one
more replacement. However, the definition of
[3] captures the globality of the parameterized
matching, not allowing, in this case, abab to p-
match to two different substrings.

p D a b a b a a b a a : : :

t D : : : c d c d d e f e e : : : �

In [12] the problem of parameterized matching
with k mismatches was considered. The param-
eterized matching problem with k mismatches
seeks all locations i in text t where the minimal
�-mismatch between p to ti : : : tiCm�1 has at
most k mismatches. An O.nk1:5 C mk log m/

time algorithm was presented in [12]. At the base
of the algorithm, i.e., for the case where jpj D
jt j D m, an O.mC k1:5/ algorithm is used based
on maximum matching algorithms. Then the al-
gorithm uses a doubling scheme to handle the
growing distance between potential parameter-
ized matches (with at most k mismatches). Also
shown in [12] is a strong relationship between
maximum matching algorithms in sparse graphs
and parameterized matching with k errors.

The rigid, but more realistic, definition for the
Hamming distance version given in [3] can be
naturally extended to the edit distance. Lately, it
was shown that this problem is nondeterministic
polynomial-time complete [15].

Applications

Parameterized matching has applications in code
duplication detection in programming languages,
in homework plagiarism detection, and in image
processing, among others [1, 4].
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Problem Definition

Much research has been devoted to finding
classes of propositional formulas in conjunctive
normal form (CNF) for which the recognition
problem as well as the propositional satisfiability
problem (SAT) can be decided in polynomial
time. Some of these classes form infinite chains
C1 � C2 � � � � such that every CNF formula
is contained in some Ck for k sufficiently
large. Such classes are typically of the form
Ck D fF 2 CNFW�.F / � kg, where � is
a computable mapping that assigns to CNF
formulas F a non-negative integer �.F /; we
call such a mapping a satisfiability parameter.
Since SAT is an NP-complete problem (actually,
the first problem shown to be NP-complete [1]),
we must expect that, the larger k, the longer the
worst-case running times of the polynomial-
time algorithms that recognize and decide

satisfiability of formulas in Ck. Whence there
is a certain tradeoff between the generality
of classes and the performance guarantee for
the corresponding algorithms. Szeider [12]
initiates a broad investigation of this tradeoff
in the conceptional framework of parameterized
complexity [2, 3, 6]. This investigation draws
attention to satisfiability parameters � for which
the following holds: recognition and satisfiability
decision of formulas F with �.F / � k can be
carried out in uniform polynomial time, that is,
by algorithms with running time bounded by
a polynomial whose order is independent of
k (albeit, possibly involving a constant factor
that is exponential in k). If a satisfiability
parameter � allows satisfiability decision in
uniform polynomial time, we say that SAT is
fixed-parameter tractable with respect to � .

Satisfiability Parameters Based on Graph
Invariants
One can define satisfiability parameters by means
of certain graphs associated with CNF formulas.
The primal graph of a CNF formula is the graph
whose vertices are the variables of the formula;
two variables are joined by an edge if the vari-
ables occur together in a clause. The incidence
graph of a CNF formula is the bipartite graph
whose vertices are the variables and clauses of
the formula; a variable and a clause are joined by
an edge if the variable occurs in the clause.

Satisfiability Parameters Based
on Backdoor Sets
The concept of backdoor sets [13] gives rise
to several interesting satisfiability parameters.
Let C be a class of CNF formulas. A set B of
variables of a CNF formula F is a strong C-
backdoor set if for every partial truth assignment

 WB ! ftrue; falseg, the restriction of F to 


belongs to C. Here, the restriction of F to 
 is the
CNF formula obtained from F by removing all
clauses that contain a literal that is true under 


and by removing from the remaining clauses all
literals that are false under 
 .
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Key Results

Theorem 1 (Gottlob, Scarcello, and Sideri [4])
SAT is fixed-parameter tractable with respect to
the treewidth of primal graphs.

Several satisfiability parameters that generalize
the treewidth of primal graphs, such as the
treewidth and clique-width of incidence graphs,
have been studied [5, 10, 12].

The maximum deficiency of a CNF formula F
is the number of clauses remaining exposed by
a maximum matching of the incidence graph of F.

Theorem 2 (Szeider [11]) SAT is fixed-
parameter tractable with respect to maximum
deficiency.

A CNF formula is minimal unsatisfiable if it
is unsatisfiable but removing any of its clauses
makes it satisfiable. Recognition of minimal un-
satisfiable formulas is DP-complete [9].

Corollary 1 (Szeider [11]) Recognition of
minimal unsatisfiable CNF formulas is fixed-
parameter tractable with respect to the difference
between the number of clauses and the number
of variables.

Theorem 3 (Nishimura, Ragde, and Szei-
der [7]) SAT is fixed-parameter tractable with
respect to the size of strong Horn-backdoor sets
and with respect to the size of strong 2CNF-
backdoor sets.

Applications

Satisfiability provides a powerful and general
formalism for solving various important prob-
lems including hardware and software verifica-
tion and planning. Instances stemming from ap-
plications usually contain a “hidden structure”
(see, e.g., [13]). The satisfiability parameters con-
sidered above are designed to make this hidden
structure explicit in the form of small values for

the parameter. Thus, satisfiability parameters are
a way to make the hidden structure accessible to
an algorithm.

Open Problems

A new line of research is concerned with the iden-
tification of further satisfiability parameters that
allow a fixed-parameter tractable SAT decision
are more general than the known parameters and
apply well to real-world problem instances.
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Problem Definition

A parity game is an infinite duration game, played
by players odd and even, denoted by � and Þ,

respectively on a directed, finite graph. Through-
out this note, we let � denote an arbitrary player
and we write N� for �’s opponent; i.e. NÞ D �
and N� D Þ.

Definition 1 (Parity game) A parity game is a
tuple .V; E; ˝; .VÞ; V�//, where

• V is a set of vertices, partitioned in a set VÞ
of vertices owned by player Þ, and a set of
vertices V� owned by player �,

• E 	 V � V is a total edge relation,
• ˝WV ! N is a priority function that assigns

priorities to vertices.

The graph .V; E/ underlying a parity game is
often referred to as the arena. Parity games are
depicted as graphs with diamond-shaped vertices
representing vertices owned by player Þ and
box-shaped vertices representing those owned by
player �. The priorities associated with vertices
are written inside vertices; see the game depicted
in Fig. 1.

Imagine the following game, played on an
arena. One starts by placing a token on a ver-
tex. Then, players perpetually move this token
according to a single simple rule: if the token is
on some vertex v 2 V�, player � gets to move the
token to an adjacent vertex. The infinite sequence
of vertices visited this way is referred to as a play
and the parity of the lowest priority (associated
with the vertices) that occurs infinitely often on
the play defines its winner: player Þ wins if and
only if this priority is even.

It does not immediately follow from the above
notion of winning that there is always a player
that can win all plays that start in a given vertex.
The most elementary of all problems concerning
parity games is thus as follows.

Problem 1 Are parity games determined? That
is, for a given parity game and some vertex in that
game, is there always a way in which one of the
players can play such that, regardless of how her
opponent moves, the resulting plays are won by
her?

The determinacy problem can be formalized
by describing the choices players make when
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Parity Games, Fig. 1 Parity games depicted as graphs with priorities associated with vertices, written inside vertices

they engage in a play; that is, we can formally
capture their strategies. More specifically, a strat-
egy for player � determines for a vertex v be-
longing to that player which of its adjacent ver-
tices the token will be moved to next once the
game play moves the token to v. Of course,
such a decision can be based on the history of
the play so far. We write vE to denote the set
fw 2 V j .v; w/ 2 Eg. A strategy for player �
is thus described adequately by a partial function
� WV �V� ! V satisfying that for all sequences
v1 : : : vn 2 V � for which � is defined, we have
�.v1 : : : vn/ 2 vnE. For a given strategy � , a
play p conforms to � if for all finite prefixes q

of p, whenever � is defined for q, also q�.q/ is
a prefix of p. We say that a strategy � for player� is winning from a vertex v if and only if � is
the winner of every play that starts in v and that
conforms to � . The problem of determinacy can
then be rephrased as follows: for given vertex v in
a game, is there always a player with a winning
strategy from v?

A vertex is won by some player if that player
has a winning strategy from that vertex. The ver-
tices won by player Þ and player � are denoted
WÞ and W�, respectively; determining these sets
is typically referred to as solving a game. This
immediately leads to the second fundamental
question:

Problem 2 Can we compute WÞ and W�?

Solving the above computational problem may
not necessarily involve computing the winning
strategies for both players. Nonetheless, the win-
ning strategies themselves have their own merit,
if only that they serve as certificates in proving
that the winning sets for both players are indeed
just that. This leads to the third problem of
interest:

Problem 3 Can we, for all vertices that are won
by one of the players, compute winning strategies
for that player?

Key Results

The first claim, stated below, positively answers
the determinacy problem for parity games.

Theorem 1 Parity games are determined: for
every vertex either player Þ or player � has a
winning strategy from that vertex.

Determinacy of parity games already follows
from a general result due to Martin [9] who
showed that Borel games (which subsume parity
games) are determined. The proof of the latter re-
sult employs strategies that require infinite mem-
ory. A deep result by Emerson and Jutla [1], and
found independently by Mostowski [11], states
that parity games are in fact memoryless deter-
mined: if a player has a winning strategy from
a vertex v, she also has a memoryless strategy
that is winning for her; that is, player � always
has a strategy � for which �.pv/ D �.p0v/ for
all sequences pv and p0v for which it is defined
and which can thus be represented by a partial
function � 0WV� ! V .

A simpler and constructive proof of memo-
ryless determinacy for parity games with a fi-
nite arena was subsequently proposed by Mc-
Naughton [10] and extended to games with an
infinite arena by Zielonka [15]. From the memo-
ryless determinacy result, it follows that the prob-
lem of deciding whether player Þ has a winning
strategy from a given vertex is in NP: essentially
one can guess a memoryless strategy for player Þ
and check in polynomial time whether it is win-
ning; the latter can be done efficiently by showing
the absence of odd cycles using e.g. [8]. In a
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similar manner, one can prove that the problem
is in coNP, making the decision problem one of
those interesting problems that are in NP\ coNP.
In fact, in 1998, Jurdziński [5] showed that the
problem is in UP\ coUP. The complexity class
UP is a subclass of NP and is defined to contain
all problems that can be recognized by a non-
deterministic polynomial time Turing machine
that for every input has at most one accepting
computation. From the memoryless determinacy,
one also immediately obtains a positive answer to
the second question.

Theorem 2 The problem of deciding whether
v 2 WÞ is in NP\ coNP, and the sets WÞ and
W� can be computed.

McNaughton and Zielonka’s constructive
proofs can be converted into a recursive
algorithm for computing WÞ and W� for games
with a finite arena. This algorithm, which we
will introduce shortly, can be modified in a
straightforward manner to also produce winning
(memoryless) strategies for both players, thus
also answering the third question.

Theorem 3 Winning strategies for players Þ
and � can be computed.

Algorithms for Parity Games
While the problem of computing the winning
sets of a parity game is decidable, its exact
complexity is still open, but over the years, the
upper bound has been improved. We therefore
summarize the various algorithms that have been
invented for solving parity games so far, starting
with a brief exposition of the recursive algorithm
which is, as we described above, also interesting
for its theoretical consequences. For the remain-
der of this section, fix a parity game G D

.V; E; ˝; .VÞ; V�// with n vertices, m edges,
and d different priorities.

The recursive algorithm effectively decom-
poses a game into subgames and solves these.
An essential ingredient in this decomposition is
the notion of an �-attractor into a set of vertices
U , denoting Attr:0�.U /, which is the least set A,
satisfying A  U and

Algorithm 1: The recursive algorithm
function SOLVE(G)

Input: parity game G D .V; E; ˝; .VÞ; V�//
Output: winning partition .WÞ; W�/

if V D ; then .WÞ; W�/ .;;;/
else

m minf˝.v/ j v 2 V g
if m mod 2 D 0 then p Þ else p �

end if
U  fv 2 V j˝.v/ D mg
A Attr:0

p .U /
.W 0

Þ
; W 0

�
/ SOLVE.G nA/

ifW 0
NpD; then .Wp; W Np/ .A[W 0

p;;/
else

B  Attr:0
Np .W 0

Np/

.W 0

Þ
; W 0

�
/ SOLVE.G nB/

.Wp; W Np/ .W 0
p; W 0

Np [B/
end if

end if
return .WÞ; W�/

end function

• for all v 2 V�, if vE \ A 6D ;, then also
v 2 A;

• for all v 2 V N�, if vE 	 A, then also v 2 A.

Intuitively, the �-attractor into U contains U and
exactly those vertices for which � can force play
into U .

Writing G\A for the parity game .V \A; E\

.A�A/; ˝jA; .VÞ \A; V� \A//, where ˝jA is
the priority function ˝ restricted to the vertices
in A, and writing G n A for G \ .V n A/, the
recursive algorithm is defined as in Algorithm 1.

The correctness of Algorithm 1 leans on the
observation that lower priorities in the game dom-
inate higher priorities and that revisiting these
lower priorities is beneficial to the player with the
“same parity” as this priority. The algorithm runs
in polynomial space and its runtime complexity
is O.m � nd /.

The first improvement on this runtime that
maintains a polynomial space complexity was
achieved by an algorithm due to Jurdziński [6] in
2000. This algorithm, colloquially known as the
small progress measures (SPM) algorithm, runs
in time O.d � m � . n

bd
2 c

/b
d
2 c/. Jurdziński’s algo-

rithm builds on decorations of the game arena,



Parity Games 1535

P

called parity progress measures and game parity
progress measures; the former exist for a parity
game with only odd-owned vertices if and only if
the game only has even cycles (and thus is won by
player Þ); the latter extend parity progress mea-
sures to arbitrary games and are essentially wit-
nesses for winning strategies for player Þ. The
SPM algorithm computes game parity progress
measures using a fixpoint iteration, ensuring the
measures are the least measures that decrease
along a play with each bad odd priority that
is encountered and only increase when reaching
beneficial even priorities.

The next improvement came in 2006 and was
based on a modification of the recursive algo-
rithm, resulting in a subexponential algorithm
with running time nO.

p
n/; see [7]. It relies on

a notion called a dominion for a player: a set of
vertices D that is won by that player by staying
within D and without allowing her opponent to
leave D. The main idea behind the algorithm is
that it identifies small dominions (of size at mostp

2n) using a dedicated algorithm and removes
them from the game prior to the recursive calls.
This algorithm, in turn, inspired Schewe [13] to
improve on the runtime complexity for games
with a small number of priorities. Rather than
using a brute-force method for searching and
eliminating dominions, Schewe’s algorithm uti-
lizes a modified SPM algorithm while executing
the standard recursive algorithm. As a result, this
reduces the complexity of solving parity games to
O.m � . ��n

d
/�.d//, where � is a small constant and

.d/ � d
3

.
In parallel to the abovementioned solutions,

a different family of algorithms has been devel-
oped. They are based on the notion of strategy
improvement, which has been known in the game
theory since the 1960s. The first algorithm of this
kind designed specifically for parity games is due
to Vöge and Jurdziński [14]. In this approach,
one requires devising an order on strategies ��
that satisfies two conditions. Firstly, the maxi-
mal strategy w.r.t �� is winning for � on W�.
Secondly, there has to be an (efficiently com-
putable) improvement procedure which, for every
strategy � that is not ��-maximal, computes a
better strategy � 0 
� � . Strategy improvement

algorithms start with a certain initial strategy
and perform a sequence of improvement steps,
until the maximal strategy is reached. While a
single iteration (improvement step) is typically
efficient, so far no policy guaranteeing a poly-
nomial number of iterations has been found. In
fact, Friedmann [3, 4] has proved that the key
strategy improvement algorithms have worst-case
exponential running time.

Applications

Parity games underlie a number of problems in
theoretical computer science. For instance, they
served as a vehicle for elegantly proving the
complementation lemma for automata on infinite
trees, a crucial lemma in Rabin’s proof of the
decidability of a particular second-order math-
ematical theory. Parity games are also used in
word and emptiness problems for a variety of
(alternating) automata [1]. Moreover, they are
closely related to other two-player, infinite du-
ration games with perfect information such as
mean payoff games, which have, among others,
applications in scheduling.

The practical significance of parity games
stems from the fact that they have proved to be
of great value in computer-aided software and
hardware verification and synthesis. Of particular
importance is the result that parity games are
polynomial-time equivalent to model checking
for the modal �-calculus (see, for instance, [2]),
a modal logic that expressively subsumes most
of the popular temporal logics used in computer-
aided verification. We present this transformation
to illustrate the tight connection between game
theory and logic.

Parity Games for Model Checking
Say we are given a structure .S; A; R/, where A is
a set of atomic actions, .S; R/ is a directed graph
in which S is a set of states, and R 	 S � A � S

is a (for simplicity) total edge-labeled transition
relation. The structure .S; A; R/ is often referred
to as a Labeled Transition System (LTS), and
it serves the purpose of modeling the behavior
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of software or hardware. The modal �-calculus
allows for reasoning about such behaviors; the
logic is defined through the following grammar:

f; g WWD t rue j false j X j f ^ g j

f _ g j Œa�f j haif j �X:f j �X:f

where a 2 A and X is a propositional variable,
taken from a sufficiently large set of variables
X . We write � to denote either � or �. For sim-
plicity, we assume that a propositional variable
X in f is bound at most once (by some � )
and occurrences of X are all within the scope
of its binder. Expressions in the logic are inter-
preted in the context of an LTS .S; A; R/ and
a mapping eWX ! 2S , typically referred to
as an environment, assigning sets of states to
propositional variables. The modal operators h_i_
and Œ_�_ allow for reasoning with the transition
relation of an LTS; e.g.,, haif will hold in states
that have some a-successor satisfying f , whereas
Œa�f will hold in states for which all a-successors
(if any) satisfy f . More formally, the meaning of
a formula f is established by stating which states
in the LTS satisfy it; this satisfaction relation,
denoting s; e ˆ f , is defined inductively as
follows:

s; e ˆ t rue

s; e 6ˆ false

s; e ˆ X iff s 2 e.X/

s; e ˆ f ^ g iff s; e ˆ f and s; e ˆ g

s; e ˆ f _ g iff s; e ˆ f or s; e ˆ g

s; e ˆ Œa�f iff for all .s; a; t/ 2 R t; e

ˆ f holds
s; e ˆ haif iff exists .s; a; t/ 2 R such that

t; e ˆ f holds
s; e ˆ �X:f iff s 2

S
fS 0 	 S j S 0 	 F.S 0/g

s; e ˆ �X:f iff s 2
T
fS 0 	 S j F.S 0/ 	 S 0g

where F.T / D ft 2 S j t; eŒX 7! T � ˆ

f g is a monotone operator in the complete
lattice .2S ;	/, and where eŒX 7! T � is
the environment e in which X is assigned
set T . Perhaps due to its extreme expressive
power, expressions in the modal �-calculus are
famously known for being hard to understand.
Expressions using only one fixpoint are

reasonably straightforward to interpret. For
instance, the formula �X:haiX holds for a
state s with an infinite a-path: essentially,
we are looking for the largest solution (its
fixpoint) to the equation “X D haiX ,” or, more
semantically, the largest set T 	 S that can
be assigned to X that satisfies the equation
T D fs 2 S j 9t 2 T W .s; a; t/ 2 Rg.
An expression such as �Y:haiY _ hait rue

holds for a state s whenever there is a finite
sequence of b-transitions leading to a state
having an a-successor. Mixing fixpoints allows
for expressing more complicated properties,
unfortunately at the expense of readability,
making formulas such as �X:�Y:haiX _ hbiY

(expressing that, when it holds, there is an
infinite sequence of a; b steps in which stretch
of b-steps (if any) is of finite length), hard to
understand.

The model checking problem is to decide,
given some formula f , a state s in an LTS
and some environment e, whether s; e ˆ f .
This problem can be reduced to solving a
parity game as follows: define a parity game
.V; E; ˝; .VÞ; V�// in which V D S � ˚.f /,
where ˚.f / is the set of all subformulas of
f , and in which E, VÞ, and V� are defined
structurally as follows:

vertex successor(s) owner
.s; t rue/ .s; t rue/ Þ
.s; false/ .s; false/ Þ
.s; X/ and �X:g .s; �X:g/ Þ
2 ˚.f /

.s; X/ and �X:g .s; X/ Þ
… ˚.f /

.s; f ^ g/ .s; f / and .s; g/ �

.s; f _ g/ .s; f / and .s; g/ Þ

.s; Œa�f / all .t; f / for .s; a; t/ �
2 R

.s; haif / all .t; f / for .s; a; t/ Þ
2 R

.s; �X:f / .s; f / Þ

.s; �X:f / .s; f / Þ

The priority function is assigned in such a way
that it meets the following conditions:



Parity Games 1537

P

• ˝..s; t rue// D 0 and ˝..s; false// D 1;
• if �X:g … ˚.f /, then ˝..s; X// D 0 if s 2

e.X/ and ˝..s; X// D 1 otherwise;
• if �X:g 2 ˚.f /, then

– ˝..s; X// is even if � D � and odd
otherwise, and

– ˝..s; X// � ˝..t; Y // if Y depends on X

(if X is free in g in �Y:g);
• ˝..s; g// is maximal for other formulas g 2

˚.f /.

There is an “optimal” assignment of priorities
that does not assign values larger than the alter-
nation depth of the �-calculus formula f [12].
Intuitively, the alternation depth is a measure
of the degree of semantic alternations between
�- and �-operators. Using an optimal priority
assignment yields better complexity bounds for
the model checking problem. The theorem below
establishes the connection between the model
checking problem and the parity game solving
problem.

Theorem 4 s; e ˆ f iff player Þ wins .s; f / in
the constructed parity game.

On the one hand, through the above reduction,
practical algorithmic progress in solving parity
games directly impacts the performance and scal-
ability of tooling for conducting the verification
and synthesis. Abstracting from syntactic details,
the more elementary parity games setting, on the
other hand, permits studying the true complexity
of model checking and, at the same time, provides
a better understanding of the dynamics of the
modal �-calculus.

Open Problems

Parity games are among the few problems that are
in NP\ co-NP for which no polynomial time al-
gorithm has been found. The key open problem is
thus whether there is a polynomial time algorithm
for solving parity games.

Problem 4 Can WÞ and W� be computed in
polynomial time?
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Problem Definition

Let c be a given compression function that maps
strings A to their compressed representations
c.A/. The problem of compressed pattern match-
ing (CPM) is defined as follows:

Problem 1 (Compressed Pattern Matching)
Given a pattern string P and a compressed
text string c.T /, determine whether there is an
occurrence of P in T , without decompressing T .

A CPM algorithm is said to be optimal if it
runs in O.jP j C jc.T /j/ time. The time/space
complexity of the CPM problem can be a new
criterion to evaluate compression schemes in ad-
dition to the traditional ones: the compression
ratio and the time/space complexity of compres-
sion/decompression.

The CPM problem was first defined in the
work of Amir and Benson [1], and many studies
have been made over different compression
formats. Kida et al. [9] introduced a useful CPM-
oriented abstraction of compression formats,
named collage systems. Outputs of various
compression algorithms – not only dictionary-

based compression algorithms but also grammar-
based compression algorithms – can be regarded
as collage systems, and hence algorithmic
research working on collage systems is of great
significance. They presented in the same paper a
general Knuth-Morris-Pratt (KMP) algorithm on
collage systems. A general Boyer-Moore (BM)
algorithm on collage systems was also designed
by almost the same authors [17].

Collage Systems
Let ˙ be a fixed finite alphabet. A collage system
on ˙ is a pair hD;Si defined as follows:

• D is a sequence of assignments X1 D

expr1I X2D expr2I � � � IXnD exprn; where,
for each k D 1; : : : ; n, Xk is a variable and
exprk is any of the form:

• S is a sequence Xi1 � � �Xi` of variables de-
fined in D.

By the j length prefix (resp. suffix) truncation,
we mean an operation on strings which takes a
string w and returns the string obtained from w by
removing its prefix (resp. suffix) of length j . The
variables Xk represent the strings val.Xk/ ob-
tained by evaluating their expressions. A collage
system hD;Si represents the string obtained by
concatenating the strings val.Xi1/; : : : ; val.Xi`/

represented by variables Xi1 ; : : : ; Xi` of S.
The size of D is the number n of assignments

and denoted by jDj. The height of D, denoted
by height.D/, is defined to be the longest path
length of the dependency graph of D, namely, a
directed acyclic graph such that (1) the vertices
are the variables in D and (2) a directed edge from
Xk to Xi exists if and only if D contains a non-
primitive assignment Xk D exprk such that Xi

appears in exprk . The length of S is the number `

of variables in S and denoted by jSj. The size of
collage system hD;Si is defined to be jDj C jSj.

It should be noted that any collage system
can be converted into an equivalent one with
jSj D 1, by adding a series of assignments with
concatenation operations into D. This may imply
S is unnecessary. However, a variety of com-
pression schemes can be captured naturally by
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separating D (defining phrases) from S (giving a
factorization of text T into phrases). How to ex-
press outputs of existing compression algorithms
is found in [9].

A collage system hD;Si is said to be
truncation-free if D contains no truncation
operation, repetition-free if D contains no
repetition operation, and regular if it is
truncation- and repetition-free. A regular collage
system hD;Si is simple if jval.Y /j D 1 or
jval.Z/j D 1 for every assignment X D YZ

of D.

Outputs of grammar-based compression al-
gorithms such as Re-Pair, Sequitur, and Byte
Pair Encoding (BPE) fall into the class of regu-
lar collage systems, and outputs of LZ78/LZW
fall into the class of simple collage systems.
LZ77 factorization is an abstraction of LZ77 and
its variants, which has two variations depending
upon whether self-referencing is allowed. The
LZ77 factorization Z of T with (resp. without)
self-referencing can be transformed into a collage
system (resp. a repetition-free collage system) of
size O.jZj � log jZj/ generating T (see [5]).

It should be mentioned that the so-called
straight-line programs (SLPs) are the regular
collage systems with jSj D 1.

Key Results

Theoretical Aspect
Amir et al. [2] presented two solutions
to CPM for LZW with time complexities
O.jc.T /j log jP j C jP j/ and O.jc.T /j C jP j2/,
respectively. The latter was generalized by Kida
et al. [9] via the unified framework of collage
systems.

Theorem 1 (Kida et al. [9]) CPM for collage
systems can be solved in O

�
.jDj C jSj/ �

height.D/ C jP j2
�

time using O.jDj C jP j2/

space. The factor height.D/ is dropped for
truncation-free collage systems.

We briefly sketch the algorithm of [9]. It is
originally intended to solve the all-occurrence
version of the CPM problem and reports all
locations of T at which P occurs with addi-
tional time linearly proportional to the number
of pattern occurrences. The algorithm has two
stages: First, it preprocesses D and P , and second
it processes the variables of S. In the second
stage, it simulates the move of KMP automaton
running on uncompressed text, by using two
functions Jump and Output, both take as input
a state q and a variable X . The former is used
to substitute just one state transition for the con-
secutive state transitions of the KMP automaton
for the string val.X/ for each variable X of
S, and the latter is used to report all pattern
occurrences found during the state transitions.
Let ı be the state-transition function of the KMP
automaton. Then Jump.q; X/ D ı.q; val.X//,
and Output.q; X/ is the set of lengths jwj of
nonempty prefixes w of val.X/ such that ı.q; w/

is the final state. A naive two-dimensional array
implementation of the two functions requires
˝.jDj � jP j/ space, and the size of Output.q; X/

can be exponential in jDj. The data structures of
[9] use only O.jDj C jP j2/ space, are built in
O.jDj � height.D/C jP j2/ time, and enable us to
compute Jump.q; X/ in O.1/ time and enumerate
the set Output.q; X/ in O.height.D/ C `/ time
where ` D jOutput.q; X/j. The factor height.D/

is dropped for truncation-free collage systems.
By replacing jDj C jSj with jc.T /j, the above

theorem means that the existence version of CPM
can be solved in O.jc.T /j C jP j2/ time for
any compression formats that fall into the class
of truncation-free collage systems. jP j2 is ac-
ceptable since it is often smaller than jc.T /j in

a for a 2 ˙ [ f"g, (primitive assignment)
Xi Xj for i; j < k, (concatenation)
Œj �Xi for i < k and a positive integer j , (j length prefix truncation)
X

Œj �

i
for i < k and a positive integer j , (j length suffix truncation)

.Xi /j for i < k and a positive integer j . (j times repetition)
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practice. But removing the quadratic dependency
on jP j is of great interest in theory.

Consider a maximal variable sequence SŒi::j �

of SŒ1::`� such that the string val.SŒk�/ is a
factor of pattern P for any k 2 Œi::j �. Take the
longest suffix h of val.SŒi � 1�/ and the longest
prefix t of val.SŒj C 1�/ to obtain the sequence
h; val.SŒi �/; : : : ; val.SŒj �/; t of pattern factors.
Any pattern occurrence must appear in such a
pattern factor sequence, except for the case that
some variable X D SŒk� contains a pattern
occurrence in its string val.X/. The CPM task
can thus be reduced into a number of instances of
pattern matching in a sequence of pattern factors.
It should be noted that the task of pattern match-
ing in a pattern factor sequence depends only
on P , not depending on T nor its compression
format. Gawrychowski [7] described an elaborate
technique to perform this task in linear time.
On the other hand, in the reduction task, we are
faced with the need to solve the so-called factor
concatenation problem [9]:

Preprocess P to build a data structure that returns
in constant time the vertex representing the factor
xy, for any two (explicit or implicit) vertices of
suffix tree of P representing factors x; y of P .

An O.jP j2/ time preprocessing was presented in
[9]. For LZW or, more generally, simple collage
systems, it is rather straightforward to see that if
the alphabet is of constant size, the preprocessing
requires only O.jP j/ time since either x or y

is of length 1, and the reduction task thus takes
O.jDjCjSjCjP j/ time. CPM for simple collage
systems can therefore be solved in optimal linear
time for a constant alphabet. Gawrychowski [7]
further described how to keep it linear even in the
case of integer alphabet for LZW.

Theorem 2 (Gawrychowski [7]) CPM for LZW
can be solved in optimal linear time even for a
polynomial size integer alphabet, assuming the
word RAM model.

For LZ77, one possible solution is to convert
the input LZ77 factorization into a truncation-free
collage system and then apply the CPM algorithm
of [9]. We can convert an LZ77 factorization
of T into a truncation-free collage system with

an increase in size by a factor of O.log jT j
jc.T /j

/

in time linear to the output size (see [4]). The
resulting algorithm thus has time complexity of
O.jc.T /j log jT j

jc.T /j
CjP j2/. Gawrychowski in [6]

successfully removed the quadratic dependency
on jP j again.

Theorem 3 (Gawrychowski [6]) CPM for
LZ77 can be solved in O.jc.T /j log jT j

jc.T /j
C jP j/

time.

Table 1 summarizes the best known solutions
to CPM for several compression formats.

Practical Aspect
From a practical viewpoint, we have two goals.
One is to perform the CPM task in less time
compared with a decompression followed by an
ordinary search (Goal 1), and the other is to
perform it in less time compared with an or-
dinary search over uncompressed text (Goal 2).
An optimal CPM algorithm theoretically achieves
the two goals if jc.T /j D o.jT j/. However,
we often observe jc.T /j D �.jT j/ in practice,
and hence reducing the constant factors hidden
behind the O-notation of time complexity of
CPM algorithms plays a crucial role in achieving
the two goals, especially for Goal 2. For example,
code words are limited to multiples of 8 bits to
avoid bit manipulation.

Kida et al. [8] reported the first experimental
results in this area, achieving Goal 1 for LZW.
Navarro and Tarhio [14] presented BM-type algo-
rithms for LZ78/LZW compression schemes and
showed they are twice as fast as a decompression
followed by a search using the best algorithms.

Data compression can be regarded as a pre-
processing that allows a fast search in the context
of Goal 2. An appropriate compression format
would be chosen for this purpose. We note that
in general, some occurrences of the encoded
pattern can be false matches, and/or the pattern
possibly occurs in several different forms within
the encoded text. There are two lines of research
work addressing Goal 2. One is to put a restriction
on the compression scheme so that every pattern
occurrence can be identified simply as a substring
of the encoded text that is identical to the encoded
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Pattern Matching on Compressed Text, Table 1 Best known solutions to CPM for several compression formats

Compression formats Time complexity Work

Run-length O.jc.T /j C jP j/ Trivial

LZW O.jc.T /j C jP j/ [7]

LZ77 O.jc.T /j log jT j

jc.T /j
C jP j/ [6]

Simple collage systems O
�
.jDj C jSj/C jP j

�
[7]

Truncation-free collage systems O
�
.jDj C jSj/C jP j2

�
[9]

Collage systems O
�
.jDj C jSj/ � height.D/C jP j2

�
[9]

pattern. The advantage is that any favored pattern
matching algorithm can be used to search the en-
coded text for the encoded pattern. The works of
Manber [10] and Rautio et al. [15] are along this
line. The latter is based on a combination of the
so-called stopper encoding and the Boyer-Moore-
Horspool (BMH) algorithm and is regarded as
the fastest combination that achieves Goal 2. The
drawback of this line is, however, that the restric-
tion considerably sacrifices the compression ratio
(e.g., 60–70 % for typical English texts). In the
case of natural language texts written in western
languages such as English (having explicit word
boundaries), there are some compression formats
that enable us to achieve Goal 2 by using a
modification of byte-oriented Huffman coding on
words (see, e.g., [3]).

The other line is to suppress a false detection
or detection omission by an algorithmic device,
without putting such a restriction on the compres-
sion scheme. The work of Miyazaki et al. [13]
for Huffman encoding and the works of Shibata
et al. [16, 17] for BPE are along this line. While
all of the works [10, 13, 15–17] mentioned here
achieve Goal 2, the compression ratios are poor:
BPE is the best among them. A BPE compressed
text is a regular collage system with limitation
jDj � 256. Matsumoto [12] extended BPE to
get a higher compression ratio by easing the
limitation and using the byte-oriented Huffman
coding for representing the variables occuring
in S . Their CPM algorithm runs fast to achieve
Goal 2, but memory requirement increases as
jDj grows. Maruyama [11] introduced a new
compression scheme, called the context-sensitive
grammar transform, of which compression ratio
is a match for gzip and Re-Pair. The search speed
of their CPM algorithm is almost twice faster than

the KMP-type CPM algorithm of [16] on BPE
and faster than [15] for short patterns.
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Problem Definition

A tile type is a colored unit square each of whose
four sides is provided with a glue. An assembly
is a partial function from Z

2 (2D-grid) to a tile
type set T . A (rectangular) pattern P (of width w
and height h) is a function from the rectangular
domain Œw� � Œh� to a set of colors, where Œm� D

f1; : : : ; mg for m 2 N. If at most k colors appear
on P , we say P is k-colored. Tiles being colored,
an assembly of domain Œw�� Œh� induces a unique
pattern of width w and height h.

The rectilinear tile assembly system (RTAS)
is a variant of Winfree’s aTAM system [10].
Figure 1 illustrates how an RTAS self-assembles
the binary counter pattern. An RTAS is a pair of a
finite set of tile types and an L-shape seed, which
is an assembly of domain f.0; 0/g [ Œw� � f0g [

f0g � Œh�. Starting from the L-shape seed, it tiles
the plain according to the following rule:

RTAS’s tiling rule: A tile can attach at a posi-
tion .x; y/ if its west glue matches the east
glue of the tile at .x�1; y/ and its south glue
matches the north glue label of the tile at
.x; y�1/.

A tile hence finds the sole attachable position
(1, 1) on the L-shape seed. The attachment of
tile there makes the positions (2, 1) and (1, 2)
attachable. Tiles attach in this manner one after
another and an assembly grows rectilinearly.

An RTAS is directed (a.k.a. deterministic) if
no two tile types share the west and south glues,
as the one in Fig. 1. A directed RTAS admits a
unique assembly A� to which no tile can attach
any more. Then we say that it uniquely self-
assembles the pattern of A�.

Patterned self-assembly tile set synthesis
(PATS), proposed by Ma and Lombardi [7], aims
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Patterned Self-Assembly Tile Set Synthesis, Fig. 1
(Left) Four tile types implement together the half-adder
with two inputs A, B from the west and south, the output

S to the north, and the carryout C to the east (Right) Copies
of the “half-adder” tile types turn the L-shape seed into the
binary counter pattern

at minimizing the RTAS that self-assembles a
given pattern, where an RTAS is measured by the
cardinality of its tile type set. Since the minimum
RTAS is known to be directed [2], this problem
is formulated as follows:
Patterned self-assembly tile set synthesis
(PATS) [7]

GIVEN: A (rectangular) pattern P

FIND: A minimum directed RTAS that uniquely
self-assembles P

For k � 1, the k-colored PATS (k-PATS) is a
practical variant of PATS which takes only the k-
colored patterns as input.

Key Results

PATS and k-PATS have been studied mainly in
two research directions so far: its computational
complexity and algorithms.

The NP-hardness of 2-PATS was claimed in
[8], but what was proved NP-hard there was
something different. Czeizler and Popa proved
that PATS is NP-hard [1] (its concise proof is in
[5]) by a polynomial-time reduction of 3SAT to

the decision variant of PATS: given a pattern P

and n 2 N, decide whether P can be uniquely
self-assembled by a directed RTAS with n tile
types. Variables and clauses of a given 3SAT

instance 	 are color-coded so that the number of
colors in the reduced pattern is in proportion to
the size of 	.

Potential of geometry, or more precisely, con-
figuration of colors, as a medium of encoding a
3SAT encoding a 3SAT instance 	 was suggested
by Seki [9]. In the reduction, a set Teval of 84 tile
types is designed as a 3SAT-verifier, i.e., using
tiles in the set, a directed RTAS evaluates 	 to be
true and assembles a pattern P.	/, starting from a
seed encoding 	 and some satisfying assignment.
A subpattern GADGET of P.	/ endows P.	/

with the property that in order for a directed
RTAS with a set T of at most 84 tile types to
assemble P.	/, T must be isomorphic to Teval.
The pattern P.	/ is 60-colored. Hence, 	 is
satisfiable if and only if .P.	/; 84/ is a yes-
instance of 60-PATS. Johnsen, Kao, and Seki have
refined the original design so that the number of
colors decreased to 29 [3] and further to 11 [4].

In these proofs, quite a few colors are devoted
just to make the property of GADGET manually



1544 Patterned Self-Assembly Tile Set Synthesis

checkable. Giving up the manual checkability of
the GADGET property has yielded a computer-
assisted proof of NP-hardness of 2-PATS by Kari
et al. [6]. The proof was verified in two differ-
ent environments. Note that in this proof, ev-
erything but the GADGET property is manually
checkable.

The NP-hardness of 2-PATS makes it
essentially indispensable for exact PATS-solvers
to search for the exponential number of solution
candidates. Göös et al. designed PATS-solvers:
an exhaustive partition-search branch-and-bound
(PS-BB) algorithm, its heuristic modification
(PS-H), and an ASP-solver-based algorithm [2].
PS-BB is an exact algorithm for PATS, running
in practical time just for small patterns, say
7 � 7, while PS-H works even for larger patterns
in exchange for the loss of guarantee on the
minimality of its output.

Let P be an input pattern of width w and
height h. The colors on P induce a partition �.c/

of the P ’s domain Œw� � Œh�. In principle, among
all possible partitions, PS-BB searches for the
one �min of least cardinality satisfying:

• �.c/ is coarser than �min in the sense that
8q 2 �min; 9p 2 �.c/; q 	 p.

• One can associate each class p of �min with a
quadruple of glues such that a directed RTAS
with the associated tile type set uniquely self-
assembles P .

Note that the finest partition �max D ff.x; y/g j

.x; y/ 2 Œw� � Œh�g satisfies these conditions
(associated tile types “hardcode their position” in
glues). The coarser-finer relation yields a tree of
partitions whose root is �max. This is the search
tree of PS-BB (and PS-H).

PS-BB employs branch-pruning by bounding
function to save computational resources. PS-
H more greedily optimizes the order in which
the coarsenings of a partition are explored by
preferring some search paths to the others.
Random choice of the one among the preferred
lets PS-H perform differently at each run.
PS-Hn is a variant of PS-H which runs
multiple independent searches in parallel for
efficiency.

Open Problems

The lack of guarantee on the minimality of tile
type sets output by the heuristic algorithms or
on their running time motivates the design of
a polynomial-time approximation algorithm for
PATS. The ratio 14=13 � 1:077 is known to
be unachievable in polynomial-time, unless P D
NP [6].

A manually checkable proof for the NP-
hardness of 2-PATS is of not practical but
theoretical interest.

URLs to Code and Data Sets

The computer program for the computer-assisted
proof is available online:
http://self-assembly.net/wiki/index.php?title=
2PATS-tileset-search.
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Problem Definition

De novo sequencing arises from the identification
of peptides by using tandem mass spectrometry
(MS/MS). A peptide is a sequence of amino acids
in biochemistry and can be regarded as a string
over a finite alphabet from a computer scientist’s
point of view. Each letter in the alphabet repre-
sents a different kind of amino acid and is associ-
ated with a mass value. In the biochemical exper-
iment, a tandem mass spectrometer is utilized to

fragment many copies of the peptide into pieces
and to measure the mass values (in fact, the mass
to charge ratios) of the fragments simultaneously.
This gives a tandem mass spectrum. Since differ-
ent peptides normally produce different spectra,
it is possible, and now a common practice, to
deduce the amino acid sequence of the peptide
from its spectrum. Often this deduction involves
the searching in a database for a peptide that can
possibly produce the spectrum. But in many cases
such a database does not exist or is not complete,
and the calculation has to be done without look-
ing for a database. The latter approach is called
de novo sequencing.

A general form of de novo sequencing prob-
lems is described in [2]. First, a score function
f .P; S/ is defined to evaluate the pairing of a
peptide P and a spectrum S . Then the de novo
sequencing problem seeks for a peptide P such
that f .P; S/ is maximized for a given spectrum
S .

When the peptide is fragmented in the tandem
mass spectrometer, many types of fragments can
be generated. The most common fragments are
the so called b-ions and y-ions. b-ions corre-
spond to the prefixes of the peptide sequence,
and y-ions the suffixes. Readers are referred to
[8] for the biochemical details of the MS/MS
experiments and the possible types of fragment
ions. For clarity, in what follows only b-ions
and y-ions are considered, and the de novo se-
quencing problem will be formulated as a pure
computational problem.

A spectrum S D f.xi ; hi /g is a set of peaks,
each has a mass value xi and an intensity value
hi . A peptide P D a1a2 : : : an is a string over
a finite alphabet †. Each a 2 † is associated
with a positive mass value m.a/. For any string

t D t1t2 : : : tk , denote m.t/
kP

iD1

m.ti /. The mass

of a length-i prefix (b-ion) of P is defined as
bi D cb Cm.a1a2 : : : ai /. The mass of a length-
i suffix (y-ion) of P is defined as yi D cy C

m.ak�iC1 : : : ak�1ak/. Here cb and cy are two
constants related to the nature of the MS/MS
experiments. If the mass unit used for measuring
each amino acid is dalton, then cb D 1 and
cy D 19.
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Let • be a mass error tolerance that is associ-
ated with the mass spectrometer. For mass value
m, the peaks matched by m is defined as D.m/ D

f.xi ; hi / 2 S j jxi � mj � •g. The general
idea of de novo sequencing is to maximize the
number and intensities of the peaks matched by
all b and y ions. Normally, • is far less than
the minimum mass of an amino acid. Therefore,
for different i and j , D.bi / \ D.bj / D ; and
D.yi /\D.yj / D ;. However, D.bi / and D.yj /

may share common peaks. So, if not defined
carefully, a peak may be counted twice in the
score function. There are two different definitions
of de novo sequencing problem, corresponding to
two different ways of handling this situation.

Definition 1 (Anti-symmetric de novo se-
quencing)

Instance: A spectrum S , a mass value M , and an
error tolerance •.

Solution: A peptide P such that m.P / D M ,
and D.bi / \D.yj / D ; for any i; j .

Objective: Maximize
nP

kD1

P
.xi ;hi /2D.bk/[D.yk/

hi .

This definition discards the peptides that give a
pair of bi and yj with similar mass values, be-
cause this happens rather infrequently in practice.
Another definition allows the peptides to have
pairs of bi and yj with similar mass values.
However, when a peak is matched by multiple
ions, it is counted only once. More precisely,
define the matched peaks by P as

D.P / D
[n

iD1
.D.bi / [D.yi //:

Definition 2 (De novo sequencing)

Instance: A spectrum S , a mass value M , and an
error tolerance •.

Solution: A peptide P such that m.P / DM .

f .P; S/ D
X

.xi ;hi /2D.P /

hi :

Objective: Maximize

Key Results

Anti-symmetric de novo sequencing was studied
in [1, 2]. These studies convert the spectrum into
a spectrum graph. Each peak in the spectrum
generates a few of nodes in the spectrum graph,
corresponding to the different types of ions that
may produce the peak. Each edge in the graph
indicates that the mass difference of the two
adjacent nodes is approximately the mass of an
amino acid, and the edge is labeled with the
amino acid. When at least one of each pair of
bi and yn�i matches a peak in the spectrum, the
de novo sequencing problem is reduced to the
finding of the “anti-symmetric” longest path in
the graph. A dynamic programming algorithm for
such purpose was published in [1].

Theorem 1 ([1]) The longest anti-symmetric
path in a spectrum graph G D hV; Ei can be
found in O.jV j jEj/ time.

Under Definition 2, de novo sequencing was
studied in [6] and a polynomial time algorithm
was provided. The algorithm is again a dynamic
programming algorithm. For two mass values
.m; m0/, the dynamic programming calculates an
optimal pair of prefix Aa and suffix a0A0, such
that

1. m.Aa/ D m and m.a0A0/ D m0.
2. Either cb C m.A/ < cy C m.a0A0/ � cb C

m.Aa/ or cy C m.A0/ � cb C m.A/ < cy C

m.a0A0/.

The calculation for .m; m0/ is based on the op-
timal solutions of smaller mass values. Because
of the second above requirement, it is proved in
[6] that not all pairs of .m; m0/ are needed. This
is used to speed up the algorithm. A carefully
designed strategy can eventually output a prefix
and a suffix so that their concatenation form
the optimal solution of the de novo sequencing
problem. More specifically, the following theorem
holds.

Theorem 2 ([5]) The de novo sequencing prob-
lem has an algorithm that gives the optimal
peptide in O.j†j � • �max a2†m.a/ �M/.
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Because j†j, •, max a2†m.a/ are all con-
stants, the algorithm in fact runs in linear time
with a large coefficient.

Although the above algorithms are designed
to maximize the total intensities of the matched
peaks, they can be adapted to work on more
sophisticated score functions. Some studies of
other score functions can be found in [2–5]. Some
of these score functions require new algorithms.

Applications

The algorithms have been implemented into soft-
ware programs to assist the analyses of tandem
mass spectrometry data. Software using the spec-
trum graph approach includes Sherenga [2]. The
de novo sequencing algorithm under the second
definition was implemented in PEAKS [5]. More
complete lists of the de novo sequencing software
and their comparisons can be found in [7, 9].

URL to Code

PEAKS free trial version is available at http://
www.bioinfor.com/.
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Problem Definition

The Perceptron algorithm [1, 13] is an iterative
algorithm for learning classification functions.
The Perceptron was mainly studied in the online
learning model. As an online learning algorithm,
the Perceptron observes instances in a sequence
of trials. The observation at trial t is denoted
by xt . After each observation, the Perceptron
predicts a yes/no .C=�/ outcome, denoted Oyt ,
which is calculated as follows:

Oyt D sign.hwt ; xt i/;

where wt is a weight vector which is learned
by the Perceptron and h�; �i is the inner product
operation. Once the Perceptron has made a pre-
diction, it receives the correct outcome, denoted
yt , where yt 2 f C 1;�1g. If the prediction
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of the Perceptron was incorrect, it updates its
weight vector, presumably improving the chance
of making an accurate prediction on subsequent
trials. The update rule of the Perceptron is

wtC1 D

�
wt C yt xt if Oyt ¤ yt

wt otherwise
: (1)

The quality of an online learning algorithm is
measured by the number of prediction mistakes
it makes along its run. Novikoff [12] and Block
[2] have shown that whenever the Perceptron is
presented with a sequence of linearly separable
examples, it makes a bounded number of pre-
diction mistakes which does not depend on the
length of the sequence of examples. Formally, let
.xi ; y1/; : : : ; .xT ; yT / be a sequence of instance-
label pairs. Assume that there exists a unit vector
u.kuk2 D 1/ and a positive scalar  > 0 such that
for all t , yt .u � xt / �  . In words, u separates the
instance space into two half-spaces such that pos-
itively labeled instances reside in one half-space,
while the negatively labeled instances belong to
the second half-space. Moreover, the distance
of each instance to the separating hyperplane,
fx W u � x D 0g, is at least  . The scalar  is
often referred to as the margin attained by u on
the sequence of examples. Novikoff and Block
proved that the number of prediction mistakes
the Perceptron makes on a sequence of linearly
separable examples is at most .R=/2, where
R D maxt kxtk2 is the minimal radius of an
origin-centered ball enclosing all the instances.
In 1969, Minsky and Papert [11] underscored
serious limitations of the Perceptron by showing

that it is impossible to learn many classes of pat-
terns using the Perceptron (e.g., XOR functions).
This fact caused a significant decrease of interest
in the Perceptron. The Perceptron has gained
back its popularity after Freund and Schapire [9]
proposed to use it in conjunction with kernels.
The kernel-based Perceptron not only can handle
non-separable datasets but can also be utilized for
efficiently classifying nonvectorial instances such
as trees and strings (see, e.g., [5]).

To implement the Perceptron in conjunction
with kernels, one can utilize the fact that at each
trial of the algorithm, the weight vector wt can be
written as a linear combination of the instances

wt D
X

x2It

yi xi ;

where It D fi < t W Oyi ¤ yig is the set of
indices of trials in which the Perceptron made a
prediction mistake. Therefore, the prediction of
the algorithm can be rewritten as

Oyt D sign

0

@
X

i2It

yi hxi ; xt i

1

A ;

and the update rule of the weight vector can
be replaced with an update rule for the set of
erroneous trials

ItC1 D

�
It [ ftg if Oyt ¤ yt

It otherwise
: (2)

In the kernel-based Perceptron, the inner prod-
uct hxi ; xt i is replaced with a Mercer kernel

Perceptron Algorithm, Table 1 Correspondence between the standard Perceptron algorithm and the kernel-based
Perceptron

Online Perceptron Kernel-based online Perceptron

INITIALIZATION: w1 D 0 INITIALIZATION: I1 D f�g

For t D 1; 2; : : : For t D 1; 2; : : :

Receive an instance xt Receive an instance xt

Predict an outcome Oyt D sign.hxt ; xt i/ Predict an outcome Oyt D sign

 
P

i2It

K.xi ; xt /

!

Receive correct outcome yt 2 f C 1;�1g Receive correct outcome yt 2 f C 1;�1g

Update: wtC1 D

(
wt C yt xt if Oyt ¤ yt

wt otherwise
Update: ItC1 D

(
It [ ftg if Oyt ¤ yt

It otherwise
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function, K.xi ; xt /, without any further changes
to the algorithm (for a discussion on Mercer
kernels, see, e.g., [15]). Intuitively, the kernel
function K.xi ; xt / implements an inner product
h	.xi /; 	.xt / where 	 is a nonlinear mapping
from the original instance space into another
(possibly high-dimensional) Hilbert space. Even
if the original instances are not linearly separable,
the images of the instances due to the nonlin-
ear mapping 	 can be linearly separable and
thus the kernel-based Perceptron can handle non-
separable datasets. Since the analysis of the Per-
ceptron does not depend on the dimensionality of
the instances, all of the formal results still hold
when the algorithm is used in conjunction with
kernel functions (Table 1).

Key Results

In the following a mistake bound for the Percep-
tron in the non-separable case (see, e.g., [10, 14])
is provided.

Theorem Assume that the Perceptron is
presented with the sequence of examples
.x1; y1/; : : : ; .xT ; yT / and denote R D

maxt kxtk2. Let u be a unit length weight vector
.kuk2 D 1/, let  > 0 be a scalar, and denote

L D

TX

tD1

maxf0; 1 � yt hu=; xt ig:

Then, the number of prediction mistakes the Per-
ceptron makes on the sequence of example is at
most

LC

�
R



�2

C
R
p

L


:

Note that if there exists u and  such that
yt hu; xt i �  for all t , then L D 0 and the
above bound reduces to Novikoff’s bound,

�
R



�2

:

Note also that the bound does not depend on
the dimensionality of the instances. Therefore,
it holds for the kernel-based Perceptron as well
with R D maxt K.xt ; xt /.

Applications

So far the Perceptron has been viewed in the
prism of online learning. Freund and Schapire [9]
proposed a simple conversion of the Perceptron
algorithm to the batch learning setting. A batch
learning algorithm receives as input a training set
of examples f.x1; y1/; : : : ; .xT ; yT /g sampled in-
dependently from an underlying joint distribution
over the instance and label space. The algorithm
is required to output a single classification func-
tion which performs well on unseen examples as
long as the unseen examples are sampled from
the same distribution as the training set. The
conversion of the Perceptron to the batch setting
proposed by Freund and Schapire is called the
voted Perceptron algorithm. The idea is to simply
run the online Perceptron on the training set of
examples, thus producing a sequence of weight
vectors w1; : : : ; wT . Then, the single classifica-
tion function to be used for unseen examples is a
majority vote over the predictions of the weight
vectors. That is,

f .x/ D

8
<

:

C1 ifjft W hwt ; xi > 0gj >

jft W hwt ; xi < 0gj

�1 otherwise

It was shown (see again [9]) that if the number
of prediction mistakes the Perceptron makes on
the training set is small, then f .x/ is likely to
perform well on unseen examples as well.

Finally, it should be noted that the Perceptron
algorithm was used for other purposes such as
solving linear programming [3] and training sup-
port vector machines [14]. In addition, variants of
the Perceptron were used for numerous additional
problems such as online learning on a budget
[4,8], multiclass categorization and ranking prob-
lems [6,7], and discriminative training for hidden
Markov models [5].
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Problem Definition

Let S D fs1; s2; : : : ; sng be a set of elements
called objects and let C D fc1; c2; : : : ; cmg be
a set of functions called characters such that
each cj 2 C is a function from S to the set
f0; 1; : : : ; rj � 1g for some integer rj . For every
cj 2 C , the set f0; 1; : : : ; rj � 1g is called the
set of allowed states of character cj , and for any
si 2 S and cj 2 C , it is said that the state of si

on cj is ˛, or that the state of cj for si is ˛, where
˛ D cj .si /. The character state matrix for S

and C is the .n�m/-matrix in which entry .i; j /

for any i 2 f1; 2; : : : ; ng and j 2 f1; 2; : : : ; mg

equals the state of si on cj .
In this encyclopedia entry, a phylogeny for S

is an unrooted tree whose leaves are bijectively
labeled by S . For every cj 2 C and ˛ 2

f0; 1; : : : ; rj �1g, define the set Scj ;˛ by Scj ;˛ D

fsi 2 S W the state of si on cj is ˛g. A perfect
phylogeny for .S; C / (if one exists) is a phy-
logeny T for S such that the following holds:
for each cj 2 C and pair of allowed states ˛; ˇ

of cj with ˛ ¤ ˇ, the minimal subtree of T
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that connects Scj ;˛ and the minimal subtree of T

that connects Scj ;ˇ are vertex disjoint. See Fig. 1
for an example. The Perfect Phylogeny Problem
(also called the Character Compatibility Problem
in the literature [2, 9]) is the following:

Problem 1 (The Perfect Phylogeny Problem)

INPUT: An .n�m/-character state matrix M for
some S and C .

OUTPUT: A perfect phylogeny for .S; C /, if one
exists; otherwise, null.

Below, we define r D maxj2f1;2;:::;mg rj for
the input character state matrix M .

Key Results

The following negative result was proved by
Bodlaender, Fellows, and Warnow [2] and, inde-
pendently, by Steel [14]:

Theorem 1 ([2, 14]) The Perfect Phylogeny
Problem is NP-hard.

On the other hand, certain restrictions of the
Perfect Phylogeny Problem can be solved ef-
ficiently. One such special case occurs if the
number of allowed states of each character is
limited. For this case, Agarwala and Fernández-
Baca [1] designed a dynamic programming-based
algorithm that builds perfect phylogenies on cer-
tain subsets of S called c-clusters (also referred
to as proper clusters in [5, 10] and as charac-
ter subfamilies in [6]) in a bottom-up fashion.

Each c-cluster G has the property that: (1) G

and S n G share at most one state of each
character; and (2) for at least one character, G

and S n G share no states. The number of c-
clusters is at most 2rm, and the algorithm’s to-
tal running time is O.23r .nm3 C m4//, i.e.,
exponential in r . Hence, the Perfect Phylogeny
Problem is polynomial-time solvable when the
number of allowed states of every character is
upper-bounded by O.log.mCn//. Subsequently,
Kannan and Warnow [10] presented a modified
algorithm with improved running time. They re-
structured the algorithm of [1] to eliminate one
of the three nested loops that steps through all
possible c-clusters and added a preprocessing
step which speeds up the innermost loop. The
resulting time complexity is given by:

Theorem 2 ([10]) The algorithm of Kannan and
Warnow in [10] solves the Perfect Phylogeny
Problem in O.22rnm2/ time.

A perfect phylogeny T for .S; C / is called
minimal if no tree which results by contracting
an edge of T is a perfect phylogeny for .S; C /.
In [10], Kannan and Warnow also showed how to
extend their algorithm to enumerate all minimal
perfect phylogenies for .S; C / by constructing a
directed acyclic graph that implicitly stores the
set of all perfect phylogenies for .S; C /.

Theorem 3 ([10]) The extended algorithm of
Kannan and Warnow in [10] enumerates the set
of all minimal perfect phylogenies for .S; C / so

M c1

s1

s2

s3

s5

c2 c3

0 0 1

1 1 0

2 2 0
s4 1 0 0

s6 1 0 1
0 3 1

a b

s1
[0,0,1]

s6
[1,0,1]

s2
[1,1,0]

s4
[1,0,0]

s5
[0,3,1]

s3
[2,2,0]

Perfect Phylogeny (Bounded Number of States), Fig.
1 (a) An example of a character state matrix M for S D
fs1; s2; : : : ; s6g and C D fc1; c2; c3g with r1 D 3,

r2 D 4, and r3 D 2, i.e., r D 4. (b) A perfect
phylogeny for .S; C /. For convenience, the states of all
three characters for each object in S are shown
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Perfect Phylogeny (Bounded Number of
States), Table 1 The running times of the fastest
known algorithms for the Perfect Phylogeny Problem
with a bounded number of states

r Running time Reference

2 O.nm/ [11] together with [7]

3 minfO.nm2/;
O.n2m/g

[3, 10] together with [9]

4 minfO.nm2/;
O.n2m/g

[10] together with [9]

�5 O.22r nm2/ [10]

that the maximum computation time between two
consecutive outputs is O.22rnm2/.

For small values of r , even faster algorithms
are known. Refer to the table in Table 1 for a sum-
mary. If r D 2, then the problem can be solved
in O.nm/ time by reducing it to the Directed
Perfect Phylogeny Problem for Binary Characters
(see, e.g., Encyclopedia entry �Directed Perfect
Phylogeny (Binary Characters) for a definition
of this variant of the problem) using O.nm/

time [7,11] and then applying Gusfield’s O.nm/-
time algorithm [7]. If r D 3 or r D 4, the
problem is solvable in O.n2m/ time by another
algorithm by Kannan and Warnow [9], which is
faster than the algorithm from Theorem 2 when
n < m. Also note that for the case r D 3, there
exists an older algorithm by Dress and Steel [3]
whose time complexity coincides with that of the
algorithm in Theorem 2.

For other special cases of the Perfect Phy-
logeny Problem that can be solved efficiently, see
Encyclopedia entry �Directed Perfect Phylogeny
(Binary Characters) or the survey by Fernández-
Baca [5].

Applications

Computational evolutionary biology relies on
efficient methods for inferring, from some given
data, a phylogenetic tree that accurately describes
the evolutionary relationships among a set of
objects (e.g., biological species, proteins, genes,
etc.) assumed to have been produced by an

evolutionary process. One of the most widely
used techniques for reconstructing a phylogenetic
tree is to represent the objects as vectors of
character states and look for a tree that clusters
objects which have a lot in common. The Perfect
Phylogeny Problem can be regarded as the ideal
special case of this approach in which the given
data contains no errors, evolution is treelike, and
each character state can emerge only once in the
evolutionary history.

However, data obtained experimentally
seldom admits a perfect phylogeny, so various
optimization versions of the problem such as
maximum parsimony and maximum compatibility
are often considered in practice. These strategies
generally lead to NP-complete problems,
but there exist heuristics that work well
for most inputs. See, e.g., [4, 5, 12] for a
discussion. Nevertheless, algorithms for the
Perfect Phylogeny Problem may be useful
even when the data does not admit a perfect
phylogeny, for example, if there exists a perfect
phylogeny for m � O.1/ of the characters in C .
In fact, in one crucial step of their proposed
character-based methodology for determining
the evolutionary history of a set of related natural
languages, Warnow, Ringe, and Taylor [15]
consider all subsets of C in decreasing order of
cardinality, repeatedly applying the algorithm
of [10] until a largest subset of C which
admits a perfect phylogeny is found. The ideas
behind the algorithms of [1] and [10] have
also been utilized and extended by Fernández-
Baca and Lagergren [6] in their algorithm for
computing near-perfect phylogenies in which
the constraints on the output have been relaxed
in order to permit non-perfect phylogenies
whose so-called penalty score is less than or
equal to a prespecified parameter q; see [6] for
details. (See also [13] for a fixed-parameter
tractable algorithm for this problem variant
when r D 2.)

The motivation for considering a bounded
number of states is that characters based on
directly observable traits are, by the way they
are defined, naturally bounded by some small
number (often 2). When biomolecular data is
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used to define characters, the number of allowed
states is typically bounded by a constant, e.g.,
r D 2 for SNP markers, r D 4 for DNA or RNA
sequences, or r D 20 for amino acid sequences.
(see also Encyclopedia entry �Directed Perfect
Phylogeny (Binary Characters)). Moreover,
characters with r D 2 can be useful in
comparative linguistics [8].

Open Problems

An open problem is to determine whether the
time complexity of the algorithm of Kannan and
Warnow [10] can be improved. As noted in [5], it
would be interesting to find out if the Perfect Phy-
logeny Problem is solvable in O.22rnm/ time for
any r , or more generally, in O.f .r/ �nm/ time,
where f is a function of r which does not depend
on n or m, since this would match the fastest
known algorithm for the special case r D 2 (see
Table 1). Another open problem is to establish
lower bounds on the computational complexity of
the Perfect Phylogeny Problem with a bounded
number of states.
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ters)
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Problem Definition

In the context of the perfect phylogeny haplo-
typing (PPH) problem, each vector h 2 f0; 1gm

is called a haplotype, while each vector
g 2 f0; 1; 2gm is called a genotype. Haplotypes
are binary encodings of DNA sequences,
while genotypes are ternary encodings of pairs
of DNA sequences (one sequence for each
of the two homologous copies of a certain
chromosome).

Two haplotypes h0 and h00 are said to resolve
a genotype g if, at each position j: (i) if
gj 2 f0; 1g then both h0j D gj and h00j D gj ;
(ii) if gj D 2 then either h0j D 0 and h00j D 1

or h0j D 1 and h00j D 0. If h0 and h00 resolve g,
we write g D h0 C h00. An instance of the PPH
problem consists of a set G D fg1; g2; : : : ; gng

of genotypes. A set H of haplotypes such that,
for each g 2 G, there are h0; h00 2 H with
g D h0 C h00, is called a resolving set for G.

A perfect phylogeny for a set H of haplotypes
is a rooted tree T for which

• the set of leaves is H and the root is labeled by
some binary vector r;

• each index j 2 f1; : : : ; mg labels exactly one
edge of T;

• if an edge e is labeled by an index k, then, for
each leaf h that can be reached from the root
via a path through e, it is hk ¤ rk .

Without loss of generality, it can be assumed
that the vector labeling the root is r D 0. Within
the PPH problem, T is meant to represent the
evolution of the sequences at the leaves from
a common ancestral sequence (the root). Each
edge labeled with an index represents a point
in time when a mutation happened at a specific
site. This model of evolution is also known as

coalescent [11]. It can be shown that a perfect
phylogeny for H exists if and only if for all
choices of four haplotypes h1; : : : ; h4 2 H and
two indices i; j ,

fha
i ha

j ; 1 � a � 4g 6D f00; 01; 10; 11g :

Given the above definitions, the problem sur-
veyed in this entry is the following:

Perfect Phylogeny Haplotyping Problem
(PPH)
Given a set G of genotypes, find a resolving set H
of haplotypes and a perfect phylogeny T for H, or
determine that such a resolving set does not exist.

In a slightly different version of the above
problem, one may require to find all perfect
phylogenies for H instead of just one (in fact,
all known algorithms for PPH do find all perfect
phylogenies).

The perfect phylogeny problem was intro-
duced by Gusfield [7], who also proposed
a nearly linear-time O.nm ˛.nm//-algorithm
for its solution (where ˛./ is the extremely
slowly growing inverse Ackerman function).
The algorithm resorted to a reduction to
a complex procedure for the graph realization
problem (Bixby and Wagner [2]), of very
difficult understanding and implementation.
Later approaches for PPH proposed much
simpler, albeit slower, O.nm2/-algorithms
(Bafna et al. [1]; Eskin et al. [6]). However,
a major question was left open: does there exist
a linear-time algorithm for PPH? In [7], Gusfield
conjectured that this should be the case. The
2005 algorithm by Ding, Filkov, and Gusfield [5]
surveyed in this entry settles the above conjecture
in the affirmative.

Key Results

The main idea of the algorithm is to find the
maximal sub-graphs that are common to all PPH
solutions. Let us call P-class a maximal sub-
graph of all PPH trees for G. The authors show
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that each P-class consists of two sub-trees which,
in each PPH solution, can appear in either one
of two possible ways (called flips of the P-class)
with respect to any fixed P-class taken as a ref-
erence. Hence, if there are k P-classes, there are
2k�1 distinct PPH solutions.

The algorithm resorts to an original and effec-
tive data structure, called the shadow tree, which
gives an implicit representation of all P-classes.
The data structure is built incrementally, by pro-
cessing one genotype at a time. The total cost for
building and updating the shadow tree is linear in
the input size (i.e., in nm). A detailed description
of the shadow tree requires a rather large number
of definitions, possibly accompanied by figures
and examples. Here, we will introduce only its
basic features, those that allow us to state the
main theorems of [5].

The shadow tree is a particular type of directed
rooted tree, which contains both edges and links
(strictly speaking, the latter are just arcs, but they
are called links to underline their specific use in
the algorithm). The edges are of two types: tree-
edges and shadow-edges, and are associated to
the indices f1; : : : ; mg. For each index i, there is
a tree-edge labeled ti and a shadow-edge labeled
si. Both edges and links are oriented, with their
head closer to the root than their tail. Other than
the root, each node of the shadow tree is the
endpoint of exactly one tree-edge or one shadow-
edge (while the root is the head of two “dummy”
links). The links are used to connect certain tree-
and shadow-edges. A link can be either free or
fixed. The head of a free link can still be changed
during the execution of the algorithm, but once
a link is fixed, it cannot be changed any more.

Tree-edges, shadow-edges and fixed links are
organized into classes, which are sub-graphs of
the shadow tree. Each fixed link is contained
in exactly one class, while each free link con-
nects one class to another, called its parent. For
each index i, if the tree-edge ti is in a class X,
then the shadow-edge si is in X as well, so that
a class can be seen as a pair of “twin” sub-
trees of the shadow tree. The free links point out
from the root of the sub-trees (the class roots).
Classes change during the running of the algo-

rithm. Specifically, classes are created (contain-
ing a single tree- and shadow-edge) when a new
genotype is processed; a class can be merged with
its parent, by fixing a pair of free edges; finally,
a class can be flipped, by switching the heads of
the two free links that connect the class roots to
the parent class.

A tree T is said to be “contained in” a shadow
tree if T can be obtained by flipping some classes
in the shadow tree, followed by contracting all
links and shadow-edges. Let us call contraction
of a class the sub-graph (consisting of a pair
of sub-trees, made of tree-edges only) that is
obtained from a class X of the shadow tree by
contracting all fixed links and shadow-edges of
X. The following are the main results obtained
in [5]:

Proposition 1 Every P-class can be obtained
by contraction of a class of the final shadow
tree produced by the algorithm. Conversely, every
contraction of a class of the final shadow tree is
a P-class.

Theorem 1 Every PPH solution is contained
in the final shadow tree produced by the algo-
rithm. Conversely, every tree contained in the
final shadow tree is a distinct PPH solution.

Theorem 2 The total time required for building
and updating the shadow tree is O.nm/.

Applications

The PPH problem arises in the context of Single
Nucleotide Polymorphisms (SNP’s) analysis in
human genomes. A SNP is the site of a single
nucleotide which varies in a statistically signif-
icant way in a population. The determination
of SNP locations and of common SNP patterns
(haplotypes) are of uttermost importance. In fact,
SNP analysis is used to understand the nature
of several genetic diseases, and the international
Haplotype Map Project is devoted to SNP study
(Helmuth [9]).
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The values that a SNP can take are called
its alleles. Almost all SNPs are bi-allelic, i.e.,
out of the four nucleotides A, C, T, G, only two
are observed at any SNP. Humans are diploid
organisms, with DNA organized in pairs of chro-
mosomes (of paternal and of maternal origin).
The sequence of alleles on a chromosome copy
is called a haplotype. Since SNPs are bi-allelic,
haplotypes can be encoded as binary strings. For
a given SNP, an individual can be either homozy-
gous, if both parents contributed the same allele,
or heterozygous, if the paternal and maternal
alleles are different.

Haplotyping an individual consists of deter-
mining his two haplotypes. Haplotyping a pop-
ulation consists of haplotyping each individual of
the population. While it is today economically
infeasible to determine the haplotypes directly,
there is a cheap experiment which can determine
the (less informative and often ambiguous) geno-
types.

A genotype of an individual contains the con-
flated information about the two haplotypes. For
each SNP, the genotype specifies which are the
two (possibly identical) alleles, but does not spec-
ify their origin (paternal or maternal). The ternary
encoding that is used to represent a genotype g
has the following meaning: at each SNP j, it
is gj D 0 (respectively, 1) if the individual is
homozygous for the allele 0 (respectively, 1), and
gj D 2 if the individual is heterozygous. There
may be many possible pairs of haplotypes that
justify a particular genotype (there are 2k�1 pairs
of haplotypes that can resolve a genotype with k
heterozygous SNPs). Given a set of genotypes, in
order to determine the correct resolving set out of
the exponentially many possibilities, one imposes
some “biologically meaningful” constraints that
the solution must possess. The perfect phylogeny
model (coalescent) requires that the resolving set
must fit a particular type of evolutionary tree.
That is, all haplotypes should descend from some
ancestral haplotype, via mutations that happened
(only once) at specific sites over time. The coales-
cent model is accurate especially for short haplo-
types (for longer haplotypes there is also another

type of evolutionary event, recombination, that
should be taken into account).

The linear-time PPH algorithm is of signifi-
cant practical value in two respects. First, there
are instances of the problem where the number
of SNPs considered is fairly large (genotypes
can extend over several kilo-bases). For these
long instances, the advantage of an O.nm/ al-
gorithm with respect to the previous O.nm2/

approach is evident. On the other hand, when
genotypes are relatively short, the benefit of us-
ing the linear-time algorithm is not immediately
evident (both algorithms run extremely quickly).
Nevertheless, there are situations in which one
has to solve a large set of haplotyping problems,
where each single problem is defined over short
genotypes. For instance, this is the case in which
one examines all “small” subsets of SNPs in order
to determine the subsets for which there is a PPH
solution. In this type of application, the gain of
efficiency with the use of the linear-time PPH
algorithm is significant (Chung and Gusfield [4];
Wiuf [14]).

Open Problems

A linear-time algorithm is the best possible for
PPH, and no open problems are listed in [5].

Experimental Results

The algorithm has been implemented in C and
its performance has been compared with the
previous fastest PPH algorithm, i.e., DPPH
(Bafna et al. [1]). In the case of m D 2000

and n D 1000, the algorithm is about 250-times
faster than DPPH, and is capable of solving an
instance in an average time of 2 s, versus almost
8 min needed by DPPH (on a “standard” 2005
Personal Computer). The smaller instances (e.g.,
with m D 50 SNPs) are such that the superior
performance of the algorithm is not as evident,
with an average running time of 0.07 s versus
0.2 s. However, as already remarked, when the
small instances are executed within a loop, the
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speed-up turns out to be again of two or more
orders of magnitude.

Data Sets

The data sets used in [5] have been generated
by the program ms (Hudson [12]), which is the
widely used standard for instance generation re-
flecting the coalescent model of SNP sequence
evolution. Real-life instances can be found at the
HapMap web site http://www.hapmap.org.

URL to Code

http://wwwcsif.cs.ucdavis.edu/~gusfield/lpph/
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Problem Definition

Circuit partitioning consists of dividing the cir-
cuit into parts, each of which can be imple-
mented as a separate component (e.g., a chip)
that satisfies the design constraints. The work of
Rajaraman and Wong [5] considers the problem
of dividing a circuit into components, subject to
area constraints, such that the maximum delay at
the outputs is minimized.

A combinational circuit can be represented as
a directed acyclic graph G D .V; E/, where V is
the set of nodes and E is the set of directed edges.
Each node represents a gate in the network and
each edge .u; v/ in E represents an interconnec-
tion between gates u and v in the network. The
fanin of a node is the number of edges incident
into it, and the fanout of a node is the number of
edges incident out of it. A primary input (PI) is a
node with fanin 0, while a primary output (PO) is
a node with fanout 0. Each node has a weight and
a delay associated with it.

Definition 1 A clustering of a network G D

.V; E/ is a triple .H; ¥; †/, where

1. H D .V 0; E 0/ is a directed acyclic graph.
2. ® is a function mapping V 0 to V such that
ı For every edge .u0; v0/ 2 E 0, .¥.u0/; ¥.v0//

2 E.
ı For every node v0 2 V 0 and edge

.u; ¥.v0// 2 E, there exists a unique
u0 2 V 0 such that ¥.u0/ D u and
.u0; v0/ 2 E 0.

ı For every PO node v 2 V , there exists a
unique v0 2 V 0 such that ¥.v0/ D v.

3. † is a partition of V 0.

Let � D .H D .V 0; E 0/; ¥; †/ be a clustering of
G. For v 2 V; v0 2 V 0, if ¥.v0/ D v, we call v0

a copy of v. The set V 0 consists of all the copies
of the nodes in V that appear in the clustering.
A node v0 is a PI (respectively, PO) in � if ¥.v0/

is a PI (respectively, PO) in G. It follows from
the definition of ® that H is logically equivalent
to G.

The weights and delays on the individual
nodes in G yield weights and delays of nodes in

H 0 and a delay for the clustering � . The weight
(respectively, delay) of a node v0 in V 0 is the
weight (respectively, delay) of ¥.v/. The weight
of any cluster C 2 †, denoted by W.C /, is
the sum of the weights of the nodes in C . The
delay of a clustering is given by the general delay
model of Murgai et al. [3], which is as follows.
The delay of an edge .u0; v0/ 2 E 0 is D (which is
a given parameter) if u0 and v0 belong to different
elements of † and zero otherwise. The delay
along a path in H 0 is simply the sum of the
delays of the edges of the path. Finally, the delay
of � is the delay of a maximum-delay path in H 0,
among all the paths from a PI node to a PO node
in H 0.

Definition 2 Given a combinational network
G D .V; E/ with weight function w W V ! RC,
weight capacity M , and a delay function • W V !

RC, we say that a clustering � D .H; ¥; †/ is
feasible if for every cluster C 2 †; W.C / is
at most M . The circuit clustering problem is to
compute a feasible clustering � of G such that
the delay of � is minimum among all feasible
clusterings of G.

An early work of Lawler et al. [2] presented a
polynomial-time optimal algorithm for the circuit
clustering problem in the special case where all
the gate delays are zero (i.e., •.v/ D 0 for
all v).

Key Results

Rajaraman and Wong [5] presented an optimal
polynomial-time algorithm for the circuit cluster-
ing problem under the general delay model.

Theorem 1 There exists an algorithm that com-
putes an optimal clustering for the circuit clus-
tering problem in O.n2 log n C nm/ time, where
n and m are the vertices and edges, respectively,
of the given combinational network.

This result can be extended to compute opti-
mal clusterings under any monotone clustering
constraint. A clustering constraint is monotone
if any connected subset of nodes in a feasible
cluster is also monotone [2].
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Theorem 2 The circuit clustering problem can
be solved optimally under any monotone cluster-
ing constraint in time polynomial in the size of the
circuit.

Applications

Circuit partitioning/clustering is an important
component of very large scale integration design.
One application of the circuit clustering problem
formulated above is to implement a circuit on
multiple field programmable gate array chips.
The work of Rajaraman and Wong focused on
clustering combinational circuits to minimize
delay under area constraints. Related studies
have considered other important constraints,
such as pin constraints [1] and a combination
of area and pin constraints [6]. Further
work has also included clustering sequential
circuits (as opposed to combinational circuits)
with the objective of minimizing the clock
period [4].

Experimental Results

Rajaraman and Wong reported experimental re-
sults on five ISCAS (International Symposium
on Circuits and Systems) circuits. The number
of nodes in these circuits ranged from 196 to
913. They reported the maximum delay of the
clusterings and running times of their algorithm
on a Sun Sparc workstation.
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Problem Definition

Permutation Enumeration
Let Sn be the set of permutations of Œn� D

f1; 2; : : : ; ng. We write a permutation as a se-
quence of elements in Œn� such that each ele-
ment appears exactly once. A permutation enu-
meration is to list all permutations in Sn. For
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example, there are 24 permutations of [4]: 1234,
1243, 1324, 1342, 1423, 1432, 2134, 2143, 2314,
2341, 2413, 2431, 3124, 3142, 3214, 3241, 3412,
3421, 4123, 4132, 4213, 4231, 4312, 4321. The
enumeration of permutations is a basic and long-
standing enumeration problem, and it was sur-
veyed by Sedgewick [8].

Note that the above example lists all the
permutations of [4], and we have listed them
in lexicographic order, which is the most
natural way to enumerate them. The purpose
of this paper is to introduce representative
methods for enumeration problems by showing
how these methods are applied to permutation
enumeration.

Efficiency of Enumeration Algorithms
The efficiency of an algorithm is measured by
the time and space complexity for a given input
size. However, many enumeration problems have
an exponential number of outputs (solutions) for
a given input. Hence, an enumeration algorithm
may require exponential time in order to output
the solutions. Typically, an enumeration algo-
rithm is measured by the “delay time.” We say
that an enumeration algorithm has delay d if
(1) it takes at most d time to output the first
object, and (2) it takes at most d time between
two consecutive outputs. See [1, 3, 4] for further
details. Note that the delay time does not include
the time required to output the objects, since this
is typically ignored when estimating the time
complexity of an enumeration algorithm. The
space complexity of an enumeration algorithm
is an estimate of the amount of working mem-
ory required by the algorithm (as in the usual
sense).

Key Results

Enumeration by Partition Search
In the partition search enumeration method, ob-
jects are listed by repeatedly partitioning the set
of objects. As an example, we will apply the
partition search method to permutation enumer-
ation. We will partition Sn by fixing the first
element of a permutation. Denote by Sn.i/ 	

Algorithm 1: PARTITION-SEARCH(�; S )
1 � is the current subpermutation, and S is the set of

elements in � ;
2 if S D Œn� then /* � is a permutation
in Sn */

3 Output � ;
4 return;

5 foreach i 2 Œn� n S do
6 PARTITION-SEARCH(� C i , S [ fig);

/* The operation ‘C’ is a
concatenation */

Sn the set of permutations in which i in Œn� is
the first element. Then, Sn is partitioned into
Sn.1/; Sn.2/; : : : ; Sn.n/. Hence, if we have the
list of all permutations of Œn� n fig for each i D

1; 2; : : : ; n, then we can enumerate all permuta-
tions in Sn by appending i as the first element to
every permutation. This recursive structure gives
the algorithm shown as Algorithm 1. To begin,
Algorithm 1 is called with the empty sequence
and the empty set. The algorithm recursively
fixes the first element, and we then obtain all
permutations in Sn. Figure 1 illustrates a tree
structure of recursive calls of the algorithm. The
root corresponds to the empty sequence. Each
vertex of the tree corresponds to the prefix of a
permutation, and it is obtained by removing the
last element of its child. The leaves correspond to
the permutations in Sn. Algorithm 1 traverses the
tree structure in a depth-first manner.

We now estimate the running time of Algo-
rithm 1. Let T be the running time for traversing
an edge of the search tree. Since the depth of the
search tree is n, the delay time of the algorithm is
O.nT / time in worst case.

Theorem 1 One can enumerate all permutations
by the partition search method. The running time
of the algorithm is O.nT /, where T is the time
for traversing an edge of the search tree. The
required working space is O.n/.

Enumeration by Gray Code
A combinatorial Gray code is a list of all of
the objects in some class such that two consec-
utive objects in the list differ only by a small
amount. Since the list contains all of the ob-
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jects, an algorithm that generates a combinatorial
Gray code can be regarded as an enumeration
algorithm. There are combinatorial Gray codes
for various combinatorial objects, and these have
been surveyed [7]. For a permutation, a difference
between two consecutive objects would be a swap
of two adjacent elements, where we say that the
i -th and the .i C 1/-th element in a permuta-
tion are adjacent. For permutations, the well-
known Steinhaus-Johnson-Trotter algorithm (or
Johnson-Trotter algorithm) [5,8,10,11] generates
the combinatorial Gray code for the permutations
of Œn�. This algorithm is regarded as an enumera-
tion of permutations.

Let � D p1p2 : : : pn�1 in Sn�1, and denote
by �.i/ D p1p2 : : : pi npiC1 : : : pn�1 for i D

0; 1; : : : ; n � 1 the permutation obtained from
� by inserting n between pi and piC1. Then,
the list of �.0/; �.1/; : : : ; �.n � 1/ or �.n �

1/; �.n � 2/; : : : ; �.0/ is a combinatorial Gray
code for a subset of Sn. Such lists can be defined
for all permutations in Sn�1, and the lists for
all permutations in Sn�1 contain all permutations
in Sn. Assume that we have a combinatorial
Gray code for Sn�1. Let �i be the i -th per-
mutation in the list. Then, we construct the list
�i .0/; �i .1/; : : : ; �i .n�1/ if i is even, and �i .n�

1/; �i .n � 2/; : : : ; �i .0/ if i is odd. The obtained
list is a combinatorial Gray code for Sn. Note that
if i is even, then �iC1.n � 1/ is obtained from
�i .n � 1/ by swapping two adjacent elements,
where �iC1 is the .i C 1/-th permutation in a
combinatorial Gray code for Sn�1. Similarly, if
i is odd, then �iC1.0/ is obtained from �i .0/ by
swapping two adjacent elements. By recursively
applying this idea, we can design a combinatorial
Gray code for Sn.

Now we explain the details of Steinhaus-
Johnson-Trotter algorithm. The algorithm first
outputs the identity permutation � D 12 : : : n.
Let us consider the case of � D p1p2 : : : pn in
Sn n f�g, and let us assume that � is generated
from � 0 D p01p02 : : : p0n by swapping two
adjacent elements in � 0. We construct the next
permutation of � by swapping n and its left-
adjacent or its right-adjacent element. More
precisely, the rule of swapping is as follows.

1. n is the last element of � .
1-1. n is the second-to-last element of � 0.

In this case, � is obtained from � 0

by swapping p0n�1 D n and p0n by
Step 3. We swap two elements in Œn � 1�

by recursively applying this swapping
algorithm to the subpermutation
p1p2 : : : pn�1, which is obtained from
� by removing the element n. Let �s

be the obtained subpermutation. Then,
we append n to �s as the last element.
The obtained permutation is the next
permutation.

1-2. n is also the last element of � 0.
We construct the next permutation of

� by swapping pn�1 and pn D n.
2. n is the first element of � . Similar to Step 1,

we construct the next permutation of � , as
follows:
2-1. n is the second element of � 0.

We recursively apply this swapping
algorithm to the subpermutation
p2p3 : : : pn. Let �t be the obtained
subpermutation. Then, we append n to
�t as the first element. The obtained
permutation is the next permutation.
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Permutation Enumeration, Table 1 List of S4 in com-
binatorial Gray code (n D 4 is underlined)

1234 3124 2314

1243 3142 2341

1423 3412 2431

4123 4312 4231

4132 4321 4213

1432 3421 2413

1342 3241 2143

1324 3214 2134

2-2. n is also the first element of � 0.
We construct the next permutation of

� by swapping p1 D n and p2.
3. Otherwise.

We swap pi D n and piC1 if � is obtained
from � 0 by swapping p0i�1 D n and p0i of � 0,
and swap pi�1 and pi D n if � is obtained
from � 0 by swapping p0i and p0iC1 D n of � 0.

Table 1 shows the list of permutations in S4

enumerated by the above swapping algorithm.
Note that any permutation can be obtained by
swapping two adjacent elements.

Pseudocodes for the above algorithm are
shown in Algorithm 2, which is the main
routine, and Algorithm 3, which is a subroutine
which generates the next permutation of a given
permutation. These pseudocodes assume that
a direction vector d D .d.1/; d.2/; : : : ; d.n//

is stored in global memory. Each d.i/ for
i D 1; 2; : : : ; n represents the direction in which
the element i in the current permutation goes to
obtain the next permutation. More precisely, an
instruction of “left” or “right” is stored in each
d.i/. By using the direction vector, we know
in which direction two adjacent elements were
swapped without needing to check the current
permutation and the preceding permutation.

Our implementations (Algorithms 2 and 3) are
not efficient, but an efficient loopless algorithm
was given by Sedgewick [8], as in the following
theorem.

Theorem 2 ([8]) After constructing the identity
permutation in O.n/ time, one can enumerate all
permutations in Sn in the order of a combinato-
rial Gray code with a constant time delay.

It can be observed that the combinatorial Gray
coder order defined by the algorithm represents a
Hamiltonian path of the permutohedron. Figure 2
shows a permutohedron of S4 and its Hamil-
tonian path corresponding to the combinatorial
Gray code.

Enumeration by Reverse Search
Avis and Fukuda [2] proposed a reverse search
enumeration method. The idea of the reverse
search method is as follows: We first define a
rooted tree structure for the objects such that each
vertex corresponds to an object and each edge
corresponds to a relation between two objects.
Then, by traversing the tree structure, we enumer-
ate all of the objects.

Now, we illustrate the reverse search method
by applying it to permutation enumeration [9].
We define a rooted tree structure for Sn, as
follows. To construct a tree structure, we de-
fine its root and the parent of each permutation

Algorithm 2: GRAY-CODE(n)
1 d.i/ for i D 1; 2; : : : ; n represents in which

direction the element i goes;
2 foreach i D 1; 2; : : : ; n do
/* Initialization of direction
vector d.i/ */

3 d.i/ left

4 �  12 : : : n /* Set the identity
permutation to �. */;

5 foreach i D 1; 2; : : : ; nŠ do
6 Output � ;
7 �  SWAP(n,�);

Algorithm 3: SWAP(n, � D p1p2 : : : pn)
1 if n D 1 then return �
2 else if pn D n and d.n/ D right then
3 � 0  SWAP(n� 1, p1p2 : : : pn�1);
4 d.n/ left;
5 return � 0 C n

6 else if p1 D n and d.n/ D left then
7 � 0  SWAP(n� 1, p2p3 : : : pn);
8 d.n/ right;
9 return nC � 0

10 else return the permutation obtained from � by
swapping n and its left-adjacent or its right-adjacent
element depending on d.n/
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Permutation
Enumeration, Fig. 2
Permutohedron of S4 and
its Hamiltonian path
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in Sn except the root. We define the identity
permutation � D 12 : : : n as the root of the
tree structure. Then, we define the parent of a
permutation by an adjacent swap of two elements.
Intuitively, the parent is defined so that there is
greater similarity between it and � than there is
between the child and �. A formal definition is
as follows. Let � D p1p2 : : : pn 2 Sn n f�g be a
permutation, and let i be the minimum index such
that pi > piC1 holds. The parent permutation of
� , denoted by P.�/, is the permutation obtained
from � by swapping pi and piC1. Then, we
call � a child permutation of P.�/. Note that
the parent permutation of � is uniquely defined.
For example, P.3421/ D 3241, P.3241/ D

2341, P.2341/ D 2314, P.2314/ D 2134, and
P.2134/ D 1234 are obtained. By repeatedly
finding the parent permutations, we have the
sequence of permutations in Sn, which ends up
with the identity permutation. By merging these
sequences, we have the tree structure, called the
family tree Tn of Sn. Figure 3 shows the family
tree T4.

We next design an algorithm that traverses
the family tree by recursively generating all of
the child permutations of any permutation. In-
tuitively, the operation to generate a child per-
mutation is the reverse of finding the parent
permutation.

We introduce some notation. Let � D

p1p2 : : : pn be a permutation in Sn. Then, we de-

1234

1324 1243

1342 1423

1432

2134

21432314

2341 2413

2431

3124

3214 3142

3241 3412

3421

4123

42134132

4231 4312

4321

Permutation Enumeration, Fig. 3 The family tree T4

note by �Œi � D p1p2 : : : pi�1piC1pi piC2 : : : pn,
the permutation obtained from � by swapping pi

and piC1. Note that �Œi � is a child permutation
if and only if � D P.�Œi �/ holds. A key point
to find i with � D P.�Œi �/ is to maintain the
reverse point r.�/, which is the minimum index
of � such that pr.�/ > pr.�/C1. For convenience,
we set r.�/ D n for the identity permutation in
Sn. Note that the subpermutation p1p2 : : : pr.�/

is the maximal increasing prefix of � . If we know
r.�/ of � , all child permutations are generated,
as follows. For each i D 1; 2; : : : ; r.�/ � 1, �Œi �

is a child permutation of � since � D P.�Œi �/

holds. If pr.�/ < pr.�/C2 holds, then �Œr.�/C1�

is a child permutation of � . Otherwise,
�Œr.�/C 1� is not a child permutation. For each
i D r.�/; r.�/ C 2; r.�/ C 3; : : : ; n � 1, �Œi �
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Algorithm 4: REVERSE-SEARCH(� D

p1p2 : : : pn)
1 Let r.�/ be a reverse point of � ;
2 Output � ;
3 for each i D 1; 2; : : : ; r.�/� 1 do
4 REVERSE-SEARCH(�Œi�)

5 if r.�/ � n� 2 and pr.�/ < pr.�/C2 then
REVERSE-SEARCH(�Œr.�/C 1�)

is not a child permutation. Based on the above
observation, we obtain the enumeration algorithm
shown in Algorithm 4. To begin, Algorithm 4 is
called with the identity permutation which is the
root of the family tree.

By maintaining the reverse point of the current
permutation in a traverse of the family tree, we
can use a stack to generate each child permutation
in O.1/ time. To estimate the running time of the
algorithm, note that the algorithm can traverse
each edge of the family tree in O.1/ time.
However, the delay time of the algorithm is not
bounded by O.1/ time for the case that the next
permutation is output after deep recursive calls
without outputting any permutation. However,
by applying the speed-up method proposed by
Nakano and Uno [6], we have the following
lemma.

Theorem 3 ([9]) After constructing the root (the
identity permutation) in O.n/ time, one can enu-
merate all the permutations in Sn by the reverse
search method with a constant time delay. The
required working space is O.n/.
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Problem Definition

Let n be a positive integer. A distance matrix
of order n is a matrix D of size .n � n/ which
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satisfies (1) Di;j > 0 for all i; j 2 f1; 2; : : : ; ng

with i ¤ j ; (2) Di;j D 0 for all i; j 2

f1; 2; : : : ; ng with i D j ; and (3) Di;j D Dj;i

for all i; j 2 f1; 2; : : : ; ng. In the literature,
a distance matrix of order n is also called a
dissimilarity matrix of order n.

Below, all trees are assumed to be unrooted
and edge-weighted. For any tree T , the distance
between two nodes u and v in T is defined as the
sum of the weights of all edges on the unique path
in T between u and v and is denoted by dT

u;v . A
tree T is said to realize a given distance matrix D

of order n if and only if it holds that f1; 2; : : : ; ng

is a subset of the nodes of T and dT
i;j D Di;j

for all i; j 2 f1; 2; : : : ; ng. Finally, a distance
matrix D is called additive or tree-realizable if
and only if there exists a tree which realizes D.
See Fig. 1 for an example.

Problem 1 (The Phylogenetic Tree from Dis-
tance Matrix Problem)
INPUT: A distance matrix D of order n

OUTPUT: A tree which realizes D and has the
smallest possible number of nodes, if D is addi-
tive, otherwise null

In the time complexities listed below, the time
needed to input all of D is not included. Instead,
O.1/ is charged to the running time whenever
an algorithm requests to know the value of any
specified entry of D.

Key Results

Several authors have independently shown how
to solve the Phylogenetic Tree from Distance
Matrix Problem in O.n2/ time. (See [5] for a
short survey of older algorithms which do not run
in O.n2/ time.)

Theorem 1 ([2, 4, 5, 7, 14]) There exists an al-
gorithm which solves the Phylogenetic Tree from
Distance Matrix Problem in O.n2/ time.

Although the various existing algorithms are
different, it can be proved that:

Theorem 2 ([8, 14]) For any given distance ma-
trix, the solution to the Phylogenetic Tree from
Distance Matrix Problem is unique.

Furthermore, the algorithms referred to in
Theorem 1 have optimal running time since
any algorithm for the Phylogenetic Tree from
Distance Matrix Problem must in the worst case
query all ˝.n2/ entries of D to make sure that
D is additive. However, if it is known in advance
that the input distance matrix is additive, then the
time complexity improves as follows.

Theorem 3 ([9, 12]) There exists an algorithm
which solves the Phylogenetic Tree from Distance
Matrix Problem restricted to additive distance
matrices in O.kn logk n/ time, where k is the
maximum degree of the tree that realizes the input
distance matrix.

The algorithm of Hein [9] starts with a tree
containing just two nodes and then successively
inserts each node i into the tree by repeatedly
choosing a pair of existing nodes and computing
where on the path between them that i should be
attached, until i ’s position has been determined.
The same basic technique is used in the O.n2/-
time algorithm of Waterman et al. [14] referenced
to by Theorem 1 above, but the algorithm of
Hein selects paths which are more efficient at dis-
criminating between the possible positions for i .
According to [12], the running time of Hein’s
algorithm is O.kn logk n/.

A lower bound that implies the optimality of
Theorem 3 is given by the next theorem.

Theorem 4 ([10]) The Phylogenetic Tree from
Distance Matrix Problem restricted to additive
distance matrices requires ˝.kn logk n/ queries
to the distance matrix D, where k is the maxi-
mum degree of the tree that realizes D, even if
restricted to trees in which all edge weights are
equal to 1.

Independently of [9], Culberson and Rud-
nicki [5] presented an algorithm for the
Phylogenetic Tree from Distance Matrix Problem
and claimed it to have O.kn logk n/ time
complexity when restricted to additive distance
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Phylogenetic Tree Construction from a Distance Matrix, Fig. 1 (a) An additive distance matrix D of order 5.
(b) A tree T which realizes D. Here, f1; 2; : : : ; 5g forms a subset of the nodes of T

matrices and trees in which all edge weights
are equal to 1. As pointed out by Reyzin and
Srivastava [12], the algorithm actually runs in
�.n3=2

p
k/ time. See [12] for a counterexample

to [5] and a correct analysis. On the positive side,
the following special case is solvable in linear
time by the Culberson-Rudnicki algorithm:

Theorem 5 ([5]) There exists an O.n/-time al-
gorithm which solves the Phylogenetic Tree from
Distance Matrix Problem restricted to additive
distance matrices for which the realizing tree
contains two leaves only and has all edge weights
equal to 1.

Applications

The main application of the Phylogenetic Tree
from Distance Matrix Problem is in the con-
struction of a tree (a so-called phylogenetic tree)
that represents evolutionary relationships among
a set of studied objects (e.g., species or other
taxa, populations, proteins, genes, etc.). Here, it
is assumed that the objects are indeed related
according to a treelike branching pattern caused
by an evolutionary process and that their true
pairwise evolutionary distances are proportional
to the measured pairwise dissimilarities. See,
e.g., [1, 6, 7, 14] for examples and many ref-
erences as well as discussions on how to esti-
mate pairwise dissimilarities based on biological
data. Other applications of the Phylogenetic Tree
from Distance Matrix Problem can be found in
psychology, for example, to describe semantic

memory organization [1], in comparative linguis-
tics to infer the evolutionary history of a set of
languages [11], or in the study of the filiation of
manuscripts to trace how manuscript copies of a
text (whose original version may have been lost)
have evolved in order to identify discrepancies
among them or to reconstruct the original text [1,
3, 13].

In general, real data seldom forms additive
distance matrices [14]. Therefore, in practice,
researchers consider optimization versions of the
Phylogenetic Tree from Distance Matrix Prob-
lem which look for a tree that “almost” real-
izes D. Many alternative definitions of “almost”
have been proposed, and numerous heuristics
and approximation algorithms have been devel-
oped. A comprehensive description of some of
the most popular methods for phylogenetic re-
construction from a non-additive distance matrix
such as Neighbor-joining [16] as well as more
background information can be found in, e.g.,
Chapter 11 of [6]. See also [1] and [15] and the
references therein.

Cross-References

�Distance-Based Phylogeny Reconstruction
(Fast-Converging)

�Distance-Based Phylogeny Reconstruction:
Safety and Edge Radius
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Problem Definition

In the classic VERTEX-DISJOINT PATHS prob-
lem, the input consists of an n-vertex graph G and
k pairs of terminals .si ; ti /

k
iD1, and the question is

whether there exist pairwise VERTEX-DISJOINT

PATHS P1; P2; : : : ; Pk such that for every 1 �

i � k, the path Pi starts in si and ends in ti . In
this entry we are interested in the complexity of
this problem restricted to planar directed graphs.

Key Results

An algorithm for the VERTEX-DISJOINT PATHS

problem in undirected graphs with running time
f .k/n3 for some function f is one of the key
ingredients of the minor testing algorithm of
Robertson and Seymour [8]. The approach can
be summarized as follows: either the input graph
has treewidth bounded by a function of k, in
which case we can apply standard dynamic



1568 Planar Directed k-VERTEX-DISJOINT PATHS Problem

Planar Directed k-VERTEX-DISJOINT PATHS Problem, Fig. 1 Different homotopy classes of a solution: in the first two
figures, the solutions are of the same class, whereas on the third figure the homotopy class is different

programming techniques, or, by the Excluded
Grid Theorem, the input graph contains a large
grid minor. In the second case, we may deduce
that a middle vertex of the grid minor is irrelevant
for the problem and can be discarded.

The original proof of the irrelevancy of a
middle vertex of a grid minor by Robertson and
Seymour [8] is not only highly involved but also
leads to an extremely large dependency on k in
the running time bound. A more recent algorithm
by Kawarabayashi and Wollan [6] improves upon
the original approach in both these aspects, but is
still very complex.

As already observed by Robertson and Sey-
mour in [7], a situation becomes dramatically
simpler if we restrict ourselves to planar graphs.
A short self-contained argument of irrelevancy
of the middle vertex of a ck � ck grid minor,
for some universal constant c, is due to Adler,
Kolliopoulos, Krause, Lokshtanov, Saurabh, and
Thilikos [1]. It is worth noting that the expo-
nential dependency on k in the irrelevant vertex
argument is necessary. The intuitive reason why
planarity greatly helps in the VERTEX-DISJOINT

PATHS problem is that, on the plane, the solution
paths need to correspond to noncrossing curves
and one path serves as a separator for other paths.
This allows us to use a wide variety of topological
arguments.

In directed graphs, the VERTEX-DISJOINT

PATHS problem is already NP-hard for two
paths (k D 2) [3], so we cannot hope for similar
results. However, it turns out that in the directed
case the planarity assumption is very useful,
too. More than 20 years ago, Schrijver showed
that the VERTEX-DISJOINT PATHS problem in
n-vertex planar directed graphs can be solved

in time nO.k/ [9]. Recently, Cygan, Marx,
Pilipczuk, and Pilipczuk presented a fixed-
parameter algorithm for this problem, running

in time 22O.k2/
nO.1/ [2].

Key Techniques for Planar Directed Graphs

The Schrijver’s Algorithm
The approach of Schrijver [9] can be summarized
as follows. The main observation is that there are
nO.k/ homotopy types of the solution, where two
different solutions are considered homotopical if
the paths of one solution can be “shifted” (modi-
fied by a homotopy) to obtain the second solution,
without crossing any face that contains a terminal
(without loss of generality, we may assume that
all terminals are of degree one, and the notion
of a face containing a terminal is well defined).
See also Fig. 1 for an illustration. A second in-
gredient of Schrijver’s approach is a polynomial-
time algorithm that essentially checks if there
exists a solution in one homotopy class. (It should
be noted that this statement is a significant sim-
plification, as the Schrijver’s algorithm operates
on the notions of (co)homologies and in fact
searches for a solution in a significant superset of
one homotopy class, but that is sufficient for our
needs.)

The Fixed-Parameter Algorithm
The first step in the fixed-parameter algorithm
of [2] is an appropriate irrelevant vertex rule for
the problem. Unfortunately, for directed graphs
there is no Excluded Grid Theorem which as
convenient as it is in the undirected case. Al-
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Planar Directed
k-VERTEX-DISJOINT PATHS

Problem, Fig. 2 An
example of a
decomposition with six
disk components and a
single ring component

though the conjecture of Johnson, Robertson,
Seymour, and Thomas [4] about the connections
between directed treewidth and directed grid mi-
nors has been recently proven by Kawarabayashi
and Kreutzer for graph excluding a fixed mi-
nor [5], neither directed treewidth seems well
suited for dynamic programming algorithm for
the VERTEX-DISJOINT PATHS problem [10], nor
it is clear whether a directed grid minor can be
useful for an irrelevant vertex argument. In [2], it
is proven that a family of sufficiently many con-
centric cycles with alternating direction, without
any terminal enclosed by the outermost cycle, is
sufficient to make an irrelevant vertex argument.

In the light of such an irrelevant vertex rule,
the next question is: what is the structure of a
graph without many concentric cycles with al-
ternating directions? The answer provided in [2]
can be informally stated as follows: such a graph
can be decomposed into a bounded (in k) number
of disk and ring components, connected by a
bounded number of bundles, where every bundle
is a set of edges in one direction that lie close to
each other on the plane (see Fig. 2).

Unfortunately, it is not easy to make algorith-
mic use of such a decomposition; this should

be contrasted with the undirected case, where
bounded treewidth immediately yields efficient
algorithms via standard dynamic programming
approach. The approach taken in [2] is to make
use of Schrijver’s approach and use the decom-

position to enumerate only 22O.k2/
nO.1/ “reason-

able” homotopy types of the solution.
Recall that the nO.k/ term in the time com-

plexity of Schrijver’s algorithm comes from the
number of homotopy classes. It is quite easy to
see that this bound cannot be improved: each
of k solution paths can “wind” arbitrary num-
ber of times in some part of the graph, lead-
ing to different homotopy classes. This is also
the case in the decomposition, as can be seen
on Fig. 3. To deal with this issue, an involved
technical argumentation is developed in [2] to
show that for any such place in the graph as
on Fig. 3, there is some “canonical” number of
turns, and we may assume that the solution will
take approximately this number of turns, up to
an additive f .k/ factor, for some computable
function f . This leads to an FPT bound on the
number of “reasonable” homotopy classes to con-
sider and, consequently, to an FPT running time
bound.
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Planar Directed
k-VERTEX-DISJOINT PATHS

Problem, Fig. 3 An
example of a solution path
winding many times
between four disk
components
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Problem Definition

Let S be a set of n points in the plane and let
G be an undirected graph with vertex set S, in
which each edge .u; v/ has a weight, which is
equal to the Euclidean distance juvj between the
points u and v. For any two points p and q in S,
their shortest-path distance in G is denoted by
ıG.p; q/. If t � 1 is a real number, then G is a t-
spanner for S if ıG.p; q/ � t jpqj for any two
points p and q in S. Thus, if t is close to 1,
then the graph G contains close approximations
to the

�
n
2

�
Euclidean distances determined by the

pairs of points in S. If, additionally, G consists
of O(n) edges, then this graph can be considered
a sparse approximation to the complete graph on
S. The smallest value of t for which G is a t-
spanner is called the stretch factor (or dilation)
of G. For a comprehensive overview of geomet-
ric spanners, see the book by Narasimhan and
Smid [16].

Assume that each edge .u; v/ of G is em-
bedded as the straight-line segment between the
points u and v. The graph G is said to be plane if
its edges intersect only at their common vertices.

In this entry, the following two problems are
considered:

Problem 1 Determine the smallest real number
t > 1 for which the following is true: For every
set S of n points in the plane, there exists a plane
graph with vertex set S, which is a t-spanner for
S. Moreover, design an efficient algorithm that
constructs such a plane t-spanner.

Problem 2 Determine the smallest positive inte-
ger D for which the following is true: There exists
a constant t, such that for every set S of n points in
the plane, there exists a plane graph with vertex
set S and maximum degree at most D, which is
a t-spanner for S. Moreover, design an efficient
algorithm that constructs such a plane t-spanner.

Key Results

Let S be a finite set of points in the plane that
is in general position, i.e., no three points of S
are on a line and no four points of S are on
a circle. The Delaunay triangulation of S is the
plane graph with vertex set S, in which .u; v/

is an edge if and only if there exists a circle
through u and v that does not contain any point
of S in its interior. (Since S is in general posi-
tion, this graph is a triangulation.) The Delaunay
triangulation of a set of n points in the plane
can be constructed in O.n log n/ time. Dobkin,
Friedman and Supowit [10] were the first to show
that the stretch factor of the Delaunay triangu-
lation is bounded by a constant: They proved
that the Delaunay triangulation is a t-spanner
for t D �.1C

p
5/=2. The currently best known

upper bound on the stretch factor of this graph is
due to Keil and Gutwin [12]:

Theorem 1 Let S be a finite set of points in the
plane. The Delaunay triangulation of S is a t-
spanner for S, for t D 4�

p
3=9.

A slightly stronger result was proved by Bose et
al. [3]. They proved that for any two points p
and q in S, the Delaunay triangulation contains
a path between p and q, whose length is at most
.4�
p

3=9/jpqj and all edges on this path have
length at most jpqj.

Levcopoulos and Lingas [14] generalized the
result of Theorem 1: Assume that the Delaunay
triangulation of the set S is given. Then, for any
real number r > 0, a plane graph G with vertex
set S can be constructed in O(n) time, such that G
is a t-spanner for S, where t D .1C1=r/4�

p
3=9,

and the total length of all edges in G is at most
2r C 1 times the weight of a minimum spanning
tree of S.

The Delaunay triangulation can alternatively
be defined to be the dual of the Voronoi dia-
gram of the set S. By considering the Voronoi
diagram for a metric other than the Euclidean
metric, a corresponding Delaunay triangulation is
obtained. Chew [7] has shown that the Delaunay
triangulation based on the Manhattan-metric is
a
p

10-spanner (in this spanner, path-lengths are
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measured in the Euclidean metric). The currently
best result for Problem 1 is due to Chew [8]:

Theorem 2 Let S be a finite set of points in the
plane, and consider the Delaunay triangulation
of S that is based on the convex distance function
defined by an equilateral triangle. This plane
graph is a 2-spanner for S (where path-lengths
are measured in the Euclidean metric).

Das and Joseph [9] have generalized the result of
Theorem 1 in the following way (refer to Fig. 1).
Let G be a plane graph with vertex set S and let
’ be a real number with 0 < ˛ < �=2. For any
edge e of G, let �1 and �2 be the two isosceles
triangles with base e and base angle ’. The edge e
is said to satisfy the ˛-diamond property, if at
least one of the triangles �1 and �2 does not
contain any point of S in its interior. The plane
graph G is said to satisfy the ˛-diamond property,
if every edge e of G satisfies this property. For
a real number d � 1, G satisfies the d-good
polygon property, if for every face f of G, and
for every two vertices p and q on the boundary
of f, such that the line segment joining them is
completely inside f, the shortest path between p
and q along the boundary of f has length at most
djpqj. Das and Joseph [9] proved that any plane
graph satisfying both the ’-diamond property and
the d-good polygon property is a t-spanner, for
some real number t that depends only on ’ and
d. A slight improvement on the value of t was
obtained by Lee [13]:

Theorem 3 Let ˛ 2 .0; �=2/ and d � 1 be real
numbers, and let G be a plane graph that satisfies
the ˛-diamond property and the d-good polygon
property. Then, G is a t-spanner for the vertex set
of G, where

t D
8.� � ˛/2d

˛2 sin2.˛=4/
:

To give some examples, it is not difficult to
show that the Delaunay triangulation satisfies
the ’-diamond property with ˛ D �=4. Drysdale
et al. [11] have shown that the minimum weight
triangulation satisfies the ’-diamond property

with ˛ D �=4:6. Finally, Lee [13] has shown
that the greedy triangulation satisfies the ’-
diamond property with ˛ D �=6. Of course,
any triangulation satisfies the d-good polygon
property with d D 1.

Now consider Problem 2, that is, the problem
of constructing plane spanners whose maximum
degree is small. The first result for this problem
is due to Bose et al. [2]. They proved that the
Delaunay triangulation of any finite point set con-
tains a subgraph of maximum degree at most 27,
which is a t-spanner (for some constant t). Li and
Wang [15] improved this result, by showing that
the Delaunay triangulation contains a t-spanner
of maximum degree at most 23. Given the De-
launay triangulation, the subgraphs in [2, 15] can
be constructed in O(n) time. The currently best
result for Problem 2 is by Bose et al. [6]:

Theorem 4 Let S be a set of n points in the
plane. The Delaunay triangulation of S contains
a subgraph of maximum degree at most 17, which
is a t-spanner for S, for some constant t. Given the
Delaunay triangulation of S, this subgraph can be
constructed in O(n) time.

In fact, the result in [6] is more general:

Theorem 5 Let S be a set of n points in the
plane, let ˛ 2 .0; �=2/ be a real number, and let
G be a triangulation of S that satisfies the ˛-
diamond property. Then, G contains a subgraph
of maximum degree at most 14C d2�=˛e, which
is a t-spanner for S, where t depends only on ˛.
Given the triangulation G, this subgraph can be
constructed in O(n) time.

Applications

Plane spanners have applications in on-line path-
finding and routing problems that arise in, for
example, geographic information systems and
communication networks. In these application
areas, the complete environment is not known,
and routing has to be done based only on the
source, the destination, and the neighborhood of
the current position. Bose and Morin [4, 5] have
shown that, in this model, good routing strategies
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Planar Geometric Spanners, Fig. 1 On the left, the
’-diamond property is illustrated. At least one of the
triangles �1 and �2 does not contain any point of S in
its interior. On the right, the d-good polygon property is

illustrated. p and q are two vertices on the same face f
which can see each other. At least one of the two paths
between p and q along the boundary of f has length at most
djpqj

exist for plane graphs, such as the Delaunay
triangulation and graphs that satisfy both the ’-
diamond property and the d-good polygon prop-
erty. These strategies are competitive, in the sense
that the paths computed have lengths that are
within a constant factor of the Euclidean distance
between the source and destination. Moreover,
these routing strategies use only a limited amount
of memory.

Open Problems

None of the results for Problems 1 and 2 that are
mentioned in section “Key Results” seem to be
optimal. The following problems are open:

1. Determine the smallest real number t, such
that the Delaunay triangulation of any finite
set of points in the plane is a t-spanner. It is
widely believed that t D �=2. By Theorem 1,
t � 4�

p
3=9.

2. Determine the smallest real number t, such
that a plane t-spanner exists for any finite set
of points in the plane. By Theorem 2, t � 2.
By taking S to be the set of four vertices of
a square, it follows that t must be at least

p
2.

3. Determine the smallest integer D, such that
the Delaunay triangulation of any finite set of
points in the plane contains a t-spanner (for
some constant t) of maximum degree at most
D. By Theorem 4, D � 17. It follows from

results in Aronov et al. [1] that the value of
D must be at least 3.

4. Determine the smallest integer D, such that
a plane t-spanner (for some constant t) of
maximum degree at most D exists for any
finite set of points in the plane. By Theorem 4
and results in [1], 3 � D � 17.
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Problem Definition

Given a directed, planar graph G D .V; E/ with
arc capacities c W E ! <C, a subset S of
source vertices, and a subset T of sink vertices,
the goal is to find a maximum flow from the
source vertices to the sink vertices:

max
X

suWs2S;su2E

fsu

s:t:
X

uvWuv2E

fuv �
X

vwWvw2E

fvw D 0

8v 2 V n .S [ T / (1)

0 � fe � ce 8e 2 E (2)

Key Results

In general (i.e., nonplanar) graphs, multiple
sources and sinks can be reduced to the single-
source, single-sink case by introducing an
artificial source and sink and connecting them
to all the sources and sinks, respectively, but
this reduction does not preserve planarity. Using
Orlin’s algorithm for sparse graphs [21] leads
to a running time of O.n2= log n/. For integer
capacities less than U , one could instead use the
algorithm of Goldberg and Rao [9], which leads
to a running time of O.n1:5 log n log U /.

Maximum flow in planar graphs with multiple
sources and sinks was first studied by Miller
and Naor [19]. They gave a divide-and-conquer
algorithm for the case where all the sinks and
the sources are on the boundary of a single face.
Plugging in the linear-time shortest-path algo-
rithm of Henzinger et al. [12] yields a running
time of O.n log n/. Borradaile and Harutyunyan
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have given an iterative algorithm with the same
running time [2]. Miller and Naor also gave an
algorithm for the case where the sources and
the sinks reside on the boundaries of k dif-
ferent faces. Using the O.n log n/ time single-
source, single-sink maximum flow algorithm of
Borradaile and Klein [3] yields a running time
of O.k2n log2 n/. Miller and Naor show that,
when it is known how much of the commodity is
produced/consumed at each source and each sink,
finding a consistent routing of flow that respects
arc capacities can be reduced to negative-length
shortest paths [19], which can be solved in planar
graphs in O.n log2 n= log log n/ time [20].

Near-Linear Time Algorithm
Borradaile et al. gave the first O.npoly log n/

time algorithm for the multiple-source, multiple-
sink maximum flow problem in directed planar
graphs. The approach uses pseudoflows [10, 14]
(flows which may violate the balance con-
straints (1) in a limited way) and a divide-and-
conquer scheme influenced by that of Johnson
and Venkatesan [15] and that of Miller and
Naor [19], using the separators introduced by
Miller: a (triangulated) planar graph G can
be separated by a simple cycle C of O.

p
n/

vertices [18].
In each of the two subgraphs, a more gen-

eral problem is solved in which, after the two
recursive calls have been executed, within each
of the two subgraphs, there is no residual path
from any source to any sink nor from any source
to C or from C to any sink. Then, since C is
a separator, there is no residual path from any
source to any sink in G, but, however, the balance
constraints (1) may not be satisfied for vertices in
C . The flow is then balanced among the vertices
in C by augmenting the flow so that there is no
residual path in G from a vertex with positive
inflow to a vertex with positive outflow. The
resulting flow can then be turned into a maximum
flow in linear time.

The core of the algorithm is this final balanc-
ing procedure which involves a series of jC j �
1 max-flow computations in G. Since jC j is
O.
p

n/, the challenge is carrying out all these

max-flow computations in near-linear time. The
procedure uses a succinct representation to keep
track of the changes to the pseudoflow without
explicitly storing the changes. The representation
relies on the relationship between circulations in
G and shortest paths in the dual, and the compu-
tations make use of an adaptation of Fakcharoen-
phol and Rao’s efficient implementation of Dijk-
stra’s algorithm [7]. The resulting running time
to balance the flow is O.n log2 n/ time for an
overall running time of O.n log3 n/ time for the
original multiple-source, multiple-sink maximum
flow problem.

Applications

Multiple-source, multiple-sink min-cut arises in
several computer vision problems including im-
age segmentation (or binary labeling) [11]. For
the case of more than two labels, there is a
powerful and effective heuristic [5] using a very
large-neighborhood [1] local search; the inner
loop consists of solving the two-label case.

Maximum matching in a bipartite planar
graph reduces to multiple-source, multiple-sink
maximum flow. Multiple-source, multiple-sink
maximum flow can also be used for finding
orthogonal drawings of planar graphs with a
minimum number of bends [6] and uniformly
monotone subdivisions of polygons [23].
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Problem Definition

Given a directed, planar graph G D .V; E/ with
arc capacities c W E ! <C, a source vertex
s, and a sink vertex t , the goal is to find a flow
assignment fe for each arc e 2 E such that

max
X

suWsu2E

fsu

s:t:
X

uvWuv2E

fuv �
X

vwWvw2E

fvw D 0

8v 2 V n fs; tg (1)

0 � fe � ce 8e 2 E (2)
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Key Results

In the paper proposing the maximum flow prob-
lem in general graphs, Ford and Fulkerson [5]
gave a generic method for computing a maximum
flow: the augmenting-path algorithm. The algo-
rithm is iterative: find a path P from the source to
the sink such that capacity constraint (2) is loose
for each arc on P (residual); increase the flow
on each arc in P by a constant chosen so that at
least one of the capacity constraints become tight;
update the capacities of each arc, making note
that the reverse of these arcs now have residual
capacity; and repeat until there is no path from
the source to the sink along which the flow can be
augmented. By augmenting the flow along a path,
the balance constraints (1) are always satisfied.

st-Planar Graphs
Ford and Fulkerson further showed that, in the
case of planar graphs when the source and the
sink are on a common face (st -planar graphs), by
selecting the augmenting paths to be as far to the
left as possible in each iteration (viewing s on the
bottom and t on the top), each arc is saturated at
most once, resulting in at most jEj iterations [5].
In 1979, Itai and Shiloach showed that each
iteration of this algorithm could be implemented
in O.log n/ time using a priority queue and gave
a simple example showing that any implemen-
tation of this algorithm is capable of sorting n

numbers [11]. In 1991, Hassin demonstrated that
such a maximum st -flow could be derived from
shortest-path distances in the planar dual G� of G

where capacities in G are interpreted as lengths in
G� [7]. Faster algorithms for computing shortest
paths in planar graphs culminated in a linear-time
algorithm for this case of maximum st -flow in
planar graphs with s and t on a common face [9].

Undirected Planar Graphs
For undirected planar graphs, Reif gave an algo-
rithm for computing the maximum st -flow where
s and t need not be on a common face, by
way of several shortest-path computations in the
dual [19]. The algorithm finds a shortest path
P in G� from a vertex adjacent to the face
corresponding to s to a vertex adjacent to the

face corresponding to t . Reif proves that C only
crosses P once; by finding the minimum separat-
ing cycle Cv through each vertex v of P , we will
surely find C : C is the minimum of the cycles Cv .
These cycles can be found in time log n times the
time for one shortest-path computation via divide
and conquer over the length of P . Hassin and
Johnson show that the corresponding maximum
flow can be computed within this framework
by computing shortest-path distances between
the nested cycles Cv [8]. The shortest-path al-
gorithms of Henzinger et al. [9] or Klein [15]
can be used to reimplement these algorithms
in O.n log n/ time. Italiano et al. [12] further
improved this running time to O.n log log n/ by
using an r-division to break the graph into suffi-
ciently small pieces through which shortest paths
can be efficiently computed.

If the capacities are all units, the maximum st -
flow can be computed in linear time [1].

Directed Planar Graphs
Maximum st -flow in directed graphs is more
general since the problem of maximum st-flow in
an undirected graph can be converted to a directed
problem by introducing two oppositely oriented
arcs of equal capacity for each edge. Johnson and
Venkatesan gave a divide-and-conquer algorithm
that finds a flow of input value v in O.n1:5 log n/

time [13]. The algorithm divides the graph using
balanced separators, finding a flow in each side
of value v. However, the flow on the O.

p
n/-

boundary edges of each subproblem might not be
feasible. Each boundary edge is made feasible via
an st -planar flow computation. Miller and Naor
showed that finding a directed st -flow of value
v could be reduced to computing shortest-path
distances in a graph with positive and negatives
lengths [17]. Here, v units of flow are routed (per-
haps violating the capacity constraints) along any
s-to-t path P . For those arcs whose capacity are
violated, we must route the excess flow through
the rest of the graph. This is a feasible circulation
problem and can be solved using shortest-path
distances in the dual graph, where lengths may
be negative (representing the negative or violated
capacities). Using an O.n poly log n/-time algo-
rithm for computing shortest paths in a planar
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graph with negative edge lengths [4, 16, 18] gives
an O.n poly log n log C /-time algorithm where
C is the sum of the capacities.

If the capacities are all unit, the maximum st -
flow can be computed in linear time [21].

Leftmost-Path Algorithm
Borradaile and Klein gave an augmenting-path,
O.n log n/-time algorithm for the maximum st -
flow problem in directed planar graphs. The al-
gorithm is a generalization of the algorithm for
the st -planar case, augmenting flow repeatedly
along the leftmost path from s to t . However,
with s and t not on a common face, what left-
most is not clear. With the graph embedded such
that t is on the external face and the clockwise
cycles saturated, a leftmost path is well-defined
and can be found with a left-first, depth-first
search into t . Clockwise cycles can be initially
saturated with a circulation defined by potentials
on the faces given by shortest-path distances
in the dual graph [14], and clockwise cycles
remain saturated under leftmost augmentations.
Borradaile and Klein, and Erickson improved the
analysis [3] showed that under these conditions
an arc and its reverse can be saturated at most
once, resulting in at most 2n augmentations.
Augmentations can be performed in O.log n/

time using a dynamic tree data structure, resulting
in an O.n log n/ running time.

Applications

Maximum st -flow in directed planar graphs
has applications to computer vision problems.
Schmidt et al. [20] use it as a black box for image
segmentation and Greig et al. [6] provide an
example for smoothing noisy images.

Open Problems

Currently, maximum st -flow in undirected planar
graphs can be computed more quickly than in
directed. Can this gap be closed?

Experimental Results

Schmidt et al. [20] have implemented this algo-
rithm and compared its performance on an image
segmentation problem.

URLs to Code and Data Sets

Hoch and Wang have provided an open-source
implementation of the algorithm [10]. Eisenstat
has an implementation of the linear-time algo-
rithm for unit-capacity graphs [2].
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Graphs
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Problem Definition

Given a graph G D .V; E/, the crossing number
cr.G/ of G is the smallest number of edge cross-
ings possible for any drawing of G into the plane.
Since its introduction in the mid-1940s, the cross-
ing number problem has proved to be notoriously
difficult. Even some of the oldest and seemingly
simplest questions remain unanswered, despite
the large amount of research.

Already the problem definition is more
ambiguous than it may seem. We will usually
only consider drawings where vertices are
mapped to distinct points in the plane and
edges to continuous non-self-intersecting curves
between their end vertices. Any non-vertex
point may only be contained in at most two
edge curves, in which these curves have to
meet transversally (i.e., cross). There are several
different and specialized related crossing number
variants; see [16] for a comprehensive annotated
list.

A planarization of a nonplanar graph G is a
planar graph obtained from G by drawing G into
the plane and replacing the crossings by dummy
vertices of degree 4. Observe that in other liter-
ature, the term planarization is also sometimes
used to denote a (large) planar spanning subgraph
of G.

Key Results

The (decision version of the) crossing number
problem is NP-complete, even when all vertices
have degree at most three [13] or when the
removal of a single edge would give a planar
graph [3]. There is, however, a fixed parameter
tractable (FPT) algorithm to test in linear time
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for a constant k (not part of the input), whether
G allows a crossing number of at most k [15].
The dependency on k, however, is doubly ex-
ponential, and the algorithm is far from being
applicable in practice. Most questions regarding
the problem’s approximability remain open; see
below for details.

Planarization Algorithms
The practically strongest heuristic is the pla-
narization approach, cf. Fig. 1: First, we seek a
maximal planar subgraph (observe that finding a
maximum planar subgraph is already NP-hard).
In other words, we temporarily remove edges
from G until it becomes planar. Then, we reinsert
those edges with as few crossings as possible
one after another. After each step, crossings are
replaced by dummy vertices, such that we can
consider a sequence of edge insertion problems:
Given a planar graph H and an edge e 62 E.H/,
let He WD H C e. Since cr.He/ is still NP-
hard to obtain, we ask for a crossing-minimum
solution under the side-constraint that H is drawn
planarly. An embedding is an equivalence class
over planar drawings, based on the cyclic order
of the edges around their incident vertices. For a
fixed embedding of H , the insertion problem is
trivially solvable via a breadth-first search in H ’s
dual graph. However, the number of embeddings
of H is exponential in general.

The seminal paper [12] shows that it is possi-
ble to find the best embedding in linear time using
SPR-trees, or formally:

Theorem 1 Let G be a planar graph and v; w 2
V.G/ two vertices. We can find a planar em-
bedding of G in O.jV.G/j/ time, into which
an edge e D .v; w/ can be inserted with the
least possible number of edge crossings over all
possible embeddings.

To discuss this result, we first need to describe
SPR-trees, which are used to decompose graphs
into their triconnectivity structures. While their
graph-theoretic foundation is based on Tutte [17],
the data structure was first suggested by Di Bat-
tista and Tamassia [11] under the name SPQR-
tree. Nowadays, we often drop the “Q” from the
abbreviation, as the corresponding node type is

not necessary, and use the following contempo-
rary definition (see, e.g., [7]), illustrated in Fig. 2.

Definition 1 (SPR-tree) The SPR-tree T of a
biconnected graph G is the unique smallest tree
satisfying the following properties:

1. Each node � in T holds a graph S	 D

.V	 ; E	/, V	 	 V.G/, called skeleton. Each
edge of E	 is either a real edge from E.G/ or
a virtual edge f D .u; v/ where fu; vg forms
a 2-cut (a split pair) in G.

2. T has only three different node types with the
following skeleton structures:
S: S	 is a simple cycle – it represents a serial

component.
P: S	 consists of two vertices connected by

multiple edges – a parallel component.
R: S	 is a simple triconnected graph.

3. For every edge .�; �/ in T , S	 (S�) contains
a specific virtual edge e� (e	) which “repre-
sents” S� (S	 , respectively). Both edges e�

and e	 connect the same vertices.
4. The original graph G can be obtained by

recursively applying the following operation:
For the edge .�; �/ in T , let e�, e	 be the
virtual edges as in (3) connecting the same
vertices u; v. A merged graph .S	[S�/�e��

e	 is obtained by gluing the skeletons together
at u; v and removing e�; e	 .

There are several essential properties of any
SPR-tree: First, it has linear size and can be
constructed in linear time. Second, a simple tri-
connected graph – the skeleton of an R-node – al-
lows only a unique embedding and its mirror; the
embedding of an S-node skeleton is unique, and
the possible embeddings of a P-node are precisely
all cyclic permutations of its edges. Moreover,
each embedding of G can be precisely described
via the subembeddings of the skeletons.

In order to obtain Theorem 1, it is shown that
we only need to consider the unique shortest path
P in G’s SPR-tree from any node whose skeleton
contains v to any node whose skeleton contains
w. We will specify an embedding for each skele-
ton S� of the nodes � 2 P ; the embedding of
all other skeletons is irrelevant. Moreover, the
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optimum embedding of each of the former skele-
tons can be chosen independent of the others: For
each S�, we can specify a source s and a target
t and ask for an embedding such that edge .s; t/

can be inserted with the least possible number of
edge crossings into planar S�: In the first (last)
skeleton along P , the source (target) simply is v

(w, respectively). In the other cases, the source
(target) is the virtual edge corresponding to the
predecessor (successor) along P . For simplicity,
it may be helpful to consider a subdivision of
such a virtual edge, such that each source and
target can be represented by a vertex. If � is an S-
node, its skeleton has a unique embedding, .s; t/

will require no crossings, and there is nothing to
specify. If � is a P-node, both the source and the
target are virtual edges due to minimality of P ;
we pick any embedding where the two virtual
edges appear consecutively, so that .s; t/ again
requires no crossings. Finally, if � is an R-node,
its skeleton allows only a unique embedding and
its mirror and hence has a unique dual graph. We
compute a shortest path between s and t via a
simple breadth-first-search in the dual of S� as
for the fixed embedding case.

Finally, traverse P and let �; �0 be any two
consecutive nodes. We want to establish that if
the insertion path in S� enters its target virtual
edge “from the left” (corresponding to some arbi-
trary predefined orientation of the virtual edges),
it leaves the source virtual edge in S�0 “to the
right” or vice versa. If this is not already the
case, it suffices to flip the embedding of S�0 (we

can ignore the case when �0 is an S-node). This
establishes a suitable embedding of G.

This algorithmic breakthrough has allowed the
planarization heuristic to perform extraordinar-
ily well in practice, both in terms of running
time and of solution quality. The algorithm and
its proofs also give rise to several strong pre-
and postprocessing routines. Furthermore, it is
pivotal to several later results such as insertion
of stars [6] or insertion-based approximation al-
gorithms [2, 7, 8]. The strongest of the latter
considers the problem of inserting several edges
F simultaneously into a planar graph G [7]:
it can be shown that this multi-edge-insertion
problem approximates cr.G C F / [8], but is
unfortunately itself already NP-hard. However,
this insertion problem can in turn also be ap-
proximated. This approximation chain gives the
currently only practically relevant approximation
algorithm. In fact, it arguably gives the best
running time vs. solution-quality trade-off among
all known algorithms in practice [5].

Exact Approaches
In certain cases, a heuristic or approximate so-
lution is not good enough, e.g., when the result
is to be used as a base case in some formal
graph-theoretic proof. There are exact approaches
based on integer linear programs. The currently
strongest one – constituting the second central
paper of this entry – is able to solve typical “real-
world graph drawing” instances (i.e., relatively
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Planarisation and Crossing Minimisation, Fig. 1 The
planarization heuristic: the first figure shows a graph
drawn with the optimal number of three crossings. The
planarization heuristic starts with a maximal (in the fig-
ure, in fact, maximum) planar subgraph (second figure)
where the edges .x; y/ and .a; b/ are removed. Then,

iteratively, we find optimal embeddings to reinsert these
edges into the planarly drawn graph, simulating crossings
by dummy vertices (shown as squares). Although the
insertion problems are solved optimally, the result requires
four crossings
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Planarisation and Crossing Minimisation, Fig. 2 A graph (to the left) and its decomposition into triconnectivity
structures, arranged within an SPR-tree. Thick dashed or dotted edges are virtual

sparse graphs with up to 80–100 vertices) to
optimality in a couple of minutes [9]. The idea
is to introduce binary indicator variables xe;f for
each edge pair e; f 2 E, which are 1 if and only
if the two edges cross in the optimum solution.
Minimizing the sum of these variables gives the
desired objective function.

It remains to ensure that the variables are
set correctly. To this end, we introduce Kura-
towski constraints. The famous Kuratowski the-
orem states that planar graphs are characterized
by the absence of subdivisions of certain small
subgraphs (namely, K5 and K3;3). In other words,
for each such subgraph K, we can require that
at least one edge pair e; f 2 E.K/ crosses.
Unfortunately, there may be an exponential num-
ber of such subgraphs in G, and we also have
to take care of Kuratowski subgraphs that only
arise because certain other edge pairs cross (es-
tablishing a dummy vertex). Even when solving
all these challenges, a further crucial problem
remains: Consider a (presumably optimum) 0=1-
assignment to the x-variables, satisfying all Ku-
ratowski constraints. It is still NP-complete to
decide whether this solution is at all feasible!
Consider an edge e that is crossed by edges f and
g. Our x-variables establish these crossings, but
we do not know the order of f and g along e. De-
ciding whether any feasible order exists is what
makes the problem still hard. There are two meth-
ods to solve the problem: We can subdivide each
edge e sufficiently often and allow at most one

crossing per edge segment. Alternatively we can
introduce additional variables ye;f;g to explicitly
describe a linear ordering of all edges crossing
edge e, for all edges e. Of course, we have to
modify the Kuratowski constraints accordingly.

While the second modeling approach is prac-
tically more efficient, we like to showcase the
central ideas only with a simplified version of
the first model here. Let U be any upper bound
on the crossing number of G, e.g., found via the
planarization heuristic described above. Clearly,
any optimum solution will have at most U cross-
ings on any edge. Therefore, let H be the graph
obtained from G by subdividing each edge into
U edge segments. Now, we solve the problem on
H instead of G, where we can require that each
segment is crossed at most once:

min
X

e;f 2E.H/;e¤f

xfe;f g , subject to (1)

X

f 2E.H/nfeg

xfe;f g � 1 8e 2 E.H/ (2)

xfe;f g 2 f0; 1g 8e; f 2 E.H/; e ¤ f (3)

This model minimizes the sum of the variables
indicating a crossing between a pair of edge
segments and allows at most one crossing per
segment. It remains to discuss the Kuratowski



Planarisation and Crossing Minimisation 1583

P

constraints to establish that only graph-
theoretically feasible solutions are allowed. Let
Xs denote the set of all binary solution vectors
satisfying (2), and consider any solution vector
Nx 2 Xs . Furthermore, let R. Nx/ be the set of edge
pairs fe; f g for which Nxfe;f g D 1. Starting with
H , we can realize Nx by, for each fe; f g 2 R. Nx/,
subdividing e and f and identifying the two
new vertices. This vertex may be called a dummy
vertex, representing the crossing. We obtain a
final graph HŒ Nx� and let K. Nx/ denote the set of
all Kuratowski subdivisions in HŒ Nx�. Intuitively,
for any subdivision K 2 K. Nx/, we need to require
at least one crossing on K, if the crossings
R. Nx/ exist. Formally, this establishes the final
constraint class:

X

e;f 2K;e¤f

xfe;f g � 1 �
X

fe;f g2R. Nx/

.1 � xfe;f g/

8 Nx 2 Xs; K 2 K. Nx/ (4)

Independent on whether we use the just de-
scribed subdivision-based model or the stronger
one based on linear orderings, the obtained ILP
models are much too large to solve directly.
We require both special separation and column-
generation routines, in order to produce the ac-
tually necessary constraints and variables on the
fly. The approaches’ practical applicability is fur-
thermore only possible due to the strong heuris-
tics described above (which often give optimum
upper bounds early on), heavy preprocessing [4],
and efficient planarity testing routines.

Open Problems

The area of crossing numbers is filled with in-
teresting open questions. Let us pinpoint two of
them:

The original question, as stated in 1944 by Pál
Turán, was for the crossing number of complete
bipartite graphs. We still do not know the answer
for this graph class, nor do we for complete
graphs. While we have upper bounds, which
are conjectured to be optimal, we are stuck

with partial proofs and positive results for small
graphs.

We know that crossing number is APX-
hard [1], i.e., there cannot be a polynomial
approximation scheme. However, even for
graphs with bounded maximum degree, the best
approximation ratios are only slightly sublinear
in jV j [10] or dependent on parameters like
the graph’s genus [14] or the number of edges
required to remove in order to become planar [7].
Does there exist a constant factor approximation
to the crossing number problem? At least for
graphs with bounded degree?

URLs to Code and Data Sets

The free (GPL) Open Graph Drawing Frame-
work (OGDF) contains implementations of the
strongest planarization heuristics and the exact
algorithms: http://www.ogdf.net.

A web front-end to the exact crossing mini-
mizer is freely available at http://crossings.uos.
de.

Recommended Reading

1. Cabello S (2013) Hardness of approximation for
crossing number. Discret Comput Geom 49(2):348–
358

2. Cabello S, Mohar B (2011) Crossing number and
weighted crossing number of near-planar graphs. Al-
gorithmica 60(3):484–504

3. Cabello S, Mohar B (2013) Adding one edge to planar
graphs makes crossing number and 1-planarity hard.
SIAM J Comput 42(5):1803–1829

4. Chimani M, Gutwenger C (2009) Non-planar core
reduction of graphs. Discret Math 309(7):1838–1855

5. Chimani M, Gutwenger C (2012) Advances in the
planarization method: effective multiple edge inser-
tions. J Graph Algorithms Appl 16(3):729–757

6. Chimani M, Gutwenger C, Mutzel P, Wolf C (2009)
Inserting a vertex into a planar graph. In: SODA, New
York, pp 375–383

7. Chimani M, Hlinený P (2011) A tighter insertion-
based approximation of the crossing number. In:
Aceto L, Henzinger M, Sgall J (eds) ICALP (1),
Zurich. Lecture notes in computer science, vol 6755.
Springer, pp 122–134

8. Chimani M, Hlinený P, Mutzel P (2012) Vertex in-
sertion approximates the crossing number of apex
graphs. Eur J Comb 33(3):326–335



1584 Planarity Testing

9. Chimani M, Mutzel P, Bomze I (2008) A new ap-
proach to exact crossing minimization. In: Halperin
D, Mehlhorn K (eds) ESA, Karlsruhe. Lecture notes
in computer science, vol 5193. Springer, pp 284–296

10. Chuzhoy J (2011) An algorithm for the graph cross-
ing number problem. In: Proceedings of the 43rd
annual ACM symposium on theory of computing
(STOC’11), San Jose. ACM, pp 303–312

11. Di Battista G, Tamassia R (1996) On-line planarity
testing. SIAM J Comput 25:956–997

12. Gutwenger C, Mutzel P, Weiskircher R (2005) In-
serting an edge into a planar graph. Algorithmica
41:289–308
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Problem Definition

The problem is to determine whether or not the
input graph G is planar. The definition pertinent
to planarity-testing algorithms is: G is planar
if there is an embedding of G into the plane
(vertices of G are mapped to distinct points and
edges of G are mapped to curves between their re-
spective endpoints) such that edges do not cross.
Algorithms that test the planarity of a graph can
be modified to obtain such an embedding of the
graph.

Key Results

Theorem 1 There is an algorithm that given
a graph G with n vertices, determines whether or
not G is planar in O(n) time.

The first linear-time algorithm was obtained by
Hopcroft and Tarjan [5] by analyzing an itera-
tive version of a recursive algorithm suggested
by Auslander and Parter [1] and corrected by
Goldstein [4]. The algorithm is based on the
observation that a connected graph is planar if
and only if all its biconnected components are
planar. The recursive algorithm works with each
biconnected component in turn: find a separating
cycle C and partition the edges of G not in C;
define a component of the partition as consisting
of edges connected by a path in G that does not
use an edge of C; and, recursively consider each
cyclic component of the partition. If each compo-
nent of the partition is planar and the components
can be combined with C to give a planar graph,
then G is planar.

Another method for determining planarity was
suggested by Lempel, Even, and Cederbaum [6].
The algorithm starts with embedding a single
vertex and the edges adjacent to this vertex. It
then considers a vertex adjacent to one of these
edges. For correctness, the vertices must be con-
sidered in a particular order. This algorithm was
first implemented in O(n) time by Booth and
Lueker [2] using an efficient implementation of
the PQ-trees data structure. Simpler implementa-
tions of this algorithm have been given by Boyer
and Myrvold [3] and Shih and Hsu [8].
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Tutte gave an algebraic method for giving
a straight-line embedding of a graph that, if the
input graph is 3-connected and planar, is guaran-
teed to generate a planar embedding. The key idea
is to fix the vertices of one face of the graph to be
the corners of a convex polygon and then embed
every other vertex as the geometric average of its
neighbors.

Applications

Planarity testing has applications to computer-
aided circuit design and VLSI layout by deter-
mining whether a given network can be realized
in the plane.

URL to Code

LEDA has an efficient implementation of the
Hopcroft and Tarjan planarity testing algo-
rithm [7]: http://www.algorithmic-solutions.info/
leda_guide/graph_algorithms/planar_kuratowski.
html
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Problem Definition

Point location is a well-studied problem in com-
putational geometry with many applications in
geometric information systems and computer-
aided design. In general terms, the problem is to
find which element of a given object contains a
given query point. More precisely, we are given
a subdivision S of a metric space, usually the
Euclidean plane. The goal is then to preprocess
S so that for a query point p we can determine
which region of the subdivision contains p. There
are many variants of the problem, with different
constraints on the subdivision. The most common
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variant and the focus of this overview is planar
point location, where S is a polygonal subdivi-
sion of the Euclidean plane. In fact, for several
data structures, we assume that the input is a
triangulation. (Note that a polygonal subdivision
can be triangulated in linear time [1].) As for
most query data structures, the efficiency of a
point location structure is measured by its space
requirement, the time needed to preprocess the
input, and the query time. The efficiency of the
algorithms and data structures described here will
be expressed as a function of n, the number of
vertices in the subdivision.

Key Results

Most solutions for the point location problem
build upon one (or a combination) of three basic
ideas: walking in a triangulation, a trapezoidal de-
composition, or a hierarchical triangulation. The
three methods provide a basic trade-off between
space usage and query time and are described in
more detail below.

Walking in a Triangulation
This approach is the simplest of the three and
requires no additional storage or preprocessing if
the input is provided in a suitable format in which
it takes constant time to access the neighbors
of a triangle. For each query, we start in some
triangle or vertex of the triangulation and walk
to the query point by traversing the triangulation,
walking from the current triangle to a neighbor in

each step. The triangle to visit next is determined
by a walking strategy. Devillers et al. [3] describe
three walking strategies that are described below
and illustrated in Fig. 1.

• Straight-line walk. Starting at a vertex of the
triangulation we walk along a straight line
toward the query point.

• Orthogonal walk. Instead of walking along a
straight line, we first walk parallel to the x-
axis and then parallel to the y-axis.

• Visibility walk. For each triangle visited, we
pick an edge of the triangle (at random or in
some specific order) and test if its supporting
line separates the query point from the trian-
gle. If this is the case, then we continue our
walk by crossing that edge into a new triangle.

The worst-case behavior of each of the walk-
ing strategies is very bad as there are triangula-
tions where each walk visits ˝.n/ triangles in ex-
pectation given a random starting point and query
point. In fact, the visibility walk is not guaranteed
to reach the query point if edges are picked in
a fixed order and the randomized version may
require exponential time [3]. However, this seems
to require many long and thin triangles, which do
not occur in most practical applications, where
the subdivision is often closer to a Delaunay tri-
angulation. Experiments on Delaunay triangula-
tions of random point sets suggest that the meth-
ods are comparable in total query time, though
they provide a trade-off between the number of
triangles visited and the time spent per triangle.

a b c

Point Location, Fig. 1 The paths traversed by (a) a straight-line walk, (b) an orthogonal walk, and (c) a visibility
walk. Note that any path following the arrows is possible in the visibility walk
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a b

Point Location, Fig. 2 (a) Part of a trapezoidal decomposition with (b) a sequence of trapezoids visited by a query

Point Location, Fig. 3 The triangulations of the hierarchy from left to right. Triangles containing the query point are
marked with dark gray and other triangles inspected with light gray

That is, the straight-line walk visits the fewest
triangles, but needs most time to determine which
triangle to visit next, whereas the visibility walk
visits the most triangles, but spends the least time
per triangle.

Trapezoidal Decomposition
The first data structure for point location to
achieve O.log n/ query time for point was
provided by Dobkin and Lipton [6]. The structure
is created by cutting the subdivision into slices
using vertical lines through each of its vertices.
Point location can then be done using two binary
searches, first on the slices and then within a slice.
This creates O.n2/ trapezoids, but Sarnak and
Tarjan [11] show we don’t have to explicitly store
all of them and instead only need O.n/ space and
O.n log n/ time to store them implicitly in a
search structure.

A subdivision into trapezoids can also be cre-
ated in a more careful way so that only O.n/

trapezoids are created. For a polygonal subdivi-
sion, its trapezoidal decomposition is defined as
the result of shooting vertical rays upward and
downward from each vertex of the subdivision
until they hit an edge of the subdivision – if they
do not hit such an edge, they extend to infinity
(see also Fig. 2). A trapezoidal decomposition
can be constructed by incrementally adding the
edges of the subdivision [10]. Each insertion of an

edge can interrupt some rays and introduces two
new ones, namely, the rays from the endpoints
of the edge. Seidel [12] showed that the history
of this process can be recorded in a directed
acyclic graph, which can be used for point loca-
tion. Using randomized incremental construction,
that is, adding the edges in random order, the
longest path in the graph has an expected length
of O.log n/. Building the structure itself takes
O.n log n/ expected time and O.n/ expected
space. For a guaranteed query time of O.log n/,
we can find the longest path and reconstruct
if needed resulting in O.n log n/ expected pre-
processing time and O.log n/ guaranteed query
time [13].

Hierarchical Triangulation
Point location can also be done using a so-
called hierarchical triangulation. We start with
a triangulation of the subdivision and in each
level of the hierarchy, we remove a subset of
the points and compute a triangulation of the
remainder. Each triangle of this new triangulation
then stores a list of triangles from the previous tri-
angulation that intersect it as illustrated in Fig. 3.
This process is repeated until only one triangle
remains. (Here, we assume that the outer face
of the input triangulation is a triangle and these
vertices are never removed.) To query for a point
p, we traverse this hierarchy of triangles starting
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at the top level consisting of only one triangle. At
each level, we know the triangle T that contains
p and find the triangle T 0 from the previous level
that contains p by a linear search on the triangles
that intersect T (see Fig. 3 from right to left).

The query time depends on the number of
levels and the number of intersections each tri-
angle has with the previous level. Kirkpatrick [9]
showed that it is possible to find a constant
size set of points, such that its removal creates
triangles that each intersect a constant number
of triangles from the previous level. He also
shows that such a set of points can be found
in O.n/ time. By picking and removing points
from each level in this way, we create at most
O.log n/ levels and each triangle will intersect at
most O.1/ triangles from the previous level. As a
result, a point location query takes O.log n/ time
in total, while the structure requires O.n/ space.

Hybrid and Refined Approaches
The walking strategy requires no additional mem-
ory and is fast on small instances, but has very
poor performance on larger instances, both in
theory and in practice. To make the walking
approach more feasible for larger inputs, sev-
eral structures have been proposed that combine
walking strategies with other methods to obtain
fast query times with low overhead costs in terms
of space and preprocessing time.

Delaunay Hierarchy. Hierarchical triangulations
can be combined with walking algorithms to
reduce the number of levels in the hierarchy.
Finding the correct triangle in the next level of the
hierarchy is done using a walking algorithm as
opposed to a linear search. Devillers [2,3] showed
that this results in a very fast query time without
requiring a lot of preprocessing time or space.

Jump and Walk. In most walking strategies, the
starting point is chosen at random. In the jump-
and-walk approach, we use a set S of several
starting points and start our walk from the one
that is nearest to the query point. The set S

can either be chosen at random for each new
query [5] or picked more carefully and stored in
a data structure for nearest-neighbor searches [4].

Depending on the size of S and the complexity of
the search structure, query times between O. 3

p
n/

and O.log n/ can be achieved.

Experimental Results

Several solutions have been implemented in
CGAL, the Computational Geometry Algorithm
Library. Haran and Halperin [7] compared several
of the implementations from CGAL. Their
results show that the various methods provide
a trade-off between how much memory and
preprocessing time is used and the resulting
query time. Overall, they conclude that a jump-
and-walk algorithm performs well, if the set
of potential starting points is carefully chosen
and stored in an efficient search structure.
Recently, the CGAL variant of the trapezoidal
decomposition approach has received a major
overhaul [8]. Unlike some of the other variants,
this implementation guarantees a O.log n/

query time, while experiments show that the
implementation is still competitive with other
approaches.
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Problem Definition

Let R denote the set of reals and R
d the d-

dimensional real space. A finite subset of Rd is
called a point set. The set of all point sets (subsets
of Rd ) is denoted P.Rd /.

Point pattern matching problems ask for
finding similarities between point sets under
some transformations. In the basic set–up a target
point set T � R

d and a pattern point set (point
pattern) P � R

d are given, and the problem
is to locate a subset I of T (if it exists) such
that P matches I. Matching here means that P
becomes exactly or approximately equal to I
when a transformation from a given set F of
transformations is applied on P.

Set F can be, for example, the set of all
translations (a constant vector added to each
point in P), or all compositions of translations and
rotations (after a translation, each point is rotated
with respect to a common origin; this preserves
the distances and is also called a rigid movement),
or all compositions of translations, rotations, and
scales (after translating and rotating, distances to
the common origin are multiplied by a constant).

The problem variant with exact matching,
called the Exact Point Pattern Matching (EPPM)
problem, requires that f .P / D I for some
f 2 F . In other words, the EPPM problem is
to decide whether or not there is an allowed
transformation f such that f .P / � T . For
example, if F is the set of translations, the
problem is simply to decide whether P C t � T

for some t 2 R
d .

Approximate matching is a better model of
many situations that arise in practice. Then the
quality of the matching between f(P) and I is
controlled using a threshold parameter " � 0 and
a distance function ıW .P.Rd /;P.Rd //! R for
measuring distances between point sets. Given
" � 0, the Approximate Point Pattern Matching
(APPM) problem is to determine whether there is
a subset I � T and a transformation f 2 F such
that ı.f .P /; I / � ".

The choice of the distance function • is
another source of diversity in the problem
statement. A variant requires that there is
a one-to-one mapping between f(P) and I, and
each point p of f(P) is "-close to its one-to-
one counterpart p* in I, that is, jp � p�j � ".
A commonly studied relaxed version uses
matching under a many-to-one mapping: it is only
required that each point of f(P) has some point
of I that is "-close; this distance is also known
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as the directed Hausdorff distance. Still more
variants come from the choice of the norm j � j to
measure the distance between points.

Another form of approximation is obtained
by allowing a minimum amount of unmatched
points in P: The Largest Common Point Set (LCP)
problem asks for the largest I � T such that
I � f .P / for some f 2 F . In the Largest Ap-
proximately Common Point Set (LACP) problem
each point p� 2 I must occur "-close to a point
p 2 f .P /.

Finally, a problem closely related to point pat-
tern matching is to evaluate for point sets A and B
their smallest distance minf 2F ı.f .A/; B/ under
transformationsF or to test if this distance is� ".
This problem is called the distance evaluation
problem.

Key Results

A folk theorem is a voting algorithm to
solve EPPM under translations in O.jP jjT j

log.jT jjP j// time: Collect all translations
mapping each point of P to each point of T, sort
the set, and report the translation getting most
votes. If some translation gets jPj votes, then
a subset I such f .P / D I is found. With some
care in organizing the sorting, one can achieve
O.jP jjT j log jP j/ time [13].

The voting algorithm also solves the LCP
problem under translations. A faster algorithm
specific to EPPM is as follows: Let p1; p2; � � �pm

and t1; t2; � � � tn be the lists of pattern and target
points, respectively, lexicographicly ordered ac-
cording to their d-dimensional coordinate values.
Consider the translation fi1 D ti1 � p1, for any
1 � i1 � n. One can scan the target points in the
lexicographic order to find a point ti2 such that
p2 C fi1 D ti2 . If such is found, one can continue
scanning from ti2C1 on to find ti3 such that
p3 C fi1 D ti3 . This process is continued until
a translated point of P does not occur in T or until
a translated occurrence of the entire P is found.
Careful implementation of this idea leads to the
following result showing that the time bound of
the naive string matching algorithm is possible
also for the exact point pattern matching under
translations.

Theorem 1 (Ukkonen et al. 2003 [13]) The
EPPM problem under translations for point pat-
tern P and target T can be solved in O(mn) time
and O(n) space where m D jP j � jT j D n.

Quadratic running times are probably the best one
can achieve for PPM algorithms:

Theorem 2 (Clifford et al. 2006 [10]) The LCP
problem under translations is 3SUM-hard.

This means that an o.jP jjT j/ time algorithm
for LCP would yield an o.n2/ algorithm for the
3SUM problem, where jT j D n and jP j D �.n/.
The 3SUM problem asks, given n numbers,
whether there are three numbers a, b, and c
among them such that aC b C c D 0; finding
a sub-quadratic algorithm for 3SUM would be
a surprise [5]. For a more in-depth combinatorial
characterization of the geometric properties of
the EPPM problem, see [7].

For the distance evaluation problems there are
plethora of results. An excellent survey of the key
results until 1999 is by Alt and Guibas [2]. As an
example, consider in the 2-dimensional case how
one can decide in O.n log n/ time whether there
is a transformation f composed of translation,
rotation and scale, such that f .A/ D B , where
A; B � R

2 and n D jAj D jBj: The idea is to
convert A and B into an invariant form such that
one can easily check their congruence under the
transformations. First, scale is taken into account
by scaling A to have the same diameter as B
(in O.n log n/ time). If A and B are congruent,
then they must have the same centroids (which
can be computed O.n/ time). Consider rotating
a line from the centroid and listing the angles
and distances to other points in the order they
are met during the rotation. Having done this (in
O.n log n/ time) on both A and B, the lists of an-
gles and distances should be cyclic shifts of each
other; the list LA of A occurs as a substring in
LBLB , where LB is the list of B. This latter step
can be done in O.n/ time using any linear time
exact string matching algorithm. One obtains the
following result.

Theorem 3 (Atkinson 1987 [4]) It is possible
to decide in O.n log n/ time whether there is
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a transformation f composed of translation, ro-
tation and scale, such that f .A/ D B , where
A; B � R

2 and jAj D jBj D n.

Approximate variant of the above problem is
much harder. Denote by f .A/ D" B the directed
approximate congruence of point sets A and B,
meaning that there is a one-to-one mapping
from f(A) to B such that for each point in f(A)
its image in B is "-close. The following result
demonstrates the added difficulty.

Theorem 4 (Alt et al. 1988 [3]) It is possible
to decide in O.n6/ time whether there is
a translation f such that f .A/ D" B , where
A; B � R

2 and jAj D jBj D n. The same
algorithm solves the corresponding LACP
problem for point pattern P and target T under
the one-to-one matching condition in O..mn/3/

time, where m D jP j � jT j D n.

To get an idea of the techniques to achieve
the O..mn/3/ time algorithm for LACP,
consider first the one-dimensional version,
i.e., let P; T � R. Observe, that if there is
a translation f’ such that f 0.P / D" T , then there
is a translation f such that f .P / D" T and a point
p 2 P that is mapped exactly at "-distance
of a point t 2 T . This lets one concentrate on
these 2mn representative translations. Consider
these translations sorted from left to right.
Denote the left-most translation by f. Create
a bipartite graph, whose nodes are the points
in P and in T on the different parties. There
is an edge between p 2 P and t 2 T if and
only if f(p) is "-close to t. Finding a maximum
matching in this graph tells the size of the
largest approximately common point set after
applying the translation f. One can repeat this
on each representative translation to find the
overall largest common point set. When the
representative translations are considered from
left to right, the bipartite graph instances are such
that one can compute the maximum matchings
greedily at each translation in time O(jPj) [6].
Hence, the algorithm solves the one-dimensional
LACP problem under translations and one-to-
one matching condition in time O.m2n/, where
m D jP j � jT j D n.

In the two-dimensional case, the set of repre-
sentative translations is more implicitly defined:
In short, the mapping of each point p 2 P "-close
to each point t 2 T , gives mn circles. The bound-
ary of each such circle is partitioned into intervals
such that the end points of these intervals can be
chosen as representative translations. There are
O..mn/2/ such representative translations. As
in the one-dimensional case, each representative
translation defines a bipartite graph. Once the
representative translations along a circle are pro-
cessed e.g., counterclockwise, the bipartite graph
changes only by one edge at a time. This allows
an O(mn) time update for the maximum match-
ing at each representative translation yielding an
overall O..mn/3/ time algorithm [3].

More efficient algorithms for variants of this
problem have been developed by Efrat, Itai, and
Katz [11], as by-products of more efficient bipar-
tite matching algorithms for points on a plane.
Their main result is the following:

Theorem 5 (Efrat et al. 2001 [11]) It is possi-
ble to decide in O.n5 log n/ time whether there
is a translation f such that f .A/ D" B , where
A; B � R

2 and jAj D jBj D n.

The problem becomes somewhat easier when the
one-to-one matching condition is relaxed; one-
to-one condition seems to necessitate the use
of bipartite matching in one form or another.
Without the condition, one can match the points
independently of each other. This gives many
tools to preprocess and manipulate the point sets
during the algorithm using dynamic geometric
data structures. Such techniques are exploited
e.g., in the following result.

Theorem 6 (Chew and Kedem 1992 [8]) The
LACP problem under translations and using di-
rected Hausdorff distance and the L1 norm, can
be solved in O.mn log n/ time, where P; T � R

2

and m D jP j � jT j D n. The distance evalua-
tion problem for directed Hausdorff distance can
be solved in O.n2 log2 n/ time.

Most algorithms revisited here have relatively
high running times. To obtain faster algorithms,
it seems that randomization and approximation
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techniques are necessary. See [9] for a compre-
hensive summary of the main achievements in
that line of development.

Finally, note that the linear transformations
considered here are not always enough to
model a real-world problem–even when
approximate congruence is allowed. Sometimes
the proper transformation between two point
sets (or between their subsets) is non-linear,
without an easily parametrizable representation.
Unfortunately, the formulations trying to capture
such non-uniformness have been proven NP-
hard [1] or even NP-hard to approximate within
any constant factor [12].

Applications

Point pattern matching is a fundamental problem
that naturally arises in many application domains
such as computer vision, pattern recognition, im-
age retrieval, music information retrieval, bioin-
formatics, dendrochronology, and many others.
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Problem Definition

Definition 1 A simple polygon is a polygon
whose interior is simply connected, i.e., it
consists of a single connected component and
does not contain holes.

Definition 2 A triangulation of a simple polygon
P with N vertices is a partition of the polygon,
considered as a full-dimensional subset of the
plane, into N � 2 nonoverlapping triangles such
that the set of vertices of these triangles is the set
of vertices of P , such that no edge of a triangle
lies outside of P , and such that no triangle edges
intersect except in their common endpoints.

Key Results

In addition to the regularization-based approach
by Garey et al. [7], three other O.N log N /-
time algorithms are milestones on the way toward
an optimal linear-time algorithm. In the first of
these algorithms [2], Chazelle uses a linear-time
“polygon-cutting” approach to partition a sim-
ple polygon by a suitably chosen diagonal; the
resulting divide-and-conquer scheme yields an
O.N log N /-time algorithm for simple polygons.
Hertel and Mehlhorn [8] present an O.N log N /-
time plane-sweep algorithm and refine its analy-
sis to yield an O.NCR log R/-time upper bound,
where R is the number of concave polygon an-
gles. Chazelle and Incerpi [4] present a divide-
and-conquer algorithm with O.NCS log S/ run-
ning time; here, S denotes the maximum number
of times the boundary of the polygon changes
from “spiraling” to “antispiraling.”

Polygon Triangulation in o(Nlog N) Time
Algorithms with o.N log N / running time were
developed by Tarjan and van Wyk [14] (using

Jordan sorting and finger trees) and Kirkpatrick,
Klawe, and Tarjan [10] (using efficient point-
location structures). Both algorithms can be
shown to run in O.N log log N / time; the
algorithm by Kirkpatrick et al. can be made to run
in O.N log�N / time if the polygon’s vertices
have bounded integer coordinates. Clarkson,
Tarjan, and van Wyk [7] restate the algorithm
by Tarjan and van Wyk in a randomized setting
using random sampling and develop a Las Vegas
algorithm with O.N log�N / expected running
time. The same expected running time can be
obtained by a considerably simpler randomized
incremental construction presented by Seidel [7];
as an added benefit, this algorithm constructs an
efficient data structure for vertical ray shooting
among a set of line segments.

Polygon Triangulation via Trapezoidation
The key to an efficient polygon triangulation al-
gorithm was that polygon triangulation is linear-
time equivalent to polygon trapezoidation. Here,
the task is to compute for each vertex v of a sim-
ple polygon P the point (if any) of the boundary
of P that is visible from v when shooting hori-
zontal rays (chords) from v toward ˙1 through
the interior of P . The resulting structure is called
the visibility map of P .

Theorem 1 ([6]) Given the trapezoidal decom-
position of a simple polygon P, a triangulation of
P can be computed in linear time and vice versa.

The proof builds upon the fact that a trape-
zoidation for a set of points in general position,
i.e., a set in which no two points share the same
y-coordinate, consists of trapezoids, which may
degenerate into triangles that have exactly two
polygon vertices on their boundary. A trapezoid
T is said to be a class-A-trapezoid if these ver-
tices lie on the same side of T (this includes
the case of triangles); otherwise, it is said to
be a class-B-trapezoid. Fournier and Montuno
observed that a polygon can be partitioned into
so-called unimonotone polygons by adding diag-
onals between the vertices of class-B-trapezoids
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Polygon Triangulation, Fig. 1 Phases of Fournier and
Montuno’s algorithm [6]. By connecting the vertices of
class-B-trapezoids in (a), the polygon is subdivided in
unimonotone polygons as shown in (b). The numbers in

(c) indicate the order in which the ear-cutting algorithms
construct the triangles in the triangulation of the unimono-
tone subpolygon P1 (shown in gray)

and that these unimonotone polygons can be
triangulated independently in linear time – see
Fig. 1.

Polygon Triangulation in Linear Time
The only deterministic linear-time algorithm
for triangulating a simple polygon known so
far is due to Chazelle [3]. Chazelle’s algorithm
uses a divide-and-conquer approach to compute
the visibility map of a simple polygon. Since
the divide-and-conquer approach subdivides
the polygon’s boundary into polygonal chains,
there is no proper notion of the interior of the
polygon through which the chords are supposed
to pass. Instead, the polygon is embedded into
the spherical plane on which the chords can
“warp around infinity,” and the visibility map
is computed by always shooting rays in both
directions.

Stated in terms of visibility maps, the algo-
rithm’s task now can be reduced to merging
two visibility maps. To avoid linear-time merging
steps which in turn would lead to �.N log N /

runtime, the algorithm proceeds as follows: in a

first, bottom-up phase, the algorithm repeatedly
merges the visibility maps of two subchains of
the same length that share a common vertex. To
ensure a sublinear running time, however, the
algorithm does not compute the full visibility
map, i.e., the map obtained by shooting rays from
each vertex. Instead, for a subchain consisting of
2œ C 1 vertices, the algorithm maintains a 2d“
e-
granular visibility map.

Definition 3 A visibility map for a polygonal
chain P is  -granular for some  > 0 if no part
of the boundary of any region consists of more
than  consecutive edges of P and if no two
adjacent regions can be merged without violating
this property.

The consequence of this definition is that
for polygons in general position, i.e., polygons
for which no two vertices share the same y-
coordinate, a  -granular visibility map consists

of O
�

N
�
C 1

�
regions, each of which is bounded

by a constant number of chords and polygonal
chains with a total complexity of O./. This
enables a compact representation of each submap
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along with a uniform upper bound on the
coarseness of the approximation of the visibility
map.

For each subchain � considered throughout
the bottom-up phase, the algorithm computes two
“oracle” data structures, which are reused in the
final phase of the algorithm. The first oracle, the
so-called ray shooter, returns in O.f .// time
for any point in the plane the first point of the
 -granular visibility map of � that is seen when
shooting a horizontal ray in either direction. This
oracle, whose construction is based upon Lip-
ton and Tarjan’s planar separator theorem [11],
is used when merging the visibility map of  

with the visibility map of a subchain  0 that
shares a common vertex p with  . Starting with
p, the algorithm walks along   and  0 and
uses the respective ray shooter to update the
visibility information for as many vertices as
needed to guarantee the desired granularity. Due
to Chazelle’s polygon-cutting theorem [2], each
region in either submap is closed under visibility.
This implies that the “ray-shooter” oracle can be
defined for each region separately, and only one
oracle for a region in   needs to be queried for
any vertex in  0 (and vice versa) as long as the
algorithm keeps track of the region the vertex
currently under consideration lies in.

The second oracle, the so-called arc cutter,
subdivides   in O.g.// time into g./ subarcs
each of which is given along with an h./-
granular visibility map. Using these two oracles,
merging a 1-granular visibility map for a sub-
chain consisting of N1 vertices with a 2-granular
visibility map for a subchain consisting of N2

vertices, 2 � 1, can be done in

O
��

N1

1

C
N2

2

C 1

�
f .2/g.2/.h.2/

C log.N1 CN2///

time. Chazelle proves that one can maintain these
oracles such that f .x/ 2 x0:74, g.x/ 2 O.log x/,
and h.x/ 2 O.x0:20/, with 2 2 O.N 0:20

2 /; this
eventually implies a sublinear merging step and

hence a linear-time complexity of the bottom-up
phase.

The final, top-down phase incrementally re-
fines all regions of the visibility maps produced
in the bottom-up phase. Using the “arc-cutter”
oracle, each polygonal chain on the boundary
of a region is subdivided into an appropriate
number of subchains. As a result of the bottom-
up phase and by carefully aligning the subchains
considered in that phase with the results of the
arc cutter, visibility maps, ray shooters, and arc
cutters are available for each of these chains. The
algorithm then uses the ray shooters to construct
new chords and the arc cutters to further refine
the visibility maps until the recursion bottoms
out, and visibility maps of constant size can be
refined by a brute-force algorithm. An inductive
proof yields a linear runtime for the refinement
of each region in the visibility map that was
constructed in the bottom-up phase; hence, the
overall running time is linear.

While Chazelle’s algorithm uses only reason-
ably complicated data structures and subroutines,
the analysis of both phases strongly suggests
large constant factors hidden in the Big-Oh no-
tation. In addition, the algorithm requires rather
delicate implementation issues to be solved, in
particular regarding the representation of the vis-
ibility maps, and thus it is not surprising that
Chazelle mentioned developing a simpler, ran-
domized algorithm with expected linear runtime
as a major open problem.

Randomized Polygon Triangulation in
Expected Linear Time
Over a decade after the publication of Chazelle’s
deterministic, linear-time algorithm, Amato,
Goodrich, and Ramos [1] affirmatively answered
Chazelle’s question. Their algorithm follows
Chazelle’s two-phase approach and uses a
bottom-up phase to preprocess helper data
structures for so-called portal queries in the
subchains’ visibility maps. The top-down phase
also subdivides the polygonal chain into smaller
chains and refines the visibility maps. In contrast
to Chazelle’s algorithm, however, this refinement
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step is done on a random sample of the subchains
only. As the sampling probability tends to one as
the size of the subchain approaches O.1/, both
correctness and an expected linear runtime can
be shown.

Applications

Being able to efficiently triangulate simple poly-
gons has a variety of applications in compu-
tational geometry, computer graphics, and geo-
graphic information systems. For some of the
problems considered, using a linear-time polygon
triangulation algorithm is the key to obtaining
an optimal algorithm. One such example among
a variety of results is the optimal point-location
scheme presented by Kirkpatrick [9] whose pre-
processing time is linear assuming the availabil-
ity of a linear-time triangulation algorithm. Sev-
eral other applications are covered in O’Rourke’s
textbook on art gallery problems [12].

Open Problems

The main open problem is to devise an optimal
deterministic algorithm that is reasonably effi-
cient in practice.

Experimental Results

Due to its inherent complexity, Chazelle’s algo-
rithm has eluded a rigorous experimental eval-
uation so far. Preliminary results reported by
Vahrenhold [15], however, seem to indicate that
running even the first nontrivial stage of the
bottom-up process takes significantly more time
than running, e.g., Seidel’s randomized algorithm
[13] in full. Similarly, Amato et al. [1] con-
jecture that their randomized algorithm, despite
its expected optimal runtime, is “not likely to
be of practical value,” either. Hence, for practi-
cal purposes, the simplicity of the deterministic
algorithm by Hertel and Mehlhorn [8] and the
randomized algorithm by Seidel [13] strongly
advocates their use.
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Problem Definition

This problem is concerned with the Nash equi-
libria of a game based on the ad auction used
by Google and Yahoo. This research work [5]
is motivated by the huge revenue that the ad-
word auction derives every year. It defines two
types of Nash equilibrium in the position auction
game, applies economic analysis to the equilibria,
and provides some empirical evidence that the
Nash equilibria of the position auction describes
the basic properties of the prices observed in
Google’s adword auction reasonably accurately.
The problem being studied is closely related to
the assignment game studied by [4, 1, 3]. And [2]
has independently examined the problem and
developed related results.

The Model and Its Notations
Consider the problem of assigning agents
a D 1; 2; : : : ; A to slots s D 1; 2; : : : ; S where
agent a’s valuation for slot s is given by
uas D vaxs . The slots are numbered such that
x1 > x2 > � � � > xS . It is assumed that xS D 0

for all s > S and the number of agents is greater
than the number of slots. A higher position
receives more clicks, so xs can be interpreted
as the click-through rate for slot s. The value
va > 0 can be interpreted as the expected profit
per click so uas D vaxs indicates the expected
profit to advertiser a from appearing in slot s.

The slots are sold via an auction. Each agent
bids an amount ba, with the slot with the best
click through rate being assigned to the agent
with the highest bid, the second-best slot to the
agent with the second highest bid, and so on.
Renumbering the agents if necessary, let vs be
the value per click of the agent assigned to slot
s. The price agent s faces is the bid of the agent
immediately below him, so pt D btC1. Hence the
net profit that agent a can expect to make if he
acquires slot s is .va � ps/ xs D .va � bsC1/ xs .

Definitions

Definition 1 A Nash equilibrium set of prices
(NE) satisfies

.vs � ps/ xs � .vs � pt / xt ; for t > s

.vs � ps/ xs � .vs � pt�1/ xt ; for t < s

where pt D btC1.

Definition 2 A symmetric Nash equilibrium set
of prices (SNE) satisfies

.vs � ps/ xs � .vs � pt / xt for all t and s:

Equivalently,

vs .xs � xt / � psxs � pt xt for all t and s:

Key Results

Facts of NE and SNE
Fact 1 (Non-negative surplus) In an SNE,

vs � ps .
Fact 2 (Monotone values) In an SNE, vs�1�vs ,

for all s.
Fact 3 (Monotone prices) In an SNE, ps�1xs�1

> psxs and ps�1 � ps for all s. If vs > ps

then ps�1 > ps .
Fact 4 (NE � SNE) If a set of prices is an SNE

then it is an NE.
Fact 5 (One-step solution) If a set of bids satis-

fies the symmetric Nash equilibria inequalities
for s C 1 and s � 1, then it satisfies these
inequalities for all s.
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Fact 6 The maximum revenue NE yields the
same revenue as the upper recursive solution
to the SNE.

A Sufficient and Necessary Condition
of the Existence of a Pure Strategy Nash
Equilibrium in the Position Auction Game

Theorem 1 In the position auction described
before, a pure strategy Nash equilibrium exists if
and only if all the intervals

	
psxs � psC1xsC1

xs � xsC1

;
ps�1xs�1 � psxs

xs�1 � xs



;

for s D 2; 3; : : : ; S

are non-empty.

Applications

The model studied in this paper is a simple and el-
egant abstraction of the real adword auctions used
by search engines such as Google and Yahoo.
Different search engines have slightly different
rules. For example, Yahoo ranks the advertisers
according to their bids, while Google ranks the
advertisers not only according to their bids but
also according to the likelihood of their links
being clicked.

However, similar analysis can be applied to
real world situations, as the author has demon-
strated above for the Google adword auction case.
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Problem Definition

The power grid of an integrated system is respon-
sible for providing reliable supply and ground
voltages to every circuit element in the system.
Degradations in the supply voltage levels can
result in parametric failures due to increased
delays, whereby circuits no longer meet their
specifications, as well as catastrophic failures due
to incorrect gate switching. Further, power grids
are susceptible to reliability faults due to catas-
trophic failure modes such as electromigration.
Therefore, accurate power grid analysis is a vital
step in integrated circuit design.

Power grids may be analyzed under DC
waveforms that reflect the steady-state currents
drawn by the circuit or under transient analysis
that captures the response of the grid to specific
time-varying current waveforms; inductive
effects, particularly in the integrated circuit
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package; and decoupling capacitors that are
deliberately placed in the circuit to temper the
effect of large transients. For both DC and
transient analysis, the problem can be abstracted
as solving a set of linear algebraic equations of
the following form:

GV D E; (1)

where G 2 <N�N models the conductances in
the system, V 2 <N is the vector of unknown
node voltages, and E 2 <N is the right-hand
side (RHS) vector, modeling the current loads. In
case of DC analysis, a single such system must
be solved, while in case of transient analysis, one
such system is solved at each time step. For com-
putational efficiency, a constant time step is often
used during transient analysis of power grids in
order to ensure that the G matrix, whose entries
depend on the time step, remains unchanged
through the simulation.

Given a power grid topology with jEj
resistors, these equations can be formulated using
modified nodal analysis [2] in O.jEj/ time.
Matrix G is sparse and diagonally dominant
.
P

i¤j jgij j � gi i ;8i/, and all off-diagonals of
G are less than or equal to zero.

The task of power grid analysis is to determine
all voltage levels in the system and verify that
the maximum deviation from their ideal values
is within a user-specified bound and to ensure
that the current density in each wire is within a
user-specified limit in order to assure resilience
to electromigration failure.

Key Results

Mainstream methods for solving such systems
include direct methods such as LU/Cholesky fac-
torization and iterative methods. Due to the fa-
vorable structural properties of the power grid,
notably sparsity and diagonal dominance, it is
possible to solve these systems efficiently. How-
ever, the scale of the problem, where power grids
may have hundreds of millions or billions of
resistors, poses large memory and computation
challenges even to the most efficient solvers. As

a result, there has been considerable work on
developing specialized solvers for power grids.
Notable contributions in this direction are de-
scribed below.

Hierarchy-Based Solvers
In real designs, the power grid is inherently hi-
erarchical since it is created as a part of a hier-
archical design process, where individual blocks
with locally constructed power are first designed
individually and then assembled at the chip level.
This structure is exploited in [9] to build a hierar-
chical solution to the grid.

Based on inherent hierarchy, the power grid
has k local partitions, corresponding to blocks,
and a global partition that connects the power
grids within these blocks. The global grid is then
defined to include the set of nodes that lie in
the global partition and the port nodes, while the
grid in a local partition constitutes a local grid.
The local grid is connected to the global grid
through a set of nodes called ports, and due to the
hierarchical structure, the number of port nodes
is a small fraction of all nodes. The technique
consists of the following steps:

Macromodeling Each of the k local grids may
be modeled as a multi-port linear element
represented by a macromodel of the type I D
A � V C S, where I and V are the vectors of
port voltages and A and S are, respectively, a
constant matrix and a constant vector. Here,
the A matrix is sparsified with bounded and
minimal loss of accuracy using an integer
knapsack scheme.

Solution of the global grid Once the macro-
models for all the local grids are generated,
the entire network is abstracted simply as the
global grid, with the macromodel elements
connected to it at the port nodes. This system
is solved to determine the voltages at all ports.

Solution of the local grids Given the port volt-
ages, the local grids are then each separately
solved to provide the solution to the entire
system.
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Multigrid-Based Solvers
Multigrid-based approaches are an effective way
of solving large systems of equations and have
been customized to solve power grids [3]. The
solution proceeds by creating a coarsened form
of the network with a reduced number of nodes,
which can be solved efficiently, and then by
propagating the result of this solution to the full
network. The technique consists of four steps:

Grid reduction, in which the large power grid is
coarsened by selecting a subset of nodes that
are to be maintained, while the other nodes are
removed. The number of variables is therefore
significantly reduced from from n to m.

Interpolation, in which an n � m interpolation
operator matrix P is defined to map the orig-
inal grid to the coarsened grid. This inter-
polation operator relates the voltages on the
removed nodes to those on the coarsened grid,
thereby allowing the solution of the coarsened
grid to accurately reflect that of the original
grid.

Solution of the coarsened grid, in which a so-
lution is found for the voltages in the coars-
ened grid by solving the above linear equa-
tions.

Mapping the solution from the coarsened grid
to the original grid by applying the interpola-
tion operator concludes the process.

Random Walk-Based Solvers
The diagonal dominance of the power grid en-
ables a special property that creates an exact
mapping between the solution of the power grid
equations and the use of random walks on a
network. This idea has been used in [8] and
further sped up in [6]. Unlike other approaches
that require all (or most) nodes in a system to be
solved together, random walk approaches allow
for a single node to be solved alone. This is
particularly useful during incremental analysis
and optimization [1].

The family of random walk methods has been
extended to solve entire systems, in a marriage
with iterative linear solvers based on conjugate
gradient methods. The intuition is that since

random walks provide approximate solutions
rapidly, they can be used to build effective
preconditioners for iterative solvers [7].

Applications

Power grid analysis is a vital ingredient in the
design of every integrated circuit, and there are
several commercial offerings of design automa-
tion tools that analyze power grids. Aside from
the problem of solving the linear system, the
issue of determining the worst-case excitation is
also a difficult problem. In spite of numerous
efforts, automated tools for this purpose have
been excessively pessimistic and therefore inef-
fective. It is generally accepted that user-specified
patterns are the most effective way to provide
input excitations, particularly in a design world
where the power grid must be analyzed at mul-
tiple corners and multiple modes (corresponding
to different supply voltages that could be applied
to the circuit).

Experimental Results

Intelligent solutions for solving linear systems of
equations have found extensive use in the analysis
of power grids. Solvers that are used include
direct solvers as well as iterative solvers based
on methods such as preconditioned conjugate
gradient-based solvers. Preconditioners based on
methods such as support trees have been found
to be useful, and random walk preconditioners
have also been shown to outperform conventional
methods. Due to the computational nature of this
task, there has been active work on developing
parallel and multithreaded power grid solvers.
For example, the 2011 and 2012 editions of the
Tau workshop have hosted contests on solving
power grid problems [4, 5].

URLs to Code and Data Sets

A set of power grid benchmarks have been made
available to the community at http://dropzone.
tamu.edu/~pli/PGBench.
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Problem Definition

Consider an ordered universe U, and a set T � U

with jT j D n. The goal is to preprocess T, such
that the following query can be answered effi-
ciently: given x 2 U , report the predecessor of
x, i.e., maxfy 2 T j y < xg. One can also con-
sider the dynamic problem, where elements are
inserted and deleted into T. Let tq be the query
time, and tu the update time.

This is a fundamental search problem, with
an impressive number of applications. Later, this
entry discusses IP lookup (forwarding packets
on the Internet), orthogonal range queries and
persistent data structures as examples.

The problem was considered in many com-
putational models. In fact, most models below
were initially defined to study the predecessor
problem.

Comparison model: The problem can be solved
through binary search in �.lg n/ comparisons.
There is a lot of work on adaptive bounds,
which may be sublogarithmic. Such bounds
may depend on the finger distance, the work-
ing set, entropy etc.

Binary search trees: Predecessor search is one
of the fundamental motivations for binary
search trees. In this restrictive model, one can
hope for an instance optimal (competitive)
algorithm. Attempts to achieve this are
described in a separate entry. (O.log log n/-
competitive Binary Search Trees (2004;
Demaine, Harmon, Iacono, Pătraşcu))

Word RAM: Memory is organized as words of
b bits, and can be accessed through indi-
rection. Constant-time operations include the
standard operations in a language such as C
(addition, multiplication, shifts and bitwise
operations).
It is standard to assume the universe is U D

f1; : : : ; 2`g, i.e., one deals with `-bit integers.



1602 Predecessor Search

The floating point representation was designed
so that order is preserved when values are
interpreted as integers, so any algorithm will
also work for `-bit floating point numbers.
The standard transdichotomous assumption is
that b D `, so that an input integer is repre-
sented in a word. This implies b � lg n.

Cell-probe model: This is a nonuniform model
stronger than the word RAM, in which the op-
erations are arbitrary functions on the memory
words (cells) which have already been probed.
Thus, tq only counts the number of cell probes.
This is an ideal model for lower bounds, since
it does not depend on the operations imple-
mented by a particular computer.

Communication games: Let Alice have the
query x, and Bob have the set T. They are
trying to find the predecessor of x through
£ rounds of communication, where in each
round Alice sends mA bits, and Bob replies
with mB bits.
This can simulate the cell-probe model when
mB D b and mA is the logarithm of the mem-
ory size. Then 
 � tq and one can use commu-
nication complexity to obtain cell-probe lower
bounds.

External memory: The unit of access is a page,
containing B words of ` bits each. B-trees
solve the problem with query and update
time O.logB n/, and one can also achieve
this oblivious to the value of B (See Cache-
oblivious B-tree (2005; Bender, Demaine,
Farach-Colton).). The cell-probe model with
b D B � ` is stronger than this model.

AC0 RAM: This is a variant of the word RAM
in which allowable operations are functions
that have constant depth, unbounded fan-in
circuits. This excludes multiplication from the
standard set of operations.

RAMBO: this is a variant of the RAM with
a nonstandard memory, where words of mem-
ory can overlap in their bits. In the static case
this is essentially equivalent to a normal RAM.
However, in the dynamic case updates can be
faster due to the word overlap [5].

The worst-case logarithmic bound for compar-
ison search is not particularly informative when

efficiency really matters. In practice, B-trees and
variants are standard when dealing with huge data
sets. Solutions based on RAM tricks are essential
when the data set is not too large, but a fast query
time is crucial, such as in software solutions to IP
lookup [7].

Key Results

Building on a long line of research, Pătraşcu
and Thorup [15, 16] finally obtained matching
upper and lower bounds for the static problem in
the word RAM, cell-probe, external memory and
communication game models.

Let S be the number of words of space avail-
able. (In external memory, this is equivalent to
S=B pages.) Define a D lg S � `=n. Also define
lg x D dlog2.x C 2/e, so that lg x � 1 even if
x 2 Œ0; 1�. Then the optimal search time is, up to
constant factors:

min

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

logb n D �.minflogB n; log` ng/

lg `�lg n
a

lg `
a

lg
�

a
lg n �lg

`
a

�

lg `
a

lg

 
lg `

a

lg
lg n
a

!

(1)

The bound is achieved by a deterministic
query algorithm. For any space S, the data
structure can be constructed in time O(S) by
a randomized algorithm, starting with the set
T given in sorted order. Updates are supported
in expected time tq CO.S=n/. Thus, besides
locating the element through one predecessor
query, updates change a minimal fraction of the
data structure.

Lower bounds hold in the powerful cell-probe
model, and hold even for randomized algorithms.
When S � n1C", the optimal trade-off for
communication games coincides to (1). Note that
the case S D n1Co.1/ essentially disappears in
the reduction to communication complexity, be-
cause Alice’s messages only depends on lg S .
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Thus, there is no asymptotic difference between
S D O.n/ and, say, S D O.n2/.

Upper Bounds
The following algorithmic techniques give the
optimal result:

• B-trees give O.logB n/ query time with linear
space.

• Fusion trees, by Fredman and Willard [10],
achieve a query time of O.logb n/. The basis
of this is a fusion node, a structure which
can search among b" values in constant time.
This is done by recognizing that only a few
bits of each value are essential, and packing
the relevant information about all values in
a single word.

• Van Emde Boas search [18] can solve the
problem in O.lg `/ time by binary searching
for the length of the longest common prefix
between the query and a value in T. Beginning
the search with a table lookup based on the
first lg n bits, and ending when there is enough
space to store all answers, the query time is
reduced to O.lg..` � lg n/=a//.

• A technique by Beame and Fich [4] can per-
form a multiway search for the longest com-
mon prefix, by maintaining a careful balance
between ` and n. This is relevant when the
space is at least n1C", and gives the third
branch of (1). Pătraşcu and Thorup [15] show
how related ideas can be implemented with
smaller space, yielding the last branch of (1).

Observe that external memory only features
in the optimal trade-off through the O.logB n/

term coming from B-trees. Thus, it is optimal
to either use the standard, comparison-based B-
trees, or use the best word RAM strategy which
completely ignores external memory.

Lower Bounds
All lower bounds before [15] where shown in
the communication game model. Ajtai [1] was
the first to prove a superconstant lower bound.
His results, with a correction by Miltersen [12],
show that for polynomial space, there exists n as

a function of ` making the query time ˝.
p

lg `/,
and likewise there exists ` a function of n making
the query complexity ˝. 3

p
lg n/.

Miltersen et al. [13] revisited Ajtai’s proof, ex-
tending it to randomized algorithms. More impor-
tantly, they captured the essence of the proof in
an independent round elimination lemma, which
is an important tool for proving lower bounds in
asymmetric communication.

Beame and Fich [4] improved Ajtai’s lower
bounds to ˝.lg `=lg lg `/ and ˝.

p
lg n=lg lg n/

respectively. Sen and Venkatesh [17] later gave
an improved round elimination lemma, which
can reprove these lower bounds, but also for
randomized algorithms.

Finally, using the message compression
lemma of [6] (an alternative to round elimi-
nation), Pătraşcu and Thorup [15] showed an
optimal trade-off for communication games. This
is also an optimal lower bound in the other
models when S � n1C", but not for smaller
space.

More importantly, [15] developed the first
tools for proving lower bounds exceeding
communication complexity, when S D n1Co.1/.
This showed the first separation ever between
a data structure or polynomial size, and one of
near linear size. This is fundamentally impossible
through a direct communication lower bound,
since the reduction to communication games
only depends on lg S .

The full result of Pătraşcu and Thorup [15] it
the trade-off (1). Initially, this was shown only for
deterministic query algorithms, but eventually it
was extended to a randomized lower bound as
well [16]. Among the surprising consequences
of this result was that the classic van Emde
Boas search is optimal for near-linear space (and
thus for dynamic data structures), whereas with
quadratic space it can be beaten by the technique
of Beame and Fich.

A key technical idea of [15] is to analyze many
queries simultaneously. Then, one considers
a communication game involving all queries,
and proves a direct-sum version of the round
elimination lemma. Arguably, the proof is even
simpler than for the regular round elimination
lemma. This is achieved by considering
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a stronger model for the inductive analysis, in
which the algorithm is allowed to reject a large
fraction of the queries before starting to make
probes.

Bucketing
The rich recursive structure of the problem can
not only be used for fast queries, but also to
optimize the space and update time – of course,
within the limits of (1). The idea is to place ranges
of consecutive values in buckets, and include
a single representative of each bucket in the
predecessor structure. After performing a query
on the predecessor structure (now with fewer ele-
ments), one need only search within the relevant
bucket.

Because buckets of size wO.1/ can be handled
in constant time by fusion trees, it follows that
factors of w in space are irrelevant. A more ex-
treme application of the idea is given by exponen-
tial trees [3]. Here buckets have size �.n1�� /,
where ” is a sufficiently small constant. Buckets
are handled recursively in the same way, leading
to O.lg lg n/ levels. If the initial query time is at
least tq � lg" n, the query times at each level de-
crease geometrically, so overall time only grows
by a constant factor. However, any polynomial
space is reduced to linear, for an appropriate
choice of ”. Also, the exponential tree can be
updated in O(tq) time, even if the original data
structure was static.

Applications

Perhaps the most important application of prede-
cessor search is IP lookup. This is the problem
solved by routers for each packet on the Internet,
when deciding which subnetwork to forward the
packet to. Thus, it is probably the most run
algorithmic problem in the world. Formally, this
is an interval stabbing query, which is equivalent
to predecessor search in the static case [9]. As
this is a problem where efficiency really mat-
ters, it is important to note that the fastest de-
ployed software solutions [7] use integer search
strategies (not comparison-based), as theoretical
results would predict.

In addition, predecessor search is used perva-
sively in data structures, when reducing problems
to rank space. Given a set T, one often wants to
relabel it to the simpler f1; : : : ; ng (“rank space”),
while maintaining order relations. If one is pre-
sented with new values dynamically, the need for
a predecessor query arises. Here are a couple of
illustrative examples:

• In orthogonal range queries, one maintains
a set of points in Ud, and queries for points
in some rectangle Œa1; b1� � � � � � Œad ; bd �.
Though bounds typically grow exponentially
with the dimension, the dependence on
the universe can be factored out. At query
time, one first runs 2d predecessor queries
transforming the universe to f1; : : : ; ngd .

• To make pointer data structures persistent [8],
an outgoing link is replaced by a vector of
pointers, each valid for some period of time.
Deciding which link to follow (given the time
being queried) is a predecessor problem.

Finally, it is interesting to note that the lower
bounds for predecessor hold, by reductions, for
all applications described above. To make these
reductions possible, the lower bounds are in fact
shown for the weaker colored predecessor prob-
lem. In this problem, the values in T are colored
red or blue, and the query only needs to find the
color of the predecessor.

Open Problems

It is known [2] how to implement fusion trees
with AC 0 instructions, but not the other query
strategies. What is the best query trade-off
achievable on the AC 0 RAM? In particular, can
van Emde Boas search be implemented with
AC0 instructions?

For the dynamic problem, can the update times
be made deterministic? In particular, can van
Emde Boas search be implemented with fast
deterministic updates? This is a very appealing
problem, with applications to deterministic dic-
tionaries [14]. Also, can fusion nodes be updated
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deterministically in constant time? Atomic heaps
[11] achieve this when searching only among
.lg n/" elements, not b".

Finally, does an update to the predecessor
structure require a query? In other words, can
tu D o.tq/ be obtained, while still maintaining
efficient query times?
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Problem Definition

Given a set S of n keys from the set Œ1 : : : 2`�, the
goal of predecessor search is to return, given a
key y 2 Œ1 : : : 2`�, the largest key x 2 S such that
x � y. We have the following models:

Comparison model Balanced binary search
trees [1, 6] can solve the problem in optimal
O.log n/ time in the comparison model, in
which the key can only be manipulated through
comparisons with each other.

External memory model In this model, it is
assumed that the data is read and written into
blocks of B elements (integers in our case) and
the cost of a query or algorithm is the number of
read or written blocks. In this model, B-trees [7]
can solve the problem in O.logB n/ time and
O.n/ space.

RAM model This is the main subject of study.
The model assumes that all standard arithmetic
and logic operations (including multiplication) on
integers of length w take constant time, where w
is the computer word size. It is assumed that w �
` � log n.

AC0 RAM model This model is similar to the
RAM model except that it only contains instruc-
tions that can be implemented with circuits of
polynomial size, constant depth and unfounded
fan-in. The only affected instruction is multipli-
cation which cannot be implemented with such
circuits. While this model has been often consid-
ered in the literature in the past, modern com-
puters support multiplications very fast, and the
bottleneck is usually the memory access.

Cell probe model This model is used to prove
lower bounds. It also has an associated word
size w, but the cost of a query or an update
is just the number of accessed memory words
(computations have zero cost).

Useful Concepts
The two main techniques used for predecessor
search are cardinality reduction and length reduc-

tion. At every step of the query, one would wish
to either reduce the cardinality of the searched set
or reduce the length of the searched keys.

Balanced Binary Search Tree
Cardinality reduction is achieved through the use
of balanced binary search tree. This allows doing
a predecessor search in O.log n/ time in the
comparison model. The B-tree is a generalization
of the balanced binary search trees, where every
node can have B children instead of just two.
A static balanced binary search tree allows one
to divide the set of searched keys by 2 at every
level. A static B-tree allows one to divide the set
by B . In the dynamic case, the cardinality can
be reduced by a factor less than 2 (less than B

for a dynamic B-tree) at every level, but it is
guaranteed that the cardinality goes to one after
�.log n/ levels (�.logB n/ for a B-tree).

Trie
A key concept is that of a trie. A predecessor
search for a key in a trie takes O.`/ time. A
trie built on a set S of n keys from Œ1 : : : 2`� is
a binary tree with ` levels numbered top-down.
All the leaves of the trie are at level `. Every
edge in the tree has a label that is either 0 or 1.
Let xŒi � denote the bit number i of the integer
x, where i 2 Œ1 : : : `� and the bits are numbered
from the most to the least significant bit (xŒ1� is
the most significant bit). Denote by xŒi : : : j � the
binary string that consists in the concatenation
of the bits xŒi �; : : : xŒj �. A node of the trie at
depth d 2 Œ0; `� will be labeled by a binary string
of length d , formed by concatenating the edge
labels from the root to the node. There will be
a node of depth d labeled by binary string p if
and only if there exists at least an element x 2 S

such that xŒ1 : : : d � D p. A node at depth d < `

labeled by string p will have as children the nodes
at depth d C 1 labeled by p0 and p1 (if they
both exist, otherwise it will only have one child).
The leaves of the trie are labeled by strings of
S and the root is labeled by the empty string. A
trie occupies O.n` log n/ bits. In order to support
predecessor searches, every internal node of the
trie stores two elements of S . The two elements
stored by a node labeled by binary string p are the
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largest element prefixed by p and the predecessor
of p0w�jpj. A predecessor search on a compacted
trie for a key y is then done by traversing the
trie top-down, at level i 2 Œ1 : : : `� following the
edge labeled by character yŒi C 1�. The node at
which the traversal stops is called the locus of y.
The predecessor of y is then easily determined
from its locus. If the locus is a leaf labeled by
x, then necessarily x D y and y is returned
as the predecessor. Otherwise, the locus is some
internal node and the predecessor is one of the
two elements of S stored at that internal node.
Suppose that the internal node is at level i and
is labeled by string p. Then, if xŒi C 1� D 1,
the predecessor is the largest element prefixed by
p; otherwise, it is the predecessor of p0w�p . In
a compacted trie (Patricia trie), only leaves and
internal nodes with degree 2 are kept, resulting in
a tree of 2n�1 nodes, n leaves, and n�1 internal
nodes (see Fig. 1). The trie will then occupy only
O.n.`Clog n// bits. A predecessor search can be
implemented on a compacted trie in a way similar
to the non-compacted trie. The main difference is
that the locus in a compacted trie is either a leaf
or a location in the middle of a compacted edge.

Key Results

Van Emde Boas
The Van Emde Boas tree [17–19] is a compacted
trie representation supporting predecessor search
by doing a binary search on the trie levels. Since
the number of levels is `, the binary search takes

time O.log `/. The original structure used space
O.2`/. Later, Willard [20] showed how to use
hashing to reduce the space usage to O.n/ while
keeping the search time bounded by O.log `/.

Searching a Compacted Trie (Fusion Trees)
The fusion tree reduces the predecessor search
problem to the search on small compacted tries,
each encoded in one memory word. The idea of
the fusion tree dates back to a paper by Ajtai et
al. [2], where it was shown how to implement pre-
decessor search using a compacted trie in which
the compacted paths are omitted and only their
lengths are stored (the trie on the right in Fig. 1).
This allows encoding a trie in O.n.log `Clog n//

bits only compared to the O.n.` C log n// bits
for the ordinary compacted trie. Then, a prede-
cessor search for a key y is done by first doing
a top-down traversal of the compacted trie, by
always pretending that a comparison between the
compacted paths and the bits of searched key
is successful (only bits that label the edges are
compared to bits of the searched key). At the
end, the search terminates at a leaf that points
to an integer x 2 S that is one of the elements
that share the longest prefix with the searched
key. Then, the locus (and hence the predecessor)
is determined by filling the traversed compacted
paths with bits from x and comparing those bits
with the corresponding bits of y.

The main observation is that a predecessor
search can be supported in constant time in the
cell probe model whenever n log ` � w, since it
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Predecessor Search, String Algorithms and Data
Structures, Fig. 1 Three trie variants used for storing
the integers 16, 17, 25, and 30. On the left, an ordinary
trie; in the middle, a compacted trie; and on the right, a

compacted trie in which the compacted paths are omitted
and replaced by their lengths. Notice that the compacted
trie has exactly 2 � 4� 1 D 7 nodes
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involves reading a constant number of memory
locations corresponding to the trie encoded in a
constant number of words and to two elements of
S (the traversal of the trie is charged zero cost).
Later, Fredman and Willard [11] invented the fu-
sion node, where they implemented a predecessor
search in constant time in the RAM model, when
n � w1=c for c D 6. This allows searching the
predecessors among a set of w1=c keys for c D 6

in constant time. By implementing a B-tree with
block size B D w1=c , one can achieve query time
O.logB n/ D O.log n= log w/. Finally, Pǎtraşcu
and Thorup [15] have shown how to implement
the approach with constant time updates and
queries on B D w1=c keys for c D 4. This allows
searches and dynamic updates in deterministic
O.log n= log w/ time.

Beame and Fich
Beame and Fich [8] use a more advanced search
that combines cardinality and length reductions.
As a building block, they use a data structure
that recursively reduces a search over n keys of
length ` to a search over a group of n0 keys of
length `0 such that either `0 D ` but n0 � q

or `0 D `=h for some parameters h and q.
This reduction technique was taken from an al-
gorithm used for integer sorting [5]. Their search

time is O
�

log `
log log `

�
and the space is quadratic.

Combining with the fusion tree, this gives query

time O
�q

log n
log log n

�
with quadratic space. This is

achieved by using the fusion tree when log ` �p
log n log log n and the new data structure when

log ` <
p

log n log log n. They also prove a
matching lower bound, by showing that one can-
not achieve space polynomial in n with query

time o
�

log `
log log `

�
for all values of n and w or query

time o
�q

log n
log log n

�
for all values of ` and w. Later,

Sen and Venkatesh show that their lower bound
holds even if randomization is allowed [16].

Exponential Search Trees
The exponential search tree [4] allows one to
transform any predecessor data structure with
polynomial space and preprocessing time, and
query time q.n; `; w/, into a data structure

with O.n/ space and preprocessing time, and
query time at most O.log log n � q.n; `; w//.
Given some predecessor data structure P that
supports queries in time q.n; `; w/ and uses
space and preprocessing time S.n/ D O.nc/,
the exponential search tree is a recursive data
structure built from a sorted set x1 < � � � < xn of
n keys as follows:

1. The root has degree d D n1=.cC1/.
2. The n keys are partitioned into d blocks of

sizes b D n
d

each and the data structure
P is built on the set which consists in the
first element of each of the blocks 2 : : : d (the
elements xbC1; : : : ; x.d�1/bC1).

3. The root has d children, where every child is
itself an exponential search tree built on the
b D nc=.cC1/ elements of a block.

The recursion stops whenever we have a tree of
constant size, in which the predecessor search
is trivially supported in constant time. The con-
struction time C.n/ follows the equation

C.n/ D S.n1=.cC1//C n1=.cC1/ � C.nc=.cC1//

which gives C.n/ D O.nc=.cC1// C n1=.cC1/ �

C.nc=.cC1//. By iteratively expanding the term
C.nc=.cC1//, we get C.n/ D O.n/.

A query is done by traversing the log log n

levels of the tree and doing predecessor searches
at the structure P of each traversed node. The
query time follows the equation Q.n; `; w/ D

q.n1=.cC1/; `; w/ C Q.nc=.cC1/; `; w/, which
solves to Q.n; `; w/ D O.log log n � q.n; `; w//.
In the same paper [4], Andersson and Thorup
show how to insert or delete an element in
worst-case constant time, once a pointer to its
predecessor (or to itself in case of a deletion) has
been determined.

Deterministic Dynamic Bounds
When applied to Beame and Fich’s solu-

tion with time O
�

log `
log log `

�
, the exponential

search tree gives O.n/ space with time

O
�

log log n �
log `

log log `

�
, and when applied to the
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solution with O
�q

log n
log log n

�
time and quadratic

space, it keeps the same time bound and achieves
O.n/ space. By combining the two bounds with
the bounds of the fusion tree [15], one gets the
following time bounds which are the best known
ones for dynamic deterministic predecessor
search:

O

0

BBBB@
1Cmin

8
ˆ̂̂
<̂

ˆ̂̂
:̂

log n
log w

q
log n

log log n

log log n � log `
log log `

9
>>>>=

>>>>;

1

CCCCA
(1)

The space is O.n/ for all the three branches.
The bounds refer to the maximum of update and
search times.

Optimal Static Bounds
Pǎtraşcu and Thorup [13] obtained optimal lower
and upper bounds for the static case. They obtain
optimal trade-offs between the time and the space
usage. Define a D log S

n
C log w, where S is the

space usage. Then, the optimal time bound is

�

0

BBBBBBBBBBBBBB@

1Cmin

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

log n
log w

log `�log n
log w

log `
a

log
�

a
log n
� log `

a

�

log `
a

log
�

log `
a

.
log log n

a

�

9
>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>;

1

CCCCCCCCCCCCCCA

(2)

They later show that their lower bound holds even
if randomization is allowed [14]. The first branch
of the upper bound corresponds to the fusion tree.
The second branch is obtained by first reducing
the length from ` to ` � log n bits, by dividing
the universe into n buckets according to their
most significant log n bits, and then by storing
a separate Van Emde Boas structure for every
bucket. The query time is then reduced from
O.log.` � log n// to log `�log n

log w , by stopping the
Van Emde Boas recursion when the key length
gets to log w bits. Finally, the last two branches

are implemented using a refinement of the tech-
nique by Beame and Fich.

Optimal Randomized Dynamic Bounds
When allowing randomization, optimal bounds
can be achieved [15]. Again, the bounds are for
the maximum of query and update times:

�

0

BBBBBB@
1Cmin

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

log n
log w

log.
log.2`�n/

log w /

log `
log w

log.log `
log w = log log n

log w /

9
>>>>>>=

>>>>>>;

1

CCCCCCA
(3)

The space usage is linear (O.n/) or almost linear
O.nwO.1//.

The first branch of the upper bound corre-
sponds to the dynamic version of the fusion
tree [15] and the third branch to a dynamic
version of the fourth branch of the optimal static
upper bound. The second branch is similar to the
second branch of the optimal static upper bound,
with the difference that the term ` � log n is
replaced by log.2` � n/.

The first and third branches are trivially op-
timal, since the bounds are the same as the static
ones and any lower bound that applies to the latter
also applies to the former. The authors show that
the second branch is also optimal by proving a
corresponding lower bound that is stronger than
the static one.

Applications

Range queries are very important in databases.
Answering to range queries is an obvious and nat-
ural application of predecessor search. A query
(in one dimension) asks, given a range Œa; b� 	

Œ1 : : : 2`�, to return every element x in the set S \

Œa; b�. This can obviously be solved by doing two
predecessor queries for a and b and then report-
ing all elements between the two predecessors
(excluding the predecessor of a). In the compar-
ison model and the external memory model, this
is the best one can hope for, and the optimal time
bounds are O.log nCjS\Œa; b�j/ and O.logB nC



1610 Predecessor Search, String Algorithms and Data Structures

jS \ Œa; b�j=B/ respectively. Surprisingly, in the
RAM model, there exists a linear-space static
solution with O.jS \ Œa; b�j/ query time [3]. An
important application of predecessor search is
IP forwarding problem, which must be solved
by every internet router. The router contains a
database of subnetworks specified by their IP
address prefixes, and each received packet has to
be forwarded to the subnetwork with the longest
matching prefix. The IP forwarding problem is an
instance of the longest common prefix problem,
which in the static case is equivalent to the
predecessor problem.

The lower and upper bounds on predecessor
search can be used to prove bounds for other
problems through reductions. For example,
predecessor search can be reduced to two-
dimensional range search, allowing one to prove
a lower bound of ˝.log log n/ time for the two-
dimensional range-emptiness problem on sets
of n points on a grid of n rows by n columns.
Optimal bounds can also be proved for rank
queries on sequence representations through
reduction to and from predecessor queries [9].

Open Problems

The deterministic complexity of the dynamic pre-
decessor search is still open. Another open prob-
lem is whether updates can be supported faster
than searches when the search time is optimal or
near optimal (of course, one can always support
constant update time when the query time is the
trivial �.n/). For the moment, this is not disal-
lowed by any lower bound and has been achieved
for the related dynamic ranking problem [10], in
which a set S � Œ1 : : : 2`� is maintained under
updates and a query asks, given an integer y 2 S

to count the number of elements of S smaller
than y.
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15. Pǎtraşcu M, Thorup M (2014) Dynamic integer sets
with optimal rank, select, and predecessor search. In:
Proceedings of of the 55th annual IEEE symposium
on foundations of computer science, Philadelphia.
arXiv preprint arxiv:1408.3045



Price of Anarchy 1611

P

16. Sen P, Venkatesh S (2008) Lower bounds for prede-
cessor searching in the cell probe model. J Comput
Syst Sci 74:364–385

17. van Emde Boas P (1975) Preserving order in a forest
in less than logarithmic time. In: FOCS, Berkeley,
pp 75–84

18. van Emde Boas P (1977) Preserving order in a forest
in less than logarithmic time and linear space. Inf
Process Lett 6(3):80–82

19. van Emde Boas P, Kaas R, Zijlstra E (1976) Design
and implementation of an efficient priority queue.
Math Syst Theory 10(1):99–127

20. Willard DE (1983) Log-logarithmic worst-case range
queries are possible in space �.n/. Inf Process Lett
17(2):81–84

Price of Anarchy

George Christodoulou
University of Liverpool, Liverpool, UK

Keywords

Congestion games; Network games; Price of an-
archy

Synonyms

Coordination ratio

Years and Authors of Summarized
Original Work

2005; Koutsoupias

Problem Definition

The price of anarchy captures the lack of coordi-
nation in systems where users are selfish and may
have conflicted interests. It was first proposed
by Koutsoupias and Papadimitriou in [8], where
the term coordination ratio was used instead, but
later Papadimitriou in [12] coined the term price
of anarchy that finally prevailed in the literature.

Roughly, the price of anarchy is the system
cost (e.g., makespan, average latency) of the
worst-case Nash equilibrium over the optimal
system cost that would be achieved if the players
were forced to coordinate. Although it was orig-
inally defined in order to analyze a simple load-
balancing game, it was soon applied to numerous
variants and to more general games. The family
of (weighted) congestion games [11, 13] is a
nice abstract form to describe most of the al-
ternative settings. (We focus our presentation on
cost minimization problems in congestion games.
We mention some utility maximization problems
where price of anarchy analysis has been used in
the Applications section.)

The price of anarchy may vary, depending on
the

• Equilibrium solution concept (e.g., pure,
mixed, correlated equilibria)

• Characteristics of the congestion game
– Players Set (e.g., atomic – non-atomic)
– Strategy Set (e.g., symmetric asymmetric,

parallel machines-network-general)
– Players’ cost functions (e.g., linear, poly-

nomial)
• Social cost (e.g., maximum, sum, total latency)

Notation
Let G be a (finite) game that is determined by the
triple .N; .Si /i2N ; .ci /i2N /. N D f1; : : : ; ng is
the set of the players that participate in the game.
Si is a pure strategy set for player i . An element
Ai 2 Si is a pure strategy for player i 2 N .
A pure strategy profile A D .A1; : : : ; An/ is a
vector of pure strategies, one for each player. The
set of all possible pure strategy profiles is denoted
by S D S1 � � � � � Sn. The cost of a player i 2

N , for a pure strategy, is determined by a cost
function ci W S 7! R.

A pure strategy profile A is a pure Nash
equilibrium, if none of the players i 2 N can
benefit, by unilaterally deviating to another pure
strategy si 2 Si :

ci .A/ � ci .A�i ; si / 8i 2 N; 8si 2 Si ;
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where .A�i ; si / is the simple strategy profile
that results when just the player i deviates from
strategy Ai 2 Si to strategy si 2 Si .

Similarly, a mixed strategy pi for a player
i 2 N is a probability distribution over her pure
strategy set Si . A mixed strategy profile p is the
tuple p D .p1; : : : pn/, where player i chooses
mixed strategy pi . The expected cost of a player
i 2 N with respect to the p is

ci .p/ D
X

A2S
p.A/ci .A/;

where p.A/ D
Q

i2N pi .Ai / is the probabil-
ity that pure strategy A occurs, with respect to
.pi /i2N . A mixed strategy profile p is a Nash
equilibrium, if and only if

ci .p/ � ci .p�i ; si / 8i 2 N; 8si 2 Si

The social cost of a pure strategy profile A, de-
noted by SC.A/, is the maximum cost of a player
MAX.A/ D maxi2N ci .A/ or the average cost of
a player. For simplicity, the sum of the players’
cost is considered (i.e., n times the average cost)
SUM.A/ D

P
i2N ci .A/. The same definitions

extend naturally for the case of mixed strategies,
but with expected costs in this case.

The (mixed) price of anarchy [8] for a game is
the worst-case ratio, among all the (mixed) Nash
equilibria, of the social cost over the optimal cost,
OPT D minP2S SC.P /.

PA D max
p is N.E.

SC.p/

OPT

The price of anarchy for a class of games is the
maximum (supremum) price of anarchy among
all the games of this class.

Congestion Games Here, a general class of
games is described that captures most of the
games for which price of anarchy is studied in
the literature. A congestion game [11, 13], is
defined by the tuple .N; E; .Si /i2N ; .fe/e2E /,
where N D f1; : : : ; ng is a set of players, E is
a set of facilities, Si 	 2E is the pure strategy
set for player i , a pure strategy Ai 2 Si is a

subset of the facility set, and fe is a cost (or
latency) function (Unless otherwise stated, linear
cost functions are only considered throughout
this article. See [14] and references therein for
results about more general cost functions, and
for additional results see entries 00260, 00251,
00053.) with respect to the facility e 2 E.

A pure strategy profile A D .A1; : : : ; An/ is a
vector of pure strategies, one for each player. The
cost ci .A/ of player i for the pure strategy profile
A is given by

ci .A/ D
X

e2Ai

fe.ne.A//;

where ne.A/ is the number of the players that use
facility e in A.

A congestion game is called symmetric or
single commodity, if all the players have the same
strategy set: Si D C. The term asymmetric or
multi-commodity is used to refer to all the games
including the symmetric ones. A special class is
the class of network congestion games. In these
games, the facilities are edges of a (multi)graph
G.V; E/. The pure strategy set for a player i 2 N

is the simple paths set from a source si 2 V

to a destination ti 2 V . In network symmetric
congestion games, all the players have the same
source and destination.

A natural generalization of congestion games
are the weighted congestion games, where every
player controls an amount of traffic wi . The cost
of each facility e 2 E depends on the total load of
the facility. In this case, a well-studied social cost
function is the weighted sum of players costs, or
total latency.

In a congestion game with splittable weights
(divisible demands), every player i 2 N , instead
of fixing a single pure strategy, is allowed to
distribute her demand among her pure strategy
set.

Finally, in a non-atomic congestion game,
there are k different player types 1 : : : k. Players
are infinitesimal and for each player type i the
continuum of the players is denoted by the
interval Œ0; ni �. In general, each player type
contributes in a different way to the congestion
on the facility e 2 E, and this contribution is
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determined by a positive rate of consumption
rs;e for a strategy s 2 Si and a facility e 2 s.
Each player chooses a strategy that results
in a strategy distribution x D .xs/s2S , withP

s2Si
xs D ni .

Key Results

Maximum Social Cost
First, we review results on the price of anarchy
w.r.t maximum social cost that was historically
the first social cost considered in [8]. Formally,
for a pure strategy profile A, the social cost is

SC.A/ D MAX.A/ D max
i2N

ci .A/

The definition naturally extends to mixed
strategies.

Theorem 1 ([7–10]) The price of anarchy for m

identical machines is ‚
�

log m
log log m

�
.

Theorem 2 ([7]) The price of anarchy for m

uniformly related machines with speeds s1 �

s2 � � � � � sm is

‚

0

@min

8
<

:
log m

log log log m
;

log m

log
�

log m
log.s1=sm/

�

9
=

;

1

A :

Theorem 3 ([4]) The price of anarchy for pure
equilibria is ‚.

p
n/ for asymmetric but at most

5=2 for symmetric congestion games.

Average Social Cost: Total Latency
Here, we consider as social cost the (weighted)
sum (total latency) of the players’ cost for
(weighted) congestion games, i.e.,

SC.A/ D SUM.A/ D
X

i2N

ci .A/;

SC.A/ D C.A/ D
X

i2N

wi ci .A/:

The definition naturally extends for mixed
strategies.

Theorem 4 ([2–4]) The price of anarchy is 5=2

for asymmetric and 5n�2
2nC1

for symmetric conges-
tion games.

Theorem 5 ([2, 3]) The price of anarchy for
weighted congestion games is 1C 	 � 2:618.

Theorem 6 ([6]) The price of anarchy is at most
3=2 for congestion games with splittable weights.

Theorem 7 ([15, 16]) The price of anarchy for
non-atomic congestion games is 4=3.

Key Proof Technique: Smoothness Most of the
above results on atomic congestion games have
been generalized for polynomial latencies [1–
3] and hold for various equilibrium concepts.
Roughgarden’s smoothness framework [14] dis-
tills the main ideas in these proofs and provides a
general, canonical proof recipe to obtain price of
anarchy bounds. He also shows how smoothness
provides tight bounds for congestion games with
general cost functions.

Applications

The efficiency of large-scale networks, in which
selfish users interact, is highly affected due to the
users’ selfish behavior. The price of anarchy is a
quantitative measure of the lack of coordination
in such systems. It is a useful theoretical tool
for the analysis and design of telecommunication
and traffic networks, where selfish users compete
on system’s resources motivated by their atomic
interests and are indifferent to the social welfare.

The price of anarchy has been also studied
in utility maximization Problems; see, for exam-
ple, Valid Utility Games [17]. Finally, a line of
work shows that price of anarchy can be used
to evaluate the performance of mechanisms; see,
for example, [5] for an analysis of simultaneous
Second-Price Auctions.
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Problem Definition

This entry considers a selfish routing model for-
mally introduced by Koutsoupias and Papadim-
itriou [10], in which the goal is to route the traffic
on parallel links with linear latency functions.
One can describe this model as a scheduling prob-
lem with m independent machines with speeds
s1; : : : ; sm and n independent tasks with weights
w1; : : : ; wn. The goal is to allocate the tasks to the
machines to minimize the maximum load of the
links in the system.
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It is assumed that all tasks are assigned by
noncooperative agents. The set of pure strategies
for task i is the set f1; : : : ; mg, and a mixed
strategy is a distribution on this set.

Given a combination .j1; : : : ; jn/ 2

f1; : : : ; mgn of pure strategies, one for each task,
the cost for task i is

P
jkDji

wk

sji

, which is the

time needed for machine ji chosen by task i

to complete all tasks allocated to that machine.
Similarly, for a combination of pure strategies
.j1; : : : ; jn/ 2 f1; : : : ; mgn, the load of machine
j is defined as

P
jkDj

wk

sj
.

Given n tasks of length w1; : : : ; wn and m ma-
chines with the speeds s1; : : : ; sm, let opt denote
the social optimum, that is, the minimum cost
over all combinations of pure strategies:

opt D min
.j1;:::;jn/2f1;:::;mgn

max
1�j�m

X

i WjiDj

wi

sj

:

For example, if all machines have the same
unit speed (sj D 1 for every j , 1 � j � m)
and all tasks have the same unit weight (wi D 1

for every i , 1 � i � n), then the social optimum
is d n

m
e.

It is also easy to see that in any system

opt �
maxi wi

maxj sj

:

It is known that computing the social optimum is
NP-hard even for identical speeds (see [10]).

For mixed strategies, let p
j
i denote the proba-

bility that an agent i sends the entire traffic wi to
a machine j . Let `j denote the expected load on
a machine j , that is,

`j D
1

sj

�

nX

iD1

wi p
j
i :

For a task i , the expected cost of task i on
machine j is equal to

c
j
i D

wi

sj

C
X

t¤i

wt p
j
t

sj

D `j C .1 � p
j
i /

wi

sj

:

The expected cost c
j
i corresponds to the ex-

pected finish time of task i on machine j under
the processor sharing scheduling policy. This is
an appropriate cost model with respect to the
underlying traffic routing application.

Definition 1 (Nash equilibrium) The probabil-
ities .p

j
i /1�i�n;1�j�m define a Nash equilibrium

if and only if any task i will assign nonzero
probabilities only to machines that minimize c

j
i ,

that is, p
j
i > 0 implies c

j
i � c

q
i , for every q,

1 � q � m.

As an example, in the system considered
above in which all machines have the same unit
speed and all weights are the same, the uniform
probabilities p

j
i D

1
m

for all 1 � j � m and
1 � i � n define a system in a Nash equilibrium.

The existence of a Nash equilibrium over
mixed strategies for noncooperative games was
shown by Nash [13]. In fact, the routing game
considered here admits an equilibrium even if all
players are restricted to pure strategies, what has
been shown by Fotakis et al. [7].

Fix an arbitrary Nash equilibrium, that is, fix
the probabilities .p

j
i /1�i�n;1�j�m that define a

Nash equilibrium. Consider the randomized al-
location strategies in which each task i is allo-
cated to a single machine chosen independently at
random according to the probabilities p

j
i , that is,

task i is allocated to machine j with probability
p

j
i . Let Cj , 1 � j � m, be the random variable

indicating the load of machine j in our random
experiment. Observe that Cj is the weighted
sum of independent 0–1 random variables J

j
i ,

PrŒJ
j
i D 1� D p

j
i , such that

Cj D
1

sj

nX

iD1

wi � J
j
i :

Let c denote the maximum expected load over
all machines, that is,

c D max
1�j�m

`j :

Notice that EŒCj � D `j , and therefore, c D
max1�j�m EŒCj �.
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Finally, let the social cost C be defined as the
expected maximum load (instead of maximum
expected load), that is,

C D EŒ max
1�j�m

Cj �:

Observe that c � C and possibly c � C .
The goal is to estimate the price of anarchy (also
called the worst-case coordination ratio) which
is the worst-case ratio

R D max
C
opt

;

where the maximum is over all Nash equilibria.

Key Results

Early Work
The study of the price of anarchy has been ini-
tiated by Koutsoupias and Papadimitriou [10],
who showed also some very basic results for
this model. For example, they proved that for
two identical machines, the price of anarchy is
exactly 3

2
, and for two machines (with possibly

different speeds), the price of anarchy is at least

	 D 1C
p

5
2

. Koutsoupias and Papadimitriou
showed also that for m identical machines, the
price of anarchy is ˝.

log m
log log m

/ and it is at most

O.
p

m ln m/, and for m arbitrary machines, the

price of anarchy is O.
q

s1

sm

Pm
jD1

sj

sm

p
log m/,

where s1 � s2 � � � � � sm [10].
Koutsoupias and Papadimitriou [10] conjec-

tured also that the price of anarchy for m identical
machines is �.

log m
log log m

/. In the quest to resolve
this conjecture, Mavronicolas and Spirakis [12]
considered the problem in the so-called fully
mixed model, which is a special class of Nash
equilibria in which all p

j
i are strictly positive.

In this model, Mavronicolas and Spirakis [12]
showed that for m identical machines in the fully
mixed Nash equilibrium, the price of anarchy is
�.

log m
log log m

/. Similarly, they proved also that for m

(not necessarily identical) machines and n identi-
cal weights in the fully mixed Nash equilibrium,
if m � n, then the price of anarchy is �.

log n
log log n

/.

The motivation behind studying fully mixed
equilibria is the so-called fully mixed Nash equi-
librium conjecture stating that these equilibria
maximize the price of anarchy because they max-
imize the randomization. The conjecture seems to
be quite appealing as a fully mixed equilibrium
can be computed in polynomial time, which led
to numerous studies of this kind of equilibria with
the hope to obtain efficient algorithms for com-
puting or approximating the price of anarchy with
respect to mixed equilibria. However, Fischer
and Vöcking [6] disproved the fully mixed Nash
equilibrium conjecture and showed that there is a
mixed Nash equilibrium whose expected cost is
larger than the expected cost of the fully mixed
Nash equilibrium by a factor of ˝.

log m
log log m

/. Fur-
thermore, they presented polynomial time algo-
rithms for approximating the price of anarchy for
mixed equilibria on identical machines up to a
constant factor.

Tight Bounds for the Price of Anarchy
Czumaj and Vöcking [4] entirely resolved the
conjecture of Koutsoupias and Papadimitriou
[10] and gave an exact description of the price of
anarchy as a function of the number of machines
and the ratio of the speed of the fastest machine
over the speed of the slowest machine. (To
simplify the notation, for any real x � 0, let log x

denote log x D maxflog2 x; 1g. Also, following
standard convention, � .N / is used to denote the
gamma (factorial) function, which for any natural
N is defined by � .N C 1/ D N Š and for an
arbitrary real x > 0 is � .x/ D

R1
0 tx�1 e�t dt .

For the inverse of the gamma function,
� .�1/.N /, it is known that � .�1/.N / D x such
that bxcŠ � N � 1 � dxeŠ. It is well known that
� .�1/.N / D log N

log log N
.1C o.1//.)

Theorem 1 ([4] Upper bound)
The price of anarchy for m machines is

bounded from above by

O

0

@min

8
<

:
log m

log log log m
;

log m

log
�

log m
log.s1=sm/

�

9
=

;

1

A ;

where it is assumed that the speeds satisfy s1 �

� � � � sm.
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In particular, the price of anarchy for m ma-

chines is O
�

log m
log log log m

�
:

The theorem follows directly from the follow-
ing two results [4]: that the maximum expected
load c satisfies c D opt � � .�1/.m/ D opt �

O
�

min
n

log m
log log m

; log
�

s1

sm

�o�
and that the social

cost C satisfies C D opt �O
 

log m

log
�
opt�log m

c

� C 1

!
.

If one applied these results to systems in which
all agents follow only pure strategies, then since
then `j D Cj for every j , it holds that C D c.
This leads to the following result.

Corollary 1 ([4]) For pure strategies the price
of anarchy for m machines is upper bounded by

O
�

min

�
log m

log log m
; log

�
s1

sm

���
;

where it is assumed that the speeds satisfy s1 �

� � � � sm.

Theorem 3 below proves that this corollary
gives an asymptotically tight bound for the price
of anarchy for pure strategies.

By Theorem 1, in the special case when all
machines are identical, the price of anarchy is

O
�

log m
log log m

�
; this result has been also obtained

independently by Koutsoupias et al. [11]. How-
ever, in this special case one can get a stronger
bound that is tight up to an additive constant.

Theorem 2 ([4]) For m identical machines the
price of anarchy is at most

� .�1/.m/C�.1/ D
log m

log log m
� .1C o.1//:

One can obtain a lower bound for the price of
anarchy for m identical machines by considering
the system in which p

j
i D

1
m

for every i; j .
Gonnet [9] proved that then the price of anarchy
is � .�1/.m/ � 3

2
C o.1/, which implies that

Theorem 2 is tight up to an additive constant.
The next theorem shows that the upper bound

in Theorem 1 is asymptotically tight.

Theorem 3 ([4] Lower bound) The price of an-
archy for m machines is lower bounded by

˝

0

@min

8
<

:
log m

log log log m
;

log m

log
�

log m
log.s1=sm/

�

9
=

;

1

A :

In particular, the price of anarchy for m machines

is ˝
�

log m
log log log m

�
.

In fact, it can be shown [4] (analogously to
the upper bound) that for every positive integer
m, positive real r , and S � 1, there exists a
set of m machines with s1

sm
D S being in a

Nash equilibrium and satisfying opt D r , c D

opt � ˝
�

min
n

log m
log log m

; log
�

s1

sm

�o�
, and C D

opt �˝

 
log m

log
�
opt�log m

c

�

!
.

Applications

The model discussed here has been extended in
the literature in numerous ways, in particular in
[1, 5, 8]; see also survey presentations in [3, 14].

Open Problems

An interesting attempt that adds an algorithmic
or constructive element to the analysis of the
price of anarchy is made in [2]. The idea behind
“coordination mechanisms” is not to study the
price of anarchy for a fixed system, but to design
the system in such a way that the increase in cost
or the loss in performance due to selfish behav-
ior is as small as possible. This is a promising
direction of research that might result in practical
guidelines of how to build a distributed system
that does not suffer from selfish behavior but
might even exploit the selfishness of the agents.

Experimental Results

None is reported.

URLs to Code and Data Sets

None is reported.
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Problem Definition

Let there be n agents and a set of feasible out-
comes ˝. For concreteness, readers may think of
˝ as the set of allocations of m items to n agents.
Each agent has a private value function vi W ˝ 7!

Œ0; 1� over feasible outcomes. We focus on direct
revelation mechanisms, which first let each agent
i report a value function Nvi , then choose a feasible
outcome ! 2 ˝ and a payment pi for each agent
i according to the reported value functions. Let
!. Nv/ and p. Nv/ denote the outcome and payment
vector chosen by the mechanism. Note that both
!. Nv/ and p. Nv/ may be random variables.

We hope to achieve the following three objec-
tives:

Objective 1: Maximizing Social Welfare
The social welfare of a feasible outcome ! 2

˝ is the sum of the agents’ values for the out-
come, namely,

Pn
iD1 vi .!/. We hope to approx-

imately maximize the expected social welfare
of the chosen outcome over the randomness of
the mechanism, a widely considered objective in
mechanism design.

Approximately maximizing social welfare
given the true value functions is a well-studied
algorithmic problem (e.g., [4, 16]). In our
mechanism design setting, agents may choose
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not to report the true value if it fits their interests.
So the mechanism has an additional challenge of
motivating the agents to report truthfully.

Objective 2: Incentive Compatibility
We adopt the standard assumption that each
agent i aims to maximize the expectation of
his quasi-linear utility, which equals his value
for the chosen outcome less his payment. A
mechanism is incentive compatible if truth telling
maximizes an agent’s expected utility regardless
of the reported values of other agents, that is,
for any agent i , any true value vi , reported
value Nvi , and any reported values of other agents
Nv�i , we have EŒvi .!.vi ; Nv�i // � pi .vi ; Nv�i /� �

EŒvi .!. Nvi ; Nv�i //�pi . Nvi ; Nv�i /�. We also consider
a relaxed notion called ˛-incentive compatibility,
where an agent’s expected utility of truth telling
can be worst off by at most an ˛ additive
factor comparing to his utility of reporting any
alternative value.

There is a vast literature on designing in-
centive compatible mechanisms with approxi-
mately optimal social welfare (see, e.g., [11]
for a comprehensive survey). We remark the
Vickrey-Clarke-Groves (VCG) mechanism [2, 5,
15], which chooses an outcome that maximizes
the social welfare and uses payments to align
the interests of the agents and the mechanism
designer. When computational efficiency is not
of concern, the VCG mechanism gives optimal
social welfare and is incentive compatible for
arbitrary problems. However, it does not achieve
the next objective.

Objective 3: Protecting Agents’ Privacy
Our last objective is to protect the agents’ pri-
vacy by ensuring that the chosen outcome and
payments do not reveal too much information
about any individual agent’ private value func-
tion. Agents may care about their privacy for both
exogenous and endogenous reasons. On the one
hand, privacy is a basic desideratum. On the other
hand, violating an agent’s privacy could explicitly
hurt the agent’s utility in the future, e.g., compa-
nies may post higher reserve prices based on an
agent’s past values if such information is revealed
by previous mechanisms.

Definition 1 ([3]) A mechanism is .�; ı/-
differentially private if for any agent i , any value
vi , alternative value v0i , any values of other agents
v�i , and any subset of feasible outcome S 	 ˝,

PrŒ!.vi ; v�i / 2 S� � e� �PrŒ!.v0i ; v�i / 2 S�Cı :

We remark that the payments may violate the
agents’ privacy as well. Nevertheless, we can
make the prices privacy preserving without
changing the agents’ expected utilities by adding
any scale of noise with expectation zero to the
payments. (Having arbitrarily large variance in
the payment and, thus, in the utility of an agent
is an undesirable property. In some settings, it
is possible to privately compute prices without
having large variance. Readers are referred to
Hsu et al. [6] for details, which we will omit due
to space constraint.) So we focus on the privacy
property of the outcome in the above definition.

We provide two informal interpretations
of differential privacy (for sufficiently small
ı). Information theoretically, a mechanism
being .�; ı/-differentially private implies that
the outcome reveals at most O.�2/ bits of
information about any individual agent’s private
value. Game theoretically, it implies that truth
telling may decrease an agent’s future utility by
at most a factor of e�� � 1 � �.

For some mechanism design problems, such
as auctioning m items to n agents, no .�; ı/-
differentially private mechanisms can approxi-
mately maximize social welfare. For such re-
source allocation problems, let !�i denote the al-
location to all agents except agent i . We consider
the following relaxed notion of privacy:

Definition 2 ([8]) A mechanism is .�; ı/-jointly
differentially private if for any agent i , any value
vi , alternative value v0i , any values of other agents
v�i , and any subset of feasible outcome S 	 ˝,

PrŒ!�i .vi ; v�i / 2 S�

� e� � PrŒ!�i .v
0
i ; v�i / 2 S�C ı :

In settings where each agent can see only his
own allocation, a mechanism being .�; ı/-jointly
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differentially private also implies that it reveals
at most O.�2/ bits of information of an agent’s
value and that truth telling decreases an agent’s
future utility by at most e�� , even if the adversary
colludes with all other agents.

Related Work
The problem we consider in this article falls
into the growing literature on the interface of
game theory and differential privacy (see, e.g.,
Pai and Roth [14] for a survey). McSherry and
Talwar [10] proposed using differentially private
mechanisms to design auctions by pointing out
that differential privacy implies approximate in-
centive compatibility and resilience to collusion.
They also proposed the exponential mechanism,
which is an important building block in one of the
results we will discuss. Nissim et al. [13] showed
how to convert differentially private mechanisms
into exactly incentive compatible mechanisms
in some settings, but the final mechanisms no
longer protect agents’ privacy. Xiao [17] pro-
posed mechanisms that are both incentive com-
patible and differentially private in some special
cases. Unfortunately, it does not seem possible to
extend the results of Nissim et al. [13] and Xiao
[17] to more general problems. Finally, Xiao [17],
Chen et al. [1], and Nissim et al. [12] consid-
ered modeling the agents’ concern for privacy
in the utility functions and introduced incentive
compatible mechanisms for some special cases
in this model. In sum, most previous techniques
apply only to special cases. In this article, we
summarize two recent techniques for designing
privacy-preserving auctions for a large family of
mechanism design problems.

Key Results

Almost all mechanism design problems can be
classified into two families: social choice prob-
lems and resource allocation problems. In a so-
cial choice problem, the set of feasible outcome
is independent of the number of agents n. In
particular, the number of feasible outcome is
independent of n. For example, leader elections
and choosing a subset of public projects subject

a budget constraint fall into this family. In a
resource allocation problem, such as allocating
m items to n agents, the set of feasible outcome
depends on the number of agents. In particular,
the number of feasible outcome grows exponen-
tially with n. Below we discuss two techniques
by Huang and Kannan [7] and Hsu et al. [6] for
designing privacy-preserving auctions for these
two families of problems, respectively.

Social Choice Problems
Huang and Kannan [7] proposed a technique
for designing incentive compatible and �-
differentially private mechanisms for arbitrary
mechanism design problems. For social choice
problems, in particular, this technique also gives
nearly optimal social welfare.

Theorem 1 ([7]) For any mechanism design
problem, there is an incentive compatible and
�-differentially private mechanism that gives at
least OPT� 2

�
.ln j˝j C ln 1

ˇ
/ social welfare with

probability at least 1 � ˇ.

This mechanism is based on the exponential
mechanism by McSherry and Talwar [10], a
general differentially private mechanism that
can be applied to a large family of problems.
The social welfare guarantee and �-differential
privacy in Theorem 1 follow directly from
properties of the exponential mechanism.
However, the exponential mechanism is not
incentive compatible in general. Huang and
Kannan [7] noticed that the exponential
mechanism can be viewed as maximizing a
linear combination of the social welfare and
the Shannon entropy of the outcome distribution.
Therefore, its allocation rule is equivalent to that
of the VCG mechanism in a virtual market where
the set of feasible outcomes are distributions
over the original outcomes, the set of agents are
the original n agents plus an additional agent
whose value equals the entropy of the chosen
distribution. As a result, using the payments in
the virtual market along with the exponential
mechanism achieves incentive compatibility.

In social choice problems, ln j˝j is a constant
independent of n. So the loss in social welfare is
a constant independent of n. On the other hand,
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the social welfare is the sum of n agents’ values,
each of which is between 0 and 1. Hence, in a
large market with many agents, it is reasonable to
expect the optimal social welfare (if not of scale
�.n/) to be much larger than the additive loss in
Theorem 1 in practical instances.

In resource allocation problems, however, j˝j
grows exponentially in n and, thus, ln j˝j is of
scale ˝.n/. For instance, consider matching m D

n items to n agents. Then, j˝j D nŠ and ln j˝j D
˝.n ln n/. Even if the optimal social welfare is
of scale �.n/, we would need � to be at least
˝.ln n/ to have nontrivial social welfare guaran-
tee in Theorem 1. This means that the mechanism
would reveal ˝.ln2 n/ bits of information of
an agent’s private value, and truth telling may
decrease an agent’s future utility by a poly.n/

factor. Further, this is not only a limitation of the
current technique. Huang and Kannan [7] showed
that no �-differentially private can give nontrivial
social welfare guarantee for � D o.ln n/, even
without incentive compatibility.

Resource Allocation Problems
Given the obstacles for applying differential
privacy to resource allocation problems, Hsu
et al. [6] looked into a relaxed notion of
privacy, namely, joint differential privacy. In
particular, they considered matching m items
to n agents where each item has a supply
of at least s copies and then generalized the
results to combinatorial auctions with gross
substitute value functions (e.g., [9]). Their first
result is a jointly differentially private (yet not
incentive compatible) mechanism with nearly
optimal social welfare when the supply s is poly-
logarithmic in n and m. Their main technique
is a noisy variant of the deferred-acceptance
algorithm by Kelso and Crawford [9].

Theorem 2 ([6]) For combinatorial auctions
with gross substitute valuations, there is an �-
jointly differentially private algorithm that gives
at least OPT�˛n social welfare with probability
at least 1�ˇ if s D ˝. 1

�˛3 polylog.n; m; 1
˛

; 1
ˇ

//.

They also showed a supply of !.1/ is needed
for a jointly differentially private mechanism to

achieve o.n/ additive loss in social welfare. More
precisely, they showed:

Theorem 3 ([6]) No jointly differentially private
algorithm can compute matchings with social
welfare at least OPT � ˛n if s � O. 1p

˛
/.

Their approach can also be used to design approx-
imately incentive compatible and jointly differen-
tially private mechanisms, but the supply needs to
be polynomially large.

Theorem 4 (implicit in [6]) For combinatorial
auctions with gross substitute valuations, there
is an ˛-incentive compatible and �-jointly dif-
ferentially private algorithm that gives at least
OPT�˛n social welfare with probability at least
1 � ˇ if s D ˝.m/, where the constant depends
on �, ı, ˛, and ˇ.

Open Problems

The results of Huang and Kannan [7] and Hsu
et al. [6] provided a preliminary step towards
designing auctions that protect agents’ privacy.
There are still many open problems in this topic,
some of which we sketch below.

First, the techniques of Hsu et al. [6] funda-
mentally rely on properties of gross substitute
value functions and, thus, cannot be extended
to more general value functions. Further, there
are many important families of value functions
beyond gross substitute, e.g., sub-modular func-
tions, sub-additive functions, etc. So it is natural
to seek for techniques that work for more general
families of value functions.

Problem 1 Are there jointly differentially pri-
vate mechanisms that achieve nearly optimal so-
cial welfare for arbitrary value functions?

Even if we restrict our attention to gross sub-
stitute value functions or even to matching mar-
kets, Theorems 2 and 3 leave a large gap between
the upper and lower bounds on the supply needed
by jointly differentially private mechanisms to
get nearly optimal social welfare. Closing this
gap would advance our understanding on joint
differential privacy.
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Problem 2 What is the minimal supply needed
so that a jointly differentially private mecha-
nism can achieve nearly optimal social welfare
in combinatorial auctions? In particular, is the
logarithmic dependency on n and m in Theorem 2
necessary?

Finally, the current technique for achieving
both approximate incentive compatibility and
joint differential privacy requires a polynomially
large supply of items, much larger than the supply
needed for achieving joint differential privacy
alone. Does approximate incentive compatibility
make the problem fundamentally harder? Or is it
just a limitation of the current technique?

Problem 3 What is the minimal supply needed
so that an approximately incentive compatible
and jointly differentially private mechanism can
achieve nearly optimal social welfare in combi-
natorial auctions? In particular, is the polynomial
dependency on m in Theorem 4 necessary?
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Problem Definition

Spectral analysis refers to a family of popular
and effective methods that analyze an input ma-
trix by exploiting information about its eigen-
vectors or singular vectors. Applications include
principal component analysis, low-rank approx-
imation, and spectral clustering. Many of these
applications are commonly performed on data
sets that feature sensitive information such as
patient records in a medical study. In such cases
privacy is a major concern. Differential privacy
is a powerful general-purpose privacy definition.
This entry explains how differential privacy may
be applied to task of approximately computing
the top singular vectors of a matrix.

Generally speaking, the input is a real-valued
matrix A 2 R

m�n and a parameter k 2 N. We
think of the input matrix as specifying n attributes
for m individuals. The goal of the algorithm is to
approximately compute the first k � min fm; ng

singular vectors of A while achieving differential
privacy. There are several notions of approxi-
mation as well as several variants of differential
privacy that make sense in this context.

Approximation Guarantee
Let A D U˙V > denote the singular value
decomposition of A with singular values �1 �

�2 � � � � � �maxfm;ng � 0. Further, let Uk and
Vk represent the first k columns of U and V ,
respectively. In other words, Uk consists of the
first k left singular vectors of A and Vk consists
of the first k right singular vectors.

Principal Angle
Principal angles are a useful tool for comparing
the distance between subspaces. The sine of
the largest principal angle between subspaces
X; Y of equal dimension represented by
orthonormal matrices is defined as sin �.X; Y / D��.I �XX>/Y

��
2
, where the norm refers to the

spectral norm (or `2-operator norm).
A natural objective is to require that the al-

gorithm M outputs an orthonormal matrix X 2

R
m�k so as to minimize

��.I �XX>/Vk

��. We
call this the principal angle objective. The angle

is of course 0 when X D Vk . We will also be
interested in the case where the rank of X is larger
than the rank of Vk . Note that our objective is still
well defined.

Expressed Variance
Another natural objective is to output an or-
thonormal matrix X 2 R

m�k so as to maximize
the variance captured by the subspace spanned
by the columns of X . A convenient way to ex-
press this objective is to maximize the quantity
kAXk2F , where the norm refers to the Frobenius
norm. It is not difficult to show that this objective
is maximized for X D Vk . Again, the objective
is still well defined when the rank of X is larger
than that of X .

Privacy Guarantee
Differential privacy requires the definition of a
neighborhood relation on matrices, denoted A �

A0. Pairs of matrices in this relation are called
neighboring. Differential privacy requires that the
algorithm maps neighboring databases to nearly
indistinguishable output distributions.

Definition 1 Given a neighborhood relation �,
we say that a randomized algorithm M satisfies
.�; ı/-differential privacy if for all neighboring
matrices A � A0 and for every measurable set S

in the output space of the algorithm, we have that

Pr fM.A/ 2 Sg � exp.�/ Pr
˚
M.A0/ 2 S


C ı :

(1)

Neighborhood Relations. Typically in differen-
tial privacy, the neighborhood relation is chosen
to be the set of all pairs of matrices that differ in
at most one row. Unfortunately, this definition is
unattainable in the spectral setting as the privacy
definition is sensitive to the scale of the row
vector that’s being changed. Indeed, if we replace
a single row of the matrix by a vector �u of
norm �, then as we let � tend to infinity, the top
right singular vector of the matrix will tend to the
vector u (say, in angle).

To circumvent this problem, we will generally
specify a norm bound in each neighbor relation.
It is important to note that the strength of privacy
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definition then depends on the scaling of the
matrix.

– We say that A; A0 are entry neighbors if they
differ by at most 1 in absolute value.

– We say that A; A0 are row neighbors if they
differ in at most one row by a vector whose
Euclidean norm is bounded by 1.

All entry neighbors are of course also row neigh-
bors so that the privacy definition based on row
neighbors is stronger than that of entry neighbors.
It is sometimes natural to scale the matrix such
that either all entries have magnitude at most 1

or all rows have Euclidean norm at most 1.
While this may strengthen the privacy guarantee,
it also leads to a corresponding deterioration
in the utility guarantee of the algorithm as the
signal-to-noise ratio decreases. It is tempting to
nonuniformly scale each row by a different factor.
However, this can dramatically change the singu-
lar vector decomposition and does not in general
lead to an easily interpretable guarantee.

Key Results

We describe two simple and effective methods
that lead to nearly optimal approximation guaran-
tees in various settings we introduced above. The
first algorithm is based on the well-known power
method. The other uses a simple Gaussian noise
addition step (Fig. 1).

Noisy Power Method
For simplicity we describe the algorithm in the
case where A is a symmetric n � n matrix. The
algorithm extends straightforwardly to rectangu-

lar and asymmetric matrices as explained in [5].
We first state a general-purpose analysis of PPM.

Theorem 1 ([3]) Let k � p. Then, the pri-
vate power method satisfies .�; ı/-differential pri-
vacy under the entry neighbor relation, and after
L D O.

�k

�k��kC1
log.n// iterations, we have with

probability 9=10 that

��.I �XLX>L /Vk

�� �

O
�� maxL

`D0
kX`k1

p
n log L

�k��kC1

�

p
p

p
p�
p

k�1

�
:

When p D kC˝.k/, the trailing factor becomes
a constant. If p D k, it creates a factor k

overhead. In the worst case we can always bound
kX`k1 by 1 since X` is an orthonormal basis.
However, in principle, we could hope that a much
better bound holds provided that the target basis
Vk has small coordinates. Hardt and Roth [4, 5]
suggested a way to accomplish a stronger bound
by considering a notion of coherence of A, de-
noted as �.A/. The coherence parameter varies
between 1 and n but is often sublinear in n. In-
tuitively, the coherence measures the correlation
between the singular vectors of the matrix with
the standard basis. Low coherence means that
the singular vectors have small coordinates in the
standard basis. Many results on matrix comple-
tion and robust PCA crucially rely on such an
assumption though the exact notion is somewhat
different here. Specifically, if A D V ˙V > is
a singular vector decomposition of A, we define

�.A/
def
D n maxi;j2Œn jVij j

2.

Theorem 2 ([3]) Under the assumptions of The-
orem 3, we have the conclusion

Input: Symmetric A ∈ R
n×n, L, p, privacy parameters ε, δ > 0

1. Let X0 be a random orthonormal basis and put σ = ε−1
√

4pL log(1/δ)
2. For � = 1 to L:

a) Y� ← AX�−1 + G� where G� ∼ N(0, ‖X�−1‖2∞σ2)n×p.
b) Compute the QR-factorization Y� = X�R�

Output: Matrix XL

Private Spectral Analysis, Fig. 1 Private power method. Here kXk1 D maxij jXij j
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Input: Matrix A ∈ R
m×n, privacy parameters ε, δ > 0, parameter p ∈ N

1. Let E be a symmetric matrix where the upper triangle (including the diagonal) is sampled
i.i.d. from N(0, σ2) where σ =

√
2 ln(1.25/δ)/ε

2. C ← A�A + E
Output: Top p singular vectors X R

n×p of C

Private Spectral Analysis, Fig. 2 Gaussian mechanism

��.I �XLX>L /Vk

�� �

O
��
p

�.A/ log n log L

�k � �kC1

�

p
p

p
p �
p

k � 1

!
:

Gaussian Mechanism
The Gaussian mechanism first appeared in [1]
and was recently revisited [2]. The algorithm
simply computes the covariance matrix of the
data set and adds suitably scaled (symmetric)
Gaussian noise to the covariance matrix. The
result is differentially private, and the top singular
vectors of the perturbed covariance matrix serve
as an approximation of the true singular vectors
(Fig. 2).

Theorem 3 ([2]) Let k � p. .Then, the
Gaussian mechanism satisfies .�; ı/-differential
privacy under the row neighbor relation,
and with probability 1 � o.1/, we have
kAXk2F � kAVkk

2
F � O

�
�k
p

n
�
. Moreover,

with probability 1 � o.1/,

kAXk2F � kAVkk
2
F �O

 
�2pn

�2
k
� �2

pC1

!
:

Applications

Principal Component Analysis
In principal component analysis, the goal is
to compute the top k singular vectors of the
n � n matrix A>A. Recall that we identified
data points with row vectors in A. The singular
vectors of A>A are identical to the right
singular vectors of A. Hence, both algorithms
we previously discussed immediately solve this
problem.

Low-Rank Approximation
In low-rank approximation, the goal is to output
a matrix B of rank k such that kA � Bk	 is
small, where � 2 f2; F g. For either norm,
the optimal solution is given by the truncated
singular value decomposition B D Uk˙kV >

k
.

In the context of privacy-preserving spectral
analysis, a good approximation QVk to Vk typically
leads to a good low-rank approximation by
performing a privacy-preserving multiplication
step Q̇

k
QUk D A QVk C N , where N is

suitably chosen noise matrix. See, for example,
[5].

Open Problems

1. Is it possible to obtain an expressed variance
guarantee for the noisy power method? For
instance, can we match the bounds achieved
by Gaussian noise addition via the power
method? The problem with the Gaussian
mechanism is that it computes the matrix
A>A which is impractical when n is large
but A may be sparse. In this case, the power
method is computationally far more efficient.

2. Can we weaken the incoherence assumption in
Theorem 2?

3. Theorem 3 depends on the separation between
�k and �kC1 even when p > k. Is it possible
to replace the dependence on �k � �kC1 with
a dependence on �k � �pC1‹
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Problem Definition

An important problem in wireless sensor net-
works is that of local detection and propaga-
tion, i.e., the local sensing of a crucial event
and the energy and time efficient propagation of
data reporting its realization to a control cen-
ter (for a graphical presentation, see Fig. 1).
This center (called the “sink”) could be some
human authorities responsible of taking action
upon the realization of the crucial event. More
formally:

l

l

Probabilistic Data Forwarding in Wireless Sensor
Networks, Fig. 1 A sensor network

Definition 1 Assume that a single sensor, E,
senses the realization of a local event E. Then
the propagation problem is the following: “How
can sensor P, via cooperation with the rest of
the sensors in the network, efficiently propagate
information reporting the realization of the event
to the sink S?”

Note that this problem is in fact closely related to
the more general problem of data propagation in
sensor networks.

Wireless Sensor Networks
Recent dramatic developments in micro-
electro-mechanical systems (MEMS), wireless
communications and digital electronics have
led to the development of small in size, low-
power, low-cost sensor devices. Such extremely
small (soon in the cubic millimetre scale)
devices integrate sensing, data processing and
wireless communication capabilities. Examining
each such device individually might appear
to have small utility, however the effective
distributed self-organization of large numbers
of such devices into an ad-hoc network may
lead to the efficient accomplishment of large
sensing tasks. Their wide range of applications
is based on the use of various sensor types
(i.e., thermal, visual, seismic, acoustic, radar,
magnetic, etc.) to monitor a wide variety of
conditions (e.g., temperature, object presence
and movement, humidity, pressure, noise levels
etc.). For a survey on wireless sensor networks
see [1] and also [6, 9].
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A Simple Model
Sensor networks are comprised of a vast number
of ultra-small homogeneous sensors, which are
called “grain” particles. Each grain particle is
a fully-autonomous computing and communica-
tion device, characterized mainly by its avail-
able power supply (battery) and the energy cost
of computation and transmission of data. Such
particles (in the model here) do not move. Each
particle is equipped with a set of monitors (sen-
sors) for light, pressure, humidity, temperature
etc. and has a broadcast (digital radio) beacon
mode.

It is assumed that grain particles are randomly
deployed in a given area of interest. Such a place-
ment may occur e.g., when throwing sensors
from an airplane over an area. A special case is
considered, when the network being a lattice (or
grid) deployment of sensors. This grid placement
of grain particles is motivated by certain applica-
tions, where it is possible to have a pre-deployed
sensor network, where sensors are put (possibly
by a human or a robot) in a way that they form
a 2-dimensional lattice.

It is assumed that each particle has the fol-
lowing abilities: (i) It can estimate the direc-
tion of a received transmission (e.g., via the
technology of direction-sensing antennae). (ii) It
can estimate the distance from a nearby particle
that did the transmission (e.g., via estimation of
the attenuation of the received signal). (iii) It
knows the direction towards the sink S. This can
be implemented during a set-up phase, where
the (powerful) sink broadcasts the information
about itself to all particles. (iv) All particles have
a common co-ordinates system. Notice that GPS
information is not assumed. Also, there is no need
to know the global structure of the network.

Key Results

The Basic Idea
For the above problem [3] proposes a protocol
which tries to minimize energy consumption by
probabilistically favoring certain paths of local
data transmissions towards the sink. Thus this
protocol is called PFR (Probabilistic Forwarding

Protocol). Its basic idea is to avoid flooding by
favoring (in a probabilistic manner) data prop-
agation along sensors which lie “close” to the
(optimal) transmission line, ES, that connects the
sensor node detecting the event, E, and the sink,
S. This is implemented by locally calculating the
angle 	 D .1EPS/, whose corner point P is the
sensor currently running the local protocol, hav-
ing received a transmission from a nearby sensor,
previously possessing the event information (see
Fig. 2). If ' is equal or greater to a predetermined
threshold, then p will transmit (and thus prop-
agate the information further). Else, it decides
whether to transmit with probability equal to 

�
.

Because of the probabilistic nature of data prop-
agation decisions and to prevent the propagation
process from early failing, the protocol initially
uses (for a short time period which is evaluated)
a flooding mechanism that leads to a sufficiently
large “front” of sensors possessing the data under
propagation. When such a “front” is created,
probabilistic Forwarding is performed.

The PFR Protocol
The protocol evolves in two phases:

Probabilistic Data Forwarding in Wireless Sensor
Networks, Fig. 2 Angle ' and proximity to the optimal
line
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Probabilistic Data
Forwarding in Wireless
Sensor Networks, Fig. 3
Thin zone of particles

l

Phase 1: The “Front” Creation Phase
Initially the protocol builds (by using a limited,
in terms of rounds, flooding) a sufficiently large
“front” of particles, to guarantee the survivabil-
ity of the data propagation process. During this
phase, each particle having received the data to
be propagated, deterministically forwards them
towards the sink.

Phase 2: The Probabilistic Forwarding Phase
Each particle P possessing the information under
propagation (called info.E/ hereafter), calcu-
lates an angle ' by calling the subprotocol “'-
calculation” (see description below) and broad-
casts info.E/ to all its neighbors with probabil-
ity Pf wd (or it does not propagate any data with
probability 1 � Pf wd ) as follows:

Pf wd D

(
1 if 	 � 	threshold

�

otherwise

where ' is the .1EPS/ angle and 	threshold D 134ı

(the selection reasons of this value are discussed
in [3]).

If the density of particles is appropriately
large, then for a line ES there is (with high proba-
bility) a sequence of points “closely surrounding
ES” whose angles ' are larger than 	threshold and
so that successive points are within transmission
range. All such points broadcast and thus essen-
tially they follow the line ES (see Fig. 3).

Probabilistic Data Forwarding in Wireless Sensor
Networks, Fig. 4 Angle ' calculation example

The '-calculation Subprotocol (see Fig. 4)
Let Pprev the particle that transmitted info.E/ to
P.

1. When Pprev broadcasts info.E/, it also
attaches the info jEPprevj and the direction
����!
PprevE .

2. P estimates the direction and length of line
segment PprevP , as described in the model.

3. P now computes angle . dEPprevP /, and com-

putes jEP j and the direction of
��!
PE (this will

be used in further transmission from P).
4. P also computes angle . dPprevPE/ and by sub-

tracting it from . dPprevPS/ it finds '.

Performance Properties of PFR
Any protocol … solving the data propagation
problem must satisfy the following three proper-
ties: (a) Correctness.… must guarantee that data
arrives to the position S, given that the whole net-
work exists and is operational. (b) Robustness.
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… must guarantee that data arrives at enough
points in a small interval around S, in cases where
part of the network has become inoperative. (c)
Efficiency. If … activates k particles during its
operation then … should have a small ratio of
the number of activated over the total number of
particles r D k

N
. Thus r is an energy efficiency

measure of …. It is shown that this is indeed the
case for PFR.

Consider a partition of the network area into
small squares of a fictitious grid G (see Fig. 5).
When particle density is high enough, occupancy
arguments guarantee that with very high proba-
bility (tending to 1) all squares get particles. All
the analysis is conditioned on this event, call it
F, of at least one particle in each square. Below
only sketches of proofs are provided (full proofs
can be found in [3]).

The Correctness of PFR
Consider any square † intersecting the ES line.
By the occupancy argument above, there is w.h.p.
a particle in this square. Clearly, the worst case
is when the particle is located in one of the
corners of † (since the two corners located most
far away from the ES line have the smallest
'-angle among all positions in †). By geometric
calculations, [3] proves that the angle ' of this
particle is 	 > 134ı. But the initial square (i.e.,
that containing E) always broadcasts and any in-
termediate intersecting square will be notified(by

induction) and thus broadcast because of the
argument above. Thus the sink will be reached
if the whole network is operational:

Lemma 1 ([3]) PFR succeeds with probability 1
given the event F.

The Energy Efficiency of PFR
Consider a “lattice-shaped” network like the one
in Fig. 5 (all results will hold for any random
deployment “in the limit”). The analysis of the
energy efficiency considers particles that are ac-
tive but are as far as possible from ES. [3] esti-
mates an upper bound on the number of particles
in an n � n (i.e., N D n � n) lattice. If k is this
number then r D k

n2 (0 < r � 1) is the “energy
efficiency ratio” of PFR. More specifically, in [3]
the authors prove the (very satisfactory) result
below. They consider the area around the ES line,
whose particles participate in the propagation
process. The number of active particles is thus,
roughly speaking, captured by the size of this
area, which in turn is equal to jES j times the
maximum distance from jES j. This maximum
distance is clearly a random variable. To calculate
the expectation and variance of this variable,
the authors in [3] basically “upper bound” the
stochastic process of the distance from ES by
a random walk on the line, and subsequently
“upper bound” this random walk by a well-known
stochastic process (i.e., the “discouraged arrivals”

Probabilistic Data
Forwarding in Wireless
Sensor Networks, Fig. 5
A lattice dissection G
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birth and death Markovian process. Thus they
prove:

Theorem 2 ([3]) The energy efficiency of the

PFR protocol is �
��

n0

n

�2�
where n0 D jES j

and n D
p

N , where N is the number of particles
in the network. For n0 D jES j D o.n/, this is
o(1).

The Robustness of PFR
Consider particles “very near” to the ES line.
Clearly, such particles have large '-angles (i.e.,
	 > 134ı). Thus, even in the case that some of
these particles are not operating, the probability
that none of those operating transmits (during
phase 2) is very small. Thus:

Lemma 3 ([3]) PFR manages to propagate the
crucial data across lines parallel to ES, and of
constant distance, with fixed nonzero probability
(not depending on n, jES j).

Applications

Sensor networks can be used for continuous sens-
ing, event detection, location sensing as well as
micro-sensing. Hence, sensor networks have sev-
eral important applications, including (a) security
(like biological and chemical attack detection),
(b) environmental applications (such as fire de-
tection, flood detection, precision agriculture), (c)
health applications (like telemonitoring of human
physiological data) and (d) home applications
(e.g., smart environments and home automation).
Also, sensor networks can be combined with
other wireless networks (like mobile) or fixed
topology infrastructures (like the Internet) to pro-
vide transparent wireless extensions in global
computing scenaria.

Open Problems

It would be interesting to come up with for-
mal models for sensor networks, especially with
respect to energy aspects; in this respect, [10]

models energy dissipation using stochastic meth-
ods. Also, it is important to investigate funda-
mental trade-offs, such as those between energy
and time. Furthermore, the presence of mobility
and/or multiple sinks (highly motivated by ap-
plications) creates new challenges (see e.g., [2,
11]). Finally, heterogeneity aspects (e.g., having
sensors of various types and/or combinations of
sensor networks with other types of networks like
p2p, mobile and the Internet) are very important;
in this respect see e.g., [5, 13].

Experimental Results

An implementation of the PFR protocol along
with a detailed comparative evaluation (using
simulation) with greedy forwarding protocols can
be found in [4]; with clustering protocols (like
LEACH, [7]) in [12]; with tree maintenance ap-
proaches (like Directed Diffusion, [8]) in [5].
Several performance measures are evaluated, like
the success rate, the latency and the energy dis-
sipation. The simulations mainly suggest that
PFR behaves best in sparse networks of high
dynamics.
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Problem Definition

The virus identification is an important research
topic in molecular biology. One method is using
probes. A probe is a short oligonucleotide of size
8–25, which plays a role of ID when identify a
virus in a biological sample through hybridiza-
tion. If each probe hybridizes to a unique virus,
then identification of virus is straightforward.
However, unique probes are very hard to be
obtained, especially for virus subtypes which are
closely related. Therefore, how to identify virus
with the minimum number of nonunique probes
becomes an interesting problem.

Given a biological sample and a set of possibly
nonunique probes, how to select a minimum sub-
set of probes to identify viruses in the biological
sample. This problem is called the nonunique
probe selection.
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Key Results

Suppose the biological sample contains only one
virus. The problem is to determine what is this
virus. To do so, it is sufficient to select probes
satisfying the condition that different viruses hy-
bridize different subsets of probes. This condition
enables us to find the virus easily from a test
outcome.

In general, suppose the biological sample con-
tains at most d viruses. Then selected probes
should satisfy the condition that different sets
of at most d viruses should hybridize different
subsets of selected probes. Schilep, Torney, and
Rahman [9] first pointed out that this is actu-
ally a nongroup testing group testing problem
[3].

Consider each virus as an item and each probe
as a pool consisting of all viruses hybridized by
the probe. A nonadaptive group testing with n

items and t pools can be represented, and t � n

binary matrix with rows labeled by pools and
columns labeled by items and cell .i; j / contains
1-entry if and only if the i th pool contains item j .
This binary matrix is called the incidence matrix
of the nonadaptive group testing. In theory of
nonadaptive group testing, the above condition
means that the incidence matrix is Nd -separable.
Actually, a binary matrix is Nd -separable if all
Boolean sums of at most d columns are distinct.
Here, by Boolean sum, we mean the following: If
each column is seen as a set of rows correspond-
ing to 1-entries in the column, then the Boolean
sum can be seen as a union of columns. The
Boolean sum is a classic statement in the study of
group testing. With a Nd -separable matrix, the test
outcome can identify up to d viruses in biological
sample.

In nonadaptive group testing, each test is on a
pool. Thus, each probe can also be seen as a test.
The test outcome is positive if the probe is hy-
bridized by some virus in a biological sample and
negative otherwise. Test outcomes for all selected
probes can be written as a column vector which
is exactly the union of columns corresponding
viruses contained in the biological sample, where
1-entry denotes a positive outcome and 0-entry
denotes a negative outcome. Therefore, the defi-

nition of Nd -separable matrix means that different
sets of at most d viruses receive different test-
outcome t -dimensional vectors.

The nonunique probe selection problem can
also be formulated as follows:

MIN- Nd -SS (Minimum Nd -Separable Submatrix).
Given a binary matrix M , find the minimum of
rows to form a Nd -separable submatrix.

For any fixed d , MIN- Nd -SS is NP-hard [3].
Moreover, from the test outcome obtained from
Nd -separable, it may take time O.nt / to find all

existing viruses. This means that it is hard to de-
code the test outcome from a Nd -separable matrix
[3]. Therefore, Thai et al. [10] considered to use a
d -disjunct matrix instead of Nd -separable matrix.
A binary matrix is d -disjunct if any union of d

columns cannot contain the .d C 1/th column.
Decoding test outcome from a d -disjunct matrix
is very easy [3]. This introduces another mini-
mization problem:

MIN-d -DS (Minimum d -Disjunct Submatrix).
Given a d -disjunct binary matrix M , find a
minimum subset of rows to form d -disjunct
submatrix.

Theoretically, there is another similar problem
as follows:

MIN-d -SS (Minimum d -Separable Submatrix).
Given a d -separable binary matrix M , find a
minimum subset of rows to form d -separable
submatrix where a binary matrix is d -separable if
all Boolean sums of exactly d columns are distinct.

For d D 1, MIN-d -SS is exactly the minimum
test cover problem [5], also called the minimum
test set problem [2] or the minimum test collec-
tion [6], which has a greedy approximation with
performance 1C 2 ln n where n is the number of
items [2]. This fact makes a suggestion that de-
sign greedy approximations for MIN-d -SS, MIN-
Nd -SS, and MIN-d -DS.

In fact, it is easy to construct greedy approx-
imations with performance ratio 1 C 2d ln n for
MIN-d -SS, 1C .d C 1/ ln n for MIN-d -DS, and
1 C 2d ln.n C 1/ for MIN- Nd -SS. For example,
let us study MIN-d -DS. Consider the collection
S of all possible pairs .C; D/ of one column
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C and a submatrix D with d columns. Clearly
jSj < ndC1. A row is said to cover such a pair
.C; D/ if and only if at this row, the entry of
column C is 1 and all entries of columns in D are
0. Now, MIN-d -DS is equivalent to the problem
of finding the minimum number of rows covering
all such pairs. This is a special case of the set
cover problem. It is well known that there is a
greedy algorithm for the set cover problem with
performance ratio 1C ln jSj < 1C .d C 1/ ln n.

This greedy algorithm works well only for
small d because its running time is O.ndC1/.
When d is large, it runs too slow. Therefore, we
must look for other smart ways. Schilep, Torney,
and Rahman [9] proposed an algorithm which
adds probe one by one until the incidence ma-
trix with considered viruses forms a Nd -separable
matrix. This does not work for large d , neither.
In fact, if d is not bounded, then testing whether
a binary matrix is d -separable, or Nd -separable,
or d -disjunct is co-NP-complete [3]. There exist
more methods [8] in the literature, which work
well for small d . However, no efficient method
has been found to produce good solutions for
larger d .

<?pag ?>In some applications, the pool size
cannot be too big due to the sensitivity of
tests. For example, UNH suggested in ADS
testing, each pool should not contain more
than five blood samples. When the pool size
is bounded, the problem becomes easier. For
instance, let us consider the case that every
pool has size at most 2 so that all pools of
size 2 together with items form a graph G

where pools are edges and item are vertices.
Halldórsson et al. [6] and De Bontridder
et al. [2] proved that in this case, MIN-1-SS is
still APX-hard, which means that there is no
polynomial-time approximation scheme for it
unless NP=P. They also showed that MIN-1-SS
in this case has a polynomial-time approximation
with performance ratio 7=6 C " for any fixed
" > 0.

A surprising result was showed by Wang
et al. [11] that a subgraph H of G represents
a d -disjunct matrix if and only if every vertex in
H has degree at least d C 1, and hence, finding
such an H with minimum number of edges is

polynomial-time solvable. What about the case
that all pools have size 3 Wang et al. proved that
in this case MIN-d -DS is still NP-hard. However,
there exist polynomial-time approximations with
better performance.

Applications

In practice, we may select nonunique probes in
the following steps [9]:

Step 1. Estimate an upper bound d for the num-
ber of viruses existing in a given biologi-
cal sample. Collect a large set of nonunique
probes to form a Nd -separable matrix.

Step 2. From this large set of probes, find a
subset of probes to identify up to d viruses
by computing an approximation solution for
MIN-d -DS or MIN- Nd -SS.

Step 3. Decode the presence or absence of
viruses in the given biological sample from
test outcome.

Open Problems

When d is not fixed, MIN-d -DS belongs to ˙
p
2

and is conjectured to be ˙
p
2 -complete [3].
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Problem Definition

The topic of prophet inequality has been stud-
ied in optimal stopping theory since the 1970s
[7, 9, 10] and more recently in computer sci-
ence [1, 3, 6, 8]. In the prophet inequality set-
ting, given (not necessary identical) independent
distributions D1; : : : ; Dn, a sequence of random
variables x1; : : : ; xn where xi is drawn from Di ,
a collection M of feasible subsets of f1; : : : ; ng,
an onlooker has to choose from the succession
of these values, where xi is revealed to us at

time step i . The onlooker starts with an empty
set S D 	. Upon the arrival of a value xi ,
the onlooker can choose to either add xi to
the set S or discard it permanently. After the
arrival of all values, the indices of values in S

should form a feasible set in M . The revenue
of the onlooker is the total value of variables in
S . The onlooker’s goal is to maximize his/her
(expected) revenue compared to the hindsight
expected revenue of a prophet who knows the
drawn values in advance. The optimal offline
solution (the prophet’s revenue) is defined as
OP T D E

�
maxI2M

P
i2I xi

�
. The competitive

ratio of an algorithm for the onlooker is defined
as the worst-case ratio of the expected revenue of
the onlooker over OP T . This inequality ratio has
been interpreted as meaning that a prophet with
complete foresight has only a bounded advantage
over an onlooker who observes the variables
one by one, and this explains the name prophet
inequality.

Different Variants
The basic prophet inequality discovered by Kren-
gel, Sucheston, and Garling in the 1970s con-
cerns the case in which the onlooker can only
choose one value [9], i.e., M is the set of single-
tons. Decades later in 2007, Hajiaghayi, Klein-
berg, and Sandholm [6] considered the k-choice
prophet secretary variant in which sets with at
most k elements are feasible. Later in 2012,
Kleinberg and Weinberg [8] considered the more
general matroid prophet inequality. In this variant
the collection M contains the independent sets of
a matroid.

Other prophet inequality settings (dependent
Di ’s, restricted prophets, etc.) have been consid-
ered in the literature as well. For an overview of
these models, we refer the reader to [6, 8] and
references therein.

Key Results

Krengel, Sucheston, and Garling [9] were first to
consider basic prophet inequality. Using a very
simple example, they showed no online algorithm
can have a competitive ratio better than 1

2
: let
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q D 1
�

. The first value, i.e., x1 is always 1. The
second value is either q with probability � or 0

with probability 1 � �. Observe that the expected
revenue of any (randomized) online algorithm
is at most max

˚
1; �

�
1
�

�
D 1. However the

prophet, i.e., the optimum offline solution, would
choose x2 if x2 D q; otherwise he would choose
the first value. Thus the optimum offline revenue
is .1 � �/ � 1C �

�
1
�

�
� 2. We note that without

considering stochastic assumptions, we cannot
hope to get any constant competitive ratio.

An algorithm for the basic prophet inequality
problem can be described by setting a threshold
for every step: we stop at the first step that
the arriving value is higher than the threshold
of that step. The classical prophet inequality re-
sult [9] states that by choosing the same threshold
OP T=2 for every step, one achieves the tight
competitive ratio of 1=2.

For the k-choice variant, Hajiaghayi et al. [6]
show an algorithm with the competitive ratio

1 � O
�p

ln kp
k

�
. Later Alaei [1] improved this

bound to 1� 1p
kC3

using an involved randomized
approach (gamma-conservative magician). Alaei,
Hajiaghayi, and Liaghat simplified and general-
ized these results to the matching prophet in-
equality [2, 3]. Later they generalized their result
to the online stochastic generalized assignment
problem [4] (GAP) with slightly worse compet-
itive ratio of 1 � 1p

k
. In GAP, we have a set

of items to be placed in a set of bins. The bins
are known in advance, but the sequence of items
arrives online; each item has a value and a size;
upon arrival, an item can be placed in one of
the bins or can be discarded permanently; the
objective is to maximize the total value of the
placement. Both value and size of an item may
depend on the bin in which the item is placed;
the size of an item is revealed only after it has
been placed in a bin; distribution information is
available about the value and size of each item
in advance (not necessarily i.i.d.); however, items
arrive in adversarial order (nonadaptive adver-
sary). Alaei et al. [4] show an algorithm with the
competitive ratio of 1 � 1p

k
where in this setting

k is interpreted as the minimum number of items
that can fill up the capacity of a bin.

Kleinberg and Weinberg [8] considered the
matroid prophet inequality. They show an elegant
algorithm that still achieves the competitive ratio
of 1=2. Generalizing their result still further, they
show that under an intersection of p matroid
constraints, the prophet’s revenue exceeds the
onlooker’s by a factor of at most O.p/, and
this factor is also tight. Kleinberg and Weinberg
design the following algorithm for the matroid
prophet inequality. The algorithm pretends that
the online selection process is Phase 1 of a two-
phase game; after each xi has been revealed in
Phase 1 and the algorithm has accepted some set
A1, Phase 2 begins. In Phase 2, a new weight will
be sampled for every matroid element, indepen-
dently of the Phase 1 weights, and the algorithm
will play the role of the prophet on the Phase 2

weights, choosing the max-weight subset A2 such
that A1 [ A2 is independent. However, the rev-
enue for choosing an element in Phase 2 is only
half of its value. When observing element i and
deciding whether to select it, our algorithm can
be interpreted as making the choice that would
maximize its expected revenue if Phase 1 were
to end immediately after making this decision
and Phase 2 were to begin. Of course, Phase 2

is purely fictional: it never actually takes place,
but it plays a key role in both the design and
the analysis of the algorithm. The analysis of
the algorithm is involved and relies on a careful
analysis of the expected revenue at each step. For
further intuitions about the analysis, we refer the
reader to [8].

Applications

Beyond their interest as theorems about pure on-
line algorithms or optimal stopping rules, prophet
inequalities also have applications to mechanism
design. Mechanism design has traditionally fo-
cused on the offline setting where all agents
are present up front. However, many electronic
commerce applications do not fit that model be-
cause the agents can arrive and depart dynami-
cally. This is characteristic, for example, of online
ticket auctions, search keyword auctions, Internet
auctions, and scheduling computing jobs on a
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cloud. The online aspect is characteristic of some
important traditional applications as well, such as
the sale of a house, where the buyers arrive and
depart dynamically.

The pioneer work of Hajiaghayi, Kleinberg,
and Sandholm [6] initiated the research on the
relationship between algorithmic mechanism de-
sign and prophet inequalities. They observed that
algorithms used in the derivation of prophet in-
equalities, owing to their monotonicity proper-
ties, could be interpreted as (temporarily) truthful
online auction mechanisms and that the prophet
inequality in turn could be interpreted as the
mechanism’s approximation guarantee. Indeed,
Bayesian optimal mechanism design problems
provide a compelling application of prophet in-
equalities in economics. In such a Bayesian mar-
ket, we have a set of n agents with private types
sampled from (not necessary identical) known
distributions. Upon receiving the reported types,
a seller has to allocate resources and charge prices
to the agents. The goal is to maximize the seller’s
revenue in equilibrium. Chawla et al. [5] pio-
neered the study of the approximability of a spe-
cial class of such mechanisms, sequential posted
pricing (SPM): the seller makes a sequence of
take-it-or-leave-it offers to agents, offering an
item for a specific price. They show although
simple, SPMs approximate the optimal revenue
in many different settings. Therefore prophet in-
equalities directly translate to approximation fac-
tors for the seller’s revenue in these settings
through standard machineries. Indeed one can
analyze the so-called virtual values of winning
bids introduced by Roger Myerson [11], to prove
via prophet inequalities that the expected virtual
value obtained by the SPM mechanism approxi-
mates an offline optimum that is with respect to
the exact types. Chawla et al. [5] provide a type

of prophet inequality in which one can choose the
ordering of agents. As mentioned before, Klein-
berg and Weinberg [8] later improved their result
by giving an algorithm with the tight competitive
ratio of 0:5 for an adversarial ordering.
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Problem Definition

The quadtree describes a class of data structures
for geometric objects. A quadtree partitions space
hierarchically using a stopping rule that decides
when a region is small enough so that it does not
need to be subdivided further. If the space is d
dimensional, a quadtree recursively divides a d -
dimensional hypercube containing the input data

into 2d hypercubes until each region satisfies the
given stopping rule. In 2D, the hypercubes are
squares. Three-dimensional quadtrees are also
known as octrees. Quadtrees have been used for
many types of data, such as points, line segments,
polygons, rectangles, curves, and images, and for
many types of applications. For a detailed presen-
tation, we refer to the book by Samet [10]. While
their worst-case behavior is good only in some
simple cases, quadtrees perform well empirically
in many applications.

A quadtree can be stored as a tree that corre-
sponds to the hierarchical subdivision of the input
region. A region that is subdivided further is then
represented by a node with four children, one for
each quadrant; the cells that are not subdivided
further constitute the leaves of the tree and repre-
sent a subdivision of the input region. A quadtree
with m leaves has exactly .m � 1/=3 internal
nodes and 4m=3 � 1=3 nodes in total. Hence it
can be described by a sequence of 4m=3 � 1=3
bits representing the nodes of the tree in preorder,
where each internal node is represented by a 1
(meaning that the next bit encodes its first child)
and each leaf is represented by a 0. However,
for efficient navigation one would typically use
a pointer-based data structure. Alternatively, one
may store only the leaves of the tree, ordered
along a space-filling curve. This variant of the
quadtree is called the linear quadtree and was
introduced by Gargantini [3]. The linear quadtree
has smaller memory requirements as it does not
store the tree structure but only the data in the

© Springer Science+Business Media New York 2016
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leaves. This makes it particularly useful when
dealing with large data.

In this entry we focus on quadtree construction
algorithms that are efficient on very large data. To
analyze these algorithms, we use the � I/O-Model
and the �Cache-Oblivious Model. We’ll use the
terms linear quadtree and quadtree subdivision
interchangeably. We define the size of a subdivi-
sion as the number of cells it contains and the size
of a cell is the size of the data (points and edges)
it contains/intersects.

The Complexity of Quadtrees for Points in
the Plane
Let P be a set of n points in the plane and
assume, for simplicity, that the points lie in the
unit square. A quadtree for P corresponds to a
recursive subdivision of the unit square into four
equal regions, called canonical squares, quad-
rants, or cells, until each square contains at most
one point. Following customary terminology in
the computational geometry literature (and in
deviation from Samet [10]), we refer to this
generically as a point quadtree.

In the worst case, the size of a quadtree sub-
division on P cannot be bounded by a func-
tion of n. If � is the distance between the two
closest points in P , the worst-case complexity is
�.n lg 1

�
/, and the corresponding tree may have

a large number of empty nodes. A compressed
quadtree is a quadtree where paths of nodes that
each have three empty children are merged into a
single node along with their empty children; the
region corresponding to the merged node is called
a donut and represents the difference between
two canonical squares. A compressed quadtree
for a set of n points in the plane such that each
cell contains at most one point has size �.n/ and
height �.n/ in the worst case.

The Complexity of Quadtrees for Line
Segments in the Plane
Let E be a set of n non-intersecting line seg-
ments in the plane – for example, the edges of a
planar subdivision – and assume, as above, that
the edges lie in the unit square. We refer to a
quadtree for E generically as an edge quadtree
and assume that each edge is stored in all the cells

that it intersects. The simplest way to define an
edge quadtree may be to take a point quadtree
on the endpoints of the edges and then store
each edge with the leaves that correspond to the
quadtree cells intersected by the edge. We denote
by l the number of intersections between E and
the cells in the subdivision. Even if we use a
compressed quadtree, in the worst case, there can
be �.n/ cells that each intersects �.n/ edges,
so l D �.n2/, and the quadtree will have size
�.n C l/ D �.n2/. Other edge quadtrees can
be defined by formulating stopping criteria that
allow subdividing cells further in order to limit
the number of edges that intersect each cell;
this will result in a subdivision with more cells
but smaller number of edges per cell. However,
obtaining a good trade-off between the size of
a cell (number of points and edges inside or
intersecting it) and the number of cells in the
subdivision is not possible in the worst case. Note
that an edge quadtree that splits a region until it
intersects a single edge will result in a subdivision
of unbounded size since the distance between two
edges can be arbitrarily small.

Quadtrees and Morton Indexing
Quadtrees are often used in conjunction with a
z-order space-filling curve. A z-order, or Morton
order, can be understood as a mapping from two-
dimensional (in general multidimensional) data
to one dimension. We use a z-order curve that
visits the four quadrants of the initial square,
recursively, in the order top left, top right, bot-
tom left, and bottom right. This order gives a
well-defined ordering between any two canonical
squares in the subdivision. If we define canonical
squares to be closed on the top and left side and
open on the bottom and right side, the z-order also
gives a well-defined ordering between any two
points in the input region. Let p D .px ; py/ be
a point in the unit square Œ0; 1/2, with the x-axis
oriented from left to right and the y-axis oriented
from top to bottom. We define the z-index Z.p/
of p to be the value in the range Œ0; 1/ obtained
by interleaving the bits in the fractional parts of
px and py , starting with a bit from py . The value
Z.p/ is sometimes called the Morton block index
of p. The z-order of two points in the unit square
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is the order of their z-indices. A crucial property
is that the z-indices of all points in a canonical
square � form an interval Œ´1; ´2/ of Œ0; 1/, where
´1 is the z-index of the top left corner of � . A
donut cell is the difference between two canonical
squares Œ´1; ´2/ and Œ´3; ´4/, and thus, it is the
union of two intervals Œ´1; ´3/ and Œ´4; ´2/.

With this notation, a (compressed) quadtree
subdivision corresponds to a subdivision Q of
the z-order curve and can be viewed as a set
of consecutive, adjacent, nonoverlapping inter-
vals, covering Œ0; 1/, in z-order: Q D fŒ´1 D

0; ´2/; Œ´2; ´3/; : : :g. Each interval Œ´i ; ´iC1/ cor-
responds to a cell �i , which is either a canonical
square or a part of a donut. We note that this rep-
resentation does not make any assumptions on the
stopping criterion used to generate the quadtree
subdivision and thus works on any quadtree sub-
division, no matter how many points are in a
region and whether it is compressed or not. A
linear edge quadtree can therefore be represented
as a set of key-edge pairs, where each intersection
of an edge e with a quadtree cell � corresponding
to an interval Œ´1; ´2/ is represented by storing
edge e with key ´1; thus each cell stores all edges
that intersect it [2, 4].

Key Results

Point Quadtrees
Agarwal et al. [1] described an algorithm for
constructing a quadtree on a set of n points in the
plane such that each cell contains O.k/ points;
the algorithm runs in O. n

B
h

log M=B
/ I/O’s, where

h is the height of the quadtree. Effectively, this is
O.sort.n// I/O’s only when h D O.logn/, which
is true when the points are nicely distributed. A
bound on the size of the quadtree is not given, and
the quadtree is not compressed, which means the
quadtree size can be unbounded in the worst case.
The algorithms were implemented and tested
as part of an application to interpolate LIDAR
datasets, which are nicely distributed and un-
likely to cause worst-case behavior.

De Berg et al. [2] described an algorithm to
construct a compressed quadtree subdivision with
at most one point per cell in O.sort.n// I/O’s, as

a step in the construction of their Guard-quadtree
for edges which is discussed below. Haverkort
et al. [4] describe a simple generalization of
this algorithm which constructs a compressed
quadtree subdivision of O.n=k/ cells with at
most k points per cell in the same I/O-bound.
Thus, compared to the algorithm by Agarwal
et al., a stronger bound on the I/O-complexity
is obtained, along with an upper bound on the
number of cells in the subdivision.

PM Quadtrees
A variety of edge quadtrees were described by
Samet and various co-authors [5–7,9,11,12]. All
of these solutions are aimed at subdividing the
cells that intersect too many edges, while also
limiting the total size of the quadtree and being
able to construct it I/O-efficiently.

The PM quadtree [11] allows a region to
contain more than one edge if the edges meet
at a vertex inside the region; otherwise it keeps
subdividing it. Variants of PM quadtrees differ
in how to handle regions that contain no vertices
(only edges). The segment quadtree [12] is a lin-
ear quadtree in which a leaf cell is either empty,
contains one edge and no vertices, or contains
precisely one vertex and its incident edges. The
most versatile structure within the PM family is
the PMR quadtree [9], a linear quadtree where
each region may have a variable number of seg-
ments and regions are split if they contain more
than a predetermined threshold of edges. The tree
is built incrementally, by inserting each segment
into all the regions that it intersects. When a
region contains more segments than a prede-
termined splitting threshold, the region is split,
once, into four quadrants. Improved algorithms
for the construction (or bulk loading) of the PMR
quadtree were described in [5–7]. These algo-
rithms are developed and optimized with massive
data in mind and use I/O-efficient sorting as one
of the steps. It is reported that in many cases
(although not in the worst case), the I/O-cost of
the bulk-loading algorithm is the same as that of
external sorting [5]. The algorithms are reported
to perform well in practice, but there are several
disadvantages: the the resulting quadtree depends
on the insertion order; complexity is analyzed
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in terms of various parameters that depend on
the data; and the performance is not worst-case
optimal. On the plus side, the algorithms can
handle insertions and work in situations where
the data is dynamic.

Star-Quadtrees
The Star-quadtree by De Berg et al. [2] is de-
signed for fat triangulations (a triangulation is fat
if every angle of every triangle is larger than some
fixed positive constant ı). A Star-quadtree is a
linear, uncompressed edge quadtree that splits a
region until all edges intersecting a region are
incident on one common endpoint (similar to
the PM quadtree by Samet and Webber [11]).
The Star-quadtree can be built on any set of
edges in the plane, but, when the input is a fat
triangulation, it can be shown that this stopping
rule creates (1) a quadtree of �.n/ size and (2)
each leaf cell in the quadtree (each cell in the
subdivision) intersecting �.1/ edges. The height
of the quadtree can still be �.n/, which makes
a top-down construction, such as that used by
Agarwal et al. [1], height dependent and not op-
timal. The authors of the Star-quadtree describe
a completely different algorithm for its construc-
tion that crucially exploits the stopping criterion
and runs in O.sort.n// I/O’s if the input is a fat
triangulation.

Guard-Quadtrees
The Guard-quadtree by De Berg et al. [2] is
designed for sets of non-intersecting edges of
low density – a set of edges has density � if
any disk D is intersected by at most � edges
whose length is at least the diameter of D. For
a given set of n edges, the authors define a set
of at most 4n guards, namely, the vertices of
the minimum axis-parallel bounding rectangles
of the individual edges. The Guard-quadtree is
a linear, compressed edge quadtree that splits a
region until it contains at most one guard. As
the set of guards is a superset of the endpoints
of the edges, this leads to a subdivision that is
more refined than a quadtree built only on the
endpoints of edges. The stopping rule, together
with compression, leads to a quadtree subdivision
that has O.n/ cells and each cell intersects O.1/

edges, provided the set of edges to be stored has
low density. Furthermore, the quadtree can be
constructed in O.sort.n// I/O’s in this case.

K-Quadtrees
Combining ideas from De Berg et al. [2] with
packing more vertices in a region, Haverkort
et al. [4] described an I/O-efficient edge quadtree
referred to as a K-quadtree. For any k � 1, the
K-quadtree is a compressed, linear quadtree built
on the endpoints of the edges, with O.n=k/ cells
in total and such that each cell containsO.k/ ver-
tices (and such that each edge is stored in all cells
that they intersect). Each cell in the subdivision
can intersect O.n/ edges in the worst case. For
k D 1, a K-quadtree is a linear, compressed edge
quadtree with O.n/ cells and at most one vertex
per cell. Larger values of k can be chosen to trade
off between the number of cells O.n=k/ and the
number of vertices in a cell O.k/.

The algorithm for building a K-quadtree has
two steps: First it builds, in O.sort.n// I/O’s, a
linear, compressed quadtree subdivision on the
endpoints of E with O.n=k/ cells in total and
such that each cell contains O.k/ vertices. This
step is a simple generalization of the algorithm
for building Guard-quadtrees from [2]. In the sec-
ond step, the K-quadtree construction algorithm
computes the intersections between the edges and
the subdivision in O.sort.n C l// I/O’s, where
l D O.n2=k/ is the total number of intersections.

The main idea of the second step of the al-
gorithm is to split the set of edges into edges of
positive slope EC and edges of negative slope E�

and compute the intersections of each set sepa-
rately. The intersections of EC with the subdivi-
sion are computed by time-forward processing,
as follows. The cells of the quadtree subdivision
are scanned in z-order. At any point during this
scan, there is a frontier: an xy-monotone curve
that constitutes the boundary between the cells
that have already been scanned and the cells that
are still to be scanned. The algorithm relies on the
property that an edge of positive slope intersects
the cells in the subdivision in z-order (a similar
property holds for the edges of negative slope
and a reflected version of the z-order). During
the scan, each edge of EC is passed on, from
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each intersected quadtree cell to the next, through
a supporting data structure that stores the edges
intersecting the frontier.

Unlike standard instantiations of time-forward
processing, the supporting data structure is not
a priority queue, but it is a list, implemented as
two stacks, containing the edges that intersect the
frontier, in order along the frontier. At each point
in time, the list starts at the bottom of one stack
and goes up to the top and then down the other
stack. The cutting point between the two stacks
corresponds to the current scanning position in
the list; scanning backward or forward in the
list for lookups and updates is implemented by
moving elements from one stack to another. The
key to I/O-efficiency is that the total amount of
scanning that is needed to maintain the support-
ing data structure is linear in the output size,
incurring only O.scan.l// I/Os.

As the algorithm relies only on the basic
building blocks of I/O-efficient sorting, scanning,
and stacks, it is also easy to implement cache
obliviously.

Compared to a quadtree that employs a stop-
ping criterion that aims to bound the number of
edges intersecting a cell (like PMR, Star- and
Guard-quadtrees), the simpler K-quadtree has a
couple of advantages: (1) the resulting subdi-
vision size is smaller; (2) the total size of the
quadtree (the number of intersections between
edges and the subdivisions) is also smaller since
the size of the subdivision is smaller; and (3) the
quadtree can be built in O.sort.n C l// I/O’s,
without making any assumptions about the input.

Datasets

Common test datasets for 2D quadtrees are
triangulated terrains and USA TIGER data. They
represent relatively simple classes of inputs;
however they arise frequently in practice and
have been used extensively as test beds for
spatial index structures. The TIGER dataset
consists of 50 datasets, one for each state,
containing roads, railways, boundaries, and
hydrography in the state. The size of a dataset
ranges from 115,626 edges (Delaware) to 40.4

million edges (Texas). The TIGER datasets can
be downloaded from http://www.census.gov/cgi-
bin/geo/shapefiles2013/main.

Experimental Results

Since many of the quadtree algorithms perform
much better in practice than their theoretical
worst-case bounds, experimental analysis is an
important way to assess their merits. Some of
the early experimental analysis of quadtrees per-
formance on massive data was by Hjaltason and
Samet [6]. They describe ample results concern-
ing practical performance of PMR quadtrees in
terms of construction time, insertions and bulk
insertions, comparison with R-tree bulk-loading,
and, as an application, performance of spatial join
using quadtrees to store the datasets. Their test
data consists of TIGER datasets ranging from
40K lines to approximately 260K edges on a
machine with 64MB RAM.

Agarwal et al. [1] implemented and tested
their I/O-efficient point quadtree part of an ap-
plication to interpolate LIDAR datasets, where it
was used specifically for batched neighbor find-
ing (finding the points in all neighbor leaves for
each quadtree leaf). The algorithms are scalable
up to at least 500 million points (20GB raw data)
(their platform was an Intel 3.4GHz machine with
1GB RAM running Linux).

Haverkort et al. [4] described an experimental
analysis of K-quadtrees reporting on the con-
struction time and size of the quadtree (number
of cells and number of edge-cell intersections) for
various values of k, as well as computing a spatial
join using K-quadtrees. The K-quadtree construc-
tion algorithm is efficient and scalable, with the
running time getting faster as more points are
packed into a leaf. Even though the number of
edges intersecting a cell may be large, the average
size of a cell stays low and the total size of
the quadtree is linear. Their tests use TIGER
data with the largest bundle, corresponding to
the entire USA, having approximately 427 mil-
lion edges, on a machine with 512MB RAM.
A comparison with the PMR quadtree results of
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Hjaltason and Samet [6] is difficult because of the
difference in platforms.

Extensions

A series of recent results have shown that com-
pressed quadtrees and Delaunay triangulations
are equivalent structures, in the sense that a com-
pressed quadtree of a set of points P in the
plane can be computed in linear time given the
Delaunay triangulation DT.P /; and the other
way around, the Delaunay triangulation DT.P /
can be computed in linear time given a com-
pressed quadtree of P ; see, for example, Löffler
and Mulzer [8]. In the I/O-model, both problems
can be solved in O.sort.n// I/O’s. This naturally
brings the question of whether one can be com-
puted from the other in O.scan.n// I/O’s.
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Problem Definition

A network representation of a complex system
comprises nodes, which represent system
elements, and edges, which represent interactions
between the elements. Networks may be
described in terms of their topology; for instance,
some nodes may be connected to an atypically
large number of other nodes, and some may act
as bridge nodes that participate in paths between
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Quantification of Regulation in Networks with
Positive and Negative Interaction Weights, Fig. 1
Common network measures applied to a sample 9-node
network with symmetric interactions. Darker nodes have
higher betweenness centrality (i.e., they tend to act as a
bridge between other pairs of nodes); note that even nodes
with low degree (i.e., few connections) may have high
betweenness centrality. Highlighted edges show a shortest
path (length 4) between nodes 1 and 8

many other pairs of nodes (Fig. 1). For a review
of topological network measures, see [1–3].

In some contexts, this topological structure
serves as a basis for a dynamical description,
where nodes are characterized by a dynamic
variable that is regulated by the node’s interac-
tions. For instance, in the Boolean framework,
nodes are either ON or OFF (1 or 0, respec-
tively) [4]. In biological regulatory networks,
where interactions between system elements can
represent both upregulation and downregulation,
one common dynamic scheme is summative [5]:

xi .t C �/ D sgn

0
@X

j

Ej;ixj .t/

1
A ;

where Ej;i is the weight of the interaction from
node j to node i and absent interactions have
a weight of 0 by definition. In such a frame-
work, the state change of a node can propagate
to the node(s) it directly regulates, then to the
node(s) they regulate, and so on. This information
flow across a network is sometimes referred to
as network communicability [6]. A topological
analysis of the network should, in principle, give
insight into its dynamical structure and address
questions such as, “Which nodes yield a strong
influence on many other nodes?,” “Which nodes
are regulated in a complex way by many other
nodes?,” and “Which nodes seem to have a pe-
ripheral impact on the dynamics of the network?”

However, while networks have been used to
explicate the structure and function of a large and
diverse array of complex systems, most network

measures consider the most general properties of
networks and are therefore ill-suited for appli-
cation to specialized networks. The positive and
negative edge weights typically used in biological
regulatory networks are one such specialization:
standard network measures do not consider edge
weights of opposite sign and are therefore ill-
equipped to fully capture the dynamical implica-
tions of their topology.

Here, we address this shortcoming by devel-
oping a suite of topological measures that address
the regulatory relationship between nodes that are
connected by edges with both positive and neg-
ative edge weights. We first consider node-node
interactions and then summarize those measures
to quantify both the regulatory impact of a node
on the entire network and of the entire network
on a node.

Key Results

To first consider node-node relationships, we
introduce two complementary measures. The
weighted node-node path count from node i to
node j considers both the number of paths from
node i to node j and their length:

!ij �

lmaxX
lD1

pC
lij
C p�

lij

l

Here, pC
lij

and p�
lij

respectively indicate the num-
ber of positive and negative paths from node i to
node j of length l . While we here consider a path
to be positive if it contains 0 or an even number of
negative edges, note that this measure effectively
ignores the sign of the paths. To take this into
consideration, we introduce the node-node path
influence:

�ij �

lmaxX
lD1

pC
lij
� p�

lij

l

�ij is therefore bounded by the range Œ�!ij ; !ij �.
!ij indicates the regulatory strength insofar as it
is large when there are many short paths between
the nodes and decreases when the paths are few
and/or long; �ij indicates the overall regulatory
nature of those interactions. Values close to
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0 relative to j!ij j indicate mixed (complex)
regulation, while values close to j!ij j indicate
overall positive or negative regulation.

Node-network relationships may be assessed
by cumulating these measures with a fixed source
or target node. The node path influence, 	i ,
and node path susceptibility, �j , take this into
account for a fixed source and target node, respec-
tively:

	i �
X

j

�ij!ij

�j �
X

i

�ij!ij :

The summative product results in large absolute
values for these measures only when the regula-
tion is both strong and consistent in sign. Nodes
receiving low values are regulated weakly and/or
in a complex way.

In cases where edge weights take on values
other than ˙1, the pijl values may readily be
modified to, for instance, the sum of the mean
interaction weights of the pertinent paths. This
modification reduces to the above definition when
edge weights are restricted to ˙1. In both cases,
however, the above measures are characterized by
the parameter lmax, which represents the longest
path considered by the algorithm. Counting all
paths of arbitrary length for all but the simplest
networks is computationally intractable, and so in
practice lmax must generally be a low number. We
therefore introduce a complementary measure,
strength of connection, which considers paths
of arbitrary length through network erosion. The
measure is determined for any two nodes i and
j via a procedure that assigns every node a char-
acteristic value. In the below pseudo-algorithm,
these values are stored in a dictionary d.

N = number of nodes in graph
d = {}
for node in graph: d[node] = infinity

if i != j:
while a path exists between i and j:
SP = [nodes on the shortest path between i and j]
SPL = length of shortest path between i and j
if SPL == 1:
delete edge between i and j
d[i] = d[j] = SPL

else:
for node in SP:
if d[node] == infinity: d[node] = SPL
if (node != i and node != j): remove node from graph

return sum(1/(values in d))/(N/2)
else:

while a cycle containing i exists:
SP = [nodes on the shortest cycle containing node i]
SPL = length of shortest cycle containing node i
if SPL == 1:
delete self-edge
d[i] = SPL

else:
for node in SP:
if d[node] == infinity: d[node] = SPL
if node != i: remove node from graph

return sum(1/(values in d))/((N+2)/2)
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Quantification of Regulation in Networks with
Positive and Negative Interaction Weights, Fig.
2 Adapted from Figs. 1 and 2 of [7]. (a) A fully
connected 5-node network. Solid black arrows indicate
positive regulation, while dashed, red arrows indicate
negative regulation. (b) A circle at position i; j has
a size proportional to !ij .max

�
!ij

�
D 2:75/ and

color determined by �ij

ı
!ij , with positive, neutral,

and negative sign corresponding to green, black, or red
coloring, respectively. Circles are additionally identified
with a small white concentric circle if �ij

ı
!ij � �0:2 .

(c) A scatter plot of node path influence, �, and node path
susceptibility, � . (d) The strength of connection measure
indicates which node pairs remain well connected under
network erosion; the values vary significantly despite each
node having equal degree and the network being strongly
connected

The normalization factors force the returned
value to be bounded by 1 [7]. While this al-
gorithm does not consider the sign of paths,
it is straightforward to modify it to, e.g., in-
clude only those paths that are of the specified
sign. Such a modification would then yield both
a positive strength of connection and a nega-
tive strength of connection. We demonstrate the
above-defined measures for a simple network in
Fig. 2.

Applications

The analytical measures introduced above may
be applied to any network with both positive and
negative edge weights. Biological regulatory
networks are a prime example of complex
systems that are often modeled in this way.
For example, the measures have been applied
to explicate the regulatory cross talk of a
network of the immune response responding
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to both respiratory bacteria and allergen [7]. The
measures stand to inform the dynamical regula-
tion between nodes from a strictly topological
perspective and thereby (1) provide insight into
systems where the dynamic behavior is poorly
understood and (2) complement dynamic analysis
in systems where the regulatory behavior is
understood.

Open Problems

The methodology discussed here considers the
topology of a network with weighted positive and
negative interactions. However, network analy-
sis often involves an investigation of network
dynamics, where the details of the interactions
encoded in the network topology play a pivotal
role. The role of network topology in constraining
network dynamics is an active area of study (see,
e.g., [8]).
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Problem Definition

In the element distinctness problem, one is given
a list of N elements x1; : : : ; xN 2 f1; : : : ; mg

and one must determine if the list contains two
equal elements. Access to the list is granted by
submitting queries to a black box, and there are
two possible types of query.

Value Queries. In this type of query, the
input to the black box is an index i . The black
box outputs xi as the answer. In the quantum
version of this model, the input is a quantum
state that may be entangled with the workspace
of the algorithm. The joint state of the query,
the answer register, and the workspace may be
represented as

P
i;y;´

ai;y;´ji; y; ´i, with y being an

extra register which will contain the answer to
the query and ´ being the workspace of the al-
gorithm. The black box transforms this state intoP
i;y;´

ai;y;´ji; .y C xi / mod m; ´i. The simplest

particular case is if the input to the black box is of
the form

P
i

ai ji; 0i. Then, the black box outputs
P
i

ai ji; xi i. That is, a quantum state consisting of

the index i is transformed into a quantum state,
each component of which contains xi together
with the corresponding index i .
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Comparison Queries. In this type of query,
the input to the black box consists of two indices
i , j . The black box gives one of the three possible
answers: “xi > xj ”, “xi < xj ,” or “xi D xj .” In
the quantum version, the input is a quantum state
consisting of basis states ji; y; ´i, with i , j being
two indices and ´ being algorithm’s workspace.

There are several reasons why the element
distinctness problem is interesting to study. First
of all, it is related to sorting. Being able to
sort x1; : : : ; xN enables one to solve the ele-
ment distinctness by first sorting x1; : : : ; xN in
increasing order. If there are two equal elements
xi D xj , then they will be the next one to
another in the sorted list. Therefore, after one
has sorted x1; : : : ; xN , one must only check the
sorted list to see if each element is different from
the next one. Because of this relation, the element
distinctness problem captures some of the same
difficulty as sorting. This has led to a long line
of research on classical lower bounds for the
element distinctness problem (cf. [5, 11, 21] and
many other papers).

Second, the central concept of the algorithms
for the element distinctness problem is the notion
of a collision. This notion can be generalized in
different ways, and its generalizations are use-
ful for building quantum algorithms for various
graph-theoretic problems (e.g., triangle finding
[18]) and matrix problems (e.g., checking matrix
identities [12]).

A generalization of element distinctness is ele-
ment k-distinctness [3], in which one must deter-
mine if there exist k different indices i1; : : : ; ik 2
f1; : : : ; N g such that xi1 D xi2 D : : : D xik .
A further generalization is the k-subset finding
problem [14], in which one is given a func-
tion f .y1; : : : ; yk/ and must determine whether
there exist i1; : : : ; ik 2 f1; : : : ; N g such that
f .xi1; xi2; : : : ; xik/ D 1 (where x1; : : : ; xN are
the input data).

Key Results

Element Distinctness: Summary of Results
In the classical (non-quantum) context, the
natural solution to the element distinctness

problem is done by sorting, as described in
the previous section. This uses O.N/ value
queries (or O.N logN/ comparison queries)
and O.N logN/ time. Any classical algorithm
requires 
.N/ value or 
.N logN/ comparison
queries. If the algorithm is restricted to o.N /

space, stronger lower bounds are known [21].
In the quantum context, Buhrman et al. [13]

gave the first nontrivial quantum algorithm, using
O.N 3=4/ queries. Ambainis [3] then designed a
new algorithm, based on a novel idea using quan-
tum walks. Ambainis’ algorithm uses O.N 2=3/

queries and is known to be optimal: Aaronson and
Shi [1, 2, 15] have shown that any quantum algo-
rithm for element distinctness must use 
.N 2=3/

queries.
For quantum algorithms that are restricted to

storing r values xi (where r < N 2=3/, the best
algorithm runs in O.N=

p
r/ time.

All of these results are for value queries. They
can be adapted to the comparison query model,
with a log N factor increase in the complexity.
The time complexity is within a polylogarithmic
O.log cN/ factor of the query complexity, as
long as the computational model is sufficiently
general [3]. (Random access quantum memory
is necessary for implementing any of the known
quantum algorithms.)

Using the quantum walk methods, one can
also solve the k-distinctness problem [3]. This
gives a quantum algorithm for k-distinctness
(and k-subset finding) that uses O.N k=.kC1//

value queries and O.N k=.kC1// memory. For
the case when the memory is restricted to
r < N k=.kC1/ values of xi , it suffices to use
O.r C .N k=2/=.r .k�1/=2// value queries. The
results generalize to comparison queries and
time complexity, with a polylogarithmic factor
increase in the time complexity (similarly to the
element distinctness problem). For the k-subset
finding problem, Belovs and Rosmanis [8] have
shown that there is a function f .y1; : : : ; yk/

for which 
.N k=.kC1// queries are also
necessary.

For the k-distinctness problem, a better
quantum algorithm has been recently developed
by Belovs [6], using the learning graph approach.
It solves 3-distinctness using O.N 5=7/ value
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queries and k-distinctness using O

�
N

1� 2k
�2

2k
�1

�

value queries. The algorithm for 3-distinctness
can be implemented so that it runs in time
O.N 5=7 log cN/ [9]. It is an open problem to
construct a time-efficient implementation for
k > 3.

Element Distinctness: The Methods
Ambainis’ algorithm has the following structure.
Its state space is spanned by basic states jT i, for
all sets of indices T � f1; : : : ; N g with jT j D r .
The algorithm starts in a uniform superposition of
all jT i and repeatedly applies a sequence of two
transformations:

1. Conditional phase flip: jT i ! �jT i for all T
such that T contains i , j with xi D xj , and
jT i ! jT i for all other T ;

2. Quantum walk: performO.
p
r/ steps of quan-

tum walk, as defined in [3]. Each step is a
transformation that maps each jT i to a com-
bination of basis states jT 0i for T 0 that differ
from T in one element.

The algorithm maintains another quantum regis-
ter, which stores all the values of xi ; i 2 T . This
register is updated with every step of the quantum
walk.

If there are two elements i , j such that xi D

xj , repeating these two transformations O.N=r/
times increases the amplitudes of jT i containing
i , j . Measuring the state of the algorithm at
that point with high probability produces a set T
containing i , j . Then, from the set T , we can find
i and j .

The basic structure of [3] is similar to Grover’s
quantum search, but with one substantial differ-
ence. In Grover’s algorithm, instead of using a
quantum walk, one would use Grover’s diffusion
transformation. Implementing Grover’s diffusion
requires 
.r/ updates to the register that stores
xi ; i 2 T . In contrast to Grover’s diffusion, each
step of quantum walk changes T by one element,
requiring just one update to the list of xi ; i 2 T .
Thus, O.

p
r/ steps of quantum walk can be per-

formed with O.
p
r/ updates, quadratically better

than Grover’s diffusion. And, as shown in [3],

the quantum walk provides a sufficiently good
approximation of diffusion for the algorithm to
work correctly.

This was one of the first uses of quantum
walks to construct quantum algorithms.
Ambainis, Kempe, and Rivosh [4] then gener-
alized it to handle searching on grids (described
in another entry of this encyclopedia). Their al-
gorithm is based on the same mathematical ideas,
but has a slightly different structure. Instead of
alternating quantum walk steps with phase flips, it
performs a quantum walk with two different walk
rules – the normal walk rule and the “perturbed”
one. (The normal rule corresponds to a walk
without a phase flip and the “perturbed” rule
corresponds to a combination of the walk with a
phase flip.)

Generalization to Arbitrary Markov Chains
Szegedy [20] and Magniez et al. [19] have
generalized the algorithms of [4] and [3],
respectively, to speed up the search of an
arbitrary Markov chain. The main result of [19] is
as follows.

Let P be an irreducible Markov chain with
state space X . Assume that some states in the
state space of P are marked. Our goal is to find
a marked state. This can be done by a classical
algorithm that runs the Markov chain P until it
reaches a marked state (Algorithm 1).

There are three costs that contribute to the
complexity of Algorithm 1:

1. Setup cost S : the cost to sample the initial
state x from the initial distribution.

2. Update cost U : the cost to simulate one step
of a random walk.

3. Checking cost C : the cost to check if the
current state x is marked.

The overall complexity of the classical algorithm
is then S C t2.t1U C C/. The required t1 and t2
can be calculated from the characteristics of the
Markov chain P . Namely,

Proposition 1 ([19]) Let P be an ergodic, yet
symmetric Markov chain. Let ı > 0 be the
eigenvalue gap of P , and assume that whenever
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Algorithm 1: Search by a classical random
walk

1. Initialize x to a state sampled from some initial
distribution over the states of P .

2. t2 times repeat:
(a) If the current stage y is marked, output y and

stop;
(b) Simulate t1 steps of random walk, starting with

the current state y.
3. If the algorithm has not terminated, output “no

marked state.”

the set of marked states M is nonempty, we have
jM j=jX j � �. Then there are t1 D O.1=ı/

and t2 D O.1=�/ such that Algorithm 1 finds a
marked element with high probability.

Thus, the cost of finding a marked element
classically is O.S C 1=�.1=ıU C C//. Magniez
et al. [19] construct a quantum algorithm that
finds a marked element inO.S 0C1=�.1=

p
ıU 0C

C 0// steps, with S 0, U 0, and C 0 being quantum
versions of the setup, update, and checking costs
(in most of applications, these are of the same
order as S , U , and C ). This achieves a quadratic
improvement in the dependence on both
© and •.

The element distinctness problem is solved
by a particular case of this algorithm: a search
on the Johnson graph. The Johnson graph is the
graph whose vertices �T correspond to subsets
T � f1; : : : ; N g of size jT j D r . A vertex �T

is connected to a vertex �0
T , if the subsets T and

T 0 differ in exactly one element. A vertex �T is
marked if T contains indices i , j with xi D xj .

Consider the following Markov chain on the
Johnson graph. The starting probability distribu-
tion s is the uniform distribution over the vertices
of the Johnson graph. In each step, the Markov
chain chooses the next vertex �0

T from all ver-
tices that are adjacent to the current vertex �T ,
uniformly at random. While running the Markov
chain, one maintains a list of all xi ; i 2 T . This
means that the costs of the classical Markov chain
are as follows:

• Setup cost of S D r queries (to query all
xi ; i 2 T where �T is the starting state).

• Update cost of U D 1 query (to query the
value xi ; i 2 T

0 � T , where �T is the vertex
before the step and �0

T is the new vertex).
• Checking cost of C D 0 queries (the values
xi ; i 2 T are already known to the algorithm,
and no further queries are needed).

The quantum costs S 0, U 0, and C 0 are of the same
order as S , U , and C .

For this Markov chain, it can be shown that the
eigenvalue gap is ı D O.1=r/ and the fraction of
marked states is � D O..r2/=.N 2//. Thus, the
quantum algorithm runs in time

O

�
S 0 C

1
p
�

�
1
p
ı
U 0 C C 0

��

D O

�
S 0 C

p
r

�
N

r
U 0 C C 0

��

D O

�
r C

N
p
r

�
:

Learning Graphs
Another framework that generalizes the element
distinctness is the learning graphs by Belovs [6].
A learning graph is a structure that describes al-
gorithm’s information about the input data. Using
this approach, many quantum algorithms can be
described as sequences of high-level instructions
(which can be compiled into a standard quantum
query algorithm). For example, the element dis-
tinctness algorithm corresponds to a sequence of
three operations:

1. LoadO.N 2=3/ values xi for randomly chosen
i 2 f1; 2; : : : ; N g.

2. Load one of the two equal elements xi .
3. Load the other equal element xj .

Belovs [6] describes rules for determining the
complexity of each step. In the algorithm above,
the complexities are O.N 2=3/;O.

p
N/, and

O.N 2=3/, respectively. This results in the same
overall complexity of O.N 2=3/.

The learning graph approach has been used
to construct new quantum algorithms for k-
distinctness [7], triangle-finding [6], and other
tasks.
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Applications

Magniez et al. [19] showed how to use the ideas
from the element distinctness algorithm as a sub-
routine to solve the triangle problem. In the
triangle problem, one is given a graph G on n
vertices, accessible by queries to an oracle, and
they must determine whether the graph contains
a triangle (three vertices �1, �2, �3 with �1 �2,
�1 �3, and v2 �3 all being edges). This prob-
lem requires 
.n2/ queries classically. Magniez
et al. [19] showed that it can be solved using
O.n1:3 log cn/ quantum queries, with a modifi-
cation of the element distinctness algorithm as a
subroutine. This has been improved by several
authors. Currently, the best quantum algorithm
for triangle finding is by Le Gall [17] which uses
O.n1:25 log cn/ queries. It is also based on the
quantum walks but uses them in a much more
complex way.

The methods of Szegedy [20] and Magniez
et al. [19] can be used as subroutines for quantum
algorithms for checking matrix identities [12,18].

Bernstein et al. [10] have used the element
distinctness algorithm to design a quantum algo-
rithm for the subset sum problem, by combining
the element distinctness algorithm with ideas
from classical algorithms for subset sum. The
resulting algorithm solves the subset sum prob-
lem for n numbers in 2.0:241Co.1//n time steps,
under some heuristic assumptions that are similar
to the ones that are assumed for classical subset
sum algorithms. The best classical algorithm uses
2.0:291Co.1//n time steps.

Open Problems

1. How many queries are necessary to solve the
element distinctness problem if the memory
accessible to the algorithm is limited to r

items, r < N 2=3? The algorithm of [3] gives
O.N=

p
r/ queries, and the best lower bound

is 
.N 2=3/ queries.
2. Consider the following problem:

Graph collision [18]. The problem is
specified by a graph G (which is arbitrary
but known in advance) and variables
x1; : : : ; xN 2 f0; 1g, accessible by queries

to an oracle. The task is to determine if G
contains an edge uv such that xu D xv D 1.
How many queries are necessary to solve this
problem?

The element distinctness algorithm can be
adapted to solve this problem with O.N 2=3/

queries [18], but there is no matching lower
bound. Is there a better algorithm? A better al-
gorithm for the graph collision problem would
immediately imply a better algorithm for the
triangle problem.
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Problem Definition

Every positive integer n has a unique decompo-
sition as a product of primes n D pe

11 � � �p
e
kk ,

for prime number pi , and positive integer
exponent ei . Computing the decomposition
p1; e1; : : : ; pk ; ek from n is the factoring
problem.

Factoring has been studied for many hundreds
of years, and exponential time algorithms for it
were found to include trial division, Lehman’s
method, Pollard’s � method, and Shank’s class
group method [1]. With the invention of the RSA
public-key cryptosystem in the late 1970s, the
problem became practically important and started
receiving much more attention. The security of
RSA is closely related to the complexity of fac-
toring, and in particular, it is only secured if
factoring does not have an efficient algorithm.
The first subexponential-time algorithm is due
to Morrison and Brillhard [4] using a continued
fraction algorithm. This was succeeded by the
quadratic sieve method of Pomerance and the
elliptic curve method of Lenstra [5]. The number
field sieve [2, 3], found in 1989, is the best-
known classical algorithm for factoring and runs
in time exp.c.logn/1=3.log logn/2=3/ for some
constant c. Shor’s result is a polynomial-time
quantum algorithm for factoring.

Key Results

Theorem 1 ([2, 3]) There is a subexponential-
time classical algorithm that factors the integer
n in time exp.c.logn/1=3.log log n/2=3/.

Theorem 2 ([6]) There is a polynomial-time
quantum algorithm that factors integers. The al-
gorithm factor n in time O..logn/2.logn logn/
.log log logn// plus polynomial in logn post-
processing which can be done classically.

Applications

Computationally hard number theoretic problems
are useful for public-key cryptosystems.
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The RSA public-key cryptosystem, as well as
others, requires that factoring not to have an
efficient algorithm. The best-known classical
algorithms for factoring can help determine how
secure the cryptosystem is and what key sizes to
choose. Shor’s quantum algorithm for factoring
can break these systems in polynomial time using
a quantum computer.

Open Problems

It is open whether there is a polynomial-time
classical algorithm for factoring.
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Problem Definition

A triangle is a clique of size three in an undi-
rected graph. Triangle finding has been the sub-
ject of extensive study as a basic search problem
whose quantum query complexity is still open, in
contrast to unstructured search [6] and element
distinctness [1].

This survey concerns quantum query
algorithms for triangle finding. A quantum query
algorithm for a search problem P D fMf gf
is a sequence of unitary operators Qf D

UkOf Uk�1Of U1Of U0 such that if Mf ¤ ;,
measuring j f i D Qf j0i yields a member of
Mf , the set of objects associated with input f ,
with probability � 2=3. The operators Of are
oracle queries, Of W jxijai 7! jxija˚ f .x/i,
which yield information about f , whereas the
Uj are independent of f . The quantum query
complexity of P is the minimum number of
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oracle queries required by a quantum query
algorithm for P .

In the context of triangle finding, the function
f is the adjacency matrix of an undirected graph
on vertices Œn�, G � Œn�2, with m D jGj edges,
where .a; b/ 2 G ) .b; a/ 2 G, by convention.
The associated set, MG , is the set of triangles
in G.

Problem 1 (Triangle finding)

INPUT: The adjacency matrix f of a graph G on
n vertices.

OUTPUT: A triangle: .a; b; c/ 2 Œn�3 such that
.a; b/; .b; c/; .a; c/ 2 G, if one exists.

A lower bound of ˝.n/ on the quantum
query complexity of the triangle finding problem
follows from a reduction from search [5].
It is easy to see that the randomized query
complexity of the triangle finding problem is
�.n2/.

Key Results

Progress on the quantum query complexity
of triangle finding has closely followed the
development of quantum algorithmic techniques
for search problems. The first upper bounds
were based on increasingly clever use of
the structure of the problem, combined with
amplitude amplification [4]. The first bound to go
beyond the amplitude amplification framework,
achieving QO.n13=10/ [10], was one of the
first applications of the quantum walk search
technique introduced by Ambainis in his element
distinctness algorithm [1] and extended in [13]
and [11]. The next bound of O.n35=27/ was the
first application of a new quantum algorithmic
technique, the learning graph framework [3].
This finding led to the development of extensions
to the quantum walk search technique to give
a QO.n35=27/ quantum walk algorithm for
triangle finding [7]. The next improvement to
O.n9=7/ also used the learning graph framework
[9], whereas the most recent upper bound of
O.n5=4/ uses, once again, a quantum walk search
algorithm [8].

An O.n C
p

nm/ Algorithm Using
Amplitude Amplification
A trivial application of Grover’s quantum search
algorithm solves the triangle finding problem
with O.n3=2/ quantum queries by searching over
Œn�3. Buhrman et al. [5] improved this upper
bound in the special case where G is sparse (i.e.,
m D o.n2/).

The algorithm searches for an edge .a; b/ 2
G in O.

p
jŒn�2j=m/ D O.n=

p
m/ quantum

queries and then for c 2 Œn� such that .a; b; c/
is a triangle in O.

p
n/ quantum queries. The

second step succeeds when .a; b/ is a triangle
edge, which happens with probability at least
1=m when G contains a triangle, so applying
amplitude amplification to this procedure gives a
O.
p
m.n=

p
m C

p
n// D O.n C

p
nm/ upper

bound:

Theorem 1 (Buhrman et al. [5]) Using quan-
tum amplitude amplification, the triangle finding
problem can be solved in O.nC

p
nm/ quantum

queries.

An QO.n10=7/ Algorithm Using Amplitude
Amplification
The algorithm of Szegedy et al. [10, 12] is also
based on amplitude amplification; however, it
exploits additional combinatorial structure in the
triangle finding problem.

For A � Œn� and w 2 Œn�, define G.A;w/ WD
f.u; v/ 2 A2 W .u;w/; .v;w/ 2 Gg. Choose
a random subset X � Œn� of size n� logn, for
� D 3=7. Query X � Œn� and search for an
edge in EX WD

S
w2X G.Œn�;w/, which can be

determined from G \ .X � Œn�/, using O.jX jnCp
jEX j/ D QO.n

1C�/ queries. Either a triangle is
found, or EX \G D ;.

Let G0 WD Œn�2 nEX . If a triangle is not found
in the first step, then G � G0. Fix ˛ D ˇ D 1=7.
Szegedy et al. show that for most X , G0 can be
partitioned into .T;E/, such that T has O.n3�˛/

triangles and jE \Gj D O.n2�ˇ C n2��C˛Cˇ /,
in QO.n1C˛Cˇ / queries (or a triangle is found
in the process). If G � G0, any triangle in G
either lies in T , in which case it can be found
in O.

p
n3�˛/ queries using quantum search, or

intersects E, in which case it can be found in
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O.nC
p
njG \Ej/ queries using the algorithm

of Buhrman et al. This gives the following:

Theorem 2 (Szegedy; Magniez, Santha and
Szegedy [10, 12]) Using amplitude amplifica-
tion, the triangle finding problem can be solved
in QO.n10=7/ quantum queries.

An QO.n13=10/ Algorithm Using Quantum
Walks
A more efficient algorithm for the triangle finding
problem was obtained by Magniez et al. [10],
using the quantum walk search technique intro-
duced by Ambainis [1].

Given oracle access to a function defining a
relation M � Œn�k , Ambainis’ quantum walk
search procedure finds .a1; : : : ; ak/ 2 M if
M ¤ ;. The algorithm walks on sets A � Œn�

of size n˛ , keeping track of some data structure
D.A/ for the current state A and transitioning,
in superposition, from A to A0 for A0 � Œn� of
size n˛ such that jA n A0j D 1. Assume access
to a quantum procedure ˚ that determines if
Ak \M ¤ ; using D.A/, with checking cost C
queries. Suppose D.A/ can be constructed from
scratch at setup cost S queries and modified from
D.A/ to D.A0/ when jA n A0j D 1 at an update
cost U. Then the procedure finds an element of
M in O.S C . n

n˛ /
k=2.
p
n˛U C C// quantum

queries. (For details, see the encyclopedia entry
on element distinctness.)

For a fixed graphG � Œn�2, consider the graph
collision problem onG, where an input f defines
the binary relationMf � Œn�

2 satisfying .u; u0/ 2

Mf if f .u/ D f .u0/ D 1 and .u; u0/ 2 G.
Setting k D 2, it is a simple exercise to see
that a quantum walk search algorithm solves this
problem with O.n˛ C . n

n˛ /.
p
n˛ � 1 C 0// D

O.n˛ C n1�˛=2/ queries. Setting ˛ D 2=3 gives
an upper bound of O.n2=3/ quantum queries for
graph collision.

Magniez et al. [10] solve triangle finding using
a quantum walk algorithm whose checking sub-
routine is based on graph collision. Let M be the
set of triangle edges. Define D.A/ D G \ A2.
Then S D n2˛ initial queries are needed to set
up D.A/, and U D n˛ new queries are needed to
update D.A/, where ˛ is now 3=5. The check-

ing step consists of an algorithm that, given a
known subgraph H D G \ A2 on n˛ vertices,
decides if H contains a triangle edge using C D
QO.
p
nn2=3˛/ queries, as follows. For any v 2 Œn�,

define fv on A by fv.u/ D 1 if .u; v/ 2 G. An
edge .a; b/ 2 A2 is a graph collision in fv on
G \ A2 if and only if .a; b; v/ is a triangle, so
searching for v 2 Œn� for which fv has a graph
collision, using O.

p
n.n˛/2=3/ quantum queries,

is equivalent to deciding if G \ A2 contains a
triangle edge. Repeat �.logn/ times, to decrease
the error to 1=n�.1/, since the subroutine is called
many times. This gives the following:

Theorem 3 (Magniez, Santha, and Szegedy
[10]) Using a quantum walk search procedure,
the triangle finding problem can be solved in
QO.n13=10/ quantum queries.

An O.n35=27/ Algorithm Using Learning
Graphs
The learning graph framework, introduced by
Belovs [3], allows for the construction of a
quantum algorithm from a particular type of
edge-weighted graph called a learning graph. For
further details, refer to [3]. The first application
of this framework was a new upper bound
on the quantum query complexity of triangle
finding.

A learning graph may be constructed in stages,
corresponding to searching for more and more
specialized structures, which will eventually con-
tain a 1-certificate for the problem being solved.
In Belovs’ application to triangle finding, the first
part of the learning graph corresponds to search-
ing for an n˛-vertex subset of Œn�, A, containing
two triangle vertices a and b. The next two stages
correspond to searching for an n2˛�� -edge graph
on A,H , which contains the triangle edge fa; bg.
The final stages correspond to the graph collision
subroutine used in [10] to decide if any edge of
the queried subgraph H is a triangle edge. Using
˛ D 2=3 and � D 1=27 gives the following:

Theorem 4 (Belovs [3]) Using a learning graph
algorithm, the triangle finding problem can be
solved in O.n35=27/ D O.n1:2963/ quantum
queries.
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Additionally, a quantum walk search algorithm
based on this learning graph construction solves
triangle finding in QO.n35=27/ queries [7].

An O.n9=7/ Algorithm Using Learning
Graphs
The next upper bound on the quantum query
complexity of triangle finding, due to Lee et al.
[9], also uses a learning graph. The first part of
their learning graph corresponds to searching for
an n˛-vertex subsetA � Œn�, containing a triangle
vertex a. The next part corresponds to searching
for an nˇ -vertex subset B � Œn�, containing a
vertex, b, from the same triangle as a. The final
part corresponds to the graph collision subroutine
used in [10], but optimized for an unbalanced
bipartite graph, used to decide if any edge of
G \ .A � B/ is a triangle edge. Using ˛ D 4=7

and ˇ D 5=7 gives the following:

Theorem 5 (Lee, Magniez and Santha [9])
Using a learning graph algorithm, the triangle
finding problem can be solved in O.n9=7/ D

O.n1:2858/ quantum queries.

As with the previous algorithm, there exists a
quantum walk search algorithm based on this
learning graph construction that solves triangle
finding in QO.n9=7/ queries [7].

An QO.n5=4/ Algorithm Using Quantum
Walks
The best known upper bound on the quantum
query complexity of triangle finding is an al-
gorithm by Le Gall [8]. Le Gall’s algorithm
uses the quantum walk search technique, as in
the QO.n13=10/-query algorithm, combined with
a more clever utilization of the combinatorial
structure of triangle finding, similar to that of the
QO.n10=7/-query algorithm, and a quantum search

algorithm of Ambainis that finds an x such that
˚.x/ D 1 in cost O.

pP
x C.x/

2/, where C.x/
is the cost to compute ˚.x/ [2].

The algorithm begins, like the QO.n10=7/ algo-
rithm, by choosing a random X � Œn� of size
n� logn and searching for a triangle in X � Œn�2.
This is done by quantum search on X � Œn�2,
using O.

p
jX � Œn�2j/ D QO.n1C�=2/ quantum

queries. If no triangle is found, as in the QO.n10=7/

algorithm, the rest of the algorithm will make use
of the fact that EX \ G D ;, although in this
case, since X � Œn� is not queried, EX is not
known.

The rest of the algorithm consists of the fol-
lowing four levels of recursion:

1. Using a quantum walk search algorithm,
search for a set A � Œn� of size n˛ such
that A2 contains a triangle edge. Maintain a
data structure, D.A/, encoding G \ .A �X/.

2. For any A � Œn�, to check if A2 contains a
triangle edge, search for a vertex c 2 Œn� such
that A2 � fcg contains a triangle.

3. For any A � Œn� and c 2 Œn�, to check if
A2 � fcg contains a triangle, use a quantum
walk search algorithm to search for a set B �
A of size nˇ such that B2 � fcg contains
a triangle. Maintain a data structure, Dc.B/,
encoding G \ .B � fcg/.

4. For any B � Œn� and c 2 Œn�, to check if B2 �

fcg contains a triangle, search for an edge in
G.B; c/ n EX . Here the algorithm exploits
the fact that there is no edge in EX . The set
EX\B

2 can be determined fromG\.A�X/.

Constructing D.A/ costs S D jA � X j D
QO.n˛C�/ queries. MappingD.A/ toD.A0/ costs

U D 2jX j D QO.n�/ queries. Let ˚.A/ D
1 if A2 has a triangle edge. Then if C is the
quantum query complexity of computing ˚.A/,
the quantum query complexity of finding a trian-
gle in G n EX is O

�
SC n

n˛

�p
n˛UC C

��
D

QO
�
n˛C� C n1C��˛=2 C n1�˛C

�
:

Let ˚A.c/ D 1 if A2 � fcg contains a triangle.
To compute ˚.A/, search for c 2 Œn� such that
˚A.c/ D 1. Let C0.c/ be the cost of computing
˚A.c/, which will vary in c. Then by [2], C D

O
�qP

c2Œn� C0.c/
�

.

Let˚c.Dc.B// D 1 ifB2�fcg has a triangle.
To compute ˚A.c/, search for B � A such
that ˚c.Dc.B// D 1. Creating Dc.B/ costs
S00 D jB � fcgj D nˇ queries. Mapping Dc.B/

to Dc.B 0/ costs U00 D 2 queries. If comput-
ing ˚c.Dc.B// costs C00.c/, computing ˚A.c/

costs C0.c/ D S00 C n˛

nˇ

�p
nˇ U00 C C00.c/

�
D

O
�
nˇ C n˛�ˇ=2 C n˛�ˇ C00.c/

�
queries.
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Observe that ˚c.Dc.B// D 1 if and only if
G.B; c/ contains an edge. Since G \ EX D

;, one need only search G.B; c/ n EX for
an edge. The set G.B; c/ can be determined
from Dc.B/, and EX \ A

2 can be determined
from D.A/, so G.B; c/ n EX is known. Thus,
C00.c/ D O.

p
jG.B; c/ nEX j/.

Using combinatorial arguments, Le Gall
proves an upper bound on jG.B; c/ n EX j

relative to jG.A; c/ nEX j for most B , allowing
him to use further combinatorial arguments to

show an upper bound on C D
qP

c2Œn� C0.c/2

of O.n1=2C� C n1=2Cˇ C n1=2C˛�ˇ=2 C

n1=2C˛��=2/. Setting � D ˇ D 1=2 and ˛ D 3=4
then gives the following:

Theorem 6 (Le Gall [8]) Using a quantum walk
search algorithm, the triangle finding problem
can be solved in QO.n5=4/ quantum queries.

The quantum query complexity of triangle
finding is still open, as the best known lower
bound is ˝.n/.
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Problem Definition

Consider an
p
N �
p
N grid, with each location

storing a bit that is 0 or 1. The locations on
the grid are indexed by (i; j ), where i; j 2
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f0; 1; : : : ;
p
N �1g �ai;j denotes the value stored

at the location (i; j ).
The task is to find a location storing ai;j D 1.

This problem is as an abstract model for search
in a two-dimensional database, with each location
storing a variable xi;j with more than two values.
The goal is to find xi;j that satisfies certain
constraints. One can then define new variables
ai;j with ai;j D 1 if xi;j satisfies the constraints
and search for i; j satisfying ai;j D 1.

The grid is searched by a “robot,” which at
any moment of time is at one location i; j . In
one time unit, the robot can either examine the
current location or move one step in one of the
four directions (left, right, up, or down).

In a probabilistic version of this model, the
robot is probabilistic. It makes its decisions
(querying the current location or moving)
randomly according to prespecified probability
distributions. At any moment of time, such a
robot is at a probability distribution over the
locations of the grid. In the quantum case, one
has a “quantum robot” [5] which can be in a
quantum superposition of locations (i; j ) and is
allowed to perform transformations that move it
at most one step at a time.

There are several ways to make this model of
a “quantum robot” precise [1] and they all lead to
similar results.

The simplest to define is the Z-local model
of [1]. In this model, the robot’s state space is
spanned by states ji; j; ai with i; j representing
the current location and a being the internal
memory of the robot. The robot’s state j i can
be any quantum superposition of those: j i DP
i;j;a

˛i;j;aji; j; ai, where ˛i;j;a are complex num-

bers such that
P

i;j;a

j˛i;j;aj
2 D 1. In one step, the

robot can either perform a query of the value at
the current location or a Z-local transformation.

A query is a transformation that leaves i; j
parts of a state ji; j; ai unchanged and modifies
the a part in a way that depends only on the value
ai;j . AZ-local transformation is a transformation
that maps any state ji; j; ai to a superposition
that involves only states with robot being either
at the same location or at one of the four adjacent

locations (ji; j; bi; ji�1; j; bi; jiC1; j; bi; ji; j�
1; bi or ji; j C 1; bi where the content of the
robot’s memory b is arbitrary).

The problem generalizes naturally to d -
dimensional grid of size N 1=d � N 1=d � : : : �

N 1=d , with robot being allowed to query or move
one step in one of the d directions in one unit of
time.

Key Results

Early Results
This problem was first studied by Benioff [5]
who considered the use of the usual quantum
search algorithm by Grover [9] in this setting.
Grover’s algorithm allows to search a collection
of N items ai;j with O.

p
N/ queries. However,

it does not respect the structure of a grid. Between
any two queries, it performs a transformation that
may require the robot to move from any location
(i; j ) to any other locations (i 0; j 0). In the robot
model, where the robot in only allowed to move
one step in one time unit, such transformation
requires O.

p
N/ steps to perform. Implement-

ing Grover’s algorithm, which requires O.
p
N/

such transformations, therefore, takes O.
p
N/ �

O.
p
N/ D O.N/ time, providing no advantage

over the naive classical algorithm.
The first algorithm improving over the naive

use of Grover’s search was proposed by Aaronson
and Ambainis [1] who achieved the following
results:

• Search on
p
N �

p
N grid, if it is known

that the grid contains exactly one ai;j D 1 in
O.
p
N log3=2N/ steps.

• Search on
p
N �

p
N grid, if the grid may

contain an arbitrary number of ai;j D 1 in
O.
p
N log5=2N/ steps.

• Search onN 1=d �N 1=d � : : :�N 1=d grid, for
d � 3, in O.

p
N/ steps.

They also considered a generalization of the
problem, search on a graph G, in which the robot
moves on the vertices v of the graph G and
searches for a variable av D 1. In one step, the
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robot can examine the variable av corresponding
to the current vertex v or move to another vertex
w adjacent to v. Aaronson and Ambainis [1]
gave an algorithm for searching an arbitrary
graph with grid-like expansion properties in
O.N 1=2Co.1// steps. The main technique in those
algorithms was the use of Grover’s search and its
generalization, amplitude amplification [6], in
combination with “divide-and-conquer” methods
recursively breaking up a grid into smaller parts.

Quantum Walks
The next algorithms were based on quantum
walks [3, 7, 8]. Ambainis, Kempe, and Rivosh [3]
presented an algorithm, based on a discrete
time quantum walk, which searches the two-
dimensional

p
N �
p
N in O.

p
N logN/ steps,

if the grid is known to contain exactly one
ai;j D 1 and in O.

p
N log2N/ steps in the

general case. Childs and Goldstone [8] achieved
a similar performance, using continuous time
quantum walk. Curiously, it turned out that the
performance of the walk crucially depended on
the particular choice of the quantum walk, both
in the discrete and continuous time, and some
very natural choices of quantum walk (e.g., one
in [7]) failed.

Besides providing an almost optimal quantum
speedup, the quantum walk algorithms also have
an additional advantage: their simplicity. The
discrete quantum walk algorithm of [3] uses just
two bits of quantum memory. Its basis states are
ji; j; d i, where (i; j ) is a location on the grid and
d is one of the four directions:  , !, ", and
#. The basic algorithm consists of the following
simple steps:

1. Generate the state
P

i;j;d

1

2
p

N
ji; j; d i.

2. O.
p
N logN/ times repeat

1. Perform the transformation

C0 D

0
BB@

�1
2

1
2

1
2

1
2

1
2
�1

2
1
2

1
2

1
2

1
2
�1

2
1
2

1
2

1
2

1
2
�1

2

1
CCA

2. On the states ji; j; i, ji; j;!i, ji; j;"i,
ji; j;#i, if ai;j D 0 and the transformation
C1 D �I on the same four states if ai;j D

1.
3. Move one step according to the direction

register and reverse the direction:

ji; j;!i ! ji C 1; j; i;

ji; j; i ! ji � 1; j;!i;

ji; j;"i ! ji; j � 1;#i;

ji; j;#i ! ji; j C 1;"i:

In case, if ai;j D 1 for one location (i; j ), a
significant part of the algorithm’s final state will
consist of the four states ji; j; d i for the location
(i; j ) with ai;j D 1. This can be used to detect
the presence of such location. More precisely, if
we run the algorithm forO.

p
N logN/ steps and

measure the state, we obtain one of the four states
ji; j; d i with probability ‚.1= logN/.

We can increase the probability of algorithm
finding the right location (i, j) by either repeating
the algorithm or using quantum amplitude
amplification. Quantum amplitude amplification
[6] takes a quantum algorithm that succeeds
with a small probability " and increases the
success probability to 3/4, by repeating the
quantum algorithm O.1=

p
�/ times. In our

case, � D ‚.1= logN/ which means that it
suffices to repeat the basic algorithmO.

p
logN/

times. This increases the running time from
O.
p
N logN/ for the basic algorithm to

O.
p
N logN/.

A quantum algorithm for search on a grid can
be also derived by designing a classical algorithm
that finds ai; j D 1 by performing a random walk
on the grid and then applying Szegedy’s general
translation of classical random walks to quantum
random chains, with a quadratic speedup over
the classical random walk algorithm [15]. The
resulting algorithm is similar to the algorithm of
[3] described above and has the same running
time.

For an overview on related quantum algo-
rithms using similar methods, see [2, 10].
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Further Developments
The running time of the algorithm has been im-
proved to O.

p
N logN/ time steps if the grid is

known to contain exactly one (i, j) with ai;j D 1

and O.
p
N log1:5N/ steps in the general case.

This can be achieved in two different ways. First,
Tulsi [16] showed how to modify the quantum
walk so that, after O.

p
N logN/ steps, it finds

the right (i, j) with a constant probability. This
eliminates the need to use amplitude amplifica-
tion.

Second, Ambainis et al. [4] showed that the
same result can be achieved without modifying
the quantum walk, by a simple classical postpro-
cessing. That is, even if the quantum walk does
not find the right (i, j), its final state is much more
likely to be (i 0, j 0) that is close to (i, j). One
can then run the quantum walk forO.

p
N logN/

steps once, measure the result, obtain a location
(i 0, j 0), and search the nearby locations for (i, j)
with ai;j D 1.

Search algorithms similar to the original 2D
search algorithm have been analyzed for a num-
ber of other graphs (e.g., for hierarchical net-
works [12]).

Applications

The quantum algorithm for search on the grid
by Ambainis, Kempe, and Rivosh [3] has been
generalized by Szegedy [15], obtaining a gen-
eral procedure for speeding up classical Markov
chains (described in more detail in the article on
Quantization of Markov Chains). Szegedy’s gen-
eralization concerns a class of algorithms called
Search by Random Walk in which one performs a
random walk on some search space until finding
an element with a certain property. Szegedy [15]
showed that if a classical random walk finds a
marked element in T steps (on average), there is
a quantum algorithm that detects the existence of
a marked element in O.

p
T / steps.

It is an open problem to extend Szegedy’s
algorithm so that it not only detects the existence
of an element with the desired property but also
finds it in O.

p
T / time steps. (This is known as

the “finding problem”.) A step in this direction

was made by Magniez et al. [11] who generalized
Tulsi’s algorithm for search on the grid [16] to
solve the finding problem inO.

p
T / steps when-

ever the classical random walk is vertex transitive
and the search space has a unique element with
the desired property.

Quantum algorithms for spatial search are also
useful for designing quantum communication
protocols for the set disjointness problem. In
the set disjointness problem, one has two parties
holding inputs x 2 f0; 1gN and y 2 f0; 1gN and
they have to determine if there is i 2 f1; : : : ; N g
for which xi D yi D 1. (One can think of x and
y as representing subsets X; Y � f1; : : : ; N g
with xi D 1.yi D 1/ if i 2 X.i 2 Y /.
Then, determining if xi D yi D 1 for some
i is equivalent to determining if X \ Y ¤ ;.)

The goal is to solve the problem, communi-
cating as few bits between the two parties as pos-
sible. Classically, 
.N/ bits of communication
are required [13]. The optimal quantum protocol
[1] usesO.

p
N/ quantum bits of communication

and its main idea is to reduce the problem to
spatial search. As shown by the 
.

p
N/ lower

bound of [14], this algorithm is optimal.
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Problem Definition

Pell’s equation is one of the oldest studied prob-
lem in number theory. For a positive square-free
integer d , Pell’s equation is x2�dy2 D 1, and the
problem is to compute integer solutions x; y of
the equation [8, 10]. The earliest algorithm for it
uses the continued fraction expansion of

p
d and

dates back to 1000 a.d. by Indian mathematicians.
Lagrange showed that there are an infinite num-
ber of solutions of Pell’s equation. All solutions
are of the form xn C yn

p
d D .x1 C y1

p
d/n,

where the smallest solution, .x1; y1/, is called the
fundamental solution. The solution .x1; y1/ may
have exponentially many bits in general in terms
of the input size, which is log d , and so cannot be
written down in polynomial time. To resolve this
difficulty, the computational problem is recast as
computing the integer closest to the regulator
R D ln.x1 C y1

p
d/. In this representation,

solutions of Pell’s equation are positive integer
multiples of R.

Solving Pell’s equation is a special case of
computing the unit group of number field. For a
positive non-square integer  congruent to 0 or 1
mod 4, K D Q.

p
/ is a real quadratic number

field. Its subring O D Z

h
	C

p
	

2

i
� Q.

p
/

is called the quadratic order of discriminant .
The unit group is the set of invertible elements
of O. Units have the form ˙"k , where k 2 Z,
for some " > 1 called the fundamental unit.
The fundamental unit " can have exponentially
many bits, so an approximation of the regulator
R D ln " is computed. In this representation
the unit group consists of integer multiples of R.
Given the integer closest to R there are classical
polynomial-time algorithms to compute R to any
precision. There are also efficient algorithms to
test if a given number is a good approximation
to an integer multiple of a unit or to compute the
least significant digits of " D eR [1, 3].

Two related and potentially more difficult
problems are the principal ideal problem and
computing the class group of a number field. In
the principal ideal problem, a number field and
an ideal I of O are given, and the problem is
to decide if the ideal is principal, i.e., whether
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there exists ˛ such that I D ˛O. If it is principal,
then one can ask for an approximation of ln˛.
There are efficient classical algorithms to verify
that a number is close to ln˛ [1, 3]. The class
group of a number field is the finite abelian group
defined by taking the set of fractional ideals
modulo the principal fractional ideals. The class
number is the size of the class group. Computing
the unit group, computing the class group, and
solving the principal ideal problems are three of
the main problems of computational algebraic
number theory [3]. Assuming the GRH, they are
in NP \ CoNP [9].

Key Results

The best known classical algorithms for the prob-
lems defined in the last section take subexponen-
tial time, but there are polynomial-time quantum
algorithms for them [5, 7].

Theorem 1 Given a quadratic discriminant ,
there is a classical algorithm that computes an
integer multiple of the regulator to within one.
Assuming the GRH, this algorithm computes the
regulator to within one and runs in expected time

exp
�p

.log/ log log
�O.1/

.

Theorem 2 There is a polynomial-time quantum
algorithm that, given a quadratic discriminant
, approximates the regulator to within ı of the
associated order O in time polynomial in log
and log ı with probability exponentially close to
one.

Corollary 1 There is a polynomial-time quan-
tum algorithm that solves Pell’s equation.

The quantum algorithm for Pell’s equation
uses the existence of a periodic function on the
reals which has periodR and is one-to-one within
each period [5, 7]. There is a discrete version of
this function that can be computed efficiently.
This function does not have the same periodic
property since it cannot be evaluated at arbitrary
real numbers such as R, but it does approximate
the situation well enough for the quantum algo-
rithm. In particular, computing the approximate

period of this function gives R to the closest
integer or, in other words, computes a generator
for the unit group.

Theorem 3 There is a polynomial-time quantum
algorithm that solves the principal ideal problem
in real quadratic number fields.

Corollary 2 There is a polynomial-time quan-
tum algorithm that can break the Buchmann-
Williams key-exchange protocol in real quadratic
number fields.

Theorem 4 The class group and class number of
a real quadratic number field can be computed in
quantum polynomial time assuming the GRH.

In general, one can ask to find the unit group
of an arbitrary degree number field Q.™/, where
™ is the root of a polynomial with rational coeffi-
cients. There are two parameters associated with
this problem. The first is the discriminant, which
generalizes parameter above. The second is the
degree n of the number field as a vector space
over the rational numbers. In the above example
the degree is fixed at 2. The unit group of an
arbitrary degree number can also be computed
efficiently by a quantum algorithm.

Theorem 5 ([4]) The unit group of a number
field can be computed by a quantum algorithm in
time polynomial in log the discriminant, and the
degree n.

This last result uses a major generalization
of the hidden subgroup problem to continuous
functions. A new method is used to compute the
function that is polynomial time in the degree of
the number field and solves the hidden subgroup
problem for continuous groups.

Applications

Computationally hard number theoretic problems
are useful for public key cryptosystems. There are
reductions from factoring to Pell’s equation and
Pell’s equation to the principal ideal problem, but
no reductions are known in the opposite direction.
The principal ideal problem forms the basis of
the Buchmann-Williams key-exchange protocol
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[2]. Identification schemes based on this prob-
lem have been proposed by Hamdy and Maurer
[6]. The classical exponential-time algorithms
help determine which parameters to choose for
the cryptosystem. The best known algorithm for
Pell’s equation is exponentially slower than the
best factoring algorithm. Systems based on these
harder problems were proposed as alternatives in
case factoring turns out to be polynomial time
solvable. The efficient quantum algorithms can
break these cryptosystems.

Open Problems

Lattice-based cryptography is the leading class of
candidates for primitives secure against quantum
computers. Recent systems have used lattices
from number fields in order to make them
more efficient. It is an open question whether
lattice-based systems are secure against quantum
computers, given that quantum computers
have an exponential advantage over classical
computers for some problems in number
fields.
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Problem Definition

A function F is said to be r-to-one if every
element in its image has exactly r distinct preim-
ages.
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Input : an r-to-one function F .
Output : x1 and x2 such that F.x1/ D F.x2/.

Key Results

The algorithm presented here finds col-
lisions in arbitrary r-to-one functions F

after only O.
3
p
N=r / expected evaluations

of F . The algorithm uses the function as
a black box, that is, the only thing the
algorithm requires is the capacity to evaluate
the function. Again assuming the function
is given by a black box, the algorithm is
optimal [1], and it is more efficient than the
best possible classical algorithm which has
query complexity ˝.

p
N=r/. The result is

stated precisely in the following theorem and
corollary.

Theorem 1 Given an r-to-one functionF WX!Y
with r � 2 and an integer 1� k�N D jX j,
algorithm Collision.F; k/ returns a collision
after an expected number of O.k C

p
N=.rk/ /

evaluations of F and uses space �.k/. In partic-
ular, when k D

3
p
N=r , then Collision.F; k/

uses an expected number of O.
3
p
N=r /

evaluations of F and space �. 3
p
N=r /.

Corollary 1 There exists a quantum algorithm
that can find a collision in an arbitrary r-to-one
function F W X ! Y , for any r � 2, using space
S and an expected number of O.T / evalua-
tions of F for every 1 � S � T subject to
ST 2 � jF.X/j where F.X/ denotes the image
of F .

The algorithm uses as a procedure a version of
Grover’s search algorithm. Given a function H
with domain size n and a target y, Grover.H; y/
returns an x such that H.x/ D y in expected
O.
p
n/ evaluations of H .

Collision.F; k/:

1. Pick an arbitrary subset K � X of cardinal-
ity k. Construct a table L of size k where each
item in L holds a distinct pair .x; F.x// with
x 2 K.

2. Sort L according to the second entry in each
item of L.

3. Check if L contains a collision, that is, check
if there exist distinct elements .x0; F .x0//;

.x1; F .x1// 2 L for which F.x0/ D F.x1/.
If so, go to step 6.

4. Compute x1 D Grover.H; 1/ where
H W X ! f0; 1g denotes the function defined
by H.x/ D 1 if and only if there exists
x0 2 K so that .x0; F .x// 2 L but x 6D x0.
(Note that x0 is unique if it exists since we
already checked that there are no collisions
in L.)

5. Find .x0; F .x1// 2 L.
6. Output the collision fx0; x1g.

Applications

This problem is of particular interest for cryptol-
ogy because some functions known as hash func-
tions are used in various cryptographic protocols.
The security of these protocols crucially depends
on the presumed difficulty of finding collisions in
such functions.
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Problem Definition

Given positive real numbers a ¤ 1; b, the
logarithm of b to base a is the unique real
number s such that b D as . The notion of the
discrete logarithm is an extension of this concept
to general groups.

Problem 1 (Discrete logarithm)

INPUT: Group G; a; b 2 G such that b D as for
some positive integer s.

OUTPUT: The smallest positive integer s satis-
fying b D as , also known as the discrete
logarithm of b to the base a in G.

The usual logarithm corresponds to the dis-
crete logarithm problem over the group of posi-
tive reals under multiplication. The most common
case of the discrete logarithm problem is when
the group G D Z�

p , the multiplicative group of
integers between 1 and p � 1 modulo p, where
p is a prime. Another important case is when the

groupG is the group of points of an elliptic curve
over a finite field.

Key Results

The discrete logarithm problem in Z�
p , where

p is a prime, as well as in the group of
points of an elliptic curve over a finite field
is believed to be intractable for randomized
classical computers. That is, any, possibly
randomized, algorithm for the problem run-
ning on a classical computer will take time
that is superpolynomial in the number of
bits required to describe an input to the
problem. The best classical algorithm for
finding discrete logarithms in Z�

p , where p

is a prime, is Gordon’s [4] adaptation of
the number field sieve which runs in time
exp.O..logp/1=3.log logp/2=3//.

In a breakthrough result, Shor [9] gave an
efficient quantum algorithm for the discrete loga-
rithm problem in any groupG; his algorithm runs
in time that is polynomial in the bit size of the
input.

Result 1 ([9]) There is a quantum algorithm
solving the discrete logarithm problem in any
group G on n-bit inputs in time O.n3/ with
probability at least 3/4.

Description of the Discrete Logarithm
Algorithm
Shor’s algorithm [9] for the discrete logarithm
problem makes essential use of an efficient
quantum procedure for implementing a unitary
transformation known as the quantum Fourier
transform. His original algorithm gave an
efficient procedure for performing the quantum
Fourier transform only over groups of the
form Zr , where r is a “smooth” integer, but
nevertheless, he showed that this itself sufficed
to solve the discrete logarithm in the general
case. In this article, however, a more modern
description of Shor’s algorithm is given. In
particular, a result by Hales and Hallgren [5]
is used which shows that the quantum Fourier
transform over any finite cyclic group Zr can be
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efficiently approximated to inverse-exponential
precision.

A description of the algorithm is given below.
A general familiarity with quantum notation on
the part of the reader is assumed. A good in-
troduction to quantum computing can be found
in the book by Nielsen and Chuang [8]. Let
.G; a; b; Nr/ be an instance of the discrete loga-
rithm problem, where Nr is a supplied upper bound
on the order of a in G. That is, there exists a
positive integer r � Nr such that ar D 1. By using
an efficient quantum algorithm for order finding
also discovered by Shor [9], one can assume that
the order of a in G is known, that is, the smallest
positive integer r satisfying ar D 1. Shor’s
order-finding algorithm runs in time O..log Nr/3/.
Let � > 0. The discrete logarithm algorithm
works on three registers, of which the first two
are each t qubits long, where t WD O.log r C
log.1=�//, and the third register is big enough to
store an element of G. Let U denote the unitary
transformation

U W jxijyij´i 7! jxijyij´˝ .bxay/i;

where ˚ denotes bitwise XOR. Given access to
a reversible oracle for group operations in G, U
can be implemented reversibly in time O.t3/ by
repeated squaring.

Let CŒZr � denote the Hilbert space of func-
tions from Zr to complex numbers. The compu-
tational basis of CŒZr � consists of the delta func-
tions fjlig0�l�r�1, where ji is the function that
sends the element l to 1 and the other elements of
Zr to 0. Let QFTZr

denote the quantum Fourier
transform over the cyclic group Zr defined as the
following unitary operator on CŒZr �:

QFTZr
W jxi 7! r�1=2

X
y2Zr

e�2�ixy=r jyi:

It can be implemented in quantum time
O.t log.t=�/ C log2.1=�// up to an error of
� using one t -qubit register [5]. Note that
for any k 2 Zr ;QFTZr

transforms the state
r�1=2

P
x2Zr

e�2�ikx=r jxi to the state jki. For any

integer l; 0 � l � r � 1, define

j Oli WD r�1=2

r�1X
kD0

e�2�ilk=r jaki: (1)

Observe that fj Olig0�l�r�1 forms an orthonormal
basis of CŒhai�, where hai is the subgroup gen-
erated by a in G and is isomorphic to Zr , and
CŒhai� denotes the Hilbert space of functions
from hai to complex numbers.

Algorithm 1 (Discrete logarithm)

INPUT: Elements a; b 2 G, a quantum circuit for
U , the order r of a in G.

OUTPUT: With constant probability, the discrete
logarithm s of b to the base a in G.

RUNTIME: A total of O.t3/ basic gate opera-
tions, including four invocations of QFTZr

and
one of U .

PROCEDURE:

1. Repeat Steps (a)–(e) twice, obtaining
(sl1mod r; l1) and (sl2mod r; l2).

(a) j0ij0ij0i
(b) 7! r�1

P
x;y2Zr

jxijyij0i

Apply QFTZr
to the first two registers:

(c) 7! r�1
P

x;y2Zr

jxijyijbxayi

Apply U

(d ) 7! r�1=2
r�1P
lD0

jsl mod rijlij Oli

Apply QFTZr
to the first two registers:

(e) 7! .sl mod r; l/
Measure the first two registers:

2. If l1 is not coprime to l2, abort.
3. Let k1; k2 be integers such that k1l1 C

k2l2 D 1. Then, output s D k1.sl1/ C

k2.sl2/ mod r .

The working of the algorithm is explained below.
From Eq. (1), it is easy to see that

jbxayi D r�1=2

r�1X
lD0

e2�il.sxCy/=r j Oli:

Thus, the state in Step 1(c) of the above algorithm
can be written as
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r�1
X

x;y2Zr

jxijyijbxayi

D r�3=2

r�1X
lD0

X
x;y2Zr

e2�il.sxCy/=r jxijyij Oli

D r�3=2

r�1X
lD0

2
4X

x2Zr

e2�islx=r jxi

3
5 �

2
4X

y2Zr

e2�ily=r jyi

3
5 j Oli:

Now, applying QFTZr
to the first two registers

gives the state in Step 1(d) of the above algorithm.
Measuring the first two registers gives (slmod
r; l) for a uniformly distributed l; 0 � l � r � 1
in Step 1(e). By elementary number theory, it
can be shown that if integers l1, l2 are uniformly
and independently chosen between 0 and l � 1,
they will be coprime with constant probability. In
that case, there will be integers k1, k2 such that
k1l1 C k2l2 D 1, leading to the discovery of the
discrete logarithm s in Step 3 of the algorithm
with constant probability. Since actually only an
�-approximate version of QFTZr

can be applied,
� can be set to be a sufficiently small constant,
and this will still give the correct discrete loga-
rithm s in Step 3 of the algorithm with constant
probability. The success probability of Shor’s
algorithm for the discrete logarithm problem can
be boosted to at least 3/4 by repeating it a constant
number of times.

Generalizations of the Discrete Logarithm
Algorithm
The discrete logarithm problem is a special case
of a more general problem called the hidden
subgroup problem [8]. The ideas behind Shor’s
algorithm for the discrete logarithm problem can
be generalized in order to yield an efficient quan-
tum algorithm for hidden subgroups in Abelian
groups (see [1] for a brief sketch). It turns out that
finding the discrete logarithm of b to the base a
in G reduces to the hidden subgroup problem in
the group Zr � Zr where r is the order of a in
G. Besides the discrete logarithm problem, other
cryptographically important functions like inte-
ger factoring, finding the order of permutations,

as well as finding self-shift-equivalent polynomi-
als over finite fields can be reduced to instances
of a hidden subgroup in Abelian groups.

Applications

The assumed intractability of the discrete loga-
rithm problem lies at the heart of several cryp-
tographic algorithms and protocols. The first ex-
ample of public-key cryptography, namely, the
Diffie-Hellman key exchange [2], uses discrete
logarithms, usually in the group Z�

p for a prime p.
The security of the US national standard Digital
Signature Algorithm (see [7] for details and more
references) depends on the assumed intractability
of discrete logarithms in Z�

p , where p is a prime.
The ElGamal public-key cryptosystem [3] and
its derivatives use discrete logarithms in appro-
priately chosen subgroups of Z�

p , where p is a
prime. More recent applications include those in
elliptic curve cryptography [6], where the group
consists of the group of points of an elliptic curve
over a finite field.
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Problem Definition

The parity of n bits x0; x1; � � � ; xn�1 2 f0; 1g is

x0 ˚ x1 ˚ � � � ˚ xn�1 D

n�1X
iD0

xi mod 2:

As an elementary Boolean function, parity is
important not only as a building block of digital
logic but also for its instrumental roles in several
areas such as error correction, hashing, discrete
Fourier analysis, pseudorandomness, communi-
cation complexity, and circuit complexity. The
feature of parity that underlies its many appli-
cations is its maximum sensitivity to the in-
put: flipping any bit in the input changes the
output. The computation of parity from its in-
put bits is quite straightforward in most com-
putation models. However, two settings deserve
attention.

The first is the circuit complexity of parity
when the gates are restricted to AND, OR, and
NOT gates. It is known that parity cannot be com-
puted by such a circuit of a polynomial size and
a constant depth, a groundbreaking result proved
independently by Furst, Saxe, and Sipser [7] and
Ajtai [1] and improved by several subsequent
works.

The second, and the focus of this article,
is in the decision tree model (also called the
query model or the black-box model), where
the input bits x D x0x1 � � � xn�1 2 f0; 1g

n

are known to an oracle only, and the algorithm
needs to ask questions of the type “xi D‹” to
access the input. The complexity is measured by
the number of queries. Specifically, a quantum
query is the application of the following query
gate:

Ox W ji; bi 7! ji; b ˚ xi i;

i 2 f0; � � � ; n � 1g; b 2 f0; 1g:

Key Results

Proposition 1 There is a quantum query algo-
rithm computing the parity of 2 bits with prob-
ability 1 using 1 query.

Proof Denote by j˙i D 1p
2
.j0i ˙ j1i/. The

initial state of the algorithm is

1
p
2
.j0i C j1i/˝ j�i:
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Apply a query gate, using the first register for the
index slot and the second register for the answer
slot. The resulting state is

1
p
2
..�1/x0 j0i C .�1/x1 j1i/˝ j�i:

Applying a Hadamard gateH D jCih0jC j�ih1j
on the first register brings the state to

.�1/x0 jx0 C x1i ˝ j�i:

Thus measuring the first register gives x0 C x1

with certainty.

Corollary 1 There is a quantum query algo-
rithm computing the parity of n bits with prob-
ability 1 using dn=2e queries.

The above quantum upper bound for parity
is tight, even if the algorithm is allowed to err
with a probability bounded away from 1/2 [6]. In
contrast, any classical randomized algorithm with
bounded error probability requires n queries. This
follows from the fact that on a random input, any
classical algorithm not knowing all the input bits
is correct with precisely 1/2 probability.

Applications

The quantum speedup for computing parity was
first observed by Deutsch [4]. His algorithm
uses j0i in the answer slot, instead of j�i.
After one query, the algorithm has 3/4 chance
of computing the parity, better than any classical
algorithm (1/2 chance). The presented algorithm
is actually a special case of the Deutsch-
Jozsa Algorithm, which solves the following
problem now referred to as the Deutsch-Jozsa
Problem.

Problem 1 (Deutsch-Jozsa Problem) Let n �
1 be an integer. Given an oracle function f W
f0; 1gn ! f0; 1g that satisfies either (a) f .x/ is
constant on all x 2 f0; 1gn or (b) jfx W f .x/ D
1gj D jfx W f .x/ D 0gj D 2n�1, determine
which case it is.

When n D 1, the above problem is precisely
parity of 2 bits. For a general n, the Deutsch-
Jozsa Algorithm solves the problem using only
once the following query gate:

Of Wjx; bi7!jx; f .x/˚ bi; x2f0; 1g
n; b2f0; 1g:

The algorithm starts with

j0ni ˝ j�i:

It applies H˝n
on the index register (the first n

qubits), changing the state to

1

2n=2

X
x2f0;1gn

jxi ˝ j�i:

The oracle gate is then applied, resulting in

1

2n=2

X
x2f0;1gn

.�1/f .x/jxi ˝ j�i:

For the second time,H˝n
is applied on the index

register, bringing the state to

X
y2f0;1gn

0
@ 1

2n

X
x2f0;1gn

.�1/f .x/Cx�y

1
A jyi ˝ j�i:

(1)

Finally, the index register is measured in the com-
putational basis. The Algorithm returns “Case
(a)” if 0n is observed, otherwise returns “Case
(b).”

By direct inspection, the amplitude of j0ni

is 1 in Case (a) and 0 in Case (b). Thus the
algorithm is correct with probability 1. It is easy
to see that any deterministic algorithm requires
n=2 C 1 queries in the worst case; thus the
algorithm provides the first exponential quantum
versus deterministic speedup.

Note that O(1) expected a number of queries
are sufficient for randomized algorithms to solve
the Deutsch-Jozsa Problem with a constant suc-
cess probability arbitrarily close to 1. Thus the
Deutsch-Jozsa Algorithm does not have much
advantage compared with error-bounded random-
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ized algorithms. One might also feel that the
saving of one query for computing the parity
of 2 bits by Deutsch-Jozsa Algorithm is due to
the artificial definition of one quantum query.
Thus the significance of the Deutsch-Jozsa Al-
gorithm is not in solving a practical problem,
but in its pioneering use of quantum Fourier
transform (QFT), of which H˝n

is one, in the
pattern

QFT! Query! QFT:

The same pattern appears in many subsequent
quantum algorithms, including those found by
Bernstein and Vazirani [2], Simon [9], and
Shor [8].

The Deutsch-Jozsa Algorithm is also referred
to as Deutsch Algorithm. The algorithm as pre-
sented above is actually the result of the im-
provement by Cleve, Ekert, Macchiavello, and
Mosca [3] and independently by Tapp (unpub-
lished) on the algorithm in [5].
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Problem Definition

Associated with each number field is a finite
abelian group called the class group. The order
of the class group is called the class number.
Computing the class number and the structure
of the class group of a number field is among
the main tasks in computational algebraic number
theory [4].

A number field F can be defined as a subfield
of the complex numbers C which is generated
over the rational numbers Q by an algebraic
number, i.e., F D Q.�/ where � is the root of
a polynomial with rational coefficients. The ring
of integers O of F is the subset consisting of
all elements that are roots of monic polynomials
with integer coefficients. The ring O � F can
be thought of as a generalization of Z, the ring of
integers in Q. In particular, one can ask whether
O is a principal ideal domain and whether ele-
ments in O have unique factorization. Another
interesting problem is computing the unit group
O�, which is the set of invertible algebraic inte-
gers inside F , that is, elements ˛ 2 O such that
˛�1 is also in O.
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Ever since the class group was discovered by
Gauss in 1798, it has been an interesting object
of study. The class group of F is the set of equiv-
alence classes of fractional ideals of F , where
two ideals I and J are equivalent if there exists
˛ 2 F � such that J D ˛I . Multiplication of two
ideals I and J is defined as the ideal generated
by all products ab, where a 2 I and b 2 J .
Much is still unknown about number fields, such
as whether there exist infinitely many number
fields with trivial class group. The question of the
class group being trivial is equivalent to asking
whether the elements in the ring of integers O of
the number field have unique factorization.

In addition to computing the class number and
the structure of the class group, computing the
unit group and determining whether given ideals
are principal, called the principal ideal problem,
are also central problems in computational alge-
braic number theory.

Key Results

The best known classical algorithms for the class
group take subexponential time [1, 2, 4]. Assum-
ing the GRH, computing the class group, the unit
group, and solving the principal ideal problem are
in NP \ CoNP [10].

The following theorems state that the three
problems defined above have efficient quantum
algorithms [7, 9].

Theorem 1 There is a polynomial-time quantum
algorithm that computes the unit group of a
constant degree number field.

Theorem 2 There is a polynomial-time quantum
algorithm that solves the principal ideal problem
in constant degree number fields.

Theorem 3 The class group and class number of
a constant degree number field can be computed
in quantum polynomial time assuming the GRH.

Computing the class group means computing
the structure of a finite abelian group given a set
of generators for it. When it is possible to effi-
ciently multiply group elements (including com-
puting large powers of elements) and efficiently

compute unique representations of each group
element, then this problem reduces to the stan-
dard hidden subgroup problem over the integers
and therefore has an efficient quantum algorithm.
Ideal multiplication is efficient in number fields.
For imaginary number fields, there are efficient
classical algorithms for computing group ele-
ments with a unique representation, and therefore
there is an efficient quantum algorithm for com-
puting the class group.

For real number fields, there is no known way
to efficiently compute unique representations of
class group elements. As a result, the classical
algorithms typically compute the unit group and
class group at the same time. A quantum algo-
rithm [7] is able to efficiently compute the unit
group of a number field and then use the principal
ideal algorithm to compute a unique quantum
representation of each class group element. Then
the standard quantum algorithm can be applied
to compute the class group structure and class
number.

Applications

There are factoring algorithms based on com-
puting the class group of an imaginary number
field. One is exponential time and the other is
subexponential time [4].

Computationally hard number theoretic
problems are useful for public key cryptosystems.
Pell’s equation reduces to the principal
ideal problem, which forms the basis of the
Buchmann-Williams key-exchange protocol
[3]. Identification schemes have also been
based on this problem by Hamdy and Maurer
[8]. The classical exponential-time algorithms
help determine which parameters to choose
for the cryptosystem. Factoring reduces to
Pell’s equation, and the best known algorithm
for it is exponentially slower than the best
factoring algorithm. Systems based on these
harder problems were proposed as alternatives
in case factoring turns out to be polynomial time
solvable. The efficient quantum algorithms can
break these cryptosystems.
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Open Problems

The unit group of an arbitrary degree number
field has an efficient quantum algorithm [6], and
computing the class group and solving the prin-
cipal ideal problem are related to this problem.
One open problem is to compute certain towers
of number fields with special properties, such
as an infinite family with constant root discrim-
inant [5].

Cross-References

�Quantum Algorithm for Factoring
�Quantum Algorithm for Solving Pell’s Equa-

tion

Recommended Reading

1. Biasse JF, Fieker C Subexponential class group and
unit group computation in large degree number fields.
LMS J Comput Math 17:385–403

2. Buchmann J (1990) A subexponential algorithm for
the determination of class groups and regulators of al-
gebraic number fields. In: Goldstein C (ed) Séminaire
de Théorie des Nombres, Paris 1988–1989. Progress
in mathematics, vol 91. Birkhäuser, Boston, pp 27–
41

3. Buchmann JA, Williams HC (1990) A key exchange
system based on real quadratic fields (extended ab-
stract). In: Brassard G (ed) Advances in cryptology-
CRYPTO ’89, 20–24 Aug 1989. Lecture notes in
computer science, vol 435. Springer, Berlin, pp 335–
343

4. Cohen H (1993) A course in computational alge-
braic number theory. Graduate texts in mathematics,
vol 138. Springer, Berlin/Heidelberg

5. Eisentraeger K, Hallgren, S (2010) Algorithms for ray
class groups and Hilbert class fields. In: Proceedings
of the 21st ACM-SIAM symposium on discrete algo-
rithms (SODA)

6. Eisentraeger K, Hallgren S, Kitaev A, Song F (2014)
A quantum algorithm for computing the unit group of
an arbitrary degree number field. In: Proceedings of
the 46th ACM symposium on theory of computing

7. Hallgren S (2005) Fast quantum algorithms for com-
puting the unit group and class group of a number
field. In: Proceedings of the 37th ACM symposium
on theory of computing

8. Hamdy S, Maurer M (1999) Feige-fiat-shamir iden-
tification based on real quadratic fields. Techincal
report TI-23/99. Technische Universität Darmstadt,

Fachbereich Informatik. http://www.informatik.tu-
darmstadt.de/TI/Veroeffentlichung/TR/

9. Schmidt A, Vollmer U (2005) Polynomial time quan-
tum algorithm for the computation of the unit group
of a number field. In: Proceedings of the 37th ACM
symposium on theory of computing

10. Thiel C (1995) On the complexity of some problems
in algorithmic algebraic number theory. Ph.D. thesis,
Universität des Saarlandes, Saarbrücken

Quantum Algorithms for Graph
Connectivity

Aleksandrs Belovs
Computer Science and Artificial Intelligence
Laboratory, MIT, Cambridge, MA, USA

Keywords

Finding small subgraphs within large graphs;
UPATH; USTCON

Years and Authors of Summarized
Original Work

2012; Belovs, Reichardt

Problem Definition

The input is an undirected simple graph G on n
vertices. The graph is given by its adjacency ma-
trix: For any two vertices u and v, one can query
whether u and v are connected by an edge. (Note
that classical algorithms usually have access toG
in the form of incidence lists. However, specifi-
cation of the input graph in the form of adjacency
matrix is standard in quantum algorithms.) Two
special vertices of the graph, s and t , are selected.
The task is to detect whether s and t lie in
the same connected component of G. Quantum
algorithms for this problem are described.

Classically, this problem can be solved in
quadratic time by a variety of algorithms. It is
easy to see that this is optimal. Also, the st -
connectivity problem is a canonical example of
a problem in RL (the class of problems solvable
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in randomized logspace) [1]. Later, it was shown
to be in L (deterministic logspace) [8].

Key Results

Previous Algorithm
Dürr et al. [5] gave a quantum algorithm with
the following properties. Its query complexity is
O.n3=2/, and its time complexity is the same
up to logarithmic factors. The algorithm repeat-
edly executes a quantum subroutine that uses
O.logn/ qubits and requires quantum read-only
access to O.n logn/ classical bits. This memory
is changed between the runs of the quantum
subroutine.

The algorithm is based on Borůvka’s
algorithm [4]. It solves a more general
problem of finding a minimum spanning
tree of G. In particular, the algorithm out-
puts a list of the connected components
of G.

Main Algorithm
Theorem 1 ([3]) Consider the st -connectivity
problem on an n-vertex graph G with the
additional promise: Either s and t lie in different
components ofG, or they are connected by a path
of length at most d . The above problem can be
solved by a quantum algorithm in QO.n

p
d/ time,

O.n
p
d/ queries, and O.logn/ space.

Thus, in the worst case of d D n � 1, the
complexity of the algorithm is the same as of the
algorithm by Dürr et al. But if d is small, this
algorithm performs better. This promise appears
quite naturally in practice.

The algorithm is based on the quantum algo-
rithm for evaluating span programs [6, 7].

Applications

The st -connectivity algorithm or its modifi-
cations can be used as a quantum version of
dynamic programming. In general, quantum
algorithms provide no advantage in implementing
dynamic programming. The algorithm of

Theorem 1, although it does not have the
full power of dynamic programming, attains a
quadratic speedup (for small values of d ). In [3],
this algorithm is combined with the color-coding
approach [2] to solve the problem of finding
small subgraphs.

For example, consider the problem of detect-
ing the presence of a k-path in an input graph G
given by its adjacency matrix. (We assume that
k D O.1/.) Color each vertex of G in a color
from f0; 1; : : : kg independently and uniformly
at random. Leave only those edges of G that
connect vertices whose colors differ by exactly
1. Add two new vertices s and t , connect s
to all vertices of color 0, and connect t to all
vertices of color k. Denote the resulting graph
by G0.

We say that a k-path in G is colored correctly,
if the colors of its vertices go from 0 to k starting
with one of its end points. Thus, for any k-path of
G, the probability it is colored correctly is ˝.1/.

Execute the algorithm of Theorem 1 on G0

with d D k C 2. If G contains a correctly
colored k-path, thenG0 has a path of length kC2
from s to t ; hence, the algorithm accepts. On the
other hand, if s and t are connected by a path
in G0, then G contains a k-path (not necessary
correctly colored). Hence, if there is no k-path
in G, the algorithm rejects for any coloring of
G. By repeating the algorithm constant a number
of times with different colorings, it is possible to
distinguish these two cases.

Classically, color coding is capable of finding
a subgraph H in the input graph, if H is an
arbitrary fixed tree. In the quantum case, the class
of graphs is narrower.

Problem 1 (Subgraph/not-a-minor promise
problem) Let H be a fixed simple graph. The
input is a graph G given by its adjacency matrix.
The task is to distinguish two cases:

• The graph G contains H as a subgraph.
• The graph G does not contain H as a minor.

Classically, this problem requires ˝.n2/

queries even if H is a single edge. The quantum
query lower bound is ˝.n/.



Quantum Algorithms for Matrix Multiplication and Product Verification 1673

Q

Theorem 2 ([3]) Assume that H is a tri-
angle or an edge-subdivision of a star. The
subgraph/not-a-minor promise problem for H
on an n-vertex input graph can be solved
by a quantum algorithm in QO.n/ time. The
algorithm uses O.n/ queries. If H is an edge-
subdivision of a star, the algorithm usesO.logn/
space.

Corollary 1 Assume that H is a path or an
edge-subdivision of a claw (a 3-star). There exists
a quantum algorithm that detects whether an n-
vertex input graph contains H as a subgraph in
QO.n/ time. The algorithm uses O.n/ queries and
O.logn/ space.
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Problem Definition

Let S be any algebraic structure over which
matrix multiplication is defined, such as a field
(e.g., real numbers), a ring (e.g., integers), or
a semiring (e.g., the Boolean semiring). If we
use C and � to denote the addition and mul-
tiplication operations over S , then the matrix
product C of two n � n matrices A and B

is defined as Cij WD
Pn

kD1Aik � Bkj for all
i; j 2 f1; 2; : : : ; ng. Over the Boolean semiring,
the addition and multiplication operations are the
logical OR and logical AND operations, respec-
tively, and thus, the matrix product C is defined
as Cij WD

Wn
kD1.Aik ^ Bkj /. In this article we

consider the following problems.

Problem 1 (Matrix multiplication)

INPUT: Two n�nmatrices A and B with entries
from S .

OUTPUT: The matrix C WD AB .
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Problem 2 (Matrix product verification)

INPUT: Three n � n matrices A, B , and C with
entries from S .

OUTPUT: A bit indicating whether or not C D
AB .

The matrix multiplication problem is a well-
studied problem in classical computer science.
The straightforward algorithm for matrix multi-
plication that computes each entry separately us-
ing its definition uses O.n3/ operations. In 1969,
Strassen [17] presented an algorithm that multi-
plies matrices over any ring using onlyO.n2:807/

operations, showing that the straightforward ap-
proach was suboptimal. Since then there have
been many improvements and the complexity of
matrix multiplication remains an area of active
research.

Surprisingly, the matrix product verification
problem can be solved faster. In 1979,
Freivalds [6] presented an optimal O.n2/ time
bounded-error probabilistic algorithm to solve
the matrix product verification problem over any
ring using a randomized fingerprinting technique,
which has found numerous other applications in
theoretical computer science (see, e.g., Ref. [15]).

In the quantum setting, these problems are
traditionally studied in the model of quantum
query complexity, where we assume the entries of
the input matrices are provided by a black box or
an oracle. The query complexity of an algorithm
is the number of queries made to the oracle. The
bounded-error quantum query complexity of a
problem is the minimum query complexity of
any quantum algorithm that solves the problem
with bounded error, i.e., it outputs the correct
answer with probability greater than (say) 2=3.
The time complexity of an algorithm refers to the
time required to implement the remaining non-
query operations. In this article we only consider
bounded-error quantum algorithms.

Key Results

It is not known if quantum algorithms can im-
prove the time complexity of the general ma-
trix multiplication problem compared to classical

algorithms. Improvements are possible for matrix
product verification and special cases of the ma-
trix multiplication problem, as described below.

Matrix Product Verification over Rings
According to Buhrman and Špalek [3], matrix
product verification was first studied (in an
unpublished paper) by Ambainis, Buhrman,
Høyer, Karpinski, and Kurur. Using a recursive
application of Grover’s algorithm [7], they gave
an O.n7=4/ query algorithm for the problem.
The first published work on the topic is due
to Buhrman and Špalek [3], who gave an
O.n5=3/ query algorithm for matrix product
verification over any ring using a generalization
of Ambainis’ element distinctness algorithm [1].
This algorithm also achieves the same query
complexity over semirings and more general
algebraic structures. The algorithm can easily
be cast in the quantum walk search framework
of Magniez, Nayak, Roland, and Santha [14] as
explained in the survey by Santha [16]. More
interestingly, they presented an algorithm with
time complexity QO.n5=3/ for the problem over
fields and integral domains. Their algorithm uses
the same technique used by Freivalds [6] and
is therefore also time efficient over arbitrary
rings. Buhrman and Špalek also proved a lower
bound showing that any bounded-error quantum
algorithm must make at least ˝.n3=2/ queries to
solve the problem over the field F2. This lower
bound can be extended to all rings [10].

Theorem 1 (Matrix product verification over
rings) The matrix product verification problem
over any ring can be solved by a quantum al-
gorithm with query complexity O.n5=3/ and time
complexity QO.n5=3/. Furthermore, any quantum
algorithm must make ˝.n3=2/ queries to solve
the problem over a ring.

Buhrman and Špalek also studied the relation-
ship between the complexity of their algorithm
and the number of incorrect entries in the pur-
ported product, C , and showed that their algo-
rithm performs better when C has a large number
of incorrect entries [3].
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Matrix Multiplication over Rings
The quantum query complexity of multiplying
two n�nmatrices is easy to characterize in terms
of the input size. Clearly the query complexity is
upper bounded by the input size, O.n2/. On the
other hand, if A equals the identity matrix, then
C D B and in this case the matrix multiplication
problem is equivalent to learning all the bits
of an input of size n2, which requires ˝.n2/

queries. This follows, for example, from the fact
that computing the parity of n2 bits requires
˝.n2/ queries [2, 5]. This shows that the quan-
tum query complexity of matrix multiplication is
�.n2/, which is the same as the classical query
complexity. Similarly, no quantum algorithm is
known to improve the time complexity of matrix
multiplication over rings compared to classical
algorithms.

Buhrman and Špalek [3] studied the matrix
multiplication problem in terms of n and an
additional parameter `, the number of nonzero
entries in the output matrix C , and showed the
following result.

Theorem 2 The matrix multiplication problem
over any ring can be solved by a quantum al-
gorithm with query and time complexity upper
bounded by

QO.n5=3`2=3/ when 1 � ` �
p
n;

QO.n3=2`/ when
p
n � ` � n; and

QO.n2
p
`/ when n � ` � n2;

where ` is the number of nonzero entries in the
output matrix C .

When ` is small, this algorithm achieves
subquadratic time complexity and when `

approaches n2, its time complexity is close to
O.n3/, which is trivial and slower than known
classical algorithms. A detailed comparison of
this quantum algorithm with classical algorithms
may be found in Ref. [3].

Boolean Matrix Product Verification
Buhrman and Špalek [3] also studied the matrix
product verification problem over the Boolean
semiring and showed that the problem can be
solved with query and time complexity O.n3=2/.

On the other hand, the best known lower bound
is only˝.n1:055/ queries due to Childs, Kimmel,
and Kothari [4].

Theorem 3 (Boolean matrix product verifica-
tion) The Boolean matrix product verification
problem can be solved by a quantum algorithm
with query complexity O.n3=2/ and time com-
plexity QO.n3=2/. Furthermore, any quantum al-
gorithm must make˝.n1:055/ queries to solve the
problem.

Boolean Matrix Multiplication
As before, the quantum query complexity of
multiplying two n�n Boolean matrices is�.n2/,
since it is at least as hard as learning n2 input bits.
The time complexity of Boolean matrix multipli-
cation can be improved to QO.n2:5/ by observing
that the inner product of two Boolean vectors of
length n can be computed with O.

p
n/ queries

using Grover’s algorithm [7]. This observation
also speeds up matrix multiplication over some
other semirings.

Similar to the matrix multiplication problem
over rings, Boolean matrix multiplication can be
studied in terms of an additional parameter `, the
number of nonzero entries in the output matrix.
Indeed, the problem has been extensively studied
in this setting.

Buhrman and Špalek [3] observed that two
Boolean matrices can be multiplied with query
complexity O.n3=2

p
`/. This upper bound

was improved by Vassilevska Williams and
Williams [18], who presented an algorithm
with query complexity QO.minfn1:3`17=30; n2 C

n13=15`47=60g/, which was then improved by
Le Gall [11]. Finally, Jeffery, Kothari, and
Magniez [8] presented a quantum algorithm
for Boolean matrix multiplication that makes
QO.n
p
`/ queries. These upper bounds are

depicted in Fig. 1. The log factors present in
their algorithm were later removed to yield an
algorithm with query complexity O.n

p
`/ [9].

Jeffery, Kothari, and Magniez [8] also proved a
matching lower bound of˝.n

p
`/when ` � �n2

for any constant � < 1. Their algorithm can
also be modified to achieve time complexity
QO.n
p
`C `

p
n/ [12].
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Quantum Algorithms for Matrix Multiplication and
Product Verification, Fig. 1 Upper bounds on the
quantum query complexity of Boolean matrix multiplica-
tion

Theorem 4 (Boolean matrix multiplication)
The Boolean matrix multiplication problem can
be solved by a quantum algorithm with query
complexity O.n

p
`/. Furthermore, any quantum

algorithm that solves the problem must make
˝.n
p
`/ queries when ` � �n2 for any constant

� < 1. Boolean matrix multiplication can be
solved in time QO.n

p
`C `

p
n/.

Recently the problem has also been studied
in terms of the sparsity of the input matrix. Le
Gall and Nishimura [13] present algorithms with
improved time complexity in this case. Their al-
gorithm’s time complexity is a complicated func-
tion of the parameters and the reader is referred
to Ref. [13] for details.

Matrix Multiplication over Other Semirings
Le Gall and Nishimura [13] recently initiated
the study of matrix multiplication over semirings
other than the Boolean semiring and presented
algorithms with improved time complexity for
the .max;min/-semiring and related semirings.

Open Problems

Several open problems remain in the time and
query complexity settings. In the time complexity
setting, a major open problem is whether quan-
tum algorithms can solve the matrix multiplica-
tion problem faster than classical algorithms over
any ring. In the query complexity setting, the

complexity of matrix product verification over
rings and the Boolean semiring remains open.
The best upper and lower bounds are presented
in Theorems 1 and 3. A more comprehensive sur-
vey of the quantum query complexity of matrix
multiplication and its relation to other problems
studied in quantum query complexity such as
triangle finding and graph collision can be found
in the first author’s PhD thesis [10], which also
contains additional open problems.
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Problem Definition

This problem is concerned with the development
of quantum methods to speed up classical algo-
rithms based on simulated annealing (SA).

SA is a well-known and powerful strategy to
solve discrete combinatorial optimization prob-
lems [1]. The search space ˙ D f�0; : : : ; �d�1g

consists of d configurations �i , and the goal is to
find the (optimal) configuration that corresponds
to the global minimum of a given cost function
E W ˙ ! R. Monte Carlo implementations of
SA generate a stochastic sequence of configura-
tions via a sequence of Markov processes that
converges to the low-temperature Gibbs (proba-
bility) distribution, �ˇm

.˙/ / exp.�ˇmE.˙//.
If ˇm is sufficiently large, sampling from the
Gibbs distribution outputs an optimal configu-
ration with large probability, thus solving the
combinatorial optimization problem. The anneal-
ing process depends on the choice of an an-
nealing schedule, which consists of a sequence
of d � d stochastic matrices (transition rules)
S.ˇ1/; S.ˇ2/; : : : ; S.ˇm/. Such matrices are de-
termined, e.g., by using Metropolis-Hastings [2].
The real parameters ˇj denote a sequence of “in-
verse temperatures.” The implementation com-
plexity of SA is given by m, the number of times
that transition rules must be applied to converge
to the desired Gibbs distribution (within arbitrary
precision). Commonly, the stochastic matrices
are sparse, and each list of nonzero conditional
probabilities and corresponding configurations,
fPrˇ .�j j�i /; j W Prˇ .�j j�i / > 0g, can be ef-
ficiently computed on input .i; ˇ/. This implies
an efficient Monte Carlo implementation of each
Markov process. When a lower bound on the
spectral gap of the stochastic matrices (i.e., the
difference between the two largest eigenvalues)
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is known and given by  > 0, one can choose
.ˇkC1 � ˇk/ / =Emax and ˇ0 D 0, ˇm /

log
p
d .Emax is an upper bound on max� jE.�/j.

The constants of proportionality depend on the
error probability �, which is the probability of
not finding an optimal solution after the transition
rules have been applied. These choices result in a
complexity m / Emax log

p
d= for SA [3].

Quantum computers can theoretically solve
some problems, such as integer factorization,
more efficiently than classical computers [4].
This work addresses the question of whether
quantum computers could also solve combina-
torial optimization problems more efficiently or
not. The answer is satisfactory in terms of 
(Section “Key Results”). The complexity of a
quantum algorithm is determined by the number
of elementary steps needed to prepare a quantum
state that allows one to sample from the Gibbs
distribution after measurement. Similar to SA,
such a complexity is given by the number of
times a unitary corresponding to the stochastic
matrix is used. For simplicity, we assume that
the stochastic matrices are sparse and disregard
the cost of computing each list of nonzero con-
ditional probabilities and configurations, as well
as the cost of computing E.�/. We also assume
d D 2n and the space of configurations ˙ is
represented by n-bit strings. Some assumptions
can be relaxed.

Problem
INPUT: An objective function E W ˙ ! R,

sparse stochastic matrices S.ˇ/ satisfying the
detailed balance condition, a lower bound
 > 0 on the spectral gap of S.ˇ/, an error
probability � > 0.

OUTPUT: A random configuration �i 2 ˙ such
that Pr.�i 2 S0/ � 1 � �, where S0 is the set
of optimal configurations that minimize E.

Key Results

The main result is a quantum algorithm, referred
to as quantum simulated annealing (QSA), that
solves a combinatorial optimization problem with
high probability using mQ / Emax log

p
d=
p


unitaries corresponding to the stochastic matri-
ces [5]. The quantum speedup is in the spectral
gap, as 1=

p
	 1= when 	 1.

Computationally hard combinatorial opti-
mization problems are typically manifest in
a spectral gap that decreases exponentially
fast in log d , the problem size. The quadratic
improvement in the gap is then most significant
in hard instances. The QSA algorithm is based
on ideas and techniques from quantum walks
and the quantum Zeno effect. The quantum
Zeno effect can be implemented by evolution
randomization [6]. Nevertheless, recent results
on “spectral gap amplification” allow for other
quantum algorithms that result in a similar
complexity scaling [7].

Quantum Walks for QSA
A quantization of the classical random walk is
obtained by first defining a d2�d2 unitary matrix
that satisfies [8–10]

X j�i ij0i D
d�1X
j D0

q
Prˇ .�j j�i /j�i ij�j i : (1)

The configuration 0 represents a simple configu-
ration, e.g., 0 � �0 D 0 : : : 0 (the n-bit string),
and Prˇ .�j j�i / are the entries of the stochastic
matrix S.ˇ/. The other d2 � d2 unitary matrices
used by QSA are P , the permutation (swap)
operator that transforms j�i ij�j i into j�j ij�i i,
and R D 1� 2j0ih0j, the reflection operator over
j0i.

The quantum walk is W D X
PXPRPX


PXR, and the detailed balance condition im-
plies [5]

W

d�1X
iD0

q
�ˇ .�i /j�i ij0i D

d�1X
iD0

q
�ˇ .�i /j�i ij0i ;

(2)
where �ˇ .�i / are the probabilities given by the
Gibbs distribution. (X , X
, and W also depend
on ˇ.) The goal of QSA is to prepare the corre-
sponding eigenstate of W in Eq. 2, within certain
precision � > 0, and for inverse temperature
ˇm / log d . A projective quantum measurement
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of j�i i on such a state outputs an optimal solution
in the set S0 with probability Pr.S0/ � 1 � �.

Evolution Randomization and QSA
Implementation
The QSA is based on the idea of adiabatic state
transformations [6, 11]. For ˇ D 0, the initial
eigenstate of W is

Pd�1
iD0 j�i ij0i=

p
d , which can

be prepared easily on a quantum computer. The
purpose of QSA is then to drive this initial state
towards the eigenstate of W for inverse tempera-
ture ˇm, within given precision. This is achieved
by applying the sequence of unitary operations
ŒW.ˇm/�

tm : : : ŒW.ˇ2/�
t2 ŒW.ˇ1/�

t1 to the initial
state (Fig. 1). In contrast to SA, .ˇkC1 � ˇk/ /

1=Emax [11], but the initial and final inverse
temperatures are also ˇ0 D 0 and ˇm / log

p
d .

This implies that the number of different inverse
temperatures in QSA is m / Emax log

p
d ,

where the constant of proportionality depends
on �. The nonnegative integers tk can be sampled
randomly according to several distributions [6].
One way is to obtain tk after sampling multiple
(but constant) times from a uniform distribu-
tion on integers between 0 and Q � 1, where
Q D d2�=

p
e. The average cost of QSA is

then mhtki / Emax log
p
d=
p
. One can use

Markov’s inequality to avoid those (improbable)
instances where the cost is significantly greater
than the average cost. The QSA and the values of
the constants are given in detail in Fig. 1.

Analytical Properties ofW
The quantum walk W has eigenvalues e˙i�j ,
for j D 0; : : : ; d � 1, in the relevant subspace.
In particular, �0 D 0 < �1 � : : : � �d�1

and �1 �
p
 [5, 7–9]. This implies that the

relevant spectral gap for methods based on quan-
tum adiabatic state transformations is of orderp
. The quantum speedup follows from the fact

that the complexity of such methods, recently
discussed in [6, 11–13], depends on the inverse
of the relevant gap.

k → 1

k < mYes

k → k+1

No

Prepare :
d−1

i=0

|σi |0 /
√

d

Apply [W (b= k db )]t

ta, tb = unif[0, Q−1]
t = ta+ tb

Measure |s i
Output s i :
Pr(s i∈ S0) ≥ 1−

Quantum Algorithms for Simulated Annealing, Fig. 1
Flow diagram for the QSA. Under the assumptions,
the input state can be easily prepared on a quantum
computer by applying a sequence of n Hadamard gates
on n qubits. unifŒ0; Q � 1� is the uniform distribu-
tion on nonnegative integers in that range and Q D

d2�=
p

	e. ıˇ D ˇkC1 � ˇk D �=.2Emax/ and m D
d2ˇmEmax=�e. Like SA, the final inverse temperature is
ˇm D .�=2/ log.2

p
d=�/, where � is the gap of E , that

is, � D min�…S0
E.�/�E.S0/. The average cost of the

QSA is then mQ D d2��Emax log.2
p

d=�/=.�
p

	/e,
and dependence on � can be made fully logarithmic by
repeated executions of the algorithm. A quantum com-
puter implementation of W can be efficiently done by
using the algorithm that computes the nonzero conditional
probabilities of the stochastic matrix S.ˇ/

Applications

Like SA, QSA can be applied to solve
general discrete combinatorial optimization
problems [14]. QSA is often more efficient
than exhaustive search in finding the optimal
configuration. Examples of problems where
QSA can be powerful include the simulation of
equilibrium states of Ising spin glasses or Potts
models, solving satisfiability problems or solving
the traveling salesman problem.

Open Problems

Some (classical) Monte Carlo implementations
do not require varying an inverse temperature and
apply the same (time-independent) transition rule
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S to converge to the Gibbs distribution. The num-
ber of times the transition rule must be applied
is the so-called mixing time, which depends on
the inverse spectral gap of S [15]. The devel-
opment of quantum algorithms to speed up this
type of Monte Carlo algorithms remains open.
Also, the technique of spectral gap amplification
outputs a Hamiltonian H.ˇ/ on input S.ˇ/. The
relevant eigenvalue of such a Hamiltonian is
zero, and the remaining eigenvalues are ˙

p
�i ,

where �i � . This opens the door to a quantum
adiabatic version of the QSA, in which H.ˇ/ is
changed slowly and the quantum system remains
in an “excited” eigenstate of eigenvalue zero at
all times. The speedup is also due to the increase
in the eigenvalue gap. Nevertheless, finding a
different Hamiltonian path with the same gap,
where the adiabatic evolution occurs within the
lowest energy eigenstates of the Hamiltonians, is
an open problem.
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Problem Definition

The problem is to find a vector x 2 CN such
that Ax D b, for some given inputs A 2 CN �N

and b 2 CN . Several variants are also possi-
ble, such as rectangular matrices A, including
overdetermined and underdetermined systems of
equations.

Unlike in the classical case, the output of this
algorithm is a quantum state on log.N / qubits
whose amplitudes are proportional to the entries
of x, along with a classical estimate of kxk WD
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pP
i jxi j2. Similarly, the input b is given as a

quantum state. The matrix A is specified implic-
itly as a row-computable matrix. Specifying the
input and output in this way makes it possible to
find x in time sublinear, or even polylogarithmic,
in N . The next section has more discussion of
the relation of this algorithm to classical linear
systems solvers.

Key Results

Suppose that:

• A 2 CN �N is Hermitian, has all eigenvalues
in the range Œ�1;�1=�� [ Œ1=�; 1� for some
known � � 1, and has �s nonzero entries per
row. The parameter � is called the condition
number (defined more generally to be the ratio
of the largest to the smallest singular value)
and s is the sparsity.

• There is a quantum algorithm running in time
TA that takes an input i 2 ŒN � and outputs the
nonzero entries of the i th row, together with
their location.

• Assume that kbk D 1 and that there is a
corresponding quantum state to produce the
state jbi that runs in time TB .

Define x0 WD A�1 jbi and x D x0

k x0k
.

We use the notation x to refer to the vector
as a mathematical object and jxi to refer to the
corresponding quantum state on log.N / qubits.
For a variable T , let QO.T / denote a quantity
upper bounded by T � poly log.T /. The norm
of a vector kxk is the usual Euclidean normpP

i jxi j2, while for a matrix kAk is the operator
norm maxkxkD1 kAxk, or equivalently the largest
singular value of A.

Quantum Algorithm for Linear Systems
The main result is that jxi and kx0k can
be produced, both up to error �, in time
poly.�; s; ��1; log.N /; TA; TB/. More precisely,
the following run-times are known:

QO.�TB C log.N /s2�2TA=�/ [5] (1a)

QO.�TB C log.N /s2�TA=�
3/ [1] (1b)

A key subroutine is Hamiltonian simulation, and
the run-times in (1) are based on the recent
improvements in this component due to [3].

Hardness Results and Comparison
to Classical Algorithms

These algorithms are analogous to classical al-
gorithms for solving linear systems of equations,
but do not achieve exactly the same thing. Most
classical algorithms output the entire vector x as
a list of N numbers, while the quantum algo-
rithms output the state jxi, i.e., a superposition
on log.N / qubits whose N amplitudes equal x.
This allows potentially faster algorithms but for
some tasks will be weaker. This resembles the
difference between the Quantum Fourier Trans-
form and the classical Fast Fourier Transform.

To compare the classical and quantum com-
plexities for this problem, we should consider
classical tasks (with classical output) that can be
solved with the help of quantum linear equations
algorithms. One can show that better classical
algorithms for such tasks exist only if all quantum
algorithms could be simulated more quickly by
classical algorithms. This is because the linear
systems problem is BQP-complete, i.e., solving
large sparse well-conditioned linear systems of
equations is equivalent in power to general pur-
pose quantum computing.

To make this precise, define LinearSystemSa-
mple.N; �; �; TA/ to be the problem of producing
a sample i 2 ŒN � from a distribution p satisfyingPN

iD1 jpi � jxi j
2j � �, where x D x0=kx0k,

x0 D A�1b, and b D e1 (i.e., one in the first entry
and zero elsewhere). Additionally the eigenvalues
of A should have absolute value between 1=� and
1, and there should exist a classical algorithm for
computing the entries of a row of A that runs in
time TA. This problem differs slightly from the
version described above, but only in ways that
make it easier, so that it still makes sense to talk
about a matching hardness result.
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Theorem 1 Consider a quantum circuit on
n qubits that applies two-qubit unitary gates
U1; : : : ; UT to the j0i˝n state and concludes
by outputting the result of measuring the
first qubit. It is possible to simulate this
measurement outcome up to error � by reducing
to LinearSystemSample.N; �; �=2; TA/ with
N D O.2nT=�/, � D O.T=�/, and TA D

poly log.N /.

In other words, LinearSystemSample is at
least as hard to solve as any quantum computation
of the appropriate size. This result is nearly tight.
In other words, when combined with the algo-
rithm of [1], the relation between N; � (for linear
system solving) and n; T (for quantum circuits)
is known to be nearly optimal, while the cor-
rect � dependence is known up to a polynomial
factor.

Theorem 1 can also rule out classical algo-
rithms for LinearSystemSample.N; �; �; TA/.
Known algorithms for the problem (assuming
for simplicity that A is s-sparse) run in time
poly.N / poly log.�=�/ C NTA (direct solvers),
N poly.�/ poly log.1=�/TA (iterative methods),
or even s ln.1=�/ poly log.N / (direct expansion
of x 


P
n� ln.1=�/.I � A/

nb, assuming A

is positive semidefinite). Depending on the pa-
rameters N; �; �; s, a different one of these may
be optimal. And from Theorem 1 it follows (a)
that any nontrivial improvement in these algo-
rithms would imply a general improvement in the
ability of classical computers to simulate quan-
tum mechanics and (b) that such improvement is
impossible for algorithms that use the function
describing A in a black-box manner (i.e., as an
oracle).

Applications and Extensions

Linear system solving is usually a subroutine in
a larger algorithm, and the following algorithms
apply it to a variety of settings. Complexity anal-
yses can be found in the cited papers, but since
hardness results are not known for them, we
cannot say definitively whether they outperform
all possible classical algorithms.

Machine Learning
A widely used application of linear systems of
equations is to performing least-squares estima-
tion of a model [6]. In this problem, we are given
a matrix A 2 Rn�p with n � p (for an overdeter-
mined model) along with a vector b 2 Rn, and we
wish to compute arg minx2Rp kAx � bk. If A is
well conditioned, sparse, and implicitly specified,
then the state jxi can be found quickly [6],
and from this features of x can be extracted by
measurement.

Differential Equations
Consider the differential equation [2]

Px.t/ D A.t/x.t/C b.t/ x.t/ 2 RN : (2)

One of the simplest ways to solve this is to
discretize time to take values t1 < : : : < tm and
approximate

x.tiC1/ 
 x.ti /C.A.ti /x.ti /Cb.ti //.tiC1� ti /:

(3)
By treating .x.t1/; : : : ; x.tm// as a single vector
of size Nm, we can find this vector as a solution
of the linear system of equations specified by (3).
More sophisticated higher-order solvers can also
be made quantum; see [2] for details.

Boundary-Value Problems
The solution to PDEs can also be expressed
in terms of the solution to a linear system of
equations [4]. For example, in Poisson’s equation
we are given a function Q W R3 ! R and want
to find u W R3 ! R such that �r2u D Q.
By defining x and b to be discretized versions
of u;Q, this PDE becomes an equation of the
form Ax D b. One challenge is that if A is the
finite-difference operator (i.e., discretized second
derivative) for anL�L�L box, then its condition
number will scale as L2. Since the total number
of points is O.L3/, this means the quantum
algorithm cannot achieve a substantial speedup.
Classically this condition number is typically
reduced by using preconditioners. A method for
using preconditioners with the quantum linear
system solver was presented in [4], along with
an application to an electromagnetic scattering
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problem. The resulting complexity is still not
known.
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Problem Definition

Spatial Search and Walk Processes
Spatial search by quantum walk is database
search with the additional constraint that one
is required to move through the search space
that obeys some locality structure. For example,
the data items may be stored at the vertices of a
two-dimensional grid. The requirement of moves
along the edges of the grid captures the cost
of accessing different items starting from some
fixed position in the database.

One of possible ways of carrying out spatial
search is by performing a random walk on the
search space or its quantum analog, a quantum
walk. The complexity of spatial search by quan-
tum walk is strongly tied to the quantum hitting
time [19] of the walk.

Let S , with jS j D n, be a finite set of states.
Assume that a subset M � S of states are
marked. We are given a procedure C that, on in-
put x 2 S and an associated data structure d.x/,
checks whether the state x is marked. The goal is
either to find a marked state when promised that
M ¤ ; (search version) or to determine whether
M is nonempty (decision version).

The algorithm progresses in stages. In the
setup stage, we access some state of S (usually
a random state). In the walk stage we move
from state to state, performing a spatial walk as
described below. The moves are called updates.
In addition, in the walk stage we perform checks
to see if the current state is marked at steps
selected by the algorithm.

In the classical setting, the transition prob-
abilities of the spatial walk are described by a
stochastic matrix P D .px;y/x;y2S . This makes
the walk a Markov chain. In every move the
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algorithm must perform a random transition ac-
cording to P . The possible x ! y moves,
i.e., those with px;y ¤ 0, form the edges of a
(directed) graph G, and we say that the Markov
chain P has locality structure G.

We define the search problem in the classical
setting, which carries over to the quantum case
with little modification:

INPUT: Markov chain P on set S , marked subset
M � S that is implicitly specified by a check-
ing procedure C, and the associated costs:

Cost type Setup Update Checking
Notation S U C

OUTPUT: a marked state if one exists (search
version) or a Boolean return value that indi-
cates whether M is empty or not (decision
version).

The algorithm is required to be correct with
probability at least 2=3 in either case, the search
or the decision problem. The significance of the
setup cost, which is incurred only once, will be
clearer when we see some applications. Often
we can choose between several competing walks,
and we would like to design the one with mini-
mum total cost.

In the quantum case, the random process P is
replaced by a quantum walkWP that has the same
locality structure as P . The costs S;U;C reflect
the costs of quantum operations.

The Quantum Walk Algorithm
Designing a quantum analog of P is not so
straightforward, since stochastic matrices have no
immediate unitary equivalents. One either needs
to abandon the discrete-time nature of the walk
[15] or define the walk operator on a space other
than CS . Here we take the second route.

We say that a Markov chain P is irreducible
if its underlying digraph is strongly connected.
Let P be an irreducible Markov chain, let �
be its unique stationary distribution, and let P �

(with P � D .p�
x;y/) denote the time-reversed

Markov chain, where p�
x;y WD �ypy;x=�x . De-

fine the following vectors in the vector space CS :

jpxi WD
X
y2X

p
px;y jyi and

jp�
yi WD

X
x2X

q
p�

y;x jxi :

Define the unitary operator WP WD R1R2 on
CS�S as the product of the two reflections R2 WDP

x2S jxihxj ˝ .2jpxihpxj � I/ and R1 WDP
y2S .2jp

�
yihp

�
y j�I/˝jyihyj. The operatorWP

is called the quantum analog of P , or the
discrete-time quantum walk operator arising
from P , and may be viewed as a walk on
the edges of the underlying graph G. We
define a “checking” operator on CS , based
on whether or not the current state is marked:
OM WD

P
x 62M jxihxj �

P
x2M jxihxj.

In the above description, we have suppressed
the data structure associated with a state in the
Markov chain for the sake of simplicity. The pre-
cise description of the operators can be derived
via the isometry jxi 7! jxijd.x/i between the
appropriate spaces (see, e.g., Refs. [28, 29]). The
data structure becomes especially significant in
the context of the complexity of the operators.

A search algorithm by quantum walk is de-
scribed by a quantum circuit that acts on “reg-
isters” or “wires” which are associated with the
space CS ˝CS ˝Ck , for some k � 0. We again
suppress the registers carrying the data structure.
The first two registers hold the current edge,
and the last register holds auxiliary information,
or work space, that drives the quantum walk.
The quantum circuit implements the composi-
tionX WD XtXt�1 � � �X1, where eachXi is either
WP or OM acting on the edge registers, possibly
controlled by the auxiliary register, or a unitary
operator independent of P and M acting on any
of the registers. The circuit X is applied to a
suitably constructed initial state j�0i.

We associate a cost with each operator as
a measure of its complexity, with respect to a
resource of interest. The resource could be cir-
cuit size or in the query model (which is the
more typical application) the number of queries.
We denote the cost of implementing WP as a
quantum circuit in the units of the resource of
interest by U (update cost), the cost of construct-
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ing OM by C (checking cost), and the cost of
preparing the initial state, j�0i, of the algorithm
by S (setup cost). Every time an operator is
used, we incur the cost associated with it. This
abstraction, implicit in Ref. [3] and made explicit
in Ref. [28], allows WP and OM to be treated
as black-box operators and provides a convenient
way to capture time complexity or, in the quan-
tum query model, query complexity. The cost of
the sequence XtXt�1 � � �X1 is the sum of the
costs of the individual operators. The observation
probability is the probability that we observe an
element of M on measuring the first register of
the final state, j�t i WD X j�0i, in the standard
basis .jxi/x2S . In the decision version of the
problem, we measure a fixed single qubit of the
auxiliary register in the standard basis to obtain
the output of the algorithm.

Key Results

Walk Definitions
Quantum walks were first introduced by David
Meyer and John Watrous to study quantum cellu-
lar automata and quantum logspace, respectively.
Discrete-time quantum walks were investigated
for their own sake by Ambainis, Bach, Nayak,
Vishwanath, and Watrous [4, 32] and Aharonov,
Ambainis, Kempe, and Vazirani [2] on the infinite
line and the n-cycle, respectively. The central
issues in the early development of quantum walks
included the definition of the walk operator, no-
tions of mixing and hitting times, and the speedup
achievable compared to the classical setting.

Hitting Time
Exponential quantum speedup of the hitting time
between antipodes of the hypercube was shown
by Kempe [19]. Childs, Cleve, Deotto, Farhi,
Gutmann, and Spielman [13] presented the first
oracle problem solvable exponentially faster by a
quantum walk-based algorithm than by any (not
necessarily walk-based) classical algorithm.

The first systematic studies of quantum hitting
time on the hypercube and the d -dimensional
torus were conducted by Shenvi, Kempe,
and Whaley [34] and Ambainis, Kempe, and

Rivosh [5]. Improving upon the Grover search-
based spatial search algorithm of Aaronson
and Ambainis, Ambainis et al. [5] showed that
the d -dimensional torus with n nodes can be
searched by quantum walk in

p
n steps with

observation probability ˝.1/ for d � 3 and inp
n logn in steps and observation probability

˝.1= log n/ for d D 2 (see also Ref. [11]).
Combining the algorithm for d D 2 with
amplitude amplification [9], we get an algorithm
with observation probability ˝.1/, at a cost that
is a multiplicative factor of

p
logn larger.

In the results in Refs. [13, 19], the algorithm
has implicit knowledge of the target state, as
the walk starts from a state whose location is
“related” to that of the target. It is not known if
we can achieve an exponential speedup when the
walk starts in a state that is independent of the
target.

Element Distinctness
The first result that used a quantum walk to
solve a natural algorithmic problem, the so-called
element distinctness problem, was due to Am-
bainis [3]. The problem is to find out if among
the set of s elements of a database, two are
identical. Ambainis constructed a walk on the
Johnson graph J.r; s/ whose vertices are the r-
size subsets of a universe of size s (in his case
the universe corresponds to the set of all database
elements), with two subsets connected iff their
symmetric difference has size two. A subset is
marked, i.e., it is an element of M , if it captures
two identical database elements. In the quantum
(but also the classical) query model, the setup
cost is r , which stands for the cost of down-
loading r (random) database elements. Update
incurs a constant cost, as it requires reading a
new database element and forgetting an old one.
Furthermore, since we are in the query model,
the checking cost is zero, since whether a state
is marked can be deduced from the currently held
database elements without any further download.
Ambainis ingeniously balanced the costs of S and
U finding that in the quantum case, the optimum
choice for r is s2=3, leading to a query complex-
ity of s2=3 (this is a nontrivial balance: in the
classical case, the same walk gives no speedup).
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In contrast, the Grover algorithm, the inspiration
behind Ambainis’ work, has no balancing option:
its setup and update costs are zero in the query
model. (The Grover search may be viewed as a
quantum walk on the complete graph.) It turns
out that the above walk-based quantum query
algorithm with complexity O.s2=3/ matches the
lower bound due to Aaronson and Shi [1].

General Markov Chains
Ambainis’s result is based on the quantum hitting
time of J.r; s/ for a marked set of relative size�

r
s

�2
. In Ref. [35], Szegedy investigates the hit-

ting time of quantum walks arising from general
Markov chains. His definitions (walk operator,
hitting time) are abstracted directly from Ref. [3]
and are consistent with prior literature, although
slightly different in presentation.

For a Markov chain P , the (classical)
average hitting time of M can be expressed
in terms of the leaking walk matrix PM ,
which is obtained from P by deleting all rows
and columns indexed by states of M . Let
v1; : : : ; vn�m, be the normalized eigenvectors
of PM , and let �1; : : : ; �n�m be the associated
eigenvalues, where m D jM j. Let h.x;M/

denote the expected time to reach M from x.
Let � W S ! RC be the initial distribution
from which we start and �0 its restriction to
S n M . Denote the vector .

p
�0.x/ /x2SnM

by u. Then the average hitting time of M

is h WD
P

x2S �.x/ h.x;M/ D
Pn�m

kD1
j.vk ;u/j2

1��k
.

Although the leaking walk matrix PM is not
stochastic, one can consider the absorbing
walk matrix P 0 D

�
PM P 00

0 I

	
, where P 00 is

the matrix obtained from P by deleting the
rows indexed by M and the columns indexed
by S n M . The walk P 0 behaves like P but
is absorbed by the first marked state it hits.
Consider the quantum analog WP 0 of P 0 and
j�0i WD

P
x2S

p
�.x/jxijpxi, where � is the

stationary distribution of P . The state j�0i is
stationary for WP , i.e., an eigenvector with
eigenvalue 1. Define the quantum hitting time,
H , of set M to be the smallest t for which
kW t

P 0

j�0i � j�0ik � 0:1. Note that the cost of
WP 0 is proportional to UC C.

The motivation behind this definition of quan-
tum hitting time is the following. The classical
hitting time measures the number of iterations
of the absorbing walk P 0 required to noticeably
skew the uniform starting distribution. Similarly,
the quantum hitting time bounds the number of
iterations of the following quantum algorithm
for detecting whether M is nonempty: At each
step, apply operator WP 0 . If M is empty, then
P 0 D P and the starting state is left invariant. If
M is nonempty, then the angle between W t

P 0

j�0i

and W t
P j�0i gradually increases (for t not too

large). Using an additional control register to
apply either WP 0 or WP with quantum control,
the divergence of these two states (should M be
nonempty) can be detected. The required number
of iterations is characterized by H .

It remains to computeH . When P is symmet-
ric and ergodic, the expression for the classical
hitting time has a quantum analog [35] (we as-
sume m � n=2 for technical reasons):

H �

n�mX
kD1

�2
kp

1 � �k

; (1)

where �k D .vk ; u/. Note that u D 1p
n
.1; : : : ; 1/,

since P is symmetric, so �k sum of the coor-
dinates of vk divided by 1=

p
n. From (1) and

the expression for h, one can derive an amazing
connection between the classical and quantum
hitting times:

Theorem 1 (Szegedy [35]) Let P be symmetric
and ergodic, and let h be the classical hitting
time for marked set M and uniform starting
distribution. Then the quantum hitting time of M
is at most

p
h. Therefore, the cost of solving the

decision version of the problem is of order S Cp
h.UC C/.

One can further show:

Theorem 2 (Szegedy [35]) If P is state-
transitive and jM j D 1, then the marked state is
observed with probability at least n=h with cost
O.SC

p
h.UC C//.

The observation probability n=h can be
increased to �.1/ with

p
h=n iterations of the
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algorithm from Theorem 2, using amplitude
amplification [9]. Theorems 1 and 2 imply most
quantum hitting time results of the previous
section directly, relying only on estimates of the
corresponding classical hitting times. Expression
(1) is based on a fundamental connection
between the eigenvalues and eigenvectors of
P and WP . Notice that p�

y;x D py;x for
symmetric P , so jp�

yi D jpyi. So R1 and R2

are reflections through the subspaces generated
by fjpxi˝ jxij x 2 Sg and fjxi˝ jpxij x 2 Sg,
respectively. The eigenvalues of R1R2 can be
expressed in terms of the eigenvalues of the
mutual Gram matrix D.P / of these systems.
This matrix D.P /, the discriminant matrix
of P , equals P when P is symmetric. The
formula remains fairly simple even when P is
not symmetric. In particular, the absorbing walk
P 0 has discriminant matrix

�
PM 0

0 I

	
. Finally,

the relation between D.P / and the spectral
decomposition of WP is given by:

Theorem 3 (Szegedy [35]) Let P be an arbi-
trary Markov chain on a finite state space S

and let cos �1 � � � � � cos �l be those singular
values of D.P / lying in the open interval .0; 1/,
with associated singular vector pairs vj ;wj for
1 � j � l . Then the nontrivial eigenvalues of
WP (namely, those other than 1 and�1) and their
corresponding eigenvectors are .e�2i�j ; R1wj �

e�i�jR2vj / and .e2i�j ; R1wj � ei�jR2vj / for
1 � j � l .

Subsequent Developments
Magniez, Nayak, Roland, and Santha [29] used
the Szegedy quantum analog WP of an ergodic
walk P , rather than that of its absorbing ver-
sion P 0, to develop a search algorithm in the style
of Ambainis
[3].

Theorem 4 (Magniez, Nayak, Roland, San-
tha [29]) Let P be reversible and ergodic with
spectral gap ı > 0. LetM have probability either
zero or " > 0 under the stationary distribution
of P . There is a quantum algorithm solving the
search problem with cost SC 1p

"
. 1p

ı
UC C/.

The main idea here is to apply quantum phase
estimation [14, 21] to the quantum walk WP

in order to implement an approximate reflection
operator about the initial state. This operator is
then used along with the checking operator OM

in an amplitude amplification scheme to get the
final algorithm.

The average classical hitting time h may be
bounded by 1=ı" (with ı;M; " as in Theorem 4),
and this bound is tight for most known applica-
tions. In these applications, the above algorithm
finds marked elements with complexity at most
that of the Szegedy algorithm. In other applica-
tions, for instance, Triangle Finding [28], where
the checking cost C is much larger than the
update cost U, the complexity of the algorithm
in Theorem 4 is asymptotically smaller.

In the case of the two-dimensional square
grid with n vertices, the average classical hitting
time h is n logn. This is asymptotically lesser
than 1=ı" when there is a single marked element.
(In this case, 1=ı" D n2.) Algorithms due to Am-
bainis et al. [5] and Szegedy [35] find a unique
marked state with O.

p
n logn/ steps of quantum

walk, a
p

logn factor larger than
p
h. Tulsi [36]

showed how we may find a unique marked ele-
ment in O.

p
h/ steps. Magniez, Nayak, Richter,

and Santha [30] extended this result to show that
for any state-transitive Markov chain, a unique
marked state can be found in O.

p
h / steps. They

also devised a detection algorithm that solves
the decision version of the problem for any re-
versible Markov chain and any number of marked
elements, in O.

p
h/ steps (thus extending Theo-

rem 1).
Krovi, Magniez, Ozols, and Roland [23] pre-

sented a different quantum algorithm for find-
ing multiple marked elements in any reversible
Markov chain. They introduced a notion of inter-
polation between any reversible chain P and its
absorbing counterpart P 0 and used the quantum
analog of the interpolated walk. In the case of a
unique marked element, the resulting algorithm
solves the search version of the problem with
cost S C

p
h.U C C/. The precise relationship

between the number of steps of the quantum
walk taken by the algorithm in the case of more
than one marked element and the corresponding
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classical hitting time remains open. It is known
that for certain choices of P and M , the former
may be asymptotically larger than

p
h.

The schema due to Magniez et al. [29] de-
scribed above has been extended in different
ways. Jeffery, Kothari, and Magniez [17] use a
quantum state as the data structure d.x/ associ-
ated with a state x 2 S in quantum algorithms
with nested walks. In this manner, they avoid
the repeated overhead of setup cost in the inner
quantum walks used for checking marked states.
They solve several problems, including Triangle
Finding, with query as well as time complexity
matching, up to polylogarithmic factors, the per-
formance of algorithms previously derived from
learning graphs [7, 26]. Childs, Jeffery, Kothari,
and Magniez [8] introduced the use of a data
structure that depends on the state transition in
the walk. Using this, they develop quantum al-
gorithms with nested walks, where the recursion
occurs in the update operation. The cost incurred
is essentially what we would expect from The-
orem 4. This extension leads to algorithms that
are as efficient in time as in query complexity,
for applications such as 3-Distinctness. Indepen-
dently, Belovs designed a different quantum walk
algorithm [8], which leads to a similar result for
3-Distinctness.

Applications

We list some quantum walk-based results for
search problems that represent speedups over
Grover search-based solutions. All are inspired
by Ambainis’ algorithm for element distinctness.

Triangle Finding
Suppose we are given the adjacency matrixA of a
graph on n vertices and are required to determine
if the graph contains a triangle (i.e., a clique
of size 3), using as few queries as possible to
the entries of A. The classical query complexity
of this problem is �.n2/. Magniez, Santha, and
Szegedy [28] gave an QO.n1:3/ algorithm. This
upper bound has been improved by a sequence
of results [7, 25, 26, 29] (see also Ref. [17]) to
QO.n5=4/. Several of these algorithms, including

the current best algorithm due to Le Gall [25], are
based on the quantum walk search framework.

Matrix Product Verification and Matrix
Multiplication
Suppose we are given three n � n matrices A,
B , C over a ring and are required to determine
if AB ¤ C , i.e., if there exist i , j such thatP

k AikBkj ¤ Cij . We would like to make
as few queries as possible to the entries of A,
B , and C . This problem has classical query
complexity �.n2/. Buhrman and Špalek [10]
gave an O.n5=3/ quantum query algorithm. They
also observed that two Boolean matrices can be
multiplied with query complexity O.n3=2

p
` /,

where ` is the number of nonzero entries in
the product. This has since been improved in
a sequence of results [16, 24, 37] to O.n

p
` /.

The algorithm due to Le Gall [24] builds upon
quantum walk algorithms. We refer the reader to
Ref. [22] for further work on this topic.

Group Commutativity Testing
Suppose we are presented with a black-box group
specified by its k generators and are required to
determine if the group commutes using as few
queries as possible to the group product operation
(i.e., queries of the form “What is the product of
elements g and h?”). The classical query com-
plexity is �.k/ group operations. Magniez and
Nayak [27] gave an (essentially optimal) QO.k2=3/

quantum query algorithm for this problem. The
algorithm involves a quantum walk on the prod-
uct of two graphs whose vertices are ordered l-
tuples of distinct generators.

Forbidden Subgraph Property
A property of graphs is called minor closed when
the following condition holds: if a graph has
the property, then all its minors also possess the
property. A graph property (which need not be
minor closed) is called a forbidden subgraph
property (FSP) if it can be described by a finite set
of forbidden subgraphs. Suppose we are given the
adjacency matrix A of a graph on n vertices and
are required to determine if the graph has a minor
closed property ˘ , using as few queries as possi-
ble to the entries of A. Childs and Kothari [12]
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show that if ˘ is nontrivial and is not FSP,
then it has query complexity in �.n3=2/. They
complement this with a more efficient algorithm
for any minor closed property ˘ that is FSP.
The algorithm has query complexity O.n˛/ for
some ˛ < 3=2 and is based on the quantum walk
search framework.

3-Distinctness
This is a generalization of the element
distinctness problem. Suppose we are given
elements x1; : : : ; xm 2 f1; : : : ; mg and are
asked if there exist three distinct indices i; j; k
such that xi D xj D xk . The Ambainis
quantum walk algorithm achieves query and time
complexity O.m3=4/. The query complexity was
improved to O.m5=7/ by Belovs [6] using a new
technique – learning graphs, while the best time
complexity remained unchanged. Childs et al. [8]
later designed time-efficient query algorithms
with complexity QO.m5=7/, using extensions of
the quantum walk search framework.

Open Problems

Many issues regarding quantum analogs of
Markov chains remain unresolved, both for the
search problem and the closely related mixing
problem.

Search Problem
Can the quadratic quantum speedup of hitting
time for the decision version of the problem
be extended from all reversible Markov chains
to all ergodic ones? Can quantum walks also
find marked elements quadratically faster than
classical walks, in the case of reversible Markov
chains with multiple marked states? What other
algorithmic applications of search by quantum
walk can be found?

Sampling Problem
Another wide use of Markov chains in classical
algorithms is in generating samples from certain
probability distributions. In particular, Markov
chain Monte Carlo algorithms work by running
a carefully designed ergodic Markov chain. After

a number of steps given by the mixing time
of P , the distribution over states is guaranteed to
be �-close to its stationary distribution � . Such
algorithms form the basis of most randomized
algorithms for approximating #P-complete prob-
lems (see, e.g., Ref. [18]). The sampling problem
may be formalized as follows:

INPUT: Markov chain P , tolerance � 2 .0; 1/.
OUTPUT: A sample from a distribution that is �-

close to � in total variation distance.

Notions of quantum mixing time were first
proposed and analyzed on the line, the cycle,
and the hypercube [2, 4, 31, 32]. Kendon and Tre-
genna [20] and Richter [33] have investigated the
use of decoherence in improving mixing of quan-
tum walks. Two fundamental questions about
quantum mixing time remain open: What is the
“most natural” definition? And when is there a
quantum speedup over the classical mixing time?
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Problem Definition

A knot invariant is a function on knots (or
links – i.e., circles embedded in R3) which is
invariant under isotopy of the knot, i.e., it does
not change under stretching, moving, tangling,
etc. (cutting the knot is not allowed). In low
dimensional topology, the discovery and use
of knot invariants is of central importance. In
1984, Jones [12] discovered a new knot invariant,
now called the Jones polynomial VL.t/, which
is a Laurent polynomial in

p
t with integer

coefficients and which is an invariant of the
link L. In addition to the important role it has
played in low dimensional topology, the Jones
polynomial has found applications in numerous
fields, from DNA recombination [16] to statistical
physics [20].

From the moment of the discovery of the
Jones polynomial, the question of how hard it is

to compute became important. There is a very
simple inductive algorithm (essentially due to
Conway [5]) to compute it by changing crossings
in a link diagram, but, naively applied, this takes
exponential time in the number of crossings. It
was shown [11] that the computation of VL.t/

is #P-hard for all but a few values of t where
VL.t/ has an elementary interpretation. Thus, a
polynomial time algorithm for computing VL.t/

for any value of t other than those elementary
ones is unlikely. Of course, the #P-hardness of
the problem does not rule out the possibility
of good approximations. Still, the best classical
algorithms to approximate the Jones polynomial
at all but trivial values are exponential. Simply
stated, the problem becomes:

Problem 1 For what values of t and for what
level of approximation can the Jones polynomial
VL.t/ be approximated in time polynomial in the
number of crossings and links of the link L?

Key Results

As mentioned above, exact computation of the
Jones polynomial for most t is #P-hard, and the
best known classical algorithms to approximate
the Jones polynomial are exponential. The key
results described here consider the above problem
in the context of quantum rather than classical
computation.

The results concern the approximation of links
that are given as closures of braids. (All links
can be described this way.) Briefly, a braid of n
strands and m crossings is described pictorially
by n strands hanging alongside each other, with
m crossings, each of two adjacent strands. A
braid B may be “closed” to form a link by tying
its ends together in a variety of ways, two of
which are the trace closure (denoted by B tr)
which joins the i th strand from the top right to the
i th strand from the bottom right (for each i ) and
the plat closure (denoted byBpl) which is defined
only for braids with an even number of strands by
connecting pairs of adjacent strands (beginning at
the rightmost strand) on both the top and bottom.
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Quantum
Approximation of the
Jones Polynomial, Fig. 1
The trace closure (left) and
plat closure (right) of the
same 4-strand braid

Examples of the trace and plat closure of the same
4-strand braid are given in Fig. 1.

For such braids, the following results have
been shown by Aharonov, Jones, and Landau:

Theorem 1 ([2]) For a given braid B in Bn with
m crossings and a given integer k, there is a
quantum algorithm which with probability 1 �
c�.nCmCk/ outputs a complex number r with jr�
VB tr

�
e2�i=k

�
j < �dn�1 where d D 2 cos. =k/

and 2 is inverse polynomial in n; k;m, using time
that is polynomial in n;m; k.

Theorem 2 ([2]) For a given braid B in Bn with
m crossings and a given integer k, there is a
quantum algorithm which with probability 1 �
c�.nCmCk/ outputs a complex number r with jr�
VBpl

�
e2�i=k

�
j < �dn�1 where d D 2 cos. =k/

and 2 is inverse polynomial in n; k;m, using time
that is polynomial in n;m; k.

The original connection between quantum
computation and the Jones polynomial was
made earlier in the series of papers [6–9].
A model of quantum computation based on
Topological Quantum Field Theory (TQFT) and
Chern-Simons theory was defined in [6, 9], and
Kitaev, Larsen, Freedman, and Wang showed
that this model is polynomially equivalent in
computational power to the standard quantum
computation model in [7, 8]. These results,
combined with a deep connection between
TQFT and the value of the Jones polynomial

at particular roots of unity discovered by Witten
13 years earlier [18], implicitly implied (without
explicitly formulating) an efficient quantum
algorithm for the approximation of the Jones
polynomial at the value e2�i=5.

The approximation given by the above algo-
rithms are additive, namely, the result lies in
a given window, whose size is independent of
the actual value being approximated. The for-
mulation of this kind of additive approxima-
tion was given in [4]; this is much weaker than
a multiplicative approximation, which is what
one might desire (again, see discussion in [4]).
One might wonder if under such weak require-
ments, the problem remains meaningful at all. It
turns out that, in fact, this additive approxima-
tion problem is hard for quantum computation,
a result originally shown by Freedman, Kitaev,
and Wang:

Theorem 3 (Adapted from [8]) The problem of
approximating the Jones polynomial of the plat
closure of a braid at e2 i=k for constant k, to
within the accuracy given in Theorem 2, is BQP-
hard.

A different proof of this result was given
in [19], and the result was strengthened by
Aharonov and Arad [1] to any k which is
polynomial in the size of the input, namely,
for all the plat closure cases for which the
algorithm is polynomial in the size of the
braid.
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Understanding the Algorithm
The structure of the solution described by Theo-
rems 1 and 2 consists of four steps:

1. Mapping the Jones polynomial computation
to a computation in the Temperley-Lieb al-
gebra. There exists a homomorphism of the
braid group inside the so-called Temperley-
Lieb algebra (this homomorphism was the
connection that led to the original discovery
of the Jones polynomial in [12]). Using this
homomorphism, the computation of the Jones
polynomial of either the plat or trace closure
of a braid can be mapped to the computation
of a particular linear functional (called the
Markov trace) of the image of the braid in
the Temperley-Lieb algebra (for an essential
understanding of a geometrical picture of the
Temperley-Lieb algebra, see [14]).

2. Mapping the Temperley-Lieb algebra calcula-
tion into a linear algebra calculation. Using
a representation of the Temperley-Lieb alge-
bra, called the path model representation, the
computation in step 1 is shown to be equal
to a particular weighted trace of the matrix
corresponding to the Temperley-Lieb algebra
element coming from the original braid.

3. Choosing the parameter t corresponding to
unitary matrices. The matrix in step 2 is a
product of basic matrices corresponding to
individual crossings in the braid group; an
important characteristic of these basic ma-
trices is that they have a local structure. In
addition, by choosing the values of t as in
Theorems 1 and 2, the matrices corresponding
to individual crossings become unitary. The
result is that the original problem has been
turned into a weighted trace calculation of a
matrix formed from a product of local unitary
matrices – a problem well suited to a quantum
computer.

4. Implementing the quantum algorithm. Finally
the weighted trace calculation of a matrix
described in step 3 is formally encoded into
a calculation involving local unitary matrices
and qubits.

A nice exposition of the algorithm is given in
[15].

Applications

Since the publication [2], a number of
interesting results have ensued investigating
the possibility of quantum algorithms for other
combinatorial/topological questions. Quantum
algorithms have been developed for the case
of the HOMFLY-PT two-variable polynomial
of the trace closure of a braid at certain pairs of
values [19]. (This entry also extends the results of
[2] to a class of more generalized braid closures;
it is recommended reading as a complement to
[2] or [15] as it gives the representation theory of
the Jones-Wenzl representations, thus putting the
path model representation of the Temperley-Lieb
algebra in a more general context.) A quantum
algorithm for the colored Jones polynomial is
given in [10].

Significant progress was made on the question
of approximating the partition function of the
Tutte polynomial of a graph [3]. This polyno-
mial, at various parameters, captures important
combinatorial features of the graph. Intimately
associated to the Tutte polynomial is the Potts
model, a model originating in statistical physics
as a generalization of the Ising model to more
than 2 states [17,20]; approximating the partition
function of the Tutte polynomial of a graph is a
very important question in statistical physics. The
work of [3] develops a quantum algorithm for
additive approximation of the Tutte polynomial
for all planar graphs at all points in the Tutte
plane and shows that for a significant set of
these points (though not those corresponding to
the Potts model) the problem of approximating
is a complete problem for a quantum computer.
Unlike previous results, these results use non-
unitary representations.

Open Problems

There remain many unanswered questions related
to the computation of the Jones polynomial from
both a classical and quantum computational point
of view.

From a classical computation point of
view, the originally stated Problem 1 remains



1694 Quantum Approximation of the Jones Polynomial

wide open for all but trivial choices of t .
A result as strong as Theorem 2 for a
classical computer seems unlikely since it
would imply (via Theorem 3) that classi-
cal computation is as strong as quantum
computation. A result by Jordan and Shor
[13] shows that the approximation given in
Theorem 1 solves a complete problem for a
presumed (but not proven) weaker quantum
model called the one-clean-qubit model.
Since this model seems weaker than the
full quantum computation model, a classical
result as strong as Theorem 1 for the trace
closure of a braid is perhaps in the realm of
possibility.

From a quantum computational point of view,
various open directions seem worthy of pursuit.
Most of the quantum algorithms known as of the
writing of this entry are based on the quantum
Fourier transform and solve problems which
are algebraic and number theoretical in nature.
Arguably, the greatest challenge in the field of
quantum computation (together with the physical
realization of large scale quantum computers)
is the design of new quantum algorithms
based on substantially different techniques. The
quantum algorithm to approximate the Jones
polynomial is significantly different from the
known quantum algorithms in that it solves a
problem which is combinatorial in nature, and it
does so without using the Fourier transform.
These observations suggest investigating the
possibility of quantum algorithms for other
combinatorial/topological questions. Indeed, the
results described in the applications section above
address questions of this type. Of particular
interest would be progress beyond [3] in the
direction of the Potts model, specifically either
showing that the approximation given in [3] is
non-trivial or providing a different non-trivial
algorithm.
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Problem Definition

Quantum information theory distinguishes classi-
cal bits from quantum bits or qubits. The quantum
state of n qubits is represented by a complex vec-
tor in .C2/˝n, where .C2/˝n is the tensor prod-
uct of n 2-dimensional complex vector spaces.
Classical n-bit strings form a basis for the vector
space .C2/˝n. Column vectors in .C2/˝n are
denoted as j§i and row vectors are denoted as
j§i
 D j§i�T � h§j. The complex inner prod-
uct between vectors j§i and j¥i is conveniently
written as h§j¥i.

Entangled quantum states j i 2 .C2/˝n are
those quantum states that cannot be written as
a product of some vectors j i i 2 C2, that is,
j i ¤

N
i

j i i. The Bell states are four orthog-

onal (maximally) entangled states defined as

j‰00i D
1
p
2
.j00i C j11i/;

j‰10i D
1
p
2
.j00i C j11i/;

j‰01i D
1
p
2
.j01i C j10i/;

j‰11i D
1
p
2
.j01i C j10i/:

The Pauli matrices X; Y , and Z are three unitary,
Hermitian 2 � 2 matrices. They are defined as
X D j0ih1j C j1ih0j, Z D j0ih0j � j1ih1j and
Y D iXZ.

Quantum states can evolve dynamically under
inner product preserving unitary operations
U.U�1 D U 
/. Quantum information can be
mapped onto observable classical information
through the formalism of quantum measure-
ments. In a quantum measurement on a state j§i
in .C2/˝n, a basis fjxig in .C2/˝n is chosen. This
basis is made observable through an interaction
of the qubits with a macroscopic measurement
system. A basis vector x is thus observed with
probability P.x/ D jhxj ij2.

Quantum information theory or more narrowly
quantum Shannon theory is concerned with pro-
tocols which enable distant parties to efficiently
transmit quantum or classical information, pos-
sibly aided by the sharing of quantum entangle-
ment between the parties. For a detailed introduc-
tion to quantum information theory, see the book
by Nielsen and Chuang [12].

Key Results

Superdense coding [3] is the protocol in which
two classical bits of information are sent from
sender Alice to receiver Bob. This is accom-
plished by sharing a Bell state j‰00iAB between
Alice and Bob and the transmission of one qubit.
The protocol is illustrated in Fig. 1. Given two
bits b1 and b2, Alice performs the following
unitary transformation on her half of the Bell
state:
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Alice

Pb

b

Bell state
Bob

Bell b

Quantum Dense Coding, Fig. 1 Dense coding. Alice
and Bob use a shared Bell state to transmit two classical
bits b D .b1; b2/ by sending one qubit. Double lines are
classical bits and single lines represent quantum bits

Pb1b2
˝ IBj‰00i D j‰b1b2

i; (1)

i.e., one of the four Bell states. Here P00 D I ,
P01 D X , P10 D Z, and P11 D XZ D �iY .
Alice then sends her qubit to Bob. This allows
Bob to do a measurement in the Bell basis. He
distinguishes the four states j‰b1b2i and learns
the value of the two bits b1 and b2.

The protocol demonstrates the interplay be-
tween classical information and quantum infor-
mation. No information can be communicated
by merely sharing an entangled state such as
j‰00i without the actual transmission of physical
information carriers. On the other hand, it is
a consequence of Holevo’s theorem [10] that
one qubit can encode at most one classical bit
of information. The protocol of dense coding
shows that the two resources of entanglement and
qubit transmission combined give rise to a su-
perdense coding of classical information. Dense
coding is thus captured by the following resource
inequality:

1 ebitC 1 qubit � 2 cbits: (2)

In words, one bit of quantum entanglement (one
ebit) in combination with the transmission of one
qubit is sufficient for the transmission of two
classical bits or cbits.

Dense coding can be generalized to the encod-
ing of continuous variables, namely, the encoding
of quadrature variables (x, p) of an electromag-
netic field into one half of a two-mode squeezed
state [2]. Such a two-mode squeezed state ap-
proximates the two-mode EPR state – in which

both quadrature variables are perfectly correlated,
i.e., x1 D x2 and p1 D �p2 – in the limit
of large squeezing. The authors in [2] show that
the information transmission capacity through the
EPR state is, in the limit of large squeezing,
twice that of a direct encoding using a single
transmitted mode. The scheme thus exemplifies
the notion of dense coding through the use of
quantum entanglement.

Quantum teleportation [4] is a protocol that is
dual to dense coding. In quantum teleportation,
1 ebit (a Bell state) is used in conjunction with
the transmission of two classical bits to send
one qubit from Alice to Bob. Thus, the resource
relation for quantum teleportation is

1 ebitC 2 cbits � 1 qubit: (3)

The relation with quantum teleportation allows
one to argue that dense coding is optimal. It
is not possible to encode 2k classical bits in
less than m < k quantum bits even in the
presence of shared quantum entanglement. Let us
assume the opposite and obtain a contradiction.
One uses quantum teleportation to convert the
transmission of k quantum bits into the trans-
mission of 2k classical bits. Then one can use
the assumed superdense coding scheme to en-
code these 2k bits into m < k qubits. As a
result one can send k quantum bits by effectively
transmitting m < k quantum bits (and sharing
quantum entanglement) which is known to be
impossible.

Applications

Harrow [8] has introduced the notion of a coher-
ent bit or cobit. The notion of a cobit is useful
in understanding resource relations and trade-offs
between quantum and classical information. The
noiseless transmission of a qubit from Alice to
Bob can be viewed as the linear map Sq W jxiA !

jxiB for a set of basis states fjxig. The transmis-
sion of a classical bit can be viewed as the linear
map Sc W jxiA ! jxiBjxiE where E stands for
the environment Eve. Eve’s copy of every basis
state jxi can be viewed as the output of a quantum
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measurement, and thus, Bob’s state is classical.
The transmission of a cobit corresponds to the
linear map Sco W jxiA ! jxiAjxiB. Since Alice
keeps a copy of the transmitted data, Bob’s state
is classical. On the other hand, the cobit can also
be used to generate a Bell state between Alice
and Bob. Since no qubit can be transmitted via
a cobit, a cobit is weaker than a qubit. A cobit
is stronger than a classical bit since entanglement
can be generated using a cobit.

One can define a coherent version of
superdense coding and quantum teleportation
in which measurements are replaced by unitary
operations. In this version of dense coding, Bob
replaces his Bell measurement by a rotation
of the states j‰b1b2i to the states jb1b2iB.
Since Alice keeps her input bits, the coherent
protocol implements the map jx1x2iA !

jx1x2iAjx1x2iB. Thus, one can strengthen the
dense coding resource relation to

1 ebitC 1 qubit � 2 cobits: (4)

Similarly, the coherent execution of quantum
teleportation gives rise to the modified relation
2 cobitsC1 ebit � 1 qubitC2 ebits. One can omit
1 ebit on both sides of the inequality by using
ebits catalytically, i.e., they can be borrowed and
returned at the end of the protocol. One can then
combine both coherent resource inequalities and
obtain a resource equality:

2 cobits D 1 qubitC 1 ebit: (5)

A different extension of dense coding is the
notion of superdense coding of quantum states
proposed in [9]. Instead of dense coding clas-
sical bits, the authors in [9] propose to code
quantum bits whose quantum states are known to
the sender Alice. This last restriction is usually
referred to as the remote preparation of qubits, in
contrast to the transmission of qubits whose states
are unknown to the sender. In remote preparation
of qubits, the sender Alice can use the additional
knowledge about her states in the choice of en-
coding. In [9] it is shown that one can obtain the
asymptotic resource relation

1 ebitC 1 qubit � 2 remotely prepared qubit.s/:
(6)

Such relation would be impossible if the r.h.s.
were replaced by 2 qubits. In that case the in-
equality could be used repeatedly to obtain that
1 qubit suffices for the transmission of an arbi-
trary number of qubits which is impossible.

The “non-oblivious” superdense coding of
quantum states should be compared with the
non-oblivious and asymptotic variant of quantum
teleportation which was introduced in [5]. In this
protocol, referred to as remote state preparation
(using classical bits), the quantum teleportation
inequality, Eq. (3), is tightened to

1 ebitC 1 cbit � 1 remotely prepared qubit.s/:
(7)

These various resource (in)equalities and their
underlying protocols can be viewed as the first in
a comprehensive theory of resources inequalities.
The goal of such theory [6] is to provide a unified
and simplified approach to quantum Shannon
theory.

Experimental Results

In [11] a partial realization of dense coding was
given using polarization states of photons as
qubits. The Bell state j‰01i can be produced
by parametric down-conversion; this state
was used in the experiment as the shared
entanglement between Alice and Bob. With
current experimental techniques, it is not possible
to carry out a low-noise measurement in the Bell
basis which uniquely distinguishes the four Bell
states. Thus, in [11] one of three messages,
a trit, is encoded into the four Bell states.
Using two-particle interferometry, Bob learns
the value of the trit by distinguishing two of the
four Bell states uniquely and obtaining a third
measurement signal for the two other Bell states.

In perfect dense coding, the channel capacity
is 2 bits. For the trit-scheme of [11], the ideal
channel capacity is log 3 
 1:58. Due to the noise
in the operations and measurements, the authors
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of [11] estimate the experimentally achieved ca-
pacity as 1.13 bits. In [1] it is shown how the
presence of additional entanglement of the polar-
ized photons in their orbital momentum degree
of freedom (hyperentanglement) can assist in
distinguishing all 4 Bell states in a modified Bell
state analyzer. A capacity of 1.63 bits is reported.

In [13] the complete protocol of dense coding
was carried out using two 9BeC ions confined
to an electromagnetic trap. A qubit is formed by
two internal hyperfine levels of the 9BeC ion.
Single-qubit and two-qubit operations are carried
out using two polarized laser beams. A single
qubit measurement is performed by observing
a weak/strong fluorescence of j0i and j1i. The
authors estimate that the noise in the unitary
transformations and measurements leads to an
overall error rate on the transmission of the bits
b of 15 %. This results in an effective channel
capacity of 1.16 bits.

In [7] dense coding was carried out using
NMR spectroscopy. The two qubits were formed
by the nuclear spins of 1H and 13C of chloroform
molecules 13CHCL3 in liquid solution at room
temperature. The full dense coding protocol was
implemented using the technique of temporal
averaging and the application of coherent RF
pulses; see [12] for details. The authors estimate
an overall error rate on the transmission of the
bits b of less than 10 %.
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Problem Definition

A quantum system can never be seen as being
completely isolated from its environment,
thereby permanently causing disturbance to the
state of the system. The resulting noise problem
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threatens quantum computers and their great
promise, namely, to provide a computational
advantage over classical computers for certain
problems (see also the cross-references in
the section “Cross-References”). Quantum
noise is usually modeled by the notion of a
quantum channel which generalizes the classical
case and, in particular, includes scenarios for
communication (space) and storage (time) of
quantum information. For more information
about quantum channels and quantum infor-
mation in general, see [19]. A basic channel
is the quantum mechanical analog of the classical
binary symmetric channel [17]. This quantum
channel is called the depolarizing channel and
depends on a real parameter p 2 Œ0; 1�. Its
effect is to randomly apply one of the Pauli
spin matrices X , Y , and Z to the state of the
system, mapping a quantum state ¡ of one qubit
to .1 � p/¡ C p=3.X¡X C Y ¡Y C Z¡Z/.
It should be noted that it is always possible to
map any quantum channel to a depolarizing
channel by twirling operations. The basic
problem of quantum error correction is to devise
a mechanism that allows to recover quantum
information that has been sent through a quantum
channel, in particular the depolarizing channel.

Key Results

For a long time, it was not known whether it
would be possible to protect quantum information
against noise. Even some indication in the form
of the no-cloning theorem was put forward to
support the view that it might be impossible.
The no-cloning theorem essentially says that an
unknown quantum state cannot be copied per-
fectly. This dashes hopes that, similar to the clas-
sical case, a simple triple-replication and majority
voting mechanism may be used in the quantum
case as well. Therefore, it came as a surprise
when Shor [20] found a quantum code which
encodes one qubit into nine qubits in such a
way that the resulting state has the ability to be
protected against arbitrary single-qubit errors on
each of these nine qubits. The idea is to use a
concatenation of two threefold repetition codes.

One of them protects against bit-flip errors while
the other protects against phase-flip errors. The
quantum code is a two-dimensional subspace of
the 29 dimensional Hibert space .C2/˝9. Two
orthogonal basis vectors of this space are iden-
tified with the logical 0 and 1 states, respectively,
usually called j0i and j1i. Explicitly, the code is
given by

j0i D
1

2
p
2
.j000i C j111i/˝ .j000i C j111i/

˝ .j000i C j111i/;

j1i D
1

2
p
2
.j000i C j111i/˝ .j000i � j111i/

˝ .j000i C j111i/:

The state ’j0i C “j1i of one qubit is encoded to
the state ˛j0iCˇj1i of the nine-qubit system. The
reason why this code can correct one arbitrary
quantum error is as follows.

First, suppose that a bit-flip error has hap-
pened, which in quantum mechanical notation is
given by the operator X . Then a majority vote of
each block of three qubits 1�3; 4�6, and 7�9 can
be computed and the bit flip can be corrected. To
correct against phase-flip errors, which are given
by the operator Z, the fact is used that the code
can be written as j0i D j C CCi C j � ��i,
j1i D j C CCi � j � ��i, where j˙i D

1p
2
.j000i C j111i/. By measuring each block of

three in the basis fjCi; j�ig, the majority of the
phase flips can be detected and one phase-flip
error can be corrected. Similarly, it can be shown
that Y , which is a combination of a bit flip and a
phase flip, can be corrected.

Discretization of Noise
Even though the above procedure seemingly only
takes care of bit-flips and phase-flip errors, it
actually is true that an arbitrary error affecting
a single qubit out of the nine qubits can be
corrected. In particular, and perhaps surprisingly,
this is also the case if one of the nine qubits is
completely destroyed. The linearity of quantum
mechanics allows this method to work. Linearity
implies that whenever operators A and B can be
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corrected, so can their sum A C B [8, 20, 22].
Since the (finite) set f12; X; Y;Zg forms a vector
space basis for the (continuous) set of all one-
qubit errors, the nine-qubit code can correct an
arbitrary single-qubit error.

Syndrome Decoding and the Need for
Fresh Ancillas
A way to do the majority vote quantum-
mechanically is to introduce two new qubits
(also called ancillas) that are initialized in j0i.
Then, the results of the two parity checks
for the repetition code of length three can be
computed into these two ancillas. This syndrome
computation for the repetition code can be done
using the so-called controlled not (CNOT) gates
[19] and Hadamard gates. After this, the qubits
holding the syndrome will factor out (i.e., they
have no influence on future superpositions or
interferences of the computational qubits) and
can be discarded. Quantum error correction
demands a large supply of fresh qubits for
the syndrome computations which have to be
initialized in a state j0i. The preparation of many
such states is required to fuel active quantum
error-correcting cycles, in which syndrome
measurements have to be applied repeatedly. This
poses great challenges to any concrete physical
realization of quantum error-correcting codes.

Conditions for General Quantum Codes
Soon after the discovery of the first quantum
code, general conditions required for the exis-
tence of codes, which protect quantum systems
against noise, were sought after. Here the noise is
modeled by a general quantum channel, given by
a set of error operators Ei . The Knill-Laflamme
conditions [13] yield such a characterization. Let
C be the code subspace and let PC be an or-
thogonal projector onto C . Then the existence of
a recovery operation for the channel with error
operators Ei is equivalent to the equation

PCE


i EjPC D �i;jPC ;

for all i and j , where œi;j are some complex
constants. This recently has been extended to
the more general framework of subsystem codes

(also called operator quantum error-correcting
codes) [16].

Constructing Quantum Codes
The problem of deriving general constructions
of quantum codes was addressed in a series
of groundbreaking papers by several research
groups in the mid-1990s. Techniques were
developed which allow classical coding theory
to be imported to an extent that is enough to
provide many families of quantum codes with
excellent error correction properties.

The IBM group [3] investigated quantum
channels, placed bounds on the quantum
channels’ capacities, and showed that for some
channels, it is possible to compute the capacity
(such as for the quantum erasure channel).
Furthermore, they showed the existence of a five-
qubit quantum code that can correct an arbitrary
error, thereby being much more efficient than
Shor’s code. Around the same time, Calderbank
and Shor [4] and Steane [21] found a construction
of quantum codes from any pair C1, C2 of
classical linear codes satisfying C?

2 � C1.
Named after their inventors, these codes are
known as CSS codes.

The AT&T group [5] found a general way of
defining a quantum code. Whenever a classical
code over the finite field F4 exists that is addi-
tively closed and self-orthogonal with respect to
the Hermitian inner product, they were able to
find even more examples of codes. Independently,
D. Gottesman [8,9] developed the theory of stabi-
lizer codes. These are defined as the simultaneous
eigenspaces of an abelian subgroup of the group
of tensor products of Pauli matrices on several
qubits. Soon after this, it was realized that the two
constructions are equivalent.

A stabilizer code which encodes k qubits
into n qubits and has distance d is denoted
by [n; k; d ]. It can correct up to b.d � 1/=2c
errors of the n qubits. The rate of the code is
defined as r D k=n. Similar to classical codes,
bounds on quantum error-correcting codes are
known, i.e., the Hamming, Singleton, and linear
programming bounds.
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Asymptotically Good Codes
Matching the developments in classical algebraic
coding theory, an interesting question deals
with the existence of asymptotically good
codes, i.e., families of quantum codes with
parameters [[ni ; ki ; di ]], where i � 0,
which have asymptotically nonvanishing rate
limi!1 ki=ni > 0 and nonvanishing relative
distance limi!1 di=ni > 0. In [4], the existence
of asymptotically good codes was established
using random codes. Using algebraic geometry
(Goppa) codes, it was later shown by Ashikhmin,
Litsyn, and Tsfasman that there are also
explicit families of asymptotically good quantum
codes [2]. Currently, most constructions of
quantum codes are from the abovementioned
stabilizer/additive code construction, with
notable exception of a few nonadditive codes and
some codes which do not fit into the framework
of Pauli error bases.

Applications

Besides their canonical application to protect
quantum information against noise, quantum
error-correcting codes have been used for other
purposes as well. The Preskill/Shor proof of the
security of the quantum key distribution scheme
BB84 relies on an entanglement purification
protocol, which in turn uses CSS codes [19].
Furthermore, quantum codes have been used
for quantum secret sharing, quantum message
authentication, and secure multiparty quantum
computations. Properties of stabilizer codes are
also germane for the theory of fault-tolerant
quantum computation.

Open Problems

The literature of quantum error correction is fast
growing, and the list of open problems is cer-
tainly too vast to be surveyed here in detail. The
following short list is highly influenced by the
preference of the author.

1. It is desirable to find quantum codes for
which all stabilizer generators have low

weight and which at the same time allow for
efficient fault-tolerant quantum computation
with the encoded data. These requirements
correspond to a quantum equivalent to low-
density parity check (LDPC) codes. So far
only a few constructions are known, but
recent progress was made by Gottesman [10]
who used quantum LDPC codes to show that
universal fault-tolerant quantum computing
with constant overhead is possible. See also
[11,15] for recent progress on quantum LDPC
codes.

2. It is an open problem to find new families of
quantum codes that improve on the currently
best known estimates for the threshold
for fault-tolerant quantum computing, in
particular for codes that can be implemented
on a two-dimensional fabric of qubits. An
advantage might be had by using subsystem
codes since they allow for simple error
correction circuits. For more information
about noise thresholds, see also the entry on
�Fault-Tolerant Quantum Computation.

3. Many quantum codes are designed for
the depolarizing channel, where – roughly
speaking – the error probability is improved
from p to pd=2 for a distance d code. The
independence assumption underlying this
model might not always be justified, and
therefore, it seems imperative to consider
other channels, e.g., non-Markovian local
error models. Under some assumptions on the
decay of the interaction strengths, threshold
results for such channels have been shown [1].
However, it remains open to find constructions
of good codes for non-Markovian noise and
in general for noise models that are more
realistic than the depolarizing channel.

Experimental Results

Active quantum error-correcting codes, such as
those codes which require syndrome measure-
ments and correction operations, as well as pas-
sive codes (i.e., codes in which the system stays
in a simultaneous invariant subspace of all error
operators for certain types of noise), have been
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demonstrated for various physical systems. First,
this was shown in nuclear magnetic resonance
(NMR) experiments [14]. The three-qubit repeti-
tion code, which protects one qubit against phase-
flip error Z, was then demonstrated in an ion trap
for beryllium ion qubits [6].

Subsequently, architectures have been
proposed [18] that would in principle allow to
construct scalable quantum computers based on
ion traps and concatenated coding, e.g., based
on the [1, 3, 7] Steane code. In superconducting
qubit systems, using an architecture that supports
nine physical qubits, high gate fidelities have
been reported [12]. This suggests that it might be
possible in this architecture to achieve error rates
that are below the threshold for the surface code,
which is known to be around 1 % [7].

Data Sets

Markus Grassl maintains http://www.codetables.
de, which contains tables of the best known
quantum codes, some entries of which extend
([5], Table III). It also contains bounds on the
minimum distance of quantum codes for given
lengths and dimensions and contains information
about the construction of the codes. In principle,
this can be used to get explicit generator matrices
(see also the following section “URL to Code”).

URL to Code

The computer algebra system Magma (http://
magma.maths.usyd.edu.au/magma/) has func-
tions and data structures for defining and
analyzing quantum codes. Several quantum
codes are already defined in a database of
quantum codes. For instance, the command
BestKnownQuantumCode(F, n, k) returns the
best known quantum code (i.e., one of the
highest known minimum weight) over the field
F , of length n, and dimension k. It allows the
user to define new quantum codes and to study
its properties such as the weight distribution,
automorphism, and several predefined methods
for obtaining new codes from a set of given ones.
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Problem Definition

Secret keys, i.e., random bitstrings not known to
an adversary, are a vital resource in cryptography
(they can be used, e.g., for message encryption

or authentication). The distribution of secret keys
among distant parties, possibly only connected by
insecure communication channels, is thus a fun-
damental cryptographic problem. Quantum key
distribution (QKD) is a method to solve this
problem using quantum communication. It relies
on the fact that any attempt of an adversary to
wiretap the communication would, by the laws of
quantum mechanics, inevitably introduce distur-
bances which can be detected.

For the technical definition, consider a setting
consisting of two honest parties, called Alice and
Bob, as well as an adversary, Eve. Alice and
Bob are connected by a quantum channel Q
which might be coupled to a (quantum) system
E controlled by Eve (see Fig. 1). In addition, it
is assumed that Alice and Bob have some means
to exchange classical messages authentically, that
is, they can make sure that Eve is unable to (un-
detectably) alter classical messages during trans-
mission. If only insecure communication chan-
nels are available, Alice and Bob can achieve this
using an authentication scheme [19]. The scheme
requires that Alice and Bob have a short initial
key or at least some initial common randomness
that is not entirely known to Eve [17]. This
is why QKD is sometimes called quantum key
growing.

A QKD protocol   D . A;  B/ is a pair of
algorithms for Alice and Bob, producing clas-
sical outputs SA and SB , respectively. SA and
SB take values in S [ f?g where S is called
key space and ? is a symbol (not contained in
S) indicating that no key can be generated. A
QKD protocol   with key space S is said to be
perfectly secure on a channel Q if, after its execu-
tion using communication over Q, the following
holds:

• SA D SB ;
• if SA ¤ ?, then SA and SB are uniformly

distributed on S and independent of the state
of E.

More generally,   is said to be ©-secure on
Q if it satisfies the above conditions except
with probability (at most) ©. Furthermore,   is
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Quantum Key Distribution, Fig. 1 A QKD protocol  
consists of algorithms  A and  B for Alice and Bob,
respectively. The algorithms communicate over a quantum

channel Q that might be coupled to a system E controlled
by an adversary. The goal is to generate identical keys SA

and SB which are independent of E

said to be ©-robust on Q if the probability that
SA D ? is at most ©. These definitions may be
extended to sets of channels Q, i.e., one demands
that the conditions hold for any member of
the set.

In the standard literature on QKD, protocols
are typically parametrized by some positive num-
ber k quantifying certain resources needed for its
execution (e.g., the amount of communication).
A protocol   D . k/k2N is said to be secure
(robust) on a set of channels if there exists a
sequence .©k/k2N which approaches zero expo-
nentially fast such that k is ©k-secure (©k-robust)
on this set for any k 2 N. Moreover, if the key
space of  k is denoted by Sk , the key rate of
  D . k/k2N is defined by r D lim

k!1

lk

k
where

lk WD log2 jSkj is the key length.
The ultimate goal is to construct QKD proto-

cols   which are secure against general attacks,
i.e., secure on the set of all possible channels
Q. This ensures that an adversary cannot get
any information on the generated key even if
she fully controls the communication between
Alice and Bob. At the same time, a protocol  
should be robust on a set of realistic channels,
corresponding to a situation where the noise of
the channel is below a given threshold and no
adversary is present. Note that, in contrast to
security, robustness cannot be guaranteed on the
set of all possible channels. Indeed, an adversary
could, for instance, interrupt the entire communi-
cation between Alice and Bob (in which case key
generation is obviously impossible).

Key Results

Protocols
On the basis of the pioneering work of Wiesner
[20], Bennett and Brassard, in 1984, invented
QKD and proposed a first protocol, known today
as the BB84 protocol [3]. In 1991, Ekert invented
entanglement-based QKD. His protocol is com-
monly referred to as E91 [8] and provides an
additional level of security, termed device inde-
pendence [1, 9]. Later, in an attempt to increase
the efficiency and practicability of QKD, various
extensions to the BB84 and E91 protocols as well
as alternative schemes have been proposed.

QKD protocols can generally be subdivided
into (at least) two subprotocols. The purpose
of the first, called distribution protocol, is to
generate a raw key pair, i.e., a pair of correlated
classical values X and Y known to Alice and
Bob, respectively. In many protocols (including
BB84), Alice chooses X D .X1; : : : ; Xk/ at
random, encodes each of the Xi into the state of
a quantum particle, and then sends the k particles
over the quantum channel to Bob. Upon receiving
the particles, Bob applies a measurement to each
of them, resulting in Y D .Y1; : : : ; Yk/. The
crucial idea now is that, by virtue of the laws
of quantum mechanics, the secrecy of the raw
key is a function of the strength of the corre-
lation between X and Y ; in other words, the
more information about the (raw) key an adver-
sary tries to acquire, the more disturbances she
introduces.
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Distribution, Fig. 2 Key
rate of an extended version
of the BB84 QKD protocol
depending on the
maximum tolerated
channel noise (measured in
terms of the bit-flip
probability e) [14]
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This is exploited in the second subprotocol,
called distillation protocol. Roughly speaking,
Alice and Bob estimate the statistics of the raw
key pair .X; Y /. If the correlation between their
respective parts is sufficiently strong, they use
classical techniques such as information recon-
ciliation (error correction) and privacy amplifica-
tion (see [4] for the case of a classical adversary
which is relevant for the analysis of security
against individual attacks and [14, 16] for the
quantum-mechanical case which is relevant in the
context of collective and general attacks; cf. the
characterization below) to turn .X; Y / into a pair
.SA; SB/ of identical and secret keys.

Key Rate as a Function of Robustness and
Security
The performance (in terms of the key rate) of a
QKD protocol strongly depends on the desired
level of security and robustness, as illustrated in
Fig. 2. (The robustness is typically measured in
terms of the maximum tolerated channel noise,
i.e., the maximum noise of a channel Q such
that the protocol is still robust on Q.) The results
summarized below apply to protocols of the form
described above where, for the analysis of ro-
bustness, it is assumed that the quantum channel
Q connecting Alice and Bob is memoryless and
time invariant, i.e., each transmission is subject
to the same type of disturbances. Formally, such
channels are denoted by Q D NQ˝k where NQ
describes the action of the channel in a single
transmission.

Security Against Individual Attacks
A QKD protocol   is said to be secure against
individual attacks if it is secure on the set of
channels Q of the form NQ˝k under the constraint
that the coupling to E is purely classical. Note
that this notion of security is relatively weak.
Essentially, it only captures attacks where the
adversary applies identical and independent mea-
surements to each of the particles sent over the
channel.

The following statement can be derived from a
classical argument due to Csiszár and Körner [6].
Let £ be a distribution subprotocol as described
above, i.e., £ generates a raw key pair .X; Y /.
Moreover, let S be a set of quantum channels NQ
suitable for £. Then there exists a QKD protocol
  (parametrized by k) consisting of k executions
of the subprotocol £ followed by an appropriate
distillation subprotocol such that the following
holds:   is robust on Q D NQ˝k for any NQ 2 S,
is secure against individual attacks, and has key
rate at least

r � min
NQ2S

H.X jZ/ �H.X jY /; (1)

where the conditional Shannon entropies on
the r.h.s. are evaluated for the joint distribution
P

NQ
XYZ of the raw key .X; Y / and the (classical)

state Z of Eve’s system E after one execution of
£ on the channel Q. Evaluating the right hand side
for the BB84 protocol on a channel with bit-flip
probability e shows that the rate is non-negative
if e � 14:6% [10].
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Security Against Collective Attacks
A QKD protocol   is said to be secure against
collective attacks if it is secure on the set of chan-
nels Q of the form NQ˝k with arbitrary coupling
to E. This notion of security is strictly stronger
than security against individual attacks, but it still
relies on the assumption that an adversary does
not apply joint operations to the particles sent
over the channel.

As shown by Devetak and Winter [7], the
above statement for individual attacks extends
to collective attacks when replacing inequality
(1) by

r � min
NQ2S

S.X jE/ �H.X jY /; (2)

where S.X jE/ is the conditional von Neumann
entropy evaluated for the classical value X and
the quantum state of E after one execution of £
on NQ. For the standard BB84 protocol, the rate is
positive as long as the bit-flip probability e of the
channel satisfies e � 11:0% [18] (see Fig. 2 for a
graph of the performance of an extended version
of the protocol).

Security Against General Attacks
A QKD protocol   is said to be secure against
general attacks if it is secure on the set of all
channels Q. This type of security is sometimes
also called full or unconditional security as it
does not rely on any assumptions on the type of
attacks (as long as they are constrained to the
communication channel) or the resources needed
by an adversary.

The first QKD protocol to be proved secure
against general attacks was the BB84 protocol.
The original argument by Mayers [13] was fol-
lowed by various alternative proofs. Most no-
tably, based on a connection to the problem of
entanglement purification [5] established by Lo
and Chau [12], Shor and Preskill [18] presented
a general argument which applies to various ver-
sions of the BB84 protocol.

Later it has been shown that, for virtually any
QKD protocol, security against collective attacks
implies security against general attacks [14, 15].
In particular, the above statement about the secu-

rity of QKD protocols against collective attacks,
including formula 2 for the key rate, extends to
security against general attacks.

Applications

Because the notion of security described above
is composable [16] (see [2, 14] for a general
discussion of composability of QKD), the key
generated by a secure QKD protocol can in prin-
ciple be used within any application that requires
a secret key (such as one-time pad encryption).
More precisely, let A be a scheme which, when
using a perfect key S (i.e., a uniformly distributed
bitstring which is independent of the adversary’s
knowledge), has some failure probability • (ac-
cording to some arbitrary failure criterion). Then,
if the perfect key S is replaced by the key gen-
erated by an ©-secure QKD protocol, the failure
probability of A is bounded by •C © [14].

Experimental Results

Most known QKD protocols (including BB84
and E91) only require relatively simple quan-
tum operations on Alice and Bob’s side (e.g.,
preparing a two-level quantum system in a given
state or measuring the state of such a system).
This makes it possible to realize them with to-
day’s technology. Experimental implementations
of QKD protocols usually use photons as carriers
of quantum information, because they can easily
be transmitted (e.g., through optical fibers or free
space). A main limitation, however, is noise in
the transmission, which, with increasing distance
between Alice and Bob, reduces the performance
of the protocol (see Fig. 2). We refer to [11] for an
overview on quantum cryptography with a focus
on experimental aspects.
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Problem Definition

Brief Description
The search problem can be described informally
as finding an item possessing a specific property,
in a given set ofN items. Each item either does or
does not possess the specified property, and that
can be checked by a binary query. The complexity
of the problem is the number of such queries
required to find the desired item (also called the
target item). The items are often collected in a
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database and sorted to simplify the subsequent
searches. When they are not sorted, there is no
shortcut to the brute force method of checking
each item one by one until the desired item is
found. A familiar example of a database is a tele-
phone directory. Its entries are sorted according
to the names of persons but not according to
the telephone numbers. Hence, it is easy to find
the telephone number of a particular person, but
difficult to find the name of a person to whom
a particular telephone number belongs (i.e., a
lookup is difficult when it is not in the same order
in which the database is sorted).

The 
.N/ lower bound on search speed,
based on inspection of one item at a time, is
correct only for classical computers. Quantum
computers can be in a superposition of multiple
states, however, and so can inspect multiple items
at the same time. There is no obvious lower
bound on how fast a quantum search can be, nor
is there an obvious technique faster than the brute
force search. It turns out, though, that there is an
efficient and optimal quantum search algorithm
that requires only O.

p
N/ queries [15].

This quantum algorithm is very different from
the search on a classical computer [8]. The opti-
mal classical strategy is to check the items one
at a time in a random order, avoiding in later
trials the items that have already been checked
earlier. After ˜ items have been checked from
a uniform distribution, the probability that the
search hasn’t yet succeeded is .1 � 1=N/.1 �
1=.N � 1// � � � .1 � 1=.N � ˜ C 1//. For � 	
N , the success probability is therefore roughly
1 � .1 � 1=N/˜ 
 ˜=N . Increasing this success
probability to ‚.1/ requires the number of items
checked, ˜, to be ‚.N/.

In contrast to classical computation, quantum
computation is formulated in terms of wavelike
complex amplitudes, whose interference can be
used to cancel undesirable components and boost
the desired component. Quantum search is then
analogous to the design of a multi-element an-
tenna array, where a careful choice of phases can
boost the radiation in a particular direction. The
analysis of such structures is carried out using the
algebra of unitary transformations, and absolute-
value squares of the amplitudes give the ob-

servation probabilities. Unitary transformations
include rotations and reflections (about various
directions) in the space of amplitudes, as well
as local phase shifts. Rotations and reflections
redistribute the amplitudes and are similar to
classical transformations. On the other hand, the
phase shifts are uniquely quantum; they do not
alter probabilities of individual components, but
affect their subsequent interference pattern. The
challenge of quantum computation is to find a
sequence of elementary unitary operations (i.e.,
quantum logic gates) that solve the given com-
puter science problem, while ensuring that the
input and the output of the quantum algorithm
have clear classical interpretations.

The quantum search algorithm steadily in-
creases the amplitude of the desired item through
a series of quantum operations. Starting with an
initial amplitude 1=

p
.N /, in � steps, the am-

plitude increases to roughly �=
p
N , and hence,

the success probability (on observation of the
state) increases to �2=N . Boosting this to ‚.1/
requires only O.

p
N/ steps, approximately the

square root of the number of steps required by
the best classical algorithm.

The quantum search algorithm is of wide in-
terest because of its versatility; it can be adapted
to different settings in a variety of fields, giving a
new class of quantum algorithms extending well
beyond the search problems. Since its discovery,
it has been incorporated in solutions of many
quantum problems – several of them are men-
tioned later in this article. Even now, two decades
after the algorithm’s discovery, new applications
and extensions keep on appearing regularly.

Formal Construction
Let the items in the set be labeled by an index i D
1; 2; : : : ; N . Let the binary query be represented
by an oracle f .i/, such that f .i/ D 1 when
i represents a desired item and f .i/ D 0 oth-
erwise. The quantum algorithm works in an N -
dimensional vector space with complex coordi-
nates, known as the Hilbert space. We use Dirac’s
notation, which is standard in the literature of
quantum mechanics and quantum computation.
Then the items are mapped to the N orthogonal
basis vectors jii of the Hilbert space, and the bi-
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nary query is mapped to the selective phase-shift
operator defined by Uf jii D .�1/f .i/jii. Given
the binary query f .i/, it is easy to construct the
operator Uf using an ancilla qubit.

The problem is to start from a specific ini-
tial state jsi and evolve to a target state satis-
fying Uf jti D �jti, by applying a sequence
of unitary operations. The number of times Uf

is used in the algorithm is its query complex-
ity. This search problem is unstructured because
nothing is known about the solution, except the
information available from the oracle that can
tell whether or not a specific state is the target
state.

NP-complete problems can be represented as
exhaustive search problems. For example, let ¥
be a 3-SAT formula on n Boolean variables.
Then the search problem is to find an assignment
for the variables, i 2 f1; 2; : : : ; N D 2ng,
that satisfy ¥. This example does not involve a
database and so bypasses concerns regarding how
the items are stored in a physical memory device
and the spatial relationship among them.

Key Results

Grover [15] showed that there indeed exists a
quantum search algorithm that provides a square-
root speedup over the optimal classical random-
ized algorithm. The algorithm has its simplest
form when there is only one target item. Then
the algorithm starts with an unbiased uniform

superposition state jsi D .1=
p
N/

NP
iD1

jii and

performs Q D O.
p
N/ iterations to evolve to

the state (UDUf /
Qjsi. Each iteration consists of

two reflection operations:

1. Uf D 1 � 2jtiht j is a reflection along jti. It
uses the binary query to flip the sign of the
amplitude of the target state.

2. UD D 2jsihsj�1 is reflection about jsi. It can
be carried out without any information about
the target state. Since the action of jsihsj gives
the average amplitude state, UD amounts to
inversion about the average or overrelaxation.

At the end, the final state is measured in the fjiig
basis that encodes the item labels, and i is output.

There are several ways of analyzing the
algorithm, and the geometric picture is perhaps
the simplest. We observe that throughout
the evolution, the quantum state stays in the
two-dimensional subspace (of the Hilbert space)
spanned by jsi and jti. Initially, the amplitude
of the state along jti is ht jsi D 1=

p
N , and

the angle between jti and jsi is �=2 � ™ with
sin � D 1=

p
N . It is a general property of linear

transformations in two dimensions that a pair
of reflections about two distinct axes produces
a rotation, and the amount of rotation is twice
the angle between the two axes. The quantum
search algorithm is an alternating sequence
of reflections about two different axes. Each
application of the operator UDUf rotates the
quantum state from jsi toward jti by angle
2™. The number of iterations QQ required to
exactly reach the target state is therefore given
by .2 QQ C 1/� D �=2. In practice, we have to
truncate to integerQ D b QQC0:5c, introducing a
small error. The success probability still remains
at least cos 2™ D 1 � 1=N . Asymptotically,
Q D .�=4/

p
N .

The reflection about the uniform superposition
state, UD , is known as the Grover diffusion
operation. When the indices are represented
in binary notation, with N D 2n, we
have jsi D H˝nj0i˝n in terms of the Hadamard

operator H D 1p
2

�
1 1

1 �1

�
. Then UD D

H˝nU0H
˝n, with U0 D 2j0i˝nh0j˝n � 1

being the reflection about the j0i˝n state, and
it can be implemented using O.n/ qubit-level
operations. In this case, the full quantum search
algorithm evolves the state j0i˝n to the state
(H˝nU0H

˝nUf /
QH˝nj0i˝n.

When there are M target items, instead of
just one, all that is required is to replace jti by
MP

j D1

jtj i=
p
M in the algorithm. The final mea-

surement then yields one of the target items after

O
�p

N=M
�

queries. Thus, we have [15]:

Theorem 1 (Grover search) There is a quan-
tum black-box unstructured search algorithm
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with success probability ‚.1/, which finds any
one of the M target items in a set of N items,

using O
�p

N=M
�

queries.

This algorithm has several noteworthy proper-
ties:

• The algorithm is optimal. It saturates the



�p

N
�

lower bound [5] on the number of

queries required for an unstructured quantum
search. The evolution from jsi to jti follows
the shortest geodesic route in the Hilbert
space at constant speed. A variational analysis
shows that the algorithm cannot be improved
by even a single query [43].

• The best classical search algorithm has to
walk randomly through all the items, while the
quantum search algorithm performs a directed
walk in the Hilbert space. The square-root
speedup of the quantum search algorithm can
therefore be understood as the well-known re-
sult that directed walk provides a square-root
speedup over random walk while covering the
same distance.

• The algorithm can be looked upon as evo-
lution of the quantum state from jsi to jti,
governed by a Hamiltonian containing two
terms, jtiht j and jsihsj. The former represents
a potential energy attracting the state toward
jti, and the latter represents a kinetic en-
ergy diffusing the state throughout the Hilbert
space. The algorithm is then the discrete Trot-
ter’s formula, generated by exponentiating the
two terms in the Hamiltonian [17].

• Grover search does not require the full power
of quantum dynamics and can be implemented
using any system that obeys the superposi-
tion principle. Explicit examples using clas-
sical waves in the form of coupled oscilla-
tors have been constructed [20, 29]. In these
mechanical systems, the role of the uniform
superposition state is played by the center-of-
mass mode, and the search problem becomes
the energy focusing problem. The classical
wave implementation requires the same num-
ber of queries as the quantum algorithm. The
difference is that to represent N items, we

need N wave modes but only n D log2N

qubits.
• Grover search finds with certainty a single

target state out of four possibilities using a
single binary query, i.e., Q D 1 for N D

4. The best classical Boolean algorithm can
distinguish only two items with a single binary
query, and so it needs two binary queries
to carry out the same task. When the query
can be factored into subqueries, e.g., the item
label is searched for one digit at a time and
not as a whole, the best quantum (or wave)
arrangement for a database is a quaternary
tree. Then every subquery reduces the search
space by a factor of 4, which is a factor-of-2
advantage over the classically optimal binary
tree. An additional advantage following from
commutativity of superposition is that, unlike
the classical case, the quantum tree does not
require sorting of the database [28].

• The quantum search algorithm is robust
against changes in the initial state and the
operators, in sharp contrast to many other
quantum processes that are highly sensitive
to errors. The initial state and the diffusion
operator are related in Grover search, but can
be separated in a more general context [2,40].
Let QUD be the modified diffusion operator
with jsi as an eigenstate with eigenvalue 1,
i.e., the diffusion is translationally invariant.
The algorithm then succeeds with ‚.1/

probability, provided ’ D jht jsij as well as the
angular spectral gap of QUD in the vicinity of
identity (say Q� ) are bounded away from zero.
The number of queries required is O.B3=’/,
where B2 is related to the second moment of
the eigenvalue distribution of QUD and obeys
B2 < 1C .4= Q�2/, in contrast to the classical
result O.1=’2/. Grover search, therefore, can
be generalized to an entire class of algorithms
that use different diffusion operators. This
flexibility is one of the reasons why Grover
search ideas appear frequently in quantum
algorithms.

• Quantum search can be implemented so as
to be robust also against faulty queries, a
problem known as bounded-error search.
When the query has a bounded coherent
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error, say QUf jiij1i D
p
pi .�1/

f .i/jiij1i C
p
1 � pi jQiij0i with each pi � 0:9 (jQii are

arbitrary states and the last qubit is a witness
for the fault), quantum search can still be

implemented using O
�p

N
�

queries [22].

The deterioration of the search algorithm
depends on pi , but that is only in the scaling
constant for the number of queries.

A useful generalization of the quantum search
algorithm is the amplitude amplification tech-
nique [10, 16], which can be applied on top of
nearly any quantum algorithm for any problem.
It says that given a quantum algorithm that solves
a problem with a small success probability �, the
success probability can be increased to roughly
m2� using O.m/ calls to that algorithm. (Classi-
cally, the success probability can be increased to
only aboutm�.) For the standard search problem,
the simple algorithm that picks a random item has
success probability � D 1=N , which the quantum
search algorithm increases to ‚.1/.

More formally, let V be the unitary operator
corresponding to an algorithm that evolves the
initial state jsi to V jsi. Its success probability is
� D jht jV jsij2 D jVtsj

2. The algorithm obtained
by replacing jsi by V jsi in Grover search, i.e.,
replacing UD by V UDV


, then increases the

success probability to ‚.1/ in O
�
1=
p
jVtsj

�

iterations. In particular, this algorithm evolves
the quantum state in the two-dimensional sub-
space spanned by jti and V jsi, rotating it by
angle 2 sin�1 jVtsj at every iteration. In order to
implement Uf , the algorithm needs a witness
for the correctness of the output. Thus, we have
[10, 16]:

Theorem 2 (Amplitude amplification) Let A
be a quantum algorithm that outputs a correct
answer with witness, with known probability
� D sin2 � . Furthermore, let m D b =.4™/c.
Then there is an algorithm A0 that uses 2m C 1
calls to A and A�1 and outputs a correct answer
with probability �0 � 1 � �.

Depending on the actual implementation, it
is possible to vary the quantum search algo-
rithm somewhat from the preceding deterministic

and optimal approach and obtain small improve-
ments:

• The algorithm needs O
�p

N logN
�

qubit-

level operations in order to implement H˝n

and U0. The log N factor in this count can
be suppressed by adding a small number of
queries to the algorithm. A simple scheme
divides the n qubits into k sets of n=k qubits
each and uses the Grover diffusion operators
UD

.i/ D H˝.n=k/U0
.i/H˝.n=k/ that act only

on one set at a time leaving the other sets
unchanged [18]. Sequentially going through
all the sets generates the transformation

V D
kQ

iD1

.U
.i/
D Uf /H

˝n, which is then used

for amplitude amplification with the initial
state j0i˝n. Overall, the number of qubit-
level operations reduce by a factor ‚.k/,
while the number of queries go up by a factor
1 C ‚.kN�1=k/, provided kN�1=k D o.1/.
The choice k D ‚.n= logn/ reduces the

qubit-level operations to O
�p

N logn
�

, at

the cost of increasing the queries by a factor
1C‚.1= logn/.

• Consider the partial search problem where the
items are separated into N=b blocks of size
b each, and only the block containing the
desired item is to be located using the same
Uf . In that case, the number of queries can
be reduced by 0:34

p
b for large b [25]. The

procedure first uses Grover search to make
the amplitudes of nontarget blocks sufficiently
small, then applies Grover search in parallel
within each block to make the amplitudes of
the target block sufficiently negative (ampli-
tudes of nontarget blocks remain unchanged
in this step), and then executes a final UD op-
eration to reduce the amplitudes of nontarget
blocks to zero.

• Though Grover search proceeds from jsi to
jti with uniform speed in the Hilbert space,
it slows down in terms of the success prob-
ability as it nears the target state. So one
can reduce the expected number of queries,
by stopping the algorithm before reaching the
target state and then looking for the desired
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item probabilistically. That amounts to mini-
mizing .QC 1/=p, with the success probabil-

ity p D sin2
�
.2QC 1/ sin�1.1=

p
N/
�

. This

probabilistic search reduces the required num-
ber of queries asymptotically to 0:6900

p
N

[14].
• Consider the search problem where the times

required for querying different items are
not the same. This can happen when the
query is an algorithm A acting on different
input states jii. When the query for the i th

item takes time ti to execute, unstructured
quantum search can be accomplished in time

O

0
@T D

 
NP

iD1

t2i

!1=2
1
A when ti are known

apriori [3]. The strategy is to divide the items
into multiple groups so that items in every
group have query times within a constant
factor, apply Grover search within each group,
and then query the groups sequentially. The
number of groups needed isO.logN/, and the
result improves upon the global Grover search

boundO
�p

Ntmax

�
. Amplitude amplification

can be used when A is probabilistic, and a
polylogarithmic overhead in T is required
when ti are not known in advance.

Applications

NP-Complete Problems
Even though NP-complete problems have some
structure, there are few known algorithms that
exploit this structure to solve them, and often the
only recourse left is to solve them as exhaustive
search problems. Since quantum search does not
assume any structure or pattern in the input data,
it provides a square-root speedup in such cases.

Quantum Counting
The counting problem is to find the number of
items in a set that satisfy the given query. Its
quantum solution is based on the fact that the
iterative evolution in Grover search is periodic,

with angular frequency ! D 2 sin�1
�p

M=N
�

.

The phase estimation procedure (based on quan-
tum Fourier transform) [24] can therefore deter-

mine M approximately, up to error
p
M , using

O
�p

N
�

queries. Then, using the property that

¨ differs by 1=
p
M.N �M/ between adjacent

values of M , M can be determined exactly using
O=
p
M.N �M/ queries [27]. For M D o.N /,

this quantum result is a power-law improvement
over the classical result of ‚.N/ queries, al-
though not as good as a square-root speedup.

Element Distinctness
An early application of Grover search was to find
collisions, i.e., given oracle access to a 2-to-1
function f , find distinct arguments x; y such that
f .x/ D f .y/. The quantum collision problem
has an O.N 1=3/ algorithm [9]. The more general
element distinctness problem is to find distinct
x; y such that f .x/ D f .y/, for an unknown
function f that can be accessed only by an oracle.
Ambainis discovered an optimal O.N 2=3/ quan-
tum algorithm for this problem [2]. It searches
a suitably constructed graph, with the Grover
diffusion operation replaced by a certain quantum
walk. The vertices of the graph correspond to
various subsets of items Sj � f1; 2; : : : ; N g,
each of size N 2=3, two vertices are connected
by an edge when the corresponding subsets differ
by only one item, and the target vertices are the
subsets Sj that solve the element distinctness
problem.

Distributed Search
Grover search is also useful in improving com-
munication complexity. For example, a straight-
forward distributed implementation of the quan-
tum search algorithm solves the set intersection
problem or the appointment problem. The result
is, when A and B have respective data strings
x; y 2 f0; 1gN , and they want to find an index i

such that xi D yi D 1, only O
�p

N logN
�

qubits of communication is necessary [11]. This
result has led to an exponential classical/quantum
separation in the memory required to evaluate a
certain total function with a streaming input [26].

Fixed-Point Search
The iterative evolution in Grover’s search algo-
rithm is cyclic, and knowledge of N is necessary
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to stop it at the right time to find the target
item. In contrast, fixed-point search algorithms
converge monotonically to the target state. For a
long time, a fixed-point quantum algorithm was
considered unlikely, since any iterative unitary
evolution is periodic. Surprisingly, a way out was
provided by recursive unitary evolution. When
the reflection operations in the amplitude ampli-
fication algorithm are replaced by selective phase
shifts of  =3 (e.g., Ri D 1 C .ei =3 � 1/jiihi j

for the state jii), jht jV jsij2 D 1 � � implies
jht jVRsV


RtV jsij
2 D 1 � �3 [19]. So each

recursive substitution of the operator V by the
operator VRsV


RtV reduces the deviation of
the final state from the target state to the cube
of what it was before. (The corresponding best
classical reduction isO.�2/, e.g., by majority rule
selection after three trials.) This technique does
not give a square-root speedup for search, but it
is useful when � is small, for instance, in error
correction. It has been used to design composite
pulse sequences for reducing systematic errors
[35]. An iterative quantum search algorithm with
similar properties has been obtained combining
reflection operations with non-unitary projective
measurements [41]. Another recent construction
is a bounded-error quantum search algorithm
(i.e., success probability p � 1 � •) that varies
the phase shifts between   and  =3 as a function
of the iteration number [42]. It exhibits square-
root speedup as well as convergence to the target
state, provided that both • and jht jsij are bounded
away from zero.

Spatial Search
This is the search problem where the items be-
longing to a database are spread over distinct
physical locations, say a d -dimensional lattice,
and there is a restriction that one can proceed
from any location to only its neighbors while
searching for the target item. Its quantum solution
replaces the global Grover diffusion operator by a
local quantum walk, and Grover search becomes
the d ! 1 limit. The required number of
queries has to obey the double lower bound



�
dN 1=d ;

p
N
�

; the former arises from the

finite speed of movement on the lattice and the

latter from the optimality of Grover search. The
best algorithms are found in the framework of rel-

ativistic quantum mechanics. They use O
�p

N
�

queries for d > 2, with the scaling constant
approaching  =4 from above as d ! 1 [1, 33].
In the critical dimension d D 2, the algorithms
are slowed down by logarithmic factors arising
from the infrared divergence, and the best known

algorithm requires O
�p

N logN
�

queries [39].

For non-integer values of d , the scaling behavior
of the algorithm has been verified using numeri-
cal simulations on fractal lattices [32].

Markov Chain Evolution
Generic stationary stochastic processes (e.g., ran-
dom walks) are defined in terms of transition
matrices that encode the possible evolutionary
changes at each step. Many properties of the
resulting evolution (e.g., hitting time, detection,
mixing, escape time) scale as negative powers
of the spectral gap of the transition matrix. For
Markovian evolution on bipartite graphs, the tran-
sition matrix can be separated into two disjoint
parts, say fxg ! fyg and fyg ! fxg. Szegedy
constructed two reflection operators from these
parts and defined a quantum evolution operator
as their product [38] (classical Markov chain
evolution does not allow such reflection opera-
tors). The spectral gap of this quantum evolution
operator scales as the square root of the spectral
gap of the original transition matrix and so speeds
up the evolution the same way as Grover search
does.

Recursive Search
Game-tree evaluation, which is a recursive search
problem, is an extension of unstructured search.
Classically, using the alpha-beta pruning tech-
nique, the value of a balanced binary AND-OR
tree can be computed with o(1) error in expected

time O
�
N log2Œ.1C

p
33/=4�

�
D O.N 0:754/ [36].

This is optimal even for bounded-error algo-
rithms [37]. By applying quantum search re-
cursively, a depth-d regular AND-OR tree can
be evaluated with constant error in time

p
N �

O.logN/d�1. The log factors come from ampli-
fying the success probability of inner searches to
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be close to one. Bounded-error quantum search
eliminates these log factors, reducing the time to

O
�p

N � cd
�

for some constant c. Recently, an

O.N 0:5Co.1// time algorithm has been discov-
ered for evaluating an arbitrary AND-OR tree on
N variables [4, 13].

Open Problems

In several applications of the quantum search
algorithm, only the leading asymptotic behavior
of the query complexity is known, and attempts
to suppress logarithmic corrections (when they
appear) and reduce the scaling constants continue
[34]. In this section, we point out some other
offbeat applications.

Hamiltonian Evolution
Many conventional algorithms for simulations of
quantum systems with sparse Hamiltonians use
the Trotter formula with a small step size. They
have a power-law dependence of the computa-
tional complexity on the simulation error and
hence are not efficient. In contrast, Grover search
amounts to a Trotter formula with the largest
possible step size, given the projection operator
nature of the terms in the Hamiltonian. A recent
exciting realization is that this feature leads to
only logarithmic dependence of the computa-
tional complexity on the simulation error, which
is an exponential improvement. The general strat-
egy is to decompose the sparse Hamiltonian as a
sum of projection operators, formulate the evo-
lution problem as a multi-query search problem,
and then use a large step size Trotter formula
to simulate it [7, 31]. This framework can also
readily benefit classical simulations of quantum
systems.

Molecular Biology
Many molecular processes of metabolism occur
at scales, nanometer and picosecond, where
quantum dynamics is relevant. They frequently
involve unstructured search and transport, in the
sense that correct ingredients for the processes
have to be found from the mixture of molecules

floating around. Evolution over billions of years
has certainly produced complex machinery to
carry out these searches efficiently, although
we do not fully comprehend their optimization
criteria. Attempts to understand some of these
processes suggest that Grover search may
have played a role in their design, quite
likely exploiting coherent coupled vibrational
modes and not quantum superposition. An
intriguing example is that the universal genetic
language uses an alphabet of four letters,
while a binary alphabet would be sufficient
and simpler to construct during evolution [30].
Coherent vibrational dynamics of molecules also
contributes to efficient energy transport during
photosynthesis and to the detection of smell [23].

Ordered Search
A sequentially ordered database can be easily
searched by factoring f .i/ into subqueries for
individual digits of i . An alternative is to use a
different oracle g.i/, such that g.i/ D 0 when
i represents items before the desired item and
g.i/ D 1 otherwise. Classically, binary search
is the optimal algorithm given either f .i/ or
g.i/ and requires dlog2N e queries. The opti-
mal quantum algorithm for f .i/ is quaternary
search with 0:5dlog2N e queries, but surprisingly
a quantum algorithm using g.i/ can do better.
In case of g.i/, though the optimal solution is
unknown, the query complexity for an exact algo-
rithm has a lower bound of 0:221 log2N [21] and
a known solution of 0:433 log2N [12] (there also
exists a quantum stochastic Las Vegas algorithm
with 0:32 log2N expected queries and o.1/ error
[6]).

Search with Additional Structure
It may be possible to speed up a search pro-
cess beyond the square-root speedup of Grover
search, when the problem has extra structure
beyond the minimal information provided by the
oracle f .i/. The details of the algorithm and
the extent of speedup would then depend on
the extra structure, and the possibilities are open
to explorations. Some examples are symmetries
among the items, associative memory recall with
connections, and patterns in the Boolean function
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to be evaluated. Another problem of interest is
determination of the complete path (with certain
properties) from the initial to the target state
instead of locations of just the end points.

Perspective
In a lecture at the Bell Labs in 1985, Richard
Feynman made an interesting observation. In
the 1940s when airplanes were being developed,
aeronautical engineers had proved bounds and
theorems about why planes would never be able
to fly faster than the speed of sound. For several
years, this speed was regarded as fundamentally
a bound for flights as the speed of light is for
communications. However, gradually just by
using intelligent design, it was discovered that
airplanes could indeed fly faster than the speed
of sound – only the rules of design in the new
regime were very different. The question is
whether the bounds on quantum computation

(specifically the 

�p

N
�

bound for search) will

continue to hold, or by making the rules of design
very different, just as in the case of supersonic
airplanes, someone will find a way around these
bounds. No one has found any loophole in the
arguments in the 20 years since the lower bound
for quantum search was discovered, despite
numerous scientists from different fields having
tried their hand at it. On the other hand, even
though this bound has been derived over and over
again using different methods, no one has come
up with a simple and short physical explanation
for it, which would give one the assurance that
one really understood it.
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Problem Definition

Our goal is to design differentially private al-
gorithms to answer statistical queries on a sen-
sitive database. We model the database D D

.x1; : : : ; xn/ 2 .f0; 1gd /n as a collection of n
records – one per individual – each consisting
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of d binary attributes. A differentially private
algorithm is a randomized algorithm whose out-
put distribution does not depend “significantly”
on any one record of the database. The formal
definition is as follows:

Definition 1 ([8]) An algorithm AW.f0; 1gd /n!
R is ."; ı/-differentially private if for every pair
of databases D;D0 2 .f0; 1gd /n that differ on at
most one row and every S � R,

PŒA.D/ 2 S� � e"PŒA.D0/ 2 S�C ı:

Henceforth, we will say A is differentially private
if it satisfies .1; 1=n2/-differential privacy. (The
choice of " D 1 and ı D 1=n2 is arbitrary and
can be replaced with " D c and ı D 1=n1Cc0

for any constants c; c0 > 0 without affecting any
stated results).

A statistical query (henceforth, simply
query) is specified by a Boolean predicate
q W f0; 1gd ! f0; 1g. The answer to a query is
the expected value of the predicate over records
in the database. Abusing notation, we write

q.D/ D
1

n

nX
iD1

q.xi /:

We wish to design a differentially private al-
gorithm A that takes a database and a set of
statistical queries and outputs an approximate
answer to each query.

Definition 2 An algorithm A is ˛-accurate for
a query q if A.D/ outputs a 2 Œ0; 1� such that
ja� q.D/j � ˛, with probability at least 99=100.
An algorithm A is ˛-accurate for a set of queries
Q D fq1; q2; : : : g if A.D/ outputs .aq/q2Q such
that for every q 2 Q, jaq � q.D/j � ˛ with
probability at least 99=100.

The goal is to design differentially private
algorithms that are ˛-accurate for sets of queries
Q as large as possible. As privacy is easier to
achieve when the number of records n is large,
we will seek to obtain privacy and accuracy for
n as small as possible. Lastly, we seek to make
the algorithms as computationally efficient as
possible.

Key Results

As a baseline, we will consider simple addi-
tive perturbation [2, 6–8], which answers each
query by independently perturbing the answer
with noise from a suitable distribution.

Theorem 1 There is a differentially private al-
gorithm A that takes a database D 2 .f0; 1gd /n

and a set of queries Q D fq1; : : : ; qkg as input,
runs in time poly.n; d; jq1j C � � � C jqkj/, and is
˛-accurate for Q so long as n � QO.jQj1=2=˛/.

Here, jqj represents the time complexity of
evaluating the predicate on a single row of the
database. Typically, this it is assumed to be
poly.d/.

Additive perturbation is differentially private
and computationally efficient, but requires that
the size of the database be polynomial in the num-
ber of queries, and thus is restricted to answering
at most about n2 queries. As we will see, it is
possible to accurately answer exponentially more
queries under differential privacy.

Answering Many Queries via No-Regret
Learning
The first algorithm that improved on additive
perturbation for answering arbitrary queries was
given by Blum, Ligett, and Roth [3]. Surprisingly,
they showed for the first time that it was possi-
ble to answer exponentially many queries under
differential privacy. Subsequent to their work,
there were several improvements in the compu-
tational efficiency, functionality, and quantitative
guarantees of their algorithm. This work led to
the private multiplicative weights algorithm of
Hardt and Rothblum [10]. We summarize the
capabilities of this algorithm in the following
theorem.

Theorem 2 ([10]) There is a differentially pri-
vate algorithm A that takes a database D 2

.f0; 1gd /n and a set of queries Q D fq1; : : : ; qkg

as input, runs in time poly.n; 2d ; jq1j C � � � C

jqkj/, and is ˛-accurate for jQj so long as n �
QO.
p
d log jQj=˛2/.

The private multiplicative weights algorithm
is based on the following surprisingly simple
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framework: Begin with a “crude approximation”
of the database D1. Then, for t D 1; : : : ; T ,
find (in a differentially private manner) a query
qt 2 Q such that the approximation Dt does
not give an accurate answer. That is, jqt .D/ �

qt .Dt /j > ˛. Use qt to “update” Dt into a better
approximation DtC1. Finally, output the answers
to Q given by DT .

Remarkably, it is possible to find a query qt 2

Q such that Dt is inaccurate (or conclude that
none exists) using much less data than would
be required to simply answer all the queries
in Q using additive perturbation. Perhaps even
more surprisingly, it can be shown that if the
updates are performed using the multiplicative
weights update rule, then after T D O.d=˛2/

iterations (independent of jQj!), the databaseDT

will give an accurate answer to every q 2 Q.
This argument makes use of the guarantee that
multiplicative weights update rule is a “no-regret
learning algorithm” (cf. the survey of Arora,
Hazan, and Kale [1] for more information about
the multiplicative weights update rule). This fast
convergence makes it possible to argue that the
algorithm can give accurate and differentially
private answers with much less data than would
be required by simple additive perturbation.

Computational Complexity and Optimality
When jQj is large, the private multiplicative
weights algorithm requires many fewer records n
than additive perturbation (when jQj � d=˛2/.
One might ask whether even fewer records suf-
fices. Bun, Ullman, and Vadhan [4] gave a neg-
ative answer to this question, and showed that
the private multiplicative weights algorithm uses
essentially the fewer records possible.

Theorem 3 ([4]) There is no (even computation-
ally inefficient) differentially private algorithm
A that takes an arbitrary set of queries Q D

fq1; : : : ; qkg with k � d=˛2 and a database
D 2 .f0; 1gd /n with n � Q̋ .

p
d log jQj=˛2/ as

input and is ˛-accurate for the set of queries Q.

A drawback of the private multiplicative
weights algorithm (and all known algorithms
with similar properties), when compared to ad-
ditive perturbation, is computational complexity.

Even when answering a polynomial number of
efficiently computable queries, the running time
of private multiplicative weights is dominated
by the factor of 2d , which is exponential in the
number of attributes in the database. Ullman [13]
showed that this is inherent, and (under a widely
believed cryptographic assumption) improving
on additive perturbation requires exponential
running time.

Theorem 4 ([13]) Assuming the existence of
one-way functions, there is no differentially
private algorithm A that takes an arbitrary
set of queries Q D fq1; : : : ; qkg database
D 2 .f0; 1gd /n with n � Q̋ .jQj1=2/ as input,
runs in time poly.n; d; jq1j C jqkj/, and is 1=3-
accurate for the set of queries Q.

Together, these negative results show the private
multiplicative weights algorithm is nearly opti-
mal for answering large sets of arbitrary statis-
tical queries under differential privacy.

Faster Algorithms for Marginal Queries via
Efficient Learning
Given the hardness of answering arbitrary
queries, there has been a significant effort to
design faster differentially private algorithms that
improve on additive noise for natural restricted
set of queries. One such set of queries is k-
way marginals. These queries are specified by a
subset of attributes S � Œd � of size at most k and
a pattern t 2 f0; 1gjS j and asks for the fraction of
records in D that have each attribute j 2 S set
to tj . Note that there are poly.dk/ such queries,
and thus, additive perturbation would require
running time poly.dk/ and n � poly.dk/. On the
other hand, private multiplicative weights would
require running time poly.2d /, but n � QO.k

p
d/

would suffice.
Most of the more effective algorithms for

answering k-way marginal queries are based on
the following technique, introduced by Gupta
et al. [9]: View the database D as specifying a
function fD.q/ D q.D/ that maps a query to its
answer onD, and then attempt to “learn” a differ-
entially private approximation gD 
 fD . Intu-
itively, the value of this approach is that learning
algorithms see the evaluation of fD on a small
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number of queries and then are able to predict the
value of fD on new queries. Since the learning al-
gorithm only needs a small number of examples,
it is easier to ensure differential privacy. If the
queries q are “simple,” then good learning algo-
rithms may exist for the function fD . In the case
of k-way marginal queries, it turns out that f
is in fact (an average of) conjunctions, and there
are learning algorithms for this class of functions
that satisfy various interesting parameter trade-
offs. This technique underlies the following two
results:

Theorem 5 ([12], building on [11]) For every
k 2 N, there is a differentially private algo-
rithm A that takes a database D 2 .f0; 1gd /n

as input and runs in time poly.n; d
p

k/, and if

n � poly.d
p

k/, A outputs a summary of the
database that yields 1=100-accurate answers to
every k-way marginal query. That is, for every k-
way marginal query q, one can obtain a 1=100-

accurate answer to q in time poly.n; d
p

k/.

Theorem 6 ([5]) For every k 2 N, there is a
differentially private algorithm A that takes a
database D 2 .f0; 1gd /n as input and runs in

time poly.n; 2d1�1=100
p

k
/, and if n � kd :51, A

outputs 1=100-accurate answers to every k-way
marginal query.

We remark that there are many other algo-
rithms for answering k-way marginal queries
based on this learning approach, each achiev-
ing different parameter trade-offs and guarantees
of accuracy. At the time of writing, improving
these algorithms and extending these techniques
to richer classes of queries remains an active area
of research.
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Problem Definition

Quorum systems are tools for increasing the
availability and efficiency of replicated services.
A quorum system for a universe of servers is
a collection of subsets of servers, each pair of
which intersect. Intuitively, each quorum can
operate on behalf of the system, thus increasing
its availability and performance, while the
intersection property guarantees that operations
done on distinct quorums preserve consistency.

The motivation for quorum systems stems
from the need to make critical missions
performed by machines that are reliable. The only
way to increase the reliability of a service, aside
from using intrinsically more robust hardware, is
via replication. To make a service robust, it can
be installed on multiple identical servers, each
one of which holds a copy of the service state
and performs read/write operations on it. This
allows the system to provide information and
perform operations even if some machines fail
or communication links go down. Unfortunately,
replication incurs a cost in the need to maintain
the servers consistent. To enhance the availability
and performance of a replicated service, Gifford
and Thomas introduced in 1979 [3, 14] the
usage of votes assigned to each server, such
that a majority of the sum of votes is sufficient
to perform operations. More generally, quorum
systems are defined formally as follows:

Quorum system: Assume a universe U
of servers, jU j D n, and an arbitrary number
of clients. A quorum system Q � 2U is a set of
subsets of U, every pair of which intersect. Each
Q 2 Q is called a quorum.

Access Protocol
To demonstrate the usability of quorum systems
in constructing replicated services, quorums are
used here to implement a multi-writer multi-
reader atomic shared variable. Quorums have also
been used in various mutual exclusion protocols,
to achieve Consensus, and in commit protocols.

In the application, clients perform read and
write operations on a variable x that is replicated
at each server in the universe U. A copy of the

variable x is stored at each server, along with
a timestamp value t. Timestamps are assigned by
a client to each replica of the variable when the
client writes the replica. Different clients choose
distinct timestamps, e.g., by choosing integers
appended with the name of c in the low-order bits.
The read and write operations are implemented as
follows.

Write: For a client c to write the value v, it
queries each server in some quorum Q to obtain
a set of value/timestamp pairs A D fhvu; tuigu2Q;
chooses a timestamp t 2 Tc greater than the high-
est timestamp value in A; and updates x and the
associated timestamp at each server in Q to v

and t, respectively.
Read: For a client to read x, it queries each

server in some quorum Q to obtain a set of
value/timestamp pairs A D fhvu; tuigu2Q. The
client then chooses the pair hv; tiwith the highest
timestamp in A to obtain the result of the read
operation. It writes back hv; ti to each server in
some quorum Q0.

In both read and write operations, each server
updates its local variable and timestamp to the
received values hv; ti only if t is greater than the
timestamp currently associated with the variable.
The above protocol correctly implements the se-
mantics of a multi-writer multi-reader atomic
variable (see �Linearizability).

Key Results

Perhaps the two most obvious quorum systems
are the singleton, and the set of majorities, or
more generally, weighted majorities suggested by
Gifford [3].

Singleton: The set system Q D ffugg for
some u 2 U is the singleton quorum system.

Weighted Majorities: Assume that ev-
ery server s in the universe U is assigned
a number of votes ws. Then, the set system
Q D fQ � U WPq2Q wq > .

P
q2U wq/=2g is

a quorum system called Weighted Majorities.
When all the weights are the same, simply call
this the system of Majorities.
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Quorums, Fig. 1 The Grid quorum system of 6 � 6,
with one quorum shaded

An example of a quorum system that cannot
be defined by voting is the following Grid con-
struction:

Grid: Suppose that the universe of servers is
of size n D k2 for some integer k. Arrange the
universe into a

p
n �
p
n grid, as shown in Fig. 1.

A quorum is the union of a full row and one
element from each row below the full row. This
yields the Grid quorum system, whose quorums
are of size O.

p
n/.

Maekawa suggests in [6] a quorum system that
has several desirable symmetry properties, and in
particular, that every pair of quorums intersect in
exactly one element:

FPP: Suppose that the universe of servers
is of size n D q2 C q C 1, where q D pr for
a prime p. It is known that a finite projective plane
exists for n, with q C 1 pairwise intersecting
subsets, each subset of size q C 1, and where
each element is contained in q C 1 subsets. Then
the set of finite projective plane subsets forms
a quorum system.

Voting and Related Notions
Since generally it would be senseless to access
a large quorum if a subset of it is a quorum,
a good definition may avoid such anomalies.
Garcia-Molina and Barbara [2] call such well-
formed systems coteries, defined as follows:

Coterie: A coterie Q � 2U is a quorum sys-
tem such that for any Q;Q0 2 Q W Q 6� Q0.

Of special interest are quorum systems that
cannot be reduced in size (i.e., that no quorum in
the system can be reduced in size). Garcia-Molina

and Barbara [2] use the term “dominates” to mean
that one quorum system is always superior to
another, as follows:

Domination: Suppose that Q;Q0 are two co-
teries,Q ¤ Q0, such that for everyQ0 2 Q0, there
exists a Q 2 Q such that Q � Q0. Then Q dom-
inates Q0:Q0 is dominated if there exists a coterie
Q that dominates it, and is non-dominated if no
such coterie exists.

Voting was mentioned above as an intuitive
way of thinking about quorum techniques. As
it turns out, vote assignments and quorums are
not equivalent. Garcia-Molina and Barbara [2]
show that quorum systems are strictly more
general than voting, i.e., each vote assignment
has some corresponding quorum system but
not the other way around. In fact, for a system
with n servers, there is a double-exponential
(22cn

) number of non-dominated coteries, and
only O.2n2

/ different vote assignments, though
for n � 5, voting and non-dominated coteries are
identical.

Measures
Several measures of quality have been identified
to address the question of which quorum system
works best for a given set of servers; among these,
load and availability are elaborated on here.

Load
A measure of the inherent performance of a quo-
rum system is its load. Naor and Wool define in
[10] the load of a quorum system as the probabil-
ity of accessing the busiest server in the best case.
More precisely, given a quorum system Q, an
access strategy w is a probability distribution on
the elements of Q; i.e.,

P
Q2Q w.Q/ D 1: w.Q/

is the probability that quorum Q will be chosen
when the service is accessed. Load is then defined
as follows:

Load: Let a strategy w be given for a quorum
system Q D fQ1; : : : ;Qmg over a universe U.
For an element u 2 U , the load induced by w on u
is lw.u/ D

P
Qi 3u w.Qi /. The load induced by

a strategy w on a quorum system Q is

Lw.Q/ D max
u2U
flw.u/g:
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The system load (or just load) on a quorum
system Q is

L.Q/ D min
w
fLw.Q/g;

where the minimum is taken over all strategies.
The load is a best-case definition, and will

be achieved only if an optimal access strategy
is used, and only in the case that no failures
occur. A strength of this definition is that load
is a property of a quorum system, and not of the
protocol using it.

The following theorem was proved in [10] for
all quorum systems.

Theorem 1 Let Q be a quorum system over
a universe of n elements. Denote by c.Q/ the
size of the smallest quorum of Q. Then L.Q/ �
maxf 1

c.Q/
;

c.Q/

n
g. Consequently, L.Q/ � 1p

n
.

Availability
The resilience f of a quorum system provides one
measure of how many crash failures a quorum
system is guaranteed to survive.

Resilience: The resilience f of a quorum sys-
tem Q is the largest k such that for every set
K � U , jKj D k, there exists Q 2 Q such that
K \Q D ;.

Note that, the resilience f is at most c.Q/ � 1,
since by disabling the members of the small-
est quorum every quorum is hit. It is possi-
ble, however, that an f-resilient quorum system,
though vulnerable to a few failure configurations
of f C 1 failures, can survive many configura-
tions of more than f failures. One way to measure
this property of a quorum system is to assume
that each server crashes independently with prob-
ability p and then to determine the probability Fp

that no quorum remains completely alive. This
is known as failure probability and is formally
defined as follows:

Failure probability: Assume that each server
in the system crashes independently with prob-
ability p. For every quorum Q 2 Q let EQ be
the event that Q is hit, i.e., at least one ele-
ment i 2 Q has crashed. Let crash .Q/ be the
event that all the quorums Q 2 Q were hit, i.e.,

crash .Q/ DVQ2QEQ. Then the system failure
probability is Fp.Q/ D Pr.crash .Q//.

Peleg and Wool study the availability of
quorum systems in [11]. A good failure
probability Fp.Q/ for a quorum system Q
has limn!1 Fp.Q/ D 0 when p < 1

2
. Note

that, the failure probability of any quorum
system whose resilience is f is at least e�˝.f /.
Majorities has the best availability when p < 1

2
;

for p D 1
2

, there exist quorum constructions with
Fp.Q/ D 1

2
; for p > 1

2
, the singleton has the

best failure probability Fp.Q/ D p, but for most
quorum systems, Fp.Q/ tends to 1.

The Load and Availability of Quorum
Systems
Quorum constructions can be compared by an-
alyzing their behavior according to the above
measures. The singleton has a load of 1, resilience
0, and failure probability Fp D p. This system
has the best failure probability when p > 1

2
, but

otherwise performs poorly in both availability
and load.

The system of Majorities has a load of
dnC1

2n
e 
 1

2
. It is resilient to bn�1

2
c failures, and

its failure probability is e�˝.n/. This system has
the highest possible resilience and asymptotically
optimal failure probability, but poor load.

Grid’s load is O. 1p
n
/, which is within a con-

stant factor from optimal. However, its resilience
is only

p
n � 1 and it has poor failure probability

which tends to 1 as n grows.
The resilience of a FPP quorum system is

q 

p
n. The load of FPP was analyzed in [10]

and shown to be L.FPP/ D qC1
n

 1=

p
n, which

is optimal. However, its failure probability tends
to 1 as n grows.

As demonstrated by these systems, there is
a tradeoff between load and fault tolerance in
quorum systems, where the resilience f of a quo-
rum system Q satisfies f � nL.Q/. Thus, im-
proving one must come at the expense of the
other, and it is in fact impossible to simultane-
ously achieve both optimally. One might con-
clude that good load conflicts with low failure
probability, which is not necessarily the case.
In fact, there exist quorum systems such as the
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Paths system of Naor and Wool [10] and the
Triangle Lattice of Bazzi [1] that achieve asymp-
totically optimal load ofO.1=

p
n/ and have close

to optimal failure probability for their quorum
sizes. Another construction is the CWlog system
of Peleg and Wool [12], which has unusually
small quorum sizes of logn � log logn, and for
systems with quorums of this size, has opti-
mal load, L.CWlog/ D O.1= log n/, and optimal
failure probability.

Byzantine Quorum Systems
For the most part, quorum systems were studied
in environments where failures may simply cause
servers to become unavailable (benign failures).
But what if a server may exhibit arbitrary, pos-
sibly malicious behavior? Malkhi and Reiter [7]
carried out a study of quorum systems in environ-
ments prone to arbitrary (Byzantine) behavior of
servers. Intuitively, a quorum system tolerant of
Byzantine failures is a collection of subsets of
servers, each pair of which intersect in a set
containing sufficiently many correct servers to
mask out the behavior of faulty servers. More
precisely, Byzantine quorum systems are defined
as follows:

Masking quorum system
A quorum system Q is a b-masking quorum
system if it has resilience f � b, and each pair
of quorums intersect in at least 2b C 1 elements.

The masking quorum system requirements
enable a client to obtain the correct answer
from the service despite up to b Byzantine
server failures. More precisely, a write operation
remains as before; to obtain the correct value
of x from a read operation, the client reads
a set of value/timestamp pairs from a quorum Q
and sorts them into clusters of identical pairs.
It then chooses a value/timestamp pair that is
returned from at least b C 1 servers, and therefore
must contain at least one correct server. The
properties of masking quorum systems guarantee
that at least one such cluster exists. If more
than one such cluster exists, the client chooses
the one with the highest timestamp. It is easy
to see that any value so obtained was written
before, and moreover, that the most recently

written value is obtained. Thus, the semantics
of a multi-writer multi-reader safe variable are
obtained (see �Linearizability) in a Byzantine
environment.

For a b-masking quorum system, the following
lower bound on the load holds:

Theorem 2 Let Q be a b-masking quorum sys-

tem. ThenL.Q/ � maxf2bC1

c.Q/
;

c.Q/

n
g, and conse-

quently L.Q/ �
q

2bC1
n
:

This bound is tight, and masking quorum con-
structions meeting it were shown.

Malkhi and Reiter explore in [7] two
variations of masking quorum systems. The
first, called dissemination quorum systems, is
suited for services that receive and distribute self-
verifying information from correct clients (e.g.,
digitally signed values) that faulty servers can
fail to redistribute but cannot undetectably alter.
The second variation, called opaque masking
quorum systems, is similar to regular masking
quorums in that it makes no assumption of self-
verifying data, but it differs in that clients do not
need to know the failure scenarios for which the
service was designed. This somewhat simplifies
the client protocol and, in the case that the failures
are maliciously induced, reveals less information
to clients that could guide an attack attempting
to compromise the system. It is also shown in [7]
how to deal with faulty clients in addition to
faulty servers.

Probabilistic Quorum Systems
The resilience of any quorum system is bounded
by half of the number of servers. Moreover, as
mentioned above, there is an inherent tradeoff
between low load and good resilience, so that it is
in fact impossible to simultaneously achieve both
optimally. In particular, quorum systems over n
servers that achieve the optimal load of 1p

n
can

tolerate at most
p
n faults.

To break these limitations, Malkhi et al. pro-
pose in [8] to relax the intersection property of
a quorum system so that “quorums” chosen ac-
cording to a specified strategy intersect only with
very high probability. They accordingly name
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these probabilistic quorum systems. These sys-
tems admit the possibility, albeit small, that two
operations will be performed at non-intersecting
quorums, in which case consistency of the system
may suffer. However, even a small relaxation
of consistency can yield dramatic improvements
in the resilience and failure probability of the
system, while the load remains essentially un-
changed. Probabilistic quorum systems are thus
most suitable for use when availability of op-
erations despite the presence of faults is more
important than certain consistency. This might
be the case if the cost of inconsistent operations
is high but not irrecoverable, or if obtaining the
most up-to-date information is desirable but not
critical, while having no information may have
heavier penalties.

The family of constructions suggested in [8] is
as follows:

W(n; `/ Let U be a universe of size n:W.n; `/,
` � 1, is the system hQ;wi where Q is the
set system Q D fQ � U W jQj D `png; w
is an access strategy w defined by 8Q 2 Q;
w.Q/ D 1

jQj
.

The probability of choosing according to w
two quorums that do not intersect is less than
e�`2

, and can be made sufficiently small by
appropriate choice of `. Since every element
is in

�
n�1

`
p

n�1

�
quorums, the load L.W.n; `// is

p̀
n
D O. 1p

n
/. Because only `

p
n servers need

be available in order for some quorum to be avail-
able, W.n; `/ is resilient to n � `

p
n crashes.

The failure probability of W.n; `/ is less than
e�˝.n/ for all p � 1 � p̀

n
, which is asymptot-

ically optimal. Moreover, if 1
2
� p � 1 � p̀

n
,

this probability is provably better than any (non-
probabilistic) quorum system.

Relaxing consistency can also provide dra-
matic improvements in environments that may
experience Byzantine failures. More details can
be found in [8].

Applications

Just about any fault tolerant distributed protocol,
such as Paxos [5] or consensus [1] implicitly

builds on quorums, typically majorities. More
concretely, scalable data repositories were
built, such as Fleet [9], Rambo [4], and
Rosebud [13].
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Problem Definition

Consider a graph G.V;E/. For any two vertices
u; v 2 V , d.u; v/ denotes the distance of u; v in
G. The general problem concerns a coloring of
the graph G and it is defined as follows:

Definition 1 (k-coloring problem)
INPUT: A graph G.V;E/.
OUTPUT: A function � W V ! f1; : : : ;1g,
called k -coloring of G such that 8u; v 2 V ,
x 2 f0; 1; : : : ; kg: if d.u; v/ � k � x C 1 then
j�.u/� �.v/j D x.

OBJECTIVE: Let j�.V /j D �� . Then �� is the
number of colors that ® actually uses (it is
usually called order of G under ®). The number
�� D maxv2V �.v/�minu2V �.u/C1 is usually
called the span of G under ®. The function ®
satisfies one of the following objectives:

• minimum span: �� is the minimum possible
over all possible functions ® of G;

• minimum order: �� is the minimum possible
over all possible functions ® of G;

• Min span order: obtains a minimum span
and moreover, from all minimum span assign-
ments, ® obtains a minimum order.

• Min order span: obtains a minimum order and
moreover, from all minimum order assign-
ments, ® obtains a minimum span.

Note that the case k D 1 corresponds to the well
known problem of vertex graph coloring. Thus,
k-coloring problem (with k as an input) is NP-
complete [4]. The case of k-coloring problem
where k D 2, is called the Radiocoloring prob-
lem.

Definition 2 (Radiocoloring Problem (RCP) [7])
INPUT: A graph G.V;E/.
OUTPUT: A function ˚ W V ! N � such that
j˚.u/ � ˚.v/j � 2 if d.u; v/ D 1 and
j˚.u/� ˚.v/j � 1 if d.u; v/ D 2.
OBJECTIVE: The least possible number
(order) needed to radiocolor G is denoted

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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by Xorder .G/. The least possible number
maxv2V ˚.v/ �minu2V ˚.u/C 1 (span) needed
for the radiocoloring of G is denoted as
Xspan .G/. Function ˚ satisfies one of the
followings:

• Min span RCP: ˚ obtains a minimum span,
i.e., �˚ D Xspan.G/;

• Min order RCP: ˚ obtains a minimum order
�˚ D Xorder .G/;

• Min span order RCP: obtains a minimum
span and moreover, from all minimum span
assignments, ˚ obtains a minimum order.

• Min order span RCP: obtains a minimum
order and moreover, from all minimum order
assignments, ˚ obtains a minimum span.

A related to the RCP problem concerns to the
square of a graph G, which is defined as follows:

Definition 3 Given a graph G.V;E/, G2 is the
graph having the same vertex set V and an edge
set E 0 W fu; vg 2 E 0 iff d.u; v/ � 2 in G.

The related problem is to color the square of
a graph G, G2 so that no two neighbor vertices
(in G2) get the same color. The objective is
to use a minimum number of colors, denoted
as �.G2/ and called chromatic number of the
square of the graph G. Fotakis et al. [5, 6] first
observed that for any graph G, Xorder.G/ is the
same as the (vertex) chromatic number of G2, i.e.,
Xorder.G/ D �.G2/.

Key Results

Fotakis et al. [5, 6] studied min span order, min
order and min span RCP in planar graph G.
A planar graph, is a graph for which its edges can
be embedded in the plane without crossings. The
following results are obtained:

• It is first shown that the number of colors
used in the min span order RCP of graph G
is different from the chromatic number of the
square of the graph, �.G2/. In particular, it
may be greater than �.G2/.

• It is then proved that the radiocoloring
problem for general graphs is hard to
approximate (unless NP D ZPP , the class
of problems with polynomial time zero-error
randomized algorithms) within a factor of
n1=2�� (for any � > 0), where n is the number
of vertices of the graph. However, when
restricted to some special cases of graphs,
the problem becomes easier.

It is shown that the min span RCPand min
span order RCP are NP -complete for planar
graphs. Note that few combinatorial problems
remain hard for planar graphs and their proofs
of hardness are not easy since they have to use
planar gadgets which are difficult to find and
understand.

• It presents a O.n�.G// time algorithm that
approximates the min order of RCP, Xorder, of
a planar graph G by a constant ratio which
tends to 2 as the maximum degree �.G/ of G
increases.

The algorithm presented is motivated by
a constructive coloring theorem of Heuvel
and McGuiness [9]. The construction of [9]
can lead (as shown) to an O(n2) technique
assuming that a planar embedding of G is
given. Fotakis et al. [5, 6] improves the time
complexity of the approximation, and presents
a much more simple algorithm to verify and
implement. The algorithm does not need any
planar embedding as input.

• Finally, the work considers the problem
of estimating the number of different
radiocolorings of a planar graph G.
This is a #P-complete problem (as can
be easily seen from the completeness
reduction presented there that can be done
parsimonious). They authors employ here
standard techniques of rapidly mixing Markov
Chains and the new method of coupling for
purposes of proving rapid convergence (see
e.g., [10]) and present a fully polynomial
randomized approximation scheme for
estimating the number of radiocolorings
with � colors for a planar graph G, when
� � 4�.G/C 50.

In [8] and [7] it has been proved that the
problem of min span RCP is NP-complete, even
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for graphs of diameter 2. The reductions use
highly non-planar graphs. In [11] it is proved that
the problem of coloring the square of a general
graph is NP-complete.

Another variation of RCP for planar graphs,
called distance-2-coloring is studied in [12]. This
is the problem of coloring a given graph G with
the minimum number of colors so that the ver-
tices of distance at most two get different colors.
Note that this problem is equivalent to coloring
the square of the graph G, G2. In [12] it is
proved that the distance-2-coloring problem for
planar graphs is NP-complete. As it is shown
in [5, 6], this problem is different from the min
span order RCP. Thus, the NP-completeness
proof in [12] certainly does not imply the NP-
completeness of min span order RCP proved
in [5, 6]. In [12] a 9-approximation algorithm for
the distance-2-coloring of planar graphs is also
provided.

Independently and in parallel, Agnarsson and
Halldórsson in [1] presented approximations
for the chromatic number of square and power
graphs (Gk). In particular they presented an 1:8-
approximation algorithm for coloring the square
of a planar graph of large degree (�.G/ � 749).
Their method utilizes the notion of inductiveness
of the square of a planar graph.

Bodlaender et al. in [2] proved also
independently and and in parallel that the min
span RCP, called �-labeling there, is NP-
complete for planar graphs, using a similar to
the approach used in [5, 6]. In the same work
the authors presented approximations for the
problem for some interesting families of graphs:
outerplanar graphs, graphs of bounded treewidth,
permutation and split graphs.

Applications

The Frequency Assignment Problem (FAP) in
radio networks is a well-studied, interesting
problem, aiming at assigning frequencies to
transmitters exploiting frequency reuse while
keeping signal interference to acceptable levels.
The interference between transmitters are
modeled by an interference graph G.V;E/,
where V (jV j D n) corresponds to the set of

transmitters and E represents distance constraints
(e.g., if two neighbor nodes in G get the same or
close frequencies then this causes unacceptable
levels of interference). In most real life cases
the network topology formed has some special
properties, e.g., G is a lattice network or a planar
graph. Planar graphs are mainly the object of
study in [5, 6].

The FAP is usually modeled by variations of
the graph coloring problem. The set of colors
represents the available frequencies. In addition,
each color in a particular assignment gets an inte-
ger value which has to satisfy certain inequalities
compared to the values of colors of nearby nodes
in G (frequency-distance constraints). A discrete
version of FAP is the k-coloring problem, of
which a particular instance, for k D 2, is inves-
tigated in [5, 6].

Real networks reserve bandwidth (range of
frequencies) rather than distinct frequencies. In
this case, an assignment seeks to use as small
range of frequencies as possible. It is sometimes
desirable to use as few distinct frequencies of
a given bandwidth (span) as possible, since the
unused frequencies are available for other use.
However, there are cases where the primary ob-
jective is to minimize the number of frequencies
used and the span is a secondary objective, since
we wish to avoid reserving unnecessary large
span. These realistic scenaria directed researchers
to consider optimization versions of the RCP,
where one aims in minimizing the span (band-
width) or the order (distinct frequencies used) of
the assignment. Such optimization problems are
investigated in [5, 6].
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Problem Definition

This classic problem in complexity theory is
concerned with efficiently finding a satisfying
assignment to a propositional formula. The input
is a formula with n Boolean variables which is
expressed as an AND of ORs with 3 variables
in each OR clause (a 3-CNF formula). The
goal is to (1) find an assignment of variables
to TRUE and FALSE so that the formula has
value TRUE or (2) prove that no such assignment
exists. Historically, recognizing satisfiable 3-
CNF formulas was the first “natural” example
of an NP-complete problem, and, because it
is NP-complete, no polynomial-time algorithm
can succeed on all 3-CNF formulas unless P
D NP [4, 10]. Because of the numerous practical
applications of 3-SAT, and also due to its position
as the canonical NP-complete problem, many
heuristic algorithms have been developed for
solving3-SAT, and some of these algorithms have
been analyzed rigorously on random instances.

Notation
A 3-CNF formula over variables x1; x2; : : : ; xn is
the conjunction ofm clauses C1^C2^ : : :^Cm,
where each clause is the disjunction of 3 literals,
Ci D `i1 _ `i2 _ `i3 , and each literal `ij is
either a variable or the negation of a variable
(the negation of the variable x is denoted by Nx).
A 3-CNF formula is satisfiable if and only if
there is an assignment of variables to truth values
so that every clause contains at least one true
literal. Here, all asymptotic analysis is in terms
of n, the number of variables in the 3-CNF
formula, and a sequence of events fEng is said
to hold with high probability (abbreviated whp)
if lim

n!1PrŒEn� D 1.

Distributions
There are many distributions over 3-CNF formu-
las which are interesting to consider, and this



Random Planted 3-SAT 1729

R

chapter focuses on dense satisfiable instances.
Dense satisfiable instances can be formed by con-
ditioning on the event {In; m is satisfiable}, but
this conditional distribution is difficult to sample
from and to analyze. This has led to research
in “planted” random instances of 3-SAT, which
are formed by first choosing a truth assignment
® uniformly at random and then selecting each
clause independently from the triples of literals
where at least one literal is set to TRUE by
the assignment ®. The clauses can be included
with equal probabilities in analogy to the In;p

or In;m distributions above [8, 9], or different
probabilities can be assigned to the clauses with
one, two, or three literals set to TRUE by ®, in
an effort to better hide the satisfying assignment
[2, 7].

Problem 1 (3-SAT)

INPUT: 3-CNF Boolean formula F D C1^C2^
� � � ^ Cm, where each clause Ci is of the form
Ci D `i1 _ `i2 _ `i3 and each literal `ij is
either a variable or the negation of a variable.

OUTPUT: A truth assignment of variables to
Boolean values which makes at least one
literal in each clause TRUE or a certificate
that no such assignment exists.

Key Results

A line of basic research dedicated to identifying
hard search and decision problems, as well as the
potential cryptographic applications of planted
instances of 3-SAT, has motivated the develop-
ment of algorithms for 3-SAT which are known
to work on planted random instances.

Majority Vote Heuristic: If every clause
consistent with the planted assignment is
included with the same probability, then there
is a bias towards including the literal satisfied
by the planted assignment more frequently than
its negation. This is the motivation behind the
majority vote heuristic, which assigns each
variable to the truth value which will satisfy
the majority of the clauses in which it appears.
Despite its simplicity, this heuristic has been

proven successful whp for sufficiently dense
planted instances [8].

Theorem 1 When c is a sufficiently large con-
stant and I � I

�
n;cn log n, whp the majority vote

heuristic finds the planted assignment ®.
When the density of the planted random in-

stance is lower than c log n, then the major-
ity vote heuristic will fail, and if the relative
probability of the clauses satisfied by one, two,
and three literals is adjusted appropriately, then
it will fail miserably. But there are alternative
approaches.

For planted instances where the density is
a sufficiently large constant, the majority vote
heuristic provides a good starting assignment,
and then the k-OPT heuristic can finish the job.
The k-OPT heuristic of [6] is defined as follows:
Initialize the assignment by majority vote. Initial-
ize k to 1. While there exists a set of k variables
for which flipping the values of the assignment
will (1) make false clauses true and (2) will not
make true clauses false, flip the values of the
assignment on these variables. If this reaches a
local optimum that is not a satisfying assignment,
increase k and continue.

Theorem 2 When c is a sufficiently large con-
stant and I � I

¥
n;cn, the k-OPT heuristic finds

a satisfying assignment in polynomial time whp.
The same is true even in the semi-random case,
where an adversary is allowed to add clauses to
I that have all three literals set to TRUE by ®
before giving the instance to the k-OPT heuristic.

A related algorithm has been shown to run in
expected polynomial time in [9], and a rigorous
analysis of warning propagation (WP), a message
passing algorithm related to survey propagation,
has shown that WP is successful whp on planted
satisfying assignments, provided that the clause
density exceeds a sufficiently large constant [5].

When the relative probabilities of clauses con-
taining one, two, and three literals are adjusted
carefully, it is possible to make the majority vote
assignment very different from the planted as-
signment. A way of setting these relative proba-
bilities that is predicted to be difficult is discussed
in [2]. If the density of these instances is high
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enough (and the relative probabilities are any-
thing besides the case of “Gaussian elimination
with noise”), then a spectral heuristic provides
a starting assignment close to the planted as-
signment and local reassignment operations are
sufficient to recover a satisfying assignment [7].

More formally, consider instance I D
In;p1;p2;p3, formed by choosing a truth
assignment ® on n variables uniformly at random
and including in I each clause with exactly
i literals satisfied by ® independently with
probability pi . By setting p1 D p2 D p3, this
reduces to the distribution mentioned above.

Setting p1 D p2 and p3 D 0 yields a
natural distribution on 3CNFs with a planted
not-all-equal assignment, a situation where the
greedy variable assignment rule generates a ran-
dom assignment. Setting p2 D p3 D 0 gives
3CNFs with a planted exactly-one-true assign-
ment (which succumb to the greedy algorithm
followed by the nonspectral steps below). Also,
correctly adjusting the ratios of p1; p2, and p3

can obtain a variety of (slightly less natural)
instance distributions which thwart the greedy al-
gorithm. Carefully selected values of p1; p2, and
p3 are considered in [2], where it is conjectured
that no algorithm running in polynomial time
can solve In;p1;p2;p3 whp when pi D ci’=n

2

and

0:007 < c3 < 0:25 c2 D .1 � 4c3/=6

c1 D .1C 2c3/=6 ˛ >
4:25

7
:

The spectral heuristic modeled after the color-
ing algorithms of [1, 3] was developed for such
planted distributions in [7]. This polynomial time
algorithm which returns a satisfying assignment
to In;p1;p2;p3 whp when p1 D d=n2, p2 D
˜2d=n

2, and p3 D ˜3d=n
2, for 0 � ˜2; ˜3 �

1, and d � dmin, where dmin is a function
of ˜2; ˜3. The algorithm is structured as fol-
lows:

1. Construct a graph G from the 3CNF.
2. Find the most negative eigenvalue of a matrix

related to the adjacency matrix of G.

3. Assign a value to each variable based on the
signs of the eigenvector corresponding to the
most negative eigenvalue.

4. Iteratively improve the assignment.
5. Perfect the assignment by exhaustive search

over a small set containing all the incorrect
variables.

A more elaborate description of each step is the
following:

Step (1): Given 3CNF I D In;p1;p2;p3, where
p1 D d=n2, p2 D ˜2d=n

2, and p3 D
˜3d=n

2, the graph in step (1), G D .V;E/,
has 2n vertices, corresponding to the literals
in I , and labeled fx1; Nx1; : : : xn; Nxng.G has an
edge between vertices `i and `j if I includes
a clause with both `i and `j (and G does not
have multiple edges).

Step (2): Consider G0 D .V;E 0/, formed by
deleting all the edges incident to vertices with
degree greater than 180d . Let A be the adja-
cency matrix ofG0. Let œ be the most negative
eigenvalue of A and v be the corresponding
eigenvector.

Step (3): There are two assignments to consider,
 C, which is defined by

 C.xi / D
�
T; if vi � 0I
F; otherwiseI

and  �, which is defined by

 �.x/ D : C.x/:

Let  0 be the better of  C and  � (i.e., the
assignment which satisfies more clauses). It
can be shown that  0 agrees with ® on at
least .1 � C=d/n variables for some absolute
constant C .

Step (4): For i D 1; : : : ; log n, do the follow-
ing: for each variable x, if x appears in 5©d
clauses unsatisfied by  i�1, then set  i .x/ D
: i�1.x/, where © is an appropriately chosen
constant (taking © D 0:1 works); otherwise set
 i .x/ D  i�1.x/.

Step (5): Let  00 D  log n denote the final as-

signment generated in step (4). Let A 0

0

4 be
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the set of variables which do not appear in
.3 ˙ 4©/d clauses as the only true literal
with respect to assignment  00, and let B be
the set of variables which do not appear in
.
D˙©/d clauses, where�Dd D .3C6/dC
.6C 3/�2d C 3�3d CO.1=n/ is the expected
number of clauses containing variable x. Form
partial assignment  01 by unassigning all vari-

ables in A 0

0

4 and B. Now, for i �1, if there is
a variable xi which appears in less than .
D�
2©/d clauses consisting of variables that are all
assigned by  0i , then let  0iC1 be the partial
assignment formed by unassigning xi in  0i .
Let  0 be the partial assignment when this
process terminates. Consider the graph  with
a vertex for each variable that is unassigned in
 0 and an edge between two variables if they
appear in a clause together. If any connected
component in  is larger than log n, then
fail. Otherwise, find a satisfying assignment
for I by performing an exhaustive search on
the variables in each connected component
of  .

Theorem 3 For any constants 0 � ˜2; ˜3 � 1,
except .˜2; ˜3/ D .0; 1/, there exists a constant
dmin such that for any d � dmin, if p1 D d=n2,
p2 D ˜2d=n

2, and p3 D ˜3d=n
2, then this

polynomial-time algorithm produces a satisfying
assignment for random instances drawn from
In;p1;p2;p3 whp.

Applications

3-SAT is a universal problem, and due to its sim-
plicity, it has potential applications in many areas,
including proof theory and program checking,
planning, cryptanalysis, machine learning, and
modeling biological networks.

Open Problems

An important direction is to develop alternative
models of random distributions which more ac-
curately reflect the type of instances that occur in
the real world.

Data Sets

Sample instances of satisfiability and 3-SAT are
available on the web at http://www.satlib.org/.

URL to Code

Solvers and information on the annual satisfiabil-
ity solving competition are available on the web
at http://www.satlive.org/.
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Problem Definition

This problem is concerned with using the multi-
writer multi-reader register primitive in the
shared memory model to design a fast, wait-free
implementation of consensus. Below are detailed
descriptions of each of these terms.

Consensus Problems
There are n processors and the goal is to design
distributed algorithms to solve the following two
consensus problems for these processors.

Problem 1 (Binary consensus)
INPUT: Processor i has input bit bi.
OUTPUT: Each processor i has output bit b0i such
that: (1) all the output bits b0i equal the same value
v; and (2) v D bi for some processor i.

Problem 2 (Id consensus)
INPUT: Processor i has a unique id ui.
OUTPUT: Each processor i has output value
u0i such that: (1) all the output values u0i equal
the same value u; and (2) u D ui for some
processor i.

Wait-Free
This result builds on extensive previous work on
the shared memory model of parallel computing.
Shared object types include data structures such
as read/write registers and synchronization primi-
tives such as “test and set”. A shared object is said
to be wait-free if it ensures that every invocation
on the object is guaranteed a response in finite
time even if some or all of the other processors in
the system crash. In this problem, the existence
of wait-free registers is assumed and the goal is
to create a fast wait-free algorithm to solve the
consensus problem. In the rest of this summary,
“wait-free implementations” will be referred to
simply as “implementations” i.e., the term wait-
free will be omitted.

Multi-writer Multi-reader Register
Many past results on solving consensus in the
shared memory model assume the existence of
a single writer multi-reader register. For such
a register, there is a single writer client and
multiple reader clients. Unfortunately, it is easy
to show that the per processor step complexity
of any implementation of consensus from single
writer multi-reader registers will be at least linear
in the number of processors. Thus, to achieve
a time efficient implementation of consensus, the
more powerful primitive of a multi-writer multi-
reader register must be assumed. A multi-writer
multi-reader register assumes the clients of the
register are multiple writers and multiple readers.
It is well known that it is possible to implement
such a register in the shared memory model.

The Adversary
Solving the above problems is complicated by the
fact that the programmer has little control over
the rate at which individual processors execute.
To model this fact, it is assumed that the schedule
at which processors run is picked by an adversary.
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It is well-known that there is no deterministic
algorithm that can solve either Binary consensus
or ID consensus in this adversarial model if the
number of processors is greater than 1 [6, 7].
Thus, researchers have turned to the use of ran-
domized algorithms to solve this problem [1].
These algorithms have access to random coin
flips. Three types of adversaries are considered
for randomized algorithms. The strong adversary
is assumed to know the outcome of a coin flip
immediately after the coin is flipped and to be
able to modify its schedule accordingly. The
oblivious adversary has to fix the schedule before
any of the coins are flipped. The intermediate
adversary is not permitted to see the outcome
of a coin flip until some process makes a choice
based on that coin flip. In particular, a process can
flip a coin and write the result in a global register,
but the intermediate adversary does not know the
outcome of the coin flip until some process reads
the value written in the register.

Key Results

Theorem 1 Assuming the existence of multi-
writer multi-reader registers, there exists a ran-
domized algorithm to solve binary consensus
against an intermediate adversary with O(1) ex-
pected steps per processor.

Theorem 2 Assuming the existence of multi-
writer multi-reader registers, there exists a ran-
domized algorithm to solve id-consensus against
an intermediate adversary with O.log2 n/ ex-
pected steps per processor.

Both of these results assume that every proces-
sor has a unique identifier. Prior to this result,
the fastest known randomized algorithm for bi-
nary consensus made use of single writer multi-
ple reader registers, was robust against a strong
adversary, and required O.n log2 n/ steps per
processor [2]. Thus, the above improvements are
obtained at the cost of weakening the adversary
and strengthening the system model when com-
pared to [2].

Applications

Binary consensus is one of the most fundamental
problems in distributed computing. An example
of its importance is the following result shown
by Herlihy [8]: If an abstract data type X to-
gether with shared memory is powerful enough to
implement wait-free consensus, then X together
with shared memory is powerful enough to im-
plement in a wait-free manner any other data
structure Y. Thus, using this result, a wait-free
version of any data structure can be created using
only wait-free multi-writer multi-reader registers
as a building block.

Binary consensus has practical applications
in many areas including: database management,
multiprocessor computation, fault diagnosis, and
mission-critical systems such as flight control.
Lynch contains an extensive discussion of some
of these application areas [9].

Open Problems

This result leaves open several problems. First,
it leaves open a gap on the number of steps
per process required to perform randomized con-
sensus using multi-writer multi-reader registers
against the strong adversary. A recent result by
Attiya and Censor shows an ˝.n2/ lower bound
on the total number of steps for all processors
with multi-writer multi-reader registers (implying
˝.n/ steps per process) [3]. They also show
a matching upper bound of O.n2/ on the total
number of steps. However, closing the gap on the
per-process number of steps is still open.

Another open problem is whether there is
a randomized implementation of id consensus
using multi-reader multi-writer registers that is
robust to the intermediate adversary and whose
expected number of steps per processor is better
than O.log2 n/. In particular, is a constant run
time possible? Aumann in follow up work to this
result was able to improve the expected run time
per process to O.logn/ [4]. However, to the best
of the reviewer’s knowledge, there have been no
further improvements.
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A third open problem is to close the gap on the
time required to solve binary consensus against
the strong adversary with a single writer multiple
reader register. The fastest known randomized
algorithm in this scenario requires O.n log2 n/

steps per processor [2]. A trivial lower bound on
the number of steps per processor when single-
writer registers are used is˝.n/. However, to the
best of this reviewers knowledge, aO.log2 n/ gap
still remains open.

A final open problem is to close the gap on
the total work required to solve consensus with
single-reader single-writer registers against an
oblivious adversary. Aumann and Kapah-Levy
describe algorithms for this scenario that require
O.n logn exp.2

p
lnn ln.c logn log� n/ expected

total work for some constant c [5]. In particular,
the total work is less thanO.n1C�/ for any � > 0.
A trivial lower bound on total work is ˝.n/, but
a gap remains open.
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Problem Definition

This entry investigates deterministic and ran-
domized protocols for achieving broadcast (dis-
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tributing a message from a source to all other
nodes) in arbitrary multi-hop synchronous radio
networks.

The model consists of an arbitrary (undi-
rected) network, with processors communicating
in synchronous time-slots subject to the following
rules. In each time-slot, each processor acts either
as a transmitter or as a receiver. A processor
acting as a receiver is said to receive a message
in time-slot t if exactly one of its neighbors
transmits in that time-slot. The message received
is the one transmitted. If more than one neighbor
transmits in that time-slot, a conflict occurs. In
this case, the receiver may either get a message
from one of the transmitting neighbors or get
no message. It is assumed that conflicts (or
“collisions”) are not detected, hence a processor
cannot distinguish the case in which no neighbor
transmits from the case in which two or more
of its neighbors transmits during that time-slot.
The processors are not required to have IDs
nor do they know their neighbors; in particular,
the processors do not know the topology of the
network.

The only inputs required by the protocol are
the number of processors in the network – n,
� – an a priori known upper bound on the
maximum degree in the network, and the error
bound ��. (All bounds are a priori known to the
algorithm.)

Broadcast is a task initiated by a single pro-
cessor, called the source, transmitting a single
message. The goal is to have the message reach
all processors in the network.

Key Results

The main result is a randomized protocol that
achieves broadcast in time which is optimal up to
a logarithmic factor. In particular, with probabil-
ity 1 � �, the protocol achieves broadcast within
O..D C logn=�/ � logn/ time-slots.

On the other hand, a linear lower bound on
the deterministic time-complexity of broadcast
is proved. Namely, any deterministic broadcast
protocol requires �.n/ time-slots, even if the
network has diameter 3, and n is known to all

processors. These two results demonstrate an
exponential gap in complexity between random-
ization and determinism.

Randomized Protocols

The ProcedureDecay
The basic idea used in the protocol is to resolve
potential conflicts by randomly eliminating half
of the transmitters. This process of “cutting by
half” is repeated each time-slot with the hope
that there will exist a time-slot with a single ac-
tive transmitter. The “cutting by half” process is
easily implemented distributively by letting each
processor decide randomly whether to eliminate
itself. It will be shown that if all neighbors of a
receiver follow the elimination procedure, then,
with positive probability, there exists a time slot
in which exactly one neighbor transmits.

What follows is a description of the procedure
for sending a messagem, that is executed by each
processor after receivingm:

procedure Decay(k;m);
repeat at most k times (but at least once!)
send m to all neighbors;
set coin 0 or 1 with equal probability.
until coin = 0.
By using elementary probabilistic arguments,

one can prove:

Theorem 1 Let y be a vertex of G. Also let
d �2 neighbors of y execute Decay during the
time interval [0,k/ and assume that they all start
the execution at Time D 0. Then P.k,d/, the
probability that y receives a message by Time D
k, satisfies:

1. lim
k!1

P.k; d/ � 2
3
I

2. For k � 2dlogde, P.k; d/ > 1
2

.

(All logarithms are to base 2.)
The expected termination time of the algo-

rithm depends on the probability that coin D 0.
Here, this probability is set to be one half. An
analysis of the merits of using other probabilities
was carried out by Hofri [4].
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The Broadcast Protocol
The broadcast protocol makes several calls to
Decay .k;m/. By Theorem 1 (2), to ensure that
the probability of a processor y receiving the
message be at least 1/2, the parameter k should
be at least 2log d (where d is the number of
neighbors sending a message to y/. Since d is
not known, the parameter was chosen as k D
2dlog�e (recall that � was defined to be an
upper bound on the in-degree). Theorem 1 also
requires that all participants start executing De-
cay at the same time-slot. Therefore, Decay is
initiated only at integer multiples of 2dlog�e.
procedure Broadcast;
k D 2dlog�e;
t D 2 dlog.N=�/e ;

Wait until receiving a message, say m;
do t times {
Wait until .T imemod k/ D 0;
Decay(k;m/ ;
}

A network is said to execute the Broad-
cast_scheme if some processor, denoted s,
transmits an initial message and each processor
executes the abovementioned Broadcast proce-
dure.

Theorem 2 Let T D 2D C 5maxfpD;p
log.n=�/ � plog.n=�/. Assume that Broad-

cast_scheme starts at Time D 0. Then, with
probability � 1 � 2�, by time 2dlog�e � T all
nodes will receive the message. Furthermore,
with probability � 1 � 2�, all the nodes will
terminate by time 2 dlog�e � .T C dlog.N=�/e/.

The bound provided by Theorem 2 contains
two additive terms: the first represents the diam-
eter of the network, and the second represents
delays caused by conflicts (which are rare, yet
they exist).

Additional Properties of the Broadcast
Protocol
• Processor IDs – The protocol does not use

processor IDs, and thus does not require
that the processors have distinct IDs (or that
they know the identity of their neighbors).
Furthermore, a processor is not even required
to know the number of its neighbors. This
property makes the protocol adaptive to

changes in topology which occur throughout
the execution and resilient to non-malicious
faults.

• Knowing the size of the network – The
protocol performs almost as well when given
instead of the actual number of processors
(i.e., n/, a “good” upper bound on this number
(denotedN/. An upper bound polynomial in n
yields the same time-complexity, up to a con-
stant factor (since complexity is logarithmic
in N/.

• Conflict detection – The algorithm and its
complexity remain valid even if no messages
can be received when a conflict occurs.

• Simplicity and fast local computation – In
each time slot, each processor performs a
constant amount of local computation.

• Message complexity – Each processor is ac-
tive for dlog.N=�/e consecutive phases, and
the average number of transmissions per phase
is at most 2. Thus, the expected number of
transmissions of the entire network is bounded
by 2n � dlog.N=�/e.

• Adaptiveness to changing topology and
fault resilience – The protocol is resilient to
some changes in the topology of the network.
For example, edges may be added or deleted
at any time, provided that the network of
unchanged edges remains connected. This
corresponds to fail/stop failure of edges, thus
demonstrating the resilience to some non-
malicious failures.

• Directed networks – The protocol does not
use acknowledgments. Thus it may be applied
even when the communication links are not
symmetric, i.e., the fact that processor v can
transmit to u does not imply that u can trans-
mit to v. (The appropriate network model is,
therefore, a directed graph.) In real life this
situation occurs, for instance, when v has a
stronger transmitter than u.

A Lower Bound on Deterministic
Algorithms
For deterministic algorithms, one can show
a lower bound: for every n, there exist a
family of n-node networks such that every
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n + 10 s

Randomized Broadcasting in Radio Networks, Fig. 1
The network used for the lower bound

deterministic broadcast scheme requires �.n/
time. For every non-empty subset S �
f1; 2; : : : ; n}, consider the following networkGS

(Fig. 1).
Node 0 is the source and node n C 1 the

sink. The source initiates the message and the
problem of broadcast in GS is to reach the sink.
The difficulty stems from the fact that the par-
tition of the middle layer (i.e., S ) is not known
a priori. The following theorem can be proved
by a series of reductions to a certain “hitting
game”:

Theorem 3 Every deterministic broadcast pro-
tocol that is correct for all n-node networks
requires time �.n/.

The result of [2] depends crucially on the as-
sumption that the nodes do not know the number
and IDs of their neighbors. If this restriction is
lifted, Kowalski and Pelc [5] showed how to
broadcast in logarithmic time on all networks of
type GS . Moreover, they show how to broadcast
in sublinear time on all n-node graphs of diameter

o (log log n/.
Kowalski and Pelc also constructed a class of

graphs of diameter 4, such that every broadcast-
ing algorithm requires time �

�
4
p
n
�

on one of
these graphs. Thus they showed an exponential
gap for their model too.

Applications

The procedure Decay has been used to resolve
contention in radio and cellular phone networks.
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Problem Definition

The randomized contractions framework is often
useful when designing fixed-parameter-tractable
(FPT) algorithms for graph cut problems. Let us
assume that we are given an undirected graph
G with n vertices and m edges together with an
integer k. The goal is to remove at most k edges
or at most k vertices, in the edge- and vertex-
deletion variants of a problem, respectively, to
satisfy some problem-specific constraints. In this
entry, for the sake of simplicity, we restrict our
attention to edge-deletion variants only.

Examples of problems that fit in the above
graph cut problem class include:

Multiway Cut
Input: an undirected graph G, a set of termi-
nals T � V.G/, and an integer k.
Question: is there a set X � E.G/ of at most
k edges of G, so that in G n X , no connected
component contains more than one terminal
from T ?

Steiner Cut
Input: an undirected graph G, a set of termi-
nals T � V.G/, and integers k, s.
Question: is there a set X � E.G/ of at
most k edges of G, so that in G n X , at least
s connected components contain at least one
terminal from T ?

Multiway Cut-Uncut
Input: an undirected graph G, a set of termi-
nals T � V.G/, an equivalence relation R on
the set T , and an integer k.
Question: is there a set X � E.G/ of at most
k edges ofG, so that for any u; v 2 T , vertices
u, v are in the same connected component of
G nX iff R.u; v/?

Unique Label Cover
Input: an undirected graphG, a finite alphabet
˙ of size s, an integer k, for each vertex
v 2 V.G/ a set �v � ˙ , and for each edge
e 2 E.G/ and each its endpoint v, a partial
permutation  e;v of ˙ , such that if e D uv
then  e;u D  �1

e;v .
Question: is there a set X � E.G/ of at most
k edges of G and a function � W V.G/ ! ˙

such that for any v 2 V.G/ we have �.v/ 2
�v and for any uv 2 E.G/ n X , we have
.�.u/; �.v// 2  uv;u?

Key Results

The randomized contractions framework was ob-
tained by Chitnis et al. [2]; however, it was
inspired by an earlier work of Kawarabayashi and
Thorup [4], who have shown that the k-way cut
problem is fixed parameter tractable. Random-
ized contractions were used to obtain the first FPT
algorithm for unique label cover parameterized
by both the cut size and the alphabet size, as well
as to improve the dependency on k in the FPT al-
gorithms for Steiner cut and multiway cut-uncut.
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To exemplify usage of randomized con-
tractions, we use the multiway cut problem.
Multiway cut is known to be FPT for a long
time [5] and it admits efficient FPT algorithms
with f .k/ D 4k dependency on k by using
important separators [1] as well as f .k/ D 2k

by LP-branching [3]. We use multiway cut as an
illustration of usage of randomized contractions
to simplify the description and magnify the most
important parts of the technique.

High-Level Intuition
From now on, we assume that the given undi-
rected graph G is connected, as otherwise one
can solve the problem independently for each
connected component of G. Observe that this
guarantees that after removing k edges, the graph
contains at most k C 1 connected components.

On a high level, the technique works in two
phases. In the first phase, as long as the graph
admits a certain type of a good edge separation,
we proceed recursively and simplify the instance.

On the other hand, if the graph is well con-
nected and does not contain a cut we are looking
for, then in the second phase, we solve the prob-
lem directly, by exploiting the high connectivity
of G.

Recursive Understanding
Assume that we have a set of vertices V1 �
V.G/, such that GŒV1� is connected, V1 contains
at least k � kŠC 2 vertices, and there are at most k
edges between V1 and V2 D V.G/ n V1 in G. Let
B � V1 be the set of vertices in V1 having at least
one neighbor in V2. In such a setting, one can
show that by looking at GŒV1� only (in particular
without looking at GŒV2�), one can find an edge
of GŒV1� which can be safely contracted, i.e.,
which is not part of some solution for the whole
graph G. The reason is that any solution X �
E.G/ gives some partition of B by looking at the
set of connected components o GŒV2 [ B� n X .
There are at most kŠ partitions of B as jBj � k.
Imagine that for any such partition, we mark a
set of at most k edges, which would extend the
partial solution under consideration, i.e., extend
X \ E.GŒB [ V2�/. In total, this marking pro-
cedure would select k � kŠ edges, leaving at least

one edge unmarked, as E.GŒV1�/ � jV1j � 1 �
k � kŠC 1. Such an unmarked edge can be safely
contracted. The intuition behind this reasoning
leads to the following definition:

Definition 1 Let G be a connected graph. A
partition .V1; V2/ of V.G/ is called a .q; k/-good
edge separation, if

• jV1j; jV2j > q;
• jE.V1; V2/j � k;
• GŒV1� and GŒV2� are connected.

For the multiway cut problem, we would set
q D k � kŠC 1. The following lemma states that
we can find a .q; k/-good edge separation, if it
exists:

Lemma 1 There exists a deterministic algorithm
that, given an undirected, connected graph G

on n vertices along with integers q and k, in
time O.2O.min.q;k/ log.qCk//n3 logn/ either finds
a .q; k/-good edge separation or correctly con-
cludes that no such separation exists.

A rough sketch of the proof follows. Assume
that a .q; k/-good edge separation .V1; V2/ exists.
Let E1 be the set of edges of some subtree of
GŒV1� with exactly q edges; similarly let E2 be
the set of edges of some subtree of GŒV2� with
exactly q edges. By the definition of a .q; k/-
good separation, such sets E1; E2 exist. Contract
each edge of the graph with probability 1=2

independently from other edges. With probability
at least 1=f .k; q/ D 2�.2qCk/, the following
event happens (see Fig. 1):

(i) No edge between V1 and V2 is contracted,
(ii) All edges of E1 [ E2 are contracted.

If we are lucky and such an event occurs, then
by looking for a minimum cut between each two
vertices onto which at least q C 1 vertices of
G were contracted, we can find a .q; k/-good
separation. By a better choice of contraction
probability, we can improve the probability of
success, whereas by using splitters [6], we can
derandomize the procedure.
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V1 V2

Randomized Contraction, Fig. 1 A .q; k/-good separation. In the randomized routine, we hope the thick edges to
be contracted and the thin edges not to be contracted

Randomized
Contraction, Fig. 2
Structure of a connected
graph G that does not
admit a .q; k/-good
separation. After removing
at most k edges, only one
big connected component,
C0, remains

C0

C1
C2

C3 C4

C5

Summarizing this phase of the algorithm,
we look for a .q; k/-good edge separation. If it
does not exist, then we proceed to the second –
high connectivity – phase of the algorithm.
However, if a .q; k/-good edge separation
exists, then we proceed recursively. Clearly,
we are omitting some important details in this
description. The most important of them is that
when recursing, some vertices play a special role,
as they are border terminals – vertices which
have neighbors outside of the part of the graph
under consideration. For this reason, to make the
induction work, we need a stronger definition of
a problem, called its border version, which for
multiway cut is as follows:

Border Multiway Cut
Input: a connected, undirected graph G, a set
of terminals T � V.G/, an integer k, and a set
Tb � V.G/ of at most 2k terminals.

Output: for each partition P of Tb output, a
set XP of size at most k (if it exists), such that
in the graphGP nX , no two terminals from T

are in the same connected component, where
GP D .V .G/;E.G/ [ EP/ and EP contains
pairs of vertices which are in the same block
of P .

High-Connectivity Phase
The second phase of the approach is usually
problem specific; however, its main idea is the
following. Since we know that G does not admit
a .q; k/-good edge separation, if we remove any
set X of at most k edges, there is at most one
connected component of G n X containing more
than q vertices (see Fig. 2). Therefore, if we
independently contract each edge at random, then
with good enough probability, no solution edge
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will be contracted and all connected components
of G n X except possibly one will be contracted
onto single vertices (again, see Fig. 2). In such
a case, one can show that we can solve a cut
problem under consideration either greedily or by
dynamic programming.

RelatedWork

The currently best-known parameterized
algorithm for unique label cover is due to
Wahlström [7] and works in time s2knO.1/.
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Problem Definition

Recent developments in wireless commu-
nications and digital electronics have led
to the development of extremely small in
size, low-power, low-cost sensor devices
(often called smart dust). Such tiny de-
vices integrate sensing, data processing and
wireless communication capabilities. Exam-
ining each such resource constraint device
individually might appear to have small
utility; however, the distributed self-collaboration
of large numbers of such devices into an ad hoc
network may lead to the efficient accomplishment
of large sensing tasks i.e., reporting data about
the realization of a local event happening in the
network area to a faraway control center.

The problem considered is the development of
a randomized algorithm to balance energy among
sensors whose aim is to detect events in the net-
work area and report them to a sink. The network
is sliced by the algorithm into layers composed of
sensors at approximately equal distances from the
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Randomized Energy Balance Algorithms in Sensor
Networks, Fig. 1 The sink and five slices S1, : : : , S5

sink [1, 2, 8] (Fig. 1). The slicing of the network
depends on the communication distance. The sink
initiates the process by sending a control mes-
sage containing a counter, the value of which is
initially 1. Sensors receiving the message assign
themselves to a slice number corresponding to
the counter, increment the counter and propagate
the message in the network. A sensor already
assigned to a slice ignores subsequent received
control messages.

The strategy suggested to balance the energy
among sensors consists in allowing a sensor to
probabilistically choose between either sending
data to a sensor in the next layer towards the
sink or sending the data directly to the sink.
The difference between the two choices is the
energy consumption, which is much higher if the
sensor decides to report to the sink directly. The
energy consumption is modeled as a function of
the transmission distance by assuming that the
energy necessary to send data up to a distance d is
proportional to d2. Actually, more accurate mod-
els can be considered, in which the dependence
is of the form d’, with 2 � ˛ � 5 depending
on the particular environmental conditions. Al-
though the model chosen determines the param-
eters of the algorithm, the particular shape of the
function describing the relationship between the
distance of transmission and energy consumption

is not relevant except that it might increase with
distance. The distance between two successive
slices is normalized to be 1. Hence, a sensor
sending data to one of its neighbors consumes
one unit of energy and a sensor located in slice
i consumes i2 units of energy to report to the sink
directly. Small hop transmissions are cheap (with
respect to energy consumption) but pass through
the critical region around the sink and might
strain sensors in that region, while expensive
direct transmissions bypass that critical area.

Energy balance is defined as follows:

Definition 1 The network is energy-balanced if
the average per sensor energy dissipation is the
same for all sectors, i.e., when

EŒEi �

Si

D EŒEj �

Sj

; i; j D 1; : : : ; n (1)

where Ei is the total energy available and Si is the
number of nodes in slice number i.

The dynamics of the network is modeled
by assigning probabilities �i ; i D 1; : : : ; N;P
�i D 1, of the occurrence of an event in

slice i. The protocol consists in transmitting the
data to a neighbor slice with probability pi and
with probability 1 � pi to the sink, for a sensor
belonging to slice i. Hence, the mean energy
consumption per data unit is pi C .1 � pi /i

2.
A central assumption in the following is that the
events are evenly generated in a given slice. Then,
denoting by ei the energy available per node in
slice i (i.e., ei D Ei=Si ), the problem of energy-
balanced data propagation can be formally stated
as follows:

Given �i ; ei ; Si ; i D 1; : : : ; N , find pi ; � such
that

�
�i C �iC1piC1 C : : :C �npnpn�1 � � �piC1„ ƒ‚ …

DWxi

�

�
�
pi

1

Si

C .1 � pi /
i2

Si

�

D �ei ; i D 1; : : : ; N : (2)
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Initialize x̃0 = x̃n
Initialize NbrLoop=1
repeat forever

Send x̃i and values to the stations which compute
their pi probability

wait for a data
for i=0 to n

if the data passed through slice i then
X 1

else
X 0

end if
Generate R a x̃i -Bernoulli random variable
x̃i x̃i + 1

NbrLoop (X R)
Increment NbrLoop by one.

end for
end repeat

Randomized Energy Balance Algorithms in Sensor
Networks, Fig. 2 Pseudo-code for estimation of the xi

value by the sink

Equation (2) amounts to ensuring that the mean
energy dissipation for all sensors is proportional
to the available energy. In turn, this ensures that
sensors might, on average, run out of energy all
at the same time. Notice that (2) contains the
definitions of the xi. They are the ones estimated
in the pseudo-code in Fig. 2, the successive esti-
mations being denoted as Qxi . These variables are
proportional to the number of messages handled
by slice i.

Key Results

In [1, 2] recursive equations similar to (2) were
suggested and solved in closed form under
adequate hypotheses. The need for a priori
knowledge of the probability of occurrence of
the events, the �i parameters, was considered
in [7], in which these parameters were estimated
by the sink on the basis of the observations of
the various paths the data follow. The algorithm
suggested is based on recursive estimation, is
computationally not expensive and converges
with rate O.1=pn/. One might argue that the rate
of convergence is slow; however, it is numerically
observed that relatively quickly compared with

the convergence time, the algorithm finds an
estimation close enough to the final value.
The estimation algorithm run by the sink
(which has no energy constraints) is given in
Fig. 2.

Results taken from [1, 2, 7] all assume the
existence of an energy-balance solution. How-
ever, particular distributions of the events might
prevent the existence of such a solution and the
relevant question is no longer the computation
of an energy-balance algorithm. For instance,
assuming that �N D 0, sensors in slice N have
no way of balancing energy. In [9] the prob-
lem was reformulated as finding the probabil-
ity distribution fpigiD1;:::;N which leads to the
maximal functional lifetime of the networks. It
was proved that if an energy-balance strategy
exists, then it maximizes the lifetime of the net-
work establishing formally the intuitive reasoning
which was the motivation to consider energy-
balance strategies. A centralized algorithm was
presented to compute the optimal parameters.
Moreover, it was observed numerically that the
interslice energy consumption is prone to be
uneven and a spreading technique was suggested
and numerically validated as being efficient to
overcome this limitation of the probabilistic al-
gorithm.

The communication graph considered is a re-
strictive subset of the complete communication
graph and it is legitimate to wonder whether one
can improve the situation by extending it. For
instance, by allowing data to be sent two hops
or more away. In [3, 6] it was proved that the
topology in which sensors communicate only to
neighbor slices and the sink is the one which
maximizes the flow of data in the network. More-
over, the communication graph in which sensors
send data only to their neighbors and the sink
leads to a completely distributed algorithm bal-
ancing energy [6]. Indeed, as a sensor sends data
to a neighbor slice, the neighbor must in turn send
the data and can attach information concerning
its own energy level. This information might be
captured by the initial sensor since it belongs to
the communication range of its neighbor (this
does not hold any longer if multiple hops are
allowed). Hence, a distributed strategy consists in
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sending data to a particular neighbor only if its
energy level consumption is lower, otherwise the
data are sent directly to the sink.

Applications

Among the several constraints sensor networks
designers have to face, energy management is
central since sensors are usually battery pow-
ered, making the lifetime of the networks highly
sensitive to the energy management. Besides the
traditional strategy consisting in minimizing the
energy consumption at sensor nodes, energy-
balance schemes aim at balancing the energy con-
sumption among sensors. The intuitive function
of such schemes is to avoid energy depletion
holes appearing as some sensors that run out
of their available energy resources and are no
longer able to participate in the global function
of the networks. For instance, routing might be
no longer possible if a small number of sensors
run out of energy, leading to a disconnected
network. This was pointed out in [5] as well as the
need to develop application-specific protocols.
Energy balancing is suggested as a solution in
order to make the global functional lifetime of
the network longer. The earliest development of
dedicated protocols ensuring energy balance can
be found in [4, 10, 11].

A key application is to maximize the lifetime
of the network while gathering data to a sink.
Besides increasing the lifetime of the networks,
other criteria have to be taken into account. In-
deed, the distributed algorithm might be as sim-
ple as possible owing to limited computational
resources, might avoid collisions or limit the
total number of transmissions, and might en-
sure a large enough flow of data from the sen-
sors toward the sink. Actually, maximizing the
flow of data is equivalent to maximizing the
lifetime of sensor networks if some particular
realizable conditions are fulfilled. Besides the
simplicity of the distributed algorithm, the net-
work deployment and the self-realization of the
network structure might be possible in realistic
conditions.
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Problem Definition

The two classical problems of disseminating
information in computer networks are broad-
casting and gossiping. In broadcasting, the goal
is to distribute a message from a distinguished
source node to all other nodes in the networks.
In gossiping, each node v in the network initially
contains a message mv, and the task is to
distribute each message mv to all nodes in the
network.

The radio network abstraction captures the
features of distributed communication networks

with multi-access channels, with minimal as-
sumptions on the channel model and processors’
knowledge. Directed edges model unidirectional
links, including situations in which one of two
adjacent transmitters is more powerful than the
other. In particular, there is no feedback mech-
anism (see, for example, [6]). In some applica-
tions, collisions may be difficult to distinguish
from the noise that is normally present in the
channel, justifying the need for protocols that
do not depend on the reliability of the collision
detection mechanism (see [3, 4]). Some network
configurations are subject to frequent changes.
In other networks, a network topology could be
unstable or dynamic, for example, when mobile
users are present. In such situations, algorithms
that do not assume any specific topology are more
desirable.

More formally a radio network is a directed
graphG D .V;E/, where by jV j D n, we denote
the number of nodes in this graph. Individual
nodes in V are denoted by letters u; v; : : :. If
there is an edge from u to v, i.e., .u; v/ 2 E,
then we say that v is an out-neighbor of u and
u is an in-neighbor of v. Messages are denoted
by letter m, possibly with indices. In particular,
the message originating from node v is denoted
by mv . The whole set of initial messages is
M D fmv W v 2 V g. During the computation,
each node v holds a set of messages Mv that
have been received by v so far. Initially, each
node v does not possess any information apart
from Mv D fmvg. Without loss of generality,
whenever a node is in the transmitting mode, one
can assume that it transmits the whole content
of Mv.

The time is divided into discrete time steps.
All nodes start simultaneously, have access to
a common clock, and work synchronously. A
gossiping algorithm is a protocol that for each
node u, given all past messages received by u,
specifies, for each time step t , whether u will
transmit a message at time t , and if so, it also
specifies the message. A message M transmitted
at time t from a node u is sent instantly to all its
out-neighbors. An out-neighbor v of u receives
M at time step t only if no collision occurred, that
is, if the other in-neighbors of v do not transmit
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at time t at all. Further, collisions cannot be
distinguished from background noise. If v does
not receive any message at time t , it knows that
either none of its in-neighbors transmitted at time
t or that at least two did, but it does not know
which of these two events occurred. The running
time of a gossiping algorithm is the smallest
t such that for any network topology, and any
assignment of identifiers to the nodes, all nodes
receive messages originating in every other node
no later than at step t .

Limited Broadcast v (k) Given an integer k
and a node v, the goal of limited broadcasting is
to deliver the message mv (originating in v) to at
least k other nodes in the network.

Distributed Coupon Collection The set of
network nodes V can be interpreted as a set of
n bins and the set of messages M as a set of n
coupons. Each coupon has at least k copies, each
copy belonging to a different bin.Mv is the set of
coupons in bin v. Consider the following process.
At each step, one opens every bin at random,
independently, with probability 1=n. If no bin
is opened, or if two or more bins are opened, a
failure occurs and no coupons are collected. If
exactly one bin, say v, is opened, all coupons
from Mv are collected. The task is to establish
how many steps are needed to collect (a copy of)
each coupon.

Key Results

Theorem 1 ([1]) There exists a deterministic
O.k log 2n/-time algorithm for limited broad-
casting from any node in radio networks with an
arbitrary topology.

Theorem 2 ([1]) Let • be a given constant, 0 <
• < 1, and s D .4n = k/ ln.n = •/. After s steps
of the distributed coupon collection process, with
probability at least 1 � •, all coupons will be
collected.

Theorem 3 ([1]) Let – be a given constant,
where 0 < � < 1. There exists a randomized
O.n log3 n log.n=�//-time Monte Carlo-type
algorithm that completes radio gossiping with
probability at least 1 � �.

Theorem 4 ([1]) There exists a randomized Las
Vegas-type algorithm that completes radio gos-
siping with expected running time O.n log 4n/.

Applications

Further work on efficient randomized radio gos-
siping include the O.n log 3n/-time algorithm by
Liu and Prabhakaran; see [5], where the de-
terministic procedure for limited broadcasting
is replaced by its O.k log n/-time randomized
counterpart. This bound was later reduced to
O.n log 2n/ by Czumaj and Rytter in [2], where
a new randomized limited broadcasting proce-
dure with an expected running time O.k/ is
proposed.

Open Problems

The exact complexity of randomized radio gos-
siping remains an open problem. All three gossip-
ing algorithms [1, 2, 5] are based on the concepts
of limited broadcast and distributed coupon col-
lection. The two improvements [2, 5] refer solely
to limited broadcasting. Thus, very likely further
reduction of the time complexity must coincide
with more accurate analysis of the distributed
coupon collection process or with development of
a new gossiping procedure.
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Problem Definition

The input to the problem is a connected undi-
rected graph G D .V;E/ with a weight w.e/ on
each edge e 2 E . The goal is to find a spanning
tree of minimum weight, where for any subset of
edges E 0 � E, the weight of E 0 is defined to be
w.E 0/ D P

e2E 0

w.e/.

If the graph G is not connected, the goal
of the problem is to find a minimum spanning
forest, which is defined to be a minimum span-
ning tree in each connected component of G.
Both problems will be referred to as the MST
problem.

The randomized MST algorithm by Karger,
Klein, and Tarjan [9] which is considered here
will be called the KKT algorithm. Also it will be

assumed that the input graph G D .V;E/ has n
vertices and m edges and that the edge weights
are distinct.

The MST problem has been studied exten-
sively prior to the KKT result, and several very
efficient, deterministic algorithms are available
from these studies. All of these are deterministic
and are based on a method that greedily adds an
edge to a forest that is a subgraph of the minimum
spanning tree at all times. The early algorithms
in this class are already efficient with a running
time ofO.m log n/. These include the algorithms
of Borůvka [1], Jarník [8] (later rediscovered by
Dijkstra and Prim [5]), and Kruskal [5].

The fastest algorithm known for MST
prior to the KKT algorithm runs in time
O.m log ˇ.m; n// [7], where ˇ.m; n/ D
min fi j log .i/n � m=ng [7]; here log .i/n is
defined as log n if i D 1 and as log log .i�1/n

if i > 1. Although this running time is close to
linear, it is not linear time if the graph is very
sparse.

The problem of finding the minimum spanning
tree efficiently is an important and fundamental
problem in graph algorithms and combinatorial
optimization.

Background
Some relevant background is summarized here.

• The basic step in Borůvka’s algorithm [1] is
the Borůvka step, which picks the minimum
edge-weight incident on each vertex, adds
it to the minimum spanning tree, and then
contracts these edges. This step runs in linear
time and also very efficiently in parallel. It
is the backbone of the most efficient parallel
algorithms for minimum spanning tree and is
also used in the KKT algorithm.

• A related and simpler problem is that of min-
imum spanning tree verification. Here, given
a spanning tree T of the input edge-weighted
graph, one needs to determine if T is its
minimum spanning tree. An algorithm that
solves this problem with a linear number of
edge-weight comparisons was shown by Kom-
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lós [13], and later a deterministic linear-time
algorithm was given in [6] (see also [12] for a
simpler algorithm).

Key Results

The main result in [9] is a randomized algorithm
for the minimum spanning tree problem that
runs in expected linear time. The only opera-
tions performed on the edge weights are pairwise
comparisons. The algorithm does not assume any
particular representation of the edge weights (i.e.,
integer or real values) and only assumes that any
comparison between a pair of edge weights can
be performed in unit time. The entry also shows
that the algorithm runs inO.mCn/ time with the
exponentially high probability 1 � exp.��.m//
and that its worst-case running time is O.n C
m log n/.

The simple and elegant MST sampling lemma
given in Lemma 1 below is the key tool used
to derive and analyze the KKT algorithm. This
lemma needs a couple of definitions and facts:

1. The well-known cycle property for the min-
imum spanning tree states that the heaviest
edge in any cycle in the input graph G cannot
be in the minimum spanning tree.

2. Let F be a forest of G (i.e., an acyclic
subgraph of G). An edge e 2 E is F -light
if F [ feg either continues to be a forest of
G, or the heaviest edge in the cycle containing
e is not e. An edge in G that is not F -light
is F -heavy. Note that by the cycle property,
an F -heavy edge cannot be in the minimum
spanning tree of G, no matter what forest F
is used. Given a forest F of G, the set of F -
heavy edges can be determined in linear time
by a simple modification to existing linear-
time minimum spanning tree verification
algorithms [6, 12].

Lemma 1 (MST Sampling Lemma) Let H D
.V;EH / be formed from the input edge-weighted
graph G D .V;E/ by including each edge with
probability p independent of the other edges. Let

F be the minimum spanning forest of H . Then,
the expected number of F -light edges in G is �
n=p.

The KKT algorithm identifies edges in the
minimum spanning tree ofG only using Borůvka
steps. However, after every two Borůvka steps,
it removes F -heavy edges using the minimum
spanning forestF of a subgraph obtained through
sampling edges with probability p D 1=2. As
mentioned earlier, these F -heavy edges can be
identified in linear time. The minimum spanning
forest of the sampled graph is computed recur-
sively.

The correctness of the KKT algorithm is im-
mediate since every F -heavy edge it removes
cannot be in the MST of G since F is a forest
of G, and every edge it adds to the minimum
spanning tree is in the MST since it is added
through a Borůvka step.

The expected running time analysis as well
as the exponentially high probability bound for
the running time are surprisingly simple to derive
using the MST Sampling Lemma (Lemma 1).

In summary, the entry [9] proves the following
results.

Theorem 1 The KKT algorithm is a randomized
algorithm that finds a minimum spanning tree of
an edge-weighted undirected graph on n nodes
and m edges in O.n C m/ time with probability
at least 1 � exp.��.m//. The expected running
time isO.nCm/ and the worst-case running time
is O.nCm log n/.

The model of computation used in [9] is the
unit-cost RAM model since the known MST
verification algorithms were for this model and
not the more restrictive pointer machine model.
More recently the MST verification result and
hence the KKT algorithm have been shown to
work on the pointer machine as well [2].

Lemma 1 is proved in [9] through a simulation
of Kruskal’s algorithm along with an analysis of
the probability with which an F -light edge is
not sampled. Another proof that uses a backward
analysis is given in [3].
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Further Comments

• Recently (and since the appearance of the
KKT algorithm in 1995), two new determin-
istic algorithms for MST have appeared, due
to Chazelle [4] and Pettie and Ramachan-
dran [14]. The former [4] runs in O.n C
m’.m; n// time, where ’ is an inverse of the
Ackermann’s function, whose growth rate is
even smaller than the “ function mentioned
earlier for the best result that was known prior
to the KKT algorithm [7]. The latter algorithm
[14] provably runs in time that is within a
constant factor of the decision-tree complex-
ity of the MST problem and hence is opti-
mal; its time bound is O.n C m’.m; n// and
�.nCm/, and the exact bound remains to be
determined.

• Although the KKT algorithm runs in expected
linear time (and with exponentially high prob-
ability), it is not the last word on randomized
MST algorithms. A randomized MST algo-
rithm that runs in expected linear time and
uses only O.log �n/ random bits is given in
[16, 17]. In contrast, the KKT algorithm uses
a linear number of random bits.

Applications

The minimum spanning tree problems has a large
number of applications, which are discussed in
minimum spanning trees.

Open Problems

Some open problems that remain are the follow-
ing:

1. Can randomness be removed in the KKT algo-
rithm? A hybrid algorithm that uses the KKT
algorithm within a modified version of the
Pettie-Ramachandran algorithm [14] is given
in [16, 17] that achieves expected linear time
while reducing the number of random bits

used to only O.log �n/. Can this tiny amount
of randomness be removed as well? If all
randomness can be removed from the KKT al-
gorithm, that will establish a linear time bound
for the Pettie-Ramachandran algorithm [14]
and also provide another optimal deterministic
MST algorithm, this one based on the KKT
approach.

2. Can randomness be removed from the work-
optimal parallel algorithms [10] for MST?
A linear-work, expected logarithmic-time
parallel MST algorithm for the EREW PRAM
is given in [15]. This parallel algorithm
is both work and time optimal. However,
it uses a linear number of random bits.
Another work-optimal parallel algorithm
is given in [16, 17] that runs in expected
polylog time using only polylog random bits.
This leads to the following open questions
regarding parallel algorithms for the MST
problem:
ı To what extent can dependence on random

bits be reduced (from the current linear
bound) in a time- and work-optimal paral-
lel algorithm for MST?

ı To what extent can the dependence on
random bits be reduced (from the current
polylog bound) in a work-optimal parallel
algorithm with reasonable parallelism (say
polylog parallel time)?

Experimental Results

Katriel, Sanders, and Träff [11] performed an
experimental evaluation of the KKT algorithm
and showed that it has good performance on
moderately dense graphs.
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Problem Definition

The work of Serna and Spirakis provides a par-
allel approximation schema for the Maximum
Flow problem. An approximate algorithm pro-
vides a solution whose cost is within a factor of
the optimal solution. The notation and definitions
are the standard ones for networks and flows (see
for example [2, 7]).

A network N D .G; s; t; c/ is a structure con-
sisting of a directed graph G D .V;E/, two dis-
tinguished vertices, s; t 2 V (called the source
and the sink), and c W E ! Z

C, an assignment
of an integer capacity to each edge in E. A flow
function f is an assignment of a non-negative
number to each edge of G (called the flow into
the edge) such that first at no edge does the
flow exceed the capacity, and second for every
vertex except s and t, the sum of the flows on its
incoming edges equals the sum of the flows on
its outgoing edges. The total flow of a given flow
function f is defined as the net sum of flow into
the sink t. The Maximum Flow problem can be
stated as

Name Maximum Flow
Input A network N D .G; s; t; c/
Output Find a flow f for N for which the total

flow is maximum.
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Maximum Flows and Matchings
The Maximum Flow problem is closely related
to the Maximum Matching problem on bipartite
graphs.

Given a graph G D .V;E/ and a set of edges
M � E is a matching if in the subgraph .V;M/

all vertices have degree at most one. A maximum
matching for G is a matching with a maximum
number of edges. For a graph G D .V;E/ with
weight w(e), the weight of a matching M is the
sum of the weights of the edges in M. The
problem can be stated as follows:

Name Maximum Weight Matching
Input A graphG D .V;E/ and a weight w(e)

for each edge e 2 E
Output Find a matching of G with the maxi-

mum possible weight.

There is a standard reduction from the Maximum
Matching problem for bipartite graphs to the
Maximum Flow problem [7, 8]. In the general
weighted case one has just to look at each edge
with capacity c > 1 as c edges joining the same
points each with capacity one, and transform
the multigraph obtained as shown before. Notice
that to perform this transformation a c value is
required which is polynomially bounded. The
whole procedure was introduced by Karp, Up-
fal, and Wigderson [5] providing the following
results

Theorem 1 The Maximum Matching problem
for bipartite graphs is NC equivalent to the Maxi-
mum Flow problem on networks with polynomial
capacities. Therefore, the Maximum Flow with
polynomial capacities problem belongs to the
class RNC.

Key Results

The first contribution is an extension of Theo-
rem 1 to a generalization of the problem, namely
the Maximum Flow on networks with polynomi-
ally bounded maximum flow. The proof is based
on the construction (in NC) of a second network
which has the same maximum flow but for which

the maximum flow and the maximum capacity in
the network are polynomially related.

Lemma 2 Let N D .G; s; t; c/. Given any in-
teger k, there is an NC algorithm that decides
whether f .N / � k or f .N / < km.

Since Lemma 2 applies even to numbers that are
exponential in size, they get

Lemma 3 Let N D .G; s; t; c/ be a network,
there is an NC algorithm that computes an integer
value k such that 2k � f .N / < m 2kC1.

The following lemma establishes the NC-
reduction from the Maximum Flow problem
with polynomial maximum flow to the Maximum
Flow problem with polynomial capacities.

Lemma 4 Let N D .G; s; t; c/ be a network,
there is an NC algorithm that constructs a second
network N1 D .G; s; t; c1/ such that

log.Max.N1// � log.f .N1//CO.logn/

and f .N / D f .N1/.

Lemma 4 shows that the Maximum Flow prob-
lem restricted to networks with polynomially
bounded maximum flow is NC-reducible to the
Maximum Flow problem restricted to polyno-
mially bounded capacities, the latter problem is
a simplification of the former one, so the follow-
ing results follow.

Theorem 5 For each polynomial p, the problem
of constructing a maximum flow in a network N
such that f .N / � p.n/ is NC-equivalent to the
problem of constructing a maximum matching in
a bipartite graph, and thus it is in RNC.

Recall that [5] gave us an O.log2 n/ randomized
parallel time algorithm to compute a maximum
matching. The combination of this with the re-
duction from the Maximum Flow problem to the
Maximum Matching leads to the following result.

Theorem 6 There is a randomized parallel algo-
rithm to construct a maximum flow in a directed
network, such that the number of processors is
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bounded by a polynomial in the number of ver-
tices and the time used is O..logn/˛ logf .N //
for some constant ˛ > 0.

The previous theorem is the first step towards
finding an approximate maximum flow in
a network N by an RNC algorithm. The
algorithm, given N and an " > 0, outputs
a solution f0 such that f .N /=f 0 � 1C 1=".
The algorithm uses a polynomial number of
processors (independent of ") and parallel
time O.log˛ n.lognC log "//, where ˛ is
independent of ". Thus, the algorithm is an
RNC one as long as " is at most polynomial
in n. (Actually " can be O.nlogˇ n/ for some “.)
Thus, being a Fully RNC approximation scheme
(FRNCAS).

The second ingredient is a rough NC approxi-
mation to the Maximum Flow problem.

Lemma 7 LetN D .G; s; t; c/ be a network. Let
k � 1 be an integer, then there is an NC algo-
rithm to construct a network M D .G; s; t; c1/

such that k f .M/ � f .N / � k f .M/C km.

Putting all together and allowing randomization
the algorithm can be sketched as follows:

FAST-FLOW(N D .G; s; t; c/; ")

1. Compute k such that 2k � F.N/ � 2kC1m.
2. Construct a network N1 such that

log.Max.N1// � log.F.N1//CO.logn/:

3. If 2k � .1C "/m then F.N/ � .1C "/m2 so
use the algorithm given in Theorem 6 to solve
the Maximum Flow problem in N as a Maxi-
mum Matching and return

4. Let ˇ D b.2k/=..1 C "/m/c. Construct N2

from N1 and “ using the construction in
Lemma 7.

5. Solve the Maximum Flow problem in N2 as
a Maximum Matching.

6. Output F 0 D ˇF.M2/ and for all e 2 E,
f 0.e/ D f̌ .e/.

Theorem 8 Let N D .G; s; t; c/ be a network.
Then, algorithm FAST-FLOW is an RNC algo-

rithm such that for all " > 0 at most polynomial
in the number of network vertices, the algorithm
computes a legal flow of value f0 such that

f .N /

f 0
� 1C 1

"
:

Furthermore, the algorithm uses a polynomial
number of processors and runs in expected paral-
lel time O.log˛ n.lognC log "//, for some con-
stant ˛, independent of ".

Applications

The rounding/scaling technique is used in general
to deal with problems that are hard due to the
presence of large weights in the problem instance.
The technique modifies the problem instance in
order to produce a second instance that has no
large weights, and thus can be solved efficiently.
The way in which a new instance is obtained
consists of computing first an estimate of the
optimal value (when needed) in order to discard
unnecessary high weights. Then the weights are
modified, scaling them down by an appropriate
factor that depends on the estimation and the
allowed error. The rounding factor is determined
in such a way that the so-obtained instance can be
solved efficiently. Finally, a last step consisting
of scaling up the value of the “easy” instance
solution is performed in order to meet the cor-
responding accuracy requirements.

It is known that in the sequential case, the
only way to construct FPTAS uses round-
ing/scaling and interval partition [6]. In general,
both techniques can be paralyzed, although
sometimes the details of the parallelization are
non-trivial [1].

The Maximum Flow problem has a long
history in Computer Science. Here are recorded
some results about its parallel complexity.
Goldschlager, Shaw, and Staples showed that the
Maximum Flow problem is P-complete [3]. The
P-completeness proof for Maximum Flow uses
large capacities on the edges; in fact the values of
some capacities are exponential in the number of
network vertices. If the capacities are constrained
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to be no greater than some polynomial in the
number of network vertices the problem is in
ZNC. In the case of planar networks it is known
that the Maximum Flow problem is in NC, even
if arbitrary capacities are allowed [4].

Open Problems

The parallel complexity of the Maximum Weight
Matching problem when the weight of the edges
are given in binary is still an open problem. How-
ever, as mentioned earlier, there is a randomized
NC algorithm to solve the problem in O.log2 n/

parallel steps, when the weights of the edges
are given in unary. The scaling technique has
been used to obtain fully randomized NC approx-
imation schemes, for the Maximum Flow and
Maximum Weight Matching problems (see [10]).
The result appears to be the best possible in
regard of full approximation, in the sense that the
existence of an FNCAS for any of the problems
considered is equivalent to the existence of an NC
algorithm for perfect matching which is also still
an open problem.
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Problem Definition

Randomized rounding is a technique for design-
ing approximation algorithms for NP-hard op-
timization problems. Many combinatorial opti-
mization problems can be represented as 0-1
integer linear programs; that is, integer linear
programs in which variables take values in f0; 1g.
While 0-1 integer linear programming is NP-
hard, the rational relaxations (also referred to as
fractional relaxations) of these linear programs
are solvable in polynomial time [12, 13]. Ran-
domized rounding is a technique to construct
a provably good solution to a 0-1 integer lin-
ear program from an optimum solution to its
rational relaxation by means of a randomized
algorithm.
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Let ˘ be a 0-1 integer linear program with
variables xi 2 f0; 1g, 1 � i � n. Let ˘R be the
rational relaxation of… obtained by replacing the
xi 2 f0; 1g constraints by xi 2 Œ0; 1�; 1 � i � n.
The randomized rounding approach consists of
two phases:

1. Solve ˘R using an efficient linear program
solver. Let the variable xi take on value
x�i 2 Œ0; 1�, 1 � i � n.

2. Compute a solution to ˘ by setting the vari-
ables xi randomly to one or zero according to
the following rule:

PrŒxi D 1� D x�i :

For several fundamental combinatorial optimiza-
tion problems, the randomized rounding tech-
nique yields simple randomized approximation
algorithms that yield solutions provably close
to optimal. Variants of the basic approach out-
lined above, in which the rounding of variable
xi in the second phase is done with a proba-
bility that is some appropriate function of xi

*,
have also been studied. The analyses of algo-
rithms based on randomized rounding often rely
on Chernoff–Hoeffding bounds from probability
theory [5, 11].

The work of Raghavan and Thompson [14]
introduced the technique of randomized round-
ing for designing approximation algorithms for
NP-hard optimization problems. The randomized
rounding approach also implicitly proves the ex-
istence of a solution with certain desirable prop-
erties. In this sense, randomized rounding can be
viewed as a variant of the probabilistic method,
due to Erdös [1], which is widely used for various
existence proofs in combinatorics.

Raghavan and Thompson illustrate the
randomized rounding approach using three
optimization problems: VLSI routing, multicom-
modity flow, and k-matching in hypergraphs.

Definition 1 In the VLSI Routing problem, we
are given a two-dimensional rectilinear lattice
Ln over n nodes and a collection of m nets
fai W 1 � i � mg, where net ai, is a set of nodes
to be connected by means of a Steiner tree in

Ln. For each net ai, we are also given a set Ai

of allowed trees that can be used for connecting
the nodes in that set. A solution to the problem is
a set T of trees fTi 2 Ai W 1 � i � mg. The width
of solution T is the maximum, over all edges
e, of the number of trees in T that contain the
edge. The goal of the VLSI routing problem is to
determine a solution with minimum width.

Definition 2 In the Multicommodity Flow
Congestiom Minimization problem (or simply,
the Congestion Minimization problem), we are
given a graph G D .V;E/, and a set of source-
destination pairs f.si ; ti /W 1 � i � kg. For each
pair .si ; ti /, we would like to route one unit of
demand from si to ti. A solution to the problem is
a set P D fPi W 1 � i � kg such that Pi is a path
from si to ti in G. We define the congestion ofP to
be the maximum, over all edges e, of the number
of paths containing e. The goal of the undirected
multicommodity flow problem is to determine
a path set P with minimum congestion.

In their original work [14], Raghavan and
Thompson studied the above problem for the
case of undirected graphs and referred to it as
the Undirected Multicommodity Flow problem.
Here, we adopt the more commonly-used term
of Congestion Minimization and consider both
undirected and directed graphs since the results
of [14] apply to both classes of graphs. Re-
searchers have studied a number of variants of the
multicommodity flow problem, which differ in
various aspects of the problem such as the nature
of demands (e.g., uniform vs. non-uniform), the
objective function (e.g., the total flow vs. the
maximum fraction of each demand), and edge
capacities (e.g., uniform vs. non-uniform).

Definition 3 In the Hypergraph Simple k -
Matching problem, we are given a hypergraph
H over an n-element vertex set V. A k-matching
of H is a set M of edges such that each vertex
in V belongs to at most k of the edges in M. A k-
matching M is simple if no edge in H occurs more
than once in M. The goal of the problem is to
determine a maximum-size simple k-matching of
a given hypergraph H.
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Key Results

Raghavan and Thompson present approximation
algorithms for the above three problems using
randomized rounding. In each case, the algorithm
is easy to present: write a 0-1 integer linear
program for the problem, solve the rational relax-
ation of this program, and then apply randomized
rounding. They establish bounds on the quality of
the solutions (i.e., the approximation ratios of the
algorithm) using Chernoff–Hoeffding bounds on
the tail of the sums of bounded and independent
random variables [5, 11].

The VLSI Routing problem can be easily ex-
pressed as a 0-1 integer linear program, say ˘ 1.
Let W* denote the width of the optimum solution
to the rational relaxation of ˘ 1.

Theorem 1 For any " such that 0 < " < 1, the
width of the solution produced by randomized
rounding does not exceed

W � C
�
3W � ln

2n.n � 1/
"

�1=2

with probability at least 1 � ", provided W � �
3 ln.2n.n � 1/="/.
Since W* is a lower bound on the width of
an optimum solution to ˘ 1, it follows that the
randomized rounding algorithm has an approxi-
mation ratio of 1C o.1/ with high probability as
long as W* is sufficiently large.

The Congestion Minimization problem can be
easily expressed as a 0-1 integer linear program,
say ˘ 2. Let C* denote the congestion of the
optimum solution to the linear relaxation of ˘ 2.
This optimum solution yields a set of flows, one
for each commodity i. The flow for commodity
i can be decomposed into a set  i of at most
jEj paths from si to ti. The randomized rounding
algorithm selects, for each commodity i, one path
Pi at random from i according to the flow values
determined by the flow decomposition.

Theorem 2 For any " such that 0 < " < 1, the
capacity of the solution produced by randomized
rounding does not exceed

C � C
�
3C � ln

jEj
"

�1=2

with probability at least 1 � ", provided C � �
2 ln jEj.
Since C* is a lower bound on the width of an op-
timum solution to˘ 1, it follows that the random-
ized rounding algorithm achieves a constant ap-
proximation ratio with probability 1 � 1=n when
C* is ˝.logn/.

For both the VLSI Routing and the Con-
gestion Minimization problems, slightly worse
approximation ratios are achieved if the lower
bound condition on W* and C*, respectively, is
removed. In particular, the approximation ratio
achieved is O.logn= log logn/ with probability
at least 1 � n�c for a constant c > 0 whose value
depends on the constant hidden in the big-Oh
notation.

The hypergraph k-matching problem is
different than the above two problems in that
it is a packing problem with a maximization
objective while the latter are covering problems
with a minimization objective. Raghavan and
Thompson show that randomization rounding, in
conjunction with a scaling technique, yields good
approximation algorithms for the hypergraph
k-matching problem. They first express the
matching problem as a 0-1 integer linear
program, solve its rational relaxation ˘ 3, and
then round the optimum rational solution by
using appropriately scaled values of the variables
as probabilities. Let S* denote the value of the
optimum solution to ˘ 3.

Theorem 3 Let ı1 and ı2 be positive constants
such that ı2 > n � e�k=6 and ı1 C ı2 < 1. Let
˛ D 3 ln.n=ı2/=k and

S 0 D S�
 
1 � .˛

2 C 4˛/1=2 � ˛
2

!
:

Then, there exists a simple k-matching for the
given hypergraph with size at least

S 0 �
 
2S 0 ln

1

ı1

!1=2

:
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Note that the above result is stated as an existence
result. It can be modified to yield a random-
ized algorithm that achieves essentially the same
bound with probability 1 � " for a given failure
probability ".

Applications

Randomized rounding has found applications
for a wide range of combinatorial optimization
problems. Following the work of Raghavan
and Thompson [14], Goemans and Williamson
showed that randomized rounding yields
an e=.e � 1/-approximation algorithm for
MAXSAT, the problem of finding an assignment
that satisfies the maximum number of clauses
of a given Boolean formula [7]. For the set
cover problem, randomized rounding yields
an algorithm with an asymptotically optimal
approximation ratio of O.logn/, where n is
the number of elements in the given set cover
instance [10]. Srinivasan has developed more
sophisticated randomized rounding approaches
for set cover and more general covering and
packing problems [15]. Randomized rounding
also yields good approximation algorithms for
several flow and cut problems, including variants
of undirected multicommodity flow [9] and the
multiway cut problem [4].

While randomized rounding provides a unify-
ing approach to obtain approximation algorithms
for hard optimization problems, better approxi-
mation algorithms have been designed for spe-
cific problems. In some cases, randomized round-
ing has been combined with other algorithms to
yield better approximation ratios than previously
known. For instance, Goemans and Williamson
showed that the better of two solutions, one
obtained by randomized rounding and the other
obtained by an earlier algorithm due to Johnson,
yields a 4/3 approximation for MAXSAT [7].

The work of Raghavan and Thompson applied
randomized rounding to a solution obtained for
the relaxation of a 0-1 integer program for a given
problem. In recent years, more sophisticated
approximation algorithms have been obtained by
applying randomized rounding to semidefinite

program relaxations of the given problem.
Examples include the 0.87856-approximation
algorithm for MAXCUT due to Goemans and
Williamson [8] and anO.

p
logn/-approximation

algorithm for the sparsest cut problem, due to
Arora, Rao, and Vazirani [3].

An excellent reference for the above and other
applications of randomized rounding in approxi-
mation algorithms is the text by Vazirani [16].

Open Problems

While randomized rounding has yielded
improved approximation algorithms for a number
of NP-hard optimization problems, the best
approximation achievable by a polynomial-time
algorithm is still open for most of the problems
discussed in this article, including MAXSAT,
MAXCUT, the sparsest cut, the multiway
cut, and several variants of the congestion
minimization problem. For directed graphs,
it has been shown that best approximation
ratio achievable for congestion minimization
in polynomial time is ˝.logn= log logn/, unless
NP � ZPTIME.nO.log log n//, matching the upper
bound mentioned in section “Key Results” up
to constant factors [6]. For undirected graphs,
the best known inapproximability lower bound is
˝.log logn= log log logn/ [2].

Cross-References

�Oblivious Routing

Recommended Reading

1. Alon N, Spencer JH (1991) The probabilistic method.
Wiley, New York

2. Andrews M, Zhang L (2005) Hardness of the
undirected congestion minimization problem. In:
STOC’05: proceedings of the thirty-seventh annual
ACM symposium on theory of computing. ACM,
New York, pp 284–293

3. Arora S, Rao S, Vazirani UV (2004) Expander flows,
geometric embeddings and graph partitioning. In:
STOC, pp 222–231



Randomized Searching on Rays or the Line 1757

R

4. Calinescu G, Karloff HJ, Rabani Y (2000) An im-
proved approximation algorithm for multiway cut. J
Comput Syst Sci 60(3):564–574

5. Chernoff H (1952) A measure of the asymptotic
efficiency for tests of a hypothesis based on the sum
of observations. Ann Math Stat 23:493–509

6. Chuzhoy J, Guruswami V, Khanna S, Talwar K
(2007) Hardness of routing with congestion in di-
rected graphs. In: STOC’07: proceedings of the
thirty-ninth annual ACM symposium on theory of
computing. ACM, New York, pp 165–178

7. Goemans MX, Williamson DP (1994) New 3/4-
approximation algorithms for the maximum satisfia-
bility problem. SIAM J Discret Math 7:656–666

8. Goemans MX, Williamson DP (1995) Improved ap-
proximation algorithms for maximum cut and satis-
fiability problems using semidefinite programming. J
ACM 42(6):1115–1145

9. Guruswami V, Khanna S, Rajaraman R, Shepherd B,
Yannakakis M (2003) Near-optimal hardness results
and approximation algorithms for edge-disjoint paths
and related problems. J Comput Syst Sci 67:473–496

10. Hochbaum DS (1982) Approximation algorithms for
the set covering and vertex cover problems. SIAM J
Comput 11(3):555–556

11. Hoeffding W (1956) On the distribution of the num-
ber of successes in independent trials. Ann Math Stat
27:713–721

12. Karmarkar N (1984) A new polynomial-time algo-
rithm for linear programming. Combinatorica 4:373–
395

13. Khachiyan LG (1979) A polynomial algorithm for
linear programming. Sov Math Dokl 20:191–194

14. Raghavan P, Thompson C (1987) Randomized round-
ing: a technique for provably good algorithms and
algorithmic proofs. Combinatorica 7

15. Srinivasan A (1995) Improved approximations of
packing and covering problems. In: Proceedings of
the 27th annual ACM symposium on theory of com-
puting, pp 268–276

16. Vazirani V (2003) Approximation algorithms.
Springer

Randomized Searching on Rays or
the Line

Stephen R. Tate
Department of Computer Science, University of
North Carolina, Greensboro, NC, USA

Keywords

Cow-path problem; Online navigation

Years and Authors of Summarized
Original Work

1993; Kao, Reif, Tate

Problem Definition

This problem deals with finding a point at an
unknown position on one of a set of w rays which
extend from a common point (the origin). In
this problem there is a searcher, who starts at the
origin, and follows a sequence of commands such
as “explore to distance d on ray i .” The searcher
detects immediately when the target point is
crossed, but there is no other information pro-
vided from the search environment. The goal of
the searcher is to minimize the distance traveled.

There are several different ways this problem
has been formulated in the literature, including
one called the “cow-path problem” that involves
a cow searching for a pasture down a set of paths.
When w D 2, this problem is to search for a point
on the line, which has also been described as a
robot searching for a door in an infinite wall or
a shipwreck survivor searching for a stream after
washing ashore on a beach.

Notation
The problem is as described above, with w rays.
The position of the target point (or goal) is de-
noted .g; i/ if it is at distance g on ray i 2
f0; 1; : : : ;w� 1g. The standard notion of compet-
itive ratio is used when analyzing algorithms for
this problem: An algorithm that knows which ray
the goal is on will simply travel distance g down
that ray before stopping, so search algorithms are
compared to this optimal, omniscient strategy.

In particular, if R is a randomized algorithm,
then the distance traveled to find a particular
goal position is a random variable denoted
distance .R; .g; i//, with expected value
E Œdistance .R; .g; i//�. Algorithm R has
competitive ratio c if there is a constant a such
that, for all goal positions .g; i/,

E Œdistance .R; .g; i//� � c:g C a: (1)



1758 Randomized Searching on Rays or the Line

Key Results

This problem is solved optimally using a random-
ized geometric sweep strategy: Search through
the rays in a random (but fixed) order, with
each search distance a constant factor longer than
the preceding one. The initial search distance
is picked from a carefully selected probability
distribution, giving the following algorithm:

RAYSEARCH r;w

�  A random permutation of {0,1,2,: : : ;w�1g;
�  A random real uniformly chosen from [0,1);
d  r�I
p  0;
repeat
Explore path �.p/ up to distance d ;
if goal not found then return to origin;
d  d � r ;
p  .p C 1/mod w;
until goal found;

The following theorems give the competitive
ratio of this algorithm, show how to pick the best
r , and establish the optimality of the algorithm.

Theorem 1 ([9]) For any fixed r > 1, Algorithm
RAYSEARCH r;w has competitive ratio

R.r;w/ D 1C 2

w
� 1C r C r

2 C � � � C rw�1

ln r
;

Theorem 2 ([9]) The unique solution of the
equation

ln r D 1C r C r2 C � � � C rw�1

r C 2r2 C 3r3 C � � � C .w � 1/rw�1

(2)
for r > 1, denoted by r�w , gives the minimum
value for R.r;w/.

Theorem 3 ([8, 9, 12]) The optimal competitive
ratio for any randomized algorithm for searching
on w rays is

min
r>1

�
1C 2

w
� 1C r C r

2 C � � � C rw�1

ln r

	
:

Corollary 1 Algorithm RAYSEARCH r;w is opti-
mally competitive.

Using Theorem 2 and standard numerical
techniques, rw

� can be computed to any required
degree of precision. The following table shows,
for small values of w, approximate values for
rw
� and the corresponding optimal competitive

ratio (achieved by RAYSEARCHr;w) – the optimal
deterministic competitive ratio (see [1]) is also
shown for comparison (Table 1):

Theorem 4 ([9]) The competitive ratio for algo-
rithm RAYSEARCH r;w (with r D rw

�) is �w C
o.w/, where

k D min
s>0

�
2

es � 1
s2

�
	 3:088:

Applications

The most direct applications of this problem are
in geometric searching, such as robot navigation
problems. For example, when a robot is traveling
in an unknown area and encounters an obstacle, a
typical first step is to find the nearest corner to go
around [2, 3], which is just an instance of the ray
searching problem (with w D 2).

In addition, any abstract search problem with
a cost function that is linear in the distance to
the goal reduces to ray searching. This includes
applications in artificial intelligence that search
for a goal in a largely unknown search space

Randomized Searching
on Rays or the
Line, Table 1 The
asymptotic growth of the
competitive ratio with w is
established in the following
theorem

w r �

w Optimal randomized ratio Optimal deterministic ratio

2 3:59112 4:59112 9

3 2:01092 7:73232 14:5

4 1:62193 10:84181 19:96296

5 1:44827 13:94159 25:41406

6 1:35020 17:03709 30:85984

7 1:28726 20:13033 36:30277
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[11] and the construction of hybrid algorithms
[8]. In hybrid algorithms, a set of algorithms
A1; A2; : : : ; Aw for solving a problem is consid-
ered – algorithmA1 is run for a certain amount of
time, and if the algorithm is not successful algo-
rithm A1 is stopped and algorithm A2 is started,
repeating through all algorithms as many times
as is necessary to find a solution. This notion of
hybrid algorithms has been used successfully for
several problems (such as the first competitive
algorithm for the online k-server problem [4]),
and the ray search algorithm gives the optimal
strategy for selecting the trial running times of
each algorithm.

Open Problems

Several natural extensions of this problem have
been studied in both deterministic and random-
ized settings, including ray searching when an
upper bound on the distance to the goal is known
(i.e., the rays are not infinite but are line seg-
ments) [5, 10, 12], or when a probability distribu-
tion of goal positions is known [7]. Other varia-
tions of this basic searching problem have been
studied for deterministic algorithms only, such
as when the searcher’s control is imperfect (so
distances cannot be specified precisely) [6] and
for more general search spaces like points in the
plane [1]. A thorough study of these variants with
randomized algorithms remains an open problem.
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Problem Definition

We use the abstract tile assembly model of
Winfree [6], which models the aggregation of
monomers called tiles that attach one at a time
to a growing structure, starting from a single
seed tile, in which bonds (“glues”) on the tile
are specific (glues only stick to glues of the
same type on other tiles) and cooperative (so
that multiple weak glues are necessary to attach
a tile). The general idea of randomized self-
assembly is to use the inherent randomness of
self-assembly to help the assembly process. If
multiple types of tiles are able to bind to a
single binding site, then we assume that their
relative concentrations determine the probability
that each succeeds. With careful design, we
can use the same tile set to create different
structures, by changing the concentrations to
affect what is likely to assemble. Another
use of randomness is in reducing the number
of different tile types required to assemble a
shape.

Definitions
A shape is a finite, connected subset of Z2. A tile
type is a unit square with four sides, each side
consisting of a glue label (finite string) and a non-
negative integer strength. We assume a finite set
T of tile types, but an infinite number of copies of
each tile type, each copy referred to as a tile. An
assembly is a positioning of tiles on the integer
lattice Z

2; i.e., a partial function ˛ W Z2 Ü T .
Write ˛ v ˇ to denote that ˛ is a subassembly
of ˇ, which means that dom ˛ � dom ˇ and
˛.p/ D ˇ.p/ for all points p 2 dom ˛. In
this case, say that ˇ is a superassembly of ˛.
Two adjacent tiles in an assembly interact if the

glue labels on their abutting sides are equal and
have positive strength. Each assembly induces
a binding graph, a grid graph whose vertices
are tiles, with an edge between two tiles if they
interact. The assembly is �-stable if every cut of
its binding graph has strength at least � , where
the weight of an edge is the strength of the glue
it represents (energy � is required to separate the
assembly). The �-frontier @�˛ � Z

2 n dom ˛ of
˛ (or frontier @˛ when � is clear from context) is
the set of empty locations adjacent to ˛ at which
a single tile could bind stably.

A tile system is a triple T D .T; �; �/, where
T is a finite set of tile types, � W Z2 Ü T is
a seed assembly consisting of a single tile (i.e.,
jdom � j D 1), and � 2 N is the temperature.
An assembly ˛ is producible if either ˛ D �

or if ˇ is a producible assembly and ˛ can be
obtained from ˇ by the stable binding of a single
tile. In this case, write ˇ !1 ˛ (˛ is producible
from ˇ by the attachment of one tile), and write
ˇ ! ˛ if ˇ !�1 ˛ (˛ is producible from ˇ

by the attachment of zero or more tiles). If ˛ is
producible, then there is an assembly sequence
˛ D .˛i j 1 � i � k/ such that ˛1 D � , ˛k D ˛,
and, for each i 2 f1; : : : ; k � 1g, ˛i !1 ˛iC1.
An assembly is terminal if no tile can be �-stably
attached to it. Write AŒT � to denote the set of all
producible assemblies of T , and write A�ŒT � to
denote the set of all producible, terminal assem-
blies of T . We also speak of shapes assembled by
tile assembly systems, by which we mean dom ˛

if ˛ 2 A�ŒT �, and we consider shapes to be
equivalent up to translation.

We now define the semantics of incorporat-
ing randomization into self-assembly. Intuitively,
there are two sources of nondeterminism in the
model as defined: (1) if j@˛j > 1, then there are
multiple binding sites, one of which is nondeter-
ministically selected as the next site to receive
a tile, and (2) if multiple tile types could bind
to a single binding site, then one of them is
nondeterministically selected. Both concepts are
handled by assigning positive real-valued con-
centrations to each tile type; Ref. [3] gives a
full definition that accounts for both of these.
However, in the results we discuss, only the
latter source of nondeterminism will actually af-
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fect the probabilities of various terminal assem-
blies being produced; the binding sites them-
selves can be picked in an arbitrary order with-
out affecting these probabilities. Thus we state
here a simpler definition based on this assump-
tion.

A tile concentration assignment on T is a
function � W T ! Œ0;1/. If �.t/ is not specified
explicitly for some t 2 T , then �.t/ D 1. If
˛ is a �-stable assembly such that t1; : : : ; tj 2
T are the tiles capable of binding to the same
position m 2 @˛, then for 1 � i � j , ti binds
at position m with probability �.ti /

�.t1/C���C�.tj /
. �

induces a probability measure on A�ŒT � in a
straightforward way. Formally, let ˛ 2 A�ŒT �
be a producible terminal assembly. Let A.˛/ be
the set of all assembly sequences ˛ D .˛i j
1 � i � k/ such that ˛k D ˛, with p˛;i

denoting the probability of attachment of the tile
added to ˛i�1 to produce ˛i (noting that p˛;i D
1 if the i th tile attached without contention).

Then PrŒ˛� D P
˛2A.˛/

kQ
iD2

1
j@˛i jp˛;i . Write T .�/

to denote the random variable representing the
producible, terminal assembly produced by T
when using tile concentration assignment �.

Problems
The general problem is this: given a shape X �
Z

2 (a connected, finite set), set the concentrations
of tile types in some tile system T so that T is
likely to create a terminal assembly with shape
X or “close to it.” We now state formal prob-
lems that are variations on this theme. The first
four problems use “concentration programming”:
varying the concentrations of tile types in a single
tile system T to get it to assemble different
shapes. The last two problems concern a tile
system that only does one thing – assemble a line
of a desired expected length – because in this
setting we will require all concentrations to be
equal. However, the tile system uses randomized
self-assembly to do this with far fewer tile types
than are needed to accomplish the same task in a
deterministic tile system.

The first three problems concern the self-
assembly of squares, and the problems are listed

in order of increasing difficulty. The first asks
for a square with a desired expected width, the
second for a guarantee that the actual width is
likely to be close to the expected width, and
finally, for a guarantee that the actual width is
likely to be exactly the expected width.

Formally, design a tile system T D .T; �; �/

such that, for any n 2 Z
C, there exists a tile

concentration assignment � W T ! Œ0;1/ such
that. . .

Problem 1 . . . dom T .�/ is a square with ex-
pected width n.

Problem 2 . . . with probability at least 1 � ı,
dom T .�/ is a square whose width is between
.1 � �/n and .1C �/n.

Problem 3 . . . with probability at least 1 � ı,
dom T .�/ is a square of width n.

The next problem generalizes the previous
problems to arbitrary shapes, while making
one relaxation: allowing a scaled-up version
of a shape to be assembled instead of the
exact shape. Formally, for c 2 Z

C and shape
S � Z

2 (finite and connected), define Sc D˚
.x; y/ 2 Z

2
ˇ̌
.bx=cc ; by=cc/ 2 S 
 to be S

scaled by factor c.

Problem 4 Let ı > 0. Design a tile system T D
.T; �; �/ such that, for any shape S � Z

2, there
exists a tile concentration assignment � W T !
Œ0;1/ and c 2 Z

C so that, with probability at
least 1 � ı, dom T .�/ is Sc .

It is easy to see that for a deterministic tile
system to assemble a length n, height 1 line
requires n tile types. The next problem concerns
using randomization to reduce the number of
tile types required, subject to the constraint that
all tile type concentrations are equal. (Without
this constraint, a solution to Problem 1 would
trivially be a solution to the next problem, with
optimal O.1/ tile types, but since the solution to
Problem 1 uses different tile type concentrations
to achieve its goal, it cannot be used directly for
this purpose.)

Problem 5 Let n 2 Z
C. Design a tile system

T D .T; �; �/ such that, with tile concentration
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assignment � W T ! Œ0;1/ defined by �.t/ D 1

for all t 2 T , dom T .�/ is a height 1 line of
expected length n.

As with the case of concentration program-
ming, it is desirable for the line to have length
likely to be close to its expected length.

Problem 6 Let n 2 Z
C and ı; � > 0. Design

a tile system T D .T; �; �/ such that, with
tile concentration assignment � W T ! Œ0;1/
defined by �.t/ D 1 for all t 2 T , dom T .�/ is
a height 1 line whose length is between .1 � �/n
and .1C �/n with probability at least 1 � ı.

Key Results

The solutions to Problems 1–4 use temperature 2
tile systems. The solutions to Problems 5 and 6
use a temperature 1 tile system (there is no need
for cooperative binding in one dimension).

Figure 1 shows a simple tile system with three
tile types that can grow a line of any desired
expected length to the right of the seed tile; this is
the basis for the solutions to Problems 1–4. The
length of the line has a geometric distribution,
with expected value controlled by the ratio of the
concentrations of G and S . Figure 2 shows the
solution to Problem 1, due to Becker, Remilá, and
Rapaport [1]. It is essentially the tile system from

Randomized Self-Assembly, Fig. 1 A randomized
temperature � D 2 tile system that can grow a line of
any desired expected length l by setting p D 1

l
. Two

tiles compete nondeterministically to bind to the right of
the line (using strength 2 glues, indicated by double black
lines), one of which stops the growth, while the other
continues, giving the length of the line (not counting the
seed) a geometric distribution with expected value l

Fig. 1 (tile types A and B are analogous to G and
S in Fig. 1) augmented with a constant number
of extra tiles that can assemble the square to be as
high as the line is long.

Kao and Schweller [4] showed a solution to
Problem 2, and Doty [3] improved their construc-
tion to show a solution to Problem 3. Here, we
describe only the latter construction, since the
two share similar ideas, and the latter construc-
tion solves both problems.

Figure 3 shows an improvement to the tile sys-
tem of Fig. 1, which will be the starting point for
the solution. It also can grow a line of any desired
expected length. However, by using multiple in-
dependent “stages” of growth, each stage having
a geometric distribution, the resulting assembly
is more likely to have a length that is close to its
expected length. More tile types are needed for
more stages, but only a constant number of stages
are required.

In particular, if the expected length is chosen
to be midway between any two consecutive pow-
ers of two, i.e., midway in the interval Œ2a�1; 2a/

for arbitrary a 2 N, with r D 113 stages, the
probability is at most 0:0025 that the actual length
is outside the interval Œ2a�1; 2a/. So although the
length is not controlled with exact precision, the
number of bits needed to represent the length is
controlled with exact precision (with high proba-
bility), using a constant number of tile types.

Figure 4 shows a tile system T with the fol-
lowing property: for any bit string s (equivalently,
any natural numberm if we assume the most sig-
nificant bit of s is 1), there is a tile concentration
assignment that causes T to grow an assembly of
height O.logm/, width O.m2/, such that the tile
types in the upper-right corner of the assembly
encode s. The bottom row is the tile system from
Fig. 3, with identical strength 2 glues on the north
of the tiles (other than the final stop tile on the
right).

Figure 5 shows a high-level overview of
the entire tile system that assembles an n 
 n
square, solving Problem 3. Using similar ideas
to Fig. 4, one can encode three different numbers
m1; m2; m3 2 N into the tile concentrations.
We choose these numbers to be such that
each mi D O.n1=3/, and each of their binary
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Randomized Self-Assembly, Fig. 2 A tile system that
grows a square of any desired expected width (Figure
taken from [4]); strength 2 glues are indicated by two lines
between the tiles. The seed is labeled S , and CA and CB

respectively represent the concentrations of A and B . p
is used the same way as in Fig. 1, and c represents total
concentration of all other tile types, since [4] assumed that
concentrations of all tile types must sum to 1

Randomized Self-Assembly, Fig. 3 A tile system that
grows a line of a given length with greater precision
than in Fig. 1. r stages each have expected length 1=p,

making the expected total length r=p, but more tightly
concentrated about that expected length than in the case
of one stage

Randomized Self-Assembly, Fig. 4 Computing the bi-
nary string 10 (equivalently, the natural number m D
2) from tile concentrations. For brevity, glue strengths
and labels are not shown. Each column increments the
primary counter, represented by the bits on the left of each
tile, and each gray tile increments the sampling counter,

represented by the bits on the right of each tile. The
number of bits at the end is l C k, where c is a constant
coded into the tile set and k depends on m, and l D kCc.
The most significant k bits of the sampling counter encode
m. In this example, k D 2 and c D 1
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Randomized Self-Assembly, Fig. 5 High-level
overview of the entire construction solving Problem 3,
not at all to scale. For brevity, glue strengths and labels
are not shown. The double counter number estimator of
Fig. 4 is embedded with two additional counters to create
a quadruple counter estimating m1, m2, and m3, shown
as a box labeled as “Fig. 4” in the above figure. In this
example, m1 D 4, m2 D 3, and m3 D 15, represented
vertically in binary in the most significant 4 tiles at the
end of the quadruple counter. Concatenating the bits of

the tiles results in the string 001101011011, the binary
representation of 859, which equals n � 2k � 4 for
n D 871, so this example builds an 871�871 square.
Once the counter ends, c tiles (c D 3 in this example)
are shifted off the bottom, and the top half of the tiles
are isolated (k D 4 in this example). Each remaining
tile represents 3 bits of n, which are converted into octal
digits, rotated to face upwards, and then used to initialize
a base-8 counter that builds the east wall of the square.
Filler tiles cover the remaining area of the square

expansions, interwoven into a single bit string,
is the binary expansion of n. Then each tile at
the upper right of Fig. 4 encodes not one but
3 bits of n, or equivalently each encodes an octal
digit of n. These bits are then used to assemble

a counter that counts from n down to 0 as it
grows north, and a constant set of tiles (similar to
Fig. 2) expand this counter to grow about as far
east as the counter grows north, creating an n
 n
square that surrounds the assembly of Fig. 4.
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above image
from [5]

seed block

Randomized Self-Assembly, Fig. 6 On the left is the
seed block used to replace the seed block of [5], from
which the construction of [5] can assemble a scaled ver-
sion of the shape S (encoded by a binary string represent-
ing the list of coordinates, also labeled “S” in the figure).
S is output by the single-tape Turing machine program
	 . 	 is estimated from tile concentrations as in Fig. 4,

then four copies of it are propagated to each side of the
block, where it is executed in four rotated, but otherwise
identical, computation regions. When completed, four
copies of the binary representation of S border the seed
block, which is sufficient for the construction of [5] to
assemble a scaled version of S using a spanning tree of
S as shown on the right

Since mi D O.n1=3/, and the tiles of Fig. 4
create a structure of height O.logmi / and width
O.m2

i / D O.n2=3/, the square is sufficiently
large to contain the tiles of Fig. 4.

Finally, the tiles of Fig. 4 are used in a different
way to solve Problem 4, shown in Fig. 6. Given a
finite shape S , Soloveichik and Winfree [5] use
an intricate construction of a “seed block” that
“unpacks,” from a set of tile types that depend
on S , a single-tape Turing machine program
� 2 f0; 1g� that outputs a binary string bin.S/
representing a list of the coordinates of S .

The width of the seed block is then c, chosen
to be large enough to do the unpacking and also
large enough to accommodate the simulation of
� by a tile set that simulates single-tape Turing
machines. Once this seed block is in place, a tile
set then assembles the scaled shape by carrying

bin.S/ through each block. The order in which
blocks are assembled is determined by a spanning
tree of S , so that any blocks with an ancestor
relationship have a dependency, in that the an-
cestor must be (mostly) assembled before the
descendant, whereas blocks without an ancestor
relationship can potentially assemble in parallel.

We replace the seed block tiles of [5], which
depend on S , with a single tile system that
produces the program � from tile concentrations,
and use the remainder of the tile set of [5]
unchanged. This is illustrated in Fig. 6. Choose
c to be sufficiently large that � can be simulated
within the trapezoidal region of the c 
 c

block of Fig. 6 and also sufficiently large
that the construction of Fig. 4 has sufficient
room to estimate the binary string � from
tile concentrations in the center region (the
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Randomized Self-Assembly, Fig. 7 Example of solution to Problem 5 for the case of expected length 92

“double counter estimator”) of Fig. 6. Once this
is done, the construction of [5] can take over
and assemble the entire scaled shape Sc . The
portion of the construction of [5] that achieves
this is a constant-size tile set, so combined with
the presented construction remains constant. This
solves Problem 4.

Finally, Problems 5 and 6 have solutions due
to Chandran, Gopalkrishnan, and Reif [2], which
we now explain intuitively (the actual analysis
is a bit trickier but is close to the following
intuitive argument). Figure 7 shows an example
of a solution to Problem 5 for the case of expected
length n D 92. Each TiB tile type has an east
glue, gi , that matches two tile types T.i�1/A

and R.i�1/A. There are O.logn/ “stages” (five
stages in this case). Each stage has probability
1
2

to either decrement the stage or reset back to
the highest stage. The number n is programmed
into the system by choosing each stage to have
either 1 or 2 tiles. Given that we are in stage
i , to make it from stage i to stage 1 without
resetting means that i consecutive unbiased coin
flips must come up “heads,” which we expect
to take 2i flips before happening. Thus we ex-
pect stage i to appear 2i times; this means that
stage i ’s expected contribution to the total length
is either 2i or 2 � 2i , depending on whether
it has 1 or 2 tiles. The reason this works to
encode arbitrary natural numbers n is that ev-
ery natural number can be expressed as n DP�log n

iD0 bi2
i , where bi 2 f1; 2g. Since there are

a constant number of tile types per stage, this
implies that the number of tile types required is
O.logn/.

This solves Problem 5. To solve Problem 6, it
suffices to concatenate k independent assemblies
of the kind shown in Fig. 7, where k is a constant
that, if chosen sufficiently large based on ı (the
desired error probability), solves Problem 6 since
it increases the number of tile types required. In
addition to proving that this works, Chandran,
Gopalkrishnan, and Reif [2] also show a more
complex construction with even sharper bounds
on the probability that the length differs very
much from its expected value.

Open Problems

The construction resolving Problem 3 shows that
for every ı; � > 0, a tile set exists such that, for
every n 2 N, appropriately programming the tile
concentrations results in the self-assembly of a
structure of size O.n�/ 
 O.logn/ whose right-
most tiles represent the value nwith probability at
least 1�ı. (In the tile system described, � D 2=3,
and it could be made arbitrarily close to 0 by
estimating more than 3 numbers at once.) Is this
optimal?

Formally, say that a tile assembly system T D
.T; �; 2/ is ı-concentration programmable (for
ı > 0) if there is a (total) computable function
r W A�ŒT � ! N (the representation func-
tion) such that, for each n 2 N, there is a
tile concentration assignment � W T ! Œ0;1/
such that PrŒr.T .�// D n� � 1 � ı. In other
words, T , programmed with concentrations �,
almost certainly self-assembles a structure that
“represents” n, according to the representation
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function r , and such a � can be found to create
a high-probability representation of any natural
number.

Question 1 Is the following statement true? For
each ı > 0, there is a tile assembly system T and
a representation function r W A�ŒT � ! N such
that T is ı-concentration programmable and, for
each � > 0 and all but finitely many n 2 N,
PrŒjdom T .�/j < n� � � 1 � ı. If so, what is the
smallest bound that can be written in place of n�?
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Problem Definition

Generally speaking, data structures come in two
types: those that represent data and those that
allow efficient searching. The collection of results
in the area of range searching belongs to the latter
type. We distinguish two computation phases:
during the preprocessing phase, data is stored in
some suitable structure, so that during the query
phase, all data that lies inside a query range can
be found and reported efficiently.

In the most basic form of range searching,
the data consists of points in a one-, two-, or
higher-dimensional space, and the query range
is a simple shape like a rectangle, triangle, or
circle. Even for this basic form, there are many
different data structures and corresponding query
algorithms.

Problem 1 (Range Searching)

INPUT: Set P of n points in R
d .

OUTPUT: Description of a data structure
storing P and query algorithm that will
report, for any given query d -rectangle (d -
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simplex, d -sphere) q, all points of P that lie
inside q.

P
q

When the data is not a set of points but
a set of more complex objects, such as line
segments, triangles, circles, or other geometric
shapes, we may not be interested in only the
objects that lie completely within a query
range but also all objects that intersect the
range.

Problem 1 (Intersection Searching)

INPUT: Set S of n non-crossing line segments in
R

2 (triangles in R
3).

OUTPUT: Description of a data structure stor-
ing S and query algorithm that will report,
for any given query line segment q, all line
segments (triangles) of S that intersect q.

q

S

For both range searching and intersection
searching, we may be interested in different types
of queries. In a counting query, we report the
number of objects in P or S that lie in the range
or intersect the query object. A reporting query
must spend time at least linear in the number
of objects reported, whereas a counting query
returns a single value. Usually, small variations

of a data structure for reporting can be used for
the counting version.

Ray shooting is closely related to intersection
searching. We are not interested in all objects
intersected by a line segment but only the first
along a directed ray.

Problem 2 (Ray Shooting)

INPUT: Set S of n non-crossing line segments in
R

2 (triangles in R
3).

OUTPUT: Description of a data structure stor-
ing S and query algorithm that will report,
for any given query point q and direction in
R

2 (R3), the first line segment (triangle) of
S that is reached when q moves in the query
direction.

S

q

A combination of a data structure and a query
algorithm forms a solution to a range-searching
problem. The most important aspects of effi-
ciency are the storage requirements of the data
structure and the query time. Sometimes, prepro-
cessing time and update time are also important.
If the data structure is so large that it must be
stored on background storage, I/O complexity
becomes relevant.

We can distinguish solutions with guaranteed
efficiency and heuristics. The heuristic solutions
used in practice nearly always have linear size but
often have no guaranteed worst-case query time
bounds. For example, R-trees [14] are among the
most used data structures for range searching in
practice.

One of the most interesting practical
approaches for range searching with provable
bounds is approximate range searching.
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Problem 3 (Approximate Range Searching)

INPUT: Set P of n points in R
d .

OUTPUT: Description of a data structure stor-
ingP and query algorithm that will report, for
any given query d -polyhedron q of constant
complexity, all points of P that lie inside q,
possibly but not necessarily some points that
lie within distance " from q, and no points that
lie farther than " from q.

Pq

e

In this entry we concentrate on algorithmic
results that have provable worst-case bounds for
both the storage requirements and the query time.

Key Results

Orthogonal Range Searching
Range searching in one dimension is just search-
ing in a sorted sequence of values. Standard
binary search trees for one-dimensional searching
can be extended in several ways to allow rect-
angular range-searching queries. For example, a
kd-tree [4] is a balanced binary tree on a set of
points in R

d that splits the point set on different
coordinates in different nodes: the root splits on
x1-coordinate, its two children on x2-coordinate,
their four children on x3-coordinate, and so on;
after the splitting on the xd -coordinate, the tree
starts over by splitting on x1-coordinate again. As
soon as there is a single point left, it is stored in a
leaf.

An (orthogonal) range tree [5, 10, 15] uses
associated structures, a technique that has proved
to be very powerful for solving various kinds
of query problems. It refers to the fact that the
structure has a main tree, and each internal node

� of the tree stores – besides two pointers to
children – an extra pointer to a different data
structure. Suppose that in the main tree, node �
is root of a subtree storing a subset S
 of the
whole set S . Then the associated structure of �
also stores S
 , but in a different manner.

A range tree for a set S of points in d -space
consists of a main tree that is a balanced binary
search tree on xd -coordinate. The leaves of the
main tree store the points of S sorted on xd -
coordinate in the leaves. If d > 1, then each
internal node � stores a pointer to a .d � 1/-
dimensional range tree that stores S
 restricted to
their first d � 1 coordinates.

The performance of kd-trees and range trees
is given in Table 1. To achieve the stated query
time for range trees, an additional technique
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called fractional cascading is needed [7]. The
table also shows that in special cases, like 2-
dimensional range queries in which one side
of the query rectangle is unbounded (a 3-sided
range), better results can be obtained using
priority search trees. Other small improvements
can be obtained, also depending on the machine
model.

Simplex Range Searching
The range-searching problem with d -simplices is
considerably harder than when the query shape
is an axis-aligned d -box. There are two types
of solutions: solutions with near-linear-size data
structures and solutions with near-logarithmic
query time. The results for d -simplex and d -half-
space searching are given in Table 2.

Between the extremes of space-efficient data
structures and query-efficient data structures,
many other results “in between” can be obtained.
For example, if for a problem in the plane
one knows that a linear number of triangle
range queries are needed, then one can use a
data structure of size O.n4=3/ and query time
close to O.n1=3 C k/, because this balances
the preprocessing time (roughly the same as
the size) and total query time (without the
time for reporting) to something close to
O.n4=3/.

ΞH

A .1=r/-cutting of a set H of hyperplanes is
a set � of (relatively open) disjoint simplices
covering R

d so that each simplex intersects at

most n=r hyperplanes of H. Cutting trees are
based on this concept. We state the main result on
cuttings as a theorem, because it has implications
to multidimensional divide-and-conquer schemes
as well.

Theorem 1 ([6]) Let H be a set of n hyper-
planes and r � n a parameter. Set k D dlog2 re.
There exist k cuttings �1; : : : ; �k so that
�i is a .1=2i/-cutting of size O.2id /, each
simplex of �i is contained in a simplex of
�i�1, and each simplex of �i�1 contains a
constant number of simplices of �i . More-
over, �1; : : : ; �k can be computed in time
O.nrd�1/.

Data structures for range searching with
curved boundaries can be obtained by lineariza-
tion techniques. For example, range searching
with a d -ball can be done by mapping each
point .x1; : : : ; xd / from the set to a point
.x1; : : : ; xd ; x

2
1 C � � �C x2

d
/ in R

dC1 and storing
these points in a .d C 1/-dimensional half-
space range query structure. A d -ball with center
.b1; : : : ; bd / and radius r is mapped to the half-
space xdC1 � b1.2x1 � b1/ C � � � C bd .2xd �
bd / C r2, and now the mapped points inside
the mapped half-space correspond exactly to the
original points inside the d -ball.

Intersection searching and ray shooting data
structures are often based on the technique of as-
sociated structures mentioned before. Depending
on the type of stored objects and the type of query
objects (or query rays), different main trees and
associated structures are combined into efficient
solutions.

Approximate Range Searching
Many of the given data structures are not very
useful in practice, especially in higher dimen-
sions. One of the more interesting approaches to-
ward a practical data structure for range searching
that has performance guarantees is the approxi-
mate approach. The idea is that the query range is
considered a shape with an inner boundary and a
buffer zone around it. All points inside the inner
boundary must be reported, all points outside the
inner boundary but inside the buffer zone may
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RangeSearching, Table 1 Results on orthogonal range searching. n is the number of points stored and k is the number
of points reported

Query range Storage Query time Reference

d -box O.n/ O.n1�
1
d C k/ kd-tree [4]

d -box O.n logd�1 n/ O.logd�1 nC k/ Range tree [10]

3-sided rectangle O.n/ O.log nC k/ Priority search tree [13]

Range Searching, Table 2 Results on simplex and half-space range searching. n is the number of points stored, k is
the number of points reported, c is some constant, and " > 0 is an arbitrarily small constant

Query range Storage Query time Reference

d -simplex O.n/ O.n1�
1
d C k/ Partition trees [11]

d -simplex O.ndC"/ O.log nC k/ Cutting trees [8]

d -half-space O.n log log n/ O.n1�
1

bd=2c logc nC k/ [12]

d -half-space O.nbd=2c logc n/ O.log nC k/ [2, 12]

but need not be reported, and all points outside
the buffer zone may not be reported. A query
will specify the inner boundary and a distance to
the inner boundary that is the width of the buffer
zone.

Assuming that the inner boundary has constant
complexity and the buffer zone has width " � D,
where D is the diameter of the inner boundary
(" is any positive constant), an approximate range
query can be answered in O.lognC 1="d / time,
where d is the dimension of the space [3]. When
the inner boundary is convex, the query time can
be improved slightly.
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Problem Definition

Given a static bit string b D b1 : : : bm, the
objective is to preprocess b and to create a space-
efficient data structure that supports the following
operations rapidly:

rank1 .i/ takes an index i as input, 1 � i � m,
and returns the number of 1s among b1 : : : bi .

select1 .i/ takes an index i � 1 as input and
returns the position of the i -th 1 in b, and �1
if i is greater than the number of 1s in b.

A data structure that supports the operations
above will be called a bit vector. The operations
rank0 and select0 are defined analogously for
the 0s in b. As rank0.i/ D i � rank1.i/, one
considers just rank1 (abbreviated to rank) and
refers to select0 and select1 collectively as
select. In what follows, jxj denotes the length
of a bit string x and w.x/ denotes the number of
1s in it. b is always used to denote the input bit
string, m to denote jbj and n to denote w.b/.

Memory UsageModels
In terms of space usage, we aim not only to
store b in the minimum amount of space but
also to minimize any additional space (called the
redundancy) needed to support rank and select.
The notion of redundancy can be formalized in
two different ways.

In the succinct index model (also known as the
systematic model), the bit vector does not have
direct access to b, but can obtain O.logm/ con-
secutive bits of b in O.1/ time. During prepro-
cessing, one can create additional data structures
(called succinct indices) to allow rapid rank and
select queries. Indices allow the representation
of b to be decoupled from the auxiliary data
structure, e.g., b can be stored (in a potentially
highly compressed form) in a data structure such
as that of [6]. The redundancy in the succinct
index model is the space usage of the index.

In the unrestricted model, we give a “space
budget” for storing b, based upon some com-
pressibility measure (the data structure is usually
designed to target a particular measure). We now
give some examples of space budgets:

• The obvious space budget for b is m bits, and
this is used if b is believed to be incompress-
ible.

• Recalling that n D w.b/, we define the
space budget B.m; n/ D dlog2

�
m
n

�e, which is
the information-theoretic minimum number of
bits to store a bit string of length m with n 1s.
Using standard approximations of the factorial
function, one can show [17] that B.m; n/ D
n log2.m=n/ C n log2 e C O.n2=m/. In par-
ticular, if n D o.m/, then B.m; n/ D o.m/.

• Yet another space budget is obtained from
the k-th-order empirical entropy, denoted by
Hk.b/. For any bit string s, define #.s/ as the
number of (possibly overlapping) contiguous
occurrences of the bit string s in b. Then, for
any k � 0,

Hk.b/ D� 1

m

X
s2f0;1gk

�
#.s0/ log2

#.s0/
#.s/

C#.s1/ log2

#.s1/
#.s/

�
(1)
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(take log2.0=0/ D 0 log2 0 D 0 and #.s/ D m
when s is the empty string). Hk.b/ gives the
information content per bit in b, when con-
ditioned upon the previous k bits as context.
The space budget is therefore mHk.b/. Note
that mH0.b/ � B.m; n/, but even H1.b/ can
be much smaller than H0.b/, and in general
HkC1 � Hk . For example, if b D .01/m=2,
then H0.b/ � m but mH1.b/ vanishes.

The redundancy in the unrestricted model is the
difference between the space usage of the data
structure and the space budget.

Models of Computation
Three models of computation are commonly con-
sidered. One is the word RAM model with word
size O.logm/ bits [13]. The other models, which
are particularly useful for proving lower bounds,
are the cell probe and bit probe models. In the cell
probe model, the time complexity of answering
a query is the worst-case number of words of
O.logm/ consecutive bits of the data structure
that are read by the algorithm to answer that
query. All other computation is “free.” The bit
probe model is similar, except that we only count
the number of bits of the data structure that are
read when answering a query. Clearly, O.logm/
bit probes can be more useful than reading O.1/
consecutive words, so O.logm/ bit probes are
more powerful thanO.1/ cell probes. Also,O.1/
cell probes are more powerful than O.1/ time on
the word RAM, since computation on values read
into registers is for free in the cell probe model.
Thus, an O.t/ upper bound in the word RAM is
stronger than O.t/ upper bound in the cell probe
model, which is stronger than an O.t logm/
upper bound in the bit probe model. For lower
bounds, the situation is of course reversed, with
cell probe lower bounds being stronger than
equivalent word RAM lower bounds.

Key Results

Relation to Predecessor Search
Given a static set S � f0; : : : ; m � 1g, jS j D n,
the predecessor search problem is to preprocess

S to answer the query pred.x; S/ D maxfy 2
S jy � xg. The predecessor search can easily be
solved using a bit vector: we simply create a bit
string b that is the characteristic vector of S , and
note that (i) jbj D m, (ii) w.b/ D n D jS j, and
(iii) pred.x; S/ D select1.rank1.x//.

Clearly, if we are interested in highly space-
efficient solutions, space usages of significantly
more than O.n logm/ bits are not of interest,
since any bit string b can be represented as a
set using O.n logm/ bits by enumerating the
positions of its 1s. However, this close connection
of the bit vector problem to the predecessor
search problem means that lower bounds for the
predecessor search problem also apply to the
bit vector problem. In particular, if rank should
take O.1/ time and the space should be at most
O.n logm/ bits, then this is only possible if n D
m=.logm/O.1/ [19]. Since constant-time rank
(and select) is taken by the succinct data struc-
ture community to be a “standard” expectation,
this lower bound means that we only consider
moderately sparse bit strings b in this entry.

Reductions
It has been already noted that rank0 and rank1

reduce to each other and that operations on sets
reduce to select operations on a bit string. Some
other reductions, whereby one can support opera-
tions on b by performing operations on bit strings
derived from b, are:

Theorem 1 (a) rank reduces to select0 on a bit
string c such that jcj D mC n and w.c/ D n.

(b) If b has no consecutive 1s, then select0 on b

can be reduced to rank on a bit string c such
that jcj D m�n and w.c/ is either n�1 or n.

(c) From b, one can derive two-bit string b0 and
b1 such that jb0j D m � n, jb1j D n,
w.b0/;w.b1/ � minfm � n; ng, and select0
and select1 on b can be supported by support-
ing select1 and rank on b0 and b1.

Parts (a) and (b) follow from Elias’s observa-
tions on multiset representations, specialized to
sets. For part (a), create c from b by adding a 0
after every 1. For example, if b D 01100100, then
c D 01010001000. Then, rank1.i/ on b equals
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select0.i/�i on c. For part (b), essentially invert
the mapping of part (a). Part (c) is shown in [3].

Succinct Indices for Bit Vectors
The following is known about the sizes of suc-
cinct indices for bit vectors:

Theorem 2 ([11]) Given a bit string b with
jbj D m, w.b/ D n, and m=n D .logm/O.1/,
there is an index of size

�
O.m0 log.n=m0// if n D !.m0/
O.n.1Cmaxf0; log.m0=n/g// if n D O.m0/ bits;

where m0 D m= logm, that supports rank,
select0, and select1 in O.1/ time. This index
size is optimal for any data structure that makes
O.logm/ bit probes to b.

This result generalizes an earlier result by
Golynski, who showed that the index size must
be �.m log logm= logm/ bits for O.1/ time
operations [9]. The bound of Theorem 2 is
asymptotically the same when n is relatively
close to m, e.g., when n D ˝.m=.logm/1=2/,
but is smaller thereafter, e.g., for n D
�.m=.logm/2/ the index size implied by
Theorem 2 O.m log logm=.logm/2/ bits, which
is a �.logm/ factor better than that given by [9].

Elias [5] previously gave an o.m/-bit index
that supported select in O.logm/ bit probes on
average (where the average was computed across
all select queries). Jacobson [14] gave o.m/-
bit indices that supported rank and select in
O.logm/ bit probes in the worst case. Clark and
Munro [2] gave the first o.m/-bit indices that
support both rank and select inO.1/ time on the
RAM.

Bit Vectors in the Unrestricted Model
In the unrestricted model, the best redundancy,
if one is targeting the B.m; n/ space budget, is
given by the following result due to Pǎtraşcu:

Theorem 3 ([18]) A bit string b with jbj D
m and w.b/ D n can be represented using
B.m; n/ C m=..logm/=t/t C m3=4.logm/O.1/

bits of memory, supporting rank and select1
queries in O.t/ time.

Earlier results, with a significantly higher redun-
dancy, were given by [17, 21]. Thus, for t D

O.1/, the redundancy is m=.logm/O.1/. There is
an almost matching lower bound:

Theorem 4 ([20]) Any representation of a bit
string b with jbj D m and w.b/ D n that answers
rank or select1 queries in O.t/ time on the cell
probe model must use B.m; n/Cm=.logm/t bits
of memory.

The case where we aim for higher-order entropy
appears to be less well studied. The best-known
result is as follows:

Theorem 5 ([10]) A bit string b with jbj D
m can be represented using mHk.b/ C
O.mk= logm/ bits of memory, supporting rank
and select queries in O.1/ time, for any k � 1.

Applications

Bit vectors are fundamental building blocks in
a huge number of space-efficient data structures,
in real-world and theoretical applications such as
XML document representation [1, 4, 7], text re-
trieval [16], bioinformatics [15], and data mining
[22], to name but a few. In the Cross-References,
we list the various succinct data structures that
build on or are related to bit vectors.

Experimental Results

Bit vectors have been extensively experimentally
evaluated. Mature implementations are available
in the libraries SDSL [8] and Succinct [12].
Other libraries of note are Vigna’s Sux4J (http://
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sux.di.unimi.it) and Claude’s libcds (https://
github.com/fclaude/libcds).
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Problem Definition

The query S:ranka.i/ on a sequence S is defined
to return the number of occurrences of the distinct
character a among the first i characters of S ,
and the query S:selecta.j / is defined to return
the position of the j th occurrence of a in S (if
it exists). Since rank and select queries are fun-
damental to the field of succinct and compressed
data structures, researchers have proposed several
data structures that answer them quickly while
using little space. Most of these data structures
also support fast random access to S , and a
few of them support fast insertions and dele-
tions of characters in S . Some of them return
S:ranka.i/ more quickly when the i th character
of S is itself an a; the query is then called partial
rank.

Key Results

While considering how to store trees and graphs
in small space while supporting fast navigation,
Jacobson [16] considered the problem of sup-
porting rank and select on binary sequences. He
showed how to store an n-bit binary sequence
using o.n/ bits in addition to the sequence it-
self, such that we can answer rank and select
using O.logn/ bit probes. Later authors have
considered the problem in the word-RAM model
with ˝.logn/-bit words, in which Jacobson’s
implementation of rank takes O.1/ time; they
showed how to answer also select in this model
in O.1/ time while still using o.n/ extra bits.
Pǎtraşcu [20] showed how we can store an n-
bit binary sequence containing m 1s in a total
of lg

�
n
m

� C O.n= logc n/ bits, where c is any
constant, and still answer rank and select inO.1/
time.

Grossi, Gupta, and Vitter [12] described a
data structure, called a wavelet tree, that uses
rank and select on several binary sequences to
answer access, rank, and select on sequences over
larger alphabets. If S is a sequence of length
n over an alphabet of size � and a wavelet
tree for S is implemented with uncompressed
data structures for rank and select on the binary
sequences, then it takes n log � C o.n log�/ bits
and answers access, rank, and select in O.log �/
time. With instances of Pǎtraşcu’s data structure,
the space becomes nH0.S/ C o.n/ bits, where
H0.S/ is the 0th-order empirical entropy of S .
To simplify, we assume throughout that � D
o.n= logn/.

Ferragina, Manzini, Mäkinen, and Navarro [7]
described a multiary version of the wavelet tree

that uses only O
�

log �
log log n

C 1
�

time for access,

rank, and select, which is O.1/ when � D
lgO.1/ n. Their implementation takes nH0.S/ C
o.n/ bits when � D lgO.1/ n and nH0.S/ C
o.n log�/ bits otherwise. Golynski, Raman, and
Rao [11] reduced the space to nH0.S/Co.n/ bits
in the general case.

Golynski, Munro, and Rao [10] described a
data structure that takes n lg � C o.n lg �/ bits
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and either answers select inO.1/ time and access
and rank in O.log log �/ time, or answers access
in O.1/ time, rank in O.log log.�/ log log log �/
time, and select in O.log log �/ time. If the space
is increased to .1 C �/n lg � bits, where � is
any positive constant, then both access and select
take O.1/ time and rank takes O.log log �/ time.
Golynski [9] showed that the product of the query
times for access and select and the per-character

redundancy in bits must be ˝
�

log2 �
w

�
in general,

where w is the length of a machine word.
Barbay, He, Munro, and Rao [1] described a

data structure that takes nHk.S/ C o.n log �/
bits, where Hk.S/ is the kth-order empirical
entropy of S , and answers access in O.1/ time,
rank inO.log log �.log log log �/2/ time, and se-
lect in O.log log.�/ log log log �/ time. We as-
sume throughout that k D o.log� n/. They also
reduced to nH0.S/Co.n log�/ bits, the space for
the version of Golynski, Munro, and Rao’s data
structure withO.1/-time select andO.log log �/-
time access and rank. Grossi, Orlandi, and Ra-
man [13] reduced the space of the version with
O.1/-time access andO.log log �/-time select to
nHk.S/ C o.n log�/ bits and reduced the time
for rank to O.log log �/.

Barbay, Claude, Gagie, Navarro, and
Nekrich [2] combined multiary wavelet trees
with the versions of Golynski, Munro and, Rao’s
data structure, to obtain a data structure that takes
nH0.S/ C o.n/.H0.S/ C 1/ bits and answers
one of access and select in O.1/ time and the
other in O.log log �/ time, and rank also in
O.log log �/ time. If the space is increased to
.1C �/nH0.S/C o.n/ bits, then both access and
select takeO.1/ time. They partition the alphabet
into sub-alphabets such that all the characters
in each sub-alphabet have roughly the same
frequency, and then store a data structure that
answers access, rank, and select queries on the
subsequence of characters in S from that sub-
alphabet.

Belazzougui and Navarro [3, 4] showed that
any data structure that takes n � wO.1/ space must

use ˝
�

log log �
log w

�
time for rank. They also gave

the following upper bounds:

• We can store S in nH0.S/Co.n/ bits and an-

swer access, rank, and select in O
�

log �
log w C 1

�
time, which is O.1/ when � D lgO.1/ n.

• We can store S in nH0.S/ C o.n/.H0.S/ C
1/ bits and answer access in O.1/ time and
select inO.f .n; �// time or vice versa, where
f .n; �/ is any function in !.1/, and answer

rank in O
�

log log �
log w

�
time.

• We can store S in nHk.S/ C o.n log�/ bits
and answer access in O.1/ time, select in

O.f .n; �// time, and rank in O
�

log log �
log w

�
time in general and in O.f .n; �// time when
� D wO.1/.

These and the other bounds described above are
summarized in Table 1. In another paper [5],
Belazzougui and Navarro showed how we can
add o.n/.H0.S/ C 1/ bits to any of these repre-
sentations and answer partial rank queries in the
same time as access.

Dynamic Sequences
Several authors have described data structures
that store binary sequences in succinct or
compressed space and support fast rank, select,
and update operations, typically insertions and
deletions of bits. In particular, Navarro and
Sadakane [19] described data structures that store
a binary sequence B in jBjH0.B/ C o.jBj/ bits
and support rank, select, insert, and delete in

O
�

log jBj
log log jBj

�
time, which is optimal [8]. These

can be used in wavelet trees to obtain data
structures that support rank and select on dy-
namic sequences over larger alphabets. Navarro
and Sadakane [19] and He and Munro [15]
described data structures that store a sequence
S in nH0.S/ C o.n log�/ bits, where n is the
current length of S , and support access, rank,
and select queries and insertions and deletions

of characters in O
�

log n
log log n

�
log �

log log n
C 1

��
time,

which is O
�

log n
log log n

�
when � D lgO.1/ n.

Navarro and Nekrich [17, 18] recently
described a data structure that stores S in
nH0.S/ C o.n log �/ bits and supports access,
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Rank and Select Operations on Sequences, Table 1
A summary of previous and current upper bounds for rank
and select on a sequence S of length n over an alphabet
of size � D o.n= log n/, with � a positive constant,

k D o.log� n/, and f .n; �/ D !.1/. The bounds in
the second row hold when � D lgO.1/ n and those in the
last row hold when � D wO.1/, with w the word length

Source Space (bits) Access Rank Select

[12] nH0.S/C o.n/ O.log �/ O.log �/ O.log �/

[7] nH0.S/C o.n/ 1 1 1

[7] nH0.S/C o.n log �/ O
�

log �

log log n

�
O
�

log �

log log n

�
O
�

log �

log log n

�
[11] nH0.S/C o.n/ O

�
log �

log log n

�
O
�

log �

log log n

�
O
�

log �

log log n

�
[10] n lg � C o.n log �/ O.log log �/ O.log log �/ 1

[10] n lg � C o.n log �/ 1 O..log log �/1C�/ O.log log �/

[10] .1C �/n lg � 1 O.log log �/ 1

[1] nHk.S/C o.n log �/ 1 O..log log �/1C�/ O..log log �/1C�/

[1] nH0.S/C o.n log �/ O.log log �/ O.log log �/ 1

[13] nHk.S/C o.n log �/ 1 O.log log �/ O.log log �/

[2] nH0.S/C o.n/.H0.S/C 1/ 1 O.log log �/ O.log log �/

[2] nH0.S/C o.n/.H0.S/C 1/ O.log log �/ O.log log �/ 1

[2] .1C �/nH0.S/C o.n/ 1 O.log log �/ 1

[3, 4] nH0.S/C o.n/ O
�

log �

log w C 1
�

O
�

log �

log w C 1
�

O
�

log �

log w C 1
�

[3, 4] nH0.S/C o.n/.H0.S/C 1/ 1 O
�

log log �

log w

�
O.f .n; �//

[3, 4] nH0.S/C o.n/.H0.S/C 1/ O.f .n; �// O
�

log log �

log w

�
1

[3, 4] nHk.S/C o.n log �/ 1 O
�

log log �

log w

�
O.f .n; �//

[3, 4] nHk.S/C o.n log �/ 1 O.f .n; �// O.f .n; �//

rank, select, insert, and delete in O
�

log n
log log n

�
time. This time bound is worst-case for the
queries and amortized for the updates; the update
times can be made worst-case as well at the cost
of increasing the times for rank, insert, and delete

from O
�

log n
log log n

�
to O.logn/. Their structure is

essentially a multiary wavelet tree built using
rank and select data structures for dynamic
sequences over sublogarithmic alphabets, much
like He and Munro’s or Navarro and Sadakane’s,
but they divide those component sequences into
polylogarithmic-sized blocks and augment them
with pointers such that they can ascend and
descend the tree using only the pointers and
rank and select on individual blocks.

Grossi, Raman, Rao, and Venturini [14] later
reduced the time for access to O.1/ while using
nHk.S/ C o.n log �/ bits but at the cost of
being able only to replace characters instead of
inserting and deleting them. The time for rank
and select is the same.

Applications

Jacobson [16] first studied rank and select
for representing unlabeled trees succinctly
and planar graphs almost succinctly, while
supporting fast navigation queries. Since
then, rank and select on binary sequences
have been used in succinct and compressed
representations of several other combinatorial
objects, such as binary relations and general
graphs. Rank and select on sequences over
larger alphabets have been used in succinct
and compressed representations of labeled
trees and permutations and in compressed
full-text indexes such as compressed suffix
arrays. Notice that with a data structure for
rank and select that achieves compression
in terms of 0th-order empirical entropy, we
can build a full-text index that achieves
compression in terms of kth-order empirical
entropy.
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Open Problems

The current main open problems regarding rank
and select on static sequences are to answer
access and select in O.1/ time while storing
S in nH0.S/ C o.n log �/ bits when lg � D
o.w/, to answer select in constant time and ac-
cess in almost constant time while storing S in
nHk.S/ C o.n log �/ bits when k > 0, and to
answer access, rank, and select queries in O.1/
time while storing S in nHk.S/Co.n/ bits when
� D lgO.1/ w.

The current main open problems regarding
rank and select on dynamic sequences are to

achieve O
�

log n
log log n

�
worst-case time for all op-

erations while still using compressed space, to
achieve a similar space bound in terms of Hk.S/

instead of H0.S/ while supporting the same op-
erations, and to support a wider range of updates.

Experimental Results

The most recent experimental results for rank and
select on static sequences are by Barbay et al. [2]
and Claude, Navarro, and Ordóñez [6]. These
results show that rank and select data structures
can be implemented in a time- and space-efficient
way in practice, even when the alphabet size is
large. There are no current experimental results
for rank and select on succinct or compressed
dynamic sequences.

Cross-References

�Compressed Suffix Array
�Compressing and Indexing Structured Text
�Rank and Select Operations on Bit Strings
�Wavelet Trees

Recommended Reading

1. Barbay J, He M, Munro JI, Rao SS (2011) Succinct
indexes for strings, binary relations and multilabeled
trees. ACM Trans Algorithms 7(4):1–27

2. Barbay J, Claude F, Gagie T, Navarro G, Nekrich
Y (2014) Efficient fully-compressed sequence rep-
resentations. Algorithmica 69(1):232–268 [20] was
presented in Philadelphia, USA

3. Belazzougui D, Navarro G (2012) New lower and up-
per bounds for representing sequences. In: Proceed-
ings of the 20th European symposium on algorithms,
Ljubljana, Slovenia, pp 181–192

4. Belazzougui D, Navarro G (2013) New lower and
upper bounds for representing sequences. CoRR
abs/1111.2621v2. To appear in ACM Transactions on
Algorithms

5. Belazzougui D, Navarro G (2014) Alphabet-
independent compressed text indexing. ACM Trans
Algorithms 10(4):1–19

6. Claude F, Navarro G, Ordóñez A (2015) The wavelet
matrix: an efficient wavelet tree for large alphabets.
Inf Syst 47:15–32

7. Ferragina P, Manzini G, Mäkinen V, Navarro G
(2007) Compressed representations of sequences and
full-text indexes. ACM Trans Algorithms 3(2)

8. Fredman ML, Saks ME (1989) The cell probe com-
plexity of dynamic data structures. In: Proceedings of
the 21st symposium on theory of computing, Seattle,
USA pp 345–354

9. Golynski A (2009) Cell probe lower bounds for
succinct data structures. In: Proceedings of the 20th
symposium on discrete algorithms, New York, USA,
pp 625–634

10. Golynski A, Munro JI, Rao SS (2006) Rank/select
operations on large alphabets: a tool for text indexing.
In: Proceedings of the 17th symposium on discrete
algorithms, Miami, USA, pp 368–373

11. Golynski A, Raman R, Rao SS (2008) On the redun-
dancy of succinct data structures. In: Proceedings of
the 11th scandinavian workshop on algorithm theory,
Gothenburg, Sweden, pp 148–159

12. Grossi R, Gupta A, Vitter JS (2003) High-order
entropy-compressed text indexes. In: Proceedings of
the 14th symposium on discrete algorithms, Balti-
more, USA, pp 841–850

13. Grossi R, Orlandi A, Raman R (2010) Optimal trade-
offs for succinct string indexes. In: Proceedings of the
37th international colloquium on automata, languages
and programming, Bordeaux, France, pp 678–689

14. Grossi R, Raman R, Satti SR, Venturini R (2013)
Dynamic compressed strings with random access. In:
Proceedings of the 40th international colloquium on
languages, automata and programming, Riga, Latvia,
pp 504–515

15. He M, Munro JI (2010) Succinct representations of
dynamic strings. In: Proceedings of the 17th sympo-
sium on string processing and information retrieval,
Los Cabos, Mexico, pp 334–346

16. Jacobson G (1989) Space-efficient static trees and
graphs. In: Proceedings of the 30th symposium on
foundations of computer science, Research Triangle
Park, North Carolina, USA, pp 549–554

17. Navarro G, Nekrich Y (2013) Optimal dynamic se-
quence representations. In: Proceedings of the 24th



1780 Ranked Matching

symposium on discrete algorithms, New Orleans,
USA, pp 865–876

18. Navarro G, Nekrich Y (2013) Optimal dynamic se-
quence representations. CoRR abs/1206.6982v2. To
appear in SIAM Journal on Computing

19. Navarro G, Sadakane K (2014) Fully functional static
and dynamic succinct trees. ACM Trans Algorithms
10(3):1–39
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Problem Definition

This problem is concerned with matching a set
of applicants to a set of posts, where each appli-
cant has a preference list, ranking a non-empty
subset of posts in order of preference, possibly
involving ties. Say that a matching M is popular
if there is no matching M0 such that the number
of applicants preferring M0 to M exceeds the
number of applicants preferring M to M0. The
ranked matching problem is to determine if the
given instance admits a popular matching and
if so, to compute one. There are many practical
situations that give rise to such large-scale match-
ing problems involving two sets of participants –
for example, pupils and schools, doctors and
hospitals – where participants of one set express
preferences over the participants of the other set;

an allocation determined by a popular matching
can be regarded as an optimal allocation in these
applications.

Notations and Definitions
An instance of the ranked matching problem is
a bipartite graphG D .A[P; E/ and a partition
E D E1 P[ E2 : : : P[ Er of the edge set. Call the
nodes in A applicants, the nodes in P posts, and
the edges in Ei the edges of rank i. If .a; p/ 2 Ei

and .a; p0/ 2 Ej with i < j , say that a prefers p
to p0. If i D j , say that a is indifferent between p
and p0. An instance is strict if the degree of every
applicant in every Ei is at most one.

A matching M is a set of edges, no two of
which share an endpoint. In a matching M, a node
u 2A [ P is either unmatched, or matched to
some node, denoted by M(u). Say that an appli-
cant a prefers matching M0 to M if (i) a is matched
in M0 and unmatched in M, or (ii) a is matched in
both M0 and M, and a prefersM 0.a/ to M(a).

Definition 1 M0 is more popular than M, denoted
by M 0 �M , if the number of applicants prefer-
ring M0 to M exceeds the number of applicants
preferring M to M0. A matching M is popular if
and only if there is no matching M0 that is more
popular than M.

Figure 1 shows an instance with A D fa1;

a2; a3g, PDfp1; p2; p3g, and each applicant
prefers p1 to p2, and p2 to p3 (assume throughout
that preferences are transitive). Consider the
three symmetrical matchings M1 D f.a1; p1/,
.a2; p2/, .a3; p3/g, M2 D f.a1; p3/, .a2; p1/,
.a3; p2/g and M3 D f.a1; p2/, .a2; p3/,
.a3; p1/g. It is easy to verify that none of
these matchings is popular, since M1 �M2,
M2 �M3, and M3 �M1. In fact, this instance
admits no popular matching – the problem being,
of course, that the more popular than relation is
not acyclic, and so there need not be a maximal
element.

The ranked matching problem is to determine
if a given instance admits a popular matching,
and to find such a matching, if one exists. Popular
matchings may have different sizes, and a largest
such matching may be smaller than a maximum-
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a1 : p1 p2 p3
a2 : p1 p2 p3
a3 : p1 p2 p3

RankedMatching, Fig. 1 An instance for which there is
no popular matching

cardinality matching. The maximum-cardinality
popular matching problem then is to determine if
a given instance admits a popular matching, and
to find a largest such matching, if one exists.

Key Results

First consider strict instances, that is, instances
.A [ P; E/ where there are no ties in the prefer-
ence lists of the applicants. Let n be the number
of vertices and m be the number of edges in G.

Theorem 1 For a strict instanceGD.A [ P;E/,
it is possible to determine in O.mC n/ time if G
admits a popular matching and compute one, if it
exists.

Theorem 2 Find a maximum-cardinality popu-
lar matching of a strict instanceG D .A [ P; E/,
or determine that no such matching exists, in
O.mC n/ time.

Next consider the general problem, where prefer-
ence lists may have ties.

Theorem 3 Find a popular matching of G D
.A [ P; E/, or determine that no such matching
exists, in O.

p
nm/ time.

Theorem 4 Find a maximum-cardinality popu-
lar matching of G D .A [ P; E/, or determine
that no such matching exists, in O.

p
nm/ time.

Techniques
Our results are based on a novel characterization
of popular matchings. For exposition purposes,
create a unique last resort post l(a) for each
applicant a and assign the edge .a; l.a// a rank
higher than any edge incident on a. In this way,

assume that every applicant is matched, since any
unmatched applicant can be allocated to his/her
last resort. From now on then, matchings are
applicant-complete, and the size of a matching
is just the number of applicants not matched to
their last resort. Also assume that instances have
no gaps, i.e., if an applicant has a rank i edge
incident to it then it has edges of all smaller ranks
incident to it. First outline the characterization
in strict instances and then extend it to general
instances.

Strict Instances
For each applicant a, let f(a) denote the most
preferred post on a’s preference list. That is,
.a; f .a// 2 E1. Call any such post p an f-post,
and denote by f(p) the set of applicants a for
which f .a/ D p.

For each applicant a, let s(a) denote the most
preferred non-f-post on a’s preference list; note
that s(a) must exist, due to the introduction of
l(a). Call any such post p an s-post, and remark
that f-posts are disjoint from s-posts.

Using the definitions of f-posts and s-posts,
show three conditions that a popular matching
must satisfy.

Lemma 1 Let M be a popular matching.

1. For every f-post p, (i) p is matched in M, and
(ii) M.p/ 2 f .p/.

2. For every applicant a, M(a) can never be
strictly between f(a) and s(a) on a’s preference
list.

3. For every applicant a, M(a) is never worse
than s(a) on a’s preference list.

It is then shown that these three necessary con-
ditions are also sufficient. This forms the basis
of the following preliminary characterization of
popular matchings.

Lemma 2 A matching M is popular if and only if
(i) every f-post is matched in M, and (ii) for each
applicant a, M.a/ 2 ff .a/; s.a/g.
Given an instance graph G D .A [ P; E/,
define the reduced graph G0 D .A [ P; E 0/
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as the subgraph of G containing two edges for
each applicant a: one to f(a), the other to s(a).
The authors remark that G0 need not admit an
applicant-complete matching, since l(a) is now
isolated whenever s.a/ ¤ l.a/. Lemma 2 shows
that a matching is popular if and only if it belongs
to the graph G0 and it matches every f-post. Recall
that all popular matchings are applicant-complete
through the introduction of last resorts. Hence,
the following characterization is immediate.

Theorem 5 M is a popular matching of G if and
only if (i) every f-post is matched in M, and (ii) M
is an applicant-complete matching of the reduced
graph G0.

The characterization in Theorem 5 immediately
suggests the following algorithm for solving the
popular matching problem. Construct the reduced
graph G0. If G0 does not admit an applicant-
complete matching, then G admits no popular
matching. If G0 admits an applicant-complete
matching M, then modify M so that every f-post
is matched. So for each f-post p that is unmatched
in M, let a be any applicant in f(p); remove the
edge .a;M.a// from M and instead match a to p.
This algorithm can be implemented in O.mC n/
time. This shows Theorem 1.

Now, consider the maximum-cardinality pop-
ular matching problem. Let A1 be the set of all
applicants a with s.a/ D l.a/. Let A1 be the
set of all applicants with s.a/ D l.a/. Our target
matching must satisfy conditions (i) and (ii) of
Theorem 5, and among all such matchings, allo-
cate the fewest A1-applicants to their last resort.
This scheme can be implemented in O.mC n/
time. This proves Theorem 2.

General Instances
For each applicant a, let f(a) denote the set of
first-ranked posts on a’s preference list. Again,
refer to all such posts p as f-posts, and denote by
f(p) the set of applicants a for which p 2 f .a/. It
may no longer be possible to match every f-post p
with an applicant in f(p) (as in Lemma 1), since,
for example, there may now be more f-posts than
applicants. Let M be a popular matching of some
instance graphG D .A [ P; E/. Define the first-

choice graph of G as G1 D .A [ P; E1/, where
E1 is the set of all rank one edges. Next the
authors show the following lemma.

Lemma 3 Let M be a popular matching. Then
M \ E1 is a maximum matching of G1.

Next, work towards a generalized definition of
s(a). Restrict attention to rank-one edges, that is,
to the graph G1 and using M1, partition A [ P
into three disjoint sets. A node v is even (respec-
tively odd) if there is an even (respectively odd)
length alternating path (with respect to M1) from
an unmatched node to v. Similarly, a node v is
unreachable if there is no alternating path (w.r.t.
M1) from an unmatched node to v. Denote by E,
O, and U the sets of even, odd, and unreachable
nodes, respectively. Conclude the following facts
about E, O, and U by using the well-known
Gallai–Edmonds decomposition theorem.

(a) E, O, and U are pairwise disjoint. Every
maximum matching in G1 partitions the
vertex set into the same partition of even,
odd, and unreachable nodes.

(b) In any maximum-cardinality matching
of G1, every node in O is matched with
some node in E, and every node in U
is matched with another node in U. The
size of a maximum-cardinality matching is
jOj C jUj=2.

(c) No maximum-cardinality matching of G1

contains an edge between two nodes in O,
or a node in O and a node in U. And there is
no edge in G1 connecting a node in E with
a node in U.

The above facts motivate the following definition
of s(a): let s(a) be the set of most preferred posts
in a’s preference list that are even in G1 (note that
s.a/ ¤ ;, since l(a) is always even in G1). Recall
that our original definition of s(a) led to parts (2)
and (3) of Lemma 1 which restrict the set of posts
to which an applicant can be matched in a popular
matching. This shows that the generalized defini-
tion leads to analogous results here.

Lemma 4 Let M be a popular matching. Then
for every applicant a, M(a) can never be strictly
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between f(a) and s(a) on a’s preference list and
M(a) can never be worse than s(a) in a’s prefer-
ence list.

The following characterization of popular match-
ings is formed.

Lemma 5 A matching M is popular in G
if and only if (i) M \ E1 is a maximum
matching of G1, and (ii) for each applicant a,
M.a/ 2 f .a/ [ s.a/.
Given an instance graph G D .A [ P; E/, we
define the reduced graph G0 D .A [ P; E 0/ as
the subgraph of G containing edges from each
applicant a to posts in f .a/ [ s.a/. The authors
remark that G0 need not admit an applicant-
complete matching, since l(a) is now isolated
whenever s.a/ ¤ fl.a/g. Lemma 11 tells us that
a matching is popular if and only if it belongs to
the graph G0 and it is a maximum matching on
rank one edges. Recall that all popular matchings
are applicant-complete through the introduction
of last resorts. Hence, the following characteriza-
tion is immediate.

Theorem 6 M is a popular matching of G if and
only if (i) M \E1 is a maximum matching of
G1, and (ii) M is an applicant-complete matching
of G0.

Using the characterization in Theorem 6, the
authors now present an efficient algorithm for
solving the ranked matching problem.

Popular-Matching .G D .A [ P; E//

1. Construct the graph G0 D .A [ P; E 0/,
where E 0Df.a; p/ jp 2f .a/ [ s.a/; a2Ag.

2. Compute a maximum matching M1 on rank
one edges i.e., M1 is a maximum matching in
G1 D .A [ P; E1/.

(M1 is also a matching in G0 because
E 0  E1)

3. Delete all edges in G0 connecting two nodes
in the set O or a node in O with a node in
U, where O and U are the sets of odd and
unreachable nodes of G1 D .A [ P; E1/.

Determine a maximum matching M in the
modified graph G0 by augmenting M1.

4. If M is not applicant-complete, then declare
that there is no popular matching in G. Else
return M.

The matching returned by the algorithm Popular-
Matching is an applicant-complete matching in
G0 and it is a maximum matching on rank one
edges. So the correctness of the algorithm follows
from Theorem 6. It is easy to see that the running
time of this algorithm isO.

p
nm/. The algorithm

of Hopcroft and Karp [7] is uesd to compute
a maximum matching in G1 and identify the set
of edges E0 and construct G0 in O.

p
nm/ time.

Repeatedly augment M1 (by the Hopcroft–Karp
algorithm) to obtain M. This proves Theorem 3.

It is now a simple matter to solve the
maximum-cardinality popular matching problem.
Assume that the instance G D .A [ P; E/
admits a popular matching. (Otherwise, the
process is done.) In order to compute an
applicant-complete matching in G0 that is
a maximum matching on rank one edges and
which maximizes the number of applicants not
matched to their last resort, first compute an
arbitrary popular matching M0 and remove all
edges of the form .a; l.a// from M0 and from
the graph G0. Call the resulting subgraph of G0
as H. Determine a maximum matching N in H
by augmenting M0. N need not be a popular
matching, since it need not be a maximum
matching in the graph G0. However, this is easy
to mend. Determine a maximum matching M
in G0 by augmenting N. It is easy to show that
M is a popular matching which maximizes the
number of applicants not matched to their last
resort. Since the algorithm takes O.

p
nm/ time,

Theorem 4 is shown.

Applications

The bipartite matching problem with a graded
edge set is well-studied in the economics litera-
ture, see for example [1, 10, 12]. It models some
important real-world problems, including the al-
location of graduates to training positions [8],
and families to government-owned housing [11].
The concept of a popular matching was first
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introduced by Gardenfors [5] under the name
majority assignment in the context of the stable
marriage problem [4, 6].

Various other definitions of optimality have
been considered. For example, a matching is
Pareto-optimal [1, 2, 10] if no applicant can
improve his/her allocation (say by exchanging
posts with another applicant) without requiring
some other applicant to be worse off. Stronger
definitions exist: a matching is rank-maximal [9]
if it allocates the maximum number of applicants
to their first choice, and then subject to this, the
maximum number to their second choice, and so
on. A matching is maximum utility if it maxi-
mizes

P
.a;p/2M ua;p, where ua;p is the utility

of allocating post p to applicant a. Neither rank-
maximal nor maximum-utility matchings are nec-
essarily popular.
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Problem Definition

Liu and Layland [11] introduced rate-monotonic
scheduling in the context of the scheduling of
recurrent real-time processes upon a computing
platform comprising a single preemptive
processor.
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The Periodic Task Model
The periodic task abstraction models real-time
processes that make repeated requests for compu-
tation. As defined by Liu and Layland [11], each
periodic task �i is characterized by an ordered
pair of positive real-valued parameters .Ci ; Ti /,
where Ci is the worst-case execution requirement
and Ti the period of the task. The requests for
computation that are made by task �i (subse-
quently referred to as jobs that are generated by
�i ) satisfy the following assumptions:

A1: �i ’s first job arrives at system start time (as-
sumed to equal time zero), and subsequent
jobs arrive every Ti time units, i.e., one job
arrives at time instant k 
 Ti for all integer
k � 0.

A2: Each job needs to execute for at most Ci

time units, i.e., Ci is the maximum amount
of time that a processor would require to
execute each job of �i , without interruption.

A3: Each job of �i must complete before the next
job arrives. That is, each job of task �i must
complete execution by a deadline that is Ti

time units after its arrival time.
A4: Each task is independent of all other tasks –

the execution of any job of task �i is not
contingent on the arrival or completion of
jobs of any other task �j .

A5: A job of �i may be preempted on the pro-
cessor without additional execution cost. In
other words, if a job of �i is currently execut-
ing, then it is permitted that this execution be
halted and a job of a different task �j begins
execution immediately.

A periodic task system �
defD f�1; �2; : : : ; �ng is

a collection of n periodic tasks. The utilization
U.�/ is defined as follows:

U.�/
defD

nX
iD1

Ci=Ti : (1)

Intuitively, this denotes the fraction of time that
may be spent by the processor executing jobs of
tasks in � , in the worst case.

The Rate-monotonic Scheduling
Algorithm
A (uniprocessor) scheduling algorithm de-
termines which task executes on the shared
processor at each time instant. If a scheduling
algorithm is guaranteed to always meet all
deadlines when scheduling a task system � , then
� is said to be schedulable with respect to that
scheduling algorithm.

Many scheduling algorithms work as follows:
at each time instant, they assign a priority to each
job and select for execution the greatest-priority
job with remaining execution. A static -priority
(often called fixed-priority) scheduling algorithm
for scheduling periodic tasks is one in which it is
required that all the jobs of each periodic task be
assigned the same priority.

Liu and Layland [11] proposed the rate-
monotonic (RM) static-priority scheduling
algorithm, which assigns priority to jobs
according to the period parameter of the task that
generates them: the smaller the period, the higher
the priority. Hence, if Ti < Tj for two tasks �i

and �j , then each job of �i has higher priority
than all jobs of �j and hence any executing job
of �j will be preempted by the arrival of one
of �i ’s jobs. Ties may be broken arbitrarily, but
consistently – if Ti D Tj , then either all jobs of
�i are assigned higher priority than all jobs of �j

or all jobs of �j are assigned higher priority than
all jobs of �i .

Key Results

First, key results from the original paper by
Liu and Layland [11] are presented. Following
this, results extending the work of Liu and
Layland [11] are summarized.

Results from [11]

Optimality. Liu and Layland were concerned
with designing “good” static- priority scheduling
algorithms. They defined a notion of optimality
for such algorithms: a static-priority algorithm
A is optimal if any periodic task system that is
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schedulable with respect to some static-priority
algorithm is also schedulable with respect to A.

Liu and Layland obtained the following re-
sult for the rate-monotonic scheduling algorithm
(RM):

Theorem 1 For periodic task systems, RM is an
optimal static-priority scheduling algorithm.

Schedulability testing. A schedulability test for
a particular scheduling algorithm determines, for
any periodic task system � , whether � is schedu-
lable with respect to that scheduling algorithm.
A schedulability test is said to be exact if it is
the case that it correctly identifies all schedulable
task systems and sufficient if it identifies some,
but not necessarily all, schedulable task systems.

In order to derive good schedulability tests
for the rate-monotonic scheduling algorithm, Liu
and Layland considered the concept of response
time. The response time of a job is defined as
the elapsed time between the arrival of a job and
its completion time in a schedule; the response
time of a task is defined to be the largest response
time that may be experienced by one of its jobs.
For static- priority scheduling, Liu and Layland
obtained the following result on the response
time:

Theorem 2 The maximum response time for a
periodic task �i occurs when a job of �i arrives
simultaneously with jobs of all higher-priority
tasks. Such a time instant is known as the critical
instant for task �i .

Observe that the critical instant of the lowest-
priority task in a periodic task system is also a
critical instant for all tasks of higher priority. An
immediate consequence of the previous theorem
is that the response time of each task in the pe-
riodic task system can be obtained by simulating
the scheduling of the periodic task system start-
ing at the critical instant of the lowest-priority
task. If the response time for each task �i ob-
tained from such simulation does not exceed
Ti , then the task system will always meet all
deadlines when scheduled according to the given
priority assignment. This argument immediately
gives rise to a schedulability analysis test [9] for

any static-priority scheduling algorithm. Since
the simulation may need to be carried out until
maxn

iD1fTig, this schedulability test has run-time
pseudo-polynomial in the representation of the
task system:

Theorem 3 (Lehoczky, Sha, and Ding [9]) Ex-
act rate-monotonic schedulability testing of a
periodic task system may be done in time pseudo-
polynomial in the representation in the task sys-
tem.

Liu and Layland also derived a polynomial-
time sufficient (albeit not exact) schedulability
test for RM, based upon the utilization of the task
system:

Theorem 4 Let n denote the number of tasks in
periodic task system � . If U.�/ � n.21=n � 1/,
then � is schedulable with respect to the RM

scheduling algorithm.

Results Since [11]
The utilization-bound sufficient schedulability
test (Theorem 4) was shown to be tight in the
sense that for all n, there are unschedulable
task systems comprising n tasks with utilization
exceeding n.21=n � 1/ by an arbitrarily small
amount. However, tests have been devised that
exploit more knowledge about tasks’ period
parameters. For instance, Kuo and Mok [8]
provide a potentially superior utilization bound
for task systems in which the task period
parameters tend to be harmonically related –
exact multiples of one another. Suppose that
a collection of numbers is said to comprise
a harmonic chain if for every two numbers
in the set, it is the case that one is an exact
multiple of the other. Let Qn denote the minimum
number of harmonic chains into which the
period parameters fTigniD1 of tasks in � may be
partitioned; a sufficient condition for task system
� to be RM schedulable is that

U.�/ � Qn.21=Qn � 1/ :

Since Qn � n for all task systems � , this utilization
bound above is never inferior to the one in Theo-
rem 4 and is superior for all � for which Qn < n.
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A different polynomial-time schedulability
test was proposed by Bini, Buttazzo, and
Buttazzo [4]: they showed that

˘n
iD1..Ci=Ti/C 1/ � 2

is sufficient to guarantee that the periodic task
system f�1; �2; : : : ; �ng is rate-monotonic schedu-
lable. This test is commonly referred to as the
hyperbolic schedulability test for rate-monotonic
schedulability. The hyperbolic test is in general
known to be superior to the utilization-based test
of Theorem 4 – see [4] for details.

Other work done since the seminal paper of
Liu and Layland has focused on relaxing the
assumptions of the periodic task model. The
(implicit-deadline) sporadic task model relaxed
assumption A17 by allowing Ti to be the mini-
mum (rather than exact) separation between ar-
rivals of successive jobs of task �i . It turns out that
the Theorems 1–4 continue to hold for systems of
such tasks as well.

A more general sporadic task model has also
been studied that relaxes assumption A17 in ad-
dition to assumption A17, by allowing for the
explicit specification of a deadline parameter for
each task (which may differ from the task’s pe-
riod). The deadline-monotonic scheduling algo-
rithm [10] generalizes rate-monotonic scheduling
to such task systems.

Work has also been done [2, 12] in removing
the independence assumption of A4, by allowing
for different tasks to use critical sections to access
non-preemptable serially reusable resources.

Applications

The periodic task model has been invaluable
for modeling several different types of systems.
For control systems, the periodic task model is
well suited for modeling the periodic requests
and computations of sensors and actuators.
Multimedia and network applications also
typically involve computation of periodically
arriving packets and data.

Many of the results described in section “Key
Results” above have been integrated into

powerful tools, techniques, and methodologies
for the design and analysis of real-time applica-
tion systems [1, 7]. The general methodology
framework is commonly referred to as the
rate-monotonic analysis (RMA) methodology.
Furthermore, most operating systems pro-
vide standard primitives for supporting rate-
monotonic scheduling.

Open Problems

There are plenty of interesting and challenging
open problems in real-time scheduling theory;
however, most of these are concerned with
extensions to the basic task and scheduling
model considered in the original Liu and Layland
paper [11]. Perhaps the most interesting open
problem with respect to the task model in [11]
is regarding the computational complexity
of schedulability analysis of static-priority
scheduling. Recent research by Eisenbrand and
Rothvoß [5] has shown that determining the
maximum response time of any periodic task
is NP-hard. This result shows that any exact
schedulability test that utilizes response time
cannot run in polynomial time (unless P = NP);
however, it does not settle the open question of
whether there are polynomial-time schedulability
tests for static-priority periodic task systems that
do not (implicitly or explicitly) calculate task
response time.

URLs to Code and Data Sets

Research efforts have been made to develop
a standardized methodology for evaluating
the efficacy and efficiency of algorithms and
analysis proposed for rate-monotonic scheduling
problems. Bini and Buttazzo [3] derived an
unbiased method for synthetically generating
random periodic task systems (http://retis.
sssup.it/~bini/publications/2005BinBut.html).
Additionally, researchers have proposed suites
of benchmarks as representative of embedded
and real-time applications in practice. Notably,
the Mälardalen WCET benchmarks [6] (http://
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www.mrtc.mdh.se/projects/wcet/benchmarks.
html) maintain a collection of programs that
are typical for real-time applications.
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Problem Definition

Given a set of n points in a plane, a spanning tree
is a set of edges that connects all the points and
contains no cycles. When each edge is weighted
using some distance metric of the incident points,
the metric minimum spanning tree is a tree whose
sum of edge weights is minimum. If the Eu-
clidean distance .L2/ is used, it is called the Eu-
clidean minimum spanning tree; if the rectilinear
distance .L1/ is used, it is called the rectilinear
minimum spanning tree.

Since the minimum spanning tree problem
on a weighted graph is well studied, the usual
approach for metric minimum spanning tree is to
first define a weighted graph on the set of points
and then to construct a spanning tree on it.

Much like a connection graph is defined for
the maze search [4], a spanning graph can be
defined for the minimum spanning tree construc-
tion.
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Definition 1 Given a set of points V in a plane,
an undirected graph G D .V;E/ is called a
spanning graph if it contains a minimum span-
ning tree of V in the plane.

Since spanning graphs with fewer edges give
more efficient minimum spanning tree construc-
tion, the cardinality of a spanning graph is de-
fined as its number of edges. It is easy to see
that a complete graph on a set of points contains
all spanning trees, thus is a spanning graph.
However, such a graph has a cardinality ofO.n2/.
A rectilinear spanning graph of cardinality O.n/
can be constructed withinO.n log n/ time [6] and
will be described here.

Minimum spanning tree algorithms usually
use two properties to infer the inclusion and
exclusion of edges in a minimum spanning tree.
The first property is known as the cut property.
It states that an edge of smallest weight crossing
any partition of the vertex set into two parts
belongs to a minimum spanning tree. The second
property is known as the cycle property. It says
that an edge with largest weight in any cycle
in the graph can be safely deleted. Since the
two properties are stated in connection with the
construction of a minimum spanning tree, they
are useful for a spanning graph.

Key Results

Using the terminology given in [3], the unique-
ness property is defined as follows.

Definition 2 Given a point s, a region R has the
uniqueness property with respect to s if for every
pair of points p, q 2 R, jjpqjj < max.jjspjj ,
jjsqjj). A partition of space into a finite set of
disjoint regions is said to have the uniqueness
property with respect to s if each of its regions
has the uniqueness property with respect to s.

The notation jjspjj is used to represent the
distance between s and p under the L1 metric.
Define the octal partition of the plane with re-
spect to s as the partition induced by the two
rectilinear lines and the two 45ı lines through s,
as shown in Fig. 1a. Here, each of the regionsR1

throughR8 includes only one of its two bounding
half lines as shown in Fig. 1b. It can be shown that
the octal partition has the uniqueness property.

Lemma 1 Given a point s in the plane, the octal
partition with respect to s has the uniqueness
property.

Proof To show a partition has the uniqueness
property, it needs to prove that each region of the
partition has the uniqueness property. Since the
regions R1 through R8 are similar to each other,
a proof for R1 will be sufficient.

The points in R1 can be characterized by the
following inequalities:

x � xs ;

x � y < xs � ys :

Suppose there are two points p and q in R1.
Without loss of generality, it can be assumed
xp � xq . If yp � yq , then jjsqjj D jjspjj C

Rectilinear Spanning
Tree, Fig. 1 Octal
partition and the
uniqueness property R8 R1

R7 R2

p

a b

q

S

R6 R3

R5 R4

S
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jjpqjj > jjpqjj. Therefore it only needs to
consider the case when yp > yq . In this case,

kpgk D jxp � xqj C jyp � ypj
D xq � xp C yp � yq

D .xq � yq/C yp � xp

< .xs � ys/C yp � xs

D yp � ys

� xp � xs C yp � ys

D kspk:

Given two points p, q in the same octal region
of point s, the uniqueness property says that
jjpqjj < max.jjspjj, jjsqjj). Consider the cycle
on points s, p, and q. Based on the cycle property,
only one point with the minimum distance from
s needs to be connected to s. An interesting
property of the octal partition is that the contour
of equidistant points from s forms a line segment
in each region. In regions R1, R2, R5, and R6,
these segments are captured by an equation of the
form x C y D c; in regions R3, R4, R7, and R8,
they are described by the form x � y D c.

From each point s, the closest neighbor in each
octant needs to be found. It will be described how
to efficiently compute the neighbors in R1 for all
points. The case for other octant is symmetric.
For theR1 octant, a sweep line algorithm will run
on all points according to nondecreasing x C y.
During the sweep, maintained will be an active
set consisting of points whose nearest neighbors
in R1 are yet to be discovered. When a point p
is processed, all points in the active set that have
p in their R1 regions will be found. If s is such a
point in the active set, since points are scanned in
nondecreasing x C y, then p must be the nearest
point in R1 for s. Therefore, the edge sp will
be added and s will be deleted from the active
set. After processing those active points, the point
p will be added into the active set. Each point
will be added and deleted at most once from the
active set.

A fundamental operation in the sweep line
algorithm is to find a subset of active points

such that a given point p is in their R1 regions.
Based on the observation that point p is in the
R1 region of point s if and only if s is in the
R5 region of p, it needs to find the subset of
active points in the R5 region of p. Since R5

can be represented as a two-dimensional range
.�1; xp� 
 .xp � yp;C1/ on .x; x � y/, a
priority search tree [1] can be used to maintain the
active point set. Since each of the insertion and
deletion operations takes O.logn/ time, and the
query operation takes O.logn C k/ time where
k is the number of objects within the range, the
total time for the sweep isO.n logn/. Since other
regions can be processed in the similar way as in
R1, the algorithm is running in O.n logn/ time.
Priority search tree is a data structure that relies
on maintaining a balanced structure for the fast
query time. This works well for static input sets.
When the input set is dynamic, rebalancing the
tree can be quite challenging. Fortunately, the
active set has a structure that can be explored
for an alternate representation. Since a point is
deleted from the active set if a point in its R1

region is found, no point in the active set can be
in the R1 region of another point in the set.

Lemma 2 For any two points p, q in the active
set, it must be xp ¤ xq , and if xp < xq , then
xp � yp � xq � yq .

Based on this property, the active set can be
ordered in increasing order of x. This implies a
nondecreasing order on x � y. Given a point s,
the points which have s in their R1 region must
obey the following inequalities:

x � xs ;

x � y > xs � ys :

To find the subset of active points which have
s in their R1 regions, it can first find the largest x
such that x � xs and then proceed in decreasing
order of x until x � y � xs � ys . Since the
ordering is kept on only one dimension, using
any binary search tree with O.logn/ insertion,
deletion, and query time will also give us an
O.n logn/ time algorithm. Binary search trees
also need to be balanced. An alternative is to use
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skip lists [2] which use randomization to avoid
the problem of explicit balancing but provide
O.logn/ expected behavior.

A careful study also shows that after the sweep
process for R1, there is no need to do the sweep
for R5, since all edges needed in that phase
are either connected or implied. Moreover, based
on the information in R5, the number of edge
connections can be further reduced. When the
sweep step processes point s, it finds a subset of
active points which have s in their R1 regions.
Without lost of generality, suppose p and q are
two of them. Then p and q are in the R5 region
of s, which means jjpqjj < max.jjspjj , jjsqjj).
Therefore, it needs only to connect s with the
nearest active point.

Since R1 and R2 have the same sweep se-
quence, they can be processed together in one
pass. Similarly, R3 and R4 can be processed
together in another pass. Based on the above
discussion, the pseudo-code of the algorithm is
presented in Fig. 2.

The correctness of the algorithm is stated in
the following theorem.

Theorem 1 Given n points in the plane, the
rectilinear spanning graph algorithm constructs
a spanning graph in O.n logn/ time, and the
number of edges in the graph is O.n/.

Proof The algorithm can be considered as delet-
ing edges from the complete graph. As described,
all deleted edges are redundant based on the cycle
property. Thus, the output graph of the algorithm
will contain at least one rectilinear minimum
spanning tree.

In the algorithm, each given point will be
inserted and deleted at most once from the active
set for each of the four regions R1 through R4.
For each insertion or deletion, the algorithm re-
quiresO.logn/ time. Thus, the total time is upper
bounded by O.n logn/. The storage is needed
only for active sets, which is at most O.n/.

Applications

Rectilinear minimum spanning tree problem has
wide applications in VLSI CAD. It is frequently
used as a metric of wire length estimation during
placement. It is often constructed to approximate
a minimum Steiner tree and is also a key step
in many Steiner tree heuristics. It is also used
in an approximation to the traveling salesperson
problem which can be used to generate scan
chains in testing. It is important to emphasize that
for real- world applications, the input sizes are
usually very large. Since it is a problem that will
be computed hundreds of thousands times and
many of them will have very large input sizes, the
rectilinear minimum spanning tree problem needs
a very efficient algorithm.

Experimental Results

The experimental results using the rectilinear
spanning graph (RSG) followed by Kruskal’s al-
gorithm for a rectilinear minimum spanning tree
were reported in Zhou et al. [5]. Two other ap-
proaches were compared. The first approach used

Rectilinear Spanning
Tree, Fig. 2 The
rectilinear spanning graph
algorithm

Rectilinear Spanning Graph Algorithm
for  (i  = 0; i < 2; i + +)  {
      if  (i == 0) sort points according to x + y;
      else sort points according to x − y;
      A[1] =  A[2] = ∅;
      for each point p in the order {
             find points in A[1], A[2] such that p is in their 
                  R2i+1 and R2i+2 regions, respectively;
             connect p with the nearest point in each subset;
             delete the subsets from A[1], A[2], respectively;
             add p to A[1], A[2]; 
       } 
}
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Rectilinear Spanning Tree, Table 1 Experimental results

Input Complete Bound degree RSG

Orig Distinct #edge Time #edge Time #edge Time

1;000 999 498;501 5.095 s 3;878 0.299 s 2;571 0.112 s

2;000 1;996 1;991;010 24.096 s 7;825 0.996 s 5;158 0.218 s

4;000 3;995 7;978;015 2 min 7.233 s 15;761 3.452 s 10;416 0.337 s

6;000 5;991 17;943;045 5 min 54.697 s 23;704 7.515 s 15;730 0.503 s

8;000 7;981 31;844;190 13 min 7.682 s 31;624 13.141 s 21;149 0.672 s

10;000 9;962 49;615;741 – 39;510 20.135 s 26;332 0.934 s

12;000 11;948 – – 47;424 32.300 s 31;586 1.052 s

14;000 13;914 – – 55;251 46.842 s 36;853 1.322 s

16;000 15;883 – – 63;089 1 min 3.759 s 42;251 1.486 s

18;000 17;837 – – 70;876 1 min 19.812 s 47;511 1.701 s

20;000 19;805 – – 78;723 1 min 45.792 s 52;732 1.907 s

the complete graph on the point set as the input
to Kruskal’s algorithm. The second approach is
an implementation of concepts described in [3];
namely, for each point, scan all other points but
only connect the nearest one in each quadrant
region. With sizes ranging from 1,000 to 20,000,
randomly generated point sets were used in the
experiments. The results are reproduced here in
Table 1. The first column gives the number of
generated points; the second column gives the
number of distinct points. For each approach, the
number of edges in the given graph and the total
running time are reported. For input size larger
than 10,000, the complete graph approach simply
runs out of memory.
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Problem Definition

Given n points on a plane, a Steiner minimal tree
connects these points through some extra points
(called Steiner points) to achieve a minimal total
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length. When the length between two points is
measured by the rectilinear distance, the tree is
called a rectilinear Steiner minimal tree.

Because of its importance, there is much pre-
vious work to solve the SMT problem. These
algorithms can be grouped into two classes: exact
algorithms and heuristic algorithms. Since SMT
is NP-hard, any exact algorithm is expected to
have an exponential worst-case running time.
However, two prominent achievements must be
noted in this direction. One is the GeoSteiner
algorithm and implementation by Warme, Winter,
and Zacharisen [14, 15], which is the current
fastest exact solution to the problem. The other
is a Polynomial Time Approximation Scheme
(PTAS) by Arora [1], which is mainly of theo-
retical importance. Since exact algorithms have
long running time, especially on large input sizes,
much more previous efforts were put on heuristic
algorithms. Many of them generate a Steiner
tree by improving on a minimal spanning tree
topology [7], since it was proved that a mini-
mal spanning tree is a 3/2 approximation of a
SMT [8]. However, since the backbones are re-
stricted to the minimal spanning tree topology in
these approaches, there is a reported limit on the
improvement ratios over the minimal spanning
trees. The iterated 1-Steiner algorithm by Kahng
and Robins [10] is an early approach to deviate
from that restriction, and an improved implemen-
tation [6] is a champion among such programs
in public domain. However, the implementation
in [10] has a running time of O.n4 logn/, and
the implementation in [6] has a running time
of O.n3/. A much more efficient approach was
later proposed by Borah et al. [2]. In their ap-
proach, a spanning tree is iteratively improved
by connecting a point to an edge and deleting
the longest edge on the created circuit. Their
algorithm and implementation had a worst-case
running time of �.n2/, even though an alter-
native O.n logn/ implementation was also pro-
posed. Since the backbone is no longer restricted
to the minimal spanning tree topology, its perfor-
mance was reported to be similar to the iterated
1-Steiner algorithm [2]. A recent effort in this
direction is a new heuristic by Mandoiu et al.
[11] which is based on a 3/2 approximation al-

gorithm of the metric Steiner tree problem on
quasi-bipartite graphs [12]. It performs slightly
better than the iterated 1-Steiner algorithm, but
its running time is also slightly longer than the
iterated 1-Steiner algorithm (with the empty rect-
angle test [11] used). More recently, Chu [3] and
Chu and Wong [4] proposed an efficient lookup
table- based approach for rectilinear Steiner tree
construction.

Key Results

The presented algorithm is based on the edge
substitution heuristic of Borah et al. [2]. The
heuristic works as follows. It starts with a min-
imal spanning tree and then iteratively considers
connecting a point (e.g., p in Fig. 1) to a nearby
edge (e.g., (a, b)) and deleting the longest edge
((b, c)) on the circuit thus formed. The algorithm
employs the spanning graph [17] as a backbone
of the computation: it is first used to generate the
initial minimal spanning tree and then to gener-
ate point-edge pairs for tree improvements. This
kind of unification happens also in the spanning
tree computation and the longest edge compu-
tation for each point-edge pair: using Kruskal’s
algorithm with disjoint set operations (instead
of Prim’s algorithm) [5] will unify these two
computations.

In order to reduce the number of point-edge
pair candidates fromO.n2/ to O.n/, Borah et al.
suggested to use the visibility of a point from an
edge, that is, only a point visible from an edge
can be considered to connect to that edge. This
requires a sweep line algorithm to find visibility
relations between points and edges. In order to
skip this complex step, the geometrical proximity
information embedded within the spanning graph
is leveraged. Since a point has eight nearest points
connected around it, it is observed that if a point
is visible to an edge, then the point is usually con-
nected in the graph to at least one end point. In the
algorithm, the spanning graph is used to generate
point-edge pair candidates. For each edge in the
current tree, all points that are neighbors of either
of the end points will be considered to form point-
edge pairs with the edge. Since the cardinality
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Rectilinear Steiner Tree,
Fig. 1 Edge substitution
by Borah et al.
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of the spanning graph is O.n/, the number of
possible point-edge pairs generated in this way
is also O.n/.

When connecting a point to an edge, the
longest edge on the formed circuit needs to
be deleted. In order to find the corresponding
longest edge for each point-edge pair efficiently,
it explores how the spanning tree is formed
through Kruskal’s algorithm. This algorithm
first sorts the edges into nondecreasing lengths,
and each edge is considered in turn. If the end
points of the edge have been connected, then the
edge will be excluded from the spanning tree;
otherwise, it will be included. The structure of
these connecting operations can be represented
by a binary tree, where the leaves represent the
points and the internal nodes represent the edges.
When an edge is included in the spanning tree,
a node is created representing the edge and has
as its two children the trees representing the two
components connected by this edge. To illustrate
this, a spanning tree with its representing binary
tree is shown in Fig. 2. As can be seen, the longest
edge between two points is the least common

ancestor of the two points in the binary tree.
For example, the longest edge between p and
b in Fig. 2 is (b, c), which is the least common
ancestor of p and b in the binary tree. To find the
longest edge on the circuit formed by connecting
a point to an edge, it needs to find the longest
edge between the point and one end point of
the edge that are in the same component before
connecting the edge. For example, consider the
pair p and (a, b); since p and b are in the same
component before connecting (a, b), the edge
that needs to be deleted is the longest between p
and b.

Based on the above discussion, the pseudo-
code of the algorithm can be described in Fig. 3.
At the beginning of the algorithm, Zhou et al.’s
rectilinear spanning graph algorithm [17] is used
to generate the spanning graph G for the given
set of points. Then, Kruskal’s algorithm is used
on the graph to generate a minimal spanning tree.
The data structure of disjoint sets [5] is used to
merge components and check whether two points
are in the same component (the first for loop).
During this process, the merging binary tree and
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Rectilinear Steiner Tree,
Fig. 3 The rectilinear
Steiner tree algorithm

Rectilinear Steiner Tree (RST) Algorithm

T  =  ∅; 

Generate the spanning graph G by RSG algorithm;

for (each edge (u, n) ∈ G in non-decreasing length) { 

      s1 = find_set(u); s2 = find_set(n);

      if (s1 ! = s2) {

           add (u, n) in tree T;

           for (each neighbor w of u, n in G)

  if (s1 == find_set(w))

          lca_add_query(w, n, (u, n));

  else lca_add_query(w, n, (u, n));

           lca_tree_edge((u, n), s1.edge);

           lca_tree_edge((u, n), s2.edge);

           s = union_set(s1, s2); s.edge = (u, n) ;

      }

}

generate point-edge pairs by lca_answer_queries;

for (each pair (p, (a, b), (c, d)) in non-increasing positive gains)

      if ((a, b), (c, d) has not been deleted from T) {

           connect p to (a, b) by adding three edges to T;

           delete (a, b), (c, d) from T;

      }

the queries for least common ancestors of all
point-edge pairs are also generated. Here, s, s1,
and s2 represent disjoint sets, and each records
the root of the component in the merging binary
tree. For each edge (u, v) adding to T , each
neighbor w of either u or v will be considered to
connect to (u, v). The longest edge for this pair
is the least common ancestor of w, u or w, v de-
pending on which point is in the same component
as w. The procedure lca_add_query is used to
add this query. Connecting the two components
by (u, v) will also be recorded in the merging
binary tree by the procedure lca_tree_edge. After
generating the minimal spanning tree, it also has
the corresponding merging binary tree and the
least common ancestor queries ready. Using Tar-
jan’s off-line least common ancestor algorithm
[5] (represented by lca_answer_queries), it can
generate all longest edges for the pairs. With
the longest edge for each point-edge pair, the
gain of connecting the point to the edge can

be calculated. Then, each of the point to edge
connections will be realized in a nonincreasing
order of their gains. A connection can only be
realized if both the connection edge and deletion
edge have not been deleted yet.

The running time of the algorithm is domi-
nated by the spanning graph generation and edge
sorting, which take O.n logn/ time. Since the
number of edges in the spanning graph is O.n/,
both Kruskal’s algorithm and Tarjan’s off-line
least common ancestor algorithm take O.n˛.n//
time, where ˛.n/ is the inverse of Ackermann’s
function, which grows extremely slow.

Applications

The Steiner minimal tree (SMT) problem has
wide applications in VLSI CAD. A SMT is gen-
erally used in initial topology creation for non-
critical nets in physical synthesis. For timing



1796 Rectilinear Steiner Tree

critical nets, minimization of wire length is gen-
erally not enough. However, since most nets are
noncritical in a design and a SMT gives the
most desirable route of such a net, it is often
used as an accurate estimation of congestion and
wire length during floor planning and placement.
This implies that a Steiner tree algorithm will
be invoked millions of times. On the other hand,
there exist many large pre-routes in modern VLSI
design. The pre-routes are generally modeled as
large sets of points, thus increasing the input sizes
of the Steiner tree problem. Since the SMT is a
problem that will be computed millions of times
and many of them will have very large input sizes,
highly efficient solutions with good performance
are desired.

Experimental Results

As reported in [16], the first set of experiments
were conducted on a Linux system with a
928 MHz Intel Pentium III processor and 512 M
memory. The RST algorithm was compared with
other publicly available programs: the exact
algorithm GeoSteiner (version 3.1) by Warme,
Winter, and Zacharisen [14]; the Batched Iterated
1-Steiner (BI1S) by Robins; and the Borah et al.’s
algorithm implemented by Madden (BOI).

Table 1 gives the results of the first set of
experiments. For each input size ranging from
100 to 5,000, 30 different test cases are ran-
domly generated through the rand_points pro-

gram in GeoSteiner. The improvement ratios of
a Steiner tree St over its corresponding mini-
mal spanning tree MST are defined as 100 

(MST - St)/MST. For each input size, the
average of the improvement ratios and the av-
erage running time (in seconds) on each of the
programs are reported. As can be seen, RST
always gives better improvements than BOI with
less running times.

The second set of experiments compared
RST with Borah’s implementation of Borah
et al.’s algorithm (Borah), Rohe’s Prim-based
algorithm (Rohe) [13], and Kahng et al.’s Batched
Greedy Algorithm (BGA) [9]. They were run on
a different Linux system with a 2.4 GHz Intel
Xeon processor and 2 G memory. Besides the
randomly generated test cases, the VLSI industry
test cases used in [9] were also used. The results
are reported in Table 2.
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Rectilinear Steiner Tree, Table 1 Comparison with other algorithms I

Input
size

GeoSteiner BI1S BOI RST

Improve Time Improve Time Improve Time Improve Time
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300 11:492 12:685 10:931 18:770 9:253 0:2993 10:255 0:041
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3;000 – – – – 9:390 104:919 10:449 0:771

5;000 – – – – 9:356 307:977 10:499 1:330
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Rectilinear Steiner Tree, Table 2 Comparison with other algorithms II

Input
size

BGA Borah Rohe RST

Improve Time Improve Time Improve Time Improve Time

Randomly generated testcases
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50;000 11:120 59:147 – – 10:109 1:890 10:561 13:029

100;000 11:098 161:896 – – 10:079 4:410 10:514 28:527

500;000 – – – – 10:059 27:210 10:527 175:725

VLSI testcases
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Problem Definition

Graph decompositions are the basis for many
divide-and-conquer algorithms. Two main prop-
erties make a decomposition useful. The first is
balance, namely, that the parts of the decompo-
sition have roughly the same size. Balanced de-
compositions lead to logarithmic depth recursion.
The second is small overlap between the parts of
the decomposition. The overlap affects the time it
takes to combine solutions of different parts into
a solution for the union of the parts.

A decomposition of a graph G is a collection
of subgraphs ofG, called regions, whose union is
G. A decomposition tree of G is a tree T whose
nodes correspond to subgraphs of G. The root of
T consists of the entire graph G. For a node v of
T that corresponds to a subgraph R, the children
v1; v2; : : : ; vk of v correspond to subgraphs of R
whose union is R. Every maximal setD of nodes
of T , such that no node in D is an ancestor of
another (i.e., every maximal antichain in T with
respect to the ancestry partial order), corresponds
to a decomposition of G.

A vertex v ofG that belongs to a unique region
R in a decomposition is called an interior vertex
(of R). A vertex v that belongs to more than one
region is called a boundary vertex.

Let G be a graph with n vertices. Given
a parameter r < n, an r-division of G is a
decomposition of G into �.n=r/ regions, each
with at most r vertices and O.

p
r/ boundary

vertices. The bounds on the number of regions
and on the number of vertices in each region
imply that an r-division is a balanced decompo-
sition of G. The O.

p
r/ bound on the number

of boundary vertices immediately implies the
same bound for the overlap between different
regions in the decomposition. For an increasing

sequence r D r1; r2; : : : , a recursive r-division
is a decomposition tree T in which the nodes at
height i form an ri -division.

For various applications it is useful to impose
additional requirements, such as requiring re-
gions to be connected, requiring that each region
share vertices with a constant number of other
regions, etc. One particularly useful requirement
that is relevant to planar graphs is that the bound-
ary vertices of each region lie on a small number
of faces. Formally, every region R inherits its
embedding from that of the planar graph G. A
hole of R is a face of R that is not a face of
G. An r-division with few holes is an r-division
in which each region has a constant number of
holes.

Key Results

Balanced graph decompositions with small over-
lap are based on small balanced separators. An
n-vertex graph G has a f .n/-separator if there
exists a partition A;B; S of the vertices of G,
such that the size of S is at most f .n/, the sizes
of A and B are at most 2n=3, and no edge exists
betweenA andB . The set S is called a separator.
The subgraphs induced onA[S andB[S form a
balanced decomposition of G into 2 regions with
f .n/ boundary vertices.

The best-known separator result for planar
graphs is the O.

p
n/ vertex separator of Lipton

and Tarjan [16]. Consider a breadth-first-search
tree T of a planar graph G. Each BFS level
(i.e., the set of vertices at a specific distance
from the root) is a separator of G, albeit not
necessarily a small or a balanced one. Lipton and
Tarjan’s separator is based on the observation that
it is possible to construct an O.

p
n/ balanced

separator by combining two appropriately chosen
BFS levels with a fundamental cycle with respect
to the BFS tree T .

Theorem 1 (Lipton-Tarjan separator) Let G
be an n-vertex planar graph, equipped with non-
negative vertex weights summing to one. There
exists a linear-time algorithm that returns a sep-
aration A;B; S of G such that S consists of at
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most 2
p
2n vertices, and neither A nor B has

total weight exceeding 2=3.

Note that the formulation of the theorem allows
for a balanced separation with respect to a general
weight function, rather than just with respect to
the number of vertices.

Miller gave an O.
p
n/ simple cycle separa-

tor [19] for planar graphs. Miller’s result can
be viewed as a version of Lipton and Tarjan’s
separator applied to the planar dual of G.

Theorem 2 (Miller’s cycle separator) LetG be
an n-vertex 2-connected planar graph, equipped
with nonnegative face weights summing to 1, such
that no face weighs more than 2/3. Let d denote
the maximum over all face sizes inG. There exists
a linear-time algorithm that returns a simple
cycle C with at most 2

p
2bd=2cn vertices, such

that neither the interior of C nor the exterior of
C has total weight exceeding 2=3.

Similar formulations exist for vertex and edge
weights.
O.
p
n/ separators are known for other fami-

lies of sparse graphs, such as graphs excluding a
fixed minor [1,11]. However, some sparse graphs
(e.g., expanders) do not have small separators.

By applying a separator recursively, Fred-
erickson [6] showed that r-divisions exist for
graphs with O.

p
n/ separators. Frederickson’s

construction generates a decomposition tree
whose leaves correspond to the regions of an
r-division. It consists of two phases. In the first
phase, the separator theorem is applied to each
region consisting of more than r vertices. This
results in �.n=r/ regions, each with at most r
vertices and

p
r boundary vertices on average. In

a second phase, the separator theorem is applied
to each region with more than

p
r boundary

vertices, assigning weight only to boundary
vertices. Frederickson proves that this two-
phase process results in an r-division. A naïve
implementation of Frederickson’s approach to
construct an r-division takesO.n log n/ time. By
applying this approach to a contracted graph, and
then further subdividing some of the resulting
regions, an r-division can be constructed in
O.n log r C .n=pr/ logn/ time [6].

Goodrich [7] showed that for planar graphs
an entire binary decomposition tree whose leaves
correspond to regions with a constant number
of vertices can be computed in O.n/ time. This
is achieved by showing that, after linear time
preprocessing, each invocation of Lipton and Tar-
jan’s separator theorem can be implemented in
sublinear time in the number of vertices of a
region. The key components of Goodrich’s algo-
rithm are the use of a tree-cotree pair of spanning
trees of G and of its planar dual to facilitate
the search for balanced fundamental cycles, rep-
resenting these trees using dynamic trees [22],
and the use of balanced binary search trees to
maintain BFS levels. At each recursive iteration
a separator is found in a region with n0 vertices
in O.

p
n0 logn0/ time. This leads to a total linear

running time for computing a complete decom-
position tree.

Subramanian and Klein [12] were the first
to suggest r-divisions with few holes in planar
graphs. The idea for achieving a constant number
of holes is to use Miller’s simple cycle separa-
tor instead of Lipton and Tarjan’s. To keep the
number of holes constant, one needs to alternate
the separation criterion between balance with
respect to the number of vertices and balance
with respect to the number of holes [5]. Since a
cycle separator introduces at most one new hole
into each of the resulting two regions, reducing
the number of holes by a constant factor every
constant number of iterations ensures that the
number of holes in each region is bounded by a
(small) constant. Using Frederickson’s approach,
an r-division with few holes can be constructed
in O.n log r C .n=pr/ logn/ [9].

Klein, Mozes, and Sommer [14] presented
a modified version of Miller’s cycle separator
and used it to obtain a linear-time algorithm for
computing r-divisions with few holes in planar
graphs (see also [2] for a similar result). Follow-
ing Miller, their cycle separator algorithm uses
BFS levels in the planar dual of G. They show a
choice of a spanning tree T of G that makes their
cycle separator algorithm very similar to Lipton
and Tarjan’s vertex separator. Using a technique
similar to that of Goodrich, they use this cycle
separator algorithm to generate an entire decom-
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position tree of G in linear time. They show that
alternating between three balance criteria (num-
ber of vertices, number of boundary vertices, and
number of holes) results in a decomposition tree
that contains an r-division for any value of r .
This is in contrast with Frederickson’s two-phase
construction which targets a specific value of r .
As a consequence, the resulting decomposition
tree also contains a recursive r-division, for prac-
tically any choice of r.

Theorem 3 There exists a linear-time algorithm
that, given a planar graph G and an increasing
sequence r, computes a recursive r-division with
few holes of G.

Applications

Separator-based decompositions are wildly used
in divide-and-conquer algorithms. Lipton and
Tarjan [17] used their separator theorem to
show a variety of approximation algorithms
and subexponential-time algorithms for NP-hard
problems such as the maximum independent
set, as well as O.n3=2/-time algorithms for
problems such as maximum matching and
Gaussian elimination [18]. These recursive
algorithms implicitly generate a complete binary
decomposition tree of the input graph. Typically,
such algorithms only use the existence of small
balanced separators and do not rely on planarity.
Hence, they are applicable to families of graphs
other than planar graphs.

Frederickson introduced r-divisions for
computing shortest paths in a planar graph with
nonnegative arc lengths in O.n

p
logn/ time and

for finding a minimum st-cut or a maximum st-
flow in undirected planar graphs in O.n log n/
time. Since then r-divisions were used, along
with Goodrich’s linear-time construction, in
many algorithms and in different settings
(sequential, parallel, dynamic graph problems).
A very partial list includes dynamic planar graph
algorithms [4], Laplacian solvers and electrical
flow algorithms [15, 20], and parallel algorithms
in computational geometry [7]. Henzinger
et al. [8] used a recursive r-division with roughly

log� n levels to compute shortest paths with
nonnegative arc lengths in linear time.

Decompositions based on simple cycle sepa-
rators are also wildly used in efficient algorithms
for planar graphs. Examples include maximum
flow [3,10], shortest paths [13], and many others.
These algorithms typically rely on additional
structural properties specific to planar graphs,
such as non-crossing of shortest paths (also
known as the Monge property). Decompositions
with few holes were introduced by Klein and
Subramanian [12] to construct approximate
dynamic distance oracles for planar graphs.
Fakcharoenphol and Rao [5] used a complete
decomposition with few holes for computing
shortest paths with negative lengths in planar
graphs in O.n log3 n/-time. The currently fastest
algorithm for this problem uses r-divisions with
few holes and runs in O.n log2 n= log logn/
time [21]. Italiano et al. [9] used an r-division
with few holes to find a min st-cut and max
st-flow in O.n log logn/ time.
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Problem Definition

The goal is to design algorithms that succeed
in models where input is reported by strategic
agents (henceforth referred to as strategic input),
as opposed to standard models where the input
is directly given (henceforth referred to as honest
input). For example, consider a resource allo-
cation problem where a single user has m jobs
to process on n self-interested machines. Each
machine i can process job j in time tij , and
this is privately known only to the machine. Each
machine reports some processing times Otij to the
user, who then runs some algorithm to determine
where to process the jobs. Good approximation
algorithms are known when machines are honest
(i.e., Otij D tij for all i; j ) if the user’s goal is to
minimize the makespan, the time elapsed until all
jobs are completed, going back to seminal work
of Lenstra, Shmoys, and Tardos [13]. However,
such algorithms do not account for the strate-
gic nature of the machines, which may want to
minimize their own work: why would they report
honestly their processing time for each job if they
can elicit a more favorable schedule by lying? To
accommodate such challenges, new algorithmic
tools must be developed that draw inspiration
from Game Theory.

Requiring solutions that are robust against
potential strategic manipulation potentially in-
creases the computational difficulty of whatever
problem is at hand. The discussed works provide
a framework with which to design such solutions
(henceforth called mechanisms) and address the
following important question.

Question 1 How much (computationally) more
difficult is mechanism design than algorithm de-
sign?

Using this framework, we resolve this ques-
tion with an answer of “not at all” for several
important problems including job scheduling and
fair allocation. Another application of our frame-
work provides efficient algorithms and structural
characterization results for multi-item revenue-
optimal auction design, a central open problem
in mathematical economics.

Model

Environment
1. Set F of feasible outcomes. Interpret F as

the set of all (feasible) allocations of jobs to
machines, allocations of items to bidders, etc.

2. n agents who all care about which outcome is
chosen.

Strategic Agents
1. Each agent i has a value ti .x/ for each out-

come x 2 F . ti induces a function from F !
R and is called the agent’s type.

2. Each ti is drawn independently from some
distribution Di of finite support.

3. Agent i knows ti ; all other agents and the
designer know only Di .

4. Agents are quasi-linear and risk neutral. That
is, the utility of an agent of type t for a
randomized outcome (distribution over out-
comes) X 2 �.F/, when he is charged price
p, is Ex X Œt.x/� � p.

5. Agents behave in a way that maximizes util-
ity, taking into consideration beliefs about the
behavior of other agents.

Designer
1. Designs an allocation rule A and price rule
P . A takes as input a type profile .t1; : : : ; tn/
and outputs (possibly randomly) an outcome
A.t/ 2 F . P takes as input a type profile
and outputs (possibly randomly) a price vector
P.t/. The pair .A; P / is called a (direct)
mechanism. Note that it is without loss of
generality to consider only the design of direct
mechanisms by the revelation principle [14].

2. Announces A and P to agents. Invites agents
to report a type. When t is reported, selects the
outcome A.t/ and charges agent i price Pi .t/.

3. Has some objective function O to optimize. O
may depend on the agents’ types, the outcome
selected, and the prices charged, so we write
O.t; x;P/. Examples include:
• Social welfare: O.t; x;P/ DPi ti .x/.
• Revenue: O.t; x;P/ DPi Pi .t/.
• Makespan: O.t; x;P/ D maxi f�ti .x/g (In

job scheduling, agents’ values from alloca-
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tions are nonpositive, since they have cost
for processing jobs. An agent’s cost for
allocation x is then �ti .x/.).

• Fairness: O.t; x;P/ D minifti .x/g.

Game Theoretic Definitions
1. The interim rule of a mechanism is a function

that takes as input an agent i and type ti
and outputs the distribution of allocations and
prices that agent i sees when reporting type
ti over the randomness of the mechanism and
the other agents’ types, assuming they tell the
truth. So the interim allocation rule .�;p/ of
the mechanism .A; P / satisfies:

PrŒx �i .ti /�DEt�i D�i
ŒPrŒA.ti I t�i /Dx�� :

PrŒp pi .ti /�DEt�i D�i
ŒPrŒPi .ti I t�i /Dp��:

2. A mechanism is Bayesian Incentive Com-
patible (BIC) if every agent receives at
least as much utility by reporting their
true type as any other type (assuming
other agents report truthfully). Formally,
ti .�i .ti // � pi .ti / � ti .�i .t

0
i // � pi .t

0
i / for

all i; ti ; t 0i (We use the shorthand ti .�i .t
0
i //

to denote the expected value of ti for
the random allocation drawn from �i .t

0
i /.

Formally, ti .�i .t
0
i // D Ex 	i .t 0

i
/Œti .x/�.). A

commonly used relaxation of BIC is called
�-Bayesian Incentive Compatible (�-BIC). A
mechanism is �-BIC if every agent derives
at most � less utility by reporting their true
type comparing to any other type (assuming
other agents report truthfully). Formally,
ti .�i .ti // � pi .ti / � ti .�i .t

0
i // � pi .t

0
i / � �

for all i; ti ; t 0i .
3. A mechanism is individually rational (IR) if

every agent has nonnegative expected utility
by participating in the mechanism (assuming
other agents report truthfully). Formally,
ti .�i .ti // � pi .ti / � 0 for all i; ti .

BayesianMechanism Design (BMeD)
Here we describe formally the mechanism design
problem we study. BMeD is parameterized by a
set of feasible outcomes F , objective function O,
and set of possible types V . Both V and F can

be discrete or continuous. We assume that every
element v 2 V and x 2 F can be represented
by a finite bit string hvi and hxi. V and F also
specify how those bit strings are interpreted. For
instance, V might be the class of all submodular
functions, and the bit strings used to represent
them may be interpreted as indexing a black-
box value oracle. Or V might be the class of all
subadditive functions, and the bit strings used to
represent them may be interpreted as an explicit
circuit. Or V could be the class of all additive
functions, and the bit strings used to represent
them may be interpreted as a vector containing
values for each item. So we are parameterizing
our problems both by the actual classes V and
F but also by how elements of these classes
are represented. Now, we are ready to formally
discuss the problem BMeD(F ;V ;O).
BMeD(F ;V ;O):

INPUT: For each agent i 2 Œn�, a discrete
distribution Di over types in V , described
explicitly by listing the support of Di and the
corresponding probabilities.

OUTPUT: A BIC, IR mechanism.
GOAL: Find the mechanism that optimizes O

in expectation, with respect to all BIC, IR
mechanisms (when n bidders with types drawn
from 
iDi report truthfully).

APPROXIMATION: A mechanism is said to be an
.�; ˛/-approximation to BMeD if it outputs an
�-BIC mechanism whose expected value of O
(when n bidders with types drawn from 
iDi

report truthfully) is at least ˛OPT � � (or at
most ˛OPTC � for minimization problems).

GeneralizedObjectiveOptimization
Problem (GOOP)
Here we describe formally the algorithmic prob-
lem we show has strong connections to BMeD.
GOOP is parameterized by a set of feasible out-
comes F , objective function O, and set of pos-
sible types V . We therefore formally discuss the
problem GOOP(F ;V ;O). Below, V� denotes the
closure of V under linear combinations. Func-
tions in V� are represented by a finite list of
elements of V , along with (possibly negative)
scalar multipliers.
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GOOP(F ;V ;O):

INPUT: For each agent i 2 Œn�, a type gi 2 V ,
multipliermi 2 R, and cost function fi 2 V�.
Additionally, an indicator bit b (The indicator
bit b is included so that the optimization of justP

i fi .x/ (without price multipliers or O) is
formally a special case of GOOP.F ;V ;O/.).

OUTPUT: An allocationx 2 F , and price vector
p 2 R

n.
GOAL: Find arg maxx2F ;pfb � O.g; x;p/ CP

i mipi CP
i fi .x/g (or arg min, if O is a

minimization objective like makespan).
APPROXIMATION: .x;p/ is said to be an .˛; ˇ/-

approximation to GOOP if ˇ � b �O.g; x;p/CP
i mipi CPi fi .x/ is at least/most ˛ �OPT.

Note that a .˛; 1/-approximation is the stan-
dard notion of an ˛-approximation. Allowing
ˇ ¤ 1 boosts/discounts the value of O (the
objective) before comparing to ˛ � OPT. Note
also that allowing ˇ ¤ 1 provides no benefit
if b D 0.

Key Results

We provide a poly-time black-box reduction from
BMeD(F ;V ;O) to GOOP(F ;V ;O). That is, we
provide a reduction from Bayesian mechanism
design to traditional algorithm design.

Theorem 1 Let G be an .˛; ˇ/-approximation
algorithm for GOOP.F ,V ,O/. Then for all � > 0,
there is an .�; ˛=ˇ/-approximation algorithm for
BMeD.F ,V ,O). If ` is the length of the input to a
BMeD.F ,V ,O) instance, the algorithm succeeds
with probability 1 � exp .�poly.`; 1=�//, makes
poly.`; 1=�/ black-box calls toG on inputs of size
poly.`; 1=�/, and terminates in time poly.`; 1=�/
(times the running time of each oracle call to G).

This reduction is developed in a recent series of
papers by the authors [4–7, 9]. The possibility of
failure and additive error is due to a sampling
procedure in the reduction. In addition to the
computational aspect provided in Theorem 1, our
reduction also has a structural aspect. Namely, we
provide a characterization of the optimal mecha-
nism in Bayesian settings.

Theorem 2 For all objectives O, feasibility
constraints F , set of possible types V , and
inputs D to BMeD.F ;V ;O/, the optimal
mechanism is a distribution over generalized
objective maximizers. Formally, there exists a
joint distribution � over an indicator bit bı and
mappings .f ı

1 ; : : : ; f
ı

n /, where each f ı
i maps

types ti to multipliers mı
i .ti / 2 R and cost

functions �ı
i .ti / 2 V�, such that the optimal

mechanism first samples .bı ; fı/ from � then
maps the type profile t to the allocation and
price vector .x.t/;p.t// D arg maxx2F ;pfbı �
O.t; x;p/CPi m

ı
i .ti /pi CPi �

ı
i .ti /.x/g.

Perhaps the most interesting case of Theorem 2
is when the objective is revenue. In this case,
we may interpret the cost functions �ı

i 2 V�
as the virtual valuation function of bidder i . By
virtual valuations, we do not mean Myerson’s
specific virtual valuation functions [14], which
aren’t even defined for multi-item instances. In-
stead we simply mean some virtual valuation
functions that may or may not be the same as
the types/valuations reported by the agents. We
include this and other applications of Theorems 1
and 2 below.

Applications

In this section, we apply Theorem 1 to the objec-
tives of revenue, makespan, and fairness.

Revenue Maximization
We apply Theorem 1 to reduce the BMeD prob-
lem of optimizing revenue in multi-item settings
to GOOP. In [7], it is shown that for this case,
one need only consider instances of GOOP with
b D m1 D : : : D mn D 0, so the GOOP
instances that must be solved require just op-
timization of the cost function (which we call
virtual welfare for this application). We obtain
the following computational and structural re-
sults on optimal auction design in general multi-
item settings, addressing a long-standing open
question following Myerson’s seminal work on
single-item auctions [14].
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Theorem 3 (Revenue Maximization, Com-
putational) Let G be an ˛-approximation
algorithm for maximizing virtual welfare over F
when all virtual types are from V�. Then for all
� > 0, there is an .�; ˛/-approximation algorithm
for the problem BMeD.F ;V ; REVENUE/

that makes polynomially many black-box
calls to G. If ` is the length of the input
to a BMeD.F ,V ,REVENUE/ instance, the
algorithm succeeds with probability 1 �
exp .�poly.`; 1=�//, makes poly.`; 1=�/ black-
box calls to G on inputs of size poly.`; 1=�/,
and terminates in time poly.`; 1=�/ (times the
running time of each oracle call to G).

Theorem 4 (Revenue Maximization, Struc-
tural) In any multi-item setting with arbitrary
feasibility constraints and possible agent types,
the allocation rule of the revenue-optimal auction
is a distribution over virtual welfare maximizers.
Formally, there exists a distribution � over
mappings .�1; : : : ; �n/, where each �i maps
types ti to cost functions fi 2 V�, such that the
allocation rule for the optimal mechanism first
samples � from � then maps type profile t to the
allocation arg maxx2FfPi �i .ti /.x/g.
We further consider the following important spe-
cial case: There are m items for sale to n buyers.
Any allocation of items to buyers is feasible
(that is, each item can be awarded to at most
one buyer), so we can denote the set of feasible
allocations as F D ŒnC 1�m. Furthermore, each
buyer i has a value vij for item j and is additive
across items, meaning that their value for a set S
of items is

P
j2S vij . So we can denote the set of

possible types as RmC (and have types represented
as such).

Theorem 5 (Revenue Maximization for
Additive Buyers, Computational) There is
a poly-time algorithm for GOOP.ŒnC 1�m;
R

mC; REVENUE/. Therefore, there is a poly-time
algorithm for BMeD.ŒnC1�m;RmC; REVENUE)
(In this special case, no sampling is required
in the reduction, so the theorem holds even for
� D 0. Formally, this is a .0; 1/-approximation
(an exact algorithm). See [4] for details.).

Theorem 6 (Revenue Maximization for Addi-
tive Buyers, Structural) In any multi-item set-
ting with n additive buyers and m items for sale,
the allocation rule of the revenue-optimal auction
is a distribution over virtual welfare maximizers.
Formally, there exists a distribution � over map-
pings .�1; : : : ; �n/, where each �i maps types
ti to cost functions fi 2 R

m, such that the
allocation rule for the optimal mechanism first
samples � from � then awards every item j to
a buyer in arg maxif�ij .vi /g if their virtual value
for item j is nonnegative and does not allocate
the item otherwise.

Job Scheduling on Unrelated Machines
The problem of job scheduling on unrelated
machines consists of m jobs and n machines,
with machine i able to process job j in time
tij . The goal is to find a schedule (that assigns
each job to exactly one machine) minimizing the
makespan. Specifically, if Si are the jobs assigned
to machine i , the makespan is maxi fPj2Si

tij g.
As a mechanism design problem, one considers
the machines to be strategic agents who know
their processing time for each job (but the
designer and other machines do not). In the
language of BMeD, we can denote the feasibility
constraints as Œn�m, the set of possible types as
R

mC, and the objective as MAKESPAN. Theorem 1
reduces BMeD(Œn�m;RmC;MAKESPAN) to
GOOP(Œn�m;RmC;MAKESPAN). It is shown in [7]
that for objectives that don’t depend on the prices
charged at all (called “allocation-only”), only
instances of GOOP with mi D 0 8i need
be considered. It is further shown in [9] that
GOOP(Œn�m;RmC;MAKESPAN) can be interpreted
as a job scheduling problem with costs. Specifi-
cally, GOOP(Œn�m;RmC;MAKESPAN) takes as in-
put a processing time tij � 0, and monetary cost
cij 2 R for all machines i and jobs j . The goal is
to find a schedule that minimizes the makespan
plus cost. Formally, partition the jobs into
disjoint sets Si to minimize maxi fPj2Si

tij g CP
i

P
j cij . While it is NP-hard to approximate

GOOP(Œn�m;RmC;MAKESPAN) within any finite
factor, a result of Shmoys and Tardos from the
early 1990s obtains a polynomial time .1; 1=2/-
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approximation algorithm [15]. In combination
with Theorem 1, this yields the following
theorem:

Theorem 7 (Job Scheduling on Unrelated
Machines) For all � > 0, there is a
poly-time .�; 2/-approximation algorithm for
BMeD.Œn�m;RmC;MAKESPAN). If ` is the length
of the input to a BMeD.Œn�m,RmC,MAKESPAN)
instance, the algorithm succeeds with probability
1 � exp .�poly.`; 1=�// and terminates in time
poly.`; 1=�/.

Fair Allocation of Indivisible Goods
The problem of fairly allocating indivisible goods
consists of m indivisible goods and n children,
with child i receiving value vij for good j . The
goal is to find an allocation of goods (that assigns
each good to at most one child) maximizing the
fairness. Specifically, if Si are the goods allo-
cated to child i , the fairness is minifPj2Si

vij g.
As a mechanism design problem, one considers
the children to be strategic agents who know
their own value for each good (but the designer
and other children do not). In the language of
BMeD, we can denote the feasibility constraints
as ŒnC 1�m, the set of possible types as RmC, and
the objective as FAIRNESS. Theorem 1 reduces
BMeD(ŒnC 1�m;RmC; FAIRNESS) to GOOP(ŒnC
1�m;RmC; FAIRNESS), which can be interpreted as
a fair allocation problem with costs (again, be-
cause FAIRNESS is allocation only) [7,9]. Specif-
ically, GOOP(ŒnC 1�m;RmC; FAIRNESS) takes as
input a value vij � 0 and monetary cost cij 2 R

for all children i and goods j . The goal is to
find an allocation that maximizes the fairness
minus cost. Formally, allocate the goods into
disjoint sets Si to maximize mini fPj2Si

vij g �P
i

P
j cij . While it is NP-hard to approximate

GOOP(ŒnC1�m;RmC; FAIRNESS) within any finite
factor, we develop poly-time .1;m � n C 1/-
and .1=2; QO.pn//-approximation algorithms for
fair allocation with costs, based on algorithms
of Bezáková and Dani [2] and Asadpour and
Saberi [1] for fair allocation (without costs).

Theorem 8 (Fair Allocation of Indivisible
Goods) There are poly-time .1;m � n C 1/-
and .1=2; QO.pn//-approximation algorithms for

GOOP.Œn C 1�m;RmC; FAIRNESS). Therefore, for
all � > 0, there is a .�;minf QO.pn/;m�nC1g/-
approximation algorithm for BMeD.Œn C
1�m;RmC; FAIRNESS). If ` is the length of the
input to a BMeD.Œn C 1�m,RmC,FAIRNESS)
instance, the algorithm succeeds with probability
1 � exp .�poly.`; 1=�// and terminates in time
poly.`; 1=�/.

Tools for Convex Optimization

We prove Theorems 1 and 2 by solving a
linear program over the space of possible
interim allocation rules and generalizations of
interim allocation rules that we do not discuss
here. In doing so, we also develop new tools
applicable for general convex optimization that
we discuss here. We omit full details of the
approach and refer the reader to a series of
papers by the authors [5–7, 9] for specifics of
the linear program solved and why it addresses
BMeD. Seminal works of Khachiyan [12],
Grötschel, Lovász, and Schrijver [10], and Karp
and Papadimitriou [11] study the problems
of optimization and separation over a close,
convex region P � R

d (Below, we denote by
˛P D f˛xjx 2 P }. Also, for simplicity of
exposition, we only consider P that contain the
origin, so that ˛P � P for all ˛ � 1, but our
results extend to all closed, convex P . See [9]
for our most general results.). Formally, these
problems are:

Optimize(P ):

INPUT: A direction c 2 R
d .

OUTPUT: A point x 2 P .
GOAL: Find x� 2 arg maxx2P fc � xg.

Separate(P ):

INPUT: A point x 2 R
d .

OUTPUT: “Yes,” or a direction c 2 R
d .

GOAL: If x 2 P , output “yes.” Otherwise,
output any c such that c � x > maxy2P fc � yg.

Khachiyan’s Ellipsoid algorithm shows that if
one can solve the problem Separate(P ) in time
poly.d/, then one can also solve Optimize(P ) in
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time poly.d/. Grötschel, Lovász, and Schrijver
and independently Karp and Papadimitriou show
that the other direction holds as well: if one can
solve Optimize(P ) in time poly.d/, then one can
also solve Separate(P ) in time poly.d/. This is
colloquially called “the equivalence of separation
and optimization.” While separation as a means
for optimization has obvious uses, optimization
as a means for separation is more subtle. Still, nu-
merous applications exist (including our results)
and we refer the reader to [10, 11] for several
others, including the first poly-time algorithm for
submodular minimization.

In order to provide our guarantees with re-
spect to approximation, we develop further the
equivalence of separation and optimization to ac-
commodate approximation. Specifically, consider
the following problems, further parameterized by
some ˛ < 1:
˛-Optimize(P ):

INPUT: A direction c 2 R
d .

OUTPUT: A point x 2 P .
GOAL: Find x satisfying c �x � ˛maxy2P fc �yg.
˛-Separate(P ):

INPUT: A point x 2 R
d .

OUTPUT: “Yes” and a proof that x 2 P ,
or a direction c 2 R

d (For formal details
on exactly what constitutes a proof, we refer
the reader to [6, 7, 9]. Roughly speaking, x
is written as a convex combination of points
known to be in P .).

GOAL: If x 2 ˛P , output “yes” and a proof that
x 2 P . If x … P , output a direction c such that
c � x > ˛maxy2P fc � yg. If x 2 Pn˛P , either
is acceptable.

Theorem 9 (Approximate Equivalence of Sep-
aration and Optimization) For all ˛ � 1, the
problems ˛-Optimize(P ) and ˛-Separate(P ) are
computationally equivalent. That is, if one can
solve one in time poly.d/, one can solve the other
in time poly.d/ as well.

We also extend these results to accommodate bi-
criterion approximation, via the problems below,
further parameterized by some ˇ > 1 and subset
S � Œd � of coordinates (Below, when we write

.ˇxS ; x�S /, we mean to take x and multiply each
xi ; i 2 S by ˇ.).
.˛; ˇ; S/-Optimize(P ):

INPUT: A direction c 2 R
d .

OUTPUT: A point x 2 P .
GOAL: Find x satisfying c � .ˇxS ; x�S / �
˛maxy2P fc � yg.

.˛; ˇ; S/-Separate(P ):

INPUT: A point x 2 R
d .

OUTPUT: “Yes” and a proof that x 2 P , or a
direction c 2 R

d .
GOAL: If .ˇxS ; x�S / 2 ˛P , output “yes” and a

proof that x 2 P . If x … P , output a direction
c such that c � .ˇxS ; x�S / > ˛maxy2P fc � yg.
If .ˇxS ; x�S / … ˛P and x 2 P , either is
acceptable (An astute reader might worry that
for some ˛; ˇ; S; P , the problem .˛; ˇ; S/-
Separate(P ) is impossible, due to the exis-
tence of an x … P such that .ˇxS ; x�S / 2
˛P . For some ˛; ˇ; S; P , this is indeed the
case, but we show that .˛; ˇ; S/-Optimize(P )
is impossible in these cases as well.).

Theorem 10 (Bi-Criterion Approximate
Equivalence of Separation and Optimization)
For all ˛ � 1; ˇ � 1; S � Œd �, the
problems .˛; ˇ; S/-Optimize(P ) and .˛; ˇ; S/-
Separate(P ) are computationally equivalent.
That is, if one can solve one in time poly.d/,
one can solve the other in time poly.d/ as well.

More formal statements and how we apply these
theorems to yield our main result can be found
in [9]. Finally, the theorems hold for minimiza-
tion as well as maximization and without the
restriction that P contains the origin (but the
theorem statements are more technical).

Open Problems

Our work provides a novel computational
framework for solving Bayesian mechanism
design problems. We have applied our framework
to solve several specific important problems, such
as computing revenue-optimal auctions in multi-
item settings and approximately optimal BIC
mechanisms for job scheduling, but numerous
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important settings and objectives remain
unresolved. Theorem 1 provides a concrete
approach for tackling such problems, via the
design of .˛; ˇ/-approximations for the purely
algorithmic Generalized Objective Optimization
Problem. Therefore, one important direction
following our work is to apply our framework
to novel settings and design algorithms for the
resulting GOOP instances.
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Problem Definition

Consider a system of asynchronous processes
that communicate among themselves by only
executing read and write operations on a set of
shared variables (also known as shared registers).
The system has no global clock or other syn-
chronization primitives. Every shared variable is
associated with a process (called owner) which
writes it and the other processes may read it. An
execution of a write (read) operation on a shared
variable will be referred to as a Write (Read) on
that variable. A Write on a shared variable puts
a value from a pre-determined finite domain into
the variable, and a Read reports a value from the
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domain. A process that writes (reads) a variable
is called a writer (reader) of the variable.

The goal is to construct shared variables in
which the following two properties hold. (1) Op-
eration executions are not necessarily atomic, that
is, they are not indivisible but rather consist of
atomic sub-operations, and (2) every operation
finishes its execution within a bounded number
of its own steps, irrespective of the presence
of other operation executions and their relative
speeds. That is, operation executions are wait-
free. These two properties give rise to a classi-
fication of shared variables, depending on their
output characteristics. Lamport [8] distinguishes
three categories for 1-writer shared variables,
using a precedence relation on operation exe-
cutions defined as follows: for operation execu-
tions A and B, A precedes B, denoted A �! B ,
if A finishes before B starts; A and B over-
lap if neither A precedes B nor B precedes A.
In 1-writer variables, all the Writes are totally
ordered by “�!”. The three categories of 1-
writer shared variables defined by Lamport are
the following.

1. A safe variable is one in which a Read not
overlapping any Write returns the most re-
cently written value. A Read that overlaps
a Write may return any value from the domain
of the variable.

2. A regular variable is a safe variable in which
a Read that overlaps one or more Writes re-
turns either the value of the most recent Write
preceding the Read or of one of the overlap-
ping Writes.

3. An atomic variable is a regular variable in
which the Reads and Writes behave as if they
occur in some total order which is an extension
of the precedence relation.

A shared variable is boolean (Boolean vari-
ables are referred to as bits.) or multivalued
depending upon whether it can hold only one
out of two or one out of more than two val-
ues. A multiwriter shared variable is one that
can be written and read (concurrently) by many
processes. If there is only one writer and more
than one reader it is called a multireader variable.

Key Results

In a series of papers starting in 1974, for details
see [4], Lamport explored various notions of con-
current reading and writing of shared variables
culminating in the seminal 1986 paper [8]. It for-
mulates the notion of wait-free implementation of
an atomic multivalued shared variable – written
by a single writer and read by (another) single
reader – from safe 1-writer 1-reader 2-valued
shared variables, being mathematical versions
of physical flip-flops, later optimized in [13].
Lamport did not consider constructions of shared
variables with more than one writer or reader.

Predating the Lamport paper, in 1983
Peterson [10] published an ingenious wait-
free construction of an atomic 1-writer, n-
reader m-valued atomic shared variable from
nC 2 safe 1-writer n-reader m-valued registers,
2n 1-writer 1-reader 2-valued atomic shared
variables, and 2 1-writer n-reader 2-valued
atomic shared variables. He presented also
a proper notion of the wait-freedom property.
In his paper, Peterson didn’t tell how to construct
the n-reader boolean atomic variables from
flip-flops, while Lamport mentioned the open
problem of doing so, and, incidentally, uses
a version of Peterson’s construction to bridge
the algorithmically demanding step from atomic
shared bits to atomic shared multivalues. On
the basis of this work, N. Lynch, motivated by
concurrency control of multi-user data-bases,
posed around 1985 the question of how to
construct wait-free multiwriter atomic variables
from 1-writer multireader atomic variables. Her
student Bloom [1] found in 1985 an elegant
2-writer construction, which, however, has
resisted generalization to multiwriter. Vitányi and
Awerbuch [14] were the first to define and explore
the complicated notion of wait-free constructions
of general multiwriter atomic variables, in
1986. They presented a proof method, an
unbounded solution from 1-writer 1-reader
atomic variables, and a bounded solution from
1-writer n-reader atomic variables. The bounded
solution turned out not to be atomic, but only
achieved regularity (“Errata” in [14]). The paper
introduced important notions and techniques
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in the area, like (bounded) vector clocks, and
identified open problems like the construction
of atomic wait-free bounded multireader shared
variables from flip-flops, and atomic wait-free
bounded multiwriter shared variables from
the multireader ones. Peterson who had been
working on the multiwriter problem for a decade,
together with Burns, tried in 1987 to eliminate
the error in the unbounded construction of [14]
retaining the idea of vector clocks, but replacing
the obsolete-information tracking technique by
repeated scanning as in [10]. The result [11]
was found to be erroneous in the technical
report (R. Schaffer, On the correctness of atomic
multiwriter registers, Report MIT/LCS/TM-364,
1988). Neither the re-correction in Schaffer’s
Technical Report, nor the claimed re-correction
by the authors of [11] has appeared in print. Also
in 1987 there appeared at least five purported
solutions for the implementation of 1-writer n-
reader atomic shared variable from 1-writer 1-
reader ones: [2, 7, 12] (for the others see [4])
of which [2] was shown to be incorrect (S.
Haldar, K. Vidyasankar, ACM Oper. Syst. Rev,
26:1(1992), 87–88) and only [12] appeared in
journal version. The paper [9], initially a 1987
Harvard Tech Report, resolved all multiuser
constructions in one stroke: it constructs
a bounded n-writer n-reader (multiwriter) atomic
variable from O(n2) 1-writer 1-reader safe bits,
which is optimal, and O(n2) bit-accesses per
Read/Write operation which is optimal as well. It
works by making the unbounded solution of [14]
bounded, using a new technique, achieving
a robust proof of correctness. “Projections” of
the construction give specialized constructions
for the implementation of 1-writer n-reader
(multireader) atomic variables from O(n2) 1-
writer 1-reader ones using O(n) bit accesses per
Read/Write operation, and for the implementa-
tion of n-writer n-reader (multiwriter) atomic
variables from n 1-writer n-reader (multireader)
ones. The first “projection” is optimal, while the
last “projection” may not be optimal since it uses
O(n) control bits per writer while only a lower
bound of ˝.logn/ was established. Taking up
this challenge, the construction in [6] claims to
achieve this lower bound.

Timestamp System
In a multiwriter shared variable it is only required
that every process keeps track of which pro-
cess wrote last. There arises the general question
whether every process can keep track of the order
of the last Writes by all processes. A. Israeli and
M. Li were attracted to the area by the work
in [14], and, in an important paper [5], they raised
and solved the question of the more general and
universally useful notion of a bounded timestamp
system to track the order of events in a concurrent
system. In a timestamp system every process
owns an object, an abstraction of a set of shared
variables. One of the requirements of the system
is to determine the temporal order in which the
objects are written. For this purpose, each object
is given a label (also referred to as a timestamp)
which indicates the latest (relative) time when
it has been written by its owner process. The
processes assign labels to their respective objects
in such a way that the labels reflect the real-time
order in which they are written to. These systems
must support two operations, namely labeling
and scan. A labeling operation execution (Label-
ing, in short) assigns a new label to an object, and
a scan operation execution (Scan, in short) en-
ables a process to determine the ordering in which
all the objects are written, that is, it returns a set of
labeled-objects ordered temporally. The concern
is with those systems where operations can be
executed concurrently, in an overlapped fashion.
Moreover, operation executions must be wait-
free, that is, each operation execution will take
a bounded number of its own steps (the number of
accesses to the shared space), irrespective of the
presence of other operation executions and their
relative speeds. Israeli and Li [5] constructed
a bit-optimal bounded timestamp system for se-
quential operation executions. Their sequential
timestamp system was published in the above
journal reference, but the preliminary concurrent
timestamp system in the conference proceedings,
of which a more detailed version has been cir-
culated in manuscript form, has not been pub-
lished in final form. The first generally accepted
solution of the concurrent case of the bounded
timestamp system was from Dolev and Shavit [3].
Their construction is of the type presented in [5]
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and uses shared variables of size O(n), where
n is the number of processes in the system.
Each Labeling requires O(n) steps, and each Scan
O.n2 logn/ steps. (A ‘step’ accesses an O(n)
bit variable.) In [4] the unbounded construction
of [14] is corrected and extended to obtain an
efficient version of the more general notion of a
bounded concurrent timestamp system.

Applications

Wait-free registers are, together with message-
passing systems, the primary interprocess com-
munication method in distributed computing the-
ory. They form the basis of all constructions
and protocols, as can be seen in the textbooks.
Wait-free constructions of concurrent timestamp
systems (CTSs, in short) have been shown to
be a powerful tool for solving concurrency con-
trol problems such as various types of mutual
exclusion, multiwriter multireader shared vari-
ables [14], and probabilistic consensus, by syn-
thesizing a “wait-free clock” to sequence the
actions in a concurrent system. For more details
see [4].

Open Problems

There is a great deal of work in the direction
of register constructions that use less constituent
parts, or simpler parts, or parts that can tolerate
more complex failures, than previous construc-
tions referred to above. Only, of course, if the
latter constructions were not yet optimal in the
parameter concerned. Further directions are work
on wait-free higher-typed objects, as mentioned
above, hierarchies of such objects, and proba-
bilistic constructions. This literature is too vast
and diverse to be surveyed here.

Experimental Results

Register constructions, or related constructions
for asynchronous interprocess communication,
are used in current hardware and software.
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Problem Definition

Given a text string T of length n and a regular
expression R, the regular expression matching
problem (REM) is to find all text positions at
which an occurrence of a string in L.R/ ends
(see below for definitions).

For an alphabet ˙ , a regular expression R

over˙ consists of elements of˙[f"g (" denotes
the empty string) and operators � (concatenation),
j (union), and � (iteration, i.e., repeated concate-
nation); the set of strings L.R/ represented by
R is defined accordingly; see [7]. It is important
to distinguish two measures for the size of a
regular expression: the size, m, which is the total
number of characters from ˙ [ f�; j;�g, and ˙-
size, m˙ , which counts only the characters in ˙ .
As an example, for R D (A|T)((C|CG)*),
the set L.R/ contains all strings that start with
an A or a T followed by zero or more strings
in the set fC;CGg; the size of R is m D 8 and
the ˙-size is m˙ D 5. Any regular expression
can be processed in linear time so that m D
O.m˙ / (with a small constant); the difference
becomes important when the two sizes appear as
exponents.

Key Results

Finite Automata
The classical solutions for the REM problem
involve finite automata which are directed
graphs with the edges labelled by symbols
from ˙ [ f"g; their nodes are called states;
see [7] for details. Unrestricted automata are
called nondeterministic finite automata (NFA).
Deterministic finite automata (DFA) have no "-
labels and require that no two outgoing edges
of the same state have the same label. Regular
expressions and DFAs are equivalent, that is, the
sets of strings represented are the same, as shown
by Kleene [11]. There are two classical ways of
computing an NFA from a regular expression.
Thompson’s construction [17] builds an NFA
with up to 2m states and up to 4m edges whereas
Glushkov-McNaughton-Yamada’s automaton
[5, 12] has the minimum number of states,
m˙ C 1, and O.m2

˙ / edges; see Fig. 1. Any
NFA can be converted into an equivalent DFA
by the subset construction: each subset of the
set of states of the NFA becomes a state of the
DFA. The problem is that the DFA can have
exponentially more states than the NFA.
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Classical Solutions
A regular expression is first converted into an
NFA or DFA which is then simulated on the
text. In order to be able to search for a match
starting anywhere in the text, a loop labelled by
all elements of ˙ is added to the initial state; see
Fig. 1.

Searching with an NFA requires linear space,
but many states can be active at the same time,
and to update them all we need, for Thompson’s
NFA, O.m/ time for each letter of the text; this
gives Theorem 1. On the other hand, DFAs allow
searching time that is linear in n but require more
space for the automaton. Theorem 2 uses the DFA
obtained from Glushkov-McNaughton-Yamada’s
NFA.

Theorem 1 (Thompson [17]) The REM prob-
lem can be solved with an NFA in O.mn/ time
and O.m/ space.

Theorem 2 (Kleene [11]) The REM problem
can be solved with a DFA in O.n C 2m˙ / time
and O.2m˙ / space.

Lazy Construction and Modules
One heuristic to alleviate the exponential increase
in the size of DFA is to build only the states
reached while scanning the text, as implemented

in Gnu Grep. Still, the space needed for the DFA
remains a problem. A four-Russians approach
was presented by Myers [13] where a trade-off
between the NFA and DFA approaches is pro-
posed. The syntax tree of the regular expression
is divided into modules which are implemented
as DFAs and are thereafter treated as leaf nodes
in the syntax tree. The process continues until a
single module is obtained. An O.mn= logn/ time
and space algorithm is obtained. This bound was
recently improved by Bille and Thorup [2].

Theorem 3 (Bille and Thorup [2]) The REM
problem can be solved in linear space and
O
�
mn=.logn/3=2

�
time.

The same authors showed in [3] that the length
m of the regular expression can be essentially re-
placed in the complexity bounds by the number of
strings (concatenations of characters) that appear
in the regular expression.

Bit Parallelism
The simulation of the abovementioned modules
is done by encoding all states as bits of a single
computer word (called bit mask) so that all can
be updated in a single operation. The method
can be used without modules to simulate directly
an NFA as done in [20] and implemented in the

Regular Expression
Matching, Fig. 1
Thompson’s NFA (left) and
Glushkov-McNaughton-
Yamada’s NFA (right) for
the regular expression
(A|T)((C|CG)*); the
initial loops labelled
A,T,C,G are not part of
the construction; they are
needed for REM

A,T,C,G
C

C

C

C
C

C CA G0 1 2 3 4 5

CT

11

A

T

C

C G

ε ε

ε

ε

ε

ε

ε

ε ε
ε

ε
ε

A,T,C,G

0

1 2

3 4

5 6

7 8

9 10

12 13



1814 Regular Expression Matching

Agrep software [19]. Note that, in fact, the DFA
is also simulated: a whole bit mask corresponds
to a subset of states of the NFA, that is, one state
of the DFA.

The bit-implementation of Wu and Man-
ber [20] uses the property of Thompson’s
automaton that all ˙-labelled edges connect
consecutive states, that is, they carry a bit 1 from
position i to position i C 1. This makes it easy to
deal with the˙-labelled edges, but the "-labelled
ones are more difficult. A table of size linear
in the number of states of the DFA needs to be
precomputed to account for the "-closures (set of
states reachable from a given state by "-paths).

Note that in Theorems 1, 2, and 3, the
space complexity is given in words. In
Theorems 4 and 5 below, for a more practical
analysis, the space is given in bits and the
alphabet size is also taken into consideration.
For comparison, the space in Theorem 2, given
in bits, is O.j˙ jm˙2

m˙ /.

Theorem 4 (Wu and Manber [20]) Thomp-
son’s automaton can be implemented using
2m.22mC1 C j˙ j/ bits.

Glushkov-McNaughton-Yamada’s automaton
has different structural properties. First, it is "-
free, that is, there are no "-labels on edges.
Second, all edges incoming to a given state are
labelled the same. These properties are exploited
by Navarro and Raffinot [16] to construct a bit-
parallel implementation that requires less space.
The result is a simple algorithm for regular ex-
pression searching which uses less space and usu-
ally performs faster than any existing algorithm.

Theorem 5 (Navarro and Raffinot [16])
Glushkov-McNaughton-Yamada’s automaton can
be implemented using .m˙ C 1/.2m˙C1 C j˙ j/
bits.

All algorithms in this category run in O.n/
time, but smaller DFA representation implies
more locality of reference and thus faster algo-
rithms in practice. An improvement of any al-
gorithm using Glushkov-McNaughton-Yamada’s
automaton can be done by reducing first the au-
tomaton by merging some of its states, as done by
Ilie et al. [8, 9]. The reduction can be performed

in such a way that all useful properties of the
automaton are preserved. The search becomes
faster due to the reduction in size.

Filtration
The above approaches examine every character in
the text. In [18] a multipattern search algorithm is
used to search for strings that must appear inside
any occurrence of the regular expression. Another
technique is used in Gnu Grep; it extracts the
longest string that must appear in any match (it
can be used only when such a string exists). In
[16], bit-parallel techniques are combined with a
reverse factor search approach to obtain a very
fast character-skipping algorithm for regular ex-
pression searching.

Related Problems
Regular expressions with backreference have
a feature that helps remembering what was
matched to be used later; the matching problem
becomes NP-complete; see [1]. Extended regular
expressions involve adding two extra operators,
intersection and complement, which do not
change the expressive power. The corresponding
matching problem can be solved in O..nCm/4/
time using dynamic programming; see [7,
Exercise 3.23].

Concerning finite automata construction,
recall that Thompson’s NFA has O.m/ edges,
whereas the "-free Glushkov-McNaughton-
Yamada’s NFA can have a quadratic number
of edges. It has been shown in [4] that one can
always build an "-free NFA with O.m logm/
edges (for fixed alphabets). However, it is the
number of states which is more important in the
searching algorithms.

Applications

Regular expression matching is a powerful tool in
text-based applications, such as text retrieval and
text editing, and in computational biology to find
various motifs in DNA and protein sequences.
See [6] for more details.
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Open Problems

The most important theoretical problem is
whether linear time and linear space can be
achieved simultaneously. Characterizing the
regular expressions that can be searched for using
a linear-size equivalent DFA is also of interest.
The expressions consisting of a single string are
included here – the algorithm of Knuth, Morris,
and Pratt is based on this. Also, it is not clear
how much we can reduce an NFA efficiently (as
done by [8, 9]); the problem of finding a minimal
NFA is PSPACE-complete; see [10]. Finally,
for testing, it is not clear how to define random
regular expressions.

Experimental Results

A disadvantage of the bit-parallel technique com-
pared with the classical implementation of a DFA
is that the former builds all possible subsets of
states whereas the latter builds only the states that
can be reached from the initial one (the other ones
are useless). On the other hand, bit-parallel algo-
rithms are simpler to code and more flexible (they
allow also approximate matching), and there
are techniques for reducing the space required.
Among the bit-parallel versions, Glushkov-
McNaughton-Yamada-based algorithms are bet-
ter than Thompson-based ones. Modules obtain
essentially the same complexity as bit-parallel
ones but are more complicated to implement and
slower in practice. As the number of computer
words increases, bit-parallel algorithms slow
down and modules may become attractive. Note
also that technological progress has more impact
on the bit-parallel algorithms, as opposed to clas-
sical ones, since the former depend very much on
the machine word size. For details on comparison
among various algorithms (including filtration
based), see [15]; more recent comparisons are in
[16], including the fastest algorithms to date.

URLs to Code and Data Sets

Many text editors and programming languages
include regular expression search features. They

are, as well, among the tools used in protein
databases, such as PROSITE and SWISS-PROT,
which can be found at www.expasy.org. The
package agrep [20] can be downloaded from
webglimpse.net and nrgrep [14] from www.dcc.
uchile.cl/gnavarro/software.
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Problem Definition

Many sequential decision problems ranging from
dynamic resource allocation to robotics can be
formulated in terms of stochastic control and
solved by methods of reinforcement learning.

Therefore, reinforcement learning (a.k.a neuro-
dynamic programming) has become one of the
major approaches to tackling real-life problems.

In reinforcement learning, an agent wanders
in an unknown environment and tries to max-
imize its long-term return by performing ac-
tions and receiving rewards. The most popular
mathematical models to describe reinforcement
learning problems are the Markov Decision Pro-
cess (MDP) and its generalization, the partially
observable MDP. In contrast to supervised learn-
ing, in reinforcement learning, the agent is learn-
ing through interaction with the environment and
thus influences the “future.” One of the chal-
lenges that arises in such cases is the exploration-
exploitation dilemma. The agent can choose ei-
ther to exploit its current knowledge and perhaps
not learn anything new or to explore and risk
missing considerable gains.

While reinforcement learning contains many
problems, due to lack of space, this entry focuses
on the basic ones. For a detailed history of the
development of reinforcement learning, see [1,
Chapter 1]. The focus of this entry is on Q-
learning and Rmax.

Notation

Markov Decision Process
A Markov decision process (MDP) formalizes
the following problem. An agent is in an envi-
ronment, which is composed of different states.
In each time step, the agent performs an action
and as a result observes a signal. The signal
is composed from the reward to the agent and
the state it reaches in the next time step. More
formally the MDP is defined as follows:

Definition 1 A Markov decision process (MDP)
M is a 4-tuple (S ,A,P ,R), where S is a set
of states, A is a set of actions, Ps;s

0a is the
transition probability from state s to state s0 when
performing action a 2 A in state s, andR.s; a/ is
the reward distribution when performing action a
in state s.

A strategy for an MDP assigns, at each time
t , for each state s a probability for perform-
ing action a 2 A, given a history Ft�1 D
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fs1; a1; r1; : : : ; st�1; at�1; rt�1g which includes
the states, actions, and rewards observed until
time t � 1. While executing a strategy � , an
agent performs at time t action at in state st
and observes a reward rt (distributed according
to R.st ; at /), and a next state stC1 (distributed
according to P a

st;� t ). The sequence of rewards is
combined into a single value called the return.
The agent’s goal is to maximize the return. There
are several natural ways to define the return.

• Finite horizon: The return of policy   for a

given horizonH is
HP

tD0

rt .

• Discounted return: For a discount parameter
” 2 .0; 1/, the discounted return of policy   is
1P

tD0

# t rt .

• Undiscounted return: The return of policy  

is lim
t!1

1
tC1

tP
iD0

ri .

Due to lack of space, only discounted return,
which is the most popular approach mainly due
to its mathematical simplicity, is considered. The
value function for each state s, under policy  ,

is defined as V 	.s/ D E	 Œ
1P

iD0

ri#
i �, where the

expectation is over a run of policy   starting at
state s. The state-action value function for using
action a in state s and then following   is defined
as Q	.s; a/ D R.s; a/C #P

s0

P a
s;s0V

	.s0/.

There exists a stationary deterministic optimal
policy,  �, which maximizes the return from any
start state [11]. This implies that for any policy  
and any state s, V  �.s/ � V  .s/, and  �.s/ D
argmaxa.Q

 �.s; a//. A policy   is ©-optimal if
kV 	� � V 	k1 � �.

Problems Formulation
The reinforcement learning problems are divided
into two categories, planning and learning.

Planning
Given an MDP in its tabular form, compute the
optimal policy. An MDP is given in its tabular
form if the 4-tuple, (A,S ,P ,R) is given explicitly.

The standard methods for the planning prob-
lem in MDP are given below.

Value Iteration
Value iteration is defined as follows. Start
with some initial value function, Cs, and then
iterate using the Bellman operator, T V.s/ D
max

a
R.s; a/C # P

s02S

P a
s;s0V.s

0/.

V0.s/ D Cs

VtC1.s/ D T Vt .s/;

This method relies on the fact that the Bellman
operator is contracting. Therefore, the distance
between the optimal value function and current
value function contracts by a factor of ” with
respect to max norm .L1/ in each iteration.

Policy Iteration
This algorithm starts with initial policy  0 and it-
erates over polices. The algorithm has two phases
for each iteration. In the first phase, the value
evaluation step, a value function for  t is calcu-
lated, by finding the fixed point of T tV t D V t ,
where T	tV D R.S; �t .s//C# P

s02S

P
	t .s/
s;s0 V.s0/.

The second phase, policy improvement step, is
taking the next policy  tC1 as a greedy policy
with respect to V t . It is known that policy iter-
ation converges with fewer iterations than value
iteration. In practice the convergence of policy
iteration is very fast.

Linear Programming
This approach formulates and solves an MDP
as a linear program (LP). The LP variables are
V1; : : : ; Vn, where Vi D V.si /. The definition is:

Variables: V1; : : : ; Vn

Minimize:
P
i

Vi

Subject to: Vi � ŒR.si ; a/C #P
j

Psi ;sj
.a/Vj �

8a 2 A; si 2 S:

Learning
Given the states and action identities, learn an
(almost) optimal policy through interaction with
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the environment. The methods are divided into
two categories: model-free learning and model-
based learning.

The widely used Q-learning [16] is a model-
free algorithm. This algorithm belongs to the
class of temporal difference algorithms [12]. Q-
learning is an off-policy method, i.e., it does
not depend on the underlying policy but, as can
immediately be seen, depends on the trajectory
and not on the policy generating the trajectory.

Q-Learning
The algorithm estimates the state-action value
function (for discounted return) as follows:

Q0.s; a/ D 0
QtC1.s; a/ D .1 � ˛t .s; a//Qt .s; a/

C ˛t .s; a/.rt .s; a/C #Vt .s
0//

where s0 is the state reached from state s when
performing action a at time t , and Vt .s/ D
max aQt .s; a/. Assume that ’t .s

0; a0/ D 0 if at
time t action a0 was not performed at state s0.
A learning rate ’t is well behaved if for every

state action pair .s; a/: (1)
1P

tD1

˛t .s; a/ D 1 and

(2)
1P

tD1

˛2
t .s; a/ D 1. As will be seen, this is

necessary for the convergence of the algorithm.
The model-based algorithms are very simple

to describe; they simply build an empirical model
and use any of the standard methods to find the
optimal policy in the empirical (approximate)
model. The main challenge in these methods
is in balancing exploration and exploitation and
having an appropriate stopping condition. Several
algorithms give a nice solution for this [3, 7]. A
version of these algorithms appearing in [6] is
described below.

On an intuitive level, a state will become
known when it was visited “enough” times and
one can estimate with high probability its param-
eters with good accuracy. The modified empirical
model is defined as follows. All states that are
not in K are represented by a single absorbing
state in which the reward is maximal (which

Algorithm 1: A model-based algorithm
Rmax
Set K D ;;
if s 2 K? then

Execute O	.s/
else

Execute a random action;
if s becomes known then

K DK [ fsg;
Compute optimal policy, O	 for
the modified empirical model

end
end

causes exploration). The probability to move to
the absorbing state from a state s 2 K is the
empirical probability to move out of K from s

and the probability to move between states in K
is the empirical probability.

Sample complexity [6] measures how many
samples an algorithm needs in order to learn.
Note that the sample complexity translates into
the time needed for the agent to wander in the
MDP.

Key Results

The first Theorem shows that the planning prob-
lem is easy as long as the MDP is given in its
tabular form, and one can use the algorithms
presented in the previous section.

Theorem 1 ([10]) Given an MDP, the planning
problem is P -complete.

The learning problem can be done also efficiently
using the Rmax algorithm as is shown below.

Theorem 2 ([3, 7]) Rmax computes an ©-optimal
policy from state s with probability at least 1 � •
with sample complexity polynomial in jAj; jS j; 1

�

and log 1
ı

, where s is the state in which the algo-
rithm halts. Also the algorithm’s computational
complexity is polynomial in jAj and j S j.
The fact that Q-learning converges in the limit
to the optimal Q function (which guarantees that
the greedy policy with respect to the Q function
will be optimal) is now shown.
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Theorem 3 ([17]) If every state-action is visited
infinitely often and the learning rate is well be-
haved, then Qt converges to Q� with probability
one.

The last statement is regarding the convergence
rate of Q-learning. This statement must take into
consideration some properties of the underlying
policy, and assume that this policy covers the
entire state space in reasonable time. The next
theorem shows that the convergence rate of Q-
learning can vary according to the tuning of the
algorithm parameters.

Theorem 4 ([4]) Let L be the time needed for
the underlying policy to visit every state action
with probability 1/2. Let T be the time until
jjQ� �QT jj � � with probability at least 1 � •
and #.s; a; t/ be the number of times action a
was performed at state s until time t . Then if
’t .s; a/ D 1 / #.s; a; t/, then T is polynomial in
L; 1

�
; log 1

ı
and exponential in 1

1��
. If ’t .s; a/ D

1 / #.s; a; t/¨ for ¨ 2 .1=2; 1/, then T is
polynomial L; 1

�
; log 1

ı
and 1

1��
.

Applications

The biggest successes of reinforcement learn-
ing so far are mentioned here. For a list of
successful applications of reinforcement learn-
ing, see http://neuromancer.eecs.umich.edu/cgi-
bin/twiki/view/Main/SuccessesOfRL.

Backgammon Tesauro [14] used temporal dif-
ference learning combined with neural networks
to design a player that learned to play backgam-
mon by playing itself and resulted in a player at
the level of the world’s top players.

Helicopter control Ng et al. [9] used inverse re-
inforcement learning for autonomous helicopter
flight.

Open Problems

While in this entry only MDPs given in their tab-
ular form were discussed, much current research

is dedicated to two major directions: large state
space and partially observable environments.

In many real-world applications, such as
robotics, the agent cannot observe the state
she is in and can only observe a signal which
is correlated with it. In such scenarios, the
MDP framework is no longer suitable, and
another model is in order. The most popular
reinforcement learning for such environments
is the partially observable MDP. Unfortunately,
for POMDP even the planning problems are
intractable (and not only for the optimal policy
which is not stationary but even for the optimal
stationary policy); the learning contains even
more obstacles as the agent cannot repeat the
same state twice with certainty, and thus, it is
not obvious how she can learn. An interesting
open problem is trying to characterize when a
POMDP is “solvable” and when it is hard to
solve according to some structure.

In most applications, the assumption that the
MDP can be represented in its tabular form is not
realistic and approximate methods are in order.
Unfortunately not much theoretically is known
under such conditions. Here are a few of the
prominent directions to tackle large state space.

Function Approximation
The term “function approximation” is due to
the fact that this approach takes examples from
a desired function (e.g., a value function) and
constructs an approximation of the entire func-
tion. Function approximation is an instance of
supervised learning, which is studied in machine
learning and other fields. In contrast to the tabular
representation, this time a parameter vector ‚
represents the value function. The challenge will
be to learn the optimal vector parameter in the
sense of minimum square error, i.e.,

min‚

X
s2S

.V 	.s/ � V.s;‚//2;

where V.s;‚/ is the approximation function.
One of the most important function approxima-
tions is the linear function approximation,

Vt .s;‚/ D
TX

iD1

�s.i/‚t .i/;



1820 Renaming

where each state has a set of vector features,
¥s . A feature-based function approximation
was analyzed and demonstrated in [2, 15]. The
main goal here is designing algorithms which
converge to almost optimal polices under realistic
assumptions.

Factored Markov Decision Process
In an FMDP, the set of states is described via
a set of random variables X D fX1; : : : ; Xng,
where eachXi takes values in some finite domain
Dom(Xi ). A state s defines a value xi 2 Dom.Xi /

for each variable Xi . The transition model is
encoded using a dynamic Bayesian network. Al-
though the representation is efficient, not only is
finding an ©-optimal policy intractable [8], but it
cannot be represented succinctly [1]. However,
under assumptions on the FMDP structure, there
exist algorithms such as [5] that have both theo-
retical guarantees and nice empirical results.

Cross-References
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Problem Definition

Consider a system in which n C 1 processes
P0; : : : ; Pn communicate either by message-
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passing or by reading and writing a shared
memory. Processes are asynchronous: there is
no upper or lower bounds on their speeds, and up
to t of them may fail undetectably by halting. In
the renaming task proposed by Attiya, Bar-Noy,
Dolev, Peleg, and Reischuk [1], each process is
given a unique input name taken from a range
0; : : : ; N , and chooses a unique output name
taken from a strictly smaller range 0; : : : ; K . To
rule out trivial solutions, a process’s decision
function must depend only on input names, not
its preassigned identifier (so that Pi cannot simply
choose output name i). Attiya et al. showed that
the task has no solution when K D n, but does
have a solution when K D N C t . In 1993,
Herlihy and Shavit [2] showed that the task has
no solution when K < N C t .

Vertexes, simplexes, and complexes model de-
cision tasks.(See the companion article entitled
�Topology Approach in Distributed Comput-
ing). A process’s state at the start or end of a task
is represented as a vertex v labeled with that
process’s identifier, and a value, either input or
output: v D hP; vi i. Two such vertexes are com-
patible if (1) they have distinct process identi-
fiers, and (2) those process can be assigned those
values together. For example, in the renaming
task, input values are required to be distinct, so
two input vertexes are compatible only if they
are labeled with distinct process identifiers and
distinct input values.

Figure 1 shows the output complex for the
three-process renaming task using four names.
Notice that the two edges marked A are identical,
as are the two edges marked B. By identifying
these edges, this task defines a simplicial complex
that is topologically equivalent to a torus. Of
course, after changing the number of processes or
the number of names, this complex is no longer
a torus.

Key Results

Theorem 1 Let Sn be an n-simplex, and Sm

a face of Sn. Let S be the complex consisting of
all faces of Sm, and PS the complex consisting of all

proper faces of Sm (the boundary complex of S). If
�. PS/ is a subdivision of PS, and �W �. PS/ ! F.S/
a simplicial map, then there exists a subdivision
�.S/ and a simplicial map  W �.S/ ! F.S/
such that �. PS/ D �. PS/, and � and  agree on
�. PS/.
Informally, any simplicial map of an m-sphere to
F can be “filled in” to a simplicial map of the
.mC1/-disk. A span for F.Sn/ is a subdivision ¢
of the input simplex Sn together with a simplicial
map �W �.Sn/ ! F.Sn/ such that for every
face Sm of Sn, �W �.Sm/ ! F.Sm/. Spans
are constructed one dimension at a time. For
each s D hPi ; vi i 2 Sn; � carries s to the
solo execution by Pi with input vi . For each
S1 D .s0; s1/, Theorem 1 implies that �.s0/

and �.s1/ can be joined by a path in F.S1/.
For each S2 D .s0; s1; s2/, the inductively
constructed spans define each face of the
boundary complex �W �.S1

ij / ! F.S1/ij , for
i; j 2 f0; 1; 2g. Theorem 1 implies that one
can “fill in” this map, extending the subdivision
from the boundary complex to the entire
complex.

Theorem 2 If a decision task has a protocol
in asynchronous read/write memory, then each
input simplex has a span.

One can restrict attention to protocols that have
the property that any process chooses the same
name in a solo execution.

Definition 1 A protocol is comparison-based if
the only operations a process can perform on
processor identifiers is to test for equality and
order; that is, given two P and Q, a process can
test for P D Q;P � Q, and P � Q, but
cannot examine the structure of the identifiers in
any more detail.

Lemma 1 If a wait-free renaming protocol for K
names exists, then a comparison-based protocol
exists.

Proof Attiya et al. [1] give a simple comparison-
based wait-free renaming protocol that uses 2nC
1 output names. Use this algorithm to assign each
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Renaming, Fig. 1 Output complex for 3-process renaming with 4 names

process an intermediate name, and use that inter-
mediate name as input to the K-name protocol.�

Comparison-based algorithms are symmetric on
the boundary of the span. Let Sn be an input
simplex, �W �.Sn/ ! F.Sn/ a span, and R the
output complex for 2n names. Composing the
span map � and the decision map ı yields a map
�.Sn/ ! R. This map can be simplified by re-
placing each output name by its parity, replacing
the complex R with the binary n-sphere Bn.

�W �.Sn/! Bn : (1)

Denote the simplex of Bn whose values are all
zero by 0n, and all one by 1n.

Lemma 2 ��1.0n/ D ��1.1n/ D ;.

Proof The range 0; : : : ; 2n � 1 does not contain
n C 1 distinct even names or n C 1 distinct odd
names. �

The n-cylinder Cn is the binary n-sphere without
0n and 1n. Informally, the rest of the argument
proceeds by showing that the boundary of the
span is “wrapped around” the hole in Cn a non-
zero number of times.

The span �.Sn/ (indeed any any subdivided
n-simplex) is a (combinatorial) manifold with
boundary: each .n�1/-simplex is a face of either
one or two n-simplexes. If it is a face of two,
then the simplex is an internal simplex, and oth-
erwise it is a boundary simplex. An orientation

of Sn induces an orientation on each n-simplex of
�.Sn/ so that each internal .n�1/-simplex inher-
its opposite orientations. Summing these oriented
simplexes yields a chain, denoted ��.Sn/, such
that

@��.Sn/ D
nX

iD0

.�1/i��.facei .S
n// :

The following is a standard result about the ho-
mology of spheres.

Theorem 3 Let the chain 0n be the simplex 0 n

oriented like Sn. (1) For 0 < m < n, any two m-
cycles are homologous, and (2) every n-cycle Cn

is homologous to k � @0n, for some integer k. Cn

is a boundary if and only if k D 0.

Let Sm be the face of Sn spanned by solo exe-
cutions of P0; : : : ; Pm. Let 0m denote some m-
simplex of Cn whose values are all zero. Which
one will be clear from context.

Lemma 3 For every proper face Sm�1 of Sn,
there is an m-chain ˛.Sm�1/ such that

��.��.Sm// � 0m �
mX

iD0

.�1/i˛.facei .S
m//

is a cycle.

Proof By induction on m. When mD1,
ids.S1/ D fi; j g. 01 and ��.��.S1// are
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1-chains with a common boundary hPi ; 0i �
hPj ; 0i, so ��.��.S1// � 01 is a cycle, and
˛.hPi ; 0i/ D ;.
Assume the claim for m; 1 � m < n � 1. By
Theorem 3, every m-cycle is a boundary (form <

n � 1), so there exists an .m C 1/-chain ˛.Sm/

such that

��.��.Sm// � 0m �
mX

iD0

.�1/i˛.facei .S
m//

D @˛.Sm/ :

Taking the alternating sum over the faces of
SmC1, the ˛.facei .S

m// cancel out, yielding

��.@��.SmC1// � @0mC1

D
mC1X
iD0

.�1/i@˛.facei .S
mC1// :

Rearranging terms yields

@

�
��.��.SmC1// � 0mC1

�
mC1X
iD0

.�1/i˛.facei .S
mC1//

�
D 0 ;

implying that

��.��.SmC1// � 0mC1

�
mC1X
iD0

.�1/i˛.facei .S
mC1//

is an .mC 1/-cycle. �

Theorem 4 There is no wait-free renaming pro-
tocol for .n C 1/ processes using 2n output
names.

Proof Because

��.��.Sn�1// � 0n�1�
nX

iD0

.�1/i˛.facei .S
n�1//

is a cycle, Theorem 3 implies that it is homol-
ogous to k � @0n, for some integer k. Because
� is symmetric on the boundary of �.Sn/, the
alternating sum over the .n � 1/-dimensional
faces of Sn yields:

��.@��.Sn// � @0n � .nC 1/k � @0n

or

��.@��.Sn// � .1C .nC 1/k/ � @0n :

Since there is no value of k for which .1 C
.n C 1/k/ is zero, the cycle ��.@��.Sn// is not
a boundary, a contradiction. �

Applications

The renaming problem is a key tool for un-
derstanding the power of various asynchronous
models of computation.

Open Problems

Characterizing the full power of the topological
approach to proving lower bounds remains an
open problem.
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Introduction

Fueled by the growth of Internet and advance-
ments in online advertising techniques, today
more and more online firms rely on advertising
revenue for their business. Some of these firms
include news agencies, media outlets, search
engines, social and professional networks,
etc. Much of this online advertising business
is moving to what’s called programmatic
buying where an advertiser bids for each single
impression, sometimes in real time, depending
on how he values the ad opportunity. This work
is motivated by the need of a desired property
in the auction mechanisms that are used in these
bid-based advertising systems.

A standard mechanism for most auction
scenarios is the famous Vickrey-Clarke-Groves
(VCG) mechanism. VCG is incentive compatible
(IC) and maximizes social welfare. Incentive
compatibility guarantees that the best response
for each advertiser is to report its true valuation.
This makes the mechanism transparent and
removes the load from the advertisers to calculate
the best response. Social welfare is the sum of the
valuations of the winners. This value is treated
as a proxy for how much all the participants
gain from the transaction. What makes VCG
mechanism versatile is that it reduces the
mechanism design problem into an optimization
problem for any scenario.

Even though this versatility of VCG mech-
anism makes it a popular choice mechanism,
however, it doesn’t satisfy an important property,
namely, that of revenue monotonicity. Revenue
monotonicity says that if one increases the bid
values or add new bidders, the total revenue
should not go down. To see that VCG is not
revenue monotone, consider a simple example of
two items and three bidders (A, B, and C). Say,
bidder A wants only the first item and has a bid
of 2. Similarly bidder B wants only the second
item and has a bid of 2. Bidder C wants both the
items or nothing and has a bid of 2. Now if only
bidders A and B participate in the auction, then
VCG gives a revenue of 2; however, if all the
three bidders participate, then the revenue goes
down to 0.

This lack of revenue monotonicity (which has
been noted several times in the literature) is one
of the serious practical drawbacks of the cele-
brated VCG mechanism. To think of it, an online
firm that depends on advertising revenue puts
significant resources in its sales efforts to attract
more bidders as the general belief is that more
bidders imply more competition which should
lead to higher prices. Now to tell this firm that
their revenue can go down if they get more
bidders can be strategically very confusing for
them. To see this from another perspective, say, in
a search engine firm, there is a team which makes
a UI change that increases the click-through prob-
ability (CTR) of the search ads. These changes
are thought of as good changes in the firm as
they increase the effective bid of the bidders
(the effective bid of a bidder in search adver-
tising is a function of its cost-per-click bid and
the CTR of its ad). Now if after making the
change, the revenue goes down, what was sup-
posed to be a good change may seem like a bad
change. The point we are trying to make is that
there are many teams in a firm, and for these
teams to function properly, it is important that the
auction mechanisms satisfy revenue monotonic-
ity.

In this entry, with a focus on auctions arising
in advertising scenarios, we seek to understand
mechanisms that satisfy this additional property
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of revenue monotonicity (RM). It is well
known that for various settings (including ours),
no mechanism can satisfy both IC and RM
properties while attaining optimal social welfare.
In fact it is known that one cannot even hope
to get Pareto-optimality in social welfare while
attaining both IC and RM [10]. Thus to overcome
this bottleneck and develop an understanding
of RM mechanisms, we relax the requirement
of attaining full social welfare and define the
notion of price of revenue monotonicity (PoRM).
Price of revenue monotonicity of an IC and RM
mechanism M is the ratio of optimal social
welfare to the social welfare attained by the
mechanism M. The goal is to design mechanisms
that satisfy IC and RM properties and at the same
time achieve low price of revenue monotonicity.
To the best of our knowledge, this is the first
work that defines and studies this notion of price
of revenue monotonicity.

We study two different advertising settings
in this entry. The first setting we study is the
image-text auction. In image-text auction there
is a special box designated for advertising in a
publisher’s website which can be filled by either
k text ads or a single image ad. The second setting
is the video-pod auction where an advertising
break of a certain duration in a video content
can be filled with multiple video ads of possibly
different durations.

We note that revenue monotonicity is an
across-instance constraint as it requires total
revenue to behave in a certain manner across
different instances, where a single instance is
defined by fixing the type of the buyers. Note
that incentive compatibility is also an across-
instance constraint. A lot of research effort has
gone into understanding incentive compatibility,
which has resulted in useful tools for designing
incentive-compatible mechanisms. Surprisingly,
hardly any work has gone into understanding
and building tools for designing mechanisms
which satisfy the desired property of revenue
monotonicity. We believe that understanding
revenue monotonicity will shed new fundamental
insights into the design of mechanisms for many
practical scenarios.

Related Work
Ausubel and Milgrom [1] show that VCG satis-
fies RM if bidders’ valuations satisfy bidder sub-
modularity. Bidders’ valuations satisfy bidders
submodularity if and only if for any bidder i and
any two sets of bidders S; S 0 with S � S 0 we
have WF.S [ fig/ � WF.S/ � WF.S 0 [ fig/ �
WF.S 0/, where WF.S/ is the maximum social
welfare achievable using only S . Note that this
is a general tool one can use to design revenue-
monotone mechanisms – restrict the range of
the possible allocations such that we get bidder
submodularity when we run VCG on this range.
However, we can show that this general tool is
not so powerful by showing that for our auction
scenarios, it is not possible to get a mechanism
with PORM better than �.k/ by using the above
tool.

Ausubel and Milgrom [1] also show that bid-
der submodularity is guaranteed when the goods
are substitutes, i.e., the valuation function of each
bidder is submodular over the goods. However,
for many practical scenarios, including ours, the
valuation function of the bidders is not submod-
ular. Ausubel and Milgrom [1] design mecha-
nisms which select allocations that are in the
core of the exchange economy for combinatorial
auctions. Here an allocation is in the core if
there is no coalition of bidders and the seller
to trade with each other in a way which is pre-
ferred by all the members of the coalition to
the allocation. Day and Milgrom [3] show that
core-selecting mechanisms that choose a core
allocation which minimizes the seller’s revenue
satisfy RM given bidders follow so-called best-
response truncation strategy. Therefore the core-
selecting mechanism designed by [1] satisfies
RM if the participants play such best-response
strategy, although this mechanism is not incentive
compatible.

Rastegari et al. [10] prove that no mechanism
for general combinatorial auctions which satisfies
IC and RM can achieve weakly maximal social
welfare. An allocation is weakly maximal if it
cannot be modified to make at least one partic-
ipant better off without hurting anyone else. In
another work [9] they design a randomized mech-
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anism for combinatorial auctions which achieves
weak maximality and expected revenue mono-
tonicity.

Another related work is around the charac-
terization of mechanisms that achieve the IC
property. The classic result of Roberts [11]
states that affine maximizers are the only social
choice functions that can be implemented using
IC mechanisms when bidders have unrestricted
quasi-linear valuations. Subsequent works study
the restricted cases [2, 6, 12, 13].

There is also an extensive body of research
around designing mechanisms with good bounds
on the revenue. Myerson [7] designs a mecha-
nism which achieves the optimal expected rev-
enue in the single parameter Bayesian setting.
Goldbert et al. consider optimizing revenue in
prior-free settings (see [8] for a survey on this).

Our Results
As mentioned earlier, we study two settings: (1)
image-text auction and (2) video-pod auction.
Both these settings can be described using the
following abstract model. Say, there is a seller
selling k identical items to n participants/buyers.
Participant i wants either di items or nothing
and has a valuation of vi if it gets di items or
0 otherwise. Demand di is assumed to be public
knowledge, and valuation vi is assumed to be the
private information of the participant i . We want
to design a mechanism that is incentive com-
patible, individually rational (IR), and revenue
monotone and maximizes social welfare.

For the image-text auction, the demand di 2
f1; kg, i.e., each participant wants either 1 item
(text ads) or k items (image ad). For the video-
pod auction, an item corresponds to a unit time
interval (say, one second), and the demand di

could be any number between 1 and k, i.e., di 2
Œk�.

The first result of this entry is the following
theorem.

Theorem 1 We design a deterministic mech-
anism for image-text auction (MITA) which
satisfies individual rationality (IR), IC, and RM
with PORM of at most

Pk
iD1

1
i
' ln.k/, i.e., the

ratio of MITA’s welfare over the optimal welfare
is at most ln.k/.

The proof of Theorem 1 appears in section “Im-
age-Text Auctions.” We outline our mechanism
over here: Let v1 � : : : � vn1

be the valuations
of text participants and V1 be the maximum valu-
ation of the image participants. If maxj2Œk j � vj

is less than V1, MITA gives all the items to the
image participant who has valuation V1; other-
wise MITA picks the highest j � text participants
as the winners where j � is the maximum number
in Œk� such that j � �vj � � V1. Note that the j that
maximizes j �vj might be less than the j� which
is the largest j such that j � vj � V1. Also note
that MITA sometimes picks less than k text ads
as the winner (even if there are k or more text
ads). VCG always picks the maximum number
of text ads (if it decides to allocate the slot to
text ads); this is one of the reasons why VCG
fails to satisfy RM. When we allow lesser number
of text ads to be declared as winners, intuitively,
this increases the competition which boosts the
revenue and thus helps in achieving RM, although
this comes with a loss in social welfare.

Surprisingly, we can also show that the above
mechanism achieves the optimal PORM for the
image-text auction by proving a matching lower
bound. We show that a mechanism that satis-
fies IR, IC, RM, and two additional mild as-
sumptions of anonymity (AM) and independence
of irrelevant alternatives (IIA) cannot achieve a
PORM better than

Pk
iD1

1
i
. Anonymity means

that the auction mechanism doesn’t depend on the
identities of the participants (a formal definition
appears in section “Image-Text Auctions”). IIA
means that decreasing the bid of a losing partic-
ipant shouldn’t hurt any winner. Note that our
mechanism satisfies both AM and IIA as well.
Formally, we prove the following theorem whose
proof appears in section “Image-Text Auctions.”

Theorem 2 There is no deterministic mecha-
nism which satisfies IR, IC, RM, AM, and IIA and
has PORM less than

Pk
iD1

1
i
.

Finally we prove the following theorem for
video-pod auctions.

Theorem 3 We design a mechanism for video-
pod auction (MVPA) which satisfies IR, IC, and
RM with PORM of at most .blogkcC1/�.2Clnk/.
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We give the formal proof of Theorem 3 in
section “Video-Pod Auctions” and outline the
mechanism here. MVPA partitions the participants
into .blog kc C 1/ groups where each group g 2
Œlog k� contains only the participants whose de-
mands are in the range Œ2g�1; 2g/. MVPA selects
winners only from one group. We round up the
size of each participant in group g to 2g ; thus
we can have at most k

2g number of winners from

the group g. Let v.g/
1 � : : : � v

.g/
p be the

sorted valuations of all the participants in group
g. We define the max possible revenue of group
g (MPRG.g/) to be

MPRG.g/ D max
j2Œk=2g

j � v.g/
j :

As the name of MPRG.g/ suggests, its value
captures the maximum revenue we can truthfully
obtain from group g without violating revenue
monotonicity. Let g� be the group with the high-
est MPRG value and group g0 be the group whose
MPRG is the second highest. The set of winners
are the first j participants from group g� where
j is the largest number in Œk=2g � such that j �
v

.g�/
j is greater than or equal MPRG.g0/. We

show that PORM of MVPA is .blog kc C 1/ �
.2C ln k/.

Preliminaries

Let N D f1; : : : ; ng be the set of all participants
and k be the number of identical items. We denote
the type of participant i by �i D .di ; vi / 2 Œk� 

R
C, where di is the number of items participant

i demands and vi is her valuation for getting
di items. Note that the valuation of player i for
getting less than di items is 0. Now in the image-
text auction, participants have demand of either
1 or k. In the video-pod auction, participants
can have arbitrary demands in f1; : : : ; kg. Let’s
denote the set of all possible types Œk�
RC by‚
and the set of all type profiles of n participants by
‚n D ‚ 
 : : : 
‚„ ƒ‚ …

n

.

A deterministic mechanism M consists of an
allocation rule x W ‚n ! 2n which maps each
type profile to a subset of participants as the
winners and payment rule p W ‚n ! �

R
C�n

which maps each type profile to the payments of
each participant.

Let � D .�1; �2; : : : ; �n/ 2 ‚n be a specific
type profile. Also let A� be the set of all feasible
solutions, i.e.,

A� D
(
S � N ˇ̌ X

i2S

di � k
)
:

For each feasible solution A 2 A� , the social
welfare of A (denoted by WF.A/) is equal toP

�i2A vi . To evaluate the social welfare of a
mechanism M on a type profile � , we compare
the welfare of its solution to the optimal solution.

Definition 1 The welfare ratio of mechanism
M D .x; p/ on type profile � 2 ‚n (denoted by
WFR.M; �/) is the following:

WFR.M; �/ D maxA2A�
WF.A/

WF.x.�//

To capture the worst-case loss in social wel-
fare across all type profiles, we define the notion
of price of revenue monotonicity.

Definition 2 The Price of Revenue Monotonic-
ity of a mechanism M (denoted by PORM.M/)
is defined as follows:

PORM.M/ D max
�2‚n

WFR.M; �/

The desired goal is to design mechanisms
which have low PORM value, where the best
possible value is 1.

Note that since we are interested in mecha-
nisms with bounded PORM, we restrict ourselves
to mechanisms that satisfy consumer sovereignty.
Consumer sovereignty says that any participant
can be a winner as long as he bids high enough.

Now we will define a weakly monotone allo-
cation rule which is used in the characterization
of deterministic IC mechanisms. Let function xi W
‚n ! f0; 1g be the restriction of function x to
participant i . Here xi .:/ is one if participant i is a
winner and zero otherwise.

Definition 3 We call allocation function x is
weakly monotone if for any type profile � 2
‚n and any participant i 2 Œn� with demand



1828 Revenue Monotone Auctions

di , function xi ..di ; vi /; ��i / is a non-decreasing
function in vi .

Note that if a deterministic mechanism M
satisfies consumer sovereignty and has a weakly
monotone allocation function, then function
xi ..di ; vi /; ��i / is a single-step function. The
value at which the function xi ..di ; vi /; ��i /

jumps from zero to one, i.e., the smallest value
at which the participant i becomes a winner, is
called critical value.

Definition 4 Let M D .x; p/ be a deterministic
mechanism that satisfies consumer sovereignty
and has a weakly monotone allocation function;
the critical value of participant i in type profile �
is v�i D supfvi jxi ..di ; vi /; ��i / D 0g.

The following lemma characterizes determin-
istic IC mechanisms (first given by [7]). We pro-
vide a proof sketch for the sake of completeness
(for a complete proof, see, e.g., [8]).

Lemma 1 Let M D .x; p/ be a mechanism
which satisfies IR. Mechanism M is truthful (IC)
if and only if the following hold:

1. x is weakly monotone.
2. If participant i is a winner, then its payment is

its critical value (v�i ).

Proof First we prove that if M is truthful, then
it satisfies both conditions 1 and 2. We prove
the first condition by contradiction. If x is not
monotone, then there exist participant i , type
profile � , and two values v.1/

i > v
.2/
i such

that i wins in type profile
�
.di ; v

.2/
i /; ��i

�
but

loses in type profile
�
.di ; v

.1/
i /; ��i

�
. This makes

incentive for participant i to lie for type profile�
.di ; v

.1/
i /; ��i

�
and announce its valuation as

v
.2/
i .

Consider an arbitrary participant i who is
a winner; now we prove that the payment of
participant i is its critical value. Assume for con-
tradiction that mechanism M charges participant
i amount ci where ci < v�i in a type profile
..di ; vi /; ��i /. In this case, if participant i had
type .di ; Ovi / where ci < Ovi < v�i , then i is not
a winner in ..di ; Ovi /; ��i / as v�i is the critical

value. Therefore, if the real type of participant
i is .di ; Ovi /, she has incentive to lie her type as
.di ; vi /, become a winner, and pay ci . Hence, the
payment cannot be less than v�i . Now suppose
that there exists value vi for which mechanism
M charges i amount ci which is more than v�i . In
this case, if participant i had type .di ; Ovi / where
v�i < Ovi < ci , then i is still a winner (as v�i is the
critical value) and pays at most Ovi (as M satisfies
IR). Therefore, she has an incentive to lie her type
as .di ; Ovi /, become a winner, and pay at most Ovi .
Hence, the payment cannot be more than v�i for
any winning valuation vi .

For the other direction, it is easy to check
that any IR mechanism that satisfies conditions 1
and 2 is truthful. ut

Image-Text Auctions

In this section we give our mechanism for image-
text auction (MITA) which satisfies IR, IC, RM,
and PORM.MITA/ � ln k. Recall that in the
image-text auction we have k identical items to
sell and there are two groups of participants: the
ones who want all the k items which we call
image participants and the ones who want only
one item which we refer to as text participants.
As a result there are also two possible types of
outcome: MITA gives all the items to an image
participant; or it gives an item to each member of
a subset of the text participants.

We start with explaining why VCG fails to
satisfy RM and how we address this issue in
MITA. Consider the type profile where we have
one image participant with type .k; 1/ and one
text participant with type .1; 1/. In this case either
of the participants can be the winner. The pay-
ment of the winner in VCG is her critical value
which is one. However if we add one more text
participant with the same type .1; 1/, the two text
participants win and each of them pays zero. The
reason for the payment drop is that VCG always
selects k winners from the text participants. This
decreases the critical value of each text partici-
pant as the valuation of the other text participants
helps her to win against image participants. In
our mechanism we overcome this issue by not
guaranteeing that the maximal number of text
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participants can win an item. In other words, in
our mechanism it is possible that less than k text
participants win an item even if there are more
than k text participants. This way, intuitively,
even if the number of text participants increases,
it potentially creates more competition and hence
increases the payments.

Let � be an arbitrary-type profile where there
are n1 text participants with types .1; v1/; : : :,
.1; vn1

/ and n2 image participants with types
.k; V1/; : : : ; .k; Vn2

/. We define mechanism
MITA D .xMITA; pMITA/ by giving allocation
function xMITA which is weakly monotone.
Given the allocation function, we obtain payment
function pMITA using the critical values defined
in Lemma 1 which makes the mechanism
truthful.

Allocation rule of MITA. Without loss of gen-
erality, we assume that v1 � v2 � : : : � vn1

and V1 � V2 � : : : � Vn2
. Also, we assume

that n1 � k; if not, we add fake text participants
with value 0. For each j 2 Œk�, we consider
value j � vj . Let candidate set C� contain all the
values j 2 Œk� such that j � vj is greater than or
equal to V1, i.e., C� D fj 2 Œk�jj � vj � V1g.
If C� is empty, the image participant with type
.k; V1/wins. IfC� is nonempty, then let j � be the
maximum member of C� , i.e., j � D maxj2C�

j .
In this case the first j � text participants win.

Observation 1 Allocation function xMITA is
weakly monotone.

Proof Recall from Definition 3, in order to prove
that xMITA is weakly monotone, we have to show
that for any participant i 2 Œn� with demand
di , function xi ..di ; vi /; ��i / is a non-decreasing
function in vi .

If i is an image participant, then i wins if its
valuation is larger than max.W;maxj2Œk j � vj /

where W is the largest valuation of the
image participants in ��i . Moreover, bidder
i loses for any value smaller than or equal to
max.W;maxj2Œk j � vj /. Therefore xi is weakly
monotone.

If i is a text participant, then let v01 � v02 � : : :
be the sorted valuations of the text participants
and V1 be the largest valuation of image
participants in ��i . Let t be the smallest value

such that there exist j 2 Œk � 1� where v0jC1 �
t � v0j and .j C 1/ � t is greater than or equal to
V1. If the valuation of bidder i is larger than or
equal to t , then she wins since .j C 1/ � t � V1;
otherwise she does not win since t is the smallest
value for which there exist j 2 Œk � 1� such
that .j C 1/ � t � V1. Therefore xi is weakly
monotone. ut

In the following lemma we obtain the critical
value (or truthful payments) of the winners in
x MITA using Lemma 1. The lemma also gives
an intuition to why we select j � text participants
to win, which is the maximum j such that j �vj �
V1.

Lemma 2 If C� , where C� D fj 2 Œk�jj �
vj � V1g, is empty, then the first image par-
ticipant wins all the items with critical value
max.V2;maxj2Œk j � vj /. If C� is not empty, the
first j � text participants win the items where
j � D maxj2C�

j and all of them have critical
value max.vkC1;

V1

j �
/.

Proof We find the critical value (Definition 4) of
a winner by showing that if she has any valuation
larger than the critical value she wins and for any
valuation less than the critical value she doesn’t.

If C� is empty, then the first image partici-
pant (with type .k; V1/) wins all the items. As
long as V1 is larger than max.V2;maxj2Œk j �
vj /, participant .k; V1/ wins. If V1 is less than
max.V2;maxj2Œk j � vj /, then she loses to the
image participant .k; V2/ if max.V2;maxj2Œk j �
vj / D V2 or loses to the text participants if
max.V2;maxj2Œk j � vj / D maxj2Œk j � vj . This
means that the critical value of the first image
participant is max.V2;maxj2Œk j � vj / if she is
the winner.

If C� is nonempty, then the first j � text par-
ticipants win. Let i 2 Œj �� be an arbitrary
winner. First we observe that for any valuation

v0i greater than or equal to max
�
vkC1;

V1

j �

�
, par-

ticipant i remains as a winner in type profile
� 0 D ..1; v0i /; ��i /. This is because for any such
change in valuation of participant i number j �
remains in set C� 0 . Moreover, this change does
not add any new number j 0 to C� 0 such that j 0 >
j � because the valuations of the text participants
with index greater than j � are not changed in � 0.
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In order to prove that for any valuation v0i less

than critical value max
�
vkC1;

V1

j �

�
, participant i

is not a winner we consider two cases: (A) when
the critical value is equal to V1

j �
and (B) when the

critical value is equal to vkC1.

Case (A): We prove this case by contradiction.
Let v0i be a valuation less than V1

j �
for which

participant i is in the set of winners in type
profile � 0 D ..1; v0i /; ��i /. Because v0i is less
than V1

j � , the number of winners which con-
tains participant i cannot be less than or equal
to j � in type profile � 0. Let j 0 2 Œk� which
is greater than j � be the number of winners
in � 0. This means that there are at least j 0
participants whose valuation is larger than V1

j 0

in � 0. Note that all the valuations in � are the
same as � 0 except vi which is decreased to v0i ;
therefore, there are also at least j 0 participants
whose valuation is larger than V1

j 0
in � and

hence j 0 is in set C� . This contradicts with the
fact that j � is the largest member of C� .

Case (B): In case (B) we have max
�
vkC1;

V1

j �

�
D

vkC1 which implies that k � vkC1 is larger
than V1 as j � 2 Œk�. Therefore Case (B) can
only happen when j � D k. Now consider
participant i decreases its valuation to value
v0i that is less than vkC1; then it cannot be a
winner as there are k other participants whose
valuations are more than v0i while we have
only k items. ut
The payment function of MITA is set to the

critical values of the winners as specified in
Lemma 2 which by using Observation 1 and
Lemma 1 implies MITA satisfies IC. Moreover,
as the payments are always less than the partic-
ipants’ bid, IR property of MITA follows. Finally

in the following lemma, we show that MITA is
revenue monotone.

Lemma 3 Let � 0 be the type profile obtained
by either increasing the valuation of a partic-
ipant or adding a new participant to the type
profile �; then we have REVENUE.MITA; � 0/ �
REVENUE.MITA; �/.

Proof Let v1 � v2 � : : : be the valuations of
text participants and V1 � V2 � : : : be the
valuations of image participants in � . Similarly
let v01 � v02 � : : : be the valuations of text
participants and V 01 � V 02 � : : : be the valuations
of image participants in � 0. Note that for any i we
have vi � v0i and Vi � V 0i as we have onemore
participant or a higher valuation in � 0. Let x
be the new added participant or the participant
which has higher valuation in � 0.

We prove this lemma by considering the value
of REVENUE.MITA; �/ for the case when text
participants win and the case when an image
participant wins. If an image participant wins,
then it means that V1 > maxj2Œk j � vj and she
pays max.V2;maxj2Œk j � vj / which is the total
revenue.

If text participants win, then it means
V1 � maxj2Œk j � vj and there are j � winners
where each of them pays max.vkC1;

V1

j �
/. If

max.vkC1;
V1

j �
/ D V1

j �
, then the total revenue

is V1. If max.vkC1;
V1

j �
/ D vkC1, it implies

that k � vkC1 is larger than V1. Remember
that C� D fj 2 Œk�jj � vj � V1g and
j � D maxj2C�

j ; therefore j � D k and hence
the total payment of the winners is k � vkC1.

In summary the total revenue for type profile
� is the following:

REVENUE.MITA; �/ D(
max.V2;maxj2Œk j � vj / V1 > maxj2Œk j � vj .A/

max.V1; k � vkC1/ V1 � maxj2Œk j � vj .B/

Similarly the total revenue for type profile � 0 is
the following:

REVENUE.MITA; � 0/ D(
max.V 02;maxj2Œk j � v0j / V 01 > maxj2Œk j � v0j .A/
max.V 01; k � v0kC1

/ V 01 � maxj2Œk j � v0j .B/
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Note that because for any i we have vi � v0i
and Vi � V 0i the following inequalities are
straightforward:

V1 � V 01 (1)

V2 � V 02 (2)

max
j2Œk

j � vj � max
j2Œk

j � v0j (3)

k � vkC1 � k � v0kC1 (4)

If both REVENUE.MITA; �/ and REVENUE

. MITA; � 0/ take their value from Case .A/, then

the proof of the lemma follows from Eqs. (2)
and (3). Similarly if both REVENUE.MITA; �/

and REVENUE.MITA; � 0/ take their value from
Case .B/, then the proof of the lemma follows
from Eqs. (1) and (4).

If REVENUE.MITA; �/ takes its value from
Case .A/ and REVENUE.MITA; � 0/ takes from
Case .B/, then it means that participant x is a
text participant which causes maxj2Œk j �v0j to be
larger than V 01. The following proves the theorem
for this case:

REVENUE.MITA; �/

D max.V2; max
j2Œk

j � vj /

< V1 REVENUE.MITA; �/ takes

its value from Case .A/

D V 01 participant x is a

text-participant

� max.V 01; k � v0kC1/

D REVENUE.MITA; � 0/

If REVENUE.MITA; �/ takes its value from
Case .B/ and REVENUE.MITA; � 0/ takes from

Case .A/, then it means that participant x is
an image participant. The following proves the
theorem for this case:

REVENUE.MITA; �/

D max.V1; k � vkC1/

< max
j2Œk

j � vj REVENUE.MITA; �/ takes

its value from Case .B/ and

the fact that vk � vkC1

D max
j2Œk

j � v0j x is an image participant

� max.V 02; max
j2Œk

j � v0j /

D REVENUE.MITA; � 0/ ut
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In the above we proved that MITA satisfies
IR, IC, and RM. In the following theorem
we bound the PORM of MITA and finish this
section.

Theorem 4 PORM.MITA/ � ln k.

Proof Let A be the set of winner(s) which real-
izes the maximum social welfare in type profile � .
IfA contains only one image participant with val-
uation V1, then we also have V1 � maxj2Œk j �vj .
Mechanism MITA also selects an image partici-
pant with the same valuation if V1 > maxj2Œk j �
vj and hence PORM.MITA/ is 1. Otherwise we
have V1 D maxj2Œk j � vj where MITA selects a
set of text participants which overall gives social
welfare V1 and hence again the PORM.MITA/

is 1.
Now we consider the case when A contains

text participants. By adding enough dummy par-
ticipants with value zero, and without loss of
generality, we assume that set A contains the
first k text participants with highest valuations
v1 � v2 � : : : � vk . Mechanism MITA selects
either the first j � text participants with highest

valuations (v1 � v2 � : : : � vj � ) or selects an
image participant with valuation V1. Remember
that j � is the greatest number in set C� D
fj jj 2 Œk� ^ j � vj � V1g which implies the
following:

8j 0 2 fj � C 1; : : : ; kg vj 0 <
V1

j 0
(5)

Note that if MITA selects an image participant,
then Eq. (5) holds for j � D 0.

Now we consider the following two cases to
prove the theorem:

If MITA selects an image participant, then we
have the following:

PORM.MITA/ D
P

j2Œk vj

V1

�
P

j2Œk V1=j

V1

Eq. (5)

� ln k

If MITA selects the first j � text participants, then
we have the following:

PORM.MITA/ D
P

j2Œk vjP
j2Œj � vj

�
P

j2Œj � vj CPk
jDj �C1 vjP

j2Œj � vj

�
P

j2Œj � vj CPk
jDj �C1 V1=jP

j2Œj � vj

Eq. (5)

�
P

j2Œj � vj CPk
jDj �C1

�P
j2Œj � vj

�
=jP

j2Œj � vj

because V1 �
X

j2Œj �

vj

� ln k ut
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Video-Pod Auctions

In this section we design a mechanism for video-
pod auction (MVPA) which satisfies IR, IC, and
RM whose PORM is at most .blog kc C 1/ � .2C
ln k/. Note that all the log functions are in base
2. Let � D ..d1; v1/; : : : ; .dn; vn// 2 ‚n be an
arbitrary-type profile of n participants. We define
the allocation and payment function of MVPA for
this type profile.

Mechanism MVPA partitions the participants
into blogkc C 1 groups G.1/; : : : ; G.blog kcC1/

where group G.g/ contains all the participants
whose demand is in the range Œ2g�1; 2g/. Mecha-
nism MVPA selects winners only from one group
G.g/.

Definition 5 LetM .g/ be equal to max
�
b k

2g c; 1
�

which is the maximum number of winners MVPA

selects from group G.g/.

Note that we can select at least b k
2g c winners

fromG.g/ since there are k items and the demand
of each participant is at most 2g . Moreover, from
the last group G.blog kcC1/ we can select at least
one winner although b k

2.blog kcC1/ c D 0, since we
assume the demand of all the participants is from
set Œk�.

Let
�
d

.g/
1 ; v

.g/
1

�
; : : : ;

�
d

.g/
p ; v

.g/
p

�
be the

types of all the participants in group g where
p D jG.g/j. Here by adding enough dummy
participants, we assume p is always larger than
M .g/. Also, without loss of generality we assume
v

.g/
1 � v

.g/
2 � : : : � v

.g/
p . We define the max

possible revenue of group g (MPRG.g/) to be the
following:

MPRG.g/ D max
j2ŒM .g/

j � v.g/
j

As the name MPRG suggests, we will see that
its value captures the maximum revenue can be

truthfully obtained from group g. Let G.g�/ be a
group with the maximum MPRG and G.g 0/ be a
group with the second maximum MPRG breaking
the ties arbitrarily.

The set of winners selected by MVPA is

n�
d

.g�/
1 ; v

.g�/
1

�
; : : : ;

�
d

.g�/
j ; v

.g�/
j

�o

where j is the largest number in ŒM .g�/� for
which j � v.g�/

j is larger than or equal to
MPRG.g0/. In other words, the number of winners
(j ) is the largest number in ŒM .g�/� for which
j � v.g�/

j � MPRG.g0/.
Now we use Lemma 1 to show that MVPA is

truthful and obtain the payments of winners.

Observation 2 Allocation function xMVPA is
weakly monotone.

Proof Note that MVPA sorts the participants
according to their valuation and selects the
first j participants. Therefore if any participant
i increases its valuation, it only helps her to
enter the winning set. Hence, the observation
follows: ut

In the rest of this section, we drop the group
identifier ofM .g�/ and simply use M unless it is
about another group.

In the following lemma we find the critical
value of each winner i which is actually equal to
its payment

�
pMVPA

i

�
.

Lemma 4 Let set of winners xMVPA.�/ contain
the first j participants with highest valuations
from G.g�/ and v.g�/

MC1 be the .M C 1/th highest

valuation in group G.g�/ which is zero if it does
not exist. Then, the payment of participant i is the
following:

pMVPA
i .�/ D

(
max

�
MPRG.g 0/

j
; v

.g�/
MC1

�
i 2 xMVPA.�/

0 i 62 xMVPA.�/
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Proof If participant i is not a winner, then its
payment is zero. When participant i is a winner,
then we prove that its payment is equal to its
critical value (Definition 4). In order to prove

that value max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
is the critical

value of participant i , we show that for any value

larger than max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
participant i

still wins and for any value less than it she loses.
Remember that v.g�/

1 � v.g�/
2 � : : : � v.g�/

p

are the valuations of participants in group G.g�/

and v.g�/
1 ; v

.g�/
2 ; : : : ; v

.g�/
j are the valuations of

the winners. Because group G.g�/ is the group
with the maximum MPRG, we have v

.g�/
j �

MPRG.g 0/
j

. As there can be at most M winners

from group G.g�/, we have v
.g�/
j � v

.g�/
MC1.

Therefore we have

v
.g�/
j � max

�
MPRG.g0/

j
; v

.g�/
MC1

�
: (6)

Let participant i with type profile
�
d

.g�/
i ;

v
.g�/
i

�
be the i th winner in group g� where

i 2 Œj �. We show that for any valuation

greater than or equal to max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
participant i remains in the winning set.
Equation (6) implies that there are j participants
in group G.g�/ whose valuations are larger than

max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
. If we decrease the valu-

ation of participant i to max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
,

we still have j participants in group G.g�/

with valuations at least max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
.

Therefore, the value MPRG.g�/ will be at
least MPRG.g0/ and group G.g�/ remains the
winning group: hence participant i remains in the
winning set.

Now we prove that if the valuation of partic-

ipant i is less than the max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
,

she cannot be in the winning set. In order to
prove this, we consider two cases: (A) when
max.MPRG.g 0/

j
; v

.g�/
MC1/ is equal to v

.g�/
MC1 and

(B) when max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
is equal to

MPRG.g 0/
j

.

Case (A): If max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
D v

.g�/
MC1

and the valuation of participant i is less
than v.g�/

MC1, then it means that there are M
participants who have valuations greater than
the valuation of participant i . As there can
be at most M winners from group G.g�/,
participant i cannot be a winner.

Case (B): We prove this case by contradic-

tion. Suppose max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
D

MPRG.g 0/
j

and � 0 D
�
.d

.g�/
i ; v

.g�/0

i /; ��i

�
be a type profile in which the valuation of
participant i is less than MPRG.g 0/

j
while she

is still winner. Because the valuation of par-

ticipant i
�
v

.g�/0

i

�
is less than MPRG.g 0/

j
and

i is in the winning set, in order for MPRG.g�/
to be larger than MPRG.g0/, there has to be
more than j winners. Let j 0 > j be the
number of winners in � 0. Having j 0 winners
in � 0 and in order for G.g�/ to be the group
with the highest MPRG, we conclude that
there are j 0 participants with valuation greater
than MPRG.g 0/

j 0 . Note that the only difference
between � and � 0 is that the valuation of
participant i is higher in � . Therefore, there
are also at least j 0 participants with valuation
greater than MPRG.g 0/

j 0
in � . This contradicts

with the way we select the number of winners
(j ) in � which is the maximum number for
which j � v.g�/

j is larger than MPRG.g0/. ut
The allocation function xMVPA is weakly

monotone (Observation 2) and the payments of
the winners are their critical values (Lemma 4);
therefore by Lemma 1 we conclude that MVPA

satisfies IC.
In the rest of this section, first we prove that

MVPA satisfies RM and then bounds its PORM.

Proposition 1 The total revenue of mechanism
MVPA for type profile � (REVENUE.MVPA; �/) is
the following:

REVENUE.MVPA; �/ D max
�

MPRG.g0/;M � v.g�/
MC1

�
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where g0 is a group with the second highest
MPRG.

Proof From Lemma 4 we know that there are j

winners and each of them pays max
�

MPRG.g 0/
j

;

v
.g�/
MC1

�
. Therefore the sum of payments or the

revenue of MVPA is j � max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
.

The proof of the proposition follows if we show

that when max
�

MPRG.g 0/
j

; v
.g�/
MC1

�
is equal to

v
.g�/
MC1, then the number of winners (j ) is equal

to M .
If max

�
MPRG.g 0/

j
; v

.g�/
MC1

�
is equal to v.g�/

MC1,

then as v.g�/
MC1 � v

.g�/
M , we have M � v.g�/

M �
MPRG.g 0/

j
. Remember that j is the maximum

number in the set ŒM � for which j �v.g�/
j is larger

than MPRG.g0/. Therefore j is equal to M . ut
Lemma 5 Let � 0 be the type profile obtained by
either adding a new participant or increasing the
valuation of a participant in � . Then,

REVENUE.MVPA; � 0/ � REVENUE.MVPA; �/:

Proof Let x be the new added participant or
the participant which has the increased valuation

in � 0. Throughout the proof we show MPRG of
each group g in type profile � by MPRG� .g/ and
in type profile � 0 by MPRG� 0.g/. Similarly, we
show the j th highest valuation of the participants
of group g by v.g�;�/

j in type profile � and by

v
.g�;� 0/
j in type profile � 0.

As the j th highest valuation of the participants
of each group can only increase by adding partic-
ipant x, we conclude

8g;8j v
.g;� 0/
j � v.g;�/

j : (7)

Remember that MPRG� of each group g is
maxj2ŒM .g/ j � v.g;�/

j and using Eq. (7) we get

8g MPRG� 0.g/ � MPRG� .g/: (8)

In order to prove this lemma we consider
two cases: (A) adding participant x does not
change the winning group G.g�/ and (B) adding
x changes the winning group.

Case (A): Let g00 be a group with the second
highest MPRG in � 0; it is possible that g0 is
equal to g00.

REVENUE.MVPA; � 0/ Dmax
�

MPRG� 0.g00/;M � v.g�;� 0/
MC1

�

Proposition 1

�max
�

MPRG� 0.g0/;M � v.g�;� 0/
MC1

�

definition of g00

�max
�

MPRG� .g
0/;M � v.g�;�/

MC1

�

Eqs. (7) and (8)

DREVENUE.MVPA; �/

Case (B): Let G.g 00/ be a group with the highest
MPRG in � 0. We have

MPRG� .g
�/ � MPRG� .g

0/ (9)
as g� has the highest and g0 has the second
highest MPRG in � .
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MPRG� .g
�/ �M � v.g�;�/

M As MPRG� .g
�/ D max

j2ŒM
j � v.g�;�/

j

�M � v.g�;�/
MC1 As v.g�;�/

M � v.g�;�/
MC1 (10)

Let Og be the group with second highest MPRG

in � 0. Because g� is no longer the winning
group in � 0, it can be a candidate for the group
with the second highest MPRG in � 0 and hence
we have the following:

MPRG� .g
�/ � MPRG� 0.g�/ � MPRG� 0. Og/

(11)

The following equations conclude the proof of
this case:

REVENUE.MVPA; �/ D max
�

MPRG� .g
0/;M � v.g�;�/

MC1

�

� MPRG� .g
�/

by Eqs. (9) and (10)

� MPRG� 0. Og/
by Eq. (11)

� max
�

MPRG� 0. Og/;M .g 00/ � v.g 00;�/

M .g00/C1

�

D REVENUE.MVPA; � 0/ ut

The following lemma which bounds PORM of
MVPA finishes this section:

Theorem 5 PORM.MITA/ � .blogkcC1/ �.2C
ln k/

Proof Let WF.g/ to be the maximum social wel-
fare achievable if we select the winners only from
group G.g/. Let A be a set of winner(s) which
realizes the maximum welfare in type profile � .
Note that as there are blog kc C 1 groups, one
group ( Og) has a subset of participants from A

whose social welfare is at least WF.A/
blog kcC1

and
hence the following:

WF. Og/ � WF.A/

blog kc C 1 (12)

Now we prove the following claim about
MPRG. Og/:
Claim 1 MPRG. Og/ � WF. Og/

2Cln k

Proof LetB be the set of participants from group
G. Og/ which give the maximum social welfare.
Because the demands of all the participants of
G. Og/ are in range Œ2 Og�1; 2 Og/, size of B is at
most bk=2 Og�1c. Remember from Definition 5

that M . Og/ D max
�
bk=2. Og/c; 1

�
is the maximum

number of winners that MVPA potentially selects
from group G. Og/. Therefore, we have jBj � 2 �
M . Og/ C 1.

Throughout the proof, we drop the superscript
fromM . Og/ and simply refer to it as M .

Let v1 � v2 � : : : � v2�MC1 be the valuations
of the participants inB; ifB has less than 2�MC1
participants, we add enough dummy participants
with valuations zero. Remember that MPRG. Og/ D
maxj2ŒM j � v. Og/

j where M is at least 1 (see
Definition 5) which implies

vi � MPRG. Og/
i

8i 2 ŒM � (13)
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The following equations conclude the proof of
the claim:

WF. Og/ D
2�MC1X

iD1

vi

D
MX

iD1

vi C
2�MC1X
iDMC1

vi

�
MX

iD1

vi C
2�MC1X
iDMC1

vM

replacing vi with vM for i > M

�
MX

iD1

MPRG. Og/
i

C
2�MC1X
iDMC1

MPRG. Og/
M

by Eq. (13)

� .2C ln k/MPRG. Og/

ut
Remember G.g�/ is the group with maximum
MPRG value. Let j be the number for which
MPRG.g�/ is equal to j � v.g�/

j . Allocation func-

tion xMVPA selects the first j � participants from
group G.g�/ where j � is the maximum number
for which j � � v.g�/

j � is larger than MPRG.g0/.
Therefore we can conclude that j � j � and
hence

WF
�
xMVPA.�/

�
� MPRG.g�/: (14)

The following equations conclude the proof of
the theorem:

WF
�
xMVPA.�/

�
� MPRG.g�/

by Eq. (14)

� MPRG. Og/

G.g�/ has the highest MPRG

� WF. Og/
2C ln k

Claim 1

� WF.A/

.blog kc C 1/ � .2C ln k/

by Eq. (12)

ut

Lower Bound

In this section we prove Theorem 2. As men-
tioned earlier we need two additional mild as-
sumptions of anonymity and independence of
irrelevant alternatives (which we define below)
on the class of mechanisms for which we prove
our lower bound.

Definition 6 A mechanism (M D .x; p/) is
anonymous (AM) if the following holds: Suppose
�1; �2 2 ‚n are two type profiles which are
permutations of each other (i.e., the set of type
profiles are same just that the identities of partici-
pants to whom those types belongs are different).
Say, �2 D �.�1/. Also say x.�1/ D S1 and
x.�2/ D S2. Then S2 D �.S1/.

Definition 7 Let � 2 ‚n be an arbitrary-type
profile and i 2 N be an arbitrary participant with
type �i D .di ; vi /. A mechanism (M D .x; p/)
satisfies independence of irrelevant alternatives
(IIA) that if we decrease the bid of a losing
participant, say, participant i , to Ovi < vi , then the
new set of winners is a super set of the previous
one, i.e., x.�/ � x..di ; Ovi /; ��i /. In other words,
decreasing the bid of a losing participant does not
hurt any winner.

The proof outline of Theorem 2 is the
following. Let M� D .x�; p�/ be a mechanism
which satisfies all the five properties and has the
optimal PORM OPT (i.e., OPT D PORM.M�/).
We study the behavior of M� in a few type
profiles. Let � be an arbitrary small positive real
value. First we show that when there are only two
participants with types .k; 1/ and .k; 1 C �/,
M� gives all the k items to the participant
with type .k; 1 C �/. The revenue of M� from
these two participants is 1. Then, we add k
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more participants to create type profile � D�
.1; 1� �/; .1; 1

2
� �/; : : : ; .1; 1

k
� �/; .k; 1/; .k;

1C �//. The RM property requires M� to
make at least the same revenue for � . From
this constraint we are able to show that M�
assigns all the items to participant kC2 with type
.k; 1C�/ and hence gets social welfare 1C�. Note
that the maximum social welfare happens when
the set of winners is f1; : : : ; kg which implies
WFR.M�; �/ �Pk

iD1
1
i
�k �� (see Definition 1).

Because PORM.M�/ � WFR.M�; �/ for any
� 2 ‚n, we conclude that OPT �Pk

iD1
1
i
.

First we study the behavior of M� when we
have only two participants with types .k; 1/ and
.k; 1C �/.
Lemma 6 Mechanism M� in type profile
..k; 1/; .k; 1C �// gives all k items to the
second participant and make one unit of
revenue, i.e., x� ..k; 1/; .k; 1C �// D f2g and
p� ..k; 1/; .k; 1C �// D .0; 1/.
Proof First we study type profile ..k; v1/; .k; v2//

for general values v1; v2 2 R
C where v1 < v2.

We prove that M� gives all the items to the
second participant.

Claim 2 x� ..k; v1/; .k; v2// D f2g for any
v1; v2 2 R

C where v1 < v2.

Proof First note that M � has to have a winner
for this type profile because otherwise its social
welfare will be zero while the maximum social
welfare is v2. This makes the social welfare ratio
of M� to be undefined.

Now we prove that if x� ..k; v1/; .k; v2// D
f1g, then M� either violates IC or AM. Let call
type profile ..k; v1/; .k; v2// by � .1/ and suppose
for the sake of contradiction x�.� .1// D f1g.
From Lemma 1 we know that if participant 1
increases his bid to v2, she still wins; hence
x�.� .2// D f1g where � .2/ D ..k; v2/; .k; v2//.
Now if in type profile � .2/ participant 2 decrease
his bid to v1, again from Lemma 1 we conclude
that she cannot win, i.e., x�.� .3// D f1g where
� .3/ D ..k; v2/; .k; v1//. Type profile � .1/ is � .3/

with participant 1 swapped with participant 2 but
in both of them the first participant wins which
contradicts with AM. ut

Claim 2 directly proves that the winner in type
profile ..k; 1/; .k; 1C �// is the second partic-
ipant. The only thing remains is to show that
her payment (p2) is 1. Note that payment p2

cannot be less than one because otherwise by
Lemma 1 participant 2 wins all the items in type
profile ..k; 1/; .k; p2// which contradicts with
Claim 2. Payment p2 cannot be larger than one
because otherwise for any value 1 < v2 < p2

participant 2 wins all the items in type profile
..k; 1/; .k; v2//. This contradicts with Lemma 1
which states that the payment p2 is the smallest
value for which participant 2 wins the items. ut

Now we add k more participants, each of
which wants only one item. In the following
lemma we prove that RM forces M� to assign all
of the items to one of the participants who want
all the items.

Lemma 7 For the set of k C 2 participants with
type profile � .0/ D �

.1; 1� �/; .1; 1
2
� �/; : : : ;

.1; 1
k
� �/; .k; 1/; .k; 1C �/�, mechanism M�

assigns all the k items to either participant kC 1
or participant kC 2, i.e., x�

�
� .0/

� D fkC 1g or
x�
�
� .0/

� D fk C 2g.
Proof We prove the lemma by contradiction that
if M� assigns the items to a subset of the first k
participants, it satisfies RM. We consider a class
of k type profiles (� .1/; : : : ; � .k/) where � .i/ is
built from � .i�1/. The only possible difference
between � .i/ and � .i�1/ is in the valuation of
participant i . If participant i is a winner in � .i�1/,
then we obtain � .i/ by increasing the valuation
of the i th participant from 1

i
� � to 1 � �. Note

that the payment of participant i in � .i�1/ is at
most her valuation which is 1

i
� � and in � .i/ it

remains the same by Lemma 1. If participant i
is not a winner in � .i�1/, then we obtain � .i/ by
decreasing his valuation to zero. Note that by IIA,
no winner turns to a loser in � .i/.

Let j 2 f1; : : : ; kg be the largest number for
which participant j is a winner in � .j�1/ and we
increase his valuation to 1�� in � .j /. Note that at
the start in type profile � .0/, the set of winners is
a nonempty subset of f1; : : : ; kg. Therefore there
is at least one such j for which participant j is a
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winner in � .j / since decreasing the non-winners
valuation does not reduce the size of the winners.

Now we prove that there is no winner in the set
of participants fj C1; : : : ; kg in type profile � .j /.
Assume otherwise and let p 2 fj C 1; : : : ; kg be
the smallest number for which participant p is a
winner in � .j /. Note that when we decrease the
valuation of each participant j < p0 < p to zero
to obtain � .p0/, participant p remains as a winner
in all of them by IIA. Therefore, participant p is a
winner in type profile � .p�1/ and we increase his
valuation in � .p/ which contradicts with the fact
that j is the largest number for which participant
j is a winner in � .j�1/.

The payment of participant j in � .j�1/ is at
most its valuation which is 1

j
� �. When we

increase his bid to 1 � � in type profile � .j /, its
payment remains the same by Lemma 1. Note
that by construction of � .j /, the valuation of all
participants in f1; : : : ; j g is either zero or 1��. If
the valuation of them is 1�� and they are winner,
by AM their payment is 1

j
��. Therefore the total

payments or revenue of M� in � .j / is at most
j � . 1

j
� �/ D 1 � j � � since there is no other

winner in set of participants fjC1; : : : ; kg in type
profile � .j /.

Note that type profile � .j / is obtained from
type profile ..k; 1/; .k; 1C �// by adding k more
participants. However the revenue of � .j / is 1�j �
� that is strictly less than 1which is the revenue of
..k; 1/; .k; 1C �// by Lemma 6. This contradicts
with the RM property of M�; hence M� has to
assign the items to either participant k C 1 or
k C 2. ut

Now we show how from Lemma 7 we can de-
rive Theorem 2. Note that the maximum welfare
for type profile � .0/ D �.1; 1 � �/; .1; 1

2
� �/; : : : ;

.1; 1
k
� �/; .k; 1/; .k; 1C �/� realized when we

give one item to each of the first k participants
for which we get the total social welfarePk

iD1
1
i
�k � �, i.e., the nominator of Definition 1

for this type profile is
Pk

iD1
1
i
� k � �. The

denominator of Definition 1 is at most 1 C � by
Lemma 7. Therefore the ratio of the welfare for

this type profile is at least
Pk

iD1 1=i�k��
1C�

. Because
OPT is the maximum ratio over all type profiles

(see Definition 2), we have OPT �
Pk

iD1 1=i�k��
1C�

which results in OPT � Pk
iD1

1
i
� �0 where

�0 D �.k�Pk
iD1 1=i/

1C�
.

Note that the value �0 can be made arbitrarily
small by selecting a sufficiently small value for
�. Therefore we prove that for any positive small
real value �0, we have OPT �Pk

iD1
1
i
� �0 which

implies Theorem 2.
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Problem Definition

We will consider enumeration problems, i.e., we
want to list all the objects that satisfy given
conditions (e.g., vertices of a polytope fx j Ax �
bg or maximal cliques in a given graph). One
object should not be listed twice or more.

Introduction

In this entry, we consider an enumeration scheme
called reverse search developed by Avis and
Fukuda [1]. The scheme was originally developed
to enumerate all the vertices of a given polytope
represented by the intersection of half spaces [1].
The scheme is very powerful, and quite many
kinds of objects such as arrangements in a hy-
perplane, triangulations of a polygon, bases of a
matroid, spanning trees, trees, or maximal cliques
in a graph, plane graphs of given number of
vertices, etc., can be enumerated with it [1–4, 6].

Think of a problem to enumerate (or visit)
all the vertices of a given connected graph G.
Most of the readers may use depth-first search

or breadth-first search algorithms. The two algo-
rithms dynamically find tree structures in G and
traverse them. Given an enumeration problem,
reverse search scheme also finds some kind of
tree structure on objects to enumerate dynami-
cally and traverse it. To execute depth-first search
or breadth-first search, a graphG should be given
explicitly, and we have to remember which ver-
tices have been visited. However, in most of enu-
meration problems, the objects that we want to
enumerate are, of course, not explicitly given, nor
we cannot remember all the objects that we have
already output in the execution of an algorithm.
For example, if we want to enumerate all the ver-
tices of a polytope represented by the intersection
of half spaces, the vertices are not given explic-
itly. If we want to enumerate plane graphs of 100
vertices, the number is quite large, and we do
not want to remember every obtained graph. So,
the scheme is designed to treat implicitly given
objects and run with small amount of memory.

Key Results

When we develop an algorithm for enumerating
some objects with reverse search scheme, we
first think of an implicit connected graph Grs of
the objects. For example, when enumerating all
the vertices of a given polytope, we think of a
graph whose vertices correspond to the vertices
of the polytope and whose edges correspond to
the edges of the polytope. When enumerating
spanning trees in a graph G, we think of a graph
Grs whose vertices correspond to the spanning
trees of G, and fi; j g 2 E.Grs/ if and only if
spanning tree Tj of G corresponding to vertex j
of Grs can be obtained from spanning tree Ti of
G corresponding to vertex i of Grs by removing
an edge and adding an edge. Of course, we cannot
make such a graphGrs explicitly without enumer-
ating the vertices of the polytope or the spanning
trees of G. However, given an object x, we can
easily generate every object whose corresponding
vertex is adjacent to x’s corresponding vertex in
Grs. To put it the other way around, we require
Grs this property. In the above examples, Grs

are undirected. However, Grs is sometimes di-
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rected. When enumerating (not necessarily max-
imal) cliques in a graph, .i; j / 2 E.Grs/ if and
only if the clique corresponding to j is a proper
subset of the clique corresponding to i .

Now we have a connected graphGrs of objects
to enumerate. Then for every vertex v 2 V.Grs/

except for a special vertex r called root, we define
a parent vertex u of v such that u is adjacent to v,
and no vertex of Grs is a proper ancestor of itself,
i.e., by iteratively moving from a vertex v to the
parent of v, to the parent of the parent of v, and
so on, we never come to the start vertex v again.
Then we easily come to the following lemma.

Lemma 1 For every vertex v of Grs, v is a
descendant of r .

Proof Since every vertex of Grs cannot be an
ancestor of itself and the number of vertices in
Grs is bounded, every vertex of Grs has its oldest
ancestor. Since a vertex ofGrs except for r has its
parent, it cannot be the oldest ancestor. Therefore,
r is the oldest ancestor of every vertex ofGrs. ut

By the lemma above, edges in Grs corre-
sponding to the “parent-child” relations clearly
induce a spanning tree (or arborescence) Trs of
Grs. Therefore, we can enumerate every object by
traversing Trs from r in the depth-first manner.
The whole scheme is shown below.

Procedure ENUMERATE_SUBTREE(v)
output v
for all w satisfying .w; v/ 2 E.Grs/ do

if v is the parent of w then
ENUMERATE_SUBTREE(w)

end if
end for

end procedure

Procedure ENUMERATE
find r
ENUMERATE_SUBTREE(r)

end procedure

If the depth of Trs is very deep, using a recur-
sion needs a big amount of memory. However,
since we can find the parent of each vertex ofGrs,
we actually do not need to use a recursion. Even
if we do not remember the previously visited

vertices in Grs, we can go back in the tree search
by finding the parents. If the time complexity for
finding the parent is relatively high, the total time
complexity gets high. Therefore, there is a time-
space trade-off.

Examples

For enumerating all the vertices of a given poly-
tope P D fAx � bg, we use Grs described in the
previous section. For the sake of simplicity, we
assume that P is not degenerated. First, we find a
vertex x� of P by the simplex method or the inte-
rior point method. Then, find an objective vector
c such that the unique optimal solution of the lin-
ear programming problem min c>x; s: t: Ax �
b is x�. We define a parent vertex x of a vertex
x as the vertex corresponding to the basis of P
obtained from the basis corresponding to x by
a single pivot in the simplex method minimizing
c>x with Bland’s pivot rule. The root vertex is
x�. We can easily find every vertex x0 satisfying
fx0;xg 2 E.Grs/ by swapping a basic variable
and a nonbasic variable from the basis corre-
sponding to x0. Of course, we can easily check
if vertex x is the parent of vertex x0 by running
the simplex method by one step from x0.

For enumerating (not necessarily maximal)
cliques in a graph G, we also use (the directed
graph) Grs in the previous section. We define the
parent of vertex v corresponding to clique Cv

in G as the vertex u corresponding to clique Cu

such that Cu is obtained from Cv by removing the
vertex of the smallest index. The root is the empty
set. Since a vertex w satisfying .w; v/ 2 E.Grs/

corresponds to a clique obtained by adding a
vertex to Cv, we can find it easily. Clearly we can
check if v is the parent of u easily, too.

Note that the algorithms introduced in this
section are for an easy explanation. One can
develop faster algorithms for the problems.

Avoiding Long Delays

A naive implementation of the reverse search
scheme sometimes causes a long delay between
successive outputs of two objects. Consider the
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case that the depth of Trs is very deep and one
has to return from a leaf to the root. In order to
avoid this kind of long delays, a smart method is
known [5, 7]. At the odd level of recursion, we
output the objects before making the recursive
calls, and at the even level of the recursion, we
output after the termination of the recursive calls.
In this way, at least one of three iterations outputs
an object when the algorithm ascends or de-
scends the search tree Trs. The algorithm is shown
below.

Procedure ENUMERATE_SUBTREE(v, parity)
if parity D 0 then

output v
end if
for all w satisfying .w; v/ 2 E.Grs/ do

if v is the parent of w then
ENUMERATE_SUBTREE(w,parity˚ 1)

end if
end for
if parity D 1 then

output v
end if

end procedure

Procedure ENUMERATE
find r
ENUMERATE_SUBTREE(r , 0)

end procedure

Note

For the sake of easy understanding, we intro-
duced Grs. However, most of results using the
reverse search type algorithms do not treat Grs.
It is easy to understand that we can develop re-
verse search algorithms only by good definitions
of parent-child relations and fast algorithms to
enumerate children of given objects. If one can
develop a fast children enumeration algorithm
which enumerates all the children of an object
in time T and if the degrees of some vertices
in Grs are quite large compared with T , the
resulting enumeration algorithm is faster than
the naive implementation described in this entry.
Such examples will appear in other entries in this
book.
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Problem Definition

This problem is concerned with computing fea-
tures of the Boltzmann distribution over RNA
secondary structures in the context of the stan-
dard Gibbs free energy model used for RNA Sec-
ondary Structure Prediction by Minimum Free
Energy (cf. corresponding entry). Thermodynam-
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ics state that for a system with configuration
space˝ and free energy given byEW˝ 7! R, the
probability of the system being in state ! 2 ˝ is
proportional to e�E.!/=RT where R is the univer-
sal gas constant and T the absolute temperature of
the system. The normalizing factor

Z D
X
!2˝

e�E.!/=RT (1)

is called the full partition function of the system.
Over the past several decades, a model

approximating the free energy of a structured
RNA molecule by independent contributions of
its secondary structure components has been
developed and refined. The main purpose of
this work has been to assess the stability of
individual secondarystructures. However, it
immediately translates into a distribution over
all secondary structures. Early work focused on
computing the pairing probability for all pairs
of bases, i.e., the sum of the probabilities of all
secondary structures containing that base pair.
Recent work has extended methods to compute
probabilities of base pairing probabilities for
RNA heterodimers [2], i.e., interacting RNA
molecules, and expectation, variance and higher
moments of the Boltzmann distribution.

Notation
Let s 2 fA;C;G;U g� denote the sequence of
bases of an RNA molecule. Use X � Y where
X; Y 2 fA;C;G;U g to denote a base pair be-
tween bases of type X and Y, and i � j where
1 � i < j � jsj to denote a base pair between
bases s[i] and s[j].

Definition 1 (RNA Secondary Structure)
A secondary structure for an RNA sequence s
is a set of base pairs S D fi � j j 1 � i < j � jsj
^ i < j � 3g. For i � j; i 0 � j 0 2 S with
i � j ¤ i 0 � j 0

• fi; j g \ fi 0; j 0g D ; (each base pairs with at
most one other base)

• fsŒi �; sŒj �g 2 ffA;U g; fC;Gg; fG;U gg (only
Watson-Crick and G, U wobble base pairs)

• i < i 0 < j ) j 0 < j (base pairs are either
nested or juxtaposed but not
overlapping)

The second requirement, that only canonical base
pairs are allowed, is standard but not consequen-
tial in solutions to the problem. The third require-
ment states that the structure does not contain
pseudoknots. This restriction is crucial for the
results listed in this entry.

EnergyModel
The model of Gibbs free energy applied, usually
referred to as the nearest-neighbor model, was
originally proposed by Tinoco et al. [10, 11]. It
approximates the free energy by postulating that
the energy of the full three dimensional structure
only depends on the secondary structure, and
that this in turn can be broken into a sum of
independent contributions from each loop in the
secondary structure.

Definition 2 (Loops) For i � j 2 S, base k is
accessible from i � j iff i < k < j and:9i 0 �j 0 2
SW i < i 0 < k < j 0 < j . The loop closed
by i � j; `i �j , consists of i � j and all the bases
accessible from i � j . If i 0 � j 0 2 S and i0 and j0
are accessible from i � j , then i 0 � j 0 is an interior
base pair in the loop closed by i � j:

Loops are classified by the number of interior
base pairs they contain:

• hairpin loops have no interior base pairs
• stacked pairs, bulges, and internal loops have

one interior base pair that is separated from the
closing base pair on neither side, on one side,
or on both sides, respectively

• multibranched loops have two or more interior
base pairs

Bases not accessible from any base pair are called
external. This is illustrated in Fig. 1. The free
energy of structure S is

�G.S/ D
X
i �j2S

�G.`i �j / (2)
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RNA Secondary
Structure Boltzmann
Distribution, Fig. 1
A hypothetical RNA
structure illustrating the
different loop types. Bases
are represented by circles,
the RNA backbone by
straight lines, and base
pairs by zigzagged lines

where �G.`i �j / is the free energy contribution
from the loop closed by i � j . The contribution of
S to the full partition function is

e��G.S/=RT D e�
P

i �j 2S �G.`i �j /=RT

D
Y

`i �j2S
e��G.`i �j /=RT: (3)

Problem 1 (RNA Secondary Structure Distri-
bution)
INPUT: RNA sequence s, absolute temperature T
and specification of �G at T for all loops.
OUTPUT:

P
S e��G.S/=RT , where the sum is over

all secondary structures for s.

Key Results

Solutions are based on recursions similar to
those for RNA Secondary Structure Prediction
by Minimum Free Energy, replacing sum and
minimization with multiplication and sum (or
more generally with a merge function and
a choice function [8]). The key difference
is that recursions are required to be non-
redundant, i.e., any particular secondary structure
only contributes through one path through the
recursions.

Theorem 1 Using the standard thermodynamic
model for RNA secondary structures, the
partition function can be computed in time O(js3)
and space O(js2). Moreover, the computation can
build data structures that allow O(1) queries

of the pairing probability of i � j for any
1 � i < j � jsj [5, 6, 7].

Theorem 2 Using the standard thermodynamic
model for RNA secondary structures, the ex-
pectation and variance of free energy over the
Boltzmann distribution can be computed in time
O(js3) and space O(js2). More generally, the kth
moment

EBoltzmannŒ�G� D 1=Z
X
S

e��G.S/=RT�Gk.S/;

(4)

where Z DPS e��G.S/=RT is the full partition
function and the sums are over all secondary
structures for s, can be computed in time O(k2js3)
and space O(ks2) [8].

In Theorem 2 the free energy does not hold a spe-
cial place. The theorem holds for any function ˚
defined by an independent contribution from each
loop,

˚.S/ D
X
i �j2S

�
�
`i �j

�
; (5)

provided each loop contribution can be handled
with the same efficiency as the free energy con-
tributions. Hence, moments over the Boltzmann
distribution of e.g., number of base pairs, un-
paired bases, or loops can also be efficiently com-
puted by applying appropriately chosen indicator
functions.
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Applications

The original use of partition function computa-
tions was for discriminating between well defined
and less well defined regions of a secondary
structure. Minimum free energy predictions will
always return a structure. Base pairing proba-
bilities help identify regions where the predic-
tion is uncertain, either due to the approxima-
tions of the model or that the real structure
indeed does fluctuate between several low en-
ergy alternatives. Moments of Boltzmann dis-
tributions are used in identifying how biologi-
cal RNA molecules deviates from random RNA
sequences.

The data structures computed in Theorem 1
can also be used to efficiently sample secondary
structures from the Boltzmann distribution. This
has been used for probabilistic methods for sec-
ondary structure prediction, where the centroid
of the most likely cluster of sampled structures
is returned rather than the most likely, i.e., min-
imum free energy, structure [3]. This approach
better accounts for the entropic effects of large
neighborhoods of structurally and energetically
very similar structures. As a simple illustration
of this effect, consider twice flipping a coin with
probability p > 0:5 for heads. The probability p2

of heads in both flips is larger than the prob-
ability p.1 � p/ of heads followed by tails or
tails followed by heads (which again is larger
than the probability .1 � p/2 of tails in both
flips). However, if the order of the flips is ignored
the probability of one heads and one tails is
2p.1 � p/. The probability of two heads remains
p2 which is smaller than 2p.1� p/ when p < 2

3
.

Similarly a large set of structures with fairly low
free energy may be more likely, when viewed as
a set, than a small set of structures with very low
free energy.

Open Problems

As for RNA Secondary Structure Prediction by
Minimum Free Energy, improvements in time
and space complexity are always relevant. This
may be more difficult for computing distribu-

tions, as the more efficient dynamic programming
techniques of [9] cannot be applied. In the context
of genome scans, the fact that the start and end
positions of encoded RNA molecule is unknown
has recently been considered [1].

Also the problem of including structures with
pseudoknots, i.e., structures violating the last
requirement in Definition 1, in the configuration
space is an active area of research. It can be
expected that all the methods of Theorems 3
through 6 in the entry on RNA Secondary
Structure Prediction Including Pseudoknots can
be modified to computation of distributions
without affecting complexities. This may require
some further bookkeeping to ensure non-
redundancy of recursions, and only in [4] has
this actively been considered.

Though the moments of functions that are
defined as sums over independent loop contribu-
tions can be computed efficiently, it is unknown
whether the same holds for functions with more
complex definitions. One such function that has
traditionally been used for statistics on RNA sec-
ondary structure [12] is the order of a secondary
structure which refers to the nesting depth of
multibranched loops.

URL to Code

Software for partition function computation
and a range of related problems is available
from www.bioinfo.rpi.edu/applications/hybrid/
download.php and www.tbi.univie.ac.at/~ivo/
RNA/. Software including a restricted class of
structures with pseudoknots [4] is available at
www.nupack.org.
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Problem Definition

This problem is concerned with predicting the
set of base pairs formed in the native structure
of an RNA molecule. The main motivation stems
from structure being crucial for function and the
growing appreciation of the importance of RNA
molecules in biological processes. Base pairing
is the single most important factor determining
structure formation. Knowledge of the secondary
structure alone also provides information about
stretches of unpaired bases that are likely can-
didates for active sites. Early work [7] focused
on finding structures maximizing the number of
base pairs. With the work of Zuker and Stiegler
[17], focus shifted to energy minimization in a
model approximating the Gibbs free energy of
structures.

Notation
Let s 2 fA;C;G;U g� denote the sequence of
bases of an RNA molecule. Use X � Y where
X; Y 2 fA;C;G;U g to denote a base pair
between bases of type X and Y and i � j where
1 � i < j � jsj to denote a base pair between
bases sŒi � and sŒj �.

Definition 1 (RNA Secondary Structure) A
secondary structure for an RNA sequence s is a
set of base pairs S D fi �j j1 � i < j � jsj^ i <
j � 3g. For i � j; i 0 � j 0 2 S with i � j ¤ i 0 � j 0:

• fi; j g \ fi 0; j 0g D ; (each base pair with at
most one other base)

• fsŒi �; sŒj �g 2 ffA;U g; fC;Gg; fG;U gg (only
Watson-Crick and G;U wobble base pairs)

• i < i 0 < j ) j 0 < j (base pairs are either
nested or juxtaposed but not overlapping)

The second requirement that only canonical base
pairs are allowed is standard but not consequen-
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RNA Secondary
Structure Prediction by
Minimum Free Energy,
Fig. 1 A hypothetical
RNA structure illustrating
the different loop types.
Bases are represented by
circles, the RNA backbone
by straight lines, and base
pairs by zigzagged lines
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tial in solutions to the problem. The third require-
ment states that the structure does not contain
pseudoknots. This restriction is crucial for the
results listed in this entry.

EnergyModel
The model of Gibbs free energy applied, usually
referred to as the nearest-neighbor model, was
originally proposed by Tinoco et al. [10, 11]. It
approximates the free energy by postulating that
the energy of the full three-dimensional structure
only depends on the secondary structure and
that this in turn can be broken into a sum of
independent contributions from each loop in the
secondary structure.

Definition 2 (Loops) For i � j 2 S, base k is
accessible from i �j iff i < k < j and:9i 0 �j 0 2
S W i < i 0 < k < j 0 < j . The loop closed
by i � j; `i �j , consists of i � j and all the bases
accessible from i � j . If i 0 � j 0 2 S and i 0 and j 0
are accessible from i � j , then i 0 � j 0 is an interior
base pair in the loop closed by i � j .

Loops are classified by the number of interior
base pairs they contain:

• Hairpin loops have no interior base pairs.
• Stacked pairs, bulges, and internal loops have

one interior base pair that is separated from the
closing base pair on neither side, on one side,
or on both sides, respectively.

• Multibranched loops have two or more interior
base pairs.

Bases not accessible from any base pair are called
external. This is illustrated in Fig. 1. The free
energy of structure S is

�G.S/ D
X

i �j2S
�G.`i �j /; (1)

where �G.`i �j / is the free energy contribution
from the loop closed by i � j .

Problem 1 (Minimum Free Energy Structure)

INPUT: RNA sequence s and specification of
�G for all loops

arg min
S
f�G.S/jS secondary structure for sg:

OUTPUT: A secondary structure achieving the
minimum of free energies, taken over all pos-
sible secondary structures

Key Results

Solutions are based on using dynamic program-
ming to solve the general recursion
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V Œi; j � D min
k�0Ii<i1<j1<���<ik<jk<j

(
�G.`i �j Ii1�j1;:::;ik �jk

/C
kX

lD1

V Œil ; jl �

)

W Œi� D min

�
W Œi � 1�; min

0<k<i
fW Œk � 1�C V Œk; i �g

	
;

where �G.`i �j Ii1�j1;:::;ik;jk
/ is the free energy

of the loop closed by i � j and interior base
pairs i1 � j1; : : : ; ik � jk and with initial condition
W Œ0� D 0. In the following, it is assumed that all
loop energies can be computed in time O.1/.

Theorem 1 If the free energy of multibranched
loops is a sum of:

• An affine function of the number of interior
base pairs and unpaired bases

• Contributions for each base pair from stacking
with either neighboring unpaired bases in the
loop or with a neighboring base pair in the
loop, whichever is more favorable

a minimum free energy structure can be computed
in time O.jsj4/ and space O.jsj2/ [17].

With these assumptions, the time required to
handle the multibranched loop parts of the re-
cursion reduces to O.jsj3/. Hence, handling the
O.jsj4/ possible internal loops becomes the bot-
tleneck.

Theorem 2 If furthermore the free energy of
internal loops is a sum of:

• A function of the total size of the loop,
i.e., the number of unpaired bases in the
loop

• A function of the asymmetry of the loop, i.e.,
the difference in number of unpaired bases on
the two sides of the loop

• Contributions from the closing and interior
base pairs stacking with the neighboring un-
paired bases in the loop

a minimum free energy structure can be computed
in time O.jsj3/ and space O.jsj2/ [5].

Under these assumptions, the time required to
handle internal loops reduces to O.jsj3/.

With further assumptions on the free energy
contributions of internal loops, this can be
reduced even further, again making the handling
of multibranched loops the bottleneck of the
computation.

Theorem 3 If furthermore the size dependency
is concave and the asymmetry dependency is
constant for all butO.1/ values, a multibranched
loop free minimum free energy structure can
be computed in time O.jsj2 log2 jsj/ and space
O.jsj2/ [8].

The above assumptions are all based on the
nature of current loop energies [6]. These ener-
gies have to a large part been developed without
consideration of computational expediency and
parameters determined experimentally, although
understanding of the precise behavior of larger
loops is limited. For multibranched loops, some
theoretical considerations [4] would suggest that
a logarithmic dependency would be more appro-
priate.

Theorem 4 If the restriction on the dependency
on number of interior base pairs and unpaired
bases in Theorem 1 is weakened to any function
that depends only on the number of interior base
pairs, the number of unpaired bases, or the total
number of bases in the loop, a minimum free
energy structure can be computed in time O.n4/

and space O.n3/ [13].

Theorem 5 All the above theorems can be mod-
ified to compute a data structure that for any
1 � i < j � jsj allows us to compute the
minimum free energy of any structure containing
i � j in time O.1/ [15].

Applications

Naturally, the key application of these algorithms
is for predicting the secondary structure of
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RNA molecules. This holds in particular for
sequences with no homologues with common
structure, e.g., functional analysis based on
mutational effects and to some extent analysis
of RNA aptamers. With access to structurally
conserved homologues, prediction accuracy
is significantly improved by incorporating
comparative information [2].

Incorporating comparative information seems
to be crucial when using secondary structure
prediction as the basis of RNA gene finding. As
it turns out, the minimum free energy of known
RNA genes is not sufficiently different from the
minimum free energy of comparable random se-
quences to reliably separate the two [9,14]. How-
ever, minimum free energy calculations are at the
core of one successful comparative RNA gene
finder [12].

Open Problems

Most current research is focused on refinement
of the energy parametrization. The limiting factor
of sequence lengths for which secondary struc-
ture prediction by the methods described here is
still feasible is adequacy of the nearest-neighbor
approximation rather than computation time and
space. Still, improvements on time and space
complexities are useful as biosequence analyses
are invariably used in genome scans. In par-
ticular, improvements on Theorem 4, possibly
for dependencies restricted to be logarithmic or
concave, would allow for more advanced scoring
of multibranched loops. A more esoteric open
problem is to establish the complexity of comput-
ing the minimum free energy under the general
formulation of (1), with no restrictions on loop
energies except that they are computable in time
polynomial in jsj.

Experimental Results

With the release of the most recent energy param-
eters [6], secondary structure prediction by find-
ing a minimum free energy structure was found
to recover approximately 73 % of the base pairs

in a benchmark data set of RNA sequences with
known secondary structure. Another independent
assessment [1] put the recovery percentage some-
what lower at around 56 %. This discrepancy is
discussed and explained in [1].

Data Sets

Families of homologous RNA sequences aligned
and annotated with secondary structure are
available from the Rfam database at www.
sanger.ac.uk/Software/Rfam/. Three-dimensional
structures are available from the Nucleic Acid
Database at ndbserver.rutgers.edu/. An extensive
list of this and other databases is available at
www.imb-jena.de/RNA.html.

URL to Code

Software for RNA folding and a range of re-
lated problems is available at www.bioinfo.rpi.
edu/applications/hybrid/download.php and www.
tbi.univie.ac.at/~ivo/RNA/. Software implement-
ing the efficient handling of internal loops of [8]
is available at ftp.ncbi.nlm.nih.gov/pub/ogurtsov/
Afold.
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Problem Definition

This problem is concerned with predicting the set
of base pairs formed in the native structure of an
RNA molecule, including overlapping base pairs
also known as pseudoknots. Standard approaches
to RNA secondary structure prediction only allow
sets of base pairs that are hierarchically nested.
Though few known real structures require the
removal of more than a small percentage of their
base pairs to meet these criteria, a significant
percentage of known real structures contain at
least a few base pairs overlapping other base
pairs. Pseudoknot substructures are known to be
crucial for biological function in several contexts.
One of the more complex known pseudoknot
structures is illustrated in Fig. 1.

Notation
Let s 2 fA;C;G;U g� denote the sequence of
bases of an RNA molecule. Use X � Y where
X; Y 2 fA;C;G;U g to denote a base pair
between bases of type X and Y and i � j where
1 � i < j � jsj to denote a base pair between
bases sŒi � and sŒj �.

Definition 1 (RNA Secondary Structure) A
secondary structure for an RNA sequence s is a
set of base pairs S D fi �j j1 � i � j � jsj^ i <
j � 3g. For i � j; i 0 � j 0 2 S with i � j ¤ i 0 � j 0:

• fi; j g \ fi 0; j 0g D ; (each base pair with at
most one other base)

• fsŒi �; sŒj �g 2 ffA;U g; fC;Gg; fG;U gg (only
Watson-Crick and G;U wobble base pairs)

The second requirement that only canonical base
pairs are allowed is standard but not consequen-
tial in solutions to the problem.

Scoring Schemes
Structures are usually assessed by extending the
model of Gibbs free energy used for �RNA Sec-
ondary Structure Prediction by Minimum Free
Energy (cf. corresponding entry) with ad hoc
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RNA Secondary
Structure Prediction
Including Pseudoknots,
Fig. 1 Secondary structure
of the Escherichia coli ’
operon mRNA from
position 16 to position 127,
cf. [5], Figure 1. The
backbone of the RNA
molecule is drawn as
straight lines, while base
pairings are shown with
zigzagged lines

extrapolation of multibranched loop energies to
pseudoknot substructures [11] or by summing
independent contributions, e.g., obtained from
base pair restricted minimum free energy struc-
tures from each base pair [13]. To investigate the
complexity of pseudoknot prediction, the follow-
ing three simple scoring schemes will also be
considered:

Number of base
pairs

#BP.S/ D jSj
Number of
stacking base
pairs

#SBP.S/ D jfi � j 2
Sji C 1 � j � 1 2 S _
i � 1 � j C 1 2 Sgj

Number of base
pair stackings

#BPS.S/ D jfi � j 2
Sji C 1 � j � 1 2 Sgj

These scoring schemes are inspired by the fact
that stacked pairs are essentially the only loops
having a stabilizing contribution in the Gibbs free
energy model.

Problem 2 (Pseudoknot Prediction)

INPUT: RNA sequence s and an appropriately
specified scoring scheme

OUTPUT: A secondary structure S for s that is
optimal under the scoring scheme specified

Key Results

Theorem 1 The complexities of pseudoknot
prediction under the three simplified scoring
schemes can be classified as follows, where †
denotes the alphabet.

Theorem 2 If structures are restricted to be pla-
nar, i.e., the graph with the bases of the sequence
as nodes and base pairs and backbone links of

consecutive bases as edges is required to be
planar, pseudoknot prediction under the #BPS
scoring scheme is NP-hard for an alphabet of size
4. Conversely, a 1/2-approximation can be found
in time O.jsj3/ and space O.jsj2/ by observing
that an optimal pseudoknot free structure is a 1/2-
approximation [6].

There are no steric reasons that RNA sec-
ondary structures should be planar, and the struc-
ture in Fig. 1 is actually nonplanar. Nevertheless,
known real structures have relatively simple over-
lapping base pair patterns with very few nonpla-
nar structures known. Hence, planarity has been
used as a defining restriction on pseudoknotted
structures [2, 15]. Similar reasoning has led to
the development of several algorithms for finding
an optimal structure from restricted classes of
structures. These algorithms tend to use more
realistic scoring schemes, e.g., extensions of the
Gibbs free energy model, than the three simple
scoring schemes considered above.

Theorem 3 Pseudoknot prediction for a
restricted class of structures including Fig. 2a–e,
but not Fig. 2f, can be done in time O.jsj6/ and
spaceO.jsj4/ [11].

Theorem 4 Pseudoknot prediction for a
restricted class of planar structures including
Fig. 2a–c, but not Fig. 2d–f, can be done in time
O.jsj5/ and space O.jsj4/ [14].

Theorem 5 Pseudoknot prediction for a
restricted class of planar structures including
Fig. 2a, b, but not Fig. 2c–f, can be done in time
O.jsj5/ and space O.jsj4/ or O.jsj3/ [1, 4]
(methods differ in generality of scoring schemes
that can be used).
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Fixed alphabet Unbounded alphabet

#BP [13] Time O.jsj3/, space O.jsj2/ Time O.jsj3/, space O.jsj2/

#SBP [7] Time O.jsjj†j
2

Cj†j
3
/, space O.jsjj†j

2
Cj†j

3
/ NP hard

#BPS NP hard for j† D 2j, PTAS [7] 1/3-approximation
in time O.jsj/ [6]

NP hard [7], 1/3-approximation in time and space
O.jsj2/ [6]

RNA Secondary Structure Prediction Including Pseu-
doknots, Fig. 2 RNA secondary structures illustrating
restrictions of pseudoknot prediction algorithms. Back-

bone is drawn as a straight line, while base pairings are
shown with zigzagged arcs

Theorem 6 Pseudoknot prediction for a
restricted class of planar structures including
Fig. 2a, but not Fig. 2b–f, can be done in time
O.jsj4/ and space O.jsj2/ [1, 8].

Theorem 7 Recognition of structures belonging
to the restricted classes of Theorems 3, 5, and 6
and enumeration of all irreducible cycles (i.e.,
loops) in such structures can be done in time
O.jsj/ [3, 9].

Applications

As for the prediction of RNA secondary struc-
tures without pseudoknots, the key application of
these algorithms is for predicting the secondary
structure of individual RNA molecules. Due to
the steep complexities of the algorithms of The-
orems 3–6, these are less well suited for genome
scans than prediction without pseudoknots.

Enumerating all loops of a structure in linear
time also allows scoring a structure in linear time,
as long as the scoring scheme allows the score
of a loop to be computed in time proportional
to its size. This has practical applications in
heuristic searches for good structures containing
pseudoknots.

Open Problems

Efficient algorithms for prediction based on
restricted classes of structures with pseudoknots
that still contain a significant fraction of all
known structures are an active area of research.
Even using the more theoretical simple #SBP
scoring scheme, developing, e.g., an O.jsjj†j/
algorithm for this problem would be of practical
significance. From a theoretical point of view,
the complexity of planar structures is the least
well understood, with results for only the #BPS
scoring scheme.

Classification of realistic energy models for
RNA secondary structures with pseudoknots is
much less developed than for RNA secondary
structures without pseudoknots. Several recent
papers have been addressing this gap [3, 9, 12].

Data Sets

PseudoBase at http://biology.leidenuniv.nl/~
batenburg/PKB.html is a repository of repre-
sentatives of most known RNA structures with
pseudoknots.
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URL to Code

The method of Theorem 3 is available at http://
selab.janelia.org/software.html#pknots and of
one of the methods of Theorem 5 at http://www.
nupack.org, and an implementation applying a
slight heuristic reduction of the class of structures
considered by the method of Theorem 6 is
available at http://bibiserv.techfak.uni-bielefeld.
de/pknotsrg/ [10].
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Problem Definition

Since ancient history mankind has been
fascinated by the problem of orienting itself in
unknown environments. Problems like escaping
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Robotics, Fig. 1 Any reasonable strategy for searching for a point on a line can be expressed as a sequence X D
f1; f2; f3; : : : of the search depths of the strategy

from a labyrinth or searching for target objects
have been considered and discussed intensively.
Such problems can be easily modeled in a
geometric setting.

For example, let us assume that an agent is
searching for an unknown door along a wall.
We assume that the door is detected, if the
agent exactly hits the door. Geometrically one
is searching for an unknown point along a line
as depicted in Fig. 1. Although the location of
the point is not known and is only detected by a
visit, it should be found without too much detour.
This classical problem in online navigation was
discussed by [2] in the early 1990s.

Since the distance and the location of the goal
is not known, obviously any reasonable (deter-
ministic) strategy should move in the two direc-
tions alternatingly and with increasing depths, fi ,
until the goal is detected.

A classical result of [13] shows that it is
optimal to use a search strategy that doubles the
search distance in every step, i.e., fi D 2i . It can
be shown that the resulting path to an arbitrary
target point t is never greater than 9 times the
shortest path to the target t , regardless of the
position of t . There is no deterministic strategy
that attains a smaller factor; see also [2].

Navigation and Exploration
We categorize three fundamental tasks: naviga-
tion, exploration, and localization. Navigation (or
search) means to find a way to a predescribed
location in an unknown environment as shown
above. Exploration means to draw a complete
map of an unknown environment or to detect or
visit all possible targets. Localization means to
determine the currently unknown position on a
known and given map. In many settings, the en-

vironment is modeled geometrically as a simple
polygon with or without holes. To distinguish
the underlying combinatorial problems from the
geometric problems, an environment may also be
modeled as a graph. For an overview of online
searching and exploration problems, see [25] or
the more recent survey of Gal [14].

Performance Measure, Competitive
Analysis
A general concept for evaluating the efficiency
of an online strategy is the so-called competitive
analysis. Formally, for a class of problems ˘
and any instance P 2 ˘ , the cost, OnlAlg.P /,
of the online algorithm is compared to the cost,
OfflOpt.P /, of the optimal offline algorithm. If
there are constants C and A, so that

OnlAlg.P / � C 
 OfflOpt.P /C A

holds for any P 2 ˘ , the online algorithm is
called C competitive. In the case of exploration
and navigation, the robot should minimize its
travel distance. Therefore, the competitive ratio
C measures the length of the detour compared
to the optimal shortest tour computed under full
information. An overview of efficient compu-
tations of optimal offline solutions for short-
est paths problems can be found in the survey
of Mitchell [23]. Many online motion planning
problems were classified by the competitive anal-
ysis; see the surveys [4, 10, 25].

A randomized online algorithm against an
oblivious adversary uses randomization on a
fixed predetermined input (which is unknown
to the online algorithm). In this case, the
competitive ratio is a random variable, and
it is maximized over all possible inputs. For
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example, an optimal randomized strategy for the
introductory point-on-a-line problem given by
Kao et al. [17] achieves an optimal competitive
ratio of 4:5911 : : :.

Different Models
The robot can be equipped with a vision system
or with a local touch sensor, only. The impact
of a compass is of some interest. One can con-
sider continuous geometric settings such as (a
collection of) simple polygons or a concatena-
tion of corridors. On the other hand, the ge-
ometric environment might be given by a dis-
crete concatenation of single cells (i.e., a grid
graph environment) or is modeled by a general
graph. Furthermore, we can consider a single
robot or a set of k agents which are working
together and exchange information to some ex-
tent. Additionally the size of the memory of the
agents can be limited. Tasks for a huge set of
agents with very limited abilities are related to
swarm behavior which is not the topic of this
overview.

Key Results

Navigation
Blum et al. [6] studied the problem of a blind
robot trying to reach a goal t from a start
position s (point-to-point navigation) in a
two-dimensional scene of n non-overlapping
axis-parallel rectangles of width at least one.
In the wall problem, t is an infinite vertical
line. In the room problem, the obstacles are
within a square room with entry door s

and the target t lies on the outer boundary.
O.
p
n/ competitive online algorithms have been

developed. A lower bound on the competitive
ratio of ˝.

p
n/ for the wall problem was given

by [24], and for the room problem optimal
�.logn/ competitive algorithms have been
presented by [3]. For randomized strategies
and point-to-point navigation, there is an
˝.log logn/ lower bound for the model of an
oblivious adversary from [18], and [5] presented
randomized O.logn/ competitive algorithms

for the same problem and also for the wall
problem.

The introductory search problem for the
line (or 2-rays) was extended to m concurrent
rays where an optimal competitive ratio of
1C2mm=.m�1/m�1 was shown; see [2,13]. An
optimal strategy visits the m rays alternatingly
with search depth fi D .m=.m � 1//i . For
p agents on m rays working in parallel and
exchanging information, an optimal ratio of
1C2.m=p�1/.m=.m�p//m=p can be achieved;
see [21]. In a natural extension in dimension 2,
the robot scans the area with a radar connected to
the starting point. Gal [13] introduced this two-
dimensional search problem and conjectures that
a logarithmic spiral (i.e., the natural continuous
extension of the doubling heuristic) gives an
optimal strategy. The best logarithmic spiral
attains a competitive ratio of 17:289 : : :; finally a
proof for the optimality of spiral search is given
in [20].

Exploration
Deng et al. [7] introduced the online gallery
route problem. We consider a simple room mod-
eled by a simple polygon and an agent equipped
with a visibility system. The task of computing
the shortest roundtrip so that the agent sees all
points in the polygon is denoted as the shortest
watchman route (SWR) problem. In the case of
a rectilinear simple polygon and with L1-metric,
there is an optimal (i.e., 1-competitive) online
algorithm which gives a

p
2-approximation of the

SWR for theL2-metric in the rectilinear problem.
For general simple polygons, the problem was

first solved by Icking et al. [16] with a proven
competitive ratio of 26:5, whereas the greatest
known lower bound is given by 1:28; see [15].

For the exploration of a geometric environ-
ment with k rectilinear obstacles, there is an
˝.
p
k/ lower bound on the competitive ratio for

deterministic and randomized strategies; see [1].
Online graph exploration by a set of k agents

means that every vertex of an unknown graph
has to be visited. In some configuration, addition-
ally all edges have to be traversed. Assume that
full communication among the agents is given.
Finding the optimal makespan (finishing time)
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algorithm for k agents is an NP-hard problem
even for a given tree, and there is an O.k= log k/
competitive algorithm for the online exploration
(edges and vertices) version; see [12]. On the
other hand, a special tree construction in [9]
gives an ˝.log k= log log k/ lower bound on the
competitive ratio. For cell environments (grid
graph with or without holes), optimal competitive
strategies exist.

Dependency Between Searching and
Exploration
From them-concurrent rays result above, one can
easily deduce that there is no constant competi-
tive online strategy for searching a point in simple
polygons with n edges where n can grow. Nev-
ertheless in a fixed polygon, any search strategy
that sees all points defines a ratio for any point
and has a worst case ratio; see Fig. 2. So there
have to be some optimal search path for any
fixed polygon. We want to find a general strategy
that approximates the best search path for any
polygon within a constant factor, i.e., within a
constant search ratio.

The search ratio definition was first given by
Koutsoupias et al. [19]; they studied graphs with
unit edge length. The result of Koutsoupias et
al. is restricted to the offline case where the
graph is completely known a priori. Only the goal
remains hidden. The above concept goes beyond
competitive analysis, although the definitions of
the search ratio and the competitive factor are
quite similar. In the competitive framework, we

pπ

p

π

s

Robotics, Fig. 2 In a fixed polygon, a search path 	 sees
all points and attains a ratio for any single point. At p�

the target point p is detected for the first time and defines
a ratio

compare the online path from the start to the goal
to the shortest s–to–t path for any possible goal.
For an approximation of the optimal search ratio,
we compare the online path to the best possible
offline path for any goal, which – in turn – may
already have a very bad competitive ratio.

The key idea for solving this problem also
indicates the general dependency between
searching and exploration. We make use
of efficient (probably constant competitive)
exploration strategies for the given environments.
If they can be restricted to a bounded distance in a
somewhat greater environment, we successively
increase the exploration depth by a doubling
factor.

Fleischer et al. [11] showed that it is possible
to approximate an optimal search path for search-
ing a point in a simple polygon by a factor of
roughly 4 if the goal has to be visited directly.
If a vision system is used, a factor of roughly 8
can be guaranteed. The result even holds when
the environment is not given in advance. And the
result also holds even though the optimal search
path in a given simple polygon is not known.

Applications

In practice a robot can efficiently arrive at a
target point (given by coordinates) in an unknown
environment with obstacles by Lumelsky’s BUG
strategy [22]. Many such BUG-variants were de-
veloped and successfully applied, for example, in
some of the mars rover expeditions. If Lumel-
sky’s BUG algorithm is assumed to navigate
between convex obstacles, in the worst case it
moves at most once around every significant ob-
stacle, which is optimal in this case. Additionally
a robot with a compass can sometimes find the
goal exponentially faster than a robot without a
compass.

Theoretical paradigms have practical rele-
vance in robotics; see Dudek und Jenkin [8].
The doubling heuristic is widely accepted as
an approximation scheme in practice. The
general concept for the approximation of the
optimal search path has some influence. If
somebody is searching for a target in an unknown
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environment, it seems to be unavoidably that the
environment has to be explored efficiently with
increasing depth.

The concept also shows that there is some-
times no significant difference between a known
environment with unknown targets and a fully un-
known environment. Roughly speaking, if some-
body is searching for a goal in unknown position,
it is not important whether the corresponding
environment is fully known in advance or not
known at all.

Open Problems

For many settings, the precise competitive
complexity of an online motion planning
problems is not known. Tight lower bounds are
much harder to achieve. Some examples are
given below. The lower bound construction for
the navigation among obstacles usually make use
of arbitrary thin obstacles. Is it possible to get rid
of such a restriction?

Exploration of a simple room with visibility:
Upper bound 26:5 vs. lower bound 1:28

Exploration of graphs by k agents: Up-
per bound O.k= logk/ vs. lower bound
˝.logk= log log k/

Optimality of spiral search? Upper bounds given
by spiral search.

Searching for a line in the plane: Upper
bound 13:81113 : : : vs. lower bound

p
2 � 9

Searching for a ray in the plane: Upper bound
22:513 : : : vs. lower bound 17:289 : : :

Navigation among k obstacles: Does the lower
bound of ˝.

p
k/ hold for a fixed aspect ratio

of the obstacles?
Optimal search path: How to compute the opti-

mal search path for a given polygon or graph?
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Problem Definition

Consider the classical online bin packing prob-
lem, where items of sizes in .0; 1� arrive over
time. At the arrival of each item, it has to be
assigned to a bin of capacity 1 such that the total
size of all items in the bin does not exceed its
capacity. The objective is to minimize the number
of used bins.

Online bin packing was introduced by
Ullman [10] and has seen enormous research
since then (see the survey of Seiden [9] for an
overview). The quality of an online algorithm
is typically measured by the asymptotic
performance guarantee of the algorithm divided
by the optimal offline solution and is called the
(asymptotic) competitive ratio. In the case of
online bin packing, the best known algorithm has
an asymptotic competitive ratio of 1:58889 (see
[9]). On the other hand, it was shown that no
algorithm can achieve a ratio better than 1:54037
(see [1]).

To obtain algorithms with improved competi-
tive ratio for online bin packing, one can allow to
rearrange already packed items as soon as a new
item arrives. The notion of robustness allows to
repack a set of already packed items with limited
total size whenever a new item arrives. On the one
hand, we want to guarantee that we use as few
bins as possible, and on the other hand, when a
new item arrives, we want to minimize the total
size of repacked items.

A modern way to measure the repacking costs
is the notion of the migration factor, developed
by Sanders, Sivadasan, and Skutella [8]. It is
defined by the total size of all moved items
divided by the size of the arriving item. Following
the notation of Sanders et al., an online algorithm
with (asymptotic) approximation ratio 1 C � is
called robust if its migration factor is of the size
f .1

�
/, where f is an arbitrary function that only

depends on 1
�

.

Key Results

In the case of robust bin packing, Epstein and
Levin [3] proved that the asymptotic competitive
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ratio of the robust bin packing problem can be
arbitrarily close to the optimum. They developed
an asymptotic PTAS for the problem using a

migration factor of 2O. 1

�2 log 1
� /. They also proved

that there is no online algorithm for this prob-
lem which has a constant migration factor and
that maintains an optimal solution. The asymp-
totic PTAS by Epstein and Levin was later im-
proved by Jansen and Klein [7], who developed
an asymptotic FPTAS for the problem with a
migration factor of O. 1

�4 /.

Techniques
Most robust algorithms rely on a sensitivity
result for integer linear programs (ILPs) by
Cook et al. [2]. It was first used by Sanders
et al. [8] to develop a robust PTAS for the
scheduling problem on identical machines with
the objective value of minimizing the makespan.
The theorem of Cook et al. roughly states that
for every optimal integral solution y0 of the
ILP minfcy j Ax � b0g, there exists an optimal
integral solution y00 of the ILP minfcy j Ax �
b00g with changed right-hand side b00 such that the
distance between y0 and y00 can be bounded by
ky00 � y0k1 � n� .kb00 � b0k1 C 2/, where n
is the number of variables and � is the absolute
value of the largest subdeterminant of A.

The major contribution by Epstein and Levin
for the robust bin packing problem was to
develop a dynamic rounding technique. Based
on a classical rounding by Fernandez de La
Vega and Lueker [5], the dynamic rounding
techniques present a way on how item sizes
can be rounded in a setting where new items
arrive over time. This allows to formulate an
ILP of fixed dimension. As a new item arrives
online, the formulated ILP changes accordingly.
The changed ILP has additional columns and
the right-hand side of the ILP is increased.
Using the theorem of Cooks et al. [2] allows
then to find a solution for the changed ILP
that is close to the existing solution. This way
a new packing is constructed for the bin packing
instance containing the newly arrived item.

Since the number of variables n and the largest
subdeterminant � in the ILP formulation can
only be bounded by an exponential term in 1

�
,

the use of Cooks et al. theorem leads to an
exponential migration factor. Jansen and Klein
developed new LP and ILP techniques which
are based on approximate solutions of the corre-
sponding LP. Their central idea is to show that
for any approximate solution x0 with objective
value kx0k1 � .1 C ı/LIN, there is an approx-
imate solution x00 with improved objective value
kx0k1 � .1C ı/LIN� 1 such that ky00 � y0k1 D
O.1

ı
/. Based on this observation, they can avoid

the use of Cooks et al. theorem to obtain an
asymptotic PTAS for the bin packing problem
with polynomial migration.

Open Problems

• There is the obvious open question on how
much the migration factor of O. 1

�4 / from [7]
can be improved and whether there are lower
bounds for the migration factor. The existence
of a robust algorithm with constant or sublin-
ear migration is still open.

• Is there a robust approximation scheme for
the case when items not only arrive but also
depart? In the literature this problem is called
fully dynamic bin packing and was consid-
ered by Ivković and Lloyd [6]. They devel-
oped an algorithm which achieves an asymp-
totic competitive ratio of 5

4
using amortized

O.log n/ shifting moves, where n is the num-
ber of packed items. A shifting move repacks
one large item or a bundle of small items of
bounded size.

• Epstein and Levin developed a robust asymp-
totic PTAS for the generalized bin packing
problem, where d -dimensional cubes have to
be packed into unit-sized cubes [4]. It would
be interesting to find other robust approxima-
tion schemes for other packing problems like
online strip packing or online bin packing with
bins of different capacities.
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Problem Definition

Algorithms in computational geometry are usu-
ally designed under the Real RAM model. In
implementing these algorithms, however, fixed-
precision arithmetic is used in place of exact
arithmetic. This substitution introduces numeri-
cal errors in the computations that may lead to
nonrobust behavior in the implementation, such
as infinite loops or segmentation faults.

There are various approaches in the the lit-
erature addressing the problem of nonrobustness
in geometric computations; see [9] for a survey.
These approaches can be classified along two
lines: the arithmetic approach and the geomet-
ric approach.

The arithmetic approach tries to address non-
robustness in geometric algorithms by handling
the numerical errors arising because of fixed-
precision arithmetic; this can be done, for in-
stance, by using multi-precision arithmetic [6], or
by using rational arithmetic whenever possible. In
general, all the arithmetic operations, including
exact comparison, can be performed on algebraic
quantities. The drawback of such a general ap-
proach is its inefficiency.

The geometric approaches guarantee that cer-
tain geometric properties are maintained by the
algorithm. For example, if the Voronoi diagram
of a planar point set is being computed then it
is desirable to ensure that the output is a planar
graph as well. Other geometric approaches are
finite resolution geometry [7], approximate pred-
icates and fat geometry [8], consistency and topo-
logical approaches [4], and topology oriented
approach [13]. The common drawback of these
approaches is that they are problem or algorithm
specific.

In the past decade, a general approach called
the Exact Geometric Computation (EGC) [15]
has become very successful in handling the issue
of nonrobustness in geometric computations;
strictly speaking, this approach is subsumed in
the arithmetic approaches. To understand the
EGC approach, it helps to understand the two
parts common to all geometric computations:
a combinatorial structure characterizing the
discrete relations between geometric objects, e.g.,
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whether a point is on a hyperplane or not; and
a numerical part that consists of the numerical
representation of the geometric objects, e.g., the
coordinates of a point expressed as rational or
floating-point numbers. Geometric algorithms
characterize the combinatorial structure by
numerically computing the discrete relations
(that are embodied in geometric predicates)
between geometric objects. Nonrobustness arises
when numerical errors in the computations
yield an incorrect characterization. The EGC
approach ensures that all the geometric predicates
are evaluated correctly thereby ensuring the
correctness of the computed combinatorial
structure and hence the robustness of the
algorithm.

Notation
An expression E refers to a syntactic object
constructed from a given set of operators over the
reals R. For example, the set of expressions on
the set of operators fZ;C;�;
;pg is the set of
division-free radical expressions on the integers;
more concretely, expressions can be viewed as
directed acyclic graphs (DAG) where the internal
nodes are operators with arity at least one, and
the leaves are constants, i.e., operators with arity
zero. The value of an expression is naturally
defined using induction; note that the value may
be undefined. Let E represent both the value of
the expression and the expression itself.

Key Results

Following are the key results that have led to the
feasibility and success of the EGC approach.

Constructive Zero Bounds
The possibility of EGC approach hinges on the
computability of the sign of an expression. For
determining the sign of algebraic expressions
EGC libraries currently use a numerical approach
based upon zero bounds. A zero bound b > 0 for
an expression E is such that absolute value jEj of
E is greater than b if the value of E is valid and
nonzero. To determine the sign of the expression
E, compute an approximation QE to E such that

j QE � Ej < b
2

if E is valid, otherwise QE is also
invalid. Then sign of E is the same as the sign of
QE if j QEj � b

2
, otherwise it is zero. A constructive

zero bound is an effectively computable function
B from the set of expressions to real numbers R
such that B(E) is a zero bound for any expression
E. For examples of constructive zero bounds,
see [2, 11].

Approximate Expression Evaluation
Another crucial feature in developing the EGC
approach is developing algorithms for approxi-
mate expression evaluation, i.e., given an expres-
sion E and a relative or absolute precision p,
compute an approximation to the value of the
expression within precision p. The main com-
putational paradigm for such algorithms is the
precision-driven approach [15]. Intuitively, this
is a downward-upward process on the input ex-
pression DAG; propagate precision values down
to the leaves in the downward direction; at the
leaves of the DAG, assume the ability to approx-
imate the value associated with the leaf to any
desired precision; finally, propagate the approxi-
mations in the upward direction towards the root.
Ouchi [10] has given detailed algorithms for the
propagation of “composite precision”, a general-
ization of relative and absolute precision.

Numerical Filters
Implementing approximate expression evalu-
ation requires multi-precision arithmetic. But
efficiency can be gained by exploiting machine
floating-point arithmetic, which is fast and
optimized on current hardware. The basic idea
is to to check the output of machine evaluation
of predicates, and fallback on multi-precision
methods if the check fails. These checks are
called numerical filters; they certify certain
properties of computed numerical values, such
as their sign. There are two main classifications
of numerical filters: static filters are those that
can be mostly computed at compile time, but they
yield overly pessimistic error bounds and thus are
less effective; dynamic filters are implemented
during run time and even though they have higher
costs they are much more effective than static
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filters, i.e., have better estimate on error bounds.
See Fortune and van Wyk [5].

Applications

The EGC approach has led to the development
of libraries, such as LEDA Real and CORE,
that provide EGC number types, i.e., a class of
expressions whose signs are guaranteed. CGAL,
another major EGC Library that provides robust
implementation of algorithms in computational
geometry, offers various specialized EGC num-
ber types, but for general algebraic numbers it can
also use LEDA Real or CORE.

Open Problems

1. An important challenge from the perspective
of efficiency for EGC approach is high degree
algebraic computation, such as those found
in Computer Aided Design. These issues are
beginning to be addressed, for instance [1].

2. The fundamental problem of EGC is the zero
problem: given any set of real algebraic op-
erators, decide whether any expression over
this set is zero or not. The main focus here
is on the decidability of the zero problem for
non-algebraic expressions. The importance of
this problem has been highlighted by Richard-
son [12]; recently some progress has been
made for special non-algebraic problems [3].

3. When algorithms in EGC approach are em-
bedded in larger application systems (such as
mesh generation systems), the output of one
algorithm needs to be cascaded as input to
another; the output of such algorithms may be
in high precision, so it is desirable to reduce
the precision in the cascade. The geometric
version of this problem is called the geometric
rounding problem: given a consistent geo-
metric object in high precision, “round” it
to a consistent geometric object at a lower
precision.

4. Recently a computational model for the
EGC approach has been proposed [14]. The
corresponding complexity model needs to
be developed. Standard complexity analysis

based on input size is inadequate for
evaluating the complexity of real computation;
the complexity should be expressed in terms
of the output precision.

URL to Code

1 Core Library:http://www.cs.nyu.edu/
exact

2 LEDA: http://www.mpi-sb.mpg.de/LEDA
3 CGAL: http://www.cgal.org
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Problem Definition

In the classic online scheduling model, jobs arrive
one after another. At the arrival of a new job,
the scheduler must immediately and irrevocably
assign it to a machine. In the parallel machine
case, we have m identical machines to process
the jobs. Each job j has a processing time pj

that is revealed at the moment of its appearance.
The load of a machine is the sum of processing
times of jobs assigned to it. The objective is to
minimize the makespan, that is, the maximum
machine load.

The fact that decisions are irrevocable imposes
a hard constraint on the scheduler. However,
many applications allow some amount of flexibil-
ity. Robust scheduling algorithms take this flexi-
bility into account: whenever a job arrives, some
reassignment of jobs can be performed. More
precisely, given a parameter ˇ > 0, the arrival of
job j allows to migrate a set of jobs with a total
processing time of at most ˇ � pj . The factor ˇ is
called the migration factor of the algorithm and
it is a measure of its robustness. In this context,
the quality of solutions is assessed by competitive
analysis: an algorithm is ˛-competitive if for
any sequence of job arrivals the makespan of
the algorithm is at most ˛ times the (offline)
optimum cost for the set of available jobs. An
important goal in this area is to understand the
trade-off between the migration and competitive
factors.

Key Results

Greedy Approaches
In a setting where no migration is allowed, i.e., if
ˇ D 0, a competitive ratio of 2� 1

m
is achievable

by a greedy list-scheduling algorithm [7].
Although more sophisticated algorithms have
smaller competitive ratios (see, e.g., [6]), no
algorithm can achieve a performance guarantee
smaller than e=.e � 1/ 	 1:58 [1, 11], even if
randomization is allowed.

Sanders et al. [10] give algorithms with im-
proved competitive ratios for small values of ˇ.
A simplified version of their most basic algorithm
is as follows. Let j be an arriving job and denote
by OPT the minimum makespan of the instance
including j . The algorithm works as follows.

1. If pj � OPT=2, assign job j to the machine
with the smallest load.

2. Otherwise, consider a machine i in which
all jobs are of size at most OPT=2. Greedily
remove jobs from i until their total processing



1864 Robust Scheduling Algorithms

time is at least pj . Add job j to i and greedily
reassign each removed job to the least loaded
machine.

The existence of the claimed machine in Step
(2) follows since there can be at most m jobs of
size larger than OPT=2 in the instance. The proof
that the algorithm is 3=2-competitive is a simple
exercise that follows since each greedily assigned
job has size at most OPT=2. By construction the
algorithm has migration factor 2. The fact that
the algorithm needs the value OPT as input can
be avoided by trying out a handful of different
solutions.

With this simple approach the competitive
guarantee is already below the lower bound of
1:58 for ˇ D 0. Sanders et al. [10] shows that
a refinement of this algorithm gives the same
competitive guarantee and reduces ˇ to 4=3.
They also provide more sophisticated algorithms
with smaller competitive factors, for example, a
4=3-competitive algorithm with migration factor
5=2.

Robust Approximation Schemes
The algorithms above show that already small
migration factors can help to significantly im-
prove the quality of solutions. However, they tell
little about the trade-off between the competitive
and migration ratios. Sanders et al. [10] study
this trade-off by giving a robust polynomial time
approximation scheme (robust PTAS), that is, a
family of algorithms fA"g">0 such that for any
constant " > 0 the algorithm A" is .1 C "/-
competitive and uses a migration factor of ˇ."/.
We remark that ˇ is a constant that depends only
on " and not on the specific input data.

The robust PTAS borrows ideas from the
known PTAS for the offline problem [8]. At
the arrival of a job j , the algorithm takes the
given .1 C "/-approximate solution and updates
it to a schedule with the same approximation
guarantee. The algorithm behaves differently
depending on the size of j . If pj is in O."OPT/,
where OPT denotes the optimal makespan for
the current instance including j , then we can
safely assign this job to the least loaded machine
and maintain the approximation guarantee.

Otherwise, the processing times are rounded
to simplify the instance and add symmetry to the
solution. The corresponding offline minimum
makespan problem for this instance can be
posed as an integer program (IP) of the form
minfctx W A �x D b; x 2 N

d g. A component xC

of x corresponds to the number of machines
with a given configuration C , where each
configuration is a compact description of a
one machine schedule. Crucially, the number
of different configurations, that is, the number
of variables d in the IP, is a constant 2poly.1="/.
Moreover, the complete instance is encoded in
the right-hand side b. After a new job arrives, the
corresponding IP can be updated by increasing
one coordinate of b by one, obtaining a new
vector b0. A sensitivity analysis result by Cook
et al. [2] implies that for any optimal solution
x of the IP, there exists an optimal solution x0
with the right-hand side changed to b0 such that
jjx � x0jj1 � d 2 ��.A/ � .jjb � b0jj1 C 2/. Here
�.A/ is the maximum jdet.B/j over all square
submatrices B of A, which in this case can be
bounded by 2poly.1="/. Therefore, the number of
machines that need to be modified in order to go
from schedule x to x0 is jjx � x0jj1 � 2poly.1="/.
Since we are assuming that the new job has
processing time in ˝."OPT/, and each machine
has a load of O.OPT/, we obtain an algorithm
with migration factor 2poly.1="/.

Theorem 1 (Sanders et al. [10]) The problem
of minimum makespan on identical machines ad-
mits a robust PTAS with migration factor ˇ D
2poly.1="/.

Applications

The basic technique for constructing a robust
PTAS has been adapted to different related prob-
lem. Most results are based on the sensitivity
analysis result mentioned above, but differ in
other parts of the algorithm and analysis. In par-
ticular robust PTASs have been developed for bin
packing [3] and cube packing [4]. Other objective
functions for identical machine scheduling have
also been considered, for example, minimizing
the `p-norm of the vector of loads or maximizing
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the minimum machine load. These problems do
not admit robust PTASs; however, it is possi-
ble to design such algorithms for an amortized
analogue of the migration factor [12]. Epstein
and Levin [5] consider preemptive scheduling
problems on parallel machines, obtaining a 1-
competitive algorithm with migration factor 1 �
1=m for the minimum makespan and minimum
`p-norm objectives. As opposed to the previous
results, this algorithm does not rely on sensitivity
analysis results for IPs.

The bin packing problem was considered by
Jansen and Klein [9]. They improve the result
in [3] to a robust PTAS with ˇ D poly.1="/.
To obtain this migration factor, they develop new
sensitivity analysis results aimed specifically at
approximation algorithms.

Open Problems

An interesting question is to determine the pre-
cise trade-off between the competitive and migra-
tion factors for the minimum makespan problem
on identical machines. In particular, determine if
the migration can be made to depend polynomi-
ally on 1=" for a .1 C "/-competitive algorithm.
Another natural question is to extend these results
to related machines. In this setting, each machine
i runs at a speed si , and thus the time it takes to
process job j on machine i is pj =si .

Other natural objective functions on parallel
machine scheduling are not fully understood. The
machine covering version, where we seek to max-
imize the minimum machine load, does not admit
a robust PTAS. More specifically, a competitive
ratio smaller than 20=19 is not possible with
constant migration factor [12]. It is open if this
competitive ratio is indeed achievable or if the
lower bound can be improved. A similar situation
holds for minimizing the `p-norm for any p >

1 [4].
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Robustness in Self-Assembly

The abstract tile assembly model (aTAM),
originally proposed by Winfree [1], provides
a useful framework to study algorithmic tile self-
assembly. As described in other sections, many
theoretical studies have shown the efficiency and
computational power of aTAM.

The aTAM, although widely accepted and
experimentally verified, is an overly simplified
combinatorial model in describing the self-
assembly of DNA tiles. In reality, several effects
are observed which lead to a loss of robustness
compared to the aTAM. The assembly tends
to be reversible, i.e., tiles can fall off from an
existing assembly, even when the total binding
strength exceeds the temperature threshold � .
Also, tiles sometimes attach with a weak strength
but then quickly get incorporated and locked
into a growing assembly, much like defects in a
crystal. However, for sophisticated combinatorial
assemblies like counters, which form the basis
for controlling the size of a structure, a single
error can lead to assemblies drastically larger
or smaller (or different in other ways) than
the intended structure. An error rate of 0.5–
10 % is observed in previous experimental
studies.

KTAM
A more sophisticated and accurate stochastic
model called the kinetic tile assembly model
(kTAM) was introduced by Winfree [1]. The
kTAM calculates rates for various types of at-
tachments and removals based on thermodynamic
constants. It has the following assumptions:

1. Tile concentrations are held constant through-
out the self-assembly process.

2. Supertiles do not interact with each other. The
only two reactions allowed are addition of a

tile to a supertile and the dissociation of a tile
from a supertile.

3. The forward rate constants for all tiles only
depend on concentrations.

4. The reverse rate depends exponentially on the
number of base-pair bonds which must be
broken, and the mismatched sticky ends make
no base-pair bonds.

There are two free parameters in this model,
both of which are dimensionless free energies:
Gmc > 0 measures the entropic cost of putting a
tile at a binding site and depends on the tile con-
centration, and Gse > 0 measures the free energy
cost of breaking a single strength-1 bond. Under
this model, we can approximate the forward and
reverse rates for each of the tile-supertile reac-
tions in the process of self-assembly of DNA tiles
as follows:

The rate of addition of a tile to a supertile,
f , is pe�Gmc . The rate of dissociation of a tile
from a supertile, rb , is pe�bGse , where b is the
strength with which the tile is attached to the
supertiles. The parameter p simply gives us the
time scale for the self-assembly. Winfree showed
that by setting appropriate tile concentrations and
binding strengths such that Gmc D 2Gsc � �,
the behavior predicted by kTAM approaches the
behavior described by aTAM as � ! 0. However,
the growth speed also goes to 0 (attachment and
dissociation form an unbiased random walk) as
�! 0.

Problem Definition

Self-assembly processes in nature are often
equipped with explicit mechanisms for both error
prevention and error correction. For artificial
self-assembly, these problems are even more
important since we are interested in assembling
large systems with great precision. Previously, a
phenomenon called insufficient attachments has
been identified to be a main source of error [3].
An insufficient attachment is the process in which
a tile t first attach with total strength less than the
temperature. However, before t falls off, adjacent
tiles attach and secure t in place. An insufficient
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Robustness in Self-Assembly, Fig. 1 An example of growth error caused by an insufficient attachment. The red tile
first attaches with a weaker strength. Then the yellow tile attaches and secures the red tile in place
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Robustness in Self-Assembly, Fig. 2 (a) An example of a 2 � 2 proofreading block. (b) An example of a 2 � 2
snaked proofreading block

attachment happening at a location at which
another correct tile can attach via cooperative
bindings is called a growth error. One example
of growth error caused by insufficient attachment
is illustrated in Fig. 1. An insufficient attachment
happening at a location at which no tiles can
attach according to aTAM is called a facet
error. The rate at which any specific insufficient
attachment happens is e�2Gmc=.e�Gmc C e�Gse/,
which is roughly e�Gse times the rate of tile
attachments when Gmc 	 2Gsc. The main goal
of this section is to introduce error-correction
systems that deal with insufficient attachments.

Key Results

Proofreading Tilesets
The first error-correction scheme for the tile as-
sembly model was the proofreading scheme pro-
posed by Winfree and Bekbolatov [2]. The proof-
reading scheme turns any tile system with unidi-
rectional growth into a new system that produces

the same pattern (with scaling). The scheme re-
places each tile type t by k2 distinct tile types.
These k2 tile types are designed to form a k 
 k
block. All internal glues have strength 1 and are
unique to this block. The glues on the boundary
of the block are duplicates of glues on the original
tile t . A 2 
 2 block is illustrated in Fig. 2a. This
construction enforces that whenever a growth
error happens, at least k growth errors must
happen locally in order for the assembly process
to proceed. Thus when growth error happens, the
erroneous tiles are more likely to detach than to
stay and wait for another k � 1 growth errors to
happen. Since the probability that a growth error
happens at any given location is roughly e�Gse ,
the probability that a growth error happens at any
proofreading block and proceeds to produce the
final incorrect assembly is O.e�kGse/.

Snaked Proofreading Tilesets
The abovementioned proofreading system only
handles growth errors but not facet errors, which
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are a major source of error both in theoreti-
cal analysis and computer simulations [3]. Chen
and Goel [3] proposed the snaked proofreading
scheme which handles all errors caused by insuf-
ficient attachments. Similar to the proofreading
scheme, the snaked proofreading scheme replaces
each tile type by a block of 2k 
 2k tile types.
The only difference is that some internal glues
have strength 0 or 2 instead of 1. A 2 
 2 block
is illustrated in Fig. 2b. Under correct growth,
the snaked proofreading block checks its two
input sides alternatively. Therefore, k insufficient
attachments must happen before an erroneous
block “thinks” it attaches correctly and propa-
gate toward any single direction. As a result, the
snaked proofreading scheme with block size 2k

2k ensures that without k insufficient attachments
happening locally, all erroneous structures have
O.k2/ tiles and are expected to fall off in time
polynomial in k. Assuming that the thermody-
namic parameters Gmc and Gse can be set arbi-
trarily, the following theorem characterizes the
performance of the snaked proofreading system.

Theorem 1 With a 2k 
 2k snaked tile system,
k D O.logn/, an n 
 n square of blocks can be
assembled in expected time QO.n/ and with high
probability, while remaining stable for Q̋ .n/ time
after being assembled.

One main drawback for the proofreading and
the snaked proofreading scheme is the resolution
loss. Since each tile in the original system is
replaced by a k 
 k block, the size of the original
pattern is increased by a factor of k. Chen, Goel,
and Luhrs [4] showed that if the third dimension
can be used, two-dimensional tile systems can be
proofread with no resolution loss. Their system
replaces each tile by a column in the third dimen-
sion and thus maintains the original scale on the
two-dimensional plane.
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Problem Definition

One of the most often used techniques in modern
computer networks is routing. Routing means
selecting paths in a network along which to
send data. Demands usually randomly appear on
the nodes of a network, and routing algorithms
should be able to send data to their destination.
The transfer is done through intermediate nodes,
using the connecting links, based on the topology
of the network. The user waits for the network to
guarantee that it has the required capacity during
data transfer, meaning that the network behaves
like its nodes would be connected directly by
a physical line. Such service is usually called
the permanent virtual circuit (PVC) service. To
model real life situations, assume that demands
arrive on line, given by source and destination
points, and capacity (bandwidth) requirements.



Routing 1869

R

Similar routing problems may occur in other
environments, for example in parallel computa-
tion. In this case there are several processors
connected together by wires. During an opera-
tion some data appear at given processors which
should be sent to specific destinations. Thus, this
also defines a routing problem. However, this
paper mainly considers the network model, not
the parallel computer one.

For any given situation there are several rout-
ing possibilities. A natural question is to ask
which is the best possible algorithm. To find
the best algorithm one must define an objective
function, which expresses the effectiveness of the
algorithm. For example, the aim may be to reduce
the load of the network. Load can be measured
in different ways, but to measure the utilization
percent of the nodes or the links of the network
is the most natural. In the online setting, it is
interesting to compare the behavior of a routing
algorithm designed for a specific instance to the
best possible routing.

There are two fundamental approaches to-
wards routing algorithms. The first approach is
to route adaptively, i.e., depending on the actual
loads of the nodes or the links. The second
approach is to route obviously, without using
any information about the current state of the
network. Here the authors survey only results on
oblivious routing algorithms.

Notations and Definitions
A mathematical model of the network routing
problem is now presented.

Let G.V;E; c/ be a capacitated network,
where V is the set of nodes and E is the set
of edges with a capacity function c W E ! RC.
Let jV j D n; jEj D m. It can be assumed that
G is directed, because if G is undirected then
for each undirected edge e D .u; v/ two new
nodes x, y and four new directed edges e1 D
.u; x/; e2 D .v; x/; e3 D .y; u/; e4 D .y; u/ with
infinite capacity may be added to the graph. If e
is considered as an undirected edge with the same
capacity then a directed network equivalent to the
original one is received.

Definition 1 A set of functions f WD ffij ji;
j 2 V; fij WE.G/! RCg is called a multi–
commodity flow if

X
e2E

C

k

fij .e/ D
X

e2E�

k

fij .e/

holds for all k ¤ i; k ¤ j , where k 2 V and
EC

k
; E�

k
are the set of edges coming out from k

and coming into k resp. Each function fij defines
a single–commodity flow from i to j.

Definition 2 The value of a multi–commodity
flow is an n 
 n matrix Tf D .tfij /, where

t
f
ij D

X
e2E

C

i

fij .e/ �
X

e2E�

i

fij .e/ ;

if i ¤ j and vf
i i D 0 ; forall i; j 2 V :

Definition 3 Let D be a nonnegative n 
 n ma-
trix where the diagonal entries are 0. D is called
as demand matrix. The flow on an edge e 2 E
routing the demand matrix D by routing r is
defined by

flow.e; r;D/ D
X

i;j2V

dij rij .e/ ;

while the edge congestion is

con.e; r;D/ D flow.e; r;D/

c.e/
:

The congestion of demand D using routing r is

con.r;D/ D max
e2E

con.e; r;D/ :

Definition 4 A multi–commodity flow r is called
routing if trij D 1, and if i ¤ j for all i; j 2 V .

Routing represents a way of sending information
over a network. The real load of the edges can be
represented by scaling the edge congestions with
the demands.

Definition 5 The oblivious performance ratio
Pr of routing r is
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Pr D sup
D

�
con.r;D/

opt.D/

	

where opt(D) is the optimal congestion which can
be achieved on D. The optimal oblivious routing
ratio for a network G is denoted by opt(G), where

opt.G/ D min
r
Pr

Problem
Input: A capacitated network G.V;E; c/.
Output: An oblivious routing r, where Pr is mini-
mal.

Key Results

Theorem 1 There is a polynomial time algo-
rithm that for any input network G (directed or
undirected) finds the optimal oblivious routing
ratio and the corresponding routing r.

Theorem 2 There is a directed graph G of n
vertices such that opt(G) is at least ˝.

p
n/.

Applications

Most importantly, with these results one can ef-
ficiently calculate the best routing strategy for
a network topology with capacity constraints.
This is a good tool for network planning. The
effectiveness of a given topology can be tested
without any knowledge of the the network traffic
using this analysis.

Many researchers have investigated the
variants of routing problems. For surveys on
the most important models and results, see [10]
and [11]. Oblivious routing algorithms were
first analyzed by Valiant and Brebner [15].
Here, they considered the parallel computer
model and investigated specific architectures,
like hypercube, square grids, etc. Borodin and
Hopcroft investigated general networks [6].
They showed that such simple deterministic
strategies like oblivious routing can not be very

efficient for online routing and proved a lower
bound on the competitive ration of oblivious
algorithms. This lower bound was later improved
by Kaklamanis et al. [9], and they also gave an
optimal oblivious deterministic algorithm for the
hypercube.

In 2002, Räcke constructed a polylog com-
petitive randomized algorithm for general undi-
rected networks. More precisely, he proved that
for any demand there is a routing such that the
maximum edge congestion is at most polylog(n)
times the optimal congestion for this demand
[12]. The work of Azar et al. extends this re-
sult by giving a polynomial method for calcu-
lating the optimal oblivious routing for a net-
work. They also prove that for directed net-
works no logarithmic oblivious performance ra-
tio exists. Recently, Hajiaghayi et al. present an
oblivious routing algorithm which is O

�
log2 n

�
-

competitive with high probability in directed net-
works [8].

A special online model has been investigated
in [5], where the authors define the so called
“repeated game” setting, where the algorithm is
allowed to chose a new routing in each day. This
means that it is oblivious to the demands, that
will occur the next day. They present an 1C "-
competitive algorithm for this model.

There are better algorithms for the adaptive
case, for example in [2]. For the offline case
Raghavan and Thomson gave an efficient algo-
rithm in [13].

Open Problems

The authors investigated edge congestion in this
paper, but in practice, node congestion may be
interesting as well. Node congestion means the
ratio of the total traffic traversing a node to
its capacity. Some results can be found for this
problem in [7] and in [3]. It is an open problem
whether this method used for edge congestion
analysis can be applied for such a model. Another
interesting open question may be whether there is
a more efficient algorithm to compute the optimal
oblivious performance ratio of a network [1, 14].
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Experimental Results

The authors applied their method on ISP network
topologies and found that the calculated optimal
oblivious ratios are surprisingly low, between 1.4
and 2. Other research dealing with this question
found similar results [1, 14].
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Problem Definition

Wireless networks are often modelled using ge-
ometric graphs. Using only local geometric in-
formation to compute a sequence of distributed
forwarding decisions that send a message to its
destination, routing algorithms can succeed on
several common classes of geometric graphs.
These graphs’ geometric properties provide navi-
gational cues that allow routing to succeed using
only limited local information at each node.

Network Model
A common geometric graph model for wireless
networks is to represent each node by a point
in the Euclidean plane, R2, and to add an edge
.u; v/ for each pair of nodes that can communi-
cate by direct wireless transmission. The absence
of the edge .u; v/ signifies that u cannot transmit
directly to v, requiring a multi-hop transmission
via a sequence of intermediate nodes that forms
a route from u to v. The cost c.e/ of sending
a message over an edge e D .u; v/ has been
modeled in different ways; the most common
measures include the hop (link) metric (c.e/ D
1), the Euclidean metric (c.e/ D jej, where jej D
dist.u; v/ is the Euclidean length of the edge e),
and the energy metric (c.e/ D jej˛ for ˛ � 2).

In some models, transmission is assumed to
be uniform in all directions and of equal range,
say r , for all nodes. Under this assumption,
the undirected edge .u; v/ exists if and only if
dist.u; v/ � r . Thus, for each node v there is
an edge from v to every node u that lies within
a disk of radius r centered at v. This is the
unit disk graph model for wireless networks.
Common classes of geometric graphs that are
used to model wireless networks include:

Unit Disk Graph. Vertices are points in R2

and each edge .u; v/ exists if and only if
dist.u; v/ � r , for a given fixed r > 0.

Plane Graph. Vertices are points in R2 and no
two edges cross.

Triangulation. Vertices are points in R2 and
every interior face is a triangle.

Quasi-unit Disk Graph. Vertices are points in
R2 and each edge .u; v/ exists if dist.u; v/ �

r1, may exist if r1 < dist.u; v/ � r2, but does
not exist if dist.u; v/ > r2, for given fixed
r2 > r1 > 0.

Unit Ball Graph. Vertices are points in R3

and each edge .u; v/ exists if and only if
dist.u; v/ � r , for a given fixed r > 0.

Gabriel Graph. Vertices are points in R2 and
each edge .u; v/ exists if and only if the disk
with diameter .u; v/ does not contain any other
vertices.

Other classes of geometric graphs used to
model wireless networks include relative neigh-
borhood graphs, Delaunay triangulations, Yao
graphs, convex subdivisions, monotone subdivi-
sions, edge-augmented plane graphs, and physi-
cally based models such as SINR.

A geometric graph G is civilized with �-
precision if for every pair of nodes u and v in G,
dist.u; v/ � � for a given fixed � > 0, where � is
independent of n, the number of nodes in G.

Communication Protocol
In several wireless network protocols, e.g., ad
hoc or wireless sensor networks, there is no
fixed infrastructure for routing nor any central
servers. All nodes act as hosts as well as routers.
Apart from a node’s immediate neighborhood,
the topology of the network is unknown, i.e.,
each node is aware of its own location (its .x; y/
coordinates) as well as the coordinates of its
neighbors. Nodes must discover and maintain
routes in a distributed manner without knowledge
of precomputed routing tables, any particular
vertex labeling (other than spatial coordinates),
nor the support of a central server. Additionally,
some models incorporate constraints for limited
memory and power. Depending on the particular
model, a limited amount of information can be
stored in message headers to assist with rout-
ing. When a node receives a message, it reads
the header (possibly modifying the header in-
formation) before selecting one of its neighbors
to which to forward the message. A stateless
algorithm does not modify the header. Network
nodes have no memory themselves; any dynamic
state information is stored in the message header.
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Furthermore, no precomputed information about
the network is known to the nodes.

Geometric Routing
Given the coordinates of a target node t in a
(wireless) geometric network G, a source node
s in G is tasked with sending a message via a
multi-hop route through G from s to t . Routing
proceeds by computing a sequence of distributed
forwarding decisions, where each node along
the route selects one of its neighbors to which
to forward the message. Geometric routing is
uniform in that all nodes execute the same pro-
tocol. Each node makes a forwarding decision
as a function of its coordinates, the coordinates
of its neighbors, the coordinates of t , and any
available state bits stored in the message header.
The number of state bits available is critical to
guaranteeing delivery in some classes of geomet-
ric graphs by enabling the route to avoid looping
and reach t . A node may modify the state bits
before forwarding the message. In some models,
this state information corresponds to storing data
aboutO.1/ nodes, e.g., storing the coordinates of
O.1/ nodes.

The primary objective is to guarantee mes-
sage delivery to the target node t . Secondary
objectives include minimizing the total cost of
communication (the sum of c.e/ for all edges e
on the route) and minimizing the worst-case or
average dilation (the ratio of the cost of the route
followed relative to that of the route of lowest
cost). These secondary objectives are motivated
by the need for nodes to conserve power in many
wireless networking settings.

Key Results

Local geometric routing assumes only limited
control information stored in message headers
and local information available at each node
along the route. This locality provides network
independence that results in natural scalability
to larger networks and continued functionality
after arbitrary changes to the network. A routing
algorithm is said to succeed on a particular class
of geometric graphs if it guarantees delivery

from any source node s to any target node t on
any graph in the class; otherwise, the algorithm
fails on that class of graphs.

Below we summarize key local geometric
routing algorithms and their properties.

Greedy Routing. Upon receiving a message, a
node forwards it to its neighbor closest to the
target node t . Greedy routing is stateless. This
strategy succeeds on Delaunay triangulations, but
fails on more general classes of geometric graphs
such as non-Delaunay triangulations, convex sub-
divisions, plane graphs, and unit disk graphs.

Compass Routing [7]. Upon receiving a mes-
sage, a node u forwards it to its neighbor v that
minimizes the angle †vut with the target node
t . Compass routing is stateless. This strategy
succeeds on regular triangulations but fails on
more general classes of geometric graphs such as
non-regular triangulations, convex subdivisions,
plane graphs, and unit disk graphs.

Greedy-Compass Routing [2]. Upon receiving
a message, a node u considers its two neighbors
on either side of the line segment ut (node u’s
compass neighbors) and forwards the message
to the one closest to t . Greedy-compass routing
is stateless. This strategy succeeds on all trian-
gulations but fails on more general classes of
geometric graphs such as convex subdivisions,
plane graphs, and unit disk graphs.

Bose et al. [2] show that no stateless algorithm
can succeed on convex subdivisions (including
plane graphs and unit disk graphs). Therefore, to
succeed on classes of geometric graphs beyond
triangulations, local routing algorithms require
storing one or more state bits in the message
header or predecessor information, i.e., the co-
ordinates of the node that last forwarded the
message.

One State Bit [4]. Upon receiving a message, a
node u chooses between forwarding the message
to its clockwise or counter-clockwise compass
neighbor, depending on the value of a state bit.
If the compass neighbor lies opposite the verti-
cal line through t , the state bit is flipped. This
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algorithm uses a single state bit. This strategy
succeeds on all triangulations and convex sub-
divisions, but fails on more general classes of
geometric graphs such as plane graphs and unit
disk graphs.

Predecessor Awareness and Monotonicity [4].
Each node locally identifies its topmost left
neighbor as its parent and its right neighbors as its
children. With knowledge of the predecessor, the
node forwards the message to its .i C 1/st child
after receiving it from its i th child and eventually
back to its parent after receiving it from its last
child. The resulting route contains a depth-first
traversal of a spanning tree of the network. This
algorithm is stateless, but each node requires
knowledge of its predecessor, i.e., the coordinates
of the node that last forwarded the message.
This strategy succeeds on triangulations, convex
subdivisions, monotone subdivisions, and edge-
augmented graphs from these classes but fails on
more general classes of geometric graphs such as
non-monotone plane graphs and unit disk graphs.

Face Routing [1, 7]. The message is forwarded
along the perimeters of faces in the sequence
of faces that intersect the line segment from the
source node s to the target node t . This strategy
applies the right-hand principle, in which each
face in the sequence is traversed in a counter-
clockwise direction, as if one were walking while
sliding the right hand along the wall. To avoid
cycling indefinitely, the algorithm must store the
coordinates of O.1/ nodes that act as progress
markers. Furthermore, each node requires knowl-
edge of its predecessor. This strategy succeeds
on plane graphs, including triangulations, convex
subdivisions, and Gabriel graphs. The intersec-
tion of a unit disk graph with the Gabriel graph
of a set of points is planar and remains connected
if the original unit disk graph is connected. Fur-
thermore, this subgraph can be computed locally;
this property allows face routing to succeed on
unit disk graphs [1], as well as quasi-unit disk
graphs with bounded ratio r2=r1 <

p
2 and unit

ball graphs contained within slabs of thickness
less than 1=

p
2 [6]. Although unit disk graphs

are nonplanar in general, the nonplanarity is lo-

calized; face routing fails on more general classes
of nonplanar geometric graphs such as quasi-unit
disk graphs and unit ball graphs [6] and edge-
augmented plane graphs. Face routing can have
dilation ‚.n/, where n is the number of network
nodes.

Adaptive Face Routing (AFR) [8]. Adaptive
face routing is a variant of face routing that
achieves optimality on civilized unit disk graphs
and civilized planar graphs with the Gabriel prop-
erty. Like face routing,O.1/ state data are stored
in the message header and each node requires
knowledge of its predecessor. The algorithm at-
tempts to estimate the length c of the shortest
path from s and t by Oc (starting with Oc D 2jst j
and doubling it in every consecutive round). In
each round, the face traversal is restricted to the
region formed by the ellipse with the major axis
Oc centered on st . Each edge is traversed at most
four times, and the dilation achieved is ‚.c/.

Geometric Ad-hoc Routing (GOAFRC) [9].
Combining methods from greedy routing, face
routing, and adaptive face routing allows this
hybrid algorithm to meet the bounds of adaptive
routing on any unit disk graphs and planar graphs
with the Gabriel property (not necessarily civi-
lized). The algorithm first applies greedy routing
and switches to face routing when the routed
message enters a local minimum (a dead end),
before again resuming greedy routing as early as
possible by applying an early fallback technique.

General (Non-geometric) Networks
Is geometry necessary for local routing to suc-
ceed? Even with knowledge of the predecessor,
stateless routing algorithms require knowledge
of the induced subgraph of nodes up to dis-
tance n=3 away in the worst case [3]. That is,
stateless routing using only local information is
impossible. With‚.logn/ state bits, local routing
on arbitrary (not necessarily geometric) graphs
is possible by deterministically recomputing a
polynomial-length universal traversal sequence at
each node along the route, where ‚.logn/ bits
store an index into the sequence [5].
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Open Problems

If a node’s coordinates can be stored using
O.logn/ bits (e.g., if network nodes are
positioned on a nc 
 nc grid), then face routing
can be applied using O.logn/ state bits. It
remains open whether any local geometric
routing algorithm can succeed on plane graphs
using o.logn/ state bits. Similarly, it would
be interesting to characterize broad classes of
geometric graphs on which local geometric
routing is possible using O.1/ state bits. In
addition to guaranteeing delivery, bounding
dilation is of interest. For example, can O.1/

dilation be guaranteed on convex subdivisions
using O.1/ state bits? Finally, the problem
of traversing a graph (visiting all nodes) by
a sequence of local forwarding decisions is
interesting. Stateless algorithms are impossible
for any non-Hamiltonian network. How many
state bits are necessary for a local algorithm to
traverse a triangulation?
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Problem Definition

For a given directed graphG D .V;E/ with non-
negative edge weights, the problem is to compute
a shortest path in G from a source node s to
a target node t for given s and t. Under the
assumption that G does not change and that a lot



1876 Routing in Road Networks with Transit Nodes

of source-target queries have to be answered, it
pays to invest some time for a preprocessing step
that allows for very fast queries. As output, either
a full description of the shortest path or only
its length d(s, t) is expected – depending on the
application.

Dijkstra’s classical algorithm for this prob-
lem [4] iteratively visits all nodes in the order of
their distance from the source until the target is
reached. When dealing with very large graphs,
this general algorithm gets too slow for many
applications so that more specific techniques are
needed that exploit special properties of the par-
ticular graph. One practically very relevant case
is routing in road networks where junctions are
represented by nodes and road segments by edges
whose weight is determined by some weighting
of, for example, expected travel time, distance,
and fuel consumption. Road networks are typi-
cally sparse (i.e., jEj D O.jV j/), almost planar
(i.e., there are only a few overpasses), and hi-
erarchical (i.e., more or less ‘important’ roads
can be distinguished). An overview on various
speedup techniques for this specific problem is
given in [7].

Key Results

Transit-node routing [2, 3] is based on a simple
observation intuitively used by humans: When
you start from a source node s and drive to
somewhere ‘far away’, you will leave your cur-
rent location via one of only a few ‘important’
traffic junctions, called (forward) access nodes�!
A.s/. An analogous argument applies to the
target t, i.e., the target is reached from one of

only a few backward access nodes
 �
A.t/. More-

over, the union of all forward and backward
access nodes of all nodes, called transit-node set
T , is rather small. The two observations imply
that for each node the distances to/from its for-
ward/backward access nodes and for each transit-
node pair (u, v), the distance between u and v
can be stored. For given source and target nodes
s and t, the length of the shortest path that passes
at least one transit node is given by

dT .s; t/ D minfd.s; u/C d.u; v/C d.v; t/ j
u 2 �!A.s/; v 2  �A.t/g :

Note that all involved distances d(s, u), d(u,
v), and d(v, t) can be directly looked up in
the precomputed data structures. As a final
ingredient, a locality filter LWV 
 V !
ftrue; falseg is needed that decides whether
given nodes s and t are too close to travel
via a transit node. L has to fulfill the property
that :L.s; t/ implies that d.s; t/ D dT .s; t/.
Note that in general the converse need not hold
since this might hinder an efficient realization
of the locality filter. Thus, false positives, i.e.,
“L.s; t/ ^ d.s; t/ D dT .s; t/”, may occur.

The following algorithm can be used to com-
pute d(s, t):

If :L.s; t/, then compute and return dT .s; t/;
else, use any other routing algorithm.

Figure 1 gives an example. Knowing the
length of the shortest path, a complete description
of it can be efficiently derived using iterative
table lookups and precomputed representations
of paths between transit nodes. Provided that the
above observations hold and that the percentage
of false positives is low, the above algorithm
is very efficient since a large fraction of all
queries can be handled in line 1, dT .s; t/

can be computed using only a few table
lookups, and source and target of the remaining
queries in line 2 are quite close. Indeed, the
remaining queries can be further accelerated by
introducing a secondary layer of transit-node
routing, based on a set of secondary transit
nodes T2 � T . Here, it is not necessary to
compute and store a complete T2 
 T2 distance
table, but it is sufficient to store only distances
fd.u; v/ j u; v 2 T2 ^ d.u; v/ ¤ dT .s; t/g, i.e.,
distances that cannot be obtained using the
primary layer. Analogously, further layers can
be added.

There are two different implementations: one
is based on a simple geometric grid and one
on highway hierarchies, the fastest previous
approach [5, 6]. A highway hierarchy consists of
a sequence of levels (Fig. 1), where level i C 1 is
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Routing in Road Networks with Transit Nodes, Fig. 1
Finding the optimal travel time between two points (flags)
somewhere between Saarbrücken and Karlsruhe amounts
to retrieving the 2 � 4 access nodes (diamonds), perform-
ing 16 table lookups between all pairs of access nodes,
and checking that the two disks defining the locality filter

do not overlap. Transit nodes that do not belong to the
access node sets of the selected source and target nodes
are drawn as small squares. The figure draws the levels
of the highway hierarchy using colors gray, red, blue, and
green for levels 0–1, 2, 3, and 4, respectively

constructed from level i by bypassing low-degree
nodes and removing edges that never appear
far away from the source or target of a shortest
path. Interestingly, these levels are geometrically
decreasing in size and otherwise similar to each
other. The highest level contains the most ‘impor-
tant’ nodes and becomes the primary transit-node
set. The nodes of lower levels are used to form
the transit-node sets of subordinated layers.

Applications

Apart from the most obvious applications in car
navigation systems and server-based route plan-
ning systems, transit-node routing can be applied
to several other fields, for instance to massive
traffic simulations and to various optimization
problems in logistics.

Open Problems

It is an open question whether one can find better
transit-node sets or a better locality filter so that

the performance can be further improved. It is
also not clear if transit-node routing can be suc-
cessfully applied to other graph types than road
networks. In this context, it would be desirable
to derive some theoretical guarantees that apply
to any graph that fulfills certain properties. For
some practical applications, a dynamic version of
transit-node routing would be required in order
to deal with time-dependent networks or unex-
pected edge weight changes caused, for example,
by traffic jams. The latter scenario can be handled
by a related approach [8], which is, however,
considerably slower than transit-node routing.

Experimental Results

Experiments were performed on road networks
of Western Europe and the USA using a cost
function that solely takes expected travel time
into account. The results exhibit various trade-
offs between average query time (5–63 µs for
the USA), preprocessing time (59 min to 1,200
min), and storage overhead (21 bytes/node to
244 bytes/node). For the variant that uses three
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Routing in Road Networks with Transit
Nodes, Table 1 Statistics on preprocessing. The size of
transit-node sets, the number of entries in distance tables,

and the average number of access nodes to the respective
layer are given; furthermore, the space overhead and the
preprocessing time

Layer 1 Layer 2 Layer 3

jT j jAj Avg. jT2j jTable2j [�106] jA2j Avg. jT3j jTable3j [�106] Space [B/node] Time [h]

Europe 11,293 9.9 323,356 130 4.1 2,954,721 119 251 2:44

USA 10,674 5.7 485,410 204 4.2 3,855,407 173 244 3:25

Routing in Road Networks with Transit
Nodes, Table 2 Performance of transit-node routing
with respect to 10,000,000 random queries. The column
for layer i specifies which fraction of the queries is
correctly answered using only information available at

layers � i . Each box spreads from the lower to the upper
quartile and contains the median, the whiskers extend
to the minimum and maximum value omitting outliers,
which are plotted individually

#nodes #edges Layer 1 Layer 2 Layer 3 Query

Europe 18 029 721 42 199 587 99.74 % 99.9984 % 99.99981 % 5.6 �s

USA 24 278 285 58 213 192 99.89 % 99.9986 % 99.99986 % 4.9 �s

Routing in Road Networks with Transit Nodes, Fig. 2
Query time distribution as a function of Dijkstra rank–the
number of iterations Dijkstra’s algorithm would need to
solve this instance. The distributions are represented as

box-and-whisker plots: each box spreads from the lower to
the upper quartile and contains the median, the whiskers
extended to the minimum and maximum value omitting,
which are plotted individually

layers and is tuned for best query times, Tables 1
and 2 show statistics on the preprocessing and
the query performance, respectively. The average
query times of about 5 µs are six orders of magni-
tude faster than Dijkstra’s algorithm. In addition,
Fig. 2 gives for each rank r on the x-axis a dis-

tribution for 1,000 queries with random starting
point s and the target node t for which Dijkstra’s
algorithm would need r iterations to find it. The
three layers of transit-node routing with small
transition zones in between can be recognized:
for large ranks, it is sufficient to access only the
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primary layer yielding query times of about 5 µs,
for smaller ranks, additional layers have to be
accessed resulting in median query times of up
to 20 µs.

Data Sets

The European road network has been provided by
the company PTV AG, the US network has been
obtained from the TIGER/Line Files [9]. Both
graphs have also been used in the 9th DIMACS
Implementation Challenge on Shortest Paths [1].

URL to Code

The source code might be published at some point
in the future at http://algo2.iti.uka.de/schultes/
hwy/.
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Problem Definition

Connected dominating set CDS is typically
adapted in wireless multihop networks such as
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wireless sensor, ad hoc networks. In order to
achieve routing efficiency, a virtual backbone
which is inspired by the backbone in wired
networks is often used to improve routing
because it can reduce the path search space
and the routing table size [3]. According to
[8, 10], there are many methods to construct a
virtual backbone, and the competitive approach
is connected dominating set(CDS). The detailed
definition of CDS is as follows.

Given a connected graph G.V;E/ represents
as a wireless sensor network, where V is the set of
sensor nodes andE is the set of edges connecting
sensor nodes in V . If there is a subset D.D � V /,
each sensor node in V either belonging to D or
adjacent to a sensor node in D, then we call D
is a dominating set .DS/. If the subgraph induced
by DS is a connected graph, then we call DS is a
connected dominating set(CDS).

Intuitively, if the size of CDS is smaller, the
virtual backbone can play a greater role in rout-
ing. Many studies such as [1, 13, 14] and [9, 12]
also aimed to construct a virtual backbone based
on a CDS with minimum size which is called
minimum connected dominating set (MCDS). A
minimum CDS (MCDS) is a CDS that has the
minimum number of nodes. For example, the
gray nodes in Fig. 1a form an MCDS of the sam-
ple graph, while the black nodes in Fig. 1b make
a CDS. However, these studies didn’t ignore that
if the size of the CDS is too small, some sensor
nodes couldn’t find a shortest routing path to their
destination. Du et al. [10] analyzes how a virtual
backbone based on MCDS makes some routing
paths much longer than the shortest paths. Thus,
there exists a disadvantage in MCDS which is
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Routing-Cost Constrained Connected Dominating
Set, Fig. 1 (a) An example MCDS. (b) An example CDS

the unavailability of shortest routing paths. If we
only aim to construct a virtual backbone based on
MCDS, we couldn’t achieve a guaranteed routing
constraint in data delivery. Routing constraint
in CDS becomes much more important when
constructing a virtual backbone.

In this section, the problem of the routing
constraint in connected dominating set (R-CDS)
is given in formal by considering the wireless
multihop network environment. The problem of
R-CDS is defined as follows:

Given a graphG D .V;E/whereV represents
a node set and E denotes an edge set, we would
like to find a CDS D in polynomial time so that,
for every pair of nodes u and v, there exists a path
between u and v with intermediate nodes in D
and path length at most ˛ � d.u; v/, where ˛ is a
constant and d.u; v/ is the length of the shortest
path between u and v. In addition, the size of the
resulting CDS jDj is bounded by ˇ � optMCDS ,
where ˇ is a constant and optMCDS is the size of
the MCDS.

The problem specified in wireless multihop
networks has been considered under both general
graph and unit disk graph(UDG) model and will
be further discussed in the following section.
With the UDG model, all nodes in the network
have the same transmission range, and there does
not exist any obstacle. As a result, as long as a
receiving node is within the transmission range
of a sending node, the receiving node will be
able to receive the data successfully. With general
graph model, the nodes in the network could
have different transmission ranges, and obstacles
might interfere with normal data communication.
As a result, being in the transmission range of
a sending node does not guarantee successful
transmission.

Key Results

Many literatures also focus on the study of rout-
ing constraint in CDS which can be classified into
two categories: the general graph and UDG.

In the general graph category, Ding et al. [2]
studied a special connected dominating set (CDS)
problem named minimum routing cost CDS
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(MOC-CDS). They proved that constructing a
minimum MOC-CDS in general graph is NP-hard
and proposed a distributed heuristic algorithm
(called as FlagContest) for constructing MOC-
CDS with performance ratio .1 � ln2/ C 2lnı.
Du et al. [8] presented a constant-approximation
scheme which produces a connected dominating
set D, whose size jDj is within a factor ˛ from
that of the minimum connected dominating set,
and each node pair exists in a routing path with
all intermediate nodes in D and with length at
most 5d.u; v/, where d.u; v/ is the length of
shortest path of this node pair. Ding et al. [3]
developed an exact algorithm for minimum CDS
with shortest path constraint called SPCDS and
proved that finding such a minimum SPCDS can
be achieved in polynomial time. Ding et al. [4]
showed that under general graph model, ˛-MOC-
CDS is NP-hard for any ˛ � 1. Ding et al. [5, 6]
studied virtual backbone with guaranteed routing
costs, named ˛ minimum routing cost directional
virtual backbone(˛-MOC-DVB). They proved
that the construction of a minimum ˛-MOC-
DVB is an NP-hard problem in a general directed
graph. Du et al. [10] proved that there is no
polynomial-time constant approximation for ˛-
MOC-CDS unless P D NP when ˛ � 2.

In the UDG category, Wu et al. [15] studied
the relationship between minimum connected
dominating sets and maximal independent sets
in unit disk graphs. Kim et al. [11] proposed a
distributed algorithm under UDG model, CDS-
BD-D, which constructs a CDS whose size and
maximum path length are bounded. Du et al. [8]
proposed two algorithms which are centralized
algorithm and distributed algorithm to achieve
constant-approximation performance ratio on
MCDS and routing cost. Du et al. [7] studied
a problem of minimizing the size of connected
dominating set j D j under constraint that for
any two nodes u and v, mD.u; v/ � ˛m.u; v/
where ˛ is a constant,mD.u; v/ is the number of
intermediate nodes on a shortest path connecting
u and v throughD, andm.u; v/ is the number of
intermediate nodes in a shortest path between u
and v in a given unit disk graph.

In this chapter, we introduce that, under gen-
eral graph model, there is no polynomial-time

Algorithm 1: Centralized algorithm GOC-
MCDS-C
1: Initially Set D ;.
2: Step 1. Construct a maximal independent set I .
3: Step 2. For every pair of nodes u, v in I with

d.u; v/ � 3, compute a shortest path p.u; v/ and
put all intermediate nodes of p.u; v/ into C .

4: Output D D C [ I .

Algorithm 2: Construct an MIS I (Stage 1)
1: Initially Every node is colored in white and is

assigned with a positive integer ID; different nodes
have different IDs.

2: Step 1 Every white node sends its ID to its
neighbors and then compares its ID with received
IDs from neighbors. If its ID is smaller than every
received ID from neighbors, then it turns the color
from white to black.

3: Step 2 Every black node sends message “black” to
its neighbors. If a white node receives a message
“black,” then it turns its color from white to gray.

4: Step 3 Go back to Step 1 until no white node exists.
5: Output All black nodes form a maximal

independent set I

constant-approximation solution in terms of CDS
size unless P D NP shown in [10]. Under
UDG model, we will present a polynomial-time
constant-approximation algorithm GOC-MCDS-
C which produces a CDS D with size jDj �
176 � optMCDS C 64 and with a property that for
any pair of nodes u and v, dD.u; v/ � 7 � d.u; v/
in [10]. The distributed version of the algorithm,
GOC-MCDS-D, is thoroughly analyzed.

GOC-MCDS-C: The Centralized Algorithm
Under general graph model, the existing
proof is that there is no polynomial-time
constant approximation for the problem under
investigation unless NP=P shown in [10].
However, under UDG model, polynomial-time
constant-approximation algorithms do exist. Kim
et al. [11] proposed a distributed algorithm,
CDS-BD-D, that constructs a CDS whose size
and maximum path length are bounded. In this
section, we advance Kim et al.’s results by pre-
senting the details of an innovative polynomial-
time constant-approximation algorithm, GOC-
MCDS-C. The proposed algorithm produces a
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Algorithm 3: Connect the MIS I (Stage 2)
1: Step 1 Every black node sends its ID to its neigh

-bors.
2: Step 2 Every node adds its own ID id2 to each

received ID id1 and then sends those pairs of IDs
.id1; id2/ to all its neighbors.

3: Step 3 Each node does the following: Suppose its
ID is id�:

1. For each pair of IDs id1 and id1� received in
Step 1, if id1 < id1� , then send a message
.id1� ; id�; id1/ to the neighbor with ID id1.

2. For each pair of messages .id1; id2/ and
.id1� ;id2� / received at Step 2, if
id1 < id1� , then send a message
.id1� ; id2� ; id�; id2; id1/ to the neighbor
with ID id2.

3. For each message .id1; id2/ received at
Step 2 and ID id1� received at Step 1, if
id1 < id1� , then send a message
.id1� ; id�; id2; id1/ to the neighbor
with ID id2; otherwise, send a message
.id1; id2; id�; id1�/ to the neighbor
with ID id1� .

4: Step 4 When a node with ID id2 received a
message .id1� ; id2� ; id�; id2; id1/ or
.id1� ; id�; id2; id1/, it sends this message to its
neighbor with ID id1.

5: Step 5 Each black node with ID id1 collects all
messages in form .id3; id2; id1/ or
.id4; id3; id2; id1/ or .id5; id4; id3; id2; id1/
received in Step 3 and Step 4. Suppose those
messages form a set M . Then it performs the
following computation:
while M ¤ ; do begin

choose .idh; : : : ; id2; id1/ 2M ;
send message .idh; : : : ; id2; id1/ to

node with ID id2;
delete all messages starting with idh

from M ;
end-while

6: Step 6 When a node with ID idi received a
message .: : : ; idi�1; idi ; : : :/, it turns black. In
addition, if idi is not the leftmost id in the message,
then it passes this message to node with ID
idi�1; if idi is the leftmost id in the message, do
nothing.

7: Step 7 If no message is passed in Step 6, then stop.
Otherwise, go back to Step 6.

CDS D with size jDj � 176 � optMCDS C 64

and with a property that for any pair of nodes
u and v, dD.u; v/ � 7d.u; v/[10]. Note that
GOC-MCDS-C is a centralized algorithm. GOC-
MCDS-C follows the steps of regular MCDS

construction algorithms. Namely, there are two
steps in total. During the first step, an MIS is
constructed. In the second step, the nodes in the
MIS are connected in order to form a CDS.

GOC-MCDS-D: The Distributed Algorithm
In this section, the distributed algorithm GOC-
MCDS-D is described in details. The perfor-
mance of GOC-MCDS-D is the same as that of
GOC-MCDS-C shown in [10]. Similar to the cen-
tralized algorithm GOC-MCDS-C, GOC-MCDS-
D consists of two stages. In the first stage, an MIS
is constructed using Algorithm 2. In the second
stage, the MIS is connected using Algorithm 3.

Open Problems

The coverage problems in wireless sensor net-
works which related to the routing-cost con-
strained in CDS are still an open problem.
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Problem Definition

Problem statement and the I/O model. Let S
be a set of N axis-parallel hypercubes in R

d . A
very basic operation in a spatial database is to
answer window queries on the set S . A window
queryQ is also an axis-parallel hypercube in R

d

that asks us to return all hypercubes in S that
intersect Q. Since the set S is typically huge
in a large spatial database, the goal is to design
a disk-based or external memory data structure
(often called an index in the database literature)
such that these window queries can be answered
efficiently. In addition, given S , the data struc-
ture should be constructed efficiently and should
be able to support insertions and deletions of
objects.

When external memory data structures
are concerned, the standard external memory
model [2], a.k.a. the I/O model, is often used
as the model of computation. In this model,
the machine consists of an infinite-size external
memory (disk) and a main memory of size M .
A block of B consecutive elements can be
transferred between main memory and disk in
one I/O operation (or simply I/O). An external
memory data structure is a structure that is stored
on disk in blocks, but computation can only occur
on elements in main memory, so any operation
(e.g., query, update, and construction) on the data
structure must be performed using a number I/Os,
which is the measure for the complexity of the
operation.

R-trees. The R-tree, first proposed by
Guttman [9], is a multi-way tree T , very similar
to a B-tree, that is used to store the set S such
that a window query can be answered efficiently.
Each node of T fits in one disk block. The
hypercubes of S are stored only in the leaves
of T . All leaves of T are on the same level,
and each stores ‚.B/ hypercubes from S ; while



1884 R-Trees

each internal node, except the root, has a fan-
out of ‚.B/. The root of T may have a fan-out
as small as 2. For any node u 2 T , let R.u/
be the smallest axis-parallel hypercube, called
the minimal bounding box, that encloses all the
hypercubes stored below u. At each internal node
v 2 T , whose children are denoted v1; : : : ; vk ,
the bounding box R.vi / is stored along with the
pointer to vi for i D 1; : : : ; k. Note that these
bounding boxes may overlap. Please see Fig. 1
for an example of an R-tree in two dimensions.

For a window query Q, the query answering
process starts from the root of T and visits all
nodes u for which R.u/ intersects Q. When
reaching a leaf v, it checks each hypercube stored
at v to decide if it should be reported. The
correctness of the algorithm is obvious, and the
efficiency (the number of I/Os) is determined by
the number of nodes visited.

Any R-tree occupies a linear numberO.N=B/
disk blocks, but different R-trees might have
different query, update, and construction costs.
When analyzing the query complexity of window
queries, the output size T is also used, in addition
to N , M , and B .

Key Results

Although the structure of an R-tree is restricted,
there is much freedom in grouping the
hypercubes into leaves and grouping subtrees
into bigger subtrees. Different grouping strategies
result in different variants of R-trees. Most of the
existing R-trees use various heuristics to group
together hypercubes that are “close” spatially,
so that a window query will not visit too many
unnecessary nodes. Generally speaking, there are
two ways to build an R-tree: repeated insertion
and bulk loading. The former type of algorithms
include the original R-tree [9], the RC-tree [15],
the R*-tree [6], etc. These algorithms use
O.logB N/ I/Os to insert an object and hence
O.N logB N/ I/Os to build the R-tree on S ,
which is not scalable for large N . When the set
S is known in advance, it is much more efficient
to bulk load the entire R-tree at once. Many

bulk-loading algorithms have been proposed,
e.g., [7, 8, 11, 13]. Most of these algorithms
build the R-tree with O

�
N
B

logM=B
N
B

�
I/Os (the

number of I/Os needed to sort N elements),
and they typically result in better R-trees than
those obtained by repeated insertion. During the
past decades, there have been a large number
of works devoted to R-trees from the database
community, and the list here is by no means
complete. The reader is referred to the book
by Manolopoulos et al. [14] for an excellent
survey on this subject in the database literature.
However, no R-tree variant mentioned above has
a guarantee on the query complexity; in fact,
Arge et al. [3] constructed an example showing
that some of the most popular R-trees may have
to visit all the nodes without reporting a single
result.

From the theoretical perspective, the following
are the two main results concerning the worst-
case query complexity of R-trees.

Theorem 1 ([1, 12]) There is a set of N points
in R

d , such that for any R-tree T built on
these points, there exists an empty window
query for which the query algorithm has to visit
�..N=B/1�1=d / nodes of T .

The priority R-tree, proposed by Arge
et al. [3], matches the above lower bound.

Theorem 2 ([3]) For any set S of N axis-
parallel hypercubes in R

d , the priority R-tree
answers a window query with O..N=B/1�1=d C
T=B/ I/Os. It can be constructed with
O
�

N
B

logM=B
N
B

�
I/Os.

It is also reported that the priority R-tree
performs well in practice, too [3]. However, it
is not known how to update it efficiently while
preserving the worst-case bound. The logarithmic
method was used to support insertions and dele-
tions [3], but the resulted structure is no longer an
R-tree.

Note that the lower bound in Theorem 1 only
holds for R-trees. If the data structure is not
restricted to R-trees, better query bounds can
be obtained for the window-query problem; see
e.g., [4].
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R-Trees, Fig. 1 An R-tree example in two dimensions

Applications

R-trees have been used widely in practice due to
its simplicity and ability to store spatial objects of
various shapes and to answer various queries. The
areas of applications span from geographical in-
formation systems (GIS), computer-aided design,
computer vision, and robotics. When the objects
are not axis-parallel hypercubes, they are often
approximated by their minimal bounding boxes,
and the R-tree is then built on these bounding
boxes. To answer a window query, first the R-
tree is used to locate all the intersecting bounding
boxes, followed by a filtering step that checks
the objects exactly. The R-tree can also be used
to support other kinds of queries, for example,
aggregation queries, nearest neighbors, etc. In
aggregation queries, each object o in S is asso-
ciated with a weight w.o/ 2 R, and the goal is
to compute

P
w.o/ where the sum is taken over

all objects that intersect the query range Q. The
query algorithm is same as before, except that in
addition it keeps running sum while traversing
the R-tree and may skip an entire subtree rooted
at some u if R.u/ is completely contained in Q.
To find the nearest neighbor of a query point q,
a priority queue is maintained, which stores all
the nodes u that might contain an object that is
closer to the current nearest neighbor found so
far. The priority of u in the queue is the distance
between q andR.u/. The search terminates when
the current nearest neighbor is closer than the top

element in the priority queue. However, no worst-
case guarantees are known for R-trees answering
these other types of queries, although they tend to
perform well in practice.

Open Problems

Several interesting problems remain open with
respect to R-trees. Some of them are listed
here:

• Is it possible to design an R-tree with the
optimal query boundO..N=B/1�1=d CT=B/
that can also be efficiently updated? Or prove
a lower bound on the update cost for such an
R-tree.

• Is there an R-tree that supports aggregation
queries for axis-parallel hypercubes in
O..N=B/1�1=d / I/Os? This would be optimal
because the lower bound of Theorem 1 also
holds for aggregation queries on R-trees. Note
that, however, no sublinear worst-case bound
exists for nearest-neighbor queries, since it is
not difficult to design a worst-case example
for which the distance between the query
point q and any bounding box is smaller than
the distance between q and its true nearest
neighbor.

• When the window queryQ shrinks to a point,
that is, the query asks for all hypercubes in
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S that contain the query point, the problem
is often referred to as stabbing queries or
point enclosure queries. The lower bound of
Theorem 1 does not hold for this special case,
while a lower bound of �.log2N C T=B/

was proven in [5], which holds in the strong
indexability model. It is intriguing to find out
the true complexity for stabbing queries using
R-trees, which is between �.log2N C T=B/
and O..N=B/1�1=d C T=B/.

Experimental Results

Nearly all studies on R-trees include experimen-
tal evaluations, mostly in two dimensions. Re-
portedly the Hilbert R-tree [10, 11] has been
shown to have good query performance while
being easy to construct. The R*-tree’s insertion
algorithm [6] has often been used for updating the
R-tree. Please refer to the book by Manolopoulos
et al. [14] for more discussions on the practical
performance of R-trees.

Data Sets

Besides some synthetic data sets, the TIGER/Line
data (http://www.census.gov/geo/www/tiger/)
from the US Census Bureau has been frequently
used as real-world data to test R-trees. The R-tree
portal (http://www.rtreeportal.org/) also contains
many interesting data sets.

URL to Code

Code for many R-tree variants is available at the
R-tree portal (http://www.rtreeportal.org/). The
code for the priority R-tree is available at (http://
www.cs.duke.edu/~yike/prtree/).
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Problem Definition

The aim is to design effective algorithms for
controlling rumor propagation in social networks.
Here, a rumor is viewed as an undesirable thing.
Social networks are represented by undirected or
directed graphs, depending on different contexts.
In these graphs, nodes denote individuals and
edges denote the influence between individuals.

A list of strategies has been proposed to limit
the spread of a rumor in a network. We group
some of the existing research works into two
categories. The first one includes the works that
launch the opposite cascade, protector, to spread
in a network, such that the number of nodes that
adopt the rumor at the end of both cascades dif-
fusion is limited. The second contains the works

that are concerned with the network structure,
that is, they control the rumor propagation by
blocking some edges or nodes or both of them
together in a network.

In this work, we mainly introduce two specific
works belonging to the two different categories.
For each of them, we briefly introduce some
related works.

Problem 1 [2]
Two cascades, rumor (bad campaign) and protec-
tor (limiting campaign), diffuse simultaneously in
a network. Influence diffusion models are used
to capture their propagation processes. The ob-
jective is to limit the rumor propagation through
protector diffusion.

Given a directed graph G D .V;E/, original
rumor sources R � V , an integer k > 0, and the
time delay d (a nonnegative integer) for detecting
rumor sources, the objective is to identify k

nodes as initial protectors, such that the expected
number of nodes adopting the rumor at the end of
both rumor and protector propagation processes
is minimized, or equivalently, the reduction in the
expected number of nodes adopting the rumor is
maximized.

Two Influence Diffusion Models
Two influence diffusion models are adopted in
[2].

Multi-campaign Independent Cascade Model
(MCICM) In this model, a network is viewed as
a directed graph G D .V;E/. The initial set of
rumor sources is denoted by R, and the initial set
of protectors is denoted by P . Each node must
be in one of the three statuses: infected (by the
rumor), protected (by the protector), and inactive
(neither infected nor protected). Each edge euv is
associated with two values 0 � pr.u; v/ � 1 and
0 � pp.u; v/ � 1. Once a node becomes infected
or protected, it remains so forever.

The diffusion process unfolds in discrete time
steps. In any step t � 1, when a node u first be-
comes infected (protected), it has a single chance
to activate each currently inactive neighbor v, and
it succeeds with probability pr .u; v/ (pp.u; v/)
provided no neighbor of v tries activating v at the
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same step. In other words, at step t C 1, node v
will become infected (protected) with probability
pr .u; v/ (pp.u; v/) provided no neighbor of v
tries activating v at the same step. If there are
two or more nodes trying to activate v at the
same step, at most one of them can succeed.
If infected node(s) and protected node(s) try to
activate a node at the same step, protected nodes
have priority over infected nodes. The process
continues until no newly infected or protected
node appears.

Campaign-Oblivious Independent Cascade
(COICM) This model is similar to the MCICM
model; the only difference is that instead of two
probabilities are associated with each edge, only
one probability 0 � p.u; v/ � 1 is associated
with each edge euv. That is, each node has the
same probability to forward the two kinds of
information, indicating both rumor and protector
cascades pass through the same edge with the
same probability.

Problem 2 [8]
A single cascade, rumor, diffuses through net-
works. Influence diffusion models are used to
capture rumor propagation process. The objective
is to limit the propagation of rumors through
blocking links in networks. The aim of [8] is to
minimize contamination degree by appropriately
removing a fixed number of links. Here, the
contamination degree of a network is used to
measure how badly the rumor will contaminate
the network; see its definition later.

Given a directed graphG D .V;E/, a positive
integer k where k < jEj, find a subset B� � E

with jB�j D k such that c.G.B�// � c.G.B//

for any B � E with jBj D k. Here c.G/ denotes
the contamination degree. For any link e 2 E,
let G.e/ denote the graphG.V;E n e/. AndG.e/
is used as the graph constructed by blocking e in
G. Similarly, for any B � E, let G.B/ denote
graph G.V;E n B/. Then G.B/ represents the
graph constructed by blocking B in G.

Independent Cascade Model
In this model, a network is considered as a di-
rected graph G D .V;E/. Each edge euv 2

E is assigned an influence probability p.u; v/,
representing the possibility that node u influences
node v successfully. For euv … E, let p.u; v/ D
0. Each node can only be in one of the following
two statuses: inactive or infected. Once a node
becomes infected, it stays infected forever.

The diffusion process unfolds in discrete time
steps. Starting with an initial set of infected nodes
A0, at any step t � 1, when node u first becomes
infected in step t , it has a single chance to
activate any of its currently inactive neighbors.
For neighbor node v, it succeeds with probability
p.u; v/. If u succeeds in activating v, then v will
become infected in step t C 1, and if u fails in
activating v, then v will stay inactive. If node u
does not succeed in activating v, it will not have a
second chance to do in all subsequent steps. The
process continues until no more activations are
possible. If multiple newly activated nodes are in-
neighbors of the same inactive node, then their
activation attempts are sequenced in an arbitrary
order.

Key Results

For Problem 1
Given the set of rumor sources R, a set of initial
protectors P , and rumor detection delay d , a set
function fRd .P / represents the number of nodes
that are prevented by P with diffusion delay
d from adopting R. In other words, function
fRd .P / denotes the nodes that will be infected
by R if, instead of P , the empty set is selected as
the set of protectors. Therefore, the problem is to
select P such that the expectation of fRd .P / is
maximized.

The NP-hardness of this problem is proved.
Then for the MCICM model, the high-
effectiveness property where pp.u; v/ D 1 for
edge euv 2 E is adopted. Then the objective
functions are proved to be submodular and
monotone under both the MCICM model with
the high-effectiveness property and the COICM
model. Therefore, Algorithm 1 is applied to
provide .1�1=e/-approximation solutions for the
problem. However, the objective function is not
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Algorithm 1: The greedy algorithm
Input: Graph G D .V; E/, the set of initial rumor
sources R, rumor detection delay d , a positive
integer k, a positive number n, representing the
simulation times
Output: Set P
P D ;
for i = 1 to k do

for each u 2 V n .R [ P / do
Nu D 0
for j = 1 to n do

NuC D fRd .P [ fug/ � fRd .P /
end
Nu D Nu=n

end
Loc D arg maxu2.V n.R[P //fNug
P D P [Loc

end
Output P

submodular under the MCICM model without
the high-effectiveness property.

Variants of Problem 1
Several works in different contexts also consider
using the diffusion of protectors to contain the
spread of rumors. In comparison to Problem 1,
they have adopted different influence diffusion
models, as well as formulated different optimiza-
tion problems.

Selection of Fixed Number of Protectors
The work of He et al. [5] studies rumors blocking
maximization under an extension of the classical
Linear Threshold (LT) model [6], in which they
incorporate two cascades, rumor and protector.
Each node in this model can be in one of the
three states: infected, protected, and inactive. For
each node, its currently infected neighbors and
protected neighbors determine whether it will
become infected, protected, or stay inactive, re-
spectively. When a node is activated by its in-
fected neighbors and protected neighbors at the
same time, then infected neighbors have priority
over protected neighbors. Each edge e D .u; v/
has two weights, wr

uv (rumor propagation) and
wp

uv (protector propagation). Each node u picks
two independent thresholds from Œ0; 1�; one is
for rumor diffusion and the other is for protector
diffusion.

Then they develop the objective function
SR.X/ for this problem, which represents
the expected number of nodes that is saved
(from being infected by rumors R) by X .
This problem is shown to be NP -hard and the
objective function is proved to be submodular
and monotone, then the greedy algorithm with
performance ratio 1 � 1

e
is applied. To efficiently

compute the values of SR.X/, the authors
propose the CLDAG algorithm.

Instead of choosing initial protectors from
nodes not in rumor sources, the authors in [10] se-
lect a fixed number of nodes from initial infected
nodes (rumor sources) and the rest of the nodes
in a network as initial protectors, such that the
number of nodes protected during T time steps
is maximized. They study this problem under the
LT model and the IC model. Two approximation
algorithms are proposed.

Protection of a Subset of Nodes
Instead of limiting rumor diffusion through
launching a fixed number of protectors, the work
of [12] exploits the problem which aims to select
the smallest set of influential people as protectors,
such that the diffusion process starting from these
protectors limits the propagation of rumors R in
a fraction 0 � ˛ � 1 of the whole network in
T time steps. They study four variants of this
problem, which are the combinations of the two
parameters: R (can be unknown or known) and
T (can be constrained or unconstrained). These
problems are studied under the extensions of
the IC model and the LT model, in which two
cascades, rumors and protectors, are considered.
For each edge, both of them have the same
influence probability (IC) or influence weight
(LT). For each node, they have the same threshold
(LT). The key point is that when the two cascades
try to activate a node at the same time, protectors
have priority over rumors.

The authors prove the NP -hardness of the
four problems under the proposed models. For
the variant that R is unknown and T is uncon-
strained, the Greedy Viral Stopper (GVS) algo-
rithm is adopted to select the protectors, and the
solution obtained is within a constant factor (in
terms of the number of nodes in the network) ex-
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tra from the optimal solution. The GVS algorithm
can be used in the variants that R is known and
T is either constrained or unconstrained. These
variants are shown to be hard to approximate to
a logarithmic factor in terms of the number of
nodes in the network. To get a good solution
within short time, the Community-Based Heuris-
tic algorithm is proposed.

Noticing the community structure of social
networks, the work of Fan et al. [3] contains
rumor propagation by selecting a minimal set of
initial protectors to protect a special kind of ver-
tex set, which play the role as the “gates” of ru-
mors’ neighborhood communities. Two variants
of the problem are studied under two different
models, both variants are shown to be NP -hard,
and approximation algorithms are developed to
obtain good solutions.

Game Theory Aspect
The rumor blocking is also studied from the game
theory aspect [13], where it uses graphs with
nodes representing the tribal leaders and edges
representing possible transmission of influence.
Under this context, rumor blocking is viewed
as a two-player game, in which one player, the
rumor, will attempt to maximize the number of
nodes accepting it while the second player, the
protector, will attempt to minimize the rumor’s
influence. Both the rumor and the protector will
choose their action sources (initial rumor sources
and initial protector sources). In the zero-sum
game context, the rumor’s payoff is equal to
the expected number of nodes infected, and the
protector’s payoff is the opposite of the rumor’s
payoff. The authors propose a double oracle al-
gorithm for this game.

For Problem 2
Under the IC model, given an initial active set
X , define the number of active nodes at the
end of the influence diffusion process on G as
f .X IG/. Let �.X IG/ denote the expected value
of f .X IG/. �.X IG/ is called as the influence
degree of node set X on graph G. Two no-
tions of containment degrees are defined. One
is called Average Contamination Degree, repre-
senting the average of influence degree of all the

Algorithm 2: The greedy algorithm - IC
Input: Graph G0 D .V0; E0/, a positive integer
k < jE0j
Output: The set of links blocked
Initialize a subset L 	 E0 as L D Initialize a
graph G D .V; E/ as V D V0; E D E0

while jLj < k do
select a link e�, such that
e� D arg mine2E c.G.e//
L D L[ fe�g
E D E n fe�g

end
Output L

nodes in G, denoted as c0.G/. Its definition is
c0.G/ D 1

jV j
P

v2V �.vIG/. The other is called
Worst Contamination Degree, representing the
maximum of influence degree of all the nodes in
G, denoted as cC.G/. Its definition is: cC.G/ D
maxv2V �.vIG/. Approximation algorithms are
proposed to find good solution for the problem.

For a given graph G D .V;E/, exactly
computing influence degree c.G.e//I e 2 E in
Algorithm 2 is an open problem. Therefore,
heuristic strategies are proposed to estimate
c.G.e//I e 2 E. These estimations are based
on the Bond Percolation Method proposed by
Kimura in [7], which we describe below.

Bond Percolation Method [7]
Assume there are propagation probabilities
fpeI e 2 Eg on a graph G D .V;E/. In terms of
information diffusion on a network, the occupied
links represent the links that the information
propagates, and the unoccupied links represent
the links that the information does not propagates.
The bond percolation process with occupation
probabilities fpeI e 2 Eg on a graph G D .V;E/
is a stochastic process in which the probability of
each link e 2 E becomes occupied is pe.

Construct N graphs through the bond
percolation process, that is, fGn D .V;En/In D
1; : : : ; N g. For any u 2 V 0 on graph G0 D
.V 0; E 0/, let F.uIG0/ represent the set of
all the nodes that are reachable from u on
G0. A node v is said to be reachable from
u if there is a path from u to v through the
links on G0. Define function g.uIG;N/ D
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1
N

PN
nD1 jF.uIGn/j. Then, g.uIG;N/ can be

used to estimate �.uIG/, where u 2 V and
if N is sufficiently large. Decompose each
Gn into the strongly connected components
(SCC) as V D SIn

iD1 SCC.un
i IGn/, where

un
i 2 V and SCC.un

i IGn/ denotes the SCC of
graph Gn that contains un

i . In is the number
of the SCC of graph Gn, using the fact that
jF.uIGn/j D jF.un

i IGn/j for all u 2 V to
calculate fjF.uIGn/jI u 2 V; n D 1; : : : ; N g,
then compute g.uIG;N/, and finally �.uIG/
can be calculated, where u 2 V .

Estimation Method
We now describe how to estimate c.G.e//I e 2 E
in [8]. For a graph G D .V;E/, first, construct
N sample graphs through the bond percolation
process as fGn D .V;En/In D 1; : : : ; N g.
Next, for each e 2 E, identify the subset of N ,
which is denoted as SN .e/ and satisfies SN .e/ D
fn 2 f1; : : : ; N gI e … Eng. Now apply the
bond percolation process on the graph G.e/ D
.V;E n feg/ for jSN .e/j times, then jSN .e/j
graphs are obtained by the occupied links, denote
them as fG.e/nIn D 1; : : : ; jSN .e/jg. Given that
N is large enough to ensure jSN .e/j sufficiently
large, then the function g.uIG.e/; jSN .e/j/
equals to 1

jSN .e/j
PjSN .e/j

nD1 jF.uIG.e/n/j, where
u 2 V , can be used to estimate �.uIG.e//.
Since each link of the graph G is independently
declared occupied in the bond percolation
process, then an alternative, g0.u; e/ D

1
jSN .e/j

P
n2SN .e/ jF.uIGn/j, is used to estimate

�.uIG.e//.

Variants of Problem 2
The authors in [9] adapt the method they used
for the IC model to study Problem 2 under the
LT model [6]. In [1], the authors incorporate the
trust among users in the information propagation
process, and they propose a measure to compute
trust between a pair of users. Then a Weighted
Trust Network (WTN) is built, and the objective
of the problem is to find the Maximum Spanning
Tree (MST) in the WTN and, finally, immunize
all the edges in the MST of the WTN. Another
method that controls rumor spread through block-

ing nodes and links simultaneously can be found
in [4].

Nguyen et al. [11] study the rumor block-
ing problem under a dynamic social network
structure. They propose to distribute patches to
the most influential nodes in the social network,
such that the number of nodes influenced by
rumors is limited. In their work, they first take
into account the network community structure
and adaptively keeps it updated as the social
network evolves, and then select most influen-
tial individuals from each communities to be
patched.

The work of Zhu [14] focuses on the rumor
blocking problem in cellular networks. First, a
social relationship graph between mobile phones
is obtained based on network traffic; the au-
thors develop two graph-partitioning algorithms
to partition the graph into many separate parts as
possible and contain the rumor diffusion within
each part. Then a minimum set of key nodes,
which separate these different parts, is selected
to be patched. The intuition is that the infected
nodes in a part need to go through some of
these key nodes to influence nodes in another
part. Once these nodes are patched, it is impossi-
ble for the influence propagates among different
parts.

Applications

Practical applications can be seen in control-
ling: propagation of computer viruses and worms
propagates over computer networks, spread of
malicious rumors through social networks, diffu-
sion of infections or epidemics (such as swine flu)
among groups of people, propagation of mobile
worm in cellular networks, and so on.

Open Problems

There are many interesting directions that deserve
further explorations. One direction is to improve
existing influence diffusion models by consider-
ing continuous time influence diffusion, users’
preferences to different kinds of information,
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factors influencing users’ threshold in adopting a
kind of information, etc. Another direction is to
design efficient strategies to control the spread of
rumors when only partial of a network structure
is observable. Another research issue is incorpo-
rating the detection of rumor sources into rumor
blocking and continuous time delay of protectors.
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Problem Definition

The problem concerns the design of efficient
rate-based flow control algorithms for virtual-
circuit communication networks where a con-
nection is established by allocating a fixed path,
called session, between the source and the des-
tination. Rate-based flow-control algorithms re-
peatedly adjust the transmission rates of different
sessions in an end-to-end manner with primary
objectives to optimize the network utilization and
achieve some kind of fairness in sharing band-
width between different sessions.

A widely-accepted fairness criterion for flow-
control is max-min fairness which requires that

the rate of a session can be increased only if this
increase does not cause a decrease to any other
session with smaller or equal rate. Once max-
min fairness has been achieved, no session rate
can be increased any further without violating
the above condition or exceeding the bandwidth
capacity of some link. Call max-min rates the
session rates when max-min fairness has been
reached.

Rate-based flow control algorithms perform
rate adjustments through a sequence of opera-
tions in a way that the capacities of network links
are never exceeded. Some of these algorithms,
called conservative [3, 6, 10, 11, 12], employ
operations that gradually increase session rates
until they converge to the max-min rates without
ever performing any rate decreases. On the other
hand, optimistic algorithms, introduced more re-
cently by Afek, Mansour, and Ostfeld [1], allow
for decreases, so that a session’s rate may be
intermediately be larger than its final max-min
rate.

Optimistic algorithms [1, 7] employ a specific
rate adjustment operation, called update opera-
tion (introduced in [1]). The goal of an update
operation is to achieve fairness among a set of
neighboring sessions and optimize the network
utilization in a local basis. More specifically, an
update operation calculates an increase for the
rate of a particular session (the updated session)
for each link the session traverses. The calculated
increase on a particular link is the maximum
possible that respects the max-min fairness condi-
tion between the sessions traversing the link; that

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
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is, this increase should not cause a decrease to
the rate of any other session traversing the link
with smaller rate than the rate of the updated
session after the increase. Once the maximum
increase on each link has been calculated the
minimum among them is applied to the session’s
rate (let e be the link for which the minimum
increase has been calculated). This causes the
decrease of the rates of those sessions traversing
e which had larger rates than the increased rate
of the updated session to the new rate. Moreover,
the update operation guarantees that all the
capacity of link e is allocated to the sessions
traversing it (so the bandwidth of this link is fully
utilized).

One important performance parameter of
a rate-based flow control algorithm is its
locality which is characterized by the amount
of knowledge the algorithm requires to decide
which session’s rate to update next. Oblivious
algorithms do not assume any knowledge of the
network topology or the current session rates.
Partially oblivious algorithms have access to
session rates but they are unaware of the network
topology, while non-oblivious algorithms require
full knowledge of both the network topology and
the session rates. Another crucial performance
parameter of rate-based flow control algorithms
is the convergence complexity measured as the
maximum number of rate-adjustment operations
performed in any execution until max-min
fairness is achieved.

Key Results

Fatourou, Mavronicolas and Spirakis [7] have
studied the convergence complexity of optimistic
rate-based flow control algorithms under
varying degrees of locality. More specifically,
they have proved lower and upper bounds
on the convergence complexity of oblivious,
partially-oblivious and non-oblivious algorithms.
These bounds are expressed in terms of
n the number of sessions laid out on the
network.

Theorem 1 (Lower Bound for Oblivious
Algorithms, Fatourou, Mavronicolas and Spi-
rakis [7]) Any optimistic, oblivious, rate-
based flow control algorithm requires ˝.n2/

update operations to compute the max-min
rates.

Fatourou, Mavronicolas and Spirakis [7] have
presented algorithm RoundRobin, which ap-
plies update operations to sessions in a round
robin order. Obviously, RoundRobin is obliv-
ious. It has been proved [7] that the conver-
gence complexity of RoundRobin is O(n2).
This shows that the lower bound for oblivious
algorithms is tight.

Theorem 2 (Upper Bound for Oblivious
Algorithms, Fatourou, Mavronicolas and Spi-
rakis [7]) RoundRobin computes the max-
min rates after performing O(n2) update
operations.

RoundRobin belongs to a class of oblivious
algorithms, called Epoch [7]. Each algorithm of
this class repeatedly chooses some permutation
of all session indices and applies update op-
erations on the sessions in the order determined
by this permutation. This is performed n times.
Clearly, Epoch is a class of oblivious algorithms.
It has been proved [7] that each of the algo-
rithms in this class has convergence complexity
O(n2).

Another oblivious algorithm, called
Arbitrary, has been presented in [1]. The
algorithm works in a very simple way by
choosing the next session to be updated in an
arbitrary way, but it requires an exponential
number of update operations to compute the
max-min rates.

Fatourou, Mavronicolas and Spirakis [7] have
proved that partially-oblivious algorithms do
not achieve better convergence complexity than
oblivious algorithms despite the knowledge they
employ.

Theorem 3 (Lower Bound for Partially Obliv-
ious Algorithms, Fatourou, Mavronicolas
and Spirakis [7]) Any optimistic, partially
oblivious, rate-based flow control algorithm
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requires ˝.n2/ update operations to compute
the max-min rates.

Afek, Mansour and Ostfeld [1] have pre-
sented a partially oblivious algorithm, called
GlobalMin. The algorithm chooses as the
session to update next the one with the minimum
rate among all sessions. The convergence
complexity of GlobalMin is O(n2) [1]. This
shows that the lower bound for partially-oblivious
algorithms is tight.

Theorem 4 (Upper Bound for Partially
Oblivious algorithms, Afek, Mansour and Os-
tfeld [1]) GlobalMin computes the max-
min rates after performing O(n2) update
operations.

Another partially-oblivious algorithm, called
LocalMin, is also presented in [1]. The
algorithm chooses to schedule next a session
which has a minimum rate among all the sessions
that share a link with it. LocalMin has time
complexity O(n2).

Fatourou, Mavronicolas and Spirakis [7]
have presented a non-oblivious algorithm,
called Linear, that exhibits linear convergence
complexity. Linear follows the classical
idea [3, 12] of selecting as the next updated
session one of the sessions that traverse the
most congested link in the network. To discover
such a session, Linear requires knowledge
of the network topology and the session
rates.

Theorem 5 (Upper Bound for Non-Oblivious
Algorithms, Fatourou, Mavronicolas and Spi-
rakis [7]) Linear computes the max-min
rates after performing O(n) update opera-
tions.

The convergence complexity of Linear is opti-
mal, since n rate adjustments must be performed
in any execution of an optimistic rate-based flow
control algorithm (assuming that the initial ses-
sion rates are zero). However, this comes at a re-
markable cost in locality which makes Linear
impractical.

Applications

Flow control is the dominant technique used
in most communication networks for prevent-
ing data traffic congestion when the externally
injected transmission load is larger than what
can be handled even with optimal routing. Flow
control is also used to ensure high network uti-
lization and fairness among the different con-
nections. Examples of networking technologies
where flow control techniques have been ex-
tensively employed to achieve these goals are
TCP streams [5] and ATM networks [4]. An
overview of flow control in practice is provided
in [3].

The idea of controlling the rate of a traffic
source originates back to the data networking
protocols of the ANSI Frame Relay Standard.
Rate-based flow control is considered attractive
due to its simplicity and its low hardware require-
ments. It has been chosen by the ATM Forum on
Traffic Management as the best suited technique
for the goals of ABR service [4].

A substantial amount of research work has
been devoted in past to conservative flow control
algorithms [3, 6, 10, 11, 12]. The optimistic
framework has been introduced much later by
Afek et al. [1] as a more suitable approach for real
dynamic networks where decreases of session
rates may be necessary (e.g., for accommodat-
ing the arrival of new sessions). The algorithms
presented in [7] improve upon the original algo-
rithms proposed in [1] in terms of either con-
vergence complexity, or locality, or both. More-
over, they identify that certain classical schedul-
ing techniques, such as round-robin [11], or ad-
justing the rates of sessions traversing one of
the most congested links [3, 12] can be efficient
under the optimistic framework. The first general
lower bounds on the convergence complexity of
rate-based flow control algorithms are also pre-
sented in [7].

The performance of optimistic algorithms has
been theoretically analyzed in terms of an ab-
straction, namely the update operation, which
has been designed to address most of the in-
tricacies encountered by rate-based flow con-
trol algorithms. However, the update operation
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masks low-level implementation details, while it
may incur non-trivial, local computations on the
switches of the network. Fatourou, Mavronico-
las and Spirakis [9] have studied the impact on
the efficiency of optimistic algorithms of local
computations required at network switches in
order to implement the update operation, and
proposed a distributed scheme that implements
a broad class of such algorithms. On a different
avenue, Afek, Mansour and Ostfeld [2] have
proposed a simple flow control scheme, called
Phantom, which employs the idea of consider-
ing an imaginary session on each link [10, 12],
and they have discussed how Phantom can be
applied to ATM networks and networks of TCP
routers.

A broad class of modern distributed appli-
cations (e.g., remote video, multimedia confer-
encing, data visualization, virtual reality, etc.)
exhibit highly differing bandwidth requirements
and need some kind of quality of service guar-
antees. To efficiently support a wide diversity of
applications sharing available bandwidth, a lot
of research work has been devoted on incorpo-
rating priority schemes on current networking
technologies. Priorities offer a basis for model-
ing the diverse resource requirements of modern
distributed applications, and they have been used
to accommodate the needs of network manage-
ment policies, traffic levels, or pricing. The first
efforts for embedding priority issues into max-
min fair, rate-based flow control were performed
in [10, 12]. An extension of the classical the-
ory of max-min fair, rate-based flow control to
accommodate priorities of different sessions has
been presented in [8]. (A number of other pa-
pers addressing similar generalizations of max-
min fairness to account for priorities and utility
have been presented after the original publication
of [8].)

Many modern applications are not based
solely on point-to-point communication but
they rather require multipoint-to-multipoint
transmissions. A max-min fair rate-based flow
control algorithm for multicast networks is
presented in [14]. Max-min fair allocation of
bandwidth in wireless adhoc networks is studied
in [15].

Open Problems

The research work on optimistic, rate-based flow
control algorithms leaves open several interesting
questions. The convergence complexity of the
proposed optimistic algorithms has been ana-
lyzed only for a static set of sessions laid out
on the network. It would be interesting to eval-
uate these algorithms under a dynamic network
setting, and possibly extend the techniques they
employ to efficiently accommodate arriving and
departing sessions.

Although max-min fairness has emerged as
the most frequently praised fairness criterion for
flow control algorithms, achieving it might be
expensive in highly dynamic situations. Afek
et al. [1] have proposed a modified version
of the update operation, called approximate
update, which applies an increase to some
session only if it is larger than some quantity
ı > 0. An approximate optimistic algorithm
uses the approximate update operation
and terminates if no session rate can be
increased by more than •. Obviously such an
algorithm does not necessarily reach max-min
fairness. It has been proved [1] that for some
network topologies every approximate optimistic
algorithm may converge to session rates that
are away from their max-min counterparts
by an exponential factor. The consideration
of other versions of update operation or
different termination conditions might lead to
better max-min fairness approximations and
deserves more study; different choices may also
significantly impact the convergence complexity
of approximate optimistic algorithms. It would be
also interesting to derive trade-off results between
the convergence complexity of such algorithms
and the distance of the terminating rates they
achieve to the max-min rates.

Fairness formulations that naturally approx-
imate the max-min condition have been pro-
posed by Kleinberg et al. [13] as suitable fairness
criteria for certain routing and load balancing ap-
plications. Studying these formulations under the
rate-based flow control setting is an interesting
open problem.
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Problem Definition

Wireless data broadcasting means a set of data
are repeatedly broadcast from a base station to
a mass number of wireless and mobile clients.
If a client wants a specific datum, it will access
onto the broadcasting channel, get the location
(appearance time) of the datum with the help
indices, and wait until the datum has been broad-
cast. The scheduling problem in data broadcast-
ing deals with the design of an efficient permuta-
tion strategy for a client to download a required
subset of data from an multichannel broadcasting
system, with both time and energy constraints.
Here time constraint means the client wants the
minimum downloading time from when it starts
the query until the moment it has successfully
download each piece of datum, while the energy
constraint means the client wants the minimum
switching numbers among channels to reduce
extra battery consumption. Correspondingly, we
can define the scheduling problem formally as
follows:

A client wants to download a group of k

data items D D fd1; d2; : : : ; dkg, each with
different sizes. Those data items are broadcasted
on n different channels C D fc1; c2; : : : ; cng

repeatedly together with many other data items.
Each channel may have different bandwidth and
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Scheduling in Data Broadcasting, Fig. 1 Example of possible objective contradiction

broadcast cycle length. Let the time to download
the smallest transmission packet be a unit time,
and the length of di can be represented as li (also
referring as downloading time).

Assume the client knows the locations (chan-
nel id and time offsets) of the required data set
beforehand at the starting time t D 0 (with the
help of indices, which is beyond the scope of
our problem), and the target is how to down-
load k known data from n channels efficiently
with minimum downloading time (we also refer
it as access latency) and minimum switching
numbers.

Unfortunately, the two objectives in this prob-
lem are conflicting to each other. Figure 1 is an
example to illustrate this phenomenon. In Fig. 1,
there are two channels broadcasting 15 data items
repeatedly. Suppose the gray data items f1,2,3,4g
are of the request. The starting point of the client
retrieving process is at t D 0. If we want to
minimize the access latency, the request should
be retrieved in the order of “3 ! 1 ! 4 !

2” which takes only 7 time units but needs 3
switches (shown as Option 1 in Fig. 1). However,
if we want to minimize the switches, the best
retrieving order should be “3 ! 4 ! 2 ! 1”
which needs only 1 switch but takes 12 time units
(shown as Option 2 in Fig. 1). This example ex-
hibits that access latency and number of switches
cannot be minimized at the same time. They are
contradictory factors.

As a consequence, we want to fix one factor
and minimize another objective, and thus have the
following objective:

Objective
We hope to design a data downloading order for
a client to download k data items from n broad-
casting channels, such that the access latency t

is minimized if we restrict the switch number
among channels (denoted as h); otherwise, we
will minimize the number of switches h once the
access latency t is bounded.

Constraints

1. Switch Constraint: Note that if a client is
downloading a data from channel ci at time
t0, then it cannot switch to channel cj , where
j ¤ i , to download another data at time
t0 C 1 due to connection protocols. Thus, we
assume if a client wants to download data from
another channel, it needs at least one time
unit for channel switching. Figure 2 gives a
typical process of data retrieval in multichan-
nel broadcast environments. The query data
set is fd1; d3; d5g, and a user can download
data object d1 and d3 from channel c1 and
then switch to channel c3 at time t D 6

to download data object d5 at time t D 7.
However, after time t D 5, the user cannot
switch from channel c1 to c2 to download data
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d5 at time t D 6. From Fig. 2, we also get that
the bandwidths of different channels are not
necessarily the same. Actually, the bandwidth
of channel c2 is twice as that of c1 or c3, thus
d3 or d5, which take two time slots on c1 or
c3, can be broadcasted in one time unit by c2.

2. Objective Constraint: We have to setup a
reasonable threshold for latency constraint t

and switch constraint h, such that we would
achieve a feasible solution for the correspond-
ing minimized switches and shortest access
latency.

Problem 1 (Scheduling in Data
Broadcasting)

INPUT: The required data subset D D

fd1; d2; : : : ; dkg broadcast on n different
channels with their locations and downloading
time li , a switch constraint h or latency
constraint t .

OUTPUT: A permutation of D such that if start-
ing from time slot zero, a client would achieve
the shortest access latency (with switch thresh-
old h) or the minimum switch numbers (with la-
tency threshold t ) if it follows this permutation
to download each data item sequentially with
switch constraint.

Key Results

Scheduling is an important part in the wireless
data broadcast system. Researchers tend to divide
the scheduling problems into two subproblems.
The first one is the data allocation problem in

the server side, while the other one is the data
retrieval problem in the client size.

With respect to server side scheduling, several
works have been proposed to improve the sys-
tem performance [1–5]. Acharya et al. [1] first
dealt with the data allocation problem for single-
channel environment. He proposed a scheduling
algorithm considering data access frequencies
and allowed frequent accessed data to be broad-
casted more often. Most works concerned multi-
channel environment. For data set with uniform
length, Yee et al. [2] proposed an O.t2m/ time-
complexity dynamic programming algorithm to
find the optimal schedule and also a near optimal
greedy algorithm to reduce the time complex-
ity. For nonuniform lengths case, Ardizzoni et
al. [3] proved that this problem is strong NP-
hard. Ardizzoni et al. [3], Anticaglia et al. [4],
and Kenyon et al. [5] designed algorithms based
on greedy and heuristic strategy.

Also most of the literature discussed the data
allocation problem from server’s point of view;
several works [6–10] considered the data retrieval
scheduling problem from the client’s point of
view. Shi et al. [6] defined the data retrieval
problem in MIMO environment as parallel
data retrieval scheduling with MIMO Antennae
(PADRS-MIMO) and proposed two greedy
heuristics to guarantee minimum switchings
among channels or reduce the downloading
time when the number of antennae in the
mobile devices are limited. Lu et al. [7, 8]
defined the largest number data retrieval (LNDR)
and maximum cost data retrieval (MCDR)
problems and considered the hopping cost.
He also proved that when the hopping cost
cannot be ignored, LNDR is NP-hard and
designed a 1/2-approximation algorithm. Gao
et al. [9, 10] designed a randomized algebraic
algorithm that takes both energy cost and access
time into consideration to schedule the data
retrieval process in multichannel environments.
The algorithm proposed can detect whether a
given data retrieval problem has a solution with
access time t and number of switchings h in
O
�
2k.hnt/O.1/

�
time, where n is the number of

channels and k is the number of requested data
items.
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Hardness Analysis

Define a tuple s D fis; js; ts; t 0
sg to denote the

datum dis , which can be downloaded from
channel cjs

during the time span
�
ts; t 0

s

�
; then

it is clear that a valid data retrieval schedule
is a sequence of k intervals s1; s2; : : : ; sk ,
each tuple corresponds to a distinct data item
in D, and there are no conflicts between
any two of the k tuples. To analyze the NP-
hardness, we then define the decision problem of
MCDR.

Definition 1 (Decision MCDR) Given a data
set D, a channel set C , a time threshold t ,
and a switching threshold h, find a valid data
retrieval schedule to download all the data
in D from C before time t with at most h

switchings.

Theorem 1 MCDR problem is NP-hard.

Proof We use VC �p MCDR to prove this
theorem. Here VC is the decision problem of
vertex cover, say, given a graph G D .V; E/,
we want to find a minimum size vertex subset
VC � V such that for any edge .vi ; vj / 2 E,
either vi 2 VC or vj 2 VC . An instance of
vector cover is: given a graph G D .V; E/ and
integer k, does it have a vertex cover VC with
size k? Then we construct an instance of MCDR
from G and k as follows:

1. For each vertex vi 2 V , define a channel vi .
Define another k channels b1; : : : ; bk . Then
the channel set is C D

˚
v1; : : : ; vjV j; b1; : : : ;

bkg. Totally jV j C k channels. Let ı be the
maximum vertex degree in G, and then each
channel has broadcast cycle length ı C 3.

2. For each edge .vi ; vj / 2 E, define a unit
length data item eij in data set De and ap-
pend it on channel ci and cj (the order can
be arbitrary and starting from the third time
unit).

3. For each channel bi , define a unit length data
item di in data set Dd and allocate it on the
first time unit of channel bi .

4. The data set D D De [Db .

Figure 3 is an example to show how to con-
struct the broadcast system. In this figure, ı D 3,
k D 2, jV j D 4; thus, the channel set should
be fv1; v2; v3; v4; b1; b2g, each having broadcast
length ı C 3 D 6. Each eij represents an edge
.vi ; vj /, and it is clear that if we download all
data items from channel vi , then it means we
cover the edges connecting node vi .

Next, we prove that G has a vertex cover with
size k if and only if there is a valid data retrieval
schedule S such that t D k.ıC3/ and h D 2k�1.

H): If G has a vertex cover VC with size
k, then we can select the corresponding k

channels in fvi jvi 2 VC g to receive all the
data in k cycles. At the beginning of i th cycle
(iteration), the client will visit bi at t D 1, and
hop to some vi 2 VC channel, stay on this
channel till the last time unit of the broadcast
cycle, and then hop to biC1. There are k bi s,
so each iteration client will download one of
them. VC is a vertex cover, so following all
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vi 2 VC we must download every eij . The
length of each broadcast cycle is ı C 3, so
the total access latency is k.ı C 3/. In each
broadcast cycle, the client will switch twice
(except the last cycle), so h D 2k � 1.

(H: Assume MCDR has a valid schedule S

with t D k.ı C 3/ and h D 2k � 1. Let us
consider Db first. There are k bi ’s located at
the first time unit on k different channels. It
means we have to switch at least k� 1 hops to
download Db , and then we only have another
k hops for De , which means we can visit
at most k channels in fvig. At the beginning
of each broadcast cycle, we always stay at
some channel bi to download di , and then
we switch to some vi , and at the end of this
cycle, we have to switch to channel biC1 for
diC1. This means we cannot switch to two
vertex channels within one broadcast cycle,
otherwise we cannot download D D De[Db

in k iterations. Since S is valid, we visit k

vertex channels and download all De data
items, it means these k vertices form a vertex
cover with size k.

This reduction can be done in polynomial
time, and we can conclude that MCDR is NP-
hard.

Randomized Algebraic Algorithm

To solve the above decision problem, we devel-
oped a randomized algebraic algorithm. It can
detect if a given problem has a schedule to down-
load all the requested data before time t and with
at most h channel switchings in O

�
2k.nht/O.1/

�

time, where n is the number of channels and k

is the number of required data items. We also
provide a fixed parameter tractable (FPT) algo-
rithm with computational time O

�
2l .nht/O.1/

�
.

It can determine whether there is a scheduling
to download l data items from D in at most n

time slots and at most h channel switches. Service
provider can adjust n and h freely to fit their own
requirement. We firstly give some preliminaries
and then present our algorithms in detail.

Preliminaries
Here we introduce some notions about group
algebra which are not often used in algorithm
design.

Definition 2 Assume that x1, : : :, xk are vari-
ables in group algebra. Then,

1. A monomial has format x
a1

1 x
a2

2 : : : x
ak

k
.

2. A multilinear monomial is a monomial such
that each variable has degree exactly one. For
example, x3x5x6 is a multilinear monomial,
but x3x2

5x3
6 is not.

3. For a polynomial p.x1; : : : ; xk/, its sum of
product expansion is

P
j pj .x1; : : : ; xk/,

where each pj is a monomial, which has a

format cj x
aj1

1 : : : x
ajk

k
with cj respect to its

coefficient.
4. G2 D .f0; 1g;C; �/ is a field with two ele-

ments f0; 1g and two operations C and �. The
addition operation is under the modular of 2
(mod 2).

5. Zk
2 is the group of binary k-vectors. Let w0

denote the all-zero vector, which is the identity
of Zk

2 , and then for every v 2 Zk
2 , v2 D w0,

v � w0 D v.

The operations between elements in the group
algebra are standard.

Algorithm Description
The basic idea of our algebraic algorithm is that
for each item di 2 D, where D is the query
data set, we create a variable xi to represent it.
Therefore, given D D fd1; d2; : : : ; dkg, we con-
struct a variable set X D fx1; x2; : : : ; xkg. We
then design a circuit Ht;h;n such that a schedule
without conflict will be generated by a multilinear
monomial in the sum of product expansion of the
circuit. The existence of schedules to download
all the data items in D from the multiple channel
set C is converted into the existence of multilin-
ear monomials of Ht;h;n. Replace each variable
by a specified binary vector which can remove all
of the non-multilinear monomials by converting
them to zero. Thus, the data retrieval problem is
transformed into testing if a multivariate polyno-
mial is zero. It is well known that randomized
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algorithms can be used to check if a circuit is
identical to zero in polynomial time. Thus, we
have the following statements.

Lemma 1 There is a polynomial time algorithm
such that given a channel ci , a time interval
Œt1; t2�, and an integer m, it constructs a circuit
of polynomial Pi;t1;t2;m such that for any subset
D0 D fdi1 ; : : : ; dimg � D which has a size
of m and is downloadable in the time inter-
val Œt1; t2� from channel ci , the product expan-
sion of Pi;t1;t2;m contains a multilinear monomial
xi1xi2 : : : xim .

Proof We can use a recursive way to compute the
circuit Pi;t1;t2;m in polynomial time.

1. Pi;t1;t2;0 D 0.
2. Pi;t1;t2;1 D

P
j xj , xj � X , and the corre-

sponding datadj is entirely in the time interval
Œt1; t2� of channel ci .

3. Pi;t1;t2;lC1 D
P

j xj � Pi;t1;t 0

2
;l C Pi;t1;t 0

2
;lC1,

dj starts at time t 0
2C1 and ends before time t2

on channel ci .

When computing Pi;t1;t2;lC1, xj multiplies
Pi;t1;t 0

2
;l is based on the case that dj is down-

loadable from time t 0
2 C 1 to t2 in the final

phase, and the other l data items are download-
able before time t 0

2. The term Pi;t1;t 0

2
;lC1 is the

case that l C 1 items are downloaded before
time t 0

2. Note that the parameter m in Pi;t1;t2;m

controls the total number of data to be down-
loaded.

Definition 3 A subset data items D0 D˚
di1 ; : : : ; dim

�
� D is .i; t; h/-downloadable

if we can download all data items in D0 before
time t , the total number of channel switches is
at most h, and the last downloaded item is from
channel ci .

Lemma 2 Given two integers t and h, there is a
polynomial time algorithm to construct a circuit
of polynomial Fi;t;h;m such that for any .i; t; h/-
downloadable subset D0 D fdi1 ; : : : ; dimg �

D, the product expansion of Fi;t;h;m contains a
multilinear monomial

�
xi1 ; : : : ; xim

�
Y , where Y

is a multilinear monomial which does not include
any variable in X .

Proof We still use a recursive way to construct
the circuit. Some additional variables are
used as needed. Without loss of generality,
we assume the data retrieval process start at
time 0.

1. Fi;t;0;0 D 0.
2. Fi;t;0;1 D Pi;1;t;1 � yi;t;0;1.
3. Fi;t;h0C1;m0C1 D yi;t;h0C1;m0C1;0

�P
t 0<t

Fi;t 0;h0C1;m0 � Pi;t 0C1;t;1

�
C yi;t;h0C1;m0C1;1

�P
j 6Di

P
t 0<t Fi;t 0�1;h0;m0 � Pi;t 0C1;t;1

�
:

Then we can get Lemma 2 immedi-
ately.

The computation of Fi;t;h0C1;m0C1 is based
on two cases, and we use two variables,
yi;t;h0C1;m0C1;0 and yi;t;h0C1;m0C1;1, to mark
them respectively. We now present an algorithm
that involves one layer randomization to
determine if there is a schedule to download
all the data items in D before time t and with at
most h channel switchings.

Theorem 2 There is an O
�
2k.hnt/O.1/

�
time

randomized algorithm to determine if there is a
scheduling to download jDj D k data items
before time t and the number of channel switches
is at most h, where n is the total number of
channels.

Proof By Lemma 2, we can construct a circuit
Ht;h;n D

Pn
iD1 Fi;t;h;k in polynomial time. It is

easy to see there is a scheduling for download-
ing the k data items before time t and with h

channel switches, if and only if the sum product
expansion of Ht;h;n has a multilinear monomial
.x1; : : : ; xk/Y .

We can replace each si by a vector wi D wT
0 C

vT
i , where w0 is the all-zero vector of dimension

k and vi is a binary vector of dimension k with
its i th element being 1 and all other elements
being 0. Assume k D 3, we define the following
operations:
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va�vb D

0

@
a1

a2

a3

1

A�

0

@
b1

b2

b3

1

A D

0

@
.a1 C b1/.mod2/

.a1 C b2/.mod2/

.a1 C b3/.mod2/

1

A

(1)
.va C vb/ � vc D va � vc C vb � vc (2)

By Eqs. 1 and 2, for any k-dimensional binary
vector w0 D w0 C v, we have w02 D w2

0 C

2w0 � v C v2 D w0 C 2.w0 � v/ C w0 D

2.w0 � v/ C 2w0 D 0, because of the coeffi-
cients are in the field of G2. The replacement
xi D wi .i D 1; : : : ; m/ makes all the non-
multilinear monomials become zero. Meanwhile,
all the multilinear monomials remain nonzero.
Hence, it is clear that there is a scheduling to
download all the data items in D before time t

and with at most h channel switchings if and only
if Ht;h;njxi Dwi .iD1;:::;k/ is a nonzero polynomial.
The variables in Y makes it impossible to have
cancelation when adding two identical multilin-
ear monomials, which can be generated from
different paths with variables in fx1; : : : ; xkg. It
is well known that randomized algorithms can be
used to check if a circuit is identical to zero in
polynomial time [11, 12].

The algorithm generates less than 2k

terms during the computing process since
there are at most 2k distinct binary vec-
tors. Therefore, the computational time is
O
�
2k.nht/O.1/

�
.

Example Let H1 D x1x2y1 C x2
2y2 and H2 D

x2
1y1 C x2

2y2. Consider the replacement x1 D

w1 D
�

0
0

�
C
�

1
0

�
and x2 D w2 D

�
0
0

�
C
�

0
1

�
. We

have the following steps of operations.

H1jx1 D w1; x2 D w2
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H1 is a polynomial that contains a multilinear
monomial. It becomes nonzero after replacement.
H2 is a polynomial that is without multilinear
monomials. It becomes zero after the replace-
ment. If we just down a subset of l data items
in set D, we have the following theorem that
involves two layers of randomization.

Theorem 3 There is an O
�
2l .hnt/O.1/

�
time

randomized algorithm to determine if there is
a scheduling to download l data items from D

in at most t time units and at most h channel
switches.
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Proof By Lemma 2, we can construct a polyno-
mial Ht;h;l D

Pl
iD1 Fi;t;h;l in polynomial time.

Replace each xi with a vector wi D wT
0 C vT

i ,
where w0 is the all-zero vector of dimension l and
vi is a random distinct vector of dimension l . The
replacement xi D wi .i D 1; : : : ; k/ makes all
monomials which has non-multilinear monomial
at x part become zero.

Therefore, there is a scheduling to download
l data items of D before time t and with the
number of switches no more than h if and only if
Ht;h;kjxi Dwi .iD1;:::;k/ is not a zero polynomial
in the field of G2. Assume that the product
expansion of Ht:h;l has a multilinear monomial
.xi1 ; : : : ; xil /Y , where Y is a multilinear
monomial with variables not in x1; : : : ; xk .
For a series of randomly assigned vectors with
dimension l : vj1

; : : : ; vjl
, the probability that

vji
is a linear combination of vj1

; : : : ; vji�1

is at most
2i�1

2l
D

1

2l�iC1
. Therefore, with

probability at most
lP

iD1

1

2l�iC1
, vji

is a linear

combination of vj1
; : : : ; vji�1

for some i � l .
When vji

; : : : ; vjl
are linearly independent,

the product of vj1
; : : : ; vjl

is nonzero. Every
multilinear monomial in the product expansion
has different variables to form Y since it is
determined by a unique path to generate the
polynomial. Therefore, for those random vectors
vi , every multilinear monomial has a chance at
least 1� 3

4
D 1

4
to be nonzero. Therefore, if there

is a solution, Ht;h;kjxi Dwi .i;1;:::;l/ with random
assignment Y is not zero in the field of G2 with
probability at least 1

4
.

After the replacements, it generates less than
2l terms since there are at most 2k different
vectors for a group of Zl

2. The coefficient
of each vector is kept as a polynomial size
circuit. Therefore, the computational time of
our algorithm is O

�
2l .hnt/O.1/

�
, and if we run

it 30 times, the error rate is
�

3
4

�30
< 0:0002.

Applications

Scheduling problem is one of the most funda-
mental problems in combinatorial optimization,

which could model various real-world practical
applications. Especially, scheduling problem at
client hand side would be very useful for data
retrieval problem in wireless data broadcasting
or data streaming environment to reduce energy
consumption and improve query efficiency. Such
problem would also be helpful for parallel query
applications in distributed storage systems.

Open Problems

How to download data items efficiently in
wireless data broadcast environment can usually
be formulized as NP-hard problems with
different constraints, and can be categorized
into two kinds: single channel process and
multiple channel process. The best known
result for the former problem is constant-factor
approximations, while currently there is no
polynomial time approximation scheme (PTAS)
for both of them. The results for this problem is
also helpful for parallel data retrieval problem in
distributed data storage system and cloud system.

Experimental Results

Many literature proposed experimental results for
scheduling problem in data broadcasting. Shi et
al. [6] simulated a base station with n broadcast
channels and 10,000 items, each of size 1KB, and
multiple clients with various requests of data. The
access probability of the database follows Zipf
distribution, n varies from 5 to 30, the number
of antennae varies from 1 to 10, and the size of
a request varies from 10 to 1,000. For each ex-
periment, they generated 100 requests to get the
average access latency and number of switchings
during data retrieval. Lv et al. [7, 8] constructed
two types of broadcast programs: special data
broadcast without channel switching time (SDB)
and general data broadcast with channel switch-
ing time (GDB). In both types of programs, they
simulated a base station with n broadcast chan-
nels; the bandwidth of each channel is 1Mbit/sec.
The database to be broadcasted has N data items,
each of size 512 bytes. The time duration is
denoted by t . The data items of query data set D
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is generated with access probabilities following
the Zipf distribution.

URLs to Code and Data Sets

Shi et al. [6] provided the program for users
to test parameter setting for their own data sets
and available channels (http://theory.utdallas.edu/
dataengineering).
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Problem Definition

The problem known as the reordering buffer
problem or as the sorting buffer problem is
concerned with sorting a sequence of colored
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items according to their color using a limited
size buffer. More precisely the items are to be
processed and arrive one by one. Arriving items
must first be placed into a buffer which can hold
up to k items. Once the buffer is completely
filled, an algorithm has to free space by selecting
one of the items in the buffer for processing and
removing that item from the buffer. After items
stop arriving, the remaining items in the buffer
may be processed in any order. Whenever an item
is processed that has a different color than the
item processed in the step before, this generates
a cost of 1. The objective is to minimize the total
cost.

Metric Space Generalization

This problem can be further generalized. Items,
instead of having a color, correspond to points in
a metric space. A single server must process all
items. In order to process an item, the server has
to move to the corresponding point in the metric
space. At every point, the server has to chose
one of the first k as of yet unprocessed items for
processing and move the server accordingly. The
goal is to minimize the total distance the server
travels.

The uniform metric in which any two points
either have distance 0 or distance 1 from one an-
other corresponds to the original “color sorting”
setting. Other metrics studied include line metrics
and “star” metrics which are the distance metrics
over weighted undirected trees of diameter 2.

Block Operation Setting

Another variant is the so-called block operation
setting. Once again, the input consists of a se-
quence of colored items. The first k items are
placed in a buffer. In each step, an algorithm
selects one of the colors and processes all items of
that color currently stored in the buffer, incurring
a cost of 1. This is called a block operation.
The processed items are removed from the buffer
and replaced with the next items from the input

sequence (if there are any). The goal is once again
to minimize the total cost.

The difference between this block operation
setting and the original setting is most
pronounced for an input sequence consisting
of ` items of a single color. While in the original
setting such a sequence would not produce any
cost, the cost in the block device setting would
be `=k since only k items can be processed per
block operation.

Minor Variants Found in the
Literature

In some cases, there are slight differences in
which these problems are defined in the literature.
Does a cost incur for the first ever processed item
or, similarly, is the first position of the server in
the metric space part of the input or does the algo-
rithm get to chose that position (without incurring
any cost)? Does an item first have to be placed in
the buffer or can the algorithm process an arriving
item directly, thereby bypassing the buffer? Do
we need to remove the remaining items in the
buffer once new items stopped arriving? It turns
out however that these details are inconsequential
for most of the results we are interested in.

Key Results

The main focus of study in the area of schedul-
ing with a reordering buffer has been on online
algorithms. In the online setting, the algorithm’s
decisions have to be based solely on the items
that arrived in the past and must not depend on
items arriving in the future. An online algorithm
is called c-competitive if the cost of the algorithm
is at most c times that of an optimal off-line
solution.

The Online Problem

Deterministic Algorithms
Räcke, Sohler, and Westermann [29] first
introduced the problem for the uniform metric
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and gave a O.log2 k/-competitive online algo-
rithm. After further improvements to O.log k/

[18] and O.log k= log log k/ [6] eventually, an
O.
p

log k/-competitive online algorithms was
designed [2]. This is almost optimal since a
lower bound of ˝.

p
log k= log log k/ is known

[2]. Many of these upper bounds also generalize
from the uniform metric to star metrics.

While the proof techniques for some of these
results differ significantly, the basic idea behind
all the algorithms is the same. As long as the
buffer contains an item of the same color as
the previously processed item, such an item is
processed next. Otherwise, the algorithm has to
pick a different color and performs a color switch
which incurs a cost of 1. In order to decide
which color to switch to, each color is assigned
a “penalty” counter which is initially set to 0
and is reset to 0 whenever the color is selected
for processing. If there is a color with penalty at
least k, then an item with that color is selected
next. Otherwise, an arbitrary color is selected and
the penalty counters for each color are increased
proportional to the number of items of that color
that are stored in the buffer. For the O.

p
log k/-

competitive algorithm, instead of picking an arbi-
trary color, a more sophisticated rule is used.

Randomized Algorithms
Randomized algorithms can achieve much
smaller competitive ratios. The first random-
ized algorithm with a competitive ratio of
O.log log k/ was given for the block operation
model [3]. Shortly afterward, a randomized
algorithm with the same competitive ratio was
presented for the original model [8]. This is best
possible since a matching lower bound is known
[2]. These randomized algorithms are based on
online primal-dual LP schemes [11].

Other Metric Spaces
Apart from the uniform metric, line metrics have
received some attention. After a randomized
O.log2 n/-competitive online algorithm for
n equally spaced points on a line [27], an
improved deterministic O.log n/-competitive
algorithm was given [24]. A deterministic

O.log N log log N /-competitive algorithm for
a line metric with not necessarily equally spaced
points was also given, but here N refers to the
number of items in the input sequence [24].
An easy observation, however, shaves off the
log log N factor and improves the analysis to
show O.log N / competitiveness (Cygan, Mucha,
Private communication, 2011). There is still a
significant gap between this upper bound and the
best known lower bound of about 2.154 [24].

For general metric spaces, a randomized
O.log2 k log n/-competitive online algorithm
is known, where n is the number of points in
the metric space [19]. This result is based on a
deterministic algorithm for trees that is turned
into an algorithm for general metrics by using a
metric embedding [23].

Stochastic Inputs
In a setting where the input is not adversarial
constructed but where the colors of the items
are drawn i.i.d. from an unknown distribution,
a constant competitive ratio is achievable [22].
This result also holds when the colors of the
items are fixed by an adversary but the order
in which the items arrive is random. The proof
is based on the fact that a constant competitive
online algorithm is known for adversarial inputs,
if the online algorithm can use a buffer that is
four times as large as the one used by the optimal
off-line algorithm. In the stochastic input setting,
this difference in buffer size does not lead to
significantly different cost, i.e., the cost of an
optimal algorithm with buffer size k is only by a
constant factor larger than the cost of an optimal
algorithm with buffer size 4k. This is not true for
adversarial inputs [1].

The Off-Line Problem

The reordering buffer problem is NP-hard [5, 12]
for the uniform metric, and the complexity for
line metrics is unknown. Therefore, several pa-
pers focus on approximating the off-line scenario.

A constant factor approximation is known for
the uniform metric [7]. For star metrics, the best
known approximation factor of O.log log k�/ is
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achieved by a randomized algorithm, where �

denotes the ratio of the maximum to the minimum
weight [25]. Both results are based on the intri-
cate rounding of the solution to an LP relaxation
of the corresponding problem.

Bicriteria Approximations
For more general metric spaces, the best ap-
proximation ratios are achieved by bicriteria ap-
proximations, i.e., the approximation algorithm
can make use of more buffer capacity than an
optimal algorithm. For metric spaces given by the
distance metric over a weighted undirected tree,
a bicriteria approximation with approximation
factor 9 to cost and 4 C 1=k to buffer size is
known [10]. Using metric embeddings [23], this
implies a randomized bicriteria approximation
with approximation factor O.log n/ to cost and
O.1/ to buffer size, where n denotes the number
of points in the metric space.

The Maximization Problem
In the maximization version of the problem, the
goal is to maximize the total cost savings that
result from reordering the input sequence. In
terms of an optimal solution, the minimization
and maximization scenario are identical. How-
ever, in terms of approximation, they behave
quite differently in the sense that a c-approximate
solution for the maximization problem usually
has very different cost from a c-approximate
solution for the minimization problem. For the
uniform metric, the first result was an approxima-
tion algorithm with an approximation factor of 20
[28]. This was later improved to a factor of 9 [9].

Online Minimum Makespan
Scheduling

Reordering buffers have also been studied in
connection with other scheduling problems, in
particular online minimum makespan scheduling.
As in the classic problem without reordering,
the input consists of a sequence of jobs with
processing times, and a scheduling algorithm has
to assign the jobs to m parallel machines, with the
objective to minimize the makespan, which is the

time it takes until all jobs are processed. However,
it is not required that each arriving job has to
be assigned immediately to one of the machines.
A reordering buffer can be used to reorder the
input sequence of jobs. At each point in time,
the reordering buffer contains the first k jobs of
the input sequence that have not been assigned so
far. An online scheduling algorithm has to decide
which job to assign to which machine next. Upon
its decision, the corresponding job is removed
from the buffer and assigned to the corresponding
machine, and thereafter the next job in the input
sequence takes its place.

Non-preemptive Scheduling

For non-preemptive scheduling, Englert, Özmen,
and Westermann [20] give, for m identical ma-
chines, a tight bound on the competitive ratio.
Depending on m, the achieved competitive ratio
lies between 4/3 and 1.4659. This optimal ratio is
achieved with a buffer of size of at most d2:5 �

me C 2. They show that larger buffer sizes do
not result in an additional advantage and that a
buffer of size ˝.m/ is necessary to achieve this
competitive ratio. This improves upon an optimal
algorithm for two identical machines [26].

Further, they present several algorithms for
different buffer sizes. In addition, for m uni-
formly related machines, they give a scheduling
algorithm that achieves a competitive ratio of 2
with a reordering buffer of size m.

Subsequently to [20], a variety of related pa-
pers appeared (compare, e.g., [4, 14–16, 21]). For
2 uniformly related machines with speed ratio
s � 1, it is shown that, for any s > 1, a
buffer of size 3 is sufficient to achieve an optimal
competitive ratio, and in the case s � 2, a buffer
of size 2 already allows to achieve an optimal
ratio [15].

Job Migrations
The results of [20] can be generalized to the
problem of online minimum makespan schedul-
ing with job migrations, i.e., where no reordering
buffer is available, but a limited number of job
reassignments may be performed. For m identical
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machines, the same competitive ratio as in [20]
can be achieved [4]. The algorithm uses, for
m � 11, at most 7m migration operations and,
for smaller m, 8m to 10m migration operations.
A number of papers consider similar models
(compare, e.g., [13, 17, 30, 31]).

Preemptive Scheduling

For preemptive scheduling on m identical ma-
chines, tight bounds on the competitive ratio can
be achieved for any m. This bound is 4=3 for even
values of m and slightly lower for odd values
of m [16]. A buffer of size ‚.m/ is sufficient
to achieve this bound, but a buffer of size o.m/

does not reduce the best overall competitive ratio
e=.e � 1/ that is known for the case without
reordering [16].
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Problem Definition

The classic secretary problem, a prime example
of stopping theory, has been studied extensively
in the computer science literature. Consider the
scenario where an employer is interested in hiring
one secretary out of a pool of candidates. The
difficulty is that, although the employer does not
know the utility of a candidate before she is
interviewed, the irrevocable hiring decision for
each candidate has to be made right after the in-
terview and prior to interviewing the subsequent
candidates. The goal is nonetheless to pick the
best candidate or maximize the probability of
achieving this.

Optimization Angle
The above scenario is hopeless from an algo-
rithmic point of view since an adversarial input
makes it impossible to hire the best candidate. We
can take either of two paths to make the problem
tractable: restrict the set of utilities or the arrival
order of candidates. The former path yields, for
instance, the stochastic variant of the problem.
However, we follow the second idea here that
leads to the classic secretary problem. The extra
assumption, then, is that the candidates arrive
in a random error; i.e., although each candidate
may have an arbitrary adversarial utility, every
permutation of the candidates is equally likely to
be the arrival order.

A folklore solution to the problem, often at-
tributed to [3], is to look into the first 1

e
fraction of

the candidates (called the “tuning set”), without
giving them any offers, and then hire the first
candidate with utility more than every one in the
tuning set. It is not difficult to show that this
approach hires the best candidate with probability
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at least 1
e

. Indeed, it is known that this is the best
possible performance.

There are two questions to be answered, once
we extend the problem to multiple secretaries.

1. What subsets of secretaries can be hired to-
gether? The simplest answer is to allow at
most k secretaries to be hired. Alternately, we
can place (several) knapsack and/or matroid
constraints on the feasible set. The former
assigns a cost to each hire – say, the requested
salary – that is to be paid out of a given budget.
The latter permits only those combinations
that form an independent set according to
a given matroid. It is easy to see that both
generalize the cardinality constraint.

2. How do we compute the utility of a set? The
utility of a set can be defined as the sum of
the utilities of individual secretaries in the set.
More generally, a submodular or subadditive
function may be employed to describe the
utility of a set.

We then attempt to hire a feasible set of secre-
taries of maximum expected utility.

Mechanism Design Angle
Mechanism design literature has looked at this
problem from a slightly different angle. In this
setting, the players that arrive in a random order
declare a bid – i.e., how much they value the
item being sold – and then the seller decides who
should get the item (or items) and how much
they should be charged. Such decisions are to be
taken irrevocably as in the optimization problem
discussed above.

The players can play strategically, though,
by declaring higher or lower bids in order to
increase their chances of winning the item or to
reduce the price they pay. In addition, they may
declare their arrival/departure time untruthfully
to achieve a better result. We want to design a
“truthful” auction that precludes such undesirable
outcomes. Although we allow the player to de-
clare any nonnegative bid (if it is in her favor),
we do not let them state an arrival time that is
earlier than their actual one. (Presence intervals

may be overlapping and/or nested.) We say that
a mechanism is value-strategyproof if no player
can benefit from declaring a bid different from
her real value. Similarly the mechanism is called
time-strategyproof if there is no benefit in stating
the arrival/departure times untruthfully. We look
for mechanisms that are both time- and value-
strategyproof.

Key Results

Optimization
Kleinberg [6] studies the multiple-choice gener-
alization where the goal is to hire k candidates,
whose total utility (defined as the sum of the
individual utilities) is maximized. He presents

a tight performance guarantee of 1 C �
�

1p
k

�

for the problem. In the case of k D 1, this is
equivalent to the classic secretary problem. (The
nontrivial direction follows from a construction
where the utilities are hugely different.) Klein-
berg’s algorithm partitions the set of candidates
into two (almost) equal pieces, recursively hires
k
2

secretaries in the first, sets the threshold for the
second piece by looking at the solution to the first
piece, and picks as many as k

2
secretaries in the

second piece who are better than threshold.
Babaioff et al. [1] look at the generalization

where there is a restriction on the set of candi-
dates that can be hired together; the restriction
is in the form of a matroid. They present an
O.log n/ competitive ratio in this case along with
improved bounds when the matroid has a special
form. Their general matroid algorithm partitions
the items into logarithmically many sets of almost
equal utility and focuses (randomly) on one such
set, which reduces the problem into that of maxi-
mizing the cardinality of the solution (solved via
the greedy method).

The case of submodular utilities is discussed
in Bateni et al. [2]: several matroid or knapsack
constraints can be placed on the set of feasible
candidates, and the total utility of a set is com-
puted by a submodular function of the participat-
ing candidates. They provide constant competi-
tive ratios as long as a fixed number of knapsack
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constraints are present. When (a constant number
of) matroid constraints are involved, too, their
performance guarantees grow to O.log2 k/ where
k is the rank of the matroid. They divide the input
into different pieces where at most one secretary
should be picked from each, not losing too much
utility in the process. As a result, the submodular
function collapses to an additive one within each
piece (by taking the marginal values of secretaries
with respect to the current solution). The classic
algorithm is then used inside each piece. The
main idea behind the matroid algorithm is that
we only need to show that, whatever choices
we have already committed to, there are enough
options left that can appropriately augment the
current solution. The argument goes by proving
the existence of a magical solution with k0 secre-
taries any of whose k0

2
-size subsets has significant

contribution (say, at least a 1
log k

fraction of the
optimum) in the submodular function. Had we
known k0, a simple greedy algorithm would have
sufficed to find a solution similar to the magical
set. At the cost of another factor O.log k/, we can
guess k0.

Furthermore, Bateni et al. show that subad-
ditive utility functions make the problem much
more difficult. In particular, they provide match-
ing �.

p
k/ competitive ratios.

Mechanism Design
The Dynkin’s algorithm for the classic secretary
problem can be readily turned into an auction: set
the price after observing the tuning set, and then
sell to anyone with a higher bid. This mechanism
is not truthful, though, since high-bid players
spanning across the time threshold have an in-
centive to declare later arrival time (i.e., after the
threshold); this way, they will win the item but do
not set the price.

Nevertheless, Hajiaghayi et al. [5] show how
one can modify the mechanism slightly to make
it truthful: after the threshold, consider the option
of selling the item to the agent with the highest
bid so far – if she is still present – and charge
her the second-highest bid so far. Their method
achieves constant competitiveness for both effi-
ciency and revenue. Their 1=e competitiveness
for efficiency is best possible since it generalizes

the optimization problem; however, when com-
paring the revenue to that achieved by the Vickrey
auction, their upper bound of 1=e2 for competi-
tiveness fares against a lower bound of 1=e. (It
is possible, they show, to modify the mechanism
slightly to trade efficiency loss for revenue gain;
for instance, simultaneous 4 competitiveness for
both objectives is possible.)

The general idea for the transformation is to
define a “tuning period” where the price is set
for everyone. Then, not only a simple auction-like
mechanism is employed in the “hiring phase” to
obtain a strategyproof mechanism, but also extra
care should be given to the “transition phase”
(from tuning to hiring) so as not to incentivize
untruthful declaration of arrival time for those
whose presence spans the transition. The same
approach can be applied to the multiple-choice
secretary problem to obtain constant-factor com-
petitive mechanisms (for efficiency and revenue),
but this bound is far from the one achieved in the
optimization setting by Kleinberg [6].

Open Problems

Though there has been some improvements on
the matroid case, we still do not know which
cases are hard and admit no constant-factor com-
petitive ratio. For submodular utilities (and sim-
ple cardinality constraints), in particular, there is
a gap between

�
1 � 1

e

�
=.eC1/ algorithmic result

[4] and the 1 � 1
e

�
or 1 � 1p

k

�
target known for

linear utilities.
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Problem Definition

Temperature 1 (also called noncooperative) self-
assembly is a model of the formation of struc-
tures by growing and branching tips. Despite its
ubiquity in nature (in systems such as plants and
mycelium or percolation processes) and apparent
dynamic simplicity, it is one of the least under-
stood models of self-assembly.

This model was introduced in a broader frame-
work called the abstract Tile Assembly Model
(aTAM) [10]. In the aTAM, we consider tile
assembly systems, which are defined by a finite
set T of square or cubic tile types, an initial seed
assembly � (one or more tiles stuck together), and
an integer temperature � D 1; 2; 3; : : :. All tiles,
on each of their sides, have glues with an integer
color and an integer strength.

The dynamics of tile self-assembly starts from
the seed assembly and proceeds one tile at a time,
asynchronously and nondeterministically. A tile
can stick to an existing assembly if it can be
placed so that the sum of the strengths on its
sides matching the existing assembly is at least
the temperature. In the case of temperature 1, this
means that tiles can be placed as soon as one
of their sides matches the existing assembly. At
higher temperatures, we can require that newly
placed tiles match several of their neighbors to
attach.

Ultimately, after a countable (potentially infi-
nite) number of steps, no tile can be added to the
assembly, in which case we call it terminal. Like
in Wang tilings, tiles cannot overlap, be rotated,
or be flipped. However, tiles can have mismatches
with their neighbors (Fig. 1).

Key Results

The first comparison between temperatures 1 and
2 was shown by Rothemund and Winfree [9],
with the motivation of computing and efficiently

Cooperative (τ ≥ 2)Non-cooperative (τ = 1)

Self-Assembly at Temperature 1, Fig. 1 In the non-
cooperative model, tiles can attach as soon as one side
matches the neighborhood
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building arbitrary shapes at the nanoscale. In
this context, the generally accepted definition of
“efficient” is with significantly less tile types than
the size of the output.

Assembling Simple Shapes Efficiently
The first step toward these goals is the program-
ming of simple shapes like squares or trees. At
temperature �2, constructions with Turing ma-
chines can be used to show the following bound:

Theorem 1 (from [9]) The smallest two-
dimensional tileset Tn producing only squares
of size n � n from a single-tile seed is of size

�
�

log n
log log n

�
.

The smallest number of tile types that can
assemble exactly a set of shapes is called the
tile complexity of that set. In the noncooperative
model, the following upper bound is known:

Theorem 2 (from [9]) For all integer n, there is
a tileset Tn, of size 2n � 1, that produces only
squares of size n � n from a single-tile seed.

Whether this upper bound is optimal is still
one of the major open problems of the model,
and little progress has been made since its identi-
fication. The real motivation behind this question
is whether we (or natural systems) can perform
useful computations with this model.

Finding the smallest tileset for assembling an
input shape can also be treated as an optimization
problem: see Adleman et al. [1] for the case of
tree shapes.

The Role of Geometry
A partial answer to this question was found by
Cook, Fu, and Schweller [2], who tried to “fake”
cooperation by blocking the growth of some parts
of the assembly. They introduced two different
ways to do this: removing the planarity constraint
and allowing errors.

In both cases, “faking” cooperation means
producing the same assemblies as a temperature
2 tile assembly systems up to rescaling by a
constant factor.

Three-Dimensional Noncooperative
Self-Assembly
In three dimensions, temperature 1 self-assembly
is able to simulate Turing computations:

Theorem 3 (from [2]) There is a three-
dimensional tileset T such that for all Turing
machine M and input x 2 N, there is a
computable seed assembly �M;x and a tile t 2 T ,
such that all terminal assemblies of .T; �M;x ; 1/

contain t if and only if M accepts input x.

The construction simulates a Turing-universal
cooperative tile assembly system called a zigzag
system, in which rows grow on top of each other,
alternatively to the left and to the right, using
cooperation to copy and update the previous row
(Fig. 2).

The idea is pictured on Fig. 3. A “main”
path grows on each row, building “bridges”
and “blockers” (in blue on Fig. 3) that encode
bits. These bits can be read by the next row:
before reading a bit, the main path (in orange
on Fig. 3) of the row forks into two branches,
respectively probing for a bridge (encoding a 1)
and a blocker (encoding a 0). Exactly one branch
passes through and can accumulate successive
bits in its state, until a full tile has been read.
Then, it rewrites bits encoding the next tile for
the row above.

Allowing Erroneous Blocking
Adapting the mechanism used in the 3D con-
struction to the planar case is widely conjectured
impossible [9], because allowing the “wrong”
branch to grow and collide against a previous

Self-Assembly at Temperature 1, Fig. 2 An example
zigzag system (Figure from [2])
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Self-Assembly at Temperature 1, Fig. 3 Bit selection in 3d

part of the assembly, in Fig. 3, encloses the other
“correct” branch inside a finite portion of the
plane.

However, it becomes possible if we consider
a stochastic assembly schedule, where at each
time step, exactly one tile attaches, and all tiles
that can attach do so with equal probability. If
we repeat the above construction k times con-
secutively, only one needs to succeed. We can
therefore lower the probability of failure of each
bit selection to 2�k :

Theorem 4 (from [2]) For all " > 0 and
all zigzag tile systems T D .T; s; 2/, whose
producible assemblies have size at most some
constant r , there is a planar temperature 1
probabilistic tile assembly system S that sim-
ulates T without error with probability at least
1 � ".

Of course, this construction means that the
number of tile types and scaling factor will in-
crease by a factor depending on " and r .

Simulation up to Rescaling
One of the latest developments of tile assembly
is the notion of intrinsic universality [3, 4, 11], a
notion of simulation by rescaling only between
tile assembly systems.

This idea is useful in particular to compare
different models, because it provides qualitative
properties to check, as opposed to quantitative
properties such as tile complexity. The general
argument is:

• At temperature 2 in two dimensions, there is
a tileset known from [4] to be able to simu-
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Self-Assembly at Temperature 1, Fig. 4 Tile assembly system T (Figure from [7])

late any other tile assembly system, modulo
rescaling.

• However, there is a tile assembly system T
that no tileset in model X (in our case, tem-
perature 1) can simulate without errors.

• Therefore, model X is not as powerful as
planar temperature 2.

This argument was used, for instance, to prove
the first separation result between temperature
2 and the fully general model of temperature
1 [7]:

Theorem 5 (from [7]) There is a planar (tem-
perature 2) tile assembly system T (whose pro-
ductions are pictured on Fig. 4) that no (two- or
three- dimensional) tile assembly system .A; ˛; 1/

can simulate up to rescaling.

The proof uses a combinatorial argument
(called the window movie lemma) to show that if
there were a tile assembly system simulating all
productions of T , then it would also be able to
produce other “illegal” assemblies (see Fig. 5)
that do not represent any of T ’s producible
assemblies.

Important Particular Cases
Noncooperative self-assembly, when restricted to
dimension one, is similar to nondeterministic
finite automata. It is therefore natural to look for
a pumping lemma.

The first result in this direction was proven
by Doty, Patitz, and Summers [5], who intro-
duced the notion of pumpable paths: a path P is
pumpable if it contains a subsegment Pi;iC1;:::;j

that can be repeated arbitrarily many (consec-

utive) times along
���!
Pi Pj while remaining self-

avoiding.

Theorem 6 (from [5]) Let T be a tile assembly
system that assembles exactly one (potentially
infinite) terminal assembly ˛. If any path in
˛, longer than a constant c, is pumpable, then
there are finite families of vectors b1; : : : ; bn,
u1; : : : ; un, and v1; : : : ; vn 2 Z

2, such that:

dom.˛/ D
[

1�i�n

fbi C j ui C kvijj; k 2 Ng

In [5], examples were identified, of paths with
segments that could be repeated, but only finitely
many times due to collisions. The formalization
of these examples was later done by Manuch,
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Self-Assembly at Temperature 1, Fig. 5 Illegal productions, that a temperature 1 system that can simulate all
productions of T must also be able to simulate (Figure modified from [7])

Stacho, and Stoll [6], proving lower bounds
under the hypothesis that no mismatches can
occur.

This approach was then extended by Reif and
Song [8], to show that tile assembly systems
without mismatches have a recursive set of pro-
ductions. However, the decidability of the “no
mismatches” hypothesis is still an open problem.

Applications

Given the successful experimental applications
of tile self-assembly, particularly in the field of
DNA nanotechnologies, it seems natural to try to
implement them: indeed, intuition suggests that
they would make no errors in cooperation tiles.
However, no successful construction of noncoop-
erative experiments has been reported; the reason
might be that ensuring uniqueness of the seed is
impossible, as any two tiles in solution together
might bind, without any of them being bound to
the seed.

Open Problems

Aside from understanding the exact geometric
requirements for Turing universality, a number
of open problems have been identified in this
model:

1. From [9]: What is the tile complexity of
squares of size n�n in the planar, temperature
1 model?

A related problem, which has been in the
folklore for some time, is the existence of
a shape of tile complexity arbitrarily smaller
than its Manhattan diameter.

2. From [5]: If T is a tile assembly system
with exactly one terminal assembly, is there a
constant c such that any path longer than c is
pumpable?

3. From [7]: Is there a temperature 1 tile as-
sembly system with a non-recursive set of
productions?

4. From [7]: Is there a single tileset able to sim-
ulate any temperature 1 tile assembly system
up to rescaling, using only noncooperative
bindings?
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Problem Definition

This problem is concerned with the self-assembly
fractal patterns and structures. More specifically,
it deals with discrete self-similar fractals and dif-
ferent notions of them self-assembling from tiles
in the abstract Tile Assembly Model (aTAM) and
derivative models. The self-assembly of fractals
and fractal-like structures is particularly interest-
ing due to their pervasiveness in nature, as well
their complex aperiodic structures which result in
them occupying less dimensional space than the
space they are embedded within.

Using the terminology from [1], we define Ng

as the subset f0; 1; : : : ; g�1g of N, and if A; B �

N
2 and k 2 N, then AC kB D fmC knjm 2 A

and n 2 Bg. We then define discrete self-similar
fractals as follows.

We say that X � N
2 is a discrete self-similar

fractal (or dssf for short) if there exist 1 < g 2 N

and a set f.0; 0/g � G � N
2
g with at least one

point in every row and column, such that X DS1
iD1 Xi , where Xi , the i th stage of X, is defined

by X1 D G and XiC1 D Xi C gi G. We say that
G is the generator of X.

Figure 1 shows, as an example, the first 5

stages of the discrete self-similar fractal known
as the Sierpinski triangle. In this example, G D

f.0; 0/; .1; 0/; .0; 1/g.
In general, we ask whether or not a given dssf

X can self-assemble within a given model.

Variants
The general problem of determining whether or
not a discrete self-similar fractal self-assembles
within a given model has several variants, which
determine the way in which the fractal shape is
represented within a resulting assembly.

1. Weak self-assembly. If a dssf X weakly self-
assembles using a tile set T , then there exists
a subset of tile types B � T such that, in
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Self-Assembly of Fractals, Fig. 1 Example discrete self-similar fractal: the first 5 stages of the Sierpinski triangle

the terminal assembly ˛, for every point p 2
dom ˛ such that p 2 X, the tile type at location
p in ˛ is a type within B , and for every point
p 2 dom ˛ such that p 62 X, the tile type at
location p in ˛ is not within B . That is, the
tile types in the subset B precisely “paint a
picture” of X, while tiles of types not in B may
appear in locations outside of X.

2. Strict self-assembly. If a dssf X strictly self-
assembles, then it weakly self-assembles with
B D T , i.e., the locations that exist in the
domain of the terminal assembly are exactly
those of X.

3. Approximate self-assembly. A dssf X, and
thus a strictly self-assembled version of X, has
fractal dimension (i.e., zeta-dimension [3])
<2, and a weakly self-assembled version has
dimension 2. Since it appears to be difficult if
not impossible to strictly self-assemble many
(or all) dssf’s, it is interesting to consider if an
approximation of a dssf X which retains the
same fractal dimension as X can strictly self-
assemble.

Key Results

Self-assembly of dssf’s has been studied in all of
the above variants and within the aTAM, 2HAM,
and STAM [9]. As previously mentioned, the
complexity of dssf’s makes them interesting to
study since they are infinite, aperiodic structures.

This requires any system in which they self-
assemble to rely on algorithmic self-assembly
(rather than unique tile types hard coded to
each position of the shape), and for this reason
early experimental results even included the
weak self-assembly of the initial few stages
of the Sierpinski triangle [11] as a proof of
concept that DNA-based tile implementations
of the aTAM are capable of algorithmic self-
assembly. Nonetheless, as infinite structures,
dssf’s are more often the focus of theoretical
studies.

Weak Self-Assembly
As seen in [11], it is possible for a very sim-
ple tile set of only 7 tile types to weakly self-
assemble the Sierpinski triangle. This tile set can
essentially be thought of as computing the xor
function on two inputs (i.e., 00 ! 0, 01 ! 1,
10! 1, and 11! 0), with the glues with which
a tile initially binds to an assembly encoding the
input bits and those to which tiles later attach
encoding the output bits.

In [4] it was noted that another characteriza-
tion of the Sierpinski triangle is as the nonzero
residues modulo 2 of Pascal’s triangle. They then
provided a characterization of an infinite class of
dssf’s, known as generalized Sierpinski carpets,
which can be defined as the residues, modulo a
prime number, of the entries in a two-dimensional
matrix generated by a simple recursive equa-
tion. (A well-known example among this class of
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dssf’s is the Sierpinski carpet.) They then proved
that all generalized Sierpinski carpets weakly
self-assemble in the aTAM.

Strict Self-Assembly
Although weak self-assembly of many dssf’s can
be achieved with very simple tile sets, it turns out
that strict self-assembly is an entirely different,
and much more difficult, problem. In fact, in [6]
they proved that it is impossible for the Sierpinski
triangle to strictly self-assemble in the aTAM.
Furthermore, their proof showed that to be the
case regardless of the temperature parameter.
This result was extended in [10] to a proof that
an infinite class of “pinch-point” dssf’s, which
includes the Sierpinski triangle, cannot strictly
self-assemble in the aTAM at any temperature.
Pinch-point fractals are those whose generators
have exactly one point in their topmost row, the
leftmost, and one in their eastmost column, the
bottommost. Yet another extension was provided
in [1], where the authors defined “tree” fractals,
which again include the Sierpinski triangle, as
those with generators which are trees and which
have a single point in their topmost row and a
single point in their rightmost column. They then
proved that, regardless of the temperature or even
of the scale factor, no tree fractal strictly self-
assembles in the aTAM.

Additional results related to strict self-
assembly of dssf’s include the proof in [10]
that in the aTAM at temperature 1 (i.e., systems
with � D 1), it is impossible for any dssf
to self-assemble within a locally deterministic
system (see [12] for a definition of local
determinism), and in [2] it was proven that the
Sierpinski triangle also cannot self-assemble
in the 2-Handed Assembly Model, at any
temperature.

To date, the single positive result related to the
strict self-assembly of a dssf is for an “active”
model of self-assembly, where tiles are allowed to
change the states of their glues during assembly,
called the Signal-passing Tile Assembly Model
(STAM). In [9] they gave a construction prov-
ing that the Sierpinski triangle can self-assemble
within the STAM at temperature 1 and scale
factor 2. By the result of [1], this is impossible

in the aTAM and demonstrates the power of the
active nature of the STAM, as that construction
essentially builds stages of the Sierpinski triangle
in a manner analogous to weak self-assembly,
but then causes the unwanted interior portions to
dissociate and then break apart.

Approximate Self-Assembly
It has been shown that an infinite subset of dssf’s
can weakly self-assemble in the aTAM, while an-
other infinite subset cannot strictly self-assemble.
Recall also that dssf’s have fractal dimension <2,
and since their strictly self-assembled versions
retain their original fractal dimensions, so do
they. However, their weakly self-assembled ver-
sions have dimension 2. Therefore, the question
arises about whether or not some transformation
of a dssf (especially, a dssf which cannot strictly
self-assemble), which visually approximates the
original dssf while retaining its fractal dimension,
can strictly self-assemble in the aTAM.

This question was first answered positively
in [6], where they defined a transformation for
the Sierpinski triangle which they called “fiber-
ing,” and they then gave a construction proving
that the so-called fibered Sierpinski triangle does
strictly self-assemble in the aTAM while main-
taining the Sierpinski triangle’s fractal dimension
of 	1:585. An example can be seen in Fig. 2b,
showing how the fibering consists an additional
row of tiles added to the south and west borders of
each copy of each subsequent stage of the fractal.
In [10] they extended the technique of fibering
to include an infinite subclass of dssf’s (which
again includes the Sierpinski triangle) which they
called “nice” dssf’s. Nice dssf’s are those whose
generators are connected and contain all points on
the west and south boundaries.

While the fibering technique creates visual
approximations of fractals, it results in subse-
quent stages being further and further separated
from each other. To counter this drawback, in
[8] they introduced a technique for fibering the
Sierpinski triangle “in place.” An example can
be seen in Fig. 2c, showing how this version of
fibering only uses space on the interior of each
stage of the fractal, thus allowing the stages to re-
main in the same positions relative to each other.



Self-Assembly of Fractals 1921

S

a b c

Self-Assembly of Fractals, Fig. 2 Various patterns cor-
responding to the Sierpinski triangle. (a) A portion of the
discrete Sierpinski triangle. (b) A portion of the fibered

Sierpinski triangle of [7] (Figure from [7]). (c) A portion
of the in-place fibered Sierpinski triangle of [8] (Figure
from [8])

Furthermore, this technique retains the same frac-
tal dimension as the Sierpinski triangle, and they
showed that it is impossible to use asymptot-
ically less space than their construction while
strictly self-assembling a shape which contains
the Sierpinski triangle as a subset. In [5] this
technique was extended to strictly self-assemble
approximations for every generalized Sierpinski
carpet.

Open Problems

1. Does there exist a discrete self-similar fractal
which can strictly self-assemble in the aTAM,
or conversely, can it be shown that none does?

2. What is the class of discrete self-similar
fractals for which an approximation, such as
fibering or in-place fibering, which maintains
the original fractal dimension, strictly self-
assembles in the aTAM?

URLs to Code and Data Sets

ISU TAS simulation software for the aTAM,
kTAM, and 2HAM (http://self-assembly.net/
wiki/index.php?title=ISU_TAS) and the Fibered
Fractal Tiler for defining discrete self-similar
fractals which can be fibered and generating
the corresponding aTAM tile sets (http://

self-assembly.net/wiki/index.php?title=Fibered_
Fractal_Tiler).
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Problem Definition

Abstract Tile Assembly Model
The abstract Tile Assembly Model (aTAM) [3] is
a mathematical model of self-assembly in which
system components are four-sided Wang tiles
with glue types assigned to each tile edge. Any
pair of glue types are assigned some nonnega-
tive interaction strength denoting how strongly
the pair of glues bind. An aTAM system is an
ordered triplet .T; �; �/ consisting of a set of
tiles T , a positive integer threshold parameter �

called the system’s temperature, and a special
tile � 2 T denoted as the seed tile. Assembly
proceeds by attaching copies of tiles from T to a
growing seed assembly whenever the placement
of a tile on the 2D grid achieves a total strength
of attachment from abutting edges, determined
by the sum of pairwise glue interactions, that
meets or exceeds the temperature parameter � .
The pairwise strength assignment between glues
on tile edges is often restricted to be “linear” in
that identical glue pairs may be assigned arbi-
trary positive values, while non-equal pairs are
required to have interaction strengths of 0. We
denote this restricted version of the model as
the standard aTAM. When this restriction is not
applied, i.e., any pair of glues may be assigned
any positive integer strength, we call the model
the flexible glue aTAM.

Given the aTAM’s model of growth, we may
consider the problem of designing an aTAM sys-
tem which is guaranteed to grow into a target
shape S , given by a set of 2D integer coordinates,
and stop growing. Such systems are guaranteed
to exist for any finite shape S , but solutions will
typically vary in the number of tiles jT j used.
For a given shape S , an interesting problem is
to design a system that assembles S while using
the fewest, or close to the fewest, number of tiles
jT j possible. This fewest possible number of tiles
required for the assembly of a given shape S is
termed the program-size complexity of S .

Problem 1 Let KSA.n/ and K�
SA.n/ denote the

program-size complexity of an n � n square for
the standard aTAM and the flexible glue aTAM,
respectively. What are KSA.n/ and K�

SA.n/?
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Problem 2 Let KSA.n; k/ and K�
SA.n; k/ de-

note the program-size complexity of a k � n

rectangle for the standard aTAM and the flexible
glue aTAM, respectively. What are KSA.n; k/

and K�
SA.n; k/?

Problem 3 For an arbitrary given shape S , what
is the program-size complexity of S? Let the
scale-free program size of S be the smallest tile
set system that uniquely builds some scaled-up
version S . Let KSA.S/ and K�

SA.S/ denote the
scale-free program size of S for the standard
aTAM and the flexible glue aTAM, respectively.
What are KSA.S/ and K�

SA.S/?

Key Results

The best known bounds for program-size com-
plexity for squares, rectangles, and general scaled
shapes are presented in this section.

n � n Squares
The efficient self-assembly of n � n squares has
served as a benchmark for self-assembly algo-
rithms within the aTAM and more general tile
assembly models. Within the aTAM, the prob-
lem is well understood up to constant factors.
The first result states a general upper bound for
the program size of self-assembled squares for
general n, which is matched by an information-
theoretic lower bound that holds for almost all
integers n. The precise bounds differ between the
standard and flexible glue models but are tight in
both cases. The lower bound of inequality (1) is
proven in [3] and is based on the Kolmogorov
complexity of the integer n. The lower bound of
(2) is proven in [2] by the same approach. The
upper bound of (1) is proven in [1] and offers
an improvement over the initial upper bound of
O.log n/ from [3]. The O.log n/ result of [3]
is achieved by implementing a key primitive in
tile self-assembly: a binary counter of log n tiles
that grows to length n. The improvement of [1]
is achieved by modifying the counter concept to
work with an optimal, variable base. The upper
bound of (2) is proven in [2] and is obtained
by combining the aTAM counter primitives with

a scheme for efficiently seeding the counter by
extracting bits from the values of the flexible glue
interactions.

Theorem 1 There exist positive constants c1 and
c2 such that for almost all integers n 2 N, the
following inequalities hold. Moreover, the upper
bounds hold for all n 2 N.

c1

log n

log log n
� KSA.n/ � c2

log n

log log n
: (1)

c1

p
log n � K�

SA.n/ � c2

p
log n: (2)

While the above theorem presents a tight un-
derstanding of the program-size complexity for
most self-assembled squares, the information-
theoretic lower bound allows for special values of
n to be assembled with a much smaller program
size. The program size is in fact as small as one
could reasonably hope for. In [3], a tile system
is presented that simulates a Busy Beaver Turing
Machine and assembles correspondingly large
squares for each tile set size. This construction
yields the following theorem implying that the
largest self-assembled square for a given number
of tiles grows faster than any computable func-
tion!

Theorem 2 There exists a positive constant c

such that for infinitely many n, KSA.n/ � cf .n/

for f .n/ any nondecreasing unbounded com-
putable function.

Thin Rectangles
The program size of self-assembled squares and
other thick rectangles is dictated by information-
theoretic bounds which stem from the aTAM’s
ability to simulate arbitrary Turing machines
given enough geometric space to work within.
When this space is cut down, such as in the case
of building a thin k�n rectangle, the program size
is limited by geometric factors. The following
upper and lower bounds are shown in [2] and
represent the best known bounds for thin k � n

rectangles in which k D O.log = log log n/.
The lower bound is achieved by a pigeon-hole
pumping argument on the types of tiles placed,
along with their order of placement, along a
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width k column of the target rectangle. The upper
bound is based on the construction of a general-
base, general-width counter, which generalizes
the binary counter concept of [3].

Theorem 3 There exist positive constants c1 and
c2 such that for any n; k 2 N, the following
inequalities hold.

c1

n1=k

k
�K�

SA.n; k/�KSA.n; k/�c2.n1=kCk/:

Scaled Shapes
The program size of general shapes is difficult
to analyze as it is highly dependent on geomet-
ric features of the target shape. However, if we
consider the assembly of an arbitrarily scaled-
up version of a target shape, these geometric
difficulties can be eliminated and a very general
result can be achieved. The next result from [4]
shows that the scale-free program size of S is
closely related to the Kolmogorov complexity
of S . In particular, the scale-free program-size
complexity of S is a log factor less than the Kol-
mogorov complexity of S for the standard model,
and the scale-free program size complexity of S

is the square root of the Kolmogorov complexity
of S for the flexible glue model. The standard
model result is shown in [4] and is achieved
by encoding a compressed description of S in
a small tile set which is extracted by a set of
tiles simulating a Turing machine that extracts the
pixels of S from this compressed representation.
The need for the scale factor increase of S is to
allow room for the Turing machine simulation. In
fact, the required scale factor is the run time of the
Turing machine that decompresses the optimal
encoding of S . The flexible glue result is achieved
by combining portions of the flexible glue con-
struction for squares [2] with the construction
of [4]. In the following theorem, K.S/ denotes
the Kolmogorov complexity of S with respect to
some fixed universal Turing machine.

Theorem 4 For any shape S , there exist positive
constants c1 and c2 such that

c1

K.S/

log K.S/
� KSA.S/ � c2

K.S/

log K.S/
: (3)

c1

p
K.S/ � K�

SA.S/ � c2

p
K.S/: (4)

Open Problems

A few important open problems in this area are as
follows. In the case of squares, the program size
is well understood as long as the temperature of
the system is at least two. A long-standing open
problem has been to determine the program-size
complexity of n � n squares for temperature-1
self-assembly in which each positive glue force
alone is sufficient to cause a tile attachment. To
date, no known method is able to achieve o.n/

tile complexity at temperature-1 for an n � n

square, but no proof exists that this cannot be
done. With respect to thin k � n rectangles, the
best upper and lower bound have a gap with
respect to variable k. Does there exist a more
efficient rectangle construction, or can a higher
lower bound be derived? Finally, while the scale-
free program-size complexity of general shapes
is well understood, little is known about the
(unscaled) program size of general shapes. What
new tools and geometric classifications can be
developed to analyze and bound this complexity
for general shapes?
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Problem Definition

Self-assembly is an asynchronous, decentralized
process in which particles aggregate to form
superstructures according to localized interac-
tions. The most well-studied models of these
particle systems, e.g., the abstract Tile Assembly
Model of Winfree [11], utilize square-shaped par-
ticles arranged on a lattice by attaching edgewise.

Particles attach to form larger assemblies, and a
pair of assemblies or tiles can attach if they can
translate to a nonoverlapping configuration with
a set of k coincident edges, where k � � , a
parameter of the system called the temperature.

In seeded assembly, individual particles at-
tach to a growing seed assembly. This assem-
bly may begin as a single-tile or a multi-tile
assembly. In unseeded assembly (also called hi-
erarchical [3], two-handed [2], or polyomino [7]
assembly), there is no such restriction. The set
of assemblies to which a single tile cannot attach
(in seeded assembly) or that cannot attach to any
other assembly (in unseeded assembly) are the
terminal assemblies of the system.

Objectives In general, the goal is to design a
system of minimal complexity that assembles
into a unique terminal assembly with a desired
shape or property. In models using square tiles,
this is equivalent to designing a system using the
fewest tile types. When tiles are allowed to be
more general shapes, then the option of trading
tile types for tile complexity becomes available.
The motivation for this work is to understand
how more complex tile shapes can be used to
reduce the number of tile types in a system, and
two benchmark problems regarding the compu-
tational power and efficiency of tile systems are
considered in the context of systems of non-
square tiles:

Problem 1 (Square Assembly)

INPUT: A natural number n.
OUTPUT: A self-assembly system with a unique

terminal assembly consisting of n2 tiles in a
n � n square shape.

Problem 2 (Computational Power) What sys-
tems of non-square tiles are capable of simulating
computation, and to what extent?

Key Results

In general, it is the case that allowing non-square
tiles permits an asymptotic reduction in the
number of tile types, and systems of very
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few non-square tiles are capable of universal
computation. At a high-level, such reductions are
achieved by simulating many tiles via translations
and rotations of a single tile type.

Models
Fu, Patitz, Schweller, and Sheline [6] introduce
two models of general shaped types. The first,
called the geometric Tile Assembly Model
(gTAM), is a model of seeded, translation-only
assembly where tiles are polyomino-shaped –
equivalent to prebuilt assemblies of square tiles.
The second is an unseeded version they call the
Two-Handed Planar Geometric Tile Assembly
Model (2GAM), which has the added restriction
that assemblies can only attach if there exists a
continuous motion bringing the two assemblies
together during which they remain disjoint.
This can be thought of as a restriction that the
assemblies live in the plane and do not make use
of the third dimension to maneuver into place.

Demaine et al. [4] introduce the polygonal
free-body Tile Assembly Model (pfbTAM) in
which tiles may have arbitrary simple polygonal
shapes, attaching edgewise along equal-length
edges. Systems without and without rotation
are both permitted – we note that rotation is
forbidden in the gTAM and 2GAM (as well as
the aTAM).

Efficient Construction
Fu, Patitz, Schweller, and Sheline [6] prove that
both the gTAM and 2GAM allow an asymptotic
reduction in the number of tiles needed to as-
semble an n � n square of tiles. For the gTAM,
they prove that such a square can be assembled
using a temperature-1 system of O.

p
log n/ tile

types, beating the optimal (temperature-2) system
of ˝.log n= log log n/ square tiles by Adleman
et al. [1]. This is a reduction in both the num-
ber of tile types (by a quadratic factor) and
temperature. The temperature reduction is es-
pecially significant, as a lower bound of ˝.n/

for temperature-1 aTAM systems is a widely
believed conjecture [8–10].

For the 2GAM, they reduce the number of tile
types even further, using a temperature-2 system
O.log log n/ tile types to assemble an n � n

square. However, this system comes with the
caveat that system makes use of either a discon-
nected tile shape or a slightly three-dimensional
shape.

Computational Power
Positive results on the computational power
of general shaped tile systems fall into two
categories: Turing universality and bounded-
time computation. Fu, Patitz, Schweller, and
Sheline [6] prove that any Turing machine
computation can be carried out by a temperature-
1 gTAM system. As with the temperature-1
construction of squares, this result is surprising
due to the open conjecture regarding the
computational power of square tile systems at
temperature 1.

Demaine et al. [4] prove that any Turing
machine computation can be carried out by a
temperature-2 pfbTAM system (with rotation)
consisting of a single tile. Their result actually
proves that any aTAM system can be simulated
by such a system, and thus Turing universality is
achieved by simulating aTAM systems carrying
out computation. Combined with the intrinsic
universality result of Doty et al. [5], this result can
be extended to prove that a single temperature-
2 pfbTAM system (with rotation) consisting of
a single tile can carry out any Turing machine
computation, given an appropriate seed assembly
consisting of copies of this tile.

Finally, Demaine et al. also prove that
temperature-3 pfbTAM systems (without
rotation) consisting of a single tile can carry out
simulation of computationally universal cellular
automata for a number of steps limited by the size
of the seed assembly. Specifically, they prove that
n steps can be carried out using a seed assembly
of O.n/ tiles. A loose lower bound is also proved,
namely, that more than three tiles are needed to
carry out any computation.

Applications

The generic ability to reduce the number of tile
types in a system by increasing the geometric
complexity of these tiles extends many other
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constructions in theoretical tile assembly. Addi-
tionally, there may be practical barriers to sys-
tems of many tile types, e.g., additional cost
of manufacturing or longer assembly time due
to heterogenous combinations of many particle
types, that can be reduced or eliminated by re-
placing these systems with systems of fewer,
more complex tile.

Open Problems

Obtaining an upper bound on the number of
steps of a cellular automaton simulable by single-
tile translation-only systems remains open. It is
conjectured that a seed assembly of size n can
only carry out O.n2/ steps.
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Problem Definition

In bin packing games with selfish items, n items
are to be packed into (at most) n bins, where each
item chooses a bin that it wishes to be packed
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into. The cost of an item i of size 0 < si �

1 is defined based on its size and the contents
of its bin. Nash equilibria (NE) are defined as
solutions where there is no item that can change
its choice unilaterally and gain from this change.
Bin packing games were inspired by the well-
known bin packing problem [2]. In this problem,
a set of items, each of size in .0; 1�, is given.
The goal is to partition (or pack) the items into
a minimum number of subsets that are called
bins. Each bin has unit capacity, and the load
of a bin is defined to be the total size of items
packed into it (where the load cannot exceed 1).
The problem is NP-hard in the strong sense, and
thus theoretical research has focused on studying
and developing approximation algorithms, which
allow to design nearly optimal solutions, and on
online algorithms, which receive the items one by
one and must assign each item to a bin immedi-
ately and irrevocably (without any information on
further items).

In a bin packing game, every item is operated
by a selfish player. There are n bins, and the
strategy of a player is the bin that it selects. If
the resulting packing is valid (i.e., the load of
no bin exceeds 1), then the set of items sharing
a bin share its cost proportionally, i.e., let B be
a bin (a subset of items). The cost of i 2 B is

si =

 
P

j 2B

sj

!

. If the resulting packing is invalid,

any item packed into an invalid bin has infinite
cost. We are interested in pure Nash equilibria,
and by the term NE, we refer to such an equilib-
rium. The problem was presented by Bilò [1].

There are several directions which can be
explored. First, one would like to find out if any
bin packing game has an NE. If this is the case,
other kinds of equilibria might be of interest as
well. For a class of games (such that each of
them has an NE), a process of convergence is
defined as follows. The process starts with an
arbitrary configuration, and at each time, an item
that can reduce its cost is selected and moved to
another bin (where the cost of this item will be
smaller than its cost before it is moved). Such a
process can also be seen as local search. Items
are moved one at a time; a single move (for one

item) is called a step. Note that one item can
participate in multiple steps. The questions which
can be asked are whether the process converges
for any initial packing (i.e., reaches a state that
no further step can be applied) and how large
can the number of steps be. As it turns out, any
bin packing game has at least one NE, and the
processes described here always converge [1, 8].
Since it is possible that the process converges
in exponential time, it is of interest to develop
a polynomial time algorithm that computes NE
packings. Such an algorithm for this problem
defined above was designed by Yu and Zhang
[9]. Finally, once the existence of NE packing
has been established, the primary goal becomes
the study of the quality of worst-case equilibria.
This concept is called price of anarchy. For a
given game G (i.e., a set of items which is an
input for bin packing), the price of anarchy of this
game, denoted by POA.G/, is the ratio between
the maximum number of nonempty bins in any
NE packing and the minimum number of bins in
any packing (the number of bins in an optimal
packing, also called the social optimum, denoted
by OP T .G/). The price of stability is similar,
but best-case equilibria are studied, and as Bilò
[1] proved that any game has a social optimum
that is an NE, the price of stability is 1 for any
game.

The price of anarchy (POA) of a class
of games (here, the class of all bin packing
games) is defined to be the supremum POA
over all games in the class. However, as bin
packing is typically studied with respect to
the asymptotic approximation ratio, the POA
for the bin packing class of games is defined,
similarly to the asymptotic approximation ratio,
as lim

M!1
sup

fGWOP T .G/�M g

POA.G/.

Key Results

The POA was studied already in [1], where Bilò
provided the first bounds on it, a lower bound of
8
5

and an upper bound of 5
3

. The quality of NE
solutions was further investigated in [4], where
nearly tight bounds for the PoA were given, an
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upper bound of 1.6428 and a lower bound of
1.6416 (see also [9]). The parametric POA, which
is the POA for subclasses of games where the size
of no item exceeds a given value, was considered
as well [5].

NE packings are related to outputs of the
algorithm First Fit (FF) for bin packing [7]. FF is
in fact an online algorithm that packs each item,
in turn, into a minimum index bin where it fits
(using an empty bin if there is no other option).
It is not difficult to see that every NE is an output
of FF; sort the bins of the NE by non-increasing
loads, and create a list of items according to
the ordering of bins. FF will create exactly the
bins of the original packing. Interestingly, the
POA is significantly smaller than the asymptotic
approximation ratio of FF (which is equal to
1:7 [7]). Note that the PoA is not equal to the
approximation ratio of any natural algorithm for
bin packing.

Some intuition regarding the difference be-
tween the asymptotic approximation ratio of First
Fit and the POA of this class of games can be
shown using a small example. Consider items of
the following sizes (for a sufficiently small " >

0): 1
6
� 2" (small items), 1

3
C " (medium items),

and 1
2
C" (large items). The worst-case examples

for FF are similar to this example, though the
items of the first two types have a number of
different sizes; small items can be slightly smaller
or slightly larger than 1

6
, and medium items can

be slightly smaller or slightly larger than 1
3

. Given
the item types defined above, assume that there
are 6N items of each type (for some positive
integer N ), when FF receives this input (sorted by
non-decreasing size), it creates N bins with six
small items packed into each bin, 3N bins with
two medium items packed into each bin, and the
remaining items are packed into dedicated bins.
This packing is not an NE, as a medium item
reduces its cost from 1

2
to approximately 2

5
if it

joins a large item. Indeed, roughly speaking, if
an NE packing consists of a large number of bins
(compared to an optimal solution), a bin of this
NE packing either has an item whose size exceeds
1
2

or its load cannot be as small as approximately
2
3

. This allows a tighter analysis. Interestingly, in

worst-case examples for the POA, medium items
have sizes that are close to 1

4
instead of 1

3
.

Related Results

Bin packing games, where the cost of an item
is defined differently, were studied. One option
is to assign equal costs to all players (which
are packed together into a valid bin) [3, 6]. A
generalized version where each item has a pos-
itive weight, and costs are based on cost sharing
proportional to the weights of items that share a
bin [3] was studied as well. The weights of items
in the games described above (those of [1, 4])
are equal to their sizes. These are two classes
of games, for which the POA turns out to be of
interest. The POA for the class of games with
equal weights is slightly (strictly) below 1:7, and
in the case of general weights, the POA is equal
to 1:7 [3]. Another topic of interest is the quality
of other kinds of equilibria. Those are strong
equilibria, which are solutions that are also re-
silient to deviations of subsets of items reducing
their costs, and Pareto optimal equilibria, where
the solution is required to be weakly (or strictly)
Pareto optimal, that is, there is no alternative
packing where all items reduce their costs (or a
packing where no item increases its cost and at
least one item reduces it) [3]. For these last kinds
of equilibria, the POA is still above 1:6 (but at
most 1:7).
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Problem Definition

Consider having a set of resources E in a system.
For each e 2 E, let de.�/ be the delay per user

that requests its service, as a function of the total
usage of this resource by all the users. Each such
function is considered to be non�decreasing in
the total usage of the corresponding resource.
Each resource may be represented by a pair of
points: an entry point to the resource and an exit
point from it. So, each resource is represented by
an arc from its entry point to its exit point and the
model associates with this arc the cost (e.g., the
delay as a function of the load of this resource)
that each user has to pay if she is served by this
resource. The entry/exit points of the resources
need not be unique; they may coincide in order
to express the possibility of offering joint service
to users, that consists of a sequence of resources.
Here, denote by V the set of all entry/exit points of
the resources in the system. Any nonempty col-
lection of resources corresponding to a directed
path in G 
 .V; E/ comprises an action in the
system.

Let N 
 Œn� be a set of users, each willing
to adopt some action in the system. 8i 2 N , let
wi denote user i’s demand (e.g., the flow rate
from a source node to a destination node), while
˘i � 2E n ; is the collection of actions, any of
which would satisfy user i (e.g., alternative routes
from a source to a destination node, if G repre-
sents a communication network). The collection
˘ i is called the action set of user i and each
of its elements contains at least one resource.
Any vector r D .r1; : : : ; rn/ 2 ˘ 
 �n

iD1˘i

is a pure strategies profile, or a configuration
of the users. Any vector of real functions
p D .p1; p2; : : : ; pn/ s.t.8i2 Œn�; pi W˘i! Œ0; 1�

is a probability distribution over the set of allow-
able actions for user i (i.e.,

P
ri 2˘i

pi .ri / D 1),
and is called a mixed strategies profile for the n
users.

A congestion model typically deals with users
of identical demands, and thus, user cost function
depending on the number of users adopting each
action [1, 4, 6]. In this work the more general
case is considered, where a weighted congestion
model is the tuple ..wi /i2N ; .˘i /i2N ; .de/e2E /.
That is, the users are allowed to have different
demands for service from the whole system,
and thus affect the resource delay functions in
a different way, depending on their own weights.
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A weighted congestion game associated with this
model, is a game in strategic form with the set
of users N and user demands .wi /i2N , the action
sets .˘i /i2N and cost functions .�i

ri
/i2N;ri 2˘i

defined as follows: For any configuration r 2 ˘

and 8e 2 E, let 	e.r/ D fi 2 N W e 2 rig be the
set of users exploiting resource e according to r

(called the view of resource e wrt configura-
tion r). The cost �i .r/ of user i for adopting
strategy ri 2 ˘i in a given configuration r is
equal to the cumulative delay �ri

.r/ along this
path:

�i .r/ D �ri
.r/ D

X

e2ri

de.�e.r// (1)

where, 8e 2 E; �e.r/ 

P

i2�e.r/ wi is the load
on resource e wrt the configuration r .

On the other hand, for a mixed strategies
profile p, the expected cost of user i for adopting
strategy ri 2 ˘i is

�i
ri

.p/ D
X

r�i 2˘�i

P.p�i ; r�i /�

X

e2ri

de

�
�e.r�i ˚ ri /

� (2)

where, r�i is a configuration of all the users
except for user i, p�i is the mixed strategies
profile of all users except for i, r�i ˚ ri is the
new configuration with user i choosing strategy
ri , and P.p�i ; r�i / 


Q
j 2N nfig pj .rj / is the

occurrence probability of r�i .

Remark 1 Here notation is abused a little bit and
the model considers the user costs �i

ri
as func-

tions whose exact definition depends on the other
users’ strategies: In the general case of a mixed
strategies profile p, (2) is valid and expresses the
expected cost of user i wrt p, conditioned on the
event that i chooses path ri . If the other users
adopt a pure strategies profile r�i , we get the
special form of (1) that expresses the exact cost
of user i choosing action ri .

A congestion game in which all users are
indistinguishable (i.e., they have the same user
cost functions) and have the same action set, is

called symmetric. When each user’s action set …i

consists of sets of resources that comprise (sim-
ple) paths between a unique origin-destination
pair of nodes .si ; ti / in a network G D .V; E/,
the model refers to a network congestion game.
If additionally all origin-destination pairs of the
users coincide with a unique pair (s, t) one gets
a single commodity network congestion game
and then all users share exactly the same action
set. Observe that a single-commodity network
congestion game is not necessarily symmetric
because the users may have different demands
and thus their cost functions will also differ.

Selfish Behavior
Fix an arbitrary (mixed in general) strategies pro-
file p for a congestion game

�
.wi /i2N ; .˘i /i2N ;

.de/e2E

�
. We say that p is a Nash Equilib-

rium (NE) if and only if 8i 2 N;8ri ; 
i 2

˘i ; pi .ri / > 0) �i
ri

.p/ � �i
�i

.p/: A configu-
ration r 2 ˘ is a Pure Nash Equilibrium (PNE)
if and only if .8i 2 N;8
i 2 ˘i ; �ri

.r/ � ��i

.r�i ˚ 
i / where, r�i ˚ 
i is the same config-
uration with r except for user i that now chooses
action  i.

Key Results

In this section the article deals with the existence
and tractability of PNE in weighted network
congestion games. First, it is shown that it is
not always the case that a PNE exists, even for
a weighted single-commodity network conges-
tion game with only linear and 2-wise linear (e.g.,
the maximum of two linear functions) resource
delays. In contrast, it is well known [1, 6] that any
unweighted (not necessarily single-commodity,
or even network) congestion game has a PNE, for
any kind of nondecreasing delays. It should be
mentioned that the same result has been indepen-
dently proved also by [3].

Lemma 1 There exist instances of weighted
single–commodity network congestion games
with resource delays being either linear or 2–
wise linear functions of the loads, for which there
is no PNE.
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Theorem 2 For any weighted multi–commodity
network congestion game with linear resource
delays, at least one PNE exists and can be com-
puted in pseudo-polynomial time.

Proof Fix an arbitrary network G D .V; E/ with
linear resource/edge delays de.x/ D aex C be ,
e 2 E, ae; be � 0. Let r 2 ˘ be an arbitrary
configuration for the corresponding weighted
multi–commodity congestion game on G. For
the configuration r consider the potential
˚.r/ D C.r/CW.r/, where

C.r/ D
X

e2E

de.�e.r//�e.r/

D
X

e2E

Œae�2
e .r/C be�e.r/�;

and

W.r/ D

nX

iD1

X

e2ri

de.wi /wi

D
X

e2E

X

i2�

e .r/

de.wi /wi

D
X

e2E

X

i2�

e .r/

.aew2
i C bewi /

one concludes that

˚.r 0/ � ˚.r/ D 2wi Œ�
i .r 0/ � �i .r/� ;

Note that the potential is a global system
function whose changes are proportional to self-
ish cost improvements of any user. The global
minima of the potential then correspond to con-
figurations in which no user can improve her
cost acting unilaterally. Therefore, any weighted
multi–commodity network congestion game with
linear resource delays admits a PNE. �

Applications

In [5] many experiments have been conducted for
several classes of pragmatic networks. The ex-
periments show even faster convergence to pure
Nash Equilibria.

Open Problems

The Potential function reported here is polyno-
mial on the loads of the users. It is open whether
one can find a purely combinatorial potential,
which will allow strong polynomial time for
finding Pure Nash equilibria.
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Problem Definition

An algorithm is self-stabilizing if it eventually
manifests correct behavior regardless of initial
state. The general problem is to devise self-
stabilizing solutions for a specified task. The
property of self-stabilization is now known to
be feasible for a variety of tasks in distributed
computing. Self-stabilization is important for dis-
tributed systems and network protocols subject to
transient faults. Self-stabilizing systems automat-
ically recover from faults that corrupt state.

The operational interpretation of self-
stabilization is depicted in Fig. 1. Part (a) of the
figure is an informal presentation of the behavior
of a self-stabilizing system, with time on the x-
axis and some informal measure of correctness
on the y-axis. The curve illustrates a system
trajectory, through a sequence of states, during
execution. At the initial state, the system state
is incorrect; later, the system enters a correct
state, then returns to an incorrect state, and
subsequently stabilizes to an indefinite period
where all states are correct. This period of
stability is disrupted by a transient fault that
moves the system to an incorrect state, after
which the scenario above repeats. Part (b) of the
figure illustrates the scenario in terms of state
predicates. The box represents the predicate
true, which characterizes all possible states.
Predicate C characterizes the correct states of the
system, and L � C depicts the closed legitimacy
predicate. Reaching a state in L corresponds to
entering a period of stability in part (a). Given an
algorithm A with this type of behavior, it is said
that A self-stabilizes to L; when L is implicitly
understood, the statement is simplified to: A is
self-stabilizing.

Problem [3]. The first setting for self-
stabilization posed by Dijkstra is a ring of n
processes numbered 0 through n � 1. Let the

state of process i be denoted by xŒi �. Communi-
cation is unidirectional in the ring using a shared
state model. An atomic step of process i can be
expressed by a guarded assignment of the form
g.xŒi � 1�; xŒi �/ ! xŒi � WD f .xŒi � 1�; xŒi �/.
Here,� is subtraction modulo n, so that xŒi � 1�

is the state of the previous process in the ring with
respect to process i. The guard g is a boolean
expression; if g.xŒi � 1�; xŒi �/ is true, then
process i is said to be privileged (or enabled).
Thus in one atomic step, privileged process
i reads the state of the previous process and
computes a new state. Execution scheduling is
controlled by a central daemon, which fairly
chooses one among all enabled processes to
take the next step. The problem is to devise g
and f so that, regardless of initial states of xŒi �,
0 � i < n, eventually there is one privilege and
every process enjoys a privilege infinitely often.

Complexity Metrics
The complexity of self-stabilization is evaluated
by measuring the resource needed for conver-
gence from an arbitrary initial state. Most promi-
nent in the literature of self-stabilization are met-
rics for worst-case time of convergence and space
required by an algorithm solving the given task.
Additionally, for reactive self-stabilizing algo-
rithms, metrics are evaluated for the stable behav-
ior of the algorithm, that is, starting from a le-
gitimate state, and compared to non-stabilizing
algorithms, to measure costs of self-stabilization.

Key Results

Composition
Many self-stabilizing protocols have a layered
construction. Let fAi g

m�1
iD0 be a set programs

with the property that for every state variable x,
if program Ai writes x, then no program Aj, for
j > i , writes x. Programs in fAj g

m�1
j DiC1 may

read variables written by Ai, that is, they use
the output of Ai as input. Fair composition of
programs B and C, written B Œ � C , assumes fair
scheduling of steps of B and C. Let Xj be the set
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Self-Stabilization, Fig. 1
Self-stabilization
trajectories

a b

of variables read by Aj and possibly written by
fAi g

j �1
iD0 .

Theorem 1 (Fair Composition [4]) Suppose Ai

is self-stabilizing to Li under the assumption that
all variables in Xi remain constant throughout
any execution; then A0 Œ � A1Œ � � � � Œ � Am�1 self-
stabilizes to fLi g

m�1
iD0 .

Fair composition with a layered set fAi g
m�1
iD0

corresponds to sequential composition of phases
in a distributed algorithm. For instance, let
B be a self-stabilizing algorithm for mutual
exclusion in a network that assumes the existence
of a rooted, spanning tree and let algorithm
C be a self-stabilizing algorithm to construct
a rooted spanning tree in a connected network;
then B Œ � C is a self-stabilizing mutual exclusion
algorithm for a connected network.

Synchronization Tasks
One question related to the problem posed in sec-
tion “Problem Definition” is whether or not there
can be a uniform solution, where all processes
have identical algorithms. Dijkstra’s result for the
unidirectional ring is a semi-uniform solution (all
but one process have the same algorithm), using
n states per process. The state of each process is
a counter: process 0 increments the counter mod-
ulo k, where k � n suffices for convergence; the
other processes copy the counter of the preceding
process in the ring. At a legitimate state, each
time process 0 increments the counter, the result-
ing value is different from all other counters in

the ring. This ring algorithm turns out to be self-
stabilizing for the distributed daemon (any subset
of privileged processes may execute in parallel)
when k > n. Subsequent results have established
that mutual exclusion on a unidirection ring is
�.1/ space per process with a non-uniform solu-
tion. Deterministic uniform solutions to this task
are generally impossible, with the exceptional
case where n is and prime. Randomized uniform
solutions are known for arbitrary n, using O.lg ˛/

space where ˛ is the smallest number that does
not divide n. Some lower bounds on space for
uniform solutions are derived in [7]. Time com-
plexity of Dijkstra’s algorithm is O(n2) rounds,
and some randomized solutions have been shown
to have expected O(n2) convergence time.

Dijkstra also presented a solution to mutual
exclusion for a linear array of processes, using
O(1) space per process [3]. This result was later
generalized to a rooted tree of processes, but
with mutual exclusion relaxed to having one
privilege along any path from root to leaf. Sub-
sequent research built on this theme, showing
how tasks for distributed wave computations have
self-stabilizing solutions. Tasks of phase syn-
chronization and clock synchronization have also
been solved. See reference [9] for an example of
self-stabilizing mutual exclusion in a multipro-
cessor shared memory model.

Graph Algorithms
Communication networks are commonly
represented with graph models and the need
for distributed graph algorithms that tolerate



Self-Stabilization 1935

S

transient faults motivates study of such tasks.
Specific results in this area include self-
stabilizing algorithms for spanning trees, center-
finding, matching, planarity testing, coloring,
finding independent sets, and so forth. Generally,
all graph tasks can be solved by self-stabilizing
algorithms: tasks that have network topology and
possibly related factors, such as edge weights,
for input, and define outputs to be a function of
the inputs, can be solved by general methods for
self-stabilization. These general methods require
considerable space and time resource, and may
also use stronger model assumptions than needed
for specific tasks, for instance unique process
identifiers and an assumed bound on network
diameter. Therefore research continues on graph
algorithms.

One discovery emerging from research on
self-stabilizing graph algorithms is the difference
between algorithms that terminate and those that
continuously change state, even after outputs
are stable. Consider the task of constructing
a spanning tree rooted at process r. Some
algorithms self-stabilize to the property that,
for every p ¤ r , the variable up refers to p’s
parent in the spanning tree and the state remains
unchanged. Other algorithms are self-stabilizing
protocols for token circulation with the side-
effect that the circulation route of the token
establishes a spanning tree. The former type
of algorithm has O.lg n/ space per process,
whereas the latter has O.lg ı/ where ı is the
degree (number of neighbors) of a process. This
difference was formalized in the notion of silent
algorithms, which eventually stop changing any
communication value; it was shown in [5] for
the link register model that silent algorithms for
many graph tasks have ˝.lg n/ space.

Transformation
The simple presentation of [3] is enabled by the
abstract computation model, which hides details
of communication, program control, and atom-
icity. Self-stabilization becomes more compli-
cated when considering conventional architec-
tures that have messages, buffers, and program
counters. A natural question is how to transform
or refine self-stabilizing algorithms expressed in

abstract models to concrete models closer to
practice. As an example, consider the problem
of transforming algorithms written for the cen-
tral daemon to the distributed daemon model.
This transformation can be reduced to finding
a self-stabilizing token-passing algorithm for the
distributed daemon model such that, eventually,
no two neighboring processes concurrently have
a token; multiple tokens can increase the effi-
ciency of the transformation.

General Methods
The general problem of constructing a self-
stabilizing algorithm for an input nonreactive task
can be solved using standard tools of distributed
computing: snapshot, broadcast, system reset,
and synchronization tasks are building blocks
so that the global state can be continuously
validated (in some fortunate cases L can be
locally checked and corrected). These building
blocks have self-stabilizing solutions, enabling
the general approach.

Fault Tolerance
The connection between self-stabilization and
transient faults is implicit in the definition. Self-
stabilization is also applicable in executions that
asynchronously change inputs, silently crash and
restart, and perturb communication [10]. One
objection to the mechanism of self-stabilization,
particularly when general methods are applied, is
that a small transient fault can lead to a system-
wide correction. This problem has been inves-
tigated, for example in [8], where it is shown
how convergence can be optimized for a limited
number of faults. Self-stabilization has also been
combined with other types of failure tolerance,
though this is not always possible: the task of
counting the number of processes in a ring has
no self-stabilizing solution in the shared state
model if a process may crash [1], unless a failure
detector is provided.

Applications

Many network protocols are self-stabilizing
by the following simple strategy: periodically,
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they discard current data and regenerate it
from trusted information sources. This idea
does not work in purely asynchronous systems;
the availability of real-time clocks enables
the simple strategy. Similarly, watchdogs with
hardware clocks can provide an effective basis for
self-stabilization [6].
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Problem Definition

Semi-supervised learning [1, 4, 5, 8, 12] refers to
the problem of using a large unlabeled data set U

together with a given labeled data set L in order
to generate prediction rules that are more accurate
on new data than would have been achieved using
just L alone. Semi-supervised learning is moti-
vated by the fact that in many settings (e.g., doc-
ument classification, image classification, speech
recognition), unlabeled data is plentiful but la-
beled data is more limited or expensive, e.g., due
to the need for human labelers. Therefore, one
would like to make use of the unlabeled data if
possible.

The general idea behind semi-supervised
learning is that unlabeled data, while missing
the labels, nonetheless often contains useful
information. As an example, suppose one
believes the correct decision boundary for
some classification problem should be a linear
separator that separates most of the data by a
large margin. By observing enough unlabeled
data to estimate the probability mass near to any
given linear separator, one could in principle then
discard separators in advance that slice through
dense regions and instead focus attention on just
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those that indeed separate most of the distribution
by a large margin. This is the high-level idea
behind semi-supervised SVMs. Alternatively,
suppose data objects can be described by two
different “kinds” of features, and one believes
that each kind should be sufficient to produce an
accurate classifier. Then one might want to train
a pair of classifiers and use unlabeled data for
which one classifier is confident but the other
is not to bootstrap, labeling such examples with
the confident classifier and then feeding them as
training data to the less-confident classifier. This
is the high-level idea behind Co-Training. Or, if
one believes “similar examples should generally
have the same label,” one might construct a
graph with an edge between examples that are
sufficiently similar and aim for a classifier that
is correct on the labeled data and has a small cut
value on the unlabeled data; this is the high-level
idea behind graph-based methods. (These will
all be discussed in more detail later.) General
surveys of semi-supervised learning appear in
[5, 12].

A Formal Framework
We now present a formal model for analyzing
semi-supervised learning due to Balcan and
Blum [1]. This model was developed to provide
a unified explanation for a wide range of
semi-supervised learning algorithms including
the semi-supervised SVMs, Co-Training, and
graph-based methods mentioned above. Before
describing it, however, we first describe the
classic PAC and agnostic learning models for
supervised learning that this model builds on.

In the PAC and agnostic learning models, data
is assumed to be drawn iid from some fixed but
initially unknown distribution D over an instance
space X and labeled by some unknown target
function c� W X ! f0; 1g. The error of some
hypothesis function h is defined as err.h/ D

Prx�DŒh.x/ ¤ c�.x/�. In the PAC model (also
known as the realizable case), we assume that c�

is a member of some known class of functions C,
and we say that an algorithm PAC-learns C if for
any given �; ı > 0, with probability � 1 � ı, it
produces a hypothesis h such that err.h/ � �.
In the agnostic case, we do not assume that

c� 2 C and instead aim to achieve error close
to inff 2C Œerr.f /�.

The PAC and agnostic learning models in
essence assume that one’s prior beliefs about the
target be described in terms of a class of func-
tions C. In order to capture the reasoning used
in semi-supervised learning, however, we need to
also describe beliefs about the relation between
the target function and the data distribution. This
is done in the model of Balcan and Blum [1] via
a notion of compatibility  between a hypothesis
h and a distribution D. Formally,  maps pairs
.h; D/ to Œ0; 1� with .h; D/ D 1 meaning that
h is highly compatible with D and .h; D/ D 0

meaning that h is very incompatible with D. The
quantity 1�.h; D/ is called the unlabeled error
rate of h and denoted errunl.h/. Note that for 

to be useful, it must be estimatable from a finite
sample; to this end,  is further required to be
an expectation over individual examples. That is,
overloading notation for convenience, we require
.h; D/ D Ex�DŒ.h; x/�, where  W C � X !
Œ0; 1�. As with the class C, one can either assume
that the target is fully compatible (errunl.c

�/ D

0) or instead aim to do well as a function of
how compatible the target is. The case that we
assume c� 2 C and errunl.c

�/ D 0 is termed the
“doubly realizable case.” The concept class C and
compatibility notion  are both viewed as known.

Examples
Suppose we believe the target should separate
most data by a large margin � . We can represent
this belief by defining .h; x/ D 0 if x is within
distance � of the decision boundary of h and
.h; x/ D 1 otherwise. In this case, errunl.h/ will
denote the probability mass of D within distance
� of h’s decision boundary. Alternatively, if we
do not wish to commit to a specific value of � ,
we could define .h; x/ to be a smooth function
of the distance of x to the separator defined
by h. As a very different example, in co-training
(described in more detail below), we assume each
example can be described using two “views”
that each are sufficient for classification, that is,
there exist c�

1 ; c�
2 such that for each example

x D hx1; x2i, we have c�
1 .x1/ D c�

2 .x2/. We
can represent this belief by defining a hypothesis
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h D hh1; h2i to be compatible with an example
hx1; x2i if h1.x1/ D h2.x2/ and incompatible
otherwise; errunl.h/ is then the probability mass
of examples, under D, where the two halves of h

disagree.

Intuition
In this framework, the way that unlabeled data
helps in learning can be intuitively described as
follows. Suppose one is given a concept class C
(such as linear separators) and a compatibility
notion  (such as penalizing h for points within
distance � of the decision boundary). Suppose
also that one believes c� 2 C (or at least is close)
and that errunl.c

�/ D 0 (or at least is small).
Then, unlabeled data can help by allowing one to
estimate the unlabeled error rate of all h 2 C,
thereby in principle reducing the search space
from C (all linear separators) down to just the
subset of C that is highly compatible with D. The
key challenge is how this can be done efficiently
(in theory, in practice, or both) for natural notions
of compatibility, as well as identifying types of
compatibility that data in important problems can
be expected to satisfy.

Key Results

The following, from [1], illustrate formally how
unlabeled data can help in this model. Fix some
concept class C and compatibility notion . Given
a labeled sample L, define cerr.h/ to be the frac-
tion of mistakes of h on L. Given an unlabeled
sample U , define .h; U / D Ex�U Œ.h; x/� and
define cerrunl.h/ D 1 � .h; U /. That is, cerr.h/

and cerrunl.h/ are the empirical error rate and
unlabeled error rate of h, respectively. Finally,
given ˛ > 0, define CD;�.˛/ to be the set of
functions f 2 C such that errunl.f / � ˛.

Theorem 1 ([1]) If c� 2 C then with probability
at least 1� ı, for a random labeled set L and un-
labeled set U , the h 2 C that optimizes cerrunl.h/

subject to cerr.h/ D 0 will have err.h/ � � for

jU j �
2

�2

	
ln jCj C ln

4

ı



;

jLj �
1

�

	
ln jCD;�.errunl.c

�/C 2�/j C ln
2

ı



:

Equivalently, for jU j satisfying the above bound,
for any jLj, with probability at least 1 � ı, the
h 2 C that optimizes cerrunl.h/ subject to cerr.h/ D

0 has

err.h/�
1

jLj

	
ln jCD;�.errunl.c

�/C2�/jCln
2

ı



:

One can view Theorem 1 as bounding the number
of labeled examples needed to learn well as a
function of the “helpfulness” of the distribution
D with respect to , for sufficiently large U .
Namely, a helpful distribution is one in which
CD;�.˛/ is small for ˛ slightly larger than the
compatibility of the true target function, so we
do not need much labeled data to identify a good
function among those in CD;�.˛/.

For infinite hypothesis classes, one needs to
consider both the complexity of the class C and
the complexity of the compatibility notion .
Specifically, given h 2 C, define h.x/ D

.h; x/ and let VCdim..C// denote the VC-
dimension of the set fhjh 2 Cg. A sample
complexity bound from [1] based on �-cover size
is the following.

Theorem 2 ([1]) Assume c� 2 C and let p be
the size of the smallest set of functions H such
that every function in CD;�.errunl.c

�/ C �=3/ is
�=6-close to some function in H . Then jU j D

O
�

maxŒVCdim.C/;VCdim.�.C//�

�2 ln 1
�
C 1

�2 ln 2
ı

�
and

jLj D O
�

1
�

ln p
ı

�
is sufficient to identify a

function f 2 C of error at most � with probability
at least 1 � ı.

Finally, for the general (agnostic) case that c� 62

C, we can define a regularizer based on empirical
unlabeled error rates, and then get good bounds
for optimizing a combination of the empirical
labeled error and the regularization term. Specif-
ically, for a hypothesis h, define ON .h/ to be the
number of ways of partitioning the first jLj points
in U using ff 2 C Wcerrunl.f / �cerrunl.h/g. Then
we have
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Theorem 3 ([1]) With probability at least 1 � ı,
the hypothesis

h D arg min
h02C

Œcerr.h0/CR.h0/�; where

R.h0/ D

q
24 ln. ON .h0//

jLj
;

satisfies

err.h/ � min
h02C

�
err.h0/CR.h0/

�
C 5

q
ln.8=ı/

jLj
:

Co-Training
Co-Training is a semi-supervised learning
method due to [4] for settings in which examples
can be thought of as having two “views,” that is,
two distinct types of information. For example,
in classifying webpages (e.g., into student home
page, faculty member home page, course home
page, etc.), one could use the words on the page
itself, but one could also use information from
links pointing to that page [4]. Or, in classifying
visual images, one might have two cameras or
even two different filters or preprocessing steps
on images from the same camera [9]. Or, in
understanding video, one can use visual images
and spoken dialogue [7]. In such settings, one
can think of an example x as a pair x D hx1; x2i.
The idea of Co-Training is that if each view is in
principle enough to achieve a good classification
by itself, but each provides somewhat different
information, then one can hope to improve
performance using unlabeled data. Specifically,
in Co-Training, one maintains two hypotheses,
one for each view (e.g., a hypothesis that
classifies webpages based on the text on the page
itself and one that classifies webpages based on
information from links pointing to the page). A
hypothesis pair h D hh1; h2i is compatible with
an example hx1; x2i if h1.x1/ D h2.x2/ and is
incompatible otherwise. So the unlabeled error
rate of a hypothesis (pair) h D hh1; h2i is the
probability mass of examples hx1; x2i on which
the two parts of h disagree.

In practice, there are two primary ways that
this notion of compatibility is used to learn from
a small amount of labeled data and a large
amount of unlabeled data. The first is iterative

co-training, introduced in [4]. In iterative co-
training, a small labeled sample L is used
to produce predictors for each view that are
confident in some part of their respective input
spaces and not confident in other parts. Then, the
algorithm searches through the (large) unlabeled
set U to find examples x D hx1; x2i for which
one classifier is confident and the other is not.
These examples are labeled by the confident
classifier and handed to the less-confident
classifier to improve its predictor. The other
primary method is to optimize a global objective
that combines accuracy over the labeled sample
L with agreement over the unlabeled sample
U . That is, one searches for the hypothesis
pair h that minimizes cerr.h/ C �cerrunl.h/ for
some regularization parameter � [6, 10]. This is
generally a non-convex optimization problem,
and so various heuristics are typically applied to
perform the optimization.

Theoretically, the guarantees for Co-Training
are strongest when the data satisfies indepen-
dence given the label (with some probability p, a
random positive example hx1; x2i is drawn from
DC

1 �DC
2 , and with probability 1� p, a random

negative example is drawn from D�
1 �D�

2 ) and in
the realizable case (there exist targets c�

1 ; c�
2 2 C

such that all examples hx1; x2i in the support
of the distribution satisfy c�

1 .x1/ D c�
2 .x2/).

Specifically, two key results are

Theorem 4 ([4]) Any class C that is efficiently
PAC-learnable from random classification noise
is efficiently learnable from unlabeled data alone
in the realizable Co-Training setting, if data satis-
fies independence given the label and one is given
an initial weakly useful predictor h1.x1/.

Here, h is a weakly useful predictor of a function
f if for some � > 1=poly.n/ we have both (a)
Prx�DŒh.x/ D 1� � � and (b) Prx�DŒf .x/ D

1jh.x/ D 1� � Prx�DŒf .x/ D 1�C�. Theorem 4
implies that if one is able to use a small labeled
sample to produce an initial hypothesis that gives
a slight “edge” in predicting the target beyond
just the overall class probabilities, then under
independence given the label one can boost that
to a high-accuracy predictor from just unlabeled
data.
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Furthermore, ignoring computation time,
under independence given the label, any class
of finite VC-dimension is learnable from a
single labeled example. In the case of linear
separators, this can be done computationally
efficiently.

Theorem 5 ([1]) Any class C of finite VC-
dimension is learnable from polynomially
many unlabeled examples and a single
labeled example if D satisfies independence
given the label. Furthermore, for linear
separators this can be done in polynomial
time.

Semi-supervised SVMs
Semi-supervised SVMs (also called transductive
SVMs) [8, 11] aim to find a linear separator
that separates both the labeled sample L and
the unlabeled sample U by the largest possible
margin. That is, one wants to find a separator
such that for � as large as possible, all labeled
examples are on the correct side of the separator
by distance at least � and all unlabeled examples
are on some side of the separator by distance
at least � . In practice, one combines a large-
margin objective with a hinge-loss penalty for
labeled examples that fail to satisfy the condition,
and a “hat-loss” penalty for unlabeled examples
that fail to satisfy the condition. Formally, the
goal is to minimize c1wT wC c2

P
.xi ;yi /2L ˛i C

c3

P
xj 2U ˇj subject to .wT xi /yi � 1 � ˛i for

all .xi ; yi / 2 L and .wT xj / Qyj � 1 � ˇj for all
xj 2 U (and ˛i ; ˇj � 0), where yi 2 f�1; 1g

is the (known) label of xi 2 L and Qyj 2 f�1; 1g

is a variable representing the algorithm’s guess
of the label of xj 2 U . While the optimization
problem is NP-hard, a number of heuristics have
been developed. For example, Joachims [8] uses
an iterative labeling heuristic to approximately
optimize the objective. Semi-supervised SVMs
have been shown to achieve high accuracy in
a number of text classification domains where
unlabeled data is plentiful [8].

Graph-Based Methods
Graph-based methods [3, 13] can be viewed
as a (transductive) semi-supervised version of

nearest-neighbor learning. In these methods, one
creates a graph with a vertex for each example in
L [ U and an edge between two examples x; x0

if they are deemed to be sufficiently “similar” (or
with edge weights based on how similar they are
deemed to be). Similarity can be directly based
on distance between the examples in the input
space or given by some provided kernel function
k.x; x0/. Given the labels for the examples in L,
one then finds a “most compatible” labeling for
the examples in U , based on the belief that similar
examples will typically have the same label.
Specifically, in the mincut approach of [3], the
labeling h produced is the cut of least total weight
subject to agreeing with the known labels on
examples in L or equivalently the cut that agrees
with L minimizing

P
eD.x;x0/ wejh.x/ � h.x0/j.

In the algorithm of [13], in order to produce
a smoother solution, the algorithm instead
views the graph as an electrical network,
finding the cut agreeing with L that minimizesP

eD.x;x0/ we.h.x/ � h.x0//2.

Open Problems

There are a number of open problems in
developing computationally efficient semi-
supervised learning algorithms. For example,
can one extend the algorithm of Theorem 5
for Co-Training with linear separators to
weaker conditions than independence given
the label, while maintaining computational
efficiency? (Note: A number of weaker
conditions are known to produce good sam-
ple bounds if computational considerations
are ignored [2].) More broadly, can one
develop efficient algorithms for other classes
or notions of compatibility that meet the
cover-based sample complexity bounds of
Theorem 2? Additional open problems are given
in [1].

Recommended Reading

1. Balcan MF, Blum A (2010) A discriminative
model for semi-supervised learning. J ACM



Separators in Graphs 1941

S

57(3):19:1–19:46. doi:10.1145/1706591.1706599.
http://doi.acm.org/10.1145/1706591.1706599

2. Balcan MF, Blum A, Yang K (2004) Co-training
and expansion: towards bridging theory and
practice. In: Proceedings of 18th conference
on neural information processing systems,
Vancouver

3. Blum A, Chawla S (2001) Learning from labeled and
unlabeled data using graph mincuts. In: Proceedings
of 18th international conference on machine learning,
Williams College

4. Blum A, Mitchell TM (1998) Combining la-
beled and unlabeled data with co-training. In:
Proceedings of the 11th annual conference on
computational learning theory, Madison, pp 92–
100

5. Chapelle O, Schölkopf B, Zien A (eds) (2006) Semi-
supervised learning. MIT, Cambridge. http://www.
kyb.tuebingen.mpg.de/ssl-book

6. Collins M, Singer Y (1999) Unsupervised models for
named entity classification. In: Proceedings of the
joint SIGDAT conference on empirical methods in
natural language processing and very large corpora,
College Park, pp 189–196

7. Gupta S, Kim J, Grauman K, Mooney R (2008)
Watch, listen & learn: co-training on captioned
images and videos. In: Machine learning and
knowledge discovery in databases (ECML
PKDD). Lecture notes in computer science,
vol 5211. Springer, Berlin/Heidelberg, pp 457–472.
10.1007/978-3-540-87479-9_48. http://dx.doi.org/
10.1007/978-3-540-87479-9_48

8. Joachims T (1999) Transductive inference for text
classification using support vector machines. In: Pro-
ceedings of 16th international conference on machine
learning, Bled, pp 200–209

9. Levin A, Viola P, Freund Y (2003) Unsuper-
vised improvement of visual detectors using co-
training. In: Proceedings of the ninth IEEE inter-
national conference on computer vision, ICCV ’03,
vol 2, Nice. IEEE Computer Society, Washington,
DC, pp 626–633. http://dl.acm.org/citation.cfm?id=
946247.946615

10. Nigam K, Ghani R (2000) Analyzing the effective-
ness and applicability of co-training. In: Proceed-
ings of ACM CIKM international conference on
information and knowledge management, McLean,
pp 86–93

11. Vapnik V (1998) Statistical learning theory, vol 2.
Wiley, New York

12. Zhu X (2006) Semi-supervised learning literature
survey Computer sciences TR 1530 University of
Wisconsin, Madison

13. Zhu X, Ghahramani Z, Lafferty J (2003) Semi-
supervised learning using Gaussian fields and
harmonic functions. In: Proceedings of 20th interna-
tional conference on machine learning, Washington,
DC, pp 912–919

Separators in Graphs

Goran Konjevod
Department of Computer Science and
Engineering, Arizona State University, Tempe,
AZ, USA

Keywords

Balanced cuts

Years and Authors of Summarized
Original Work

1998; Leighton, Rao
1999; Leighton, Rao

Problem Definition

The (balanced) separator problem asks for a cut
of minimum (edge)-weight in a graph, such that
the two shores of the cut have approximately
equal (node)-weight.

Formally, given an undirected graph G D

.V; E/, with a nonnegative edge-weight function
c W E ! RC, a nonnegative node-weight func-
tion 
 W V ! RC, and a constant b � 1=2, a cut
.S W V nS/ is said to be b -balanced, or a .b; 1�b/

-separator, if b
.V / � 
.S/ � .1 � b/
.V /

.where 
.S/ stands for
P

v2S 
.v/ /.

Problem 1 (b-balanced separator)
INPUT: Edge- and node-weighted graph G D

.V; E; c; 
/, constant b � 1=2.
OUTPUT: A b-balanced cut .S W V n S/. Goal:
minimize the edge weight c.ı.S//.

Closely related is the product sparsest cut prob-
lem.

Problem 2 ((Product) Sparsest cut)
INPUT: Edge- and node-weighted graph G D

.V; E; c; 
/.
OUTPUT: A cut .S W V nS/ minimizing the ratio-
cost .

c
.ı.S///=.
.S/
.V n S//.

Problem 2 is the most general version of spars-
est cut solved by Leighton and Rao. Setting all
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node weights are equal to 1 leads to the uniform
version, Problem 3.

Problem 3 ((Uniform) Sparsest cut)
INPUT: Edge-weighted graph G D .V; E; c/.
OUTPUT: A cut .S W V nS/ minimizing the ratio-
cost .c.ı.S///=.jS jjV n S j/:

Sparsest cut arises as the (integral version of
the) linear programming dual of concurrent mul-
ticommodity flow (Problem 4). An instance of
a multicommodity flow problem is defined on
an edge-weighted graph by specifying for each
of k commodities a source si 2 V , a sink ti 2

V , and a demand Di. A feasible solution to the
multicommodity flow problem defines for each
commodity a flow function on E, thus routing
a certain amount of flow from si to ti. The edge
weights represent capacities, and for each edge
e, a capacity constraint is enforced: the sum of
all commodities’ flows through e is at most the
capacity c.e/.

Problem 4 (Concurrent multicommodity flow)
INPUT: Edge-weighted graph G D .V; E; c/,
commodities .s1; t1; D1/; : : : .sk ; tk ; Dk/.
OUTPUT: A multicommodity flow that routes
fDi units of commodity i from si to ti for each i
simultaneously, without violating the capacity of
any edge. Goal: maximize f.

Problem 4 can be solved in polynomial
time by linear programming, and approx-
imated arbitrarily well by several more
efficient combinatorial algorithms (section
“Implementation”). The maximum value f
for which there exists a multicommod-
ity flow is called the max-flow of the in-
stance. The min-cut is the minimum ratio
.c.ı.S///=.D.S; V n S//, where D.S; V n S/ DP

i Wjfsi ;ti g\S jD1 Di . This dual interpretation
motivates the most general version of the
problem, the nonuniform sparsest cut (Prob-
lem 5).

Problem 5 ((Nonuniform) Sparsest cut)
INPUT: Edge-weighted graph G D .V; E; c/,
commodities .s1; t1; D1/; : : : .sk ; tk ; Dk/.

OUTPUT: A min-cut .S W V n S/, that is, a cut of
minimum ratio-cost .c.ı.S///=.D.S; V n S//.

(Most literature focuses on either the uniform or
the general nonuniform version, and both of these
two versions are sometimes referred to as just the
“sparsest cut” problem.)

Key Results

Even when all (edge- and node-) weights are
equal to 1, finding a minimum-weight b-balanced
cut is NP-hard (for b D 1=2, the problem
becomes graph bisection). Leighton and
Rao [23, 24] give a pseudo-approximation
algorithm for the general problem.

Theorem 1 There is a polynomial-time
algorithm that, given a weighted graph G D

.V; E; c; 
/, b � 1=2 and b0 < minfb; 1=3g,
finds a b0-balanced cut of weight O..log n/=.b�

b0// times the weight of the minimum b-balanced
cut.

The algorithm solves the sparsest cut problem
on the given graph, puts aside the smaller-weight
shore of the cut, and recurses on the larger-weight
shore until both shores of the sparsest cut found
have weight at most .1�b0/
.G/. Now the larger-
weight shore of the last iteration’s sparsest cut is
returned as one shore of the balanced cut, and ev-
erything else as the other shore. Since the sparsest
cut problem is itself NP-hard, Leighton and Rao
first required an approximation algorithm for this
problem.

Theorem 2 There is a polynomial-time
algorithm with approximation ratio O.log p/

for product sparsest cut (Problem 2), where
p denotes the number of nonzero-weight nodes in
the graph.

This algorithm follows immediately from Theo-
rem 3.

Theorem 3 There is a polynomial-time algo-
rithm that finds a cut .S W V n S/ with ratio-cost
.c.ı.S///=.
.S/
.V nS// 2 O.f log p/, where
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f is the max-flow for the product multicommodity
flow and p the number of nodes with nonzero
weight.

The proof of Theorem 3 is based on solving
a linear programming formulation of the multi-
commodity flow problem and using the solution
to construct a sparse cut.

Related Results
Shahrokhi and Matula [27] gave a max-flow min-
cut theorem for a special case of the multicom-
modity flow problem and used a similar LP-
based approach to prove their result. An O.log n/

upper bound for arbitrary demands was proved by
Aumann and Rabani [6] and Linial et al. [26]. In
both cases, the solution to the dual of the mul-
ticommodity flow linear program is interpreted
as a finite metric and embedded into `1 with
distortion O.log n/, using an embedding due to
Bourgain [10]. The resulting `1 metric is a convex
combination of cut metrics, from which a cut can
be extracted with sparsity ratio at least as good as
that of the combination.

Arora et al. [5] gave an O.
p

log n/ pseudo-
approximation algorithm for (uniform or product-
weight) balanced separators, based on a semidefi-
nite programming relaxation. For the nonuniform
version, the best bound is O.

p
log n log log n/

due to Arora et al. [4]. Khot and Vishnoi [18]
showed that, for the nonuniform version of the
problem, the semidefinite relaxation of [5] has
an integrality gap of at least .log log n/1=6�ı

for any ı > 0, and further, assuming their
Unique Games Conjecture, that it is NP-hard
to (pseudo)-approximate the balanced separator
problem to within any constant factor. The SDP
integrality gap was strengthened to ˝.log log n/

by Krauthgamer and Rabani [20]. Devanur
et al. [11] show an ˝.log log n/ integrality gap
for the SDP formulation even in the uniform
case.

Implementation
The bottleneck in the balanced separator algo-
rithm is solving the multicommodity flow linear
program. There exists a substantial amount of
work on fast approximate solutions to such linear

programs [19, 22, 25]. In most of the follow-
ing results, the algorithm produces a .1 C �/-
approximation, and its hidden constant depends
on ��2. Garg and Könemann [15], Fleischer [14]
and Karakostas [16] gave efficient approximation
schemes for multicommodity flow and related
problems, with running times QO..kCm/m/ [15]
and QO.m2/ [14, 16]. Benczúr and Karger [7] gave
an O.log n/ approximation to sparsest cut based
on randomized minimum cut and running in time
QO.n2/. The current fastest O.log n/ sparsest cut

(balanced separator) approximation is based on
a primal-dual approach to semidefinite program-
ming due to Arora and Kale [3], and runs in time
O.m C n3=2/. QO.m C n3=2/, respectively). The
same paper gives an O.

p
log n/ approximation in

time O.n2/. QO.n2/, respectively), improving on
a previous QO.n2/ algorithm of Arora et al. [2].
If an O.log2 n/ approximation is sufficient, then
sparsest cut can be solved in time QO.n3=2/, and
balanced separator in time QO.mC n3=2/ [17].

Applications

Many problems can be solved by using a bal-
anced separator or sparsest cut algorithm as a sub-
routine. The approximation ratio of the resulting
algorithm typically depends directly on the ra-
tio of the underlying subroutine. In most cases,
the graph is recursively split into pieces of bal-
anced size. In addition to the O.log n/ approxi-
mation factor required by the balanced separator
algorithm, this leads to another O.log n/ factor
due to the recursion depth. Even et al. [12] im-
proved many results based on balanced separators
by using spreading metrics, reducing the ap-
proximation guarantee to O.log n log log n/ from
O.log2 n/.

Some applications are listed here; where no
reference is given, and for further examples,
see [24].

• Minimum cut linear arrangement and mini-
mum feedback arc set. One single algorithm
provides an O.log2 n/ approximation for both
of these problems.
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• Minimum chordal graph completion and elim-
ination orderings [1]. Elimination orderings
are useful for solving sparse symmetric linear
systems. The O.log2 n/ approximation algo-
rithm of [1] for chordal graph completion has
been improved to O.log n log log n/ by Even
et al. [12].

• Balanced node cuts. The cost of a balanced
cut may be measured in terms of the weight of
nodes removed from the graph. The balanced
separator algorithm can be easily extended to
this node-weighted case.

• VLSI layout. Bhatt and Leighton [8] stud-
ied several optimization problems in VLSI
layout. Recursive partitioning by a balanced
separator algorithm leads to polylogarithmic
approximation algorithms for crossing num-
ber, minimum layout area and other problems.

• Treewidth and pathwidth. Bodlaender et al. [9]
showed how to approximate treewidth within
O.log n/ and pathwidth within O.log2 n/ by
using balanced node separators.

• Bisection. Feige and Krauthgamer [13] gave
an O.˛ log n/ approximation for the minimum
bisection, using any ’-approximation algo-
rithm for sparsest cut.

Experimental Results

Lang and Rao [21] compared a variant of the
sparsest cut algorithm from [24] to methods used
in graph decomposition for VLSI design.

Cross-References

� Fractional Packing and Covering Problems
�Minimum Bisection
� Sparsest Cut
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Further details and pointers to additional results
may be found in the survey [28].
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Problem Definition

The problem is to detect specific patterns in
string and patterns in string pairs for discov-
ery of sequence and spatial motifs in membrane
proteins. A spatial interaction motif of residue
pair X -Y is defined as a pattern in which a
character or residue of type X is found interact-
ing with a residue of type Y on two strings or
sequences (Fig. 1a). We define a sequence pair
XY k as a pattern in which a residue of type Y

is found at the k-th position from a residue of
type X along a single sequence (Fig. 1b). The
propensity P.X; Y / of residue pairing XY is
P.X; Y / D fobs.X;Y /

EŒf .X;Y /�
; where fobs.X; Y / is the

observed count of XY patterns and EŒf .X; Y /�

is the expected count of XY patterns according
to some random null model. We define a motif
as a residue pair with propensity >1.0 (or greater
than some other predefined limit) and statistically
significant.
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Sequence and Spatial Motif Discovery in Short Se-
quence Fragments, Fig. 1 Examples of spatial and
sequence patterns. (a) Two X -Y spatial patterns on in-
teracting sequences. (b) An XY 3 sequence pattern

The null model for calculating EŒf .X; Y /� is
critical for motif detection. For short sequence
fragments, the null model for spatial motif de-
tection cannot be the 2 distribution as was used
in [13], since the assumption of Gaussian distri-
bution is not valid for short sequences. The null
model for sequence motif detection cannot be the
binomial distribution as was used in [4,10], since
the assumption of drawing from a universal pop-
ulation with replacement is unrealistic for short
sequence fragments. Instead, we use a combina-
torial model called the permutation model more
effective for discoveries of motifs [5–7]. This null
model is similar for both pair types: the residues
within each sequence are exhaustively and in-
dependently permuted without replacement, and
each permutation occurs with equal probabil-
ity. This model has been called the internally
random model [6]. This permutation model is
further extended to positional null model to cor-
rect position-specific bias in residue distributions
[6].

Objective. Our task is to determine explicit for-
mulas to calculate EŒf .X; Y /� for each pair type
under different conditions. Explicit probability
distributions for f .X; Y / can also be found for
many special cases, which will allow for the
calculation of statistical significance p-values.
These formulas can also be used to study whole
datasets of short sequences.

Key Results

Spatial Motifs by Permutation Model

Expectation for Interacting Residues of the
Same Type
For cases in which X is the same as Y (i.e.,
X -X pairs), let x1 be the number of residues
of type X in the first sequence, x2 the number
of residues of type X in the second sequence,
and l the common length of the sequence pair.
The probability PXX .i/ of exactly i D f .X; X/

number of X -X contacts follows a hypergeomet-
ric distribution: PXX .i/ D

�
x1

i

��
l�x1

x2�i

�
=
�

l
x2

�
: Its

expectation EŒf .X; X/� is then:

EŒf .X; X/� D
x1x2

l
:

Expectation for Interacting Residues of
Different Types
When X ¤ Y , the number of X -Y contacts in the
permutation model for one sequence pair is the
sum of two dependent hypergeometric variables,
one variable for type X residues in the first
sequence s1 and type Y in the second sequence
s2, and another variable for type Y residues in
s1 and type X in s2. The expected number of
X -Y contacts EŒf .X; Y /� is the sum of the two
expected values EŒf .X; Y jX 2 s1; Y 2 s2/� C

EŒf .X; Y jY 2 s1; X 2 s2/�:

EŒf .X; Y /� D
x1y2

l
C

y1x2

l
;

where x1 and x2 are the numbers of residues of
type X in the first and second sequence, respec-
tively, y1 and y2 are the numbers of residues of
type Y in the first and second sequence, respec-
tively, and l is the length of the sequence pair.

Significance of Spatial Motifs
To calculate the statistical significance in the
form of p-value of interacting residues of the
same type, two-tailed p-values can be calcu-
lated using the hypergeometric distribution for a
dataset of sequence pairs.

For interacting residues of different types, the
formula to determine the p-value for a specific
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observed number of X -Y contacts is more com-
plex because of the dependency. We define a
3-element multinomial function M.a; b; c/ 


aŠ
bŠcŠ.a�b�c/Š

, where M.a; b; c/ D 0 if a�b�c <

0. This represents the number of distinct permuta-
tions, without replacement, in a multiset of size a

containing three different types of elements, with

number count b, c, and a � b � c of each of the
three element types.

The probability P.h; i; j; k/ of inter-sequence
matches, namely, the probability of h X -X con-
tacts, i X -Y contacts, j Y -X contacts, and k Y -
Y contacts occurring in a random permutation is
(Fig. 2)

P.h; i; j; k/ D
M.x1; h; i/ �M.y1; j; k/ �M.l � x1 � y1; x2 � h � j; y2 � i � k/

M.l; x2; y2/
:

The marginal probability PXY .m/ that there are
a total of i C j D m X -Y contacts is

PXY .m/ D

x1X

hD0

x1�hX

iD0

y1�
.m�i/X

kD0

P.h; i; m � i; k/:

There are x1 possible values for h, one for each
residue of type X on sequence 1; x1 � h possible
values for i , once h has been determined; and
y1 � j D y1 � .m � i/ possible values for k,
once i has been determined. The i number of X -
Y contacts plus the m�i number of Y -X contacts
will sum to the m number of contacts desired.

This closed-form formula allows calculation
of p-values analytically. The running time is
O.l4/, due to the presence of 3 summations
and lŠ in the summand. For short sequences, the
computing cost is not prohibitive.

Sequences of Different Lengths
The requirement for interacting sequences to be
of the same length may be relaxed by introducing
a 21st “dummy” amino acid type. All unpaired
residues in the longer member of a sequence
pair will be paired to this extra amino acid type,
and our standard method can be applied to de-
termine the propensity of unpaired amino acids
(i.e., residues paired with the “dummy” amino
acid type).

Sequence Motifs by Permutation Model
The propensity P.X; Y jk/ for the XY k pattern
of two ordered intrasequence residues of type

X and type Y that are k positions away on
the same sequence (Fig. 1b) is P.X; Y jk/ D
fobs.X;Y jk/
EŒf .X;Y jk/�

; where fobs.X; Y jk/ is the observed
count of XY k patterns, and EŒf .X; Y jk/� is the
expected count of XY k patterns.

Expectation of XY k and XXk Two-Residue
Motifs
We can regard f .X; Y jk/ as the sum of identical
Bernoulli variables ft .X; Y jk/, each of which
equals 1 if one of the x number of residues of
type X occurs at position t in the sequence and
one of the y number of residues of type Y occurs

l

x1

y1

l−x1−y1

h

i

x1−h−i

j

k

y1−j−k

x2−h−j

y2−i−k

Sequence and Spatial Motif Discovery in Short Se-
quence Fragments, Fig. 2 Division of residues in spa-
tial motif analysis when X ¤ Y . White = X , black = Y ,
gray = “neither” X or Y
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at position t C k or equals 0 otherwise. Since an
XY k pattern cannot occur if t > l � k, we con-
cern ourselves only with the first l � k positions.
We have: EŒft .X; Y jk/� D PŒft .X; Y jk/ D

1� D x
l
� y

.l�1/
if t � l�k: There are l�k such

identical variables, and their expectations may be
summed as

EŒf .X; Y jk/� D .l � k/
xy

l.l � 1/
; (1)

where l is the length of the sequence, x is the
number of residues of type X , and y is the
number of residues of type Y .

For XXk patterns, the expectation is calcu-
lated as

EŒf .X; X jk/� D .l � k/
x.x � 1/

l.l � 1/
; (2)

as there will be x � 1 residues available to place
the second X residue at position t C k after the
first X residue is placed at t . Although these
Bernoulli random variables are dependent (i.e.,
the placement of one XY k pattern will affect the
probability of another XY k pattern), their expec-
tations may be summed, because expectation is a
linear operator.

Significance of XY k and XXk Two-Residue
Sequence Motifs
To calculate statistical significance p-values, sev-
eral formulas have been derived to determine
PXY k.i/, the probability of the occurrence of i D

f .X; Y jk/ XY k patterns for different k values.

1. Sequence motifs when k D 1. We have

PXY1.i/ D

�
l�y

x

��
x
i

��
l�x
y�i

�

lŠ
xŠyŠ.l�x�y/Š

D

�
x
i

��
l�x
y�i

�

�
l
y

� ; and

PXX1.i/ D

�
l�xC1

x�i

��
x�1

i

�

�
l
x

� ;

with the convention that
�

n
r

�
D 0 if n < r .

2. Sequence motifs with residues of different
types and if x � 2 or y � 2.
• If either x D 1 or y D 1, we have

PXY k.1/ D .l � k/
xy

l.l � 1/
:

For i D 0, we have simply PXY k.0/ D

1 � PXY k.1/:

• If x D 2 or y D 2, the probability of two
XY k patterns is

PXY k.2/ D

h�
l�k

2

�
� .l � 2k/

i

l.l�1/.l�2/.l�3/
x.x�1/y.y�1/

:

We also have for the probabilities of ex-
actly one XY k pattern or zero pattern:

PXY k.1/ D EŒf .XY k/� � 2PXY k.2/ and

PXY k.0/ D 1 � ŒPXY k.1/C PXY k.2/�:

3. Sequence motifs with residues of the same
type if x � 3.
• If x D 2, the probability of one XXk

pattern is

PXXk.1/ D EŒf .XXk/� D .l�k/
x.x � 1/

l.l � 1/
;

The probability of no XXk pattern is

PXXk.0/ D 1 � PXXk.1/:

• If x D 3, the probability of exactly two
XXk patterns is

PXXk.2/ D
l � 2k
�

l
x

� ;

4. Sequence motifs with k > 1, x > 2, and
y > 2. When k > 1, x > 2, and y > 2, the
analytical formulas for PXY k.i/ become very
complicated. However, when the sequences in
the dataset used are short, it is possible to
fully enumerate all permutations of a sequence
and calculate PXY k.i/ and p-values exactly,
as shown by Senes et al. [11]. Because x and
y are usually small in short sequences, the
computation time needed for motif analysis of
short sequences is not prohibitive.
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k1

X0 X1 X2 X3 X4

k2 k3 k4

Sequence and Spatial Motif Discovery in Short Se-
quence Fragments, Fig. 3 Example of a multi-residue
sequence pattern as described in the text. This pattern
contains five specified residues in a span of ten residues.
Here, X0, X1, X2, X3, and X4 are specified amino acid
types, and the corresponding k values are counted as the
distance from the first position of the sequence (i.e., the
position occupied by X0). Thus, k1 D 2, k2 D 3,
k3 D 6, and k4 D 9. All other residues (in white) are
unspecified and may be any amino acid type. This pattern
is written as (X0, X1, X2, X3, X4 j 2, 3, 6, 9)

Propensity of Multi-residue Sequence Motifs
We now discuss the expected number EŒf .X0;

X1; X2; : : : ; Xnjk1; k2; : : : ; kn/� of a specific pat-
tern containing nC1 residues placed in a contigu-
ous subsequence of kn C 1 residues (kn � n).
Here Xi is the residue type of the i -th fixed
residue in the pattern and ki is the position of this
residue from the 0-th residue (k0 D 0). Positions
not specified by ki can be any residue type.
For example, the pattern .A; L; Y j2; 4/ is written
as AL2Y4 and represents AxLxY. A graphic
example is shown in Fig. 3. Many examples of
these multi-residue sequence motifs in proteins
have been discovered, including the GxGxxG
NADH binding motif [1] and the RSxSxP 14-3-3
binding motif [14].

The expected value can be calculated as:

EŒf .X0; X1; X2; : : : ; Xnjk1; k2; : : : ; kn/�

D .l � kn/

Qn
iD0 Œxi � #.I.Xi //�

lŠ
.l�n�1/Š

;
(3)

where xi is the number of residues of type Xi , l

is the length of the sequence, and #.I.Xi // is the
number of times residue type Xi appears in the
“subpattern” fX0; X1; X2; : : : ; Xi�1g.

Remark
The above discussions are for determining motifs
in a single short sequence or sequence pair. This
can be extended so analysis can be performed

a b
Sequence 1

Sequence 2

Sequence 3

Sequence 4

1 2 3 4 5 6

t

Sequence and Spatial Motif Discovery in Short Se-
quence Fragments, Fig. 4 Difference between (a) a
permutation null model for sequence motif analysis and
(b) a position-dependent null model. In both cases, only
residues of the same shade are permuted with each other.
In (a), residues are permuted only within each sequence
individually, while in (b), residues are permuted across
sequences but only within their specified position t

on a dataset of multiple short sequences to attain
sufficient statistical significance. This has the
advantage of capturing within-sequence relation-
ships on a scale large enough to obtain reliable
p-values. Details can be found in [6].

Spatial Motifs by Positional Null Model
When there are significant biases in residue pref-
erences for certain positions in a sequence known
a priori, e.g., the enrichment of aromatic residues
at either end of a transmembrane ˛-helix or ˇ-
strand [12], these single-residue biases may con-
found two-residue propensities. The positional
null model should be used for motif detection
in such cases [6]. Instead of permuting residues
across all positions within individual sequences,
we permute residues across all sequences in a
dataset within specific positions (Fig. 4).

Expectation and Significance of Interacting
Residue Pairs
We allocate residues into regions, which do not
overlap. Regions may have different lengths
along the sequences. Interacting regions within a
sequence pair are assumed to have equal length.
If a residue in region r interacts with a residue
in region s on a spatially adjacent sequence
fragment, all residues in region r in the dataset
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must only interact with residues in region s. For
example, for interacting antiparallel ˇ-strands,
we divide each strand into three regions, the N-
terminal, central core, and C-terminal regions,
and all interacting strand pairs into two spatial
pair types, N-terminal with C-terminal and core
with core. We require that no core residue interact
with an N-terminal or C-terminal residue.

The null model for position-dependent spa-
tial motifs differs depending on whether paired
residues are from the same region (r D s) or
different regions (r ¤ s), and whether the residue
types in the pair are the same (X D Y ) or
different (X ¤ Y ).

1. When r D s and X D Y . The expected value
of X -X pairs in region r is

E.X; X jrr/ D

�
xr

2

�

�
nr

2

� �
nr

2
D

xr .xr � 1/

2.nr � 1/
;

where nr is the number of residues in region r .
The probability PXX jrr .i/ of i X -X interact-
ing pairs in region r in the dataset for p-values
calculation calculated is

PXX jrr .i/ D
M. nr

2
; i; xr � 2i/ � 2xr �2i

�
nr

xr

� ;

where the 3-element multinomial function
M.a; b; c/ is as defined before.

2. When r D s and X ¤ Y . The expected value
when X ¤ Y is

E.XY jrr/ D
xryr�

nr

2

� �
nr

2
D

xryr

nr � 1
:

The probability P.i; j; k/ of each combination
of i , j , and k pairs of type X -Y , X -X , and
Y -Y interactions, respectively, is

P.i; j; k/ D
M. nr

2
; i; j; k; xr � i � 2j; yr � i � 2k/ � 2xr Cyr �i�2j �2k

M.nr ; xr ; yr /
;

where the 6-variable multinomial function
M.a;b;c; d; e;f /
 aŠ

bŠcŠdŠeŠf Š.a�b�c�d�e�f /Š
:

The probability PXY jrr .i/ of i X -Y pairs in
the dataset is then

PXY jrr .i/ D

xr �i
2X

j D0

yr �i
2X

kD0

P.i; j; k/:

3. When r ¤ s. We distinguish Xr , a residue of
type X occurring in region r in one sequence,
and Xs , a residue of type X occurring in
region s in the other sequence. Thus, an X -
Y pair, which we define as an Xr � Ys pair, is
different from a Y -X pair, which is Yr � Xs .
Because there is a one-to-one correspondence
between residues in region r and region s,
nr D ns is the total number of r � s pairs.

In order for exactly i X -Y pairs to occur,
i Xr residues must be drawn from a possible
xr residues of type X to match i Ys residues

drawn from a possible ys residues of type
Y . This can be modeled with a simple
hypergeometric distribution. The expected
value can be calculated as

E.XY jrs/ D
xrys

nr

:

The PXY jrs.i/ of i X -Y pairs is

PXY jrs.i/ D

�
xr

i

��
nr �xr

ys�i

�

�
nr

ys

� :

Expectation and Significance of Sequence
Motifs
We define the positional residue frequency xt as
the number of residues of type X occupying the
t -th position of all sequences in the dataset. If
sequences of different lengths are represented in
the dataset, it is necessary to normalize t to be
within an appropriate range Œ1; l�, to approximate
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an average or predetermined sequence length of
l :

t D d
l.tobs � 0:5/

lobs
e;

where tobs 2 f1; 2; 3; � � � ; lobsg is the actual po-
sition of the residue within its sequence, lobs is
the actual length of the sequence, dxe represents
the ceiling function, equal to the lowest integer
greater than or equal to x, and the 0.5 factor is
a correction for continuity to round to the next
integer. This ensures that 1 � t � l , no residues
are removed from the model by truncation, and
each position t will be represented by nearly the
same number of residues.

For sequence motif, we use the model of
permutation within each position in a sequence
with replacement across all sequences. Although
all other null models in this study rely on permu-
tation without replacement, this model is based
on datasets of multiple sequences instead of indi-
vidual sequences, and the approximation of sam-
pling without replacement will not be problem-
atic once a sufficiently large sample of sequences
is assembled.

1. XY k motif at position t . When t � 1�k, the
probability of an XY k pattern at position t is

P.X; Y jk; t/ D
xt

nt

�
ytCk

ntCk

;

where xt is the number of residues of type X

in position t on all sequences, yt is the number
of residues of type Y in position t , and nt

is the number of all residues of all types in
position t . This null model can be represented
as a binomial distribution.

The expected frequency of XY k patterns at
position t is

EŒf .X; Y jk; t/� D nt � P.X; Y jk; t/:

The probability of i XY k patterns at position
t in the dataset is

PXY kjt .i/ D

 
nt

i

!

P.X; Y jk; t/i

Œ1 � P.X; Y jk; t/�nt �i :

Note that the probability that an XY k pat-
tern appears at position t is 0 if t > l � k, as
an XY k pattern would span across the end of
a sequence of length l .

2. XY k motif at any arbitrary position. To
calculate the dataset-wide probability of an
XY k pattern at any arbitrary position of the
sequence, we average P.X; Y jk; t/ over all
l � k possible positions:

P.X; Y jk/ D
1

l � k

l�kX

tD1

P.X; Y jk; t/:

This can similarly be represented as a bino-
mial distribution with probability distribution
function: PXY k.i/ D

�
nk

i

�
P.X; Y jk/i Œ1 �

P.X; Y jk/�nk�i ; where nk is the number of all
pairs of all residue types k residues apart in the
dataset. The expected value is

EŒf .X; Y jk/� D nk � P.X; Y jk/:

Unlike the situation where only one position
t is concerned, this distribution represents the
sum of dependent Bernoulli variables. Meth-
ods of accounting for this dependence can be
found in Robin et al. [10].

Applications

Several spatial and sequence motifs have been
discovered using the approach discussed here
[5–7]. The estimated propensities have also been
used to develop empirical potential function for
prediction of oligomerization stated [8], protein-
protein interaction interfaces [3, 8], engineering
of thermal resistance [2], and in predicting struc-
tures of ˇ-barrel membrane proteins [9].

Open Problems

General analytical formulas for calculating prob-
abilities of two-residue and multi-residue motifs
under the permutation model are unknown.
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Problem Definition

One of the key steps in a VLSI design flow
is technology mapping that converts a Boolean
network of technology-independent logic gates
and D-flipflops (FFs) into an equivalent one com-
prised of cells from a technology library [1, 4].
Technology mapping can be formulated as a
covering problem where logic gates are covered
by cells from the technology library. For ease
of discussion, it is assumed that the cell library
contains only one cell, a K-input lookup table
(K-LUT) with one unit of delay. A K-LUT can
implement any Boolean function with up to K

inputs as is the case in field-programmable gate
arrays (FPGAs) [1, 3].

Figure 1 shows an example of technology
mapping. The original network in (1) with three
FFs and four gates is covered by three 3-input
cones as indicated in (2). The corresponding



Sequential Circuit Technology Mapping 1953

S

Sequential Circuit
Technology Mapping,
Fig. 1 Technology
mapping: (1) original
network, (2) covering, (3)
mapping solution
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Sequential Circuit
Technology Mapping,
Fig. 2 Retiming and
mapping: (1) retiming and
covering, (2) mapping
solution, (3) retimed
solution
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mapping solution using 3-LUTs is shown in (3).
Note that gate i is covered by two cones so it will
be replicated. The mapping solution has a cycle
time (or clock period) of two units, which is the
maximum number of LUTs on all paths without
FFs.

Retiming relocates FFs in a network by mov-
ing FFs across logic nodes backward or forward
[5]. Retiming does not alter the functionality of a
network. Figure 2 (1) shows the network obtained
from the one in Fig. 1 (1) by moving the FFs
at the output of gates y and i to their inputs. It
can now be covered with just one 3-input cone
as indicated in (1). The corresponding mapping
solution shown in (2) is better in both cycle
time and area than the one in Fig. 1 (3) obtained
without retiming.

A K-bounded network is one in which each
gate has at most K inputs. The sequential

circuit technology mapping problem can
be defined as follows: Given a K-bounded
Boolean network N and a target cycle time
�, find a mapping solution with a cycle time
of �, assuming FFs can be relocated using
retiming.

Key Results

The first polynomial time algorithm for the prob-
lem was proposed in [9, 10]. An improved algo-
rithm was proposed in [2] to reduce runtime. Both
algorithms are based on min-cost flow computa-
tion.

In [8], an efficient algorithm was proposed to
take advantage of the fact that K is a small integer
usually between 3 and 6. The algorithm is based
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Sequential Circuit
Technology Mapping,
Fig. 3 Cut enumeration
procedure

FindAllCuts(N, K )

foreach node v in N do C(v) ⇐ {{v 0}}

while (new cuts discovered ) do

foreach node v in N do C(v) ⇐ merge (C(u1),....,C(ut))

on enumerating all K-input cones for each gate
and will be described next.

Cut Enumeration

A Boolean network can be represented as an
edge-weighted directed graph where the nodes
denote logic gates and primary inputs/outputs.
There is a directed edge .u; v/ with weight d if
u, after going through d FFs, drives v.

A cone for a node can be captured by a cut
consisting of inputs to the cone. An element
in a cut for v consists of the driving node u
and the total weight d on the paths from u to
v, denoted by ud . If u can reach v on several
paths with different FF counts, u will appear
in the cut multiple times with different d s. For
the cone for ´ in Fig. 2 (2), the corresponding
cut is f´1; a1; b1g. A cut of size K is called a
K-cut.

Let .ui ; v/, where i D 1; : : :; t , be all input
edges to v in N . Further assume the weight
of .ui ; v/ is di and C.ui / is a set of K-cuts
for ui . Let merge(C.u1/; : : :; C.ut /) denote the
following set operation:

ffv0gg [ fc
d1

1 [ � � � [ c
dt
t jc1 2 .u1/; : : : ; ct

2 C.ut /; jc
d1

1 [ � � � [ c
dt
t j � Kg

where c
di

i D fu
dCdi jud 2 cig for i D 1; : : :; t . It

is obvious that merge.C.u1/; : : : ; C.ut // is a set
of K-cuts for v.

If the network N does not contain cycles,
the K-cuts of all nodes can be determined us-
ing the merge operation in a topological order
starting from the PIs. For general networks, Fig. 3
outlines the iterative cut computation procedure
proposed in [8].

Figure 4 depicts the iterations in enumerating
the 3-cuts for the network in Fig. 1 (1) where
cuts are merged in the order i , x, y, ´, and o.
At the beginning, every node has a trivial cut
formed by itself (Row 0). Row 1 shows the new
cuts discovered in the first iteration. In second
iteration, two more cuts are discovered (for x).
After that, further merging does not yield any new
cut and the procedure stops.

Lemma 1 After at most Kn iterations, the cut
enumeration procedure will find all the K-cuts
for every node in N .

Techniques have been proposed to speed up
the procedure [8]. For practical networks, the
cut enumeration procedure typically converges in
just a few iterations.

Label Computation

After obtaining all K-cuts, the cuts are evaluated
based on sequential arrival times (or l-values),
which is an extension of traditional arrival times,
to consider the effect of retiming [7, 9].

The labeling procedure tries to find a label for
each node as outlined in Fig. 5, where wv denotes
the weight of the shortest paths from PIs to
node v.

Figure 6 shows the iterations for label compu-
tation for the network in Fig. 1 (1), assuming that
the target cycle time � D 1 and the nodes are
evaluated in the order of i , x, y, ´, and o. In the
table, the current label as well as a corresponding
cut for each node is listed. In this example, after
the first iteration, none of the labels will change
and the procedure stops.

It can be shown that the labeling procedure
will stop after at most n.n � 1/ iterations [10].
The following lemma relates labels to mapping:
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Iter a B I x y z o
0 

1 

2 

{b0}{a0} {i0} {x 0} {y 0} {z 0} {o0}

{a0} {i 1,z 1}

{a1,z 1} {a0,b0,z 0}

{i 0,b0,z0} {x 0,y1}

{i 1,z1,b1}

{a1,z1,b1}

{i 1,z1,y1}

{a1,z1,y1}

{z 0}

{i1 ,x 1,y2}

{a1 ,x 1,y2}

Sequential Circuit Technology Mapping, Fig. 4 Cut enumeration example

Sequential Circuit
Technology Mapping,
Fig. 5 Label computation
procedure

FindMinLabels( N)

foreach node v in N do l(v) ⇐ −wv⋅f

while (there are label updates) do

foreach node v in N do

l(v) ⇐ minc∈C(v) {max{l(u) − d ⋅ f +1 | ud ∈ c}}

if v is a primary output and l (v) >f, return failure

return success

iter a B I x y z o
0 

1 

{b0}:0{a0}:0 {i0}:0 {x0}:-1 {y 0}:0 {z0}:-1 {o0}:-1

{a0}:1 {a1,z 1}:0 {a0,b0,z 0}:1 {z 0}:0 {a1,z1,b1}:0

Sequential Circuit Technology Mapping, Fig. 6 Label computation example

Lemma 2 N has a mapping solution with cycle
time � iff the labeling procedure returns “suc-
cess.”

Mapping Solution Generation

Once the labels for all nodes are computed suc-
cessfully, a mapping solution can be constructed
starting from primary outputs. At each node v, the
procedure selects the cut that realizes the label of

the node and then moves on to select a cut for
u if ud is in the cut selected for v. On the edge
from u to v, d FFs are inserted. For the network in
Fig. 1 (1), the mapping solution generated based
on the labels found in Fig. 6 is exactly the one in
Fig. 2 (2).

To obtain a mapping solution with the target
cycle time �, v will be retimed by a value of
dl.v/=�e � 1. For the network in Fig. 1 (1), the
final mapping solution after retiming is shown in
Fig. 2 (3) which has a cycle time of 1.
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Applications

The algorithm can be used to map a technology-
independent Boolean network to a network
consisting of cells from a target technology
library. The concepts and framework are
generally enough to be adapted to study other
circuit optimizations such as sequential circuit
clustering and sequential circuit restructuring [6].
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Problem Definition

Short History
The k-set agreement problem is a paradigm of
coordination problems. Defined in the setting
of systems made up of processes prone to fail-
ures, it is a simple generalization of the con-
sensus problem (that corresponds to the case
k D 1). That problem was introduced in 1993
by Chaudhuri [2] to investigate how the num-
ber of choices (k) allowed for the processes is
related to the maximum number of processes
that can crash. (After it has crashed, a process
executes no more steps: a crash is a premature
halting.)

Definition
Let S be a system made up of n processes where
up to t can crash and where each process has an
input value (called a proposed value). The prob-
lem is defined by the three following properties
(i.e., any algorithm that solves that problem has
to satisfy these properties):

1. Termination. Every nonfaulty process decides
a value.

2. Validity. A decided value is a proposed value.
3. Agreement. At most k different values are

decided.
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The Trivial Case
It is easy to see that this problem can be trivially
solved if the upper bound on the number of
process failures t is smaller than the allowed
number of choices k, also called the coordi-
nation degree. (The trivial solution consists in
having t C 1 predetermined processes that send
their proposed values to all the processes, and
a process deciding the first value it ever re-
ceives.) So, k � t is implicitly assumed in the
following.

Key Results

Key Results in Synchronous Systems

The Synchronous Model
In this computation model, each execution
consists of a sequence of rounds. These are
identified by the successive integers 1; 2; etc. For
the processes, the current round number appears
as a global variable whose global progress entails
their own local progress.

During a round, a process first broadcasts
a message, then receives messages, and finally
executes local computation. The fundamental
synchrony property the a synchronous system
provides the processes with is the following:
a message sent during a round r is received
by its destination process during the very same
round r. If during a round, a process crashes
while sending a message, an arbitrary subset (not
known in advance) of the processes receive that
message.

Main Results
The k-set agreement problem can always be
solved in a synchronous system. The main result
is for the minimal number of rounds (Rt) that are
needed for the nonfaulty processes to decide in
the worst-case scenario (this scenario is when
exactly k processes crash in each round). It
was shown in [3] that Rt D b

t
k
c C 1. A very

simple algorithm that meets this lower bound is
described in Fig. 1.

Although failures do occur, they are rare in
practice. Let f denote the number of processes

that crash in a given run, 0 � f � t . We
are interested in synchronous algorithms that
terminate in at most Rt rounds when t processes
crash in the current run, but that allow the
nonfaulty processes to decide in far fewer rounds
when there are few failures. Such algorithms are
called early-deciding algorithms. It was shown
in [4] that, in the presence of f process crashes,
any early-deciding k-set agreement algorithm
has runs in which no process decides before
the round Rf D min.bf

k
c C 2; b t

k
c C 1/. This

lower bound shows an inherent tradeoff linking
the coordination degree k, the maximum number
of process failures t, the actual number of process
failures f, and the best time complexity that can
be achieved. Early-deciding k-set agreement
algorithms for the synchronous model can be
found in [4, 12].

Other Failure Models
In the send omission failure model, a process is
faulty if it crashes or forgets to send messages.
In the general omission failure model, a process
is faulty if it crashes, forgets to send messages,
or forgets to receive messages. (A send omission
failure models the failure of an output buffer,
while a receive omission failure models the fail-
ure of an input buffer.) These failure models were
introduced in [11].

The notion of strong termination for set
agreement problems was introduced in [13].
Intuitively, that property requires that as many
processes as possible decide. Let a good process
be a process that neither crashes nor commits
receive omission failures. A set agreement
algorithm is strongly terminating if it forces all
the good processes to decide. (Only the processes
that crash during the execution of the algorithm,
or that do not receive enough messages, can be
prevented from deciding.)

An early-deciding k-set agreement algorithm
for the general omission failure model was
described in [13]. That algorithm, which requires
t < n=2, directs a good process to decide and
stop in at most Rf D min.bf

k
c C 2; b t

k
c C 1/

rounds. Moreover, a process that is not a good
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Set Agreement, Fig. 1
A simple k-set agreement
synchronous algorithm
(code for pi)

process executes at most Rf .not good//

min.df
k
e C 2; b t

k
c C 1/ rounds.

As Rf is a lower bound for the number of
rounds in the crash failure model, the previous
algorithm shows that Rf is also a lower bound
for the nonfaulty processes to decide in the more
severe general omission failure model. Proving
that Rf .not good/ is an upper bound for the
number of rounds that a nongood process has to
execute remains an open problem.

It was shown in [13] that, for a given
coordination degree k, t < k

kC1
n is an upper

bound on the number of process failures when
one wants to solve the k-set agreement problem
in a synchronous system prone to process general
omission failures. A k-set agreement algorithm
that meets this bound was described in [13].
That algorithm requires the processes execute
R D t C 2 � k rounds to decide. Proving (or
disproving) that R is a lower bound when
t < k

kC1
n is an open problem. Designing an

early-deciding k-set agreement algorithm for
t < k

kC1
n and k > 1 is another problem that

remains open.

Key Results in Asynchronous Systems

Impossibility
A fundamental result of distributed computing
is the impossibility to design a deterministic al-
gorithm that solves the k-set agreement problem
in asynchronous systems when k � t [1, 7, 15].
Compared with the impossibility of solving asyn-
chronous consensus despite one process crash,
that impossibility is based on deep combinato-
rial arguments. This impossibility has opened

new research directions for the connection be-
tween distributed computing and topology. This
topology approach has allowed the discovery of
links relating asynchronous k-set agreement with
other distributed computing problems such as the
renaming problem [5].

Circumventing the Impossibility
Several approaches have been investigated to cir-
cumvent the previous impossibility. These ap-
proaches are the same as those that have been
used to circumvent the impossibility of asyn-
chronous consensus despite process crashes.

One approach consists in replacing the “de-
terministic algorithm” by a “randomized algo-
rithm.” In that case, the termination property
becomes “the probability for a correct process
to decide tends to 1 when the number of rounds
tends to C1:” That approach was investigated
in [9].

Another approach that has been proposed is
based on failure detectors. Roughly speaking,
a failure detector provides each process with a list
of processes suspected to have crashed. As an ex-
ample, the class of failure detectors denoted ÞSx

includes all the failure detectors such that, after
some finite (but unknown) time, (1) any list con-
tains the crashed processes and (2) there is a set
Q of x processes such that Q contains one correct
process and that correct process is no longer
suspected by the processes of Q (let us observe
that correct processes can be suspected intermit-
tently or even forever). Tight bounds for the k-
set agreement problem in asynchronous systems
equipped with such failure detectors, conjectured
in [9], were proved in [6]. More precisely, such
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a failure detector class allows the k-set agreement
problem to be solved for k � t � x C 2 [9], and
cannot solve it when k < t � x C 2 [6].

Another approach that has been investigated is
the combination of failure detectors and condi-
tions [8]. A condition is a set of input vectors, and
each input vector has one entry per process. The
entries of the input vector associated with a run
contain the values proposed by the processes in
that run. Basically, such an approach guarantees
that the nonfaulty processes always decide when
the actual input vector belongs to the condition
the k-set algorithm has been instantiated with.

Applications

The set agreement problem was introduced
to study how the number of failures and
the synchronization degree are related in an
asynchronous system; hence, it is mainly
a theoretical problem. That problem is used as
a canonical problem when one is interested in
asynchronous computability in the presence of
failures. Nevertheless, one can imagine practical
problems the solutions of which are based on
the set agreement problem (e.g., allocating
a small shareable resources – such as broadcast
frequencies – in a network).
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Problem Definition

The SET COVER problem has as input a set R of
m items, a set C of n subsets of R and a weight
function wWC ! Q. The task is to choose a sub-
set C 0 � C of minimum weight whose union
contains all items of R.

The sets R and C can be represented by an
m � n binary matrix A that consists of a row for
every item in R and a column for every subset of R
in C, where an entry ai;j is 1 iff the ith item in R
is part of the jth subset in C. Therefore, the SET

COVER problem can be formulated as follows.

Input: An m � n binary matrix A and a weight
function w on the columns of A.
Task: Select some columns of A with minimum
weight such that the submatrix A0 of A that is
induced by these columns has at least one 1 in
every row.

While SET COVER is NP-hard in general [4], it
can be solved in polynomial time on instances
whose columns can be permuted in such a way
that in every row the ones appear consecutively,
that is, on instances that have the consecutive
ones property (C1P). (The C1P can be defined
symmetrically for columns; this article focuses
on rows. SET COVER on instances with the C1P
can be solved in polynomial time, e.g., with
a linear programming approach, because the cor-

responding coefficient matrices are totally uni-
modular (see [9]).

Motivated by problems arising from railway
optimization, Mecke and Wagner [7] consider the
case of SET COVER instances that have “almost
the C1P”. Having almost the C1P means that the
corresponding matrices are similar to matrices
that have been generated by starting with a matrix
that has the C1P and replacing randomly a certain
percentage of the 1’s by 0’s [7]. For Ruf and
Schöbel [8], in contrast, having almost the C1P
means that the average number of blocks of
consecutive 1’s per row is much smaller than the
number of columns of the matrix. This entry will
also mention some of their results.

Notation
Given an instance (A, w) of SET COVER, let R
denote the row set of A and C its column set.
A column cj covers a row ri, denoted by ri 2 cj ,
if ai;j D 1.

A binary matrix has the strong C1P if (without
any column permutation) the 1’s appear consecu-
tively in every row. A block of consecutive 1’s is
a maximal sequence of consecutive 1’s in a row. It
is possible to determine in linear time if a matrix
has the C1P, and if so, to compute a column
permutation that yields the strong C1P [2, 3, 6].
However, note that it is NP-hard to permute the
columns of a binary matrix such that the number
of blocks of consecutive 1’s in the resulting ma-
trix is minimized [1, 4, 5].

A data reduction rule transforms in polyno-
mial time a given instance I of an optimization
problem into an instance I0 of the same problem
such that jI 0j < jI j and the optimal solution for I0

has the same value (e.g., weight) as the optimal
solution for I. Given a set of data reduction rules,
to reduce a problem instance means to repeatedly
apply the rules until no rule is applicable; the
resulting instance is called reduced.

Key Results

Data Reduction Rules
For SET COVER there exist well-known data
reduction rules:
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Row domination rule: If there are two rows
ri1 ; ri2 2 R with 8c 2 C W ri1 2 cimpliesri2 2 c,
then ri2 is dominated by ri1 . Remove row ri2

from A.
Column domination rule: If there are two

columns cj1
; cj2
2 C with w.cj1

/ � w.cj2
/ and

8r 2 RW r 2 cj1
implies r 2 cj2

, then cj1
is

dominated by cj2
. Remove cj1

from A.
In addition to these two rules, a column

cj1
2 C can also be dominated by a subset

C 0 � C of the columns instead of a single
column: If there is a subset C 0 � C with
w.cj1

/ �
P

c2C 0 w.c/ and 8r 2 RW r 2 cj1

implies .9c 2 C 0W r 2 c/, then remove cj1

from A. Unfortunately, it is NP-hard to find
a dominating subset C 0 for a given set cj1

. Mecke
and Wagner [7], therefore, present a restricted
variant of this generalized column domination
rule.

For every row r 2 R, let cmin.r/ be a column
in C that covers r and has minimum weight under
this property. For two columns cj1

; cj2
2 C , de-

fine X.cj1
; cj2

/ WD fcmin.r/ j r 2 cj1
^ r … cj2

g.
The new data reduction rule then reads as follows.

Advanced column domination rule: If
there are two columns cj1

; cj2
2 C and a row

that is covered by both cj1
and cj2

, and if
w.cj1

/ � w.cj2
/C

P
c2X.cj1

;cj2
/ w.c/, then cj1

is dominated by fcj2
g [X.cj1

; cj2
/. Remove cj1

from A.

Theorem 1 ([7]) A matrix A can be reduced in
O(Nn) time with respect to the column domina-
tion rule, in O(Nm) time with respect to the row
domination rule, and in O(Nmn) time with respect
to all three data reduction rules described above,
when N is the number of 1’s in A.

In the databases used by Ruf and Schöbel [8],
matrices are represented by the column indices
of the first and last 1’s of its blocks of consec-
utive 1’s. For such matrix representations, a fast
data reduction rule is presented [8], which elim-
inates “unnecessary” columns and which, in the
implementations, replaces the column domina-
tion rule. The new rule is faster than the column
domination rule (a matrix can be reduced in
O(mn) time with respect to the new rule), but not

as powerful: Reducing a matrix A with the new
rule can result in a matrix that has more columns
than the matrix resulting from reducing A with
the column domination rule.

Algorithms
Mecke and Wagner [7] present an algorithm that
solves SET COVER by enumerating all feasible
solutions.

Given a row ri of A, a partial solution for the
rows r1; : : : ; ri is a subset C 0 � C of the columns
of A such that for each row rj with j 2 f1; : : : ; ig

there is a column in C0 that covers row rj.
The main idea of the algorithm is to find an

optimal solution by iterating over the rows of A
and updating in every step a data structure S that
keeps all partial solutions for the rows considered
so far. More exactly, in every iteration step the
algorithm considers the first row of A and updates
the data structure S accordingly. Thereafter, the
first row of A is deleted. The following code
shows the algorithm.

1 Repeat m times: f
2 for every partial solution C0 in S that does not

cover the first row of A: f
3 for every column c of A that covers the first row

of A: f
4 Add fcg [ C 0 to S; g
5 Delete C0 from S; g
6 Delete the first row of A; g

This straightforward enumerative algorithm
could create a set S of exponential size.
Therefore, the data reduction rules presented
above are used to delete after each iteration
step partial solutions that are not needed any
more. To this end, a matrix B is associated
with the set S, where every row corresponds
to a row of A and every column corresponds to
a partial solution in S–an entry bi;j of B is 1 iff
the jth partial solution of B contains a column
of A that covers the row ri. The algorithm

uses the matrix C WD

�
A B

0 : : : 0 1 : : : 1

�
, which

is updated together with S in every iteration
step. (The last row of C allows to distinguish the
columns belonging to A from those belonging
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to B.) Line 6 of the code shown above is replaced
by the following two lines:

6 Delete the first row of the matrix C;
7 Reduce the matrix C and update S accordingly;g

At the end of the algorithm, S contains exactly
one solution, and this solution is optimal. More-
over, if the SET COVER instance is nicely struc-
tured, the algorithm has polynomial running time:

Theorem 2 ([7]) If A has the strong C1P, is
reduced, and its rows are sorted in lexicographic
order, then the algorithm has a running time
of O(M3n) where M is the maximum number of 1’s
per row and per column.

Theorem 3 ([7]) If the distance between the first
and the last 1 in every column is at most k, then
at any time throughout the algorithm the number
of columns in the matrix B is O(2kn), and the
running time is O(22k kmn2).

Ruf and Schöbel [8] present a branch and bound
algorithm for SET COVER instances that have
a small average number of blocks of consecu-
tive 1’s per row.

The algorithm considers in each step a row ri

of the current matrix (which has been reduced
with data reduction rules before) and branches
into bli cases, where bli is the number of blocks
of consecutive 1’s in ri. In each case, one block
of consecutive 1’s in row ri is selected, and
the 1’s of all other blocks in this row are replaced
by 0’s. Thereafter, a lower and an upper bound
on the weight of the solution for each resulting
instance is computed. If a lower bound differs by
a factor of more than 1C �, for a given constant ",
from the best upper bound achieved so far, the
corresponding instance is subjected to further
branchings. Finally, the best upper bound that
was found is returned.

In each branching step, the bli instances that
are newly generated are “closer” to have the
(strong) C1P than the instance from which they
descend. If an instance has the C1P, the lower
and upper bound can easily be computed by
exactly solving the problem. Otherwise, standard
heuristics are used.

Applications

SET COVER instances occur e.g., in railway op-
timization, where the task is to determine where
new railway stations should be built. Each row
then corresponds to an existing settlement, and
each column corresponds to a location on the
existing trackage where a railway station could
be build. A column c covers a row r, if the
settlement corresponding to r lies within a given
radius around the location corresponding to c.

If the railway network consisted of one
straight line rail track only, the corresponding
SET COVER instance would have the C1P;
instances arising from real world data are close
to have the C1P [7, 8].

Experimental Results

Mecke and Wagner [7] make experiments on real-
world instances as described in the Applications
section and on instances that have been generated
by starting with a matrix that has the C1P and
replacing randomly a certain percentage of the 1’s
by 0’s. The real-world data consists of a railway
graph with 8,200 nodes and 8,700 edges, and
30,000 settlements. The generated instances con-
sist of 50–50,000 rows with 10–200 1’s per row.
Up to 20 % of the 1’s are replaced by 0’s.

In the real-world instances, the data reduction
rules decrease the number of 1’s to between 1 %
and 25 % of the original number of 1’s with-
out and to between 0.2 % and 2.5 % with the
advanced column reduction rule. In the case of
generated instances that have the C1P, the number
of 1’s is decreased to about 2 % without and
to 0.5 % with the advanced column reduction
rule. In instances with 20 % perturbation, the
number of 1’s is decreased to 67 % without and
to 20 % with the advanced column reduction rule.

The enumerative algorithm has a running time
that is almost linear for real-world instances and
most generated instances. Only in the case of
generated instances with 20 % perturbation, the
running time is quadratic.

Ruf and Schöbel [8] consider three instance
types: real-world instances, instances arising
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from Steiner triple systems, and randomly gener-
ated instances. The latter have a size of 100 � 100

and contain either 1–5 blocks of consecutive 1’s
in each row, each one consisting of between
one and nine 1’s, or they are generated with
a probability of 3 % or 5 % for any entry to be 1.

The data reduction rules used by Ruf and
Schöbel turn out to be powerful for the real-world
instances (reducing the matrix size from about
1;100 � 3;100 to 100 � 800 in average), whereas
for all other instance types the sizes could not be
reduced noticeably.

The branch and bound algorithm could solve
almost all real-world instances up to optimality
within a time of less than a second up to one hour.
In all cases where an optimal solution has been
found, the first generated subproblem had already
provided a lower bound equal to the weight of the
optimal solution.
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Problem Definition

The study of the parameterized complexity of
problems on directed graphs has been hitherto
relatively unexplored. Usually the directed ver-
sion of the problems require significantly differ-
ent and more involved ideas than the ones for
the undirected version. Furthermore, for directed
graphs there are no known algorithmic meta-
techniques: for example, there is no known al-
gorithmic analogue of the Graph Minor Theory
of Robertson and Seymour for directed graphs.
As a result, the fixed-parameter tractability status
of the directed versions of several fundamental
problems such as Multiway Cut, Multicut, Feed-
back Vertex Set, etc., was open for a long time.
The problem of Feedback Vertex Set best illus-
trates this gulf between undirected and directed
graphs with respect to parameterized complexity.
In this problem, we are given a graph and the
question is whether there exists a set of size at
most k whose deletion makes the graph acyclic.
The undirected version was known to be FPT
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since 1984 [10]. However, the directed version
was a long-standing open problem until it was
shown to be FPT in 2008 [1].

The framework of shadowless solutions aims
to bridge this gap by providing an important first
step in designing FPT algorithms for a general
class of transversal problems on directed graphs.
In undirected graphs, the framework of shad-
owless solutions was introduced in [9] and has
since been used in [4, 6, 7]. It was adapted and
generalized to directed graphs in [2, 3] for the
following general class of problems:

Finding an F-transversal for some T -
connected F
Input: A directed graph G D .V; E/, a
positive integer k, a set T � V , and a set
F D fF1; F2; : : : ; Fqg of subgraphs such
that F is T -connected, i.e., 8 i 2 Œq� each
vertex of Fi can reach some vertex of T by
a walk completely contained in GŒFi � and is
reachable from some vertex of T by a walk
completely contained in GŒFi �.
Parameter: k

Question: Is there an F-transversal W �

V with jW j � k, i.e., a set W such that
Fi \W ¤ ; for every i 2 Œq�?

The collection F is implicitly defined in a
problem-specific way and need not be given ex-
plicitly in the input. In fact, it is possible that F is
exponentially large. The shadow of a solution X

is the set of vertices that are disconnected from
T (in either direction) after the removal of X .
More formally, the reverse shadow of X is given
by rT .X/ D fv W X is a v ! T separatorg.
Similarly, the forward shadow of X is given by
fT .X/ D fv W X is a T ! v separatorg. The
shadow of X is given by the union of its reverse
and forward shadows, i.e., shadow.X/ D r.X/[

f .X/. A set X is said to be shadowless if its
shadow is empty.

The aim is to ensure first that there is a so-
lution whose shadow is empty, as finding such a
shadowless solution can be a significantly easier
task.

Key Results

For the F-transversal problem defined above, [2]
shows how to invoke the technique of random
sampling of important separators and obtain a set
Z which is disjoint from a minimum solution X

and covers its shadow.

Theorem 1 (randomized covering of the
shadow) Let T � V.G/. There is an algorithm
RandomSet.G; T; k/ that runs in 4k � nO.1/

time and returns a set Z � V.G/ such that
for any set F of T -connected subgraphs, if
there exists an F-transversal of size � k, then
the following holds with probability 2�2O.k/

:
there is an F-transversal X of size � k such
that

1. X \Z D ; and
2. Z covers the shadow of X , i.e., r.X/ [

f .X/ � Z.

The set F is not an input of the algorithm
described by Theorem 1: the set Z constructed in
the above theorem works for every T -connected
set F of subgraphs. Therefore, issues related to
the representation of F do not arise. Theorem 1
can be derandomized using the theory of split-
ters [11]:

Theorem 2 (deterministic covering of the
shadow) Let T � V.G/. We can construct a
set fZ1; Z2; : : : ; Ztg with t D 22O.k/

� log2 n

in time 22O.k/
� nO.1/ such that for any set F of

T -connected, if there exists an F-transversal of
size � k, then there is an F-transversal X of
size � k such that for at least one 1 � i � t we
have

1. X \Zi D ; and
2. Zi covers the shadow of X , i.e., r.X/ [

f .X/ � Zi .

Consider one such set Zi for some 1 � i �

22O.k/
� log2 n. Since this set Zi is disjoint from

a minimum solution X , it can be removed from
the graph. However, we need to remember the
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structure that the set Zi imposed on the prob-
lem. This structure is problem specific, and the
reduced (equivalent) instance is obtained on a
supergraph of G n Zi via the torso operation. It
can be shown that the original instance G has
a solution if and only if the reduced instance
has a shadowless solution. Therefore, one can
focus on the simpler task of finding a shadowless
solution or more precisely, finding any solution
under the guarantee that a shadowless solution
exists.

Applications

The first FPT algorithms for the Directed Mul-
tiway Cut problem [3] and the Directed Subset
Feedback Vertex Set problem [2] were obtained
via the framework of shadowless solutions.

Directed Multiway Cut
In the Directed Multiway Cut problem, given
a directed graph G D .V; E/, an integer k,
and a set of terminals T D ft1; t2; : : : ; tpg, the
objective is to find whether there exists a set
X � V.G/ of size at most k such that G n X

has no ti ! tj path for any 1 � i ¤ j � p.
Let F be the set of all paths between pairs of
(distinct) terminals. Then it is easy to show that
F is T -connected, and the problem of finding an
F-transversal is exactly the same as the Directed
Multiway Cut problem. It is shown in [3] that
a shadowless solution of Directed Multiway Cut
is also a solution of the underlying undirected
instance of Multiway Cut, which is known to
be FPT [8] parameterized by k. Combining with
Theorem 2, this gives an FPT algorithm for the
Directed Multiway Cut problem.

Directed Subset Feedback Vertex Set
In the Directed Subset Feedback Vertex Set prob-
lem, given a directed graph G D .V; E/, an
integer k, and a set S � V.G/, the objective
is to find whether there exists a set X � V.G/

of size at most k such that G n X has no S -
cycles, i.e., cycles containing at least one vertex
of S . The special case when S D V.G/ is the
Directed Feedback Vertex Set problem. Let F be

the set of all S -cycles and T be a solution of
size k C 1 (which can be obtained via iterative
compression). Then it is easy to show that F is
T -connected, and the problem of finding an F-
transversal is exactly the same as the Directed
Subset Feedback Vertex Set problem. It is shown
in [2] that a shadowless solution of Directed
Subset Feedback Vertex Set can be found in FPT
time. Combining with Theorem 2, this gives an
FPT algorithm for the Directed Subset Feedback
Vertex Set problem. This generalizes the FPT
algorithm for Directed Feedback Vertex Set [1].

Open Problems

The two main open problems which fit within
the framework of “Finding an F-transversal for
some T -connected F” are Directed Multicut and
Directed Odd Cycle Transversal. Unfortunately,
the structure of shadowless solutions is not yet
understood well enough to be able to find them in
FPT time.

Directed Multicut
In the Directed Multicut problem, given
a directed graph G D .V; E/, an inte-
ger k, and a set of terminal pairs T D

f.s1; t1/; .s2; t2/; : : : ; .sp; tp/g, the objective is
to find whether there exists a set X � V.G/ of
size at most k such that G n X has no si ! ti
path for any 1 � i � p. Let F be the union of
set of all si ! ti paths for 1 � i � p. Then it
is easy to show that F is T -connected, and the
problem of finding an F-transversal is exactly
the same as the Directed Multicut problem. It is
known [9] that Directed Multicut parameterized
by k is W[1]-hard. However, for the special case
of p D 2 terminal pairs, the problem can be
reduced to Directed Multiway Cut and is hence
FPT parameterized by k [3]. The complexity for
p D 3 parameterized by k is an important open
problem. With respect to the bigger parameter
p C k, the problem is known [5] to be FPT on
directed acyclic graphs. However, this algorithm
heavily uses the properties of a topological
ordering, and the complexity parameterized by
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p C k on general graphs is another important
open problem.

Directed Odd Cycle Transversal
In the Directed Odd Cycle Transversal problem,
given a directed graph G D .V; E/ and an
integer k, the objective is to find whether there
exists a set X � V.G/ of size at most k

such that G n X has no cycle of odd length.
Let F be the set of all odd cycles in G and
T be a solution of size k C 1 (which can be
obtained via iterative compression [12]). Then it
is easy to show that F is T -connected, and the
problem of finding an F-transversal is exactly
the same as the Directed Odd Cycle Transversal
problem. The complexity parameterized by k is
open. Moreover, it is known that Directed Odd
Cycle Transversal problem generalizes the Di-
rected Feedback Vertex Set problem [1] and the
Undirected Odd Cycle Transversal problem [12].
Hence, an FPT algorithm for Directed Odd Cycle
Transversal would have to generalize the ideas
used to obtain FPT algorithms for these two
problems.
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Problem Definition

The problem is concerned with scheduling dy-
namically arriving jobs in the scenario when the
processing requirements of jobs are unknown to
the scheduler. The lack of knowledge of how
long a job will take to execute is a particularly
attractive assumption in real systems where such
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information might be difficult or impossible to
obtain. The goal is to schedule jobs to provide
good quality of service to the users. In particular
the goal is to design algorithms that have good
average performance and are also fair in the sense
that no subset of users experiences substantially
worse performance than others.

Notations

Let J D f1; 2; : : : ; ng denote the set of jobs in
the input instance. Each job j is characterized by
its release time rj and its processing requirement
pj . In the online setting, job j is revealed to the
scheduler only at time rj . A further restriction
is the non-clairvoyant setting, where only the
existence of job j is revealed at rj , in particular
the scheduler does not know pj until the job
meets its processing requirement and leaves the
system. Given a schedule, the completion time
cj of a job is the earliest time at which job j

receives pj amount of service. The flow time fj

of j is defined as cj � rj . The stretch of a job
is defined as the ratio of its flow time divided by
its size. Stretch is also referred to as normalized
flow time or slowdown and is a natural measure
of fairness as it measures the waiting time of a job
per unit of service received. A schedule is said to
be preemptive, if a job can be interrupted arbitrar-
ily, and its execution can be resumed later from
the point of interruption without any penalty. It
is well known that preemption is necessary to
obtain reasonable guarantees for flow time even
in the offline setting [6].

Recall that the online shortest remaining pro-
cessing time (SRPT) algorithm that at any time
works on the job with the least remaining pro-
cessing is optimum for minimizing average flow
time. However, a common critique of SRPT is
that it may lead to starvation of jobs, where some
jobs may be delayed indefinitely. For example,
consider the sequence where a job of size 3
arrives at time t D 0 and one job of size 1 arrives
every unit of time starting t D 1 for a long time.
Under SRPT, the size 3 job will be delayed until
the size 1 jobs stop arriving. On the other hand,
if the goal is to minimize the maximum flow

time, then it is easily seen that first in first out
(FIFO) is the optimum algorithm. However, FIFO
can perform very poorly with respect to average
flow time (e.g., many small jobs could be stuck
behind a very large job that arrived just earlier). A
natural way to balance both the average and worst
case performance is to consider the `p norms of
flow time and stretch, where the `p norm of the

sequence x1; : : : ; xn is defined as

�
P

i

x
p
i

�1=p

.

The shortest elapsed time first (SETF) is a
non-clairvoyant algorithm that at any time works
on the job that has received the least amount of
service thus far. This is a natural way to favor
short jobs given the lack of knowledge of job
sizes. In fact, SETF is the continuous version of
the multilevel feedback (MLF) algorithm. Unfor-
tunately, SETF (or any other deterministic non-
clairvoyant algorithm) performs poorly in the
framework of competitive analysis, where an al-
gorithm is called c-competitive if for every input
instance, its performance is no worse than c times
that of the optimum offline (clairvoyant) solution
for that instance [7]. However, competitive anal-
ysis can be overly pessimistic in its guarantee.
A way around this problem was proposed by
Kalyanasundaram and Pruhs [5] who allowed
the online scheduler a slightly faster processor
to make up for its lack of knowledge of future
arrivals and job sizes. Formally, an algorithm Alg
is said to be s-speed, c-speed competitive where
c is the worst case ratio over all instance I ,
of Algs.I /=Opt1.I /, where Algs is the value of
solution produced by Alg when given an s-speed
processor, and Opt1 is the optimum value using a
speed 1 processor. Typically the most interesting
results are those where c is small and s D .1C�/

for any arbitrary � > 0.

Key Results

In their seminal paper [5], Kalyanasundaram and
Pruhs showed the following.

Theorem 1 ([5]) SETF is a .1C �/-speed, .1C

1=�/-competitive non-clairvoyant algorithm for
minimizing the average flow time on a single
machine with preemptions.
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For minimizing the average stretch, Muthukr-
ishnan, Rajaraman, Shaheen, and Gehrke [6]
considered the clairvoyant setting and showed
that SRPT is 2-competitive for a single machine
and 14-competitive for multiple machines. The
non-clairvoyant setting was consider by Bansal,
Dhamdhere, Konemann, and Sinha [7]. They
showed that

Theorem 2 ([1]) SETF is a .1 C �/-speed,
0.log2 P /-competitive for minimizing average
stretch, where P is the ratio of the maximum to
minimum job size. On the other hand, even with
O.1/-speed, any non-clairvoyant algorithm is
at least �.log P /-competitive. Interestingly, in
terms of n, any non-clairvoyant algorithm must
be �.n/-competitive even with O.1/-speedup.
Moreover, SETF is O.n/-competitive (even
without extra speedup). For the special case
when all jobs arrive at time 0, SETF is optimum
up to constant factors. It is O.log P /-competitive
(without any extra speedup). Moreover, any non-
clairvoyant must be �.log P /-competitive even
with factor O.1/-speedup.

The key idea of the above result was a con-
nection between SETF and SRPT. First, at the
expense of .1 C �/-speedup, it can be seen that
SETF is no worse than MLF where the thresholds
are powers of .1 C �/. Second, the behavior of
MLF on an instance I can be related to the
behavior of shortest job first (SJF) algorithm
on another instance I 0 that is obtained from/by
dividing each job into logarithmically many jobs
with geometrically increasing sizes. Finally, the
performance of SJF is related to SRPT using
another .1C �/ factor speedup.

Bansal and Pruhs [2] considered the problem
of minimizing the `p norms of flow time and
stretch on a single machine. They showed the
following.

Theorem 3 ([2]) In the clairvoyant setting,
SRPT and SJF are .1 C �/-speed, O.1=�/-
competitive for minimizing the `p norms of
both flow time and stretch. On the other hand,
for 1 < p < 1, no online algorithm
(possibly clairvoyant) can be O.1/-competitive
for minimizing `p norms of stretch or flow time

without speedup. In particular, any randomized
online algorithm is at least �.n.p�1/=3p2

/-
competitive for `p norms of stretch and is at least
�.n.p�1/=p.3p�1//-competitive for `p norms of
flow time.

The above lower bounds are somewhat sur-
prising, since SRPT and FIFO are optimum for
the case p D 1 and p D1 for flow time.

Bansal and Pruhs [2] also consider the non-
clairvoyant case.

Theorem 4 ([2]) In the non-clairvoyant setting,
SETF is .1C�/-speed, O.1=�2C2=p/-competitive
for minimizing the `p norms of flow time.
For minimizing `p norms of stretch, SETF
is .1 C �/-speed, O.1=�3C1=p � log1C1=p P /-
competitive

Finally, Bansal and Pruhs also consider round
robin (RR) or processor sharing that at any time
splits the processor equally among the unfinished
jobs. RR is considered to be an ideal fair strategy
since it treats all unfinished jobs equally. How-
ever, they show that

Theorem 5 For any p � 1, there is an � > 0

such that even with a .1 C �/ times faster pro-
cessor, RR is not no.1/-competitive for minimizing
the `p norms of flow time. In particular, for
� < 1=2p, RR is .1 C �/-speed, �.n.1�2�p/=p/-
competitive. For `p norms of stretch, RR is �.n/-
competitive as is in fact any randomized non-
clairvoyant algorithm.

The results above have been extended in a
couple of directions. Bansal and Pruhs [3] extend
these results to weighted `p norms of flow time
and stretch. Chekuri, Khanna, Kumar, and Goel
[4] have extended these results to the multiple
machines case. Their algorithms are particularly
elegant: Each job is assigned to some machine at
random, and all jobs at a particular machine are
processed using SRPT or SETF (as applicable).

Applications

SETF and its variants such as MLF are widely
used in operating systems [9,10]. Note that SETF
is not really practical since each job could be
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preempted infinitely often. However, variants
of SETF with fewer preemptions are quite
popular.

Open Problems

It would be interesting to explore other notions
of fairness in the dynamic scheduling setting.
In particular, it would be interesting to consider
algorithms that are both fair and have a good
average performance.

An immediate open problem is whether the
gap between O.log2 P / and �.log P / can be
closed for minimizing the average stretch in the
non-clairvoyant setting.
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Problem Definition

Consider the route-planning task for passengers
of scheduled public transportation. Here, the run-
ning example is that of a train system, but the
discussion applies equally to bus, light-rail and
similar systems. More precisely, the task is to
construct a timetable information system that,
based upon the detailed schedules of all trains,
provides passengers with good itineraries, includ-
ing the transfer between different trains.

Solutions to this problem consist of a model
of the situation (e.g., can queries specify a limit
on the number of transfers?), an algorithmic
approach, its mathematical analysis (does it
always return the best solution? Is it guaranteed
to work fast in all settings?), and an evaluation
in the real world (Can travelers actually use the
produced itineraries? Is an implementation fast
enough on current computers and real data?).
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Key Results

The problem is discussed in detail in a recent
survey article [6].

Modeling
In a simplistic model, it is assumed that a transfer
between trains does not take time. A more real-
istic model specifies a certain minimum transfer
time per station. Furthermore, the objective of the
optimization problem needs to be defined. Should
the itinerary be as fast as possible, or as cheap
as possible, or induce the least possible trans-
fers? There are different ways to resolve this as
surveyed in [6], all originating in multi-objective
optimization, like resource constraints or Pareto-
optimal solutions. From a practical point of view,
the preferences of a traveler are usually difficult
to model mathematically, and one might want to
let the user choose the best option among a set of
reasonable itineraries himself. For example, one
can compute all itineraries that are not inferior to
some other itinerary in all considered aspects. As
it turns out, in real timetables the number of such
itineraries is not too big, such that this approach
is computationally feasible and useful for the
traveler [5]. Additionally, the fare structure of
most railways is fairly complicated [4], mainly
because fares usually are not additive, i.e., are not
the sum of fares of the parts of a trip.

Algorithmic Models
The current literature establishes two main ideas
how to transform the situation into a shortest path
problem on a graph. As an example, consider
the simplistic modeling where transfer takes no
time, and where queries specify starting time and
station to ask for an itinerary that achieves the
earliest arrival time at the destination.

In the time-expanded model [11], every arrival
and departure event of the timetable is a vertex of
the directed graph. The arcs of the graph repre-
sent consecutive events at one station, and direct
train connections. The length of an arc is given
by the time difference of its end vertices. Let s
be the vertex at the source station whose time is
directly after the starting time. Now, a shortest

path from s to any vertex of the destination station
is an optimal itinerary.

In the time-dependent model [3, 7, 9, 10],
the vertices model stations, and the arcs stand
for the existence of a direct (non-stop) train
connection. Instead of edge length, the arcs are
labeled with edge-traversal functions that give the
arrival time at the end of the arc in dependence
on the time a passenger starts at the beginning of
the arc, reflecting the times when trains actually
run. To solve this time-dependent shortest path
problem, a modification of Dijkstra’s algorithm
can be used. Further exploiting the structure of
this situation, the graph can be represented in
a way that allows constant time evaluation of the
link traversal functions [3]. To cope with more re-
alistic transfer models, a more complicated graph
can be used.

Additionally, many of the speed-up techniques
for shortest path computations can be applied to
the resulting graph queries.

Applications

The main application are timetable information
systems for scheduled transit (buses, trains, etc.).
This extends to route planning where trips in
such systems are allowed, as for example in
the setting of fine-grained traffic simulation to
compute fastest itineraries [2].

Open Problems

Improve computation speed, in particular for
fully integrated timetables and the multi-criteria
case. Extend the problem to the dynamic case,
where the current real situation is reflected,
i.e., delayed or canceled trains, and otherwise
temporarily changed timetables are reflected.

Experimental Results

In the cited literature, experimental results usu-
ally are part of the contribution [2, 4, 5, 6, 7,
8, 9, 10, 11]. The time-dependent approach can



Shortest Paths in Planar Graphs with Negative Weight Edges 1971

S

be significantly faster than the time-expanded
approach. In particular for the simplistic models
speed-ups in the range 10–45 are observed [8,
10]. For more detailed models, the performance
of the two approaches becomes comparable [6].
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Problem Definition

This problem is to find shortest paths in planar
graphs with general edge weights. It is known that
shortest paths exist only in graphs that contain
no negative weight cycles. Therefore, algorithms
that work in this case must deal with the presence
of negative cycles, i.e., they must be able to detect
negative cycles.

In general graphs, the best known algorithm,
the Bellman-Ford algorithm, runs in time O(mn)
on graphs with n nodes and m edges, while algo-
rithms on graphs with no negative weight edges
run much faster. For example, Dijkstra’s algo-
rithm implemented with the Fibonacchi heap runs
in time O.m C n log n/, and, in case of integer
weights Thorup’s algorithm runs in linear time.
Goldberg [5] also presented an O.m

p
n log L/-

time algorithm where L denotes the absolute
value of the most negative edge weights. Note
that his algorithm is weakly polynomial.

Notations
Given a directed graph G D .V; E/ and a weight
function wWE ! R on its directed edges, a dis-
tance labeling for a source node s is a function
d WV ! R such that d.v/ is the minimum length
over all s-to-v paths, where the length of path P
is
P

e2P w.e/.

Problem 1 (Single-Source-Shortest-Path)
INPUT: A directed graph G D .V; E/, weight
function wWE ! R, source node s 2 V .
OUTPUT: If G does not contain negative length
cycles, output a distance labeling d for source
node s. Otherwise, report that the graph contains
some negative length cycle.

The algorithm by Fakcharoenphol and Rao [4]
deals with the case when G is planar. They gave
an O.n log3 n/-time algorithm, improving on an
O.n3=2/-time algorithm by Lipton, Rose, and
Tarjan [9] and an O.n4=3 log nL/-time algorithm
by Henzinger, Klein, Rao, and Subramanian [6].

Their algorithm, as in all previous algorithms,
uses a recursive decomposition and constructs
a data structure called a dense distance graph,
which shall be defined next.

A decomposition of a graph is a set of subsets
P1; P2; : : : ; Pk (not necessarily disjoint) such
that the union of all the sets is V and for all
e D .u; v/ 2 E, there is a unique Pi that contains
e. A node v is a border node of a set Pi if v 2 Pi

and there exists an edge e D .v; x/ where x 62 Pi .
The subgraph induced on a subset Pi is referred to
as a piece of the decomposition.

The algorithm works with a recursive decom-
position where at each level, a piece with n nodes
and r border nodes is divided into two subpieces
such that each subpiece has no more than 2n=3

nodes and at most 2r=3 C c
p

n border nodes,
for some constant c. In this recursive context,
a border node of a subpiece is defined to be any
border node of the original piece or any new
border node introduced by the decomposition of
the current piece.

With this recursive decomposition, the level
of a decomposition can be defined in the nat-
ural way, with the entire graph being the only
piece in the level 0 decomposition, the pieces
of the decomposition of the entire graph being
the level 1 pieces in the decomposition, and
so on.

For each piece of the decomposition, the all-
pair shortest path distances between all its bor-
der nodes along paths that lie entirely inside
the piece are recursively computed. These all-
pair distances form the edge set of a non-planar
graph representing shortest paths between border
nodes. The dense distance graph of the planar
graph is the union of these graphs over all the
levels.

Using the dense distance graph, the shortest
distance queries between pairs of nodes can be
answered.

Problem 2 (Shortest-Path-Distance-Data-
Structure)
INPUT: A directed graph G D .V; E/, weight
function wWE ! R, source node s 2 V .
OUTPUT: If G does not contain negative length
cycles, output a data structure that support dis-
tance queries between pairs of nodes. Other-
wise, report that the graph contains some negative
length cycle.
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The algorithm of Fakcharoenphol and Rao re-
lies heavily on planarity, i.e., it exploits proper-
ties regarding how shortest paths on each piece
intersect. Therefore, unlike previous algorithms
that require only that the graph can be recur-
sively decomposed with small numbers of border
nodes [10], their algorithm also requires that each
piece has a nice embedding.

Given an embedding of the piece, a hole is
a bounded face where all adjacent nodes are bor-
der nodes. Ideally, one would hope that there is
a planar embedding of any piece in the recursive
decomposition where all the border nodes are
on a single face and are circularly ordered, i.e.,
there is no holes in each piece. Although this is
not always true, the algorithm works with any
decomposition with a constant number of holes
in each piece. This decomposition can be found in
O.n log n/ time using the simple cycle separator
algorithm by Miller [12].

Key Results

Theorem 1 Given a recursive decomposition of
a planar graph such that each piece of the de-
composition contains at most a constant number
of holes, there is an algorithm that constructs the
dense distance graph is O.n log3 n/ time.

Given the procedure that constructs the dense dis-
tance graph, the shortest paths from a source s can
be computed by first adding s as a border node
in every piece of the decomposition, computing
the dense distance graph, and then extending the
distances into all internal nodes on every piece.
This can be done in time O.n log3 n/.

Theorem 2 The single-source shortest path
problem for an n-node planar graph with
negative weight edges can be solved in time
O.n log3 n/.

The dense distance graph can be used to answer
distance queries between pairs of nodes.

Theorem 3 Given the dense distance graph, the
shortest distance between any pair of nodes can
be found in O.

p
n log2 n/ time.

It can also be used as a dynamic data structure
that answers shortest path queries and allows
edge cost updates.

Theorem 4 For planar graphs with only non-
negative weight edges, there is a dynamic data
structure that supports distance queries and
update operations that change edge weights in
amortized O.n2=3 log7=3 n/ time per operation.
For planar graph with negative weight edges,
there is a dynamic data structures that supports
the same set of operations in amortized
O.n4=5 log13=5 n/ time per operation.

Note that the dynamic data structure does not
support edge insertions and deletions, since these
operations might destroy the recursive decompo-
sition.

Applications

The shortest path problem has long been studied
and continues to find applications in diverse ar-
eas. There are a many problems that reduce to
the shortest path problem where negative weight
edges are required, for example the minimum-
mean length directed circuit. For planar graphs,
the problem has wide application even when the
underlying graph is a grid. For example, there
are recent image segmentation approaches that
use negative cycle detection [2, 3]. Some of other
applications for planar graphs include separator
algorithms [13] and multi-source multi-sink flow
algorithms [11].

Open Problems

Klein [8] gives a technique that improves the
running time of the construction of the dense dis-
tance graph to O.n log2 n/ when all edge weights
are non-negative; this also reduces the amor-
tized running time for the dynamic case down to
O.n2=3 log5=3 n/. Also, for planar graphs with no
negative weight edges, Cabello [1] gives a faster
algorithm for computing the shortest distances
between k pairs of nodes. However, the problem
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for improving the bound of O.n log3 n/ for find-
ing shortest paths in planar graphs with general
edge weights remains opened.

It is not known how to handle edge inser-
tions and deletions in the dynamic data structure.
A new data structure might be needed instead of
the dense distance graph, because the dense dis-
tance graph is determined by the decomposition.
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Problem Definition

A point lattice is the set of all integer linear
combinations

L.b1; : : : ; bn/ D

(
nX

iD1

xi bi W x1; : : : ; xn 2 Z

)

of n linearly independent vectors b1; : : : ; bn2 R
m

in m-dimensional Euclidean space. For compu-
tational purposes, the lattice vectors b1; : : : ; bn

are often assumed to have integer (or rational)
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entries, so that the lattice can be represented
by an integer matrix B D Œb1; : : : ; bn� 2 Z

m�n

(called basis) having the generating vectors as
columns. Using matrix notation, lattice points
in L.B/ can be conveniently represented as Bx
where x is an integer vector. The integers m and
n are called the dimension and rank of the lattice
respectively. Notice that any lattice admits mul-
tiple bases, but they all have the same rank and
dimension.

The main computational problems on lattices
are the Shortest Vector Problem, which asks
to find the shortest nonzero vector in a given
lattice, and the Closest Vector Problem, which
asks to find the lattice point closest to a given
target. Both problems can be defined with
respect to any norm, but the Euclidean norm

kvk D
qP

i v2
i is the most common. Other

norms typically found in computer science
applications are the `1 norm kvk1 D

P
i jvi j

and the max norm kvk1 D maxi jvi j. This entry
focuses on the Euclidean norm.

Since no efficient algorithm is known to solve
SVP and CVP exactly in arbitrary high dimen-
sion, the problems are usually defined in their
approximation version, where the approximation
factor � � 1 can be a function of the dimension
or rank of the lattice.

Definition 1 (Shortest Vector Problem, SVP”)
Given a lattice L.B/, find a nonzero lattice
vector Bx (where x 2 Z

n n f0g) such that
kBxk � � � kByk for any y 2 Z

n n f0g.

Definition 2 (Closest Vector Problem, CVP”)
Given a lattice L.B/ and a target point t, find
a lattice vector Bx (where x 2 Z

n) such that
kBx � tk � � � kBy � tk for any y 2 Z

n.

Lattices have been investigated by mathemati-
cians for centuries in the equivalent language of
quadratic forms, and are the main object of study
in the geometry of numbers, a field initiated by
Minkowski as a bridge between geometry and
number theory. For a mathematical introduction
to lattices see [3]. The reader is referred to [6, 12]
for an introduction to lattices with an emphasis
on computational and algorithmic issues.

Key Results

The problem of finding an efficient (polynomial
time) solution to SVP� for lattices in arbitrary
dimension was first solved by the celebrated
lattice reduction algorithm of Lenstra, Lenstra
and Lovász [11], commonly known as the LLL
algorithm.

Theorem 1 There is a polynomial time algo-
rithm to solve SVP� for � D .2=

p
3/n, where n

is the rank of the input lattice.

The LLL algorithm achieves more than just find-
ing a relatively short lattice vector: it finds a so-
called reduced basis for the input lattice, i.e.,
an entire basis of relatively short lattice vectors.
Shortly after the discovery of the LLL algorithm,
Babai [2] showed that reduced bases can be used
to efficiently solve CVP� as well within similar
approximation factors.

Corollary 1 There is a polynomial time algo-
rithm to solve CVP� for � D O.2=

p
3/n, where

n is the rank of the input lattice.

The reader is referred to the original pa-
pers [2, 11] and [12, chap. 2] for details.
Introductory presentations of the LLL algorithm
can also be found in many other texts, e.g., [5,
chap. 16] and [15, chap. 27]. It is interesting to
note that CVP is at least as hard as SVP (see
[12, chap 2]) in the sense that any algorithm that
solves CVP� can be efficiently adapted to solve
SVP� within the same approximation factor.

Both SVP� and CVP� are known to be NP-
hard in their exact (� D 1) or even approximate
versions for small values of ”, e.g., constant ”

independent of the dimension. (See [13, chaps. 3
and 4] and [4, 10] for the most recent results.) So,
no efficient algorithm is likely to exist to solve
the problems exactly in arbitrary dimension. For
any fixed dimension n, both SVP and CVP can be
solved exactly in polynomial time using an algo-
rithm of Kannan [9]. However, the dependency
of the running time on the lattice dimension is
nO.n/. Using randomization, exact SVP can be
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solved probabilistically in 2O.n/ time and space
using the sieving algorithm of Ajtai, Kumar and
Sivakumar [1].

As for approximate solutions, the LLL lattice
reduction algorithm has been improved both in
terms of running time and approximation guaran-
tee. (See [14] and references therein.) Currently,
the best (randomized) polynomial time approxi-
mation algorithm achieves approximation factor
� D 2O.n log log n= log n/.

Applications

Despite the large (exponential in n) approxima-
tion factor, the LLL algorithm has found numer-
ous applications and lead to the solution of many
algorithmic problems in computer science. The
number and variety of applications is too large
to give a comprehensive list. Some of the most
representative applications in different areas of
computer science are mentioned below.

The first motivating applications of lattice
basis reduction were the solution of integer
programs with a fixed number of variables
and the factorization of polynomials with
rationals coefficients. (See [11, 8], and [15,
chap. 16].) Other classic applications are the
solution of random instances of low-density
subset-sum problems, breaking (truncated)
linear congruential pseudorandom generators,
simultaneous Diophantine approximation, and
the disproof of Mertens’ conjecture. (See [8] and
[5, chap. 17].)

More recently, lattice basis reduction has been
extensively used to solve many problems in crypt-
analysis and coding theory, including breaking
several variants of the RSA cryptosystem and the
DSA digital signature algorithm, finding small
solutions to modular equations, and list decoding
of CRT (Chinese Reminder Theorem) codes. The
reader is referred to [7, 13] for a survey of recent
applications, mostly in the area of cryptanalysis.

One last class of applications of lattice prob-
lems is the design of cryptographic functions
(e.g., collision resistant hash functions, public
key encryption schemes, etc.) based on the appar-

ent intractability of solving SVP� within small
approximation factors. The reader is referred to
[12, chap. 8] and [13] for a survey of such appli-
cations, and further pointers to relevant literature.
One distinguishing feature of many such lattice
based cryptographic functions is that they can be
proved to be hard to break on the average, based
on a worst-case intractability assumption about
the underlying lattice problem.

Open Problems

The main open problems in the computational
study of lattices is to determine the complexity of
approximate SVP� and CVP� for approximation
factors � D nc polynomial in the rank of the
lattice. Specifically,

• Are there polynomial time algorithm that
solve SVP� or CVP� for polynomial factors
� D nc? (Finding such algorithms even for
very large exponent c would be a major
breakthrough in computer science.)

• Is there an � > 0 such that approximating
SVP� or CVP� to within � D n� is NP-
hard? (The strongest known inapproximability
results [4] are for factors of the form
nO.1= log log n/ which grow faster than any
poly-logarithmic function, but slower than
any polynomial.)

There is theoretical evidence that for large
polynomials factors � D nc , SVP� and CVP� are
not NP-hard. Specifically, both problems belong
to complexity class coAM for approximation fac-
tor � D O.

p
n= log n/. (See [12, chap. 9].) So,

the problems cannot be NP-hard within such
factors unless the polynomial hierarchy PH col-
lapses.

URL to Code

The LLL lattice reduction algorithm is imple-
mented in most library and packages for compu-
tational algebra, e.g.,
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• GAP (http://www.gap-system.org)
• LiDIA (http://www.cdc.informatik.tu-darmstadt.

de/TI/LiDIA/)
• Magma (http://magma.maths.usyd.edu.au/

magma/)
• Maple (http://www.maplesoft.com/)
• Mathematica (http://www.wolfram.com/

products/mathematica/index.html)
• NTL (http://shoup.net/ntl/).

NTL also includes an implementation of Block
Korkine-Zolotarev reduction that has been exten-
sively used for cryptanalysis applications.
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Similarity Between Compressed Strings, Table 1 Various scoring metrics

Metric Match Mismatch Indel Indel of k characters

Longest common subsequence 1 0 0 0

Levenshtein distance 0 1 1 k

Weighted edit distance 0 • � k	

Affine gap penalty 1 �ı �� � 	 �� � k	

Problem Definition

The problem of computing similarity between
two strings is concerned with comparing two
strings using some scoring metric. There exist
various scoring metrics and a popular one is
the Levenshtein distance (or edit distance) met-
ric. The standard solution for the Levenshtein
distance metric was proposed by Wagner and
Fischer [13], which is based on dynamic pro-
gramming. Other widely used scoring metrics
are the longest common subsequence metric, the
weighted edit distance metric, and the affine gap
penalty metric. The affine gap penalty metric is
the most general, and it is a quite complicated
metric to deal with. Table 1 shows the differences
between the four metrics.

The problem considered in this entry is the
similarity between two compressed strings. This
problem is concerned with efficiently comput-
ing similarity without decompressing two strings.
The compressions used for this problem in the
literature are run-length encoding and Lempel-
Ziv (LZ) compression [14].

Run-Length Encoding
A string S is run-length encoded if it is described
as an ordered sequence of pairs (�; i), often de-
noted “� i”, each consisting of an alphabet sym-
bol, � , and an integer, i. Each pair corresponds to
a run in S, consisting of i consecutive occurrences
of � . For example, the string aaabbbbaccccbb
can be encoded a3b4a1c4b2 or, equivalently,
.a; 3/.b; 4/.a; 1/.c; 4/.b; 2/. Let A and B be two
strings with lengths n and m, respectively. Let A0

and B0 be the run-length encoded strings of A and
B, and n0 and m0 be the lengths of A0 and B0,
respectively.

Problem 1
INPUT: Two run-length encoded strings A0 and B0,
a scoring metric d.
OUTPUT: The similarity between A0 and B0

using d.

LZ Compression
Let X and Y be two strings with length O(n).
Let X0 and Y0 be the LZ compressed strings of X
and Y, respectively. Then the lengths of X0 and Y0

are O.hn= log n/, where h � 1 is the entropy of
strings X and Y.

Problem 2
INPUT: Two LZ compressed strings X0 and Y0,
a scoring metric d.
OUTPUT: The similarity between X0 and Y0

using d.

Block Computation
To compute similarity between compressed
strings efficiently, one can use a block
computation method. Dynamic programming
tables are divided into submatrices, which are
called “blocks”. For run-length encoded strings,
a block is a submatrix made up of two runs – one
of A and one of B. For LZ compressed strings,
a block is a submatrix made up of two phrases –
one phrase from each string. See [5] for more
details. Then, blocks are computed from left to
right and from top to bottom. For each block,
only the bottom row and the rightmost column
are computed. Figure 1 shows an example of
block computation.

Key Results

The problem of computing similarity of two
run-length encoded strings, A0 and B0, has been
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Similarity Between
Compressed Strings,
Fig. 1 Dynamic
programming table for
strings ar cpbt and
asbqcu is divided into 9
blocks. For one of the
blocks, e.g., B, only the
bottom row C and the
rightmost column D are
computed from E and F

studied for various scoring metrics. Bunke and
Csirik [4] presented the first solution to Problem
1 using the longest common subsequence metric.
The algorithm is based on block computation of
the dynamic programming table.

Theorem 1 (Bunke and Csirik [4]) A longest
common subsequence of run-length encoded
strings A0 and B0 can be computed in O.nm0

Cn0m/ time.

For the Levenshtein distance metric, Arbell, Lan-
dau, and Mitchell [2] and Mäkinen, Navarro,
and Ukkonen [10] presented O.nm0 C n0m/ time
algorithms, independently. These algorithms are
extensions of the algorithm of Bunke and Csirik.

Theorem 2 (Arbell, Landau, and Mitchell
[2], Mäkinen, Navarro, and Ukkonen [10])
The Levenshtein distance between run-length
encoded strings A0 and B0 can be computed in
O.nm0 C n0m/ time.

For the weighted edit distance metric, Crochemore,
Landau, and Ziv-Ukelson [6] and Mäkinen,
Navarro, and Ukkonen [11] gave O.nm0 C n0m/

time algorithms using techniques completely
different from each other. The algorithm of
Crochemore, Landau, and Ziv-Ukelson [6] is
based on the technique which is used in the
LZ compressed pattern matching algorithm [6],
and the algorithm of Mäkinen, Navarro, and
Ukkonen [11] is an extension of the algorithm for
the Levenshtein distance metric.

Theorem 3 (Crochemore, Landau, and Ziv-
Ukelson [6] Mäkinen, Navarro, and Ukko-
nen [11]) The weighted edit distance between

run-length encoded strings A0 and B0 can be
computed in O.nm0 C n0m/ time.

For the affine gap penalty metric, Kim, Amir,
Landau, and Park [8] gave an O.nm0 C n0m/

time algorithm. To compute similarity in this
metric efficiently, the problem is converted into
a path problem on a directed acyclic graph and
some properties of maximum paths in this graph
are used. It is not necessary to build the graph ex-
plicitly since they came up with new recurrences
using the properties of the graph.

Theorem 4 (Kim, Amir, Landau, and Park
[8]) The similarity between run-length encoded
strings A0 and B0 in the affine gap penalty
metric can be computed in O.nm0 C n0m/

time.

The above results show that comparison of run-
length encoded strings using the longest common
subsequence metric is successfully extended to
more general scoring metrics.

For the longest common subsequence
metric, there exist improved algorithms.
Apostolico, Landau, and Skiena [1] gave an
O.n0m0 log.n0m0// time algorithm. This algo-
rithm is based on tracing specific optimal paths.

Theorem 5 (Apostolico, Landau, and Skiena
[1]) A longest common subsequence of run-
length encoded strings A0 and B0 can be computed
in O.n0m0 log.n0 Cm0// time.

Mitchell [12] obtained an O..d C n0 Cm0/

log.d C n0 Cm0// time algorithm, where d is
the number of matches of compressed characters.
This algorithm is based on computing geometric
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shortest paths using special convex distance
functions.

Theorem 6 (Mitchell [12]) A longest common
subsequence of run-length encoded strings A0

and B0 can be computed in O..d C n0 Cm0/

log.d C n0 Cm0// time, where d is the number
of matches of compressed characters.

Mäkinen, Navarro, and Ukkonen [11] conjec-
tured an O.n0m0/ time algorithm on average
under the assumption that the lengths of
the runs are equally distributed in both
strings.

Conjecture 1 (Mäkinen, Navarro, and Ukko-
nen [11]) A longest common subsequence of
run-length encoded strings A0 and B0 can be
computed in O.n0m0/ time on average.

For Problem 2, Crochemore, Landau, and Ziv-
Ukelson [6] presented a solution using the addi-
tive gap penalty metric. The additive gap penalty
metric consists of 1 for match, �• for mismatch,
and �� for indel, which is almost the same as the
weighted edit distance metric.

Theorem 7 (Crochemore, Landau, and Ziv-
Ukelson [6]) The similarity between LZ com-
pressed strings X0 and Y0 in the additive gap
penalty metric can be computed in O.hn2= log n/

time, where h � 1 is the entropy of strings X
and Y.

Applications

Run-length encoding serves as a popular image
compression technique, since many classes
of images (e.g., binary images in facsimile
transmission or for use in optical character
recognition) typically contain large patches
of identically-valued pixels. Approximate
matching on images can be a useful tool to
handle distortions. Even a one-dimensional
compressed approximate matching algorithm
would be useful to speed up two-dimensional
approximate matching allowing mismatches and
even rotations [3, 7, 9].

Open Problems

The worst-case complexity of the problem is not
fully understood. For the longest common sub-
sequence metric, there exist some results whose
time complexities are better than O.nm0 C n0m/

to compute the similarity of two run-length en-
coded strings [1, 11, 12]. It remains open to
extend these results to the Levenshtein distance
metric, the weighted edit distance metric and the
affine gap penalty metric.

In addition, for the longest common subse-
quence metric, it is an open problem to prove
Conjecture 1.
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Problem Definition

A spanner is a sparse subgraph of a given undi-
rected graph that preserves approximate distance
between each pair of vertices. More precisely,

a t -spanner of a graph G D .V; E/ is a sub-
graph .V; ES /; ES � E such that, for any pair
of vertices, their distance in the subgraph is at
most t times their distance in the original graph,
where t is called the stretch factor. The spanners
were defined formally by Peleg and Schäffer [15]
though the associated notion was used implicitly
by Awerbuch [3] in the context of network syn-
chronizers.

Computing t -spanner of smallest size for a
given graph is a well-motivated combinatorial
problem with many applications. However, com-
puting t -spanner of smallest size for a graph
is NP-hard. In fact, for t > 2, it is NP-hard
[11] even to approximate the smallest size of t -
spanner of a graph with ratio O.2.1�	/ ln n/ for
any � > 0. Having realized this fact, researchers
have pursued another direction which is quite
interesting and useful. Let S t

G be the size of the
sparsest t -spanner of a graph G, and let S t

n be the
maximum value of S t

G over all possible graphs on
n vertices. Does there exist a polynomial time al-
gorithm which computes, for any weighted graph
and parameter t , its t -spanner of size O.S t

n/?
Such an algorithm would be the best one can hope
for given the hardness of the original t -spanner
problem. Naturally, the question arises as to how
large can S t

n be ? A 43-year-old girth lower
bound conjecture by Erdös [13] implies that there
are graphs on n vertices whose 2k� as well as
.2k � 1/-spanner will require �.n1C1=k/ edges.
This conjecture has been proved for k D 1; 2; 3;

and 5. Note that a .2k � 1/-spanner is also a 2k-
spanner, and the lower bound on the size is the
same for both 2k-spanner and .2k � 1/-spanner.
So the objective is to design an algorithm that,
for any weighted graph on n vertices, computes a
.2k � 1/-spanner of O.n1C1=k/ size. Needless to
say, one would like to design the fastest algorithm
for this problem, and the most ambitious aim
would be to achieve the linear time complexity.

Key Results

The key results of this entry are two very simple
algorithms which compute a .2k � 1/-spanner of
a given weighted graph G D .V; E/. Let n and m
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denote, respectively, the number of vertices and
edges of G. The first algorithm, due to Althöfer
et al. [2], is based on a greedy strategy and runs
in O.mn1C1=k/ time. The second algorithm [6]
is based on a very local approach and runs in
an expected O.m/ time. To start with, consider
the following simple observation. Suppose there
is a subset ES � E that ensures the following
proposition for every edge .x; y/ 2 EnES .

Pt .x; y/ : the vertices x and y are connected
in the subgraph .V; ES / by a path consisting
of at most t edges, and the weight of each
edge on this path is not more than that of the
edge .x; y/.

It follows easily that the subgraph .V; ES / will
be a t -spanner of G. The two algorithms for
computing .2k � 1/-spanner eventually compute
such set ES based on two completely different
approaches.

Algorithm I
This algorithm selects edges for spanner in a
greedy fashion and is similar to Kruskal’s algo-
rithm for computing a minimum spanning tree.
The edges of the graph are processed in the
increasing order of their weights. To begin with,
the spanner ES D ;; and the algorithm adds
edges to it gradually. The decision as to whether
an edge, say .u; v/, has to be added (or not) to ES

is made as follows:

If the distance between u and v in the subgraph
induced by the current spanner edges ES is more
than t � weight.u; v/, then add the edge .u; v/ to
ES ; otherwise, discard the edge.

It follows that Pt .x; y/ would hold for each
edge of E missing in ES , and so at the end, the
subgraph .V; ES / will be a t -spanner. A well-
known result in elementary graph theory states
that a graph with more than n1C1=k edges must
have a cycle of length at most 2k. It follows
from the above algorithm that the length of any
cycle in the subgraph .V; ES / has to be at least
t C 1. Hence, for t D 2k � 1, the number of
edges in the subgraph .V; ES / will be less than
n1C1=k . Thus, the algorithm I described above

computes a .2k � 1/-spanner of size O.n1C1=k/,
which is indeed optimal based on the lower bound
mentioned earlier.

A simple O.mn1C1=k/ implementation of al-
gorithm I follows based on Dijkstra’s algorithm.
Cohen [10] and later Thorup and Zwick [19]
designed algorithms for .2k�1/-spanner with an
improved running time of O.kmn1C1=k/. These
algorithms relied on several calls to Dijkstra’s
single-source Shortest path algorithm for dis-
tance computation and therefore were far from
achieving linear time. On the other hand, since
a spanner must approximate all-pairs distances in
a graph, it appears difficult to compute a spanner
by avoiding explicit distance information. Some-
what surprisingly, algorithm II, described in the
following section, avoids any sort of distance
computation and achieves expected linear time.

Algorithm II
This algorithm employs a novel clustering based
on a very local approach and establishes the
following result for the spanner problem:

Given a weighted graph G D .V; E/ and an
integer k > 1, a spanner of .2k � 1/ stretch and
O.kn1C1=k/ size can be computed in expected
O.km/ time.

The algorithm executes in O.k/ rounds, and
in each round it essentially explores adjacency
list of each vertex to prune dispensable edges. As
a testimony of its simplicity, we will present the
entire algorithm for 3-spanner and its analysis in
the following section. The algorithm can be easily
adapted in other computational models (parallel,
external memory, distributed) with nearly optimal
performance (see [6] for more details).

Computing a 3-Spanner in Linear Time
To meet the size constraint of a 3-spanner, a
vertex, on an average, contributes

p
n edges to

the spanner. So the vertices with degree O.
p

n/

are easy to handle since all their edges can be
selected in the spanner. For vertices with higher
degree, a clustering (groupings) scheme is em-
ployed to tackle this problem which has its basis
in dominating sets.
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To begin with, there is a set of edges E 0 initial-
ized to E and empty spanner ES . The algorithm
processes the edges E 0, moves some of them to
the spanner ES ; and discards the remaining ones.
It does so in the following two phases:

1. Forming the clusters
A sample R � V is chosen by picking each
vertex independently with probability 1p

n
.

The clusters will be formed around these
sampled vertices. Initially, the clusters are
ffugju 2 Rg. Each u 2 R is called the
center of its cluster. Each unsampled vertex
v 2 V �R is processed as follows:
(a) If v is not adjacent to any sampled vertex,

then every edge incident on v is moved to
ES .

(b) If v is adjacent to one or more sam-
pled vertices, let N .v;R/ be the sam-
pled neighbor that is nearest (Ties can
be broken arbitrarily. However, it helps
conceptually to assume that all weights
are distinct) to v. The edge .v;N .v;R//

along with every edge that is incident on
v with weight less than this edge is moved
to ES . The vertex v is added to the cluster
centered at N .v;R/.

As a last step of the first phase, all those edges
.u; v/ from E 0 where u and v are not sampled
and belong to the same cluster are discarded.

Let V 0 be the set of vertices corresponding
to the endpoints of the edges E 0 left after the
first phase. It follows that each vertex from V 0

is either a sampled vertex or adjacent to some
sampled vertex, and step 1(b) has partitioned
V 0 into disjoint clusters each centered around
some sampled vertex. Also note that, as a
consequence of the last step, each edge of
the set E 0 is an intercluster edge. The graph
.V 0; E 0/, and the corresponding clustering of
V 0; is passed onto the following (second)
phase.

2. Joining vertices with their neighboring clus-
ters
Each vertex v of graph .V 0; E 0/ is processed
as follows. Let E 0.v; c/ be the edges from the
set E 0 incident on v from a cluster c. For each
cluster c neighboring to v, the least-weight

edge from E 0.v; c/ is moved to ES ; and the
remaining edges are discarded.

The number of edges added to the spanner
ES during the algorithm described above can be
bounded as follows. Note that the sample set R
is formed by picking each vertex randomly in-
dependently with probability 1p

n
. It thus follows

from elementary probability that for each vertex
v 2 V , the expected number of incident edges
with weight less than that of .v;N .v;R// is at
most

p
n. Thus, the expected number of edges

contributed to the spanner by each vertex in the
first phase of the algorithm is at most

p
n. The

number of edges added to the spanner in the
second phase is O.njRj/. Since the expected size
of the sample R is

p
n, therefore, the expected

number of edges added to the spanner in the
second phase is at most n3=2. Hence, the expected
size of the spanner ES at the end of the algorithm
described above is at most 2n3=2. The algorithm
is repeated if the size of the spanner exceeds
3n3=2. It follows using Markov’s inequality that
the expected number of such repetitions will be
O.1/.

We now establish that ES is a 3-spanner. Note
that for every edge .u; v/ … ES , the vertices u; v

belong to some cluster in the first phase. There
are two cases now.

Case 1 : (u and v belong to the same cluster)

Let u and v belong to the cluster centered at
x 2 R. It follows from the first phase of the
algorithm that there is a 2-edge path u � x � v

in the spanner with each edge not heavier than
the edge .u; v/. (This provides a justification for
discarding all intracluster edges at the end of the
first phase.)

Case 2 : (u and v belong to different clusters)

Clearly, the edge .u; v/ was removed from E 0

during phase 2, and suppose it was removed
while processing the vertex u. Let v belong to the
cluster centered at x 2 R:

In the beginning of the second phase,
let .u; v0/ 2 E 0 be the least-weight edge
among all the edges incident on u from the
vertices of the cluster centered at x. So it
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must be that weight.u; v0/ � weight.u; v/.
The processing of vertex u during the second
phase of our algorithm ensures that the edge
.u; v0/ gets added to ES . Hence, there is a
path …uv D u � v0 � x � v between u and
v in the spanner ES , and its weight can be
bounded as weight.…uv/ D weight.u; v0/ C

weight.v0; x/ C weight.x; v/. Since .v0; x/

and .v; x/ were chosen in the first phase, it
follows that weight.v0; x/ � weight.u; v0/

and weight.x; v/ � weight.u; v/. It follows
that the spanner .V; ES / has stretch 3. Moreover,
both phases of the algorithm can be executed in
O.m/ time using elementary data structures and
bucket sorting.

The algorithm for computing a .2k � 1/-
spanner executes k iterations where each iteration
is similar to the first phase of the 3-spanner algo-
rithm. For details and formal proofs, the reader
may refer to [6].

Other Related Works
The notion of a spanner has been generalized in
the past by many researchers.

Additive Spanners
A t -spanner as defined above approximates pair-
wise distances with multiplicative error and can
be called a multiplicative spanner. In an analo-
gous manner, one can define spanners that ap-
proximate pairwise distances with additive error.
Such a spanner is called an additive spanner, and
the corresponding error is called surplus. Aing-
worth et al. [1] presented the first additive spanner
of size O.n3=2 log n/ with surplus 2. Baswana
et al. [7] presented a construction of O.n4=3/-
size additive spanner with surplus 6. Recently,
Chechik [9] presented a construction of O.n7=5/-
size additive spanner with surplus 4. It is a major
open problem if there exists any sparser additive
spanner.

.˛; ˇ/-Spanner
Elkin and Peleg [12] introduced the notion of
.˛; ˇ/-spanner for unweighted graphs, which can
be viewed as a hybrid of multiplicative and ad-
ditive spanners. An .˛; ˇ/-spanner is a subgraph
such that the distance between any pair of ver-

tices u; v 2 V in this subgraph is bounded
by ˛ı.u; v/ C ˇ, where ı.u; v/ is the distance
between u and v in the original graph. Elkin
and Peleg showed that an .1 C �; ˇ/-spanner of
size O.ˇn1Cı/, for arbitrarily small �; ı > 0,
can be computed at the expense of sufficiently
large surplus ˇ. Recently, Thorup and Zwick [20]
introduced a spanner where the additive error is
sublinear in terms of the distance being approxi-
mated.

Other interesting variants of spanner include
distance preserver proposed by Bollobás et al. [8]
and lightweight spanner proposed by Awerbuch
et al. [4]. A subgraph is said to be a d -preserver
if it preserves exact distances for each pair of
vertices which are separated by distance at least
d . A lightweight spanner tries to minimize the
number of edges as well as the total edge weight.
A lightness parameter is defined for a subgraph
as the ratio of total weight of all its edges and
the weight of the minimum spanning tree of the
graph. Awerbuch et al. [4] showed that for any
weighted graph and integer k > 1, there exists
a polynomially constructible O.k/-spanner with
O.k�n1C1=k/ edges and O.k�n1=k/ lightness,
where � D log.d iameter/.

In addition to the above work on the gener-
alization of spanners, a lot of work has also been
done on computing spanners for special classes of
graphs, e.g., chordal graphs, unweighted graphs,
and Euclidean graphs. For chordal graphs, Peleg
and Schäffer [15] designed an algorithm that
computes a 2-spanner of size O.n3=2/ and a
3-spanner of size O.n log n/. For unweighted
graphs, Halperin and Zwick [14] gave an O.m/

time algorithm for this problem. Salowe [18]
presented an algorithm for computing a .1C �/-
spanner of a d -dimensional complete Euclidean
graph in O.n log nC n

�d / time. However, none of
the algorithms for these special classes of graphs
seem to extend to general weighted undirected
graphs.

Applications

Spanners are quite useful in various applica-
tions in the area of distributed systems and
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communication networks. In these applications,
spanners appear as the underlying graph
structure. In order to build compact routing
tables [17], many existing routing schemes
use the edges of a sparse spanner for routing
messages. In distributed systems, spanners play
an important role in designing synchronizers.
Awerbuch [3] and Peleg and Ullman [16] showed
that the quality of a spanner (in terms of stretch
factor and the number of spanner edges) is very
closely related to the time and communication
complexity of any synchronizer for the network.
The spanners have also been used implicitly in
a number of algorithms for computing all-pairs
approximate shortest paths [5, 10, 19, 21]. For a
number of other applications, please refer to the
papers [2, 3, 15, 17].

Open Problems

The running time as well as the size of the .2k �

1/-spanner computed by the algorithm described
above are away from their respective worst-case
lower bounds by a factor of k. For any constant
value of k, both these parameters are optimal.
However, for the extreme value of k, that is,
for k D log n, there is deviation by a factor of
log n. Is it possible to get rid of this multiplicative
factor of k from the running time of the algorithm
and/or the size of the .2k�1/-spanner computed?
It seems that a more careful analysis coupled with
advanced probabilistic tools might be useful in
this direction.
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Introduction

We have a two-sided market, one side is a set U

of men, the other side is a set V of women. The
first part of the input also contains the mutually
acceptable man-woman pairs E. This makes up
a bipartite graph G.U [ V , E). The second part
of the input contains the preference lists of each
person, that is a weak order (may contain ties) on
his/her acceptable pairs.

A matching is a set of mutually disjoint ac-
ceptable man-woman pairs. Given a matching M ,
a man m and a woman w form a blocking pair, if
they are an acceptable pair but are not partners
in M , and they both prefer each other to their
partner, or have no partner in M . That is either
w is unmatched in M or w prefers m to her M -
partner, and either m is unmatched in M or m

prefers w to his M -partner. A matching M is
stable if there are no blocking pairs.

We consider a two-sided market under incom-
plete preference lists with ties (SMTI), where the
goal is to find a maximum size stable matching
(MAX-SMTI).

Problem Definition

Problem 1 (MAX-SMTI)

INPUT: Set U of men, and set V of women and
each person’s preference list.

OUTPUT: A stable matching of maximum
size.

Input format A list of an agent a consists of
pairs .a1; p1/, .a2; p2/; : : :; .ad ; pd /, where ai

are the acceptable persons from the other gender
and 1 � pi � max.jU j; jV j/ are integers with
ordering p1 � p2 � � � � � pd . Agent a strictly
prefers ai to aj if pi > pj and is indifferent
between ai and aj if pi D pj . Moreover women
needs a black-box procedure, which on input ai

outputs in constant time pi (we assume that this
procedure is also a part of the input). The size of
the input is the number of agents plus the total
length of the lists.

Definition of approximation ratios A goodness
measure of an approximation algorithm A for a
maximization problem is defined as follows: the
approximation ratio of A is max{opt(I //A.I /}
over all instances I , where opt(I / and A.I /

are the size of the optimal and the algorithm’s
solution on instance I , respectively.

Short history It was shown in [4] that finding
the optimal solution is NP-hard; moreover, it
is APX-hard [3]. The original Deferred Accep-
tance Algorithm of Gale and Shapley gives a 2-
approximation; the first approximation algorithm
with a strictly better ratio was presented in [5],
where the approximation ratio was 15/8. This was
improved in [6] to a 5/3-approximation and later
in [9] to a 3/2-approximation; this latter algorithm
had nonlinear running time. Recently in [10] and
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in [7], linear time 3/2-approximation algorithms
were given.

Key Results

A simple variation of the famous Deferred
Acceptance Algorithm of Gale and Shapley
is presented; which also runs in linear time
and gives a 3/2-approximation for the problem
MAX-SMTI. This algorithm is local; no central
agent or knowledge about the global input is
needed.

Algorithm

Preliminary Definitions and Concepts for the
Algorithm
During the algorithm, the agents may have dif-
ferent statuses, and some Boolean properties de-
scribed below, and also varying actual prefer-
ences.

A status of a man can be either a lad or a
bachelor or an old bachelor. A man can be
active or inactive. A man is active, if he is not
an old bachelor and he is not engaged (i.e.,
he has actually no partner). A man can also be
uncertain, described later. Initially every man is
an active lad.

A status of a woman can be either maiden
or engaged. An engaged woman is flighty, if
her fiancé is uncertain. Initially every woman is
maiden.

The actual preferences a man m is described
as follows. If women w1 and w2 are indifferent
on m’s list, and w1 is maiden but w2 is engaged,
then m prefers maiden w1 to engaged w2. An
engaged lad is uncertain if his list contains
a woman he prefers to his actual fiancée (this
can happen, if there were two maidens with the
same highest priority on m’s list, and m became
engaged to one of them).

The actual preferences a woman w is described
as follows. If there are two men, m1 and m2

with the same priority in w’s list, and m1 is
a lad, but m2 is a bachelor, then w prefers
bachelor m2 to lad m1. If w is flighty, then
she prefers a man who is not uncertain, to a

man who is uncertain (regardless of her original
preferences).

The Algorithm

While there exists an active man m, he pro-
poses to his favorite woman w. If w accepts
his proposal, they become engaged. If w
rejects him, m deletes w from his list and
remain active.
When a woman w gets a new proposal from
man m, she accepts this proposal if she
(actually) prefers m to her current fiancé.
Otherwise she rejects m.
If w accepted m, then she rejects her previ-
ous fiancé, if there was one (breaks off her
engagement), and becomes engaged to m.
If m was engaged to a woman w and later
w rejects him, then m becomes active again
and deletes w from his list, except if m is
uncertain, in this case m keeps w on the list.
If the list of m becomes empty for the first
time, he turns into a bachelor, his original list
is recovered, and he reactivates himself. If
the list of m becomes empty for the second
time, he will turn into an old bachelor and
will remain inactive forever.

After the algorithm finishes, the engaged pairs get
married and form matching M .

Theorem 1 ([7]) The algorithm always gives a
stable matching M and it is 3=2-approximating,
i.e., the stable matching given has size at least
2=3 of the maximum size stable matching.

Running Time, Locality
This algorithm runs in linear time using the as-
sumptions on the input format. Though it is clear
that along every edge at most three proposals
happen, the technical details must be worked out;
see [7] for details.

Local algorithm Each agent (a man or woman)
always makes a greedy decision based only on
local information (his/her preference list, and
provided by some communication with his/her
acceptable partners). A local algorithm is linear if
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every agent communicates with each acceptable
partner only a constant time during the algorithm.

The algorithm presented is a linear time local
algorithm (using the appropriate data structures);
see [7] for details.
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Problem Definition

Buffer management policies are online al-
gorithms that control a limited buffer of
packets with homogeneous or heterogeneous
characteristics, deciding whether to accept new
packets when they arrive, which packets to
process and transmit, and possibly whether
to push out packets already residing in the
buffer. Although settings differ, the problem is
always to achieve the best possible competitive
ratio, i.e., find a policy with good worst-case
guarantees in comparison with an optimal offline
clairvoyant algorithm. The policies themselves
are often simple, simplicity being an important
advantage for implementation in switches; the
hard problem is to find proofs of lower and
especially upper bounds for their competitive
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ratios. Thus, this problem is more theoretical
in nature, although the resulting throughput
guarantees are important tools in the design of
network elements. Comprehensive surveys of this
field have been given in the past by Goldwasser
[9] and Epstein and van Stee [7].

General Model Description
We assume discrete slotted time. A packet is fully
processed if the processing unit has scheduled
the packet for processing for at least its required
number of cycles. Each packet may have the
following characteristics: (i) required processing,
i.e., how many processing cycles the packet has
to go through before it can be transmitted; (ii)
value, i.e., how much the packet contributes to
the objective function when it is transmitted; (iii)
output port, i.e., where the packet is headed (in
settings with multiple output ports, it is usually
assumed that processing occurs independently at
each port, so it becomes advantageous to have
more busy output ports at a time); and (iv) size,
i.e., how many slots (bytes) a packet occupies in
the buffer. The objective of a buffer management
policy is to maximize the total value of transmit-
ted packets. Different settings may assume that
some characteristics are uniform.

Competitive Analysis
Competitive analysis provides a uniform through-
put guarantee for online algorithms across all
traffic patterns. An online algorithm ALG is said
to be ˛-competitive with respect to some ob-
jective function f (for some ˛ � 1 which is
called the competitive ratio) if for any arrival
sequence � the objective function value on the
result of ALG is at least 1=˛ times the objective
function value on the solution obtained by an
offline clairvoyant algorithm, denoted OPT.

Problem 1 (Competitive Ratio) For a given
switch architecture, packet characteristics, and
an online algorithm ALG in a given setting,
prove lower and upper bounds on its competitive
ratio with respect to weighted throughput (total
value of packets transmitted by an algorithm).

Key Results

Policies and lower and upper bounds on their
competitive ratios are outlined according to prob-
lem settings; the latter differ in which packet
characteristics they assume to be uniform and
which are allowed to vary, and additional restric-
tions may be imposed on admission, processing
and/or transmission order, and admissible packet
characteristics.

Uniform Processing, Uniform Value,
Shared Memory Switch
Since all packets are identical, the problem for a
single queue with one output port is trivial. We
consider an M � N shared memory switch that
can hold B packets, with a separate processor
on each output port. All packets require a single
processing cycle and have equal value; the goal is
to maximize the number of transmitted packets.
Each packet is labeled with an output port where
it has to be processed and transmitted.

Non-Push-Out Policies
Kesselman and Mansour [14] show an adversarial
logarithmic lower bound: no non-push-out policy
can achieve competitive ratio better than d=2 for
d D logd N . On the positive side, they present
the Harmonic policy that allocates approximately
1=i of the buffer to the i th largest queue and, for
its variant, the Parametric Harmonic policy, show
an upper bound of c logc N C 1.

Push-Out Policies
The best known policy is Longest Queue Drop
(LQD): accept packets greedily if the buffer is not
full; if it is, accept the new packet and then drop
a packet from the longest queue (destined to the
output port with the most packets assigned to it).
Aiello et al. [1,10] show that the competitive ratio
of LQD is between

p
2 and 2; they also provide

nonconstant lower bounds for other popular poli-
cies and a general adversarial lower bound of 4

3

on the competitive ratio of any online algorithm.
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Uniform Processing, Uniform Value,
Multiple Separated Queues
In an N �1 switch where each of N input queues
has a separate independent buffer of size B , a
policy must select which input queue to take a
packet from and set admission policies for input
queues. For uniform values, the problem was
closed by Azar and Litichevskey [3] with a deter-
ministic policy with competitive ratio converging
to e

e�1
	 1:582 for arbitrary B; a matching lower

bound was shown by Azar and Richter [4].

Uniform Processing, Variable Values,
Single Queue
Here, there is only one output port (a single
queue), and each packet is fully processed in
one cycle; however, packets have different values,
making it desirable to drop packets with smaller
value and process packets of larger value. It
is easy to show that the Priority Queue (PQ)
policy that sorts packets with respect to values
and pushes out smaller values for larger ones is
optimal. Research has concentrated on models
with additional constraints: non-push-out policies
that are not allowed to push admitted packets out
and the FIFO model where packets have to be
transmitted in order of arrival. Another important
special case considers two possible values: 1 and
V > 1.

Non-Push-Out Policies
Aiello et al. [2] consider five online policies
for the two-valued case, considering the specific
cases of V D 1, V D 2, and V D1. Andelman,
Mansour, and Zhu provide a deterministic policy
(Ratio Partition) that achieves optimal

�
2 � 1

V

�
-

competitiveness [26]. In the case of arbitrary
values between 1 and V > 1, they show that the
optimal competitive ratio is ln V , proving tightly
matching bounds of 1 C ln V and 2 C ln V C

O.ln2 V=B/ [2, 26].

Push-Out Policies
In the FIFO model, there has been a line of ad-
versarial lower bounds culminating in the lower
bound of 1:419 shown by Kesselman, Mansour,
and van Stee [18] that applies to all algorithms,
with a stronger bound of 1:434 for B D 2

[2,26]. As for upper bounds, in this simple model
the FIFO greedy push-out policy (accept ev-
ery packet to end of queue, then push out the
packet with smallest value if buffer has over-
flown) has been shown by Kesselman et al. to
be 2-competitive [17]; in the two-valued case,
they provide an adversarial lower bound of 1:282,
and a long line of improvements for the upper
bound has led to the optimal Account Strategy
policy of Englert and Westermann [6]. They show
an adversarial lower bound of r D 1

2
.
p

13 �

1/ 	 1:303 for any B � 2 and r1 D
p

2 �
1
2
.
p

5C 4
p

2 � 3/ 	 1:282 for B ! 1 and
show that Account Strategy achieves competitive
ratio r for arbitrary B and r1 for B ! 1.
Thus, in the push-out two-valued case, the gap
between lower and upper bounds has been closed
completely.

Uniform Processing, Variable Values,
Multiple Separated Queues
Kawahara et al. [11] consider an N � 1

switch with N separated queues, each of
which has a distinct buffer of size B and has
a value ˛j associated with it, 1 D ˛1 �

: : : � ˛N D ˛. A policy selects one of N

queues, maximizing total transmitted value; [11]
provides matching lower and upper bounds

for the PQ policy as 1 C
Pn0

j D1 ˛j
Pn0

C1
j D1

˛j

, where

n0 D arg maxn

Pn
j D1 ˛j

PnC1
j D1

˛j

, and an adversarial

lower bound 1 C ˛3C˛2C˛
˛4C4˛3C3˛2C4˛C1

for any
online algorithm. Azar and Richter [4] show
that any r-competitive policy for a FIFO queue
with variable values yields a 2r-competitive
policy for multiple queues. Kobayashi et al.
[21] show that an r-competitive policy for
unit values and multiple queues yields a

min
n
V r; V r.2�r/Cr2�2rC2

V.2�r/Cr�1

o
-competitive policy

for the two-valued case.

Uniform Processing, Variable Values,
Shared Memory Switch
Several output queues, each with a processor,
share a buffer of size B , and each unit-
sized packet is labeled with an output port
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and an intrinsic value from 1 to V . Eugster,
Kogan, Nikolenko, and Sirotkin [8] show a
.

3
p

V � o.
3
p

V // lower bound for the LQD
(Longest Queue Drop) policy, an 1

2
.minfV; Bg �

1/ lower bound for the MVD (Minimal Value
Drop) policy, and a 4

3
lower bound for the MRD

(Maximal Ratio Drop) policy.

Uniform Processing, CIOQ Switches
In CIOQ (Combined Input–Output Queued)
switches, one maintains at each input a separate
queue for each output (also called Virtual Output
Queuing, VOQ). To get delay guarantees of an
input queuing (IQ) switch closer to those of an
output queuing switch (OQ), one usually assumes
increased speedup S : the switching fabric runs S

times faster than each of the input or the output
ports. Hence, an OQ switch has a speedup of N

(where N is the number of input/output ports),
whereas an IQ switch has a speedup of 1; for
1 < S < N , packets need to be buffered at
the inputs before switching as well as at the
outputs after switching. This architecture is called
a CIOQ switch.

Uniform Values
Consider an N � N CIOQ switch with speedup
S . Packets of equal size arrive at input ports,
each labeled with the output port where it has
to leave the switch. Each packet is placed in
the input queue corresponding to its output port;
when it crosses the switch fabric, it is placed
in the output queue and resides there until it is
sent on the output link. For unit-valued packets,
Kesselman and Rosén [15] proposed a non-push-
out policy which is 3-competitive for any S and
2-competitive for S D 1. Kesselman, Kogan,
and Segal [13] show an upper bound of 4 on the
competitiveness of a simple greedy policy.

Variable Values
For up to m packet values in Œ1; V �, Kesselman
and Rosén [15] show two push-out policies to
be 4S - and 8 minfm; 2 log V g-competitive. Azar
and Richter [5] propose a push-out policy ˇ-PG
with parameter ˇ; Kesselman et al. [20] show that
the competitive ratio of ˇ-PG is at most 7:5 for
ˇ D 3 and at most 7:47 for ˇ D 2:8. Kesselman

and Rosén [16] consider CIOQ switches with PQ
buffers (transmit the highest value packet) and
show that this policy is 6-competitive for any S .

Uniform Processing, Crossbar Switches
In the buffered crossbar switch architecture, a
small buffer is placed on each crosspoint in ad-
dition to input and output queues, which greatly
simplifies the scheduling process. For packets
with unit length and value, Kesselman et al. [20]
introduce a greedy switch policy with competi-
tive ratio between 3

2
and 4 and show a general

lower bound of 3
2

for unit-size buffers. For vari-
able values and PQ buffers, they propose a push-
out greedy switch policy with preemption factor
ˇ with competitive ratio between .2ˇ�1/=.ˇ�1/

(3:87 for ˇ D 1:53) and .ˇ C 2/2 C 2=.ˇ � 1/

(16:24 for ˇ D 1:53). For variable values and
FIFO buffers, they propose a ˇ-push-out greedy
switching policy with competitive ratio 6C 4ˇC

ˇ2 C 3=.ˇ � 1/ (19:95 for ˇ D 1:67) [19].

Uniform Values, Variable Processing,
Single Queue
In this setting, each packet contributes one unit to
the objective function, but different packets have
different processing requirements, i.e., they spend
a different number of time slots at the processor.
We denote maximal possible required processing
by k.

Non-Push-Out Policies
For a single queue and packets with heteroge-
neous processing, non-push-out policies have not
been considered in any detail. Kogan, López-
Ortiz, Nikolenko, and Sirotkin [23] have shown
that any greedy non-push-out policy is at least
1
2
.k C 1/-competitive. It remains an open prob-

lem to find non-push-out policies with sublinear
competitive ratios or show that none exists.

Push-Out Policies
Keslassy et al. [12] showed that again, for a
single queue, PQ (Priority Queue) that sorts pack-
ets with respect to required processing (smallest
first) is optimal; research has concentrated on the
FIFO case, where packets have to be transmitted
in order of arrival. Kogan et al. [24] introduced
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lazy policies that process packets down to a
single cycle but then delay their transmission un-
til the entire queue consists of such packets; then
all packets are transmitted out in as many time
slots as there are packets in the queue. In [24],
LPO (Lazy Push-Out) was proven to be at most
.maxf1; ln kg C 2C o.1//-competitive; [24] also
provides a lower bound of blogB kcC1�O.1=B/

for both PO (push-out FIFO) and LPO; for large
k this bound matches the upper bound up to a
factor of log B . Proving a matching upper bound
for the PO policy remains an important open
problem. In the two-valued case, when packets
may have required processing only 1 or k, LPO
has a lower bound of 2 � 1

k
and a matching

upper bound of 2 C 1
B

[24]. Kogan, López-
Ortiz, Nikolenko, and Sirotkin [23] introduce
semi-FIFO policies, separating processing order
from transmission order so that transmission can
conform to FIFO constraints while processing or-
der remains arbitrary. Lazy policies thus become
a special case of semi-FIFO policies. The authors
show a general upper bound of 1

B
log B

B�1
k C 3

on the competitive ratio of any lazy policy and
a matching lower bound of 1

B
log B

B�1
k C 1 for

several processing orders. In the two-valued case,
when processing is only 1 or k, this upper bound
improves to 2C 1

B
, so any lazy policy has constant

competitiveness. LPQ (Lazy Priority Queue) also
falls in the semi-FIFO class; its competitiveness
is between

�
2 � 1

B

˙
B
k

�
and 2 even for arbi-

trary processing requirements. Kogan et al. [22]
consider a generalization with packets of vary-
ing size, considering several natural policies and
showing an upper bound of 4L for one of PO
policies, where L is the maximal packet size.

Copying Cost
An important generalization of the heterogeneous
processing model was introduced by Keslassy
et al. [12]. They attach a penalty ˛ called copying
cost to admitting a packet in the queue; thus,
the objective function is now T � ˛A, where
T is the number of transmitted packets and A

is the number of accepted ones, and it becomes
less advantageous to push packets out. To deal
with copying cost, the authors propose to use ˇ-
push-out policies that push a packet out only

if its required processing is at least ˇ > 1

times less than the required processing of a
packet which is being pushed out. Keslassy et al.
[12] consider the PQˇ policy (Priority Queue
with ˇ-push-out) and show that it is at most

1
1�˛ logˇ k

�
1C log ˇ

ˇ�1

k
2
C 2 logˇ k

�
.1 � ˛/-

competitive. Kogan, López-Ortiz, Nikolenko, and
Sirotkin [23] show that for any processing order,
a ˇ-push-out lazy policy LAˇ has competitive

ratio at most
�
3C 1

B
log ˇB

ˇB�1

k
�

1�˛
1�˛ logˇ k

. They

show a lower bound 1�˛
1�˛ logˇ k

on the competitive

ratio of any ˇ-push-out policy, which matches
the additional factor in the upper bound. In
the two-valued case, the upper bound becomes�
2C 1

B

�
1�˛

1�2˛
, and the authors also show a

matching lower bound of .2B�2/.1�˛/
.B�1/.1�2˛/C.1�˛/

.

Uniform Values, Variable Processing,
Multiple Separated Queues
Consider k separate queues of size B each;
packets with required processing i fall into the i th
queue, and the processor chooses which queue to
process on a given time slot. Push-out is irrelevant
since queues are independent and packets in
a queue are identical. Kogan, López-Ortiz,
Nikolenko, and Sirotkin [25] show linear lower
bounds for several seemingly attractive policies:
1
2

minfk; Bg for LQF (Longest Queue First),

k for SQF (Shortest Queue First), 3k.kC2/
4kC16

for
PRR (Packet Round Robin), and an almost linear
lower bound of k

H.k/
, where H.k/ D

Pk
iD1

1
i
	

ln k C � , for CRR (Cycle Round Robin). They
introduce a policy called MQF (Minimal Queue
First) that processes packets from a nonempty
queue with minimal processing requirement.

They show that MQF is at least
�
1C k�1

2k

�
-

competitive and prove a constant upper bound of
2. For the two-valued case with two queues,
1 and k, Kogan et al. [25] show exactly
matching lower and upper bounds for MQF of
1C
�
1C

�
aB�1

b

˘�
=
�
B C

˙
1
a

�
b
�

aB�1
b

˘
C 1

��
.

Uniform Values, Variable Processing,
Shared Memory Switch
In this setting, multiple queues with shared mem-
ory are implemented in the same way as for
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uniform processing and heterogeneous values:
there are N output ports, each output port man-
ages a single output queue Qi , and each output
queue collects packets with the same processing
requirement (so packets in a given queue are
identical).

Non-Push-Out Policies
Eugster, Kogan, Nikolenko, and Sirotkin [8] con-
sider non-push-out policies and show that NHST
(Non-Push-Out Harmonic with Static Threshold:
jQi j is bounded by B

ri Z
) is .kZ C o.kZ//-

competitive, NEST (Non-Push-Out with Equal
Static Threshold: jQi j is bounded by B=n) is
.N Co.N //-competitive, NHDT (Non-Push-Out
with Harmonic Dynamic Threshold: accept into
Qi if

Pm
sD1 jQjs

j < B
Hk

�
1C 1

2
C : : :C 1

m

�
,

where j1 : : : jm D i are queues for which
jQj j � jQi j) is . 1

2

p
k ln k � o.

p
k ln k//-

competitive; finding better non-push-out policies
is an open problem.

Push-Out Policies
The work [8] also shows lower bounds on the
competitive ratio of well-known policies: .

p
k �

o.
p

k// for LQD (Longest Queue Drop), .ln k C

�/ for BQD (Biggest Packet Drop), and
�

4
3
� 6

B

�

for LWD (Largest Work Drop). The main result
of [8] is that LWD is at most 2-competitive.

Open Problems

1. Close the gap between competitive ratios 4
3

(lower bound for any policy) and 2 (upper
bound for LQD) in the uniform processing,
uniform value case.

2. Do there exist policies with constant compet-
itive ratio in the uniform processing, variable
values, shared memory multiple output queues
setting?

3. Do there exist non-push-out policies with sub-
linear competitive ratio in the case of a single
queue with packets with variable processing
and uniform values?

4. Prove an upper bound on the competitiveness
of PO (push-out) policy in the single-queue

FIFO model with heterogeneous required pro-
cessing and uniform values.

5. Do there exist non-push-out policies with log-
arithmic competitive ratio in the case of mul-
tiple output ports with shared memory that
contain packets with variable processing and
uniform values?

6. Design efficient policies for CIOQ and cross-
bar switches with packets with heterogeneous
processing and uniform values; prove bounds
on their competitive ratios.

7. Design efficient policies and prove bounds on
their competitive ratios for the case of packets
with both variable values and heterogeneous
processing requirements in all of the above
settings.
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Problem Definition

A dynamic graph algorithm maintains a given
property P on a graph subject to dynamic
changes, such as edge insertions, edge deletions
and edge weight updates. A dynamic graph
algorithm should process queries on property P
quickly, and perform update operations faster
than recomputing from scratch, as carried out by
the fastest static algorithm. An algorithm is fully
dynamic if it can handle both edge insertions and
edge deletions and partially dynamic if it can
handle either edge insertions or edge deletions,
but not both.

Given a graph with n vertices and m edges,
the transitive closure (or reachability) problem
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consists of building an n � n Boolean matrix M
such that MŒx; y� D 1 if and only if there is
a directed path from vertex x to vertex y in the
graph. The fully dynamic version of this problem
can be defifined as follows:

Definition 1 (Fully dynamic reachability
problem) The fully dynamic reachability
problem consists of maintaining a directed graph
under an intermixed sequence of the following
operations:

• insert(u,v): insert edge (u,v) into the graph.
• delete(u,v): delete edge (u,v) from the

graph.
• reachable(x,y): return true if there is a di-

rected path from vertex x to vertex y, and false
otherwise.

This entry addresses the single-source version of
the fully-dynamic reachability problem, where
one is only interested in queries with a fixed
source vertex s. The problem is defined as
follows:

Definition 2 (Single-source fully dynamic
reachability problem) The fully dynamic
single-source reachability problem consists of
maintaining a directed graph under an intermixed
sequence of the following operations:

• insert(u,v): insert edge (u,v) into the graph.
• delete(u,v): delete edge (u,v) from the

graph.
• reachable(y): return true if there is a di-

rected path from the source vertex s to vertex
y, and false otherwise.

Approaches
A simple-minded solution to the problem of Def-
inition would be to keep explicit reachability
information from the source to all other vertices
and update it by running any graph traversal
algorithm from the source s after each insert or
delete. This takes O.m C n/ time per operation,
and then reachability queries can be answered in
constant time.

Another simple-minded solution would be to
answer queries by running a point-to-point reach-
ability computation, without the need to keep
explicit reachability information up to date after
each insertion or deletion. This can be done in
O.m C n/ time using any graph traversal algo-
rithm. With this approach, queries are answered
in O.m C n/ time and updates require constant
time. Notice that the time required by the slowest
operation is O.mCn/ for both approaches, which
can be as high as O.n2/ in the case of dense
graphs.

The first improvement upon these two ba-
sic solutions is due to Demetrescu and Italiano,
who showed how to support update operations in
O.n1:575/ time and reachability queries in O.1/

time [1] in a directed acyclic graph. The result is
based on a simple reduction of the single-source
problem of Definition to the all-pairs problem
of Definition. Using a result by Sankowski [2],
the bounds above can be extended to the case of
general directed graphs.

Key Results

This Section presents a simple reduction
presented in [1] that allows it to keep explicit
single-source reachability information up to date
in subquadratic time per operation in a directed
graph subject to an intermixed sequence of
edge insertions and edge deletions. The bounds
reported in this entry were originally presented
for the case of directed acyclic graphs, but can
be extended to general directed graphs using the
following theorem from [2]:

Theorem 1 Given a general directed graph with
n vertices, there is a data structure for the fully
dynamic reachability problem that supports each
insertion/deletion in O.n1:575/ time and each
reachability query in O.n0:575/ time. The algo-
rithm is randomized with one-sided error.

The idea described in [1] is to maintain reach-
ability information from the source vertex s to
all other vertices explicitly by keeping a Boolean
array R of size n such that RŒy� D 1 if and
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only if there is a directed path from s to y. An
instance D of the data structure for fully dynamic
reachability of Theorem is also maintained. After
each insertion or deletion, it is possible to update
D in O.n1:575/ time and then rebuild R in O.n �

n0:575/ D O.n1:575/ time by letting RŒy�  D:

reachable (s,y) for each vertex y. This yields
the following bounds for the single-source fully
dynamic reachability problem:

Theorem 2 Given a general directed graph with
n vertices, there is a data structure for the single-
source fully dynamic reachability problem that
supports each insertion/deletion in O.n1:575/

time and each reachability query in O.1/

time.

Applications

The graph reachability problem is particularly
relevant to the field of databases for support-
ing transitivity queries on dynamic graphs of
relations [3]. The problem also arises in many
other areas such as compilers, interactive verifi-
cation systems, garbage collection, and industrial
robotics.

Open Problems

An important open problem is whether one can
extend the result described in this entry to main-
tain fully dynamic single-source shortest paths in
subquadratic time per operation.
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Problem Definition

The single-source shortest path problem (SSSP)
is, given a graph G D .V; E; l/ and a source
vertex s 2 V , to find the shortest path from s

to every v 2 V . The difficulty of the problem
depends on whether the graph is directed or
undirected and the assumptions placed on
the length function `. In the most general
situation, l W E ! R assigns arbitrary (positive
and negative) real lengths. The algorithms of
Bellman-Ford and Edmonds [1, 4] may be
applied in this situation and have running
times of roughly O.mn/, (Edmonds’s algorithm
works for undirected graphs and presumes that
there are no negative length simple cycles.)
where m D jEj and n D jV j are the
number of edges and vertices. If ` assigns
only nonnegative real edge lengths, then the
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algorithms of Dijkstra and Pettie-Ramachandran
[4,13] may be applied on directed and undirected
graphs, respectively. These algorithms include
a sorting bottleneck and, in the worst case,
take �.mC n log n/ time. (The [13] algorithm
actually runs in O.mC n log log n/ time if the
ratio of any two edge lengths is polynomial
in n).

A common assumption is that ` assigns integer
edge lengths in the range f0; : : : ; 2w � 1g or
f�2w�1; : : : ; 2w�1 � 1g and that the machine is
a w-bit word RAM; that is, each edge length fits
in one register. For general integer edge lengths,
the best SSSP algorithms improve on Bellman-
Ford and Edmonds by a factor of roughly

p
n

[6]. For nonnegative integer edge lengths, the
best SSSP algorithms are faster than Dijkstra and
Pettie-Ramachandran by up to a logarithmic fac-
tor. They are frequently based on integer priority
queues [9].

Key Results

Thorup’s primary result [16] is an optimal linear
time SSSP algorithm for undirected graphs with
integer edge lengths. This is the first and only
linear time shortest path algorithm that does not
make serious assumptions on the class of input
graphs.

Theorem 1 There is a SSSP algorithm for
integer-weighted undirected graphs that runs
in O.m/ time.

Thorup avoids the sorting bottleneck inherent in
Dijkstra’s algorithm by precomputing (in linear
time) a component hierarchy. The algorithm of
[16] operates in a manner similar to Dijkstra’s
algorithm [4] but uses the component hierarchy
to identify groups of vertices that can be visited
in any order. In later work, Thorup [17] extended
this approach to work when the edge lengths are
floating-point numbers. (There is some flexibility
in the definition of shortest path since floating-
point addition is neither commutative nor asso-
ciative).

Thorup’s hierarchy-based approach has since
been extended to directed and/or real-weighted

graphs and to solve the all pairs shortest path
(APSP) problem [11–13]. The generalizations
to related SSSP problems are summarized be-
low. See [11, 12] for hierarchy-based APSP algo-
rithms.

Theorem 2 (Hagerup [8], 2000) A component
hierarchy for a directed graph G D .V; E; l/,
where l W E ! f0; : : : ; 2w � 1g, can be con-
structed in O.m log w/ time. Thereafter, SSSP
from any source can be computed in O.m C

n log log n/ time.

Theorem 3 (Pettie and Ramachandran [13],
2005) A component hierarchy for an undirected
graph G D .V; E; l/, where l W E !

R
C, can be constructed in O.m˛.m; n/ C

minfn log log r; n log ng/ time, where r is the
ratio of the maximum-to-minimum edge length.
Thereafter, SSSP from any source can be
computed in O.m log ˛.m; n// time.

The algorithms of Hagerup [8] and Pettie-
Ramachandran [13] take the same basic approach
as Thorup’s algorithm: use some kind of
component hierarchy to identify groups of
vertices that can safely be visited in any
order. However, the assumption of directed
graphs [8] and real edge lengths [13] renders
Thorup’s hierarchy inapplicable or inefficient.
Hagerup’s component hierarchy is based on a
directed analogue of the minimum spanning tree.
The Pettie-Ramachandran algorithm enforces
a certain degree of balance in its component
hierarchy and, when computing SSSP, uses a
specialized priority queue to take advantage of
this balance.

Applications

Shortest path algorithms are frequently used as a
subroutine in other optimization problems, such
as flow and matching problems [1] and facility
location [18]. A widely used commercial ap-
plication of shortest path algorithms is finding
efficient routes on road networks, e.g., as pro-
vided by Google Maps, MapQuest, or Yahoo
Maps.
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Open Problems

Thorup’s SSSP algorithm [16] runs in linear time
and is therefore optimal. The main open prob-
lem is to find a linear time SSSP algorithm
that works on real-weighted directed graphs. For
real-weighted undirected graphs, the best run-
ning time is given in Theorem 3. For integer-
weighted directed graphs, the fastest algorithms
are based on Dijkstra’s algorithm (not Theo-
rem 2) and run in O.m

p
log log n/ time (random-

ized) and deterministically in O.mC n log log n/

time.

Problem 1 Is there an O.m/ time SSSP algo-
rithm for integer-weighted directed graphs?

Problem 2 Is there an O.m/ C o.n log n/ time
SSSP algorithm for real-weighted graphs, either
directed or undirected?

The complexity of SSSP on graphs with positive
and negative edge lengths is also open.

Experimental Results

Asano and Imai [2] and Pettie et al. [14] evaluated
the performance of the hierarchy-based SSSP
algorithms [13,16]. There have been a number of
studies of SSSP algorithms on integer-weighted
directed graphs; see [7] for the latest and refer-
ences to many others. The trend in recent years
is to find practical preprocessing schemes that
allow for very quick point-to-point shortest path
queries. See [3, 10, 15] for recent work in this
area.

Data Sets

See [5] for a number of US and European road
networks.

URL to Code

See [5].
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Problem Definition

The ski rental problem was developed as a peda-
gogical tool for understanding the basic concepts
in some early results in online algorithms. (In the
interest of full disclosure, the earliest presenta-
tions of these results described the problem as the
wedding-tuxedo-rental problem. Objections were
presented that this was a gender-biased name
for the problem, since while groomsmen can
rent their wedding apparel, bridesmaids usually
cannot. A further complication, owing to the
difficulty of instantaneously producing fitted gar-
ments or ski equipment outlined below, suggests
that some complications could have been avoided
by focusing on the dilemma of choosing between

daily lift passes or season passes, although this
leads to the pricing complexities of purchasing
season passes well in advance of the season, as
opposed to the higher cost of purchasing them
at the mountain during the ski season. A simi-
lar problem could be derived from the question
as to whether to purchase the daily newspaper
at a newsstand or to take a subscription, after
adding the challenge that one’s peers will treat
one contemptuously if one has not read the news
on days on which they have.) The ski rental
problem considers the plight of one consumer
who, in order to socialize with peers, is forced to
engage in a variety of athletic activities, such as
skiing, bicycling, windsurfing, rollerblading, sky
diving, scuba-diving, tennis, soccer, and ultimate
Frisbee, each of which has a set of associated
apparatus, clothing, or protective gear.

In all of these, it is possible either to purchase
the accoutrements needed or to rent them. For the
purpose of this problem, it is assumed that one-
time rental is less expensive than purchasing. It
is also assumed that purchased items are durable,
and suitable for reuse for future activities of the
same type without further expense, until the items
wear out (which occurs at the same rate for all
users), are outgrown, become unfashionable, or
are disposed of to make room for other purchased
items. The social consumer must make the de-
cision to rent or buy for each event, although
it is assumed that the consumer is sufficiently
parsimonious as to abjure rental if already in
possession of serviceable purchased equipment.
Whether purchases are as easy to arrange as
rentals, or whether some advance planning is
required (e.g., to mount bindings on a ski) is a
further detail considered in this problem. It is
assumed that the social consumer has no partic-
ular independent interest in these activities, and
engages in these activities only to socialize with
peers who choose to engage in these activities
disregarding the consumer’s desires.

These putative peers are more interested in
demonstrating the superiority of their financial
acumen to that of the social consumer in question
than they are in any particular activity. To that
end, the social consumer is taunted mercilessly
based on the ratio of his/her total expenses on
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rentals and purchases to theirs. Consequently, the
peers endeavor to invite the social consumer to
engage in events while they are costly to him/her,
and once the activities are free to the social
consumer, if continued activity would be costly
to them, cease. But, to present an illusion of
fairness, skis, both rented and purchased, have the
same cost for the peers as they do for the social
consumer in question. The ski rental problem
takes a very restricted setting. It assumes that
purchased ski equipment never needs replace-
ment, and that there are no costs to a ski trip
other than the skis (thus, no cost for the gaso-
line, for the lift and/or speeding tickets, for the
hot chocolates during skiing, or for the après-
ski liqueurs and meals). It is assumed that the
social consumer experiences no physical disabil-
ities preventing him/her from skiing and has no
impending restrictions to his/her participation in
ski trips (obviously, a near-term-fatal illness or
an anticipated conviction leading to confinement
for life in a penitentiary would eliminate any
potential interest in purchasing alpine equipment
– when the ratio of purchase to rental exceeds the
maximum need for equipment, one should always
rent). It is assumed that the social consumer’s
peers have disavowed any interest in activities
other than skiing, and that the closet, basement,
attic, garage, or storage locker included in the so-
cial consumer’s rent or mortgage (or necessitated
by other storage needs) has sufficient capacity
to hold purchased ski equipment without entail-
ing the disposal of any potentially useful items.
Bringing these complexities into consideration
brings one closer to the hardware-based problems
which initially inspired this work.

The impact of invitations issued with sufficient
time allowed for purchasing skis, as well as those
without, will be considered.

Given all of that, what ratio of expenses can
the social consumer hope to attain? What ratio
can the social consumer not expect to beat? These
are the basic questions of competitive analysis.

The impact of keeping secrets from one’s
peers is further considered. Rather than a fixed
strategy for when to purchase skis, the social
consumer may introduce an element of chance
into the process. If the peers are able to observe

his/her ski equipment and notice when it changes
from rented skis to purchased skis, and change
their schedule for alpine recreation in light of
this observation, randomness provides no advan-
tages. If, on the other hand, the social consumer
announces to the peers, in advance of the first
trip, how he/she will decide when the time is
right for purchasing skis, including any use of
probabilistic techniques, and they then decide on
the schedule for ski trips for the coming win-
ter, a deterministic decision procedure generally
produces a larger competitive ratio than does a
randomized procedure.

Key Results

Given an unbounded sequence of skiing trips,
one should eventually purchase skis if the cost of
renting skis, r , is positive. In particular, let the
cost of purchasing skis be some number p � r .
If one never intends to make a purchase, one’s
cost for the season will be rn, where n is the
number of ski trips in which one participates. If
n exceeds p=r , one’s cost will exceed the price
of purchasing skis; as n continues to increase,
the ratio of one’s costs to those of one’s peers
increases to nr=p, which grows unboundedly
with n, since your peers, knowing that n exceeds
p=r , will have purchased skis prior to the first
trip.

On the other hand, if one rushes out to pur-
chase skis upon being told that the ski season is
approaching, one’s peers will decide that this sea-
son looks inopportune, and that skiing is passé,
leaving their costs at zero, and one’s costs at p,
leaving an infinite ratio between one’s costs and
theirs; if one chooses to defer the purchase until
after one’s first ski trip, this produces the less
unfavorable ratio p=r or 1C p=r , depending on
whether the invitation left one time to purchase
skis before the first trip or not.

Suppose one chooses, instead, to defer one’s
purchase until after one has made k rentals, but
before ski trip kC1. One’s costs are then bounded
by kr C p. After k ski trips, the cost to one’s
peers will be the lesser of kr and p (as one’s
peers will have decided whether to rent or buy for
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the season upon knowing one’s plans, which in
this case amounts to knowing k), for a ratio equal
to the larger of 1 C kr=p and 1 C p=kr . Were
they to choose to terminate the activity earlier
(so n < k), the ratio would be only the greater
of kr=p and 1, which is guaranteed to be less
than the sum of the two – one’s peers would be
shirking their opportunity to make one’s behavior
look foolish were they to allow one to stop skiing
prior to one’s purchase of a pair of skis!

It is certain, since kr=p and p=kr are recip-
rocals, that one of them is at least equal to 1,
ensuring that one will be compelled to spend at
least twice as much as one’s peers.

The analysis above applies to the case where
ski trips are announced without enough warning
to leave one time to buy skis. Purchases in that
case are not instantaneous; in contrast, if one is
able to purchase skis on demand, the cost to one’s
peers changes to the lesser of .kC1/r and p. The
overall results are not much different; the ratio
choices become the larger of 1 C kr=p and 1 C

.p � r/=..k C 1/r/.
When probabilistic algorithms are considered

with oblivious frenemies (those who know the
way in which random choices will affect one’s
purchasing decisions, but who do not take time to
notice that one’s skis are no longer marked with
the name and phone number of a rental agency),
one can appear more thrifty.

A randomized algorithm can be viewed as
a distribution over deterministic algorithms. No
good algorithm can purchase skis prior to the
first invitation, lest it exhibit infinite regrettability
(some positive cost compared to zero). A good
algorithm must purchase skis by the time one’s
peers will have; otherwise, one’s cost ratio con-
tinues to increase with the number of ski trips.
Moreover, the ratio should be the same after every
ski trip; if not, then there is an earliest ratio
not equal to the largest, and probabilities can be
adjusted to change this earliest ratio to be closer
to the largest while decreasing all larger ratios.

Consider, for example, the case of p D 2r ,
with purchases allowed at the time of an invita-
tion. The best deterministic ratio in this case is
1.5. It is only necessary to choose a probability
q, the probability of purchasing at the time of

the first invitation. The cost after one trip is then
.1�q/rC2qr D r.1Cq/, for a ratio of 1Cq, and
after two trips the cost is q.2r/C .1 � q/.3r/ D

3 � q/r , producing a ratio of .3 � q/=2. Setting
these to be equal yields q D 1=3, for a ratio of
4/3.

If insufficient time is allowed for purchases
before skiing, the best deterministic ratio is 2.
Purchasing after the first ski trip with probability
q (and after the second with probability 1 � q)
leads to expected costs of .1�q/rC3qr D r.1C

2q/ after the first trip, and .1�q/.2C2/rC3qr D

r.4 C q/, leading to a ratio of 2 � q=2. Setting
1C 2q D 2 � q=2 yields q D 2=5, for a ratio of
9/5.

More careful analysis, for which readers are
referred to the references and the remainder of
this volume, shows that the best achievable ra-
tio approaches �=.� � 1/ 	 1:58197 as p=r

increases, approaching the limit from below if
sufficient warning time is offered, and from above
otherwise.

Applications

The primary initial results were directed towards
problems of computer architecture; in particu-
lar, design questions for capacity conflicts in
caches, and shared memory design in the pres-
ence of a shared communication channel. The
motivation for these analyses was to find designs
which would perform reasonably well on as-
yet-unknown workloads, including those to be
designed by competitors who may have chosen
alternative designs which favor certain cases.
While it is probably unrealistic to assume that
precisely the least-desirable workloads will occur
in ordinary practice, it is not unreasonable to
assume that extremal workloads favoring either
end of a decision will occur.

History and Further Reading

This technique of finding algorithms with
bounded worst-case performance ratios is
common in analyzing approximation algorithms.
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The initial proof techniques used for such
analyses (the method of amortized analysis) were
first presented by Sleator and Tarjan.

The reader is advised to consult the remainder
of this volume for further extensions and appli-
cations of the principles of competitive online
algorithms.
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Problem Definition

This problem is about finding the optimal orienta-
tions of the cells in a slicing floorplan to minimize
the total area. In a floorplan, cells represent basic
pieces of the circuit which are regarded as in-
divisible. After performing an initial placement,
for example, by repeated application of a min-
cut partitioning algorithm, the relative positions
between the cells on a chip are fixed. Various
optimizations can then be done on this initial
layout to optimize different cost measures such
as chip area, interconnect length, routability, etc.
One such optimization, as mentioned in Lauther
[3], Otten [4], and Zibert and Saal [13], is to
determine the best orientation of each cell to
minimize the total chip area. This work by Stock-
meyer [8] gives a polynomial time algorithm to
solve the problem optimally in a special type
of floorplans called slicing floorplans and shows
that this orientation optimization problem in gen-
eral non-slicing floorplans is NP-complete.

Slicing Floorplan
A floorplan consists of an enclosing rectangle
subdivided by horizontal and vertical line seg-
ments into a set of non-overlapping basic rect-
angles. Two different line segments can meet but
not cross. A floorplan F is characterized by a
pair of planar acyclic directed graphs AF and LF

defined as follows. Each graph has one source
and one sink. The graph AF captures the “above”
relationships and has a vertex for each horizontal
line segment, including the top and the bottom of
the enclosing rectangle. For each basic rectangle
R, there is an edge er directed from segment ¢

to segment ¢ 0 if and only if ¢ (or part of ¢) is
the top of R and ¢ 0 (or part of ¢ 0) is the bot-
tom of R. There is a one-to-one correspondence
between the basic rectangles and the edges in
AF . The graph LF is defined similarly for the
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“left” relationships of the vertical segments. An
example is shown in Fig. 1. Two floorplans F and
G are equivalent if and only if AF D AG and
LF D LG . A floorplan F is slicing if and only if
both its AF and LF are series parallel.

Slicing Tree
A slicing floorplan can also be described natu-
rally by a rooted binary tree called slicing tree.
In a slicing tree, each internal node is labeled by
either an h or a v, indicating a horizontal or a ver-
tical slice respectively. Each leaf corresponds to
a basic rectangle. An example is shown in Fig. 2.
There can be several slicing trees describing the
same slicing floorplan, but this redundancy can
be removed by requiring the label of an internal
node to differ from that of its right child [12].
For the algorithm presented in this work, a tree of
smallest depth should be chosen, and this depth
minimization process can be done in O.n log n/

time using the algorithm by Golumbic [2].

Orientation Optimization
In optimization of a floorplan layout, some free-
dom in moving the line segments and in choosing
the dimensions of the rectangles are allowed. In
the input, each basic rectangle R has two positive

integers aR and bR, representing the dimensions
of the cell that will be fit into R. Each cell has
two possible orientations resulting in either the
side of length aR or bR being horizontal. Given a
floorplan F and an orientation p, each edge e in
AF and LF is given a label l.e/ representing the
height or the width of the cell corresponding to
e depending on its orientation. Define an (F; ¡)-
placement to be a labeling l of the vertices in
AF and LF such that (i) the sources are labeled
by zero and (ii) if e is an edge from vertex
¢ to ¢ 0; l.¢ 0/ � l.¢/ C l.e/. Intuitively, if ¢

is a horizontal segment, l.¢/ is the distance of
¢ from the top of the enclosing rectangle, and
the inequality constraint ensures that the basic
rectangle corresponding to e is tall enough for
the cell contained in it and similarly for the
vertical segments. Now, hF .¡/ (resp. wF .¡/) is
defined to be the minimum label of the sink in
AF .¡/ (resp. LF .¡/) over all (F; ¡)-placements,
where AF .¡/ (resp. LF .¡/) is obtained from AF

(resp. LF ) by labeling the edges and vertices as
described above. Intuitively, hF .¡/ and wF .¡/

give the minimum height and width of a floorplan
F given an orientation ¡ of all the cells such
that each cell fits well into its associated basic
rectangle.
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The orientation optimization problem can be
defined formally as follows:

Problem 1 (Orientation Optimization Prob-
lem for Slicing Floorplan)
INPUT: A slicing floorplan F of n cells described
by a slicing tree T , the widths and heights of the
cells ai and bi for i D 1: : :n, and a cost function
§.h; w/.
OUTPUT: An orientation ¡ of all the cells that
minimizes the objective function§.hF .¡/;wF.¡//

over all orientations ¡.

For this problem, Lauther [3] has suggested
a greedy heuristic. Zibert and Saal [13] use
integer programming methods to do rotation
optimization and several other optimization
simultaneously for general floorplans. In the
following sections, an efficient algorithm will be
given to solve the problem optimally in O(nd)
time where n is the number of cells and d is the
depth of the given slicing tree.

Key Results

In the following algorithm, F.u/ denotes the
floorplan described by the subtree rooted at u in
the given slicing tree T , and let L.u/ be the set of
leaves in that subtree. For each node u of T , the
algorithm constructs recursively a list of pairs:

f.h1; w1/ ; .h2; w2/ ; : : : ; .hm; wm/g

where (1) m � jL.u/j C 1, (2) hi > hiC1 and
wi < wiC1 for i D 1: : :m � 1, (3) there is
an orientation ¡ of the cells in L.u/ such that
.hi ; wi / D .hF .u/.¡/; wF .u/.¡// for each i D

1: : :m, and (4) for each orientation ¡ of the cells
in L.u/, there is a pair .hi ; wi / in the list such that
hi � hF .u/.¡/ and wi � wF .u/.¡/.

L.u/ is thus a non-redundant list of all possible
dimensions of the floorplan described by the
subtree rooted at u. Since the cost function §

is non-decreasing, it can be minimized over all
orientations by finding the minimum §.hi ; wi /

over all the pairs .hi ; wi / in the list constructed
at the root of T . At the beginning, a list is
constructed at each leaf node of T representing

the possible dimensions of the cell. If a leaf cell
has dimensions a and b with a > b, the list
is f.a; b/; .b; a/g. If a D b, there will just be
one pair .a; b/ in the list. (If the cell has a fixed
orientation, there will also be just one pair as
defined by the fixed orientation.) Notice that the
condition (1) above is satisfied in these leaf node
lists. The algorithm then works its way up the
tree and constructs the list at each node recur-
sively. In general, assume that u is an internal
node with children v and v0 and u represents
a vertical slice. Let f.h1; w1/ : : : .hk ; wk/g and
f.h0

1; w0
1/ : : : .h0

m; w0
m/g be the lists at v and v0

respectively where k � jL.v/j C 1 and m � j

L.v0/j C 1. A pair (hi , wi) from v can be put
together by a vertical slice with a pair .h0

j ; w0
j /

from v0 to give a pair:

join..hi ; wi /; .h0
j ; w0

j // D .max.hi ; h0
j /; wiCw0

j /

in the list of u (see Fig. 3). The key fact is that
most of the km pairs are sub-optimal and do not
need to be considered. For example, if hi > h0

j ,
there is no need to join .hi ; wi / with .h0

´; w0
´/ for

any z > j since

max.hi ; h0
´/ D max.hi ; h0

j / D hi ;

wi C w0
´ > wi C w0

j

Similarly, if node u represents a horizontal slice,
the join operation will be

join..hi ; wi /; .h0
j ; w0

j // D .hiCh0
j ; max.wi ; w0

j //

The algorithm also keeps two pointers for each
element in the lists in order to construct back the
optimal orientation at the end. The algorithm is
summarized by the following pseudocode:

Pseudocode Stockmeyer()
1. Initialize the list at each leaf node.
2. Traverse the tree in postorder. At each inter-

nal node u with children v and v0, construct a
list at node u as follows:

3. Let f.h1; w1/ : : : .hk ; wk/g and f.h0
1; w0

1/

: : : .h0
m; w0

m/g be the lists at v and v0

respectively.
4. Initialize i and j to one.
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Slicing Floorplan
Orientation, Fig. 3 An
illustration of the merging
step

hi

Wi W’j

h’j

5. If i > k or j > m, the whole list at u is
constructed.

6. Add join..hi ; wi /; .h0
j ; w0

j // to the list with
pointers pointing to .hi ; wi / and .h0

j ; w0
j / in

L.v/ and L.v0/ respectively.
7. If hi > h0

j , increment i by 1.
8. If hi > h0

j , increment j by 1.
9. If hi > h0

j , increment both i and j by 1.
10. Go to step 5
11. Compute §.hi ; wi / for each pair .hi ; wi / in

the list Lr at the root r of T .
12. Return the minimum §.hi ; wi / for all

.hi ; wi / in Lr and construct back the optimal
orientation by following the pointers.

Correctness
The algorithm is correct since at each node u,
a list is constructed that records all the possible
non-redundant dimensions of the floorplan de-
scribed by the subtree rooted at u. This can be
proved easily by induction starting from the leaf
nodes and working up the tree recursively. Since
the cost function § is non-decreasing, it can be
minimized over all orientations of the cells by
finding the minimum §.hi ; wi / over all the pairs
.hi ; wi / in the list Lr constructed at the root r

of T .

Runtime
At each internal node u with children v and v0.
If the lengths of the lists at v and v0 are k and m

respectively, the time spent at u to combine the

two lists is O.k C m/. Each possible dimension
of a cell will thus invoke one unit of execution
time at each node on its path up to the root in
the postorder traversal. The total runtime is thus
O.d � N / where N is the total number of real-
izations of all the n cells, which is equal to 2n in
the orientation optimization problem. Therefore,
the runtime of this algorithm is O.nd/.

Theorem 1 Let §.h; w/ be non-decreasing in
both arguments, i.e., if h � h0 and w � w0,
§.h; w/ � §.h0; w0/, and computable in constant
time. For a slicing floorplan F described by a
binary slicing tree T , the problem of minimizing
§.hF .¡/; wF .¡// over all orientations ¡ can be
solved in time O.nd/ time, where n is the number
of leaves of T (equivalently, the number of cells
of F ) and d is the depth of T .

Applications

Floorplan design is an important step in the phys-
ical design of VLSI circuits. Stockmeyer’s opti-
mal orientation algorithm [8] has been general-
ized to solve the area minimization problem in
slicing floorplans [7], in hierarchical non-slicing
floorplans of order five [6,9], and in general floor-
plans [5]. The floorplan area minimization prob-
lem is similar except that each soft cell now has
a number of possible realizations, instead of just
two different orientations. The same technique
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can be applied immediately to solve optimally the
area minimization problem for slicing floorplans
in O.nd/ time where n is the total number of
realizations of all the cells in a given floorplan
F and d is the depth of the slicing tree of F. Shi
[7] has further improved this result to O.n log n/

time. This is done by storing the list of non-
redundant pairs at each node in a balanced binary
search tree structure called realization tree and
using a new merging algorithm to combine two
such trees to create a new one. It is also proved
in [7] that this O.n log n/ time complexity is the
lower bound for this area minimization problem
in slicing floorplans.

For hierarchical non-slicing floorplans, Pan
et al. [6] prove that the problem is NP-complete.
Branch-and-bound algorithms are developed by
Wang and Wong [9], and pseudopolynomial time
algorithms are developed by Wang and Wong
[10] and Pan et al. [6]. For general floorplans,
Stockmeyer [8] has shown that the problem is
strongly NP-complete. It is therefore unlikely
to have any pseudopolynomial time algorithm.
Wimer et al. [11] and Chong and Sahni [1]
propose branch-and-bound algorithms. Pan et al.
[5] develop algorithms for general floorplans that
are approximately slicing.
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Problem Definition

In the last decade, the theoretical study of the slid-
ing window model was developed to advance ap-
plications with very large input and time-sensitive
output. In some practical situations, input might
be seen as an ordered sequence, and it is use-
ful to restrict computations to recent portions
of the input. Examples include the analysis of
recent tweets and time series of the stock market.
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To address the aforementioned practical situa-
tions, Datar et al. [20] introduced the sliding
window model that assumes that the input is a
stream (i.e., the ordered sequence) of data el-
ements and divides the data elements into two
categories: active elements and expired elements.
Typically, a recent portion (i.e., a suffix) of the
stream defines the window of active elements,
and the reminder (i.e., a complimenting prefix)
of the stream defines the set of expired elements.
When a new data element arrives, the set of active
elements expands to include the new element,
but the set might also shrink by discarding some
portion of oldest active elements. This process
of additions and expirations reminds one of the
movements of an interval (or a window) along
a line and explains the name of the model. The
number of active elements N is often called a
size of the sliding window. There are two popular
variants of the sliding window model. The variant
of a sequence-based window fixes the number of
active elements N , and every insertion (or arrival)
of a new element corresponds to a deletion (or
expiration) of the oldest active element (after the
size of the stream becomes larger than N ). For
example, a sequence-based window on a stream
of IP packets is a set of last N packets. The
variant of a timestamp-based window associates
each element with a nondecreasing timestamp,
and the window contains all elements with times-
tamps larger than a certain value. Thus, there is
no obvious dependence between the number of
elements that arrive and expire. In the previous
example, the timestamp-based window might be
defined as a set of all packets that arrived within
the last t seconds.

Formal Definition
We denote the stream D by a sequence of ele-
ments fpig

m
iD1 where pi 2 Œn�. It is important

to note that m is incremented for each new
arrival. A bucket B.x; y/ D fpi ; i 2 Œx; y�g

is the set of all stream elements between px

and py , inclusively. A sequence-based window is
defined W D B.m � N C 1; m/ where N is a
predefined parameter. Consider a nondecreasing
timestamp function T W Œm� ! R and let t be
a parameter. Given T and t , a timestamp-based

window is defined as W D B.l.t/; m/ where
l.t/ D minfi W T .i/ � T .m/ � tg. Consider
function f that is defined on buckets. An algo-
rithm maintains a .1˙ �/-approximation of f on
W if, at any moment, the algorithm outputs X s.t.
jf .W / � X j � �f .W /. Similarly, a randomized
algorithm maintains a .1 ˙ �; ı/-approximation
if P.jf .W / � X j > �f .W // � ı. It is often
the case that f can be computed precisely if the
entire window is available, but sublinear-space
approximations, i.e., computation when the size
of the available memory is o.N C n/, might be
challenging. For example, Datar et al. [20] show
linear space is required to maintain a .1 ˙ �; ı/-
approximation of a sum of active elements if
pi 2 f1; 0;�1g. A typical question in the sliding
window model is the following: given function
f , what are the upper and lower bounds on
the space complexity of maintaining .1 ˙ �; ı/-
approximation of f .

History
In their pioneering papers, Datar et al. [20, 21]
and Babcock et al. [3] gave the first formal defi-
nition of the sliding window model. The model
arose in the context of relational databases as
a special case of time-sensitive queries in tem-
poral databases [3]. Below we give a short sur-
vey of a subset of known results. A survey of
Datar and Motwani [1] provides additional de-
tails. Datar et al. [20] gave the first algorithms
for estimating the count and sum of positive
integers, average, Lp for p 2 Œ1; 2�, and a wide
class of weakly additive functions. Gibbons and
Tirthapura [24] provided further improvements
to count and sum and gave the first methods
for distributed computations. Lee and Ting [29]
provided an optimal solution for a relaxed version
of the counting problem, where the correct an-
swer is provided only if it is comparable with the
window’s size. Braverman and Ostrovsky [6, 7]
extended the results in [20] to a wider class of
smooth functions. Chi et al. [15] considered a
problem of frequent itemsets. Arasu and Manku
[2], Lee and Ting [30], and Golab et al. [26]
considered the problem of finding frequent el-
ements, frequency counts, and quantiles. Bab-
cock, Datar, Motwani, and O’Callaghan [5] pro-
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vided first algorithms for variance and k-medians
problems. Feigenbaum, Kannan and Zhang [22]
presented an efficient solution for the diameter
of a data set in multidimensional space. Later,
Chan and Sadjad [23] presented optimal solu-
tions for this and other geometric problems. Bab-
cock, Datar and Motwani [4] presented algo-
rithms for uniform random sampling from sliding
windows.

Recently, Crouch et al. [17] presented the first
approximation algorithms for important graph
problems such as combinatorial sparsifiers and
spanners, graph matching, and minimum span-
ning tree. Among other results, the methods in
[17] allow non-smooth statistics using a modified
smooth histogram to be computed. McGregor
provided a detailed survey of these and other
graph algorithms [32]. Datar and Muthukrishnan
[19] solved problems of rarity and similarity.
Braverman et al. [11] gave improved algorithms
for rarity, similarity, and L2-heavy hitters. Cor-
mode and Yi developed several first algorithms
for sliding windows in distributed streams [16].
Babcock et al. [4] gave the first method of sam-
pling an element with constant expected space
complexity. Braverman et al. [9, 10] gave a solu-
tion with a space complexity that is a constant in
the worst case. Tatbul and Zdonik [35] considered
the problem of load shedding for aggregation
queries. Golab and Özsu [25] gave the first al-
gorithm for approximating multi-joins. Recently,
Braverman et al. [13] extended the zero-one law
for increasing frequency-based functions [8] to
sliding windows.

Key Results

Smooth Histogram
Extending the results in [20], Braverman and
Ostrovsky [6, 7] introduced a notion of a smooth
function and presented techniques for approxi-
mating smooth functions over sliding windows.
Denote by B �r A the event when bucket B is
a suffix of A; i.e., if A D fpn1

; : : : ; pn2
g (for

some n1 < n2), then B D fpn3
; : : : ; pn2

g, where
n1 � n3 � n2. Denote by A [ C the union of
adjacent buckets A and C .

Definition 1 Function f is .˛; ˇ/-smooth if it
preserves the following properties:

1. f .A/ � 0.
2. f .A/ � f .B/ for B �r A.
3. f .A/ � poly.jAj/.
4. For any 0 < � < 1, there exist ˛ D ˛.�; f /

and ˇ D ˇ.�; f / such that
• 0 < ˇ � ˛ < 1.
• If B �r A and .1� ˇ/f .A/ � f .B/, then

.1 � ˛/f .A [ C / � f .B [ C / for any
adjacent C .

In other words, a nonnegative, nondecreasing,
and polynomially bounded function f is .˛; ˇ/-
smooth if the following is true. If f .B/ is a
.1˙ ˇ/-approximation of f .A/, then f .B [ C /

is .1 ˙ ˛/-approximation of f .A [ C / for
any B �r A and C . The main technical
result of [7] is a new data structure called
“smooth histogram” that allows algorithms
for insertion-only streams to be extended
to sliding windows with space complexity
increased by a polylogarithmic factor. If there
exists an algorithm that computes f precisely
using g space and h time per element, then
a smooth histogram can be used to maintain
a .1 ˙ ˛/-approximation of f over sliding

windows, using O
�

1
ˇ

log n.g C log n/
�

bits

and O
�

1
ˇ

h log n
�

time. Further, .1 ˙ �/-

approximation of f on D results in .1 ˙

.˛ C �//-approximation of f over sliding
windows. Examples of smooth functions include
sum, count, min, diameter, weakly additive
functions, Lp norms, frequency moments,
length of longest subsequence, and geometric
mean.

Let f be .˛; ˇ/-smooth for which there ex-
ists an algorithm 	 that calculates f on D

using g space and h operation per element. To
maintain f on sliding windows, we construct a
data structure that we call smooth histogram. It
consists of a set of indexes x1 < x2 < � � � <

xs D N and instances of 	 for each bucket
B.xi ; N /. Informally, the smooth histogram en-
sures the following properties of the sequence.
The first two elements of the sequence always
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“sandwich” the window, i.e., x1 � N � n <

x2. This requirement and the monotonicity of
f give us useful bounds for the sliding window
W : f .x2; N / � f .W / � f .x1; N /. Also,
f should slowly but constantly decrease with
i , i.e., f .xiC2; N / < .1 � ˇ/f .xi ; N /. This
gradual decrease, together with the fact that f is
polynomially bounded, ensures that the sequence

is short, i.e., s D O
�

1
ˇ

log n
�

. Finally, the values

of f on successive buckets were close in the
past, i.e., f .xiC1; N 0/ � .1 � ˇ/f .xi ; N 0/ for
some N 0 � N . This represents our key idea and
exploits the properties of smoothness. Indeed,
f .x2; N 0/ � .1�ˇ/f .x1; N 0/ for some N 0 � N ;
thus, by the .˛; ˇ/-smoothness of f , we have
f .x2; N / � .1 � ˛/f .x1; N / � .1 � ˛/f .W /.
We refer a reader to [7] for further technical
details.

Applications

There are several applications of the theoretical
methods for the sliding window model, for ex-
ample, [15, 18, 31, 33, 36].

Open Problems

We list several interesting open problems. It
would be important to understand the difference
between the sliding window model and other
streaming models such as the insertion-only
model, the turnstile, and decay models. This is
perhaps one of the most important unresolved
open problems; see, e.g., Sohler [34]. In
particular, it would be nice to understand
the exact space complexity of the frequency
moments that are well understood in the other
streaming models [12, 27, 28]. Also, it would
be interesting to extend the coreset methods
[14] to sliding windows, obtain polylogarithmic
solutions for clustering, and improve the first
clustering algorithm in [5]. Also, it would
be nice to further develop graph methods
[17]. Improving the approximation ratio of the
maximum matching and obtaining the O.n1C1=t /

space bound for .2t � 1/-spanners are important
open problems.
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Problem Definition

Given a smooth surface S � R
3, we are required

to compute a set of points P � S and connect
them with edges and triangles so that the resulted
triangulation T is geometrically close and is
topologically equivalent to S .

The output triangulation T is a simplicial 2-
complex whose vertices are the points in P . Its
underlying space, which is the pointwise union
of the simplices (vertices, edges, triangles), is
denoted with jT j. Geometric proximity is often
characterized by Hausdorff distance between S

and the underlying space jT j of T . It is also
desired that the triangle normals in T closely
approximate the surface normals at its vertices.
Topological equivalence is characterized by the
existence of a homeomorphism between S and
jT j. In some cases, the topological guarantee can
be given in terms of isotopy which is stronger
than homeomorphism. It is important to notice
that, unlike polyhedral surfaces, a smooth surface
cannot be represented exactly and hence needs to
be approximated with a finite triangulation. This
approximation requires that the mesh generation
algorithms guarantee topological fidelity in addi-
tion to the geometric proximity.

In volume mesh generation, the space bounded
by a smooth surface S is required to be tes-
sellated with tetrahedra which form a simplicial
3-complex T . Similar to the surface case, it is
required that the underlying space jT j is geo-
metrically close and topologically equivalent to
the space bounded by S . It turns out that if the
underlying space of the boundary 2-complex of
T is geometrically close and has an isotopy to S ,
then so is jT j.

In both surface and volume meshes, it is
desirable that the triangles and tetrahedra have
good aspect ratio. This is often achieved by
bounding the circumradius to shortest edge
length ratios for triangles. Unfortunately, for
tetrahedra, a bounded radius-edge ratio does not
necessarily imply a bounded aspect ratio though
most poor quality tetrahedra except slivers [4]
are eliminated by bounded radius-edge ratio.
Figure 1 shows an example of a surface and a
volume mesh.

Key Results

Theoretically sound algorithms for surface mesh-
ing use the technique of Delaunay refinement
originally proposed by Chew [8]. For a point
set P � R

3, let Vor P and Del P denote the
Voronoi diagram and Delaunay triangulation of
P , respectively. A typical Delaunay refinement
algorithm iteratively samples the space to be
meshed with a locally furthest point strategy that
inserts points where a Voronoi face of appropriate
dimension intersects the space. The decision of
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Smooth Surface and Volume Meshing, Fig. 1 A knotted torus, its surface mesh, and its volume mesh

which points to be inserted is guided by cer-
tain desirable properties of the output such as
topological equivalence, simplex radius-edge ra-
tios, geometric proximity, and so on.

In both surface and volume meshing, the fea-
tures of the surface S play an important role
because regions of small features need to be sam-
pled relatively densely to capture the geometry
and topology of S . The definition of local feature
size and "-sample given by Amenta, Bern, and
Eppstein [2] captures this idea.

Let S be a smooth, closed surface, that is, S is
compact, C 2-smooth, and has no boundary. The
medial axis M.S/ of S is defined as the closure
of the set of points x 2 R

3 so that the distance
d.x; S/ is realized by two or more points in S .
The local feature size is defined as

f .x/ D d.x; M/:

A set of points P � S is called an "-sample of
S if every point x 2 S has a sample point in P

within "f .x/ distance.
It turns out that if P is an "-sample of S for a

sufficiently small value of ", a subcomplex of the
Delaunay triangulation of this sample captures
the topology of S . We define this subcomplex in
generality and then specialize it to S .

Let V
 denote the dual Voronoi face of a De-
launay simplex � in Del P . The restricted Voronoi
face of V
 with respect to X � R

3 is the inter-
section V
 jX D V
 \ X. The restricted Voronoi
diagram and restricted Delaunay triangulation of
P with respect to X are

Vor P jX D fV
 jX j V
 jX 6D ;g and Del P jX

D f� j V
 jX 6D ;g respectively.

In words, Del P jX consists of those Delaunay
simplices in Del P whose dual Voronoi face in-
tersects X. We call these simplices restricted.

Now consider a sample P on the surface S .
The restricted Delaunay triangulation of P with
respect to S is Del P jS . It is known that if P is
an "-sample of S for " � 0:09, then Del P jS has
its underlying space homeomorphic to S [1, 9].
To use this result one requires computing an "-
sample of S . A computation of local feature size
or its approximation is necessary to determine if
a sample is an "-sample for a predetermined ".
Even if one is allowed to assume the availability
of the local feature size at any given point, it is
not immediately obvious how to place points on
S so that they become "-sample for a given " > 0.

Surface Meshing
The following theorem about the fidelity of the
restricted Delaunay triangulation of a dense sam-
ple on a smooth closed surface is the basis of
provable surface meshing algorithms. It has been
proved in various versions in [1, 5, 7, 9].

Theorem 1 Let P be an "-sample of a smooth,
compact, boundary-less surface S � R

3. The re-
stricted Delaunay complex T D Del P jS satisfies
the following properties for " � 0:09:

1. The underlying space jT j is homeomorphic to
S (actually, there is an ambient isotopy taking
jT j to S ).

2. Every point in jT j has a point x 2 S so that
d.p; x/ � O."/f .x/. Similarly, every point x

in S has a point p in jT j so that d.p; x/ �

O."/f .x/.
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3. Each triangle t 2 T has a normal making an
angle O."/ with the normal to the surface S

at any of its vertices.

Cheng, Dey, Edelsbrunner, and Sullivan [5]
applied Chew’s furthest point placement strat-
egy [8] to maintain a dynamic surface mesh
of a special type of surface called skin surface
for which they computed the local feature size
explicitly. The above theorem then allowed them
to argue the geometric and topological fidelity
of the output. Boissonnat and Oudot [3] used
similar point placement strategy assuming that
the local feature sizes are available, but they
suggested how to initialize the meshing proce-
dure for general surfaces. For a restricted triangle
t 2 Del P jS , the dual Voronoi edge intersects S

possibly at multiple points. Each ball centering
such an intersection point and circumscribing
vertices of t is called a surface Delaunay ball of
t . Boissonnat and Oudot observed that if every
surface Delaunay ball of each restricted triangle
has small radius, say at most 0:05 times the
local feature size at the center, then P a 0:09-
sample of S . It follows that Del P jS at this point
satisfies the properties stated in Theorem 1. The
deduction of this conclusion also requires that
every component of S has at least one Voronoi
edge intersecting it which Boissonnat and Oudot
ensure with persistent triangles.

When local feature sizes are not known,
we cannot use the method of Boissonnat and
Oudot [3]. Instead, we fall back upon a different
strategy to drive the Delaunay refinement. A
result of Edelsbrunner and Shah [10] says
that if Voronoi faces intersect S in a closed
topological ball of appropriate dimension, then
the underlying space of the restricted Delaunay
triangulation becomes homeomorphic to S . In
fact, this is the basis of the proof of Theorem 1.
Therefore, a Delaunay refinement driven by
the violation of the topological ball conditions
provides a viable strategy for meshing with
topological guarantees. This strategy is followed
by Cheng, Dey, Ramos, and Ray [6].

The algorithm of Cheng et al. avoids com-
puting local feature sizes or their approximation;
however, it needs to compute critical points of

certain functions on the surface, which may not
be easily computable. In a recent book on De-
launay mesh generation [7], Cheng, Dey, and
Shewchuk have suggested a strategy that is more
practical which leverages on both algorithms of
Boissonnat and Oudot [3] and Cheng et al. [6].
It operates with an input parameter � > 0.
As long as the surface Delaunay balls of the
restricted triangles are not all smaller than a ball
of radius �, the algorithm refines. It also refines
if the restricted triangles around each vertex do
not form a topological disk. The algorithm can
be shown to terminate and has the following
guarantees.

Theorem 2 ([7]) There is a Delaunay refine-
ment algorithm that runs with a parameter � > 0

on an input smooth, compact, boundary-less
surface S with the following guarantees:

1. The output mesh is a Delaunay subcomplex
and is a 2-manifold for all values of �.

2. If � is sufficiently small, then the output mesh
has similar guarantees with respect to the
input surface S as in Theorem 1 (replace "

with �).

It should be noted that in any of the above
algorithms, one may introduce the condition that
the output triangles have radius-edge ratio of at
most 1 without loosing any of the geometric
or topological guarantees. Even a graded mesh
can be guaranteed by supplying an appropriate
grading function as input. For details see [7].

Volume Meshing
Let O denote the volume enclosed by a smooth
surface S . Consider the surface mesh of S pro-
duced by one of the algorithms mentioned above.
The volume enclosed by this surface mesh is
already triangulated with Delaunay tetrahedra.
We can further refine them for quality using the
radius-edge ratio condition. The circumcenters of
skinny tetrahedra can be added as long as they do
not disturb the surface triangulation. One easy ap-
proach is to skip adding those circumcenters who
encroach the surface Delaunay balls meaning that
they lie inside these balls. This ensures that all
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surface triangles remain intact. The trade-off of
this easy fix is that the tetrahedra near the bound-
ary may not have bounded radius-edge ratios. To
ensure the quality for all tetrahedra, additional
effort is required to maintain the surface. Oudot,
Rineau, and Yvinec [11] proposed an algorithm
for guaranteed quality volume meshing.

The algorithm first runs the algorithm of [3]
to obtain a surface triangulation with a vertex set
P on the surface. It uses two parameters " and
� where " controls the level of refinement and
� controls the aspect ratios of the tetrahedra and
triangles. It ensures that all restricted triangles on
the surface have vertices from S . It refines surface
triangles as in surface meshing algorithm. Then,
it refines the tetrahedra. Refinement of surface tri-
angles is given priority over the tetrahedra. Oudot
et al. [11] prove that their algorithm terminates
and has the following geometric and topological
guarantees.

Theorem 3 ([11]) Given a volume O bounded
by a smooth surface S , for " � 0:05 and � > 1,
there is an algorithm that produces T D Del P jO
where each tetrahedron in T has radius-edge
ratio at most � and jT j is homeomorphic (iso-
topic) to O and the boundary of T is Del P jS .
Furthermore, the isotopy moves a point x 2 S by
at most O."2/f .x/ distance.

An improved version of the algorithm and its
analysis in presented in the book [7].

URLs to Code and Data Sets

CGAL(http://cgal.org), a library of geometric
algorithms, contains software for surface and
volume mesh generation. The DelPSC software
that implements the surface and volume meshing
algorithms as described in [7] is also available
from http://web.cse.ohio-state.edu/~tamaldey/
delpsc.html.
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Problem Definition

Smoothed analysis has originally been introduced
by Spielman and Teng [22] in 2001 to explain
why the simplex method is usually fast in prac-
tice despite its exponential worst-case running
time. Since then it has been applied to a wide
range of algorithms and optimization problem.
In smoothed analysis, inputs are generated in
two steps: first, an adversary chooses an arbi-
trary instance, and then this instance is slightly
perturbed at random. The smoothed performance
of an algorithm is defined to be the worst ex-
pected performance the adversary can achieve.
This model can be viewed as a less pessimistic
worst-case analysis, in which the randomness
rules out pathological worst-case instances that
are rarely observed in practice but dominate the
worst-case analysis. If the smoothed running time
of an algorithm is low (i.e., the algorithm is ef-
ficient in expectation on any perturbed instance)
and inputs are subject to a small amount of
random noise, then it is unlikely to encounter an
instance on which the algorithm performs poorly.
In practice, random noise can stem, for example,
from measurement errors, numerical imprecision,
or rounding errors. It can also model arbitrary
influences, which we cannot quantify exactly, but
for which there is also no reason to believe that
they are adversarial. After its invention smoothed
analysis has been applied in a variety of different
contexts, e.g., linear programming [8, 19, 21, 23],
multi-objective optimization [5,10,17,18], online
and approximation algorithms [4,7,20], searching
and sorting [3,12,15,16], game theory [9,11], and
local search [1, 2, 13, 14].

Key Results

Simplex Method
Spielman and Teng [22] considered linear pro-
grams of the form

maximize cT x

subject to .ACG/x � .b C h/;

where A 2 R
n�d and b 2 R

n are chosen
arbitrarily by an adversary and the entries of the

matrix G 2 R
n�d and the vector h 2 R

n are
independent Gaussian random variables that rep-
resent the perturbation. These Gaussian random
variables have mean 0 and standard deviation
� � .maxik.bi ; ai /k/, where the vector .bi ; ai / 2

R
dC1 consists of the i -th component of b and the

i -th row of A and k�k denotes the Euclidean norm.
Without loss of generality, we can scale the linear
program specified by the adversary and assume
that maxik.bi ; ai /k D 1. Then the perturba-
tion consists of adding an independent Gaussian
random variable with standard deviation � to
each entry of A and b. The smaller � is chosen,
the more concentrated are the random variables,
and hence, the better worst-case instances can be
approximated by the adversary. Intuitively, � can
be seen as a measure specifying how close the
analysis is to a worst-case analysis.

Spielman and Teng analyzed the smoothed
running time of the simplex algorithm using the
shadow vertex pivot rule. This pivot rule has a
simple and intuitive geometric description which
makes probabilistic analyses feasible. Let x0 de-
note the given initial vertex of the polytope P
of feasible solutions. Since x0 is a vertex of
the polytope, there exists an objective function
uT x which is maximized by x0 subject to the
constraint x 2 P . In the first step, the shadow
vertex pivot rule computes an objective function
uT x with this property. If x0 is not an optimal
solution of the linear program, then the vectors
c and u are linearly independent and span a
plane. The shadow vertex method projects the
polytope P onto this plane. The shadow, that is,
the projection of P onto this plane is a possibly
open polygon. One can show that both x0 and the
optimal solution x� are projected onto vertices of
the polygon and that each path between the pro-
jections of x0 and x� in the polygon corresponds
to a path between x0 and x� in the polytope.
Hence, one only needs to follow the edges of the
polygon starting from the projection of x0 to (the
projection of) x�.

The number of steps performed by the simplex
method with shadow vertex pivot rule is upper
bounded by the number of vertices of the two-
dimensional projection of the polytope. Hence,
bounding the expected number of vertices on the
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polygon is the crucial step for bounding the ex-
pected running time of the simplex method with
shadow vertex pivot rule. Spielman and Teng first
consider the case that the polytope P is projected
onto a fixed plane specified by two fixed vectors
c and u. They show that the expected number of
vertices of the polygon is polynomially bounded
in d , n, and 1=� . Though this result is the main
ingredient of the analysis, alone it does not yield a
polynomial bound on the smoothed running time
of the simplex method. We have, for example,
not yet described how the initial solution x0 is
found. It is also problematic that the vector u is
not independent of the constraints because it is
determined by x0 which in turn is determined by
a subset of the constraints. Spielman and Teng
showed in a very involved analysis the following
theorem.

Theorem 1 The smoothed running time of the
shadow vertex simplex method is bounded poly-
nomially in d , n, and 1=� .

Later, this analysis was substantially improved
and simplified by Vershynin [23], who proved
that the smoothed running time is even polyno-
mially bounded in d , log n, and 1=� .

Binary Optimization Problems
Beier and Vöcking [6] studied the question which
linear binary optimization problems have polyno-
mial smoothed complexity. Intuitively these are
the problems that can be solved efficiently on
perturbed inputs. An instance I of such an op-
timization problem ˘ consists of a set of feasible
solutions S � f0; 1gn and a linear objective
function f W f0; 1gn ! R of the form maximize
(or minimize) f .x/ D cT x for some c 2 R

n.
Many well-known optimization problems can be
formulated this way, e.g., the problem of finding a
Minimum Spanning Tree, the Knapsack Problem,
and the Traveling Salesman Problem.

It is assumed that an adversary is allowed
to choose the coefficients of the objective
function from the interval Œ�1; 1�. In the second
step, these coefficients are perturbed by adding
independent Gaussian random variables with
mean 0 and standard deviation � to them.
Naturally one might define that a problem ˘ has

polynomial smoothed complexity if there exists
an algorithm A for ˘ whose expected running
time E ŒTA.I /� is bounded polynomially in the
input size jI j and 1=� . This definition, however,
is not sufficiently robust as it depends on the
machine model. An algorithm with expected
polynomial running time on one machine model
might have expected exponential running time on
another machine model even if the former can
be simulated by the latter in polynomial time. In
contrast, the definition from [6] yields a notion
of polynomial smoothed complexity that does
not vary among classes of machines admitting
polynomial time simulations among each other. It
states that a problem ˘ has polynomial smoothed
complexity if there exists an algorithm A for ˘

and some ˛ > 0 such that E ŒTA.I /˛� is bounded
polynomially in the input size jI j and 1=� .

Beier and Vöcking proved the following
theorem that characterizes the class of linear
binary optimization problems with polynomial
smoothed complexity.

Theorem 2 A linear binary optimization prob-
lem ˘ has polynomial smoothed complexity if
and only if there exists a randomized algorithm
for solving ˘ whose expected worst-case running
time is pseudo-polynomial with respect to the
coefficients in the objective function.

For example, the knapsack problem, which
can be solved by dynamic programming
in pseudo-polynomial time, has polynomial
smoothed complexity even if the weights are
fixed and only the profits are randomly perturbed.
Moreover, the traveling salesman problem does
not have polynomial smoothed complexity when
only the distances are randomly perturbed, unless
PDNP, since a simple reduction from Hamilto-
nian cycle shows that it is strongly NP-hard.

Open Problems

An interesting open question is whether or not
other pivot rules for the simplex method also have
polynomial smoothed running time. It would also
be interesting to see whether the insights gained
from smoothed analysis can be used to improve
existing algorithms.
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Problem Definition

Implementing a snapshot object is an abstraction
of the problem of obtaining a consistent view of
several shared variables while other processes are
concurrently updating those variables.

In an asynchronous shared-memory dis-
tributed system, a collection of n processes
communicate by accessing shared data structures,
called objects. The system provides basic types
of shared objects; other needed types must be
built from them. One approach uses locks to
guarantee exclusive access to the basic objects,
but this approach is not fault-tolerant, risks
deadlock or livelock, and causes delays when
a process holding a lock runs slowly. Lock-free
algorithms avoid these problems but introduce
new challenges. For example, if a process reads
two shared objects, the values it reads may not
be consistent if the objects were updated between
the two reads.

A snapshot object stores a vector of m values,
each from some domain D. It provides two opera-
tions: scan and update(i, v), where 1 � i � m and
v 2 D. If the operations are invoked sequentially,
an update(i, v) operation changes the value of the
ith component of the stored vector to v, and a scan
operation returns the stored vector.

Correctness when snapshot operations by
different processes overlap in time is described
by the linearizability condition, which says op-
erations should appear to occur instantaneously.
More formally, for every execution, one can
choose an instant of time for each operation
(called its linearization point) between the
invocation and the completion of the operation.
(An incomplete operation may either be assigned
no linearization point or given a linearization
point at any time after its invocation.) The
responses returned by all completed operations
in the execution must return the same result
as they would if all operations were executed
sequentially in the order of their linearization
points.

An implementation must also satisfy
a progress property. Wait-freedom requires that
each process completes each scan or update in
a finite number of its own steps. The weaker

non-blocking progress condition says the system
cannot run forever without some operation
completing.

This article describes implementations of
snapshots from more basic types, which are
also linearizable, without locks. Two types
of snapshots have been studied. In a single-
writer snapshot, each component is owned by
a process, and only that process may update it.
(Thus, for single-writer snapshots, m D n.) In
a multi-writer snapshot, any process may update
any component. There also exist algorithms
for single-scanner snapshots, where only one
process may scan at a time [10, 13, 14, 16].
Snapshots were introduced by Afek et al. [1],
Anderson [2] and Aspnes and Herlihy [4].

Space complexity is measured by the number
of basic objects used and their size (in bits).
Time complexity is measured by the maximum
number of steps a process must do to finish
a scan or update, where a step is an access to
a basic shared object. (Local computation and
local memory accesses are usually not counted.)
Complexity bounds will be stated in terms of
n; m; d D log jDj and k, the number of opera-
tions invoked in an execution. Ordinarily, there
is no bound on k.

Most of the algorithms below use read-write
registers, the most elementary shared object type.
A single-writer register may only be written
by one process. A multi-writer register may be
written by any process. Some algorithms using
stronger types of basic objects are discussed in
section “Wait-Free Implementations from Small,
Stronger Objects”.

Key Results

A Simple Non-blocking Implementation
from Small Registers
Suppose each component of a single-writer snap-
shot object is represented by a single-writer reg-
ister. Process i does an update(i, v) by writing v

and a sequence number into register i, and incre-
menting its sequence number. Performing a scan
operation is more difficult than merely reading
each of the m registers, since some registers
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might change while these reads are done. To
scan, a process repeatedly reads all the regis-
ters. A sequence of reads of all the registers is
called a collect. If two collects return the same
vector, the scan returns that vector (with the
sequence numbers stripped away). The sequence
numbers ensure that, if the same value is read
in a register twice, the register had that value
during the entire interval between the two reads.
The scan can be assigned a linearization point
between the two identical collects, and updates
are linearized at the write. This algorithm is non-
blocking, since a scan continues running only if
at least one update operation is completed during
each collect. A similar algorithm, with process
identifiers appended to the sequence numbers,
implements a non-blocking multi-writer snapshot
from m multi-writer registers.

Wait-Free Implementations from
Large Registers
Afek et al. [1] described how to modify the
non-blocking single-writer snapshot algorithm to
make it wait-free using scans embedded within
the updates. An update(i, v) first does a scan and
then writes a triple containing the scan’s result,
v and a sequence number into register i. While
a process P is repeatedly performing collects to
do a scan, either two collects return the same
vector (which P can return) or P will eventually
have seen three different triples in the register of
some other process. In the latter case, the third
triple that P saw must contain a vector that is
the result of a scan that started after P’s scan, so
P’s scan outputs that vector. Updates and scans
that terminate after seeing two identical collects
are assigned linearization points as before. If one
scan obtains its output from an embedded scan,
the two scans are given the same linearization
point. This is a wait-free single-writer snapshot
implementation from n single-writer registers of
.nC 1/d C log k bits each. Operations complete
within O(n2) steps. Afek et al. [1] also describe
how to replace the unbounded sequence numbers
with handshaking bits. This requires n�.nd/-bit
registers and n2 1-bit registers. Operations still
complete in O(n2) steps.

The same idea can be used to build multi-
writer snapshots from multi-writer registers.
Using unbounded sequence numbers yields
a wait-free algorithm that uses m registers
storing �.nd C log k/ bits each, in which
each operation completes within O(mn) steps.
(This algorithm is given explicitly in [9].) No
algorithm can use fewer than m registers if
n � m [9]. If handshaking bits are used instead,
the multi-writer snapshot algorithm uses n2

1-bit registers, m.d C log n/-bit registers and
n (md)-bit registers, and each operation uses
O.nmC n2/ steps [1].

Guerraoui and Ruppert [12] gave a similar
wait-free multi-writer snapshot implementation
that is anonymous, i.e., it does not use pro-
cess identifiers and all processes are programmed
identically.

Anderson [3] gave an implementation of
a multi-writer snapshot from a single-writer
snapshot. Each process stores its latest update
to each component of the multi-writer snapshot
in the single-writer snapshot, with associated
timestamp information computed by scanning the
single-writer snapshot. A scan is done using just
one scan of the single-writer snapshot. An update
requires scanning and updating the single-writer
snapshot twice. The implementation involves
some blow-up in the size of the components,
i.e., to implement a multi-writer snapshot with
domain D requires a single-writer snapshot
with a much larger domain D0. If the goal
is to implement multi-writer snapshots from
single-writer registers (rather than multi-writer
registers), Anderson’s construction gives a more
efficient solution than that of Afek et al.

Attiya, Herlihy and Rachman [7] defined the
lattice agreement object, which is very closely
linked to the problem of implementing a single-
writer snapshot when there is a known upper
bound on k. Then, they showed how to construct
a single-writer snapshot (with no bound on k)
from an infinite sequence of lattice agreement
objects. Each snapshot operation accesses the
lattice agreement object twice and does O(n)
additional steps. Their implementations of lattice
agreement are discussed in section “Wait-Free
Implementations from Small, Stronger Objects”.
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Attiya and Rachman [8] used a similar ap-
proach to give a single-writer snapshot imple-
mentation from large single-writer registers using
O.n log n/ steps per operation. Each update has
an associated sequence number. A scanner tra-
verses a binary tree of height log k from root
to leaf (here, a bound on k is required). Each
node has an array of n single-writer registers.
A process arriving at a node writes its current
vector into a single-writer register associated with
the node and then gets a new vector by combining
information read from all n registers. It proceeds
to the left or right child depending on the sum
of the sequence numbers in this vector. Thus,
all scanners can be linearized in the order of
the leaves they reach. Updates are performed
by doing a similar traversal of the tree. The
bound on k can be removed as in [7]. Attiya and
Rachman also give a more direct implementation
that achieves this by recycling the snapshot object
that assumes a bound on k. Their algorithm has
also been adapted to solve condition-based con-
sensus [15].

Attiya, Fouren and Gafni [6] described how to
adapt the algorithm of Attiya and Rachman [8]
so that the number of steps required to perform
an operation depends on the number of processes
that actually access the object, rather than the
number of processes in the system.

Attiya and Fouren [5] solve lattice agreement
in O(n) steps. (Here, instead of using the ter-
minology of lattice agreement, the algorithm is
described in terms of implementing a snapshot
in which each process does at most one snapshot
operation.) The algorithm uses, as a data struc-
ture, a two-dimensional array of O(n2) reflectors.
A reflector is an object that can be used by two
processes to exchange information. Each reflector
is built from two large single-writer registers.
Each process chooses a path through the array
of reflectors, so that at most two processes visit
each reflector. Each reflector in column i is used
by process i to exchange information with one
process j < i . If process i reaches the reflector
first, process j learns about i’s update (if any).
If process j reaches it first, then process i learns
all the information that j has already gathered.
(If both reach it at about the same time, both

processes learn the information described above.)
As the processes move from column i � 1 to
column i, a process that enters column i at some
row r will have gathered all the information that
has been gathered by any process that enters
column i below row r (and possibly more). This
invariant is maintained by ensuring that if process
i passes information to any process j < i in row
r of column i, it also passes that information to
all processes that entered column i above row r.
Furthermore, process i exits column i at a row that
matches the amount of information it learns while
traveling through the column. When processes
have reached the rightmost column of the array,
the ones in higher rows know strictly more than
the ones in lower rows. Thus, the linearization
order of their scans is the order in which they exit
the rightmost column, from bottom to top. The
techniques of Attiya, Herlihy and Rachman [7,
8], mentioned above, can be used to remove the
restriction that each process performs at most one
operation. The number of steps per operation is
still O(n).

Wait-Free Implementations from Small,
Stronger Objects
All of the wait-free implementations described
above use registers that can store ˝.m/ bits
each, and are therefore not practical when m is
large. Some implementations from smaller ob-
jects equipped with stronger synchronization op-
erations, rather than just reads and writes, are
described in this section. An object is considered
to be small if it can store O.d C log nC log k/

bits. This means that it can store a constant
number of component values, process identifiers
and sequence numbers.

Attiya, Herlihy and Rachman [7] gave an el-
egant divide-and-conquer recursive solution to
the lattice agreement problem. The division of
processes into groups for the recursion can be
done dynamically using test&set objects. This
provides a snapshot algorithm that runs in O(n)
time per operation, and uses O.kn2 log n/ small
single-writer registers and O.kn log2 n/ test&set
objects. (This requires modifying their imple-
mentation to replace those registers that are large,
which are written only once, by many small
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registers.) Using randomization, each test&set
object can be replaced by single-writer registers
to give a snapshot implementation from registers
only with O(n) expected steps per operation.

Jayanti [13] gave a multi-writer snapshot im-
plementation from O.mn2/ small compare &
swap objects where updates take O(1) steps and
scans take O(m) steps. He began with a very
simple single-scanner, single-writer snapshot im-
plementation from registers that uses a secondary
array to store a copy of recent updates. A scan
clears that array, collects the main array, and
then collects the secondary array to find any
overlooked updates. Several additional mecha-
nisms are introduced for the general, multi-writer,
multi-scanner snapshot. In particular, compare &
swap operations are used instead of writes to
coordinate writers updating the same component
and multiple scanners coordinate with one an-
other to simulate a single scanner. Jayanti’s algo-
rithm builds on an earlier paper by Riany, Shavit
and Touitou [16], which gave an implementation
that achieved similar complexity, but only for
a single-writer snapshot.

Applications

Applications of snapshots include distributed
databases, storing checkpoints or backups for
error recovery, garbage collection, deadlock
detection, debugging distributed programmes
and obtaining a consistent view of the values
reported by several sensors. Snapshots have been
used as building blocks for distributed solutions
to randomized consensus and approximate
agreement. They are also helpful as a primitive
for building other data structures. For example,
consider implementing a counter that stores
an integer and provides increment, decrement
and read operations. Each process can store
the number of increments it has performed
minus the number of its decrements in its own
component of a single-writer snapshot object,
and the counter may be read by summing the
values from a scan. See [10] for references on
many of the applications mentioned here.

Open Problems

Some complexity lower bounds are known for
implementations from registers [9], but there re-
main gaps between the best known algorithms
and the best lower bounds. In particular, it is not
known whether there is an efficient wait-free im-
plementation of snapshots from small registers.

Experimental Results

Riany, Shavit and Touitou gave performance eval-
uation results for several implementations [16].
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Problem Definition

One of the most promising ways to determine
evolutionary distance between two organisms is
to compare the order of appearance of identical
(e.g., orthologous) genes in their genomes. The
resulting genome rearrangement problem calls
for finding a shortest sequence of rearrangement
operations that sorts one genome into the other.

In this work [8], Hartman and Sharan provide
a 1.5-approximation algorithm for the problem
of sorting by transpositions, transreversals, and
revrevs, improving on a previous 1.75 ratio for
this problem. Their algorithm is also faster than
current approaches and requires O.n3=2

p
log n/

time for n genes.

Notations and Definition
A signed permutation   D Œ 1;  2; : : : ;  n� on
n. / 
 n elements is a permutation in which
each element is labeled by a sign of plus or minus.
A segment of   is a sequence of consecutive
elements  i ;  iC1; : : : ;  k , where 1 � i � k �

n. A reversal ¡ is an operation that reverses the
order of the elements in a segment and also flips
their signs. Two segments  i ;  iC1; : : : ;  k and
 j ;  j C1; : : : ;  l are said to be contiguous if
j D kC1 or i D lC1. A transposition £ is an op-
eration that exchanges two contiguous (disjoint)
segments. A transreversal £¡A;B (respectively,
w£¡B;A) is a transposition that exchanges two
segments A and B and also reverses A (respec-
tively, B). A revrev operation ¡¡ reverses each
of the two contiguous segments (without trans-
posing them). The problem of finding a short-
est sequence of transposition, transreversal, and
revrev operations that transforms a permutation
into the identity permutation is called sorting by
transpositions, transreversals, and revrevs. The
distance of a permutation  , denoted by d. /, is
the length of the shortest sorting sequence.

Key Results

Linear vs. Circular Permutations
An operation is said to operate on the affected
segments as well as on the elements in those seg-
ments. Two operations � and �0 are equivalent if
they have the same rearrangement result, i.e., � �

  D �0 �  for all  . In this work [8], Hartman and
Sharan showed that for an element x of a circular
permutation  , if � is an operation that operates
on x, then there exists an equivalent operation �0

that does not operate on x. Based on this property,
they further proved that the problem of sorting
by transpositions, transreversals, and revrevs is
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Sorting by Transpositions and Reversals (Ap-
proximate Ratio 1.5), Fig. 1 (a) The equivalence
of transreversal and revrev on circular permutations.
(b) The breakpoint graph G. / of the permutation
  D Œ1; �4; 6; �5; 2; �7; �3�, for which f . / D

Œ1; 2; 8; 7; 11; 12; 10; 9; 3; 4; 14; 13; 6; 5�. It is con-
venient to draw G. / on a circle such that black edges
(i.e., thick lines) are on the circumference and gray edges
(i.e., thin lines) are chords

equivalent for linear and circular permutations.
Moreover, they observed that revrevs and tran-
sreversals are equivalent operations for circular
permutations (as illustrated in Fig. 1a), imply-
ing that the problem of sorting a linear/circular
permutation by transpositions, transreversals, and
revrevs can be reduced to that of sorting a circular
permutation by transpositions and transreversals
only.

The Breakpoint Graph
Given a signed permutation   on {1,2,. . . ,n} of
n elements, it is transformed into an unsigned
permutation f . / D  0 D Œ 0

1;  0
2; : : : ;  0

2n� on
{1,2,. . . ,2 n} of 2n elements by replacing each
positive element i with two elements 2i � 1; 2i

(in this order) and each negative element �i with
2i; 2i � 1. The extended f . / is considered here
as a circular permutation by identifying 2n C 1

and 1 in both indices and elements. To ensure
that every operation on f . / can be mimicked
by an operation on  , only operations that cut
before odd position are allowed for f . /. The
breakpoint graph .G / is an edge-colored graph
on 2n vertices f1; 2; : : : ; 2ng, in which for every
1 � i � n;  0

2i is joined to  0
2iC1 by a black

edge and 2i is joined to 2i C 1 by a gray edge
(e.g., see Fig. 1b). Since the degree of each vertex
in G. / is exactly 2, G. / uniquely decomposes
into cycles. A k-cycle (i.e., a cycle of lengthk) is a
cycle with k black edges, and it is odd if k is odd.

The number of odd cycles in G. / is denoted by
codd. /. It is not hard to verify that G. / consists
of n 1-cycles, and hence, codd. / D n, if   is
an identity permutation Œ1; 2; : : : ; n�. Gu et al.
[5] have shown that codd.� �  / � codd. / C 2

for all linear permutations   and operations �.
In this work [8], Hartman and Sharan further
noted that the above result holds also for circular
permutations and proved that the lower bound of
d. / is .n. / � codd. //=2.

Transformation into 3-Permutations
A permutation is called simple if its breakpoint
graph contains only k-cycle, where k � 3. A sim-
ple permutation is also called a 3-permutation if
it contains no 2-cycles. A transformation from  

to O
 is said to be safe if n.
/�codd.
/ D n. O
/�

codd. O
/. It has been shown that every permutation
  can be transformed into a simple one  0 by safe
transformations and, moreover, every sorting of
 0 mimics a sorting of   with the same number
of operations [6, 11]. Here, Hartman and Sharan
[8] further showed that every simple permutation
 0 can be transformed into a 3-permutation O

by safe paddings (of transforming those 2-cycles
into 1-twisted 3-cycles) and, moreover, every
sorting of O
 mimics a sorting of  0 with the same
number of operations. Hence, based on these
two properties, an arbitrary permutation   can
be transformed into a 3-permutation O
 such that
every sorting of O
 mimics a sorting of   with the
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Sorting by Transpositions and Reversals (Approxi-
mate Ratio 1.5), Fig. 2 Configurations of 3-cycles. (a)
Unoriented, 0-twisted 3-cycle. (b) Unoriented, 1-twisted

3-cycle. (c) Oriented, 2-twisted 3-cycle. (d) Oriented, 3-
twisted 3-cycle. (e) A pair of intersecting 3-cycles. (f) A
pair of interleaving 3-cycles

same number of operations, suggesting that one
can restrict attention to circular 3-permutations
only.

Cycle Types
An operation that cuts some black edges is said
to act on these edges. An operation is further
called a k-operation if it increases the number
of odd cycles by k. A (0, 2,2)-sequence is a
sequence of three operations, of which the first is
a 0-operation and the next two are 2-operations.
An odd cycle is called oriented if there is a 2-
operation that acts on three of its black edges;
otherwise, it is unoriented. A configuration of
cycles is a subgraph of the breakpoint graph
that contains one ore more cycles. As shown in
Fig. 2a–d, there are four possible configurations
of single 3-cycles. A black edge is called twisted
if its two adjacent gray edges cross each other
in the circular breakpoint graph. A cycle is k-
twisted if k of its black edges is twisted. For
example, the 3-cycles in Fig. 2a–d are 0-, 1-, 2-,
and 3-twisted, respectively. Hartman and Sharan
observed that a 3-cycle is oriented if and only if
it is 2- or 3-twisted.

Cycle Configurations
Two pairs of black edges are called intersecting
if they alternate in the order of their occurrence
along the circle. A pair of black edges intersects
with cycle C , if it intersects with a pair of black
edges that belong to C . Cycles C and Dintersect
if there is a pair of black edges in C that intersects
with D (see Fig. 2e). Two intersecting cycles are
called interleaving if their black edges alternate
in their order of occurrence along the circle (see
Fig. 2f). Clearly, the relation between two cycles
is one of (1) nonintersecting, (2) intersecting but
non-interleaving, and (3) interleaving. A pair of
black edges is coupled if they are connected by
a gray edge and when reading the edges along

the cycle, they are read in the same direction. For
example, all pairs of black edges in Fig. 2a are
coupled. Gu et al. [5] have shown that given a
pair of coupled black edges .b1; b2/, there exists a
cycle C that intersects with (b1; b2). A 1-twisted
pair is a pair of 1-twisted cycles, whose twists
are consecutive on the circle in a configuration
that consists of these two cycles only. A 1-twisted
cycle is called closed in a configuration if its two
coupled edges intersect with some other cycle
in the configuration. A configuration is closed
if at least one of its 1-twisted cycles is closed;
otherwise, it is called open.

The Algorithm
The basic ideas of the Hartman and Sharan’s
1.5-approximation algorithm [8] for the problem
of sorting by transpositions, transreversals, and
revrevs are as follows. Hartman and Sharan re-
duced the problem to that of sorting a circular 3-
permutation by transpositions and transreversals
only and then focused on transforming the 3-
cycles into 1-cycles in the breakpoint graph of
this 3-permutation. By definition, an oriented
(i.e., 2- or 3-twisted) 3-cycle admits a 2-operation
and, therefore, they continued to consider unori-
ented (i.e., 0- or 1-twisted) 3-cycles only. Since
configurations involving only 0-twisted 3-cycles
were handled with (0,2,2)-sequences in [7], Hart-
man and Sharan restricted their attention to those
configurations that consist of 0- and 1-twisted 3-
cycles. They showed that these configurations are
all closed and that it can be sorted by a (0,2,2)-
sequence of operations for each of the following
five possible closed configurations: (1) a closed
configuration with two unoriented, interleaving
3-cycles that do not form a 1-twisted pair; (2)
a closed configuration with two intersecting, 0-
twisted 3-cycles; (3) a closed configuration with
two intersecting, 1-twisted 3-cycles; (4) a closed
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configuration with a 0-twisted 3-cycles that in-
tersects with the coupled edges of a 1-twisted 3-
cycle; and (5) a closed configuration that contains
k � 2 mutually interleaving 1-twisted 3-cycles
such that all their twists are consecutive on the
circle and k is maximal with this property. As
a result, the sequence of operations used by
Hartman and Sharan in their algorithm contains
only 2-operations and (0,2,2)-sequences. Since
every sequence of three operations increases the
number of odd cycles by at least 4 out of 6
possible in 3 steps, the ratio of their approxi-
mation algorithm is 1.5. Furthermore, Hartman
and Sharan showed that their algorithm can be
implemented in O.n3=2

p
log n/ time using the

data structure of Kaplan and Verbin [10], where
n is the number of elements in the permutation.

Theorem 1 The problem of sorting linear per-
mutations by transpositions, transreversals, and
revrevs is linearly equivalent to the problem of
sorting circular permutations by transpositions,
transreversals, and revrevs.

Theorem 2 There is a 1.5-approximation algo-
rithm for sorting by transpositions, transrever-
sals, and revrevs, which runs in O.n3=2

p
log n/

time.

Applications

When trying to determine evolutionary distance
between two organisms using genomic data, bi-
ologists may wish to reconstruct the sequence of
evolutionary events that have occurred to trans-
form one genome into the other. One of the most
promising ways to do this phylogenetic study
is to compare the order of appearance of iden-
tical (e.g., orthologous) genes in two different
genomes [9, 12]. This comparison of computing
global rearrangement events (such as reversals,
transpositions, and transreversals of genome seg-
ments) may provide more accurate and robust
clues to the evolutionary process than the anal-
ysis of local point mutations (i.e., substitutions,
insertions, and deletions of nucleotides/amino
acids). Usually, the two genomes being com-
pared are represented by signed permutations,
with each element standing for a gene and its

sign representing the (transcriptional) direction of
the corresponding gene on a chromosome. Then
the goal of the resulting genome rearrangement
problem is to find a shortest sequence of rear-
rangement operations that transforms (or, equiv-
alently, sorts) one permutation into the other.
Previous work focused on the problem of sorting
a permutation by reversals. This problem has
been shown by Capara [2] to be NP-hard, if the
considered permutation is unsigned. However,
for signed permutations, this problem becomes
tractable and Hannenhalli and Pevzer [6] gave the
first polynomial-time algorithm for it. On the
other hand, there has been less progress on the
problem of sorting by transpositions. Thus far,
the complexity of this problem is still open,
although several 1.5-approximation algorithms
[1, 3, 7] have been proposed for it. Recently,
the approximation ratio of sorting by transpo-
sitions was further improved to 1.375 by Elias
and Hartman [4]. Gu et al. [5] and Lin and Xue
[11] gave quadratic-time 2-approximation algo-
rithms for sorting signed, linear permutations by
transpositions and transreversals. In [11], Lin and
Xue considered the problem of sorting signed,
linear permutations by transpositions, transrever-
sals, and revrevs and proposed a quadratic-time
1.75-approximation algorithm for it. In this work
[8], Hartman and Sharan further showed that
this problem is equivalent for linear and circular
permutations and can be reduced to that of sorting
signed, circular permutations by transpositions
and transreversals only. In addition, they provided
a 1.5-approximation algorithm that can be imple-
mented in O.n3=2

p
log n/ time.

Cross-References

� Sorting Signed Permutations by Reversal (Re-
versal Distance)

� Sorting Signed Permutations by Reversal (Re-
versal Sequence)

Recommended Reading

1. Bafna V, Pevzner PA (1998) Sorting by transposi-
tions. SIAM J Discret Math 11:224–240



2026 Sorting Signed Permutations by Reversal (Reversal Distance)

2. Caprara A (1999) Sorting permutations by reversals
and Eulerian cycle decompositions. SIAM J Discret
Math 12:91–110

3. Christie DA (1999) Genome rearrangement prob-
lems. Ph.D. thesis, Department of Computer Science.
University of Glasgow, U.K.

4. Elias I, Hartman T (2006) A 1.375-approximation
algorithm for sorting by transpositions. IEEE/ACM
Trans Comput Biol Bioinform 3:369–379

5. Gu QP, Peng S, Sudborough H (1999) A 2-
approximation algorithm for genome rearrangements
by reversals and transpositions. Theor Comput Sci
210:327–339

6. Hannenhalli S, Pevzner PA (1999) Transforming cab-
bage into turnip: polynomial algorithm for sorting
signed permutations by reversals. J Assoc Comput
Mach 46:1–27

7. Hartman T, Shamir R (2006) A simpler and faster
1.5-approximation algorithm for sorting by transpo-
sitions. Inf Comput 204:275–290

8. Hartman T, Sharan R (2004) A 1.5-approximation
algorithm for sorting by transpositions and transre-
versals. In: Proceedings of the 4th workshop on algo-
rithms in bioinformatics (WABI’04), Bergen, pp 50–
61, 17–21 Sept (2004)

9. Hoot SB, Palmer JD (1994) Structural rearrange-
ments, including parallel inversions, within the
chloroplast genome of Anemone and related genera.
J Mol Evol 38:274–281

10. Kaplan H, Verbin E (2003) Efficient data structures
and a new randomized approach for sorting signed
permutations by reversals. In: Proceedings of the 14th
annual symposium on combinatorial pattern match-
ing (CPM’03), Morelia, pp 170–185, 25–27 June
(2003)

11. Lin GH, Xue G (2001) Signed genome rearrange-
ments by reversals and transpositions: models and
approximations. Theor Comput Sci 259:513–531

12. Palmer JD, Herbon LA (1986) Tricircular mitochon-
drial genomes of Brassica and Raphanus: reversal of
repeat configurations by inversion. Nucleic Acids Res
14:9755–9764

Sorting Signed Permutations by
Reversal (Reversal Distance)

David A. Bader
College of Computing, Georgia Institute of
Technology, Atlanta, GA, USA

Keywords

Inversion distance; Reversal distance; Sorting by
reversals

Years and Authors of Summarized
Original Work

2001; Bader, Moret, Yan

Problem Definition

This entry describes algorithms for finding the
minimum number of steps needed to sort a signed
permutation (also known as inversion distance,
reversal distance). This is a real-world prob-
lem and, for example, is used in computational
biology.

Inversion distance is a difficult computational
problem that has been studied intensively in re-
cent years [1, 4, 6–10]. Finding the inversion
distance between unsigned permutations is NP-
hard [7], but with signed ones, it can be done in
linear time [1].

Key Results

Bader et al. [1] present the first worst-case linear-
time algorithm for computing the reversal dis-
tance that is simple and practical and runs faster
than previous methods. Their key innovation is a
new technique to compute connected components
of the overlap graph using only a stack, which
results in the simple linear-time algorithm for
computing the inversion distance between two
signed permutations. Bader et al. provide am-
ple experimental evidence that their linear-time
algorithm is efficient in practice as well as in
theory: they coded it as well as the algorithm of
Berman and Hannenhalli, using the best princi-
ples of algorithm engineering to ensure that both
implementations would be as efficient as possible
and compared their running times on a large
range of instances generated through simulated
evolution.

Bafna and Pevzner introduced the cycle
graph of a permutation [3], thereby providing
the basic data structure for inversion distance
computations. Hannenhalli and Pevzner then
developed the basic theory for expressing the
inversion distance in easily computable terms
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(number of breakpoints minus number of cycles
plus number of hurdles plus a correction factor
for a fortress [3, 15]-hurdles and fortresses are
easily detectable from a connected component
analysis). They also gave the first polynomial-
time algorithm for sorting signed permutations
by reversals [9]; they also proposed a O.n4/

implementation of their algorithm which runs
in quadratic time when restricted to distance
computation. Their algorithm requires the
computation of the connected components of
the overlap graph, which is the bottleneck
for the distance computation. Berman and
Hannenhalli later exploited some combinatorial
properties of the cycle graph to give a O.n˛.n//

algorithm to compute the connected components,
leading to a O.n2˛.n// implementation of
the sorting algorithm [6], where ˛ is the
inverse Ackerman function. (The later Kaplan-
Shamir-Tarjan (KST) algorithm [10] reduces
the time needed to compute the shortest
sequence of inversions, but uses the same
algorithm for computing the length of that
sequence.)

No algorithm that actually builds the overlap
graph can run in linear time, since that graph
can be of quadratic size. Thus, Bader’s key
innovation is to construct an overlap forest
such that two vertices belong to the same
tree in the forest exactly when they belong to
the same connected component in the overlap
graph. An overlap forest (the composition of its
trees is unique, but their structure is arbitrary)
has exactly one tree per connected component
of the overlap graph and is thus of linear
size. The linear-time step for computing the
connected components scans the permutation
twice. The first scan sets up a trivial forest in
which each node is its own tree, labeled with
the beginning of its cycle. The second scan
carries out an iterative refinement of this first
forest, by adding edges and so merging trees
in the forest; unlike a Union-Find, however,
this algorithm does not attempt to maintain the
trees within certain shape parameters. This step
is the key to Bader’s linear-time algorithm for
computing the reversal distance between signed
permutations.

Applications

Some organisms have a single chromosome or
contain single-chromosome organelles (such as
mitochondria or chloroplasts), the evolution of
which is largely independent of the evolution of
the nuclear genome. Given a particular strand
from a single chromosome, whether linear or cir-
cular, we can infer the ordering and directionality
of the genes, thus representing each chromosome
by an ordering of oriented genes. In many cases,
the evolutionary process that operates on such
single-chromosome organisms consists mostly of
inversions of portions of the chromosome; this
finding has led many biologists to reconstruct
phylogenies based on gene orders, using as a
measure of evolutionary distance between two
genomes the inversion distance, i.e., the smallest
number of inversions needed to transform one
signed permutation into the other [11, 12, 14].

The linear-time algorithm is in wide use (as
it has been cited nearly 200 times within the
first several years of its publication). Examples
include the handling multichromosomal genome
rearrangements [16], genome comparison [5],
parsing RNA secondary structure [13], and
phylogenetic study of the HIV-1 virus [2].

Open Problems

Efficient algorithms for computing minimum dis-
tances with weighted inversions, transpositions,
and inverted transpositions are open.

Experimental Results

Bader et al. give experimental results in [1].

URL to Code

An implementation of the linear-time algorithm
is available as C code from www.cc.gatech.edu/~
bader. Two other dominated implementations are
available that are designed to compute the short-
est sequence of inversions as well as its length:
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one, due to Hannenhalli that implements his first
algorithm [9], which runs in quadratic time when
computing distances, while the other, a Java ap-
plet written by Mantin (http://www.math.tau.ac.
il/~rshamir/GR/), that implements the KST algo-
rithm [10], but uses an explicit representation of
the overlap graph and thus also takes quadratic
time. The implementation due to Hannenhalli is
very slow and implements the original method of
Hannenhalli and Pevzner and not the faster one
of Berman and Hannenhalli. The KST applet is
very slow as well since it explicitly constructs the
overlap graph.
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Problem Definition

A signed permutation   of size n is a permutation
over f � n; : : : ;�1; 1 : : : ng, where  �i D � i

for all i . We note   D . 1; : : : ;  n/.
The reversal ¡ D ¡i;j .1 � i � j � n/ is

an operation that reverses the order and flips the
signs of the elements  i ; : : : ;  j in a permutation
 :

  � �

D . 1; : : : ;  i�1;� j ; : : : ;� i  j C1; : : : ;  n/:

If ¡1; : : : ; ¡k is a sequence of reversals, it is
said to sort a permutation   if   � � � ¡1 � � � ¡k D

Id , where Id D .1; 2; : : : ; n/ is the identity
permutation. The length of a shortest sequence of
reversals sorting   is called the reversal distance
of   and is denoted by d. /.

If the computation of d. / is solved in linear
time [3] (see the entry �Sorting Signed Per-
mutations by Reversal (Reversal Distance)), the
computation of a sequence �1; : : : ; �k of size
k D d. / that sorts   is more complicated,
and no linear time algorithm is known so far.
The best complexity is currently achieved by
the subquadratic solution of Tannier and Sagot
[17], which has later been improved by Tannier,
Bergeron and Sagot [18], and Han [9].

Key Results

The O.n4/ Self-Reduction
Recall there is a linear algorithm to compute the
reversal distance thanks to the formula d. / D

n C 1 � c. / C t . / C h. / C f . /, where
c. / is the number of cycles in the breakpoint
graph and h. / C f . / is computed from the
unoriented components of the permutation (see
the entry �Sorting Signed Permutations by Re-

versal (Reversal Distance)). Once this is known,
the self-reduction technique trivially computes a
sequence of size d. /: try every possible reversal
¡ at one step, until you find one such that d.  �

¡/ D d. /� 1. Such a reversal is called a sorting
reversal. This necessitates O.n/ computations for
every possible reversal. There are at most n.nC

1/=2 D O.n2/ reversals to try, so iterating this to
find a sequence yields an O.n4/ algorithm.

The first polynomial algorithm by Hannenhalli
and Pevzner [10] was not achieving a better com-
plexity, and the algorithmic study of finding the
shortest sequences of reversals began its history.

The Quadratic Roof

All the published solutions for the computations
of a sorting sequence are divided into two, fol-
lowing the division of the distance formula into
its parameters: a first part computes a sequence
of reversals so that the resulting permutation has
no unoriented component, and a second part sorts
all oriented components.

The first part was given its best solution by
Kaplan, Shamir, and Tarjan [12], whose algo-
rithm runs in linear time when coupled with the
linear distance computation [3], and it is based on
Hannenhalli and Pevzner’s [10] early results.

The second part is the bottleneck of the whole
procedure. At this point, if there is no unoriented
component, the distance is d. / D nC 1� c. /,
so a sorting reversal is one that increases c. / and
does not create unoriented components.

A reversal that increases c. / is called ori-
ented. Finding an oriented reversal is an easy part:
any two consecutive numbers that have different
signs in the permutation define one. This can
easily be done in linear time or sublinear with ad
hoc data structures to maintain the permutation
during the scenario. The hard part is to make sure
it does not create unoriented components.

The quadratic solutions (see, e.g., the one of
Kaplan, Shamir, and Tarjan [12]) are based on
the linear recognition of sorting reversals. No
better algorithm is known so far to recognize
sorting reversals, and it seemed that a lower
bound had been reached, as witnessed by a survey
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of Ozery-Flato and Shamir [15] in which they
wrote that “a central question in the study of
genome rearrangements is whether one can ob-
tain a subquadratic algorithm for sorting by re-
versals.” This was obtained by Tannier and Sagot
[17], who proved that the recognition of sorting
reversal at each step is not necessary, but only the
recognition of oriented reversals.

A Promising New but Still Quadratic
Method

The algorithm is based on the following theorem,
taken from [18]. A sequence of oriented reversals
¡1; : : : ; ¡k is said to be maximal if there is no
oriented reversal in   � ¡1 : : : ¡k . In particular a
sorting sequence is maximal, but the converse is
not true.

Theorem 1 If S is a maximal but not a sorting
sequence of oriented reversals for a permutation,
then there exists a nonempty sequence S 0 of ori-
ented reversals such that S may be split into two
parts S D S1; S2, and S1; S 0; S2 is a sequence of
oriented reversal.

This allows to construct sequences of oriented
reversals instead of sorting reversals, increase
their size by adding reversals inside the sequence
instead of at the end, and obtain a sorting se-
quence.

This algorithm, with a classical data structure
to represent permutations (e.g., as an array), has
still an O.n2/ complexity, because at each step
it has to test the presence of an oriented reversal
and apply it to the permutation.

Composing with Data Structures
The slight modification of a data structure in-
vented by Kaplan and Verbin [11] allows to pick
and apply an oriented reversal in O.

p
n log n/,

and using this, Tannier and Sagot’s algorithm
achieves O.n3=2

p
log n/ time complexity.

Han [9] announced another data structure that
allows to pick and apply an oriented reversal in
O.
p

n/ time, and integrating this to the algorithm
can plausibly decrease the complexity of the
overall method to O.n3=2/. Swenson et al. [16]

gave an O.n log n/ solution for picking oriented
reversals, but their attempts of integrating it to the
overall procedure seems to fail on worst cases.

Extensions

Once sorting by reversals has reached its best
solutions, there are natural extensions guided by
the main motivation for the problem in computa-
tional biology: sample among optimal solutions,
and handle several permutations and more opera-
tions than just the reversal.

Counting optimal solutions is conjectured to
be #P-complete [14], but sampling almost uni-
formly from the solution space is still open, and
has been given a heuristic solution [14], including
suboptimal solutions in the sample.

Algorithms to enumerate all sorting reversals
at one step have also been worked out [4], which
provides a way for enumeration. A structure of
the solution space was proposed, but with a pos-
sibly exponential number of objects to enumer-
ate [5].

The median problem consists in handling
more than one permutation and is a particular
case of the so-called small parsimony problem,
which consists in reconstructing ancestral states
in a phylogenetic context. Additional operations
can be transpositions, duplications, or many
others. Many generalizations and variants have
been listed in a book on Combinatorics of
Genome Rearrangements [8]. Almost all are
NP-hard.

Applications

The motivation as well as the main application of
this problem is in computational biology. Signed
permutations are an adequate object to model the
relative position and orientation of homologous
segments of DNA in two species.

Reversal scenarios were used to test some
evolutionary properties, like the propension of
rearrangement to cut around the replication origin
[1] or the fragility of certain genomic regions
[2]. But evolutionary hypotheses can hardly be
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tested from a single optimal solution; this would
necessitate a better view of the solution space.

The gain of complexity for sorting by reversals
inspired many other algorithmic works, and
several problems in genome rearrangement found
a better solution thanks to the subquadratic gain
described here. But the computational difficulties
of the problem (parameters h. / and f . /,
additional complexity for generating a scenario
compared to the distance calculation, NP-
completeness of every generalization with more
operations, more permutations, more realistic
models) lead most computational biologists to
progressively abandon the reversal model for
simpler ones (DCJ [19], SCJ [7]).

Sometimes heroic gains in complexity are
worth for computer science but seem just like
going a bit further in a dead end for applications.
Research consists in breaking walls without
always knowing if behind there is a space for
a community to work in or another thicker wall.

Open Problems

Still there are a couple of questions that remain
unsolved before closing (or reopening?) this en-
try:

• I conjecture that the “real” complexity of giv-
ing a reversal scenario is O.n log n/. It is more
or less what Swenson et al. [16] also claim, but
without giving a full proof.

• Counting and sampling, even approximately,
are open. I learned this interesting conjecture
from Istvan Miklos: is it possible to walk in
the entire space of sequences of sorting re-
versals by small transformations of scenarios,
consisting at each step to change at most 4
reversals? This would be a first step to design
an almost uniform sampler.

Experimental Results

To my knowledge the data structure that allows
the subquadratic complexity described in this

entry has never been implemented. The size of
the data, as well as the limited possibilities of
applications of handling only two genomes and
a single optimal solution, makes the subquadratic
version, while a good piece of algorithmics, not
really worth for applications.

URL to Code

• There are a few old programs still able to
give a sorting sequence of reversals: in San
Diego http://grimm.ucsd.edu/GRIMM/, New
Mexico www.cs.unm.edu/~moret/GRAPPA/,
or Tel Aviv www.math.tau.ac.il/~rshamir/
GR/ and more recent ones in Lyon http://
doua.prabi.fr/software/luna or Bielefeld
http://bibiserv.techfak.uni-bielefeld.de/dcj/wel
come.html.

• The standard software for Bayesian sampling
in the space of sorting sequences (including
nonoptimal ones) is Badger http://bibiserv.
techfak.uni-bielefeld.de/dcj/welcome.html,
and there is also one biased to optimal
solutions called DCJ2HP http://www.renyi.
hu/~miklosi/DCJ2HP/ that uses a parallel
tempering between DCJ solutions (easier to
sample) and reversals solutions.
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Problem Definition

Let G D .V; E/ be an undirected graph, with
nonnegative weights on the edges w W E ! RC.
Let dG be the shortest-path metric on G, with
respect to the weights. For a spanning (subgraph)
tree T of G, define the stretch of an edge fu; vg 2

E in T as stretchT .u; v/ D dT .u;v/
dG.u;v/

and the
average stretch as

avg � stretchT .G/ D
1

jEj

X

e2E

stretchT .e/ :

We shall consider the problem of finding a tree T

whose average stretch is small. We also study the
problem of finding a distribution over spanning
trees, such that for all e 2 E, ET ŒstretchT .e/� is
small.

Key Results

Low-stretch spanning trees were first studied
by [3], who showed that any graph on n

vertices has a spanning tree with average stretch
2O.

p
log n log log n/ and showed a family of graphs
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that requires ˝.log n/ average stretch. Their
result was substantially improved by [7], who
showed an upper bound of O.log2 n log log n/,
and later [1] improved this to a near optimal
QO.log n/.

The main result discussed here is from [2]:

Theorem 1 For any graph G with n ver-
tices and m edges, there is a determin-
istic algorithm that constructs a spanning
tree T , such that avg � stretchT .G/ �

O.log n log log n/. The running time of the
algorithm is O.m log n log log n/.

We also show an efficient algorithm to sample
from a distribution over spanning trees, such that
the expected stretch of any edge is bounded by
O.log n log log n log log log n/.

Applications

An important problem in algorithm design is ob-
taining fast algorithms for solving linear systems.
For many applications, the matrix is sparse, and
while little is known for general sparse matri-
ces, the case of symmetric diagonally dominant
(SDD) matrices has received a lot of attention
recently. In a seminal sequence of results, Spiel-
man and Teng [12] showed a near-linear time
solver for this important case. This solver has
proven a powerful algorithmic tool and is used
to calculate eigenvalues, obtain spectral graph
sparsifiers [11], and approximate maximum flow
[6] and many other applications. A basic step in
solving these systems Ax D b is combinatorial
preconditioning. If one uses the Laplacian matrix
corresponding to a spanning tree (and a few extra
edges) of the graph whose Laplacian matrix is
A, then the condition number depends on the
total stretch of the tree. This will improve the
run-time of iterative methods, such as conjugate
gradient or Chebyshev iterations. See [9, 10] for
the latest progress on this direction. In this work
we show that one can construct such a spanning
tree with both run-time and total stretch bounded
by O.m log n log log n/.

Probabilistic embedding into trees, introduced
by [4], has been a successful paradigm in algo-

rithm design. Many hard optimization problems
on graphs can be reduced, via embedding, to a
similar problem on a tree, which is often con-
siderably easier. This framework can be applied
to approximation algorithms, online algorithms,
network design, and other settings. Some of the
notable examples are metrical task system, buy-
at-bulk network design, the k-server problem,
group Steiner tree, etc. An asymptotical opti-
mal result of expected O.log n/ distortion for
probabilistic embedding into trees was given by
[8]. The trees in the support of the FRT dis-
tribution are not subgraphs of the input graph
and may contain Steiner nodes and new edges.
While this is fine for most applications, there
are some that must have trees which are sub-
graphs, such as minimum cost communication
spanning tree: Given a weighted graph G D

.V; E/ and a requirement matrix R D .ruv/, the
objective is to find a spanning tree T that mini-
mizes

P
u;v2V ruv � dT .u; v/. Our result implies a

QO.log n/ approximation.

Petal Decomposition

A basic tool that is often used in constructing
tree metrics and spanning trees with low stretch
is sparse graph decomposition. The idea is to
partition the graph into small diameter pieces,
such that few edges are cut. Each cluster of the
decomposition is partitioned recursively, which
yields a hierarchical decomposition. Creating a
tree recursively on each cluster of the decompo-
sition, and connecting these in a tree structure,
will yield a spanning tree of the graph. The edges
cut by the decomposition are potentially stretched
by a factor proportional to the diameter of the
created tree. The construction has to balance
between these two goals: cut a small number of
edges and maintain small diameter in the created
tree.

One of the main difficulties in such a spanning
tree construction is that the radius (The radius
of a graph is the maximal distance from a des-
ignated center.) may increase by a small factor
at every application of the decomposition, which
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translates to increased stretch. If we drop the
requirement that the tree is a spanning tree of
the graph and just require a tree metric, then this
difficulty does not appear, and indeed, optimal
�.log n/ bound is known on the average stretch
[5,8]. Our petal decomposition allows essentially
optimal control on the radius increase of the
spanning tree; it increases by at most a factor of
4 over all the recursion levels.

Highways
One of the components in the decomposition
scheme is highways. Each cluster X � V in our
decomposition scheme has a designated center
x0 2 X and a “target” t 2 X . It is guaranteed
that the shortest path from x0 to t will be fully
contained in the final spanning tree T . This path
is called the petal’s highway. Intuitively, the high-
way will provide short paths from the center x0 to
many of the points in the cluster.

Cones and Petals
A cone is a generalization of a ball; the notion
of cones was introduced in [7] and was used also
in [1] for low-stretch spanning trees. Informally, a
cone C.t; r/ of radius r centered at t (with respect
to the cluster center x0) contains all the points
´ 2 X such that d.´; t/C d.t; x0/ � d.´; x0/C

r (here d is the shortest-path metric on X ). In
other words, the cone contains all the points for
which the path to x0 through t is not much longer
than the direct shortest path to x0. The parameter
r is a bound on the radius increase in the current
decomposition.

One way to define a petal is as a union
of cones. The petal P.t; r/ around a target t

with radius r is defined as
S

0�k�r C.pk ; k=2/,
where pk is the point of distance r � k from
t on the shortest path from t to x0. The
center of the petal is defined as x D p0, and
the path from x to t is the petal’s highway.
The petal-decomposition algorithm
iteratively picks an arbitrary target of distance
at least 3�=4 (where � is the radius of X ) away
from x0, generates a petal for it, and removes the
petal from the graph. When there are no longer
such points, the remaining points will form
the central cluster (the stigma). The first petal

requires extra care in its target choice, as it may
contain the designated target of the cluster, which
implies we cannot allow the shortest path to this
target to be cut by this or subsequent petals. The
radii of the petals are chosen by a region-growing
argument that cuts few edges, where the length of
the possible range for the radius is	�. This is in
contrast with the previous work, where in order to
give an appropriate bound on the radius increase,
the range was much smaller than �, which
immediately translates to a loss in the stretch.
The precise method for choosing r is essentially
given in [7], and we also give a randomized
version similar in spirit to the one in [1].

Fast Petal Construction
The alternative way to define petals and cones is
as balls in an appropriately defined directed graph
created from G. This suggests that we can use a
variant of Dijkstra to compute a petal in nearly
linear time in the sum of degrees of its vertices.
Let QG D .V; A; Nw/ be the weighted directed
graph induced by adding the two directed edges
.u; v/; .v; u/ 2 A for each fu; vg 2 E and setting
Nw.u; v/ D d.u; v/ � .d.v; x0/ � d.u; x0//. The
cone C.t; r/ is simply the ball around t of radius
r in QG. The petal P.t; r/ is the ball around t

of radius r=2 in QG with one change: the weight
of each edge on the path from t to x D p0 is
changed to be 1=2 of its original weight (i.e., 1=2

of its weight in G).

Ideas in the Analysis
Informally, the crucial property of a petal and its
highway is the following: Assume ´ 2 P.t; r/,
and Px0´ is the shortest path from the original
center x0 to ´. By forming the petal, we remove
all edges between P.t; r/ and X n P.t; r/ except
for the edge from the petal center x toward x0.
Hence, any path from x0 to ´ must go through the
petal center x. If the new shortest path P 0

x0´ (after
forming the petal) is (additively) k=2 longer than
the length of Px0´, then ´ 2 C.pk ; k=2/ and so
P 0

x0´ will contain part of the new petal’s highway
of length at least k. Such a property could allow
the following wishful thinking: Suppose that in
each iteration we increase the distance of a point
to the center by at most ˛ but also mark a new
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portion of the path of length 2˛ as edges that
are guaranteed to appear in the final tree (part
of a highway). In such a case, it is easy to see
that the final path will have stretch at most 2:
If the original distance was b, once the total
increase is b, we have marked 2b – all of the
path – as a highway that will appear in the tree.
Unfortunately, the path from x to ´ in the final
tree may not use the prescribed highway of the
parent cluster so the above “wishful thinking”
argument does not work.

The key algorithmic idea to alleviate this prob-
lem is to decrease the weight of an edge by half
when it becomes part of a highway (we ensure
that this happens at most once for every edge).
This reweighting signals later iterations to use
the prescribed highway, as this must remain the
shortest path. We maintain the invariant that in
every cluster, the highway edges are the only
cluster edges which have been reweighted. Now,
in every petal (except for maybe the first), we cre-
ate a new petal highway when we form P.t; r/.
For any ´ 2 P.t; r/, the length of the path from
x0 to ´ does not increase at all (after reweighting
the highway): For some k � r , it increased by at
most k=2, but a highway length of at least k was
reduced by 1=2.

We have to take care of radius increase gen-
erated by the very first petal as well, where it
could be that no new highway is created (this
petal’s highway may be a part of the highway
of the original cluster). In this case, we use the
fact that the path from x0 to x1 (the center of
the first petal) must also be on the highway of
the original cluster and that its length is at least
�=2. This implies that even though we may have
increased the radius, at least half of the path is
guaranteed not to increase ever again. We use a
subtle inductive argument to make this intuition
precise, and in fact we lose a factor of 2 for each
of these cases, so the maximal increase is by a
factor of 4.
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Problem Definition

Suppose that we have access to a vector x 2

C
n. How much time does it take to compute its

Fourier transform Ox? One can do this with the
Fast Fourier Transform (FFT) in O.n log n/ time.
But can we do better?

We do not know the answer in general, but
some classes of algorithms cannot do better [1,
20] and certainly one cannot do better than O.n/

time for arbitrary signals x. But the Fourier trans-
form is ubiquitous in signal processing, appearing
in compression of audio, images, and video, in
manipulation of audio, and in recovery of radio or
MRI signals, so we would really like to do better.
If we cannot improve on the FFT in general, then
perhaps we can for the signals commonly seen
in these applications. To do this, we need some
notion for how the signals we typically see are
“easier” than arbitrary ones.

One such notion is sparsity. The main reason
to use the Fourier transform in compression is
because it concentrates the energy of the signal
into a few large (or “heavy”) coordinates and
many small ones; signals with such concentrated
coordinates are called sparse. One can then throw
out the small coordinates and only store the
heavy ones; this is the main principle behind
lossy compression such as MP3 or JPEG. In fact,

in all the applications discussed in the previous
paragraph, the signals typically have an approxi-
mately sparse Fourier transform. This brings us
to the problem described in this entry: can we
speed up the Fourier transform for signals when
the result is approximately sparse?

Moreover, as with lossy compression, we of-
ten only care about the heavy coordinates and are
willing to tolerate an error proportional to the en-
ergy in the small coordinates. This relaxation will
allow us to compute the sparse Fourier transform
in sublinear time.

Formal Definition
The discrete Fourier transform Ox 2 C

n of a vector
x 2 C

n is given by

Oxj D

nX

iD1

!ij for ! D e2� i=n

We say that Ox is exactly k-sparse if it has at most
k nonzero coordinates, i.e., jsupp.x/j � k. We
say that Ox is approximately k-sparse if most of the
energy is contained in the heaviest k coordinates,
in particular

Errk.x/ WD min
k-sparse Oy

k Ox � Oyk2

is small relative to k Oxk2. A sparse Fourier trans-
form algorithm can access x 2 C

n in arbitrary
positions and outputs a vector Ox0 such that

k Ox � Ox0k2 � C Errk.x/C ık Oxk2 (1)

for some approximation factor C > 1 and ı � 1.
An algorithm for the exactly sparse case would
do this for C D 1, while robust algorithms
can achieve C D O.1/ or even C D 1 C ".
The algorithms we will discuss will feature a
logarithmic dependence on 1=ı, so one typically
sets ı D 1= poly.n/, and for typical signals, the
right-hand side of (1) will be dominated by the
C Errk.x/ term; we will assume this for the rest
of the entry.

We would like to optimize both the sample
complexity – the number of positions of x

that are accessed by the algorithm – and the
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running time. Optimizing sample complexity
is important for applications such as spectrum
sensing or MRIs, which do not have the input
x in memory but must sample it at some
expense.

We also allow the algorithm to be randomized
and to fail with some small probability p. For
simplicity we set p to a small constant; for
any algorithm one can amplify this probability
with a O.log 1

p
/ overhead in sample complexity

and time. It is an open question whether the
algorithms that achieve the best known time and
sample complexities can be modified to avoid this
overhead.

Related Work
The modern research on sparse Fourier
transforms is closely related to work on sparse
recovery from general linear measurements. In
this problem, one would like to (approximately)
recover an (approximately) sparse vector
x from linear measurements Ax for some
“measurement” matrix A with fewer rows
than columns. The sparse Fourier transform is
precisely this where A is a subset of rows of the
inverse Fourier matrix.

Broadly speaking, there are two conceptual
classes of algorithms and results for the general
linear measurement setting. The first class, often
called compressed sensing and first studied
in [2, 3, 7], generally (1) involves independent
random linear measurements,;(2) shows with
high probability, the measurement matrix gives
good recovery for all vectors x; (3) optimizes
the sample complexity but not the running
time, which is superlinear or polynomial in
n; and (4) give algorithms that work for
general classes of measurements and work for
both random Gaussian and random Fourier
matrices at the same time. These papers often
refer to properties like the restricted isometry
property that measurement matrices may have
and use either convex optimization (e.g., L1
minimization or the LASSO) or iterative greedy
methods (e.g., IHT or CoSaMP) to perform the
recovery.

The second class, more often called sparse
recovery, is largely an outgrowth of the streaming

algorithms literature [4, 5]. These results
generally (1) involve more structured linear
measurements that use randomness and also have
dependencies among the samples; (2) show for
each vector x that, with high probability, the
measurement matrix gives good recovery; (3)
optimize both the sample complexity and the
running time, so both may be sublinear in n; and
(4) give algorithms that are closely connected to
the measurement matrix and would not work
for matrices with different structure. These
papers often construct the matrix to emulate
hash tables and use medians to perform robust
recovery.

These statements are generalizations, and
not every algorithm matches the trend in all
four ways, but they hold more often than
not. Our algorithm falls in the second class,
which for Fourier measurements can achieve
both better sample complexity and better
running time than algorithms in the first
class.

There’s a much older collection of algorithms
that can do sparse Fourier transforms in the ex-
act setting when jsupp. Ox/j � k. These include
Prony’s method from 1795, the matrix pencil
method, and Berlekamp-Massey syndrome de-
coding. These can achieve the optimal sample
complexity of 2k and recovery time poly.k/

(down to O.k2 C k logc log n/ [8]). Addition-
ally, they use a deterministic set of samples and
work for all vectors x. However, it is not known
how to make the techniques in these algorithms
robust to approximately sparse signals, so they
do not apply to the signals appearing in typical
applications.

Noise-tolerant sparse Fourier transforms were
first studied over the Boolean cube, also known
as the Hadamard transform. In this setting, Gol-
dreich and Levin [12, 18] showed how to get
O.k log.n=k// samples and O.k logc n/ time,
which is essentially optimal. Mansour [19] ex-
tended this to the C

n setting that we consider in
this entry but with more than k2 sample com-
plexity. Over the next couple decades, a number
of subsequent works, including [9, 10, 13, 14,
16], have improved our understanding of the C

n

setting.
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Key Results

At present, the two best sparse Fourier trans-
form algorithms are [13], which is fastest at
O.k log.n=k/ log n/ time and sample complex-
ity, and [14], which has nearly optimal O.k log n/

sample complexity at the cost of QO.n/ running
time. These works build on [9, 10, 17].

We know that the optimal nonadaptive sample
complexity – that is, among algorithms that
choose the sample set ˝ independently of
the vector x – is ˝.k log.n=k// [6], which
matches [14] for k < n0:99. One could imagine
constructing an algorithm that uses adaptive
samples, where one uses the first few samples
to decide where to look in future samples. In the
general sparse recovery setting, this adaptivity
can lead to significant improvements [15],
but we know that ˝.k log.n=k/= log log n/

Fourier samples remain necessary in the adaptive
setting [13].

Algorithm Overview
At a high level, sparse recovery algorithms are
built in three stages: one-sparse recovery, where
we solve the problem for k D 1; partial k-
sparse recovery, where we find and estimate most
(say, 90 %) of the heavy coordinates or of the
energy; and full k-sparse recovery, where we
get a good approximation to the entire signal
and achieve (1). Each stage uses the previous as
(nearly) a black box. This architecture generally
holds for the class of “sparse recovery” algo-
rithms; in the sparse Fourier transform setting, the

pieces change, but the architecture does not. We
will go through each in turn.

One-Sparse Recovery
Let us consider the one-sparse setting for C D

O.1/. We have access to xj D v!i�j C gj for
some “signal” .v; i�/ 2 C � Œn� and “noise” g 2

C
n with kgk2 � cjvj

p
n for a sufficiently small

constant c. To satisfy (1), we would like to find
i� exactly and find v to within O.kgk=

p
n/.

The tricky bit is to find i�; once we know
i�, then xj !�i�j is a good estimator of v.
In particular, for a random j 2 Œn�, we have
Ej jxj !�i�j � vj2 D kgk2=n, so taking the
median of several such estimates will have
O.kgk=

p
n/ error with large probability. So that

just leaves us to find i�.
As a first step, consider for a fixed a 2 Œn�

looking at the random variable

ya WD xaCj =xj 	 !i�a

as a distribution over random j 2 Œn�, where
addition of indices is taken modulo n. This allows
us to remove the influence of v and focus on i�.
We can show that ya � !i�a < O.c/ with large
(say, 3=4) probability. Suppose this were instead
true with probability 1.

By knowing !i�a to within O.c/, we know
i�a mod n to with ˙O.cn/. For small enough
c, this is within ˙n=4. Then we could look at
y1 to learn i� to within ˙n=4, y2 to refine the
estimate to ˙n=8, and y4 to refine to ˙n=16,
until we identify i� using log n different ya. This
is illustrated in Fig. 1.

y1 ≈ i∗ y2 ≈ 2i∗ √
y2 ≈ ±ω ω i∗ω

a b c

Sparse Fourier Transform, Fig. 1 The first two steps of
estimating i� using y1 and y2. Using y1 we can identify
i� to an O.cn/ size region. With y2 we learn 2i� mod n
to within O.cn/, which tells us that i� is within one of

two antipodal regions of half the size. Based on y1, we
can throw out the spurious region and narrow our estimate
of i� (a) Error in y1. (b) Error in y2. (c) Set of !i�

consistent with y2



Sparse Fourier Transform 2039

S

a b
Filter (time): Gaussian . sinc Filter (frequency): Gaussian * rectangle

Sparse Fourier Transform, Fig. 2 Filters used in [13]. (a) In time domain: O.k log n/ sparse. (b) In frequency
domain: width O.n=k/ rectangle

In reality ya has a small constant chance of
failure at each stage. One could fix this by taking
O.log log n/ different samples of ya at each stage
and using the median, which would give an algo-
rithm with O.log n log log n/ sample complexity
and time. An alternative, as used in [13], is
to learn i� in chunks of O.log log n/ bits at a
time, which gets the optimal O.log n/ sample
complexity using O.log1:1 n/ running time.

Partial k-Sparse Recovery
The goal of partial k-sparse recovery is to find
most of the heavy coordinates of Ox. The general
idea is to “hash” the coordinates randomly into
B D O.k/ bins in a way that lets us take mea-
surements of the signal restricted to frequencies
within each bin. By taking the measurements
corresponding to the one-sparse recovery algo-
rithm, we recover frequencies that are alone in
their bin. This will happen with a large constant
(say, 90 %) probability for each heavy frequency,
so we recover most of the heavy frequencies
well.

To see how this is done, we start with a
deterministic way of hashing the frequencies into
bins and then show how to randomize it. Hashing
is based on filters that are sparse in both time
and frequency domain. The filter F is designed
to be as close as possible to a rectangular filter
in frequency domain while still being sparse in
frequency domain. Figure 2 demonstrates the
filter used in [13], where F is a sinc function
times a (truncated) Gaussian with support size
O.k log n/. In frequency domain, OF approxi-
mates a rectangle of width O.n=k/, matching

it up to a small transition region between the
passband and the stopband and with 1=nc error
inside the passband and stopband.

Using these filters, Fig. 3 demonstrates a
method for learning information about the
signal. Given the signal x, we compute the
O.k log n/-size vector F � x. We then “alias”
it down to B D O.k/ elements – adding up
terms 1; B C 1; 2B C 1; : : : – and take the B-
dimensional DFT. This lets us compute the red
points in Fig. 3f in O.k log n C B log B/ D

O.k log n/ time. The red points are B evenly
spaced samples of Ox  OF .

We can think of the i th red point in a different
way. The i th red point is the sum of all the
entries of Ox �shift. OF; in=B/, where shift. OF; in=B/

denotes shifting OF to the right by in=B . This
equals the zeroth time domain coefficient of the
vector with Fourier coefficients given by Ox �
shift. OF; in=B/. And if our algorithm looks not
at yj D Fj xj but y

.a/
j D Fj xj Ca when

computing the red points, then the i th red point
will equal the ath time domain coefficient of
the vector with Fourier coefficients given by Ox �
shift. OF; in=B/. This lets us sample from the time
domain representation of the vectors with Fourier
coefficients given by Ox � shift. OF; in=B/ for i 2

ŒB�. It takes O.k log n/ time to get these samples,
for O.log n/ overhead (in time and samples) per
“effective” sample.

Now, we simply choose our samples a from
the distribution requested by the one-sparse
recovery algorithm. In every bucket for which
Ox � shift. OF; in=B/ is one-sparse, this procedure
will let us recover the heavy frequency. Because
the different shifts of OF give B different buckets,
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Sparse Fourier
Transform, Fig. 3 The
algorithm for hashing used
in [13]. For simplicity, the
illustrations do not include
noise. (a) The signal in
time domain. (b)
Corresponds to this signal
in frequency domain. (c)
We observe F � x for a
sparse F . (d) Which has
the dashed n-dimensional
DFT. (e) We alias from
O.k log n/ terms to O.k/.
(f) And compute the
O.k/-dimensional DFT
(dots)

a b

c d

e f

Original singnal x

Computed F:x Filtered signal F*x 

Computed samples of F*x F:x  aliased to k terms

Goal x

if the frequencies were randomly distributed, this
technique would get us partial sparse recovery.
The one-sparse recovery algorithm only takes
O.log.n=k// samples because each frequency
is known to lie within an n=B D O.n=k/

size region; hence the overall method takes
O.k log n log.n=k// time and samples.

We would like the algorithm to work for ar-
bitrary input signals, so we need a way of ran-
domizing the frequencies. To do this, we further
refine the algorithm to choose a random �; b 2

Œn� with � relatively prime to n. Then we have
the algorithm look at y

.a/
j D Fj x�.j Ca/!

��jb .
The effect of �; b is to apply an hash func-
tion j ! ��1j C b in frequency domain;
this is approximately pairwise independent, so
the frequencies become effectively randomly dis-
tributed. Each frequency then has a good chance
of landing alone in its bucket, so we can recover

most frequencies in O.k log.n=k/ log n/ time
and samples.

Full k-Sparse Recovery
Once we have partial k-sparse recovery, one
can naively achieve full k-sparse recovery by
repeating the algorithm O.log k/ times. Since
each heavy frequency is recovered with 90 %
probability in each stage, the median of all the es-
timations will recover all the heavy frequencies –
and in fact achieve (1) – with high probability.
This method is simple but loses a log k factor in
running time and sample complexity, which more
intricate techniques can avoid.

One such technique, used in [13] and based
off [11], is to use smaller and smaller k in succes-
sive iterations. Once we have performed partial
sparse recovery on Ox to get Ox.1/ that contains
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90 % of the heavy hitters, we can then perform
sparse recovery on the residual Ox � Ox.1/. The
residual is then roughly k=10-sparse, so we run
a partial k=10-sparse recovery algorithm in the
second stage that is much faster than in the first
stage. Similar geometric decay happens in later
stages, so the total time spent will be dominated
by the first stage. This gives O.k log.n=k/ log n/

time and sample complexity for the problem.
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Problem Definition

For a pair of numbers ˛; ˇ, ˛ � 1, ˇ � 0,
a subgraph G0 D .V; H/ of an unweighted
undirected graph G D .V; E/, H � E, is an
.˛; ˇ/-spanner of G if for every pair of vertices
u; w 2 V , distG0.u; w/ � ˛ � distG.u; w/ C ˇ,
where distG.u; w/ stands for the distance between
u and w in G. It is desirable to show that for
every n-vertex graph there exists a sparse .˛; ˇ/-
spanner with as small values of ˛ and ˇ as
possible. The problem is to determine asymptotic
tradeoffs between ˛ and ˇ on one hand, and the
sparsity of the spanner on the other.

Key Results

The main result of Elkin and Peleg [8] establishes
the existence and efficient constructibility of
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.1C �; ˇ/-spanners of size O.ˇn1C1=/ for
every n-vertex graph G, where ˇ D ˇ.�; �/

is constant whenever › and � are. The
specific dependence of ˇ on › and � is
ˇ.�; �/D� log log �log� .

An important ingredient of the construction
of [8] is a partition of the graph G into regions
of small diameter in such a way that the super-
graph induced by these regions is sparse. The
study of such partitions was initiated by Awer-
buch [3], that used them for network synchro-
nization. Peleg and Schäffer [10] were the first to
employ such partitions for constructing spanners.
Specifically, they constructed .O.�/; 1/-spanners
with O.n1C1=/ edges. Althofer et al. [2] pro-
vided an alternative proof of the result of Peleg
and Schäffer that uses an elegant greedy argu-
ment. This argument also enabled Althofer et
al. to extend the result to weighted graphs, to
improve the constant hidden by the O-notation
in the result of Peleg and Schäffer, and to obtain
related results for planar graphs.

Applications

Efficient algorithms for computing sparse
.1C �; ˇ/-spanners were devised in [7] and [13].
The algorithm of [7] was used in [7, 9, 12] for
computing almost shortest paths in centralized,
distributed, streaming, and dynamic centralized
models of computations. The basic approach used
in these results is to construct a sparse spanner,
and then to compute exact shortest paths on the
constructed spanner. The sparsity of the latter
guarantees that the computation of shortest paths
in the spanner is far more efficient than in the
original graph.

Open Problems

The main open question is whether it is possi-
ble to achieve similar results with � D 0. More
formally, the question is: Is it true that for any
� � 1 and any n-vertex graph G there exists
.1; ˇ.�//-spanner of G with O.n1C1=/ edges?

This question was answered in affirmitive for ›

equal to 2, 5/2, and 3 [1, 4-6, 8]. Some lower
bounds were recently proved by Woodruff [14].

A less challenging problem is to improve the
dependence of ˇ on � and ›. Some progress
in this direction was achieved by Thorup and
Zwick [13], and very recently by Pettie [11].

Cross-References

� Synchronizers, Spanners

Recommended Reading

1. Aingworth D, Chekuri D, Indyk P, Motwani R
(1999) Fast estimation of diameter and shortest paths
(without matrix multiplication). SIAM J Comput
28(4):1167–1181

2. Althofer I, Das G, Dobkin DP, Joseph D, Soares
J (1993) On sparse spanners of weighted graphs.
Discret Comput Geom 9:81–100

3. Awerbuch B (1985) Complexity of network synchro-
nization. J ACM 4:804–823

4. Baswana S, Kavitha T, Mehlhorn K, Pettie S (2010)
Additive spanners and (alpha, beta)-spanners. ACM
Trans Algorithms 7:Article 1

5. Chechik S (2013) New additive spanners. In: Pro-
ceedings 24th annual ACM-SIAM symposium on
discrete algorithms, New Orleans, Jan 2013, pp 498–
512.

6. Dor D, Halperin S, Zwick U (2000) All pairs almost
shortest paths. SIAM J Comput 29:1740–1759

7. Elkin M (2005) Computing almost shortest paths.
Trans Algorithm 1(2):283–323

8. Elkin M, Peleg D (2004) .1 C �; ˇ/-spanner con-
structions for general graphs. SIAM J Comput
33(3):608–631

9. Elkin M, Zhang J (2006) Efficient algorithms for
constructing .1 C �; ˇ/-spanners in the distributed
and streaming models. Distrib Comput 18(5):375–
385

10. Peleg D, Schäffer A (1989) Graph spanners. J Graph
Theory 13:99–116

11. Pettie S (2009) Low-distortion spanners. ACM Trans
Algorithms 6:Article 1

12. Roditty L, Zwick U (2004) Dynamic approximate
all-pairs shortest paths in undirected graphs. In: Pro-
ceedings of symposium on foundations of computer
science, Rome, Oct 2004, pp 499–508

13. Thorup M, Zwick U (2006) Spanners and emulators
with sublinear distance errors. In: Proceedings of
symposium on discrete algorithms, Miami, Jan 2006,
pp 802–809



Sparsest Cut 2043

S

14. Woodruff D (2006) Lower bounds for additive span-
ners, emulators, and more. In: Proceedings of sympo-
sium on foundations of computer science, Berckeley,
Oct 2006, pp 389–398

Sparsest Cut

Shuchi Chawla
Department of Computer Science, University of
Wisconsin–Madison, Madison, WI, USA

Keywords

Minimum ratio cut

Years and Authors of Summarized
Original Work

2004; Arora, Rao, Vazirani

Problem Definition

In the Sparsest Cut problem, informally, the goal
is to partition a given graph into two or more large
pieces while removing as few edges as possible.
Graph partitioning problems such as this one oc-
cupy a central place in the theory of network flow,
geometric embeddings, and Markov chains, and
form a crucial component of divide-and-conquer
approaches in applications such as packet rout-
ing, VLSI layout, and clustering.

Formally, given a graph G D .V; E/, the spar-
sity or edge expansion of a non-empty set S � V ,
jS j � 1

2
jV j, is defined as follows:

˛.S/ D
jE.S; V n S/j

jS j
:

The sparsity of the graph, ’(G), is then defined as
follows:

˛.G/ D min
S	V;jS j� 1

2 jV j

˛.S/ :

The goal in the Sparsest Cut problem is to find
a subset S � V with the minimum sparsity, and
to determine the sparsity of the graph.

The first approximation algorithm for the
Sparsest Cut problem was developed by Leighton
and Rao in 1988 [13]. Employing a linear
programming relaxation of the problem, they
obtained an O.log n/ approximation, where n is
the size of the input graph. Subsequently Arora,
Rao and Vazirani [4] obtained an improvement
over Leighton and Rao’s algorithm using
a semi-definite programming relaxation, approx-
imating the problem to within an O.

p
log n/

factor.
In addition to the Sparsest Cut problem, Arora

et al. also consider the closely related Balanced
Separator problem. A partition .S; V n S/ of the
graph G is called a c-balanced separator for
0 < c � 1

2
, if both S and V n S have at least

cjV j vertices. The goal in the Balanced Separator
problem is to find a c-balanced partition with
the minimum sparsity. This sparsity is denoted
˛c.G/.

Key Results

Arora et al. provide an O.
p

log n/ pseudo-
approximation to the balanced-separator problem
using semi-definite programming. In particular,
given a constant c 2 .0; 1

2
�, they produce

a separator with balance c0 that is slightly worse
than c (that is, c0 < c), but sparsity within an
O.
p

log n/ factor of the sparsity of the optimal
c-balanced separator.

Theorem 1 Given a graph G D .V; E/, let
˛c.G/ be the minimum edge expansion of
a c-balanced separator in this graph. Then
for every fixed constant a < 1, there exists
a polynomial-time algorithm for finding a c0-
balanced separator in G, with c0 � ac, that has
edge expansion at most O.

p
log n˛c.G//.

Extending this theorem to include unbalanced
partitions, Arora et al. obtain the following:

Theorem 2 Let G D .V; E/ be a graph with
sparsity ˛(G). Then there exists a polynomial-time
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algorithm for finding a partition .S; V n S/,
with S � V , S ¤ ;, having sparsity at most
O.
p

log n˛.G//.

An important contribution of Arora et al. is
a new geometric characterization of vectors
in n-dimensional space endowed with the
squared-Euclidean metric. This result is of
independent significance and has lead to or
inspired improved approximation factors for
several other partitioning problems (see, for
example, [1, 5, 6, 7, 11]).

Informally, the result says that if a set of points
in n-dimensional space is randomly projected on
to a line, a good separator on the line is, with
high probability, a good separator (in terms of
squared-Euclidean distance) in the original high-
dimensional space. Separation on the line is re-
lated to separation in the original space via the
following definition of stretch.

Definition 1 (Def. 4 in [4]) Let Ex1; Ex2; : : : ; Exn

be a set of n points in Rn, equipped with the
squared-Euclidean metric d.x; y/ D jjx � yjj22.
The set of points is said to be .t; �; ˇ/ -stretched
at scale `, if for at least a � fraction of all the
n-dimensional unit vectors u, there is a partial
matching Mu D f.xi ; yi /gi among these points,
with jMuj � ˇn, such that for all .x; y/ 2Mu,
d.x; y/ � `2 and hu; Ex � Eyi � t`=

p
n. Here h�; �i

denotes the dot product of two vectors.

Theorem 3 For any �; ˇ > 0, there is a constant
C D C.�; ˇ/ such that if t > C log1=3 n, then no
set of n points in Rn can be .t; �; ˇ/-stretched for
any scale `.

In addition to the SDP-rounding algorithm, Arora
et al. provide an alternate algorithm for finding
approximate sparsest cuts, using the notion of ex-
pander flows. This result leads to fast (quadratic
time) implementations of their approximation al-
gorithm [3].

Applications

One of the main applications of balanced sepa-
rators is in improving the performance of divide

and conquer algorithms for a variety of optimiza-
tion problems.

One example is the Minimum Cut Linear
Arrangement problem. In this problem, the
goal is to order the vertices of a given n
vertex graph G from 1 through n in such
a way that the capacity of the largest of the
cuts .f1; 2; � � � ; ig; fi C 1; � � � ; ng/, i 2 Œ1; n�,
is minimized. Given a ¡-approximation to the
balanced separator problem, the following divide
and conquer algorithm gives an O.� log n/-
approximation to the Minimum Cut Linear
Arrangement problem: find a balanced separator
in the graph, then recursively order the two
parts, and concatenate the orderings. The
approximation follows by noting that if the graph
has a balanced separator with expansion ˛c.G/,
only O.�n˛n.G// edges are cut at every level,
and given that a balanced separator is found at
every step, the number of levels of recursion is at
most O.log n/.

Similar approaches can be used for problems
such as VLSI layout and Gaussian elimination.
(See the survey by Shmoys [14] for more details
on these topics.)

The Sparsest Cut problem is also closely
related to the problem of embedding squared-
Euclidean metrics into the Manhattan (`1)
metric with low distortion. In particular, the
integrality gap of Arora et al.’s semi-definite
programming relaxation for Sparsest Cut
(generalized to include weights on vertices and
capacities on edges) is exactly equal to the
worst-case distortion for embedding a squared-
Euclidean metric into the Manhattan metric.
Using the technology introduced by Arora et
al., improved embeddings from the squared-
Euclidean metric into the Manhattan metric have
been obtained [5, 7].

Open Problems

Hardness of approximation results for the
Sparsest Cut problem are fairly weak. Recently
Chuzhoy and Khanna [9] showed that this
problem is APX-hard, that is, there exists a con-
stant � > 0, such that a .1C �/-approximation
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algorithm for Sparsest Cut would imply P D NP.
It is conjectured that the weighted version
of the problem is NP-hard to approximate
better than O..log log n/c/ for some constant
c, but this is only known to hold true
assuming a version of the so-called Unique
Games conjecture [8, 12]. On the other hand,
the semi-definite programming relaxation of
Arora et al. is known to have an integrality
gap of ˝.log log n/ even in the unweighted
case [10]. Proving an unconditional super-
constant hardness result for weighted or un-
weighted Sparsest Cut, or obtaining o.

p
log n/-

approximations for these problems remain
open.

The directed version of the Sparset Cut prob-
lem has also been studied, and is known to be
hard to approximate within a 2˝.log1�� n/ fac-
tor [9]. On the other hand, the best approxi-
mation known for this problem only achieves
a polynomial factor of approximation–a factor of
O.n11=23 logO.1/ n/ due to Aggarwal, Alon and
Charikar [2].
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Problem Definition

Speed scaling is a power management technique
in modern processor that allows the processor to
run at different speeds. There is a power function
P(s) that specifies the power, which is energy
used per unit of time, as a function of the speed.
In CMOS-based processors, the cube-root rule
states that P.s/ 	 s3. This is usually generalized
to assume that P.s/ D s˛ form some constant ’.
The goals of power management are to reduce
temperature and/or to save energy. Energy is
power integrated over time. Theoretical investi-
gations to date have assumed that there is a fixed
ambient temperature and that the processor cools
according to Newton’s law, that is, the rate of
cooling is proportional to the temperature differ-
ence between the processor and the environment.

In the resulting scheduling problems, the
scheduler must not only have a job-selection
policy to determine the job to run at each time,
but also a speed scaling policy to determine
the speed at which to run that job. The
resulting problems are generally dual objective
optimization problems. One objective is some
quality of service measure for the schedule, and
the other objective is temperature or energy.

We will consider problems where jobs arrive at
the processor over time. Each job i has a release
time ri when it arrives at the processor, and
a work requirement wi. A job i run at speed s takes
wi =s units of time to complete.

Key Results

Yao et al. [5] initiated the theoretical algorithmic
investigation of speed scaling problems. Yao et
al. [5] assumed that each job i had a deadline
di, and that the quality of service measure was
deadline feasibility (each job completes by its
deadline). Yao et al. [5] gives a greedy algorithm

YDS to find the minimum energy feasible sched-
ule. The job selection policy for YDS is to run the
job with the earliest deadline. To understand the
speed scaling policy for YDS, define the intensity
of a time interval to be the work that must be
completed in this time interval divided by the
length of the time interval. YDS then finds the
maximum intensity interval, runs the jobs that
must be run in this interval at constant speed,
eliminates these jobs and this time interval from
the instance, and proceeds recursively. Yao et al.
[5] gives two online algorithms: OA and AVR. In
OA the speed scaling policy is the speed that YDS
would run at, given the current state and given
that no more jobs will be released in the future.
In AVR, the rate at which each job is completed
is constant between the time that a job is released
and the deadline for that job. Yao et al. [5] showed
that AVR is 2˛�1˛˛-competitive with respect to
energy.

The results in [5] were extended in [2]. Bansal
et al. [2] showed that OA is ˛˛-competitive with
respect to energy. Bansal et al. [2] proposed
another online algorithm, BKP. BKP runs at the
speed of the maximum intensity interval contain-
ing the current time, taking into account only the
work that has been released by the current time.
They show that the competitiveness of BKP with
respect to energy is at most 2.˛=.˛ � 1//˛ e˛ .
They also show that BKP is e-competitive with
respect to the maximum speed.

Bansal et al. [2] initiated the theoretical
algorithmic investigation of speed scaling to
manage temperature. Bansal et al. [2] showed
that the deadline feasible schedule that minimizes
maximum temperature can in principle be
computed in polynomial time. Bansal et al.
[2] showed that the competitiveness of BKP
with respect to maximum temperature is at most
2˛C1 e˛.6.˛=.˛ � 1//˛ C 1/.

Pruhs et al. [4] initiated the theoretical al-
gorithmic investigation into speed scaling when
the quality-of-service objective is average/total
flow time. The flow time of a job is the delay
from when a job is released until it is com-
pleted. Pruhs et al. [4] give a rather complicated
polynomial-time algorithm to find the optimal
flow time schedule for unit work jobs, given
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a bound on the energy available. It is easy to see
that no O(1)-competitive algorithm exists for this
problem.

Albers and Fujiwara [1] introduce the objec-
tive of minimizing a linear combination of energy
used and total flow time. This has a natural
interpretation if one imagines the user specifying
how much energy he is willing to use to increase
the flow time of a job by a unit amount. Albers
and Fujiwara [1] give an O(1)-competitive online
algorithm for the case of unit work jobs. Bansal
et al. [3] improves upon this result and gives a 4-
competitive online algorithm. The speed scaling
policies of the online algorithms in [1] and [3]
essentially run as power equal to the number
of unfinished jobs (in each case modified in
a particular way to facilitate analysis of the al-
gorithm). Bansal et al. [3] extend these results
to apply to jobs with arbitrary work, and even
arbitrary weight. The speed scaling policy is
essentially to run at power equal to the weight
of the unfinished work. The expression for the
resulting competitive ratio is a bit complicated
but is approximately 8 when the cube-root rule
holds.

The analysis of the online algorithms in [2]
and [3] heavily relied on amortized local com-
petitiveness. An online algorithm is locally com-
petitive for a particular objective if for all times
the rate of increase of that objective for the
online algorithm, plus the rate of change of some
potential function, is at most the competitive ratio
times the rate of increase of the objective in any
other schedule.

Applications

None

Open Problems

The outstanding open problem is probably to
determine if there is an efficient algorithm to
compute the optimal flow time schedule given
a fixed energy bound.
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Problem Definition

The sphere packing problem seeks to pack
spheres into a given geometric domain. The
problem is an instance of geometric packing.
Geometric packing is a venerable topic in
mathematics. Various versions of geometric
packing problems have been studied, depending
on the shapes of packing domains, the types
of packing objects, the position restrictions
on the objects, the optimization criteria, the
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dimensions, etc. It also arises in numerous
applied areas. The sphere packing problem
under consideration here finds applications in
radiation cancer treatment using Gamma Knife
systems. Unfortunately, even very restricted
versions of geometric packing problems (e.g.,
regular-shaped objects and domains in lower
dimensional spaces) have been proved to be
NP-hard. For example, for congruent packing
(i.e., packing copies of the same object), it is
known that the 2-D cases of packing fixed-sized
congruent squares or disks in a simple polygon
are NP-hard [7]. Baur and Fekete [2] considered
a closely related dispersion problem of packing
k congruent disks in a polygon of n vertices
such that the radius of the disks is maximized;
they proved that the dispersion problem cannot
be approximated arbitrarily well in polynomial
time unless PD NP, and gave a 2

3
-approximation

algorithm for the L1 disk case with a time bound
of O(n38).

Chen et al. [4] proposed a practically efficient
heuristic scheme, called pack-and-shake, for the
congruent sphere packing problem, based on
computational geometry techniques. The prob-
lem is defined as follows.

The Congruent Sphere Packing Problem
Given a d-D polyhedral region R.d D 2; 3/ of n
vertices and a value r > 0, find a packing SP of R
using spheres of radius r, such that (i) each sphere
is contained in R, (ii) no two distinct spheres
intersect each other in their interior, and (iii) the
ratio (called the packing density) of the covered
volume in R by SP over the total volume of R is
maximized.

In the above problem, one can view the
spheres as “solid” objects. The region R is also
called the domain or container. Without loss of
generality, let r D 1.

Much work on congruent sphere packing stud-
ied the case of packing spheres into an unbounded
domain or even the whole space [5]. There are
also results on packing congruent spheres into
a bounded region. Hochbaum and Maass [8] pre-
sented a unified and powerful shifting technique
for designing pseudo-polynomial time approxi-
mation schemes for packing congruent squares

into a rectilinear polygon. But, the high time com-
plexities associated with the resulting algorithms
restrict their applicability in practice. Another
approach is to formulate a packing problem as
a non-linear optimization problem, and resort to
an available optimization software to generate
packings; however, this approach works well only
for small problem sizes and regular-shaped do-
mains.

To reduce the running time yet achieve a dense
packing, a common idea is to consider objects
that form a certain lattice or double-lattice.
A number of results were given on lattice packing
of congruent objects in the whole (especially
high dimensional) space [5]. For a bounded
rectangular 2-D domain, Milenkovic [10]
adopted a method that first finds the densest
translational lattice packing for a set of polygonal
objects in the whole plane, and then uses
some heuristics to extract the actual bounded
packing.

Key Results

The pack-and-shake scheme of Chen et al. [4]
for packing congruent spheres in an irregular-
shaped 2-D or 3-D bounded domain R consists
of three phases. In the first phase, the d-D
domain R is partitioned into a set of convex
subregions (called cells). The resulting set of
cells defines a dual graph GD, such that each
vertex v of GD corresponds to a cell C(v) and
an edge connects two vertices if and only if
their corresponding cells share a .d � 1/-D face.
In the second phase, the algorithm repeats the
following trimming and packing process until
GD D ;: Remove the lowest degree vertex
v from GD and pack the cell C(v). In the
third phase, a shake procedure is applied to
globally adjust the packing to obtain a denser
one.

The objective of the trimming and packing
procedure is that after each cell is packed, the
remaining “packable” subdomain R0 of R is al-
ways kept as a connected region. The rationale for
maintaining the connectivity of R0 is as follows.
To pack spheres in a bounded domain R, two
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typical approaches have been used: (a) packing
spheres layer by layer going from the boundary
of R towards its interior [9], and (b) packing
spheres starting from the “center” of R, such
as its medial axis, towards its boundary [3, 13,
14]. Due to the shape irregularity of R, both
approaches may fragment the remaining “pack-
able” subdomain R0 into more and more dis-
connected regions; however, at the end of pack-
ing each such region, a small “unpackable” area
may eventually remain that allows no further
packing. It could fit more spheres if the “pack-
able” subdomain R0 is lumped together instead
of being divided into fragments, which is what
the trimming and packing procedure aims to
achieve.

Due to the packing of its adjacent cells
that have been done by the trimming and
packing procedure, the boundary of a cell
C(v) that is to be packed may consist of both
line segments and arcs (from packed spheres).
Hence, a key problem is to pack spheres in
a cell bounded by curves of low degrees. Chen
et al.’s algorithms [4] for packing each cell are
based on certain lattice structures and allow
the cell to both translate and rotate. Their
algorithms have fairly low time bounds. In
certain cases, they even run in nearly linear
time.

An interesting feature of the cell pack-
ings generated by the trimming and pack-
ing procedure is that the resulted spheres
cluster together in the middle of the cells
of the domain R, leaving some small un-
packable areas scattered along the bound-
ary of R. The “shake” procedure in [4]
thus seeks to collect these small areas to-
gether by “pushing” the spheres towards
the boundary of R, in the hope of obtain-
ing some “packable” region in the middle
of R.

The approach in [4] is to first obtain a densest
lattice unit sphere packing LSP(C) for each cell
C of R, and then use a “shake” procedure to
globally adjust the resulting packing of R to
generate a denser packing SP in R. Suppose
the plane P is already packed by infinitely
many unit spheres whose center points form

a lattice (e.g., the hexagonal lattice). To obtain
a densest packing LSP(C) for a cell C from the
lattice packing of the plane P, a position and
orientation of C on P need to be computed
such that C contains the maximum number
of spheres from the lattice packing of P.
There are two types of algorithms in [4] for
computing an optimal placement of C on P:
translational algorithms that allow C to be
translated only, and translational/rotational
algorithms that allow C to be both translated
and rotated.

Let n D jC j, the number of bounding curves
of C, and m be the number of spheres along
the boundary of C in a sought optimal packing
of C.

Theorem 1 Given a polygonal region C
bounded by n algebraic curves of constant
degrees, a densest lattice unit sphere packing
of C based only on translational motion can
be computed in O.N log N CK/ time, where
N D f .n; m/ is a function of n and m, and K
is the number of intersections between N planar
algebraic curves of constant degrees that are
derived from the packing instance.

Note: In the worst case, N Df .n; m/Dn�m.
But in practice, N may be much smaller. The
N planar algebraic curves in Theorem 1 form
a structure called arrangement. Since all these
curves are of a constant degree, any two such
curves can intersect each other at most a constant
number of times. In the worst case, the num-
ber K of intersections between the N algebraic
curves, which is also the size of the arrange-
ment, is O(N2). The arrangement of these curves
can be computed by the algorithms [1, 6] in
O.N log N CK/ time.

Theorem 2 Given a polygonal region C
bounded by n algebraic curves of con-
stant degrees, a densest lattice unit sphere
packing of C based on both translational
and rotational motions can be computed
in O.T .n/C .N CK 0/ log N / time, where
N D f .n; m/ is a function of n and m,
K0 is the size of the arrangement of N
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pseudo-plane surfaces in 3-D that are derived
from the packing instance, and T(n) is the
time for solving O(n2) quadratic optimization
problem instances associated with the packing
instance.

In Theorem 2, K 0 D O.N 3/ in the worst case. In
practice, K0 can be much smaller.

The results on 2-D sphere packing in [4]
can be extended to d-D for any constant integer
d � 3, so long as a good d-D lattice packing of
the d-D space is available.

Applications

Recent interest in the considered congruent
sphere packing problem was motivated by
medical applications in Gamma Knife radio-
surgery [4, 11, 12]. Radiosurgery is a minimally
invasive surgical procedure that uses radiation
to destroy tumors inside human body while
sparing the normal tissues. The Gamma Knife
is a radiosurgical system that consists of 201
Cobalt-60 sources [3, 14]; the gamma-rays from
these sources are all focused on a common
center point, thus creating a spherical volume
of radiation field. The Gamma Knife treatment
normally applies high radiation dose. In this
setting, overlapping spheres may result in
overdose regions (called hot spots) in the target
treatment domain, while a low packing density
may cause underdose regions (called cold spots)
and a non-uniform dose distribution. Hence, one
may view the spheres used in Gamma Knife
packing as “solid” spheres. Therefore, a key
geometric problem in Gamma Knife treatment
planning is to fit multiple spheres into a 3-D
irregular-shaped tumor [3, 13, 14]. The total
treatment time crucially depends on the number
of spheres used. Subject to a given packing
density, the minimum number of spheres used
in the packing (i.e., treatment) is desired. The
Gamma Knife currently produces spheres of
four different radii (4, 8, 14, and 18 mm), and
hence the Gamma Knife sphere packing is in
general not congruent. In practice, a commonly
used approach is to pack larger spheres first,

and then fit smaller spheres into the remaining
subdomains, in the hope of reducing the total
number of spheres involved and thus shortening
the treatment time. Therefore, congruent sphere
packing can be used as a key subroutine for such
a common approach.

Open Problems

An open problem is to analyze the quality bounds
of the resulting packing for the algorithms in [4];
such packing quality bounds are currently not yet
known. Another open problem is to reduce the
running time of the packing algorithms in [4],
since these algorithms, especially for sphere
packing problems in higher dimensions, are still
very time-consuming. In general, it is highly
desirable to develop efficient sphere packing
algorithms in d-D (d � 2) with guaranteed good
packing quality.

Experimental Results

Some experimental results of the 2-D pack-
and-shake sphere packing algorithms were
given in [4]. The planar hexagonal lattice
was used for the lattice packing. On packings
whose sizes are in the hundreds, the CCC
programs of the algorithms in [4] based only
on translational motion run very fast (a few
minutes), while those of the algorithms based
on both translation and rotation take much
longer time (hours), reflecting their respective
theoretical time bounds, as expected. On the
other hand, the packing quality of the translation-
and-rotation based algorithms is a little better
than the translation based algorithms. The
packing densities of all the algorithms in the
experiments are well above 70 % and some are
even close to or above 80 %. Comparing with the
nonconvex programming methods, the packing
algorithms in [4] seemed to run faster based on
the experiments.
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Problem Definition

Introduced by Cunningham and Edmonds [11],
the split decomposition, also known as the join
(or 1-join) decomposition, ranges among the
classical graph decomposition schemes. Given a
graph G D .V; E/, a bipartition .A; B/ of the
vertex set V (with jAj > 2 and jBj > 2) is a split
if there are subsets A0 � A and B 0 � B , called
frontiers, such that there is an edge between a
vertex u 2 A and v 2 B if and only if u 2 A0

and v 2 B 0 (see Fig. 1). A graph is prime if
it does not contain any split. Observe that an
induced cycle of length at least 5 is a prime
graph. A graph is degenerate if every bipartition
.A; B/ with jAj > 2 and jBj > 2 is a split.
It can be shown that a degenerate graphs are
either cliques or stars. The split decomposition
consists in recursively decompose a graph into
a set of disjoint graphs fG1; : : : Gkg, called split
components, each of which is either prime or
degenerate. There are two cases:

1. If G is prime or degenerate, then return the set
fGg;
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Split Decomposition via Graph-Labelled Trees, Fig.
1 A circle graph G with a chord diagram on the right
and its split decomposition tree ST .G/ on the left. The
nodes v and y are prime nodes, whereas u is a star node
and w a clique node. The bipartition .ff; g; h; ig; V n
ff; g; h; ig/ forms a split of G and corresponds to a tree
edge of ST .G/. The frontiers are ff; ig on one side and

fe; j; k; lg on the other. Observe that .fk; lg; V nfk; lg/
is also a split but which is not represented by the tree edge
between nodes Y and Z in ST .G/. Because G is not
a prime graph, it can be represented with several chord
diagram. For example, exchanging the chord of y with the
chord of ´ yields an alternative chord diagram

2. If G is neither prime nor degenerate, it con-
tains a split .A; B/, with frontiers A0 and B 0.
The split components of G is then the union
of the split components of the graphs GŒA�C

.a; A0/ and GŒB�C .b; B 0/, where a and b are
new vertices, called markers.

Observe that the split decomposition process nat-
urally defines a decomposition tree whose nodes
represent the split components. This decomposi-
tion tree can be represented by a graph-labeled
tree (GLT) (see [16,18]) defined as a pair .T;F/,
where T is a tree and F a set of graphs, such
that each node u of T is labeled by the graph
G.u/ 2 F , and there exists a bijection �u between
the edges of T incident to u and the vertices
of G.u/, called marker vertices. We say that
two leaves `a and `b of T are accessible if
for every pair of consecutive tree edges uv and
vw on the path from `a and `b in T , �v.uv/

and �v.vw/ are adjacent in G.v/. From a GLT
.T;F/, we define an accessibility graph G.T;F/

whose vertex set is the leaf set of T and two
vertices a and b are adjacent if the corresponding
leaves `a and `b are accessible. It is easy to
observe that every tree edge e of a GLT .T;F/

defines a split .A; B/ of G.T;F/ where A and
B respectively contain the vertices corresponding

to the leaves of the two connected components of
T�e. Cunningham and Edmonds [11] formalized
the family of splits as an example of partite
family of bipartitions thereby implying that every
graph admits a canonical split decomposition tree
(see Fig. 1). In terms of GLTs, this translates as
follows:

Theorem 1 ([11, 16, 18]) Let G be a connected
graph. There exists a unique GLT .T;F/ whose
labels are either prime or degenerate, having
a minimal number of nodes and such that
G D G.T;F/. This GLT is called the split tree of
G and denoted ST .G/.

The problem we are interested in is to effi-
ciently compute the split tree ST .G/ of a graph
G D .V; E/. The first polynomial-time algorithm
was and runs in time O.nm/, where n D jV j and
m D jEj. Ma and Spinrad [23] later developed an
O.n2/ algorithm. Finally Dahlhaus [12] designed
the first linear-time algorithm which was recently
revisited by Charbit et al. [5].

Key Results

As mentioned above, the split tree of a graph can
be computed in linear time. The algorithm we
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describe here is nearly optimal, that is, runs in
time O.nCm/ �˛.nCm/, where ˛ is the inverse
Ackermann function. The fact that this algorithm
incrementally builds the split tree is responsible
of the small additional complexity cost. More
precisely, updating the tree structure of the GLT
representing the split tree relies on the union-
find data structure [15]. But having an incre-
mental split decomposition algorithm allows an
extension of the algorithm, within the same time
complexity, to the circle graph recognition [17], a
problem for which computing the split decompo-
sition is a corner step. But so far, a subquadratic
time complexity cannot be reached using the
previous linear (or quadratic) split decomposition
algorithms.

Theorem 2 ([18]) The split tree ST .G/ of
a graph G D .V; E/, with jV j D n and
jEj D m, can be built incrementally according
to an LBFS ordering in time O.n C m/ �

˛.n C m/, where ˛ is the inverse Ackermann
function.

It is important to observe that to reach the
expected complexity, the algorithm inserts the
vertices according to a LexBFS ordering [25].
These orderings, resulting from a lexicographic
breadth-first search, appear in a number of recog-
nition algorithms, such as chordal graphs [25],
comparability graphs [20], interval graphs [22],
and cographs [3]. The idea is that structural
properties can be shown on the last vertex visited
by a LexBFS. For example, in chordal graphs
the last vertex is simplicial; in comparability
graphs it is a source of some transitive orienta-
tion. LexBFS, introduced in [25], works as fol-
lows: it numbers the vertices decreasingly from
n D jV j down to 1; initially every vertex re-
ceives an empty label; then iteratively, an ar-
bitrary unnumbered vertex x with lexicograph-
ically largest label is selected and numbered i ,
and i is appended to the label of every unnum-
bered neighbor of x. On the graph of Fig. 1,
� D b; a; e; d; c; f; i; j; k; l; h; g is a LexBFS
ordering.

Applications

Many graph classes can be characterized by
means of the split decomposition. Below,
we review the most important of these
classes. Finally, we discuss the links between
split decomposition and other decomposition
approaches.

Graph Classes

Distance Hereditary Graphs
The family of graphs for which the split tree
does not contain any prime node is called to-
tally decomposable (or totally separable). This
terminology follows from the observation that for
every subgraph of size at least 4, every nontrivial
bipartition of the vertex set forms a split. A graph
G is distance hereditary [1] if for every induced
connected subgraph H of G and every pair of
vertices x and y of H , the distance between x

and y is the same in H and G. It turns out that
a graph G is totally decomposable if and only
if it is distance hereditary [1]. In other words,
a graph G is distance hereditary if and only if
every node of ST .G/ is either a star or a clique
node. The first linear-time recognition algorithm
of distance hereditary graphs, due to [21], relies
on a breadth-first search characterization (see
also [13]). More recently, a linear-time algorithm
has been designed to update the split tree of a
distance hereditary graph under vertex and edge
insertion, leading to an alternative (vertex in-
cremental) linear-time recognition algorithm for
distance hereditary graphs.

Theorem 3 ([16]) Let ST .G/ be the split tree of
a distance hereditary graph G D .V; E/, S � V

be a subset of vertices of G and e D .x; y/ … E

be a non-edge of G. Then:

• In O.1/-time, we can compute ST .G C e/

where GCe D .V; E[feg/ if GCe is distance
hereditary;

• In O.jS j/-time, we can compute ST .G C

.x; S/ where G C .x; S/ D .V [ fxg; E [

f.x; y/ j y 2 Sg if G C .x; S/ is distance
hereditary.
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Subclasses of Totally Decomposable Graphs
A GLT is called clique-star tree if its nodes are
labeled either with cliques or stars. As a conse-
quence of the discussion of the previous para-
graph, distance hereditary graphs are the graphs
corresponding the clique-star trees. Imposing any
constraint on a clique-star tree thereby immedi-
ately defines a subclass of distance hereditary
graphs. It turns out that many important graph
subclasses of distance hereditary graphs can be
characterized with the split decomposition.

The cographs, also known as complement-
reducible graphs [8] or P4-free graphs, are prob-
ably the most studied subclass of distance heredi-
tary graphs. Cographs are also known as the class
of graphs totally decomposable with respect to
the modular decomposition [19], and their com-
binatorial structure is captured by the so-called
cotree. As noticed in [16], it is easy to observe
that a graph G is a cograph if and only if its split
tree ST .G/ is a clique-star tree that can be rooted
either at a node or at a tree edge such that every
star node is “oriented” toward that root (that is the
marker vertex corresponding the center of every
star node is oriented toward the root).

The class of ptolemaic graphs or 3-leaf power
are also interesting. The class of ptolemaic graphs
is defined as the intersection of distance heredi-
tary graphs and chordal graphs. Chordal graphs
are the graphs without induced chordless cycles
of length four or more. It follows that a graph

G is ptolemaic if and only if ST .G/ is a clique-
star tree such that for every pair of star nodes u
and v, not both extremities of the path from u
to v in ST .G/ are attached to the center marker
vertex of u and v (otherwise this would generate
a chordless 4-cycle). As a subclass of chordal
graph, 3-leaf powers inherit the restrictions of
ptolemaic graphs on the split tree with the addi-
tive constraint that no clique node lies on the path
between two star nodes (see [16] for details).

Circle Graphs
The split decomposition plays an important role
in the context of circle graphs defined as inter-
section graphs of a set of chords in a circle. The
main reason is that a graph G is a circle graph
if and only if every split component of G is a
circle graph. In other words, as clique and stars
are circle graphs, G is a circle graph if and only if
the prime nodes of ST .G/ are labeled with circle
graphs. Observe that this characterization shows
that distance hereditary graphs form a subclass
of circle graphs. By the way the first quadratic
time circle graph recognition algorithm was ob-
tained by computing the split decomposition of
the input graph and reducing the problem to the
recognition of prime circle graphs [23, 26]. The
key property is that a prime circle graph has a
unique (up to mirror) chord diagram [2, 14] (see
Fig. 2).
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Split Decomposition via Graph-Labelled Trees, Fig. 2
On the left, two distinct chord diagrams of the graph G
depicted in Fig. 1 results from symmetric insertion of the
chords representing the vertices ff; g; h; ig (remind that

.ff; g; h; ig; V nff; g; h; ig/ form a split). On the right,
the chord diagram on f1; 2; 3; 4; 5g is the unique (up to
rotation and mirror) chord diagram of the 5-cycle, which
is a prime graph
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The linear-time split decomposition al-
gorithm [12], proposed in the mid-1990s,
did not lead to a linear-time circle graph
recognition algorithm. For almost two decades,
the quadratic time complexity [27] remained the
best known complexity. The quadratic barrier
has been broken using the almost linear-time
split decomposition algorithm of [17]. The key
ingredient was to insert the vertices according
to a LexBFS ordering. Indeed, in the unique
chord diagram of a prime circle graph G, the
neighborhood of the last vertex x of a LexBFS
ordering satisfies a sort of consecutiveness
property. More precisely, the chord diagram of
G contains a set of consecutive chord extremities
starting and ending with the extremities of x’s
chord and containing one and only one chord
extremity per neighbor of x and no chord
extremity of non-neighbors of x. This property
is used to incrementally build the split tree of a
circle graph using chord diagrams to represent
prime nodes. It is worth to observe that the split
tree of a circle graph G together with the chord
diagrams of each of its prime nodes provides a
canonical (linear space) representation of the set
of (exponentially many) chord diagrams of G.

Theorem 4 ([17]) Let G D .V; E/ be a graph
such that jV j D n and jEj D m. There exists
a O.n C m/ � ˛.n C m/-time algorithm, where
˛ is the inverse Ackermann function, deciding
whether G is a circle graph. Moreover, if G is
a circle graph, the algorithm outputs a split-tree
representation G from which any chord diagram
of G can be extracted in linear time.

Perfect Graphs
The recent proof [6] of the famous conjecture of
Berge on perfect graphs states that a graph is per-
fect if and only if it does not contain an odd cycle
of length at least 5 nor its complement as induced
subgraph. It is easy to observe that a graph is
perfect if and only if its prime components are
perfect graphs. The split decomposition does not
formally appear in the structural decomposition
theorem of perfect graphs [6, 28] as it is sub-
sumed by the so-called balanced skew partition.
In the context of perfect graphs, parity graphs [4]

form a nice example of class of graphs simply
characterized through their split decomposition.
A graph is a parity graph if for every pair x,
y of vertices, the length of every chordless path
between x and y is of the same parity. This
constraint can be translated into a condition on
odd cycles or into a condition on their split tree.
Indeed it can be proved that a graph is a parity
graph if and only if its prime nodes are labeled
with bipartite graphs [7].

Related Graph Decompositions

Modular Decomposition
The split decomposition is often introduced as
a generalization of the modular decomposition
(also known as homogeneous decomposi-
tion) [19]. A module in a graph G D .V; E/ is a
subset M of vertices such that every vertex not in
M is either fully adjacent or fully nonadjacent to
the vertices of M . Clearly, if M is a module of
size at least 2, then .M; V nM/ defines a split.
Indeed the split decomposition is sometimes used
to further decompose graphs that are primes with
respect to the modular decomposition.

Width Parameters
Rank-width [24] and clique-width [10] are two
important width parameters both sharing some
connections with the split decomposition. As the
rank-width of a graph is small if its clique-width
is small and vice versa, we only briefly describe
the former parameter. A rank-decomposition of a
graph G is defined as a ternary tree whose leaves
are in one-to-one correspondence with the ver-
tices of G. It follows that every internal tree edge
defines a bipartition, say .A; B/ of the vertices of
G. The rank-width of a bipartition .A; B/ is de-
fined as the rank of the incidence matrix between
A and B , and the width of a rank-decomposition
is the maximum width over its bipartitions. The
rank-width of a graph G is then the minimum
width over its rank-decompositions. Observe that
the every split is a rank-width 1 bipartition. It
follows that the rank-width of a graph is the max-
imum rank-width of its prime components. As a
consequence rank-width one graphs are exactly
distance hereditary graphs. To conclude, let us
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mention that computing the split decomposition
of a graph is a key step in the polynomial-
time recognition algorithm of clique-width three
graphs [9].
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Squares and Repetitions, Fig. 1 The structure of RUNS(x) where x D baababaababbabaababaab D
b´2.´R/2b, for ´ D aabab. The operation �R is reversing the string

Problem Definition

Periodicities and repetitions in strings have been
extensively studied and are important both in
theory and practice (combinatorics of words,
pattern-matching, computational biology). The
words of the type ww and www, where w is
a nonempty primitive (not of the form uk for
an integer k > 1) word, are called squares and
cubes, respectively. They are well-investigated
objects in combinatorics on words [16] and in
string-matching with small memory [5].

A string w is said to be periodic iff
period.w/ � jwj=2, where period(w) is the small-
est positive integer p for which wŒi � D wŒi C p�

whenever both sides of the equality are defined.
In particular each square and cube is periodic.

A repetition in a string x D x1x2 : : : xn is an
interval Œi : : j � � Œ1 : : n� for which the associated
factor xŒi : : j � is periodic. It is an occurrence of
a periodic word xŒi : : j �, also called a positioned
repetition. A word can be associated with several
repetitions, see Fig. 1.

Initially people investigated mostly positioned
squares, but their number is ˝.n log n/ [2], hence
algorithms computing all of them cannot run in
linear time, due to the potential size of the output.
The optimal algorithms reporting all positioned
squares or just a single square were designed
in [1, 2, 3, 19]. Unlike this, it is known that
only O(n) (un-positioned) squares can appear in
a string of length n [8].

The concept of maximal repetitions, called
runs (equivalent terminology) in [14], has been
introduced to represent all repetitions in a suc-
cinct manner. The crucial property of runs is that

there are only O(n) runs in a word of length
n [15, 21].

A run in a string x is an interval Œi : : j �

such that both the associated string xŒi : : j � has
period p � .j � i C 1/=2, and the periodicity
cannot be extended to the right nor to the left:
xŒi � 1� ¤ xŒx C p � 1� and xŒj � p C 1� ¤

xŒj C 1� when the elements are defined. The set
of runs of x is denoted by RUNS.x/. An example
is displayed in Fig. 1.

Key Results

The main results concern fast algorithms for
computing positioned squares and runs, as well
as combinatorial estimation on the number of
corresponding objects.

Theorem 1 (Crochemore [1], Apostolico-
Preparata [2], Main-Lorentz [19]) There exists
an O.n log n/ worst-case time algorithm for
computing all the occurrences of squares in
a string of length n.

Techniques used to design the algorithms are
based on partitioning, suffix trees, and naming
segments. A similar result has been obtained
by Franek, Smyth, and Tang using suffix ar-
rays [11]. The key component in the next algo-
rithm is the function described in the following
lemma.

Lemma 2 (Main-Lorentz [19]) Given two
square-free strings u and v, reporting if uv

contains a square centered in u can be done
in worst-case time O.juj/.
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Squares and Repetitions, Fig. 2 The f-factorization of the example string x D baababaababbabaababaab and
the set of its internal runs; all other runs overlap factorization points

Squares and Repetitions, Fig. 3 If an overlapping run with period p starts in u, ends in v, and its part in v is of size
at least p then it is easily detectable by computing continuations of the periodicity p in two directions: left and right

Using suffix trees or suffix automata together
with the function derived from the lemma, the
following fact has been shown.

Theorem 3 (Crochemore [3], Main-Lorentz
[19]) Testing the square-freeness of a string
of length n can be done in worst-case time
O.n log a/, where a is the size of the alphabet
of the string.

As a consequence of the algorithms and of the
estimation on the number of squares, the most
important result related to repetitions can be for-
mulated as follows.

Theorem 4 (Kolpakov-Kucherov [15], Rytter
[21], Crochemore-Ilie [4])

(1) All runs in a string can be computed in linear
time (on a fixed-size alphabet).

(2) The number of all runs is linear in the length
of the string.

The point (2) is very intricate, it is of purely
combinatorial nature and has nothing to do with
the algorithm. We sketch shortly the basic com-
ponents in the constructive proof of the point
(1). The main idea is to use, as for the previous
theorem, the f-factorization (see [3]): a string x
is decomposed into factors u1; u2; : : : ; uk , where
ui is the longest segment which appears before
(possibly with overlap) or is a single letter if the
segment is empty.

The runs which fit in a single factor are called
internal runs, other runs are called here overlap-
ping runs. There are three crucial facts:

• all overlapping runs can be computed in linear
time,

• each internal run is a copy of an earlier over-
lapping run,

• the f-factorization can be computed in linear
time (on a fixed-size alphabet) if we have the
suffix tree or suffix automaton of the string.
Figure 2 shows f-factorization and internal
runs of an example string.

It follows easily from the definition of the f-
factorization that if a run overlaps two (consec-
utive) factors u k�1 and uk then its size is at most
twice the total size of these two s factors.

Figure 3 shows the basic idea for computing
runs that overlap u v in time O.juj C jvj/. Using
similar tables as in the Morris–Pratt algorithm
(border and prefix tables), see [6], we can test the
continuation of a period p from position p in v

to the left and to the right. The corresponding
tables can be constructed in linear time in
a preprocessing phase. After computing all
overlapping runs the internal runs can be copied
from their earlier occurrences by processing the
string from left to right.

Another interesting result concerning period-
icities is the following lemma and its fairly im-
mediate corollary.
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Lemma 5 (Three Prefix Squares, Crochemore-
Rytter [5]) If u, v, and w are three primitive
words satisfying: juj < jvj < jwj, uu is a prefix of
vv, and vv is a prefix of ww, then juj C jvj � jwj

Corollary 1 Any nonempty string x possesses
less than log˚ jyj prefixes that are squares.

In the configuration of the lemma, a second
consequence is that uu is a prefix of w. Therefore,
a position in a string x cannot be the largest
position of more than two squares, which yields
the next corollary. A simple direct proof of it is
by Ilie [13], see also [17].

Corollary 2 (Fraenkel and Simpson [8]) Any
string x contains at most 2jxj (different) squares,
that is: cardfu j u primitive and u2 factor of yg �

2jxj:

The structure of all squares and of un-positioned
runs has been also computed within the same time
complexities as above in [18] and [12].

Applications

Detecting repetitions in strings is an important
element of several questions: pattern matching,
text compression, and computational biology
to quote a few. Pattern-matching algorithms
have to cope with repetitions to be efficient
as these are likely to slow down the process;
the large family of dictionary-based text
compression methods use a weaker notion of
repeats (like the software gzip); repetitions
in genomes, called satellites, are intensively
studied because, for example, some over-repeated
short segments are related to genetic diseases;
some satellites are also used in forensic crime
investigations.

Open Problems

The most intriguing question remains the
asymptotically tight bound for the maximum
number �.n/ of runs in a string of size n. The
first proof (by painful induction) was quite

difficult and has not produced any concrete
constant coefficient in the O(n) notation. This
subject has been studied in [9, 10, 22, 23].
The best-known lower bound of approximately
0:927 n is from [10]. The exact number of
runs has been considered for special strings:
Fibonacci words and (more generally) Sturmian
words [7, 14, 20]. It is proved in a structural
and intricate manner in the full version of [21]
that �.n/ � 3:44 n, by introducing a sparse-
neighbors technique. The neighbors are runs
for which both the distance between their
starting positions is small and the difference
between their periods is also proportionally
small (according to some fixed coefficient of
proportionality). The occurrences of neighbors
satisfy certain sparsity properties which imply
the linear upper bound. Several variations
for the definitions of neighbors and sparsity
are possible. Considering runs having close
centers the bound has been lowered to 1:6 n

in [4].
As a conclusion, we believe that the following

fact is valid.

Conjecture: A string of length n contains less
than n runs, i.e., jRUNSj.n/ < n.
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Problem Definition

The objective in stable matching problems is to
match together pairs of elements of a set of par-
ticipants, taking into account the preferences of
those involved and focusing on a stability require-
ment. The stability property ensures that no pair
of participants would both prefer to be matched
together rather than to accept their allocation in
the matching. Such problems have widespread
application, for example, in the allocation of
medical students to hospital posts, students to
schools or colleges, etc.

An instance of the classical stable marriage
problem (SM), introduced by Gale and Shapley
[2], involves a set of 2n participants comprising n

men fm1; : : : ; mng and n women fw1; : : : ; wng.
Associated with each participant is a preference
list, which is a total order over the participants
of the opposite sex. A man mi prefers woman
wj to woman wk if wj precedes wk on the
preference list of mi and similarly for the women.
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A matching M is a bijection between the sets of
men and women, in other words a set of man-
woman pairs so that each man and each woman
belongs to exactly one pair of M . For a man mi ,
M.mi / denotes the partner of mi in M , i.e., the
unique woman wj such that .mi ; wj / is in M .
Similarly, M.wj / denotes the partner of woman
wj in M . A matching M is stable if there is no
blocking pair, namely, a pair .mi ; wj / such that
mi prefers wj to M.mi / and wj prefers mi to
M.wj /.

Relaxing the requirements that the numbers
of men and women are equal and that each
participant should rank all of the members of the
opposite sex gives the stable marriage problem
with incomplete lists (SMI). So an instance of
SMI comprises a set of n1 men fm1; : : : ; mn1g

and a set of n2 women fw1; : : : ; wn2g, and each
participant’s preference list is a total order over
a subset of the participants of the opposite sex.
The implication is that if woman wj does not
appear on the list of man mi , then she is not an
acceptable partner for mi and vice versa. A man-
woman pair is acceptable if each member of the
pair is on the preference list of the other, and a
matching M is now a set of acceptable pairs such
that each man and each woman is in at most one
pair of M . In this context, a blocking pair for
matching M is an acceptable pair .mi ; wj / such
that mi either is unmatched in M or prefers wj

to M.mi / and, likewise, wj either is unmatched
or prefers mi to M.wj /. A matching is stable
if it has no blocking pair. So in an instance of
SMI, a stable matching need not match all of the
participants.

Gale and Shapley also introduced a many-
one version of stable marriage, which they
called the college admissions problem, but
which is now more usually referred to as the
�Hospitals/Residents Problem (HR) because
of its well-known applications in the medical
employment field. This problem is covered in
detail in Entry 150 of this volume.

A comprehensive treatment of many aspects of
the stable marriage problem, as of 1989, appears
in the monograph of Gusfield and Irving [5].
A more recent detailed exposition is given by
Manlove [14].

Key Results

Theorem 1 For every instance of SM or SMI,
there is at least one stable matching.

Theorem 1 was proved constructively by Gale
and Shapley [2] as a consequence of the algo-
rithm that they gave to find a stable matching.

Theorem 2 1. For a given instance of SM in-
volving n men and n women, there is a O.n2/

time algorithm that finds a stable matching.
2. For a given instance of SMI in which the

combined length of all the preference lists is
a, there is a O.a/ time algorithm that finds a
stable matching.

The algorithm for SMI is a simple extension
of that for SM. Each can be formulated in a
variety of ways, but is most usually expressed
in terms of a sequence of “proposals” from the
members of one sex to the members of the other.
A pseudocode version of the SMI algorithm ap-
pears in Fig. 1, in which the traditional approach
of allowing men to make proposals is adopted.

The complexity bound of Theorem 2(1) first
appeared in Knuth’s monograph on stable mar-
riage [12]. The fact that this algorithm is asymp-
totically optimal was subsequently established by
Ng and Hirschberg [17] via an adversary argu-
ment. On the other hand, Wilson [21] proved that
the average running time, taken over all possible
instances of SM, is O.n log n/.

The algorithm of Fig. 1, in its various guises,
has come to be known as the Gale-Shapley algo-
rithm. The variant of the algorithm given here is
called man oriented, because men have the ad-
vantage of proposing. Reversing the roles of men
and women gives the woman-oriented variant.
The “advantage” of proposing is remarkable, as
spelled out in the next theorem.

Theorem 3 The man-oriented version of the
Gale-Shapley algorithm for SM or SMI yields the
man-optimal stable matching in which each man
has the best partner that he can have in any stable
matching, but in which each woman has her worst
possible partner. The woman-oriented version
yields the woman-optimal stable matching, which
has analogous properties favoring the women.
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M = ∅;
assign each person to be free;      /* i. e., not a member of a pair in M */
while (some man m is free and has not proposed to every woman on his list)
     m proposes to w, the first woman on his list to whom he has not proposed;
     if (w is free)
           add (m, w) to M;          /* w accepts m */
     else if (w prefers m to her current partner m�)
           remove (m�, w) from M; /* w rejects m�, setting m� free */
           add (m, w) to M;          /* w accepts m */
     else
          M remains unchanged;    /* w rejects m */
return M;

Stable Marriage, Fig. 1 The Gale-Shapley algorithm

The optimality property of Theorem 3 was
established by Gale and Shapley [2], and the
corresponding “pessimality” property was first
observed by McVitie and Wilson [16].

As observed earlier, a stable matching for
an instance of SMI need not match all of the
participants. But the following striking result was
established by Gale and Sotomayor [3] and Roth
[19] (in the context of the more general HR
problem).

Theorem 4 In an instance of SMI, all stable
matchings have the same size and match exactly
the same subsets of the men and women.

For a given instance of SM or SMI, there may
be many different stable matchings. Indeed Knuth
[12] showed that the maximum possible number
of stable matchings grows exponentially with the
number of participants. He also pointed out that
the set of stable matchings forms a distributive
lattice under a natural dominance relation, a result
attributed to Conway. This powerful algebraic
structure that underlies the set of stable matchings
can be exploited algorithmically in a number of
ways. For example, Gusfield [4] showed how all
k stable matchings for an instance of SM can be
generated in O.n2C kn/ time (�Optimal Stable
Marriage).

Extensions of these problems that are impor-
tant in practice, so-called SMT and SMTI (ex-
tensions of SM and SMI, respectively), allow the

presence of ties in the preference lists. In this con-
text, three different notions of stability have been
defined [7] – weak, strong, and super-stability,
depending on whether the definition of a blocking
pair requires that both members should improve,
or at least one member improves and the other
is no worse off, or merely that neither member is
worse off. The following theorem summarizes the
basic algorithmic results for these three varieties
of stable matchings.

Theorem 5 For a given instance of SMT or
SMTI:

1. A weakly stable matching is guaranteed to
exist and can be found in O.n2/ or O.a/ time,
respectively.

2. A super-stable matching may or may not exist;
if one does exist, it can be found in O.n2/ or
O.a/ time, respectively.

3. A strongly stable matching may or may not
exist; if one does exist, it can be found in
O.n3/ or O.na/ time, respectively.

Theorem 5 parts (1) and (2) are due to Irving [7]
(for SMT) and Manlove [13] (for SMTI). Part (3)
is due to Kavitha et al. [11], who improved earlier
algorithms of Irving and Manlove.

It turns out that, in contrast to the situation
described by Theorem 4, weakly stable match-
ings in SMTI can have different sizes. The nat-
ural problem of finding a maximum cardinality
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weakly stable matching, even under severe re-
strictions on the ties, is NP-hard [15]. �Stable
Marriage with Ties and Incomplete Lists explores
this problem further.

Interesting special cases of SM and its variants
arise when the preference lists on one or both
sides are derived from a “master” list that ranks
participants (e.g.„ according to some objective
criterion). Such problems are explored by Irving
et al. [10].

The stable marriage problem is an example
of a bipartite matching problem. The extension
in which the bipartite requirement is dropped
is the so-called stable roommates (SR)
problem.

Gale and Shapley had observed that, unlike the
case of SM, an instance of SR may or may not ad-
mit a stable matching, and Knuth [12] posed the
problem of finding an efficient algorithm for SR
or proving it NP-complete. Irving [6] established
the following theorem via a nontrivial extension
of the Gale-Shapley algorithm.

Theorem 6 For a given instance of SR, there ex-
ists a O.n2/ time algorithm to determine whether
a stable matching exists and if so to find such a
matching.

Variants of SR may be defined, as for SM, in
which preference lists may be incomplete and/or
contain ties – these are denoted by SRI, SRT,
and SRTI – and in the presence of ties, the three
flavors of stability, weak, strong, and super, are
again relevant.

Theorem 7 For a given instance of SRT or
SRTI:

1. A weakly stable matching may or may not
exist, and it is an NP-complete problem
to determine whether such a matching
exists.

2. A super-stable matching may or may not exist;
if one does exist, it can be found in O.n2/ or
O.a/ time, respectively.

3. A strongly stable matching may or may not
exist; if one does exist, it can be found in
O.n4/ or O.a2/ time, respectively.

Theorem 7 part (1) is due to Ronn [18], part (2)
is due to Irving and Manlove [9], and part (3) is
due to Scott [20].

Applications

Undoubtedly the best known and most important
applications of stable matching algorithms are
in centralized matching schemes in the medical
and educational domains. �Hospitals/Residents
Problem includes a summary of some of these
applications.

Open Problems

The parallel complexity of stable marriage
remains open. The best known parallel algorithm
for SMI is due to Feder et al. [1] and has
O.
p

a log3 a/ running time using a polynomially
bounded number of processors. It is not known
whether the problem is in NC, but nor is there a
proof of P-completeness.

One of the open problems posed by Knuth in
his early monograph on stable marriage [12] was
that of determining the maximum possible num-
ber xn of stable matchings for any SM instance
involving n men and n women. This problem
remains open, although Knuth himself showed
that xn grows exponentially with n. Irving and
Leather [8] conjecture that, when n is a power of
2, this function satisfies the recurrence

xn D 3x2
n=2 � 2x4

x=4:

Many open problems remain in the setting of
weak stability, such as finding a good approxima-
tion algorithm for a maximum cardinality weakly
stable matching – see � Stable Marriage with
Ties and Incomplete Lists – and enumerating all
weakly stable matchings efficiently.

Cross-References

�Hospitals/Residents Problem
�Optimal Stable Marriage



2064 Stable Marriage and Discrete Convex Analysis

�Ranked Matching
� Stable Marriage and Discrete Convex Analysis
� Stable Marriage with Ties and Incomplete Lists
� Stable Partition Problem

Recommended Reading

1. Feder T, Megiddo N, Plotkin SA (2000) A sublinear
parallel algorithm for stable matching. Theor Comput
Sci 233(1–2):297–308

2. Gale D, Shapley LS (1962) College admissions and
the stability of marriage. Am Math Mon 69:9–15

3. Gale D, Sotomayor M (1985) Some remarks on the
stable matching problem. Discret Appl Math 11:223–
232

4. Gusfield D (1987) Three fast algorithms for four
problems in stable marriage. SIAM J Comput
16(1):111–128

5. Gusfield D, Irving RW (1989) The stable marriage
problem: structure and algorithms. MIT, Cambridge

6. Irving RW (1985) An efficient algorithm for the
stable roommates problem. J Algorithms 6:577–595

7. Irving RW (1994) Stable marriage and indifference.
Discret Appl Math 48:261–272

8. Irving RW, Leather P (1986) The complexity
of counting stable marriages. SIAM J Comput
15(3):655–667

9. Irving RW, Manlove DF (2002) The stable room-
mates problem with ties. J Algorithms 43:85–105

10. Irving RW, Manlove DF, Scott S (2008) The stable
marriage problem with master preference lists. Dis-
cret Appl Math 156:2959–2977

11. Kavitha T, Mehlhorn K, Michail D, Paluch K (2004)
Strongly stable matchings in time O(nm), and ex-
tension to the H/R problem. In: Proceedings of the
21st symposium on theoretical aspects of computer
science (STACS 2004). Lecture notes in computer
science, vol 2996, pp 222–233. Springer, Berlin

12. Knuth DE (1976) Mariages stables. Les Presses de
L’Université de Montréal, Montréal

13. Manlove DF (1999) Stable marriage with ties and
unacceptable partners. Technical report TR-1999-29,
Department of Computing Science, University of
Glasgow

14. Manlove DF (2013) Algorithmics of matching under
preferences. World Scientific, Singapore

15. Manlove DF, Irving RW, Iwama K, Miyazaki S,
Morita Y (2002) Hard variants of stable marriage.
Theor Comput Sci 276(1–2):261–279

16. McVitie D, Wilson LB (1971) The stable marriage
problem. Commun ACM 14:486–490

17. Ng C, Hirschberg DS (1990) Lower bounds for the
stable marriage problem and its variants. SIAM J
Comput 19:71–77

18. Ronn E (1990) NP-complete stable matching prob-
lems. J Algorithms 11:285–304

19. Roth AE (1984) The evolution of the labor market for
medical interns and residents: a case study in game
theory. J Polit Econ 92(6):991–1016

20. Scott S (2005) A study of stable marriage problems
with ties. Ph.D. thesis, Department of Computing
Science, University of Glasgow

21. Wilson LB (1972) An analysis of the stable marriage
assignment algorithm. BIT 12:569–575

Stable Marriage and Discrete Convex
Analysis

Akihisa Tamura
Department of Mathematics, Keio University,
Yokohama, Japan

Keywords

Stable matching

Years and Authors of Summarized
Original Work

2000; Eguchi, Fujishige, Tamura, Fleiner

Problem Definition

In the stable marriage problem first defined by
Gale and Shapley [7], there is one set each of
men and women having the same size, and each
person has a strict preference order on persons
of the opposite gender. The problem is to find a
matching such that there is no pair of a man and a
woman who prefer each other to their partners in
the matching. Such a matching is called a stable
marriage (or stable matching). Gale and Shap-
ley showed the existence of a stable marriage
and gave an algorithm for finding one. Fleiner
[4] extended the stable marriage problem to the
framework of matroids, and Eguchi, Fujishige,
and Tamura [3] extended this formulation to a
more general one in terms of discrete convex
analysis, which was developed by Murota [8, 9].
Their formulation is described as follows.

Let M and W be sets of men and women who
attend a dance party at which each person dances
a waltz T times and the number of times that
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he/she can dance with the same person of the op-
posite gender is unlimited. The problem is to find
an “agreeable” allocation of dance partners, in
which each person is assigned at most T persons
of the opposite gender with possible repetition.
Let E D M �W , i.e., the set of all man-woman
pairs. Also define E.i/ D fig �W for all i 2 M

and E.j / DM � fj g for all j 2 W . Denoting by
x.i; j / the number of dances between man i and
woman j , an allocation of dance partners can be
described by a vector x D .x.i; j / W i 2 M; j 2

W / 2 ZE , where Z denotes the set of all integers.
For each y 2 ZE and k 2M[W , denote by y.k/

the restriction of y on E.k/. For example, for an
allocation x 2 ZE , x.k/ represents the allocation
of person k with respect to x. Each person k

describes his/her preferences on allocations by
using a value function fk W ZE.k/ ! R [
.�1/, where R denotes the set of all reals and
fk.y/ D �1 means that allocation y 2 ZE.k/

is unacceptable for k. Note that the valuation of
each person on allocations is determined only by
his/her allocations. Let dom fk D fyjfk.y/ 2

Rg. Assume that each value function fk satisfies
the following assumption:

(A) dom fk is bounded and hereditary and has
0 as the minimum point, where 0 is the vector of
all zeros and heredity means that for any y; y0 2

ZE.k/ , 0 � y0 � y 2 dom fk implies y0 2

dom fk .
For example, the following value functions

with M D f1g and W D f2; 3g

f1.x.1; 2/; x.1; 3// D
8
<

:

10.x.1; 2/C x.1; 3// � x.1; 2/2 � x.1; 3/2 if x.1; 2/; x.1; 3/ � 0

and x.1; 2/C x.1; 3/ � 3

�1 otherwise;

fj .x.1; j // D

�
x.1; j / if x.1; j / 2 f0; 1; 2; 3g.j D 2; 3/

�1 otherwise

represent the case where (1) everyone wants to
dance as many times, up to three, as possible and
(2) man 1 wants to divide his dances between
women 2 and 3 as equally as possible. Alloca-
tions .x.1; 2/; x.1; 3// D .1; 2/ and (2,1) are
stable in the sense below.

A vector x 2 ZE is called a feasible allocation
if x.k/ 2 dom fk for all k 2 M [ W . An
allocation x is said to satisfy incentive constraints
if each person has no incentive to unilaterally
decrease the current units of x, that is, if it
satisfies

fk.x.k//Dmaxffk.y/jy�x.k/g .8 k 2M[W /:

(1)
An allocation x is called unstable if it does not
satisfy incentive constraints or there exist i 2M ,
j 2 W , y0 2 ZE.i/ and y00 2 ZE.j / such that

fi .x.i// < fi .y
0/; (2)

y0.i; j 0/ � x.i; j 0/ .8 j 0 2 W nfj g/; (3)

fj .x.j // < fj .y00/; (4)

y00.i 0; j / � x.i 0; j / .8 i 0 2Mnfig/; (5)

y0.i; j / D y00.i; j /: (6)

Conditions (2) and (3) say that man i can strictly
increase his valuation by changing the current
number of dances with j without increasing the
numbers of dances with other women, and (4)
and (5) describe a similar situation for women.
Condition (6) requires that i and j agree on the
number of dances between them. An allocation x

is called stable if it is not unstable.

Problem 1 Given disjoint sets M and W and
value functions fk W ZE.k/ ! R [ f�1g for
k 2 M [ W satisfying assumption (A), find a
stable allocation x.
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Remark 1 A time schedule for a given feasible
allocation can be given by a famous result on
graph coloring, namely, “any bipartite graph can
be edge-colorable with the maximum degree
colors.”

Key Results

The work of Eguchi, Fujishige, and Tamura [3]
gave a solution to Problem 1 in the case where
each value function fk is M\-concave.

Discrete Convex Analysis:
M\-Concave Functions

Let V be a finite set. For each S � V , eS

denotes the characteristic vector of S defined by
eS .v/ D 1 if v 2 S and eS .v/ D 0 otherwise.
Also define e0 as the zero vector in ZV . For a
vector x 2 ZV , its positive support suppC.x/

and negative support supp�.x/ are defined by
suppC.x/ D fu 2 V jx.u/ > 0g and supp�.x/ D

fu 2 V jx.u/ < 0g. A function f W ZV !

R [ f�1g is called M \-concave if it satisfies
the following condition 8 x; y 2 dom f , 8 u 2
suppC.x � y/, 9v 2 supp�.x � y/ [ f0g:

f .x/Cf .y/ � f .x�euCev/Cf .yCeu�ev/:

The above condition says that the sum of the
function values at two points does not decrease as
the points symmetrically move one or two steps
closer to each other on the set of integral lattice
points of ZV . This is a discrete analogue of the
fact that for an ordinary concave function, the
sum of the function values at two points does not
decrease as the points symmetrically move closer
to each other on the straight line segment between
the two points.

Example 1 A nonempty family T of subsets of
V is called a laminar family if X \ Y D ;,
X � Y or Y � X holds for every X; Y 2 T .
For a laminar family T and a family of univariate
concave functions fY W R! R[ f�1g indexed
by Y 2 T , the function f W ZV ! R [ f�1g
defined by

f .x/ D
X

Y 2T
fY

 
X

v2Y

x.v/

!

.8 x 2 ZV /

is M\-concave. The stable marriage problem can
be formulated as Problem 1 by using value func-
tions of this type.

Example 2 For the independence family I � 2V

of a matroid on V and w 2 RV , the function f W

ZV ! R [ f�1g defined by

f .x/D

� P
u2X w.u/ if x D eX for some X 2I

�1 otherwise

.8 x 2 ZV /

is M\-concave. Fleiner [4] showed that there al-
ways exists a stable allocation for value functions
of this type.

Theorem 1 ([6]) Assume that the value func-
tions fk.k 2M [W / are M\-concave satisfying
(A). Then, a feasible allocation x is stable if
and only if there exist ZM D .´.i/ji 2 M/ 2

.Z [ fC1g/E and ´W D .´.j /jj 2 W / 2

.Z [ fC1g/E such that

x.i/ 2 arg maxffi .y/jy � ´.i/g .8 i 2M/;

(7)

x.j / 2 arg maxffj .y/jy � ´.j /g .8 j 2 W /;

(8)

´M .e/ D C1 or ´W .e/ D C1 .8 e 2 E/;

(9)

where arg maxffi .y/jy � ´.i/g denotes the set of
all maximizers of fi under the constraints y �

´.i/.

Theorem 2 ([3]) Assume that the value func-
tions fk.k 2M [W / are M\-concave satisfying
(A). Then, there always exists a stable allocation.

Eguchi, Fujishige, and Tamura [3] proved The-
orem 2 by showing that the following algorithm
finds a feasible allocation x, and ´M , ´W satisfy-
ing (7), (8), and (9).

Here, ´W _xM is defined by .´W _xM /.e/ D

maxf´W .e/; xM .e/g for all e 2 E.
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Algorithm EXTENDED-GS

Input: M\-concave functions fM ; fW with fM .x/ DP

i2M

fi .x.i// and fW .x/ D
P

j 2W

fj .x.j //;

Output: .x; ´M ; ´W / satisfying (7), (8), and (9);
´M WD .C1; � � � ; C1/, ´W WD xW WD 0;
repeat{
let xM be any element in
arg maxffM .y/jxW � y � ´M g;
let xW be any element in
arg maxffW .y/jy � xM g;
for each e 2 E with xM .e/ > xW .e/{
´M .e/ WD xW .e/;
´W .e/ WD C1;
} ;
} until xM D xW ;
return .xM ; ´M ; ´W _ xM /.

Applications

Abraham, Irving, and Manlove [1] dealt with
a student-project allocation problem which is a
concrete example of models in [4] and [3] and
discussed the structure of stable allocations.

Fleiner [5] generalized the stable marriage
problem and its extension in [4] to a wide frame-
work and showed the existence of a stable alloca-
tion by using a fixed point theorem.

Fujishige and Tamura [6] proposed a common
generalization of the stable marriage problem and
the assignment game defined by Shapley and
Shubik [10] by utilizing M\-concave functions
and gave a constructive proof of the existence of
a stable allocation.

Open Problems

Algorithm EXTENDED-GS solves the maximiza-
tion problem of an M\-concave function in each
iteration. A maximization problem of an M\-
concave function f on E can be solved in poly-
nomial time in jE j and log L, where L D

maxfjjx � yjj1jx; y 2 dom f g, provided that
the function value f .x/ can be calculated in
constant time for each x [11, 12]. Eguchi, Fu-
jishige, and Tamura [3] showed that EXTENDED-
GS terminates after at most L iterations, where
L is defined by fjjxjj1jx 2 dom fM g in this

case, and there exist a series of instances in which
EXTENDED-GS requires numbers of iterations
proportional to L. On the other hand, Baïou and
Balinski [2] gave a polynomial time algorithm
in jE j for the special case where fM and fW

are linear on rectangular domains. Whether a
stable allocation for the general case can be found
in polynomial time in jE j and log L or not
is open.
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Problem Definition

Over the last 50 years, the stable marriage
problem has been extensively studied for many
problem settings (see, e.g., [11]), and one of
the most intensively studied problem settings is
MAX SMTI (MAXimum Stable Marriage with
Ties and Incomplete lists). An input for the stable
marriage problem consists of n men, n women,
and each person’s preference list for the people of
the opposite sex. In MAX SMTI, the preference
list of each person can be incomplete, which
means that each person is allowed to exclude
unacceptable people from the preference list, and
the preference list of each person is allowed to
include ties to show indifference between two or
more people.

The objective of MAX SMTI is to find the
largest matching that satisfies a stability condi-
tion. Before describing the stability condition, we
review some notation. A matching M is defined
as a set of pairs of man m and woman w such
that m and w are acceptable to each other. The
size of a matching M is defined as the number of
pairs in M . We say that a person p is single if p

is not matched in M . When man m and woman
w are matched in M , we write M.m/ D w and
M.w/ D m. We say that matching M is stable if
it does not contain any pair of man and woman,
each of whom prefers the other to the partner
in M (if any). More precisely, a matching M is
stable if there is no pair of man m0 and woman w0

that satisfy all three conditions (i)–(iii): (i) m0 and
w0 are acceptable to each other but not matched
in M , (ii) m0 is single in M or m0 strictly prefers
w0 to M.m0/, and (iii) w0 is single in M or w0

strictly prefers m0 to M.w0/. MAX SMTI asks
us to find a stable matching of the largest size,
and this problem is known to be NP-hard [12].
Therefore, the approximability of this problem
has been intensively studied.

In this entry, we show recent results for two
major variants of MAX SMTI. One of the vari-
ants is MAX SMOTI (MAXimum Stable Mar-
riage with One-Sided Ties and Incomplete lists),
in which only women are allowed to include ties
in their preference lists and the preference lists
of men are strictly ordered. The other variant
is MAX SSMTI (Special SMTI), which is an
even more restricted variant of MAX SMOTI
where the ties are only allowed at the ends of
the women’s preference lists. Note that these two
variants are still known to be NP-hard [12].

Problem 1 (MAX SMOTI)
INPUT: n men, n women, and each person’s

preference list, where only women have ties
OUTPUT: A stable matching of maximum size

Problem 2 (MAX SSMTI)
INPUT: n men, n women, and each person’s

preference list, where ties are at the ends of
the women’s preference lists

OUTPUT: A stable matching of maximum size
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Stable Marriage with One-Sided Ties, Table 1 Examples of instances for MAX SMOTI and MAX SSMTI

MAX SMOTI MAX SSMTI

m1 W w2 w1 w1 W m1 m2

m2 W w2 w3 w1 w2 W .m1 m2/ m3

m3 W w3 w2 w3 W m2 m3

m1 W w1 w3 w1 W .m1 m2 m3/

m2 W w2 w3 w1 w2 W m2

m3 W w3 w1 w3 W m2 .m1 m3/

Examples
Table 1 shows examples of instances for
MAX SMOTI and MAX SSMTI. The instance
for MAX SMOTI contains a set of men
fm1; m2; m3g and a set of women fw1; w2; w3g.
The preference list of each person is described in
decreasing order of preference, and tied people
are enclosed in a pair of parenthesis. For example,
woman w2 is indifferent between m1 and m2 but
prefers m1 or m2 over m3. A matching M D

f.m2; w1/; .m3; w2/g is not stable for this MAX
SMOTI instance, because m2 strictly prefers w2

to w1 .D M.m2// and w2 strictly prefers m2 to
m3 .DM.w2//. An example of a stable matching
for this instance is M 0 D f.m1; w2/; .m2; w3/g,
and we can find another larger stable matching
M � D f.m1; w1/; .m2; w2/; .m3; w3/g of size 3.

Key Results

Here we review past research on MAX SMOTI
and MAX SSMTI. We start by describing a sim-
ple proposal-based algorithm (often referred to
as the Gale-Shapley algorithm or the deferred
acceptance algorithm), which is guaranteed to
find a stable matching. In this algorithm, all
of the men and women are initially set to be
single. We pick an arbitrary man m who is single,
and let man m propose to woman w at the top
of his preference list. When man m proposes
to w, he deletes woman w from his preference
list. Woman w always accepts any proposal if
she is single, which makes a matching pair of
m and w. We repeat this proposal procedure to
find more and more matching pairs. When a
woman w, who is already matched to a man m,
receives another proposal from man m0, woman
w chooses the more highly ranked man based on
her preference list. (That is, the matching partner

of w is unchanged if w prefers m to m0, and the
matching partner of w is changed from m to m0

and m becomes unmatched if w prefers m0 to
m.) If m and m0 are tied in w’s preference list,
then w chooses an arbitrary man. The proposal
procedure continues until we cannot find any
man who can propose. (That is, this algorithm
terminates when all of the men become matched
or the preference lists of all single men become
empty.) Any matching obtained by this algorithm
can be proven to be stable. The size of the
obtained stable matching depends mostly on the
decisions by women when a woman receives two
proposals from men who are tied in her prefer-
ence list. In the worst case, the size of an obtained
matching can be half of the optimum matching,
and hence, the approximation ratio of this al-
gorithm is 2. It was an open problem whether
or not there exists an approximation algorithm
whose approximation ratio is strictly better than
2. Iwama, Miyazaki, and Yamauchi [8] provided
an affirmative answer for this open problem with
a 1:875-approximation algorithm.

After this breakthrough, Király [10] devel-
oped a new simple 1:5-approximation algorithm
for MAX SMOTI (which also applies to MAX
SSMTI) by improving the decision strategy of the
proposal-based algorithm when women receive
multiple proposals from tied men. His algorithm
proceeds in the same way as the proposal-based
algorithm until one of the men’s preference lists
become empty. When the preference list of a man
becomes empty, he enters into his second round.
Specifically, he recovers his original preference
list so that he can propose to the women in
his original preference list again, but his status
is changed to “promoted.” A promoted man is
not allowed to recover his original preference
list when his preference list becomes empty the
second time, and hence, no man can enter a
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third round in Kiráry’s algorithm. The decision
strategy of the women is changed so that a woman
is forced to choose a promoted man (if one exists)
when she receives two proposals from men who
are tied in her preference list. This improvement
of the decision strategy is the key to achieve the
1:5-approximation.

Iwama, Miyazaki, and Yanagisawa [9] further
improved the approximation ratio to 25=17 .<

1:4706/ for MAX SMOTI with a new algorithm
GSA-LP, which uses a more complex proposal
sequence of the men and a more sophisticated
decision strategy for the women. In GSA-LP,
we compute an optimum solution for a linear
programming relaxation of a natural integer pro-
gramming formulation of the problem in advance
and use it for the decision strategy of the women.
In addition, the proposal sequence is changed
so that a man can propose to a woman many
times, and a man is allowed to recover his original
preference list at most twice (in other words, a
man is allowed to go into a third round). These
changes yield an improved approximation ratio
for MAX SMOTI. Very recently, GSA-LP was
shown to achieve a 1:25-approximation for MAX
SSMTI [5].

For MAX SMOTI, there are successive im-
provements over GSA-LP. Huang and Kavitha [4]
developed another new algorithm that achieves
a 22/15 (<1.4667)-approximation by using
a maximum matching algorithm. Radnai [14]
showed 41/28 (<1.4643)-approximation by
using a more detailed analysis of this new
algorithm and also showed that a lower bound
of the approximation ratio of this algorithm is
at least 13/9 (>1.4444). Dean and Jalasutram
improved the analysis of GSA-LP and showed
that the approximation ratio of GSA-LP is
at most 19/13 (<1.4616) if we increase the
number of rounds from three to four [1].
We also note that if the lengths of ties are
restricted to two, then the approximation ratio
of this restricted MAX SMOTI variant can be
further improved. A randomized algorithm [2]
achieves 10/7 (<1.4286)-approximation and
Huang and Kavitha devised another deterministic
algorithm [4] with the same approximation
ratio.

For the negative side, both MAX SMOTI and
MAX SSMTI are NP-hard to approximate within
any constant factor better than 21/19 (>1.1052)
and hard to approximate within any constant
factor better than 5/4 (= 1.25) under the unique
games conjecture [3, 15]. These lower bounds
hold even if we restrict the lengths of the ties
to two. Note that the approximation ratio of the
GSA-LP algorithm for MAX SSMTI is 1:25,
which matches the lower bound under the unique
games conjecture.

Applications

MAX SSMTI was introduced by Irving and
Manlove [6] based on an actual application of
the Scottish Foundation Allocation Scheme,
which allocates residents (medical students) to
hospitals. In this scheme, each resident submits
a strictly ordered preference list, while each
hospital submits a preference list that may
contain one tie of arbitrary length at the end
of the list. The objective of this allocation
scheme is to maximize the number of allocated
residents, and it is easy to reformulate this
many-to-one allocation scheme as a one-to-
one matching problem (MAX SSMTI) using a
cloning technique [11].

Open Problems

An obvious future goal is to narrow the gap
between the upper and lower bounds of the
approximability of MAX SMOTI. Assuming
the unique games conjecture is true, we now
know that the best possible approximation
ratio is between 1:4616 and 1:25. Even if we
restrict the lengths of ties to two, all we can do
now is reduce the upper bound slightly down
to 1:4286. Thus, there is still much room for
improvement.

As for MAX SSMTI, the 1:25-approximation
of the GSA-LP algorithm is the best possible
if the unique games conjecture is true. A fu-
ture project could investigate if we can construct
a faster approximation algorithm, because the
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GSA-LP algorithm uses a linear programming re-
laxation technique, which takes superlinear time
in the worst case.

Experimental Results

Irving and Manlove [7] reported on experimental
evaluations of some heuristic algorithms
including the Király’s algorithm on real-world
and random instances for MAX SMOTI.
Subsequently, Podhradský [13] conducted
experimental evaluations on random instances
for MAX SMOTI and MAX SSMTI using
some other heuristic algorithms including
GSA-LP.
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Problem Definition

In the original setting of the stable marriage
problem introduced by Gale and Shapley [2],
each preference list has to include all members of
the other party, and furthermore, each preference
list must be totally ordered (see entry �Stable
Marriage also).

One natural extension of the problem is then
to allow persons to include ties in preference
lists. In this extension, there are three variants
of the stability definition, super-stability, strong
stability, and weak stability (see below for defini-
tions). In the first two stability definitions, there
are instances that admit no stable matching, but
there is a polynomial-time algorithm in each case
that determines if a given instance admits a stable
matching and finds one if one exists [9]. On the
other hand, in the case of weak stability, there
always exists a stable matching, and one can be
found in polynomial time.

Another possible extension is to allow persons
to declare unacceptable partners, so that prefer-
ence lists may be incomplete. In this case, every
instance admits at least one stable matching, but
a stable matching may not be a perfect matching.
However, if there are two or more stable match-
ings for one instance, then all of them have the
same size [3].

The problem treated in this entry allows both
extensions simultaneously, which is denoted as
SMTI (stable marriage with ties and incomplete
lists).

Notations
An instance I of SMTI comprises n men, n

women, and each person’s preference list that
may be incomplete and may include ties. If a man
m includes a woman w in his list, w is acceptable
to m. wi �m wj means that m strictly prefers
wi to wj in I . wi Dm wj means that wi and wj

are tied in m’s list (including the case wi D wj ).
The statement wi �m wj is true if and only if
wi �m wj or wi Dm wj . Similar notations are
used for women’s preference lists. A matching M

is a set of pairs .m; w/ such that m is acceptable
to w, and vice versa, and each person appears at

most once in M . If a man m is matched with a
woman w in M , it is written as M.m/ D w and
M.w/ D m.

A man m and a woman w are said to form
a blocking pair for weak stability for M if
they are not matched together in M , but by
matching them, both become better off, namely,
(i) M.m/ ¤ w but m and w are acceptable to
each other, (ii) w �m M.m/ or m is single in M ,
and (iii) m �w M.w/ or w is single in M .

Two persons x and y are said to form a
blocking pair for strong stability for M if they
are not matched together in M , but by matching
them, one becomes better off, and the other does
not become worse off, namely, (i) M.x/ ¤ y but
x and y are acceptable to each other, (ii) y �x

M.x/ or x is single in M , and (iii) x �y M.y/

or y is single in M .
A man m and a woman w are said to form

a blocking pair for super-stability for M if they
are not matched together in M , but by match-
ing them, neither becomes worse off, namely,
(i) M.m/ ¤ w but m and w are acceptable to
each other, (ii) w �m M.m/ or m is single in M ,
and (iii) m �w M.w/ or w is single in M .

A matching M is called weakly stable
(strongly stable and super-stable, respectively)
if there is no blocking pair for weak (strong and
super, respectively) stability for M .

Problem 1 (SMTI)

INPUT: n men, n women, and each person’s
preference list

OUTPUT: A stable matching

Problem 2 (MAX SMTI)

INPUT: n men, n women, and each person’s
preference list

OUTPUT: A stable matching of maximum size

The following problem is a restriction of MAX
SMTI in terms of the length of preference lists:

Problem 3 ((p,q)-MAX SMTI)

INPUT: n men, n women, and each person’s pref-
erence list, where each man’s preference list
includes at most p women and each woman’s
preference list includes at most q men

OUTPUT: A stable matching of maximum size
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Definition of the Approximation Ratio
A goodness measure of an approximation al-
gorithm T for a maximization problem is de-
fined as follows: the approximation ratio of T

is maxfopt.x/=T .x/g over all instances x of
size N , where opt.x/ and T .x/ are the sizes of
the optimal and the algorithm’s solutions, respec-
tively.

Key Results

SMTI and MAX SMTI in Super-Stability and
Strong Stability
Theorem 1 ([20]) There is an O.n2/-time algo-
rithm that determines if a given SMTI instance
admits a super-stable matching and finds one if
one exists.

Theorem 2 ([17]) There is an O.n3/-time algo-
rithm that determines if a given SMTI instance
admits a strongly stable matching and finds one
if one exists.

It is shown that all stable matchings for a fixed
instance are of the same size [20]. Therefore, the
above theorems imply that MAX SMTI can also
be solved in the same time complexity.

SMTI and MAX SMTI in Weak Stability
In the case of weak stability, every instance ad-
mits at least one stable matching, but one instance
can have stable matchings of different sizes. If the
size is not important, a stable matching can be
found in polynomial time by breaking ties arbi-
trarily and applying the Gale-Shapley algorithm.

Theorem 3 There is an O.n2/-time algorithm
that finds a weakly stable matching for a given
SMTI instance.

However, if larger stable matchings are re-
quired, the problem becomes hard.

Theorem 4 ([5, 13, 21, 24]) MAX SMTI is
NP-hard and cannot be approximated within
33=29 � � for any positive constant � unless
P=NP. (33=29 > 1:137)

The following approximation ratio is achieved
by a local search type algorithm.

Theorem 5 ([14]) There is a polynomial-time
approximation algorithm for MAX SMTI whose
approximation ratio is at most 15/8 (=1.875).

There are a couple of approximation algo-
rithms for restricted inputs.

Theorem 6 ([6]) There is a polynomial-time
randomized approximation algorithm for MAX
SMTI whose expected approximation ratio is at
most 10=7.'1:429/ if, in a given instance, ties
appear in one side only and the length of each tie
is two.

Theorem 7 ([6]) There is a polynomial-time
randomized approximation algorithm for MAX
SMTI whose expected approximation ratio is at
most 7=4.D 1:75/ if, in a given instance, the
length of each tie is two.

Theorem 8 ([7]) There is a polynomial-time
approximation algorithm for MAX SMTI whose
approximation ratio is at most 2=.1CL�2/ if, in
a given instance, ties appear in one side only and
the length of each tie is at most L.

Theorem 9 ([7]) There is a polynomial-time ap-
proximation algorithm for MAX SMTI whose ap-
proximation ratio is at most 13=7.'1:858/ if, in
a given instance, the length of each tie is two.

(p, q)-MAX SMTI in Weak Stability
Irving et al. [12] show the boundary between
P and NP-hardness in terms of the length of
preference lists.

Theorem 10 ([12]) (2,1)-MAX SMTI is solv-
able in time O.n

3
2 log n/.

Theorem 11 ([12]) (3,3)-MAX SMTI is NP-
hard.

Theorem 12 ([12]) (3,4)-MAX SMTI is NP-hard
and cannot be approximated within some con-
stant ı.> 1/ unless P=NP.

Applications

One of the most famous applications of the stable
marriage problem is a centralized assignment
system between medical students (residents) and
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hospitals. This is an extension of the stable mar-
riage problem to a many-one variant: Each hospi-
tal declares the number of residents it can accept,
which may be more than one, while each resident
has to be assigned to at most one hospital. Actu-
ally, there are several applications in the world,
known as NRMP in the USA [4], CaRMS in
Canada [1], SFAS (previously known as SPA) in
Scotland [10, 11], and JRMP in Japan [16]. One
of the optimization criteria is clearly the number
of matched residents. In a real-world application
such as the above hospitals-residents matching,
hospitals and residents tend to submit short pref-
erence lists that may include ties, in which case,
the problem can be naturally considered as MAX
SMTI.

Open Problems

An apparent open problem is to narrow the gap of
approximability and inapproximability of MAX
SMTI in weak stability.

Since the publication of the key result of
this chapter (Theorem 5), there have been a lot
of improvement. Király [18] presented a linear
time 5/3-approximation algorithm (see � Simpler
Approximation for Stable Marriage). McDer-
mid [22] then presented a 1.5-approximation
algorithm (see � Simpler Approximation for
Stable Marriage), and Király [19] and Paluch [23]
presented simpler algorithms with the same
approximation ratio, which is the current best
upper bound. The lower bound was improved by
Yanagisawa [24], who showed that MAX SMTI
is inapproximable to within a ratio smaller than
33=29.>1:137/ unless P = NP. He also showed
that MAX SMTI is inapproximable within a
ratio smaller than 4=3.>1:333/ under the Unique
Games Conjecture (UGC).

As for the special case where ties can appear
in one side only (see �Stable Marriage with
One-Sided Ties), Király [18] presented a 1.5-
approximation algorithm. It was then improved to
25=17.<1:471/ [15] and to 22=15.<1:467/ [8],
which is the current best upper bound. The cur-
rent best lower bounds are 21=19.'1:105/ under
P¤NP and 1.25 under UGC [7].
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Problem Definition

Let N be a finite set of players; a nonempty
subset of N is called a coalition. Each player
i 2 N has a preference relation �i (complete,
reflexive, and transitive) over all the coalitions
that contain i . Notation S �i T means that player
i weakly prefers coalition S to coalition T ; if
S �i T and not T �i S , then player i strictly
prefers S to T , denoted by S �i T . If S �i T

and T �i S , then player i is indifferent between
coalitions S and T (there is a tie in his prefer-
ence list). Player i has strict preferences if her
preference list contains no ties. There are several
possible ways of representing preferences, but it
is usually supposed that preference relations can
be evaluated in polynomial time.

An instance I of the stable partition problem
(or coalition formation game, or hedonic game) is
given by the set of players and their preferences.

A partition … is a collection of disjoint
coalitions whose union equals N . It is supposed
that each participant’s appreciation of a coalition
structure only depends on the coalition ….i/ she
is a member and not on the composition of other
coalitions. Of interest are partitions that fulfill
some kind of stability requirements.

We say that a coalition S � N strongly blocks
a partition …, if each player i 2 S strictly prefers
S to ….i/, and a coalition S � N weakly blocks
a partition …, if each player i 2 S weakly prefers
S to ….i/ and there exists at least one player
j 2 S who strictly prefers S to ….j /. Partition
… is:

• Individually stable if each player i weakly
prefers ….i/ to fig;

• Nash stable (NS) if each player i weakly
prefers ….i/ to X [ fig for each X 2 … [ ;;
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• Individually stable (IS) if whenever a player i

strictly prefers X [ fig to ….i/ for some X 2

…, then X �j X [ fig for at least one player
j 2 X ;

• Contractually individually stable (CIS) if
whenever a player i strictly prefers X [ fig to
….i/ for some X 2 …, then X �j X [ fig

for at least one player j 2 X or ˘.i/ �j

˘.i/nfig for at least one player i 2 ˘.i/;
• Core stable if it admits no blocking coalition;
• Strictly core stable if it admits no weakly

blocking coalition;

Most of these definitions were introduced in
[3] and [4] where also some sufficient conditions
for the existence of stable partitions were formu-
lated. An overview of the implications between
these definitions can be found in [1]. The follow-
ing problems have been studied algorithmically
for various stability notions S:

• S-STABILITY-VERIFICATION: Given I and a
partition …, is ˘ a S-stable partition?

• S-STABILITY-EXISTENCE: Given I , does a S-
stable partition exist?

• S-STABILITY-CONSTRUCTION: Given I ,
construct a S-stable partition.

• S-STABILITY-STRUCTURE: Describe the
structure of S-stable partitions for a
given I .

The computational complexity of these prob-
lems depends on the specification of the prefer-
ence relation in the input.

An Important special case of the stable par-
tition problem arises when each coalition can
contain at most two players. This is known under
the name the Stable Matching Problem and is
treated in detail in [14]; see also references in the
entry Stable Marriage.

Key Results

Trivial Encoding
In the trivial encoding, each player lists all her
individually rational coalitions (i.e., those that
player i weakly prefers to coalition fig).

Theorem 1 Under the trivial encoding, the
STABILITY-VERIFICATION problem is poly-
nomially solvable for any stability definition.
STABILITY-EXISTENCE is NP-complete for IR,
NS, core, and strict core [2]. CORE-STABILITY-
EXISTENCE is NP-complete [2], even in the case
when each player i has her preference list of the
form C1.i/ �i C2.i/ �i fig and all acceptable
coalitions have size three [11].

As the trivial encoding may be of exponential
size in the number of players, more succinct
preference representations have been studied.

Anonymous Preferences
Players have anonymous preferences if all coali-
tions of the same size are tied, i.e., players do
not care about the actual content of the coalitions,
only about their sizes.

Theorem 2 Under anonymous preferences, the
CORE-STABILITY-VERIFICATION problem is
polynomially solvable and CORE-STABILITY-
EXISTENCE is NP-complete [2].

Additive Preferences
In an additive hedonic game, each player i has a
real-valued function vi W N ! R and S �i T if
and only if

P
j 2S vi .j / >

P
j 2T vi .j /.

Theorem 3 In additive hedonic games, STABILI-
TY-VERIFICATION is co-NP-complete in the
strong sense for core and strict core [1, 17].
CORE-STABILITY-EXISTENCE and STRICT-
CORE-STABILITY-EXISTENCE are strongly
NP-hard [18] even in the symmetric case
[1]. INDIVIDUAL-STABILITY-EXISTENCE and
NASH-STABILITY-EXISTENCE are strongly NP-
complete [1, 18]. Moreover, CORE-STABILITY-
EXISTENCE is

Pp
2 -complete [19].

Special cases of additive preferences arise if
vi .j / 2 f�1; jN jg for each i; j 2 N (friend-
oriented case) or vi .j / 2 f1;�jN jg for each
i; j 2 N (enemy-oriented case). Under friend-
oriented as well as under enemy-oriented prefer-
ences, a core-stable partition always exists [12],
however, the following assertion holds.
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Theorem 4 ([12]) Under enemy-oriented pref-
erences, CORE-STABILITY-VERIFICATION and
CORE-STABILITY-CONSTRUCTION are strongly
NP-complete and NP-hard, respectively.

Preferences Derived from the Best and/or
Worst Player
Suppose that each player i linearly orders only
individual players or, more precisely, a subset of
them – these are acceptable for i .

Preferences over players are extended to pref-
erences over coalitions on the basis of the best or
the worst player in the coalition as follows:

B-preferences – a player orders coalitions first
on the basis of the most preferred member of
the coalition, and if those are equal or tied, the
coalition with smaller cardinality is preferred;

W-preferences – a player orders coalitions on
the basis of the least preferred member of the
coalition;

BW-preferences – a player orders coalitions
first on the basis of the best member of the
coalition, and if those are equal or tied, the
coalition with a more preferred worst member
is preferred.

In this case, preferences are considered strict,
if the preferences over individuals are strict, and
they are called dichotomous if all acceptable
participants are tied in each preference list.

Theorem 5 Under B-preferences, STABILITY-
VERIFICATION is polynomial for core and strict
core. A strict core and a core stable partition
always exist if preferences over players are strict
[9]. However, if preferences over players contain
ties, STABILITY-EXISTENCE for core and strict
core is NP-complete [6]. In the dichotomous
case, a core stable partition can be constructed in
polynomial time, but STRICT-CORE-STABILITY-
EXISTENCE is NP-complete [5].

Let us remark here that in the case of strict
preferences, a strict core stable partition can be
found by the famous Top Trading Cycles algo-
rithm [9, 20].

The stable partition problem under W-
preferences was studied in [7] and many
features similar to the Stable Roommates

Problem [14] were described. First, if a blocking
coalition exists, then there is a blocking
coalition of size at most 2. Hence, CORE-
STABILITY-VERIFICATION is polynomial.
CORE-STABILITY-EXISTENCE and CORE-
STABILITY-CONSTRUCTION are polynomial in
the strict preferences case, which can be shown
using an extension of Irving’s Stable Roommates
Algorithm (discussed in detail in [14]). This
algorithm can also be used to derive some results
for CORE-STABILITY-STRUCTURE. In the case
of ties, CORE-STABILITY-EXISTENCE is NP-
complete.

Under BW preferences, in the strict pref-
erences case, a core partition always exists
and one can be obtained by the Top Trading
Cycles algorithm, but STRICT-CORE-STABILITY-
EXISTENCE is NP-hard. If preferences contain
ties, CORE-STABILITY-EXISTENCE is NP-
hard too [8]. CORE-STABILITY-VERIFICATION

remains open.

Applications

Stable partitions arise in various economic and
game theoretical models. They appear in the
study of countries formation [10] and in multi-
agent coordination scenarios and social network-
ing services [13]. Stability is also desired in barter
exchange economies with discrete commodities
[20,21], including exchange of kidneys for trans-
plantations [5, 16]. Notice that in case when the
cooperation of players consists in the exchange of
some items within one partition set, the exchange
cycle has also to be specified.

Open Problems

Due to the great number of variants, a lot of open
problems exists. In almost all cases, STABILITY-
STRUCTURE is not satisfactorily solved. For in-
stances with no stable partition, one may seek one
that minimizes the number of players who have
an incentive to deviate. Parallel algorithms were
also not studied.
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Experimental Results

Stochastic local search algorithms for CORE-
STABILITY-VERIFICATION in the additive
preferences case were reported in [15].
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Problem Definition

Stackelberg games [15] may model the inter-
play among an authority and rational individuals
that selfishly demand resources on a large-scale
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network. In such a game, the authority (Leader)
of the network is modeled by a distinguished
player. The selfish users (Followers) are modeled
by the remaining players.

It is well known that selfish behavior
may yield a Nash Equilibrium with cost
arbitrarily higher than the optimum one, yielding
unbounded Coordination Ratio or Price of
Anarchy (PoA) [7, 13]. Leader plays his strategy
first assigning a portion of the total demand
to some resources of the network. Followers
observe and react selfishly assigning their
demand to the most appealing resources. Leader
aims to drive the system to an a posteriori
Nash equilibrium with cost close to the overall
optimum one [4, 6, 8, 10]. Leader may also
be eager for his own rather than system’s
performance [2, 3].

A Stackelberg game can be seen as a special,
and easy [6] to implement, case of Mechanism
Design. It avoids the complexities of either com-
puting taxes or assigning prices, or even design-
ing the network at hand [9]. However, a central
authority capable to control the overall demand
on the resources of a network may be unrealistic
in networks which evolute and operate under the
effect of many and diversing economic entities. A
realistic way [4] to act centrally even in large nets
could be via Virtual Private Networks (VPNs)
[1]. Another flexible way is to combine such
strategies with Tolls [5, 14].

A dictator controlling the entire demand opti-
mally on the resources surely yields PoA = 1. On
the other hand, rational users do prefer a liberal
world to live. Thus, it is important to compute
the optimal Leader strategy which controls the
minimum of the resources (Price of Optimum)
and yields PoA D 1. What is the complexity
of computing the Price of Optimum? This is not
trivial to answer, since the Price of Optimum de-
pends crucially on computing an optimal Leader
strategy. In particular, [6] proved that computing
the optimal Leader strategy is hard.

The central result of this lemma is Theorem 5.
It says that on nonatomic flows and arbitrary s� t

networks and latencies, computing the minimum
portion of flow and Leader’s optimal strategy
sufficient to induce PoA D 1 is easy [10].

Problem (G(V; E),s; t 2 V; r) INPUT: Graph
G;8e 2 E latency `e , flow r , a source-
destination pair .s; t/ of vertices in V .
OUTPUT: (i) The minimum portion αG of the
total flow r sufficient for an optimal Stackelberg
strategy to induce the optimum on G. (ii) The
optimal Stackelberg strategy.

Models and Notations

Consider a graph G.V; E/ with parallel edges
allowed. A number of rational and selfish users
wish to route from a given source s to a destina-
tion node t an amount of flow r . Alternatively,
consider a partition of users in k commodities,
where user(s) in commodity i wish to route flow
ri through a source-destination pair .si ; ti /, for
each i D 1; : : :; k. Each edge e 2 E is associated
to a latency function `e./, positive, differentiable,
and strictly increasing on the flow traversing it.

Nonatomic Flows

There are infinitely many users, each routing
his/her infinitesimally small amount of the total
flow ri from a given source si to a destination
vertex ti in graph G.V; E/. A flow f is an
assignment of jobs fe on each edge e 2 E. The
cost of the injected flow fe (satisfying the stan-
dard constraints of the corresponding network-
flow problem) that traverses edge e 2 E equals;
ce.fe/ D fe � `e.fe/. It is assumed that on
each edge e the cost is convex with respect to
the injected flow fe . The overall system’s cost is
the sum

P

e2E

fe � `e.fe/ of all edge costs in G.

Let fP the amount of flow traversing the si � ti
path P . The latency `P.f / of si � ti path P is
the sum

P

e2P
`e.fe/ of latencies per edge e 2 P .

The cost CP.f / of si � ti path P equals the
flow fP traversing it multiplied by path latency
`P.f /. That is, CP.f / D fP �

P

e2P
`e.fe/. In

a Nash equilibrium, all si � ti paths traversed by
nonatomic users in part i have a common latency,
which is at most the latency of any untraversed



2080 Stackelberg Games: The Price of Optimum

si � ti path. More formally, for any part i and
any pair P1, P2 of si � ti paths, if fP1

> 0

then `P1
.f / � `P2

.f /. By the convexity of
edge costs, the Nash equilibrium is unique and
computable in polynomial time given a floating-
point precision. Also computable is the unique
Optimum assignment O of flow, assigning flow
oe on each e 2 E and minimizing the overall
cost

P

e2E

oe`e.oe/. However, not all optimally tra-

versed si � ti paths experience the same latency.
In particular, users traversing paths with high
latency have incentive to reroute toward more
speedy paths. Therefore, the optimal assignment
is unstable on selfish behavior.

A Leader dictates a weak Stackelberg strategy
if on each commodity i D 1; : : :; k controls
a fixed α portion of flow ri ; α 2 Œ0; 1�. A
strong Stackelberg strategy is more flexible, since
Leader may control αi ri flow in commodity i

such that
kP

iD1

αi D α. Let a Leader dictating flow

se on edge e 2 E. The a posteriori latency Q̀e.ne/

of edge e, with respect to the induced flow ne by
the selfish users, equals Q̀e.ne/ D `e.ne C se/. In
the a posteriori Nash equilibrium, all si � ti paths
traversed by the free selfish users in commodity
i have a common latency, which is at most the
latency of any selfishly untraversed path, and its
cost is

P

e2E

.ne C se/� Q̀e.ne/.

Atomic Splittable Flows

There is a finite number of atomic users 1; : : :; k.
Each user i is responsible for routing a non-
negligible flow-amount ri from a given source si

to a destination vertex ti in graph G. In turn, each
flow-amount ri consists of infinitesimally small
jobs.

Let flow f assigning jobs fe on each edge
e 2 E. Each edge flow fe is the sum of partial
flows f 1

e ; : : : ; f k
e injected by the corresponding

users 1; : : :; k. That is, fe D f 1
e C � � � C f k

e .
As in the model above, the latency on a given
si � ti path P is the sum

P

e2P
`e.fe/ of latencies

per edge e 2 P . Let f i
P be the flow that user i

ships through an si � ti path P . The cost of user
i on a given si � ti path P is analogous to her
path flow f i

P routed via P times the total path
latency

P

e2P
`e.fe/. That is, the path cost equals

f i
P �

P

e2P
`e.fe/. The overall cost Ci .f / of user

i is the sum of the corresponding path costs of all
si � ti paths.

In a Nash equilibrium no user i can improve
his cost Ci .f / by rerouting, given that any user
j ¤ i keeps his routing fixed. Since each atomic
user minimizes its cost, if the game consists of
only one user, then the cost of the Nash equilib-
rium coincides to the optimal one.

In a Stackelberg game, a distinguished atomic
Leader player controls flow r0 and plays first
assigning flow se on edge e 2 E. The a pos-
teriori latency Q̀e.x/ of edge e on induced flow
x equals Q̀e.x/ D `e.x C se/. Intuitively, after
Leader’s move, the induced selfish play of the
k atomic users is equivalent to atomic splittable
flows on a graph where each initial edge latency
`e has been mapped to Q̀e . In game parlance,
each atomic user i 2 f1; : : :; kg, having fixed
Leader’s strategy, computes his best reply against
all other atomic users f1; : : :; kgnfig. If ne is the
induced Nash flow on edge e, this yields total costP

e2E

.ne C se/ � Q̀e.ne/.

Atomic Unsplittable Flows

The users are finite 1; : : :; k and user i is allowed
to send his non-negligible job ri only on a single
path. Despite this restriction, all definitions given
in atomic splittable model remain the same.

Key Results

Let us see first the case of atomic splittable flows,
on parallel M/M/1 links with different speeds
connecting a given source-destination pair of ver-
tices.

Theorem 1 (Korilis, Lazar, Orda [6]) The
Leader can enforce in polynomial time the
network optimum if his/her controls flow r0

exceeding a critical value r0.
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In the sequel, we focus on nonatomic flows on
s � t graphs with parallel links. In [6] primarily
were studied cases that Leader’s flow cannot
induce network’s optimum and was shown that an
optimal Stackelberg strategy is easy to compute.
In this vain, if s � t parallel link instances are
restricted to ones with linear latencies of equal
slope, then an optimal strategy is easy [4].

Theorem 2 (Kaporis, Spirakis [4]) The opti-
mal Leader strategy can be computed in polyno-
mial time on any instance .G; r; α/ where G is an
s�t graph with parallel links and linear latencies
of equal slope.

Another positive result is that the optimal
strategy can be approximated within .1 C �/ in
polynomial time, given that link latencies are
polynomials with nonnegative coefficients.

Theorem 3 (Kumar, Marathe [8]) There is
a fully polynomial approximate Stackelberg

scheme that runs in poly
�
m; 1

�

�
time and outputs

a strategy with cost .1 C �/ within the optimum
strategy.

For parallel link s � t graphs with arbitrary
latencies more can be achieved: in polynomial
time a “threshold” value αG is computed, suf-
ficient for the Leader’s portion to induce the
optimum. The complexity of computing optimal
strategies changes in a dramatic way around the
critical value αG from “hard” to “easy” .G; r; α/

Stackelberg scheduling instances. Call αG as the
Price of Optimum for graph G.

Theorem 4 (Kaporis, Spirakis [4]) On an in-
put s � t parallel link graph G with arbitrary
strictly increasing latencies, the minimum portion
αG sufficient for a Leader to induce the optimum,
as well as his/her optimal strategy, can be com-
puted in polynomial time.

As a conclusion, the Price of Optimum αG

essentially captures the hardness of instances
.G; r; α/. Since, for Stackelberg scheduling in-
stances .G; r; α � αG/, the optimal Leader
strategy yields PoA D 1 and it is computed
as hard as in P , while for .G; r; α < αG/ the
optimal strategy yields PoA < 1 and it is as easy
as NP [10].

The results above are limited to parallel links
connecting a given s� t pair of vertices. Is it pos-
sible to efficiently compute the Price of Optimum
for nonatomic flows on arbitrary graphs? This is
not trivial to settle. Not only because it relies
on computing an optimal Stackelberg strategy,
which is hard to tackle [10], but also because
Proposition B.3.1 in [11] ruled out previously
known performance guarantees for Stackelberg
strategies on general nets.

The central result of this lemma is presented
below and completely resolves this question (ex-
tending Theorem 4).

Theorem 5 (Kaporis, Spirakis [4]) On arbi-
trary s � t graphs G with arbitrary latencies,
the minimum portion αG sufficient for a Leader
to induce the optimum, as well as her optimal
strategy, can be computed in polynomial time.

Example

Consider the optimum assignment O of flow r

that wishes to travel from source vertex s to sink
t . O assigns flow oe incurring latency `e.oe/

per edge e 2 G. Let Ps!t the set of all s � t

paths. The shortest paths in Ps!t with respect
to costs `e.oe/ per edge e 2 G can be com-
puted in polynomial time. That is, the paths that
given flow assignment O achieve path latency:

min
P 2Ps!t

�
P

e2P

`e.oe/

�
, i.e., minimize their path

latency. It is crucial to observe that if we want
the induced Nash assignment by the Stackelberg
strategy to attain the optimum cost, then these
shortest paths are the only choice for selfish users
that are eager to travel from s to t . Furthermore,
the uniqueness of the optimum assignment O

determines the minimum part of flow which can
be selfishly scheduled on these shortest paths.
Observe that any flow assigned by O on a non-
shortest s � t path has incentive to opt for a
shortest one. Then a Stackelberg strategy must
freeze the flow on all non-shortest s � t paths.

In particular, the idea sketched above achieves
coordination ratio 1 on the graph in Fig. 1. On this
graph Roughgarden proved that 1

˛
� (optimum
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Stackelberg Games: The Price of Optimum, Fig. 1 A bad example for Stackelberg routing

cost) guarantee is not possible for general .s; t/-
networks, Appendix B.3 in [11]. The optimal
edge flows are .r D 1/:

os!v D
3
4
� �; os!w D

1
4
C �; ov!w D

1
2
� 2�;

ov!t D
1
4
C �; ow!t D

3
4
� �

The shortest path P0 2 P with respect to the
optimum O is P0 D s ! v ! w ! t (see
[11] pp. 143, 5th-3th lines before the end) and its
flow is fP0

D 1
2
� 2�. The non-shortest paths are

P1 D s ! v ! t and P2 D s ! w ! t with
corresponding optimal flows: fP1

D 1
4
C � and

fP2
D 1

4
C �. Thus, the Price of Optimum is

fP1
C fP2

D
1

2
C 2� D r � fP0

Applications

Stackelberg strategies are widely applicable in
networking [6], see also Section 6.7 in [12].

Open Problems

It is important to extend the above results on
atomic unsplittable flows.
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Problem Definition

Algorithmic self-assembly is concerned with
hands-off assembly of complex structures by
mixing collections of simple particles that
aggregate according to local rules. Staged
self-assembly utilizes sequences of mixings to
reduce the number of particle types used. The
standard model of staged self-assembly builds
on the abstract Tile Assembly Model (aTAM)
of Winfree [7], where each particle is a non-
rotatable unit square tile with a labeled glue on
each side. Tiles attach to other tiles edgewise
via glues of the same label, forming polyomino-
shaped aggregates called assemblies.

In the simplest model, a pair of assemblies
(of which single tiles are a special case) can
attach via a single matching glue. In a more
general model, a pair of assemblies can attach
if they share a total of � 2 N glues. The
parameter � is called the temperature of the
system.

The self-assembly process is carried out by
combining an infinite number of copies of a
collection of reagent assemblies in a bin, where
they attach in every possible way. The subset of
the resulting assemblies that cannot attach to any
other assemblies define the product assemblies of
the mixing, i.e., the set of assemblies that remain
once the assembly process is complete. A system
consisting of a single bin with single-tile reagent
assemblies is a hierarchical [2], two-handed [1],
or polyomino [5] self-assembly system.

In a staged self-assembly system [3], the prod-
ucts of one bin can be used as the reagents of
other bin (see Fig. 1). The directed acyclic graph
describing the relationship mixings is called the
mix graph of the system. An initial set of mixings
each have a single tile as the only product assem-
bly and no reagent assemblies.

Objectives In general, the goal is to design a
system with a mixing containing a single product
assembly of a desired polyomino shape while
minimizing the size of some aspect of the sys-
tem. Several aspects are considered, including the
number of distinct tiles (tile complexity), number
of edges of the mix graph (mix graph complexity),



2084 Staged Assembly

Staged Assembly, Fig. 1 A staged self-assembly sys-
tem. Each bin (blue box) contains the product assemblies
of the bin. The reagent assemblies of a bin are the products
of other bins (incoming arrows)

width of the mix graph (bin complexity), height
of the mix graph (stage complexity), and tempera-
ture of the system. The computational complexity
of finding an optimal system for an input shape
under some measure of system complexity is also
considered. In some cases, the desired polyomino
shape also has each cell labeled, and the goal is
to construct a given labeled shape using labeled
tiles.

Problem 1 (Smallest Staged Self-Assembly
System)

INPUT: A labeled polyomino P .
OUTPUT: A staged self-assembly system con-

taining a bin with a single product assembly
with labeled shape P that is minimum in some
measure.

Key Results

We describe the results by increasing generality
of the shapes assembled.

Lines
In the most constrained case, the input polyomino
is an unlabeled 1�n polyomino (a line). Lines can

be assembled by � D 1 systems using O.1/ tile
types, O.1/ bins, and O.log n/ stages and mix
graph edges. The idea is to repeatedly double the
length of a line assembly as proved by Demaine
et al. [3].

Demaine, Eisenstat, Ishaque, and Winslow [4]
prove that the case of labeled lines is roughly
equivalent to the problem of finding the small-
est context-free grammar that is a single string
consisting of the labels of the line read from left
to right. In particular, any context-free grammar
G with jGj rules and deriving a single string �

can be converted into a � D 1 staged self-
assembly system S assembling a line with left-to-
right label string � , where the number of edges in
the mix graph of S is O.jGj/. The complexity of
the smallest staged self-assembly system where
the input polyomino is a labeled line and the
system has an upper limit on the number of glue
types appearing on the tiles was proven to be NP-
hard [4].

Squares
Demaine et al. [3] prove that unlabeled n � n

squares are possible with a � D 1 staged systems
containing O.1/ tile types and bins, O.log n/

stages, and thus a mix graph with O.log n/

stages. The system uses an idea similar to
that for assembling lines but in two steps: first
assemble n � 1 columns and then combine them
to form n � 2, then n � 4, etc., rectangles. This
construction uses a jigsaw technique to ensure
attaching rectangles cannot assemble askew.

Demaine et al. also prove that unlabeled
n � n squares can be assembled using � D 2

staged systems using O.1/ tile types, O.
p

log n/

bins, and O.log log n/ stages. The approach is
to simulate known � D 2 single-bin systems
that efficiently assemble squares by constructing
macrotiles: large assemblies that simulate the
behavior of distinct tile types by encoding
glue types in geometry on their surfaces. Such
macrotiles allow staged systems to trade off
tile types for stages by replacing many distinct
tile types with an initial sequence of stages that
assemble macrotile versions of the tiles.
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General Shapes
For general shapes, several different results high-
light the trade-offs in complexity enabled by
staged assembly. Demaine et al. [3] prove that any
unlabeled shape can be assembled by a � D 1

staged system using O.1/ tile types, O.log n/

bins, and a number of stages proportional to the
diameter of the dual grid graph of the shape. If
the shape is monotone, then a similar system with
O.n/ bins and O.log n/ stages (increased bins
but decreased stages) exists.

If the system is permitted to assemble a scaled
version of the input shape, then the system of
Soloveichik and Winfree [6] can be simulated
with macrotiles, resulting in a � D 2 staged sys-
tem with O.1/ tile types, O.K= log K/ bins, and
O.log log K/ stages, where K is the Kolmogorov
complexity of the shape. For labeled shapes,
Winslow [8] proves that any polyomino context-
free grammar G (a generalization of context-free
grammars to two dimensions) with jGj rules de-
riving a single labeled polyomino P can be con-
verted into a staged system S assembling a scaled
version of P consisting of labeled macrotiles
where the number of edges in the mix graph of
S is O.jGj/.

Applications

The theory of algorithmic self-assembly is rooted
in the design of nanoscale particle systems, par-
ticularly DNA-based systems. For staged self-
assembly in particular, the capability of assem-
bling complex shapes using only O.1/ tile types
is highly desirable in practice, as engineering
many tile types with desired glues is often far
more challenging than carrying out a sequence of
mixings.

Open Problems

The complexity of the smallest staged self-
assembly problem where the number of glue
types used is unconstrained remains open, both
for the case of lines and general shapes. For
lines, the problem is known to be in NP and

when the number of glues is constrained is NP-
complete (both proved in [4]). For general shapes,
the problem is only known to be in PSPACE
(proved in [9]) and NP-hard when the number of
glues is constrained, following from the special
case of lines. The complexity of verifying that a
staged assembly system produces a given shape
also remains open and is only known to lie in
PSPACE.
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Problem Definition

The three main types of mutations modifying
biological sequences are insertions, deletions,
and substitutions. The simplest model involving
these three types of mutations is the so-called
Thorne-Kishino-Felsenstein model [16]. In this
model, the characters of a sequence evolve
independently. Each character in the sequence
can be substituted with another character
according to a prescribed reversible time-
continuous Markov model on the possible
characters. Insertion-deletions are modeled as
a birth-death process. Insertions can happen at
the beginning of the sequence, at the end of the
sequence, and between any two characters. It
is possible to insert a character into the empty
sequence. The time span between two insertions
is exponentially distributed with parameter �,
and this parameter does not depend on the
context of the position. The newborn character
is drawn from the equilibrium distribution of the
substitution process. Each character is deleted
after an exponentially distributed waiting time
with parameter �, and its two positions where
insertions can happen are joined.

The multiple statistical alignment problem is
to calculate the likelihood of a set of sequences,
namely, what is the probability of observing a set

of sequences, given all the necessary parameters
that describe the evolution of sequences. Hein,
Jensen, and Pedersen were the first who gave an
algorithm to calculate this probability [5]. Their
algorithm has O.5nLn/ running time, where n is
the number of sequences, and L is the geometric
mean of the sequences. The running time has
been improved to O.2nLn/ by Lunter et al. [9].

Notations

Substitutions
A time-continuous Markov model for a substitu-
tion process on an alphabet † is given by a k � k

rate matrix Q, with constraints

qi;j � 0 8i ¤ æ (1)
X

i

qi;j D 0 8i (2)

where k is the size of the alphabet. The probabil-
ity that a character ai will be character aj after
time t can be calculated with the exponentiation
of the rate matrix:

Pt .aj jai / D pi;j where (3)

P D eQt (4)

The exponentiated matrix can be easily calculated
if the rate matrix is diagonalized, namely, if Q D

W ƒW �1, where ƒ is a diagonal matrix, then

eQt D W eƒt W �1 (5)

eƒt can be easily calculated, since it is a diagonal
matrix containing e�i t in the i th position of the
diagonal.

Insertions and Deletions
A Galton-Watson tree is a rooted, edge-weighted
binary tree that describes a birth-death process
for a time span t . The process starts at the root
of the tree, and a split represents a birth. Edge
weights represent times, and leaves having a
distance from the root smaller than t represent
death events. Leaves being t time fare from the
root are the individuals that live at time point t .
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Insertion-deletion events transforming one
sequence into another can be described
with Galton-Watson forests: births represent
insertions, and deaths represent deletions. Each
character of the ancestral sequence has a tree, and
there is an additional tree at the beginning of the
sequence associated to an imaginary character.
This imaginary character cannot die. Roots of the
trees are the characters of the ancestral sequence,
and each character of the descendant sequence
is a leaf of one of the trees, being t time fare
from the root. There might be additional leaves
that are not associated with characters of the
descendant sequences; these are the died out
lineages. The forest is aligned such that edges
do not cross each other while the characters of
the two sequences keep their original order. Each
Galton-Watson forest indicates an alignment of
the two sequences; see Fig. 1. Given a birth and
death process, the probability density of a Galton-
Watson tree can be calculated easily. Assuming
independence, the probability of a Galton-Watson
forest is the product of the probabilities of its
trees. The probability of an alignment is the
integral of the probabilities of the forests that
represent it. Due to independence, it is enough
to tell the probability of alignment patterns that
might arise as an image of a Galton-Watson tree
(see Fig. 1b); the probability of an alignment is
the product of the probabilities of its patterns.

In the Thorne-Kishino-Felsenstein model
(TKF91 model) [16], both the birth and the death
processes are Poisson processes with parameters
� and �, respectively. The probability of the
possible patterns can be found on Fig. 2.

Evolutionary Trees
An evolutionary tree is a leaf-labeled, edge-
weighted, rooted binary tree. Labels are the
species related by the evolutionary tree, and
weights are evolutionary distances. It might
happen that the evolutionary changes had
different speed at different lineages, and hence
the tree is not necessary ultrametric, namely,
the root not necessary has the same distance
to all leaves. The nodes of an evolutionary tree
can be partially ordered such that two nodes are
comparable if there is a path from the root to

a

b

Statistical Multiple Alignment, Fig. 1 (a) A Galton-
Watson forest representing insertion-deletion events. The
first tree starts with an immortal element that is respon-
sible to the insertions at the beginning of the sequence.
(b) The alignment indicated by the Galton-Watson forest
above. Each tree makes a pattern of the alignment; patterns
are separated with dashed lines

any of the leaves containing the two nodes in
question, and in this case the smaller node is the
one that is closer to the root on the path. Each
node v of an evolutionary tree indicates a subtree
that contains v and all the nodes that are greater
than v. Hereafter we consider only these subtrees.

Given a set S of l-long sequences over al-
phabet †, a substitution model M on † and an
evolutionary tree T are labeled by the sequences.
The likelihood of the tree is the probability of
observing the sequences at the leaves of the tree,
given that the substitution process starts at the
root of the tree with the equilibrium distribution.
This likelihood is denoted by P.S jT; M/. The
substitution likelihood problem is to calculate the
likelihood of the tree.

Let † be a finite alphabet and let S1 D

s1;1s1;2 : : : s1;L1
, S2 D s2;1s2;2 : : : s2;L2

, : : :

Sn D sn;1sn;2 : : : sn;Ln
be sequences over

this alphabet. Let a TKF91 model TKF 91 be
given with its parameters: substitution model
M , insertion rate �, and deletion rate �. Let
T be an evolutionary tree labeled by S1,
S2, : : : Sn. The multiple statistical alignment
problem is to calculate the likelihood of the
tree, P.S1; S2; : : : SnjT; TKF 91/, given that
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Statistical Multiple Alignment, Fig. 2 The probabili-
ties of alignment patterns. From left to right: k insertions
at the beginning of the alignment, a match followed by

k � 1 insertions, a deletion followed by k insertions, and

a deletion not followed by insertions. ˇ D 1�e.���/t

���e.���/t

the TKF91 process starts at the root with the
equilibrium distribution.

Multiple Hidden Markov Models
It will turn out that the TKF91 model can be
transformed to a multiple Hidden Markov Model;
therefore we formally define it here. A multiple
Hidden Markov Model (multiple HMM) is a
directed graph with distinguished start and end
states, (the in degree of the start and the out
degree of the end state are both 0), together with
the following described transition and emission
distributions. Each vertex has a transition distri-
bution over its out edges. The vertexes can be
divided into two classes, the emitting and silent
states. Each emitting state emits one-one random
character to a prescribed set of sequences; it is
possible that a state emits only one character
to one sequence. For each state, an emission
distribution over the alphabet and the set of se-
quences gives the probabilities which characters
will be emitted to which sequences. The Markov
process is a random walk from the start to the
end, following the transition distribution on the
out edges. When the walk is in an emitting
state, characters are emitted according to the
emission distribution of the state. The process is
hidden since the observer sees only the emitted
sequences, and the observer does not observe
which character is emitted by which state, even
the observer does not see which characters are
co-emitted. The multiple HMM problem is to
calculate the emission probability of a set of
sequences for a multiple HMM. This probability
can be calculated with the forward algorithm
that has O.V 2Ln/ running time, where V is the

number of emitting states in the multiple HMM,
L is the geometric mean of the sequences, and n

is the number of sequences [3].

Key Results

Substitutions have been modeled with time-
continuous Markov models since the late 1960s
[8], and an efficient algorithm for likelihood
calculations was published in 1980 [4]. The
running time of this efficient algorithm grows
linearly both with the number of sequences
and with the length of the sequences being
analyzed, and it grows squarely with the size of
the alphabet. The algorithm belongs to the class
of dynamic programming algorithms. For each
character, subtree, and position x, the algorithm
calculates what would be the likelihood of
the characters in position x in the sequences
belonging to the subtree if the substitution
process started in the root of the subtree with
the given character. These probabilities are called
conditional likelihoods. It is easy to show that

Lp.˛; x/ D

 
X

˛1

Pt1.˛1j˛/Ld1
.˛1; x/

!

 
X

˛2

Pt2.˛2j˛/Ld2
.˛2; x/

!

(6)

where d1 and d2 are the descendant nodes of the
parent node p and t1 and t2 are the length of the
edges connecting p with d1 and d2, respectively.
The likelihood of the tree can be calculated from
the conditional likelihoods of the tree. Recall that
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P.S jT; M/ is the likelihood of observing a set of
sequences S on the leaves of an evolutionary tree
T under the substitution model M :

P.S jT; M/ D
Y

x

X

˛

Lroot .˛; x/
˛ (7)

Thorne, Kishino, and Felsenstein gave an
O.nm/ running time algorithm for calculating
the likelihood of an n-long and an m-long
sequence under their model [16]. It was not
clear for long time how to extend this algorithm
to more than two sequences. In 2001, several
researchers [7,12] realized that the TKF91 model
for two sequences is equivalent with a pair
Hidden Markov Model (pair HMM) in the sense
that the transition and emission probabilities of
the pair HMM can be parameterized with �, �

and the transition and equilibrium probabilities
of the substitution model; moreover there is
a bijection between the paths emitting the
two sequences and alignments such that the
probability of a path in the pair HMM equals
to the probability of the corresponding alignment
of the two sequences. Hence the likelihood of
two sequences can be calculated with the forward
algorithm of the pair HMM.

After this discovery, it was relatively easy
to develop an algorithm for multiple statistical
alignment [5]. The key observation is that a multi-
ple HMM can be created as a composition of pair
HMMs along the evolutionary tree. This tech-
nique was already known in the speech recog-
nition literature [14], and was also rediscovered
by Ian Holmes [6], who named this technique as
transducer composition. The number of states in
the so-created multiple HMM is O.5

n
2 /, where n

is the number of leaves of the tree. The emission
probabilities are the substitution likelihoods on
the tree, which can be efficiently calculated as
shown above. The running time of the forward
algorithm is 5nLn, where L is the geometric
mean of the sequence lengths.

Lunter et al. [9] introduced an algorithm that
does not need a multiple HMM description of
the TKF91 model to calculate the likelihood of
a tree. Using a logical sieve algorithm, they were
able to reduce the running time to O.2nLn/. They

called their algorithm the “one-state recursion”
since their dynamic programming algorithm does
not need different state of a multiple HMM to
calculate the likelihood correctly.

Applications

Since the running time of the best known al-
gorithm for multiple statistical alignment grows
exponentially with the number of sequences, on
its own it is not useful in practice. However,
Lunter et al. also showed that there is a one-
state recursion to calculate the likelihood of the
tree given an alignment [10]. The running time of
this algorithm grows only linearly with both the
alignment length and the number of sequences.
Since the number of states in a multiple HMM
that can emit the same multiple alignment column
might grow exponentially, this version of the
one-state recursion is a significant improvement.
The one-state recursion for multiple alignments
is used in a Bayesian Markov chain Monte Carlo
where the state space is the Descartes product of
the possible multiple alignments and evolutionary
trees. The one-state recursion provides an effi-
cient likelihood calculation for a point in the state
space [11].

Csűrös and Miklós introduced a model for
gene content evolution that is equivalent with the
multiple statistical alignment problem for alpha-
bet size 1 [2]. They gave a polynomial running
time algorithm that calculates the likelihood of
the tree. The running time is O.nC hL2/, where
n is the number of sequences, h is the height of
the evolutionary tree, and L is the sum of the
sequence lengths.

Thorne, Kishino, and Felsenstein also intro-
duced a fragment model, also called the TKF92
model, in which multiple insertions and deletions
are allowed [17]. The birth process is still a
Poisson process, but instead of single charac-
ters, fragments of characters are inserted with a
geometrically distributed length. The fragments
are unbreakable, and the death process is going
on the fragments. The TKF92 model for a pair
of sequences also can be described into a pair
HMM and the TKF92 model on a tree can be
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transformed to a multiple HMM. Such multiple
HMM is used in the StatAlign software package
[13]. The software package has been extended
to predict the common structure of sequences
(e.g., slowly quickly evolving regions, RNA sec-
ondary structures) by combining this multiple
HMM with other stochastic models describing
the structure of sequences [1, 15].

Open Problems

It is conjectured that the multiple statistical align-
ment problem cannot be solved in polynomial
time for any nontrivial alphabet size. One also
can ask what the most likely multiple alignment
is or, equivalently, what the most probable path
in the multiple HMM is that emits the given
sequences. For a set of sequences, a TKF91
model, and an evolutionary tree, the decision
problem “Is there a multiple alignment that is
more probable than p” is conjectured to be NP-
complete.

It is conjectured that there is no one-state
recursion for the TKF92 model.
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Problem Definition

The problem deals with learning to classify
from random labeled examples in Valiant’s PAC
model [30]. In the random classification noise
model of Angluin and Laird [1], the label of each
example given to the learning algorithm is flipped
randomly and independently with some fixed
probability � called the noise rate. Robustness
to such benign form of noise is an important
goal in the design of learning algorithms. Kearns
defined a powerful and convenient framework for
constructing noise-tolerant algorithms based on
statistical queries. Statistical query (SQ) learning
is a natural restriction of PAC learning that
models algorithms that use statistical properties
of a data set, rather than individual examples.
Kearns demonstrated that any learning algorithm
that is based on statistical queries can be
automatically converted to a learning algorithm
in the presence of random classification noise
of arbitrary rate smaller than the information-
theoretic barrier of 1=2. This result was used
to give the first noise-tolerant algorithm for a
number of important learning problems. In fact,
virtually all known noise-tolerant PAC algorithms
were either obtained from SQ algorithms or can
be easily cast into the SQ model.

In subsequent work, the model of Kearns has
been extended to other settings and found a num-
ber of additional applications in machine learning
and theoretical computer science.

Definitions and Notation
Let C be a class of f�1;C1g-valued functions
(also called concepts) over an input space X .
In the basic PAC model, a learning algorithm
is given examples of an unknown function f

from C on points randomly chosen from some
unknown distribution D over X and should pro-
duce a hypothesis h that approximates f . More
formally, an example oracle EX.f;D/ is an ora-
cle that upon being invoked returns an example
hx; f .x/i, where x is chosen randomly with re-
spect to D, independently of any previous exam-
ples. A learning algorithm for C is an algorithm
that for every � > 0, ı > 0, f 2 C, and

distribution D over X , given �, ı, and access
to EX.f;D/ outputs, with probability at least
1� ı, a hypothesis h that �-approximates f with
respect to D (i.e., PrDŒf .x/ ¤ h.x/� � �).
Efficient learning algorithms are algorithms that
run in time polynomial in 1=�, 1=ı and the size
of the learning problem s. The size of a learning
problem is determined by the description length
of f under some fixed representation scheme for
functions in C and the description length of an
element in X (often proportional to the dimension
n of the input space).

A number of variants of this basic framework
are commonly considered. The basic PAC model
is also referred to as distribution-independent
learning to distinguish it from distribution-
specific PAC learning in which the learning
algorithm is required to learn with respect to
a single distribution D known in advance. A
weak learning algorithm is a learning algorithm
that can produce a hypothesis whose error on the
target concept is noticeably less than 1=2 (and
not necessarily any � > 0). More precisely, a
weak learning algorithm produces a hypothesis
h such that PrDŒf .x/ ¤ h.x/� � 1=2 � 1=p.s/

for some fixed polynomial p. The basic PAC
model is often referred to as strong learning in
this context.

In the random classification noise model
EX.f;D/ is replaced by a faulty oracle
EX�.f;D/, where � is the noise rate. When
queried, this oracle returns a noisy example
hx; bi where b D f .x/ with probability 1 � �

and :f .x/ with probability � independently of
previous examples. When � approaches 1=2 the
label of the corrupted example approaches the
result of a random coin flip, and therefore, the
running time of learning algorithms in this
model is allowed to depend on 1

1�2�
(the

dependence must be polynomial for the algorithm
to be considered efficient). For simplicity, one
usually assumes that � is known to the learning
algorithm. This assumption can be removed using
a simple technique due to Laird [26].

To formalize the idea of learning from statis-
tical properties of a large number of examples,
Kearns introduced a new oracle STAT.f;D/ that
replaces EX.f;D/. The oracle STAT.f;D/ takes
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as input a statistical query (SQ) of the form
.; �/, where  is a f�1;C1g-valued function on
labeled examples and � 2 Œ0; 1� is the tolerance
parameter. Given such a query, the oracle re-
sponds with an estimate v of PrDŒ.x; f .x// D

1� that is accurate to within an additive ˙� .
Note that the oracle does not guarantee

anything else on the value v beyond jv �
PrDŒ.x; f .x// D 1�j � � and an SQ learning
algorithm needs to work with any possible
implementation of the oracle. Yang proposed
a stronger, honest version of the oracle which
to a call with function  returns the value of
.x; f .x//, where x is chosen randomly and
independently according to D [32]. This version
was shown to be equivalent to the original model
up to polynomial factors [17].

Chernoff bounds easily imply that STAT.f;D/

can, with high probability, be simulated using
EX.f;D/ by estimating PrDŒ.x; f .x// D 1�

on O.��2/ examples. Therefore, the SQ model
is a restriction of the PAC model. Efficient SQ
algorithms allow only efficiently evaluatable ’s
and impose an inverse polynomial lower bound
on the tolerance parameter over all oracle calls.
Kearns also observes that in order to simulate
all the statistical queries used by an algorithm,
one does not necessarily need new examples
for each estimation. Instead, assuming that
the set of possible queries of the algorithm
has Vapnik-Chervonenkis dimension d , all
its statistical queries can be simulated using
QO.d��2.1 � 2�/�2 log .1=ı// examples [24].

Key Results

Statistical Queries and Noise-Tolerance
The main result given by Kearns is a way to
simulate statistical queries using noisy examples.

Lemma 1 ([24]) Let .; �/ be a statistical query
such that  can be evaluated on any input in time
T and let EX�.f;D/ be a noisy oracle. The value
PrDŒ.x; f .x// D 1� can, with probability at
least 1�ı, be estimated within � using O.��2.1�

2�/�2 log .1=ı// examples from EX�.f;D/ and
time O.��2.1 � 2�/�2 log .1=ı/ � T /.

This simulation is based on estimating several
probabilities using examples from the noisy or-
acle and then offsetting the effect of noise. The
lemma implies that any efficient SQ algorithm for
a concept class C can be converted to an efficient
learning algorithm for C tolerating random clas-
sification noise of any rate � < 1=2.

Theorem 1 ([24]) Let C be a concept class ef-
ficiently PAC learnable from statistical queries.
Then C is efficiently PAC learnable in the pres-
ence of random classification noise of rate � for
any � < 1=2.

Balcan and Feldman describe more general
conditions on noise under which a specific SQ
algorithm can be simulated in the presence of
noise [3].

Statistical Query Algorithms
Kearns showed that, despite the major restriction
on the way an SQ algorithm accesses the exam-
ples, many PAC learning algorithms known at the
time can be modified to use statistical queries
instead of random examples [24]. Examples of
learning algorithms for which he described an SQ
analogue and thereby obtained a noise-tolerant
learning algorithm include:

• Learning decision trees of constant rank.
• Attribute-efficient algorithms for learning con-

junctions.
• Learning axis-aligned rectangles over Rn.
• Learning AC0 (constant-depth unbounded

fan-in) Boolean circuits over f0; 1gn with
respect to the uniform distribution in
quasipolynomial time.

Subsequent works have provided numerous
additional examples of algorithms used in theory
and practice of machine learning that can either
be implemented using statistical queries or can
be replaced by an alternative SQ-based algorithm
of similar complexity. For example, the Percep-
tron algorithm and learning of linear threshold
functions [6, 12], boosting [2], attribute-efficient
learning via the Winnow algorithm (cf. [16]),
k-means clustering [5] and convex optimization-
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based methods [20]. We note that many learning
algorithms rely only on evaluations of functions
on random examples and therefore can be seen as
using access to the honest statistical query oracle.
In such cases the SQ implementation follows
immediately from the equivalence of the Kearns’
SQ oracle and the honest one [17].

The only known example of a technique for
which there is no SQ analogue is Gaussian elim-
ination for solving linear equations over a finite
field. This technique can be used to learn parity
functions that are not learnable using SQs (as we
discuss below). As a result, with the exception of
the parity learning problem, known bounds on the
complexity of learning from random examples
are, up to polynomial factors, the same as known
bound for learning with statistical queries.

Statistical Query Dimension
The restricted way in which SQ algorithms use
examples makes it simpler to understand the
limitations of efficient learning in this model. A
long-standing open problem in learning theory
is learning of the concept class of all parity
functions over f0; 1gn with noise (a parity func-
tion is a XOR of some subset of n Boolean in-
puts). Kearns has demonstrated that parities can-
not be efficiently learned using statistical queries
even under the uniform distribution over f0; 1gn

[24]. This hardness result is unconditional in
the sense that it does not rely on any unproven
complexity assumptions.

The technique of Kearns was generalized by
Blum et al. who proved that efficient SQ learn-
ability of a concept class C is characterized by
a relatively simple combinatorial parameter of C
called the statistical query dimension [7]. The
quantity they defined, measures the maximum
number of “nearly uncorrelated” functions in a
concept class. (The definition and the results were
simplified and strengthened in subsequent works
[17, 29] and we use the improved statements
here.) More formally,

Definition 1 For a concept class C and distri-
bution D, the statistical query dimension of C
with respect to D, denoted SQ-DIM.C;D/, is
the largest number d such that C contains d

functions f1; f2; : : : ; fd such that for all i ¤ j ,
jEDŒfi fj �j � 1

d
.

Blum et al. relate the SQ dimension to learning
in the SQ model as follows.

Theorem 2 ([7, 17]) Let C be a concept class
and D be a distribution such that SQ-DIM
.C;D/ D d .

• If all queries are made with tolerance of at
least 1=d 1=3, then at least d 1=3�2 queries are
required to learn C with error 1=2 � 1=.2d 3/

in the SQ model.
• There exists an algorithm for learning C with

respect to D that makes d fixed queries, each
of tolerance 1=.4d/, and finds a hypothesis
with error at most 1=2 � 1=.2d/.

Thus SQ-DIM characterizes weak SQ learn-
ability relative to a fixed distribution D up to a
polynomial factor. Parity functions are uncorre-
lated with respect to the uniform distribution and
therefore, any concept class that contains a super-
polynomial number of parity functions cannot be
learned by statistical queries with respect to the
uniform distribution. This, for example, includes
such important concept classes as k-juntas over
f0; 1gn (or functions that depend on at most k

input variables) for k D !.1/ and decision trees
of superconstant size.

Simon showed that (strong) PAC learning rel-
ative to a fixed distribution D using SQs can also
be characterized by a more general and involved
dimension [28]. Simpler and tighter characteriza-
tions of distribution-specific PAC learning using
SQs have been demonstrated by Feldman [15]
and Szörényi [29]. Feldman also extended
the characterization to the agnostic learning
model.

Despite characterizing the number of queries
of certain tolerance, the SQ-DIM and its gen-
eralizations capture surprisingly well the com-
putational complexity of SQ learning of most
concept classes. One reason for this is that if a
concept class has polynomial SQ-DIM then it
can be learned by a polynomial-time algorithm
with advice also referred to as a “non-uniform”
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algorithm (cf. [18]). However it was shown by
Feldman and Kanade that for strong PAC learning
there exist artificial problems whose computa-
tional complexity is larger than their statistical
query complexity [18].

Applications of these characterizations to
proving lower bounds on SQ algorithms can
be found in [11, 15, 19, 25]. Relationships of SQ-
DIM to other notions of complexity of concept
classes were investigated in [22, 27].

Applications

The ideas behind the use of statistical queries to
produce noise-tolerant algorithms were adapted
to learning using membership queries (or ability
to ask for the value of the unknown function
at any point) and used to give a noise-tolerant
algorithm for learning DNF with respect to the
uniform distribution [9, 21]. The SQ model of
learning was generalized to active learning (or
learning where labels are requested only for some
of the points) and used to obtain new efficient
noise-tolerant active learning algorithms [3].

The restricted way in which an SQ algorithm
uses data implies it can be used to obtain learn-
ing algorithms with additional useful properties.
Blum et al. [5] show that an SQ algorithm can
be used to obtain a differentially-private [13]
algorithm for the problem. In fact, SQ algo-
rithms are equivalent to local (or randomized-
response) differentially-private algorithms [23].
Chu et al. [10] show that SQ algorithms can
be automatically parallelized on multicore ar-
chitectures and give many examples of popular
machine learning algorithms that can be sped up
using this approach.

The SQ learning model has also been instru-
mental in understanding Valiant’s model of evo-
lution as learning [31]. Feldman showed that the
model is equivalent to learning with a restricted
form of SQs referred to as correlational SQs
[14]. A correlational SQ is a query of the form
.x; `/ D g.x/ � ` for some g W X ! Œ�1; 1�.
Such queries were first studied by Ben-David
et al. [4] (remarkably, before the introduction
of the SQ model itself) and distribution-specific

learning with such queries is equivalent to learn-
ing with (unrestricted) SQs.

Statistical query-based access can naturally be
defined for any problem where the input is a set of
i.i.d. samples from a distribution. Feldman et al.
show that lower bounds based on SQ-DIM can
be extended to this more general setting and give
examples of applications [17, 20].

Open Problems

The main questions related to learning with ran-
dom classification noise are still open. Is every
concept class efficiently learnable in the PAC
model also learnable in the presence of random
classification noise? Is every concept class effi-
ciently learnable in the presence of random clas-
sification noise of arbitrarily high rate (less than
1=2) also efficiently learnable using statistical
queries? A partial answer to this question was
provided by Blum et al. who show that Gaussian
elimination can be used in low dimension to ob-
tain a class learnable with random classification
noise of constant rate � < 1=2 but not learnable
using SQs [8]. For both questions a central issue
seems to be obtaining a better understanding of
the complexity of learning parities with noise.

The complexity of learning from statistical
queries remains an active area of research with
many open problems. For example, there is
currently an exponential gap between known
lower and upper bounds on the complexity
of distribution-independent SQ learning of
polynomial-size DNF formulae and AC0 circuits
(cf. [27]). Several additional open problems
on complexity of SQ learning can be found in
[16, 19, 22].
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Problem Definition

The timing behavior of integrated systems is
strongly affected by the characteristics of tran-
sistors and wires in the system. Variations in
the manufacturing process can cause drifts in
these characteristics from one manufactured part
to another. The traditional approach to address-
ing these variations was to choose a worst-case
value for each process parameter, but this has
become unsustainable in the face of current-day
variations. Statistical timing analysis provides
a computationally efficient way to translate the
probability density function of the underlying
process parameter spread to the distribution of
circuit timing.

A key underlying structure for timing analysis
is a graph G.V; E/ of a combinational circuit,
where the vertex set V corresponds to the gates,
primary inputs, and primary outputs of the cir-
cuit, and each connection between these gates
corresponds to an edge in E. The delay of each
gate corresponds to a probability distribution that
is a function of the distributions of the under-
lying (possibly correlated) process parameters,
and the task of combinational statistical timing
analysis is to obtain the distribution of the maxi-
mum (or minimum) delay of the circuit, over all
primary outputs. The extension of this problem
to general edge-triggered sequential circuits is
straightforward. Such circuits can be decomposed
into independent combinational blocks, and the
maximum (or minimum) operator acts on the
delay distribution at all primary outputs of all
combinational blocks of the sequential circuit.

Key Results

The framework that is used for statistical tim-
ing analysis is based on graph-based topological
traversals that maintain a closed-form structure

for the delay from the primary inputs of the
circuit to the output of each vertex (referred to
as the arrival time). The computation under this
paradigm scales linearly with jEj. While it is
certainly possible to perform statistical timing
analysis through Monte Carlo simulations based
on samples of the process parameter space, such
an approach is uncompetitive compared to graph
traversal algorithms. The traversal approach con-
sists of three key steps [1, 2]:

• Translating the underlying process parameter
variations to an orthogonal set of random
variables

• Representing gate delay variations in terms of
this orthogonal set

• Performing a topological traversal of G and
computing the arrival time at each node and
maximum delay of the circuit

Orthogonalizing Process Parameter
Distributions
A common assumption is that the underlying
process parameters, such as the transistor width
W and effective length Leff of devices, gate oxide
thickness (Tox), and device threshold voltage
(Vt) due to random dopant fluctuations, show
a Gaussian distribution. Each individual device
is separately represented by such a parameter.
The distributions of Tox and Vt are largely
uncorrelated across devices. In contrast, the
dimension-based parameters, W and Leff, show
strong spatial correlations, whereby the distribu-
tions of nearby devices are strongly correlated,
and this correlation falls off as a function of
distance.

The existence of correlations can significantly
complicate the task of statistical timing analysis,
since all pairwise combinations of random vari-
ables must be considered during the optimization,
potentially leading to quadratic complexity in
jV j. To overcome this, an initial principal compo-
nent analysis (PCA) [7] step is carried out that or-
thogonalizes the underlying Gaussians, enabling
linear-time analysis. PCA is a one-time operation
for a given process (which is used for numerous
designs). Therefore, although its worst-case com-
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plexity is cubic in jV j, the expense is practically
manageable as it is amortized over numerous
designs. Furthermore, sparsity properties of the
correlation matrix realistically imply that in prac-
tice, the cost of PCA scales considerably slower
than this cubic rate.

For cases where the underlying process
parameters may be a mix of Gaussians or
non-Gaussians, it is possible to orthogonalize
the Gaussian parameters using PCA and
non-Gaussian parameters using independent
component analysis (ICA) [4]. The approach in
[8] extends the graph-based approach presented
here and shows how statistical timing analysis
can be performed for case where some or all
process parameters are non-Gaussian.

Gate Delay Distribution
To build a model for the gate delay that captures
the underlying variations in process parameters,

we observe that the delay function d D f .P/,
where P is a set of process parameters, can be
approximated d linearly using a first-order Taylor
expansion:

d D d0 C
X
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where cov
�
pi ; pj

�
is the covariance of pi and

pj .
This approximation is valid when �pi has

relatively small variations, in which domain the
first-order Taylor expansion is adequate and the
approximation is acceptable with little loss of
accuracy. This is generally true of the impact
of within-die variations on delay, where the pro-
cess parameter variations are relatively small in
comparison with the nominal values, and the
function changes by a small amount under this
perturbation. Hence, the delays, as functions of
the process parameters, can be approximated as
normal distributions when the parameter varia-
tions are assumed to be normal. Higher-order
expansions based on quadratics have also be
explored to cover cases where the variations are
larger [6, 11].

Circuit Delay Distribution
A PCA-based approach maintains the invariant
that the output arrival time at each gate is a
Gaussian variable represented as

ai .p1; : : : ; pn/ D a0
i C

nX

iD1

ki p
0
i C knC1p0

nC1

(4)
Here, the primed variables correspond to the
principal components of the unprimed variables
and maintain the form of the arrival time after
each sum and max operation. Gate delays, as
represented in Eq. 1, can be translated into a
similar representation based on principal com-
ponents as a one-time step during gate library
characterization. Under orthogonalization, many
operations become much simpler since the co-
variance terms disappear: for example, Eq. 3 can
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be evaluated in linear time instead of quadratic
time.

The task of statistical timing analysis is
to translate these gate delay distributions
to circuit delay probabilities while per-
forming a topological traversal. The opera-
tions performed at each node encountered
during this traversal in STA are of two
types [5]:

• A gate (vertex) is being processed in STA
when the arrival times of all inputs are
known, at which time the candidate delay
values at the output are computed using
the “sum” operation that adds the delay
at each input with the input-to-output pin
delay.

• Once these candidate delays have been
found, the “max” operation is applied to
determine the maximum arrival time at the
output.

Since the gate delays are Gaussian, the “sum”
operation is merely an addition of Gaussians,
which is well known to be a Gaussian. The
computation of the max function, however,
poses greater problems. The set of candidate
delays are all Gaussian, so that this function
must find the maximum of Gaussians. Such
a maximum may be reasonably approximated
using a Gaussian [3]. A detailed description of
how the invariant representation is maintained
under the max operation is presented in
[1, 2].

The cost of this method corresponds to run-
ning a bounded number of deterministic STAs,
and it is demonstrated to be accurate, given the
statistics of P.

Applications

Statistical timing analysis has been ex-
tensively used in industry [10] and has
seeded a large amount of academic research.
Integrated circuit manufacturing foundries
have promoted the use of statistical timing

analysis by providing PCA-like information
with their process parameter models, thus
enabling design flows that are statistically
based.

The ideas of statistical analysis have also mo-
tivated simpler and more approximate methods,
used in industry today, based on on-chip vari-
ation (OCV) derating factors. In its most ele-
mentary form, OCV adds margins to each timing
path to account for possible variation. More in-
volved versions of OCV, such as advanced OCV
(AOCV), capture the essence of spatial corre-
lation by using derating factors that depend on
factors such as spatial distance and logical depth
of a path [9].

Experimental Results

Statistical timing analysis based on orthogonal-
ization brings down the computational cost from
quadratic to linear in the number of variables
and can be applied to large circuit instances. The
method is capable of considering both spatial
correlations and structural correlations, i.e., cor-
relations between paths that share gates, since
such correlations are embedded into the invariant
representation. This makes the approach accu-
rate and computationally practical, as described
in [1, 2, 10] and the large body of follow-on
work.

URLs to Code and Data Sets

The MinnSSTA statistical static timing analyzer
is available at http://www.ece.umn.edu/~sachin/
software/MinnSSTA/index.html.
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Problem Definition

The Steiner forest problem is a fundamental prob-
lem in network design. Informally, the goal is to
establish connections between pairs of vertices in
a given network at minimum cost. The problem
generalizes the well-known Steiner tree problem.
As an example, assume that a telecommunica-
tion company receives communication requests
from their customers. Each customer asks for
a connection between two vertices in a given
network. The company’s goal is to build a min-
imum cost network infrastructure such that all
communication requests are satisfied.

Formal Definition and Notation
More formally, an instance I D .G; c; R/ of
the Steiner forest problem is given by an
undirected graph G D .V; E/ with vertex set
V and edge set E, a non-negative cost function
cWE ! Q

C, and a set of vertex pairs R D

f.s1; t1/; : : : ; .sk ; tk/g � V � V . The pairs in
R are called terminal pairs. A feasible solution
is a subset F � E of the edges of G such that
for every terminal pair .si ; ti / 2 R there is a path
between si and ti in the subgraph G[F] induced
by F. Let the cost c(F) of F be defined as the total
cost of all edges in F, i.e., c.F / D

P
e2F c.e/.

The goal is to find a feasible solution F of
minimum cost c(F). It is easy to see that there
exists an optimum solution which is a forest.

The Steiner forest problem may alternatively
be defined by a set of terminal groups
R D fg1; : : : ; gkg with gi � V instead of
terminal pairs. The objective is to compute
a minimum cost subgraph such that all terminals
belonging to the same group are connected. This
definition is equivalent to the one given above.

Related Problems
A special case of the Steiner forest problem is the
Steiner tree problem (see also the entry � Steiner
Trees). Here, all terminal pairs share a common
root vertex r 2 V , i.e., r 2 fsi ; tig for all terminal
pairs .si ; ti / 2 R. In other words, the problem
consists of a set of terminal vertices R � V and
a root vertex r 2 V and the goal is to connect the
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terminals in R to r in the cheapest possible way.
A minimum cost solution is a tree.

The generalized Steiner network problem (see
the entry �Generalized Steiner Network), also
known as the survivable network design problem,
is a generalization of the Steiner forest prob-
lem. Here, a connectivity requirement function
r WV � V ! N specifies the number of edge dis-
joint paths that need to be established between
every pair of vertices. That is, the goal is to find
a minimum cost multi-subset H of the edges of G
(H may contain the same edge several times) such
that for every pair of vertices .x; y/ 2 V there are
r(x, y) edge disjoint paths from x to y in G[H]. The
goal is to find a set H of minimum cost. Clearly,
if r.x; y/ 2 f0; 1g for all .x; y/ 2 V � V , this
problem reduces to the Steiner forest problem.

Key Results

Agrawal, Klein and Ravi [1, 2] give an approx-
imation algorithm for the Steiner forest prob-
lem that achieves an approximation ratio of 2.
More precisely, the authors prove the following
theorem.

Theorem 1 There exists an approximation algo-
rithm that for every instance I D .G; c; R/ of the
Steiner forest problem, computes a feasible forest
F such that

c.F / �

�
2 �

1

k

�
�OPT.I /;

where k is the number of terminal pairs in R and
OPT.I / is the cost of an optimal Steiner forest
for I.

Related Work
The Steiner tree problem is NP-hard [10] and
APX-complete [4, 8]. The current best lower
bound on the achievable approximation ratio for
the Steiner tree problem is 1.0074 [21]. Goemans
and Williamson [11] generalized the results ob-
tained by Agrawal, Klein and Ravi to a larger
class of connectivity problems, which they term
constrained forest problems. For the Steiner for-
est problem, their algorithm achieves the same

approximation ratio of .2 � 1=k/. The algorithms
of Agrawal, Klein and Ravi [2] and Goemans and
Williamson [11] are both based on the classical
undirected cut formulation for the Steiner forest
problem [3]. The integrality gap of this relax-
ation is known to be .2 � 1=k/ and the results
in [2, 11] are therefore tight. Jain [15] presents
a 2-approximation algorithm for the generalized
Steiner network problem.

Primal-Dual Algorithm
The main ideas of the algorithm by Agrawal,
Klein and Ravi [2] are sketched below; subse-
quently, AKR is used to refer to this algorithm.
The description given here differs from the one
in [2]; the interested reader is referred to [2] for
more details.

The algorithm is based on the following inte-
ger programming formulation for the Steiner for-
est problem. Let I D .G; c; R/ be an instance of
the Steiner forest problem. Associate an indicator
variable xe 2 f0; 1g with every edge e 2 E. The
value of xe is 1 if e is part of the forest F and 0 oth-
erwise. A subset S � V of the vertices is called
a Steiner cut if there exists at least one terminal
pair .si ; ti / 2 R such that jfsi ; tig \ S j D 1; S is
said to separate terminal pair (si, ti). Let S be the
set of all Steiner cuts. For a subset S � V , define
ı.S/ as the the set of all edges in E that have
exactly one endpoint in S. Given a Steiner cut
S 2 S , any feasible solution F of I must contain
at least one edge that crosses the cut S, i.e.,P

e2ı.S/ xe � 1. This gives rise to the following
undirected cut formulation:

minimize
X

e2E

c.e/xe (IP)

subject to
X

e2ı.S/

xe � 1 8S 2 S (1)

xe 2 f0; 1g 8e 2 E: (2)

The dual of the linear programming relaxation
of (IP) has a variable yS for every Steiner cut
S 2 S . There is a constraint for every edge e 2 E

that requires that the total dual assigned to sets
S 2 S that contain exactly one endpoint of e is at
most the cost c(e) of the edge:
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maximize
X

S2S
yS (D)

subject to
X

S2SW e2ı.S/

yS � c.e/ 8e 2 E (3)

yS � 0 8S 2 S: (4)

Algorithm AKR is based on the primal-dual
schema (see, e.g., [22]). That is, the algorithm
constructs both a feasible primal solution
for (IP) and a feasible dual solution for (D).
The algorithm starts with an infeasible primal
solution and reduces its degree of infeasibility
as it progresses. At the same time, it creates
a feasible dual packing of subsets of large total
value by raising dual variables of Steiner cuts.

One can think of an execution of AKR as
a process over time. Let x� and y� , respectively,
be the primal incidence vector and feasible dual
solution at time � . Initially, let x0

e D 0 for all
e 2 E and y0

S D 0 for all S 2 S . Let F� denote
the forest corresponding to the set of edges with
x�

e D 1. A tree T in F� is called active at time
� if it contains a terminal that is separated from
its mate; otherwise it is inactive. Intuitively, AKR
grows trees in F� that are active. At the same
time, the algorithm raises dual values of Steiner
cuts that correspond to active trees. If two active
trees collide, they are merged. The process termi-
nates if all trees are inactive and thus there are
no unconnected terminal pairs. The interplay of
the primal (growing trees) and the dual process
(raising duals) is somewhat subtle and outlined
next.

An edge e 2 E is tight if the corresponding
constraint (3) holds with equality; a path is tight if
all its edges are tight. Let H� be the subgraph of G
that is induced by the tight edges for dual y� . The
connected components of H� induce a partition
C� on the vertex set V. Let S� be the set of all
Steiner cuts contained in C� , i.e., S� D C� \ S .
AKR raises the dual values yS for all sets S 2 S�

uniformly at all times � � 0. Note that y� is dual
feasible. The algorithm maintains the invariant
that F� is a subgraph of H� at all times. Consider
the event that a path P between two trees T1 and
T2 of F� becomes tight. The missing edges of P
are then added to F� and the process continues.

Eventually, all trees in F� are inactive and the
process halts.

Applications

The computation of (approximate) solutions for
the Steiner forest problem has various applica-
tions both in theory and practice; only a few
recent developments are mentioned here.

Algorithms for more complex network design
problems often rely on good approximation
algorithms for the Steiner forest problem. For
example, the recent approximation algorithms
[6, 9, 12] for the multi-commodity rent-or-buy
problem (MRoB) are based on the random
sampling framework by Gupta et al. [12, 13]. The
framework uses a Steiner forest approximation
algorithm that satisfies a certain strictness
property as a subroutine. Fleischer et al. [9]
show that AKR meets this strictness requirement,
which leads to the current best 5-approximation
algorithm for MRoB. The strictness property
also plays a crucial role in the boosted sampling
framework by Gupta et al. [14] for two-stage
stochastic optimization problems with recourse.

Online versions of Steiner tree and forest prob-
lems have been studied by by Awerbuch et al. [5]
and Berman and Coulston [7]. In the area of algo-
rithmic game theory, the development of group-
strategyproof cost sharing mechanisms for net-
work design problems such as the Steiner tree
problem has recently received a lot of atten-
tion; see e.g., [16, 17, 19, 20]. An adaptation of
AKR yields such a cost sharing mechanism for
the Steiner forest problem [18].

Cross-References

�Generalized Steiner Network
� Steiner Trees

Recommended Reading

The interested reader is referred in particular to
the articles [2, 11] for a more detailed description
of primal-dual approximation algorithms for gen-
eral network design problems.
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Definition

Given a set of points, called terminals, in a
metric space, the problem is to find the shortest
tree interconnecting all terminals. There are three
important metric spaces for Steiner trees, the Eu-
clidean plane, the rectilinear plane, and the edge-
weighted network. The Steiner tree problems
in those metric spaces are called the Euclidean
Steiner tree (EST), the rectilinear Steiner tree
(RST), and the network Steiner tree (NST), re-
spectively. EST and RST have been found to have
polynomial-time approximation schemes (PTAS)
by using adaptive partition. However, for NST,
there exists a positive number r such that com-
puting r-approximation is NP-hard. So far, the
best performance ratio of polynomial-time ap-
proximation for NST is achieved by k-restricted
Steiner trees. However, in practice, the iterated
1-Steiner tree is used very often. Actually, the
iterated 1-Steiner was proposed as a candidate of
good approximation for Steiner minimum trees
a long time ago. It has a very good record in
computer experiments, but no correct analysis
was given showing the iterated 1-Steiner tree
having a performance ratio better than that of
the minimum spanning tree until the recent work
by Du et al. [9]. There is minimal difference in
construction of the 3-restricted Steiner tree and
the iterated 1-Steiner tree, which makes a big
difference in analysis of those two types of trees.
Why does the difficulty of analysis make so much
difference? This will be explained in this article.

History and Background
The Steiner tree problem was proposed by
Gauss in 1835 as a generalization of the Fermat
problem. Given three points A, B , and C

in the Euclidean plane, Fermat studied the
problem of finding a point S to minimize
jSAj C jSBj C jSCj. He determined that when all
three inner angles of triangle ABC are less than

120ı, the optimal S should be at the position that
†ASB D †BSC D †CSA D 120ı.

The generalization of the Fermat problem has
two directions:

1. Given n points in the Euclidean plane, find a
point S to minimize the total distance from S

to n given points. This is still called the Fermat
problem.

2. Given n points in the Euclidean plane, find
the shortest network interconnecting all given
points.

Gauss found the second generalization through
communication with Schumacher. On March 19,
1836, Schumacher wrote a letter to Gauss and
mentioned a paradox about Fermat’s problem:
Consider a convex quadrilateral ABCD. It is
known that the solution of Fermat’s problem for
four points A, B , C , and D is the intersection E

of diagonals AC and BD. Suppose extending DA
and CB can obtain an intersection F . Now, move
A and B to F . Then E will also be moved to F .
However, when the angle at F is less than 120ı,
the point F cannot be the solution of Fermat’s
problem for three given points F , D, and C .
What happens? (Fig. 1.)

On March 21, 1836, Gauss wrote a letter
replying to Schumacher in which he explained
that the mistake of Schumacher’s paradox occurs
at the place where Fermat’s problem for four
points A, B , C , and D is changed to Fermat’s
problem for three points F , C , and D. When A

and B are identical to F , the total distance from
E to four points A, B , C , and D equals 2jEFj C
jECj C jEDj, not jEFj C jECj C jEDj. Thus,

A

D C

B

F

Steiner Trees, Fig. 1 Convex quadrilateral ABCD, Fer-
mat’s problem
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the point E may not be the solution of Fermat’s
problem for F , C , and D. More importantly,
Gauss proposed a new problem. He said that it
is more interesting to find the shortest network
rather than a point. Gauss also presented several
possible connections of the shortest network for
four given points.

It was unfortunate that Gauss’ letter was not
seen by researchers of Steiner trees at an earlier
stage. Especially, R. Courant and H. Robbins
who in their popular book What is mathematics?
(published in 1941) [6] called Gauss’ problem
the Steiner tree so that “Steiner tree” became a
popular name for the problem.

The Steiner tree became an important research
topic in mathematics and computer science due to
its applications in telecommunication and com-
puter networks. Starting with Gilbert and Pollak’s
work published in 1968, many publications on
Steiner trees have been generated to solve various
problems concerning it.

One well-known problem is the Gilbert-Pollak
conjecture on the Steiner ratio, which is the least
ratio of lengths between the Steiner minimum
tree and the minimum spanning tree on the same
set of given points. Gilbert and Pollak in 1968
conjectured that the Steiner ratio in the Euclidean
plane is

p
3=2 which is achieved by three vertices

of an equilateral triangle. A great deal of research
effort has been put into the conjecture and it was
finally proved by Du and Hwang [7].

Another important problem is called the bet-
ter approximation. For a long time no approxi-
mation could be proved to have a performance
ratio smaller than the inverse of the Steiner ra-
tio. Zelikovsky [14] made the first breakthrough.
He found a polynomial-time 11/6-approximation
for NST which beats 1/2, the inverse of the
Steiner ratio in the edge-weighted network. Later,
Berman and Ramaiye [2] gave a polynomial-time
92/72-approximation for RST, and Du, Zhang,
and Feng [8] closed the story by showing that in
any metric space, there exists a polynomial-time
approximation with a performance ratio better
than the inverse of the Steiner ratio provided
that for any set of a fixed number of points,
the Steiner minimum tree is polynomial-time
computable.

All the above better approximations came
from the family of k-restricted Steiner trees.
By improving some detail of construction, the
constant performance ratio was decreasing, but
the improvements were also becoming smaller.
In 1996, Arora [1] made significant progress for
EST and RST. He showed the existence of PTAS
for EST and RST. Therefore, the theoretical
researchers now pay more attention to NST. Bern
and [3] showed that NST is MAX SNP-complete.
This means that there exists a positive number r ;
computing the r-approximation for NST is NP-
hard. The best-known performance for NST was
given by Robin and Zelikovsky [12]. They also
gave a very simple analysis to a well-known
heuristic, the iterated 1-Steiner tree for pseudo-
bipartite graphs.

Analysis of the iterated 1-Steiner tree is an-
other long-standing open problem. Since Chang
[4, 5] proposed that the iterated 1-Steiner tree
approximates the Steiner minimum tree in 1972,
its performance has been claimed to be very good
through computer experiments [10, 13], but no
theoretical analysis supported this claim. Actu-
ally, both the k-restricted Steiner tree and the
iterated 1-Steiner tree are obtained by greedy
algorithms, but with different types of potential
functions. For the iterated 1-Steiner tree, the
potential function is non-submodular, but for the
k-restricted Steiner tree, it is submodular; a prop-
erty that holds for k-restricted Steiner trees may
not hold for iterated 1-Steiner trees. Actually,
the submodularity of potential function is very
important in analysis of greedy approximations
[11]. Du et al. [9] gave a correct analysis for the
iterated 1-Steiner tree with a general technique to
deal with non-submodular potential function.

Key Results

Consider input edge-weighted graph G D .V; E/

of NST. Assume that G is a complete graph and
the edge weight satisfies the triangular inequality;
otherwise, consider the complete graph on V with
each edge (u; v) having a weight equal to the
length of the shortest path between u and v in
G. Given a set P of terminals, a Steiner tree is a
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tree interconnecting all given terminals such that
every leaf is a terminal.

In a Steiner tree, a terminal may have degree
more than one. The Steiner tree can be decom-
posed, at those terminals with degree more than
one, into smaller trees in which every terminal is
a leaf. In such a decomposition, each resulting
small tree is called a full component. The size
of a full component is the number of terminals
in it. A Steiner tree is k-restricted if every full
component of it has a size at most k. The short-
est k-restricted Steiner tree is also called the
k-restricted Steiner minimum tree. Its length is
denoted by smtk .P /. Clearly, smt2.P / is the
length of the minimum spanning tree on P , which
is also denoted by mst.P /. Let smt.P / denote
the length of the Steiner minimum tree on P . If
smt3.P / can be computed in polynomial time,
then it is better than mst.P / for an approxima-
tion of smt.P /. However, so far no polynomial-
time approximation has been found for smt3.P /.
Therefore, Zelikovsky [14] used a greedy ap-
proximation of smt3.P / to approximate smt.P /.
Actually, Chang [4, 5] used a similar greedy
algorithm to compute an iterated 1-Steiner tree.
Let F be a family of subgraphs of input edge-
weighted graph G. For any connected subgraph
H , denote by mst.H/ the length of the minimum
spanning tree of H , and for any subgraph H ,
denote by mst.H/ the sum of mst.H 0/ for H 0

over all connected components of H . Define

gain.H/ D mst.P /�mst.P W H/�mst.H/;

where mst.P W H/ is the length of the minimum
spanning tree interconnecting all unconnected
terminals in P after every edge of H shrinks into
a point.

Greedy Algorithm H  ;;
while P has not been interconnected by H do
choose F 2 F to maximize gain.H [ F /;
output mst.H/.

When F consists of all full components of size
at most three, this greedy algorithm gives the 3-
restricted Steiner tree of Zelikovsky [14]. When
F consists of all 3-stars and all edges where a 3-
star is a tree with three leaves and a central vertex,
this greedy algorithm produces the iterated 1-
Steiner tree. An interesting fact pointed out by Du
et al. [9] is that the function gain(�) is submodular
over all full components of size at most three, but
not submodular over all 3-stars and edges.

Let us consider a base set E and a function
f from all subsets of E to real numbers. f is
submodular if for any two subsets A, B of E,

f .A/C f .B/ � f .A [ B/C f .A \ B/:

For x 2 E and A � E, denote Δxf .A/ D f .A[

fxg/ � f .A/.

Lemma 1 f is submodular if and only if for any
A � E and distinct x; y 2 E � A,

ΔxΔyf .A/ � 0: (1)

Proof Suppose f is submodular. Set B D A [

fxg and C D A [ fyg. Then B [ C D A [ A [

fx; yg and B \ C D A. Therefore, one has

f .A [ fx; yg/ � f .A [ fxg/ � f .A [ fyg/

C f .A/ � 0;

that is, (1) holds.
Conversely, suppose (1) holds for any A � E

and distinct x; y 2 E � A. Consider two subsets
A; B of E. If A � B or B � A, it is trivial to
have

f .A/C f .B/ � f .A [ B/C f .A \ B/:

Therefore, one may assume that AnB ¤ ; and
BnA ¤ ;. Write AnB D fx1; : : : ; xkg and
BnA D fy1; : : : ; yhg. Then

f .A [ B/ � f .A/ � f .B/C f .A \ B/

D
kP

iD1

hP

j D1

Δxi
Δyj

f .A [ fx1; : : : ; xi�1g [
˚
y1; : : : ; yj �1

�
/

� 0;
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where fx1; : : : xi�1g D ; for i D 1 and
fy1; : : : ; yj �1g D ; for j D 1. ut

Lemma 2 Define f .H/ D �mst.P W H/. Then
f is submodular over edge set E.

Proof Note that for any two distinct edges x and
y not in subgraph H ,

ΔxΔf .H/

D �mst.P W H [ x [ y/Cmst.P W H [ x/

Cmst.P W H [ y/ �mst.P W H/

D .mst.P W H/ �mst.P W H [ x [ y//

� .mst.P W H/ �mst.P W H [ x//

C .mst.P W H/ �mst.P W H [ y//:

Let T be a minimum spanning tree for uncon-
nected terminals after every edge of H shrinks
into a point. T contains a path Px connecting two
endpoints of x and also a path Py connecting two
endpoints of y. Let ex .ey/ be a longest edge in
Px .Py/. Then

mst.P W H/ �mst.P W H [ x/ D length.ex/;

mst.P W H/ �mst.P W H [ y/ D length.ey/:

mst.P W H/ – mst(P W H [ x [ y) can be
computed as follows: Choose a longest edge e0

from Px [Py . Note that T [ x [ y � e0 contains
a unique cycle Q. Choose a longest edge e00 from
.Px [ Py/ \Q. Then

mst.P W H/�mst.P W H[x[y/ D length.e00/

Now, to show the submodularity of f , it suffices
to prove

length.ex/C length.ey/ � length.e00/ (2)

Case 1. exPx \ Py and eyPx \ Py . Without
loss of generality, assume length.ex/ �

length.ey/. Then one may choose e0 D ex

so that .Px [ Py/\Q D Py . Hence, one can
choose e00 D ey . Therefore, the equality holds
for (2).

Case 2. exPx \ Py and ey 2 Px \ Py . Clearly,
length.ex/ � length.ey/. Hence, one may
choose e0 D ex so that .Px [ Py/\Q D Py .
Hence, one can choose e00 D ey . Therefore,
the equality holds for (2).

Case 3. ex 2 Px \ Py and eyPx \ Py . Similar
to Case 2.

Case 4. ex 2 Px \Py and ey 2 Px \Py . In this
case, length.ex/ D length.ey/ D length.e0/.
Hence, (2) holds. ut

The following explains that the submodularity
of gain.�/ holds for a k-restricted Steiner tree.

Theorem 1 Let " be the set of all full compo-
nents of a Steiner tree. Then gain.�/ as a function
on the power set of " is submodular.

Proof Note that for any H � E and x; y 2 E�H,

ΔxΔymst.H/ D 0;

where H D [´2H´. Thus, this theorem follows
from Lemma 2.

Let F be the set of 3-stars and edges chosen
in the greedy algorithm to produce an iterated 1-
Steiner tree. Then gain.�/ may not be submodular
on F . To see this fact, consider two 3-stars
x and y in Fig. 2. Note that gain.x [ y/ >

gain.x/; gain.y/ � 0, and gain.;/ D 0. One has

gain.x[y/�gain.x/�gain.y/Cgain.;/ > 0:

ut

y

x

x

Steiner Trees, Fig. 2 An example for the proof of Theo-
rem 1
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Applications

The Steiner tree problem is a classic NP-hard
problem with many applications in the design of
computer circuits, long-distance telephone lines,
multicast routing in communication networks,
etc. There exist many heuristics of the greedy
type for Steiner trees in the literature. Most of
them have a good performance in computer ex-
periments, without support from theoretical anal-
ysis. The approach given in this work may apply
to them.

Open Problems

It is still open whether computing the 3-restricted
Steiner minimum tree is NP-hard or not. For
k � 4, it is known that computing the k-restricted
Steiner minimum tree is NP-hard.

Cross-References
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Problem Definition

This problem deals with packing a maximum
reward set of items into a knapsack of given
capacity, when the item sizes are random. The
input is a collection of n items, where each item
i 2 Œn� WD f1; : : : ; ng has reward ri � 0 and
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size Si � 0, and a knapsack capacity B � 0. In
the stochastic knapsack problem, all rewards are
deterministic but the sizes are random. The ran-
dom variables Si s are independent with known,
arbitrary distributions. The actual size of an item
is known only when it is placed into the knapsack.
The objective is to add items sequentially (one
by one) into the knapsack so as to maximize
the expected reward of the items that fit into the
knapsack. As usual, a subset T of items is said to
fit into the knapsack if the total size

P
i2T Si is

at most the knapsack capacity B .
A feasible solution (or policy) to the stochastic

knapsack problem is represented by a decision
tree. Nodes in this decision tree denote the current
“state” of the solution (i.e., previously added
items and the residual knapsack capacity) as well
as the new item to place into the knapsack at this
state. Branches in the decision tree denote the
random size instantiations of items placed into
the knapsack. Such solutions are called adaptive
policies, to emphasize the fact that the items
being placed may depend on previously observed
outcomes. More formally, an adaptive policy is
given by a mapping 
 W 2Œn��Œ0; B�! Œn�, where

.T; C / denotes the next item to place into the
knapsack when some subset T � Œn� of items has
already been added, and C D B �

P
i2T Si is

the residual knapsack capacity. The policy ends
when the knapsack overflows (i.e., the total size
of items added exceeds the knapsack capacity);
we use the convention that no reward is obtained
from the last overflowing item.

Notice that an arbitrary adaptive policy may
require exponential space to even store. This
motivates a special class of solutions, called non-
adaptive policies. A nonadaptive policy is just
specified by a fixed ordering of the n items,
and the solution adds items into the knapsack
in that order (irrespective of the actual size in-
stantiations) until the knapsack overflows. Again,
there is no reward obtained from the last over-
flowing item. While it may be easier to obtain a
good nonadaptive policy, the obvious drawback
is that nonadaptive policies may perform much
worse than adaptive policies. The benefit of be-
ing adaptive is quantified by a measure called
the adaptivity gap, which is the maximum ratio

(over all instances) of the expected reward of an
optimal adaptive policy to the expected reward of
an optimal nonadaptive policy.

In both the adaptive and nonadaptive settings,
the stochastic knapsack problem is at least NP-
hard, since it generalizes the deterministic knap-
sack problem. Moreover, certain questions re-
garding adaptive policies are PSPACE-hard [4].

Notation We assume that the item size
distributions are given explicitly. For any item i 2

Œn� define its effective reward wi D ri �PrŒSi � B�

and its mean truncated size �i D E ŒminfSi ; Bg�.
Note that the expected reward obtained by
placing the single item i into the knapsack is
exactly wi .

Key Results

Dean, Goemans, and Vondrák introduced the
stochastic knapsack problem and the notion of
adaptivity gaps. They proved the following.

Theorem 1 ([4]) There is a polynomial time al-
gorithm for the stochastic knapsack problem that
computes a nonadaptive policy having expected
reward at least 1

4
that of an optimal adaptive

policy.

As a consequence, the adaptivity gap of
the stochastic knapsack problem is also upper
bounded by four. Dean, Goemans, and Vondrák
[4] also showed an instance of stochastic
knapsack that lower bounds the adaptivity gap
by 5

4
.

The algorithm in Theorem 1 uses a natural
greedy approach. It outputs the better of the
following two nonadaptive policies:

• Place the single item i� D arg maxi2Œn� wi .
• Place items in nonincreasing order of wi =�i .

In terms of adaptive policies, Bhalgat, Goel,
and Khanna proved the following.

Theorem 2 ([2, 3]) For any constant � > 0,
there is polynomial time algorithm for the
stochastic knapsack problem that computes an
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adaptive policy having expected reward at least
1

2C�
that of an optimal adaptive policy.

The algorithm in Theorem 2 relies on an intricate
transformation of general size distributions to
certain canonical distributions and an algorithm
for computing a near-optimal adaptive policy
under canonical size distributions.

Extensions

Several variants of the stochastic knapsack prob-
lem have been studied, and good algorithms have
been obtained for them.

Correlated Stochastic Knapsack
This is a generalization of the stochastic knap-
sack problem, where each item’s reward is also
random and possibly correlated with its size. The
distributions across items are still independent:
so the correlations are only between the size and
reward of a single item. Gupta, Krishnaswamy,
Molinaro, and Ravi [6] gave an algorithm for
this problem that computes a nonadaptive policy
having expected reward within factor 8 of the
optimal adaptive policy. Recently, Ma [8] gave an
algorithm that for any constant � > 0 computes
an adaptive policy having expected reward within
factor 2 C � of the optimal adaptive policy; this
algorithm requires item sizes and the capacity B

to be specified in unary.

Budgeted Multi-armed Bandit
The input to this problem consists of a bound
B and n “arms” (each arm is a Markov chain
with rewards at its states and a specified starting
state). A feasible policy consists of B steps. In
each step, the policy can select one arm i 2 Œn�:
upon selecting arm i , it gets the reward at the
current state of arm i and the arm transitions
to its next state according to its Markov chain.
The objective is to maximize the expected total
reward over B steps of the policy. Again, we
are interested in adaptive policies, whose ac-
tions may depend on past outcomes. Guha and
Munagala [5] introduced this problem and gave
a .2 C �/-approximation algorithm, under the
assumption that the rewards of each arm satisfy

a “Martingale” condition (which is natural in
many settings). Gupta, Krishnaswamy, Molinaro,
and Ravi [6] gave the first constant-factor ap-
proximation algorithm for this problem without
the Martingale reward assumption. The constant
factor in the latter result was improved to 6:75 by
Ma [8].

Stochastic Orienteering
This problem is defined on a finite metric space
.V; d/ with vertex set V and distance function
d W V � V ! RC that satisfies (i) symmetry
d.u; v/ D d.v; u/ for all u; v 2 V and (ii) triangle
inequality d.u; w/ � d.u; v/ C d.v; w/ for all
u; v; w 2 V . The distances between vertices de-
note travel times. Each vertex i 2 V corresponds
to a job having deterministic reward ri � 0 and
random processing time Si � 0. The random
variables Si s are independent with known, arbi-
trary distributions. Given a start-vertex � 2 V and
bound B , the goal is to compute a policy, which
describes a (possibly adaptive) path originating
from � that visits vertices and runs the respective
jobs. The actual processing time of a job is known
only when it completes. The policy ends when
the total time (for travel plus processing) exceeds
B . The objective is to maximize the expected
total reward; there is no reward obtained from
a partially completed job (which may occur at
the end of the policy). As before, an optimal
policy may be adaptive and choose the next job
to run based on previously observed outcomes.
Gupta, Krishnaswamy, Nagarajan, and Ravi [7]
gave an O.log log B/-approximation algorithm
for the stochastic orienteering problem; this re-
sult requires the bound B , distances, and pro-
cessing times to be integer valued. As a corol-
lary, [7] also upper bounded the adaptivity gap
by O.log log B/. Recently, Bansal and Nagara-

jan [1] gave an ˝
�p

log log B
�

lower bound on

the adaptivity gap.

Applications

The stochastic knapsack problem and its variants
model various applications in advertising, logis-
tics, medical diagnosis, and robotics.
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Open Problems

It is not known if the stochastic knapsack prob-
lem is any harder to approximate than the usual
(deterministic) knapsack problem. In particular,
is there a PTAS for stochastic knapsack? Deter-
mining a tight bound on its adaptivity gap is also
an interesting open question.
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Problem Definition

Scheduling is concerned with the allocation of
scarce resources (such as machines or servers) to
competing activities (such as jobs or customers)
over time. The distinguishing feature of a
stochastic scheduling problem is that some of the
relevant data are modeled as random variables,
whose distributions are known, but whose
actual realizations are not. Stochastic scheduling
problems inherit several characteristics of their
deterministic counterparts. In particular, there are
virtually an unlimited number of problem types
depending on the machine environment (single
machine, parallel machines, job shops, flow
shops), processing characteristics (preemptive
versus nonpreemptive, batch scheduling versus
allowing jobs to arrive “over time,” due dates,
deadlines), and objectives (makespan, weighted
completion time, weighted flow time, weighted
tardiness). Furthermore, stochastic scheduling
models have some new, interesting features (or
difficulties!):

• The scheduler may be able to make inferences
about the remaining processing time of a job
by using information about its elapsed pro-
cessing time; whether the scheduler is allowed
to make use of this information or not is a
question for the modeler.

• Many scheduling algorithms make decisions
by comparing the processing times of jobs. If
jobs have deterministic processing times, this
poses no problems as there is only one way
to compare them. If the processing times are
random variables, comparing processing times
is a subtle issue. There are many ways to com-
pare pairs of random variables, and some are
only partial orders. Thus, any algorithm that
operates by comparing processing times must
now specify the particular ordering used to
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compare random variables (and to determine
what to do if two random variables are not
comparable under the specified ordering).

These considerations lead to the notion of a
scheduling policy, which specifies how the scarce
resources have to be allocated to the competing
activities as a function of the state of the system at
any point in time. The state of the system includes
information such as prior job completions, the
elapsed time of jobs currently in service, the
realizations of the random release dates and due
dates (if any), and any other information that
can be inferred based on the history observed so
far. A policy that is allowed to make use of all
this information is said to be dynamic, whereas
a policy that is not allowed to use any state
information is static.

Given any policy, the objective function
for a stochastic scheduling model operating
under that policy is typically a random variable.
Thus, comparison of two policies entails the
comparison of the associated random variables,
so the sense in which these random variables
are compared must be specified. A common
approach is to find a solution that optimizes the
expected value of the objective function (which
has the advantage that it is a total ordering); less
commonly, other orderings such as the stochastic
ordering or the likelihood ratio ordering are
used.

Key Results

Consider a single machine that processes n

jobs, with the (random) processing time of job
i given by a distribution Fi .�/ whose mean is
pi . The Weighted Shortest Expected Processing
Time first (WSEPT) rule sequences the jobs in
decreasing order of wi =pi . Smith [13] proved that
the WSEPT rule minimizes the sum of weighted
completion times when the processing times are
deterministic. Rothkopf [11] generalized this
result and proved the following:

Theorem 1 The WSEPT rule minimizes the ex-
pected sum of the weighted completion times in

the class of all nonpreemptive dynamic policies
(and hence also in the class of all nonpreemptive
static policies).

If preemption is allowed, the WSEPT rule is
not optimal. Nevertheless, Sevcik [12] showed
how to assign an “index” to each job at each
point in time such that scheduling a job with
the largest index at each point in time is op-
timal. Such policies are called index policies
and have been investigated extensively because
they are (relatively) simple to implement and
analyze. Often, the optimality of index policies
can be proved under some assumptions on the
processing time distributions. For instance, We-
ber, Varaiya, and Walrand [14] proved the follow-
ing result for scheduling n jobs on m identical
parallel machines:

Theorem 2 The SEPT rule minimizes the ex-
pected sum of completion times in the class of all
nonpreemptive dynamic polices, if the processing
time distributions of the jobs are stochastically
ordered.

For the same problem but with the makespan
objective, Bruno, Downey, and Frederickson [3]
proved the optimality of the Longest Expected
Processing Time first rule provided all the jobs
have exponentially distributed processing times.

One of the most significant achievements in
stochastic scheduling is the proof of optimality of
index policies for the multiarmed bandit problem
and its many variants, due originally to Gittins
and Jones [5, 6]. In an instance of the bandit
problem, there are N projects, each of which is
in any one of a possibly finite number of states.
At each (discrete) time, any one of the projects
can be attempted, resulting in a random reward;
the attempted project undergoes a (Markovian)
state transition, whereas the other projects remain
frozen and do not change state. The goal of the
decision maker is to determine an optimal way to
attempt the projects so as to maximize the total
discounted reward. Of course one can solve this
problem as a large, stochastic dynamic program,
but such an approach does not reveal any struc-
ture and is moreover computationally impractical
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except for very small problems. (Also, if the state
space of any project is countable or infinite, it
is not clear how one can solve the resulting DP
exactly!) The remarkable result of Gittins and
Jones [6] is the optimality of index policies: to
each state of each project, one can associate an
index so that attempting a project with the largest
index at any point in time is optimal. The original
proof of Gittins and Jones [6] has subsequently
been simplified by many authors; moreover, sev-
eral alternative proofs based on different tech-
niques have appeared, leading to a much better
understanding of the class of problems for which
index policies are optimal [2, 4, 5, 10, 17].

While index policies are easy to implement
and analyze, they are often not optimal in many
problems. It is therefore natural to investigate the
gap between an optimal index policy (or a natural
heuristic) and an optimal policy. For example, the
WSEPT rule is a natural heuristic for the problem
of scheduling jobs on identical parallel machines
to minimize the expected sum of the weighted
completion times. However, the WSEPT rule
is not necessarily optimal. Weiss [16] showed
that, under mild and reasonable assumptions, the
expected number of times that the WSEPT rule
differs from the optimal decision is bounded
above by a constant, independent of the number
of jobs. Thus, the WSEPT rule is asymptotically
optimal. As another example of a similar result,
Whittle [18] generalized the multiarmed bandit
model to allow for state transitions in projects that
are not activated, giving rise to the “restless ban-
dit” model. For this model, Whittle [18] proposed
an index policy whose asymptotic optimality was
established by Weber and Weiss [15].

A number of stochastic scheduling models
allow for jobs to arrive over time according to
a stochastic process. A commonly used model
in this setting is that of a multiclass queueing
network. Multiclass queueing networks serve as
useful models for problems in which several
types of activities compete for a limited number
of shared resources. They generalize determinis-
tic job-shop problems in two ways: jobs arrive
over time and each job has a random processing
time at each stage. The optimal control prob-
lem in a multiclass queueing network is to find

an optimal allocation of the available resources
to activities over time. Not surprisingly, index
policies are optimal only for restricted versions
of this general model. An important example is
scheduling a multiclass single-server system with
feedback: there are N types of jobs; type i jobs
arrive according to a Poisson process with rate
�i , require service according to a service-time
distribution Fi .�/ with mean processing time si ,
and incur holding costs at rate ci per unit time. A
type i job after undergoing processing becomes a
type j job with probability pij or exits the system
with probability 1�

P

j

pij isn’t in document. The

objective is to find a scheduling policy that min-
imizes the expected holding cost rate in steady
state. Klimov [9] proved the optimality of index
policies for this model, as well as for the objective
in which the total discounted holding cost is to
be minimized. While the optimality result does
not hold when there are many parallel machines,
Glazebrook and Niño-Mora [7] showed that this
rule is asymptotically optimal. For more general
models, the prevailing approach is to use ap-
proximations such as fluid approximations [1] or
diffusion approximations [8].

Applications

Stochastic scheduling models are applicable in
many settings, most prominently in computer and
communication networks, call centers, logistics
and transportation, and manufacturing systems
[4, 10].
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Problem Definition

Given a pattern string P D p1p2 : : : pm and a
text string T D t1t2 : : : tn, both being sequences
over an alphabet ˙ of size � , the exact string-
matching (ESM) problem is to find one or, more
generally, all the text positions where P occurs in
T , that is, compute the set fj j 1 � j � n�mC

1 and P D tj tj C1 : : : tj Cm�1g.
Both worst- and average-case complexities are

considered. For the latter one assumes that pattern
and text are randomly generated by choosing
each character uniformly and independently from
˙ . For simplicity and practicality the assumption
m D o.n/ is made in this entry.

Key Results

Most algorithms that solve the ESM problem
proceed in two steps: a preprocessing phase of the
pattern P followed by a searching phase over the
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text T . The preprocessing phase serves to collect
information on the pattern in order to speed up
the searching phase.

The searching phase of string-matching algo-
rithms works as follows: they first align the left
ends of the pattern and the text, then compare
the aligned symbols of the text and the pattern –
this specific work is called an attempt or a scan –
and after a whole match of the pattern or after
a mismatch, they shift the pattern to the right.
They repeat the same procedure again until the
right end of the pattern goes beyond the right end
of the text. The scanning part can be viewed as
operating on the text through a window, which
size is most often the length of the pattern. This
processing manner is called the scan and shift
mechanism. Different scanning strategies of the
window lead to algorithms having specific prop-
erties and advantages.

The brute force algorithm for the ESM prob-
lem consists in checking if P occurs at each
position j on T , with 1 � j � n � m C 1. It
does not need any preprocessing phase. It runs
in quadratic time O.mn/ with constant extra
space and performs O.n/ character comparisons
on average. This is to be compared with the
following bounds.

Theorem 1 (Cole et al. [6]) The minimum num-
ber of character comparisons to solve the ESM
problem in the worst case is n C 9

4m
.n � m/,

and there exists an algorithm performing at most
nC 8

3.mC1/
.n�m/ character comparisons in the

worst case.

Theorem 2 (Yao [26]) The ESM problem needs

˝
�

log� m

m
� n

�
time in expectation.

Online Text Parsing
The first linear ESM algorithm appears in the
1970s. The preprocessing phase consists in com-
puting the periods of the pattern prefixes, or
equivalently the length of the longest border for
all the prefixes of the pattern. A border of a
string is both a prefix and a suffix of it distinct
from the string itself. Let nextŒi � be the length
of the longest border of p1 : : : pi�1. Consider an
attempt at position j , when the pattern p1 : : : pm

is aligned with the segment tj : : : tj Cm�1 of the
text. Assume that the first mismatch (during a
left to right scan) occurs between symbols pi

and tiCj for 1 � i � m. Then, p1 : : : pi�1 D

tj : : : tiCj �1 D u and a D pi ¤ tiCj D b.
A prefix v of the pattern may match a suffix of
the portion u of the text. By the definition of
table next, a shift that aligns pnextŒi� with tiCj

cannot miss any occurrence of P in T , and thus
backtracking in the text is not necessary. There
exist two variants [18,19], depending on whether
pnextŒi� has to be different from pi or not. The
second is slightly more efficient.

Theorem 3 (Knuth, Morris, and Pratt [18])
The text searching can be done in time O.n/ and
space O.m/. Preprocessing the pattern can be
done in time O.m/.

The search can also be realized using an im-
plementation with successor by default of the
deterministic automaton D.P / recognizing the
language ˙�P . The size of the implementation
is O.m/ independent of the alphabet size, due
to the fact that D.P / possesses m C 1 states,
m forward arcs, and at most m backward arcs.
Using the automaton for searching a text leads to
an algorithm having an efficient delay (maximum
time for processing a character of the text).

Theorem 4 (Hancart [15]) Searching for
the pattern P can be done with a delay of
O.minf�; log2 m/g/ letter comparisons.

Note that for most algorithms the pattern pre-
processing is not necessarily done before the text
parsing, as it can be performed on the fly during
the parsing.

Algorithms Sublinear on the Average
The Boyer-Moore algorithm [3] is among the
most efficient ESM algorithms. A simplified ver-
sion of it, or the entire algorithm, is often imple-
mented in text editors for the search and substi-
tute commands.

The algorithm scans the characters of the win-
dow from right to left beginning with its right-
most symbol. In case of a mismatch (or a com-
plete match of the pattern), it uses two precom-
puted functions to shift the pattern to the right.
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These two shift functions are called the bad-
character shift and the good-suffix shift. They
are based on the following observations. Assume
that a mismatch occurs between character pi D

a of the pattern and character tiCj D b of
the text during an attempt at position j . Then,
piC1 : : : pm D tiCj C1 : : : tj Cm D u and pi ¤

tiCj . The good-suffix shift consists in aligning
the segment tiCj C1 : : : tj Cm with its rightmost
occurrence in P that is preceded by a character
different from pi . Another variant called the
best-suffix shift consists in aligning the segment
tiCj : : : tj Cm with its rightmost occurrence in
P . Both variants can be computed in time and
space O.m/ independent of the alphabet size. If
there exists no such segment, the shift consists in
aligning the longest suffix v of tiCj C1 : : : tj Cm

with a matching prefix of x. The bad-character
shift consists in aligning the text character tiCj

with its rightmost occurrence in p1 : : : pm�1. If
tiCj does not appear in the pattern, no occurrence
of P in T can overlap the symbol tiCj , then the
left end of the pattern is aligned with the character
at position iCjC1. The search can then be done
in O.n=m/ in the best case.

Theorem 5 (Cole [5]) During the search for a
nonperiodic pattern P of length m (such that the
length of the longest border of P is less than
m=2) in a text T of length n, the Boyer-Moore
algorithm performs at most 3n comparisons be-
tween letters of P and of T .

In practice, when scanning the window
from right to left during an attempt, it is
sometimes more efficient to only use the bad-
character shift. This was first done by the
Horspool algorithm [16]. Other practical efficient
algorithms are the Quick Search by Sunday [24]
and the Tuned Boyer-Moore by Hume and
Sunday [17].

Yao’s bound can be reached using an indexing
structure giving access to all the factors of the
reverse pattern. This is done by the Reverse
Factor algorithm also called BDM (for Backward
Dawg Matching).

Theorem 6 (Crochemore et al. [9]) The
search can be done in optimal expected time

O
�

log� m

m
� n

�
using the suffix automaton or the

suffix tree of the reverse pattern.

A factor oracle can be used instead of an index
structure. A factor oracle is an automaton simpler
than the suffix automaton that may recognize
some additional strings of length smaller than m.
The only string of length m accepted by the factor
oracle of a string w of length m is w itself. Then it
can be used for solving the ESM problem. This is
done by the Backward Oracle Matching (BOM)
algorithm of Allauzen, Crochemore, and Raffinot
[1]. Its behavior in practice is similar to the one
of the BDM algorithm.

Time-Space Optimal Algorithms
Algorithms of this type run in linear time (for
both preprocessing and searching) and need only
constant space in addition to the inputs.

Theorem 7 (Galil and Seiferas [13]) The
search can be done optimally in time O.n/ and
constant extra space.

After Galil and Seiferas’ first solution, other
solutions are by Crochemore-Perrin [8] and Ryt-
ter [22]. These algorithms rely on a partition of
the pattern in two parts; they first search for the
right part of the pattern from left to right, and
then, if no mismatch occurs, they search for the
left part. The partition can be the perfect factor-
ization [13], the critical factorization [8], or based
on the lexicographically maximum suffix of the
pattern [22]. Another solution by Crochemore [7]
is a variant of KMP [18]: it computes lower
bounds of pattern prefixes periods on the fly and
requires no preprocessing.

Bit-Parallel Solution
It is possible to use the bit-parallelism technique
for ESM.

Theorem 8 (Baeza-Yates and Gonnet [2]; Wu
and Manber [25]) If the length m of the string
P is smaller than the number of bits of a machine
word, the preprocessing phase can be done in
time and space O.�/ and the searching phase in
time O.n/.
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It is even possible to use this bit-parallelism
technique to simulate the BDM algorithm. This
is realized by the BNDM (Backward Nondeter-
ministic Dawg Matching) algorithm [20].

There exists another method that uses the
bit-parallelism technique that is optimal on the
average. It considers sparse q-grams and thus
avoids to scan a lot of text positions. It is due to
Fredriksson and Grabowski [12].

Applications

The methods that are described here apply to
the treatment of the natural language, of genetic
and musical sequences, the problems of safety
related to data flows like virus detection, and the
management of the textual databases, to quote
only some immediate applications.

Open Problems

There remain only a few open problems on this
question. It is still unknown if it is possible to
design an average optimal time constant space
string-matching algorithm. The exact size of the
Boyer-Moore automaton is still unknown [3]. The
Boyer-Moore automaton was first introduced by
Knuth [18]. Its states encode all the possible
situations when searching the pattern with the
Boyer-Moore algorithm and remember every text
character already matched in the window.

Experimental Results

The book of G. Navarro and M. Raffinot [21] is a
good introduction and presents an experimental
map of ESM algorithms for different alphabet
sizes and pattern lengths. Basically, the Shift-
Or algorithm is efficient for small alphabets and
short patterns, the BNDM algorithm is efficient
for medium-sized alphabets and medium-length
patterns, the Horspool algorithm is efficient for
large alphabets, and the BOM algorithm is ef-
ficient for long patterns. The article of S. Faro

and T. Lecroq [11] updates the experimental map
with the most recent results.

URLs to Code and Data Sets

The site monge.univ-mlv.fr/~lecroq/string
presents a large number of ESM algorithms
(see also [4]). Each algorithm is implemented
in C code and a Java applet is given. The site
www.dmi.unict.it/~faro/smart presents SMART,
a string-matching research tool, which contains
the C code of a great number of exact string-
matching algorithms and some corpora (natural
language, musical, biological, and random texts).
The user can easily plug its own algorithm to
compare it against some selected algorithms.
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Problem Definition

The problem is to sort a set of strings into lexi-
cographical order. More formally: A string over
an alphabet † is a finite sequence x1x2x3 : : : xk

where xi 2 † for i D 1; : : : ; k. The xi s
are called the characters of the string, and k

is the length of the string. If the alphabet † is
ordered, the lexicographical order on the set of
strings over † is defined by declaring a string
x D x1x2x3 : : : xk smaller than a string y D

y1y2y3 : : : yl if either there exists a j �1 such
that xi D yi for 1� i < j and xj < yj or
if k < l and xi D yi for 1� i � k. Given a
set S of strings over some ordered alphabet, the
problem is to sort S according to lexicographical
order.

The input to the string sorting problem con-
sists of an array of pointers to the strings to be
sorted. The output is a permutation of the array of
pointers, such that traversing the array will point
to the strings in nondecreasing lexicographical
order.

The complexity of string sorting depends on
the alphabet as well as the machine model. The
main solution [15] described in this entry works
for alphabets of unbounded size (i. e., com-
parisons are the only operations on characters
of †) and can be implemented on a pointer
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machine. See below for more information on the
asymptotic complexity of string sorting in various
settings.

Key Results

This section is structured as follows: first, the
key result appearing in the title of this entry [15]
is described; then an overview of other relevant
results in the area of string sorting is given.

The string sorting algorithm proposed by
Bentley and Sedgewick in 1997 [15] is called
three-way radix quicksort [5]. It works for
unbounded alphabets, for which it achieves
optimal performance.

Theorem 1 The algorithm three-way radix
quicksort sorts K strings of total length N in
time O.K log K CN /.

This time complexity is optimal, which
follows by considering strings of the form
bbb : : :bx, where all xs are different: Sorting
the strings can be no faster than sorting the
xs, and all bs must be read (else an adversary
could change one unread b to a or c, making
the returned order incorrect). A more precise
version of the bounds above (upper as well as
lower) is K log K C D, where D is the sum of
the lengths of the distinguishing prefixes of the
strings. The distinguishing prefix ds of a string
s in a set S is the shortest prefix of s which
is not a prefix of another string in S (or is s

itself, if s is a prefix of another string). Clearly,
K � D � N .

The three-way radix quicksort of Bentley and
Sedgewick is not the first algorithm to achieve
this complexity; however, it is a very simple
and elegant way of doing it. As demonstrated in
[3, 15], it is also very fast in practice. Although
various elements of the algorithm had been noted
earlier, their practical usefulness for string sorting
was overlooked until the work in [15].

Three-way radix quicksort is shown in pseudo-
code in Fig. 1 (adapted from [5]), where S is a
list of strings to be sorted and d is an integer. To

SORT(S, d)

SORT(S<, d)

SORT(S>, d)
S = S<  + S=  + S>

SORT(S=, d + 1)

RETURN
Choose a partitioning character n ∈ {sd ⎜s ∈S}
S<  = {s ∈S ⎜sd < n}
S=  = {s ∈S ⎜sd = n}
S>  = {s ∈S ⎜sd > n}

IF ⎜S ⎜≤ 1:

IF n ≠ EOS:

String Sorting, Fig. 1 Three-way radix quicksort (as-
suming each string ends in a special EOS character)

sort S , an initial call SORT(S , 1) is made. The
value sd denotes the d th character of the string
s, andC denotes concatenation. The presentation
in Fig. 1 assumes that all strings end in a special
end-of-string (EOS) character (such as the null
character in C). In an actual implementation, S

will be an array of pointers to strings, and the sort
will be in-place (using an in-place method from
standard quicksort for three-way partitioning of
the array into segments holding S<, SD, and S>),
rendering concatenation superfluous.

Correctness follows from the following invari-
ant being maintained by the algorithm: At the
start of a call SORT(S , d ), all strings in S agree
on the first d � 1 characters.

Time complexity depends on how the par-
titioning character v is chosen. One particular
choice is the median of all the d th characters (in-
cluding doublets) of the strings in S . Partitioning
and median finding can be done in time O.jS j/,
which is O(1) time per string partitioned. Hence,
the total running time of the algorithm is the sum
over all strings of the number of partitionings
they take part in. For each string, let a partitioning
be of type I if the string ends up in S< or S>

and of type II if it ends up in SD. For a string s,
type II can only occur jdsj times and type I can
only occur log K times. Hence, the running time
is O.K log K CD/.
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Like for standard quicksort, median finding
impairs the constant factors of the algorithm, and
more practical choices of partitioning character
include selecting a random element among all the
d th characters of the strings in S and selecting
the median of three elements in this set. The
worst-case bound is lost, but the result is a fast,
randomized algorithm.

Note that the ternary recursion tree of three-
way radix quicksort is equivalent to a trie over
the input strings where each trie node is im-
plemented by a binary search tree whose node
elements are the child edges (in the trie) of the
trie node. In more detail, a node in a binary tree
contains the character of a trie edge and a pointer
to the root of the binary tree implementing the
corresponding trie child. The search keys in a
binary tree are the characters in its nodes. This
trie implementation is named ternary search trees
in [15]. In the recursion tree of three-way radix
quicksort, an edge representing a recursive call
on S< or S> corresponds to a tree edge inside a
binary tree implementing a trie node, and an edge
representing a recursive call on SD corresponds
to a trie edge.

For the version of the algorithm where the
partitioning character v is chosen as the median
of all the d th characters, it is not hard to see
that the binary trees representing the trie nodes
become weighted trees. These are binary trees in
which each element x has an associated weight
wx , and searches for x take O.log W=wx/, where
W D †xwx is the sum of all weights in the
binary tree. Here, the weight of a binary tree
node storing character x is the number of strings
which in the trie reside below the corresponding
trie edge. As shown in [13], in such a trie im-
plementation, searching for a string P among K

stored strings takes time O.log KCjP j/, which is
optimal for unbounded (i.e., comparison-based)
alphabets. Hence, by the correspondence between
the recursion trees of three-way radix quicksort
and ternary search trees, three-way radix quick-
sort may additionally be viewed as a construction
algorithm for an efficient dictionary structure for
strings.

Other key results in the area of string
sorting are now described. The classic string
sorting algorithm is radixsort, which assumes
a constant-sized alphabet. The least-significant-
digit-first variant is easy to implement and runs
in O.N C l j†j/ time, where l is the length of
the longest string. The most-significant-digit-first
variant is more complicated to implement but
has a better running time of O.D C d j†j/,
where D is the sum of the lengths of the
distinguishing prefixes and d is the longest
distinguishing prefix. McIlroy et al. [12]
discusses in depth efficient implementations of
radixsort.

If the alphabet consists of integers, then on
a word-RAM the complexity of string sorting
is essentially determined by the complexity of
integer sorting. More precisely, the time (when
allowing randomization) for sorting strings is
Θ.SortInt.K/C N /, where SortInt.K/ is the time
to sort K integers [2], which currently is known
to be O.K

p
log log K/ [11].

Returning to comparison-based model, the pa-
pers [8, 10] give generic methods for turning any
data structure over one-dimensional keys into a
data structure over strings. Using finger search
trees, this gives an adaptive sorting method for
strings which uses O.N C K log.F=K// time,
where F is the number of inversions among the
strings to be sorted.

Concerning space complexity, it has been
shown [9] that string sorting can still be
done in O.K log K C N / time using only
O(1) space besides the strings themselves.
However, this assumes that all strings have equal
lengths.

All algorithms so far are designed to work in
internal memory, where CPU time is assumed to
be the dominating factor. For external memory
computation, a more relevant cost measure is
the number of I/Os performed, as captured by
the I/O model [1], which models a two-level
memory hierarchy with an infinite outer memory,
an inner memory of size M , and transfer (I/Os)
between the two levels taking place in blocks
of size B . For external memory, upper bounds
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were first given in [4], along with matching
lower bounds in restricted I/O models. For a
comparison-based model where strings may
only be moved in blocks of size B (hence,
characters may not be moved individually),
it is shown in [4] that string sorting takes
Θ.N1=B logM=B.N1=B/ C K2 logM=B K2 C

N=B/ I/Os, where N1 is the total length of
strings shorter than B characters, K2 is the
number of strings of at least B characters, and
N is the total number of characters. This bound
is equal to the sum of the I/O costs of sorting
the characters of the short strings, sorting B

characters from each of the long strings, and
scanning all strings. In the same paper, slightly
better bounds in a model where characters may
be moved individually in internal memory are
given, as well as some upper bounds for non-
comparison-based string sorting. Further bounds
(using randomization) for non-comparison-based
string sorting have been given, with I/O bounds of
O.K=B log M=B.K=M/ log logM=B.K=M/ C

N=B/ [7] and O.K=B.logM=B.N=M//2 log2KC

N=B/ (Ferragina, personal communication).
Returning to internal memory, it may also

there be the case that memory hierarchy effects
are the determining factor for the running time
of algorithms but now due to cache faults rather
than disk I/Os. Heuristic algorithms (i.e., algo-
rithms without good worst-case bounds), aiming
at minimizing cache faults for internal memory
string sorting, have been developed. Of these,
the burstsort line of algorithms [16] performs
particularly well in experiments.

Applications

Data sets consisting partly or entirely of string
data are very common: Most database applica-
tions have strings as one of the data types used,
and in some areas, such as bioinformatics, Web
retrieval, and word processing, string data is pre-
dominant. Additionally, strings form a general
and fundamental data model, containing, e.g.,
integers and multidimensional data as special
cases. Since sorting is arguably among the most

important data processing tasks in any domain,
string sorting is a general and important problem
with wide practical applications.

Open Problems

As appears from the bounds discussed above,
the asymptotic complexity of the string sorting
problem is known for comparison-based alpha-
bets. For integer alphabets on the word-RAM, the
problem is almost closed in the sense that it is
equivalent to integer sorting, for which the gap
left between the known bounds and the trivial
linear lower bound is small.

In external memory, the situation is less
settled. As noted in [4], a natural upper bound to
hope for in a comparison-based setting is to meet
the lower bound of Θ.K=B logM=B K=M C

N=B/ I/Os, which is the sorting bound for
K single characters plus the complexity of
scanning the input. The currently known upper
bounds only get close to this when leaving
the comparison-based setting and allowing
randomization.

Experimental Results

In [15], experimental comparison of two imple-
mentations (one simple and one tuned) of three-
way radix quicksort with a tuned quicksort [6]
and a tuned radixsort [12] showed the simple im-
plementation to always outperform the quicksort
implementation and the tuned implementation to
be competitive with the radixsort implementa-
tion.

In [3], experimental comparison among ex-
isting and new radixsort implementations (in-
cluding the one used in [15]), as well as tuned
quicksort and tuned three-way radix quicksort,
was performed. This study confirms the picture
of three-way radix quicksort as very competitive,
always being one of the fastest algorithms, and
arguably the most robust across various input
distributions.
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Data Sets

The data sets used in [15]: http://www.cs.
princeton.edu/~rs/strings/. The data sets used
in [3]: http://dl.acm.org/citation.cfm?id=297136.

URL to Code

Code in C from [15]: http://www.cs.princeton.
edu/~rs/strings/.

Code in C from [3]: http://dl.acm.org/citation.
cfm?id=297136.

Code in Java from [14]: http://www.cs.princeton.
edu/~rs/Algs3.java1-4/code.txt.

Cross-References
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� Suffix Tree Construction
� Suffix Tree Construction in Hierarchical
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Problem Definition

Let G D .V; E/ be a directed graph. For an
arc .u; v/ 2 E, u is said to dominate v, and
v is said to absorb u. Vertex u is also called a
dominator of v, and vertex v is called an absorber
of u. A vertex set D � V is a dominating
set (DS) of G if every vertex in V n D has a
dominator in D; it is an absorbing set (AS) of
G if every vertex in V nD has an absorber in D.
A directed graph G is strongly connected if for
any pair of ordered vertices u; v 2 V , there is a
directed path in G from u to v. The “Minimum
Strongly Connected Dominating and Absorbing
Set” problem (MSCDAS) is to find a vertex set
D such that D is both a dominating set and an
absorbing set of G and the subgraph of G induced
by D is strongly connected.

Disk graph is a geometric graph which is
of particular interest in the study of MSCDAS,
since disk graph is a model of heterogeneous
wireless sensor network, and as one can see in
the application part, MSCDAS plays an important
role in wireless sensor network. In a disk graph,
every vertex u corresponds to a sensor on the
plane equipped with an omnidirectional antenna
of transmission radius r.u/. Another sensor v

can correctly decode the message sent by u if
and only if v is in the disk centered at u with
radius r.u/. Hence, there is an arc .u; v/ in the
disk graph if and only if kuvk � r.u/, where
k � k is the Euclidean distance between u and
v. In particular, if all sensors are equipped with
the same transmission radius, then the disk graph
degenerates to an undirected graph called unit
disk graph.

Key Results

Hardness Results
In a general digraph, the MSCDAS problem can-
not be approximated within a factor of .1�"/ ln n

for any real number " > 0, where n is the
number of vertices in the digraph. Even in disk
graph, MSCDAS is still NP-hard. These hardness
results follow from the fact that their undirected
counterparts have these hardness results [1, 5].

MSCDAS in General Digraph
Li et al. [8] gave a .3H.n�1/�1/-approximation
for MSCDAS, where H.�/ D

P�
iD1 1=i is the

harmonic number.
The algorithm is based on the following obser-

vation. For a vertex u in a digraph G, a spanning
in-arborescence (resp. out-arborescence) rooted
at u is a spanning sub-digraph of G in which
every vertex except u has in-degree (resp. out-
degree) exactly one and vertex u has in-degree
(resp. out-degree) zero. For a spanning arbores-
cence T of G, denote by int.T / the set of internal
vertices of T . For any vertex u, suppose T in and
T out are spanning in-arborescence and spanning
out-arborescence of G rooted at u, respectively.
Then int.T in/ [ int.T out/ is an SCDAS of G.

Define the problem “Spanning Arborescence
with Fewest Internal Vertices” (SAFIV) as fol-
lows: given a digraph G and a vertex u, find a
spanning arborescence T rooted at u such that
jint.T /j is as small as possible. By the above
observation, if SAFIV has a �-approximation,
then MSCDAS has a 2�-approximation. Li et al.
gave a .1:5H.n � 1/ � 0:5/-approximation for
SAFIV, and thus the approximation ratio .3H.n�

1/ � 1/ for MSCDAS follows.
The approximation algorithm for SAFIV uses

the idea in [6, 7] which study the problem of
“Minimum Node-Weighted Steiner Tree” (MN-
WST). The idea is to iteratively merge smaller
arborescences greedily (a vertex is a trivial ar-
borescence) until finally one gets one arbores-
cence including all vertices which is rooted at
the given vertex. It was pointed out in [8] that
using the method in [6], the approximation ratio
for SAFIV can be further reduced to 1:35 ln n.
Since SAFIV is at least as hard as the minimum
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connected dominating set problem, it cannot be
approximated within factor .1 � "/ ln n. Any
progress narrowing the gap between ln n and
1:35 ln n would be interesting.

MSCDAS in Disk Graph
Making use of geometric properties, can the ap-
proximation ratio for MSCDAS be better in a
disk graph? The answer is yes. Du et al. [2] were
the first to give a constant approximation in this
setting. Their idea was further explored by Park
et al. [11] to output an SCDAS with size at most
9:6.kC1=2/2optC14:8.kC1=2/2, where opt is
the size of an optimal solution and k D rmax=rmin,
the ratio between the maximum radius and the
minimum radius. The core in their work is an
algorithm for SAFIV, which first colors all ver-
tices white and then, by growing a search tree step
by step, turns the colors to either black, blue, or
gray. The set of black vertices forms a dominating
set, and the set of blue vertices connects these
black vertices into an out-arborescence. In fact,
black vertices are mutually independent, where
two vertices u and v are said to be independent
if either uv or vu is not an arc. Two independent
vertices have distance greater than rmin. Such a
property guarantees an upper bound for the num-
ber of black vertices. Furthermore, the structure
of a search tree guarantees that the number of
blues vertices is no larger than that of black
vertices. Then, the desired approximation ratio
follows. It should be noted that if rmax=rmin is
unbounded, then the approximation ratio is not a
constant.

Without a bounded assumption on rmax=rmin,
Xu and Li [12] showed that a .2 C "/-
approximation exists for MDAS, which is a
combination of a PTAS for MDS and a PTAS for
MAS. In fact, the PTAS for MAS is a special case
of the “Geometric Hitting Set” problem studied
in [10], and the PTAS for MDS is a variation for
the MDS problem in an undirected graph studied
in [4]. Both PTASs are obtained through a local
search method. The analysis is based on the
separator theorem for planar graphs [3, 9]. Zhang
et al. [13] also obtained approximation ratio
.2 C "/ using the same method. Based on such
a DAS, adding Steiner nodes to connect, Zhang

et al. showed that a .4 C 3 ln.2 C "/opt C "/-
approximation exists for MSCDAS. When the
optimal value opt is substantially smaller than n,
this is an improvement on ratio 3H.n � 1/ � 1

for disk graphs.

Applications

One application of MSCDAS is the communi-
cation in wireless sensor network (WSN). In a
WSN, information is distributed among sensors
by multi-hop transmissions. If all sensors trans-
mit messages in a flooding manner, then a lot
of energy is wasted, and large amount of inter-
ference is created. To alleviate such problems, it
is desirable that only a small fraction of sensors
participate in the transmission, while information
can still be successfully shared. An SCDAS can
serve for this purpose. Suppose D is an SCDAS
of directed graph G (the topology of the WSN).
If there is a message at source sensor u to be sent
to destination sensor v, then the message can be
first sent from u to its absorber; since GŒD� is
strongly connected, it can be successfully relayed
to the dominator of v and then sent to v.

Open Problems

It is still open whether there exists a constant
approximation algorithm for MSCDAS in disk
graph.
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Problem Definition

A parameterized problem is a language L �

˙� � N, where ˙ is a fixed, finite alphabet.
The second component is called the parameter
of the problem. The central notion in parameter-
ized complexity is the notion of fixed-parameter
tractability (FPT). A parameterized problem L

is called FPT if it can be determined in time
f .k/ � nc whether or not .x; k/ 2 L, where n D

j.x; k/j, f is a computable function depending
only on k, and c is a constant independent of n

and k. The complexity class containing all fixed-
parameter tractable problems is called FPT.

While in the definition of class FPT, we are
happy with any computable function f , from
application perspective it is often desirable to
have the asymptotic growth of f as slow as
possible. Take as an example an FPT problem
VERTEX COVER which has been subjected
to intense scrutiny with progressively faster
algorithms designed for it. Let us remind
that in the VERTEX COVER problem, we
are asked if an n vertex graph G contains a
vertex cover of size k or in other words a
set of vertices S such that every edge of G

has at least one endpoint in S . Starting from
a kk algorithm of Buss and Goldsmith in
1993, there have been algorithms with f .k/ 2

f2k ; 1:324718k ; 1:29175k ; 1:2906k ; 1:271k ;

1:2738kg. The current fastest algorithm for
VERTEX COVER runs in time 1:2738knO.1/

(see the entry �Vertex Cover Search Trees
from this book). The ever-decreasing running
time leads to the following natural question: can
VERTEX COVER admit a subexponential time
algorithm? That is, can it have an algorithm
with running time 2o.k/nO.1/

? The negative
answer to this question would imply that
P ¤ NP . However, using a stronger assumption
in complexity theory, namely, exponential time
hypothesis (ETH) (see the entry �Exponential
Lower Bounds for k-SAT Algorithms in this
book), one can show that if ETH holds, then
the answer to our question is NO. Moreover,
subject to ETH, there are no subexponential
algorithms for many other natural NP-complete
problems. Thus, another natural question arises:
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is it true that every NP-complete problem cannot
be solved in subexponential time? Interestingly,
the answer to this question is again NO, and there
are examples in the literature of such problems.
Coming back to our example of VERTEX
COVER problem, if we restrict the input graph to
be planar, the problem remains NP-complete, but
the brute-force algorithm problem can be sped up
even more. That is, VERTEX COVER on planar

graphs can be solved in time 2O.
p

k/ � nO.1/-
by a subexponential algorithm. We refer to
more parameterized subexponential algorithms
on planar graphs to the �Bidimensionality in
this book.

Until recently, the only subexponential
algorithms were known for “geometric” graph
problems, that is, problems on planar graphs or
graphs excluding some fixed graph as minors.
In 2009, Alon, Lokshtanov, and Saurabh [1]
obtained the first parameterized subexponential
algorithm for a natural “nongeometric” problem.
This result has acted as catalyst for the discovery
of new subexponential time algorithms. In
this article, we give a short overview of these
algorithms.

Key Results

FAST
In the FEEDBACK ARC SET IN TOURNA-
MENTS (FAST) problem, we are given an n-
vertex tournament T and a positive integer k;
the question is whether one can make T into a
directed acyclic graph by deleting at most k arcs.

FAST
Input: A tournament T D .V; E/ and a non-

negative integer k.
Parameter: k.
Question: Is there F � E, jF j � k, such that

diraph H D .V; E n F / is acyclic?

Alon, Lokshtanov, and Saurabh in [1] ob-
tained a parameterized subexponential algorithm
for FAST.

Theorem 1 ([1]) FAST is solvable in time
2

p
k log knO.1/.

The theorem is proved by making use of a
novel randomized technique called Chromatic
Coding. It appeared that subexponential algo-
rithms exist for several other problems on tour-
naments (see entry �Computing Cutwidth and
Pathwidth of Semi-complete Digraphs in this
book).

Fill-In
The next “nongeometric” problem for which a
subexponential algorithm was found happened to
be the classical MINIMUM FILL-IN problem.

A graph is chordal (or triangulated) if every
cycle of length at least four contains a chord,
i.e., an edge between nonadjacent vertices of the
cycle. The MINIMUM FILL-IN problem (also
known as MINIMUM TRIANGULATION and
CHORDAL GRAPH COMPLETION) is to de-
cide if a given graph G can be transformed into a
chordal graph by adding at most k edges.

MINIMUM FILL-IN
Input: A graph G D .V; E/ and a nonnegative

integer k.
Parameter: k.
Question: Is there F � ŒV �2, jF j � k, such that

graph H D .V; E [ F / is chordal?

Theorem 2 ([6]) MINIMUM FILL-IN is solv-
able in time 2

p
k log knO.1/.

The proof of the theorem is based on a combi-
natorial bound estimating the number of specific
objects in the graph, namely, potential maximal
cliques.

Completion to Graph Classes

Since discoveries of subexponential algorithms
for FAST and MINIMUM FILL-IN, it appeared
that several other graph modification problems
admit subexponential algorithms. In particular,
it was shown that problems of completion to a
certain subclass of chordal graphs like trivially
perfect, threshold [4], split [7], proper interval
[2], and interval graphs [3] admit parameterized
subexponential algorithms.
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On the other hand, it has been shown that for
a number of other graph classes, like cographs,
completion to these classes of graphs cannot
be done in parameterized subexponential time
unless the exponential time hypothesis (ETH)
fails [4].

Open Problems

The most natural open question about the
given subexponential algorithms is the question
about lower bounds. As a concrete example, an
algorithm for FAST with running time bound
2o.

p
k/nO.1/ would actually be a 2o.n/ time algo-

rithm which inclines us to suspect that 2O.
p

k/ is
the best possible dependency on k in the running
time for this problem. Unfortunately, there is a
big gap here between what we suspect and what
we can prove, even assuming ETH. The only
tight bound on parameterized subexponential
algorithms for graph modification problems
we are aware of is the p-CLUSTERING
problem [5].
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Problem Definition

Bin packing is a classical problem in combi-
natorial optimization. Given a collection of n

items with different sizes, the objective is to pack
the items into a minimum number of uniform
capacity bins. More formally, the input of the
bin packing problem is described by a set of
n items I D f1; : : : ; ng and a size function
s W I ! Œ0; 1�. The output is a packing of
the items into bins B1; : : : ; Bk � I such that
s.Bj / � 1 for j D 1; : : : ; k, where the notation
s.B/ denotes

P
i2B si for any B � I . The

objective is to minimize the number bins used in
the packing.

The SUBSET-SUM algorithm is an intu-
itively appealing greedy heuristic for the bin
packing problem: Starting from the empty
packing, the algorithm repeatedly finds a
subset B of yet-unpacked items maximizing
s.B/ subject to s.B/ � 1, adds B to
the packing, and iterates. Each iteration
requires that we solve an instance of the
knapsack problem. In practice, instead of
finding the optimal solution, one can use an
fully polynomial time approximation scheme
(FPRAS) to compute a .1 � �/-approximate
solution [6].

This note is concerned with the worst-case
asymptotic performance of the SUBSET-SUM

algorithm. For a given instance s W I ! Œ0; 1�,
we use OPT.s/ to denote the number of bins
used in an optimal packing of s and SS.s/

to denote the number of bins used by the
SUBSET-SUM algorithm. Then for a given
class C of instances, we define the worst-case
asymptotic approximation ratio of SUBSET-SUM

as

R1
SS.C/ D lim

k!1
sup
s2C

OPT.s/Dk

SS.s/

OPT.s/
: (1)

Finally, we use R1
SS to denote the ratio for general

instances of the problem.

Key Results

Lower Bound on R1
SS

Graham [4] provided a family of instance
exhibiting an approximation ratio that tends toP1

iD1
1

2i �1
	 1:6067.

Theorem 1 (Graham [4]) R1
SS �

P1
iD1

1

2i �1
	

1:6067.

Proof Consider the following instance parame-
terized by two positive integers r and N . For
each j D 1; : : : ; r , we create N items of size
2�i C ı, where ı D 2�2r . Let us denote this
instance with s. Provided that 2i�1 divides N for
all i D 1; : : : ; r , it is not hard to see that SUBSET-
SUM first packs the smallest items into N=.2r�1/

bins, then it packs the second-smallest items into
N=.2r�1 � 1/ bins, and so on, until it packs the
largest items into N bins. On the other hand, the
optimal solution uses just N bins by packing one
item of each size class per bin. Therefore,

SS.s/

OPT.s/
D

rX

iD1

1

2i � 1
; (2)

which quickly approaches 1:6067 as r grows. ut

Upper Bound on R1
SS

A trivial upper bound on R1
SS is 2. This follows

from the fact only the last bin can be less than
half full. Caprara and Pferschy [1] gave the first
nontrivial upper bound, by showing that R1

SS is
at most 4=3C ln 4 	 1:6210. Interestingly, Gra-
ham [4] had conjectured that the true value of R1

SS
should match his lower bound. This conjecture
was finally proven by Epstein et al. [2].

Theorem 2 (Epstein et al. [3]) R1
SS �P1

iD1
1

2i �1
	 1:6067.

The proof of this result uses weighting func-
tions and a factor revealing mathematical pro-
gram. Here we only sketch the high level idea of
the approach. Let B be one of the bins opened by
SUBSET-SUM. For every item i 2 B we define

wi D

(
si

s.B/
if 1 � smin � s.B/;

si otherwise;
(3)



2128 Subset Sum Algorithm for Bin Packing

where smin is the size of the smallest yet-
unpacked item just before opening B .

The weights are used to charge the cost of
the packing computed by SUBSET-SUM to an
optimal packing. The following lemma allows
us to bound the performance of the algorithm
provided we can show that the sum of the weights
is comparable to the cost of the SUBSET-SUM

packing and that no bin in the optimal solution
is charged too much.

Lemma 1 Let O be an optimal solution and B be
the solution computed SUBSET-SUM. If there is a
weighting function w such that w.O/ � � for all
O 2 O and jBj � w.I /Cı, then jBj � �jOjCı.

Proof Because O is a packing
P

O2O w.O/ D

w.I /, therefore,

jBj � w.I /Cı D
X

O2O
w.O/Cı � �jOjCı: ut

The key contribution of Epstein et al. [3]
was bounding the parameters � and ı associated
with the weighting function (3). Bounding ı is a
relatively straightforward exercise. Bounding � is
more involved and requires analytically solving a
mathematical program. Here we only state their
bounds.

Lemma 2 (Epstein et al. [3]) Let B be the
SUBSET-SUM packing and let w be the weighting
function (3) for B. Then

1. jBj � w.I /C 1,
2. w.B/ �

P1
iD1

1

2i �1
for all B � I such that

s.B/ � 1.

Theorem 2 follows immediately from Lem-
mas 1 and 2.

Parametric Case
As it is the case with most bin packing heuris-
tics, the performance of SUBSET-SUM improves
when the items are small relative to the capacity
of the bin. In a parametric analysis of a heuristic,
we restrict our attention to instances where the
maximum item size is bounded. More formally,

for every real ˛ 2 .0; 1�, we define C˛ to be the
class of instances s such that maxi2I si � ˛.

Theorem 3 (Epstein et al. [3]) For every inte-
ger t � 1 and ˛ 2 . 1

tC1
; 1

t
�, we have R1

SS.C˛/ D

1C
P1

iD1
1

.tC1/2i �1
.

Notice that this is a strict generalization of
Theorems 1 and 2, which only cover the case
˛ D 1.

Applications

There is an interesting connection between the
performance of the SUBSET-SUM algorithm and
the quality of equilibria of a game-theoretic ver-
sion of bin packing. Let us associate a game
with each instance s W I ! Œ0; 1� of the
bin packing problem. The set of players in this
game is I , the set of items. Each player can
decide in which bin it wants to be packed; this
is the player’s strategy space. For each bin B

chosen in this uncoordinated fashion, if s.B/ > 1

then the players in B are charged1; otherwise,
player i 2 B is charged si

s.B/
. These payments

enforce that a strategy profile is a valid packing
if and only if the payments are finite. Further-
more, if the payments are finite, the sum of
these payments equals the number of bins in the
packing.

A strategy profile is said to be a Nash Equilib-
rium (NE) if there is no player that can switch
bins to decrease its payment. The price of an-
archy of the bin packing game is the asymp-
totic worst-case ratio between the number of
bins used by an NE and the number of bins in
an optimal packing. A packing is said to be a
Strong Nash Equilibrium (SNE) if no coalition
of players can switch bins to decrease the sum
of their payments. The strong price of anarchy
of the bin packing game is the asymptotic worst-
case ratio between the number of bins used by
an SNE and the number of bins by an optimal
packing.

Theorem 4 (Epstein and Kleiman [2]) The
strong price of anarchy for the bin packing game
is exactly R1

SS .
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Notice that every SNE is an NE, since we
can think of an NE as requiring that there are
no “coalitions” of size 1. Therefore, Theorem 4
establishes a lower bound on the price of anarchy
for the bin packing game. However, not every
NE is an SNE. In fact, it is known that the
price of anarchy for the bin packing game is
strictly worse than its strong price of anarchy
[2, 3].

Experimental Results

Gupta and Ho [5] performed an experimental
evaluation of SUBSET-SUM. (Gupta and Ho
call the algorithm minimum bin slack because
they formulate each iteration as trying to
minimize the slack (unused space) of the
bin, which is equivalent to maximizing the
bin’s usage.) The instances used in the
evaluation were randomly generated by selecting
the item sizes uniformly at random from
different numerical ranges. They compared
the performance of SUBSET-SUM to two well-
known heuristics: FIRST-FIT-DECREASING and
BEST-FIT-DECREASING. They observed that
SUBSET-SUM performed better on average
without incurring a significant computational
overhead.
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Problem Definition

The Substring Parsimony Problem, introduced by
Blanchette et al. [1] in the context of motif dis-
covery in biological sequences, can be described
in a more general framework:
Input:

• A discrete space S on which an integral
distance d is defined (i.e., d.x; y/ 2 N 8x;

y 2 S ).
• A rooted binary tree T D .V; E/ with n

leaves. Vertices are labeled f1; 2; : : : ; n;

: : : ; jV jg, where the leaves are vertices
f1; 2; : : : ; ng.

• Finite sets S1; S2; : : : ; Sn, where set Si � S is
assigned to leaf i, for all i D 1 : : : n.

• A non-negative integer t

Output: All solutions of the form .x1; x2; : : : ;

xn; : : : ; xjV j/ such that:

• xi 2 S for all i D 1 : : : jV j



2130 Substring Parsimony

• xi 2 Si for all i D 1 : : : n

•
P

.u;v/2E d.xu; xv/ � t

The problem thus consists of choosing one ele-
ment xi from each set Si such that the Steiner
distance of the set of points is at most t. This
is done on a Steiner tree T of fixed topology.
The case where jSi j D 1 for all i D 1 : : : n is
a standard Steiner tree problem on a fixed tree
topology (see [11]). It is known as the Maximum
Parsimony Problem and its complexity depends
on the space S.

Key Results

The substring parsimony problem can be solved
using a dynamic programming algorithm. Let
u 2 V and s 2 S. Let WuŒs� be the score of the
best solution that can be obtained for the subtree
rooted at node u, under the constraint that node u
is labeled with s, i.e.,

WuŒs� D min
x1;:::;x

jV j
2S

xuDs

X

.i;j /2E
i;j 2subtree.u/

d.xi ; xj /:

Let v be a child of u, and let X.u;v/Œs� be the
score of the best solution that can be obtained for
the subtree consisting of node u together with the
subtree rooted at its child v, under the constraint
that node u is labeled with s:

X.u;v/Œs� D min
x1;:::;xjV j2S

xuDs

P

.i;j /2E

i;j 2subtree.v/[f.u;v/g

d.xi ; xj /:

Then, we have:

WuŒs� D

8
<̂

:̂

0 if u is a leaf and s 2 Su

C1 if u is a leaf and s … SuP

v2children.u/

X.u;v/Œs� if u is not a leaf

and

X.u;v/Œs� D min
y02S

WuŒs0�C d.s; s0/:

Tables W and X can thus be computed using
a dynamic programming algorithm, proceeding
in a post-order traversal of the tree. Solutions

can then be recovered by tracing the computation
back for all s such that WrootŒs� � t . Note that the
same solution may be recovered more than once
in this process.

A straight-forward implementation of this
dynamic programming algorithm would run in
time O.n � jSj2 � �.S//, where �.S/ is the time
needed to compute the distance between any
two points in S. Let Na.S/ be the maximum
number of a-neighbors a point in S can have,
i.e., Na.S/ D maxx2S jfy 2 S W d.x; y/ D agj.
Blanchette et al. [3] showed how to use a mod-
ified breadth-first search of the space S to com-
pute each table X.u;v/ in time O.jSj �N1.S//,
thus reducing the total time complexity to
O.n � jSj �N1.S//. Since only solutions with
a score of at most t are of interest, the complexity
can be further reduced by only computing those
table entries which will yield a score of at most
t. This results in an algorithm whose running
time is O.n �M �Nbt=2c.S/ �N1.S// where
M D maxiD1:::n jSi j.

The problem has been mostly studied in
the context of biological sequence analysis,
where S D fA; C; G; T gk , for some small k
(k D 5; : : : ; 20 are typical values). The distance
d is the Hamming distance, and a phylogenetic
tree T is given. The case where jSi j D 1 for all
i D 1 : : : n is known as the Maximum Parsimony
Problem and can be solved in time O(n � k) using
Fitch’s algorithm [9] or Sankoff’s algorithm [12].
In the more general version, a long DNA
sequence Pu of length L is assigned to each leaf u.
The set Su is defined as the set of all k-substrings
of Pu. In this case, M D L � k C 1 2 O.L/, and
Na 2 O.min.4k ; .3k/a//, resulting in a com-
plexity of O.n � L � 3k �min.4k ; .3k/bd=2c//.
Notice that for a fixed k and d, the algorithm
is linear over the whole sequence. The problem
was independently shown to be NP-hard by
Blanchette et al. [3] and by Elias [7].

Applications

Most applications are found in computational
biology, although the algorithm can be applied
to a wide variety of domains. The algorithm
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for the substring parsimony problem has been
implemented in a software package called
FootPrinter [5] and applied to the detection of
transcription factor binding sites in orthologous
DNA regulatory sequences through a method
called phylogenetic footprinting [4]. Other
applications include the search for conserved
RNA secondary structure motifs in orthologous
RNA sequences [2]. Variants of the problem
have been defined to identify motifs regulating
alternative splicing [13]. Blanchette et al. [3]
study a relaxation of the problem where one
does not require that a substring be chosen from
each of the input sequences, but instead asks
that substrings be chosen from a sufficiently
large subset of the input sequence. Fang and
Blanchette [8] formulate another variant of the
problem where substring choices are constrained
to respect a partial order relation defined by a set
of local multiple sequence alignments.

Open Problems

Optimizations taking advantage of the specific
structure of the space S may yield more effi-
cient algorithms in certain cases. Many important
variations could be considered. First, the case
where the tree topology is not given needs to
be considered, although the resulting problems
would usually be NP-hard even when jSi j D 1.
Another important variation is one where the
phylogenetic relationships between trees is not
given by a tree but rather by a phylogenetic net-
work [10]. Finally, randomized algorithms sim-
ilar to those proposed by Buhler et al. [6] may
yield important and practical improvements.

URL to Code

http://bio.cs.washington.edu/software.html

Cross-References

�Closest Substring

�Efficient Methods for Multiple Sequence
Alignment with Guaranteed Error Bounds

�Local Alignment (with Affine Gap Weights)
�Local Alignment (with Concave Gap Weights)
� Statistical Multiple Alignment
� Steiner Trees

Recommended Reading

1. Blanchette M (2001) Algorithms for phylogenetic
footprinting. In: RECOMB01: proceedings of the
fifth annual international conference on computa-
tional molecular biology, Montreal. ACM, pp 49–
58

2. Blanchette M (2002) Algorithms for phylogenetic
footprinting. PhD thesis, University of
Washington

3. Blanchette M, Schwikowski B, Tompa M (2002)
Algorithms for phylogenetic footprinting. J Comput
Biol 9(2):211–223

4. Blanchette M, Tompa M (2002) Discovery of reg-
ulatory elements by a computational method for
phylogenetic footprinting. Genome Res 12:739–
748

5. Blanchette M, Tompa M (2003) Footprinter: a pro-
gram designed for phylogenetic footprinting. Nucleic
Acids Res 31(13):3840–3842

6. Buhler J, Tompa M (2001) Finding motifs using
random projections. In: RECOMB01: proceedings of
the fifth annual international conference on computa-
tional molecular biology, pp 69–76

7. Elias I (2006) Settling the intractability of
multiple alignment. J Comput Biol 13:1323–
1339

8. Fang F, Blanchette M (2006) Footprinter3: phylo-
genetic footprinting in partially alignable sequences.
Nucleic Acids Res 34(2):617–620

9. Fitch WM (1971) Toward defining the course of evo-
lution: minimum change for a specified tree topology.
Syst Zool 20:406–416

10. Huson DH, Bryant D (2006) Application of phyloge-
netic networks in evolutionary studies. Mol Biol Evol
23(2):254–267

11. Sankoff D, Rousseau P (1975) Locating the vertices
of a Steiner tree in arbitrary metric space. Math
Program 9:240–246

12. Sankoff DD (1975) Minimal mutation trees
of sequences. SIAM J Appl Math 28:35–
42

13. Shigemizu D, Maruyama O (2004) Searching for
regulatory elements of alternative splicing events us-
ing phylogenetic footprinting. In: Proceedings of the
fourth workshop on algorithms for bioinformatics.
Lecture notes in computer science. Springer, Berlin,
pp 147–158



2132 Succinct and Compressed Data Structures for Permutations and Integer Functions

Succinct and Compressed Data
Structures for Permutations and
Integer Functions

Jérémy Barbay
Department of Computer Science (DCC),
University of Chile, Santiago, Chile

Keywords

Adaptive; Compression; Functions; Permutation

Years and Authors of Summarized
Original Work

2012; Munro, Raman, Raman, Rao
2012; Barbay, Fischer, Navarro
2013; Barbay, Navarro
2013; Barbay

Problem Definition

A basic building block for compressed data struc-
tures for texts and functions is the representa-
tion of a permutation of the integers f1; : : : ; ng,
denoted by Œ1 : : : n�. A permutation 
 is triv-
ially representable in ndlg ne bits which is within
O.n/ bits of the information theoretic bound of
lg.nŠ/, but instances from restricted classes of
permutations can be represented using much less
space.

We are interested in encodings of permuta-
tions that can efficiently access them. Given a
permutation 
 over Œ1 : : : n�, an integer k and an
integer i 2 Œ1 : : : n�, data structures on permu-
tations aim to support the following operators as
fast as possible, using as little additional space as
possible:

• 
.i/: application of the permutation to i ,
• 
�1.i/: application of the inverse permutation

to i ,
• 
.k/.i/: 
./ iteratively applied k times start-

ing with value i (e.g., 
.2/.i/ D 
.
.i//).

Key Results

We distinguish between two types of solutions:
the succinct index and two succinct data
structures for permutations introduced by Munro
et al. [1], and the various compressed data
structures proposed later [2–4].

Succinct Data Structures
Munro et al. [1] studied the problem of succinctly
representing a permutation to support operators
on it quickly. They give several solutions, de-
scribed below.

“Shortcut” Index Supporting 
./ and 
�1./

Given an integer parameter t , the operators 
./

and 
�1./ can be supported by simply writing
down 
 in an array of n words of dlg ne bits
each, plus an auxiliary array S of at most n=t

back pointers called shortcuts: in each cycle of
length at least t , every t -th element has a pointer
t steps back. Then, 
.i/ is simply the i -th value
in the primary structure, and 
�1.i/ is found by
moving forward until a back pointer is found and
then continuing to follow the cycle to the location
that contains the value i .

The trick is in the encoding of the locations of
the back pointers: this is done with a simple bit
vector B of length n, in which a 1 indicates that
a back pointer is associated with a given location.
B is augmented using o.n/ additional bits so that
the number of 1’s up to a given position and the
position of the r-th 1 can be found in constant
time (i.e., using the rank and select operators on
binary strings [5]). This gives the location of the
appropriate back pointer in the auxiliary array S .
As there are back pointers every t elements in
the cycle, finding the predecessor requires O.t/

memory accesses.

Theorem 1 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n� which can
be decomposed into ı cycles of respective sizes
c1; : : : ; cı , there is a representation of 
 using
within .

P
i2Œ1:::ı�b

ci

t
c/ lg nC2nCo.n/ � n lg n

t
C

2n C o.n/ bits to support the operator 
./ in
constant time and the operator 
�1./ in time
within O.t/.
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Interestingly enough, Munro et al. [1] did not
notice that their construction is actually an index
and that the raw encoding can be replaced by
any data structure supporting the operator 
./,
including the compressed ones later described
[4].

“Cycle” Data Structure Supporting 
k./

For arbitrary i and k, 
k./ is supported by
writing the cycles of 
 together with a bit vector
B marking the beginning of each cycle. Observe
that the cycle representation itself is a permuta-
tion in “standard form”; call it � . The first task
is to find i in the representation: it is in posi-
tion ��1.i/. The segment of the representation
containing i is found through the rank and select
operators on B . Then 
k.i/ is determined by
taking k modulo the cycle length, moving that
number of steps around the cycle starting at the
position of i , and applying �./ to obtain the value
to return.

Other than the support of the operators on
� , all operators are performed in constant time;
hence the asymptotic supporting time of 
k./

depends on the supporting time in which the
data structure chosen to represent � supports
the operators �./ and ��1./. Munro et al. [1]
proposed the following, using a raw encoding of
� with a shortcut index to support ��1./:

Theorem 2 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n�, there is a
representation of 
 using at most .1C "/n lg nC

O.n/ bits to support the operator 
k./ in time
within O.1="/, for any " less than 1 and for any
arbitrary value of k.

Under a restricted model of pointer machine,
this technique is optimal: using O.n/ extra bits
(i.e., O.n= log n/ extra words), time within
˝.log n/ is necessary to support both 
./ and

�1./.

“Benes Network” Data Structure Supporting

k./

Any permutation can be implemented by a
communication network composed of switches:
this is called a Benes Network and uses even less
space under the RAM model than the solutions

described in the previous sections. Sparsely
adding pointers accelerates the support of 
k./

to time within O.
log n

log log n
/.

Theorem 3 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n�, there is a
representation of 
 using at most dlg.nŠ/eCO.n/

bits to support the operator 
k./ in time within
O.log n= log log n/.

This representation uses space within an addi-
tive term within O.n/ of the optimal, both on av-
erage and in the worst case over all permutations
over Œ1 : : : n�.

Compressed Data Structures
Any comparison-based sorting algorithm yields
an encoding for permutations, and any adaptive
sorting algorithm in the comparison model yields
a compression scheme for permutations. Support-
ing operators on such compressed permutation in
less time than required to decompress the whole
of it requires some more work:

Runs
Barbay and Navarro [2] described how to seg-
ment a partition into nRuns runs composed
of consecutive positions forming already sorted
blocks and how to merge those via a wavelet
tree. This yields a data structure compressing a
permutation within space optimal over all permu-
tations with nRuns runs of sizes given by the
vector vRuns. This data structure supports the
operators 
./ and 
�1./ in sublinear time within
O.1 C lognRuns/, with the average supporting
time within O.1CH.vRuns//, which decreases
with the entropy of the partition of the permuta-
tion into runs. Here, the entropy of a sequence of
positive integers X D hn1; n2; : : : ; nri adding up
to n is H.X/ D

Pr
iD1

ni

n
lg n

ni
.

Theorem 4 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n� which can be
decomposed into nRuns runs of sizes vRuns D
.r1; : : : ; rnRuns/, there is a representation of 


using at most nH.vRuns/CO.nRuns log n/C

o.n/ bits to support the computation of 
.i/

and 
�1.i/ in time within O.1 C lognRuns/

in the worst case over i 2 Œ1 : : : n� and in
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time within O.1CH.vRuns// on average when
i 2 Œ1 : : : n� is uniformly distributed. This com-
pressed data structure can be computed in time
within O.n.1 C H.vRuns///, which is worst-
case optimal in the comparison model over all
such permutations decomposed into nRuns runs
of sizes given by the vector vRuns.

The partitioning takes only n � 1 comparisons,
and the construction of the compressed data
structure itself is an adaptive sorting algorithm
improving over previous results [6, 7].

Heads of Strict Runs
A two-level partition of the permutation yields
further compression [2]. The first level parti-
tions the permutation into strict ascending runs
(maximal ranges of positions satisfying 
.i C

k/ D 
.i/ C k). The second level partitions
the heads (first position) of those strict runs into
conventional ascending runs. This is analogous
to the notion of blocks described by Moffat and
Petersson [7] for multisets.

Theorem 5 For any strictly positive integer n

and any permutation 
 on Œ1 : : : n� which can
be decomposed into nBlock strict runs and
into nRuns � nBlock monotone runs, let
vHRuns be the vector formed by the nRuns
monotone run lengths in the permutation of
strict run heads. Then, there is a representation
of 
 using at most nBlockH.vHRuns// C

O.nBlock log n
nBlock / C o.n/ bits to support

the operator 
./ and 
�1./ in time within
O.1 C lognBlock/. This compressed data
structure can be computed in time within
O.n.1C lognBlock//.

Shuffled Subsequences
The preorder measures seen so far have consid-
ered runs which group contiguous positions in

 : this does not need to be always the case. A
permutation 
 over Œ1 : : : n� can be decomposed
in n comparisons into a minimal number nSUS
of Shuffled Up Sequences, defined as a set of,
not necessarily consecutive, subsequences of in-
creasing numbers that have to be removed from

 in order to reduce it to the empty sequence [8].
Then those subsequences can be merged using

the same techniques as above, which yields a
new adaptive sorting algorithm and a new com-
pressed data structure [2]. An optimal partition
of a permutation 
 over Œ1 : : : n� into a minimal
number nSMS of Shuffled Monotone Sequences,
sequences of not necessarily consecutive subse-
quences of increasing or decreasing numbers, is
NP-hard to compute [9], but if such a permutation
is given, the same technique applies [10].

LRM Subsequences
LRM trees partition a sequence of values into
consecutive sorted blocks and express the relative
position of the first element of each block within
a previous block. Such a tree can be computed
in 2.n � 1/ comparisons within the array and
overall linear time, through an algorithm similar
to that of Cartesian Trees [11]. The interest of
LRM trees in the context of adaptive sorting
and permutation compression is that the val-
ues are increasing in each root-to-leaf branch:
they form a partition of the array into subse-
quences of increasing values. Barbay et al. [3]
described how to compute the partition of the
LRM tree of minimal size-vector entropy, which
yields a compressed data structure asymptoti-
cally smaller than H.vRuns/-adaptive sorting,
smaller in practice than H.vSUS/-adaptive sort-
ing, as well as a faster adaptive sorting algorithm.

Number of Inversions
The preorder measure nInv counts the number
of pairs .i; j / of positions 1 � i < j � n

in a permutation 
 over Œ1 : : : n� such that

.i/ > 
.j /. Its value is exactly the number
of comparisons performed by the algorithm
Insertion Sort, between n and n2 for a per-
mutation over Œ1 : : : n�. A variant of Insertion
Sort, named Local Insertion Sort,
sorts 
 in n.1 C dlg.nInv=n/e/ comparisons
[6, 7].

Simply encoding the n values .
.i/�i/i2Œ1:::n�

using the � 0 code from Elias [12], and indexing
the positions of the beginning of each code by a
compressed bit vector, yields a compressed data
structure supporting the operator 
./ in constant
time. The resulting data structure uses space
within n.1 C 2 lg nInv

n
/ C o.n/ bits. Support for
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the operator 
�1./ can be added in two distinct
ways, either encoding both 
 and 
�1 using this
technique within 2n.1 C 2 lg nInv

n
/ C o.n/ bits,

which supports both operators 
./ and 
�1./ in
constant time, or adding support for the operator

�1./ using Munro et al.’s shortcut succinct in-
dex for permutations [1] described previously.

Removing Elements
The preorder measure nRem counts the minimum
number of elements that must be removed from
a permutation so that what remains is already
sorted. Its exact value is n minus the length
of the Longest Increasing Subsequence, which
can be computed in time within O.n log n/. Al-
ternatively, the value of nRem can be approxi-
mated within a constant factor of 2 in 2.n � 1/

comparisons. Partitioning 
 into the removed
elements and the remaining ones through a bit
vector of n bits, representing the order of the
2nRem elements in a wavelet tree (using any
of the data structures described above), and rep-
resenting the merging of both into n bits yield
a compressed data structure using space within
2n C 2nRem lg.n=nRem/ C o.n/ bits and sup-
porting the operators 
./ and 
�1./ in sublinear
time, within O.1C log.nRemC 1//.

Applications

Integer Functions
Munro et al. [1] extended the results on per-
mutations to arbitrary functions from Œ1 : : : n�

to Œ1 : : : n�. Again f k.i/ indicates the function
iterated k times starting at i : if k is nonnegative,
this is straightforward. The case in which k is
negative is more complicated as the image is a
(possibly empty) multiset over Œ1 : : : n�.

Whereas 
 is a set of cycles, f can be viewed
as a set of cycles in which each node is the root of
a tree. Starting at any node (element of Œ1 : : : n�),
the evaluation moves one step along a branch of
the tree, or one step along a cycle. Moving k

steps in a positive direction is straightforward,
and one moves up a tree and perhaps around a
cycle. When k is negative, one must determine

all nodes at distance k from the starting location,
i , in the direction toward the leaves of the trees.
The key technical issue is to run across succinct
tree representations picking off all nodes at the
appropriate levels. Using a raw encoding of the
permutation mapping integers to the nodes, and
Munro et al.’s shortcut succinct index [1] to
support the operations on it, yields the following
result:

Theorem 6 For any fixed ", n > 0 and f W

Œ1 : : : n� ! Œ1 : : : n�, there is a representation of
f using .1 C "/n lg n C O.1/ bits of space to
compute f k.i/ in time within O.1 C jf k.i/j/,
for any integer k and for any integer i 2 Œ1 : : : n�.

Open Problems

Other Measures of Disorder
Moffat and Petersson [7] list many measures of
preorder and adaptive sorting techniques. Each
measure explored above yields a compressed data
structure for permutations supporting the opera-
tors 
./ and 
�1./ in sublinear time. Each adap-
tive sorting algorithm in the comparison model
yields a compression scheme for permutations,
but the encoding thus defined does not necessar-
ily support the simple application of the permu-
tation to a single element without decompressing
the whole permutation nor the application of the
inverse permutation. More work is required in
order to decide whether there are compressed
data structures for permutations, supporting the
operators 
./ and 
�1./ in sublinear time and
using space proportional to the other preorder
measures [6, 7] (e.g., Reg, Exc, Block, and
Enc).

Sorting and Encoding Multisets
Munro and Spira [13] showed how to sort multi-
sets through MergeSort, Insertion Sort,
and Heap Sort, adapting them with counters to
sort in time within O.n.1 C H.hm1; : : : ; mri///

where mi is the number of occurrences of i in
the multiset (note that this is orthogonal to the
results described in this chapter that depend on
the distribution of the lengths of monotone runs).
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It seems easy to combine both approaches (e.g.,
on MergeSort in a single algorithm using both
runs and counters), yet quite hard to analyze
the complexity of the resulting algorithm and
compressed data structure. The difficulty measure
must depend not only on both the entropy of the
partition into runs and the entropy of the partition
of the values of the elements but also on the
interaction of those partitions.

Compressed Data Structures Supporting
�k./

In Munro et al.’s “cycle” data structure [1] for
supporting the operator 
k./ (Theorem 2), the
raw encoding of the permutation � representing
the cycles of 
 can be replaced by any com-
pressed data structure such as those described
here, with the warning that the compressibility of
� depends not only on 
 but also on the order
in which its cycles are placed in � . The question
if there is a compressed data structure supporting
the operator 
k./ which takes advantage of this
order is open.
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Problem Definition

This problem is to design succinct representation
of balanced parentheses in a manner in which
a number of “natural” queries can be supported
quickly, and use it to represent trees and graphs
succinctly. The problem of succinctly represent-
ing balanced parentheses was initially proposed
by Jacobson [6] in 1989, when he proposed
succinct data structures, i.e., data structures that
occupy space close to the information-theoretic
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lower bound to represent them, while supporting
efficient navigational operations. Succinct data
structures provide solutions to manipulate large
data in modern applications. The work of Munro
and Raman [8] provides an optimal solution to the
problem of balanced parentheses representation
under the word RAM model, based on which they
design succinct trees and graphs.

Balanced Parentheses
Given a balanced parenthesis sequence of length
2n, where there are n opening parentheses and
n closing parentheses, consider the following
operations:

• findclose(i) (findopen(i)), the match-
ing closing (opening) parenthesis for the
opening (closing) parenthesis at position i;

• excess(i), the number of opening parenthe-
ses minus the number of closing parentheses
in the sequence up to (and including)
position i;

• enclose(i), the closest enclosing (matching
parenthesis) pair of a given matching
parenthesis pair whose opening parenthesis
is at position i.

Trees
There are essentially two forms of trees. An
ordinal tree is a rooted tree in which the children
of a node are ordered and specified by their ranks,
while in a cardinal tree of degree k, each child
of a node is identified by a unique number from
the set f1; 2; � � � ; kg. An binary tree is a cardinal
tree of degree 2. The information-theoretic lower
bound of representing an ordinal tree or binary
tree of n nodes is 2n � o.n/ bits, as there are�

2n
n

�
=.nC 1/ different ordinal trees or binary

trees.
Consider the following operations on ordinal

trees (a node is referred to by its preorder num-
ber):

• child(x, i), the ith child of node x for i � 1;
• child_rank(x), the number of left siblings

of node x;

• depth(x), the depth of x, i.e., the number of
edges in the rooted path to node x;

• parent(x), the parent of node x;
• nbdesc(x), the number of descendants of

node x;
• height(x), the height of the subtree rooted at

node x;
• LCA(x, y), the lowest common ancestor of

node x and node y.

On binary trees, the operations parent,
nbdesc and the following operations are
considered:

• leftchild(x) (rightchild(x)), the left
(right) child of node x.

Graphs
Consider an undirected graph G of n vertices
and m edges. Bernhart and Kainen [1] introduced
the concept of page book embedding. A k-book
embedding of a graph is a topological embedding
of it in a book of k pages that specifies the or-
dering of the vertices along the spine, and carries
each edge into the interior of one page, such
that the edges on a given page do not intersect.
Thus, a graph with one page is an outerplanar
graph. The pagenumber or book thickness [1] of
a graph is the minimum number of pages that
the graph can be embedded in. A very com-
mon type of graphs are planar graphs, and any
planar graph can be embedded in at most four
pages [15]. Consider the following operations on
graphs:

• adjacency(x, y), whether vertices x and y
are adjacent;

• degree(x), the degree of vertex x;
• neighbors(x), the neighbors of vertex x.

Key Results

All the results cited are under the word RAM
model with word size �.lg n/ bits (lg n denotes
dlog2 ne), where n is the size of the problem
considered.

Theorem 1 ([8]) A sequence of balanced paren-
theses of length 2n can be represented using
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Succinct Data Structures for Parentheses Matching,
Fig. 1 An example of the balanced parenthesis sequence
of a given ordinal tree

2nC o.n/ bits to support the operations find-
close, findopen, excess and enclose in constant
time.

There is a polymorphism between a balanced
parenthesis sequence and an ordinal tree: when
performing a depth-first traversal of the tree,
output an opening parenthesis each time a node
is visited, and a closing parenthesis immediately
after all the descendants of a node are visited
(see Fig. 1 for an example). The work of Munro
and Raman proposes a succinct representation
of ordinal trees using 2nC o.n/ bits to support
depth, parent and nbdesc in constant time,
and child(x, i) in O(i) time. Lu and Yeh have
further extended this representation to support
child, child_rank, height and LCA in
constant time.

Theorem 2 ([8, 7]) An ordinal tree of n nodes
can be represented using 2nC o.n/ bits to
support the operations child, child_rank, parent,
depth, nbdesc, height and LCA in constant
time.

A similar approach can be used to represent
binary trees:

Theorem 3 ([8]) A binary tree of n nodes can
be represented using 2nC o.n/ bits to support
the operations leftchild, rightchild, parent and
nbdesc in constant time.

Finally, balanced parentheses can be used to rep-
resent graphs. To represent a one-page graph, the

work of Munro and Raman proposes to list the
vertices from left to right along the spine, and
each node is represented by a pair of parentheses,
followed by zero or more closing parentheses and
then zero or more opening parentheses, where
the number of closing (or opening) parentheses is
equal to the number of adjacent vertices to its left
(or right) along the spine (see Fig. 2 for an exam-
ple). This representation can be applied to each
page to represent a graph with pagenumber k.

Theorem 4 ([8]) An outerplanar graph of n
vertices and m edges can be represented us-
ing 2nC 2mC o.nCm/ bits to support opera-
tions adjacency and degree in constant time, and
neighbors(x) in time proportional to the degree
of x.

Theorem 5 ([8]) A graph of n vertices and m
edges with pagenumber k can be represented
using 2kn C 2m C o.nk C m/ bits to support
operations adjacency and degree in O(k) time,
and neighbors(x) in O.d.x/Ck/ time where d(x)
is the degree of x. In particular, a planar graph
of n vertices and m nodes can be represented
using 8n C 2m C o.n/ bits to support opera-
tions adjacency and degree in constant time, and
neighbors(x) in O.d.x// time where d(x) is the
degree of x.

Applications

Succinct Representation of Suffix Trees
As a result of the growth of the textual data in
databases and on the World Wide Web, and also
applications in bioinformatics, various indexing
techniques have been developed to facilitate pat-
tern searching. Suffix trees [14] are a popular
type of text indexes. A suffix tree is constructed
over the suffixes of the text as a tree-based data
structure, so that queries can be performed by
searching the suffixes of the text. It takes O(m)
time to use a suffix tree to check whether an
arbitrary pattern P of length m is a substring of
a given text T of length n, and to count the number
of the occurrences, occ, of P in T. O(occ) addi-
tional time is required to list all the occurrences
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Succinct Data Structures for Parentheses Matching, Fig. 2 An example of the balanced parenthesis sequence of
a graph with one page

of P in T. However, a standard representation of
a suffix tree requires somewhere between 4n lg n

and 6n lg n bits, which is impractical for many
applications.

By reducing the space cost of representing
the tree structure of a suffix tree (using the
work of Munro and Raman), Munro, Raman
and Rao [9] have designed space-efficient suffix
trees. Given a string of n characters over a fixed
alphabet, they can represent a suffix tree using
n lg nCO.n/ bits to support the search of
a pattern in O.mC occ/ time. To achieve this
result, they have also extended the work of Munro
and Raman to support various operations to
retrieve the leaves of a given subtree in an ordinal
tree. Based on similar ideas and by applying
compressed suffix arrays [5], Sadakane [13] has
proposed a different trade-off; his compressed
suffix tree occupies O.n lg �/ bits, where ¢ is
the size of the alphabet, and can support any
algorithm on a suffix tree with a slight slowdown
of a factor of polylog(n).

Succinct Representation of Functions
Munro and Rao [11] have considered the problem
of succinctly representing a given function,
f W Œn�! Œn�, to support the computation
of f k.i/ for an arbitrary integer k. The
straightforward representation of a function is
to store the sequence f(i), for i D 0; 1; : : : ; n � 1.
This takes n lg n bits, which is optimal. However,
the computation of f k.i/ takes �.k/ time even
in the easier case when k is positive. To address
this problem, Munro and Rao [11] first extends
the representation of balanced parenthesis to
support the next_excess(i, k) operator, which
returns the minimum j such that j > i and

excess(j / D k. They further use this operator
to support the level_anc(x, i) operator on
succinct ordinal trees, which returns the ith
ancestor of node x for i � 0 (given a node x
at depth d, its ith ancestor is the ancestor of x
at depth d � i ). Then, using succinct ordinal
trees with the support for level_anc, they
propose a succinct representation of functions
using .1C �/n lg nCO.1/ bits for any fixed
positive constant –, to support f k.i/ in constant
time when k > 0, and f k.i/ in O.1C jf k.i/j/

time when k < 0.

Multiple Parentheses and Graphs
Chuang et al. [3] have proposed to succinctly
represent multiple parentheses, which is a string
of O(1) types of parentheses that may be
unbalanced. They have extended the operations
on balanced parentheses to multiple parentheses
and designed a succinct representation. Based on
the properties of canonical orderings for planar
graphs, they have used multiple parentheses and
the succinct ordinal trees to represent planar
graphs. One of their main results is a succinct
representation of planar graphs of n vertices and
m edges in 2mC .5C �/nC o.mC n/ bits, for
any constant � > 0, to support the operations
supported on planar graphs in Theorem 5 in
asymptotically the same amount of time. Chiang
et al. [2] have further reduced the space cost
to 2mC 3nC o.mC n/ bits. In their paper,
they have also shown how to support the
operation wrapped(i), which returns the number
of matching parenthesis pairs whose closest
enclosing (matching parenthesis) pair is the pair
whose opening parenthesis is at position i, in
constant time on balanced parentheses. They
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have used it to show how to support the operation
degree(x), which returns the degree of node x
(i.e., the number of its children), in constant time
on succinct ordinal trees.

Open Problems

One open research area is to support more op-
erations on succinct trees. For example, it is not
known how to support the operation to convert
a given node’s rank in a preorder traversal into its
rank in a level-order traversal.

Another open research area is to further reduce
the space cost of succinct planar graphs. It is not
known whether it is possible to further improve
the encoding of Chiang et al. [2].

A third direction for future work is to design
succinct representations of dynamic trees and
graphs. There have been some preliminary results
by Munro et al. [10] on succinctly representing
dynamic binary trees, which have been further
improved by Raman and Rao [12]. It may be
possible to further improve these results, and
there are other related dynamic data structures
that do not have succinct representations.

Experimental Results

Geary et al. [4] have engineered the implementa-
tion of succinct ordinal trees based on balanced
parentheses. They have performed experiments
on large XML trees. Their implementation uses
orders of magnitude less space than the standard
pointed-based representation, while supporting
tree traversal operations with only a slight slow-
down.
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Problem Definition

The suffix array [4, 15] is the lexicographically
sorted array of all the suffixes of a string. It is a
popular text index structure with many applica-
tions. The subject of this entry is algorithms that
construct the suffix array.

More precisely, the input to a suffix array
construction algorithm is a text string T D

T Œ0 : : : n/ D t0t1 : : : tn�1, i.e., a sequence
of n characters from an alphabet ˙ . For
i 2 Œ0 : : : n�, let Si denote the suffix T Œi : : : n/ D

ti tiC1 : : : tn�1. The output is the suffix array
SAŒ0 : : : n� of T , a permutation of Œ0 : : : n�

satisfying SSAŒ0� < SSAŒ1� < � � � < SSAŒn�,
where < denotes the lexicographical order of
strings.

Two specific models for the alphabet ˙

are considered. An ordered alphabet is an
arbitrary ordered set with constant time character
comparisons. An integer alphabet is the integer
range Œ1 : : : �� for � D nO.1/.

Many applications require that the suffix array
is augmented with additional information, most
commonly with the longest common prefix array
LCP Œ1 : : : n�. An entry LCP Œi� of the LCP array
is the length of the longest common prefix of the
suffixes SSAŒi� and SSAŒi�1�. The enhanced suffix

array [1] adds two more arrays to obtain a full
range of text index functionalities.

There are other important text indexes, most
notably suffix trees and compressed text indexes,
covered in separate entries. Each of these indexes
has their own construction algorithms, but they
can also be constructed efficiently from each
other. However, in this entry, the focus is on direct
suffix array construction algorithms that do not
rely on other text indexes.

Key Results

The naive approach to suffix array construction is
to use a general sorting algorithm or an algorithm
for sorting strings. However, any such algorithm
has a worst-case time complexity ˝.n2/ because
the total length of the suffixes is ˝.n2/.

The first efficient algorithms were based on the
doubling technique of Karp, Miller, and Rosen-
berg [10]. The idea is to assign a rank to all
substrings whose length is a power of two. The
rank tells the lexicographic order of the substring
among substrings of the same length. Given the
ranks for substrings of length h, the ranks for
substrings of length 2h can be computed using
a radix sort step in linear time (doubling). The
technique was first applied to suffix array con-
struction by Manber and Myers [15]. The best
practical algorithm based on the technique is by
Larsson and Sadakane [14].

Theorem 1 (Manber and Myers [15]; Larsson
and Sadakane [14]) The suffix array can be
constructed in O.n log n/ time, which is optimal
for the ordered alphabet.

Faster algorithms for the integer alphabet are
based on a different technique, recursion. The
basic procedure is as follows.

1. Sort a subset of the suffixes. This is done
by constructing a shorter string, whose suffix
array gives the order of the desired subset. The
suffix array of the shorter string is constructed
by recursion.

2. Extend the subset order to full order.
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The technique first appeared in suffix tree con-
struction [3], but 2003 saw the independent and
simultaneous publication of three linear time suf-
fix array construction algorithms based on the
approach but not using suffix trees. Each of the
three algorithms uses a different subset of suf-
fixes requiring a different implementation of the
second step.

Theorem 2 (Kärkkäinen, Sanders, and
Burkhardt [8]; Kim et al. [12]; Ko and
Aluru [13]) The suffix array can be constructed
in the optimal linear time for the integer alphabet.

We will describe the algorithm of Kärkkäinen,
Sanders, and Burkhardt [8] called DC3 in more
detail. For k 2 f0; 1; 2g, let Rk be the set of suf-
fixes Si such that i mod 3 D k. Let R12 D R1[

R2 and define R01 and R02 symmetrically. For
example, R12 D fS1; S2; S4; S5; S7; S8; : : : g.
The set R12 is the subset of suffixes sorted first.
For Si 2 R12, let NSi be the lexicographical
rank of Si in R12. Given those lexicographical
ranks, we can compare any two suffixes Si and
Sj in constant time using one of the following
ways:

1. If Si ; Sj 2 R12, compare the ranks NSi and NSj .
2. If Si ; Sj 2 R01, compare the pairs hti ; NSiC1i

and htj ; NSj C1i.
3. If Si ; Sj 2 R02, compare the triples
hti ; tiC1; NSiC2i and htj ; tj C1; NSj C2i.

Furthermore, we can radix sort R0 in linear time
by using hti ; NSiC1i to represent the suffix Si 2

R0. After this, we can merge R0 and R12, which
takes linear time since we can compare suffixes
in constant time.

We still need to describe how to sort R12.
Let ti tiC1tiC2 be the lexicographical rank of
the substring ti tiC1tiC2 among all substrings of
length three. Let

T12 D t1t2t3 t4t5t6 t7t8t9 : : :

t2t3t4 t5t6t7 t8t9t10 : : : :

For example if T D yabbadabbado, we have

T12 D abb ada bba do$ bba dab bad o$$

D 12575648 ;

where $ is a special padding symbol that does not
appear in the text and is considered smaller than
any normal character. Clearly, sorting the suffixes
of T12 is equivalent to sorting the set R12. The
suffixes of T12 are sorted by a recursive call to
the algorithm itself. Since the recursive call is for
a text of length at most d2n=3e and everything
outside the recursive call can be done in linear
time, the total time complexity of DC3 is O.n/.

The above algorithms and many other suf-
fix array construction algorithms are surveyed
in [18]. Worth mentioning among the more recent
results are the linear time algorithms of Nong,
Zhang, and Chan [17].

The ˝.n log n/ lower bound for the ordered
alphabet mentioned in Theorem 1 comes from
the sorting complexity of characters, since the
initial characters of the sorted suffixes are the text
characters in sorted order. Theorem 2 allows a
generalization of this result. For any alphabet, one
can first sort the characters of T , remove dupli-
cates, assign a rank to each character, and con-
struct a new string T 0 over the alphabet Œ1 : : : n�

by replacing the characters of T with their ranks.
The suffix array of T 0 is exactly the same as
the suffix array of T . Optimal algorithms for the
integer alphabet then give the following result.

Theorem 3 For any alphabet, the complexity of
suffix array construction is the same as the com-
plexity of sorting the characters of the string.

The result extends to the related arrays.

Theorem 4 (Kasai et al. [11]; Abouelhoda,
Kurtz, and Ohlebusch [1]) The LCP array and
the enhanced suffix array can be computed in
linear time given the suffix array.

One of the main advantages of suffix
arrays over suffix trees is their smaller space
requirement (by a constant factor), and a
significant effort has been spent making
construction algorithms space efficient, too. The
best algorithms need very little extra space.
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Theorem 5 (Kärkkäinen, Sanders, and
Burkhardt [8]; Nong [16]) For any v D

O.n2=3/, the suffix array can be constructed in
O.n.v C log n// time and O.n=

p
v/ extra space

for the ordered alphabet and in O.nv/ time and
O.n=

p
v/ extra space or O.n/ time and O.�/

extra space for the integer alphabet, where the
extra space is the space needed in addition to
the input (the string T ) and the output (the suffix
array).

In the algorithm DC3 described above, all
steps can be performed by sorting, prefix sums
(assigning lexicographical ranks) and localized
computation. This makes it straightforward to
adapt to several parallel and hierarchical memory
models of computation [8] including the fol-
lowing result for the standard external memory
model.

Theorem 6 (Kärkkäinen, Sanders, and
Burkhardt [8]) The suffix array can be
constructed in the optimal O.sort.n// I/Os in the
standard external memory model, where sort.n/

is the I/O complexity of sorting n elements.

The above algorithm can be modified to com-
pute the LCP array too in the same I/O complex-
ity [2, 7].

Applications

The suffix array is a simple and powerful text in-
dex structure with numerous applications; see [1]
and Cross-References. The practical construction
of many other text indexes usually starts with
the suffix array construction. In particular, the
Burrows–Wheeler transform, which is an im-
portant technique for text compression and the
basis of many compressed text indexes, is easily
computed from the suffix array.

Open Problems

Theoretically, the suffix array construction prob-
lem is essentially solved. The development of
ever more efficient practical algorithms is still

going on particularly for external memory and
parallel computation. There is currently no ex-
ternal memory algorithm for computing the LCP
array from the suffix array in O.sort.n// I/Os
other than as a side effect of suffix array construc-
tion [6].

Experimental Results

Many papers on suffix array construction contain
experimental results, but they are usually either
out of date (e.g., [18]) or limited in scope
(e.g., [16]). The most comprehensive comparison
of algorithms is at https://code.google.com/
p/libdivsufsort/wiki/SACA_Benchmarks. The
best practical algorithms for large data are
divsufsort, which is an O.n log n/ time
algorithm combining several techniques, and
SAIS, which is an implementation of the linear
time algorithm by Gong, Zhang, and Chan [17]
(see below for URLs to code). The comparison
and the fastest implementation are by the same
person, Yuta Mori, but the implementations are
widely used and there are no substantial claims
for other, faster algorithms.

There are also experiments for suffix array
construction in external memory [2, 5] and for
LCP array construction [2, 6, 9].

URLs to Code and Data Sets

The input to a suffix array construction algorithm
is simply a text, so an abundance of data exists.
Links to many text collections are provided
at https://code.google.com/p/libdivsufsort/wiki/
SACA_Benchmarks. Worth mentioning is also
the Pizza&Chili site with its standard text corpus
http://pizzachili.dcc.uchile.cl/texts.html and the
repetitive text corpus http://pizzachili.dcc.uchile.
cl/repcorpus.html.

Notable implementations of suffix array
construction algorithms are available at https://
code.google.com/p/libdivsufsort/, at https://sites.
google.com/site/yuta256/sais, at http://panthema.
net/2012/1119-eSAIS-Inducing-Suffix-and-LCP
-Arrays-in-External-Memory/ [2], and at https://
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www.cs.helsinki.fi/group/pads/SAscan.html [5].
The latter two work in external memory and
provide (links to) LCP array construction too.

Cross-References

�Burrows-Wheeler Transform
�Compressed Suffix Array
� Suffix Trees and Arrays
� Suffix Tree Construction

Recommended Reading

1. Abouelhoda MI, Kurtz S, Ohlebusch E (2004) Re-
placing suffix trees with enhanced suffix arrays. J
Discret Algorithms 2(1):53–86

2. Bingmann T, Fischer J, Osipov V (2013) Induc-
ing suffix and LCP arrays in external memory. In:
Sanders P, Zeh N (eds) Proceedings of the 15th
meeting on algorithm engineering and experiments
(ALENEX), New Orleans. SIAM, pp 88–102

3. Farach-Colton M, Ferragina P, Muthukrishnan S
(2000) On the sorting-complexity of suffix tree con-
struction. J ACM 47(6):987–1011

4. Gonnet G, Baeza-Yates R, Snider T (1992) New
indices for text: PAT trees and PAT arrays. In: Frakes
WB, Baeza-Yates R (eds) Information retrieval: data
structures & algorithms. Prentice-Hall, Englewood
Cliffs

5. Kärkkäinen J, Kempa D (2014) Engineering a
lightweight external memory suffix array construc-
tion algorithm. In: Iliopoulos CS, Langiu A (eds)
Proceedings of the 2nd international conference on
algorithms for big data (ICABD), Palermo, pp 53–
60

6. Kärkkäinen J, Kempa D (2014) LCP array construc-
tion in external memory. In: Gudmundsson J, Kata-
jainen J (eds) Proceedings of the 13th symposium on
experimental algorithms (SEA), Copenhagen. Lec-
ture notes in computer science, vol 8504. Springer,
pp 412–423

7. Kärkkäinen J, Sanders P (2003) Simple linear
work suffix array construction. In: Baeten JCM,
Lenstra JK, Parrow J, Woeginger GJ (eds) Proceed-
ings of the 30th international conference on au-
tomata, languages and programming (ICALP), Eind-
hoven. Lecture notes in computer science, vol 2719.
Springer, pp 943–955

8. Kärkkäinen J, Sanders P, Burkhardt S (2006) Linear
work suffix array construction. J ACM 53(6):918–
936

9. Kärkkäinen J, Manzini G, Puglisi SJ (2009) Permuted
longest-common-prefix array. In: Kucherov G, Ukko-
nen E (eds) Proceedings of the 20th annual sym-

posium on combinatorial pattern matching (CPM),
Lille. Lecture notes in computer science, vol 5577.
Springer, pp 181–192

10. Karp RM, Miller RE, Rosenberg AL (1972) Rapid
identification of repeated patterns in strings, trees
and arrays. In: Proceedings of the 4th annual ACM
symposium on theory of computing (STOC), Denver.
ACM, pp 125–136

11. Kasai T, Lee G, Arimura H, Arikawa S, Park K (2001)
Linear-time longest-common-prefix computation in
suffix arrays and its applications. In: Proceedings
of the 12th annual symposium on combinatorial
pattern matching (CPM), Jerusalem. Lecture notes
in computer science, vol 2089. Springer, pp 181–
192

12. Kim DK, Sim JS, Park H, Park K (2005) Constructing
suffix arrays in linear time. J Discret Algorithms 3(2–
4):126–142

13. Ko P, Aluru S (2005) Space efficient linear time
construction of suffix arrays. J Discret Algorithms
3(2–4):143–156

14. Larsson NJ, Sadakane K (2007) Faster suffix sorting.
Theor Comput Sci 387(3):258–272

15. Manber U, Myers G (1993) Suffix arrays: a new
method for on-line string searches. SIAM J Comput
22(5):935–948

16. Nong G (2013) Practical linear-time O(1)-workspace
suffix sorting for constant alphabets. ACM Trans Inf
Syst 31(3):Article 15, 15 pages

17. Nong G, Zhang S, Chan WH (2011) Two efficient
algorithms for linear time suffix array construction.
IEEE Trans Comput 60(10):1471–1484

18. Puglisi SJ, Smyth WF, Turpin A (2007) A taxonomy
of suffix array construction algorithms. ACM Comput
Surv 39(2):Article 4, 31 pages

Suffix Tree Construction

Jens Stoye
Faculty of Technology, Genome Informatics,
Bielefeld University, Bielefeld, Germany

Keywords

Full-text index construction

Years and Authors of Summarized
Original Work

1973; Weiner
1976; McCreight



Suffix Tree Construction 2145

S

1995; Ukkonen
2000; Farach-Colton, Ferragina, Muthukrishnan

Problem Definition
The suffix tree is perhaps the best-known and
most-studied data structure for string indexing
with applications in many fields of sequence
analysis. After its invention in the early 1970s,
several approaches for the efficient construction
of the suffix tree of a string have been developed
for various models of computation. The most
prominent of those that construct the suffix tree
in main memory are summarized in this entry.

Notations
Given an alphabet †, a trie over † is a rooted
tree whose edges are labeled with strings over
† such that no two labels of edges leaving the
same vertex start with the same symbol. A trie
is compacted if all its internal vertices, except
possibly the root, are branching. Given a finite
string S 2 †n, the suffix tree of S , T .S/, is
the compacted trie over † such that the concate-
nations of the edge labels along the paths from
the root to the leaves are the suffixes of S . An
example is given in Fig. 1.

The concatenation of the edge labels from the
root to a vertex v of T .S/ is called the path-
label of v, P.v/. For example, the path label of

Suffix Tree Construction, Fig. 1 The suffix tree for
the string S D MAMMAMIA. Dashed arrows denote
suffix links that are employed by all efficient suffix tree
construction algorithms

the vertex indicated by the asterisk in Fig. 1 is
P./ D MAM.

Constraints
The time complexity of constructing the suffix
tree of a string S of length n depends on the
size of the underlying alphabet †. It may be
constant, it may be the alphabet of integers † D

f1; 2; : : : ; ng, or it may be an arbitrary finite set
whose elements can be compared in constant
time. Note that the latter case reduces to the pre-
vious one if one maps the symbols of the alphabet
to the set f1; : : : ; ng, though at the additional cost
of sorting †.

Problem 1 (suffix tree construction)

INPUT: A finite string S of length n over an
alphabet †.

OUTPUT: The suffix tree T .S/.

If one assumes that the outgoing edges at
each vertex are lexicographically sorted, which is
usually the case, the suffix tree allows retrieving
the sorted order of S 0s characters in linear time.
Therefore, suffix tree construction inherits the
lower bounds from the problem complexity of
sorting: �.n log n/ in the general alphabet case
and �.n/ for integer alphabets.

Key Results

Theorem 1 The suffix tree of a string of length
n can be represented in O.n log n/ bits of space.

This is easy to see since the number of leaves
of T .S/ is at most n, and so is the number of
internal vertices that, by definition, are all branch-
ing, as well as the number of edges. In order to
see that each edge label can be stored in O.log n/

bits of space, note that an edge label is always
a substring of S . Hence it can be represented by
a pair .l; r/ consisting of left pointer l and right
pointer r , if the label is SŒl; r�.

Note that this space bound is not optimal since
there are j†jn different strings and hence suffix
trees, while nlog n bits would allow to represent
n! different entities.

Theorem 2 Suffix trees can be constructed in
optimal time, in particular:
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1. For constant-size alphabet, the suffix tree
T .S/ of a string S of length n can be
constructed in O.n/ time [11–13]. For general
alphabet, these algorithms require O.n log n/

time.
2. For integer alphabet, the suffix tree of S can

be constructed in O.n/ time [4, 9].

Generally, there is a natural strategy to construct a
suffix tree: Iteratively all suffixes are inserted into
an initially empty structure. Such a strategy will
immediately lead to a linear-time construction al-
gorithm if each suffix can be inserted in constant
time. Finding the correct position where to insert
a suffix, however, is the main difficulty of suffix
tree construction.

The first solution for this problem was given
by Weiner in his seminal 1973 paper [13]. His
algorithm inserts the suffixes from shortest to
longest, and the insertion point is found in amor-
tized constant time for constant-size alphabet,
using rather a complicated amount of additional
data structures. A simplified version of the algo-
rithm was presented by Chen and Seiferas [3].
They give a cleaner presentation of the three
types of links that are required in order to find
the insertion points of suffixes efficiently, and
their complexity proof is easier to follow. Since
the suffix tree is constructed while reading the
text from right to left, these two algorithms are
sometimes called anti-online constructions.

A different algorithm was given in 1976 by
McCreight [11]. In this algorithm the suffixes
are inserted into the growing tree from longest
to shortest. This simplifies the update procedure,
and the additional data structure is limited to just
one type of link: an internal vertex v with path
label P.v/ D aw for some symbol a 2 †

and string w 2 † � has a suffix link to the
vertex u with path label P.u/ D w. In Fig. 1,
suffix links are shown as dashed arrows. They
often connect vertices above the insertion points
of consecutively inserted suffixes, like the vertex
with path-label “M” and the root, when inserting
suffixes “MAMIA” and “AMIA” in the example
of Fig. 1. This property allows reaching the next
insertion point without having to search for it
from the root of the tree, thus ensuring amortized

constant time per suffix insertion. Note that since
McCreight’s algorithm treats the suffixes from
longest to shortest and the intermediate structures
are not suffix trees, the algorithm is not an online
algorithm.

Another linear-time algorithm for constant-
size alphabet is the online construction by Ukko-
nen [12]. It reads the text from left to right and
updates the suffix tree in amortized constant time
per added symbol. Again, the algorithm uses
suffix links in order to quickly find the insertion
points for the suffixes to be inserted. Moreover,
since during a single update the edge labels of
all leaf edges need to be extended by the new
symbol, it requires a trick to extend all these
labels in constant time: all the right pointers of the
leaf edges refer to the same end of string value,
which is just incremented.

An even stronger concept than online
construction is real-time construction, where
the worst-case (instead of amortized) time per
symbol is considered. Amir et al. [1] present
for general alphabet a suffix tree construction
algorithm that requires O.log n/ worst-case
update time per every single input symbol when
the text is read from right to left, and thus requires
overall O.n log n/ time, like the other algorithms
for general alphabet mentioned so far. They
achieve this goal using a binary search tree on
the suffixes of the text, enhanced by additional
pointers representing the lexicographic and the
textual order of the suffixes, called Balanced
Indexing Structure. This tree can be constructed
in O.log n/ worst-case time per added symbol
and allows maintaining the suffix tree in the same
time bound.

The first linear-time suffix tree construction
algorithm for integer alphabets was given
by Farach-Colton [4]. It uses the so-called
odd-even technique that proceeds in three
steps:

1. Recursively compute the compacted trie of all
suffixes of S beginning at odd positions, called
the odd tree To.

2. From To compute the even tree Te , the com-
pacted trie of the suffixes beginning at even
positions in S .
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3. Merge To and Te into the whole suffix tree
T .S/.

The basic idea of the first step is to encode pairs
of characters as single characters. Since at most
n/2 different such characters can occur, these can
be radix-sorted and range-reduced to an alphabet
of size n/2. Thus, the string S of length n over the
integer alphabet † D f1; : : : ; ng is translated in
O.n/ time into a string S 0 of length n/2 over the
integer alphabet †0 D f1; : : : ; n=2g. Applying
the algorithm recursively to this string yields
the suffix tree of S 0. After translating the edge
labels from substrings of S 0 back to substrings
of S , some vertices may exist with outgoing
edges whose labels start with the same symbol,

because two distinct symbols from †0 may be
pairs with the same first symbol from †. In such
cases, by local modifications of edge labels or
adding additional vertices, the trie property can
be regained and the desired tree To is obtained.

In the second step, the odd tree To from the
first step is used to generate the lexicographically
sorted list (lex-ordering for short) of the suffixes
starting at odd positions. Radix-sorting these with
the characters at the preceding even positions as
keys yields a lex-ordering of the even suffixes
in linear time. Together with the longest com-
mon prefixes (lcps) of consecutive positions that
can be computed in linear time from To using
constant-time lowest common ancestor queries
and the identity

lcp.l2i ; l2j / D

(
lcp.l2iC1; l2j C1/C 1 if SŒ2i� D SŒ2j �

0 otherwise

this ordering allows reconstructing the even tree
Te in linear time.

In the third step, the two tries To and Te are
merged into the suffix tree T .S/. Conceptually,
this is a straightforward procedure: the two tries
are traversed in parallel, and every part that is
present in one or both of the two trees is inserted
in the common structure. However, this proce-
dure is simple only if edges are traversed charac-
ter by character such that common and differing
parts can be observed directly. Such a traversal
would, however, require O.n2/ time in the worst
case, impeding the desired overall linear running
time. Therefore, Farach-Colton suggests to use an
oracle that tells for an edge of To and an edge of
Te the length of their common prefix.

However, the suggested oracle may overes-
timate this length, and that is why sometimes
the tree generated must be corrected, called un-
merging. The full details of the oracle and the
unmerging procedure can be found in [4].

Overall, if T .n/ is the time it takes to build the
suffix tree of a string S 2 f1; : : : ; ngn, the first
step takes T .n=2/ C O.n/ time and the second
and third steps take O.n/ time; thus the whole

procedure takes O.n/ overall time on the RAM
model.

Another linear-time construction of suffix
trees for integer alphabets can be achieved
via linear-time construction of suffix arrays
together with longest common prefix tabulation,
as described by Kärkkäinen and Sanders in [9].

All previously mentioned algorithms construct
the suffix tree in main memory. However, since
the data structure may become very large in
practice, also methods for building the suffix tree
in secondary memory have been studied. Possibly
the simplest way is to first construct the suffix
array A and the LCP array on disk, as described in
the entry � Suffix Array Construction. When this
is done, it is only a small final step to construct
the suffix tree [4]. The idea is to construct the tree
in n phases from left to right, such that after phase
i the suffix tree of the strings A[1], . . . , AŒi� has
been constructed. Simultaneously, an external-
memory stack containing the nodes on the path
leading from the root to AŒi� is maintained. In
phase iC1, first, the leaf representing string AŒiC

1� is created, and then all nodes are popped
from the stack whose string length is strictly
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greater than LCP[i ]. Next, a new node with string
depth LCP[i ] is created (unless it already exists)
whose parent is the top element of the stack and
whose children are the last popped element and
the new leaf. This new node and the new leaf
are finally pushed on the stack. Keeping the two
top pages of the stack in internal memory, the
algorithm executes a total of O.n/ pop and push
operations and therefore uses a total of O.n=B/

time, where B is the external memory block size.
Other more direct ways to construct the

suffix tree on disk have also been developed,
e.g., [14, 15].

In some applications the so-called generalized
suffix tree of several strings is used, a dictionary
obtained by constructing the suffix tree of the
concatenation of the contained strings. An im-
portant question that arises in this context is that
of dynamically updating the tree upon insertion
and deletion of strings from the dictionary. More
specifically, since edge labels are stored as pairs
of pointers into the original string, when deleting
a string from the dictionary, the corresponding
pointers may become invalid and need to be
updated. An algorithm to solve this problem in
amortized linear time was given by Fiala and
Greene [6], and a linear worst-case (and hence
real-time) algorithm was given by Ferragina et
al. [5].

Applications
The suffix tree supports many applications, most
of them in optimal time and space, including
exact string matching, set matching, longest com-
mon substring of two or more sequences, all-
pairs suffix-prefix matching, repeat finding, and
text compression. These and several other appli-
cations, many of them from bioinformatics, are
given in [2] and [8].

Open Problems
Some theoretical questions regarding the
expected size and branching structure of suffix
trees under more complicated than i. i. d.
sequence models are still open. Currently most
of the research has moved toward more space-
efficient data structures like suffix arrays and
compressed string indices or the Burrows-
Wheeler Transform.

Experimental Results
Suffix trees are infamous for their high memory
requirements. The practical space consumption
is between 9 and 11 times the size of the string
to be indexed, even in the most space-efficient
implementations known [7, 10]. Moreover, [7]
also shows that suboptimal algorithms like the
very simple quadratic-time write-only top-down
(WOTD) algorithm can outperform optimal algo-
rithms on many real-world instances in practice,
if carefully engineered.

URLs to Code and Data Sets
Several sequence analysis libraries contain code
for suffix tree construction. For example, Str-
mat (http://www.cs.ucdavis.edu/~gusfield/strmat.
html) by Gusfield et al. contains implementations
of Weiner’s and Ukkonen’s algorithm. An imple-
mentation of the WOTD algorithm by Kurtz can
be found at (http://bibiserv.techfak.uni-bielefeld.
de/wotd).
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Problem Definition

The suffix tree is the ubiquitous data structure of
combinatorial pattern matching myriad of situa-
tions – just to cite a few, searching, data compres-

sion and mining, and bioinformatics [7]. In these
applications, the large data sets now available in-
volve the use of numerous memory levels which
constitute the storage medium of modern PCs: L1
and L2 caches, internal memory, multiple disks,
and remote hosts over a network. The power of
this memory organization is that it may be able
to offer the expected access time of the fastest
level (i.e., cache) while keeping the average cost
per memory cell near the one of the cheapest
level (i.e., disk), provided that data are properly
cached and delivered to the requiring algorithms.
Neglecting questions pertaining to the cost of
memory references may even prevent the use
of algorithms on large sets of input data. Engi-
neering research is presently trying to improve
the input/output subsystem to reduce the impact
of these issues, but it is very well known [20]
that the improvements achievable by means of
a proper arrangement of data and a properly
structured algorithmic computation abundantly
surpass the best-expected technology advance-
ments.

The Model of Computation
In order to reason about algorithms and data
structures operating on hierarchical memories, it
is necessary to introduce a model of computation
that grasps the essence of real situations so that
algorithms that are good in the model are also
good in practice. The model considered here is
the external-memory model [20], which received
much attention because of its simplicity and rea-
sonable accuracy. A computer is abstracted to
consist of two memory levels: the internal mem-
ory of size M and the (unbounded) disk memory
which operates by reading/writing data in blocks
of size B (called disk pages). The performance of
algorithms is then evaluated by counting (a) the
number of disk accesses (I/Os), (b) the internal
running time (CPU time), and (c) the number
of disk pages occupied by the data structure or
used by the algorithm as its working space. This
simple model suggests, correctly, that a good
external-memory algorithm should exploit both
spatial locality and temporal locality. Of course,
“I/O” and “two-level view” refer to any two levels
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Suffix Tree Construction in Hierarchical Memory, Fig.
1 The suffix tree of S D ACACACCG on the left, and
its compact edge-encoding on the right. The endmarker #
is not shown. Node v spells out the string ACAC. Each

internal node stores the length of its associated string, and
each leaf stores the starting position of its corresponding
suffix

of the memory hierarchy with their parameters M

and B properly set.

Notation
Let SŒ1; n] be a string drawn from alphabet †,
and consider the notation: Si for the i th suffix of
string S , lcp.˛; ˇ/ for the longest common pre-
fix between the two strings ’ and “, and lca.u; v/

for the lowest common ancestor between two
nodes u and v in a tree.

The suffix tree of SŒ1; n], denoted hereafter by
TS , is a tree that stores all suffixes of S# in a
compact form, where # … † is a special character
(see Fig. 1). TS consists of n leaves, numbered
from 1 to n, and any root-to-leaf path spells out a
suffix of S#. The endmarker # guarantees that no
suffix is the prefix of another suffix in S#. Each
internal node has at least two children and each
edge is labeled with a nonempty substring of S .
No two edges out of a node can begin with the
same character, and sibling edges are ordered lex-
icographically according to that character. Edge
labels are encoded with pairs of integers – say
SŒx; y] is represented by the pair hx; yi. As a
result, all Θ.n2/ substrings of S can be repre-
sented in O.n/ optimal space by TS ’s structure
and edge encoding. Furthermore, the rightward
scan of the suffix-tree leaves gives the ordered
set of S ’s suffixes, also known as the suffix array
of S [13]. Notice that the case of a large string
collection Δ D fS1; S2; : : : ; Skg reduces to the

case of one long string S D S1#1S2#2 � � �S
k#k ,

where #i … † are special symbols.
Numerous algorithms are known that build

the suffix tree optimally in the RAM model (see
[3] and references therein). However, most of
them exhibit a marked absence of locality of
references and thus elicit many I/Os when the
size of the indexed string is too large to be
fit into the internal memory of the computer.
This is a serious problem because the slow
performance of these algorithms can prevent
the suffix tree being used even in medium-scale
applications. This encyclopedia’s entry surveys
algorithmic solutions that deal efficiently with
the construction of suffix trees over large string
collections by executing an optimal number
of I/Os. Since it is assumed that the edges
leaving a node in TS are lexicographically
sorted, sorting is an obvious lower bound for
building suffix trees (consider the suffix tree
of a permutation!). The presented algorithms
have sorting as their bottleneck, thus establishing
that the complexity of sorting and suffix tree
construction match.

Key Results

Designing a disk-efficient approach to suffix-tree
construction has found efficient solutions only in
the last few years [4]. The present section surveys
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DIVIDE-AND-CONQUER ALGORITHM
(1) Construct the string S �[j] = rank of 〈S [2j], S [2j + 1]〉, and recursively compute T s�.
(2) Derive from T s� the compacted trie T o of all suffixes of S  beginning at odd positions.
(3) Derive from T o the compacted trie T e of all suffixes of S beginning at even positions.
(4) Merge T o and Te into the whole suffix tree T s, as follows:
  (4.1) Overmerge T o and T e into the tree T M.
  (4.2) Partially unmerge T M to get T s.

Suffix Tree Construction in Hierarchical Memory, Fig. 2 The algorithm that builds the suffix tree directly

(1) Construct the suffix array AS and the array lcpS of the string S.
(2) Initially set TS as a single edge connecting the root to a leaf pointing to suffix AS[1].
(2)  For i = 2,..., n:
  (2.1) Create a new leaf  i that points to the suffix AS [i].
  (2.2) Walk up from   –1 until a node ui is met whose string-length xi is ≤ lcps [i].
  (2.3) If xi = lcps[i], leaf   i is attached to ui.
  (2.4) If xi < lcps[i], create node u�i with string-length xi, attach it to ui and leaf  i to u�i;

i

SUFFIXARRAY-BASED ALGORITHM

Suffix Tree Construction in Hierarchical Memory, Fig. 3 The algorithm that builds the suffix tree passing through
the suffix array

two theoretical approaches which achieve the
best (optimal!) I/O-bounds in the worst case;
the next section will discuss some practical
solutions.

The first algorithm is based on a Divide-and-
Conquer approach that allows us to reduce the
construction process to external-memory sorting
and few low-I/O primitives. It builds the suffix
tree TS by executing four (macro)steps, detailed
in Fig. 2. It is not difficult to implement the first
three steps in Sort.n/ D O. n

B
logM=B

n
B

/ I/Os
[20]. The last (merging) step is the most difficult
one and its I/O-complexity bounds the cost of the
overall approach. Farach-Colton et al. [3] propose
an elegant merge for To and Te: substep (4.1)
temporarily relaxes the requirement of getting TS

in one shot, and thus it blindly (over)merges the
paths of To and Te by comparing edges only via
their first characters; then substep (4.2) refixes
TM by detecting and undoing in an I/O-efficient
manner the (over)merged paths. Note that the
time and I/O-complexity of this algorithm follow
a nice recursive relation: T .n/ D T .n=2/ C

O.Sort.n//.

Theorem 1 (Farach-Colton et al. [5]) Given an
arbitrary string SŒ1; n�, its suffix tree can be
constructed in O.Sort.n// I/Os, O.n log n/ time
and using O.n=B/ disk pages.

The second algorithm [10] is deceptively sim-
ple, elegant, and I/O optimal and applies suc-
cessfully to the construction of other indexing
data structures, like the string Btree [5]. The key
idea is to derive TS from the suffix array AS

and from the lcp array, which stores the longest-
common-prefix length of adjacent suffixes in AS .
Its pseudocode is given in Fig. 3. Note that step
(1) may deploy any external-memory algorithm
for suffix array construction: used here is the
elegant and optimal Skew algorithm of [9] which
takes O.Sort.n// I/Os. Step (2) takes a total of
O.n=B/ I/Os by using a stack that stores the
nodes on the current rightmost path of TS in
reversed order, i.e., leaf `i is on top. Walking
upward, splitting edges or attaching nodes in TS

boils down to popping/pushing nodes from this
stack. As a result, the time and I/O-complexity
of this algorithm follow the recursive relation:
T .n/ D T .2n=3/CO.Sort.n//.
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Theorem 2 (Kärkkäinen and Sanders 2003,
see [10]) Given an arbitrary string SŒ1; n], its
suffix tree can be constructed in O.Sort.n// I/Os,
O.n log n/ time and using O.n=B/ disk pages.

It is not evident which one of these two algo-
rithms is better in practice [10]. The first one ex-
ploits a recursion with parameter 1/2 but incurs a
large space overhead because of the management
of the tree topology; the second one is more space
efficient and easier to implement, but exploits a
recursion with parameter 2/3.

Applications

The reader is referred to [4] and [7] for a long list
of applications of large suffix trees and to [6, 18]
for practical implementations.

Open Problems

The recent theoretical and practical achievements
mean the idea that “suffix trees are not practical
except when the text size to handle is so small
that the suffix tree fits in internal memory” is
no longer the case [15]. Given a suffix tree, it
is known now (see, e.g., [4, 11]) how to map
it onto a disk-memory system in order to al-
low I/O-efficient traversals for subsequent pat-
tern searches. A fortiori, suffix-tree storage, and
construction are challenging problems that need
further investigation.

Space optimization is closely related to time
optimization in a disk-memory system, so the
design of succinct suffix-tree implementations is
a key issue in order to scale to gigabytes of
data in reasonable time. This topic is an active
area of theoretical research with many fascinating
solutions (see, e.g., [16] and the many papers that
followed it), which need further exploration in the
practical setting.

It is theoretically challenging to design a
suffix-tree construction algorithm that takes
optimal I/Os and space proportional to the
entropy of the indexed string. The more
compressible is the string, the lighter should

be the space requirement of this algorithm. Some
results are known [8, 11, 12], but both issues of
compression and I/Os have been tackled jointly
only recently [6], but more results are foreseen.

Experimental Results

The interest in building large suffix trees arose in
the last few years because of the recent advances
in sequencing technology, which have allowed
the rapid accumulation of DNA and protein data.
Some recent papers [1, 2, 9, 17, 18] proposed
new practical algorithms that allow us to scale
to Gbps/hours. Surprisingly enough, these algo-
rithms are based on disk-inefficient schemes, but
they properly select the insertion order of the
suffixes and exploit carefully the internal mem-
ory as a buffer, so that their performance does
not suffers significantly from the theoretical I/O-
bottleneck.

In [9] the authors propose an incremental al-
gorithm, called PrePar, which performs multiple
passes over the string S and constructs the suffix
tree for a subrange of suffixes at each pass. For
a user-defined parameter q, a suffix subrange is
defined as the set of suffixes prefixed by the same
q-long string. Suffix subranges induce subtrees
of TS which can thus be built independently
and evicted from internal memory as they are
completed. The experiments reported in [9] suc-
cessfully index 286 Mbps using 2 Gb internal
memory.

In [2] the authors propose an improved version
of PrePar, called DynaCluster, that deploys a
dynamic technique to identify suffix subranges.
Unlike Prepar, DynaCluster does not scan over
and over the string S , but it starts from the q-
based subranges and then splits them recursively
in a DFS-manner if their size is larger than a fixed
threshold £. Splitting is implemented by looking
at the next q characters of the suffixes in the sub-
range. This clustering and lazy-DFS visit of TS

significantly reduce the number of I/Os incurred
by the frequent edge-splitting operations that oc-
cur during the suffix-tree construction process
and allow it to cope efficiently with skew data.
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As a result, DynaCluster constructs suffix trees
for 200 Mbps with only 16 Mb internal memory.

In [17] authors improved the space require-
ment and the buffering efficiency, thus being
able to construct a suffix tree of 3 Gbps in 30 h,
whereas [1] improved the I/O behavior of RAM-
algorithms for online suffix-tree construction, by
devising a novel low-overhead buffering policy.
More recently [14] introduced a new technique,
called Elastic Range (ERA), which partitions
the tree construction process horizontally and
vertically and minimizes I/Os by dynamically
adjusting the horizontal partitions independently
for each vertical partition, based on the evolving
shape of the tree and the available internal mem-
ory. This technique is specialized to work also
for shared-memory and shared-disk multi-core
systems and for parallel shared-nothing architec-
tures. ERA indexes the entire human genome in
19 min on a commodity desktop PC. For com-
parison, the fastest existing method needs 15 min
using 1024 CPUs on an IBM BluGene supercom-
puter.

Finally [19] observed that increasing memory
sizes of current commodity PCs and servers
enhance the impact of in-memory tasks on
performance. So it is imperative nowadays
to reassess the performance of in-memory
algorithms and to propose new algorithms
that incorporate the characteristics of modern
hardware architectures, such as multilevel
memory hierarchy and chip multiprocessors
(CMPs). Starting from these premises the
authors proposed cache-conscious suffix-tree
construction algorithms that are tailored to CMP
architectures, using novel sample-based cache-
partitioning techniques that improved cache
performance and exploited on-chip parallelism
of CMPs thus achieving satisfactory speedups
with increasing number of cores.
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The suffix tree is one of the oldest full-text
inverted indexes and one of the most persistent
subjects of study in the theory of algorithms. With
extensions and refinements, including succinct
and compressed variants that provide some of its
expressive power in smaller space, it constitutes
a fundamental conceptual tool in the design of
string algorithms. The companion structure rep-
resented by the suffix array is as powerful as the
suffix tree in many applications, but it requires
significantly less space. The uses of these data
structures are so numerous that it is difficult to ac-

count for all of them, while even more are being
discovered. Salient applications include search-
ing for a pattern in a text in time proportional
to the size of the pattern, various computations
on regularities such as repeats and palindromes
within a text, statistical tables of substring occur-
rences, data compression by textual substitution,
as well as ancillary yet fundamental tasks in
string searching with errors, and more.

Problem Definition

It is well known that searching among n keys
in an unsorted table takes optimal linear time.
When multiple searches are expected, however, it
becomes worth to sort the table once and for all,
whereby each subsequent search will require only
logarithmic time. It is similarly possible to build
an inverted index on a long text so that the search
for any query string will take time proportional to
the length of the query rather than that of the text.
It turns out that the data structures built for this
purpose support many more applications, which
are the topic of this entry.

Formally, let T be a string of length n on
alphabet ˙ D Œ1 : : : ��, let T be its reverse, and
let # … ˙ be a shorthand for zero. To simplify
the exposition, we assume throughout that � is a
constant. The suffix tree STT D .?; V; E/ of T

is a tree rooted at node ?2 V with set of nodes
V and set of labeled edges E (Fig. 1, left). Edge
labels are pointers to substrings of T #: we denote
by `.e/, and equivalently by `.u; v/, the label of
edge e D .u; v/ 2 E, and we denote by `.v/

the string `.?; v1/ � `.v1; v2/ � � � � � `.vk�1; v/,
where ?; v1; v2; : : : ; vk�1; v is a path in STT .
We say that node v has string depth j`.v/j. Let
v 2 V be an internal node, and let w1; w2; : : : ; wk

be its children: then, 2 � k � � C 1, and
labels `.v; w1/, `.v; w2/, : : : , `.v; wk/ start with
distinct characters. The children of v are ordered
lexicographically according to the labels of edges
.v; w1/; .v; w2/; : : : ; .v; wk/. There is a bijection
between the leaves of STT and the suffixes of
T #, so every leaf is annotated with the starting
position of its corresponding suffix. Moreover,
if leaf v 2 V is associated with the suffix that
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Suffix Trees and Arrays, Fig. 1 Relationship between
the suffix tree, the suffix array (left), and the suffix-link
tree (right) of string T D AGAGCGAGAGCGCGC#. Thin
black lines, edges of STT ; thick gray lines, suffix links;
thin dashed lines, implicit Weiner links; thick black lines,
the subtree of STT induced by maximal repeats. Black

dots, nodes of STT ; large black dot, ?; white dots,
destinations of implicit Weiner links. Squares, leaves of
STT and cells of SAT ; numbers, starting position of
each suffix in T . For clarity, implicit Weiner links are not
overlaid to STT , and suffix links from the leaves of STT

are not drawn

starts at position i , then `.v/ D T Œi : : : n�#. Since
STT has exactly nC 1 leaves and every internal
node has at least two children, there are at most
n internal nodes; thus, STT takes O.n/ space.
We drop the subscript from ST whenever the
underlying string is clear from the context.

A substring W of T # is called right maximal
if both Wa and Wb occur in T , with fa; bg �

˙[f#g and a ¤ b. Clearly a substring W is right
maximal iff W D `.v/ for some v 2 V . More-
over, assume that `.v/ D aW for some v 2 V ,
a 2 ˙ , and W 2 ˙�. Since aW is right maximal,
string W is right maximal as well; therefore, there
is a node w 2 V with `.w/ D W . Thus, the set
of labels f`.v/ W v 2 V g enjoys the suffix closure
property, in the sense that if a string W belongs
to the set so does every one of its suffixes. We say
that there is a suffix link from v to w labeled by
a, and we write suffixLink.v/ D w. Clearly,
if v is a leaf, then suffixLink.v/ is either a
leaf or ?. The graph induced by V and by suffix
links is a trie rooted at ?: such trie is called the
suffix-link tree SLTT of string T (Fig. 1, right).
Inverting the direction of all suffix links yields
the so-called explicit Weiner links. Given a node
v and a symbol a 2 ˙ , it might happen that
string a`.v/ does occur in T but that it is not the

label of any node in V : all such left extensions
of nodes in V that end in the middle of an edge
of ST are called implicit Weiner links. A node in
V can have more than one outgoing Weiner link,
and all such Weiner links have different labels.
The number of suffix links (or, equivalently, of
explicit Weiner links) is upper-bounded by 2n�2,
and the same bound holds for the number of
implicit Weiner links: in some applications, we
thus assume that ST is augmented with unary
nodes that correspond to all the destinations of
implicit Weiner links. A substring W of T # is
called left maximal if both aW and bW occur in
T #, with fa; bg � ˙ [ f#g and a ¤ b, where
T # is interpreted as a circular string. A string that
is both left and right maximal is called maximal
repeat. The set of all left-maximal strings enjoys
the prefix closure property; therefore, there is a
bijection between the maximal repeats and the
nodes that lie in some paths of ST that start from
the root (Fig. 1, left).

The suffix array SAT Œ1 : : : n C 1� of string
T is the permutation of Œ1 : : : n C 1� such that
SAT Œk� D i iff suffix T Œi : : : n�# has position
k in the list of all suffixes of T # taken in lex-
icographic order. In this case, we say that suf-
fix T Œi : : : n�# has lexicographic rank k. Clearly
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SAT Œ1� D n C 1. The inverse suffix array of
string T is an array RT Œ1 : : : n C 1� such that
RT ŒSAŒi �� D i for all i 2 Œ1 : : : n C 1�. A
substring W of T # corresponds to a unique,
contiguous interval .iW ; jW / of SAT , which con-
tains all the suffixes of T # that are prefixed by
W . An additional structure that complements the
suffix array in many applications is the longest
common prefix array LCPT Œ2 : : : n C 1�, which
stores at position i the length of the longest
prefix shared by suffix T ŒSAT Œi � : : : n�# and by
suffix T ŒSAT Œi � 1� : : : n�#. Clearly LCPT Œk� �

jW j for all k 2 ŒiW C 1 : : : jW �. Again, we
drop the subscript from SA, R, and LCP when-
ever the underlying string is clear from the con-
text.

Suffix tree, suffix array, and LCP array are
strongly intertwined, and they have connections
to other substring recognizers, like the directed
acyclic word graph (DAWG) and its compact
variant (CDAWG). SA can be thought of as
the ordered set of leaves of ST, and ST can
be thought of as a search tree built on top of
SA (Fig. 1, left). The full ST, including suffix
links, can be built from SA and LCP with a
O.n/-time scan [1], and SA can be built from
ST with a O.n/ traversal. LCP itself can be
built from SA in O.n/ time [18]. A number
of ingenious algorithms have been proposed to
build ST and SA in linear time directly from
the string itself, even in the case of polynomial
alphabets: see [10, 17, 19, 20, 25, 32, 33] for a
sampler of such algorithms, and see [28] for a
detailed taxonomy. Some applications require to
maintain the suffix tree after edits to the under-
lying string: see [12, 13, 22] for a sampler of
such algorithms. Finally, see [21] for a compar-
ative study of space-efficient allocations of suffix
trees.

Key Results

Suffix trees are extremely versatile indexes
that allow one to solve a variety of string
matching and analysis problems [2, 9, 14].
We review few such problems, classifying the
corresponding algorithmic solutions based on

the way they walk on the suffix tree and on
the information they store in each node. This
classification exposes recurrent design patterns,
it highlights which parts of the suffix tree
are needed by each application, and it helps
decide which algorithms can be implemented
on top of more succinct but less powerful
representations of the suffix tree. The emphasis
of this section is on the power of different
traversals of the suffix tree, not necessarily on
the most efficient solution of each string analysis
problem.

Top-Down
Exact searching inside a string S of length n is
the most natural example of top-down traversal of
STS . Given a query string W , we can just match
its characters from the root of ST in O.jW j/

time to determine whether W occurs in S or not.
Since edges are labeled by substrings of S , the
search for W can end in the middle of an edge
.u; v/: we say that v is the locus of W in ST,
and we denote it by locus.W /. This approach
generalizes to a set of patterns W1; W2; : : : ; Wk

of total length m, by building the suffix tree of
the concatenation W D W1#1W2#2 � � � #k�1Wk

and by traversing STS and STW synchronously,
where i ¤ j implies #i ¤ #j and #i ¤ #.

The total number of (possibly overlapping)
occurrences of the label `.v/ of a node v of ST
equals the number of leaves in the subtree rooted
at v, which can be computed by a bottom-up
traversal of the tree. All strings that end in the
middle of edge .u; v/ start exactly at the same po-
sitions as `.v/ in S ; therefore, ST with frequency
annotation allows one to return the frequency in
S of any string W in O.jW j/ time. An important
consequence of this is the fact that the number
of distinct frequencies assumed by nonempty
substrings of S is at most jS j. It is also possible
to annotate every node of ST with the smallest
and largest leaf in its subtree, supporting O.jW j/-
time queries on the first and last occurrence in S

of any string W . More generally, traversing the
tree rooted at locus.W / in O.jW j C k/ time
allows one to print all the k starting positions of
W in S .
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Finding all the occurrences of W in S can also
be done in O.jW j log n/ time, by binary search-
ing SAS for strings W # and W $, where $ D � C

1: the result of these searches are, respectively,
the starting and ending position of the interval of
all suffixes prefixed by W . Knowing this interval
allows one to derive the number of occurrences of
W in S in constant time and to output the starting
positions of such occurrences in time linear in
the size of the output. Using simple properties of
LCPS , it is possible to reduce the time of binary
search to O.jW jC log n/, by reusing information
during the search [24].

The top-down navigation of a suitably anno-
tated suffix tree of S allows one also to compute
the Lempel-Ziv factorization of S [23]. Recall
that this factorization scans the string from left
to right, and it determines at every position i the
longest prefix of SŒi : : : n� that equals a prefix
of SŒj : : : n�, where j < i . Let W be such
longest prefix: the factorization outputs the tuple
.j; jW j; SŒi C jW j�/. Clearly we can find all
this information by annotating every node v of
ST with the index j of the smallest leaf in the
subtree rooted at v. Then, we can just match
suffix SŒi : : : n� from the root of ST until a
mismatch occurs or until we find a node with
index greater than i . More advanced solutions
embed the factorization in an online, one-pass
construction of ST [29].

Bottom-Up
A square is a string WW where W 2 ˙C is not
in the form Zk with k > 1 for any Z 2 ˙C.
Clearly, if a square WW occurs at position i in S ,
then there is a node v in STS such that j`.v/j �

jW j and such that leaves i and i C jW j belong
to the subtree rooted at v. The converse is also
true [4]. Thus, we can output all the repeats of
S by using the following bottom-up traversal of
ST. Assume without loss of generality that all
nodes in ST have exactly two children. Every
node u of ST builds its list of occurrences, sorted
by position in S , using the lists of its children.
Then, it scans its list once to find all pairs of
positions at distance at most j`.v/j in S that are
consecutive in the list: every such pair is a square,
and positions at distance at most j`.v/j that are

not consecutive induce squares that are implied
by the consecutive positions.

Let v and w be the two children of v, and
assume without loss of generality that the list
of occurrences of v is smaller than the list oc-
currences of w. Then, the list of node u can be
built by extracting all elements from the list of
node v and by inserting them into the list of
node w. As a consequence of such insertions,
the occurrences in the list of v move to a list
that is at least twice the size of the original
list: it follows that an occurrence can be pushed
into at most O.log n/ lists; therefore, the total
number of extractions and insertions is bounded
by O.n log n/. If the lists of occurrences are
implemented with balanced trees, the total time
to extract all squares from S is O.n log2 n/.
More advanced approaches manage to shave a
logarithm, reaching optimal O.n log n/ time [4],
and to reduce the complexity to O.nC �/, where
� is the size of the output [15, 31].

The algorithm for detecting squares can be
adapted to compute all the maximal palindromes
of S , by applying it to string T D S#S$.
Note that a variant of the same algorithm can
be implemented using the suffix array. First, it is
easy to see that a bottom-up, in-order traversal of
the internal nodes of STS can be simulated by
a linear scan of SAS and of LCPS , maintaining
a stack [1]. It follows that, for every interval
.iv; jv/ in SA of a node v in ST, we can just
check whether SAŒk� C j`.v/j 2 Œiv : : : jv� and
SŒSAŒk�C j`.v/j� ¤ SŒSAŒk�C 2j`.v/j�, for ev-
ery k 2 Œiv : : : jv�: in this case, the occurrence of
square `.v/ at position SAŒk� is called branching.
It is easy to see that all squares can be derived
from squares with branching occurrences [31].
Moreover, if the occurrence at position SAŒk�

is branching, then suffixes SAŒk� C j`.v/j and
SAŒk� C 2j`.v/j belong to distinct children of
node v in ST: we can thus discard the child
w of v with the largest number of leaves and
check for every k 2 Œi : : : j � that does not belong
to the interval of w whether SAŒk� � j`.v/j 2

Œiv : : : jv� and SŒSAŒk�� ¤ SŒSAŒk� C j`.v/j�.
The child of v with largest interval can be de-
termined in constant time during the simulated
bottom-up traversal of ST, and since the largest
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interval is always excluded, the algorithm runs in
O.n log n/ time.

Given a collection of k strings of total length
n, let S be the concatenation of all such strings,
each terminated by a distinct symbol that does
not belong to ˙ . A bottom-up navigation of STS

(called also the generalized suffix tree of the
collection) allows one to compute the length of
a longest string that occurs in x � k strings.
To solve this problem, we can annotate each leaf
v of ST with a bitvector which of length k,
such that whichŒi � D 1 iff the suffix associated
with v starts inside string i . Then, every node
of ST can be annotated with the same bitvector
via a bottom-up, O.nk/ traversal, in which we
compute the bitvector of a node by taking the
logical or of the bitvectors of its children. More
advanced algorithms solve this problem in O.n/

time [8]. As a byproduct, this annotation allows
one to answer queries on the number of strings
in the collection that contain a given substring,
a problem known as document counting. A ger-
mane problem is that of document listing, in
which we are given a pattern and we are asked
to return the set of all documents that contain one
or more copies of the pattern [26].

Top-Down and Suffix Links
Given two strings S and T , of length n and
m, respectively, the matching statistics array
MSS;T Œ1 : : : n� is such that MSS;T Œi � stores the
length of the longest string that starts at position
i in S and that occurs in T [33]. We can compute
MSS;T by scanning S from left to right, while
simultaneously issuing child and suffix-link
queries on STT . This results in a peculiar walk
on STT that consists of alternating sequences
of suffix-tree edges and of suffix links (we can
also compute MSS;T symmetrically, by scanning
S from right to left and by simultaneously
issuing parent and Weiner-link queries on
STT [27]).

Specifically, assume that we are at position i in
S , and let W D SŒi : : : i CMSS;T Œi � � 1�. Note
that W can end in the middle of an edge .u; v/ of
STT : let W D aXY where a 2 ˙ , X 2 ˙�,
aX D `.u/, and Y 2 ˙�. Moreover, let u0 D

suffixLink.u/ and v0 D suffixLink.v/.

Note that suffix links can project edge .u; v/ onto
a path u0; v1; v2; : : : ; vk ; v0, where vj 2 V for
j 2 Œ1 : : : k�. Since MSS;T ŒiC1� � MSS;T Œi ��1,
the first step to compute MSS;T Œi C 1� is to find
the position of XY in STT : we call this phase of
the algorithm the repositioning phase. To imple-
ment the repositioning phase, it suffices to take
the suffix link from u, to follow the outgoing edge
from u0 whose label starts by the first character of
Y , and then to iteratively jump to the next internal
node of STT and to choose the next outgoing
edge according to the corresponding character of
Y . After repositioning, we start matching the new
characters of S on STT , i.e., we read characters
SŒi CMSS;T Œi ��; SŒi CMSS;T Œi �C 1�; : : : until
such an extension becomes impossible in STT .
We call this phase of the algorithm the matching
phase. Note that no character of S that has been
read during the repositioning phase of MSS;T ŒiC

1� will be read again during the repositioning
phase of MSS;T ŒiCk� with k > 1: it follows that
every position j of S is consumed at most twice,
once in the matching phase of some MSS;T Œi �

with i � j and once in the repositioning phase
of some MSS;T Œk� with i < k < j . Since
every mismatch can be charged to the position
of which it concludes the matching statistics, the
total number of mismatches encountered by the
algorithm is bounded by the length of S .

These algorithms can be adapted to com-
pute the shortest unique substring array
SUSS Œ1 : : : n�, which stores at index i the length
of the shortest substring of S that occurs only at
position i [33]. The average of the matching
statistics vector can be used to estimate the
cross-entropy of the probability distributions
of two stationary, ergodic, stochastic processes
with finite memory that generated S and T [11].
Moreover, a number of compositional similarity
measures between two strings S and T can be
computed by scanning S and by simultaneously
navigating STT as in matching statistics: this
has the advantage of building and annotating
the suffix tree of just the shortest string [30].
Matching statistics on a suitably annotated suffix
tree of T allows one also to approximate the
probability that S was generated by the same
variable-length Markov process that produced
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T , another measure of similarity not based on
sequence alignment [3].

Top-Down in the Suffix-Link Tree
A number of statistical applications require to
annotate the nodes of STS with empirical prob-
abilities rather than with raw frequencies. The
empirical probability pS .W / of a string W is
essentially the number of its occurrences fS .W /

divided by the maximum number of occurrences
that W can have in a string of length jS j D n.
This number cannot exceed n�jW jC1, but it also
depends on the number of overlaps that W has
with itself, i.e., on the number of proper borders
of W : thus, we set pS .W / D fS .W /=b.W /,
where b.W / is the length of the shortest period
of W . Note that pS can change inside an edge
of ST. However, if we are interested only in the
empirical probability of nodes of ST, we can
compute all such values in overall linear time, by
mapping the longest-border computation in the
KMP algorithm onto a depth-first navigation of
the suffix-link tree [5].

The exact computation of the variance of the
frequency of a string W in S can be itself mapped
onto the computation of the longest proper bor-
der of W . Under suitable statistical assumptions,
computing the expectation and variance of the
frequency of all right-maximal substrings of S

suffices to detect all substrings of S with anoma-
lous frequency: it is thus possible to discover all
statistically frequent and rare substrings of S in
overall linear time [5].

Any Order
A single pass over all nodes of ST in any order,
coupled with a number of checks on the children
and on the Weiner links of each node, suffices
to solve a number of string analysis problems in
linear time.

A string W is a maximal unique match
(MUM) between two strings S and T if it occurs
exactly once in S and exactly once in T and if
neither aW nor Wb occur in both S and T for any
fa; bg � ˙ (for simplicity, we disregard cases in
which W occurs at the beginning or at the end of a
string) [14]. Clearly W must be a right-maximal
substring of U D S#T $, where # and $ are

separators not belonging to ˙ . Therefore, we just
need to iterate over every node v of STU in any
order, checking the following conditions: (1) v

has exactly two leaves as children; (2) the suffixes
that correspond to such leaves start before and
after position jS j C 1 in U , respectively; and
(3) v has two Weiner links. A similar approach
extends to MUMs of more than two strings, as
well as to maximal (not necessarily unique) exact
matches between two strings and to the maximal
repeats [7] and the minimal absent words of a
single string [16].

Symmetrically, it is easy to detect the MUMs
of two strings S and T by a linear scan of the
suffix array of U D S#T $ and of the correspond-
ing LCP array. Indeed, a MUM corresponds to
an interval .i; i C 1/ of size two in SAU such
that LCPU Œi � < LCPU Œi C 1�, LCPU Œi C 2� <

LCPU Œi C 1�, U ŒSAU Œi � � 1� ¤ U ŒSAU Œi C

1� � 1�, and SAU Œi � < jS j C 1 < SAU Œi C

1�. Similar criteria allow one to detect maximal
repeats, supermaximal repeats [14], and maximal
exact matches [1].

String Depth Annotation
Assume that every node v of STS is annotated
with j`.v/j. Recall that the shortest unique sub-
string array SUSS Œ1 : : : n� is such that SUSS Œi �

is the length of the shortest substring of S that oc-
curs only at position i . Since SŒi : : : iCSUSŒi ��

1� D W a where a 2 ˙ , since locus.W a/ is
a leaf v, and since locus.W / D parent.v/,
traversing the nodes of ST in any order suffices
to compute SUSŒi � for every i . String depth an-
notations, coupled with a traversal of the nodes of
ST in any order, suffice also to compute measures
of compositional complexity of S , like the total
number of distinct substrings, possibly of a fixed
length k.

Frequency Annotation
Recall that fS .W / is the number of occurrences
of string W in S . Assume that we want to
compute p.ajW / D fS .W a/=fS .W / for all sub-
strings W of S and for all characters a 2 ˙ such
that Wa is a substring of S . Such values are called
conditional probabilities. Clearly p.ajW / D 1 if
W ends in the middle of an edge of STS : it is thus
sufficient to compute conditional probabilities



2160 Suffix Trees and Arrays

for the nodes of ST, and this can be done by
traversing the nodes of ST in any order and by
accessing their children.

String Depth and Frequency Annotation
Assume that every node v of STS is also anno-
tated with the number of leaves in the subtree
rooted at v. Then, traversing the nodes of ST
in any order allows one to compute the longest
substring of S that repeats at least � times, or
the most frequent string of length at least � , for

any user-specified threshold � . String depth and
frequency annotations, coupled with a traversal
of the nodes of ST in any order, allow one also
to compute the number of distinct substrings that
occur � times in S , for every frequency � in a
user-specified range.

Given a substring W of S , let right.W /

be the set of characters that occur in S after
W . More formally, right.W / D fa 2 ˙ W

fS .W a/ > 0g. The kth order empirical entropy
of S is defined as follows:

H.S; k/ D
1

jS j

X

W 2˙k

X

a2right.W /

fS .W a/ log

�
fS .W /

fS .W a/

�

To compute H.S; k/, it suffices again to traverse
the nodes of STS in any order, to check whether
j`.v/j D k, and to cumulate the contribution
of v to H.S; k/ by reading the frequency of
its children. Strings of length k that end in the
middle of an edge of ST do not contribute to
H.S; k/.

In a similar fashion, given a string S on
alphabet ˙ , let S be a vector indexed by all
strings in ˙k for a fixed k > 0, such that SŒW �

contains the frequency of string W in S . We
call S the k-mer composition vector of string
S . Given two strings S and T , assume that
we want to compute a function �.S; T / that
depends only on N D

P
W 2˙k f .SŒW �; TŒW �/,

DS D
P

W 2˙k g.SŒW �/, and DT DP
W 2˙k h.TŒW �/, where f , g, and h are user-

specified functions. �.S; T / if often called k-
mer kernel in text classification. It is possible
to compute �.S; T / in overall linear time by
traversing the nodes of the generalized suffix tree
of S and T in any order. A similar traversal
of ST allows one to compute �.S; T / on
composition vectors that are indexed by all
possible substrings, of any length. In practice
the frequencies used in composition vectors are
normalized by their expected values under IID
or Markov probability distributions: a number of
kernels based on such normalized counts can still
be computed in overall linear time by traversing
the nodes of ST in any order [6].

Positional Annotations
Given two strings S and T , the longest string W

that occurs in both S and T is clearly a right-
maximal substring of the concatenation U D

S#T $, where # and $ are separators not belong-
ing to ˙ . Consider thus STU , and assume that
every node v is annotated with j`.v/j and with
a bit flag.v/ set to one iff the subtree rooted
at v contains at least one leaf that starts before
position jS jC1 in U and at least one leaf starting
after position jS j C 1 in U . Such annotation can
be carried out in a bottom-up traversal of ST.
We can compute W by iterating over the nodes
v 2 ST with flag.v/ D 1 and by cumulating
the maximum of the lengths of the encountered
labels. The set of all common substrings between
S and T is the set of all prefixes of the labels
of nodes v 2 ST such that flag.v/ D 1 and
flag.w/ D 0 for every child w of v. This
approach generalizes immediately to more than
two strings, and it allows one to compute the
length of the longest substring common to at least
� strings in a collection of k strings in O.kjU j/

time and space. More advanced approaches solve
this problem in O.jU j/ time [8].

Applications

The primitives discussed above find application
in a wide set of domains. A list of the most salient
ones includes exact and approximate string
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searching, string compression, statistical pattern
discovery, alignment-free string comparison,
string kernels in learning theory, sequence
analysis, and assembly in bioinformatics.
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Problem Definition

Given a directed graph (digraph) G.V; E/ with
a set of vertices V and a set of edges E, the
Sugiyama algorithm solves the problem of find-
ing a 2D hierarchical drawing of G subject to the
following readability requirements:

(a) Vertices are drawn on horizontal lines
without overlapping; each line represents
a level in the hierarchy; all edges point
downwards.

(b) Short-span edges (i.e., edges between adja-
cent levels) are drawn with straight lines.

(c) Long-span edges (i.e., edges between nonad-
jacent levels) are drawn as close to straight
lines as possible.

(d) The number of edge crossings is the mini-
mum.

(e) Vertices connected to each other are placed as
close to each other as possible.

(f) The layout of edges coming into (or going out
of) a vertex is balanced, i.e., edges are evenly
spaced around a common target (or source)
vertex.

Requirements (a) and (b) are easy to meet
and they are imposed as mandatory basic
drawing rules. Requirements (c)–(f) are much
harder to satisfy and typically they are met
approximately [1, 4, 11].

Key Results

Sugiyama et al. propose a four-step procedure
for finding a hierarchical drawing of a digraph
subject to the readability requirements listed
above. It is known as the Sugiyama algorithm,
the Sugiyama method, or the Sugiyama
framework [19]. The steps of the Sugiyama
framework are illustrated in Fig. 1.

The Sugiyama Framework
Step 1: Preparatory step for transforming the

input digraph G into a proper hierarchy.
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Step 1.1 Step 1.2 Step 1.3

Step 2 Step 3 Step 4

Sugiyama Algorithm, Fig. 1 Illustration of the steps of the Sugiyama framework

Step 1.1: Transform the input digraph G into
a directed acyclic graph (dag) by reversing
the direction of some edges.

Step 1.2: Transform the dag into a multilevel
digraph, called a hierarchy, by partitioning
V into l levels (or layers) V1, V2, : : : ; Vl

such that for each edge e D .v; w/ 2 E

if v 2 Vi then w 2 ViC1. Levels are
drawn on horizontal lines which determine
the y�coordinates of the vertices.

Step 1.3 Transform the hierarchy into a
proper hierarchy by introducing dummy
vertices along long-span edges; one
dummy vertex at each crossing of a long-
span edge with a level.

Step 2: For each level Vi , specify a linear
order �i of the vertices in Vi with the goal
of minimizing the total number of edge
crossing.

Step 3: Determine the x�coordinates of the
vertices subject to requirements (c), (e), and
(f) while preserving the linear order in the
levels.

Step 4: Draw G in a 2D drawing area where
dummy vertices are removed and the long-
span edges are restored.

Steps 1.3 and 4 are trivial as computational
problems. Steps 1.1 and 1.2 can be solved easily
if the only readability requirements are those
listed above. However, some sensible additional
requirements can turn Steps 1.1 and 1.2 into dif-
ficult combinatorial optimization problems. For
example, if we want to minimize the number
of reversed edges at Step 1.1, then we need
to solve the MINIMUM FEEDBACK ARC SET

problem which is NP-hard [12]. Similarly, if we
impose upper bounds on both the number of
levels and the number of vertices per level, then
the problem in Step 1.2, known as the layering
problem, becomes NP-complete [4].

Following the work of Sugiyama et al., two
types of solutions to the layering problem have
been proposed in the research literature. The
first type of layer assignment algorithm is list-
scheduling algorithms (adapted from the area
of static precedence-constrained multiprocessor
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scheduling) which produce layer assignments
with either the minimum number of levels
or a specified maximum number of vertices
per level [4]. These include the longest-
path algorithm [13] and the Coffman-Graham
algorithm [3] as well as the proposed by
Nikolov et al. [15] MinWidth and StretchWidth
heuristics which take into account the dummy
vertices. The second type of algorithm employs
network simplex and branch-and-cut techniques,
respectively, for minimizing the number of
dummy vertices with or without constraints on
the number of levels and the number of vertices
per level [9, 10].

Steps 2 and 3 are already hard to solve with
the readability requirements listed above. It has
also been suggested to precede Step 2 by an edge
concentration or edge bundling step for achieving
a more readable drawing [14, 16]. The other key
results in the work of Sugiyama et al., besides
defining the four-step framework, are efficient
heuristics for Steps 2 and 3, respectively.

Reduction of the Number of Edge
Crossings
Consider a proper hierarchy G.V; E;L/ with a
set of vertices V D fv1; v2; : : : ; vng, a set of
edges E D fe1; e2; : : : ; emg, and a partitioning
L D fV1; V2; : : : ; Vlg of the vertex set V into
l levels (the result of Step 1.3). Let �i W Vi !

f1; 2; : : : jVi jg be a linear order of the vertices
in level Vi and let Si be the set of all possible
orders �i . The problem at Step 2 of the Sugiyama
algorithm is to find a set of linear orders � D

f�1; �2; : : : ; �lg 2 S1�S2� : : :�Sl such that the
total number of edge crossings is the minimum.
Let K.G; �/ be the total number of edge cross-
ings for a hierarchy G and a set of linear orders
� , and let K.Vi ; ViC1; �i ; �iC1/ be the number of

edge crossings between layers Vi and ViC1 with
linear orders �i and �iC1, respectively.

The algorithm, proposed by Sugiyama et al.
for Step 2, is a heuristic which consists in ini-
tially choosing a random order �1 for the ver-
tices in level V1 and then repeatedly executing
the following five-step procedure, called Down-
Up, until either � does not change or an ini-
tially given maximum number of iterations is
reached.

The Down-Up Procedure
Step A: i  1.
Step B: With a fixed linear order �i , find

a linear order �iC1 which minimizes
K.Vi ; ViC1; �i ; �iC1/.

Step C: If i < n � 1, then i  i C 1 and go to
Step B. Otherwise, go to Step D.

Step D: With a fixed linear order �iC1,
find a linear order �i which minimizes
K.Vi ; ViC1; �i ; �iC1/.

Step E: If i > 1, then i  i � 1 and go to Step
D. Otherwise, stop.

Both Step B and Step D involve minimizing
the number of edge crossings between two
adjacent layers with the linear order in one
of them being fixed. This problem is known
as the ONE-SIDED CROSSING MINIMIZATION

(OSCM) problem, which has been shown to
be NP-hard [5]. Based on previous work by
Warfield [20], Sugiyama et al. show how OSCM
can be reduced to the MINIMUM FEEDBACK

SET problem and propose a heuristic method,
called the barycentric method, for solving it.
Let A D .aij / be the adjacency matrix of G.
In essence, with a fixed linear order �i , the
barycentric method orders the vertices in level
ViC1 in the increasing order of their barycenters
Bj , defined with Eq. (1).

Bj D

jVi jX

kD1

akj �i .vk/=

jVi jX

kD1

akj ; j 2 f1; 2; : : : ; jViC1jg (1)

Sugiyama et al. evaluate the Down-Up procedure
experimentally with 800 randomly generated

hierarchies as well as with five hierarchies
from practical applications. Their conclusion is
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that the proposed heuristic is effective. It was
observed that in most cases the Down-Up proce-
dure requires a single iteration. Reportedly, the
heuristic was successfully extended for the case
when vertices in each level are partitioned into
subsets where the vertices in each subset must be
arranged adjacently.

Step 2 is probably the best studied part of the
Sugiyama framework. Numerous improvements
to the original technique as well as alternative
algorithms for crossing minimization have been
proposed since the introduction of the Sugiyama
framework [1, 4, 5, 7, 9, 11]. Notable among them
is the 3-approximation median method proposed
by Eades and Wormald [5] for solving the OSCM
problem. Having the order of the vertices in level
Vi fixed, the median method consists of placing
each vertex in level ViC1 at a position which
corresponds to the median of the positions of its
neighbors in level Vi . Since the median method
is an approximation algorithm, it guarantees to
find a solution without edge crossings if such
exists.

Determination of x-Coordinates of
Vertices
For Step 3 of their framework, Sugiyama et al.
propose a version of the Down-Up procedure
with the barycenter of a vertex based on the x-
coordinates of the connected to it vertices in an
adjacent level. Consider the down part of the
Down-Up procedure (the up part is symmetrical).
If the x-coordinates of the vertices in level Vi are
known, the barycenters B�

j of the vertices in level
ViC1 are defined with Eq. (2).

B�
j D

jVi jX

kD1

akj x.vk/=

jVi jX

kD1

akj ;

j 2 f1; 2; : : : ; jViC1jg (2)

The x-coordinates of the vertices in level
ViC1 are determined according to their priority.
The highest priority has the dummy vertices
(introduced in Step 1.3), and the priority of
each other vertex in level ViC1 is the number
of vertices in level Vi connected to it. The x-

coordinate of each vertex vj 2 ViC1 is the integer
number which is the closest to B�

j available
horizontal position (without changing the linear
order from Step 2 and without displacing already
placed vertices with higher priority). In finding
this position, it is allowed to displace vertices
with a priority lower than the priority of vj ,
where this displacement should be as little as
possible.

Sugiyama et al. evaluate the effectiveness of
this method for improving the readability re-
quirements (c), (e), and (f) experimentally. Re-
portedly, they have extended their heuristic for
the case when the dimensions of the vertices
are not insignificant. Both the Step 2 and the
Step 3 heuristics were successfully applied to a
hierarchy with more than 500 vertices.

Alternative algorithms for Step 3 have been
proposed by Gansner et al. [9], Eades et al. [6],
and Sander [17]. Probably, the best solution for
Step 3 to date is the O.jV j/ algorithm of Brandes
and Köpf [2]. It assigns x-coordinates to vertices
by computing four extreme vertex alignments
which are then combined into a final layout with
at most two bends per edge.

Applications

Hierarchical graph drawings are useful for pro-
viding insight into hierarchical structures in com-
plex systems. In recent years, the Sugiyama al-
gorithm has found an important application for
visual analysis of large social and biological
networks [8, 18].
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Problem Definition

In the 1970s, sequence alignment was introduced
to demonstrate the similarity of the sequences of
genes and proteins [12]. A DNA sequence is a
finite sequence over four nucleotides – adenine,
guanine, cytosine, and thymine, whereas a pro-
tein sequence is over 20 amino acids. Homolo-
gous proteins have similar biological functions.
Since they evolve from a common ancestral se-
quence, the sequences of homologous proteins
and their encoding genes are often highly similar.
Therefore, the DNA or amino acid sequence of
a protein is often aligned with the sequences
of well-studied proteins to infer the biological
functions of the protein.

Formally, an alignment of two sequences, S

and T , on an alphabet B is a two-row matrix with
the following properties:
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1. The letters in S are listed in order, interspersed
with space symbols “–,” in a row, where “–”
represents the fact that a letter is missing at a
position.

2. The letters in T are listed in the other row in
the same manner.

3. Each column does not contain two “–.”

An alignment of S and T poses a model of
the evolution from their least common ancestral
sequence to themselves. An alignment is scored
using a scoring matrix that has a score for every
pair of letters in B [ f–g. The score of an align-
ment is defined to be the sum of the scores of the
pairs of letters appearing in the columns of the
alignment.

Proteins often have multiple functions. Two
proteins having a common function often have
one or several highly similar regions in their DNA
and amino acid sequences. Such “conserved”
regions are found by solving the local alignment
problem:

Input: Two sequences S D s1s2 : : : sm and T D

t1t2 � � � tn on an alphabet.
Find: Two subsequences S 0 D si siC1 � � � sj (i �

j ) and T 0 D tktkC1 � � � tl (k � l)
such that the alignment score of S 0 and T 0 is
as large as possible.

The alignments between their subsequences are
called local alignments of S and T .

A dynamic programming approach takes
quadratic time to solve the local alignment
problem [13]. Unfortunately, it is not fast enough
for homology search against a database with
millions of DNA or protein sequences. Therefore,
a filtration technique was adopted to design fast
algorithms for homology search in the 1990s
[1], by which good local alignments between
two sequences are found by first identifying
short consecutive matches of a specified length
between the sequences, called seed hits, and then
extending them to obtain good local alignments.

The filtration technique has a dilemma over
sensitivity and speed. Employing a long seed will
miss some good local alignments between two
sequences, decreasing sensitivity; on the other
hand, using a short seed will waste time on

extending many seed hits into local alignments
that are not biologically meaningful, resulting in
low speed.

In PatternHunter [10], Ma, Tromp, and Li
introduced the idea of optimized spaced seeds to
achieve good balance between the sensitivity and
speed of the filtration approach. PatternHunter by
default looks for nucleotide match in 11 positions
in every region of 18 bases long, specified by the
string 111  1  1  1  11  111, to trigger
the process of local alignment. Such hit patterns,
called spaced seeds, led to surprisingly higher
sensitivity as well as speed than the consecutive
seed 11111111111 that has the same number
of match positions [10]. Moreover, sensitivity
can further be improved by employing multiple
spaced seeds that are longer than 18 bases [8,14].
This motivates the study of how to find the
optimal spaced seeds of given length and weight
[2–5, 7].

Key Results

A spaced seed Q can be represented by a string
of 1’s and ’s, where 1’s give the match po-
sitions in a seed hit. The number of 1’s in Q

is called its weight, denoted by wQ; the length
of the corresponding string is called its length,
denoted by LQ. The relative positions in Q are
denoted by RP.Q/. For example, for Q D

111  1  1  1  11  111, RP.Q/ D

f0; 1; 2; 4; 7; 9; 12; 13; 15; 16; 17g.
An alignment containing no –’s is called a un-

gapped alignment. A local ungapped alignment
can be modeled as a 0-1 sequence by translating
match columns (containing two identical letters)
into 1’s and mismatch columns into 0’s. Hence,
a hit of Q identifies an alignment if the relative
positions of Q match 1’s in a region in the
corresponding 0-1 string of the alignment.

Assume match occurs independently with
probability p at a position in a local ungapped
alignment. The sensitivity of Q in detecting a
local alignment of n columns of two sequences
with identity p is then defined to be the
probability that Q hits a Bernoulli random
sequence, called a uniform region, in which 1
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and 0 appear with probability p and .1 � p/,
respectively. A spaced seed is optimal for
aligning sequences with identity p of length
n if it has the largest hit probability over a
uniform region of length n in which 1 appears
with probability p at a position.

A straightforward method for identifying op-
timal spaced seeds is to exhaustively examine all
the spaced seeds of given length and weight by
keeping the largest sensitivity (or hit probability)
over a uniform region. Unfortunately, the sensi-
tivity of a spaced seed is unlikely computable in
polynomial time.

Theorem 1 Computing the sensitivity of a
spaced seed over a uniform region is NP-hard.

The hit probability of a spaced seed over a
uniform region can be computed using a dynamic
programming approach [7] or using recurrence
relations [4,5]. Not surprisingly, these approaches
become impractical for identifying long spaced
seeds, because their complexities are an exponen-
tial function in the difference of the length and
weight of spaced seeds under consideration. Here
a simple polynomial-time approximation scheme
is presented.

WISESAMPLE ALGORITHM

Input: A spaced seed Q, a positive integer n, 0 < p < 1, and � > 0.
Find: An estimate of hit probability Q in a uniform region of length n in which

bit 1 appears at a position with probability p.

Initialize an array A: AŒi� 0 for j D 1; 2; : : : ; n � LQ;
N  d6��2n2 log ne;
Repeats N times

RŒi� 1 for i 2 RP.Q/;
RŒi� 1 with probability p for i 2 f1; 2; : : : ; ng �RP.Q/;
For i D 1; 2; : : : ; L � LQ

If Q does not hit the subregion RŒ1; i C LQ � 1�

AŒi � AŒi�C 1;

Output pwQ

�
1CN �1

Pn�LQ

j D1 nj

�
.

Theorem 2 Let Q be a spaced seed and its hit
probability be x on a uniform region with identity
p of length n. WISESAMPLE outputs an estimate
y of x on input Q, n, p, and � > such that jy �
xj � �x with high probability.

Let Q be a spaced seed and R a uniform region
with identity p of length n. Following convention
in renewal theory, Q hits R at position k if and
only if RŒk � LQ C ij C 1� D 1 for all 1 � j �

wQ. Let Ak be the event that Q hits R at position
k and NAk be the complement event of Ak . Then
the probability fk that Q first hits R at the k-th
position is:

fk D PrŒ NA0
NA1 � � � NAk�2Ak�1�:

The hit probability Qn.p/ of Q on R is equal to:

Qn.p/ D PrŒA0 [ A1 [ � � � [ An�1�:

When seed hits are extended into local align-
ments, two seed hits will give one local alignment
if they overlap. Therefore, the sensitivity of a
spaced seed is closely related to the number of
its nonoverlapping hits in a uniform region. A
nonoverlapping hit of a spaced seed is a recurrent
event with the following convention: If a hit at
position k is selected as a nonoverlapping hit,
then the next nonoverlapping hit is the first hit at
or after position k C LQ.

The average distance, �Q, between two suc-
cessive nonoverlapping hits of Q is defined to be

�Q D
X

j �LQ

jf j :
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A spaced seed is nonuniform if g:c:d:.RP.Q// D

1.

Theorem 3 For any nonuniform spaced seed Q,

�Q �

wQX

j D1

p�j C .LQ � wq/

� .1 � p/
�
p2�wQ � 1

�
=p:

Buhler et al. [3] proved that for any spaced
seed Q, there are two constants ˛Q and �Q

that are independent of n such that limn!1.1 �

Qn.p//=
�
˛Q�Q

�
D 1, where �Q is the largest

eigenvalue of the transition matrix of a Markov
chain model constructed from Q.

Theorem 4 For the consecutive seed B of
weight w,

1
Pw

j D1 p�j � wC 1

� �B � 1 �
1

Pw
j D1.p�j C pj �1/ � w

:

For a spaced seed Q,

1 �
1

�Q � LQ C 1
� �Q � 1 �

1

�Q

:

If LQ < .1 � p/
�
p2�wQ � 1

�
=p C 1, by

Theorems 3 and 4, �Q � �B . This implies that
Q has a larger hit probability than the consecutive
seed of the same weight in a long uniform region
with identity p.

The detailed proofs of these results can be
found in [11, 15].

Applications

Spaced seed approach finds applications in
homology search and comparison of genome
sequences. PatternHunter was used to compare
the mouse and human genomes in the mouse
genome project [6]. MegaBLAST and BLASTZ
have adopted spaced seeds for homology search.
Recently, the approach has also been used in

mapping short reads into reference genome
sequences.

Interestingly, spaced seed design is found to
be closely related to optimal Golomb ruler design
[9].

Open Problems

It is proved to be NP-hard to identify the optimal
spaced seeds over a nonuniform region [8].

Open problem 1 Is it NP-hard to find the optimal
spaced seed of a given length and weight over a
uniform region?

It has been shown that a uniform spaced seed
has a lower hit probability than the consecutive
seed of the same weight over any uniform region
[4, 7]. But the following problem is open:

Open problem 2 For any nonuniform spaced seed
Q and 0 < p < 1, is there n.p; Q/ such that
Q has a larger hit probability than the consecutive
seed of the same weight over a uniform region with
identity p of length n � n.p; Q/?
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Problem Definition

In 1992 Vapnik and coworkers [1] proposed a
supervised algorithm for classification that has
since evolved into what are now known as support
vector machines (SVMs) [2]: a class of algo-
rithms for classification, regression, and other
applications that represent the current state of the
art in the field. Among the key innovations of
this method were the explicit use of convex op-
timization, statistical learning theory, and kernel
functions.

Classification
Given a training set S D f.x1; y1/; : : : ; .x`; y`/g

of data points xi from X � R
n with

corresponding labels yi from Y D f � 1;C1g,
generated from an unknown distribution, the task
of classification is to learn a function g:X ! Y

that correctly classifies new examples .x; y/

(i.e., such that g.x/ D y) generated from the
same underlying distribution as the training
data.

A good classifier should guarantee the
best possible generalization performance (e.g.,
the smallest error on unseen examples).
Statistical learning theory [3], from which
SVMs originated, provides a link between
the expected generalization error for a given
training set and a property of the classifier known
as its capacity. The SV algorithm effectively
regulates the capacity by considering the function
corresponding to the hyperplane that separates,
according to the labels, the given training
data and it is maximally distant from them
(maximal margin hyperplane). When no linear
separation is possible, a nonlinear mapping into
a higher dimensional feature space is realized.
The hyperplane found in the feature space
corresponds to a nonlinear decision boundary
in the input space.

Let � W I � R
n ! F � R

N be a
mapping from the input space I to the feature
space F (Fig. 1a). In the learning phase, the algo-
rithm finds a hyperplane defined by the equation
hw; �.xi /i D b such that the margin
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Support Vector Machines, Fig. 1 (a) The feature map simplifies the classification task. (b) A maximal margin
hyperplane with its support vectors highlighted

� D min1�i�` yi .hw; �.xi /i � b/

D min1�i�` yi g.xi / (1)

is maximized, where h; i denotes the inner prod-
uct, w is a `-dimensional vector of weights, and
b is a threshold.

The quantity .hw; �.xi /i � b/=jjwjj is the
signed distance of the sample xi from the hyper-
plane. When multiplied by the label yi , it gives
a positive value for correct classification and a
negative value for an uncorrect one. Given a new
data point x, a label is assigned evaluating the
decision function:

g.x/ D sign.hw; �.x/i � b/ (2)

Maximizing the Margin
For linearly separable classes, there exists a hy-
perplane .w; b/ such that

yi .hw; �.xi /i � b/ � �; i D 1; : : : ; `: (3)

Imposing jjwjj2 D 1, the choice of the hy-
perplane such that the margin is maximized is
equivalent to the following optimization problem:

maxw;b;� �

subject to yi .hw; �.xi /i � b/ � �; i D 1; : : : ; `;

(4)

and jjwjj2 D 1:

An efficient solution can be found in the dual
space by introducing the Lagrange multipliers ’i ,
i D 1; : : : ; `. The problem (4) can be recast in the
following dual form:

max
˛

X̀

iD1

˛i �
X̀

iD1

X̀

j D1

˛i ˛j yi yj h�.xi /; �.xj /i

(5)

subject to
X̀

iD1

˛i yi D 0; ˛i � 0:

This formulation shows how the problem reduces
to a convex (quadratic) optimization task. A key
property of solutions ˛� of this kind of problems
is that they must satisfy the Karush-Kuhn-Tucker
(KKT) conditions that ensure that only a subset
of training examples needs to be associated to
a nonzero ’i . This property is called sparseness
of the SVM solution and is crucial in practical
applications.

In the solution ˛�, often only a subset of train-
ing examples is associated to nonzero ’i . These
are called support vectors and correspond to the
points that lie closest to the separating hyperplane
(Fig. 1b). For the maximal margin hyperplane, the
weight vector w� is given by a linear function of
the training points:

w�
X̀

iD1

˛�
i yi �.xi /: (6)
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Then the decision function (2) can equivalently
be expressed as

g.x/ D sign.
X̀

iD1

˛�
i yi h�.xi /; �.x/i � b/: (7)

For a support vector xi , it is hw�; �.xi /i�b D yi

from which the optimum bias b� can be
computed. However, it is better to average the
values obtained by considering all the support
vectors [2]. Both the quadratic programming
(QP) problem (5) and the decision function (7)
depend only on the dot product between
data points. The matrix of dot products with
elements Kij D K.xi ; xj / D h�.xi /; �.xj /i

is called the kernel matrix. In the case of linear
separation, we simply have K.xi ; xj / D hxi ; xj i,
but in general, one can use functions that
provide nonlinear decision boundaries. Widely
used kernels are the polynomial K.xi ; xj / D

.hxi ; xj i C 1/d or the Gaussian K.xi ; xj / D

e�
jjxi �xj jj

2

�2 where d and ¢ are user-defined
parameters.

Key Results

In the framework of learning from examples,
SVMs have shown several advantages compared
to traditional neural network models (which rep-
resented the state of the art in many classifica-
tion tasks up to 1992). The statistical motivation
for seeking the maximal margin solution is to
minimize an upper bound on the test error that
is independent of the number of dimensions and
inversely proportional to the separation margin
(and the sample size). This directly suggests
embedding of the data in a high-dimensional
space where a large separation margin can be
achieved; this can be done efficiently with ker-
nels using techniques from convex optimization.
The sparseness of the solution, implied by the
KKT conditions, adds to the efficiency of the
result.

The initial formulation of SVMs by Vapnik
and coworkers [1] has been extended by many

other researchers. Here we summarize some key
contributions.

Soft Margin
In the presence of noise the SV algorithm can be
subject to overfitting. In this case one needs to
tolerate some training errors in order to obtain a
better generalization power. This has led to the
development of the soft margin classifiers [4].
Introducing the slack variables �i � 0, optimal
class separation can be obtained by

minw;b�;
 �� C C
X̀

iD1

�i

subject to yi .hw; �.xi /i � b/ � � � �i ; �i � 0

(8)

i D 1; : : : ; ` and jjwjj2 D 1:

The constant C is user defined and controls the
trade-off between the maximization of the margin
and the number of classification errors. The dual
formulation is the same as (5) with the only
difference in the bound constraints (0 � ˛i �

C; i D 1; : : : ; `). The choice of soft margin
parameter is one of the two main design choices
(together with the kernel function) in applica-
tions. It is an elegant result [5] that the entire
set of solutions for all possible values of C can
be found with essentially the same computational
cost as finding a single solution: this set is often
called the regularization path.

Regression
A SV algorithm for regression, called support
vector regression (SVR), was proposed in 1996
[6]. A linear algorithm is used in the kernel-
induced feature space to construct a function
such that the training points are inside a tube of
given radius ©. As for classification the regression
function only depends on a subset of the training
data.

Speeding Up the Quadratic Program
Since the emergence of SVMs, many researchers
have developed techniques to effectively solve
the problem (5): a quite time-consuming task,
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especially for large training sets. Most methods
decompose large-scale problems into a series of
smaller ones. The most widely used method is
that of Platt [7] and it is known as sequential
minimal optimization.

Kernel Methods
In SVMs, both the learning problem and the
decision function can be formulated only in terms
of dot products between data points. Other popu-
lar methods (i.e., principal component analysis,
canonical correlation analysis, fisher discrimi-
nant) have the same property. This fact has led to
a huge number of algorithms that effectively use
kernels to deal with nonlinear functions keeping
the same complexity as the linear case. They are
referred to as kernel methods [8, 9].

Choosing the Kernel
The main design choice when using SVMs is
the selection of an appropriate kernel function, a
problem of model selection that roughly relates
to the choice of a topology for a neural network.
It is a nontrivial result [10] that also this key
task can be translated into a convex optimization
problem (a semi-definite program) under general
conditions. A kernel can be optimally selected
from a kernel space resulting from all linear
combinations of a basic set of kernels.

Kernels for General Data
Kernels are not just useful tools to allow us to
deploy methods of linear statistics in a nonlinear
setting. They also allow us to apply them to
nonvectorial data: kernels have been designed to
operate on sequences, graphs, text, images, and
many other kinds of data [8].

Applications

Since their emergence, SVMs have been widely
used in a huge variety of applications. To give
some examples, good results have been obtained
in text categorization, handwritten character
recognition, and biosequence analysis.

Text Categorization
In automatic text categorization, text documents
are classified into a fixed number of predefined
categories based on their content. In the works
performed by Joachims [11] and Dumais et al.
[12], documents are represented by vectors with
the so-called bag-of-words approach used in the
information retrieval field. The distance between
two documents is given by the inner product
between the corresponding vectors. Experiments
on the collection of Reuters news stories showed
good results for SVMs compared to other classi-
fication methods.

Handwritten Character Recognition
This is the first real-world task on which SVMs
were tested. In particular two publicly available
data sets (USPS and NIST) have been considered
since they are usually used for benchmarking
classifiers. A lot of experiments, mainly sum-
marized in [13], were performed which showed
that SVMs can perform as well as other complex
systems without incorporating any detailed prior
knowledge about the task.

Bioinformatics
SVMs have been widely used also in bioinformat-
ics. For example, Jaakkola and Haussler [14] ap-
plied SVMs to the problem of protein homology
detection, i.e., the task of relating new protein se-
quences to proteins whose properties are already
known. Brown et al. [15] describe a successful
use of SVMs for the automatic categorization of
gene expression data from DNA microarrays.

URL to Code

Many free software implementations of SVMs
are available at the website

• www.support-vector.net/software.html

Two in particular deserve a special mention for
their efficiency:
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• SVMlight: Joachims T. Making large-scale
SVM learning practical. In: Schölkopf B,
Burges CJC, and Smola AJ (eds) Advances
in Kernel Methods Support Vector Learning,
MIT Press, 1999. Software available at http://
svmlight.joachims.org

• LIBSVM: Chang CC, and Lin CJ, LIBSVM:
a library for support vector machines, 2001.
Software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm
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Problem Definition

Surface reconstruction, here, is the problem of
producing a piecewise-linear representation of a
two-dimensional surface S in R

3, given as input
a set P of point samples from the surface. Very
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Surface Reconstruction, Fig. 1 The medial axis of an
object; the Voronoi diagram of a set of samples from
the object boundary; the set of polar balls, with those

inside the object shaded; the corresponding cells of the
weighted Voronoi diagram, again with those inside the
object shaded

sparse sets of point samples clearly do not convey
much about S , so in order to prove correctness,
we need to assume that the sample P is some-
how sufficiently dense. The minimum required
density could vary across the surface, with more
detailed areas requiring denser sampling. This
idea is captured in the following definition [2].
Let S be a two-dimensional surface in R

3. The
medial axis of S is the closure of the set of
points that have more than one nearest point on
S ; a two-dimensional example is shown in Fig. 1,
top left.

Definition 1 The local feature size f .x/ at a
point x is the minimum distance from x to the
medial axis of S .

The distance from the medial axis to the surface is
zero at a sharp feature such as a corner or a crease,
so we usually assume that S is smooth. The
algorithms described here make the following �-

sampling assumption: the minimum distance, at
any surface point x, to the nearest sample point
is at most �f .x/, for some small constant �. This
leads to algorithms that are provably correct in
the following sense.

INPUT: A point set P that is an �-sample from
a smooth surface S without boundary.

OUTPUT: A piecewise-linear manifold without
boundary, homeomorphic to S , that everywhere
lies within distance O.�f .x// of S . The mono-
graph [7] is an excellent reference for this line of
research.

Key Results

One key idea is that in the neighborhood of any
point p 2 P sampled from S , the surface is
well approximated by a plane. Specifically, for
any surface point x closer to p than to any other
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sample, the distance of x from the tangent plane
at p is O.�f .x//, as is the difference between the
surface normal at x and the surface normal at p

[2] (with the corrected proof [3]). Another key
idea is that some subset of the Voronoi vertices of
P approximates the medial axis of S , as in Fig. 1,
top right.

Crust Algorithm
The crust algorithm [2] approximates the me-
dial axis with a subset of the three-dimensional
Voronoi vertices, called the poles. Each sample
point in p 2 P selects the vertex of its Voronoi
cell farthest from p as its first pole and the vertex
farthest in the opposite direction as its second. We
then eliminate any Delaunay triangle all of whose
circumspheres contain a pole; this is easy to im-
plement by computing the Delaunay triangulation
of the set P augmented with the set of poles and
eliminating any output triangle adjacent to a pole.
A subset of the remaining surface triangles can
then be selected as the piecewise-linear output
surface.

Cocone Algorithm
The cocone algorithm [4] provides a simpler way
of selecting a set of surface Delaunay triangles,
requiring only one Voronoi diagram computation.
It relies on the fact that the direction vector from
a sample p 2 P to its first pole is within O.�/

of the surface normal at p, under the �-sampling
assumption. We define the cocone at p as the
complement of a double cone, such that the angle
between the cone surface and this approximate
normal vector is at least 
�
=8. We consider the
intersection of the cocone at p with the Voronoi
cell of p; the Delaunay triangles dual to any
edge in this intersection are marked as potential
surface triangles. Triangles marked by all three
of their vertices are included in the set of surface
triangles.

Powercrust Algorithm
While it is easy in theory to select a subset of
the surface triangles to form a piecewise-linear
output surface, it can be difficult in practice when
the sampling density fails to meet the assumption,
as is inevitable at sharp features. The power crust

algorithm [5] eliminates this issue by producing a
piecewise-linear output surface. The Voronoi ball
centered at a pole is the ball with its nearest input
samples on the boundary; see Fig. 1, lower left.
We begin by labeling the Voronoi balls of all of
the poles either as inside or outside the object
bounded by S , using an iterative algorithm. We
then compute the weighted Voronoi diagram, also
known as the power diagram, of these polar
Voronoi balls. Any Voronoi face separating the
cell of an inner pole from the cell of an outer
pole is output as part of the surface (Fig. 1, lower
right). The faces of the piecewise-linear output
surface are convex polygons but not in general
triangles.

Noisy Samples
When the input sample points have noise, not
every pole will be near the medial axis. Nonethe-
less, if the level of noise is everywhere small
relative to the local feature size f , some subset of
Voronoi vertices will still approximate the medial
axis. In [8], this idea is developed into a provably
correct algorithm. In addition to the �-sampling
assumption, we need to assume that the noise
level is O.�2f .x// and that the distance from
any sample p to the kth nearest sample p0 is
O.�f .x//. This allows us to recognize a Voronoi
vertex of p as a pole only when it is significantly
farther from p than the k-nearest neighbors of p.
These poles are then labeled as either inner or
outer. This algorithm produces a triangulation of
the boundary of the union of the inner polar balls
as the output surface.

Complexity
The complexity of all of these algorithms de-
pends on the complexity of the Voronoi diagram.
While in general the Voronoi diagram of n points
in R

3 might have complexity O.n2/, Attali, Bois-
sonnat, and Lietier [6] proved that the complexity
of the Voronoi diagram for points distributed
uniformly on a nondegenerate smooth surface
in R

3 is O.n lg n/. Another idea, employed by
Funke and Ramos [9] and advanced by Cheng
et al. [12], is to replace the Voronoi diagram with
a less computationally expensive structure to get
an O.n lg n/ algorithm.
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Applications

Interest in this problem was motivated by the
advent of laser-range and LiDAR scanners [10],
which produce depth maps sampled by point
clouds. It is often reasonable to assume noise-free
surface samples, since there are preprocessing
methods, such as moving least squares (MLS)
[1], that attract noisy point clouds onto nearby
surfaces; there has also been theoretical work
on MLS. MLS, or simply local plane-fitting,
can be used to produce a normal vector at each
sample point. Another common assumption is
that the normal vectors can be consistently ori-
ented. Poisson surface reconstruction [11] is an
optimization technique that constructs manifold
surfaces from possibly noisy points with nor-
mals. Because of its very efficient implementa-
tions, it is currently the most popular method in
practice.

Open Problems

Subsequent work in surface reconstruction, both
in computer graphics and in computational geom-
etry, has focused on the identification and recon-
struction of sharp features and then using them to
construct surfaces that are non-manifold. Proving
that the complexity of the Voronoi diagram of
points distributed on a generic smooth surface
with noise or with boundary is o.n2/ remains
open.

URLs to Code and Data Sets

There is code available for the cocone algo-
rithm (http://web.cse.ohio-state.edu/~tamaldey/
cocone.html), with several subsequent variants.
There is also code for the power crust algorithm
(http://www.cs.ucdavis.edu/~amenta/powercrust.
html). There is a set of benchmark data sets for
surface reconstruction (http://www.cs.utah.edu/~
bergerm/recon_bench).
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Problem Definition

Design verification is the process of taking a
design and checking that it works correctly. More
specifically, every design verification paradigm
has three components [6]: (1) a language for
specifying the design in an unambiguous way, (2)
a language for specifying properties that are to be
checked of the design, and (3) a checking pro-
cedure, which determines whether the properties
hold off the design.

The verification problem is very general: it
arises in low-level designs, e.g., checking that a
combinational circuit correctly implements arith-
metic, as well as high-level designs, e.g., check-
ing that a library written in high-level language
correctly implements an abstract data type.

Hardware Verification

The verification of hardware designs is
particularly challenging. Verification is difficult
in part because the large number of concurrent
operations make it very difficult to conceive of
and construct all possible corner cases, e.g., one
unit initiating a transaction at the same cycle
as another receiving an exception. In addition,

software models used for simulation run orders
of several magnitude slower than the final chip
operates at. Faulty hardware is usually impossible
to correct after fabrication, which means that the
cost of a defect is very high, since it takes several
months to go through the process of designing
and fabricating new hardware. Wile et al. [15]
provide a comprehensive account of hardware
verification.

State Explosion

Since the number of state-holding elements in
digital hardware is bounded, the number of pos-
sible states that the design can be in is infinite, so
complete automated verification is, in principle,
possible. However, the number of states that a
hardware design can reach from the initial state
can be exponential in the size of the design; this
phenomenon is referred to as “state explosion.”
In particular, algorithms for verifying hardware
that explicitly record visited states, e.g., in a hash
table, have very high time complexity, making
them infeasible for all but the smallest designs.
The problem of complete hardware verification is
known to be PSPACE-hard, which means that any
approach must be based on heuristics.

Hardware Model

A hardware design is formally described using
circuits [4, 8]. A combinational circuit consists
of Boolean combinational elements connected
by wires. The Boolean combinational elements
are gates and primary inputs. Gates come in
three types: NOT, AND, and OR. The NOT gate
functions as follows: it takes a single Boolean-
valued input and produces a single Boolean-
valued output which takes value 0 if the input
is 1 and 1 if the input is 0. The AND gate takes
two Boolean-valued inputs and produce a single
output; the output is 1 if both inputs are 1 and
0 otherwise. The OR gate is similar to AND,
except that its output is 1 if one or both inputs
are 1. A circuit can be represented as a directed
graph where the nodes represent the gates and
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wires represent edges in the direction of signal
flow.

A circuit can be represented by a directed
graph where the nodes represent the gates and
primary inputs, and edges represent wires in the
direction of signal flow. Circuits are required
to be acyclic, that is, there is no cycle of
gates. The absence of cycles implies that a
Boolean assignment to the primary inputs can
be propagated through the gates in topological
order.

A sequential circuit extends the notion of
circuit described above by adding stateful ele-
ments. Specifically, a sequential circuit includes
registers. Each register has a single input, which
is referred to as its next-state input.

A valuation on a set V is a function whose
domain is V . A state in a sequential circuit is a
Boolean-valued valuation on the set of registers.
An input to a sequential circuit is a Boolean-
valued valuation on the set of primary inputs.
Given a state s and an input i , the logic gates
in the circuit uniquely define a Boolean-valued
valuation t to the set of register inputs – this is
referred to as the next state of the circuit at state s

under input i and say s transitions to t on input i .
It is convenient to denote such a transition by

s
i
�! t .
A sequential circuit can naturally be identified

with a finite state machine (FSM), which is a
graph defined over the set of all states; an edge
.s; t/ exists in the FSM graph if there exists an
input i , state s transitions to t on input i .

Invariant Checking

An invariant is a set of states; informally, the term
is used to refer to a set of states that are “good”
in some sense. One common way to specify an
invariant is to write a Boolean formula on the
register variables – the states which satisfy the
formula are precisely the states in the invariant.

Given states r and s, define r to be reach-
able from s if there is a sequence of inputs

i0; i1; : : : ; in�1 such that s D s0

i0
�! s1

i1
�!

� � � sn D t . A fundamental problem in hardware

verification is the following: given an invariant A,
and a state s, does there exists a state r reachable
from s which is not in A?

Key Results

Symbolic model checking (SMC) is a heuristic
approach to hardware verification. It is based
on the idea that rather than representing and
manipulating states one at a time, it is more
efficient to use symbolic expressions to represent
and manipulate sets of states.

A key idea in SMC is that given a set
A � f0; 1gn, a Boolean function A can be
constructed such that fA: f0; 1gn ! f0; 1g given
by f .’1; : : : ; ’n/ D 1 iff .’1; : : : ; ’n/ 2 A. Note
that given a characteristic function fA, A can be
obtained and vice versa.

There are many ways in which a Boolean func-
tion can be represented: formulas in DNF, general
Boolean formulas, combinational circuits, etc. In
addition to an efficient representation for state
sets, the ability to perform fast computations with
sets of states is also important, for example, in
order to determine if an invariant holds, it is
required to compute the set of states reachable
from a given state. BDDs [2] are particularly
well suited to representing Boolean functions, as
they combine succinct representation with effi-
cient manipulation; they are the data structure
underlying SMC.

Image Computation

A key computation that arises in verification is
determining the image of a set of states A in a
design D – the image of A is the set of all states
t for which there exists a state in A and an input
i such that state s transitions to t under input i .
The image of A is denoted by Img.A/.

The transition relation of a design is the set
of .s; i; t/ triples such that s transitions to t

under input i . Let the design have n registers and
m primary inputs; then the transition relation is
subset of f0; 1gn � f0; 1gm � f0; 1gn.
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Conceptually, the transition relation com-
pletely captures the dynamics of the design –
given an initial state, and input sequence, the
evolution of the design is completely determined
by the transition relation.

Since the transition relation is a subset of
f0; 1gnCmCn, it has a characteristic function
fT W f0; 1gnCmCn ! f0; 1g. View fT as
being defined over the variables x0; : : : ; xn�1,
i0; : : : ; im�1, y0; : : : ; yn�1. Let the set of states
A be represented by the function fA defined
over variables x0; : : : ; xn�1. Then the following
identity holds

Img.A/ D .9x0 � 9xn�19i0 � � � 9im�1/.fA � fT /:

The identity holds because .“0; : : : ; “n�1/ satis-
fies the right-hand side expression exactly when
there are values ’0; : : : ; ’n�1, and š0; : : : ; šm�1

such that .’0; : : : ; ’n�1/ 2 A and the state
.’0; : : : ; ’n�1/ transitions to .“0; : : : ; “n�1/ on
input .š0; : : : ; šm�1/.

Invariant Checking

The set of all states reachable from a given set A

is the limit as n tends to infinity of the sequence
of states R0; R1; : : : defined below:

R0D A

RiC1D Ri [ Img.Ri /:

Since for all i , Ri � RiC1 and the number of
distinct state sets is finite, the limit is reached in
some finite number of steps, i.e., for some n, it
must be that RnC1 D Rn. It is straightforward
to show that the limit is exactly equal to the set
of states reachable from A – the basic idea is to
inductively construct input sequences that lead
from states in A to Ri and to show that state
t is reachable from a state in A under an input
sequence of length l , then t must be in Rl .

Given BDDs F and G representing func-
tions f and g, respectively, there is an algorithm
based on dynamic programming for performing

conjunction, i.e., for computing the BDD for
f � g. The algorithm has polynomial complexity,
specifically O.jF j � jGj/, where jBj denotes the
number of nodes in the BDD B . There are sim-
ilar algorithms for performing disjunction .f C

g/ and computing cofactors .fx and fx0/. To-
gether these yield an algorithm for the opera-
tion of existential quantification, since .9x/f D

fx C f 0
x .

It is straightforward to build BDDs for fA and
fT W A is typically given using a propositional
formula, and the BDD for fA can be built up
using functions for conjunction, disjunction, and
negation. The BDD for fT is built using from the
BDDs for the next-state nodes, over the register
and primary input variables. Since the only gate
types are AND, OR, and NOT, the BDD can
be built using the standard BDD operators for
conjunction, disjunction, and negation. Let the
next-state functions be f0; : : : ; fn�1; then fT is
.y0 D f0/ � .y1 D f1/ � � � � � .yn�1 D fn�1/, and
so the BDD for fT can be constructed using the
usual BDD operators.

Since the image computation operation can be
expressed in terms of fA and FT , and conjunction
and existential quantification operations, it can be
performed using BDDs. The computation of Ri

involves an image operation, and a disjunction,
and since BDDs are canonical, the test for fixed
point is trivial.

Applications

The primary application of the technique
described above is for checking properties of
hardware designs. These properties can be
invariants described using propositional formulae
over the register variables, in which case the
approach above is directly applicable. More
generally, properties can be expressed in a
temporal logic [5], specifically through formulae
which express acceptable sequences of outputs
and transitions.

CTL is one common temporal logic. A CTL
formula is given by the following grammar: if x

is a variable corresponding to a register, then x
is a CTL formula; otherwise, if ® and § are CTL
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formulas, then so as .:¥/, .¥_§/; .¥^§/; .¥!

§/, and EX¥; E¥U §, and EG¥.
A CTL formula is interpreted as being true at

a state; a formula x is true at a state if that register
is 1 in that state. Propositional connectives are
handled in the standard way, e.g., a state satisfies
a formula (¥ ^ §) if it satisfies both ® and §.
A state s satisfies EG¥ if there exists a state t

such that s transitions to, and t satisfies ®. A state
s satisfies E¥U § if there exists a sequence of
inputs i0; : : : ; in leading through state s0 D s,
s1; s2; : : : ; snC1 such that snC1 satisfies §, and all
states si ; i � n C 1 satisfy ®. A state s satisfies
EG¥ if there exists an infinite sequence of inputs
i0; i1; : : : leading through state s0 D s; s1; s2; : : :

such that all states si satisfy ®.
CTL formulas can be checked by a

straightforward extension of the technique
described above for invariant checking. One
approach is to compute the set of states
in the design satisfying subformulas of ®,
starting from the subformulas at the bottom
of the parse tree for ®. A minor difference
between invariant checking and this approach
is that the latter relies on pre-image com-
putation; the pre-image of A is the set of
all states t for which there exists an input
i such that t transitions under i to a state
in A.

Symbolic analysis can also be used to check
the equivalence of two designs by forming a new
design which operates the two initial designs in
parallel and has a single output that is set to
1 if the two initial designs differ [14]. In prac-
tice this approach is too inefficient to be useful,
and techniques which rely more on identifying
common substructures across designs are more
successful.

The complement of the set of reachable states
can be used to identify parts of the design which
are redundant and to propagate don’t care con-
ditions from the input of the design to internal
nodes [12].

Many of the ideas in SMC can be applied to
software verification – the basic idea is to “fini-
tize” the problem, e.g., by considering integers
to lie in a restricted range or setting an a priori
bound on the size of arrays [7].

Experimental Results

Many enhancements have been made to the basic
approach described above. For example, the BDD
for the entire transition relation can grow large,
so partitioned transition relations [11] are used
instead; these are based on the observation that
9x:.f � g/ D f � 9x:g, in the special case that f

is independent of x. Another optimization is the
use of don’t cares; for example, when computing
the image of A, the BDD for fT can be sim-
plified with respect to transitions originating at
A0 [13]. Techniques based on SAT have enjoyed
great success recently. These approaches case the
verification problem in terms of satisfiability of a
CNF formula. They tend to be used for bounded
checks, i.e., determining that a given invariant
holds on all input sequences of length k [1].
Approaches based on transformation-based ver-
ification complement symbolic model checking
by simplifying the design prior to verification.
These simplifications typically remove complex-
ity that was added for performance rather than
functionality, e.g., pipeline registers.

The original paper by Clarke et al. [3] re-
ported results on a toy example, which could
be described in a few dozen lines of a high-
level language. Currently, the most sophisticated
model checking tool for which published re-
sults are ready is SixthSense, developed at IBM
[10].

A large number of papers have been published
on applying SMC to academic and industrial
designs. Many report success on designs with
an astronomical number of states – these results
become less impressive when taking into consid-
eration the fact that a design with n registers has
2n states.

It is very difficult to define the complexity of a
design. One measure is the number of registers in
the design. Realistically, a hundred registers is at
the limit of design complexity that can be handled
using symbolic model checking. There are cases
of designs with many more registers that have
been successfully verified with symbolic model
checking, but these registers are invariably part
of a very regular structure, such as a memory
array.
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Data Sets

The SMV system described in [9] has been up-
dated, and its latest incarnation nuSMV (http://
nusmv.irst.itc.it/) includes a number of examples.

The VIS (http://embedded.eecs.berkeley.edu/
pubs/downloads/vis) system from UC Berkeley
and UC Boulder also includes a large collec-
tion of verification problems, ranging from sim-
ple hardware circuits to complex multiprocessor
cache systems.

The SIS (http://embedded.eecs.berkeley.edu/
pubs/downloads/sis/) system from UC Berkeley
is used for logic synthesis. It comes with a num-
ber of sequential circuits that have been used for
benchmarking symbolic reachability analysis.
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Problem Definition

Symmetry is one of the most important aes-
thetic criteria in graph drawing that clearly re-
veals the structure and properties of a graph.
Many graphs in Graph Theory textbooks are often
symmetric.

A symmetry of a drawing D of a graph G

induces an automorphism � of the graph G,
a permutation of the vertex set that preserves
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adjacency. If an automorphism � can be dis-
played as a symmetry in a drawing of the graph
G, then it is called a geometric automorphism [6].
A geometric automorphism � of a planar graph
G is a planar automorphism, if there is a planar
drawing of G which displays �. Note that not
every automorphism is geometric, and not every
geometric automorphism is planar.

In general, algorithms for constructing
symmetric drawings of graphs have two
steps:

1. Symmetry finding step: Find the geometric
automorphisms of a graph

2. Symmetry drawing step: Draw the graph dis-
playing these automorphisms as symmetries.

Note that the first step is more difficult than
the second step. For example, finding automor-
phism of a graph is isomorphism-hard; however
finding geometric automorphism of a graph is
NP-hard in general [18]. For planar graphs, com-
puting isomorphism (therefore, automorphism)
of a graph can be solved in linear time [7, 17].
However, finding the best plane embedding of
planar graphs that displays the maximum number
of symmetries in a drawing of a planar graph
is challenging, because a planar graph can have
exponential number of possible plane embed-
dings.

Furthermore, the product of two geometric
automorphisms is not necessarily geometric, be-
cause they may be displayed by different draw-
ings. A subgroup A of the automorphism group
of a graph is a geometric automorphism group, if
there is a single drawing of the graph that displays
every element of A. Therefore, to construct a
maximally symmetric drawing of a graph, one
needs to compute a maximum size geometric
automorphism group for the graph. Therefore,
the main research problem for Symmetric Graph
Drawing can be defined as below.

Symmetric Graph Drawing Problem
Input: A graph G.
Output: A maximum size geometric automorphism
group A of G, A symmetric drawing D of G that
displays all elements of A.

Key Results

There are two types of symmetry in two-
dimensional drawings: rotational symmetry
(i.e., a rotation about a point) and axial (or
reflectional) symmetry (i.e., a reflection about
an axis). The order of an automorphism ˛ is the
smallest positive integer k such that ˛k equals
the identity I . A group-theoretic characterization
of geometric automorphism group was given by
Eades and Lin [6] as follows:

• A group of order 2 generated by an axial
automorphism;

• A cyclic group of order k generated by a
rotational automorphism;

• A dihedral group of order 2k generated by
a rotational automorphism of order k and an
axial automorphism. In this case there are k

axial symmetries.

In two dimensions, the problem of determin-
ing whether a given graph can be drawn sym-
metrically is NP-complete in general [18]. Exact
algorithms are devised based on Branch and Cut
approach by Buchheim and Junger [3] and a
group-theoretic approach by Abelson et al. [1].
Linear-time algorithms are available for trees and
outerplanar graphs by Manning and Atallah [19,
20] and for series-parallel digraphs by Hong et
al. [14]. Linear-time algorithms are presented for
maximally symmetric drawings of triconnected
planar graphs by Hong et al. [15] and for bicon-
nected, oneconnected, and disconnected planar
graphs by Hong and Eades [10, 12, 13]. Hong
and Nagamochi presented a linear-time algorithm
for constructing a symmetric convex drawings of
internally trconnected planar graphs [16]. For a
survey on symmetric drawings of graphs in two
dimensions, see [5].

In three dimensions, the problem of determin-
ing whether a graph can be drawn symmetrically
in three dimensions is NP-hard in general [8].
A group-theoretic characterization of symmetric
drawing in n-dimensions and exact algorithms
based on a group-theoretic approach are given
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by Abelson et al. [1]. Linear-time algorithms
are available for trees by Hong and Eades [9],
series-parallel digraphs by Hong et al. [11], and
biconnected and oneconnected planar graphs [8].

In this article, we review a linear-time
algorithm for constructing maximally symmetric
straight-line drawings of triconnected planar
graphs by Hong, McKay, and Eades [15].
The following theorem summarizes their main
results.

Theorem 1 There is a linear-time algorithm that
constructs straight-line drawings of maximally
symmetric planar drawings of triconnected pla-
nar graphs.

Computing a Planar Automorphism Group
of Maximum Size
We first review the first step of the algorithm, i.e.,
symmetry finding step for triconnected planar
graphs [15]. A geometric automorphism group A

of a graph G is a planar automorphism group,
if there is a planar drawing of the graph that
displays every element of A.

Suppose that A is a group acting on a set X .
The stabilizer of x 2 X , denoted by stabA.x/,
is fg 2 A j g.x/ D xg, and the orbit of x,
denoted by orbitA.x/, is fg.x/ j g 2 Ag. We
say that g 2 A fixes x 2 X if g.x/ D x; if g fixes
x for every g 2 A, then A fixes x. If X 0 � X

and �.x0/ 2 X 0 for all x0 2 X 0, then g fixes X 0.
Automorphisms g1; g2; : : : ; gk are called gener-
ators of hg1; g2; : : : ; gki; the group consists of all
permutations formed from products of elements
of fg1; g2; : : : ; gkg.

Hong et al. [15] characterize planar automor-
phisms as below.

Lemma 1 Let G be a triconnected planar graph.
An automorphism of G is a planar automorphism
if and only if it fixes a face of G.

To find the best plane embedding to compute
a planar automorphism group with a maximum
size, the algorithm uses the Stabilizer-Orbit theo-
rem in group theory [2].

Theorem 2 (Stabilizer-Orbit theorem) Sup-
pose that A is a group acting on a set X and let
x 2 X . Then jAj D jorbitA.x/j � jstabA.x/j.

The overall algorithm computing a maximum
size planar automorphism group of a triconnected
planar graph can be described as follows;

Algorithm Compute_Max_PAG

1. Find a plane embedding which has a maxi-
mum size planar automorphism group.

2. Perform “star triangulation” for the given em-
bedding.

3. Compute the generators of the planar auto-
morphism group of the new embedding.

The first step of Compute_Max_PAG uses
two applications of an algorithm of Fontet [7],
which computes the orbits on vertices of the (full)
automorphism group of a triconnected planar
graph in linear time.

Theorem 3 Fontet’s algorithm [7] can be used
to find a plane embedding of a triconnected graph
G such that the corresponding planar automor-
phism group is maximized in linear time.
Proof Based on Lemma 1, we take a dual graph
of G� of G and compute the orbits of G� using
Fontet’s algorithm [7]. Choose an orbit O of
minimum size; the stabilizer O has the maximum
size, by Theorem 2. Taking a face f 2 O as
the outer face of the plane embedding of G, we
have an embedding that displays the maximum
number of symmetries.

Once the outer face and thus the plane
embedding is chosen, the second step of
Compute_Max_PAG performs star triangu-
lation, i.e., triangulate each internal face f

by inserting a new vertex v in the face and
joining v to each vertex of f . Clearly, this
step takes linear time and simplifies the drawing
algorithm.

The final step of Compute_Max_PAG is to
compute the planar automorphism group for star-
triangulated plane graph. Since an explicit repre-
sentation of the planar automorphism group may
take more than linear space, for a more com-
pact representation, an algorithm for computing
minimal generators was devised. For details on
a linear-time algorithm for computing generators
of a planar automorphism group, see [15].
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Symmetric Graph
Drawing, Fig. 1 Example
of (a) a wedge and (b)
merging step
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Overview of the Drawing Algorithm
We now review a linear-time drawing algorithm
for constructing a symmetric drawing of a tricon-
nected planar graph that achieves that maximum
with straight-line edges. The main characteris-
tic of symmetric drawings is the repetition of
congruent drawings of isomorphic subgraphs. To
exploit this property, the drawing algorithm uses
a divide and conquer approach: (i) divide the
graph into isomorphic subgraphs; (ii) compute a
drawing for a subgraph; and (iii) merge multiple
copies of drawings of subgraphs to construct a
symmetric drawing of the whole graph. Overall,
each step of the drawing algorithm runs in linear
time.

The input of the drawing algorithm is a
triconnected planar graph with fixed plane em-
bedding and a specified outer face, which maxi-
mize the number of symmetries. The symmetric
drawing algorithm takes a different approach
for each type of planar automorphism group:
i.e., cyclic case, one axial case, and dihedral
case.

The Cyclic Case
Here we describe how to display k rotational
symmetries. Note that after star triangulation,
there is a central vertex c, which is fixed by the
planar automorphism group for k � 3. If k D 2,
there exits either a central vertex or a central edge.
If there is a central edge, then we preprocess the
graph by inserting a dummy central vertex c into
the central edge with two dummy edges.

The rotational symmetric drawing algorithm
consists of three steps:

Algorithm Cyclic

1. Find_Wedge_Cyclic.
2. Draw_Wedge_Cyclic.
3. Merge_Wedges_Cyclic.

The first step is to find a subgraph wedge W ,
which takes linear time:

Algorithm Find_Wedge_Cyclic
1. Find the central vertex c.
2. Find a shortest path P1, from c to a vertex v1

on the outer face, using breadth first search.
3. Find the path P2 which is a mapping of P1

under a minimal generator of the rotation.
4. Find the wedge W (see Fig. 1a), an induced

subgraph of G enclosed by the cycle formed
from P1, P2 and a path P0 along the outer face
from v1 to v2.

The second step, Draw_Wedge_Cyclic,
constructs a drawing D of the wedge W using
Algorithm CYN, the linear-time convex drawing
algorithm by Chiba et al. [4], such that P1, P2,
and P0 are drawn as straight lines. The input
to Algorithm CYN is an internally triconnected
plane graph G with given outer face S and
a straight-line drawing S� of S as a weakly
convex polygon, i.e., not every vertex of the outer
face needs to be at an apex (i.e., the interior
angle is less than 
) of the polygon. Algorithm
CYN chooses a vertex v and deletes it from G

together with incident edges and divides the
resulting graph G0 D G � v into the biconnected
components B1; B2; : : : ; Bp , p � 1. It defines a
convex polygon S�

i of the outer facial cycle Si of
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Symmetric Graph
Drawing, Fig. 2 Example
of (a) a fixed string of
diamonds and (b) !`
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each Bi and recursively applies the algorithm to
draw Bi with S�

i as outer boundary. For details,
see [4].

The last step, Merge_Wedges_Cyclic,
constructs a drawing of the whole graph G by
replicating the drawing D of W , k times. Note
that this merge step relies on the fact that P1 and
P2 are drawn as straight lines. See Fig. 1b.

It is clear that Algorithm Cyclic constructs
a straight-line drawing of a triconnected plane
graph which shows k rotational symmetry in
linear time.

One Axial Symmetry
Consider a drawing of a star-triangulated plane
graph with one axial symmetry. There are fixed
vertices, edges, and/or fixed faces on the axis;
we need to characterize the subgraph formed by
these.

A diamond is either a triangle or the 4-vertex
graph. A string of diamonds is a graph formed
from a path P D .v1; v2; : : : ; vk/, k � 2, by
a number (zero or greater) of “splitting” opera-
tions, as follows. If 1 � i � k � 1, then the
edge .vi ; viC1/ may be replaced by a diamond.
Alternatively, each of the end edges .v1; v2/ and
.vk�1; vk/ may be replaced by a triangle. Note
that a string of diamonds is basically a path
consisting of edges and diamonds; each end of
the path may be a triangle; see Fig. 2a.

To display a single axial symmetry, we need
two steps. First we identify the fixed string of di-
amonds; then use Algorithm Symmetric_CYN,
a modified version of Algorithm CYN. More for-

mally, the algorithm One_Axial is described
below.

Algorithm One_Axial

1. Find a fixed string of diamonds. Suppose that
!1; !2; : : : ; !k are the fixed edges and ver-
tices in the fixed string of diamonds, in order
from the outer face (!1 is on the outer face).
For each `, !` may be a vertex or an edge (see
Fig. 2b).

2. Choose a symmetric convex polygon S� for
the outer face S of G.

3. Symmetric_CYN(1; S�; G; y1).

The main ingredient in Algorithm One_Axi-
al is Algorithm Symmetric_CYN. To modify
Algorithm CYN to display a single axial sym-
metry, the following three conditions should be
satisfied:

• Choose the first vertex or edge on the fixed
string of diamonds !1 (see Fig. 3).

• Let D.Bi / be the drawing of Bi and ˛ be
the axial symmetry. Then, D.Bi / should be a
reflection of D.Bj /, where Bj D ˛.Bi /, i D

1; 2; : : : ; m and m D bp=2c: To satisfy this
condition, define S�

j to be the reflection of S�
i ,

i D 1; 2; : : : ; m. Then we apply Algorithm
CYN for Bi ; i D 1; 2; : : : ; m and construct
D.Bj / using a reflection of D.Bi /.

• If p is odd, then D.BmC1/ should display
axial symmetry: To satisfy this condi-
tion, we recursively apply Algorithm
Symmetric_CYN to BmC1.
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Symmetric Graph Drawing, Fig. 3 Example of a symmetric version of CYN

Note that the position of !2 in Fig. 3 can
be chosen arbitrarily along the axis of symme-
try of S� within S�. This means that we can
specify the positions of the fixed vertices and
middle edges along the axis of symmetry a priori,
that is, as input to the algorithm. The Algo-
rithm Symmetric_CYN can be described as
below:

Algorithm Symmetric_CYN

input: `: index of vertex or middle edge on the
fixed string of diamonds.
input: S�: a weakly convex polygon of the
outer face of S of G.
input: G: a triangulated planar graph.
input: y`: a position on the axis of symmetry
for the fixed vertex or the fixed edge !`.

1. Delete !` from G together with edges incident
to !`. Divide the resulting graph G0 D G �

!` into the blocks B1; B2; : : : ; Bp , p � 1,
ordered anticlockwise around the outer face.
Let m D bp=2c.

2. Determine a convex polygon S�
i of the outer

facial cycle Si of each Bi such that Bi with
S�

i satisfy the conditions for convex drawing
algorithm CYN and S�

p�iC1 is a reflection of
S�

i .
3. For each i D 1 to m,

(a) Construct a drawing D.Bi / of Bi using
Algorithm CYN.

(b) Construct D.Bp�iC1/ as a reflection of
D.Bi /.

4. If p is odd, then construct a drawing
D.BmC1/ using Symmetric_CYN(` C

1; S�
mC1; BmC1, y`C1).

5. Merge the D.Bi / to form a drawing of G,
placing !` at y`.

Since Algorithm CYN [4] runs in linear time,
clearly Algorithm Symmetric_CYN and Algo-
rithm One_Axial takes linear time.

The Dihedral Case
We now review an algorithm for displaying a
dihedral group < �; ˛ >, where � is a rotation of
order k and ˛ is an axial automorphism. As with
the cyclic case, we assume that there is a central
vertex.

The drawing algorithm adopts the same strat-
egy as for the cyclic case: (i) divide the graph
into “wedges”; (ii) draw each wedge; and (iii)
merge the drawings of wedges to construct a
symmetric drawing of the whole graph. However,
the dihedral case is more difficult than the cyclic
case, because an axial symmetry in the dihedral
group can have fixed faces as well as fixed edges;
i.e., the boundary of a wedge may be a fixed string
of diamonds as in the one axial case. To achieve
dihedral symmetry, the axis of symmetry must be
the perpendicular bisector of the middle edge of
each diamond. This makes the merging operation
more difficult.

Consider a drawing of a triconnected planar
graph with a dihedral symmetry group of size 2k.
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Symmetric Graph Drawing, Fig. 4 Wedge for the dihedral case

There are k axial symmetries, with axes at angles
of 
i=k, 0 � i � k � 1, to the x axis, as in
Fig. 4a. Roughly speaking, a wedge is the area
between two adjacent axes, as in Fig. 4b. Note
that in these wedges, the boundaries P1 and P2

may be strings of diamonds. These may terminate
in a triangle.

As with the cyclic case, Algorithm Dihedral
has three steps: (i) Find_Wedge_Dihedral,
(ii) Draw_Wedge_Dihedral, and (iii)
Merge_Wedges_Dihedral.

The first step is to define the “wedge” sub-
graph by finding two fixed strings of diamonds.
Note that one can find the central vertex c and the
two fixed strings of diamonds P1 and P2 in linear
time using the generators of the group.

Algorithm Find_Wedge_Dihedral

1. Find the central vertex c.
2. Find a string of diamonds P1 that is fixed by

˛, from c to a vertex v or an edge e on the
outer face.

3. Traverse the outer face, clockwise from v (or
e) to the vertex v0 or edge e0 that is fixed by
��1˛�. Let P0 denote the path so traversed.

4. Find the string of diamonds P2 for ��1˛�,
from c to v0 (or e0).

5. Define the wedge W to be the subgraph en-
closed by P0, P1, and P2, including the ver-
tices and edges of P0, P1, and P2.

The second step, Draw_Wedge_Dihedral,
constructs a drawing of the wedge, which is the
most complicated step of the drawing algorithm.

This step must ensure that the middle edge of
each diamond on the boundary is orthogonal to
the axis of reflection.

Roughly speaking, the algorithm Draw_
Wedge_Dihedral runs as follows: (i) Find
all special diamonds of P1 and P2 that share
fixed vertices or fixed edges, and draw them first
using algorithm Draw_Special_Diamonds;
(ii) choose the positions of all the fixed vertices
of P1 and P2 that have not been drawn
so far; (iii) subdivide the wedge in various
ways to form “subwedges”; (iv) draw each of
these subwedges using Algorithms CYN and
Symmetric_CYN accordingly. For details,
see [15].

The final step, Algorithm Merge_Wedges_
Dihedral simply constructs a drawing for
the whole graph by merging the drawing D of
the wedge W . Clearly each step of Algorithm
Dihedral takes linear time.
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Problem Definition

Consider a communication network, modeled by
an n-vertex undirected unweighted graph G D

.V; E/, for some positive integer n. Each vertex
of G hosts a processor of unlimited computa-
tional power; the vertices have unique identity
numbers, and they communicate via the edges of
G by sending messages of size O.log n/ each.

In the synchronous setting, the communica-
tion occurs in discrete rounds, and a message
sent in the beginning of a round R arrives at
its destination before the round R ends. In the
asynchronous setting, each vertex maintains its
own clock, and clocks of distinct vertices may
disagree. It is assumed that each message sent (in
the asynchronous setting) arrives at its destination
within a certain time £ after it was sent, but the
value of £ is not known to the processors.

It is generally much easier to devise
algorithms that apply to the synchronous setting
(henceforth, synchronous algorithms) rather
than to the asynchronous one (henceforth,
asynchronous algorithms). In [1] Awerbuch
initiated the study of simulation techniques
that translate synchronous algorithms to
asynchronous ones. These simulation techniques
are called synchronizers.
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To devise the first synchronizers, Awer-
buch [1] constructed a certain graph partition
which is of its own interest. In particular,
Peleg and Schäffer noticed [8] that this graph
partition induces a subgraph with certain
interesting properties. They called this subgraph
a graph spanner. Formally, for a positive integer
parameter k, a k-spanner of a graph G D .V; E/

is a subgraph G0 D .V; H/, H � E, such that for
every edge e D .v; u/ 2 E, the distance between
the vertices v and u in H , dist0G.v; u/, is at
most k.

Key Results

Awerbuch devised three basic synchronizers,
called ’, “, and ”. The synchronizer ’ is the
simplest one; using it results in only a constant
overhead in time, but in a very significant
overhead in communication. Specifically, the
latter overhead is linear in the number of edges of
the underlying network. Unlike the synchronizer
’, the synchronizer “ requires a somewhat costly
initialization stage. In addition, using it results in
a significant time overhead (linear in the number
of vertices n), but it is more communication
efficient than ’. Specifically, its communication
overhead is linear in n.

Finally, the synchronizer ” represents a trade-
off between the synchronizers ’ and “. Specif-
ically, this synchronizer is parametrized by a
positive integer parameter k. When k is small,
then the synchronizer behaves similarly to the
synchronizer ’, and when k is large, it behaves
similarly to the synchronizer “. A particularly
important choice of k is k D log n. At this point
on the trade-off curve, the synchronizer ” has a
logarithmic in n time overhead and a linear in
n communication overhead. The synchronizer ”

has, however, a quite costly initialization stage.
The main result of [1] concerning spanners

is that for every k D 1; 2; : : :, and every n-
vertex unweighted undirected graph G D .V; E/,
there exists an O.k/-spanner with O.n1C1=k/

edges. (This result was explicated by Peleg and
Schäffer [8].)

Applications

Synchronizers are extensively used for con-
structing asynchronous algorithms. The first
applications of synchronizers are constructing
the breadth-first-search tree and computing
the maximum flow. These applications were
presented and analyzed by Awerbuch in [1]. Later
synchronizers were used for maximum matching
[10], for computing shortest paths [7], and for
other problems.

Graph spanners were found useful for a vari-
ety of applications in distributed computing. In
particular, some constructions of synchronizers
employ graph spanners [1, 9]. In addition, span-
ners were used for routing [4] and for computing
almost shortest paths in graphs [5].

Open Problems

Synchronizers with improved properties were de-
vised by Awerbuch and Peleg [3] and Awerbuch
et al. [2]. Both these synchronizers have poly-
logarithmic time and communication overheads.
However, the synchronizers of Awerbuch and
Peleg [3] require a large initialization time. (The
latter is at least linear in n.) On the other hand,
the synchronizers of [2] are randomized. A major
open problem is to obtain deterministic synchro-
nizers with polylogarithmic time and communi-
cation overheads and sublinear in n initialization
time. In addition, the degrees of the logarithm
in the polylogarithmic time and communication
overheads in synchronizers of [2, 3] are quite
large. Another important open problem is to con-
struct synchronizers with improved parameters.

In the area of spanners, spanners that distort
large distances to a significantly smaller extent
than they distort small distances were constructed
by Elkin and Peleg in [6]. These spanners fall
short from achieving a purely additive distortion.
Constructing spanners with a purely additive dis-
tortion is a major open problem.
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Problem Definition

Table compression was introduced by Buchsbaum
et al. [3] as a unique application of compression,
based on several distinguishing characteristics.
Tables are collections of fixed-length records and
can grow to be terabytes in size. They are often
generated by information systems and kept in
data warehouses to facilitate ongoing operations.
These data warehouses will typically manage
many terabytes of data online, with significant
capital and operational costs. In addition, the
tables must be transmitted to different parts
of an organization, incurring additional costs

for transmission. Typical examples are tables
of transaction activity, like phone calls and
credit card usage, which are stored once but
then shipped repeatedly to different parts of
an organization: for fraud detection, billing,
operations support, etc. The goals of table
compression are to be fast, online, and effective:
eventual compression ratios of 100:1 or better
are desirable. Reductions in required storage and
network bandwidth are obvious benefits.

Tables are different than general databases
[3]. Tables are written once and read many
times, while databases are subject to dynamic
updates. Fields in table records are fixed in
length, and records tend to be homogeneous;
database records often contain intermixed fixed-
and variable-length fields. Finally, the goals
of compression differ. Database compression
stresses index preservation, the ability to retrieve
an arbitrary record, under compression [7].
Tables are typically not indexed at the level of
individual records; rather, they are scanned in
toto by downstream applications.

Consider each record in a table to be a row in
a matrix. A naive method of table compression is
to compress the string derived from scanning the
table in row-major order. Buchsbaum et al. [3]
observe experimentally that partitioning the
table into contiguous intervals of columns and
compressing each interval separately in this
fashion can achieve significant compression
improvement. The partition is generated by a
one-time, off-line training procedure, and the
resulting compression strategy is applied online

© Springer Science+Business Media New York 2016
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to the table. In their application, tables are
generated continuously, so off-line training time
can be ignored. They also observe heuristically
that certain rearrangements of the columns prior
to partitioning further improve compression by
grouping dependent columns more closely. For
example, in a table of addresses and phone
numbers, the area code can often be predicted
by the zip code when both are defined geo-
graphically. In information-theoretic terms, these
dependencies are contexts, which can be used to
predict parts of a table. Analogously to strings,
where knowledge of context facilitates succinct
codings of symbols, the existence of contexts in
tables implies, in principle, the existence of a
more succinct representation of the table.

Three main avenues of research have fol-
lowed, one based on the notion of combinatorial
dependency [3, 4], another on the notion of
column dependency [17, 18], and the third on
the notion of motifs and templates [1]. The
first formalizes dependencies analogously to
the joint entropy of random variables, while
the second does so analogously to conditional
entropy [8]. The third finds inspiration in classic
paradigms of data compression such as textual
substitution [19, 20]. These approaches to table
compression have deep connections to universal
similarity metrics [12], based on Kolmogorov
complexity and compression, and their later uses
in classification [6]. The first two approaches are
instances of a new emerging paradigm for data
compression, referred to as boosting [9], where
data are reorganized to improve the performance
of a given compressor. A software platform to
facilitate the investigation of such invertible data
transformations is described by Vo [16]

Notations
Let T be a table of n D jT j columns andm rows.
Let T Œi � denote the i th column of T . Given two
tables T1 and T2, let T1T2 be the table formed by
their juxtaposition. That is, T D T1T2 is defined
so that T Œi � D T1Œi � for 1 � i � jT1j and T Œi � D

T2Œi � jT1j� for jT1j < i � jT1j C jT2j. We use
the shorthand T Œi; j � to represent the projection
T Œi � � � �T Œj � for any j � i . Also, givena sequence

P of column indices, we denote by T ŒP � the table
obtained from T by projecting the columns with
indices in P .

Combinatorial Dependency and Joint
Entropy of Random Variables
Fix a compressor C: e.g., gzip, based on LZ77
[19]; compress, based on LZ78 [20]; or bzip,
based on Burrows-Wheeler [5]. Let HC.T / be
the size of the result of compressing table T

as a string in row-major order using C. Let
HC.T1; T2/ D HC.T1; T2/:HC.�/ is thus a cost
function defined on the ordered power set of
columns. Two tables T1 and T2, which might be
projections of columns from a common table T ,
are combinatorially dependent if HC.T1; T2/ <

HC.T1/CHC.T2/ – if compressing them together
is better than compressing them separately –
and combinatorially independent otherwise.
Buchsbaum et al. [3] show that combinatorial
dependency is a compressive estimate of
statistical dependency when formalized by the
joint entropy of two random variables, i.e.,
the statistical relatedness of two objects is
measured by the gain realized by compressing
them together rather than separately. Indeed,
combinatorial dependency becomes statistical
dependency when HC is replaced by the joint
entropy function [8]. Analogous notions starting
from Kolmogorov complexity are derived
by Li et al. [12] and used for classification
and clustering [6]. Figure 1 exemplifies why
rearranging and partitioning columns may
improve compression.

9 0 8 2 7 3

9 0 8 3 7 5

9 0 8 5 7 6

9 0 8 2 7 5

Table Compression, Fig. 1 The first three columns of
the table, taken in row-major order, form a repetitive string
that can be very easily compressed. Therefore, it may be
advantageous to compress these columns separately. If the
fifth column is swapped with the fourth, we get an even
longer repetitive string that, again, can be compressed
separately from the other two columns
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Problem 1 Find a partition P of T into sets of
contiguous columns that minimizes

P

Y 2P
HC.Y /

over all such partitions.

Problem 2 Find a partition P of T that mini-
mizes

P

Y 2P
HC.Y / over all partitions.

The difference between Problems 1 and 2 is
that the latter does not require the parts of P to
be sets of contiguous columns.

Column Dependency and Conditional
Entropy of Random Variables

Definition 1 For any table T , a dependency re-
lation is a pair .P; c/ in which P is a sequence
of distinct column indices (possibly empty) and
c … P is another column index. If the length of
P is less than or equal to k, then .P; c/ is called
a k-relation. P is the predictor sequence and c is
the predictee.

Definition 2 Given a dependency relation
.P; c/, the dependency transform dtP .c/ of c
is formed by permuting column T Œc� based on
the permutation induced by a stable sort of the
rows of P .

Definition 3 A collection D of dependency re-
lations for table T is said to be a k-transform if
and only if (a) each column of T appears exactly
once as a predictee in some dependency relation
.P; c/, (b) the dependency hypergraph G.D/ is
acyclic, and (c) each dependency relation .P; c/
is a k-relation.

Let!.P; c/ be the cost of the dependency rela-
tion .P; c/, and let ı.m/ be an upper bound on the
cost of computing !.P; c/. Intuitively, !.P; c/
gives an estimate of how well a rearrangement
of column c will compress, using the rows of P
as contexts for its symbols. We will provide an
example after the formal definitions.

Problem 3 Find a k-transform D of minimum
cost !.D/ D

P

.P; c/2D

!.P; c/.

Definition 1 extends to columns the notion of
context that is well known for strings. Defini-
tion 3 defines a microtransformation that reorga-
nizes the column symbols by grouping together
those that have similar contexts. The context of a
column symbol is given by the corresponding row
in T ŒP �. The fundamental ideas here are the same
as in the Burrows and Wheeler transform [5].
Finally, Problem 3 asks for an optimal strategy to
reorganize the data prior to compression. The cost
function! provides an estimate of how well c can
be compressed using the knowledge of T ŒP �.

Vo and Vo [18] connect these ideas to the
conditional entropy of random variables. Let S
be a sequence, A.S/ its distinct elements, and
fa the frequency of each element a. The zeroth-
order empirical entropy of S [15] is

H0.S/ D �
1

jS j

X

˛2A.S/

fa lg
fa

jS j
;

and the modified zeroth-order empirical entropy
[15] is

H�
0 .S/ D

8
<̂

:̂

0 ifjS j D 0;

.1C lg jS j/=jS j ifjS j ¤ 0 andH0.S/ D 0;

H0.S/ otherwise:

:

For a dependency relation .P; c/ with
nonempty P , the modified conditional empirical
entropy of c given P is then defined as

H�
P .c/ D

1

m

X

�2A.T ŒP �/

j�c jH�
0 .�c/;
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where �c is the string formed by catenating the
symbols in c corresponding to positions of �
in T ŒP � [15]. A possible choice of !.P; c/ is
given by H�

P .c/. Vo and Vo also develop another
notion of entropy, called run length entropy, to
approximate more effectively the compressibility
of low-entropy columns and define another cost
function ! accordingly.

Key Results

Combinatorial Dependency
Problem 1 admits a polynomial-time algorithm,
based on dynamic programming. Using the def-
inition of combinatorial dependency, one can
show:

Theorem 1 ([3]) Let EŒi� be the cost of an opti-
mal, contiguous partition of T Œ1; i �. EŒn� is thus
the cost of a solution to Problem 1. DefineEŒ0� D

0; then, for 1 � i � n,

EŒi� D min
0�j <i

EŒj �CHC.Tj C1; : : : ; Ti /: (1)

The actual partition with cost EŒn� can be main-
tained by standard backtracking.

The only known algorithmic solution to
Problem 2 is the trivial one based on enumerating
all possible feasible solutions to choose an
optimal one. Some efficient heuristics based
on asymmetric TSP, however, have been
devised and tested experimentally [4]. Define
a weighted, complete, directed graph, G.T /,
with a vertex Ti for each column T Œi � 2 T ;
the weight of edge {Ti ; Tj } is w.Ti ; Tj / D

min.HC.Ti ; Tj /; HC.Ti / C HC.Tj //. One then
generates a set of tours of various weights by
iteratively applying standard optimizations (e.g.,
3-opt, 4-opt). Each tour induces an ordering of
the columns, which are then optimally partitioned
using the dynamic program (1).

Buchsbaum et al. [4] also provide a general
framework for studying the computational com-
plexity of several variations of table compression
problems based on notions analogous to combi-
natorial dependence, and they give some initial
MAX-SNP-hardness results. Particularly relevant

is the set of abstract problems in which one is
required to find an optimal arrangement of a set
of strings to be compressed, which establishes a
nontrivial connection between table compression
and the classical shortest common superstring
problem [2]. Giancarlo et al. [11] connect table
compression to the Burrows and Wheeler trans-
form [5] by deriving the latter as a solution to an
analog of Problem 2.

Column Dependency

Theorem 2 ([17, 18]) For k � 2, Problem 3 is
NP-hard.

Theorem 3 ([17, 18]) An optimum 1-transform
for a table T can be found in O.n2ı.m// time.

Theorem 4 ([17, 18]) A 2-transform can be
computed in O.n2ı.m// time.

Theorem 5 ([18]) For any dependency relation
.P; c/ and some constant �; jC.dtP .c//j �

5mH�
p .c/C �.

Motifs
Apostolico et al. [1] propose improved versions
of Table Compression based on Motifs, i.e.,
regular expressions characterizing a set of
templates based on which the rows of a table
are compressed by textual substitution. They
also discuss applications of the technique in
Computational Biology.

Applications

Storage and transmission of alphanumeric tables.
Moreover, the Citing Articles of the papers in [1,
3,4,17,18] in Google Scholar provide a full range
of applications and related work.

Open Problems

All the techniques discussed use the general
paradigms of context-dependent data rearrange-
ment for compression boosting. It remains open
to apply these paradigms to other domains, e.g.,
XML data [13, 14], where high-level structures
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can be exploited, and to domains where pertinent
structures are not known a priori.

Experimental Results

Buchsbaum et al. [3] showed that optimal parti-
tioning alone (no column rearrangement) yielded
about 55 % better compression compared to gzip
on telephone usage data, with small training sets.
Buchsbaum et al. [4] experimentally supported
the hypothesis that good TSP heuristics can ef-
fectively reorder the columns, yielding additional
improvements of 5–20 % relative to partitioning
alone. They extended the data sets used to include
other tables from the telecom domain as well as
biological data. Vo and Vo [17,18] showed further
10–35 % improvement over these combinatorial
dependency methods on the same data sets.

Data Sets

Some of the data sets used for experimentation
are public [4].

URL to Code

The pzip package, based on combinatorial de-
pendency, is available at http://www.research.att.
com/~gsf/pzip/pzip.html. The Vcodex package,
related to invertible transforms, is available
at http://www.research.att.com/~gsf/download/
ref/vcodex/vcodex.html. Although for the time
being Vcodex does not include procedures to
compress tabular data, it is a useful toolkit for
their development.
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Problem Definition

Consider a random allocation of m balls to n
bins where each ball is placed in a bin chosen
uniformly and independently. The properties of
the resulting distribution of balls among bins
have been the subject of intensive study in the
probability and statistics literature [3, 4]. In com-
puter science, this process arises naturally in ran-
domized algorithms and probabilistic analysis.
Of particular interest is the occupancy problem
where the random variable under consideration is
the number of empty bins.

In this entry a series of bounds are presented
(reminiscent of the Chernoff bound for binomial
distributions) on the tail of the distribution of the

number of empty bins; the tail bounds are suc-
cessively tighter, but each new bound has a more
complex closed form. Such strong bounds do not
seem to have appeared in the earlier literature.

Key Results

The following notation in presenting sharp
bounds on the tails of distributions. The notation
F � G will denote that F D .1C o.1//G;
further, F � G will denote that lnF � lnG.
The proof that f � g, is used for the purposes
of later claiming that 2f � 2g . These asymptotic
equalities will be treated like actual equalities
and it will be clear that the results claimed are
unaffected by this “approximation”.

Consider now the probabilistic experiment of
throwing m balls, independently and uniformly,
into n bins.

Definition 1 Let Z be the number of empty bins
when m balls are placed randomly into n bins, and
define r D m=n. Define the function H.m; n; ´/
as the probability that Z D ´. The expectation of
Z is given by

� D EŒZ� D n

�

1 �
1

n

�m

� ne�r :

The following three theorems provide the bounds
on the tail of the distribution of the random
variable Z. The proof of the first bound is based
on a martingale argument.

Theorem 1 (Occupancy Bound 1) For any
� >0,

P ŒjZ � �j � ��� � 2 exp

 

�
�2�2.n � 1

2
/

n2 � �2

!

:

Remark that for large r this bound is asymptoti-
cally equal to

2 exp

�

�
�2 e�2rn

1 � e�2r

�

:



Tail Bounds for Occupancy Problems 2199

T

The reader may wish to compare this with
the following heuristic estimate of the tail
probability assuming that the distribution of
Z is well approximated by the approximating
normal distribution also far out in the tails
[3, 4].

P ŒjZ � �j � ��� � 2 exp

 

�
�2 e�r n

2 .1 � .1 C r/e�r /

!

:

The next two bounds are in terms of point
probabilities rather than tail probabilities (as
was the case in the Binomial Bound), but the
unimodality of the distribution implies that
the two differ by at most a small (linear)
factor. These more general bounds on the point
probability are essential for the application to
the satisfiability problem. The next result is
obtained via a generalization of the Binomial
Bound to the case of dependent Bernoulli
trials.

Theorem 2 (Occupancy Bound 2) For � > �1,

H.m; n; .1 C �/�/ � exp .� ..1 C �/ lnŒ1 C �� � �/ �/ :

In particular, for �1 � � < 0,

H.m; n; .1C �/�/ � exp

�

�
�2�

2

�

:

The last result is proved using ideas from large
deviations theory (Weiss A (1993) Personal Com-
munication).

Theorem 3 (Occupancy Bound 3) For j´ � �j

D ˝.n/,

H .m; n; ´/ �

exp

 "

�n

 Z 1�

´
n

0

ln

�
k � x

1 � x

�

dx � r ln k

!#!

where k is defined implicitly by the equation ´ D

n.1 � k.1 � e�r=k//.

Applications

Random allocations of balls to bins is a ba-
sic model that arises naturally in many areas
in computer science involving choice between
a number of resources, such as communication
links in a network of processors, actuator devices
in a wireless sensor network, processing units
in a multi-processor parallel machine etc. For
such situations, randomization can be used to
“spread” the load evenly among the resources, an
approach particularly useful in a parallel or dis-
tributed environment where resource utilization
decisions have to be made locally at a large num-
ber of sites without reference to the global impact
of these decisions. In the process of analyzing
the performance of such algorithms, of partic-
ular interest is the occupancy problem where
the random variable under consideration is the
number of empty bins (i.e., machines with no
jobs, routes with no load, etc.). The properties
of the resulting distribution of balls among bins
and the corresponding tails bounds may help in
order to analyze the performance of such algo-
rithms.
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Problem Definition

Technology mapping is the problem of
implementing a sequential circuit using the gates
of a particular technology library. It is an integral
component of any automated VLSI circuit
design flow. In the prototypical chip design flow,
combinational logic gates and sequential memory
elements are composed to form sequential
circuits. These circuits are subject to various logic
optimizations to minimize area, delay, power,
and other performance metrics. The resulting
optimized circuits still consist of primitive logic
functions such as AND and OR gates. The next
step is to efficiently realize these circuits in a
specific VLSI technology using a library of gates
available from the semiconductor vendor. Such a
library would typically consist of gates of varying
sizes and speeds for primitive logic functions
(AND and OR) and more complex functions
(exclusive-OR, multiplexer). However, a naïve
translation of generic logic elements to gates in
the library will fall short of realistic performance
goals. The challenge is to construct a mapping
that maximally utilizes the gates in the library to
implement the logic function of the circuit and
achieve some performance goal, for example,
minimum area with the critical path delay less

than a target value. This is accomplished by
technology mapping. For the sake of simplicity,
in the following discussion, it is presumed that
the sequential memory elements are stripped
from the digital circuit and mapped directly into
memory elements of the particular technology.
Then, only Boolean circuits composed of
combinational logic gates remain to be mapped.
Further, each remaining Boolean circuit is
necessarily a directed acyclic graph (DAG).

The technology mapping problem can be re-
stated in a more general graph-theoretic setting:
find a minimum cost covering of the subject graph
(Boolean circuit) by choosing from the collection
of pattern graphs (gates) available in a library.
The inputs to the problem are:

(a) Subject graph: This is a directed acyclic graph
representation of a Boolean circuit expressed
using a set of primitive functions (e.g., 2-
input NAND gates and inverters). An example
subject graph is shown in Fig. 1.

(b) Library of pattern graphs: This is a collection
of gates available in the technology library.
The pattern graphs are also DAGs expressed
using the same primitive functions used to
construct the subject graph. Additionally, each
gate is annotated with a number of values for
different cost functions, such as area, delay,
and power. An example library and associated
cost model is shown in Fig. 2.

A valid cover is a network of pattern graphs
implementing the function of the subject graph
such that (a) every vertex (i.e., gate) of the subject
graph is contained in some pattern graph and (b)
each input required by a pattern graph is actually
an output of some other pattern graph (i.e., the
inputs of a gate must exist as outputs of other
gates). Technology mapping can then be viewed
as an optimization problem to find a valid cover
of minimum cost of the subject graph.

Key Results

To be viable in a realistic design flow, an
algorithm for minimum cost graph-covering
for technology mapping should ideally possess
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Technology Mapping,
Fig. 1 Subject graph
(DAG) of a Boolean circuit
expressed using NAND2
and INVERTER gates

Technology Mapping,
Fig. 2 Library of pattern
graphs (composed of
NAND2 and INVERTER
gates) and associated costs

Gate

2

3

4

4

INVERTER

NAND2

NAND3

AND-OR-
INVERT-21

AND-OR-
INVERT-22

5

Cost Pattern Graph

the following characteristics: (a) the algorithm
should be easily adaptable to diverse libraries
and cost models; if the library is expanded or
replaced, the algorithm must be able to utilize the
new gates effectively; (b) it should allow detailed
cost models to accurately represent the perfor-
mance of the gates in the library; and (c) it should
be fast and robust on large subject graph instances
and large libraries. One technique for solving
the minimum cost graph-covering problem is
to formulate it as a binate-covering problem,
which is a specialized integer linear program
[10]. However, binate-covering for a DAG is
NP-Hard for any set of primitive functions and is
typically unwieldy on large circuits. The DAGON
algorithm suggested solving the technology
mapping problem through DAG-covering and
advanced an alternate approach for DAG-

covering based on a tree-covering approximation
that produced near-optimal solutions for practical
circuits and was very fast even for large circuits
and large libraries [7].

DAGON was inspired by prevalent techniques
for pattern matching employed in the domain
of code generation for programming language
compilers [1]. The fundamental concept was
to partition the subject graph (DAG) into
a forest of trees and solve the minimum
cost covering problem independently for
each tree. The approach was motivated by
the existence of efficient dynamic program-
ming algorithms for optimum tree-covering
[2]. The three salient components of the
DAGON algorithm are (a) subject graph
partitioning, (b) pattern matching, and (c)
covering.
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(a) Subject graph partitioning: To apply the tree-
covering approximation the subject graph is
first partitioned into a forest of trees. One
approach is to break the graph at each vertex
which has an out-degree greater than 1 (mul-
tiple fan-out point). The root of each tree is
the primary output of the corresponding sub-
circuit and the leaves are the primary inputs.
Other heuristic partitions of the subject graph
that consider duplication of vertices can also
be applied to improve the quality of the final
cover. Alternate subject graph partitions can
also be derived starting from different decom-
positions of the original Boolean circuit in
terms of the primitive functions.

(b) Pattern matching: The optimum covering of a
tree is determined by generating the complete
set of matches for each vertex in the tree (i.e.,
the set of pattern graphs which are candidates
for covering a particular vertex) and then
selecting the optimum match from among
the candidates. An efficient approach for
structural pattern matching is to reduce the
tree matching problem to a string matching
problem [2]. Fast string matching algorithms,
such as the Aho-Corasick and the Knuth-
Morris-Pratt algorithms, can then be used to
find all strings (pattern graphs) which match
a given vertex in the subject graph in time
proportional to the length of the longest string
in the set of pattern graphs. Alternatively,
Boolean matching techniques can be used to
find matches based on logic functions [5].
Boolean matching is slower than structural
string matching, but it can compute matches
independent of the actual local decomposi-
tions and under different input permutations.

(c) Covering: The final step is to generate a
valid cover of the subject tree using the
pattern graph matches computed at each
vertex. Consider the problem of finding a
valid cover of minimum area for the subject
tree. Every pattern graph in the library has an
associated area and the area of a valid cover
is the sum of the area of the pattern graphs
in the cover. The key property that makes
minimum area tree-covering efficient is this:

the minimum area cover of a tree rooted at
some vertex v can be computed using only
the minimum area covers of vertices below
v. It follows that for every pattern graph
that matches the tree rooted at vertex v, the
area of the minimum cover containing that
match equals the sum of the area of the
corresponding match at v and the sum of the
areas of the optimal covers of the vertices
which are inputs to that match. This property
enables a dynamic programming algorithm to
compute the minimum area cover of the tree
rooted at each vertex of the subject tree. The
base case is the minimum area cover of a leaf
(primary input) of the subject tree. The area
of a match at a leaf is set to 0. A recursive
formulation of this dynamic programming
concept is summarized in the Algorithm min-
imum_area_tree_cover shown below. As an
example, the minimum area cover displayed
in Fig. 3 is a result of applying this algorithm
to the tree partitions of the subject graph from
Fig. 1 using the library from Fig. 2.

Given a vertex v in the subject tree, let M.v/
denote the set of candidate matches from the
library of pattern graphs for the sub-tree rooted
at v.

In this algorithm, each vertex in the tree is
visited exactly once. Hence, the complexity of
the algorithm is proportional to the number of
vertices in the subject tree times the maximum
number of pattern matches at any vertex. The
maximum number of matches is a function of the
pattern graph library and is independent of the
subject tree size. As a result, the complexity of
computing the minimum cost valid cover of a tree
is linear in the size of the subject tree, and the
memory requirements are also linear in the size
of the subject tree. The algorithm computes the
optimum cover when the subject graph is a tree.
In the general case of the subject graph being a
DAG, empirical results have shown that the tree-
covering approximation yields industrial-quality
results achieving aggressive area and timing re-
quirements on large real circuit design problems
[6, 12].
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Technology Mapping,
Fig. 3 Result of a
minimum area
tree-covering of the subject
graph in Fig. 1 using the
library of pattern graphs in
Fig. 2

NAND3

INVERTER

NAND2

Area of cover = 4 + 2 + 3 + 4 = 13

AND-OR-
INVERT-21

Applications

Technology mapping is the key link between
technology-independent logic synthesis and
technology-dependent physical design of VLSI
circuits. This motivates the need for efficient and
robust algorithms to implement large Boolean
circuits in a technology library. Early algorithms
for technology mapping were founded on
rule-based local transformations [4]. DAGON
was the first in advancing an algorithmic
foundation in terms of graph transformations
that was practicable in the inner loop of iterative
procedures in the VLSI design flow [7]. From
a theoretical standpoint, the graph-covering
formulation provided a formal description of
the problem and specified optimality criteria
for evaluating solutions. The algorithm was
naturally adaptable to diverse libraries and cost
models, and was relatively easy to implement
and extend. The concept of partitioning the
subject graph into trees and covering the trees
optimally was effective for varied optimization
objectives such as area, delay, and power. The
DAGON approach has been incorporated in

academic (SIS from the University of California
at Berkeley [11]) and industrial (Synopsys™
Design Compiler) tool offerings for logic
synthesis and optimization.

The graph-covering formulation has also
served as a starting point for advancements in
algorithms for technology mapping over the last
decade. Decisions related to logic decomposition
were integrated in the graph-covering algorithm,
which in turn enabled technology independent
logic optimizations in the technology mapping
phase [9,14]. Similarly, heuristics were proposed
to impose placement constraints and make
technology mapping more aware of the physical
design and layout of the final circuit [8]. To
combat the problem of high power dissipation
in modern sub-micron technologies, the graph
algorithms were enhanced to minimize power
under area and delay constraints [13]. Special-
izations of these graph algorithms for technology
mapping have found successful application in
design flows for Field Programmable Gate Array
(FPGA) technologies [3, 15]. We recommend the
following works for a comprehensive treatment
of algorithms for technology mapping and a
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Algorithm minimum_area_tree_cover (Vertex v) {
// the algorithm minimum_area_tree_cover finds an
optimal cover of the tree rooted at Vertex v
// the algorithm computes best_match(v) and
area_of_best_match(v), which denote the best
pattern graph match at v and the associated area of
the optimal cover of the tree rooted at v, respectively
// check if v is a leaf of the tree
if (v is a leaf) {
area_of_best_match(v) = 0;
best_match(v) = leaf;
return;
}
// compute optimal cover for each input of v
foreach (input of Vertex v) {
minimum_area_tree_cover(input);
}
// each tree rooted at each input of v is now
annotated with its optimal cover
//find the optimal cover of the tree rooted at Vertex v
area_of_best_match(v) = INFINITY;
best_match(v) = NULL;
foreach (Match m in the set of matches M(v)) {
// compute the area of match m at Vertex v
// area_of_match(v,m) denotes the area of the cover
when Match m is selected for v
area_of_match(v,m) = area(m);
foreach input pin vi of match m {
area_of_match (v,m) = area_of_match(v,m) +
area_of_best_match(vi)
}
// update best pattern graph match and associated
area of the optimal cover at Vertex v
if (area_of_match(v,m) < area_of_best_match(v)) {
area_of_best_match(v) = area_of_match(v,m);
best_match(v) = m;
}
}
}

survey of new developments and challenges in
the design of modern VLSI circuits: [5, 6, 12].

Open Problems

The enduring problem with DAGON-related
technology mappers is handling non-tree pattern
graphs that arise from modeling circuit elements
such as multiplexors, Exclusive-Ors, or memory-
elements (e.g., flip-flops) with associated logic
(e.g., scan logic). On the other hand, approaches
that do not use the tree-covering formulation
face challenges in easily representing diverse
technology libraries and in matching the subject
graph in a computationally efficient manner.
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Problem Definition

Suppose there are two spatially separated par-
ties Alice and Bob and Alice wants to send
a quantum state consisting of n quantum bits
(qubits) � to Bob. Since classical communication
is much more reliable, and possibly cheaper, than
quantum communication, it is desirable that this
task be achieved by communicating just clas-
sical bits. Such a procedure is referred to as
teleportation.

Unfortunately, it is easy to argue that this is in
fact not possible if arbitrary quantum states need
to be communicated faithfully. However, Bennett,
Brassard, Crepeau, Jozsa, Peres, and Wootters [8]
presented a nice solution to it by modifying the
assumptions about the resources that are available
to Alice and Bob.

Key Results

Let fj0i; j1ig be the standard basis for the state
space of one quantum bit (which is equal to
C

2). For simplicity of notation j0i ˝ j0i are
represented as j0ij0i or simply j00i. An EPR pair
is a special two-qubit quantum state defined as

j i
�
D 1p

2
.j00i C j11i/.

Alice and Bob are said to share an EPR
pair if each holds one qubit of the pair. In this
article a standard notation is followed in which
classical bits are called “cbits” and shared EPR
pairs are called “ebits.” Bennett et al. showed the
following:

Theorem 1 Teleportation of an arbitrary n-
qubit state can be achieved with 2n cbits and n
ebits.

These shared EPR pairs are referred to as
prior entanglement to the protocol since they are
shared at the beginning of the protocol (before
Alice gets her input state) and are independent
of Alice’s input state. This solution is a good
compromise since it is conceivable that Alice
and Bob share several EPR pairs at the begin-
ning, when they are possibly together, in which
case they do not require a quantum channel.
Later they can use these EPR pairs to transfer
several quantum states when they are spatially
separated.

Let us now see how Bennett et al. [8] achieve
teleportation. Let us first note that in order to
show Theorem 1, it is enough to show that a
single qubit, which is possibly a part of a larger
state �, can be teleported, while preserving its
entanglement with the rest of the qubits of �,
using 2 cbits and 1 ebit. Let us also note that the
larger state � can now be assumed to be a pure
state without loss of generality.

Theorem 2 Let j�iAB D a0j�0iAB j0iA C

a1j�1iAB j1iA, where a0; a1 are complex
numbers with ja0j2 C ja1j2 D 1. Subscripts
A;B (representing Alice and Bob, respectively)
on qubits signify their owner.

It is possible for Alice to send two classical
bits to Bob such that at the end of the protocol
the final state is a0j�0iAB j0iB C a1j�1iAB j1iB .
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Proof For simplicity of notation, let us assume
below that j�0iAB and j�1iAB do not exist. The
proof is easily modified when they do exist by
tagging them along. Let an EPR pair j iAB D

1p
2
.j0iAj0iB C j1iAj1iB/ be shared between

Alice and Bob. Let us refer to the qubit under
concern that needs to be teleported as the input
qubit.

The combined starting state of all the
qubits is

j�0iAB D j�iAB j iAB

D .a0j0iA C a1j1iA/

�
1

p
2
.j0iAj0iB C j1iAj1iB/

�

Let CNOT (controlled-not) gate be a two-qubit
unitary operation described by the operator
j00ih00j C j01ih01j C j11ih10j C j10ih11j. Alice
now performs a CNOT gate on the input qubit
and her part of the shared EPR pair. The resulting
state is then

j�1iAB D
a0
p
2

j0iA .j0iAj0iB C j1iAj1iB/

C
a1
p
2

j1iA .j1iAj0iB C j0iAj1iB/

Let the Hadamard transform be a single-
qubit unitary operation with operator 1p

2
.j0i C

j1i/h0j C 1p
2
.j0i � j1i/h1j. Alice next performs

a Hadamard transform on her input qubit. The
resulting state then is

j�2iAB D
a0

2
.j0iACj1iA/.j0iAj0iBCj1iAj1iB/

C
a1

2
.j0iA�j1iA/.j1iAj0iBCj0iAj1iB/

D
1

2
.j00iA.a0j0iB C a1j1iB/

C j01iA.a0j1iB C a1j0iB//

C
1

2
.j10iA.a0j0iB � a1j1iB/

C j11iA.a0j1iB � a1j0iB//

Alice next measures the two qubits in her posses-
sion in the standard basis for C

4 and sends the
result of the measurement to Bob.

Let the four Pauli gates be the single-qubit
unitary operations: identity, P00 D j0ih0j C

j1ih1j; bit flip, P01 D j1ih0j C j0ih1j; phase flip,

P10 D j0ih0j � j1ih1j; and bit flip together with
phase flip, P11 D j1ih0j � j0ih1j. On receiving
the two bits c0c1 from Alice, Bob performs the
Pauli gate Pc0c1

on his qubit. It is now easily
verified that the resulting state of the qubit with
Bob would be a0j0iBCa1j1iB . The input qubit is
successfully teleported from Alice to Bob! Please
refer to Fig. 1 for the overall protocol. �

Super-Dense Coding
Super-dense coding [22] protocol is a dual to
the teleportation protocol. In this protocol, Alice
transmits 2 cbits of information to Bob using 1
qubit of communication and 1 shared ebit. It is
discussed more elaborately in another article in
the encyclopedia.

Lower Bounds on Resources
The above implementation of teleportation re-
quires 2 cbits and 1 ebit for teleporting 1 qubit.
It was argued in [8] that these resource require-
ments are also independently optimal. That is, 2
cbits need to be communicated to teleport a qubit
independent of how many ebits are used. Also 1
ebit is required to teleport one qubit independent
of how much (possibly two-way) communication
is used.

Remote State Preparation
Closely related to the problem of teleportation is
the problem of remote state preparation (RSP)
introduced by Lo [21]. In teleportation Alice is
just given the state to be teleported in some input
register and has no other information about it.
In contrast, in RSP, Alice knows a complete
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Teleportation of Quantum States, Fig. 1 Teleportation protocol. H represents Hadamard transform and M
represents measurement in the standard basis for C4

description of the input state that needs to be
teleported. Also in RSP, Alice is not required to
maintain any correlation of the input state with
the other parts of a possibly larger state as is
achieved in teleportation. The extra knowledge
that Alice possesses about the input state can
be used to devise protocols for probabilistically
exact RSP with one cbit and one ebit per qubit
asymptotically [9]. In a probabilistically exact
RSP, Alice and Bob can abort the protocol with
a small probability; however, when they do not
abort, the state produced with Bob at the end of
the protocol is exactly the state that Alice intends
to send.

Teleportation as a Private Quantum
Channel
The teleportation protocol also satisfies an in-
teresting privacy property as follows. If there
was a third party, say Eve, having access to the
communication channel between Alice and Bob,
then Eve learns nothing about the input state
of Alice that she is teleporting to Bob. This is
because the distribution of the classical messages
of Alice is always uniform, independent of her
input state. Such a channel is referred to as a
private quantum channel [2, 11, 18].

Quantum State Redistribution
The teleportation protocol is a part of a wide
range of information theoretical tasks. A more
general task, referred to as quantum state re-
distribution, is as follows. Three parties, Alice,

Bob, and Referee, share a joint quantum state
j‰iACBR, where A;C registers are with Alice,
B is with Bob, and R is with Referee. The
task is to transfer register C to Bob. In the
asymptotic setting (in this limit of infinite copies
of the input state), it was shown by [14, 26]
that the number of cbits to be transmitted is
I.R W CjB/ (quantum mutual information be-
tween R and C conditioned on B). A sub-task
of quantum state redistribution in which register
A is not present is referred to as quantum state
merging, which was used by [17] to give an
operational interpretation to negative quantum
conditional entropy. Another sub-task in which
register B is not present is referred to as quantum
state splitting. These protocols have also been
well studied in the single-shot setting where a
single copy of the quantum state is available
[1, 4, 5, 13].

Applications

Apart from the main application of transport-
ing quantum states over large distances using
only classical channel, the teleportation protocol
finds other important uses as well. A generaliza-
tion of this protocol to implement unitary oper-
ations [12] is used in fault-tolerant computation
in order to construct an infinite class of fault-
tolerant gates in a uniform fashion. In another
application, a form of teleportation called as
the error correcting teleportation, introduced by
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Knill [19], is used in devising quantum circuits
that are resistant to very high levels of noise.

Ideas from quantum teleportation form the
basis of measurement-based models of quan-
tum computation. Starting from an arbitrary state
j i D aj0i C bj1i, and an ancilla jCi D

1p
2
.j0i C j1i/, apply the controlled-Z gate on

the two qubits to obtain aj0;Ci C bj1;�i (here
j�i D 1p

2
.j0i � j1i/). Measuring the first qubit

in fjCi; j�ig basis gives the state Xmj i, where
m 2 f0; 1g is the measurement outcome. In par-
ticular, if a phase gate Z� acted after controlled-
Z unitary, then outcome would be XmZ� j i.
Thus, the information about the state j i is still
preserved after the measurement. By preparing
large arrays of standard entangled states, and per-
forming single-qubit unitary measurement, one
can hence simulate any quantum circuit, up to
unitaries that depend on measurement outcomes.
More details can be found in [23].

This protocol can in particular be used to per-
form a blind quantum computation. Given a state
j i, Alice can apply a random Pauli operator on
it and obtain the state j 0i. Then the state is sent
to Bob, who uses the idea in previous paragraph
to realize a desired phase gate Z� on the state.
The input state to Bob is completely random, yet
a unitary upto measurement outcome is realized
by Bob, who then sends the state back to Alice.
Since Alice knows which Pauli operation she
applied, she can recover back the state Z� j i.
More details can be found in [6, 16].

Experimental Results

Teleportation protocol has been experimentally
realized in various different forms, to name a few,
by Boschi et al. [3] using optical techniques, by
Bouwmeester et al. [10] using photon polariza-
tion, by Nielsen et al. [24] using Nuclear mag-
netic resonance (NMR), and by Ursin et al. [25]
using photons for long distance.

Krauter et al. [20] have achieved the teleporta-
tion of a complicated quantum state: a continuous
variable state stored in the collective spin of
an atomic ensemble. Unlike qubits that can be

measured only in the 0 or 1 state, the outcome
of a continuous variable measurement is a real
number, like the position and momentum. The
quantum states prepared and teleported in the
experiment are actually similar to the coherent
states of a harmonic oscillator – describing a par-
ticle in a harmonic potential well moving under
the influence of a classical force.

Majorana bound states are localized zero-
energy excitations of a superconductor. An
isolated Majorana bound state is an equal
superposition of electron and hole excitations and
therefore not a fermionic state. Instead, two spa-
tially separated Majorana bound states together
make one zero-energy fermion level which can be
either occupied or empty. This defines a two-level
system which can store quantum information
nonlocally, as needed to realize topological
quantum computation. In [15] a nonlocal electron
transfer process due to Majorana bound states in
a mesoscopic superconductor is predicted. An
electron which is injected into one Majorana
bound state can go out from another one far apart
maintaining phase coherence. The transmission
phase shift is independent of the distance
“traveled.” In this sense this phenomenon can
be called “electron transportation.”

In summary this work reveals a striking nonlo-
cal electron transport phenomenon through Ma-
jorana bound states in a finite-sized supercon-
ductor with charging energy. Most interestingly,
the transmission phase shift detects the state of a
qubit made of two spatially separated Majorana
bound states.

In Baur et al. [7] have benchmarked a telepor-
tation algorithm by tomographic reconstruction
of the three-qubit entangled state generated by
the circuit up to the single-qubit measurements.
Using an entanglement witness, they showed that
this state has genuine tripartite entanglement.
This technique presents an important step toward
making use of teleportation in quantum proces-
sors realized in superconducting circuits.
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Problem Definition

Self-assembly is a process by which a small
number of fundamental components automati-
cally coalesce to form a target structure. In 1998,
Winfree [10] introduced the abstract Tile As-
sembly Model (aTAM) as a deliberately over-
simplified, discrete mathematical model of the
DNA tile self-assembly pioneered by Seeman [6].
The aTAM “effectivizes” classical Wang tiling
[9] in the sense that the former augments the
latter with a mechanism for sequential “growth”
of a tile assembly. Very briefly, in the aTAM, the
fundamental components are un-rotatable, trans-
latable square “tile types” whose sides are labeled
with (alpha-numeric) glue “colors” and (integer)
“strengths.” Two tiles that are placed next to each
other bind if the glues on their abutting sides
match in both color and strength, and the com-
mon strength is at least a certain (integer) “tem-
perature.” Self-assembly starts from a “seed” tile
type, typically assumed to be placed at the origin
of the coordinate system, and proceeds nondeter-
ministically and asynchronously as tiles bind to
the seed-containing assembly one at a time.

The multiple temperature model [2, 3, 8] is
a natural generalization of the aTAM, where
the temperature of a tile system is dynamically
adjusted by the experimenter as self-assembly
proceeds. In the multiple temperature model, a
tile assembly system (TAS) is defined as an

ordered triple T D
�
T; �; h	i i

k�1
iD0

�
, where T is

a tile set, � is a “seed assembly,” and the third
component h	i i

k�1
iD0 is a sequence of nonnegative

integer temperatures.
Intuitively, self-assembly in the multiple tem-

perature TAS T is carried out in k phases. In
the first temperature phase, tiles are added to the
existing assembly as they normally would be in
the aTAM until a 	0-stable terminal assembly is
reached. In phase two, tiles can accrete to the
existing assembly if they can do so with at least
strength 	1. Also, and at any time during the
second temperature phase, if there is ever a cut of
the assembly having a strength less than 	1, then
all of the tiles on the side of the cut not containing
the seed can be removed from the assembly.

When a 	1-stable terminal assembly is reached in
phase two, phase three begins and proceeds in a
similar fashion. This process continues through
the final temperature phase in which tiles are
added or removed with respect to the temperature
	k�1 until reaching a 	k�1-stable terminal assem-
bly. See Fig. 1 for an example of this process.

Problem 1 (Reducing tile complexity for the
self-assembly of shapes through temperature
programming) Given a shape X � Z

2, find a

TAS T D
�
T; �; h	i i

k�1
iD0

�
such that X uniquely

self-assembles in T and jT j and k are minimal.
In some cases, it is sufficient to uniquely self-

assemble a scaled-up version of X , i.e., Xc D˚
.x; y/ 2 Z

2
ˇ
ˇ
�	

x
c

˘
;
	

y
c

˘

2 X

�
. Intuitively,

Xc is the shape obtained by replacing each point
in X with a c 	 c block of points. We refer to
the natural number c as the scaling factor or
resolution loss.

Key Results

Thin Rectangles
Aggarwal, Cheng, Goldwasser, Kao, Moisset de
Espanés, and Schweller [2] proved that, in the

aTAM, ˝
�

N 1=k

k

�
unique tile types are required

to uniquely self-assemble a rectangle of size k 	

N , where k < log N
log log N �log log log N

(this restriction
makes the rectangle “thin”). In the same paper,

the authors reduced this bound to O
�

log N
log log N

�

in the 2-temperature model. Intuitively, their con-
struction builds a j 	N rectangle for an optimal
value of j 
 k. Then, when the temperature
is raised, the top j � k rows detach, leaving a
(stable) k 	N rectangle.

Squares
In the aTAM, the minimum number of unique
tile types required to uniquely self-assemble an

N 	 N square is O
�

log N
log log N

�
[1]. In 2006, Kao

and Schweller [3] reduced this bound to O.1/
using O.logN/ temperature changes. Their con-
struction relies on a simple yet ingenious gadget
called the “bit-flip gadget.” Basically, a bit-flip



Temperature Programming in Self-Assembly 2211

T

0

1

1

0

A

0 1

Z

Tile types

a b c d e

0

1

0

A

0

Z

τ0 = 2

0

1

0

A

0

Z

τ1 = 5

1

1

0

A

1

Z

11

0

A

1

Z

Temperature Programming in Self-Assembly, Fig. 1 Thick notches are strength 5, and thin notches are strength 1.
Not all glue labels are shown

gadget is a constant set of tile types that can
be programmed, via a carefully chosen sequence
of temperature values, to build a rectangle of
constant size that encodes either 0 or 1. Figure 1
gives an example of a simple bit-flip gadget. In
their main construction, Kao and Schweller first
self-assemble a sequence of O.logN/ bit-flip
gadgets, using O.logN/ temperature changes.
The result is a rectangle of length O.logN/ that
encodes N in binary. Finally, the temperature is
lowered to 2, and a standard square-building tile
set (i.e., [5], but without the “seed row” tile types)
is used to fill in the rest of the square. In the
same paper, Kao and Schweller also prove that
there is no smooth tradeoff, i.e., for a TAS T D�
T; �; h	i i

k�1
iD0

�
that uniquely self-assembles an

N 	 N square, it cannot be the case that jT j D

o
�

log N
log log N

�
and k D o.logN/.

Scaled Finite Shapes
In [3], Kao and Schweller posed the following
question: Is it possible to have a tile set of size
O.1/ that can, via some sequence of temperature
values, uniquely self-assemble into an arbitrary
finite shape (as specified by the sequence of
temperature values)? In 2012, Summers [8]
investigated this question and discovered
the following:

1. The answer to the previous question is
“NO.” It turns out that a tile set of size
O.1/ cannot uniquely self-assemble an
arbitrary finite shape via (any number of)
temperature values. Technically speaking,
Summers proved that, for every tile set T ,
there exists a finite shape X � Z

2, such
that, for each temperature sequence h	i i

k�1
iD0 ,

T D
�
T; �; h	i i

k�1
iD0

�
does not uniquely self-

assemble X . In the proof, X is always a line
of length jT j C 1.

2. Short temperature sequence, big scale
factor. On the positive side, there exists a
universal tile set that can be programmed via
temperature values to build a scaled version
of an arbitrary finite shape. For instance,
Summers exhibited a construction in which
the bit-flip gadget of Kao and Schweller
[3] is combined with the non-seed portion
of the optimal shape-building construction
by Soloveichik and Winfree [7] to get the
following result: there exists a tile set T
with jT j D O.1/, such that, for every
finite shape X , there exists c 2 N and a
temperature sequence h	i i

k�1
iD0 with m D

O.K.X//, where K.X/ is the Kolmogorov
complexity of X (see [4]), such that,
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T D
�
T; �; h	i i

k�1
iD0

�
uniquely self-assembles

Xc .
3. Long temperature sequence, small scale

factor. Note that, in the previously mentioned
construction, the scaling factor can be quite
large. Technically, the scaling factor c

depends on the running time of 
 , whence
c D poly.time.
//. In a truly nanoscale
setting, it is necessary to have a construction
in which the scaling factor is always small or,
better yet, bounded by a constant independent
of the shape being assembled. Summers gave
such a construction: there exists a tile set T
with jT j D O.1/, such that, for every finite
shape X , there exists a temperature sequence
h	i i

k�1
iD0 with m D O.jX j/, such that,

T D
�
T; �; h	i i

k�1
iD0

�
uniquely self-assembles

X22. This construction utilizes a modified
bit-flip gadget, in the form of a bit-flip
“square,” which is essentially a bit-flip gadget
that can be programmed (via temperature
values) to follow the directions specified by a
Hamiltonian path through a shape (not every
shape has a Hamiltonian path, but every shape
scaled up by a factor of 2 does).

Open Problems

Does there exist a tile set T , with jT j D O.1/ and
c 2 N, such that, for every finite shape X , there
exists a temperature sequence h	i i

k�1
iD0 , with m D

O.K.X//, such that, Xc uniquely self-assembles

in T D
�
T; �; h	i i

k�1
iD0

�
?
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Problem Definition

A graph is bipartite (or 2-colorable) if its ver-
tices can be partitioned into two sets such that
there are no edges between pairs of vertices that
reside in the same set.

Given a (simple) graph, the task is to
determine whether it is bipartite or is “far”
from being bipartite. Thus, the standard decision
problem is relaxed by allowing any answer
when the graph is not bipartite but is “close”
to some bipartite graph. We focus on dense
graphs (i.e., for which the number of edges is
quadratic in the number of vertices) and wish to
solve the aforementioned “approximate decision”
problem in constant time, given access to a data
structure that answers adjacency queries in unit
time.

To complete the formulation of the problem,
we need to define the distance between graphs
and describe how the graph is accessed. The
distance between the graphs G1 D .V;E1/

and G2 D .V;E2/ is determined by the
symmetric difference between their edge sets
(i.e., E1�E2), and we say that they are �-
close (resp., �-far) if jE1�E2j � � � jV j2

(resp., jE1�E2j > � � jV j2). Note that this
definition is appropriate for dense graphs
(i.e., when the number of edges is ˝.jV j2/),
whereas any two sparse graphs are deemed to
be close by it. (An alternative model that is
more suitable for sparse graphs is presented in
this encyclopedia’s entry Testing Bipartiteness
of Graphs in Sublinear Time.) We say that
G D .V;E/ is �-far from a graph property P (i.e.,
a set of graphs that is closed under isomorphism)
if for every G0 2 P it holds that G is �-far
from G0.

We consider algorithms that make oracle
queries to the input graph, denoted G D

.V;E/. Specifically, the algorithm can perform
adjacency queries of the form .u; v/ 2 V 2,
which are answered by 1 if fu; vg 2 E any by 0
otherwise. We can now define property testing in
this model.

Definition 1 (testing graph properties in the
dense-graph model) A tester for a graph prop-
erty P is a randomized algorithm that is given
as input a size parameter N and a proximity
parameter � as well as access to an adjacency
oracle for an N -vertex graph G D .ŒN �; E/. The
tester should output a binary verdict that satisfies
the following two conditions.

1. If G 2 P , then the tester accepts with proba-
bility at least 2=3.

2. If G is �-far from P , then the tester accepts
with probability at most 1=3.

A tester has one-sided error if it accepts every
graph in P with probability 1. A tester is non-
adaptive if it determines all its queries based
solely on its internal coin tosses (and the param-
eters N and �); otherwise it is adaptive.

Here we are interested in the case that P is the set
of all bipartite graphs, and we seek a tester of time
complexity that only depends on the proximity
parameter, denoted �, and is independent of the
size of the graph.

Key Results

Goldreich, Goldwasser, and Ron [9] showed that
there exists a tester for bipartiteness that, given a
proximity parameter � and access to an N -vertex
graph, runs in time poly.1=�/. Furthermore, the
tester is nonadaptive and has one-sided error; that
is, it always accepts bipartite graphs.

The fact that there exist properties that can be
tested in time that only depends on the proximity
parameter should not come as a surprise. It is
well known that the average value of a (bounded)
function defined over a huge domain can be
approximated up to a factor of 1 ˙ � by taking
O.1=�2/ samples. This approximation problem
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can be cast as a property testing problem (even
as one that refers to graphs in the current model,
by considering the edge density of a graph). But
the foregoing approximation problem is highly
unstructured (i.e., it merely refers to the average
of values regardless of anything else), whereas
bipartite graphs are highly structured (and the
edge density in them is almost arbitrary).

Turning back to bipartiteness, this property is
a special case of k-colorability, where k D 2. (A
graph is k-colorable if its vertices can be parti-
tioned into k sets such that there are no edges be-
tween pairs of vertices that reside in the same set.)
The tester for bipartiteness, and more generally
for k-colorability (for any k � 2), is very simple.
It merely selects a sample of poly.1=�/ random
vertices and accepts if and only if the subgraph
induced by the selected vertices is k-colorable.
In fact, as shown by Alon and Krivelevich [1]
(improving on the bounds obtained in [9]), in
the case of k D 2 (bipartiteness), a sample of
QO.1=�/ vertices suffices, and in general a sample

of size QO.k=�2/ is sufficient. (The notation QO.q/

“hides” polylogarithmic factors in q.)
Clearly, the algorithm always accepts k-

colorable graphs, and its running time is
poly.1=�/ if k D 2 and exponential in poly.1=�/
(the sample size) otherwise. The analysis boils
down to proving that if the graph G is �-far
from being k-colorable, then it is rejected with
probability at least 2=3. Below we shall sketch
the argument for the case of k D 2 and when one
uses a sample of QO.1=�2/ random vertices.

We view the random sample (of vertices) as
a union of two disjoint sets, denoted U and S ,

where t
def
D jU j D QO.1=�/ and m

def
D jS j D

O.t=�/. We consider all possible (2-way) parti-
tions of U and associate a partial partition of V
with each such partition of U . Specifically, given
a partition of U , denoted .U1; U2/, we place all
neighbors of U1 (resp., of U2) opposite to U1

(resp., U2). Indeed, such a placing is forced if
we seek a partition of V that is consistent with
the given partition .U1; U2/ of U . One may show
that, with high probability, most high-degree ver-
tices in V have at least one neighbor in U , and so
the partition of these vertices is forced by the par-
tition of U . Since there are relatively few edges

incident to vertices that do not neighbor U , there
must be many edges that violate the partition in-
duced by .U1; U2/ (i.e., their endpoints are forced
to be on the same side of the induced partition). It
follows that when we take the additional sample
S and perform all queries on pairs in U 	 S and
S	S , with high probability, we detect a violating
edge with respect to each of the 2jU j induced
partitions, thus ruling out all potential partitions
of U . This implies that with high probability, the
subgraph induced by U [ S is not bipartite. Let
us stress the key observation: It suffices to rule out
relatively few (partial) partitions of V (i.e., these
2jU j partitions induced by partitions of U ) rather
than all (2jV j) possible partitions of V .

Applications

The procedure employed in the above analysis
yields a randomized poly.1=�/�N -time algorithm
for 2-partitioning a bipartite graph such that (with
high probability) at most �N 2 edges lie within
the same side. This is done by running the tester,
determining a partition of U (defined as in the
proof) that is consistent with the bipartite par-
tition of U [ S , and partitioning V as done in
the proof (with vertices that do not neighbor U ,
or neighbor both U1 and U2, placed arbitrarily).
Thus, the placement of each vertex is determined
by inspecting at most QO.1=�/ entries of the ad-
jacency matrix. Furthermore, the aforementioned
partition of U constitutes a succinct representa-
tion of the 2-partition of the entire graph. All this
is a typical consequence of the fact that the anal-
ysis of the tester follows the “enforce-and-test”
paradigm (see the survey of Ron [12, Sec. 4]).

Open Problems

As stated above, a more refined analysis
yields a nonadaptive tester that inspects the
subgraph induced by QO.1=�/ random vertices.
One can easily show that this result is almost
optimal with respect to testers that inspect an
induced subgraph. Furthermore, as Bogdanov
and Trevisan show [3], a query complexity
of O.1=�2/ is optimal for any nonadaptive
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tester for bipartiteness, whereas any adaptive
tester requires ˝.��3=2/ queries. This raises
the question of what is the query complexity of
adaptive testers for bipartiteness.

While Goldreich and Trevisan [8] have shown
that the gap between adaptive and nonadaptive
testers (in the dense-graph model) is at most
quadratic, the above question falls within the un-
certainly left open by the quadratic upper bound.
Furthermore, Gonen and Ron [10] showed that
N -vertex graphs of maximum degree O.�N/

can be tested for bipartiteness in time QO.��3=2/,
whereas the aforementioned lower bound of [3]
holds also for such graphs.

The general question of the gap between
adaptive and nonadaptive testers was studied
by Goldreich and Ron [7]. They showed that
there exist graph properties that have an adaptive
tester that runs in time QO.1=�/, for which any
nonadaptive tester requires ˝.��3=2/ queries.
They conjectured that there exist graph properties
that have an adaptive tester that runs in time
QO.1=�/, for which any nonadaptive tester

requires ˝.��2/ queries.

Cross-References

�Testing Bipartiteness of Graphs in Sublinear
Time

Comments for the Recommended
Reading

The current entry falls within the scope of prop-
erty testing (see the surveys [5, 6, 11, 12]). A
general definition of this setting was first put
forward by Rubinfeld and Sudan [13]. This def-
inition was further generalized and systemati-
cally investigated by Goldreich, Goldwasser, and
Ron [9], who focused on testing graph properties
in the dense-graph model. Alternative models
for testing graph properties are discussed in this
encyclopedia’s entry cited above.

As already noted, the tester for k-colorability
described above was suggested and analyzed
in [9]. A tighter analysis that yields the best

bounds known was subsequently provided
in [1]. Testers for any “graph partition property”
(including testing that a graph contains a clique
of certain density or has a bisection of certain
density) were also presented in [9].

The fact that all these (nonadaptive) testers
operate by inspecting a random induced subgraph
was shown to be no coincidence in [8]. We also
mention that the class of graph properties that
can be tested (in the dense-graph model) within
complexity that is independent of the size of the
graph was characterized by Alon et al. [2]. Their
characterization is related to Szemerédi’s Regu-
lar Partitions [14]. A different characterization,
based on graph limits, was proved independently
by Borgs et al. [4].
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Problem Definition

A graph is bipartite (or 2-colorable) if its ver-
tices can be partitioned into two sets such that
there are no edges between pairs of vertices that
reside in the same set.

Given a (simple) graph, the task is to deter-
mine whether it is bipartite or is “far” from being
bipartite. Thus, the standard decision problem is
relaxed by allowing any answer when the graph
is not bipartite but is “close” to some bipartite
graph. We wish to solve this “approximate de-
cision” problem in sublinear time, given access
to a data structure that answers adjacency and
incidence queries in unit time.

To complete the formulation of the problem,
we need to define the distance between graphs
and describe how the graph is accessed. The
distance between two graphs G1 D .V;E1/

and G2 D .V;E2/ is determined by the sym-
metric difference between their edge sets (i.e.,
E1�E2), where they are �-close (resp., �-far) if
jE1�E2j � � � .jE1j C jE2j/ (resp., jE1�E2j >

� � .jE1j C jE2j/). A graph property is a set
of graphs that is closed under isomorphism, and
we say that G D .V;E/ is �-far from a graph
property P if for every G0 2 P it holds that G is
�-far from G0.

We consider algorithms that make oracle
queries to the input graph, denoted G D .V;E/.
Specifically, an algorithm can perform adja-
cency queries of the form .u; v/ 2 V 2, which
are answered by 1 if fu; vg 2 E and by 0 other-
wise, and incidence queries of the form .u; i / 2

V 	 ŒjV j � 1�, which are answered by v if v is
the i th neighbor of u and by ? if u has less than
i neighbors. (Note that adjacency queries may be
quite useless when the graph is very sparse.) We
now define property testing in this model.

Definition 1 (testing graph properties with ad-
jacency and incidence queries) A tester for a
graph property P is a randomized algorithm that
is given as input a size parameter N and a prox-
imity parameter � as well as access to adjacency
and incidence oracles for anN -vertex graphG D

.ŒN �; E/. The tester should output a binary ver-
dict that satisfies the following two conditions.

1. If G 2 P , then the tester accepts with
probability at least 2=3.

2. If G is �-far from P , then the tester accepts
with probability at most 1=3.

A tester has one-sided error if it accepts every
graph in P with probability 1.

Here we are interested in the case that P is the
set of all bipartite graphs, and we seek a tester of
time complexity that is sublinear in the size of the
graph. The dependence of the running time on the
proximity parameter, denoted �, is of secondary
concern.



Testing Bipartiteness of Graphs in Sublinear Time 2217

T

Key Results

Building on the work of Goldreich and Ron [6] on
testing bipartiteness of bounded-degree graphs,
Kaufman, Krivelevich, and Ron [9] presented a
tester for bipartiteness that, given a proximity
parameter � and access to an N -vertex graph,
runs in time

p
N � poly.log.N /; 1=�/. This

algorithm uses only incidence queries. In case
the number of edges, denoted M , is larger
than N 3=2, the running time can be reduced
to .N 2=M/ � poly.logN; 1=�/ by also using
adjacency queries. Furthermore, in both cases,
the testers have one-sided error; that is, they
always accept bipartite graphs.

From now on, we focus on the special case that
M D O.N/ and further assume that the graph
has constant maximum degree, denoted d .

As a warm-up, we note that the case of d D

2 is easy. In this case, we are guaranteed that
the graph consists of a collection of paths and
cycles, and we only need to check that it does not
have short cycles of odd length. Note that such
an N -vertex graph is �-far from being bipartite
if and only if it contains more than �N cycles
of odd length, where most of these cycles must
have length at most 2=�. Hence, in this case,
testing bipartiteness can be performed by select-
ing O.1=�/ random vertices and exploring their
neighborhoods up to distance 1=�.

In contrast, in the case that d � 3, any tester
for bipartiteness must perform ˝.

p
N/ queries.

As shown by Goldreich and Ron [7], this can be
proved by considering the following two families
of N -vertex graphs (for any even N ):

1. The first family, denoted GN
1 , consists of all

degree-3 graphs that are composed of the
union of a Hamiltonian cycle and a perfect
matching. That is, there are N edges connect-
ing the vertices in a cycle, and the other N=2
edges form a perfect matching.

2. The second family, denoted GN
2 , is the same

as the first, except that the perfect matchings
allowed are restricted as follows. The distance
on the cycle between every two vertices that
are connected by a perfect matching edge must
be odd.

Clearly, all graphs in GN
2 are bipartite. It can be

shown that almost all graphs in GN
1 are far from

being bipartite. On the other hand, one can prove
that an algorithm that performs o.

p
N/ queries

cannot distinguish between a graph chosen ran-
domly from GN

2 (which is always bipartite) and
a graph chosen randomly from GN

1 (which with
high probability is far from bipartite). Loosely
speaking, this follows from the fact that in both
cases the algorithm is unlikely to encounter a
cycle (among the vertices that it has inspected).

The algorithm itself is based on taking
many (i.e., poly.1=�/ � QO.N 1=2/) random walks
from few (i.e., O.1=�/) randomly selected
start vertices, where each walk has length
poly.��1 logN/. Specifically, given as input N ,
d , � as well as access to an incidence oracle
for an N -vertex graph, G D .V;E/, of degree
bound d , the algorithm repeats the following

steps T
def
D �.1

�
/ times:

1. Uniformly select a vertex s in V .
2. Try to find an odd-length cycle through s:

(a) Perform K
def
D poly..logN/=�/ �

p
N ran-

dom walks starting from s, each of length

L
def
D poly..logN/=�/.

(b) Let R0 (respectively, R1) denote set of
vertices reached from s in an even (respec-
tively, odd) number of steps in any of these
walks.

(c) If R0 \R1 is not empty, then reject.

If the algorithm did not reject in any of the
foregoing T iterations, then it accepts.

Clearly, the algorithm always accepts bipartite
graphs. Hence, the analysis boils down to proving
that if the graph G is �-far from being bipartite,
then it is rejected with probability at least 2=3.

The analysis is quite involved. We confine
ourselves to the special case where the graph
has a “rapid mixing” feature. It is convenient to
modify the random walks so that at each step
each neighbor is selected with probability 1=2d ,
and otherwise (with probability at least 1=2) the
walk remains at the present vertex. Furthermore,
we will consider a single execution of Step (2)
starting from an arbitrary vertex, s, which is fixed
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in the rest of the discussion. The rapid mixing
feature we assume is that, for every vertex v, a
(modified) random walk of length L starting at
s reaches v with probability approximately 1=N
(say, up to a factor of 2). Note that if the graph is
an expander, then this is certainly the case (since
L D !.logN/).

The key quantities in the analysis are the fol-
lowing probabilities, referring to the parity of the
length of a path obtained from the random walk
by omitting the self-loops (transitions that remain
at current vertex). Let p0.v/ (respectively, p1.v/)
denote the probability that a (modified) random
walk of length L, starting at s, reaches v while
making an even (respectively, odd) number of
real (i.e., non-self-loop) steps. By the rapid mix-
ing assumption (for every v 2 V ), it holds that

1

2N
< p0.v/C p1.v/ <

2

N
: (1)

We consider two cases regarding the sum
P

v2V p
0.v/p1.v/: If the sum is (relatively)

“small,” we show that V can be 2-partitioned
so that there are relatively few edges between
vertices that are placed in the same part, which
implies that G is close to being bipartite. Other-
wise (i.e., when the sum is not “small”), we show
that with significant probability, when Step (2) is
started at vertex s, it is completed by rejecting G.

In general, the input graph may not be “rapidly
mixing,” and so the actual analysis, which
appears in [6], is far more complex. Another
layer of complexity is added when we move
from the case of constant degree bound (i.e., d )
to the case where the vertex degrees may vary
significantly; see [9].

Applications

The foregoing algorithm can be used to find
odd-length cycles (of polylogarithmic length) in
graphs that are far from lacking such cycles. In
general, any one-sided error tester for a property
P finds subgraphs that are inconsistent with the
property when invoked on a graph that is far
from having property P . Thus, the fact that the
bipartite tester finds odd cycles (when invoked
on graphs that are far from lacking such cycles)

follows directly from its definition, but the fact
that these cycles are short is a feature of the
specific tester presented above.

Cross-References
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Comments for the Recommended
Reading

The current entry falls within the scope of prop-
erty testing (see [4,5,11,12]). A general definition
of this setting was first put forward by Rubin-
feld and Sudan [13]. This definition was further
generalized and systematically investigated by
Goldreich, Goldwasser, and Ron [8], who fo-
cused on testing graph properties in the dense-
graph model (see this Encyclopedia’s entry cited
above). The model considered in this entry was
suggested by Kaufman, Krivelevich, and Ron [9].
It generalizes a model proposed by Parnas and
Ron [10], which in turn generalizes the bounded-
degree model of Goldreich and Ron [7]. The
latter paper focuses on testers of complexity that
only depends on the proximity parameter (i.e.,
independent of the size of the graph). Among
these testers is a two-sided error tester of cycle-
freeness; a one-sided error tester for this problem
is presented in [3], but its complexity depends on
the size of the graph (where this dependence is
unavoidable).

As already noted, the bipartiteness tester for
the bounded-degree model is due to Goldreich
and Ron [6], and it was extended to the general
model by Kaufman, Krivelevich, and Ron [9].
In contrast to these results, Bogdanov, Obata,
and Trevisan [2] proved that 3-colorability cannot
be tested with sublinear query complexity, even
in the bounded-degree model. The problem of
testing colorability of general graphs was further
studied by Ben-Eliezer et al. [1].
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Problem Definition

Suppose we would like to check whether a given
array of real numbers is sorted (say, in non-
decreasing order). Performing this task exactly
requires reading the entire array. Here we con-
sider the approximate version of the problem:
testing whether an array is sorted or “far” from
sorted. We consider two natural definitions of the
distance of a given array from a sorted array.
Intuitively, we would like to measure how much
the input array must change to become sorted. We
could measure the change by:

1. The number of entries changed
2. The sum of the absolute values of changes in

all entries

It is not hard to see that looking at the number of
entries that must be deleted in an array to make it
sorted is equivalent to the measure in item 1.

To define the two distance measures formally,
let a D .a1; : : : ; an/ be the input array and S
be the set of all sorted arrays of length n. We
denote by Œn� the set f1; 2; : : : ; ng. The Ham-
ming distance from a to S, denoted dist.a;S/,
is minb2S jfi 2 Œn� W ai ¤ bi gj. The L1

distance from a to S, denoted dist1.a;S/, is
minb2S

P
i2Œn� jai � bi j. Given a parameter � 2

.0; 1/; an array is �-far from sorted with respect
to the Hamming distance or, respectively, L1

distance, if the corresponding distance from a to
S is at least �n.

A tester for sortedness is a randomized algo-
rithm that is given parameters � 2 .0; 1/ and n
and direct access to an input array a. It is required
to accept with probability at least 2/3 if the array
is sorted and reject with probability at least 2/3
if the array is �-far from sorted. We consider two
types of testers, Hamming andL1, corresponding
to the two distance measures we defined. The
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query complexity of a tester is the number of
array entries it reads. The goal is to design testers
for sortedness with the smallest possible query
complexity and running time.

There are two special cases of testers we will
discuss. A tester is nonadaptive if it makes all
queries in advance, before receiving any query
answers. A tester has 1-sided error if it always
accepts all sorted arrays.

Bibliographical Notes
The Hamming testers for sortedness were first
studied by Ergün et al. [7]. The L1-testers (and,
more generally, Lp-testers, which use the Lp

distance for some p � 1) were introduced by
Berman, Raskhodnikova, and Yaroslavtsev [2].
The two distance measures we discussed, dist and
dist1, are identical for arrays with 0/1 entries,
which we call Boolean arrays. The L1-tester in
[2] builds on the sortedness tester for Boolean
arrays by Dodis et al. [6].

Observe that an array .a1; a2; : : : ; an/ of real
numbers can be represented by a function f W

Œn� ! R defined by f .i/ D ai for all i 2 Œn�.
The formulated problem is equivalent to testing
if a function f over an ordered finite domain is
monotone. In fact, the L1-tester we will discuss
can be easily adapted to work for functions over
infinite domains (specifically, bounded intervals),
because its complexity is independent of the
domain size. The problem of Hamming testing
monotonicity of functions over domain Œn�d was
first investigated by Goldreich et al. [11]; general
partially ordered domains were studied by Fis-
cher et al. [10]. These problems are discussed in
the encyclopedia entry “Monotonicity Testing.”

Key Results

Ergün et al. [7] designed two Hamming testers
for sortedness that run in time O

� log n
�



. Later,

Bhattacharyya et al. [3] and Chakrabarty and
Seshadhri [5] gave different testers with the same
complexity, with additional features that made
them useful as subroutines in testing monotonic-
ity of high-dimensional functions. Fischer [9]
proved that the running time of these testers is op-
timal. Berman, Raskhodnikova, and Yaroslavtsev

[2] gave an L1-tester for sortedness with running
time O.1=�/, which is also optimal.

Here we present two Hamming testers from
[3, 7] and the L1-tester from [2].

Hamming Testers for Sortedness

A Tester Based on Binary Search [7]
We present and analyze the first tester for sort-
edness (Algorithm 1) with the assumption that all
entries in the array a are distinct. This assumption
can be removed by treating element ai as hai ; ii

for all i 2 Œn�.

Algorithm 1: Hamming Tester for Sorted-
ness Based on Binary Search

input : parameters n and �; direct access to array a.

1 repeat
˙

ln 3
�

�
times:

2 pick i 2 Œn� uniformly at random;
3 perform a binary search for the value ai in the

array a;
4 if ai is not located by the binary search,

// it leads to another position
5 reject;
6 accept

Analysis of the First Tester
The tester always accepts all sorted arrays. Now
consider an array that is �-far from sorted (in
Hamming distance). We say that a position i 2

Œn� is searchable if ai can be found by a binary
search in Step 3 and not searchable otherwise.
If positions i and j such that i < j are both
searchable, then ai < aj , because both ai and
aj are in the correct position with respect to their
common ancestor in the binary search tree. Thus,
all numbers in searchable positions are sorted.
Since the array is �-far from sorted, at least �n
positions must be unsearchable. If the tester picks
an unsearchable position in Step 2, it rejects. The
probability that it happens in one trial is at least
�. Therefore, the probability that it fails to happen
in
˙

ln 3
�

�
trials is at most

.1 � �/

˙
ln 3
�

�

� exp

�

�� �
ln 3

�

�

D 1=3: (1)
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Thus, the tester rejects an array that is �-far from
sorted with probability at least 2/3.

A Tester Based on Graph Spanners [3]
The next tester we discuss is based on graph
spanners. We can represent the requirement that
the array is sorted as a directed graph G, where
nodes are positions in Œn�, and there is an edge
.i; j / for all i < j . That is, an edge .i; j /

represents that ai � aj . A 2-spanner of G is a
subgraphH of G with vertex set Œn� such that for
every edge .i; j / in G, there is a path of length
at most 2 from i to j in H . It is not hard to
construct a 2-spanner of G with at most n logn
edges[3, 12]. (e.g., it can be done using divide-
and-conquer as follows: connect all nodes to the
one in the middle, orienting the edges towards
the nodes with larger indices; remove the middle
node; and recurse on the two resulting sublists.)

The tester simply repeats the following step˙ .2 ln 3/ log n
�

�
times: pick a uniformly random

edge .i; j / of the 2-spanner H , and reject if this
edge is violated, namely, if ai > aj . If the tester
does not find a violated edge, it accepts.

Analysis of the Second Tester
If the input array is sorted, it does not have any
violated edges, and the tester always accepts.
Now consider an array that is �-far from sorted
(in Hamming distance). We call a position i 2 Œn�

bad if node i is an endpoint of a violated edge in
the 2-spanner H ; otherwise, i is good. Note that
any two good positions i; j such that i < j are
connected by a path of length at most 2 of non-
violated edges in H . If this path is .i; j /, it im-
plies that ai � aj . If this path is .i; k; j / for some
node k, it implies that ai � ak � aj . Conse-
quently, for any two good positions i; j such that
i < j , the numbers ai and aj are in the correct
order. That is, all numbers in good positions are
sorted. As in the analysis of Algorithm 1, we can
conclude that there are at least �n bad positions.
But each bad position is adjacent to a violated
edge. Each violated edge can contribute at most
two new bad positions. Thus, there are at least
�n=2 violated edges. By a simple calculation
similar to (1), the second algorithm rejects an
array that is �-far from sorted with probability at
least 2/3.

L1-Tester for Sortedness
The L1-tester for sortedness [2] requires only a
uniform sample from the input (as opposed to the
ability to query an arbitrary position). It picks˙

2 ln 6
�

�
positions uniformly and independently

at random and accepts iff the numbers in these
positions are sorted.

The main ingredient in the analysis of the
tester is a reduction to the case of Boolean arrays.
It states that if the tester is nonadaptive and has
1-sided error, it suffices to show that it works
for Boolean arrays. We omit the proof of the
reduction.

Clearly, the L1-tester is nonadaptive and
always accepts sorted arrays. Now consider a
Boolean array a which is �-far from sorted. It
remains to show that it is rejected with probability
at least 2/3. Let X0 be the set of the �n=2 largest
indices i for which ai D 0. Similarly, let X1 be
the set of the �n=2 smallest indices i for which
ai D 1. It is easy to show that i < j for all
i 2 X1 and j 2 X0, because a is �-far from
sorted. The L1-tester samples no index from X0

with probability at most 1/6. The same holds for
X1. Thus, by a union bound, with probability at
least 2/3, it samples an index from X0 and an
index from X1 and detects a violation.

Running time
We explained why the algorithm that samples˙

2 ln 6
�

�
positions uniformly and independently at

random is an L1-tester for sortedness. Now we
analyze its running time for the case of general
arrays. The L1-tester makes O.1=�/ queries. To
determine whether the elements in these positions
are sorted, the tester can use bucket sort to sort the
sampled positions and then simply check if the
sequence of queried elements is nondecreasing.
Since the positions are sampled uniformly at ran-
dom, the bucket sort can be implemented to run in
expected time O.1=�/, where the expectation is
taken over the choice of the samples. By standard
methods, the algorithm can be modified to run in
O.1=�/ time in the worst case. Observe that the
running time does not depend on the length of the
input. This is impossible for Hamming testers for
sortedness, which, as we mentioned, must query
˝.logn/ positions [9].
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Applications

Testers for sortedness are used as subroutines
in other property testers, e.g., for monotonicity
of high-dimensional functions [2, 5, 6] and for
the property that given points represent ordered
vertices of a convex polygon [7]. They are also
used to construct fast approximate probabilisti-
cally checkable proofs for different optimization
problems [8]. Ben-Moshe et al. [1] employed
sortedness testers (with additional features) to
speed up query evaluation in databases.

Open Problem

Consider the case when all numbers in the input
array lie in some specified small set such as Œr�
for some integer r . As we discussed, for Boolean
arrays, testing sortedness can be done in O.1=�/
time [2, 6]. It is not hard to see that for larger
ranges, it can be done inO.r=�/ time. When r �

n, can one test sortedness it time polylogarithmic
in r? Is O

� log r
�



running time achievable?

Fischer’s lower bound for testing sorted-
ness [9] applies only to n � r . The best
known lower bound that takes into account both
parameters is ˝.min.log r; logn//, due to [4],
but it applies only to nonadaptive testers.
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Problem Definition

Fix positive integers n and k with n � k. The
function f W f0; 1gn ! f0; 1g is a k-junta if it
depends on at most k of the input coordinates.
Formally, f is a k-junta if there exists a set
J � f1; 2; : : : ; ng of size jJ j � k such that
for all inputs x; y 2 f0; 1gn that satisfy xi D

yi for each i 2 J , we have f .x/ D f .y/.
Juntas play an important role in different areas
of computer science. In machine learning, juntas
provide an elegant framework for studying the
problem of learning with datasets that contain
many irrelevant attributes [9, 10]. In the analysis
of Boolean functions, they essentially capture the
set of functions of low complexity under natural
measures such as total influence [19] and noise
sensitivity [12].

How efficiently can we distinguish k-juntas
from functions that are far from being k-juntas?
We can formalize this question in the setting
of property testing. Define the distance between
two functions f; g W f0; 1gn ! f0; 1g to be
the fraction of inputs on which f and g take
different values: dist.f; g/ WD 1

2n jfx 2 f0; 1gn W

f .x/ ¤ g.x/g. When dist.f; g/ � � for every
k-junta g, we say that f is �-far from being
a k-junta; otherwise we say that f is �-close
to being a k-juntas. An �-test for k-juntas is a
randomized algorithm that queries the value of
f W f0; 1gn ! f0; 1g on some of its inputs and
then with probability at least 2

3

1. accepts if f is a k-junta, and
2. rejects if f is �-far from being a k-junta.

(The algorithm is free to output anything when f
is not a k-junta but is �-close to being a k-junta.)

Problem 1 What is the minimum number of
queries to f W f0; 1gn ! f0; 1g required to �-test
if f is a k-junta?

Key Results

Testing 1-Juntas
One important class of functions related to junta
testing is dictator functions – the functions f W

f0; 1gn ! f0; 1g of the form f .x/ D xi

for some i 2 Œn�. Bellare, Goldreich, and Su-
dan [3], in a work that was stated in terms of
testing the long code and part of their analy-
sis of probabilistically checkable proofs (PCPs),
showed that dictator functions can be �-tested
with O.1=�/ queries. (See the �Locally Testable
Codes entry for more details.) This result was
later extended by Parnas, Ron, and Samorodnit-
sky [21]. The class of 1-juntas includes dictator
functions, their negations (known as anti-dictator
functions), and the constant functions; using the
algorithms in [3, 21], we can test 1-juntas with
O.1=�/ queries.

Testing k-Juntas
The first result on testing k-juntas for values
k > 1 followed from related work on the
problem of learning juntas. Blum, Hellerstein,
and Littlestone [11] introduced an algorithm
that queries a k-junta f W f0; 1gn ! f0; 1g

on O.k logn C k=� C 2k/ inputs and with
probability at least 5

6
returns a k-junta h W

f0; 1gn ! f0; 1g such that dist.f; h/ � �.
Shortly afterward, Goldreich, Goldwasser, and
Ron [20] gave a general reduction showing
that a proper learning algorithm with query
complexity q for a class C of functions can
be used to �-test the class C with q C O.1=�/

queries. This result, combined with the Blum–
Hellerstein–Littlestone algorithm, shows that k-
juntas can be tested with O.k lognC 2k C 1=�/

queries.
Fischer, Kindler, Ron, Safra, and Samorodnit-

sky [18] showed that, remarkably, it is possible to
test k-juntas with a number of queries that is inde-
pendent of n. Specifically, they introduced �-tests
for k-juntas with query complexity O.k2=�2/.
This result was sharpened in [4, 5], leading to the
following theorem.

Theorem 1 ([5]) It is possible to �-test if f W

f0; 1gn ! f0; 1g is a k-junta with O.k log k C

k=�/ queries.

Chockler and Gutfreund [16] showed that
˝.k/ queries are required to test k-juntas, so
the bound in Theorem 1 is nearly optimal. (See
also [4, 7, 13] for related lower bounds.)

Theorem 1 can be generalized to apply to the
setting where X1; : : : ; Xn; and Y are arbitrary
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finite sets, and we wish to test whether a function
f W X1 	� � �	Xn ! Y is a k-junta. Interestingly,
the query complexity of the k-junta test remains
unchanged in this general setting as well. See [5]
for the details.

Junta-Testing Algorithm
The proof of Theorem 1 contains two main ingre-
dients.

The first ingredient is a simple modification
of the Blum–Hellerstein–Littlestone learning al-
gorithm. The original learning algorithm pro-
ceeds in two stages: first, the algorithm learns
the k relevant coordinates of the junta; then,
it queries f for all 2k different values of the
k relevant coordinates. When we test k-juntas,
the second stage is unnecessary and can be re-
placed with a simpler test that checks whether
the (at most) k relevant coordinates that have
been identified completely determine the value
of f or not. With this modification, we ob-
tain an �-test for k-juntas with query complexity
O.k logn C k=�/. Note that this result already
yields the desired bound in Theorem 1 when
n D poly.k/.

The second ingredient in the proof of Theo-
rem 1 is a dimension reduction argument. Con-
sider a random partition of the n coordinates
into m D poly.k/ parts S1; : : : ; Sm. A func-
tion f W f0; 1gn ! f0; 1g is isomorphic to a
function f 0 W X1 	 � � � 	 Xm ! f0; 1g where
Xi D f0; 1gjSi j. The function f 0 is defined over
a domain with much smaller dimension, and it
satisfies two useful properties. First, when f is
a k-junta, then so is f 0. Second, when f is �-
far from k-juntas and m D ˝.k2/, then with
high probability f 0 is �

2
-far from k-juntas as

well. The second fact is far from obvious. It
was established in [5] using Fourier analysis and
in [8] using a combinatorial argument. These
two properties let us complete the algorithm for
testing k-juntas by applying the modified Blum–
Hellerstein–Littlestone algorithm on the function
f 0. More details on the algorithm itself can be
found in the original papers [5, 18] and the sur-
vey [6].

Applications

Feature Selection
Feature selection is the general machine learning
task of identifying the features (also known as
attributes or variables) in a dataset that suffice
to describe the model being studied. This task
is formalized within the junta framework as fol-
lows: given a function f W f0; 1gn ! f0; 1g, the
algorithm seeks to identify a set J � Œn� of size
jJ j D k where (i) k is as small as possible, and
(ii) there is a k-junta h W f0; 1gn ! f0; 1g on the
set J that is close to f .

The junta testing algorithm can be used to
approximate the minimal value of k for which
these two conditions can be satisfied. For exam-
ple, by executing the junta testing algorithm with
k D 1; 2; 4; 8; : : : until it accepts, we obtain the
following estimation result.

Corollary 1 There is an algorithm that, given
query access to f W f0; 1gn ! f0; 1g, outputs
an estimate Ok such that f is �-close to a k-
junta and such that f is not an `-junta for any
` < k=2. Furthermore, this algorithm makes
O.k log k C k=�/ queries to f .

Testing by Implicit Learning
Let C be any class (i.e., family) of Boolean
functions where every function in C is close
to a being a k-junta. Many natural classes of
Boolean functions that have been studied in learn-
ing theory and computational complexity fall
into this framework. For example, functions with
bounded, decision tree complexity, DNF com-
plexity, circuit complexity, and sparse polynomial
representation all satisfy this condition. (See the)
Diakonikolas et al. [17] gave a general result
showing that for each of these classes C, we
can �-test the property of being in the class C
efficiently. This result has since been sharpened
by Chakraborty et al. [14], yielding the following
bounds.

Theorem 2 ([14]) Fix s > 0 and � > 0. We
can �-test whether f W f0; 1gn ! f0; 1g can be
represented by
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1. a DNF with s terms,
2. a size-s Boolean formula,
3. an s-sparse polynomial over Fn

2 , or
4. a decision tree of size s

with O.s=�2 � polylog.s=�// queries.

The proof of Theorem 2 is remarkable in that
the �-test algorithm in [14,17] learns the function
f W f0; 1gn ! f0; 1g when f is a k-junta, but
without identifying which of the k coordinates
of f are part of the junta. This technique is
called testing by implicit learning, and it is ob-
tained by using and building on the junta testing
algorithm.

Testing Function Isomorphism
Two functions f; g W f0; 1gn ! f0; 1g are iso-
morphic to each other when they are identical up
to relabeling of the input variables. In the function
isomorphism testing problem, we are given query
access to (an unknown function) f and must
determine whether it is isomorphic to (the known
function) g or whether it is �-far from being so.
How many queries to f do we need to perform
this task? The answer, it turns out, depends on
the choice of the function g. The functions g
for which we can test isomorphism to g with a
constant number of queries are called efficiently
isomorphism testable.

Every symmetric function is efficiently iso-
morphism testable. Using the junta testing algo-
rithm, Fischer et al. [18] showed that for any
constant k � 0, every k-junta is also efficiently
isomorphism testable. An important open prob-
lem in property testing is to characterize the
set of functions that are efficiently isomorphism
testable. The state of the art on this question
is a recent result – also building on the junta
testing algorithm – showing that every partially
symmetric function is also efficiently isomor-
phism testable. A function f W f0; 1gn ! f0; 1g

is k-partially symmetric if there is a function
g W f0; 1gk 	 f0; 1; 2; : : : ; ng ! f0; 1g and a
mapping � W Œk� ! Œn� such that f .x/ D

g.x�.1/; : : : ; x�.k/; kxk/ where kxk D
P

i xi the
Hamming weight of x.

Theorem 3 ([8, 15]) For every constant k � 0,
every k-partially symmetric function is efficiently
isomorphism testable.

Open Problems

There are two particularly appealing open prob-
lems related to the junta testing problem that
are motivated by its application to the feature
selection problem.

Distance Approximation
Theorem 1 shows that we can distinguish k-
juntas from functions that are �-far from k-juntas
with few queries. Can we also approximate the
distance of a function to its closest k-junta with a
small number of queries?

Problem 2 What is the minimum number of
queries to f W f0; 1gn ! f0; 1g required to
approximate the distance of f to its closest
k-junta within an additive error of ˙�, where
� 2 Œ0; 1

2
� is a parameter given to the

algorithm?

In some cases, property testing algorithms
can also be used directly for the correspond-
ing distance approximation problem. This is the
case, for example, for the BLR linearity test in
the �Linearity Testing/Testing Hadamard Codes
chapter. But it is currently not known whether
the junta testing algorithms in [18] or [5] can be
extended to yield distance approximators or not.

Testing with Random Samples
The query model we have discussed throughout
this chapter – where the algorithm is free to query
the target function on any input of its choosing
– is known as the membership query model in
machine learning. In some applications, however,
we must consider weaker query models where we
restrict the queries that the algorithm can make in
some ways. Can we also test k-juntas efficiently
in restricted query models?

Problem 3 In which restricted query models can
we test whetherf W f0; 1gn ! f0; 1g is a k-junta
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with a number of queries that is asymptotically
smaller than the number of queries required to
learn k-juntas in the same settings?

Two examples of restricted query models
include the passive sampling model (where
each query is drawn independently at random
from some fixed distribution) and the active
query model (where the algorithm can choose
its queries from a larger set of inputs drawn from
some distribution). Some initial results on this
problem can be found in [1, 2].
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Problem Definition

Text or string data naturally arises in many con-
texts including document processing, information
retrieval, natural and computer language pro-
cessing, and describing molecular sequences. In
broad terms, the goal of text indexing is to design
methodologies to store text data so as to signif-
icantly improve the speed and performance of
answering queries. While text indexing has been
studied for a long time, it shot into prominence
during the last decade due to the ubiquity of web-
based textual data and search engines to explore
it, design of digital libraries for archiving human
knowledge, and application of string techniques
to further understanding of modern biology. Text
indexing differs from the typical indexing of keys
drawn from an underlying total order – text data
can have varying lengths, and queries are of-
ten more complex and involve substrings, partial
matches, or approximate matches.

Queries on text data are as varied as the di-
verse array of applications they support. Con-
sequently, numerous methods for text indexing
have been developed and this continues to be an
active area of research. Text indexing methods
can be classified into two categories: (i) meth-
ods that are generalizations or adaptations of
indexing methods developed for an ordered set
of one-dimensional keys, and (ii) methods that
are specifically designed for indexing text data.
The most classic query in text processing is to
find all occurrences of a pattern P in a given
text T (or equivalently, in a given collection of
strings). Important and practically useful variants
of this problem include finding all occurrences of
P subject to at most k mismatches, or at most
k insertions/deletions/mismatches. The focus in
this entry is on these two basic problems and
remarks on generalizations of one-dimensional
data structures to handle text data.

Key Results

Consider the problem of finding a given pattern P
in text T, both strings over alphabet ˙ . The case
of a collection of strings can be trivially handled
by concatenating the strings using a unique end
of string symbol, not in ˙ , to create text T.
It is worth mentioning the special case where
T is structured – i.e., T consists of a sequence
of words and the pattern P is a word. Con-
sider a total order of characters in ˙ . A string
(or word) of length k can be viewed as a k-
dimensional key and the order on ˙ can be nat-
urally extended to lexicographic order between
multidimensional keys of variable length. Any
one-dimensional search data structure that sup-
ports O.logn/ search time can be used to index
a collection of strings using lexicographic order
such that a string of length k can be searched
in O.k logn/ time. This can be considerably
improved as below [8]:

Theorem 1 Consider a data structure on one-
dimensional keys that relies on constant-time
comparisons among keys (e.g., binary search
trees, red-black trees etc.) and the insertion
of a key identifies either its predecessor or
successor. Let O.F.n// be the search time of
the data structure storing n keys (e.g., O.logn/
for red-black trees). The data structure can be
converted to index n strings using O(n) additional
space such that the query for a string s can be
performed in O.F.n// time if s is one of the
strings indexed, and inO.F.n/C jsj/ otherwise.

A more practical technique that provides
O.F.n/C jsj/ search time for a string s
under more restrictions on the underlying one-
dimensional data structure is given in [9]. The
technique is nevertheless applicable to several
classic one-dimensional data structures, in
particular binary search trees and its balanced
variants. For a collection of strings that share
long common prefixes such as IP addresses and
XML path strings, a faster search method is
described in [5].

When answering a sequence of queries,
significant savings can be obtained by promoting
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frequently searched strings so that they are
among the first to be encountered in a search
path through the indexing data structure. Ciriani
et al. [4] use self-adjusting skip lists to derive
an expected bound for a sequence of queries
that matches the information-theoretic lower
bound.

Theorem 2 A collection of n strings of total
length N can be indexed in optimal O(N) space
so that a sequence of m string queries, say
s1,� � � ,sm, can be performed in O.

Pm
j D1 jsj j C

Pn
iD1 ni log.m=ni / expected time, where

ni is the number of times the ith string is
queried.

Notice that the first additive term is a lower bound
for reading the input, and the second additive
term is a standard information-theoretic lower
bound denoting the entropy of the query se-
quence. Ciriani et al. also extended the approach
to the external memory model, and to the case
of dynamic sets of strings. More recently, Ko
and Aluru developed a self-adjusting tree layout
for dynamic sets of strings in secondary storage
that provides optimal number of disk accesses for
a sequence of string or substring queries, thus
providing a deterministic algorithm that matches
the information-theoretic lower bound [4].

The next part of this entry deals with some
of the widely used data structures specifically
designed for string data, suffix trees, and
suffix arrays. These are particularly suitable
for querying unstructured text data, such as
the genomic sequence of an organism. The
following notation is used: Let sŒi � denote the
ith character of string s, sŒi : : : j � denote the
substring sŒi �sŒi C 1� : : : sŒj �, and Si D sŒi �sŒiC

1� : : : sŒjsj� denote the suffix of s starting at ith
position. The suffix Si can be uniquely described
by the integer i. In case of multiple strings, the
suffix of a string can be described by a tuple
consisting of the string number and the starting
position of the suffix within the string. Consider
a collection of strings over˙ , having total length
n, each extended by adding a unique termination
symbol $ … ˙ . The suffix tree of the strings is
a compacted trie of all suffixes of these extended

strings. The suffix array of the strings is the
lexicographic sorted order of all suffixes of these
extended strings. For convenience, we list ‘$’, the
last suffix of each string, just once. The suffix tree
and suffix array of strings ‘apple’ and ‘maple’
are shown in Fig. 1. Both these data structures
take O(n) space and can be constructed in O(n)
time [11, 13], both directly and from each other.

Without loss of generality, consider the
problem of searching for a pattern P as
a substring of a single string T. Assume the
suffix tree ST of T is available. If P occurs in
T starting from position i, then P is a prefix
of suffix Ti D T Œi �T Œi C 1� : : : T ŒjT j� in T. It
follows that P matches the path from root to
leaf labeled i in ST. This property results in the
following simple algorithm: Start from the root
of ST and follow the path matching characters in
P, until P is completely matched or a mismatch
occurs. If P is not fully matched, it does not occur
in T. Otherwise, each leaf in the subtree below
the matching position gives an occurrence of P.
The positions can be enumerated by traversing
the subtree in O(occ) time, where occ denotes
the number of occurrences of P. If only one
occurrence is desired, ST can be preprocessed
in O.jT j/ time such that each internal node
contains the suffix at one of the leaves in its
subtree.

Theorem 3 Given a suffix tree for text T and
a pattern P, whether P occurs in T can be an-
swered in O.jP j/ time. All occurrences of P in
T can be found in O.jP j C occ/ time, where occ
denotes the number of occurrences.

Now consider solving the same problem using the
suffix array SA of T. All suffixes prefixed by P
appear in consecutive positions in SA. These can
be found using binary search in SA. Naively per-
formed, this would take O.jP j  log jT j/ time.
It can be improved to O.jP j C log jT j/ time as
follows [15]:

Let SAŒL : : : R� denote the range in the
suffix array where the binary search is focused.
To begin with, L D 1 and R D jT j. Let �

denote “lexicographically smaller”, � denote
“lexicographically smaller or equal”, and
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Text Indexing, Fig. 1 Suffix tree and suffix array of strings apple and maple

lcp.˛; ˇ/ denote the length of the longest
common prefix between strings ˛ and ˇ.
At the beginning of an iteration, TSAŒL� �

P � TSAŒR�. Let M D d.LCR/=2e. Let
l D lcp.P; TSAŒL�/ and r D lcp.P; TSAŒR�/.
Because SA is lexicographically ordered,
lcp.P; TSAŒM�/ � min.l; r/. If l D r , then
compare P and TSAŒM� starting from the (lC1)th
character. If l ¤ r , consider the case when l > r .

Case I: l < lcp.TSAŒL�; TSAŒM�/. In this
case, TSAŒM� � P and lcp.P; TSAŒM�/

D lcp.P; TSAŒL�/. Continue search in
SAŒM : : : R�. No character comparisons
required.

Case II: l > lcp.TSAŒL�; TSAŒM�/. In this
case, P � TSAŒM� and lcp.P; TSAŒM�/

D lcp.TSAŒL�; TSAŒM�/. Continue search
in SAŒL : : :M �. No character comparisons
required.

Case III: l D lcp.TSAŒL�; TSAŒM�/. In this case,
lcp.P; TSAŒM�/ � l . Compare P and TSAŒM�

beyond lth character to determine their relative
order and lcp.

Similarly, the case when r > l can be handled
such that comparisons between P and TSAŒM�,
if at all needed, start from .r C 1/th character.
To start the execution of the algorithm,

lcp.P; TSAŒ1�/ and lcp.P; TSAŒjT j�/ are com-
puted directly using at most 2jP j character
comparisons. It remains to be described how the
lcp.TSAŒL�; TSAŒM�/ and lcp.TSAŒR�; TSAŒM�/

values required in each iteration are computed.
Let LcpŒ1 : : : jT j � 1� be an array such
that LcpŒi � D lcp.SAŒi �; SAŒi C 1�/. The
Lcp array can be computed from SA in
O.jT j/ time [12]. For any 1 � i < j � n,
lcp.TSAŒi�; TSAŒj �/ D minj �1

kDi
LcpŒk�. In order

to find the lcp values required by the algorithm
in constant time, note that the binary search can
be viewed as traversing a path in the binary tree
corresponding to all possible search intervals
used by any execution of the binary search
algorithm [15]. The root of the tree denotes the
interval Œ1 : : : n�. If Œi : : : j � (j � i � 2) is the
interval at an internal node of the tree, its left
child is given by Œi : : : d.i C j /=2e� and its right
child is given by Œd.i C j /=2e : : : j �. The lcp
value for each interval in the tree is precomputed
and recorded in O(n) time and space.

Theorem 4 Given the suffix array SA of text
T and a pattern P, the existence of P in T can
be checked in O.jP j C log jT j/ time. All occur-
rences of P in T can be found in O(occ) additional
time, where occ denotes their number.
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Proof The algorithm makes at most 2jP j

comparisons in determining lcp.P; TSAŒ1�/

and lcp.P; TSAŒn�/. A comparison made in
an iteration to determine lcp.P; TSAŒM�/ is
categorized successful if it contributes the
lcp, and categorized failed otherwise. There is
at most one failed comparison per iteration.
As for successful comparisons, note that
the comparisons start with .max.l; r/C 1/th

character of P, and each successful comparison
increases the value of max(l, r) for the next
iteration. Thus, each character of P is involved
only once in a successful comparison. The total
number of character comparisons is at most
3jP j C log jT j D O.jP j C log jT j/. �

Abouelhoda et al. [1] reduce this time further to
O.jP j/ by mimicking the suffix tree algorithm
on a suffix array with some auxiliary information.
The strategy is useful in other applications based
on top-down traversal of suffix trees. At this
stage, the distinction between suffix trees and suf-
fix arrays is blurred as the auxiliary information
stored makes the combined data structure equiva-
lent to a suffix tree. Using clever implementation
techniques, the space is reduced to approximately
6n bytes. A major advantage of the suffix tree and
suffix array based methods is that the text T is
often large and relatively static, while it is queried
with several short patterns. With suffix trees and
enhanced suffix arrays [1], once the text is pre-
processed in O.jT j/ time, each pattern can be
queried inO.jP j/ time for constant size alphabet.
For large alphabets, the query can be answered
in O.jP j  log j˙ j/ time using O.nj˙ j/ space
(by storing an ordered array of j˙ j pointers to
potential children of a node), or in O.jP j  j˙ j/

time using O(n) space (by storing pointers to
first child and next sibling). (Recently, Cole et al.
(2006) showed how to further reduce the search
time to O.jP j C log j˙ j/ while still keeping the
optimal O.jT j/ space). For indexing in various
text-dynamic situations, see [3, 7] and references
therein. The problem of compressing suffix trees
and arrays is covered in more detail in other
entries.

While exact pattern matching has many use-
ful applications, the need for approximate pat-

tern matching arises in several contexts ranging
from information retrieval to finding evolution-
ary related biomolecular sequences. The clas-
sic approximate pattern matching problem is to
find substrings in the text T that have an edit
distance of k or less to the pattern P, i.e., the
substring can be converted to P with at most k
insert/delete/substitute operations. This problem
is covered in more detail in other entries. Also
see [16], the references therein, and Chapter 36
of [2].

Applications

Text indexing has many practical applications –
finding words or phrases in documents under
preparation, searching text for information re-
trieval from digital libraries, searching distributed
text resources such as the web, processing XML
path strings, searching for longest matching pre-
fixes among IP addresses for internet routing, to
name just a few. The reader interested in further
exploring text indexing is referred to the book by
Crochemore and Rytter [6], and to other entries
in this Encyclopedia. The last decade of explosive
growth in computational biology is aided by the
application of string processing techniques to
DNA and protein sequence data. String indexing
and aggregate queries to uncover mutual relation-
ships between strings are at the heart of important
scientific challenges such as sequencing genomes
and inferring evolutionary relationships. For an
in depth study of such techniques, the reader is
referred to Parts I and II of [10] and Parts II and
VIII of [2].

Open Problems

Text indexing is a fertile research area, making it
impossible to cover many of the research results
or actively pursued open problems in a short
amount of space. Providing better algorithms and
data structures to answer a flow of string-search
queries when caches or other query models are
taken into account, is an interesting research
issue [4].
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Problem Definition

A three-dimensional straight-line grid drawing
of a graph, henceforth called a 3D drawing,
represents the vertices by distinct grid-points in
Z

3 and represents each edge by the line segment
between its end vertices, such that no two edges
cross. In contrast to the case in the plane, it is
folklore that every graph has a 3D drawing. For
example, the “moment curve” algorithm places
the i th vertex at .i; i2; i3/. It is easily seen that no
four vertices are coplanar, and thus no two edges
cross. Since every graph has a 3D drawing, we are
interested in optimizing certain measures of their
aesthetic quality. If a 3D drawing is contained in
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an axis-aligned box with side lengthsX�1, Y �1,
andZ�1, then we speak of anX	Y 	Z drawing
with volume X � Y � Z. This entry considers the
problem of producing a 3D drawing of a given
graph with small volume.

Key Results

Observe that the drawings produced by the mo-
ment curve algorithm have O.n6/ volume, where
n is the number of vertices. Cohen et al. [2]
improved this bound, by proving that if p is a
prime with n < p � 2n, and the i th vertex is
at .i; i2 mod p; i3 mod p/, then there is still no
crossing. The resulting O.n3/ volume bound is
optimal for the complete graph Kn since each
grid plane may contain at most four vertices. It
is therefore of interest to identify fixed graph
parameters that allow for 3D drawings with small
volume, as summarized in the following table.

Graph family Min. volume Reference

Arbitrary �.n3/ [2]
Bounded chromatic number �.n2/ [19]
Bounded maximum degree O.n3=2/ [7]
Bounded degeneracy O.n3=2/ [9]
H -minor-free (H fixed) n logO.1/ n [12]
Bounded genus O.n log n/ [12]
Apex-minor-free O.n log n/ [12]
Planar O.n log n/ [6]
Bounded treewidth �.n/ [11]

The first such parameter to be studied was the
chromatic number. Pach et al. [19] proved that
graphs of bounded chromatic number have 3D
drawings with O.n2/ volume. If p is a suitably
chosen prime, the main step of their algorithm
represents the vertices in the i th color class by
grid-points in the set f.i; t; i t/ W t � i2 .mod p/g.
It follows that the volume bound is O.k2n2/ for
k-colorable graphs.

Pach et al. [19] also proved an ˝.n2/ lower
bound for the volume of 3D drawings of the
complete bipartite graph Kn;n. This lower bound
was generalized for all graphs by Bose et al. [1],
who proved that every 3D drawing of an n-vertex
m-edge graph has volume at least 1

8
.n C m/.

In particular, the maximum number of edges in
an X 	Y 	Z drawing is exactly .2X � 1/.2Y �

1/.2Z � 1/ �XYZ.
Graphs with bounded maximum degree have

bounded chromatic number and, thus, by the
result of Pach et al. [19], have 3D drawings with
O.n2/ volume. Pach et al. [19] conjectured that
such graphs have 3D drawings with o.n2/ vol-
ume, which was verified by Dujmović and Wood
[7], who proved a O.n3=2/ bound. The best lower
bound is ˝.n/. Determining the optimal volume
for 3D drawings of bounded degree graphs is a
challenging open problem; see [13]. The O.n3=2/

upper bound for bounded degree graphs was gen-
eralized for graphs with bounded degeneracy [9].

The first nontrivial O.n/ volume bound was
established by Felsner et al. [15] for outerplanar
graphs. Their elegant algorithm “wraps” a 2D
drawing around a triangular prism to obtain a
3D drawing. This result naturally led to the fol-
lowing open problem due to Felsner et al. [15],
which motivated much subsequent research: does
every planar graph have a 3D drawing with O.n/
volume?

For some time, the O.n2/ bound for 2D draw-
ings was the best known bound in 3D. Then
Dujmović and Wood [7] proved that every planar
graph has a 3D drawing with O.n3=2/ volume. A
breakthrough came with the O.n log8 n/ bound
of Di Battista et al. [4], which was improved to
O.n logn/ by Dujmović [6] (with a much simpler
proof). The most recent work in this direction,
by Dujmović et al. [12], extended this O.n logn/
bound to all graphs of bounded Euler genus and
more generally proved that every graph excluding
a fixed minor has a 3D drawing with n logO.1/ n

volume.
The O.n/ volume bound for outerplanar

graphs mentioned above was generalized by
Dujmović et al. [11] as follows:

Theorem 1 ([11]) Graphs with bounded
treewidth have 3D drawings with O.n/ volume.

This result is the focus of the remainder of this
entry. Treewidth is a measure of the similarity of
a graph to a tree. It can be defined as follows. A
graph is chordal if every induced cycle is a trian-
gle. The treewidth of a graph G is the minimum
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integer k such that G is a spanning subgraph of
a chordal graph with no .k C 2/-clique. Many
graphs arising in applications of graph drawing
have small treewidth. Trees have treewidth 1,
while outerplanar and series-parallel graphs have
treewidth 2. Another example arises in software
engineering applications. Thorup [20] proved that
the control-flow graphs of go-to free programs
in many programming languages have treewidth
bounded by a small constant, in particular, 3 for
Pascal and 6 for C.

Reference [11] is also important because it
discovered the connection between 3D draw-
ings, track layouts, and queue layouts; also see
[10, 16].

Track Layouts
Track layouts are a combinatorial tool that effec-
tively eliminates the geometry from 3D drawings
and exposes the underlying combinatorial struc-
ture. They were introduced in [11] although they
are implicit in some previous work [15, 16].

Let V1; : : : ; Vt be the color classes in a
(proper) vertex t -coloring of a graph G. Suppose
that each color class Vi is equipped with a
total order, denoted by �. Call Vi a track and
V1; : : : ; Vt a t -track assignment. An X-crossing
in V1; : : : ; Vt consists of two edges vw and xy
such that v � x in some track Vi and y � w in
some other track Vj . A t-track assignment with
no X-crossing is called a t -track layout.

One can produce a track layout from an
A 	 B 	 C drawing of a graph G as follows.
Let Vx;y be the set of vertices of G with an
X -coordinate of x and a Y -coordinate of y.
Order each set Vx;y by the corresponding Z-
coordinates. We obtain an AB-track layout of G,
except that consecutive vertices in each track
might be adjacent. Doubling each track and
putting alternate vertices in Vx;y on distinct
tracks gives a 2AB-track layout of G. Most
interestingly, a converse result is also true.

Theorem 2 ([11]) If an n-vertex graph has a t -
track layout, then G has a O.t/ 	 O.t/ 	 O.n/
drawing with O.t2n/ volume.

The proof of Theorem 2 is inspired by the
generalizations of the moment curve algorithm

by Cohen et al. [2] and Pach et al. [19]. Loosely
speaking, Cohen et al. [2] allow three “free”
dimensions, whereas Pach et al. [19] use a color-
ing to “fix” one dimension with two dimensions
free. Theorem 2 uses a track layout to fix two
dimensions with one dimension free; see Fig. 1.
In particular, say .V1; : : : ; Vt / is the given t -track
layout. Let p be the smallest prime such that p >
k. Then p � 2k by Bertrand’s postulate. For 1 �

i � k, represent the vertices in Vi by the grid-
points f.i; i2 mod p; t/ W 1 � t � p � jVi j; t � i3

.mod p/g, such that the Z-coordinates respect
the given total order of Vi .

Note that Dujmović and Wood [7] combined
the method of Pach et al. [19] with the proof of
Theorem 2 to conclude a O.tn/ volume bound
of 3D drawings of t -track graphs with bounded
chromatic number.

As an example of how to construct a track
layout, we now show that every tree T has a 3-
track layout (which is implicitly proved in [15]).
Let r be a vertex of T . Let Vi be the vertices
at distance i from r . Note that .V0; V1; : : : / is a
coloring of T . Clearly, each color class Vi can be
ordered so that there is no X-crossing; see Fig. 2a.
Hence .V0; V1; : : : / is a track layout. Note that,
working from the root down, the child nodes of
each node can be ordered arbitrarily. This will be
important later. Now, imagine wrapping this track
layout around a prism; see Fig. 2b. That is, for
0 � i � 2, group tracks Vi � V3Ci � V6Ci �

: : : to obtain a 3-track layout of T .

An Algorithm for Graphs of Bounded
Treewidth
Theorem 1 is an immediate consequence of The-
orem 2 and the following claim, which we prove
by induction on k � 0: for each integer k � 0,
there is an integer tk such that every k-tree has
a tk-track layout. A 0-tree has no edges and thus
has a 1-track layout. A 1-tree is a tree which has a
3-track layout. Thus the result holds with t0 D 1

and t1 D 3. Let G be a k-tree. Various authors
have proved thatG can be decomposed as follows
[11, 18]. There is a tree T rooted at some node
r and a partition fBx W x 2 V.T /g of V.G/
indexed by the nodes of T with the following
properties:
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• For each edge vw of G, there is a node x of T
such that v;w 2 Bx , or there is an edge xy of
T such that v 2 Bx and w 2 By .

• For each node x of T , the induced subgraph
GŒBx � is a .k � 1/-tree.

• For each non-root node y of T , if x is the
parent node of y, and Cy is the set of vertices
in Bx adjacent to some vertex in By , then Cy

is a clique in G called the parent clique of y.

By induction, for each node x of T , there is
a tk�1-track layout of GŒBx �. Each clique C in
GŒBx � has size at most k. Define the signature of
C to be the set of (at most k) tracks that contain
C . Since there is no X-crossing, the set of cliques
of GŒBx � with the same signature can be linearly
ordered C1 � � � � � Cp , such that if v and w are
vertices in the same track, and in distinct cliques
Ci and Cj with i < j , then v � w in that track.
Call this a clique ordering.

Let T0; T1; T2 be a 3-track layout of T de-
scribed above. Replace each track Ti by tk�1 sub-
tracks, and replace each node x 2 Ti by the tk�1-
track layout ofGŒBx �. This defines a 3 �tk�1 track
assignment forG. Clearly an edge in someGŒBx �

is in no X-crossing with any other edge. There
is no X-crossing between two edges between a
parent bag Bx and some same child bag By ,
since the end points in Bx of such edges form
a clique (the parent clique of y) and therefore are
in distinct tracks. The only possible X-crossing is
between edges ab and cd , where a and c are in
some parent bag Bx and b and d are in distinct
child bags By and B´, respectively.

To solve this problem, when determining the
3-track layout of T , the child nodes of each node
x are ordered in their track so that y � ´ when-
ever the parent cliques Cy and C´ have the same
signature and Cy � C´ in the clique ordering.
Then group the child nodes of x according to

Three-Dimensional Graph Drawing, Fig. 1 A 3D drawing produced from a track layout
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Three-Dimensional Graph Drawing, Fig. 2 A 3-track layout of a tree
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Three-Dimensional Graph Drawing, Fig. 3 Final track layout with 3.tk�1/k groups of tk�1 tracks

the signatures of their parent cliques, and for
each signature � , use a distinct set of tk�1 tracks
for the child bags whose parent cliques have
signature � . Now the ordering of the child bags
with the same signature agrees with the clique
ordering of their parent cliques and therefore
agrees with the ordering of any neighbors in the
parent bag. It follows that there is no X-crossing,
as illustrated in Fig. 3. The number of tracks is
at most 3tk�1 times the number of signatures,
which is at most

Pk
iD1

�
tk�1

i



� .tk�1/

k . This
completes the proof with tk WD 3.tk�1/

kC1.
This proof makes no effort to reduce the bound

on tk . The recurrence roughly solves to 3.kC2/Š.
The original proof by Dujmović et al. [11] re-
duces this bound to a doubly exponential function
in k. Further improvements were made by Di
Giacomo et al. [5], but the bound is still doubly
exponential. The best lower bound, due to Duj-
mović et al. [11], is ˝.k2/. For k D 2, the best
upper bound is 15, due to Di Giacomo et al. [5].

Other Models for 3D Graph Drawing
• Polyline grid drawings, where bends in the

edges are allowed (at grid-points) [3, 8]

• Orthogonal 3D drawings, where the edges are
routed along the grid-lines [14, 21]

• Upward 3D drawings of directed acyclic
graphs [5, 9]

• Symmetrical 3D drawings with vertices in R
3

[17]

Recommended Reading

1. Bose P, Czyzowicz J, Morin P, Wood DR (2004)
The maximum number of edges in a three-
dimensional grid-drawing. J Graph Algorithms Appl
8(1):21–26

2. Cohen RF, Eades P, Lin T, Ruskey F (1996)
Three-dimensional graph drawing. Algorithmica
17(2):199–208

3. Devillers O, Everett H, Lazard S, Pentcheva M,
Wismath S (2006) Drawing Kn in three dimensions
with one bend per edge. J Graph Algorithms Appl
10(2):287–295

4. Di Battista G, Frati F, Pách J (2013) On the
queue number of planar graphs. SIAM J Comput
42(6):2243–2285

5. Di Giacomo E, Liotta G, Meijer H, Wismath SK
(2009) Volume requirements of 3D upward drawings.
Discret Math 309(7):1824–1837
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9. Dujmović V, Wood DR (2006) Upward three-
dimensional grid drawings of graphs. Order 23(1):
1–20
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Problem Definition

Consider n Boolean variables V D fx1; : : : ; xng

and the corresponding set of 2n literals L D

fx1x1 : : : ; xn; xng. A k-clause is a disjunction
of k literals of distinct underlying variables. A
random formula �n;m in k conjunctive normal
form (k-CNF) is the conjunction of m clauses,
each selected in a uniformly random and in-

dependent way among the 2k
�

n

k

�
possible k-

clauses on n variables in V . The density rk of
a k-CNF formula �n;m is the clauses-to-variables
ratio m/n.

It was conjectured that for each k �2 there
exists a critical density rk� such that asymptot-
ically almost all (a.a.a.) k-CNF formulas with
density r < rk

� .r > rk
�/ are satisfiable (un-

satisfiable, respectively). So far, the conjecture
has been proved only for k D 2 [3, 11]. For
k � 3, the conjecture still remains open but is
supported by experimental evidence [14] as well
as by theoretical, but non-rigorous, work based on
statistical physics [15]. The value of the putative
threshold r3

� is estimated to be around 4.27.
Approximate values of the putative threshold for
larger values of k have also been computed.
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As far as rigorous results are concerned,
Friedgut [10] proved that for each k � 3,
there exists a sequence rk�.n/ such that for any
� > 0, a.a.a. k-CNF formulas �n; b.r

�
k
.n/� �/nc

(�n; b.r
�
k
.n/C�/nc) are satisfiable (unsatisfiable,

respectively). The convergence of the sequence
rk

�.n/; n D 0; 1; : : : for k �3 remains open.
Let now

r��
k D limn!1r

�
k .n/

D supfrk W PrŒ�n;brknc is satisfiable ! 1�g

and

r�C
k

D limn!1r
�
k .n/

D inffrk W PrŒ�n;drkne is satisfiable ! 0�g:

Obviously, rk� � � rk
� C. Bounding from below

(from above) rk� �.rk
� C, respectively) with an

as large as possible (as small as possible, re-
spectively) bound has been the subject of intense
research work in the past decade.

Upper bounds to rk
� C are computed by

counting arguments. To be specific, the standard
technique is to compute the expected number
of satisfying truth assignments of a random
formula with density rk and find an as small as
possible value of rk for which this expected value
approaches zero. Then, by Markov’s inequality,
it follows that for such a value of rk , a random
formula �n;drkne is unsatisfiable asymptotically
almost always. This argument has been refined in
two directions: First, consider not all satisfying
truth assignments but a subclass of them with
the property that a satisfiable formula always has
a satisfying truth assignment in the subclass
considered. The restriction to a judiciously
chosen such subclass forces the expected value
of the number of satisfying truth assignments to
get closer to the probability of satisfiability and
thus leads to a better (smaller) upper bound rk .
However, it is important that the subclass should
be such that the expected value of the number of
satisfying truth assignments can be computable
by the available probabilistic techniques.

Second, make use in the computation of the
expected number of satisfying truth assignments

of typical characteristics of the random formula,
i.e., characteristics shared by a.a.a. formulas.
Again this often leads to an expected number
of satisfying truth assignments that is closer
to the probability of satisfiability (nontypical
formulas may contribute to the increase of the
expected number). Increasingly better upper
bounds to r3

� C have been computed using
counting arguments as above (see the surveys
[6, 13]). Dubois, Boufkhad, and Mandler [7]
proved r3� C < 4:506. The latter remains the
best upper bound to date.

On the other hand, for fixed and small values
of k (especially for k D 3), lower bounds to rk� �

are usually computed by algorithmic methods.
To be specific, one designs an algorithm that for
an as large as possible rk it returns a satisfying
truth assignment for a.a.a. formulas �n;brknc. Such
an rk is obviously a lower bound to rk� �. The
simpler the algorithm, the easier to perform the
probabilistic analysis of returning a satisfying
truth assignment for a given rk , but the smaller
the rk’s for which a satisfying truth assignment
is returned asymptotically almost always. In this
context, backtrack-free DPLL algorithms [4, 5]
of increasing sophistication were rigorously an-
alyzed (see the surveys [1, 9]). At each step of
such an algorithm, a literal is set to TRUE and
then a reduced formula is obtained by (i) deleting
clauses where this literal appears and by (ii) delet-
ing the negation of this literal from the clauses it
appears. At steps at which 1-clauses exist (known
as forced steps), the selection of the literal to be
set to TRUE is made so as a 1-clause becomes
satisfied. At the remaining steps (known as free
steps), the selection of the literal to be set to TRUE

is made according to a heuristic that characterizes
the particular DPLL algorithm. A free step is fol-
lowed by a round of consecutive forced steps. To
facilitate the probabilistic analysis of DPLL al-
gorithms, it is assumed that they never backtrack:
if the algorithm ever hits a contradiction, i.e., a
0-clause is generated, it stops and reports failure;
otherwise, it returns a satisfying truth assignment.
The previously best lower bound for the satisfia-
bility threshold obtained by such an analysis was
3:26 < r3

� � [2].
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The previously analyzed such algorithms
(with the exception of the Pure Literal algorithm
[8]) at a free step take into account only the clause
size where the selected literal appears. Due to this
limited information exploited on selecting the
literal to be set, the reduced formula in each step
remains random conditional only on the current
numbers of 3- and 2-clauses and the number
of yet unassigned variables. This retention
of “strong” randomness permits a successful
probabilistic analysis of the algorithm in a not
very complicated way. However, for k D 3, it
succeeds to show satisfiability only for densities
up to a number slightly larger than 3.26. In
particular, in [2] it is shown that this is the optimal
value that can be attained by such algorithms.

Key Results

In [12], a DPLL algorithm is described (and
then probabilistically analyzed) such that each
free step selects the literal to be set to TRUE,
taking into account its degree (i.e., its number of
occurrences) in the current formula.

Algorithm Greedy
The first variant of the algorithm is very simple:
At each free step, a literal with the maximum
number of occurrences is selected and set to
TRUE (Section 4.A in [12]). Notice that in this
greedy variant, a literal is selected irrespectively
of the number of occurrences of its negation. This
algorithm successfully returns a satisfying truth
assignment for a.a.a. formulas with density up to
a number slightly larger than 3.42, establishing
that r3� � > 3:42. Its simplicity, contrasted with
the improvement over the previously obtained
lower bounds, suggests the importance of ana-
lyzing heuristics that take into account degree
information of the current formula.

Algorithm CL
In the second variant, at each free step t , the
degree of the negation 	 of the literal 	 that is
set to TRUE is also taken into account (Section
5.A in [12]). Specifically, the literal to be set
to TRUE is selected so as upon the completion

of the round of forced steps that follow the
free step t , the marginal expected increase of
the flow from 2-clauses to 1-clauses per unit of
expected decrease of the flow from 3-clauses to
2-clauses is minimized. The marginal expectation
corresponding to each literal can be computed
from the numbers of its positive and negative
occurrences. More specifically, if mi ; i D 2; 3

equals the expected flow of i -clauses to .i � 1/-
clauses at each step of a round, and 	 is the literal
set to TRUE at the beginning of the round, then

	 is chosen so as to minimize the ratio j
m2

m3

j

of the differences m2 and m3 between the
beginning and the end of the round. This has an
effect to the bounding of the rate of generation
of 1-clauses by the smallest possible number
throughout the algorithm. For the probabilistic
analysis to go through, we need to know for
each i; j the number of literals with degree i
whose negation has degree j . This heuristic suc-
ceeds in returning a satisfying truth assignment
for a.a.a. formulas with density up to a num-
ber slightly larger than 3.52, establishing that
r3

� � > 3:52.

Applications

Some applications of SAT solvers include se-
quential circuit verification, artificial intelligence,
automated deduction and planning, VLSI, CAD,
model-checking, and other types of formal ver-
ification. Recently, automatic SAT-based model-
checking techniques were used to effectively find
attacks on security protocols.

Open Problems

The main open problem in the area is to formally
show the existence of the threshold rk� for all
(or at least some) k � 3. To rigorously compute
upper and lower bounds better than the ones men-
tioned here still attracts some interest. Related
results and problems arise in the framework of
variants of the satisfiability problem and also the
problem of colorability.
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Problem Definition

The application of techniques from Combinato-
rial and Algebraic Topology has been successful
at solving a number of problems in distributed
computing. In 1993, three independent teams [3,
15, 17], using different ways of generalizing the
classical graph-theoretical model of distributed
computing, were able to solve set agreement
a long-standing open problem that had eluded the
standard approaches. Later on, in 2004, journal
articles by Herlihy and Shavit [15] and by Saks
and Zaharoglou [17] were to win the prestigious
Gödel prize. This paper describes the approach
taken by the Herlihy/Shavit paper, which was the
first draw the connection between Algebraic and
Combinatorial Topology and Distributed Com-
puting.

Pioneering work in this area, such as by Biran,
Moran, and Zaks [2] used graph-theoretic notions
to model uncertainty, and were able to express
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certain lower bounds in terms of graph connec-
tivity. This approach, however, had limitations.
In particular, it proved difficult to capture the
effects of multiple failures or to analyze decision
problems other then consensus.

Combinatorial topology generalizes the no-
tion of a graph to the notion of a simplicial
complex, a structure that has been well-studied
in mainstream mathematics for over a century.
One property of central interest to topologists is
whether a simplicial complex has no “holes” be-
low a certain dimension k, a property known as k -
connectivity. Lower bounds previously expressed
in terms of connectivity of graphs can be general-
ized by recasting them in terms of k-connectivity
of simplicial complexes. By exploiting this in-
sight, it was possible to solve some open prob-
lems (k-set agreement, renaming), to pose and
solve some new problems ([13]), and to unify
a number of disparate results and models [14].

Key Results

A vertex Ev is a point in a high-dimensional
Euclidean space. Vertexes Ev0; : : : ; Evn are affinely
independent if Ev1 � Ev0; : : : ; Evn � Ev0 are linearly
independent. An n -dimensional simplex (or n -
simplex) Sn D .Es0; : : : ; Esn/ is the convex hull
of a set of n C 1 affinely-independent vertexes.
For example, a 0-simplex is a vertex, a 1-simplex
a line segment, a 2-simplex a solid triangle, and
a 3-simplex a solid tetrahedron. Where conve-
nient, superscripts indicate dimensions of sim-
plexes. The Es0; : : : ; Esn are said to span Sn. By
convention, a simplex of dimension d < 0 is an
empty simplex.

A simplicial complex (or complex) is a set
of simplexes closed under containment and in-
tersection. The dimension of a complex is the
highest dimension of any of its simplexes. L is
a subcomplex of K if every simplex of L is
a simplex of K. A map �WK ! L carrying
vertexes to vertexes is simplicial if it also induces
a map of simplexes to simplexes.

Definition 1 A complex K is k -connected if
every continuous map of the k-sphere toK can be

extended to a continuous map of the .kC1/-disk.
By convention, a complex is .�1/ -connected if
and only if it is nonempty, and every complex is
k -connected for k < �1.

A complex is 0-connected if it is connected
in the graph-theoretic sense, and a complex is k-
connected if it has no holes in dimensions k or
less. The definition of k-connectivity may appear
difficult to use, but fortunately reasoning about
connectivity can be done in a combinatorial way,
using the following elementary consequence of
the Mayer–Vietoris sequence.

Theorem 2 If K and L are complexes such
that K and L are k-connected, and K \ L
is .k�1/-connected, thenK [ L is k-connected.

This theorem, plus the observation that any
non-empty simplex is k-connected for all k, al-
lows reasoning about a complex’s connectivity
inductively in terms of the connectivity of its
components.

A set of n C 1 sequential processes commu-
nicate either by sending messages to one another
or by applying operations to shared objects. At
any point, a process may crash: it stops and
takes no more steps. There is a bound f on the
number of processes that can fail. Models differ
in their assumptions about timing. At one end of
the spectrum is the synchronous model in which
computation proceeds in a sequence of rounds.
In each round, a process sends messages to the
other processes, receives the messages sent to it
by the other processes in that round, and changes
state. (Or it applies operations to shared objects.)
All processes take steps at exactly the same rate,
and all messages are delivered with exactly the
same message delivery time. At the other end
is the asynchronous model in which there is no
bound on the amount of time that can elapse
between process steps, and there is no bound on
the time it can take for a message to be delivered.
Between these extremes is the semi-synchronous
model in which process step times and message
delivery times can vary, but are bounded between
constant upper and lower bounds. Proving a lower
bound in any of these models requires a deep
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understanding of the global states that can arise in
the course of a protocol’s execution, and of how
these global states are related.

Each process starts with an input value taken
from a set V, and then executes a deterministic
protocol in which it repeatedly receives one or
more messages, changes its local state, and sends
one or more messages. After a finite number of
steps, each process chooses a decision value and
halts.

In the k-set agreement task [5], processes are
required to (1) choose a decision value after
a finite number of steps, (2) choose as their
decision values some process’s input value, and
(3) collectively choose no more than k distinct
decision values. When k D 1, this problem is
usually called consensus [16].

Here is the connection between topological
models and computation. An initial local state of
process P is modeled as a vertex Ev D hP; vi

labeled with P’s process id and initial value v.
An initial global state is modeled as an n-simplex
Sn D .hP0; v0i; : : : ; hPn; vni/, where the Pi

are distinct. The term ids.Sn/ denotes the set of
process ids associated with Sn, and vals.Sn/ the
set of values. The set of all possible initial global
states forms a complex, called the input complex.

Any protocol has an associated protocol com-
plex P, defined as follows. Each vertex is labeled
with a process id and a possible local state for that
process. A set of vertexes hP0; v0i; : : : ; hPd ; vd i

spans a simplex of P if and only if there is some
protocol execution in whichP0; : : : ; Pd finish the
protocol with respective local states v0; : : : ; vd .
Each simplex thus corresponds to an equivalence
class of executions that “look the same” to the
processes at its vertexes. The term P.Sm/ to
denote the subcomplex of P corresponding to ex-
ecutions in which only the processes in ids.Sm/

participate (the rest fail before sending any mes-
sages). If m < n� f , then there are no such exe-
cutions, and P.Sm/ is empty. The structure of the
protocol complex P depends both on the protocol
and on the timing and failure characteristics of the
model. P often refers to both the protocol and its
complex, relying on context to disambiguate.

A protocol solves k-set agreement if there is
a simplicial map ı, called decision map, carrying

vertexes of P to values in V such that if Ep 2

P.Sn/ then ı. Ep/ 2 vals.Sn/, and ı maps the
vertexes of any given simplex in P.Sn/ to at
most k distinct values.

Applications

The renaming problem is a key tool for un-
derstanding the power of various asynchronous
models of computation.

Open Problems

Characterizing the full power of the topological
approach to proving lower bounds remains an
open problem.

Cross-References
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�Renaming

Recommended Reading

Perhaps the first paper to investigate the solv-
ability of distributed tasks was the landmark
1985 paper of Fischer, Lynch, and Paterson [6]
which showed that consensus, then considered
an abstraction of the database commitment prob-
lem, had no 1-resilient message-passing solution.
Other tasks that attracted attention include re-
naming [1, 12, 15] and set agreement [3, 5, 12,
10, 15, 17].

In 1988, Biran, Moran, and Zaks [2] gave
a graph-theoretic characterization of decision
problems that can be solved in the presence of
a single failure in a message-passing system.
This result was not substantially improved until
1993, when three independent research teams
succeeded in applying combinatorial techniques
to protocols that tolerate delays by more
than one processor: Borowsky and Gafni [3],
Saks and Zaharoglou [17], and Herlihy and
Shavit [15].
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Later, Herlihy and Rajsbaum used homology
theory to derive further impossibility results for
set agreement and to unify a variety of known
impossibility results in terms of the theory of
chain maps and chain complexes [12]. Using the
same simplicial model.

Biran, Moran, and Zaks [2] gave the first de-
cidability result for decision tasks, showing that
tasks are decidable in the 1-resilient message-
passing model. Gafni and Koutsoupias [7] were
the first to make the important observation that
the contractibility problem can be used to prove
that tasks are undecidable, and suggest a strategy
to reduce a specific wait-free problem for three
processes to a contractibility problem. Herlihy
and Rajsbaum [11] provide a more extensive
collection of decidability results.

Borowsky and Gafni [3], define an iterated
immediate snapshot model that has a recursive
structure. Chaudhuri, Herlihy, Lynch, and
Tuttle [4] give an inductive construction for
the synchronous model, and while the resulting
“Bermuda Triangle” is visually appealing and
an elegant combination of proof techniques
from the literature, there is a fair amount of
machinery needed in the formal description
of the construction. In this sense, the formal
presentation of later constructions is substantially
more succinct.

More recent work in this area includes separa-
tion results [8] and complexity lower bounds [9].
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Problem Definition

A dynamic graph algorithm maintains a given
property P on a graph subject to dynamic
changes, such as edge insertions, edge deletions
and edge weight updates. A dynamic graph
algorithm should process queries on property P
quickly, and perform update operations faster
than recomputing from scratch, as carried out by
the fastest static algorithm. A typical definition is
given below:

Definition 1 (Dynamic graph algorithm) Given
a graph and a graph property P, a dynamic graph
algorithm is a data structure that supports any
intermixed sequence of the following operations:

insert(u, v): insert edge (u, v) into the
graph.
delete(u, v): delete edge (u, v) from the
graph.
query(...): answer a query about prop-
erty P of the graph.

A graph algorithm is fully dynamic if it can
handle both edge insertions and edge deletions
and partially dynamic if it can handle either edge
insertions or edge deletions, but not both: it is
incremental if it supports insertions only, and
decremental if it supports deletions only. Some
papers study variants of the problem where more
than one edge can be deleted of inserted at the
same time, or edge weights can be changed. In
some cases, an update may be the insertion or
deletion of a node along with all edges incident to
them. Some other papers only deal with specific
classes of graphs, e.g., planar graphs, directed
acyclic graphs (DAGs), etc.

There is a vast literature on dynamic graph
algorithms. Graph problems for which efficient
dynamic solutions are known include graph con-
nectivity, minimum cut, minimum spanning tree,

transitive closure, and shortest paths (see, e.g., [3]
and the references therein). Many of them update
explicitly the property P after each update in
order to answer queries in optimal time. This may
be a good choice in scenarios where there are
few updates and many queries. In applications
where the numbers of updates and queries are
comparable, a better approach would be to try
to reduce the update time, possibly at the price
of increasing the query time. This is typically
achieved by relaxing the assumption that the
property P should be maintained explicitly.

This entry focuses on algorithms for dynamic
graph problems that maintain the graph property
implicitly, and thus require non-constant query
time while supporting faster updates. In particu-
lar, it considers two problems: dynamic transitive
closure (also known as dynamic reachability) and
dynamic all-pairs shortest paths, defined below.

Definition 2 (Fully dynamic transitive closure)
The fully dynamic transitive closure problem con-
sists of maintaining a directed graph under an
intermixed sequence of the following operations:

insert(u, v): insert edge (u, v) into the
graph.
delete(u, v): delete edge (u, v) from the
graph.
query(x, y): return true if there is a directed
path from vertex x to vertex y, and false other-
wise.

Definition 3 (Fully dynamic all-pairs short-
est paths) The fully dynamic transitive closure
problem consists of maintaining a weighted di-
rected graph under an intermixed sequence of the
following operations:

insert(u, v): insert edge (u, v) into the
graph with weight w.
delete(u, v): delete edge (u, v) from the
graph.
query(x, y): return the distance from x to y in
the graph, or C1 if there is no directed path
from x to y.

Recall that the distance from a vertex x to a vertex
y is the weight of a minimum-weight path from x
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to y, where the weight of a path is defined as the
sum of edge weights in the path.

Key Results

This section presents a survey of query/update
tradeoffs for dynamic transitive closure and dy-
namic all-pairs shortest paths.

Dynamic Transitive Closure
The first query/update tradeoff for this problem
was devised by Henzinger and King [6], who
proved the following result:

Theorem 1 (Henzinger and King 1995 [6])
Given a general directed graph, there is a ran-
domized algorithm with one-sided error for the
fully dynamic transitive closure that supports
a worst-case query time of O.n= logn/ and an
amortized update time of O.m

p
n log2 n/.

The first subquadratic algorithm for this problem
is due to Demetrescu and Italiano for the case of
directed acyclic graphs [4, 5]:

Theorem 2 (Demetrescu and Italiano 2000
[4, 5]) Given a directed acyclic graph with
n vertices, there is a randomized algorithm
with one-sided error for the fully dynamic
transitive closure problem that supports each
query in O(n�) time and each insertion/deletion in
O.n!.1;�;1/�� C n1C�/, for any � 2 Œ0; 1�, where
!.1; �; 1/ is the exponent of the multiplication of
an n 	 n� matrix by an n� 	 n matrix.

Notice that the dependence of the bounds upon
parameter " leads to a full range of query/update
tradeoffs. Balancing the two terms in the update
bound of Theorem 2 yields that "must satisfy the
equation !.1; �; 1/ D 1C 2�. The current best
bounds on !.1; �; 1/ [2, 7] imply that � < 0:575.
Thus, the smallest update time is O(n1.575), which
gives a query time of O(n0.575) (Table 1):

Corollary 1 (Demetrescu and Italiano 2000
[4, 5]) Given a directed acyclic graph with n
vertices, there is a randomized algorithm with
one-sided error for the fully dynamic transitive
closure problem that supports each query in
O(n0.575) time and each insertion/deletion in
O(n1.575) time.

This result has been generalized to the case of
general directed graphs by Sankowski [13]:

Theorem 3 (Sankowsk 2004 [13]) Given
a general directed graph with n vertices, there
is a randomized algorithm with one-sided error
for the fully dynamic transitive closure problem
that supports each query in O(n) time and each
insertion/deletion in O.n!.1;�;1/�� C n1C�/, for
any � 2 Œ0; 1�, where !.1; �; 1/ is the exponent
of the multiplication of an n 	 n� matrix by an
n� 	 n matrix.

Corollary 2 (Sankowski 2004 [13]) Given
a general directed graph with n vertices, there
is a randomized algorithm with one-sided error
for the fully dynamic transitive closure problem
that supports each query in O(n0.575) time and
each insertion/deletion in O(n1.575) time.

Sankowski has also shown how to achieve an
even faster update time of O(n1.495) at the expense
of a much higher O(n1.495) query time:

Theorem 4 (Sankowski 2004 [13]) Given
a general directed graph with n vertices, there is
a randomized algorithm with one-sided error for
the fully dynamic transitive closure problem that
supports each query and each insertion/deletion
in O(n1.495) time.

Roditty and Zwick presented algorithms designed
to achieve better bounds in the case of sparse
graphs:

Theorem 5 (Roditty and Zwick 2002 [10])
Given a general directed graph with n vertices
and m edges, there is a deterministic algorithm
for the fully dynamic transitive closure problem
that supports each insertion/deletion inO.m

p
n/

amortized time and each query in O.
p
n/ worst-

case time.

Theorem 6 (Roditty and Zwick 2004 [11])
Given a general directed graph with n
vertices and m edges, there is a deterministic
algorithm for the fully dynamic transitive closure
problem that supports each insertion/deletion in
O.mC n logn/ amortized time and each query
in O(n) worst-case time.
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Trade-Offs for Dynamic Graph Problems, Table 1 Fully dynamic transitive closure algorithms with implicit solution
representation

Type of graphs Type of algorithm Update time Query time Reference

General Monte Carlo O.m
p

n log2 n/amort O.n= log n/ HK [6]

DAG Monte Carlo O(n1.575) O(n0.575) DI [4]

General Monte Carlo O(n1.575) O(n0.575) Sank. [13]

General Monte Carlo O(n1.495) O(n1.495) Sank. [13]

General Deterministic O.m
p

n/amort O.
p

n/ RZ [10]

General Deterministic O.m C n log n/amort O(n) RZ [11]

Observe that the results of Theorem 5 and The-
orem 6 are subquadratic for m D o.n1:5/ and
m D o.n2/, respectively. Moreover, they are not
based on fast matrix multiplication, which is
theoretically efficient but impractical.

Dynamic Shortest Paths
The first effective tradeoff algorithm for dynamic
shortest paths is due to Roditty and Zwick in
the special case of sparse graphs with unit edge
weights [12]:

Theorem 7 (Roditty and Zwick 2004 [12])
Given a general directed graph with n vertices, m
edges, and unit edge weights, there is a random-
ized algorithm with one-sided error for the fully
dynamic all-pairs shortest paths problem that
supports each distance query in O.t C

n log n
k
/

worst-case time and each insertion/deletion in
O.

mn2 log n

t2 C kmC mn log n
k

/ amortized time.

By choosing k D .n logn/1=2 and .n logn/1=2 �

t � n3=4.logn/1=4 in Theorem 7, it is possible to

obtain an amortized update time of O.mn2 log n

t2 /

and a worst-case query time of O(t). The fastest
update time of O.m

p
n logn/ is obtained by

choosing t D n3=4.logn/1=4.

Later, Sankowski devised the first sub-
quadratic algorithm for dense graphs based on
fast matrix multiplication [14]:

Theorem 8 (Sankowski 2005 [14]) Given
a general directed graph with n vertices and
unit edge weights, there is a randomized
algorithm with one-sided error for the fully
dynamic all-pairs shortest paths problem that
supports each distance query in O(n1.288)

time and each insertion/deletion in O(n1.932)
time.

Applications

The transitive closure problem studied in this en-
try is particularly relevant to the field of databases
for supporting transitivity queries on dynamic
graphs of relations [16]. The problem also arises
in many other areas such as compilers, interac-
tive verification systems, garbage collection, and
industrial robotics.

Application scenarios of dynamic shortest
paths include network optimization [1], docu-
ment formatting [8], routing in communication
systems, robotics, incremental compilation,
traffic information systems [15], and dataflow
analysis. A comprehensive review of real-world
applications of dynamic shortest path problems
appears in [9].

Open Problems

It is a fundamental open problem whether the
fully dynamic all pairs shortest paths problem of
Definition 3 can be solved in subquadratic time
per operation in the case of graphs with real-
valued edge weights.

Cross-References

�All Pairs Shortest Paths in Sparse Graphs
�All Pairs Shortest Paths via Matrix Multiplica-

tion
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Problem Definition

A transactional memory (TM) is a concurrency
control mechanism for executing accesses
to memory shared by multiple processes. A
transaction, in this context, is a section of code
that executes a series of reads and writes to the
shared memory as one atomic indivisible unit.
As a result, intermediate states of a transaction
are hidden from other concurrent transactions,
and it is only possible to see either all of the
modifications of a transaction or none of them.
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The goal of transactional memory is to provide
an alternative to lock-based concurrency control.
A programmer can replace the use of lock-based
critical sections with transactions and rely on
the TM system to execute these sections concur-
rently while preserving their atomicity. During
the execution, the TM system tracks the reads
and writes to the shared memory by the different
transactions and, in this way, is able to detect
conflicts: situations in which transactions are ex-
ecuting operations to the same memory location.
Most TM systems are optimistic, executing with
the expectation that there will be few conflicts or
none. When a conflict is detected, the TM system
may have to abort and restart the transaction.
The modifications to memory performed by a
transaction must thus be reversible.

The concept of transactional memory and a
pure hardware implementation of it (HTM) were
proposed by Herlihy and Moss [9] in 1993. Two
years later, Shavit and Touitou proposed a pure
software implementation (STM) [16], and since
then HTM and STM systems have been in the
focus of intensive research efforts to make them
simple and practical for general use. Today’s TM
systems are not pure hardware or software, but
rather a hybrid of HTM and STM.

Key Results

TM C/C++ Specification and Compiler
Support
Transactional memory became an industry stan-
dard with the addition of transactional language
constructs into the C++ specification [1]. The lat-
est GNU C/C++ compiler implements these TM
constructs and provides runtime support for state-
of-the-art TM algorithms. Figure 1 shows an
example of a GCC TM transaction that is defined
by using the new __transaction_atomic keyword.

HTM in Mainstream Processors
The latest commodity Intel and IBM proces-
sors provide support for hardware transactions
by leveraging the processor’s hardware cache-
coherence protocol to track transactional reads
and writes and detect conflicts. They unfortu-
nately provide no progress guarantee for hard-

int red_black_tree_contains(node *root, int value) {
     node *cur_node = root;

    __transaction_atomic
    {
        while (cur_node != NULL)
        {
             If (cur_node.value == value) {
                 return true;
             }
             If (cur_node.value < value) {
                cur_node = cur_node.left;
             } else {
                cur_node = cur_node.right;
             }
       }
       return false;
    }
}

Transactional Memory, Fig. 1 An example of using
the GCC TM mechanism to define the red-black tree
contains(. . . ) operation as a transaction

ware transactions: a transaction may fail due
to a hardware-related reason (like an L1 cache
capacity overflow or an interrupt), and this can
happen repeatedly so the transaction may never
succeed. To overcome this limitation and provide
a progress guarantee, researchers have developed
hybrid TM systems [5, 10, 11] that execute failed
hardware transactions in an all-software fallback
path.

STM Implementations
Software transactions have become much faster
and more practical since their introduction
by Shavit and Touitou. The state-of-the-art
TL2/LSA style STM designs [6, 7] provide
software transactions with a guarantee of
opacity [8]: the transaction always executes
on a consistent memory state. Opacity enables
simple STM runtime implementations, since it
effectively eliminates the need to detect and
handle any runtime errors that could be generated
by inconsistent executions.

The TL2/LSA style STMs use a global clock
and per object metadata to coordinate transac-
tions, which introduce high constant overheads
for reads and writes compared to the pure ex-
ecution of those reads and writes in hardware.
As a result, the TL2/LSA STMs usually perform



2248 Transactional Memory

well at high concurrency levels, but exhibit poor
results for low concurrency. Unlike hardware
transactions, they provide a progress guarantee.
An alternative design to TL2/LSA is the NORec
STM [4] that has no per object metadata and
only uses a single global clock to coordinate
transactions. The overheads of NORec are very
low and operate well at low concurrency levels.

Hardware Lock Elision
Hardware lock elision (HLE) [14] is a mech-
anism provided by the HTM systems of Intel
and IBM and used to optimize lock-based crit-
ical sections. The idea of HLE is simple: try
to execute the lock-based critical sections con-
currently, by using hardware transactions, and if
there is a conflict, then fall back to the serial
lock-based execution. In this way, the HLE can
automatically introduce concurrency into non-
conflicting lock-based critical sections, without
the need to modify the existing application’s
code.

Hybrid TM
In order to provide both the performance of
hardware and the guarantee of progress of the
software implementations, recent TM systems are
a hybrid of HTM and STM. A typical hybrid
TM first tries to execute transactions in hardware,
and if the transaction fails to commit, then it
falls back to execute it in software. The key
feature of a good hybrid TM is that it provides
concurrency between transactions, some of which
are executing in hardware and some in software.
Recent research shows that it is challenging to
provide hardware-software coordination to make
hybrid TMs work efficiently [2, 3, 12, 13, 15].

TM Applications
It is still not clear how exactly TM will be used.
The intention is that TM will replace the use
of locks in application code. Replacing locks in
existing code is proving to be a complex task.
The main issues arise from the fact that trans-
actions must be able to abort. This means that
any side effect or update of a transaction must be
reversible, and this constrains the programmer to
use only functions that can be undone. The main
problem now is that the standard libraries and the

C++ STL do not provide full support for TM.
Providing such support would be a major step
forward toward simple applicability.

The hope going forward is that new
programming languages will include transac-
tional memory mechanisms in the language itself
and thus allow future code to be written a priori in
a transactional fashion without the use of locks.
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Problem Definition

In the traveling salesman problem (TSP) n cities
1, 2, : : :, n together with all the pairwise dis-
tances d(i, j) between cities i and j are given.
The goal is to find the shortest tour that visits
every city exactly once and in the end returns
to its starting city. The TSP is one of the most
famous problems in combinatorial optimization,
and it is well-known to be NP-hard. For more
information on the TSP, the reader is referred to
the book by Lawler, Lenstra, Rinnooy Kan, and
Shmoys [14].

A special case of the TSP is the so-called
Euclidean TSP, where the cities are points in the
Euclidean plane, and the distances are simply
the Euclidean distances. A special case of the
Euclidean TSP is the convex Euclidean TSP,
where the cities are further restricted so that they
lie in convex position. The Euclidean TSP is
still NP-hard [4, 17], but the convex Euclidean
TSP is quite easy to solve: Running along the
boundary of the convex hull yields a shortest
tour. Motivated by these two facts, the following
natural question is posed: What is the influence
of the number of inner points on the complexity
of the problem? Here, an inner point of a finite
point set P is a point from P which lies in the
interior of the convex hull of P. Intuition says that
“Fewer inner points make the problem easier to
solve.”

The result below answers this question and
supports the intuition above by providing simple
exact algorithms.

Key Results

Theorem 1 The special case of the Euclidean
TSP with few inner points can be solved in the
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following time and space complexity. Here, n
denotes the total number of cities and k denotes
the number of cities in the interior of the convex
hull. 1. In time O.kŠkn/ and space O(k). 2. In
time O(2k k2 n) and space O(2k kn) [1].

Here, assume that the convex hull of a given point
set is already determined, which can be done in
time O.n logn/ and space O(n). Further, note that
the above space bounds do not count the space
needed to store the input but they just count the
space in working memory (as usual in theoretical
computer science).

Theorem 1 implies that, from the viewpoint
of parameterized complexity [2, 3, 16], these
algorithms are fixed-parameter algorithms, when
the number k of inner points is taken as a param-
eter, and hence the problem is fixed-parameter
tractable (FPT). (A fixed-parameter algorithm
has running time O.f .k/poly.n//, where n is the
input size, k is a parameter and f WN ! N is an
arbitrary computable function. For example, an
algorithm with running time O.5kn/ is a fixed-
parameter algorithm whereas one with O.nk/ is
not.) Observe that the second algorithm gives
a polynomial-time exact solution to the problem
when k D O.logn/.

The method can be extended to some general-
ized versions of the TSP. For example, Deı̆neko
et al. [1] stated that the prize-collecting TSP and
the partial TSP can be solved in a similar manner.

Applications

The theorem is motivated more from a theoretical
side rather than an application side. No real-world
application has been assumed.

As for the theoretical application, the view-
point (introduced in the problem definition sec-
tion) has been applied to other geometric prob-
lems. Some of them are listed below.

The Minimum Weight Triangulation Problem:
Given n points in the Euclidean plane, the
problem asks to find a triangulation of the

points which has minimum total length. The
problem is now known to be NP-hard [15].
Hoffmann and Okamoto [10] proved that
the problem is fixed-parameter tractable
with respect to the number k of inner
points. The time complexity they gave is
O.6kn5 logn/. This is subsequently improved
by Grantson, Borgelt, and Levcopoulos [6]
to O(4kkn4) and by Spillner [18] to O(2kkn3).
Yet other fixed-parameter algorithms have
also been proposed by Grantson, Borgelt,
and Levcopoulos [7, 8]. The currently best
time complexity was given by Knauer and
Spillner [13] and it is O.2c

p
k log kk3=2n3/

where c D .2C
p
2/=.

p
3 �

p
2/ < 11.

The Minimum Convex Partition Problem:
Given n points in the Euclidean plane, the
problem asks to find a partition of the convex
hull of the points into the minimum number of
convex regions having some of the points as
vertices.

Grantson and Levcopoulos [9] gave an al-
gorithm running in O(k6k�5216k n) time. Later,
Spillner [19] improved the time complexity to
O(2kk3 n3).

The Minimum Weight Convex Partition
Problem: Given n points in the Euclidean plane,

the problem asks to find a convex partition of
the points with minimum total length.

Grantson [5] gave an algorithm running
in O.k6k�5216kn/ time. Later, Spillner [19]
improved the time complexity to O(2k k3n3).

The Crossing Free Spanning Tree Problem:
Given an n-vertex geometric graph (i.e.,
a graph drawn on the Euclidean plane
where every edge is a straight line segment
connecting two distinct points), the problem
asks to determine whether it has a spanning
tree without any crossing of the edges. Jansen
and Woeginger [11] proved this problem is
NP-hard.

Knauer and Spillner [12] gave algo-
rithms running in O(175kk2 n3) time and
O.233

p
k log kk2n3/ time.



Traveling Sales Person with Few Inner Points 2251

T

The method proposed by Knauer and Spill-
ner [12] can be adopted to the TSP as well.
According to their result, the currently best time
complexity for the TSP is 2O.

p
k log k/poly.n/.

Open Problems

Currently, no lower bound result for the time
complexity seems to be known. For example, is it
possible to prove under a reasonable complexity-
theoretic assumption the impossibility for the ex-
istence of an algorithm running in 2O.

p
k/poly.n/

for the TSP?
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Problem Definition

A tree is a connected graph with no cycle. A
rooted tree is a tree with one designated vertex,
called the root. For each vertex v except the root
in a rooted tree, the parent of v is the neighbor

vertex of v on the path between v and the root. If
vertex p is the parent of vertex c, then c is a child
of p. An ordered tree is a rooted tree in which
the children of each vertex are ordered. The five
ordered trees having four vertices are shown in
Fig. 1. An unordered tree is a rooted tree in which
the ordering of the children of each vertex does
not matter. The four ordered trees having four
vertices are shown in Fig. 2

Given an integer n the problem of tree
enumeration asks for generating all ordered
(or unordered) trees with n vertices. Several
tree generation algorithms are explained in
[3] and [2].

Key Results

Tree counting began with Cayley in 1889 to enu-
merate the saturated hydrocarbons, “CnH2nC2,”
which can be modeled as trees.

The number of ordered trees with n vertices is
Cn�1 [6], where Cn is the nth Canatal number,
defined as follows:

Cn D
2nCn

nC 1

The number of binary trees with n leaves is Cn.
No formula for the number of unordered trees
with n vertices is known, but the number for
n � 40 is listed at [6, p. 624]. There is a nat-
ural one-to-one correspondence between ordered
trees with n vertices and binary tree with n leaves
[3]. (For each vertex v of an ordered tree if we
regard its first child and its next younger sibling
as the left child and the right child of v one can
have a binary tree in which the root has only one
child.) So one can use enumeration algorithm for
ordered trees to enumerate binary trees.

Enumeration of All Ordered Trees
Using reverse search method [1], one can enu-
merate all ordered trees with n vertices in O.1/
time for each [4]. We sketch the method in [4].
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Tree Enumeration, Fig. 1
The ordered trees with four
vertices

Tree Enumeration, Fig. 2 The unordered trees with four
vertices

Let Sn be the set of all ordered trees with
n > 1 vertices. Let T be a tree in Sn and
RP D .r0; r1; : : : ; rk/ be the “rightmost path”
of T , which is the path from the root to the
rightmost leaf (a leaf is a vertex having no child)
such that ri is the rightmost child of ri�1 for
each i D 1; 2; : : : ; k. Removing the last vertex
rk and the edge attaching to it results in a tree
with one less vertices. We repeat such removal
of the last vertex of the rightmost path, until the
resulting tree consists of exactly one vertex. An
example of such repetitive removal is shown in
Fig. 3. We call the sequence of ordered trees the
removal sequence of T . The sequence has n trees
and always ends with the tree with exactly one
vertex. If we merge the removal sequences of all
T in Sn, then we have the (unordered) tree Tn,
called the family tree of Sn. An example is shown
in Fig. 4. Note that Tn has all trees in Sn at its
leaves.

The reverse search method [1] efficiently tra-
verses the family tree (without storing the family
tree in the memory) and output each tree in Sn

at each leaf. Thus, we can efficiently enumerate
all trees in Sn. The algorithm enumerates all
ordered trees with n vertices in O.1/ time for
each [4].

With some additional ideas, given two integers
n and k, one can also enumerate all ordered trees
with n vertices including k leaves in O.1/ time
for each [7].

Enumeration of All Unordered Trees
Using a generalized version of the algorithm
above, one can also enumerate all unordered
trees with n vertices in O.1/ time for each [5].
The algorithm generates the next tree in O.1/

time using the “prepostorder traversal” technique
[3, p. 31]. Since the ordering of the children of
each vertex is not fixed we define a “canoni-
cal” ordered tree for each unordered tree and
define the family tree of the canonical ordered
trees. The structure of the family tree is not so
simple and this result in a more complicated
algorithm.

Cross-References

�Enumeration of Paths, Cycles, and Spanning
Trees

�Reverse Search; Enumeration Algorithms
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Tree Enumeration, Fig. 3 An example of the removing sequence

Tree Enumeration, Fig. 4 The family tree F5
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Problem Definition

The treewidth of graphs is defined in terms of tree
decompositions. A tree decomposition of a graph
G = (V;E) is a pair ({Xi ji 2 I}, T = (I; F )) with
{Xi ji 2 I} a collection of subsets of V, called
bags, and T, a tree, such that

• O.k
p

log k/.
• For all {v;w} 2 E, there is an i 2 I with v,

w 2 Xi .
• For all v 2 V , the set {i 2 I jv 2 Xi } induces

a connected subtree of T .

The width of a tree decomposition is max i2I jXi j

�1, and the treewidth of a graph G is the mini-
mum width of a tree decomposition ofG (Fig. 1).

An alternative definition is in terms of chordal
graphs. A graph G D .V;E/ is chordal, if and
only if each cycle of length at least 4 has a chord,
i.e., an edge between two vertices that are not suc-
cessive on the cycle. A graph G has treewidth at
most k, if and only ifG is a subgraph of a chordal
graphH that has maximum clique size at most k.

A third alternative definition is in terms of
orderings of the vertices. Let 
 be a permutation

(called elimination scheme in this context) of the
vertices of G D .V;E/. Repeat the following
step for i = 1,. . . , jV j: take vertex 
.i/, turn
the set of its neighbors into a clique, and then
remove v. The width of 
 is the maximum over
all vertices of its degree when it was eliminated.
The treewidth of G equals the minimum width
over all elimination schemes.

In the treewidth problem, the given input is an
undirected graph G D .V;E/, assumed to be
given in its adjacency list representation, and a
positive integer k < jV j. The problem is to de-
cide ifG has treewidth at most k and, if so, to give
a tree decomposition of G of width at most k.

Key Results

Theorem 1 (Arnborg et al. [2]) The problem,
given a graph G and an integer k, is to decide
if the treewidth of G of at most k is nondetermin-
istic polynomial-time (NP) complete.

For many applications of treewidth and tree
decompositions, the case where k is assumed
to be a fixed constant is very relevant. Arnborg
et al. [2] gave in 1987 an algorithm that solves
this problem inO.nkC2/ time. A number of faster
algorithms for the problem with k fixed have been
found; see, e.g., [6] for an overview.

Theorem 2 (Bodlaender [5]) For each fixed
k, there is an algorithm that, given a graph
G D .V;E/ and an integer k, decides if the
treewidth of G is at most k and, if so, that finds
a tree decomposition of width at most k in O.n/
time.

This result of Theorem 2 is of theoretical
importance only: in a practical setting, the
algorithm appears to be much too slow owing to
the large constant factor, hidden in theOnotation.
For treewidth 1, the problem is equivalent to
recognizing trees. Efficient algorithms based on
a small set of reduction rules exist for treewidth
2 and 3 [1].
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Treewidth of Graphs,
Fig. 1 A graph and a tree
decomposition of width 2
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Two often-used heuristics for treewidth are the
minimum fill-in and minimum degree heuristic.
In the minimum degree heuristic, a vertex v of
minimum degree is chosen. The graph G0, ob-
tained by making the neighborhood of v a clique
and then removing v and its incident edges, is
built. Recursively, a chordal supergraph H 0 of
G0 is made with the heuristic. Then, a chordal
supergraph H of G is obtained, by adding v and
its incident edges from G to H 0. The minimum
fill-in heuristic works similarly, but now a vertex
is selected such that the number of edges that is
added to make the neighborhood of v a clique is
as small as possible.

Theorem 3 (Fomin and Villanger [11]) There
is an algorithm that, given a graph G D .V;E/,
determines the treewidth of G and finds a tree
decomposition of G of minimum width that uses
O(1.7549n/ time.

Bouchitté and Todinca [10] showed that the
treewidth can be computed in polynomial time
for graphs that have a polynomial number of min-
imal separators. This implies polynomial-time
algorithms for several classes of graphs, e.g.,
permutation graphs, weakly triangulated graphs.

Applications

One of the main applications of treewidth and
tree decomposition is that many problems that
are intractable (e.g., NP-hard) on arbitrary graphs
become polynomial time or linear time solvable
when restricted to graphs of bounded treewidth.
The problems where this technique can be ap-
plied include many of the classic graph and net-
work problems, like Hamiltonian circuit, Steiner
tree, vertex cover, independent set, and graph
coloring, but it can also be applied to many other

problems. The technique can sometimes be used
for directed graphs [12]. It is also used in the
algorithm by Lauritzen and Spiegelhalter [14]
to solve the inference problem on probabilistic
(“Bayesian,” or “belief”) networks. Such algo-
rithms typically have the following form. First,
a tree decomposition of bounded width is found,
and then a dynamic programming algorithm is
run that uses this tree decomposition. Often, the
running time of this dynamic programming al-
gorithm is exponential in the width of the tree
decomposition that is used, and thus one wants
to have a tree decomposition whose width is as
small as possible.

There are also general characterizations of
classes of problems that are solvable in linear
time on graphs of bounded treewidth. Most no-
table is the class of problems that can be formu-
lated in monadic second-order logic and exten-
sions of these.

Treewidth has been used in the context of
several applications or theoretical studies, includ-
ing graph minor theory, data bases, constraint
satisfaction, frequency assignment, compiler op-
timization, and electrical networks.

Open Problems

There are polynomial-time approximation algo-
rithms for treewidth that guarantee a width of
S

i2I Xi D V for graphs of treewidth k. Austrin
et al. [3] show that there is no constant factor ap-
proximation for treewidth under the small set ex-
pansion conjecture. A long-standing open prob-
lem is whether there is a polynomial-time algo-
rithm to compute the treewidth of planar graphs.

Also open is to find an algorithm for the case
where the bound on the treewidth k is fixed
and whose running time as a function on n is
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polynomial and as a function on k improves
significantly on the algorithm of Theorem 2.

The base of the exponent of the running time
of the algorithm of Theorem 3 can possibly be
improved.

Experimental Results

Many algorithms (upper-bound heuristics, lower-
bound heuristics, exact algorithms, and prepro-
cessing methods) for treewidth have been pro-
posed and experimentally evaluated. An overview
of many of such results is given in [10]. A variant
of the algorithm by Arnborg et al. [2] was imple-
mented by Shoikhet and Geiger [18]. Röhrig [17]
has experimentally evaluated the linear-time al-
gorithm of Bodlaender [5] and established that it
is not practical, even for small values of k. The
minimum degree and minimum fill-in heuristics
are frequently used [13].

Data Sets

A collection of test graphs and results for many
of the algorithms on these graphs can be found in
the TreewidthLIB collection [7].
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Problem Definition

This problem investigates the effect of the lack
of input information on computational hardness.
The central question under investigation is the
following:

How much extra difficulty is introduced due to the
lack of input knowledge?

We explore this question by studying search
problems. Suppose that on an input instance x,
there is a set S.x/ of solutions. A search problem
is to find a solution s 2 S.x/ for the input x.
More specifically, we consider the fairly broad
class of Constraint Satisfaction Problems (CSPs):
Suppose that there is an input space f0; 1gn and
a space ˝ D f0; 1gm of candidate solutions.
The problem is defined by a number of con-
straints C1; C2; : : : ; Cm.; : : :/, where each Ci W

f0; 1gnCm ! f0; 1g is a 0-1 function on the input
and solution variables. The valid solutions for
input x are defined as those s that satisfy all con-
straints Ci , i.e., those in fs W Ci .x; s/ D 1;8ig.
Note that the number of constraints can range
from constant to polynomial, exponential, or even
infinite. CSPs form a subject with intensive re-

search in theoretical computer science, artificial
intelligence, and operations research, and they
provide a common basis for exploration of a large
number of problems with both theoretical and
practical importance.

The standard setting for CSP is to find a
solution s on a given input x. Now consider
the situation in which the input x is unknown.
For a search problem A, denote by Au Au the
same search problem with unknown inputs. For
example, in the StableMatching problem, the
input contains the preference lists of all men and
women; in StableMatchingu, these preference
lists are unknown to us. The constraints are that
all man-woman pairs .m;w/ are not blocking
pairs, and the task is to find a solution that sat-
isfies all constraints, namely, a stable matching.

The method of searching for a solution of
an unknown CSP follows a trial and error ap-
proach. Trial and error is a basic methodology
in problem solving and knowledge acquisition,
and it has also been used extensively in product
design and experiments. In our setting for CSPs,
an algorithm can propose a candidate solution s.
If s is not a valid solution, then we are told so
by a verification oracle V, and furthermore, V
also gives the index of one constraint that is not
satisfied. If s is a valid solution, i.e., it satisfies all
constraints, V returns an affirmative answer, and
the problem is solved. Two remarks:

• If more than one constraint is violated, then
(the index of) any one of them can be returned
by V.

• Note that V does not reveal the constraint
itself, but only its index.

Given the verification oracle V, an algorithm
is an interactive process with V. The algorithm
chooses candidate solutions (i.e., trials), and the
oracle returns violations (i.e., errors). The process
is adaptive, i.e., a newly proposed solution can be
based on the historical information returned by
the oracle.

Because the focus is on how much extra diffi-
culty is introduced by the lack of input informa-
tion for a search problem A, we single out this
by comparing the unknown-input and known-



Trial and Error Algorithms 2259

T

input complexities. To this end, the algorithms are
equipped with another oracle, the computation
oracle, which can solve the known-input version
of the same problem A. Thus overall, trial-and-
error algorithms can access two oracles, the veri-
fication oracle and the computation oracle.

The model is motivated from several
applications in practice; please see [4] for more
discussions.

Time Complexity
As is standard in complexity theory, a query
to either oracle has a unit time cost. The time
complexity of a problem with unknown inputs is
the minimum time needed for an algorithm to
solve it for all inputs and all verification oracles
consistent with the input. The standard notation
in computational complexity theory for complex-
ity classes such as P and NP and also for oracles
are employed. For example, Au 2 PV;A means
that problem Au can be solved by a polynomial-
time algorithm with verification oracle V and the
computation oracle that can solve the known-
input version of A. If this occurs, then one con-
sider the extra complexity (resulting from the
unknown input) not to be very high. The central
question can therefore be translated to the follow-
ing. Given a search problem A, is Au 2 PV;A? If
the given known-input problem A is in P, then
the computation oracle can be omitted, and the
problem becomes “Is Au 2 PV?”

Trial Complexity
The trial complexity of an unknown-input prob-
lem Au is defined as the minimum number of
queries to the verification oracle that any algo-
rithm needs to make, regardless of its computa-
tional power. As is standard in query complexity
theory, one can consider deterministic or (Las
Vegas) randomized algorithms. Denote by D.Au/

and R.Au/ the deterministic and randomized trial
complexities of Au, respectively.

Key Results

The trial and time complexities of a number of
problems are investigated in the trial and error
model.

Theorem 1 ([4]) For the following problems A,
we have Au 2 PV;A.

• Nash: Find a Nash equilibrium of a normal-
form game.

• Core: Find a core of a cooperative game.
• StableMatching: Find a stable matching of a

two-sided market with preference lists.
• SAT: Find a satisfying assignment of a CNF

formula.

Nash is a fundamental problem in game the-
ory, and its complexity has been characterized
as PPAD-complete [6, 7]. Core is a fundamental
problem in cooperative game theory [10]. Both
problems are naturally defined as CSPs. Nash
can be formulated as a CSP of finding a pair of
mixed strategies, where the constraints are that
for each player, for each strategy, adopting that
strategy is not better than the current (mixed)
strategy. StableMatching is a problem with in-
teresting combinatorial structures and many ap-
plications, such as the pairing of graduating med-
ical students with hospital residencies [11, 12].
Formally, given are two sets of elements M and
W , each element having a preference list of
elements in the other set. The task is to find a
matching of the two sets s.t. No two unmatched
elements .mi ;wj / both prefer each other to the
currently assigned one. In the unknown input
version, the preference list of each individual is
not known. The algorithm can propose a match-
ing; if it is not stable in the above sense, then a
pair .mi ;wj / not satisfying the above property,
sometimes called “blocking pair,” is returned.
SAT is a natural CSP, with the constraints being
the OR of some literals.

Considering the practical significance of
StableMatching and SAT, the next theorem
takes a closer look at their trial complexities.

Theorem 2 ([4])

• ˝.n2/ � R.StableMatchingu/ �

D.StableMatchingu/ � O.n2 logn/, where
n is the number of agents.

• Given a formula with n variables and m

clauses, R.SATu/ � D.SATu/ D O.mn/.
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Further, R.SATu/ D ˝.mn/ if m D ˝.n2/,
and R.SATu/ D ˝.m3=2/ if m D o.n2/.

It is somewhat surprising that knowing only
the indices of violated constraints is already suf-
ficient to admit quite a number of efficient algo-
rithms. It is therefore natural to wonder whether
the lack of input information adds any extra
difficulty at all in any problem. The answer turns
out to be affirmative: there are problems whose
unknown-input versions are considerably more
difficult than their known versions. Two rep-
resentatives are GraphIso and GroupIso, the
problems of deciding whether two given graphs
or groups are isomorphic.

Theorem 3 ([4])

• If GraphIsou 2 PV;GraphIso, then the polyno-
mial hierarchy (PH) collapses to the second
level.

• If GroupIso.�;Zp/u 2 PV, then we have
P D NP. (Here, GroupIso.�;Zp/ is the group
isomorphism problem with the second group
known as Zp for a prime p.) If GroupIsou 2

PV;GroupIso, then we have NP � PO.log n/.

However, if SAT is given as the computation
oracle, then deterministic polynomial-time algo-
rithms exist for GraphIso and GroupIso, i.e.,
GraphIsou 2 PV;SAT and GroupIsou 2 PV;SAT,
with O.n2/ and O.n6/ trials, respectively.

Note that GroupIso.�;Zp/ (with a known in-
put) admits a simple polynomial-time algorithm
by comparing the multiplication tables. Actu-
ally, GroupIso is in P if the two groups are
Abelian. However, if the multiplication table of
the input group is unknown, then surprisingly,
the problem becomes NP-hard. Putting the com-
putational hardness and the low trial complexity
together, one can see that if more computational
time (enough to solve an NP problem) is given,
then less trials are needed. This interesting trade-
off between the two complexity measures is not
commonly seen in other query models.

Finally, beyond all of the foregoing problems
that can be solved in PV;SAT, one can show via an

information theoretical argument that the follow-
ing two problems have exponential lower bounds
for the randomized trial complexity.

• LinearProgramming: Find a feasible solu-
tion of a linear program with n variables and
m constraints.

• SubsetSum: Decide whether a given set of n
integers can be partitioned into two parts with
equal summation of elements.

Theorem 4 ([4, 5])

• R.LinearProgrammingu/ D ˝.mbn=2c/.
• R.SubsetSumu/ D ˝.2n/.

The approaches for Nash and LP are actually
similar, yet the running time differs significantly.
The key property that guarantees the efficiency
of the algorithm for Nash is the existence of
Nash equilibrium for any finite game. The algo-
rithm for Nash could thus serve as an interesting
example to illustrate how the solution-existing
property helps computational efficiency.

Moreover, the following time complexity up-
per bound for LinearProgrammingu is estab-
lished, which is exponential in the number of
variables but not in the number of constraints.

Theorem 5 ([5]) The LinearProgrammingu

problem with m constraints, n variables, and
input size L can be deterministically solved in
time .mnL/poly.n/. In particular, the algorithm
is of polynomial time for constant dimensional
linear programming (i.e., constant number of
variables n).

In summary, these results illustrate the variety
of time and trial complexities that arise from the
lack of input information for different problems
and imply distinct levels of the cruciality of input
information for different problems.

Related Work

The trial and error model bears a resemblance to
certain other problems and models, e.g., learning,
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algorithm design in unknown environments, el-
lipsoid method, and query complexity. However,
there are fundamental distinctions between these
models and ours. (More discussions are referred
to [4].)

Learning
Trial and error model has apparent connections to
various learning theories (e.g., concept learning
with membership or equivalence query [1], de-
cision tree learning, reinforcement learning [3],
and (semi-)supervised learning [2]), but funda-
mental differences also exist. A common high-
level philosophy of various learning models is
to “sample and predict,” which is very different
from our “trial and search” (for a solution) in
current setting. With its solution-oriented objec-
tive and advantages in computational efficiency,
the trial and error model is hopefully to serve
as a useful supplement to existing learning the-
ories, particularly in contexts in which the un-
known object itself is impossible or unafford-
able to learn and the only available access to
the unknown is through a solution-verification
process.

Ellipsoid Method
The ellipsoid method is an elegant approach
for proving the polynomial time solvability of
a class of combinatorial optimization problems
(see, e.g., [8]); it applies even when the explicit
expressions of the constraints are unknown. The
algorithm works as long as there exists an oracle
that, on a proposed candidate solution, returns a
violation in the form of a separating hyperplane.

In general, trial and error model has a simi-
larity to the ellipsoid method, in which a point is
proposed as a trial and a separating hyperplane is
returned as an error. Our LinearProgrammingu

problem studies how to solve linear programs
where the returned error is merely the index of
a violated hyperplane (with the actual hyperplane
still hidden). Moreover, the trial and error model
includes a much broader class of search problems
– not only convex optimization problems, but also
many with pure combinatorial structures (e.g.,
the SAT, GroupIso, and GraphIso problems

discussed here). From this perspective, the ellip-
soid method is only one possible approach for
the trial and error search problems in current
model.
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Problem Definition

The main problem consists in designing
space-efficient data structures allowing to
represent the connectivity of triangle meshes
while supporting fast navigation and local
updates.

Mesh Structures: Definition
Triangle meshes are among the most common
representations of shapes. A triangle mesh is a
collection of triangle faces that define a poly-
hedral approximation of a surface. A mesh is
manifold if every edge is bounding either one
or two triangles and if the faces incident to a
same vertex define a closed or open fan. Here
we focus on manifold meshes. Assuming that
the genus and the number of boundary edges are
negligible when compared to the number n of
vertices, the number m of faces is roughly equal
to 2n.

Data Structures: Classification
Mesh data structures can be compared with re-
spect to several criteria. A basic requirement
(the traversability) for mesh representations is
to provide fast navigational operators allowing
to perform a mesh traversal (such as walking
around a vertex). Most representations are also
indexable, allowing to access in constant time to
the description of a given vertex or triangle, given
its index. In order to support efficient processing
of large meshes, one needs to reduce memory
trashing during navigation. An effective way of
doing so is to design compact data structures
requiring small storage. Many applications ask
for the modifiability: the manipulation of meshes
requires to perform updates such as vertex in-
sertions/deletions, edge collapses, and edge flips.
The choice of the data structure should also
depend on the simplicity of its implementation
and on its practical efficiency on common input
data.

Standard Mesh Representations
Some common mesh representations are
implemented in the explicit pointer-based form.
References are used to describe incidence
relations between mesh elements, and navigation
is performed throughout address indirection.
For example, a face-based representation [2]
provides operators vertex.4; i / (giving the i th
vertex of a triangle 4) and neighbor.4; i /
(giving the i -neighbor of 4), as well as
operator face.v/ (returning a triangle incident
to vertex v). As illustrated in Fig. 1a, the
combination of these operators allows to
implement operators faceIndex.41;42/

(giving the index of 41 among the neighbors of
42) and vertexIndex.v;4/ (giving the index
of a vertex in 4). An alternative solution is given
by the Corner Table proposed by Rossignac and
colleagues, which uses integer indices to integer
tables and provides a triangulation interface
involving the corner operators defined in Fig. 2.

The two abstract data types above fully
support local navigation in the mesh: the face-
based as well as corner operators support efficient
mesh exploration (see Figs. 1 and 2). A simple
implementation stores explicitly all incidence
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int i = faceIndex(g, next);

g = next;
d + +;}

return d; }

�

v

g0

g1
g2 i

i+1 i+2

z

class Quad extends Patch {
 Patch p1, p2, p3, p4;
 Vertex v1, v2, v3, v4;
}

class Pentagon extends Patch {
 Patch p1, p2, p3, p4, p5;
 Vertex v1, v2, v3, v4, v5;
}

class Hexagon extends Patch {
 Patch p1, p2, p3, p4, p5, p6;
 Vertex v1, v2, v3, v4, v5, v6;
} e p

q

b

a

Triangulation Data Structures, Fig. 1 (a) Triangle-
based data structure: each triangle stores references to
the 3, neighbors and to the 3 incident vertices yielding

13rpv. (b) Catalog-based representation: using a catalog
of size 3 one can guarantee that any quad is adjacent to at
most two other quads, leading to a cost of 8:5 rpv

relations involving faces or corners, using 6

references per triangle plus one reference per
vertex (describing the map from vertices to
faces): according to Euler formula, this leads to
a storage cost of 13 references per vertex (rpv).
The results of triangle.c/ and next.c/ are
not stored explicitly but calculated assuming that
the three corners of each triangle are assigned
consecutive indices.

Key Results

A Theoretically Optimal Representation
From the information theory point of view,
encoding a planar triangulation requires 3:24

bits per vertex (bpv), which is much less than the
13 log n bpv used by standard representations.
Succinct representations provide theoretically
optimal encodings for triangulations, which

match the optimal asymptotic bound of 3:24 bpv
(or equivalently 1:62m bits), while efficiently
supporting navigational operations [4, 5], as
stated below.

Theorem 1 Given a planar triangulation T of
m triangles, there exists a succinct representation

that uses 1:62mCO
�

m log log m
log m

�
bits, supporting

navigation in worst case O.1/ time.

This result is achieved with a multilevel
hierarchical structure. The initial triangulation of
size m is decomposed into small triangulations,
each having �.log2m/ triangles: such a
decomposition leads to a map F describing
adjacency relations between small triangulations.
Small triangulations are then decomposed
into tiny triangulations of size �.logm/,
whose adjacency relations are described by

a map G. Map F has O
�

m

log2 m

�
nodes and
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t = triangle(c)
v = vertex(c) v

c

t

np

o

s rl

n = next(c)

p = prev(c)
s = swing(c)

o = opposite(c)
l = left(c)
r = right(c)

int c = seed;
visited[vertex(next(c))] = true;
visited[vertex(previous(c))] = true;
do {
    if(!visited[vertex(c)]){
      visited[vertex(c)] = true;
      explored[triangle(c)] = true;
    }
   else if(!explored[triangle(c)]) c = opposite(c);
   c = right(c);
}while(c! = opposite(s));prev(c) = next(next(c))

opposite(c) = prev(swing(prev(c)))

Triangulation Data Structures, Fig. 2 The Corner Table: corner operators allow to implement local navigation, as
illustrated by the code of the Ring-Expander procedure [10]

arcs and can be stored in sublinear space

using O
�

m

log2 m

�
references of size O.logm/

(actually O
�

log m

log2 m

�
< O.logm/). Map

G has O
�

m
log m

�
nodes and arcs: adjacencies

between two tiny triangulation within the
same small triangulation need references of

size O
�

log log2 m
log m

�
D O.log logm/ while

adjacencies crossing the small triangulation
boundaries are accessed by referring to F .
In that way the storage of both F and G is
sublinear. The structure of tiny triangulations
is optimally encoded throughout lookup into a
table storing all possible triangulations of size
O.logm/. Such a framework can be extended
in order to support updates: vertex deletions and
edge flips are performed in O.log2m/ amortized
time (vertex insertions require O.1/ amortized
time). The optimality stated by Theorem 1 is
obtained combining the two-level representation
with a careful decomposition of the mesh into
tiny regions, involving a bijection between
triangulations and a special class of vertex
spanning trees [13].

A different approach, based on small separa-
tors, leads to compact representations [1] using
O.n/ bits for more general classes of meshes
(storage performances are difficult to evaluate
precisely).

A More Practical Solution
Succinct representations run under the word-
RAM model and are mainly of theoretical

interest, since the amount of memory required
in practice is quite important even for very large
meshes. Some attempts to exploit the algorithmic
framework of succinct representations in practice
had lead to a space-efficient dynamic data
structure [6]. The main idea is to gather together
neighboring faces into small groups of triangles
(called patches). While references are still of
size �.logn/, grouping triangles allows to save
some references (corresponding to edges internal
to a given patch). For example, using a catalog
consisting only of triangles and quadrangles, we
encode a triangulation with at most 10:6 rpv (a
19% improvement over simple representations
mentioned earlier). More sophisticated choices of
patches lead to dynamic structures with smaller
storage (e.g., Fig. 1b), as stated below:

Theorem 2 Given a triangulation (possibly hav-
ing handles and boundaries), there exists a data
structure using 7:67 rpv, which allowsO.1/ time
navigation and supports updates in O.1/ amor-
tized time.

Reducing Redundancy Throughout Face
Reordering
The main idea used in the SOT data structure [8]
is to implicitly represent the map from triangles to
corners (triangle operator), and the map from
corners to vertices (vertex operator), through
face reordering. First, match each vertex to an
incident triangle (in such a way a triangle is
matched with at most one vertex). Then permute
triangles in such a way that the triangle associated
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Triangulation Data Structures, Fig. 3 Illustrations of the SOT (a) and ESQ (b) data structures

with the i th vertex vi has number i (thus, the
first n triangles appearing in this ordering are
the ones associated with a vertex). The corners
of a triangle are listed consecutively, and the
first one corresponds to the vertex matched for
the triangle. The incidence relations are stored

in an array O (of length 3m) having 3 entries
per triangle: OŒi� stores the index of the corner
opposite to ci (which is matched to vertex vi ,
for i � m). Corner operators are supported in
O.1/ time performing arithmetic operations (see
Fig. 3a). Accessing a vertex vi requires to walk
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around its incident faces until ci is reached (vi

being matched to ci ).

Theorem 3 ([8]) Given a triangulation (possi-
bly having handles and boundaries), there exists
a data structure using 6 rpv which supportsO.1/
time navigation (retrieving a vertex of degree d
requires O.d/ time).

More Compact (Static) Representations
Combining this reordering approach with a pair-
ing of adjacent triangles into quads, the SQUAD
data structure [9] reaches better storage requiring
slightly more than 4 rpv according to experimen-
tal results on common meshes (the worst case
upper bound is still 6 rpv). If one is allowed
to perform a reordering of the input vertices, it
is possible to guarantee a storage of 4 rpv in
the worst case (with same time performances as
before): the edge-based representation described
in [3] matches this bound exploiting Schnyder
woods decompositions [14]. Various heuristics
allows to further reduce storage requirements in
practice [10–12].

A Dynamic Representation
Combining the reordering approach described
above with the decomposition into triangle
patches, the ESQ data structure [7] exhibits the
same navigation performances as in SOT, while
supporting local updates. As in [6] the mesh is
decomposed into a collection of patches, each
consisting of one or more triangles, and vertices
are matched to patches. The assumption that each
vertex is matched to a different triangle is relaxed.
The catalog thus consists of a collection of k
patch types (having possible one or more marked
corners, describing how vertices are matched).
Adjacency relations between faces are stored in
k tables T1; : : : ; Tk , one for each patch type (see
Fig. 3b). Extending the approach introduced in
SOT, a reordering of the input vertices allows
to represent the maps from vertices to triangles
and from triangles to vertices. A table TS of
type S D .c; b/ (with b boundary edges and
c matched vertices) contains b references for
each entry; the entries in the associated table
GS (containing geometric coordinates) are
ordered accordingly. The decomposition into

patches is maintained under local modifications
with a constant number of memory updates in
tables Ti .

Theorem 4 ([7]) Given a triangulation (possi-
bly having handles and boundaries), there exists
a dynamic data structure using 4:8 rpv, which
allows O.1/ time navigation and O.d/ time ac-
cess to a vertex of degree d . Updates (vertex
insertions/deletions and edge flips) are supported
in O.1/ amortized time.

Experimental Results

In [9] are reported timing comparisons of
operators for SOT, SQUAD, and Corner Table
data structures: experimental evaluations concern
adjacency and navigational operations. On the
tested mesh (the 55 millions triangles David),
SQUAD requires 20 s and uses 2.2 GB of RAM
for the construction (on a MacbookPro, equipped
with 2.66 GHz Intel Core i7, 8 GB). When the
whole mesh fits in main memory, compact data
structures (SQUAD and SOT) perform slower
than Corner Table. When the allowed memory is
reduced, SQUAD performances are comparable
and sometimes even better than Corner Table
performances for high-level tasks (e.g., valence
computations).

Cross-References

�Compressed Representations of Graphs
�Delaunay Triangulation and Randomized Con-

structions

Recommended Reading

1. Blanford D, Blelloch G, Kash I (2003) Compact
representations of separable graphs. In: SODA, Balti-
more, pp 342–351. http://dl.acm.org/citation.cfm?id=
644219

2. Boissonnat JD, Devillers O, Pion S, Teillaud M,
Yvinec M (2002) Triangulations in CGAL. Comput
Geom 22:5–19.

3. Castelli Aleardi L, Devillers O (2011) Explicit array-
based compact data structures for triangulations. In:
ISAAC, Yokohama, pp 312–322.



Truthful Mechanisms for One-Parameter Agents 2267

T

4. Castelli Aleardi L, Devillers O, Schaeffer G (2005)
Succinct representation of triangulations with a
boundary. In: WADS, Waterloo, pp 134–145.

5. Castelli Aleardi L, Devillers O, Schaeffer G (2008)
Succinct representations of planar maps. Theor Com-
put Sci 408(2–3):174–187.

6. Castelli Aleardi L, Devillers O, Mebarki A (2011)
Catalog based representation of 2D triangulations. Int
J Comput Geom Appl 21(4):393–402.

7. Castelli Aleardi L, Devillers O, Rossignac J (2012)
ESQ: editable squad representation for triangle
meshes. In: SIBGRAPI, Ouro Preto, pp 110–117.

8. Gurung T, Rossignac J (2009) SOT: compact repre-
sentation for tetrahedral meshes. In: Proceedings of
the ACM symposium on solid and physical modeling,
San Francisco, pp 79–88.

9. Gurung T, Laney D, Lindstrom P, Rossignac J (2011)
SQUAD: compact representation for triangle meshes.
Comput Graph Forum 30(2):355–364.

10. Gurung T, Luffel M, Lindstrom P, Rossignac J (2011)
LR: compact connectivity representation for triangle
meshes. ACM Trans Graph 30(4):67.

11. Gurung T, Luffel M, Lindstrom P, Rossignac J (2013)
Zipper: a compact connectivity data structure for
triangle meshes. Comput-Aided Des 45(2):262–269.

12. Luffel M, Gurung T, Lindstrom P, Rossignac J
(2014) Grouper: a compact, streamable triangle
mesh data structure. IEEE Trans Vis Comput Graph
20(1):84–98.

13. Poulalhon D, Schaeffer G (2006) Optimal cod-
ing and sampling of triangulations. Algorithmica
46:505–527.

14. Schnyder W (1990) Embedding planar graphs on the
grid. In: SODA, San Francisco, 138–148. http://dl.
acm.org/citation.cfm?id=320191

Truthful Mechanisms for
One-Parameter Agents

Moshe Babaioff
Microsoft Research, Herzliya, Israel

Keywords

Algorithmic mechanism design; Approximation;
Scheduling related parallel machines; Truthful
mechanisms

Synonyms

Dominant strategy mechanisms; Incentive
compatible mechanisms; Single-parameter
agents; Truthful auctions

Years and Authors of Summarized
Original Work

2001; Archer, Tardos

Problem Definition

This problem is concerned with designing truth-
ful (dominant strategy) mechanisms for domains
where each agent’s private information is ex-
pressed by a single positive real number. The
goal of the mechanisms is to allocate loads placed
on the agents, and an agent’s private information
is the cost incurred per unit load. Archer and
Tardos [4] give an exact characterization for the
algorithms that can be used to design truthful
mechanisms for such load balancing problems
using appropriate payments. The characterization
shows that the allocated load must be monotonic
in the cost (decreasing when the cost on an agent
increases, fixing the costs of the others). Thus,
truthful mechanisms are characterized by a con-
dition on the allocation rule, and payments that
ensure voluntary participation can be calculated
using the given characterization.

The characterization is used to design
polynomial time truthful mechanisms for several
problems in combinatorial optimization to
which the celebrated VCG mechanism does
not apply. For scheduling related parallel
machines to minimize makespan (QkCmax),
Archer and Tardos [4] present a 3-approximation
mechanism based on randomized rounding of the
optimal fractional solution. This mechanism is
truthful only in expectation (a weaker notion of
truthfulness in which truthful bidding maximizes
the agent’s expected utility). Archer [3] improves
it to a randomized 2-approximation truthful
mechanism. Andelman, Azar, and Sorani [2]
provide a deterministic truthful mechanism
that is 5-approximation. Kovács improves
it to 3-approximation in [12] and to 2:8-
approximation in [13] (Kovács also gives other
results for two special cases). Andelman, Azar,
and Sorani [2] also present a deterministic
Fully Polynomial Time Approximation Scheme
(FPTAS) for scheduling on a fixed number
of machines, as well as a suitable payment
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scheme that yields a deterministic truthful
mechanism. Dhangwatnotai et al. [8] present
a randomized Polynomial Time Approximation
Scheme (PTAS) that is truthful-in-expectation.
Christodoulou and Kovács [7] present a truthful
deterministic Polynomial Time Approximation
Scheme (PTAS); this matches the best possible
result for the computational problem (without
incentives) by Hochbaum and Shmoys [10] (it is
known that this problem is strongly NP-hard [9]).
This result shows that there is no “cost of truthful-
ness” for this problem, as the best approximation
with incentive constraints is as good as the best
approximation without these constraints.

Archer and Tardos [4] also present results
for goals other than minimizing the makespan.
They present a truthful mechanism for Qk

P
Cj

(scheduling related machines to minimize the
sum of completion times) and show that for
Qk

P
wjCj (minimizing the weighted sum of

completion times) 2p
3

is the best approximation
ratio achievable by a truthful mechanism.

This family of problems belongs to the field of
Algorithmic Mechanism Design, initiated in the
seminal paper of Nisan and Ronen [15]. Nisan
and Ronen consider makespan minimization for
scheduling on unrelated machines and prove up-
per and lower bounds (note that for unrelated
machines agents have more than one parameter).
Mu’alem and Schapira [14] present improved
lower bounds. Other papers consider the problem
of scheduling on related machines to minimize
the makespan. Auletta et al. [5] and Ambro-
sio and Auletta [1] present truthful mechanisms
for several NP-hard restrictions of this problem.
Nisan and Ronen [15] also introduce a model in
which the mechanism is allowed to observe the
machines’ actual processing time and compute
the payments afterward (in such a model the
machines essentially cannot claim to be faster
than they are); Auletta et al. [6] present addi-
tional results for this model. In particular, they
show that it is possible to overcome the lower
bound of 2p

3
for Qk

P
wjCj (minimizing the

weighted sum of completion times) and provide
a polynomial time .1C�/-approximation truthful
mechanism (with verification) when the number
of machines (m) is constant.

The Mechanism Design Framework
Let I be the set of agents. Each agent i 2 I has
some private value (type) consisting of a single
parameter ti 2 R that describes the agent, and
which only i knows. Everything else is public
knowledge. Each agent will report a bid bi to the
mechanism. Let t denote the vector of true values,
and b the vector of bids.

There is some set of outcomes O , and given
the bids b the mechanism’s output algorithm
computes an outcome o.b/ 2 O . For any types
t , the mechanism aims to choose an outcome
o 2 O that minimizes some function g.o; t/.
Yet, given the bids b the mechanism can only
choose the outcome as a function of the bids (o D

o.b/) and has no knowledge of the true types
t . To overcome the problem that the mechanism
knows only the bids b, the mechanism is designed
to be truthful (using payments), that is, in such
a mechanism it is a dominant strategy for the
agents to reveal their true types (b D t ). For
such mechanisms minimizing g.o; t/ is done by
assuming that the bids are the true types (and
this is justified by the fact that truth telling is a
dominant strategy).

In the framework discussed here we assume
that outcome o.b/ will assign some amount of
load or work wi .o.b// to each agent i , and given
o.b/ and ti , agent i incurs some monetary cost,
costi .ti ; o.b// D ti wi .o.b//. Thus, agent i ’s pri-
vate data ti measures her cost per unit work. Each
agent i attempts to maximize her utility (profit),
ui .ti ; b/ D Pi .b/ � costi .ti ; o.b//, where Pi .b/

is the payment to agent i .
Let b�i denote the vector of bids, not

including agent i , and let b D .b�i ; bi / .
Truth telling is a dominant strategy for agent
i if bidding ti always maximizes her utility,
regardless of what the other agents bid. That
is, ui .ti ; .b�i ; ti // � ui .ti ; .b�i ; bi // for all b�i

and bi .
A mechanism M consists of the pair M D

.o.�/; P.�//, where o.�/ is the output function
and P.�/ is the payment scheme, i.e., the vector
of payment functions Pi .�/. An output function
admits a truthful payment scheme if there ex-
ist payments P.�/ such that for the mechanism
M D .o.�/; P.�//, truth telling is a dominant
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strategy for each agent. A mechanism that admits
a truthful payment scheme is truthful.

Mechanism M satisfies the voluntary partic-
ipation condition if agents who bid truthfully
never incur a net loss, i.e., ui .ti ; .b�i ; ti // � 0

for all agents i , true values ti , and other agents’
bids b�i .

Definition 1 With the other agents’ bids b�i

fixed, the work curve for agent i is wi .b�i ; bi /

considered as a single-variable function of bi .
The output function o is decreasing if each of
the associated work curves is decreasing (i.e.,
wi .b�i ; bi / is a decreasing function of bi , for all
i and b�i ).

Scheduling on Related Machines
There are n jobs and m machines. The jobs
represent amounts of work p1 � p2 � : : : �

pn, and let p denote the set of jobs. Machine i
runs at some speed si , so it must spend pj =si
units of time processing each job j assigned to
it. The input to an algorithm is b, the (reported)
speed of the machines, and the output is o.b/,
an assignment of jobs to machines. The load on
machine i for outcome o.b/ is wi .b/ D

P
pj

, where the sum runs over jobs j assigned to i .
Each machine incurs a cost proportional to the
time it spends processing its jobs. The cost of
machine i is costi .ti ; o.b// D ti wi .o.b//, where
ti D 1=si and wi .b/ is the total load assigned
to i when the speeds are b. Let Cj denote the
completion time of job j . One can consider the
following goals for scheduling related parallel
machines:

• Minimizing the makespan (QkCmax), the
mechanism’s goal is to minimize the
completion time of the last job on the last
machine, i.e., g.o; t/ D Cmax D maxi ti �

wi .b/.
• Minimize the sum of completion times

(Qk
P
Cj ), i.e., g.o; t/ D Qk

P
Cj D

P
j Cj

• Minimize the weighted sum of completion
times (Qk

P
wjCj ), i.e., g.o; t/ D

Qk
P

wjCj D
P

j wjCj where wj is the
weight of job j .

An algorithm is a c-approximation algorithm
with respect to g, if for every instance .p; t/, it
outputs an outcome of cost at most c � g.o.t/; t/.
A c-approximation mechanism is a mechanism
whose output algorithm is an c-approximation.
Note that if the mechanism is truthful the ap-
proximation is with respect to the true speeds. A
PTAS (Polynomial Time Approximation Scheme)
is a family of algorithms such that for every
� > 0 there exists a .1 C �/-approximation
algorithm. If the running time is also polynomial
in 1=�, the family of algorithms is a FPTAS (Fully
Polynomial Time Approximation Scheme).

Key Results

The following two theorems hold for the mech-
anism design framework as defined in section
“Problem Definition.”

Theorem 1 ([4]) The output function o.b/ ad-
mits a truthful payment scheme if and only if it is
decreasing. In this case, the mechanism is truthful
if and only if the payments Pi .b�i ; bi / are of the
form

hi .b�i /C bi wi .b�i ; bi / �

Z bi

0

wi .b�i ; u/du

where the hi are arbitrary functions.

Theorem 2 ([4]) A decreasing output function
admits a truthful payment scheme satisfy-
ing voluntary participation if and only ifR1

0
wi .b�i ; u/du < 1 for all i; b�i . In this

case, the payments can be defined by

Pi .b�i ; bi / D bi wi .b�i ; bi /C

Z 1

bi

wi .b�i ; u/du

Theorem 3 ([4]) There is a truthful mechanism
(not polynomial time) that outputs an optimal
solution for QkCmax and satisfies voluntary par-
ticipation.

Theorem 4 ([2, 7]) For the problem of minimiz-
ing the makespan (QkCmax):

• There exists a deterministic Polynomial Time
Approximation Scheme (PTAS) for scheduling
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on related machines that admits a truthful
payment scheme [7]. The mechanism created
satisfies voluntary participation.

• There exists a deterministic Fully Polynomial
Time Approximation Scheme (FPTAS) for
scheduling on a fixed number of machines
that admits a truthful payment scheme [2].
The mechanism created satisfies voluntary
participation.

Theorem 5 ([4]) There is a truthful polynomial
time mechanism that outputs an optimal solution
for Qk

P
Cj and satisfies voluntary participa-

tion.

Theorem 6 ([4]) No truthful mechanism for
Qk

P
wjCj can achieve an approximation ratio

better than 2p
3

, even on instances with just two
jobs and two machines.

Applications

Archer and Tardos [4] apply the characterization
of truthful mechanisms to problems other than
scheduling. They present results for the unca-
pacitated facility location problem as well as the
maximum flow problem.

Kis and Kapolnai [11] consider the problem of
scheduling of groups of identical jobs on related
machines with sequence independent setup times
(Qjuj ; pjk D pj kCmax). They provide a truthful,
polynomial time, randomized mechanism for the
batch scheduling problem with a deterministic
approximation guarantee of 4 to the minimal
makespan, based on the characterization of truth-
ful mechanisms presented above.

Open Problems

The problem of designing truthful mechanisms
for related machines to minimize the makespan
was completely resolved, as a deterministic
PTAS [7] is the best one can hope for. For
this problem there is no gap between the best
approximation with and without incentives. The
main open problem left is of finding some natural

single-parameter setting in which there is a gap
between the approximation that is achievable by
algorithms and truthful mechanisms.

Experimental Results

None is reported.

Data Sets

None is reported.

URL to Code

None is reported.
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Problem Definition

Several mechanisms [1, 3, 5, 9], which essentially
all belong to the VCG mechanism family, have
been proposed in the literature to prevent the
selfish behavior of unicast routing in a wireless
network. In these mechanisms, the least cost path,
which maximizes the social efficiency, is used
for routing. Wang, Li, and Wang [8] studied the
truthful multicast routing protocol for a selfish
wireless network, in which selfish wireless termi-
nals will follow their own interests. The multicast
routing protocol is composed of two components:
(1) the tree structure that connects the sources and
receivers, and (2) the payment to the relay nodes
in this tree. Multicast poses a unique challenge
in designing strategyproof mechanisms due to the
reason that (1) a VCG mechanism uses an output
that maximizes the social efficiency; (2) it is NP-
hard to find the tree structure with the minimum
cost, which in turn maximizes the social effi-
ciency. A range of multicast structures, such as
the least cost path tree (LCPT), the pruning min-
imum spanning tree (PMST), virtual minimum
spanning tree (VMST), and Steiner tree, were
proposed to replace the optimal multicast tree.
In [8], Wang et al. showed how payment schemes
can be designed for existing multicast tree struc-
tures so that rational selfish wireless terminals
will follow the protocols for their own interests.

Consider a communication network G D

.V;E; c/, where V D fv1; � � � ; vng is the set of
communication terminals, E D fe1; e2; � � � ; emg

is the set of links, and c is the cost vector of
all agents. Here agents are terminals in a node
weighted network and are links in a link weighted
network. Given a set of sources and receivers
Q D fq0; q1; q2; � � � ; qr�1g � V , the multicast
problem is to find a tree T � G spanning all
terminals Q. For simplicity, assume that s D q0

is the sender of a multicast session if it exists.
All terminals or links are required to declare
a cost of relaying the message. Let d be the
declared costs of all nodes, i.e., agent i declared
a cost di. On the basis of the declared cost profile
d, a multicast tree needs to be constructed and
the payment pk(d) for each agent k needs to be
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decided. The utility of an agent is its payment
received, minus its cost if it is selected in the
multicast tree. Instead of reinventing the wheels,
Wang et al. still used the previously proposed
structures for multicast as the output of their
mechanism. Given a multicast tree, they studied
the design of strategyproof payment schemes
based on this tree.

Notations
Given a network H, !.H/ denotes the total cost
of all agents in this network. If the cost of any
agent i (link ei or node vi) is changed to c0

i, the
new network is denoted as G0 D .V;E; cjic0

i /,
or simply cjic0

i . If one agent i is removed
from the network, it is denoted as cji 1. For
the simplicity of notation, the cost vector c is
used to denote the network G D .V;E; c/ if no
confusion is caused. For a given source s and
a given destination qi, LCP.s; qi ; c/ represents
the shortest path between s and qi when the
cost of the network is represented by vector c.
jLCP.s; qi ; d /j denotes the total cost of the least
cost path LCP.s; qi ; d /. The notation of several
multicast trees is summarized as follows.

1. Link Weighted Multicast Tree
• LCPT: The union of all least cost paths

from the source to receivers is called the
least cost path tree, denoted by LCPT(d).

• PMST: First construct the minimum span-
ning tree MST(G) on the graph G. Take
the tree MST(G) rooted at sender s, prune
all subtrees that do not contain a receiver.
The final structure is called the Pruning
Minimum Spanning Tree (PMST).

• LST: The Link Weighted Steiner Tree
(LST) can be constructed by the al-
gorithm proposed by Takahashi and
Matsuyama [6].

2. Node Weighted Multicast Tree
• VMST: First construct a virtual graph

using all receivers plus the sources as
the vertices and the cost of LCP as the
link weight. Then compute the minimum
spanning tree on the virtual graph, which
is called virtual minimum spanning tree

Algorithm 1 Non-VCG mechanism for LCPT

(VMST). Finally, choose all terminals on
the VMST as the relay terminals.

• NST: The node weighted Steiner tree
(NST) can be constructed by the algorithm
proposed by [4].

Key Results

If the LCPT tree is used as the multicast tree,
Wang et al. proved the following theorem.

Theorem 1 The VCG mechanism combined with
LCPT is not truthful.

Because of the failure of the VCG mechanism,
they designed their non-VGC mechanism for the
LCPT-based multicast routing as follows.

Theorem 2 Payment (defined in Eq. (1)) based
on LCPT is truthful and it is minimum among all
truthful payments based on LCPT.

More generally, Wang et al. [8] proved the fol-
lowing theorem.

Theorem 3 The VCG mechanism combined with
either one of the LCPT, PMST, LST, VMST, NST
is not truthful.

Because of this negative result, they designed
their non-VCG mechanisms for all multicast
structures they studied: LCPT, PMST, LST,
VMST, NST. For example, Algorithm 2 is the
algorithm for PMST. For other algorithms, please
refer to [8].
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Algorithm 2 Non-VCG mechanism for PMST

Regarding all their non-VGC mechanisms,
they proved the following theorem.

Theorem 4 The non-VCG mechanisms designed
for the multicast structures LCPT, PMST, LST,
VMST, NST are not only truthful, but also achieve
the minimum payment among all truthful mecha-
nisms.

Applications

In wireless ad hoc networks, it is commonly
assumed that, each terminal contributes its local
resources to forward the data for other termi-
nals to serve the common good, and benefits
from resources contributed by other terminals to
route its packets in return. On the basis of such
a fundamental design philosophy, wireless ad
hoc networks provide appealing features such as
enhanced system robustness, high service avail-
ability and scalability. However, the critical ob-
servation that individual users who own these
wireless devices are generally selfish and non-
cooperative may severely undermine the expected
performances of the wireless networks. There-
fore, providing incentives to wireless terminals is
a must to encourage contribution and thus main-
tains the robustness and availability of wireless
networking systems. On the other hand, to sup-
port a communication among a group of users,
multicast is more efficient than unicast or broad-
cast, as it can transmit packets to destinations
using fewer network resources, thus increasing
the social efficiency. Thus, most results of the
work of Wang et al. can apply to multicast routing
in wireless networks in which nodes are selfish.
It not only guarantees that multicast routing be-

haves normally but also achieves good social effi-
ciency for both the receivers and relay terminals.

Open Problems

There are several unsolved challenges left as
future work in [8]. Some of these challenges are
listed below.

• How to design algorithms that can compute
these payments in asymptotically optimum
time complexities is presently unknown.

• Wang et al. [8] only studied the tree-based
structures for multicast. Practically, mesh-
based structures may be more needed for
wireless networks to improve the fault
tolerance of the multicast. It is unknown
whether a strategyproof multicast mechanism
can be designed for some mesh-based
structures used for multicast.

• All of the tree construction and payment cal-
culations in [8] are performed in a centralized
way, it would be interesting to design some
distributed algorithms for them.

• In the work by Wang et al. [8] it was assumed
that the receivers will always relay the data
packets for other receivers for free, the source
node of the multicast will pay the relay nodes
to compensate their cost, and the source node
will not charge the receivers for getting the
data. As a possible future work, the budget
balance of the source node needs to be con-
sidered if the receivers have to pay the source
node for getting the data.

• Fairness of payment sharing needs to be con-
sidered in a case where the receivers share
the total payments to all relay nodes on the
multicast structure. Notice that this is different
from the cost-sharing studied in [2], in which
they assumed a fixed multicast tree, and the
link cost is publicly known; in that work
they showed how to share the total link cost
among receivers.

• Another important task is to study how to
implement the protocols proposed in [8] in
a distributed manner. Notice that, in [3, 9],
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distributed methods have been developed for
a truthful unicast using some cryptography
primitives.
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Problem Definition

An instance of the curve reconstruction problem
is a finite set of sample points V in the plane,
which are assumed to be taken from an unknown
planar curve ”. The task is to construct a geomet-
ric graph G on V such that two points in V are
connected by an edge in G if and only if the points
are adjacent on ”. The curve ” may consist of one
or more connected components, and each of them
may be closed or open (with endpoints), and may
be smooth everywhere (tangent defined at every
point) or not.

Many heuristic approaches have been
proposed to solve this problem. This work
continues a line of reconstruction algorithms
with guaranteed performance, i.e., algorithms
which probably solve the reconstruction
problem under certain assumptions of ” and
V. Previous proposed solutions with guaranteed
performances were mostly local: a subgraph of
the complete geometric graph defined by the
points is considered (in most cases the Delaunay
edges), and then filtered using a local criteria into
a subgraph that will constitute the reconstruction.
Thus, most of these algorithms fail to enforce
that the solution have the global property of
being a path/tour or collection of paths/tours
and so usually require a dense sampling to work
properly and have difficulty handling nonsmooth
curves. See [6, 7, 8] for surveys of these
algorithms.
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This work concentrates on a solution approach
based on the traveling salesman problem (TSP).
Recall that a traveling salesman path (tour) for
a set V of points is a path (cycle) passing through
all points in V. An optimal traveling salesman
path (tour) is a traveling salesman path (tour)
of shortest length. The first question is under
which conditions for ” and V a traveling salesman
path (tour) is a correct reconstruction. Since the
construction of an optimal traveling salesman
path (tour) is an NP-hard problem, a second
question is whether for the specific instances
under consideration, an efficient algorithm is
possible.

A previous work of Giesen [9] gave a first
weak answer to the first question: For every
benign semiregular closed curve ”, there exists
an � > 0 with the following property: If V
is a finite sample set from ” so that for
every x 2 � there is a p 2 V with kpvk � �,
then the optimal traveling salesman tour is
a polygonal reconstruction of ”. For a curve
� W Œ0; 1� ! R2, its left and right tangents at
�.t0/, are defined as the limits of the ratio
j�.t2/ � �.t1/j = jt2 � t1j as .t1; t2/ converges
to .t0; t0/ from the right (t0 < t1 < t W 2) and
from the right (t1 < t2 < t W 0) respectively.
A curve is semiregular if both tangents exist
at every points and regular if the tangents exist
and coincide at every point. The turning angle
of ” at p is the angle between the left and
right tangents at a points p. A semiregular
curve is benign if the turning angle is
less than 
 .

To investigate the TSP-based solution of the
reconstruction problem, this work considers its
integer linear programming (ILP) formulation
and the corresponding linear programming (LP)
relaxation. The motivation is that a successful
method for solving the TSP is to use a branch-
and-cut algorithm based on the LP-relaxation.
See Chapter 7 in [5]. For a path with endpoints
a and b, the formulation is based on variables
xu;v 2 f0; 1g for each pair u, v in V (indicating
whether the edge uv is in the path (xuv D 1) or not

(xuv D 0) and consists of the following objective
function and constraints (xuu D 0 for all u 2 V ):

minimize
X

u;v2V

kuvk � xuv

subject to
X

v2V

xuvD2 for all u2V n fa; bg

X

v2V

xuv D 1 for u 2 fa; bg

X

u;v2V 0

xuv �
ˇ
ˇV 0

ˇ
ˇ�1 for V 0 �V;

V 0 ¤ ;

xuv2f0; 1g for all u; v 2 V:

Here kuvk denotes the Euclidean distance
between u and v and so the objective function
is the total length of the selected edges. This is
called the subtour-ILP for the TSP with specified
endpoints. The equality constraints are called
the degree constraints, the inequality ones are
called subtour elimination constraints and the
last ones are called the integrality constraints. If
the degree and integrality constraints hold, the
corresponding graph could include disconnected
cycles (subtours), hence the need for the subtour
elimination constraints. The relaxed LP is
obtained by replacing the integrality constraints
by the constraints 0 � xuv � 1 and is called the
subtour-LP for the TSP with specified endpoints.
There is a polynomial time algorithm that given
a candidate solution returns a violated constraint
if it exists: the degree constraints are trivial to
check and the subtour elimination constraints
are checked using a min cut algorithm (if a; b
are joined by an edge and all edge capacities
are made equal to one, then a violated subtour
constraint corresponds to a cut smaller than
two). This means that the subtour-LP for the
TSP with specified endpoints can potentially
be solved in polynomial time in the bit size
of the input description, using the ellipsoid
method [10].
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a b

TSP-Based Curve Reconstruction, Fig. 1 Sample data
and its reconstruction

Key Results

The main results of this paper are that, given
a sample set V with a; b 2 V from a benign
semiregular open curve ” with endpoints a, b and
satisfying certain sampling condition [it], then

• The optimal traveling salesman path on V with
endpoints a; b is a polygonal reconstruction of
” from V,

• The subtour-LP for traveling salesman paths
has an optimal integral solution which is
unique.

This means that, under the sampling conditions,
the subtour-LP solution provides a TSP solution
and also suggests a reconstruction algorithm:
solve the subtour-LP and, if the solution is
integral, output it. If the input satisfies the
sampling condition, then the solution will be
integral and the result is indeed a polygonal
reconstruction. Two algorithms are proposed to
solve the subtour-LP. First, using the simplex
method and the cutting plane framework: it
starts with an LP consisting of only the degree
constraints and in each iteration solves the current
LP and checks whether that solution satisfies
all the subtour elimination constraints (using
a min cut algorithm) and, if not, adds a violated
constraint to the current LP. This algorithm has
a potentially exponential running time. Second,
using a similar approach but with the ellipsoid

method. This can be implemented so that the
running time is polynomial in the bit size of the
input points. This requires justification for using
approximate point coordinates and distances.

The main tool in deriving these results is the
connection between the subtour-LP and the so-
called Held–Karp bound. The line of argument is
as follows:

• Let c.u; v/ D kuvk and � W V ! R be
a potential function. The corresponding
modified distance function c� is defined by
c�.u; v/ D c.u; v/ � �.u/ � �.v/.

• For any traveling salesman path T with end-
points a, b,

c�.T / D c.T / � 2
X

v2V

�.v/C �.a/C �.b/;

and so an optimal traveling salesman path with
endpoints a; b for c� is also optimal for c.

• Let C� be the cost of a minimum spanning
tree MST� under c�, then since a traveling
salesman path is a spanning tree, the opti-
mal traveling salesman T0 satisfies C� �

c�.T0/ D c.T0/ � 2
P

v2V �.v/ C �.a/ C

�.b/, and so

max
�

 

C� C 2
X

v2V

�.v/ � �.a/ � �.b/

!

� c.T0/ :

The term on the left is the so called Held–Karp
bound.

• Now, if for a particular �, MST� is a path with
endpoints a; b, then MST� is in fact an op-
timal traveling salesman path with endpoints
a; b, and the Held–Karp bound matches c.T0/.

• The Held–Karp bound is equal to the optimal
objective value of the subtour-LP. This fol-
lows by relaxation of the degree constraints
in a Lagrangian fashion (see [5]) and gives
an effective way to compute the Held-Karp
bound: solve the subtour-LP.

• Finally, a potential function � is constructed
for ” so that, for an appropriately dense sam-
ple set V, MST� is unique and is a polygonal
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reconstruction with endpoints a, b. This then
implies that solving the subtour-LP will pro-
duce a correct polygonal reconstruction.

Note that the potential function � enters the
picture only as an analysis tool. It is not needed
by the algorithm. The authors extend this work
to the case of open curves without specified end-
points and of closed curves using variations of the
ILP formulation and a more restricted sampling
condition. They also extend it to the case of
a collection of closed curves. The latter requires
preprocessing that partitions points into groups
that are expected to form individual curves. Then
each subgroup is processed with the subtour-
LP approach and then the quality of the result
assessed and then that partition may be updated.

Finite Precision
The above results are obtained assuming exact
representation of point samples and the distances
between them, so claiming a polynomial time
algorithm is not immediate as the running time of
the ellipsoid method is polynomial in the bit size
of the input. The authors extend the results to the
case in which points and the distances between
them are known only approximately and from
this they can conclude the polynomial running
time.

Relation to Local Feature Size
The defined potential function � is related to
the so called local feature size function f used
in the theory of smooth curve reconstruction,
where f .p/ is defined as the distance from p
to the medial axis of the curve ”. In this paper,
�.p/ is defined as d.p/=3 where d.p/ is the
size of the largest neighborhood of p so that ” in
that neighborhood does not deviate significantly
from a flat segment of curve. This paper shows
f .p/ < 3d.p/. In fact, �.p/ amounts to a gen-
eralization of the local feature size to nonsmooth
curves (for a corner point p, �.p/ is proportional
to the size of the largest neighborhood of p
such that ” inside does not deviate significantly
from a corner point with two nearly flat legs
incident to it, and for points near the corner, � is

defined as an appropriate interpolation of the two
definitions), and is in fact similar to definitions
proposed elsewhere.

Applications

The curve reconstruction problem appears in ap-
plied areas such as cartography. For example, to
determine level sets, features, object contours,
etc. from samples. Admittedly, these applications
usually may require the ability to handle very
sparse sampling and noise. The 3D version of
the problem is very important in areas such as
industrial manufacturing, medical imaging, and
computer animation. The 2D problem is often
seen as a simpler (toy) problem to test algorithmic
approaches.

Open Problems

A TSP-based solution when the curve ” is
a collection of curves, not all closed, is not
given in this paper. A solution similar to that for
closed curves (partitioning and then application
of subtour-LP for each) seems feasible for
general collections, but some technicalities need
to be solved. More interesting is the study of
corresponding reconstruction approaches for
surfaces in 3D.

Experimental Results

The companion paper [2] presents results of ex-
periments comparing the TSP-based approach to
several (local) Delaunay filtering algorithms. The
TSP implementation uses the simplex method
and the cutting plane framework (with a poten-
tially exponential running time algorithm). The
experiments show that the TSP-based approach
has a better performance, allowing for much
sparser samples than the others. This is to be ex-
pected given the global nature of the TSP-based
solution. On the other hand, the speed of the TSP-
based solution is reported to be competitive when
compared to the speed of the others, despite its
potentially bad worst-case behavior.
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Data Sets

None reported. Experiments in [2] were per-
formed with a simple reproducible curve based
on a sinusoidal with varying number of periods
and samples.

URL to Code

The code of the TSP-based solution as well as
the other solutions considered in the companion
paper [2] are available from: http://www.mpi-
inf.mpg.de/~althaus/LEP:Curve-Reconstruction/
curve.html
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Problem Definition

Definition 1 Let T be a two-dimensional n 	 n

array over some alphabet ˙ .

1. The unit pixels array for T (T1X) consists of
n2 unit squares, called pixels in the real plane
<2. The corners of the pixel T Œi; j � are .i �

1; j�1/; .i; j�1/; .i�1; j /; and .i; j /. Hence
the pixels of T form a regular n 	 n array that
covers the area between .0; 0/; .n; 0/; .0; n/;
and .n; n/. Point .0; 0/ is the origin of the unit
pixel array. The center of each pixel is the
geometric center point of its square location.
Each pixel T Œi; j � is identified with the value
from ˙ that the original array T had in that
position. Say that the pixel has a color or
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a character from ˙ . See Fig. 1 for an exam-
ple of the grid and pixel centers of a 7 	 7

array.
2. Let r 2 <; r � 1. The r-ary pixels array

for T (TrX) consists of n2r-squares, each of
dimension r 	 r whose origin is .0; 0/ and
covers the area between .0; 0/; .nr; 0/; .0; nr/;
and .nr; nr/. The corners of the pixel T Œi; j �
are ..i � 1/r; .j � 1/r/; .ir; .j � 1/r/;

..i � 1/r; jr/; and .ir; jr/. The center of
each pixel is the geometric center point of its
square location.

Notation: Let r 2 <. [r] denotes the rounding
of r, i.e.,

Œr� D

(
brc if r � brc < :5I

dre otherwise:

Definition 2 Let T be an n 	 n text array,
P be an m 	m pattern array over alphabet
˙ , and let r 2 <; 1 � r � n

m
. Say that there

is an occurrence of P scaled to r at text
location .i; j / if the following conditions
hold:

Let T1X be the unit pixels array of T and PrX

be the r-ary pixel arrays of P. Translate PrX onto
T1X in a manner that the origin of PrX coincides
with location .i � 1; j � 1/ of T1X. Every center
of a pixel in T1X which is within the area covered
by .i � 1; j � 1/; .i � 1; j � 1Cmr/; .i � 1C

mr; j � 1/ and .i � 1Cmr; j � 1Cmr/ has the
same color as the r-square of PrX in which it falls.

The colors of the centers of the pixels in T1X

which are within the area covered by .i � 1; j �

1/; .i � 1; j � 1Cmr/; .i � 1Cmr; j � 1/ and
.i � 1Cmr; j � 1Cmr/ define a Œmr� 	 Œmr�
array over ˙ . This array is denoted by Ps(r) and
called P scaled to r.

The above definition is the one provided in
the geometric model, pioneered by Landau and
Vishkin [15], and Fredriksson and Ukkonen [14].
Prior to the advent of the geometric model,
the only discrete definition of scaling was to
natural scales, as defined by Amir, Landau and
Vishkin [10]:

Definition 3 LetP Œm 	m� be a two-dimensional
matrix over alphabet ˙ (not necessarily
bounded). Then P scaled by s (Ps) is the
sm 	 sm matrix where every symbol P Œi; j �
of P is replaced by a s 	 s matrix whose
elements all equal the symbol in P Œi; j �. More
precisely,

P sŒi; j � D P Œd
i

s
e; d

j

s
e� :

Say that pattern P Œm 	m� occurs (or an occur-
rence of P starts) at location .k; l/ of the text
T if for any i 2 f1; : : : ; mg and j 2 f1; : : : ; mg,
T Œk C i � 1; l C j � 1� D P Œi; j �.

The two dimensional pattern matching
problem with natural scales is defined as
follows.

INPUT: Pattern matrix P Œi; j � i D

1; : : : mI j D 1; : : : ; m and Text matrix T Œi; j �
i D 1; : : : ; nI j D 1; : : : ; n where n > m.
OUTPUT: all locations in T where an occur-

rence of P scaled by s (an s-occurrence) starts,
for any s D 1; : : : ; b n

m
c.

The natural scales definition cannot answer
normal everyday occurrences such as an image
scaled to, say, 1.3. This led to the geometric
model. The geometric model is a discrete
adaptation, without smoothing, of scaling as used
in computer graphics. The definition is pleasing
in a “real-world” sense. Figure 2 shows “lenna”
scaled to non-discrete scales by the geometric
model definition. The results look natural.

It is possible, of course, to consider a one
dimensional version of scaling, or scaling in
strings. Both above definitions apply for one
dimensional scaling where the text and pattern
are taken to be matrices having a single row.
The interest in one dimensional scaling lies
because of two reasons: (1) There is a faster
algorithm for one dimensional scaling in the
geometric model than the restriction of the two
dimensional scaling algorithm to one dimension.
(2) Historically, before the geometric model was
defined, there was an attempt [3] to define real
scaling on strings as follows.
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Two-Dimensional Scaled
Pattern Matching, Fig. 1
The grid and pixel centers
of a unit pixel array for
a 7 � 7 array

Two-Dimensional Scaled Pattern Matching, Fig. 2 An original image, scaled by 1.3 and scaled by 2, using the
geometric model definition of scaling

Definition 4 Denote the string aa � � � a, where a
is repeated r times, by ar. The one dimensional
floor real scaled matching problem is the follow-
ing.
INPUT: A pattern P D a

r1

1 a
r2

2 : : : a
rj

j , of length
m, and a text T of length n.
OUTPUT: All locations in the text where the sub-
string a

c1

1 a
br2kc
2 : : : a

brj �1kc

j �1 a
cj

j appears, where

c1 � br1kc and cj � brjkc.

This definition indeed handles real scaling but has
a significant weakness in that a string of length
m scaled to r may be significantly shorter than
mr. For this reason the definition could not be
generalized to two dimensions. The geometric
model does not suffer from these deficiencies.
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Key Results

The first results in scaled natural matching dealt
with fixed finite-sized alphabets.

Theorem 1 (Amir, Landau, and Vishkin [10])
There exists an O.jT j log j˙ j/ worst-case time
solution to the two dimensional pattern match-
ing problem with natural scales, for fixed finite
alphabet ˙ .

The main idea behind the algorithm is analyzing
the text with the aid of power columns. Those
are the text columns appearing m � 1 columns
apart, where P is an m 	m pattern. This de-
pendence on the pattern size make the power
columns useless where a dictionary of differ-
ent sized patterns is involved. A significantly
simpler algorithm with an additional advantage
of being alphabet-independent was presented
in [6].

Theorem 2 (Amir and Calinescu [6]) There
exists an O(jTj) worst-case time solution to the
two dimensional pattern matching problem with
natural scales.

The alphabet independent time complexity
of this algorithm was achieved by developing
a scaling-invariant “signature” of the pattern.
This idea was further developed to scaled
dictionary matching.

Theorem 3 (Amir and Calinescu [6]) Given
a static dictionary of square pattern matrices. It
is possible in O.jDj log k/ preprocessing, where
jDj is the total dictionary size and k is the number
of patterns in the dictionary, and O.jT j log k/
text scanning time, for input text T, to find all
occurrences of dictionary patterns in the text in
all natural scales.

This is identical to the time at [8], the best non-
scaled matching algorithm for a static dictionary
of square patterns. It is somewhat surprising that
scaling does not add to the complexity of single
matching nor dictionary matching.

The first algorithm to solve the scaled match-
ing problem for real scales, was a one dimen-
sional real scaling algorithm using Definition 4.

Theorem 4 (Amir, Butman, and Lewen-
stein [3]) There exists an O(jTj) worst-case time
solution to the one dimensional floor real scaled
matching problem.

The first algorithm to solve the two dimen-
sional scaled matching problem for real scales in
the geometric model is the following.

Theorem 5 (Amir, Butman, Lewenstein,
and Porat [4]) Given an n 	 n text and
m 	m pattern. It is possible to find all
pattern occurrences in all real scales in time
O.nm3 C n2m logm/ and spaceO.nm3 C n2/.

The above result was improved.

Theorem 6 (Amir and Chencinski [7]) Given
an n 	 n text and m 	m pattern. It is possible to
find all pattern occurrences in all real scales in
timeO.n2m/ and space O(n2).

This algorithm achieves its time by exploiting
geometric characteristics of nested scales occur-
rences and a sophisticated use of dueling [1, 16].

The assumption in both above algorithms is
that the scaled occurrence of the pattern starts at
the top left corner of some pixel.

It turns out that one can achieve faster times in
the one dimensional real scaled matching prob-
lem, even in the geometric model.

Theorem 7 (Amir, Butman, Lewenstein, Porat,
and Tsur [5]) Given a text string T of length n
and a pattern string P of length m, there exists
an O.n logm C m

p
nm logm/ worst-case time

solution to the one dimensional pattern matching
problem with real scales in the geometric model.

Applications

The problem of finding approximate occurrences
of a template in an image is a central one in
digital libraries and web searching. The current
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algorithms to solve this problem use methods
of computer vision and computational geometry.
They model the image in another space and seek
a solution there. A deterministic worst-case algo-
rithm in pixel-level images does not yet exist. Yet,
such an algorithm could be useful, especially in
raw data that has not been modeled, e.g., movies.
The work described here advances another step
toward this goal from the scaling point of view.

Open Problems

Finding all scaled occurrences without fixing the
scaled pattern start at the top left corner of the
text pixel would be important from a practical
point of view. The final goal is an integration of
scaling with rotation [2, 11–13] and local errors
(edit distance) [9].
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Problem Definition

The problem is concerned with finding large
constrained patterns in sets of 2-intervals. Given
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a single-stranded RNA molecule, a sequence of
contiguous bases of the molecule can be repre-
sented as an interval on a single line, and a possi-
ble pairing between two disjoint sequences can
be represented as a 2-interval, which is merely
the union of two disjoint intervals. Derived from
arc-annotated sequences, 2-interval representa-
tion considers thus only the bonds between the
bases and the pattern of the bonds, such as hairpin
structures, knots and pseudoknots. A maximum
cardinality disjoint subset of a candidate set of
2-intervals restricted to certain prespecified ge-
ometrical constraints can provide a useful valid
approximation for RNA secondary structure de-
termination.

The geometric properties of 2-intervals pro-
vide a possible guide for understanding the com-
putational complexity of finding structured pat-
terns in RNA sequences. Using a model to rep-
resent nonsequential information allows us to
vary restrictions on the complexity of the pattern
structure. Indeed, two disjoint 2-intervals, i.e.,
two 2-intervals that do not intersect in any point,
can be in precedence order (<), be allowed to
nest (@) or be allowed to cross (G). Furthermore,
the set of 2-intervals and the pattern can have
different restrictions, e.g., all intervals have the
same length or all the intervals are disjoint. These
different combinations of restrictions alter the
computational complexity of the problems, and
need to be examined separately. This examination
produces efficient algorithms for more restrictive
structured patterns, and hardness results for those
that are less restrictive.

Notations
Let I D Œa; b� be an interval on the line. Write
start.I/ D a and end.I/ D b. A 2-interval is the
union of two disjoint intervals defined over a sin-
gle line and is denoted by D D .I; J /; I is com-
pletely to the left of J. Write left.D/ D I and
right.D/ D J. Two 2-intervalsD1 D .I1; J1/ and
D2 D .I2; J2/ are said to be disjoint (or nonin-
tersecting) if both 2-intervals share no common
point, i.e., .I1 [ J1/ \ .I2 [ J2/ D ;. For such
disjoint pairs of 2-intervals, three natural binary
relations, denoted <, @ and G, are of special
interest:

• D1 < D2 .D1 precedes D2/; if I1 < J1

< I2 < J2,
• D1 @ D2 .D1 is nested in D2/; if I2 < I1

< J1 < J2, and
• D1 G D2 .D1 crosses D2/; if I1 < I2 < J1

< J2.

A pair of 2-intervals D1 and D2 is said to
be R-comparable for some R 2 f<;@;Gg, if
either D1RD2 or D2RD1. Note that any two
disjoint 2-intervals are R-comparable for some
R 2 f<;@;Gg. A set of disjoint 2-intervals
D is said to be R-comparable for some
R � f<;@;Gg, R ¤ ;, if any pair of distinct 2-
intervals in D is R-comparable for some R 2 R.
The nonempty subset R is called a model for D.

The 2-interval-pattern problem asks one to
find in a set of 2-intervals a largest subset of
pairwise compatible 2-intervals. In the present
context, compatibility denotes the fact that any
two 2-intervals in the solution are (1) noninter-
secting and (2) satisfy some prespecified geomet-
rical constraints. The 2-interval-pattern problem
is formally defined as follows:

Problem 1 (2-interval-pattern)
INPUT: A set of 2-intervals D and a model
R � f<;@;Gg.
SOLUTION: A R-comparable subset D0 � D.
MEASURE: The size of the solution, i.e., jD0j.

According to the above definition, any solution
for the 2-interval-pattern problem for some
model R � f<;@;Gg corresponds to an RNA
structure constrained by R. For example,
a solution for the 2-interval-pattern problem
for the R D f<;@g model corresponds to
a pseudoknot-free structure (a pseudoknot in an
RNA sequence S D s1; s2; : : : ; sn is composed
of two interleaving nucleotide pairings .si ; sj /
and .si 0 ; sj 0/ such that i < i 0 < j < j 0).

Some additional definitions are needed for
further algorithmic analysis. Let D be a set
of 2-intervals. The width (respectively height,
depth) is the size of a maximum cardinality f<g-
comparable (respectively f@g-comparable, fGg-
comparable) subset D0 � D. The interleaving
distance of a 2-interval Di 2 D is defined to
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be the distance between the two intervals of Di,
i.e., start.right.Di// � end.left.Di//. The total
interleaving distance of the set of 2-intervals D,
written L.D/, is the sum of all interleaving dis-
tances, i.e., L.D/ D

P
Di 2D start.right.Di// �

end.left.Di//. The interesting coordinates
of D are defined to be the set X.D/ D
S

Di 2Dfend.left.Di//; start.right.Di//g. The
density of D, written d.D/, is the maximum
number of 2-intervals in D over a single point.
Formally, d.D/ D maxx2X.D/fD 2 D W

end.left.D/ � x < start.right.D//g.

Constraints
The structure of the set of all (simple) intervals
involved in a set of 2-intervals D turns out to be
of particular importance for algorithmic analysis
of the 2-interval-pattern problem. The interval
ground set of D, denoted I.D/, is the set of all
intervals involved in D, i.e., I.D/ D fleft.Di/ W

Di 2 Dg [ fright < .D W i/ W Di 2 Dg.
In [7, 20], four types of interval ground sets were
introduced.

1. Unlimited: no restriction on the structure.
2. Balanced: each 2-interval Di 2 D is com-

posed of two intervals having the same length,
i.e., jleft.Di/j D jright.Di/j.

3. Unit: the interval ground set I.D/ is solely
composed of unit length intervals.

4. Disjoint: no two distinct intervals in the inter-
val ground set I.D/ intersect.

Observe that a unit 2-interval set is balanced,
while the converse is not necessarily true. Fur-
thermore, for most applications, one may assume
that a disjoint 2-interval set is unit. Observe that
in this latter case, a set of 2-intervals reduces to
a graph G D .V;E/ equipped with a numbering
of its vertices from 1 to jV j, and hence the
2-interval-pattern problem for disjoint interval
ground sets reduces to finding a constrained max-
imum matching in a linear graph. Considering
additional restrictions such as:

• Bounding the width, the height or the depth
of either the input set of 2-intervals or the
solution subset

• Bounding the interleaving distances

is also of interest for practical applications.

Key Results

The different combinations of the models and
interval ground sets alter the computational com-
plexity of the 2-interval-pattern problem. The
main results are summarized in Tables 1 (time
complexity and hardness) and 2 (approximation
for hard instances).

Theorem 1 The 2-interval-pattern problem is
approximable (APX) hard for models R D f<;

@;Gg and R D f@;Gg, and is nondeterministic
polynomial-time (NP) complete – in its natural
decision version – for model R D f<;Gg, even
when restricted to unit interval ground sets.

Notice here that the 2-interval-pattern problem
for model R D f<;Gg is not APX-hard. Two
hard cases of the 2-interval-pattern turn out to
be polynomial-time-solvable when restricted to
disjoint-interval ground sets.

Theorem 2 The 2-interval-pattern problem for a
disjoint-interval ground set is solvable in

• O.n
p
n/ time for model R D f<;@;Gg (triv-

ial reduction to the standard maximum match-
ing problem)

Two-Interval Pattern Problems, Table 1 Complexity
of the 2-interval-pattern problem for all combinations of
models and interval ground sets. For the polynomial-time
cases, n D jDj, L D L.D/ and d D d.D/

Interval ground set I.D/

Model R Unlimited, balanced, unit Disjoint

f<; @; Gg APX-hard [1] O.n
p

n/ [15]

f<; Gg NP-complete [3] unknown

f@; Gg APX-hard [19] O.n log n C L/ [8]

f<; @g O.n log n C nd/ [8]

f<g O.n log n/ [19]

f@g O.n log n/ [3]

fGg O.n log n C L/ [8]
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• O.n lognC L/ time for model R D f@;Gg

The complexity of the 2-interval-pattern prob-
lem for modelR D f<;Gg and a disjoint-interval
ground set is still unknown. Three cases of the 2-
interval-pattern problem are polynomial-time-
solvable, regardless of the structure of the interval
ground sets.

Theorem 3 The 2-interval-pattern problem is
solvable in

• O.n lognC nd/ time for model R D f<;@g

• O.n logn/ time for models R D f<g and
R D f@g

• O.n lognC L/ time for model R D fGg

One may now turn to approximating hard in-
stances of the 2-interval-pattern problem. Sur-
prisingly enough, no significant differences (in
terms of approximation guarantees) have yet been
found for the 2-interval-pattern problem be-
tween the model R D f<;@;Gg and the model
R D f@;Gg (the approximation algorithms are,
however, different).

Theorem 4 The 2-interval-pattern problem for
model R D f<;@;Gg or model R D f@;Gg is
approximable within ratio

• 4 for unlimited-interval ground sets, and
• 2C � for unit-interval ground sets.

The 2-interval-pattern problem for model
R D f<;Gg is approximable within ratio
1C 1=�, � � 2 for all models.

A practical 3-approximation algorithm for
model R D f<;@;Gg (resp. R D f@;Gg) and
unit interval ground set that runs in O.n lgn/
(resp. O.n2 lgn/) time has been proposed
in [1] (resp. [7]). For model R D f<;Gg, a
more practical 2-approximation algorithm that
runs in O.n3 lgn/ time has been proposed in
[10]. Notice that Theorem 4 holds true for
the weighted version of the 2-interval-pattern
problem [7] except for models R D f<;@;Gg

and R D f@;Gg and unit interval ground set
where the best approximation ratio is 2:5C � [5].

Applications

Sets of 2-intervals can be used for modeling
stems in RNA structures [20, 21], determining
DNA sequence similarities [13] or scheduling
jobs that are given as groups of nonintersecting
segments in the real line [1, 9]. In all these
applications, one is concerned with finding
a maximum cardinality subset of nonintersecting
2-intervals. Some other classical combinatorial
problems are also of interest [5]. Also,
considering sets of t-intervals (each element is
the union of at most t disjoint intervals) and their
corresponding intersection graph has proved to
be useful.

It is computationally challenging to predict
RNA structures including pseudoknots [14].
Practical approaches to cope with intractability
are either to restrict the class of pseudoknots
under consideration [18] or to use heuris-
tics [6, 17, 19]. The general problem of
establishing a general representation of structured
patterns, i.e., macroscopic describers of RNA
structures, was considered in [20]. Sets of
2-intervals provide such a natural geometric
description.

Constructing a relevant 2-interval set from
a RNA sequence is relatively easy: stable stems
are selected, usually according to a simplified
thermodynamic model without accounting for
loop energy [2, 16, 19–21]. Predicting a reliable
RNA structure next reduces to finding a max-
imum subset of nonconflicting 2-intervals, i.e.,
a subset of disjoint 2-intervals. Considering in
addition a model R � f<;@;Gg allows us to
vary restrictions on the complexity of the pattern
structure. In [21], the treewidth of the intersection
graph of the set of 2-intervals is considered for
speeding up the computation.

For sets of 2-intervals involved in practical
applications, restrictions on the interval ground
set are needed. Unit interval ground sets were
considered in [7]. Of particular importance in
the context of molecular biology (RNA structures
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Two-Interval Pattern Problems, Table 2 Performance ratios for hard instances of the 2-interval-pattern problem.
LP stands for Linear Programming and N/A stands for Not Applicable

Interval ground set I.D/

Model R Unlimited Balanced Unit Disjoint

f<; @; Gg 4 LP [1] 4 O.n lg n/ [7] 2 C �O.n2 C nO.log 1=�// [13] N/A

f@; Gg 4 LP [7] 4 O.n2 lg n/ [7] 2 C �O.n2 C nO.log 1=�// [13] N/A

f<; Gg 1 C 1=�O.n2�C3/; � � 2 [14]

and DNA sequence similarities) are balanced
interval ground sets, where each 2-interval is
composed of two equally length intervals.

Open Problems

A number of problems related to the 2-interval-
pattern problem remain open. First, improving
the approximation ratios for the various flavors
of the 2-interval-pattern problem is of partic-
ular importance. For example, the existence of
a fast approximation algorithm with good per-
formance guarantee for the 2-interval-pattern
problem for model R D f<;@;Gg remains an
apparently challenging open problem. A related
open research area is concerned with balanced-
interval ground sets. In particular, no evidence
has shown yet that the 2-interval-pattern prob-
lem becomes easier to approximate for balanced-
interval ground sets. This question is of special
importance in the context of RNA structures
where most 2-intervals are balanced.

A number of important question are still
open for model R D f<;Gg. First, it is still
unknown whether the 2-interval-pattern
problem for disjoint-interval ground sets and
model R D f<;Gg is polynomial-time-solvable.
Observe that this problem trivially reduces to
the following graph problem: Given a graph
G D .V;E/ with V D f1; 2; : : : ; ng, find
a maximum cardinality matching M � E such
that for any two distinct edges fi; j g and fk; lg

of M, i < j , k < l and i < k, either j < k
or j < l . Another open question concerns the
approximation of the 2-interval-pattern problem
for balanced interval ground set. Is this special
case better approximable than the general case?

A last direction of research is concerned with
the parameterized complexity of the 2-interval-
pattern problem. For example, it is not known
whether the 2-interval-pattern problem for mod-
els R D f<;@;Gg, R D f@;Gg or R D f<;Gg

is fixed-parameter-tractable when parameterized
by the size of the solution. Also, investigating the
parameterized complexity for parameters such
as the maximum number of pairwise crossing
intervals in the input set or the treewidth of
the corresponding intersection 2-interval graph,
which are expected to be relatively small for most
practical applications, is of particular interest.
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Problem Definition

The UNDIRECTED FEEDBACK VERTEX SET

(UFVS) problem is defined as follows:

Input: An undirected graph G D .V;E/ and an
integer k � 0.

Task: Find a feedback vertex set F � V

with jF j � k such that each cycle in G
contains at least one vertex from F.
(The removal of all vertices in F from G
results in a forest.)

Karp [11] showed that UFVS is NP-complete.
Lund and Yannakakis [12] proved that there
exists some constant � > 0 such that it is NP-hard

to approximate the optimization version of UFVS
to within a factor of 1 C �. The best-known
polynomial-time approximation algorithm for
UFVS has a factor of 2 [1, 4]. There is a simple
and elegant randomized algorithm due to Becker
et al. [3] which solves UFVS in O(c�4k�k n) time
on an n-vertex and m-edge graph by finding
a feedback vertex set of size k with probability at
least 1 � .1 � 4�k/c4k

for an arbitrary constant c.
An exact algorithm for UFVS with a running
time of O(1.7548n) was recently found by
Fomin et al. [9]. In the context of parameterized
complexity [8, 13], Bodlaender [5] and Downey
and Fellows [7] were the first to show that the
problem is fixed-parameter tractable, i.e., that
the combinatorial explosion when solving it can
be confined to the parameter k. The currently
best fixed-parameter algorithm for UFVS runs
in O(ck�mn) for a constant c [6, 10] (see [6] for
the so far best running time analysis leading to
a constant c D 10:567). This algorithm is the
subject of this entry.

Key Results

The O(ck�mn)-time algorithm for the UNDI-
RECTED FEEDBACK VERTEX SET is based on
the so-called “iterative compression” technique,
which was introduced by Reed et al. [14]. The
central observation of this technique is quite
simple but fruitful: To derive a fixed-parameter
algorithm for a minimization problem, it suffices
to give a fixed-parameter “compression routine”

© Springer Science+Business Media New York 2016
M.-Y. Kao (ed.), Encyclopedia of Algorithms,
DOI 10.1007/978-1-4939-2864-4
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that, given a size-(k C 1) solution, either proves
that there is no size-k solution or constructs one.
Starting with a trivial instance and iteratively
applying this compression routine a linear
number of rounds to larger instances, one obtains
a fixed-parameter algorithm of the problem.
The main challenge of applying this technique
to UFVS lies in showing that there is a fixed-
parameter compression routine.

The compression routine from [6, 10] works
as follows:

1. Consider all possible partitions (X, Y) of
the size-(k C 1) feedback vertex set F
with jX j � k under the assumption that
set X is entirely contained in the new size-
k feedback vertex set F 0 and Y \ F 0 D ;

2. For each partition (X, Y), if the vertices in Y
induce cycles, then answer “no” for this par-
tition; otherwise, remove the vertices in X.
Moreover, apply the following data reduction
rules to the remaining graph:
• Remove degree-1 vertices.
• If there is a degree-2 vertex v with

two neighbors v1 and v2, where v1 … Y

or v2 … Y , then remove v and connect v1

and v2. If this creates two parallel edges
between v1 and v2, then remove the vertex
of v1 and v2 that is not in Y and add it to
any feedback vertex set for the reduced
instance.

Finally, exhaustively examine every vertex
set S with size at most k � jX j of the reduced
graph as to whether S can be added to X to
form a feedback vertex set of the input graph.
If there is one such vertex set, then output it
together with X as the new size-k feedback
vertex set.

The correctness of the compression routine
follows from its brute-force nature and the easy
to prove correctness of the two data reduction
rules. The more involved part is to show that
the compression routine runs in O(ck�m) time:
There are 2kC1 partitions of F into the above
sets (X, Y) and one can show that, for each
partition, the reduced graph after performing
the data reduction rules has at most d�k vertices

for a constant d; otherwise, there is no size-
k feedback vertex set for this partition. This
then gives the O(ck�m)-running time. For more
details on the proof of the d�k-size bound
see [6, 10].

Given as input a graph G with vertex set
fv1; : : : ; vng, the fixed-parameter algorithm
from [6, 10] solves UFVS by iteratively con-
sidering the subgraphs Gi WD GŒfv1; : : : ; vi g�.
For i D 1, the optimal feedback vertex set
is empty. For i > 1, assume that an optimal
feedback vertex set Xi for Gi is known.
Obviously, Xi [ fviC1g is a solution set
for GiC1. Using the compression routine,
the algorithm can in O(ck�m) time either
determine that Xi [ fviC1g is an optimal
feedback vertex set for GiC1, or, if not,
compute an optimal feedback vertex set
for GiC1. For i D n, we thus have computed
an optimal feedback vertex set for G in O(ck�mn)
time.

Theorem 1 UNDIRECTED FEEDBACK VERTEX

SET can be solved in O(ck�mn) time for a con-
stant c.

Applications

The UNDIRECTED FEEDBACK VERTEX SET

is of fundamental importance in combinatorial
optimization. One typical application, for
example, appears in the context of combinatorial
circuit design [1]. For applications in the
areas of constraint satisfaction problems
and Bayesian inference, see Bar-Yehuda
et al. [2].

Open Problems

It is open to explore the practical performance
of the described algorithm. Another research
direction is to improve the running time
bound given in Theorem 1. Finally, it remains
a long-standing open problem whether the
FEEDBACK VERTEX SET on directed graphs
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is fixed-parameter tractable. The answer to
this question would represent a significant
breakthrough in the field.
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Problem Definition

The notion of searching a graph, in particular
visiting each vertex in a systematic preordained
fashion, is as old as graph theory itself. Indeed,
Euler’s paper in 1736 [13] presented conditions
on the vertex degrees of a graph that would
certify the presence or absence of a path (or
circuit) of edges visiting each edge exactly once.
Later it was shown by Fleury that an easy al-
gorithm to find such a path (or circuit) can be
achieved using depth-first search (DFS) [14]. In
the late nineteenth century, C. P. Trémaux [22]
and G. Tarry [28] presented DFS-based algo-
rithms for maze traversal; similarly, breadth-first
search (BFS) algorithms were used to find the
shortest possible successful maze traversals.
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In the 1960s and 1970s, these searches were
used in many of the early graph algorithms for
problems such as distance and diameter determi-
nation, network flows, planar graph recognition,
and connected and 2-connected components; see
[4, 27]. A “generic” (GENS) search, as defined
by Tarjan [27], is one in which an unvisited
vertex adjacent to a visited vertex must be chosen
before an arbitrary unvisited vertex. Note that this
criterion includes the standard graph searches,
but does not include some useful vertex orderings
such as nonincreasing vertex degree. We caution
the reader that by BFS we follow Golumbic [16]
and refer to the distance layering where unvis-
ited neighbors of the currently visited vertex are
placed at the end of a queue data structure. Note
that in [4] BFS is defined as distance layering, but
their implementation of distance layering uses a
queue. Throughout this note, we assume that our
graphs are connected.

In a seminal 1976 paper, Rose, Tarjan, and
Lueker [24] introduced a variation of BFS, called
lexicographic breadth-first search (LBFS), and
showed that an arbitrary LBFS search could be
used to achieve a linear time algorithm to recog-
nize chordal graphs (there is no induced cycle of
size strictly greater than 3). After the appearance
of this paper, there were a few new applications of
LBFS, mostly on applications on graph families
related to chordal graphs. In the 1990s there was
a marked increase in the application of LBFS
in which a previous vertex ordering (usually a
previous LBFS ordering) was used to break ties
when there was more than one vertex eligible to
be visited next. Such tiebreaking is referred to as
a “C-sweep,” as defined below.

Definition 1 Given a search S and vertex or-
dering � of graph G, a plus S sweep with
respect to � (denoted SC.G; �/) is the vertex
ordering where the next vertex to be visited is the
rightmost (as ordered by � ) T vertex (where T
denotes the set of tied vertices).

Such “multi-sweep” LBFS algorithms were
used for the recognition of interval graphs (for
definitions of, and basic results on, various graph
classes mentioned in this paper, see [3]), unit
interval graphs, and cographs as well as finding

dominating pairs (a pair of vertices .x; y/ such
that every x�y path P dominates G in the sense
that every vertex of G is either on P or has a
neighbor on P ) for asteroidal triple-free graphs.
See [5] for an overview of these applications
of LBFS. More recently, applications of LBFS
have been found for graphs in general for such
problems as modular decomposition [29] and
split decomposition [15].

The proofs of correctness of multi-sweep
LBFS algorithms typically are based on the
following “4-vertex ordering characterization
of LBFS”:

Theorem 1 ([2, 16]) A vertex total ordering �

could be produced by an LBFS if and only if for
every triple of vertices fa; b; cg where a <� b <�

c; ac 2 E, and ab … E there exists vertex d such
that d <� a; db 2 E, and dc … E.

Having seen the importance of Theorem 1
to the development of multi-sweep LBFS algo-
rithms, a natural question and the question that is
the basis of the Graph Searching Paper [6] is:

Do other standard graph searches have a similar “4-
vertex ordering characterization”?

Key Results

The first reaction to the question posed above is to
try to understand exactly what is the structure of
the search imposed by the fa; b; cg vertices. The
relevant question is:

In the presence of the ac edge, how could b have
been visited before c?

Since we are dealing with “generic” searches,
some vertex d which is adjacent to b must have
been visited before b since otherwise a would
have to be chosen before b. If the search we are
considering does not impose any further condi-
tions on which unvisited vertices are eligible to be
chosen, then the existence of d with db 2 E and
d <� b is a “4-vertex ordering characterization
of GENS search.” The full statement of the main
theorem proved in [6] is:
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Theorem 2 ([6]) For S a graph search in
{GENS, BFS, DFS, MNS, LBFS, LDFS} a total
ordering � of the set of vertices of the given
graph could have been produced by S if and
only if for every triple a <� b <� c in �

where ac 2 E; ab … E there exists vertex d
satisfying the requirements stated in the following
table:

Requirements on d
Search S Location Adjacencies
GENS d < b db 2 E

BFS d < a db 2 E

DFS a < d < b db 2 E

MNS d < b db 2 E; dc … E

LBFS d < a db 2 E; dc … E

LDFS a < d < b db 2 E; dc … E

Note that the hierarchy among these differ-
ent searches (and layered search) is shown in
Fig. 1.

In the case of BFS, the characterization states
that b must have a neighbor d where d <� a.
In effect, this location for d reflects the role
played by the queue in the BFS algorithm.
Similarly, for DFS the location of d is between
a and b reflecting the role played by the stack
in the DFS algorithm. Note that the locations
of d imposed by BFS and DFS capture the
full range allowed by GENS search thereby
exhibiting a type of duality between BFS and
DFS.

Now look at the difference between the
characterizations of both BFS and LBFS. Both
have the same location requirement for vertex d ;
however, BFS requires d to be a neighbor of b,
whereas LBFS strengthens this condition so that

d has to be a private neighbor of b with respect
to c. This means that b’s neighborhood in the set
of visited vertices is maximal with respect to
set inclusion. This raises the question of what
happens to both DFS and GENS search if we
add the “lexicographic” property – i.e., as with
LBFS, that d has to be a private neighbor of b
with respect to c, and thus that b’s neighborhood
in the set of visited vertices is maximal with
respect to set inclusion. In the case of the
“lexical” version of GENS search, this search
was already known as the maximal neighbor
search (MNS) [25], in particular, a search that
chooses any vertex that has a maximal (by set
inclusion) neighborhood in the set of visited
vertices. Interestingly, this vertex ordering was
presented in [24] where they showed that any
search that obeys this property would produce a
perfect elimination ordering (PEO) if the given
graph is chordal. Thus, they concluded that both
maximum cardinality search and LBFS suffice.
Turning to LDFS, we see that d has the same
location requirement as DFS, and adding the
“lexical” property shows that LDFS is also
a restricted version of MNS, and thus, it too
is guaranteed to produce a PEO on chordal
graphs. Note that in [6] all of these conditions
are shown to be characterizations of the specific
searches.

To illustrate the differences and relationships
among these various searches, consider the graph
in Fig. 2:

Regarding complexity issues, all searches
mentioned in Theorem 2, except LDFS, have
a linear time implementation (see [17] for
LBFS); the current best LDFS implementation
for arbitrary graphs uses van Emde Boas

Unified View of Graph
Searching and
LDFS-Based Certifying
Algorithms, Fig. 1
Summary of the hereditary
relationships proved in
Theorem 2. An arc from
search S to search S 0

indicates that S 0 is a
restriction of S

LBFS DFSMCS

MNSBFS LDFS

Layered Search

GENS



2294 Unified View of Graph Searching and LDFS-Based Certifying Algorithms

Unified View of Graph
Searching and
LDFS-Based Certifying
Algorithms, Fig. 2
Sample graph and
illustrative searches

a

bcd

e a b d c e ∈ BFS \ {LBFS, DFS}

a b c d e ∈ {LBFS, DFS} \ LDFS

a b e c d ∈ DFS \ {LDFS, BFS}

a b c e d ∈ LDFS \ BFS

c a b e d ∈ {MNS ∩ BFS} \ LBFS

b a c e d ∈ {MNS ∩ DFS} \ LDFS

trees [26] and runs in time O.max.n2; n C

mlog logn//. The key question arising from
[6] is:

Are there any applications of LDFS?

Problem Definition (cont.)

The first few attempts to find such an application
quickly failed. The first was to see if LDFS
could enjoy the same success as LBFS in build-
ing recognition algorithms for various restricted
families of graphs (apart from chordal graphs); in
all cases easily found counterexamples thwarted
the various attempts. The second approach was to
determine if LDFSC could be helpful in finding
Hamilton paths (HP) or more generally minimum
path covers (MPC) where the goal is to find a
minimum cardinality set of subpaths of given
graph G such that each vertex belongs to exactly
one such path. Unfortunately, LDFSC fails when
applied to an interval ordering (G is an interval
graph if and only if there is an interval ordering,
� , of the vertices such that for all triples a <�

b <� c where ac 2 E, then ab must also belong
to E). To see this, consider a vertex universal
to two disjoint paths on three vertices. From
examples, it seems, however, that DFSC will find
an HP, if one exists.

In fact, [1] and [11] independently showed
that using the rightmost neighbor (RMN) sweep
on an interval ordering yields an MPC of the
given interval graph. Note that RMN when
presented with an ordering � greedily builds
paths by starting at the rightmost unvisited vertex
of � and proceeding to its rightmost unvisited
neighbor if such a vertex exists; if not, a new

path is started at the rightmost unvisited vertex.
(Note that this backtracking is different than the
DFSC restarting.) Building off this algorithm,
Dalton [10] presented a simple algorithm that
certifies the correctness of the computed set
of paths by either finding a set of vertices S
(called a “scattering set”) where the number
of connected components of G n S equals jS j

plus the number of paths in the path cover or
concludes that the given vertex ordering is not an
interval ordering.

The next step was to try to lift this simple MPC
algorithm to the superclass of cocomparability
graphs. Note that a graph is a cocomparability
graph if and only if its complement G has a
transitive orientation of its edges. This orientation
condition in G immediately translates into a ver-
tex ordering characterization of cocomparability
graphs. In particular, G is a cocomparability
graph if and only if there is a cocomp ordering,
� , of the vertices such that for all triples a <�

b <� c where ac 2 E, at least one of ab and bc
must also belong to E.

Although there were polynomial time algo-
rithms that solved the MPC problem on cocom-
parability graphs, all of these algorithms solved
the “bump number” problem on the poset asso-
ciated with the given graph and used the fact
that any linear extension that minimizes the bump
number contains the set of paths in a minimum
path cover. The goal of this research was to
find an MPC cocomparability graph algorithm
that is directly graph theoretical and hopefully
extends the interval graph MPC algorithm men-
tioned above. Examples immediately showed that
applying RMN to an arbitrary cocomp ordering
does not work, so many attempts were made to
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use multi-sweep LBFS to yield such a cocomp
ordering. (Note that if � is a cocomp ordering
and � D LBFSC.�/, then � is also a cocomp or-
dering.) This approach continued until the graph
shown in Fig. 3 was discovered. On this graph
every LBFS cocomp � ordering fails, in the
sense that RMN applied to � does not produce
a Hamiltonian path! A sample LBFS and the
resulting RMN (which consists of two paths) are
included in Fig. 3.

Having seen the failure of LBFS, is there any
chance that LDFS could work?

Key Results (cont.)

If there is such a role for LDFS, the counterex-
ample for interval graphs mentioned previously
shows that LDFS could not be expected to pro-
duce a minimum path cover itself; possibly LDFS
could be used as a preprocessing step. If so, the
simplest possible algorithm would be:

1. Let � be an arbitrary cocomp ordering.
2. Let � be LDFSC.�/.
3. Let � be RMN.�/.
4. If � is not a Hamiltonian path, then from � , use

Dalton’s algorithm to construct a separator S
that certifies � ; otherwise, conclude � is not a
cocomp ordering.

First of all, as with LBFS, LDFS when applied
as a C-sweep on a given cocomp ordering returns
a cocomp ordering. In this algorithm the hope is
that an LDFS cocomp ordering would capture the

“interval structure of cocomparability graphs,” at
least from the perspective of the MPC problem.

Somewhat surprisingly, this algorithm worked
on all attempted examples. In an attempt to under-
stand the structure exposed by an LDFS cocomp
ordering, there are two points. First of all, why
we do not see the LDFS structure in interval
graphs? From the vertex ordering characteriza-
tion of interval graphs, we see that there can never
be an ordered triple of vertices a < b < c

with edge ac and nonedge ab, and thus, every
interval ordering is simultaneously an example of
every search mentioned in Theorem 2. Secondly,
since an interval graph is chordal, every LBFS
and LDFS must be a perfect elimination ordering
implying that every vertex is simplicial in the
graph formed on it and all vertices before it in
the ordering. By considering a C4, this property
will not hold for LDFS cocomp orderings. There
is however a crucial observation of the structure
guaranteed by a nonsimplicial vertex in an LDFS
cocomp ordering.

Lemma 1 ([7]) Let � be an LDFS cocomp or-
dering of cocomparability graph G. If ´ is a
nonsimplicial vertex in � as witnessed by x <�

y <� ´ where x´; y´ 2 E; xy … E, then there
exists vertex w, x <� w <� y where xw;wy 2

E;w´ … E.

Proof By the LDFS vertex ordering characteriza-
tion applied to the triple fx; y; ´g, vertex w exists
and satisfies all conditions of the lemma, except
possibly xw 2 E; if this is not the case, then
the triple fx;w; ´g violates � being a cocomp
ordering.

This lemma plays a critical role in the proof of
correctness of the MPC algorithm stated above.
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Open Problems

We first list a number of recent results that have
grown out of the work presented in [6, 7]:

• Köhler and Mouatadid [20] have recently
shown that LDFS on a cocomparability graph
can be done in linear time, thereby avoiding
the log logn off linear factor in the MPC paper
[7].

• Mertzios and Corneil [23] have “lifted” the
O.n4/ longest path algorithm on interval
graphs [18] to achieve the same result and
time bound for cocomparability graphs. As
with the MPC algorithm, a LDFS cocomp
ordering was required.

• A similar technique of using an LDFS co-
comparability ordering as a preprocessing step
for a simple linear time interval graph algo-
rithm has resulted in a linear time algorithm
for the maximum independent set (and min-
imum vertex cover) problems on cocompa-
rability graphs [8]. Note that the algorithm
also produces a minimum cardinality clique
cover in order to certify the maximum inde-
pendent set produced by the algorithm. This
algorithm also uses the linear time LDFS
cocomp ordering algorithm presented in [20].
Very recently Köhler and Mouatadid [19] have
presented a linear time algorithm that com-
putes a maximum weighted independent set
of a cocomparability graph; this algorithm
works on any cocomp ordering and, in par-
ticular, does not require an LDFS cocomp
ordering.

• In [8] the authors also characterized the
search orderings that are “cocomp ordering
preserving” in the sense that when used as
a C-sweep, the output is a cocomp ordering
when the input is a cocomp ordering. They
showed that dfgreedy is such a preserving
search and can be used to simplify the current
best recognition algorithm for permutation
graphs.

• In his PhD thesis, Dusart [12] studied the max-
imal clique lattice of a cocomparability graph
and showed that a graph G is a cocompara-
bility graph if and only if the set of maximal

cliques of G satisfies specific lattice proper-
ties. Furthermore, he defined a new cocomp
ordering preserving search called local MNS
to compute a maximal interval subgraph of G.
The new characterization together with MNS
yields linear time algorithms to compute the
simplicial vertices, the clique separators, and
associated components of a cocomparability
graph.

• Recently a new model of graph searching
called “tiebreaking label search” (TBLS) [9]
has been announced. This model builds off
the vertex ordering characterization model ap-
pearing in [6] as well as the General Label
Search formalism of Krueger, Simonet, and
Berry [21]. The TBLS model incorporates
the C-sweep use of graph searches, restricts
labels to be sets of integers, and presents some
new vertex ordering characterizations.

We now turn to some new directions for fur-
ther research. From a graph algorithm perspec-
tive, the most interesting question is whether the
results on cocomparability graphs can be easily
extended to asteroidal triple-free graphs, an in-
clusive family that has received considerable at-
tention. Further results, both structural and algo-
rithmic are expected for cocomparability graphs
and their associated posets. We expect that graph
searching will continue to play a major role in
these developments.
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Problem Definition

The Model
A mobile robotic sensor (or simply sensor) is
modeled as a computational unit with sensorial
capabilities: it can perceive the spatial environ-
ment within a fixed distance V > 0, called
visibility range, it has its own local working
memory, and it is capable of performing local
computations [6, 7].
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Each sensor is a point with its own local
coordinate system, which might not be consistent
with the ones of the other sensors. The sensor
can move in any direction, but it may be stopped
before reaching its destination, e.g., because of
limits to its motion energy; however, it is assumed
that the distance traveled in a move by a sensor
is not infinitesimally small (unless it brings the
sensor to its destination).

The sensors have no means of direct com-
munication to other sensors. Thus, any commu-
nication occurs in a totally implicit manner, by
observing the other sensors’ positions. Moreover,
they are autonomous (i.e., without a central
control) identical (i.e., they execute the same pro-
tocol), and anonymous (i.e., without identifiers
that can be used during the computation).

The sensors can be active or inactive. When
active, a sensor performs a Look-Compute-Move
cycle of operations: it first observes the por-
tion of the space within its visibility range ob-
taining a snapshot of the positions of the sen-
sors in its range at that time (Look); using the
snapshot as an input, the sensor then executes
the algorithm to determine a destination point
(Compute); finally, it moves toward the computed
destination, if different from the current loca-
tion (Move). After that, it becomes inactive and
stays idle until the next activation. Sensors are
oblivious: when a sensor becomes active, it does
not remember any information from previous
cycles.

Depending on the degree of synchronization
among the cycles of different sensors, three sub-
models are traditionally identified: synchronous,
semi-synchronous, and asynchronous. In the syn-
chronous (FSYNC) and in the semi-synchronous
(SSYNC) models, there is a global clock tick
reaching all sensors simultaneously, and a sen-
sor’s cycle is an instantaneous event that starts at
a clock tick and ends by the next. In FSYNC, at
each clock tick all sensors become active, while
in SSYNC some sensors might not be active in
each cycle. In the asynchronous model (ASYNC),
there is no global clock and the sensors do not
have a common notion of time. Furthermore, the
duration of each activity (or inactivity) is finite
but unpredictable. As a result, sensors can be seen

while moving, and computations can be made
based on obsolete observations.

The Problem
The (distributed) uniform covering problem
refers to sensors, randomly dispersed in a
bounded region of space, that must scatter
themselves throughout the region so to “cover”
it satisfying some optimization criteria. Consider
the case of a circular rim R (i.e., a ring), and
let S D fs0; : : : ; sn�1g be the sensors initially
arbitrarily placed in different points on R, with
si preceding siC1 clockwise (the index operations
are modulo n). We emphasize that these names
are used for presentation purposes only, and are
not known to the sensors. If the sensors agree on
the notion of clockwise, we say that they have
a common orientation. Let d D LR=n where
LR is the length of the ring. In the following,
unless otherwise stated, the sensors are assumed
to have visibility range V � 2d . Let di .t/

be the distance between sensors si and siC1

at time t ; when no ambiguity arises, we shall
omit the time and simply indicate the distance
as di . The sensors are said to have reached
an exact uniform covering (exact covering for
simplicity) at time t if di .t/ D d for all
0 � i � n � 1. Given � > 0, the sensors are
said to have reached an �-approximate covering
at time t if d � � � di .t/ � d C � for all
0 � i � n � 1.

Key Results

The Ring

Exact Uniform Covering
There is a strong impossibility result that stresses
the importance of having common orientation. If
the sensors have only a local notion of left and
right, but do not share a common orientation of
the ring, the exact covering problem is unsolv-
able. This result holds even if the sensors had
unbounded memory and visibility, and under a
SSYNC scheduler.

Theorem 1 ([5]) Let the sensors be on a ring R.
In absence of common orientation, there is no
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deterministic exact covering algorithm even if the
sensors have unbounded persistent memory, their
visibility range is unlimited, and the scheduling is
SSYNC.

To see why this is the case, consider the
following setting. Let n be even; partition the
sensors in two sets, S1 D fs1; : : : ; sn=2g and
S2 D SnS1, and place the sensors of S1 and
S2 on the vertexes of two regular .n=2/-gons
on R, rotated of an angle ˛ < 360ı=n. Fur-
thermore, all sensors have their local coordinate
axes rotated so that they all have the same view
of the world. In other words, the sensors in S1

share the same orientation, while those in S2

share the opposite orientation of C. If activating
only the sensors in S1, an exact covering (resp.
no exact covering) on R is reached at time step
tiC1, then the same is true also activating only
the ones in S2. Clearly, in such a case, activating
both sets no exact covering would be reached
at time step tiC1, and the system would be an
analogous configuration as the one of time step
ti , with different angles. Using this property, it
is easy to design an adversary that will force
any algorithm to never succeed in solving the
problem; its behavior would be as follows: (i) If
activating only the sensors in S1 (resp. S2) no
exact covering on R is reached, then activate all
sensors in S1 (resp. S2), while all sensors in S2

(resp. S1) are inactive; (ii) otherwise, activate all
sensors. Go to (i).

On the other hand, assuming common orien-
tation and knowledge of the final inter-distance
d among sensors, a simple algorithm that solves
the exact covering in ASYNC is for each sensor
to move toward the point at distance d from its
clockwise successor (if visible). We remind that
V � 2d .

Protocol RINGCOVERINGEXACT (for sensor
si )
Assumptions: Orientation, knowledge of d .

1. If siC1 is not visible, move distance d

clockwise.
2. else, if di > d move toward point x at

distance d from siC1.

Theorem 2 ([5]) The exact covering of the ring
problem is solvable in ASYNC, with common
orientation and knowledge of the final inter-
distance.

Approximate Covering
Assuming common orientation but no knowl-
edge of the final inter-distance among sensors,
an �-approximate covering is still possible for
any � > 0, but no exact covering algorithm
is known. Also this algorithm is very simple:
the sensors asynchronously and independently
Look in both directions, then they position them-
selves in the middle between the closest observed
sensors (if any). Correctness is shown by prov-
ing that the minimum distance between any two
neighboring sensors eventually grows, while the
maximum distance eventually shrinks in such a
way that there is a time when all sensors are
within d ˙ � distance.

Theorem 3 ([5]) The approximate covering of
the ring problem is solvable in ASYNC with
common orientation.

Algorithm RINGCOVERINGAPPROX (for sen-
sor si )
Assumptions: Orientation

• If no sensor is visible clockwise (resp.
counterclockwise), let di D V (resp.
di�1 D V ).

• If di � di�1 do not move.
• If di > di�1 move distance diCdi�1

2
�di�1

clockwise.

Note that the covering problem has been also
studied in discrete rings [4].

The Line
The case of a line segment is quite different from
the one of the ring, and perhaps surprisingly, it is
not easier. Let S D fs0; : : : ; sn�1g be the sensors
initially arbitrarily placed in different points on
a line L with s0 and sn�1 being two special
immobile sensors delimiting the segment to be
covered and with si preceding siC1 (0 < i <

n � 2). Let d D LL=.n � 1/, where LL denotes
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the length of the segment. Exact covering and �-
approximate covering are defined analogously to
the case of the ring.

Exact Uniform Covering
With common orientation and known final inter-
distance, an algorithm has been recently shown
for oriented sensors in ASYNC [3]. The algorithm
works even if the visibility range is just enough to
sense the final inter-distance (V D d ). Let ı � d

2

be a fixed positive (arbitrarily small) constant the
sensors agree upon.

Protocol CORRIDORCOVERINGEXACT (for
sensor si )
Assumptions: Orientation, knowledge of d ,
V D d

• If si�1 is not visible, move distance d
2

to
the left.

• else, let a WD d � di�1

If di � d and a > 0, move distance
min.d

2
� ı; a/ to the right.

Theorem 4 ([3]) The exact covering of the line
problem is solvable in ASYNC with common
orientation and knowledge of the final inter-
distance.

With fixed visibility, a distributed algorithm
has been proposed for FSYNC in a discrete set-
ting, to solve the slightly different problem of
barrier coverage [2].

Approximate Covering
Approximate covering has been studied in a
slightly different visibility model where each
sensor is able to perceive up to the next
sensor on the line [1]. In other words, in each
direction, a sensor sees the closest sensor (if
it exists), regardless of its distance, but its
visibility is blocked by it (neighbor visibility).
For presentation purposes, a global linear
coordinate system (not known to the sensors)
is used here with s0.t/ D 0 and sn�1.t/ D 1.
For the sensors to be spread uniformly, sensor
si should then occupy position i

n�1
. The

following is a simple approximate covering
algorithm.

Protocol CORRIDORSPREAD (for sensor si )
Assumptions: SSYNC, neighbour visibility

• If no sensor is visible in either direction, do
nothing.

• Otherwise, move toward point x D
1
2
.siC1 C si�1/.

The idea of the convergence proof in FSYNC

is sketched below. Let �i Œt � be the shift of the
si ’s location at time t from its final position.
According to the protocol, the position of
sensor si changes from si .t/ to si .t C 1/ D
1
2
.si�1.t/ C siC1.t// for 1 � i � n � 2, while

sensors s0 and sn�1 never move. Therefore,
the shifts changes with time as �i Œt C 1� D
1
2
.�iC1Œt � C �i�1Œt �/: Considering the progress

measure,  Œt� D ˙ iDn
iD1 �2Œt �, it can be shown

that  Œt� is a decreasing function of t unless
the sensors are already equally spread; more
precisely, it is shown that every O.n2/ cycle,
 Œt� is at least halved thus reaching approximate
covering. More complex but analogous reasoning
is followed for SSYNC.

Theorem 5 ([1]) The approximate covering of
the line problem is solvable in SSYNC with neigh-
bor visibility.

With a simple modification of the algorithm,
the result above can be extended to any fixed
visibility V > d , provided that d is known, as
described below [3].

Protocol CORRIDORSPREAD2 (for sensor si )
Assumptions: SSYNC, d known, V > d

• If only one sensor sj 2 fsiC1; si�1g is
visible to si and d 0 D dist.si ; sj / < d :
move distance d�d 0

2
C V�d

2
away from sj

• If both siC1; si�1 are visible and d1 D

dist.si�1; si / < d2 D dist.siC1; si / (resp.
d1 D dist.siC1; si / < d2 D dist.si�1; si /):
move d2�d1

2
toward siC1 (resp. toward

si�1)
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Applications

Uniform covering problems are important in
many applications; covering of a circular rim
occurs, for example, when the sensors have
to surround a dangerous area and can only
move along its outer perimeter. On the other
hand, coverings of the line (often called barrier
coverings) guarantee that any intruder attempting
to cross the perimeter of a protected region (e.g.,
crossing an international border) is detected by
one or more of the sensors. These problems
are studied under a variety of assumption; the
majority of the studies uses sensors provided
with memory, explicit communication devices,
global localization capabilities (e.g., GPS),
and centralized approaches. The advantage
of memoryless sensors are self-stabilization
and tolerance to loss of sensors, the use of
local coordinate systems has clear advantages
over the full strength of a GPS; finally,
decentralized solutions offer better fault
tolerance.

Open Problems

It is known that the exact covering of the ring is
impossible without orientation in SSYNC, but the
impossibility does not extend to FSYNC where,
however, no algorithm is known. Moreover, the
only existing exact covering algorithm in ASYNC

assumes orientation, which is needed, and knowl-
edge of the inter-distance d , which is possibly
not needed, so a tighter result might be possible.
Finally, approximate covering is achieved in the
ring in SSYNC assuming orientation, which is not
shown to be necessary, furthermore, no solution
exists for ASYNC.

In the case of the line, the only impossibility
result for exact covering [3] holds for fully disori-
ented sensors (not even able to locally distinguish
between their two directions) and with small visi-
bility range V D d . As for approximate covering,
the only known result in this model is for SSYNC,
and it is not known whether an algorithm exists
for the ASYNC model.
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Problem Definition

A Boolean formula F is said to be in conjunctive
normal form (CNF) if it is a conjunction of
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disjunction of literals. If furthermore every dis-
junction (called clause) is over at most k literals,
F is said to be in k-CNF. k-SAT, the decision
problem whether a k-CNF formula admits a sat-
isfying assignment, is one of the most prominent
NP-complete problems. A special case of k-SAT
is (promise) unique k-SAT, where the k-CNF is
additionally promised to have either a unique or
no satisfying assignment.

Suppose F has n variables. The trivial algo-
rithm tries all 2n satisfying assignments. For k-
SAT and especially 3-SAT, there have been many
successive improvements [3–9, 11]. The best of
them are randomized in the sense that they always
correctly report unsatisfiability but might fail to
report satisfiability with probability 1

3
, say.

Problem 1 (k-SAT)

INPUT: A k-CNF formula F .
OUTPUT: “No” if F is not satisfiable. “Yes” with

probability at least 2
3

if F is satisfiable.

Problem 2 (Unique k-SAT)

INPUT: A k-CNF formula F with at most one
satisfying assignment.

OUTPUT: “No” if F is not satisfiable. “Yes”
with probability at least 2

3
if F is satisfiable.

It is conjectured that unique k-SAT and k-SAT
have the same exponential complexity; however,
this could only be shown for k ! 1 [1].
Especially for PPSZ [9], the fastest known (ran-
domized) algorithm for unique k-SAT, the anal-
ysis results in a gap between k-SAT and unique
k-SAT for k D 3; 4. Furthermore, the PPSZ
algorithm has been derandomized for unique k-
SAT [10] but not for general k-SAT.

Notation For a CNF formula F over a variable
set V , denote by sat.F / the set of satisfying
assignments of F on V . For x a variable and b a
Boolean value, define F Œx 7!b� the restriction of F
by x 7! b, i.e., the formula obtained by replacing
x by b in F .

Key Results

The bounds of the PPSZ algorithm for unique k-
SAT hold for general k-SAT also if k D 3; 4 [2].
This makes PPSZ the fastest known k-SAT algo-
rithm for all k. In the analysis of [2], the PPSZ
algorithm is slightly modified.

Theorem 1 There is a randomized algorithm for
3-SAT running in time O.20:387n/.

Theorem 2 There is a randomized algorithm for
4-SAT running in time O.20:555n/.

Algorithm 1 PPSZ.k-CNF formula F )
V  variables of F
Choose ˇ uniformly at random from all assignments on
V
Choose � uniformly at random from all permutations
of V
Let ˛ be a partial assignment over V , initially the empty
assignment
for all x 2 V in the order prescribed by � do

while there is an log n-implied assignment y 7! a
of F do

F  F Œy 7!a�

˛.y/ a
end while
if ˛.x/ not fixed yet then

F  F Œx 7!ˇ.x/�

˛.x/ ˇ.x/
end if

end for
return If ˛ satisfies F , return ‘satisfiable’, otherwise
return ‘failure’.

If F is not satisfiable, then PPSZ will never
find a satisfying assignment and thus is always
correct. Hence, let F be a satisfiable k-CNF
formula over n variables V . The PPSZ algo-
rithm tries to find a satisfying assignment of F
by iteratively setting variables as follows: Go
through the variables one by one, in random
order. If a variable x is not set at its step, then
its value will be guessed uniformly at random.
Between steps, we might infer the value of some
variables in subexponential time: Setting x to a
is called logn-implied (by F ) if there is a set
of logn clauses G in F such that all satisfying
assignments of G set x to a. logn-implication
can be checked in subexponential time by brute
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force; the algorithm fixes all logn-implications
accordingly between steps.

If a variable is determined by logn-
implication, it is called forced; otherwise, it
is called guessed. The key result of [9] for
unique k-SAT is the following: If F is in k-
CNF and has a unique satisfying assignment
˛, then given that ˇ D ˛ (i.e., all guesses
are according to ˛), a variable is forced with
a certain probability Rk . By Jensen’s inequality
one can then show that ˛ is found with probability
2�.1�Rk/n. We have R3 D 2 � 2 ln 2 � 0:613

and R4 � 0:445. Repeating PPSZ inversely
proportional to its success, probability will match
the above theorems for unique 3-SAT and unique
4-SAT.

If there are multiple satisfying assignments,
there is no bound on the probability that a variable
is forced. For example, the empty CNF formula
that always evaluates to true will never have
a forced variable, as being forced depends on
certain assignments not being satisfying. How-
ever, the following can be done: Given a satis-
fiable CNF formula F , call a variable x frozen
if it has the same value in all satisfying assign-
ments of F , and call x non-frozen otherwise.
If x is frozen, the same bound on the proba-
bility that it is forced holds by the arguments
of [9]. If x is non-frozen, then it can be set
both ways and the resulting formula remains
satisfiable. The remaining problem is that the
probability for frozen variables depends on a
fixed satisfying assignment and a uniform per-
mutation; however, depending on the permuta-
tion, certain assignments will be more or less
likely. This leads to a correlation issue that has
to be solved by balancing the correlation and
the benefit of non-frozen variables by careful
bookkeeping.

Let Vf be the frozen variables of F and
Vn be the non-frozen variables of F . The
likelihood of an assignment ˛ in F , lkhd.F; ˛/,
is recursively defined as follows: If ˛ does
not satisfy F , then lkhd.F; ˛/ D 0. If ˛ is
the unique satisfying assignment of F , then
lkhd.˛/ D 1. Otherwise, let lkhd.˛/ D

1
jVf jC2jVnj

�P
x2V lkhd.˛; F Œx 7!˛.x/�/

�
. The

likelihood simulates how likely an assignment
would be returned by PPSZ in an ideal setting.

With this, the cost F is defined as follows:
For a non-frozen variable x, cost.F; x/ D 1 �

Rk . For a frozen variable x, first defined for
a satisfying assignment ˛, cost.F; x; ˛/ is the
probability that x is guessed if executing PPSZ
conditioned on ˇ D ˛. Then cost.F; x/ DP

˛2sat.F / lkhd.F; ˛/cost.F; x; ˛/. Observe that
cost.F; x/ � 1 � Rk , as frozen variables are
guessed with probability at most 1 � Rk . In total
we define cost.F / D

P
x2V cost.F; x/ � .1 �

Rk/n. The following theorem relates the cost to
the probability that PPSZ finds an assignment:

Theorem 3

Pr.PPSZ finds some satisfying assignment of F /

� 2�c.F /:

This theorem immediately implies Theo-
rems 1 and 2. The theorem is by induction on the
number of variables of F . After a single PPSZ
step, the cost decreases in expectation; the more
the more frozen variables there are. On the other
hand, the more non-frozen variables there are,
the higher the probability is to retain a satisfiable
formula. Balancing these factors and applying
Jensen’s inequality gives the theorem. It is
noteworthy that the proof relies on the inequality
0:613 � R3 � 1

2 ln 2
� 0:721, meaning that if

PPSZ would be improved beyond this bound, the
unique case might indeed be better.

Open Problems

• Is the exponential complexity of k-SAT and
unique k-SAT the same? Here this has been
shown for the specific case of the PPSZ algo-
rithm.

• Does PPSZ perform even better on formulas
with exponentially many satisfying assign-
ments?

• Can PPSZ be derandomized for general k-
SAT?
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Problem Definition

Given a set of jobs J D f1; 2; : : : ; ng with
processing times pj 2 RC and weights wj 2

RC, the task is to find a schedule for all jobs on
a single machine that minimizes

P
wjCj , where

Cj is the completion time of job j .
Under the standard scheduling assumption of

an ideal machine that runs at constant speed, an
optimal schedule is obtained by sequencing the
jobs in nonincreasing order of the ratio wj =pj ;
this is known as Smith’s Rule [12]. Unfortunately,
as we shall see shortly, this sequence may per-
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form arbitrarily bad when the machine is not
ideal.

This note is concerned with the setting in
which the machine may change its processing
speed over time or it may fully break down
and is unavailable until it is fixed. Given
a sequence, the jobs are processed in this
order no matter how the machine behaves.
In case of a machine breakdown, the job
that is currently running is preempted and
resumes processing when the machine becomes
available again at a later time. The aim is to
compute a universal sequence that, for any given
machine behavior, is a good approximation of
an optimal schedule for that particular machine
behavior.

Definition 1 A sequence � is a universal c-
approximation if for any machine behavior
the total weighted completion times of � is
at most a factor c larger than the objective
value of an optimal solution for this machine
behavior.

To illustrate this definition consider the
following toy instance with two jobs: p1 D

w1 D 2 and p2 D w2 D N � 2. There are
only two possible sequences: .1; 2/ and .2; 1/.
Both sequences are optimal on an ideal machine
and are consistent with Smith’s Rule. Now
suppose our machine breaks down at t D N C 1

and stays offline for T D N 2 units of time.
The cost of .1; 2/ on this faulty machine is
4 C N.N C 2 C T / D �.N 3/, while the cost
of .2; 1/ is N 2 C 2.N C 2 C T / D �.N 2/.
This example shows that Smith’s Rule can
produce a sequence that is not a universal
O.1/-approximation. In fact, it is not clear
that such a universal sequence should always
exist.

Key Results

Epstein et al. [3] initiated the study of universal
sequencing. They showed that universal O.1/-
approximate sequences do indeed exist and
established tight lower bounds on the universal
approximation ratio that can be achieved. Their

study was subsequently furthered by Megow
and Mestre [10] who showed that the best
universal schedule can be approximated in
polynomial time up to any desired level of
accuracy.

Bounding the Performance of a Universal
Sequence
The key observation needed to bound the
performance of a universal sequence is that
approximating the min-sum objective value on
a machine with unknown processing behavior
is equivalent to approximating the total weight
of uncompleted jobs at any point in time on
an ideal machine. To that end, let W �.t/

denote, for any t � 0, the total weight of
outstanding jobs at time t in the schedule
obtained for job sequence � on an ideal
machine. Define W �.t/ WD min� W

�.t/ for
all t � 0.

Lemma 1 Let � be a sequence of jobs. Then,
the objective value of the corresponding sched-
ule is at most c times the value of an opti-
mum schedule for any machine behavior, if and
only if

W �.t/ � c �W �.t/ for all t � 0.

A Universal Sequencing Algorithm
The universal sequencing algorithm computes
the job sequence iteratively backwards. In
each iteration it solves the subproblem of
finding a set of jobs that has maximum total
processing time and total weight within a
given bound. This bound is doubled in each
iteration.

This approach is related to, but not equiv-
alent to, an algorithm of Hall et al. [6] for
online scheduling on ideal machines – the
doubling there happens in the time horizon.
Indeed, doubling strategies have been applied
successfully in the design of approximation
and online algorithms for various problems;
see, e.g., the survey by Chrobak and Kenyon-
Mathieu [1].
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Doubling Algorithm:

1. For i 2 f0; 1; : : : ; dlog w.J /eg, find a sub-
set J �i of jobs of maximum total process-
ing time p.J �i /, such that the total weight
satisfies w.J �i / � 2i .

2. Construct a permutation � as follows. Start
with an empty sequence of jobs. For i D

dlog w.J /e down to 0, append the jobs
in J �i n

Si�1
kD0 J

�
k

in any order at the end
of the sequence.

Finding the subsets of jobs J �i is a KNAPSACK

problem and, thus, NP-hard [8]. Using straight-
forward dynamic programming, the algorithm
runs in pseudo-polynomial time and achieves a
performance guarantee of 4 as shown below.
However, FPTASes for the knapsack problem can
be adopted such that the Doubling Algorithm runs
in polynomial time loosing an arbitrarily small
constant in the performance guarantee.

Theorem 1 For every scheduling instance, the
Doubling Algorithm produces a universal 4-
approximation for all machine behaviors.

Proof By Lemma 1 it is sufficient to show
that W �.t/ � 4W �.t/ for all t � 0. Let t � 0

and let i be minimal such that p.J �i / � p.J /� t .
By construction of � , only jobs j in

Si
kD0 J

�
k

can have a completion time C �
j > t . Thus,

W �.t/ �

iX

kD0

w.J �k / �

iX

kD0

2k D 2iC1 � 1:

(1)

In case i D 0, the claim is trivially true
since wj � 1 for any j 2 J , and thus, W �.t/ D

W �.t/. Suppose i � 1; then by our choice of i ,
it holds that p.J �i�1/ < p.J / � t . Therefore,
in any sequence � 0, the total weight of jobs
completing after time t is larger than 2i�1,
because otherwise we get a contradiction to the
maximality of p.J �i�1/. That is, W �.t/ > 2i�1.
Together with (1) this concludes the proof. ut

This result is best possible for universal se-
quencing on a single machine.

Theorem 2 For any c < 4, there exists an
instance for which there is no universal c-
approximation.

This can be shown through a connection to
the online bidding problem and the corresponding
lower bounds shown by Chrobak et al. [2].

Randomized Universal Schedules
It is possible to obtain a better approximation
ratio if we select the sequence at random and
slightly relax the universality requirement.

Definition 2 A probability distribution over
sequences is a randomized universal c-
approximation if for any machine behavior the
expected total weighted completion times of a
sequence chosen according to the distribution is
at most a factor c larger than the objective value
of an optimal solution for this machine behavior.

By randomizing the “doubling parameter”
in the Doubling Algorithm, the algorithm can
achieve an approximation ratio of e � 2:718,
which is best possible for randomized strategies.

Theorem 3 For every scheduling instance,
a randomized variant of the Doubling Al-
gorithm produces a randomized universal
e-approximation for all machine behaviors.
Furthermore, for any c < e, there exists an
instance for which there is no randomized
universal c-approximation.

Generalizations

Global Cost Functions
The universality of the sequence constructed by
the Doubling Algorithm can be driven even fur-
ther. Consider the generalized min-sum objective
min

P
wjf .Cj / for any nondecreasing, nonneg-

ative, differentiable cost function f .

Theorem 4 The Doubling Algorithm computes
a universal 4-approximation (randomized e-
approximation) for all machine behaviors and
all considered cost functions f simultaneously.



Universal Sequencing on an Unreliable Machine 2307

U

Precedence Constraints
A natural generalization of the universal sequenc-
ing problem requires that jobs must be sequenced
in compliance with given precedence constraints.
To a certain extent the Doubling Algorithm can
be adopted to this more general problem setting.
Essentially, the knapsack-related subroutine must
respect the precedence constraints, and it must
ensure that prepending the subsets found in dif-
ferent iterations, starting in the end, does not
violate the precedence order.

This corresponds to solving a so-called par-
tially ordered knapsack (POK) problem on the
reverse of the given partial order.

Theorem 5 The Doubling Algorithm computes
a universal 4-approximation (randomized e-
approximation) for the universal scheduling
problem respecting given precedence constraints
if the POK problem for the given partial order
can be solved in polynomial time.

In general, POK is strongly NP-hard [7] and
hard to approximate [5]. However, FPTASes exist
for special partial orders, including directed out-
trees, two-dimensional orders, and the comple-
ment of chordal bipartite orders [7, 9].

Release Dates
If jobs have release dates, we cannot hope for a
universal sequence with bounded approximation
ratio unless the scheduler is allowed to preempt
jobs. We can think of a universal sequence as a
priority order of the jobs guiding a preemptive
list scheduling procedure: At any point in time,
we work on the job of highest priority that has
not been finished yet and that has already been
released. Unfortunately, even with this flexibility,
the problem is significantly harder.

Theorem 6 There exists an instance with n jobs
with release dates and unit weights, where the
performance guarantee of any universal schedule
is ˝.logn= log log n/.

The proof relies on the classical theorem of
Erdős and Szekeres [4] on the existence of long
increasing/decreasing subsequences of a given
sequence of distinct real numbers.

Despite this negative result, there is a non-
trivial algorithm that produces a universal 5-
approximate sequencing for the class of instances
with release dates in which the processing time of
each job is proportional to its weight.

Instance-Sensitive Performance Guarantee
Theorem 1 says that the Doubling Algorithm
produces for every instance a universal 4-
approximation. Theorem 2 proves that this is
best possible since there are particular instances
that do not admit a sequence with a smaller
approximation ratio. Many instances, however,
admit better-than-4-approximate universal
sequences, yet the Doubling Algorithm is only
guaranteed to find a 4-approximation. This
motivates the problem of finding the best possible
universal sequence on an instance-by-instance
basis.

Theorem 7 For any fixed � > 0 and c > 1,
there is a polynomial time algorithm that given
an instance either finds a .c C �/-approximate
universal sequence or determines that there is
no universal c-approximation for this particular
instance.

Applications

The unreliable machine scheduling problem ad-
dresses the demand for high-quality scheduling
solutions in the dynamic real-world environments
of manufacturing processes or in operating sys-
tems. The machine could be, for example, a com-
puter server that slows down due to unpredictable
third-party usage or an aging production unit
prone to unexpected breakdowns. Another setting
where the model is applicable is where a higher
authority may give priority to another batch of
jobs, thus delaying the execution of our jobs. In
general, universally good performance regardless
of the actual machine behavior is desirable in
highly automated systems in which changing the
schedule at an arbitrary point in time is too costly
or technically infeasible.
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Open Problems

The worst-case performance of universal
sequences is quite well understood. While the
analysis in the model without release dates is
tight, it remains open in the setting with release
dates if it is possible to obtain a universal o.n/-
approximation for general instances. The best
known lower bound is ˝.logn= log log n/.

While the worst-case analysis assumes arbi-
trary machine behaviors, it would be interesting
to develop and analyze more realistic speed func-
tions. For example, it is reasonable to assume
that when a machine breaks down, then it will
be repaired or replaced within a certain (possibly
fixed) amount of time; or in a stochastic model,
the availability periods between breakdowns may
be assumed to be exponentially distributed. What
improvements in the approximation guarantee do
such restrictions allow?

A different approach in aiming for more
practice-relevant guarantees is to relax the strict
universality requirement. In many situations,
changing the scheduling sequence is possible
to a certain extent at some extra cost. A very
interesting problem is to quantify the amount
of adaptivity an algorithm needs to achieve a
certain performance guarantee. Ideally, there is a
parameter describing the adaptivity that allows to
scale between the nonadaptive 4-approximation
(Theorem 1) and a fully adaptive .1 C �/-
approximation, given by a PTAS that constructs
an individual scheduling solution for a specific
machine behavior [11].
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Problem Definition

Upward graph drawing is concerned with
computing two-dimensional layouts of directed
graphs where all edges flow in the upward
direction. Namely, given a directed graph
G.V;E/ (also called a digraph for short), an
upward drawing of G is a drawing such that: (i)
each vertex v 2 V is mapped to a distinct point
pv of the plane and (ii) each edge .u; v/ 2 E

is drawn as a simple curve from pu and pv ,
monotonically increasing in the upward direction.

Clearly, G admits an upward drawing only if
it does not contain directed cycles; if we allow
edge crossings, acyclicity is also a sufficient con-
dition for the existence of an upward drawing.
Instead, ifG is planar and we require that also the
upward drawing of G is crossing-free, acyclicity
is only a necessary condition, and the upward
drawability of G becomes a much more intrigu-
ing problem. An upward drawing with no edge
crossing is called an upward planar drawing;
deciding whether a planar digraph G admits such
a drawing is recognized as the upward planarity

testing problem. This problem can be studied in
two different settings:

• Variable embedding setting. The existence
of an upward planar drawing of G is checked
over all possible planar embeddings of G.

• Fixed embedding setting. The existence of an
upward planar drawing of G is checked for a
given planar embedding ofG, i.e., the drawing
must preserve the given embedding.

Both these settings have been widely studied
in the literature. In the next section we briefly sur-
vey few seminal results on the upward planarity
testing problem, and then we concentrate on the
first and most popular polynomial-time algorithm
for the fixed embedding setting. Figure 1 shows a
planar digraph G with a given planar embedding,
an embedding-preserving upward planar drawing
of G, and a planar digraph G that does not admit
upward planar drawings.

Key Results

Let G.V;E/ be a planar digraph. We will assume
that G is connected (indeed, a digraph admits
an upward planar drawing if and only if each
of its connected components admits an upward
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Upward Graph Drawing, Fig. 1 (a) A planar digraph G with a given planar embedding. (b) An upward planar
drawing of G that preserves the embedding of G. (c) A planar digraph G that has no upward planar drawing
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planar drawing). A source (resp. a sink) of G is a
vertex with only outgoing (resp. incoming) edges.
An internal vertex of G is a vertex with both
outgoing and incoming edges. We denote by S ,
T , and I the set of sources, sinks, and internal
vertices ofG, respectively. DigraphG is a planar
st -digraph if it has only one source s and one
sink t and a planar embedding where s and t

belong to the same face. Di Battista and Tamassia
proved different equivalent characterizations of
upward planar drawable digraphs, as stated in the
following result [7]:

Theorem 1 ([7]) LetG be a planar digraph. The
following properties are equivalent:

(a) G admits an upward planar drawing;
(b) G admits an upward planar drawing with

straight-line edges;
(c) G is the spanning subgraph of a planar st-

digraph.

Using Theorem 1, Garg and Tamassia focused
on straight-line drawings and showed that the
upward planarity testing problem in the variable
embedding setting is NP hard [9]. As a conse-
quence of this hardness result, polynomial-time
algorithms in the variable embedding setting have
been devised for restricted classes of planar di-
graphs, like single-source digraphs [6] and series-
parallel digraphs [8], while exponential-time al-
gorithms have been proposed for more general
planar digraphs (see, e.g., [1, 8]).

Conversely, Bertolazzi et al. showed that the
upward planarity testing problem can be solved
in polynomial time in the fixed embedding set-
ting [2]. In the following we describe this break-
through result, which inspired several subsequent
papers on the subject.

Polynomial-Time Upward Planarity Testing
Let G.V;E/ be an embedded planar digraph, and
still denote by S , T , and I the number of sources,
sinks, and internal vertices of G, respectively.
The result in [2] is based on an elegant combi-
natorial characterization of the planar embedded
digraphs that are upward planar drawable. We
first recall few basic definitions.

Digraph G is bimodal if for every vertex v 2

I , the outgoing edges of v are consecutive in the
cyclic clockwise order around v (which implies
that also the incoming edges of v are consecutive
in the cyclic clockwise order around v). It is
immediate to see that if a digraph G admits an
embedding-preserving upward planar drawing,G
is necessarily bimodal.

Let f be a face of G, and let a D .e1; v; e2/

be a triplet such that v 2 V is a vertex of the
boundary of f and e1, e2 are two edges incident
to v that are consecutive on the boundary of f
(e1 and e2 may coincide if G is not biconnected).
Triplet a is called an angle at v in face f ,
or simply an angle of f , or an angle at v. If
both e1 and e2 are outgoing edges of v, we call
a a source-switch angle of f ; if both e1 and
e2 are incoming edges of v, we call a a sink-
switch angle of f . Denote by S.f / and T .f / the
number of source-switch angles and the number
of sink-switch angles of f , respectively. It can be
easily observed that S.f / D T .f /. The capacity
of f is defined as cap.f / D S.f /CT .f /

2
� 1

if f is an internal face of G and as cap.f / D
S.f /CT .f /

2
C 1 if f is the external face of G.

The number of sources and sinks in the digraph
is nicely related to the face capacities, as stated
by the following theorem.

Theorem 2 ([2]) If G is a bimodal embedded
planar digraph and F is the set of faces of G,
then

P
f 2F cap.f / D jS j C jT j.

Now, given any upward planar drawing 	 ,
denote by L.v/ the number of geometric angles
larger than � at vertex v in 	 and by L.f /

the number of geometric angles larger than �

in face f in 	 . The following result estab-
lishes which kinds of angles in 	 can occur
around the vertices and inside the faces of the
digraph:

Theorem 3 ([2]) Let G be an embedded planar
digraph and let 	 be an embedding-preserving
upward planar drawing of G. We have that:

(i) L.v/ D 0 for each v 2 I and L.v/ D 1 for
each v 2 S [ T ;

(ii) L.f / D cap.f /, for each f 2 F .
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Motivated by Theorem 3, for any given em-
bedded planar digraph G, one can look for an
assignment of the angles of G to the faces of G,
with these properties:

(a) For each source or sink v, exactly one angle
at v is assigned to a face incident to v.

(b) For each face f , the number of angles as-
signed to f equals cap.f /.

Such an assignment is called an upward-
consistent assignment of G. The following result
translates the upward planarity testing problem
into the problem of deciding whether G admits
an upward-consistent assignment.

Theorem 4 ([2]) Let G be an acyclic bimodal
embedded planar digraph. G admits an
embedding-preserving upward planar drawing
if and only if G admits an upward-consistent
assignment.

In [2] it is proved that an upward-consistent
assignment can be used to construct in linear
time an upward planar drawing where each angle
assigned to a face corresponds to a geometric
angle larger than � . This is done by exploiting
Theorem 1; namely, G is first augmented to an
st-planar digraph G0, then an upward drawing of
G0 is computed, and finally the dummy edges are

removed from the drawing of G0, thus obtaining
an upward planar drawing of G.

Deciding whether G admits an upward-
consistent assignment, and in case finding one,
can be done using a network flow model. Namely,
construct a bipartite flow network N.G/ having a
node n.v/ for each source or sink v of G, called
a vertex-node, and a node n.f / for each face
f of G, called a face node. Each vertex-node
n.v/ supplies flow 1, while each face-node n.f /
demands a flow equal to cap.f /. Also, N.G/
has a directed arc .n.v/; .f // if v is a source or
a sink that belongs to the boundary of f in G.
A unit of flow on an arc .n.v/; .f // indicates
that an angle at v in f must be assigned to f .
Each feasible flow in N.G/ defines an upward-
consistent assignment of G. Using standard flow
algorithms, testing whether N.G/ has a feasible
flow, and in case computing one, can be done in
O.n C r2/, where n is the number of vertices
of G and r D jS j C jT j. Figure 2 illustrates
the algorithmic approach described above for the
upward planarity testing problem.

The next theorem summarizes the main result
of [2].

Theorem 5 ([2]) Let G be an acyclic bimodal
embedded planar digraph with n vertices, and let
r be the total number of sources and sinks of G.
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Upward Graph Drawing, Fig. 2 (a) An embedded pla-
nar digraph G; each face is represented by a small box
reporting its capacity. (b) An upward consistent assign-
ment of G; a light gray arrow indicates the assignment of

an angle to a face. (c) An embedding-preserving upward
planar drawing constructed from the upward-consistent
assignment; the angles of G assigned to a face correspond
to geometric angles larger than � in the drawing
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There exists an O.n C r2/-time algorithm that
tests whether G admits an embedding-preserving
upward planar drawing of G and that computes
such a drawing if the test is positive.

Applications

Upward drawings can be effectively used to
represent PERT networks, ISA hierarchies
in knowledge-representation diagrams, and
subroutine call charts. A generalized model,
called quasi-upward drawing, strongly enlarges
the range of application domains of upward graph
drawing, making it possible to also represent
cyclic digraphs [1] by allowing an edge to break
its upward monotonicity in a finite number of
points. Petri nets are examples of diagrams that
can be represented as quasi-upward drawings;
Petri nets are widely used to describe distributed
systems.

Efficient C++ graph drawing libraries,
like GDToolkit [5] and OGDF [3], im-
plement advanced upward graph drawing
algorithms.

Experimental Results

Extensive experimental studies on upward
planarity testing are described in [1, 4].
Other references on experimental work about
upward graph drawing algorithms can be found
in [3, 5].
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Problem Definition

This problem deals with the design of efficiently
computable incentive compatible, or truthful,
mechanisms for combinatorial optimization
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problems with selfish one-parameter agents and
a single seller. The focus is on approximation
algorithms for NP-hard mechanism design
problems. These algorithms need to satisfy
certain monotonicity properties to ensure
truthfulness.

A one parameter agent is an agent who as
her private data has some resource as well as
a valuation, i.e., the maximum amount of money
she is willing to pay for this resource. Sometimes,
however, the resource is assumed to be known
to the mechanism. The scenario where a single
seller offers these resources to the agents is pri-
marily considered. Typically, the seller aims at
maximizing the social welfare or her revenue.
The work by Briest, Krysta and Vöcking [6]
will mostly be considered, but also other existing
models and results will be surveyed.

Utilitarian Mechanism Design
A famous example of mechanism design prob-
lems is given by combinatorial auctions (CAs),
in which a single seller, auctioneer, wants to sell
a collection of goods to potential buyers. A wider
class of problems is encompassed by a utilitarian
mechanism design (maximization) problem˘ de-
fined by a finite set of objects A, a set of feasible
outputs O˘ � An and a set of n agents. Each
agent declares a set of objects Si � A and a val-
uation function vi W P.A/ 	An ! R by which
she values all possible outputs. Given a vector
S D .S1; : : : ; Sn/ of declarations one is inter-
ested in output o� 2 O˘ maximizing the social
welfare, i.e., o� 2 argmaxo2O˘

Pn
iD1 vi .Si ; o/.

In CAs, an object a corresponds to a subset of
goods. Each agent declares all the subsets she is
interested in and the prices she would be willing
to pay. An output specifies the sets to be allocated
to the agents.

Here, a limited type of agents called single-
minded is considered, introduced by Lehmann
et al. [10]. Let R� � A2 be a reflexive and
transitive relation on A, such that there exists
a special object ¿ 2 A with ¿ 
 a for any
a 2 A to model the situation in which some
agent does not contribute to the solution at all. For
a; b 2 A.a; b/ 2 R� will be denoted by a 
 b.
The single-minded agent i declares a single ob-

ject ai and is fully defined by her type .ai ; vi /,
with ai 2 A and vi > 0. The valuation function
introduced earlier reduces to

vi .ai ; o/ D

(
vi ; if ai 
 oi

0; else:

Agent i is called known if object ai is
known to the mechanism [11]. Here, mostly
unknown agents will be considered. In-
tuitively, each ai corresponds to an ob-
ject agent i offers to contribute to the so-
lution, vi describes her valuation of any
output o that indeed selects ai. In CAs,
relation R� is set inclusion: an agent in-
terested in set S will is also satisfied by
S 0 with S � S 0. For ease of notation let
.a; v/ D ..a1; v1/; : : : ; .an; vn//, .a�i ; v�i / D

..a1; v1/; : : : ; .ai�1; vi�1/; .aiC1; viC1/; : : : ;.an;

vn// and ..ai ; vi /; .a�i ; v�i // D .a; v/.

Mechanism
A mechanism M D .A; p/ consists of an algo-
rithm A computing a solution A.a; v/ 2 O˘ and
an n-tuple p.a; v/ D .p1.a; v/; : : : ; pn.a; v// 2

R
n
C of payments collected from the agents.

If ai 
 A.a; v/i , agent i is selected, and let
S.A.a; v// D fi jai 
 A.a; v/i g be the set of
selected agents. Agent i’s type is her private
knowledge. Thus, the types declared by agents
may not match their true types. To reflect
this, let .a�i ; v

�
i / refer to agent i’s true type

and .ai ; vi / be the declared type. Given
an output o 2 O˘ , the utility of agent i is
ui .a; v/ D vi .a

�
i ; o/ � pi .a; v/. Each agent’s

goal is to maximize her utility. To achieve this,
she will try to manipulate the mechanism by
declaring a false type if this could result in higher
utility. A mechanism is called truthful, or incen-
tive compatible, if no agent i can gain by lying
about her type, i.e., given declarations .a�i ; v�i /,
ui ..a

�
i ; v
�
i /; .a�i ; v�i // � ui ..ai ; vi /; .a�i ; v�i //

for any .ai ; vi / 6D .a�i ; v
�
i /.

Monotonicity
A sufficient condition for truthfulness of approx-
imate mechanisms for single-minded CAs was
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first given by Lehmann et al. [10]. Their results
can be adopted for the considered scenario. An
algorithm A is monotone with respect to R� if

i 2 S.A..ai ; vi /; .a�i ; v�i ///

) i 2 S.A..a0i ; v
0
i /; .a�i ; v�i ///

for any a0i 
 ai and v0i � vi . Intuitively, one
requires that a winning declaration .ai ; vi /

remains winning if an object a0i , smaller
according to R�, and a higher valuation v0i
are declared. If declarations .a�i ; v�i / are
fixed and object ai declared by i, algorithm A
defines a critical value 
A

i , i.e., the minimum
valuation vi that makes .ai ; vi / winning, i.e.,
i 2 S.A..ai ; vi /; .a�i ; v�i /// for any vi > 


A
i

and i … S.A..ai ; vi /; .a�i ; v�i /// for any
vi < 


A
i . The critical value payment scheme pA

associated with A is defined by pA
i .a; v/ D 
A

i ,
if i 2 S.A.a; v//, and pA

i .a; v/ D 0, otherwise.
The critical value for any fixed agent i can be
computed, e.g., by performing binary search on
interval Œ0; vi � and repeatedly running algorithm
A to check if i is selected. Also, mechanism
MA D .A; pA/ is normalized, i.e., agents that
are not selected pay 0. Algorithm A is exact,
if for declarations .a; v/, A.a; v/i D ai or
A.a; v/i D ¿ for all i. In analogy to [10] one
obtains the following.

Theorem 1 Let A be a monotone and exact algo-
rithm for some utilitarian problem ˘ and single-
minded agents. Then mechanism MA D .A; pA/

is truthful.

Additional Definitions
In the unsplittable flow problem (UFP),
an undirected graph G D .V;E/, jEj D m,
jV j D n, with edge capacities be, e 2 E, and
a set K of k � 1 commodities described by
terminal pairs .si ; ti / 2 V 	 V and a demand
di and a value ci are given. One assumes
that maxi di � mine be , di 2 Œ0; 1� for each
i 2 K D f1; : : : ; kg, and be � 1 for all e 2 E.
LetB D minefbeg. A feasible solution is a subset
K 0 � K and a single flow si-ti-path for each
i 2 K 0, such that the demands of K 0 can
simultaneously and unsplittably be routed along
the paths and the capacities are not exceeded.
The goal in UFP, called B-bounded UFP, is to
maximize the total value of the commodities in
K 0. A generalization is allocating bandwidth for
multicast communication, where commodity is
a set of terminals that should be connected by
a multicast tree.

Key Results

Monotone Approximation Schemes
Let˘ be a given utilitarian (maximization) prob-
lem. Given declarations .a; v/, let Opt.a; v/ de-
note an optimal solution to˘ on this instance and
w.Opt.a; v// the corresponding social welfare.
Assuming that A˘ is a pseudopolynomial exact
algorithm for ˘ an algorithm Ak

˘ and monotone
FPTAS for ˘ is defined in Fig. 1.

Theorem 2 Let ˘ be a utilitarian mechanism
design problem among single-minded agents,
A˘ monotone pseudopolynomial algorithm
for ˘ with running time poly.n; V /, where

Utilitarian Mechanism Design for Single-Minded Agents, Fig. 1 A monotone FPTAS for utilitarian problem ˘
and single-minded agents
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V D maxi vi , and assume that V � w.Opt.a; v//
for declaration .a; v/. Then AFP TAS

˘ is
a monotone FPTAS for ˘ .

Theorem 2 can also be applied to minimiza-
tion problems. Section “Applications” describes
how these approximation schemes can be used
for forward multi-unit auctions and job schedul-
ing with deadlines.

Truthful Primal-Dual Mechanisms
For an instance G D .V;E/ of UFP defined
above, let Si be the set of all si-ti-paths in G,
and S D

Sk
iD1 Si . Given S 2 Si , let qS .e/ D di

if e 2 S , and qS .e/ D 0 otherwise. UFP is the
following integer linear program (ILP)

max
kX

iD1

ci �

0

@
X

S2Si

xS

1

A (1)

s.t.
X

S WS2S;e2S

qS .e/xS � be 8e 2 E (2)

X

S2Si

xS � 1 8i 2 f1; : : : ; kg (3)

xS 2 f0; 1g 8S 2 S : (4)

The linear programming (LP) relaxation is the
same linear program with constraints (4) replaced
with xS � 0 for all S 2 S. The corresponding
dual linear program is

min
X

e2E

beye C

kX

iD1

´i (5)

s.t. ´i C
X

e2S

qS .e/ye � ci

8i 2 f1; : : : ; kg 8S 2 Si

(6)

´i ; ye � 0 8i 2 f1; : : : ; kg 8e 2 E: (7)

Based on these LPs, Fig. 2 specifies a primal-dual
mechanism for routing, called Greedy-1. Greedy-
1 ensures feasibility by using ye’s: if an added set
exceeded the capacity be of some e 2 E, then this
would imply the stopping condition already in the
previous iteration. Using the weak duality of LPs
the following result can be shown.

Theorem 3 Greedy-1 outputs a feasible solu-
tion, and it is a . e�B

B�1
.m/1=.B�1//-approximation

algorithm if there is a polynomial time algorithm
that finds a � -approximate set Si in line 4.

In case of UFP � D 1, as the shortest si-ti-path
computation finds set Si in line 4 of Greedy-1. For
multicast routing, this problem corresponds to the
NP-hard Steiner tree problem, for which one can
take � D 1:55. Greedy-1 can easily be shown
to be monotone in demands and valuations as
required in Theorem 1. Thus it implies a truthful
mechanism for allocating network resources. The
commodities correspond to bidders, the terminal
nodes of bidders are known, but the bidders might
lie about their demands and valuations. In the
multicast routing the set of terminals for each
bidder is known but the demands and valuations
are unknown.

Utilitarian Mechanism
Design for
Single-Minded Agents,
Fig. 2 Truthful
mechanism for network
(multicast) routing.
e � 2:718 is Euler
number
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Utilitarian Mechanism
Design for
Single-Minded Agents,
Fig. 3 Truthful
mechanism for multi-unit
CAs among unknown
single-minded bidders. For
CAs without multisets:
qS .e/ 2 f0; 1g for each
e 2 U , S 2 S

Corollary 1 Given any � > 0, B � 1C �,
Greedy-1 is a truthful O.m1=.B�1//-approxima-
tion mechanism for UFP (unicast routing) as
well as for the multicast routing problem, where
the demands and valuations of the bidders are
unknown.

When B is large, ˝.logm/, then the approxima-
tion factor in Corollary 1 becomes constant.
Azar et al. [4] presented further results in
case of large B. Awerbuch et al. [3] gave
randomized online truthful mechanisms for uni-
and multicast routing, obtaining an expected
O.log.�m//-approximation if B D ˝.logm/,
where � is the ratio of the largest to smallest
valuation. Their approximation holds in fact
with respect to the revenue of the auctioneer,
but they assume that the demands are known to
the mechanism. Bartal et al. [5] give a truthful
O.B � .m=
/1=.B�2//-approximation mechanism
for UFP with unknown valuations and demands,
where 
 D mini fdi g.

Greedy-1 can be modified to give truthful
mechanisms for multi-unit CAs among unknown
single-mined bidders. (In the case of unknown
single-minded bidders, the bidders have as
private data not only their valuations (as in
the case of known single-minded bidders) but
also the sets they demand.) Archer et al. [2]
used randomized rounding to obtain a truthful
mechanism for multi-unit CAs, but only in
a probabilistic sense and only for known bidders.
Multi-unit CA among single-minded bidders is
a special case of ILP (1)–(4), where jSi j D 1 for
each i 2 K, and qS .e/ 2 f0; 1g for each e 2 U ,
S 2 S (E is U in CAs). A bid of bidder i 2 K

is .ai ; vi / D .S; cS /, S 2 Si , and cS D ci is
the valuation. The relation R� is �. Algorithm
Greedy-2 in Fig. 3 is exact and monotone for CAs
with unknown single-minded bidders, as needed
in Theorem 1.

Theorem 4 Algorithm Greedy-2 is a truthful
O.m

1
B /-approximation mechanism for multi-unit

CAs among unknown single-minded bidders.

Bartal et al. [5] presented a truthful mechanism
for this problem among unknown single-minded
bidders which is O.B �m1=.B�2//-approximate.
(It works in fact for more general bidders.)

Applications

Applications of the techniques described above
are presented and a short survey of other results.

Applications of Monotone Approximation
Schemes
In a forward multi-unit auction a single auction-
eer wants to sell m identical items to n possi-
ble buyers (bidders). Each single-minded bidder
specifies the number of items she is interested in
and a price she is willing to pay. Elements in the
introduced notation correspond to the requested
and allocated numbers of items. Relation R�
describes that bidder i requesting qi items will
be satisfied also by any larger number of items.
Mu’alem and Nisan [11] give a 2-approximate
monotone algorithm for this problem. Theorem 2
gives a monotone FPTAS for multi-unit auctions
among unknown single-minded bidders. This FP-
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TAS is truthful with respect to agents where both
the number of items and price are private.

In job scheduling with deadlines (JSD), each
agent i has a job with running time ti, deadline
di and a price vi she is willing to pay if her
job is processed by deadline di. Element ai is
defined as ai D .ti ; di /. Output for agent i is
a time slot for processing i’s job. For two el-
ements ai D .ti ; di / and a0i D .t 0i ; d

0
i / one has

ai 
 a0i if ti � t 0i and di � d 0i . Theorem 2 leads to
a monotone FPTAS, which, however, is not exact
(see Theorem 1) with respect to deadlines, and so
it is a truthful mechanism only if the deadlines
are known. The techniques of Theorem 2 apply
also to minimization mechanism design problems
with a single buyer, such as reverse multi-unit
auctions, scheduling to minimize tardiness, con-
strained shortest path and minimum spanning tree
problems [6].

Applications of the primal dual algorithms
The applications of the primal dual algorithms are
combinatorial auctions and auctions for unicast
and multicast routing. As these applications are
tied very much to the algorithms, they have al-
ready been presented in section “Key Results”.

Survey of Other Results
First truthful mechanisms for single-minded CAs
were designed by Lehmann et al. [10], where they
introduced the concept of single-minded agents,
identified the role of monotonicity, and used
greedy algorithms to design truthful mechanisms.
Better approximation ratios of these greedy
mechanisms were proved by Krysta [9] with
the help of LP duality. A tool-box of techniques
for designing truthful mechanisms for CAs was
given by Mu’alem and Nisan [11].

The previous section presented a monotone
FPTAS for job scheduling with deadlines where
jobs are selfish agents and the seller offers the
agents the facilities to process their jobs. Such
scenarios when jobs are selfish agents to be
scheduled on (possibly selfish) machines have
been investigated further by Andelman and
Mansour [1], see also references therein.

So far social welfare was mostly assumed
as the objective, but for a seller probably more

important is to maximize her revenue. This ob-
jective turns out to be much harder to enforce
in mechanism design. Such truthful (in prob-
abilistic sense) mechanisms were obtained for
auctioning unlimited supply goods among one-
parameter agents [7, 8]. Another approach to
maximizing seller’s revenue is known as optimal
auction design [12]. A seller wants to auction
a single good among agents and each agent has
a private value for winning the good. One as-
sumes that the seller knows a joint distribution of
those values and wants to maximize her expected
revenue [13, 14].
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Problem Definition

In the vector bin packing problem, we are
given an integral dimension d � 1 and a list
L D .x1; x2; : : : ; xn/ of items, where
each item is a d -dimensional tuple xi D

.xi;1; xi;2; : : : ; xi;d / with rational entries xi;j 2

Œ0; 1�. The goal is to assign the items to a
minimum number of multidimensional bins,
where if X is the set of items assigned to a
bin, we must have, for each j , 1 � j � d ,

X

xi 2X

xi;j � 1:

Note that when d D 1, the vector bin packing
problem reduces to the classic (one-dimensional)
bin packing problem.

One potential application of the vector bin
packing problem is that of assigning jobs to
servers in a shared hosting platform, where each
job may require a specific number of cycles per
second and specific amounts of memory, band-
width, and other resources [12]. Here the servers

© Springer Science+Business Media New York 2016
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would correspond to the bins, the dimension d is
the number of resources, the items are the jobs,
and xi;j is the fraction of the total amount of a
server’s j th resource that job xi requires.

In the early literature, this problem was often
called the multidimensional bin packing problem.
That term, however, is now more typically re-
served for the related problem where the items are
d -dimensional rectangular parallelepipeds (rect-
angles, when d D 2), the bins are d -dimensional
unit cubes, and the items assigned must not only
be assigned to bins but also to specific positions
in the bins, in such a way that no point in any
bin is in the interior of more than one item. With
vector bin packing, in contrast, the dimensions
are all independent and there is no geometric
interpretation of the items.

Key Results

As a generalization of bin packing, vector bin
packing is clearly NP-hard in the strong sense,
and so most of the research on this problem has
been directed toward the study of approximation
algorithms for it. This will be the primary topic
in this entry. Most of the theoretical results con-
cerning these algorithms can be expressed in
terms of asymptotic worst-case ratios. For a given
algorithm A and a list of items L, let A.L/ denote
the number of bins used by A for L. Let OPT(L)
denote the optimal number of bins for list L.
We define the asymptotic worst-case ratio R1

A .d/

for algorithm A on d -dimensional instances as
follows.

RN
A .d/ D max

�
A.L/

OP T .L/
W L is a list of d -dimensional items with OP T .L/ D N

�

R1
A .d/ D lim sup

N !1

RN
A .d/

Generalizations of Classical Bin Packing
Algorithms

Generalizing First Fit and First Fit Decreasing
Several classic one-dimensional bin packing al-
gorithms have been generalized to vector bin
packing. Imagine we have a potentially infinite
sequence of empty bins B1; B2; : : :, and let Xh;j

denote the total amount of resource j used by the
items currently assigned to Bh. In the generalized
“First Fit” algorithm, the first item goes in bin
B1, and thereafter each item goes into the lowest-
index bin into which it can be legally placed,
subject to the resource constraints. In generalized
“Best Fit,” each item is assigned to a bin with the
maximum value of

Pd
j D1 Xh;j among those to

which it can legally be added, ties broken in favor
of the smallest index h.

As in the one-dimensional case, a plausible
way to improve the above two online algorithms
is to first reorder the list in decreasing order, and
then apply the packing algorithm. Now, however,
there are a variety of ways to define “decreasing

order,” each leading to different algorithms. For
example, in FFDmax items are ordered by non-
increasing value of maxd

j D1 xi;j and then FF is
applied. Similarly, in FFDsum, the items are or-
dered by nonincreasing value of

Pd
j D1 xi;j and,

in FFDprod, they are ordered by nonincreasing
value of

Qd
j D1 xi;j . In FFDlex, they are ordered

so that xi precedes xi 0 only if either xi;j D xi 0;j ,
1 � j � d , or there is a j � � d such that
xi;j D xi 0;j , 1 � j < j � and xi;j � < xi 0;j � .
The algorithms BFDmax, BFDsum, BFCprod,
and BFDlex are defined analogously, with Best
Fit being used to pack the reordered list instead
of First Fit.

Call an algorithm “reasonable” if it produces
packings in which no two bins can be combined,
that is, are such that all the items contained
in the two would collectively fit together in a
single bin [9]. All of the above algorithms are
easily seen to be reasonable, and, indeed, any
vector bin packing algorithm has a “reasonable”
counterpart that uses no more bins and spends at
most O.n2d/ additional time (in a final pass that
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combines legally combinable pairs of bins as long
as such pairs exist). A general upper bound on
asymptotic worst-case behavior is the following.

Theorem 1 ([9]) If A is a reasonable vector bin
packing algorithm, then for all d � 1,

R1
A .d/ � d C 1:

Unfortunately, none of the above algorithms are
much better.

Theorem 2 ([9, 11]) For each of the 10 algo-
rithms defined above and all d � 1,

R1
A .d/ � d:

Tighter bounds have been proved for two of the
algorithms.

Theorem 3 ([6]) For all d � 1, R1
FF.d/ D

d C
7

10
.

Theorem 4 ([6]) For all d � 1, d C
d � 1

d.d C 1/

� R1
FFDmax.d/ � d C

1

3
.

Note that the classic one-dimensional bin
packing results of [8] yield R1

FF.1/ D 17=10

(the precise specialization of Theorem 3) and
R1

FFD.1/ D 11=9 (a tighter result than the
specialization of Theorem 4). Matching upper
and lower bounds are not known for R1

FFDmax.d/

for any d > 1. In special cases, however, the
lower bounds can be improved. It was observed
in [6] that the lower bounds for d 2 f2; 3g could
be increased to d C 11=60 using ideas from [8].
And Csirik et al. [4] showed that for odd d � 5,
the lower bound of Theorem 2 could be increased
by 1=.d.d C 1/.d C 2//.

Generalizing the de la Vega and Lueker
Asymptotic Approximation Scheme
In [5], de la Vega and Lueker devised an
“asymptotic polynomial-time approximation
scheme” (APTAS) for one-dimensional bin
packing, that is, a collection of polynomial-time
algorithms A� with R1

A�
.1/ � 1C� for all � > 0.

In that same paper, they also showed how to

generalize the algorithms to provide a collection
of vector bin packing algorithms B� such that for
each � and each integer d � 1, R1

B�
.d/ � d C �.

The algorithm B� is quite simple. Divide L

into d sublists, L1; L2; : : : ; Ld , where Lj con-
sists of all those items x for which j is the index
of the dimension with the largest entry in the
corresponding tuple, ties broken arbitrarily. Then
apply A�=d to each list Lj separately, viewed
as an instance of one-dimensional bin packing
with the size of item xi being xi;j , and output
the union of the d packings. Unfortunately, al-
though the running times for the B�’s are linear
in dn, they contain additive constants that are
potentially exponential in .d=�/2, and so they
may not be practical for small �.

In contrast, FF, FFDmax, and all their variants
mentioned in the previous section have straight-
forward O.dn2/ implementations, and, although
the data structures that allow them to be sped
up to O.n log n/ when d D 1 do not extend to
higher dimensions, speedups should be possible
by using d -dimensional dynamic range searching
procedures to identify the set of bins that can
contain the next item to be packed [11].

Hardness of Approximation Results
In [14], Yao observed that, under a standard
decision tree model of computation, any vector
bin packing algorithm A that has R1

A .d/ < d for
all d cannot have o.n log n/ running time. This is
not much of a constraint, however, since almost
all the algorithms that have been proposed for
Vector Bin Packing are slower than this. For those
algorithms, a weaker bound applies. Assuming
P ¤ NP, no polynomial-time vector bin packing
algorithm A can have R1

A .d/ <
p

d � � for all
d and any � > 0. This follows from a straight-
forward reduction of graph coloring to vector bin
packing and a result of Zuckerman [15] for the
former [3]. Under the same assumption, there can
be no APTAS for any fixed d � 2 [13].

Algorithms with R1
A

.d/ < d

Chekuri and Khanna [3] devised the first
polynomial-time algorithms to guarantee
R1

A .d/ < d for all sufficiently large d .
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Theorem 5 ([3]) For any � > 0 there is a
polynomial-time algorithm C� such that

R1
C�

.d/ < � � d C ln.��1/ C 2:

The algorithm works in three phases. The first
considers the following linear program (LP). Let
´i;k be a decision variable with value 1 if item x1

is packed in bin j . The LP’s constraints are

mX

kD1

´i;k D 1; 1 � i � n (1)

nX

iD1

xi;j � ´i;k � 1; 1 � k � m; 1 � j � d (2)

´i;k � 0; 1 � i � n; 1 � k � m (3)

This is the LP relaxation of an integer program
(with ´i;k 2 f0; 1g) which has a feasible solution
if and only if our list can be packed into m bins.
The first set of constraints insures that each item
is packed into exactly one bin. The second set
insures that all resource constraints are satisfied
by the packing.

Let M be the least value of m such that
this LP is feasible. Then we clearly must have
OP T .L/ � M . Moreover we can in polynomial
time determine M and a basic feasible solution
for the corresponding LP, by using binary search
and a polynomial time LP-solver. In this basic
feasible solution, there will be at most n C dM

positive variables (the number of nontrivial con-
straints). Since each of the n items xi by (1) must
be assigned to at least one bin, at least one of the
variables ´i;k must be positive for each i , mean-
ing that at most dM of the items can be assigned
to more than one bin. That leaves n � dM items
assigned to exactly one bin, and consequently our
LP solution yields a feasible packing of these
items into M � OP T .L/ bins, which is the
output of our first phase. The remaining dM or
fewer items will be packed into additional bins in
two additional phases as follows.

Let k D d1=�e. While there are at least
k unpacked items that will fit in a single bin,
find such a set and pack them all in a new bin
(Phase 2). Otherwise, find a maximum size set

of unpacked items that will fit in a bin, assign
them to a new bin, and repeat until all items
are packed (Phase 3). Note that in both of these
phases the next set of items to be packed can be
found in time O.nkkd/, which is polynomial for
fixed �. Thus the overall time for the algorithm
is itself polynomial for fixed �. Phase 2 creates
at most dM=k < �d � OP T .L/ bins. Phase 3
can be interpreted as implementing the Greedy
algorithm for Set Covering, as applied to the
instance in which the elements to be covered are
the items left to be packed after Phase 2, the sets
are the collections of those items which will fit in
a bin, and no set has size exceeding k � 1. Thus,
by standard results about Greedy Set Covering
(see [7] for example), the number of bins added in
this phase is less than .ln.k�1/C1/ �OP T .L/ <

.ln.1=�/ C 1/ � OP T .L/. Adding up the above
three terms yields the claimed theorem.

Note that if we set � D 1=d in the above,
we get a series of algorithms C1=d with
R1

C1=d
.d/ � ln.d/ C 3, where the running time

of each is polynomial in n, although exponential
in d . A slight improvement to this has recently
been obtained by Bansal et al. [1]. They devise
algorithms Dd;� that run in polynomial time for
fixed d and � (although exponential in both)
that have R1

Dd;�
� ln.d C �/ C 1 C �, which,

for d � 2, already beats ln.d/ C 3 when � D 1.

Experimental Results

There have been several experimental studies of
approximation algorithms for vector bin packing
[2, 10–12]. These studies were for the most part
limited to d � 10 and n � 500, which may
well make sense in the context of the proposed
applications, and used distinct sets of randomly
generated test instances. In two cases ([10] and
[12]), the algorithms were compared using ob-
jective functions other than the number of bins
packed. Nevertheless, certain common conclu-
sions emerge. The FFD algorithms in particular
yielded substantially better packings than worst-
case analysis suggests. Both [11] and [12] sug-
gest, however, that a different class of algorithms,
ones that attempt to keep the bins as “balanced”
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as possible, may perform even better. An example
of such an algorithm is the “norm-based greedy”
algorithm of [11], which packs the bins one-
by-one, at each step adding to the current bin
Bh that item xi that fits and yields the smallest
weighted L2 norm for the resulting “gap vector”
.Xh;1 � xi;1; Xh;2 � xi;2; : : : ; Xh;d � xi;d /. For
more details, see [11]. As for the algorithms
described above with R1

A .d/ < d for large d , the
only ones with hopes of feasible running times
are the algorithms C1=d from [3] when nd is
of manageable size. Limited experiments from
[12] indicate that the packings these algorithms
produce are not competitive.
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Problem Definition

Vector scheduling is a multidimensional exten-
sion of traditional machine scheduling problems.
Whereas in traditional machine scheduling a job
only uses a single resource, normally time, in
vector scheduling a job uses several resources. In
traditional scheduling, the load of a machine is
the total resource consumption by the jobs that it
serves. In vector scheduling, we define the load of
a machine as the maximum resource usage over
all resources of the jobs that are served by this
machine. In the setting that we consider here, the
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makespan, which is normally defined to be the
time by which all jobs are completed, is equal to
the maximum machine load.

To define the vector scheduling problem that
we consider more formally, we let kxk1 denote
the standard `1-norm of the vector x. In the
vector scheduling problem, the input consists of
a set J of n jobs, where each job j is associated
with a d -dimensional vector pj 2 Œ0; 1�d , and
m identical machines. The goal is to find an as-
signment of the jobs to the m machines such that
max1�i�m k

P
j 2Mi

pjk1 is minimized, where
Mi denotes the set of jobs that are assigned to
machine i .

The traditional machine scheduling problem
corresponds to the case d D 1, and this is known
to be strongly NP-hard [8]. For d D 1, Gra-
ham’s well-known list scheduling algorithm has
a performance guarantee of 2 [9] and Hochbaum
and Shmoys developed at PTAS [10]. For gen-
eral vector scheduling, Graham’s list scheduling
algorithm can be extended to the d -dimensional
case, having a performance guarantee of d C 1.
In this entry we focus on the work of Chekuri and
Khann [5], who developed a PTAS for fixed d

and gave a polylogarithmic approximation factor
for the case of general d .

Key Results

Constant Dimension d

Chekuri and Khann [5] designed an approxi-
mation scheme that runs in polynomial time
whenever the dimension d of the job vectors is
constant.

Theorem 1 For any � > 0, there exists an
.1 C �/-approximation algorithm that has a
running time of O..nd=�/O.s//, where s is in

O
�
.

log.d=�/
�

/d
�

.

The proof of this theorem is a nontrivial
generalization of the ideas that Hochbaum and
Shmoys used for the 1-dimensional case [10].
In this primal-dual approach, the main idea
is to view the scheduling problem as a bin-
packing problem in which the jobs need to

be packed into a number of bins of a certain
capacity B . If all jobs fit into m bins, then
the makespan is bounded by B . Hochbaum
and Shmoys gave an algorithm that determines
whether the jobs fit into m bins of capacity
.1 C �/B or the jobs need to be packed into
at least m C 1 bins of capacity B . Chekuri
and Khanna extended this idea by using d -
dimensional bins, where the jobs assigned to
one bin should have a total resource usage of at
most B in any of the d dimensions. By standard
scaling techniques, we assume w.l.o.g. that
B D 1.

Like in the 1-dimensional case, Chekuri and
Khanna divide the jobs in small and large jobs,
where the size of a job is based on the `1 norm.
They first do a preprocessing step in which each
coordinate of the vectors is set to 0 whenever it
is too small compared to the maximum value of
the coordinates in the same vector. To find an
.1 C �/-approximation, the algorithm performs
two stages. In the first stage all large jobs will be
assigned to the machines, and in the second stage
all small jobs will be assigned to the machines.
Whereas in the 1-dimensional case the assign-
ment of the small jobs can be done greedily on
top of the large jobs, for d � 2 the interaction
between the two stages needs to be taken into
account.

To accommodate this interaction, Chekuri and
Khanna define a capacity configuration as a d -
tuple .c1; : : : ; cd / such that ck is an integer be-
tween 0 and d1=�e. A set of jobs S can be
feasible, scheduled on one machine according to
a capacity configuration .c1; : : : ; cd / when for

any dimension k, it holds that
�P

j 2S pj

�

k
�

ak � �, i.e., in each dimension k the resource
usage is not more than ck � �. The number of
distinct capacity configurations is given by t D

.1 C d1=�e/d .
A capacity configuration describes approxi-

mately how a machine is filled. As there are m

machines available to process the jobs, a ma-
chine configuration can be described by a t -tuple
.m1; : : : ; mt /, satisfying mi � 0 and

P
i mi D

m, where mi denotes the number of machines
of the i th capacity configuration. The number
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of distinct machine configurations is certainly
bounded from above by mt .

After the preprocessing of the vectors and
the splitting of the jobs in small and large, it
needs to be determined whether all large jobs can
be scheduled according to a machine configura-
tion M . As a first step, all nonzero elements of
the large vectors are rounded (down) to the be-
gin points of geometrically increasing intervals.
Moreover, as the vectors are in some sense large,
not too many vectors can be scheduled on one
machine. Therefore, using a dynamic program-
ming approach, one can approximately determine
whether the set of large vectors can be scheduled
according to machine configuration M .

When the set of large jobs are scheduled such
that a certain machine i is scheduled according
to a capacity configuration .c1; : : : ; cd /, then the
small jobs on this machine need to be scheduled
according to the empty capacity configuration,
i.e., the capacity configuration .1 C d1=�e/ �

.1; 1; : : : ; 1/�.c1; : : : ; cd /. Given a machine con-
figuration M , we let NM denote the corresponding
machine configuration as the one obtained by
taking the empty capacity configurations for each
of the machines in M .

To see whether the small jobs can be sched-
uled according to a machine configuration NM ,
Chekuri and Khanna present an integer program-
ming (ILP) formulation that assigns the vectors
to the machines. Moreover, they show that solv-
ing the LP relaxation of this ILP formulation
and distributing the fractionally assigned vectors
equally over the machines result in a solution in
which each dimension of each machine is only
overloaded by a factor of .1 C �/.

Once they have found a machine configuration
M according to which the large jobs can be
scheduled and corresponding machine configu-
ration NM according to which the small jobs can
be scheduled, Chekuri and Khanna have shown
that all jobs can be scheduled such that the load
of any machine does not exceed 1 C �. If for
all machine configurations M and corresponding
machine configuration NM the large jobs cannot
be scheduled according to M or the small jobs
cannot be scheduled according to NM , then the

vectors cannot be scheduled such that the load of
each machine is at most 1.

General Dimension d

For the general case in which the dimension d

of the vectors is not restricted to be a constant,
Chekuri and Khanna present several approxi-
mation algorithms. Also for the general case,
they assume that all vectors can be scheduled
such that the makespan is bounded by 1. For two
algorithms, they use as a subroutine an approx-
imation algorithm for finding a set of vectors S

that maximizes the volume of these vectors, i.e.,
the sum of all coordinates of all these vectorsP

j 2S

Pd
kD1.pj/k , restricted to k

P
j 2S pjk1 �

1. This resulted in the following results.

Theorem 2 There exists a polynomial-time
O.log2 d/-approximation algorithm for the
vector scheduling problem.

Theorem 3 There exists a O.log d/-approxi
mation algorithm for the vector scheduling
problem that runs in time polynomial in nd .

These approximation results are good when d

is small compared to the number of machines m.
On the other hand, Chekuri and Khanna also give
a randomized algorithm, which just assigns each
job uniformly at random to one of the machines,
obtaining a performance guarantee that is better
when d is large compared to m.

Theorem 4 There exists a randomized algo-
rithm that has a performance guarantee of
O.log dm= log log dm/ with high probability.

Finally, there is also a hardness result for the
vector scheduling problem.

Theorem 5 For any constant � > 1, there is no
polynomial-time approximation algorithm with a
performance guarantee of �, unless NP D ZPP.

Extensions
Epstein and Tassa [6, 7] extended the vector
scheduling problem to deal with more general
objective functions. Instead of defining the
load of a machine as the maximum resource
usage over all resources of the jobs that are
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served by this machine, they defined the load
as the sum of the vectors pj assigned to the
machine. That is, the load itself is now also a
d -dimensional vector. Letting li D

P
j 2Mi

pj

denote the load of machine i , then in [6] they
gave PTASes for several objective functions of
the form F.S/ D f .g.l1/; : : : ; g.lm//. Note that
the vector scheduling problem as discussed in
this entry is equal to the case that f D g D max.
In [7], they extended their results to the more
general case where the function g may vary per
machine, i.e., F.S/ D f .g1.l1/; : : : ; gm.lm//.

Bonifaci and Wiese [4] extended the vector
scheduling problem to the `p norm and the case
of unrelated machines. That is, a job j has a
d -dimensional resource usage pij on machine i .
They considered the case in which the number of
types of machines is constant: on the same type
of machine, a certain job has the same resource
usage. Moreover, they restricted themselves to
the case of having only a constant number of re-
sources, that is, the vectors pij are d dimensional
for a constant d . For this setting, they developed
a PTAS.

The PTAS of Chekuri and Khanna has a run-
ning time that is doubly exponential in d . Bansal,
Vredeveld, and Van der Zwaan [2] showed that
this double exponential dependence on d is nec-
essary. For � < 1, they showed that unless
the exponential time hypothesis fails, there is no
.1 C �/-approximation algorithm with running
time exp.o.b1=�cd=3//. Moreover, they showed
that unless NP has subexponential algorithms, no
.1 C �/-approximation algorithm exists with run-
ning time exp.b1=�co.d/). These lower bounds
even hold for the case that �m more machines are
allowed, for sufficiently small � > 0. Moreover,
they also gave a .1C �/-approximation algorithm
with running time exp..1=�/O.d log log d/ C nd/,
which is the first efficient approximation scheme
(EPTAS) for the problem with constant d .

Open Problems

The gap between the lower bounds and upper
bounds on the running time of .1 C �/-
approximation algorithms has almost been

closed. The question remains whether this is
also the case when instead of the `1-norm, the
`p-norm is minimized. Furthermore, it would
be interesting to know whether one can obtain
better running times when the vectors are highly
structured. These highly structured vectors may
occur, for example, in applications of real-time
scheduling; see, e.g., [1, 3].
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Problem Definition

Let G be an undirected graph. A subset C of
vertices in G is a vertex cover for G if every edge
in G has at least one end in C. The (parametrized)
VERTEX COVER problem is for each given in-
stance (G, k), where G is a graph and k � 0 is an
integer (the parameter), to determine whether the
graph G has a vertex cover of at most k vertices.

The VERTEX COVER problem is one of the
six “basic” NP-complete problems according to
Garey and Johnson [4]. Therefore, the problem
cannot be solved in polynomial time unless P D

NP. However, the NP-completeness of the prob-
lem does not obviate the need for solving it
because of its fundamental importance and wide
applications. One approach was initiated based
on the observation that in many applications, the
parameter k is small. Therefore, by taking the
advantages of this fact, one may be able to solve
this NP-complete problem effectively and practi-
cally for instances with a small parameter. More
specifically, algorithms of running time of the
form f .k/p.n/ have been studied for VERTEX

COVER, where p(n) is a low-degree polynomial
of the number n D jGj of vertices in G and f(k) is
a function independent of n.

There has been an impressive sequence of
improved algorithms for the VERTEX COVER

problem. A number of new techniques have
been developed during this research, including
kernelization, folding, and refined branch-and-
search. In particular, the kernelization method
is the study of polynomial time algorithms
that can significantly reduce the instance
size for VERTEX COVER. The following are
some concepts related to the kernelization
method:

Definition 1 Two instances (G, k) and .G0; k0/ of
VERTEX COVER are equivalent if the graph G has
a vertex cover of size � k if and only if the graph
G0 has a vertex cover of size � k0.

Definition 2 A kernelization algorithm for the
VERTEX COVER problem takes an instance (G,
k) of VERTEX COVER as input and produces an
equivalent instance .G0; k0/ for the problem, such
that jG0j � jGj and k0 � k.

The kernelization method has been used exten-
sively in conjunction with other techniques in
the development of algorithms for the VERTEX

COVER problem. Two major issues in the study
of kernelization method are (1) effective reduc-
tions of instance size; and (2) the efficiency of
kernelization algorithms.

Key Results

A number of kernelization techniques are dis-
cussed and studied in the current paper.

Preprocessing Based on Vertex Degrees
Let (G, k) be an instance of VERTEX COVER.
Let v be a vertex of degree larger than k in G.
If a vertex cover C does not include v, then C
must contain all neighbors of v, which implies
that C contains more than k vertices. Therefore,
in order to find a vertex cover of no more than k
vertices, one must include v in the vertex cover,
and recursively look for a vertex cover of k � 1

vertices in the remaining graph.
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The following fact was observed on vertices of
degree less than 3.

Theorem 1 There is a linear time kernelization
algorithm that on each instance (G, k) of vertex
cover, where the graph G contains a vertex of de-
gree less than 3, produces an equivalent instance
.G0; k0/ such that jG0j < jGj and/or k < k0.

Therefore, vertices of high degree (i.e., degree
> k) and low degree (i.e., degree < 3) can always
be handled efficiently before any more time-
consuming process.

Nemhauser-Trotter Theorem
Let G be a graph with vertices v1, v2, : : :, vn.
Consider the following integer programming
problem:

.IP/Minimize x1 C x2 C � � � C xn

Subject to xi C xj � 1

for each edge Œvi; vj� in G

xi 2 f0; 1g; 1 � i � n

It is easy to see that there is a one-to-one corre-
spondence between the set of feasible solutions
to (IP) and the set of vertex covers of the graph
G. A natural LP-relaxation (LP) of the problem
(IP) is to replace the restrictions xi 2 f0; 1g with
xi � 0 for all i. Note that the resulting linear
programming problem (LP) now can be solved in
polynomial time.

Let � D fx0
1 ; : : : ; x0

ng be an optimal solution
to the linear programming problem (LP). The
vertices in the graph G can be partitioned into
three disjoint parts according to ¢:

I0 D fvi j x0
i < 0:5g;

C0 D fvi j x0
i > 0:5g; and

V0 D fvi j x0
i D 0:5g

The following nice property of the above vertex
partition of the graph G was first observed by
Nemhauser and Trotter [5].

Theorem 2 (Nemhauser-Trotter) Let GŒV0� be
the subgraph of G induced by the vertex set V0.

Then (1) every vertex cover of GŒV0� contains
at least jV0j=2 vertices; and (2) every minimum
vertex cover of GŒV0� plus the vertex set C0 makes
a minimum vertex cover of the graph G.

Let k be any integer, and let G0 D GŒV0� and
k0 D k � jC0j. As first noted in [3], by The-
orem 2, the instances (G, k) and .G0; k0/ are
equivalent, and jG0j � 2k0 is a necessary con-
dition for the graph G0 to have a vertex cover
of size k0. This observation gives the following
kernelization result.

Theorem 3 There is a polynomial-time
algorithm that for a given instance (G, k)
for the vertex cover problem, constructs an
equivalent instance .G0; k0/ such that k0 � k and
jG0j � 2k0.

A Faster Nemhauser-Trotter Construction
Theorem 3 suggests a polynomial-time ker-
nelization algorithm for VERTEX COVER. The
algorithm is involved in solving the linear
programming problem (LP) and partitioning
the graph vertices into the sets I0, C0, and V0.
Solving the linear programming problem (LP)
can be done in polynomial time but is kind of
costly in particular when the input graph G is
dense. Alternatively, Nemhauser and Trotter [5]
suggested the following algorithm without using
linear programming. Let G be the input graph
with vertex set fv1; : : : ; vng.

1. construct a bipartite graph B with vertex set
fvL

1 ; : : : ; vL
n ; vR

1 ; : : : ; vR
n g such that ŒvL

i ; vR
j �

is an edge in B if and only if Œvi ; vj � is an edge
in G;

2. find a minimum vertex cover CB for B;
3. I 0

0 D fvi j if neither vL
i nor vR

i is in CBg;
C 0

0 D fvi j if both vL
i and vR

i are in CBg;
V 0

0 D
˚
vi j if exactly one of vL

i and vR
i is

in CB

�

It can be proved [5] (see also [2]) that The-
orem 2 still holds true when the sets C0 and
V0 in the theorem are replaced by the sets C 0

0

and V 0
0, respectively, constructed in the above

algorithm.
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The advantage of this approach is that the sets
C 0

0 and V 0
0 can be constructed in time O.m

p
n/

because the minimum vertex cover CB for the
bipartite graph B can be constructed via a max-
imum matching of B, which can be constructed
in time O.m

p
n/ using Dinic’s maximum flow

algorithm, which is in general faster than solving
the linear programming problem (LP).

Crown Reduction
For a set S of vertices in a graph G, denote
by N(S) the set of vertices that are not in S
but adjacent to some vertices in S. A crown in
a graph G is a pair (I, H) of subsets of ver-
tices in G satisfying the following conditions:
(1) I ¤ ; is an independent set, and H D N.I /;
and (2) there is a matching M on the edges
connecting I and H such that all vertices in H are
matched in M.

It is quite easy to see that for a given crown
(I, H), there is a minimum vertex cover that
includes all vertices in H and excludes all ver-
tices in I. Let G0 be the graph obtained by re-
moving all vertices in I and H from G. Then,
the instances (G, k) and .G0; k0/ are equivalent,
where k0 D k � jH j. Therefore, identification of
crowns in a graph provides an effective way for
kernelization.

Let G be the input graph. The following algo-
rithm is proposed.

1. construct a maximal matching M1 in G; let O
be the set of vertices unmatched in M1;

2. construct a maximum matching M2 of the
edges between O and N(O); i D 0; let I0 be
the set of vertices in O that are unmatched in
M2;

3. repeat until Ii D Ii�1 fHi D N.Ii /;
IiC1 D Ii [ NM2

.Hi /;i D i C 1; g; (where
NM2

.Hi / is the set of vertices in O that match
the vertices in Hi in the matching M2)

4. I D Ii ; H D N.Ii /; output (I, H).

Theorem 4 (1) if the set I0 is not empty, then
the above algorithm constructs a crown (I, H);
(2) if both jM1j and jM2j are bounded by k, and
I0 D ;, then the graph G has at most 3k vertices.

According to Theorem 4, the above algorithm
on an instance (G, k) of VERTEX COVER either
(1) finds a matching of size larger than k – which
implies that there is no vertex cover of k vertices
in the graph G; or (2) constructs a crown (I,
H) – which will reduce the size of the instance;
or (3) in case neither of (1) and (2) holds
true, concludes that the graph G contains
at most 3k vertices. Therefore, repeatedly
applying the algorithm either derives a direct
solution to the given instance, or constructs an
equivalent instance .G0; k0/ with k0 � k and
jG0j � 3k0.

Applications

The research of the current paper was directly
motivated by authors’ research in bioinformat-
ics. It is shown that for many computational
biological problems, such as the construction of
phylogenetic trees, phenotype identification, and
analysis of microarray data, preprocessing based
on the kernelization techniques has been very
effective.

Experimental Results

Experimental results are given for handling
graphs obtained from the study of phylogenetic
trees based on protein domains, and from the
analysis of microarray data. The results show that
in most cases the best way to kernelize is to start
handling vertices of high and low degrees (i.e.,
vertices of degree larger than k or smaller than 3)
before attempting any of the other kernelization
techniques. Sometimes, kernelization based
on Nemhauser-Trotter Theorem can solve the
problem without any further branching. It is
also observed that sometimes particularly on
dense graphs, kernelization techniques based on
Nemhauser-Trotter Theorem are kind of time-
consuming but do not reduce the instance size by
much. On the other hand, the techniques based on
high-degree vertices and crown reduction seem
to work better.
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Data Sets

The experiments were performed on graphs ob-
tained based on data from NCBI and SWISS-
PROT, well known open-source repositories of
biological data.
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Problem Definition

The VERTEX COVER problem is one of the
six “basic” NP-complete problems according
to Garey and Johnson [7]. Therefore, the problem
cannot be solved in polynomial time unless
P D NP. However, the NP-completeness of the
problem does not obviate the need for solving it
because of its fundamental importance and wide
applications.

One approach is to develop parameterized al-
gorithms for the problem, with the computational
complexity of the algorithms being measured in
terms of both input size and a parameter value.
This approach was initiated based on the observa-
tion that in many applications, the instances of the
problem are associated with a small parameter.
Therefore, by taking the advantages of the small
parameters, one may be able to solve this NP-
complete problem effectively and practically.

The problem is formally defined as follows.
Let G be an (undirected) graph. A subset C of
vertices in G is a vertex cover for G if every
edge in G has at least one end in C. An instance
of the (parameterized) VERTEX COVER problem
consists of a pair (G, k), where G is a graph and
k is an integer (the parameter), which is to deter-
mine whether the graph G has a vertex cover of
k vertices. The goal is to develop parameterized
algorithms of running time O(f(k)p(n)) for the
VERTEX COVER problem, where p(n) is a lower-
degree polynomial of the input size n, and f(k) is
the non-polynomial part that is a function of the
parameter k but independent of the input size n. It
would be expected that the non-polynomial func-
tion f(k) is as small as possible. Such an algorithm
would become “practically effective” when the
parameter value k is small. It should be pointed
out that unless an unlikely consequence occurs in
complexity theory, the function f(k) is at least an
exponential function of the parameter k [8].

Key Results

A number of techniques have been proposed in
the development of parameterized algorithms for
the VERTEX COVER problem.
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Kernelization
Suppose (G, k) is an instance for the VERTEX

COVER problem, where G is a graph and k is the
parameter. The kernelization operation applies
a polynomial time preprocessing on the instance
(G, k) to construct another instance (G0, k0), where
G0 is a smaller graph (the kernel) and k0 � k,
such that G0 has a vertex cover of k0 vertices if
and only if G has a vertex cover of k vertices.
Based on a classical result by Nemhauser and
Trotter [9], the following kernelization result was
derived.

Theorem 1 There is an algorithm of running
time O.kn C k3/ that for a given instance (G, k)
for the VERTEX COVER problem, constructs an-
other instance (G0, k0) for the problem, where the
graph G0 contains at most 2k0 vertices andk0 � k,
such that the graph G has a vertex cover of k
vertices if and only if the graph G0 has a vertex
cover of k0 vertices.

Therefore, kernelization provides an efficient
preprocessing for the VERTEX COVER problem,
which allows one to concentrate on graphs of
small size (i.e., graphs whose size is only related
to k).

Folding
Suppose v is a degree-2 vertex in a graph G with
two neighbors u and w such that u and w are not
adjacent to each other. Construct a new graph G0

as follows: remove the vertices v, u, and w and
introduce a new vertex v0 that is adjacent to all
remaining neighbors of the vertices u and w in G.
The graph G0 is said being obtained from the
graph G by folding the vertex v. The following
result was derived.

Theorem 2 Let G0 be a graph obtained by fold-
ing a degree-2 vertex v in a graph G, where the
two neighbors of v are not adjacent to each other.
Then the graph G has a vertex cover of k vertices
if and only if the graph G0 has a vertex cover of
k � 1 vertices.

An folding operation allows one to decrease
the value of the parameter k without branching.

Therefore, folding operations are regarded as
very efficient in the development of exponential
time algorithms for the VERTEX COVER

problem. Recently, the folding operation has
be generalized to apply to a set of more than one
vertex in a graph [6].

Branch and Search
A main technique is the branch and search
method that has been extensively used in the
development of algorithms for the VERTEX

COVER problem (and for many other NP-
hard problems). The method can be described
as follows. Let .G; k/ be an instance of the
VERTEX COVER problem. Suppose that somehow
a collection fC1; : : : ; Cbg of vertex subsets in
the graph G is identified, where for each i, the
subset Ci has ci vertices, such that if the graph
G contains a vertex cover of k vertices, then
at least for one Ci of the vertex subsets in the
collection, there is a vertex cover of k vertices
for G that contains all vertices in Ci. Then
a collection of (smaller) instances (Gi, ki) can be
constructed, where 1 � i � b; ki D k � ci , and
Gi is obtained from G by removing all vertices
in Ci. Note that the original graph G has a vertex
cover of k vertices if and only if for one (Gi,
ki) of the smaller instances the graph Gi has
a vertex cover of ki vertices. Therefore, now the
process can be branched into b sub-processes,
each on a smaller instance (Gi, ki) recursively
searches for a vertex cover of ki vertices in the
graph Gi.

Let T(k) be the number of leaves in the
search tree for the above branch and search
process on the instance (G, k), then the above
branch operation gives the following recurrence
relation:

T .k/DT .k� c1/CT .k � c2/C � � � CT .k � cb/

To solve this recurrence relation, let T .k/ D xk

so that the above recurrence relation becomes

xk D xk�c1 C xk�c2 C � � � C xk�cb
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It can be proved [3] that the above polynomial
equation has a unique root x0 larger than 1.
From this, one gets T .k/ D xk

0 , which, up to
a polynomial factor, gives an upper bound on the
running time of the branch and search process on
the instance (G, k).

The simplest case is that a vertex v of degree
d > 0 in the graph G is picked. Let w1, : : : , wd

be the neighbors of v. Then either v is contained
in a vertex cover C of k vertices, or, if v is
not contained in C, then all neighbors w1, : : : ,
wd of v must be contained in C. Therefore, one
obtains a collection of two subsets C1 D fvg and
C2 D fw1; : : : ; wd g, on which the branch and
search process can be applied.

The efficiency of a branch and search opera-
tion depends on how effectively one can identify
the collection of the vertex subsets. Intuitively,
the larger the sizes of the vertex subsets, the more
efficient is the operation. Much effort has been
made in the development of VERTEX COVER

algorithms to achieve larger vertex subsets. Im-
provements on the size of the vertex subsets
have been involved with very complicated and
tedious analysis and enumerations of combina-
torial structures of graphs. The current paper [3]
achieved a collection of two subsets C1 and C2

of sizes c1 D 1 and c2 D 6, respectively, and
other collections of vertex subsets that are at
least as good as this (the techniques of ker-
nelization and vertex folding played important
roles in achieving these collections). This gives
the following algorithm for the VERTEX COVER

problem.

Theorem 3 The VERTEX COVER problem can be
solved in time O.kn C 1:2852k/.

Very recently, a further improvement over Theo-
rem 3 has been achieved that gives an algorithm
of running time O.kn C 1:2738k/ for the VER-
TEX COVER problem [4].

Applications

The study of parameterized algorithms for the
VERTEX COVER problem was motivated by ETH

Zürich’s DARWIN project in computational
biology and computational biochemistry
(see, e.g., [10, 11]). A number of computational
problems in the project, such as multiple
sequence alignments [10] and biological conflict
resolving [11], can be formulated into the
VERTEX COVER problem in which the parameter
value is in general not larger than 100. Therefore,
an algorithm of running time O.kn C 1:2852k/

for the problem becomes very effective and
practical in solving these problems.

The parameterized algorithm given in Theo-
rem 3 has also induced a faster algorithm for
another important NP-hard problem, the MAX-
IMUM INDEPENDENT SET problem on sparse
graphs [3].

Open Problems

The main open problem in this line of research
is how far one can go along this direction. More
specifically, how small the constant c > 1 can
be for the VERTEX COVER problem to have an
algorithm of running time O.cknO.1//? With
further more careful analysis on graph combi-
natorial structures, it seems possible to slightly
improve the current best upper bound [4] for the
problem. Some new techniques developed more
recently [6] also seem very promising to improve
the upper bound. On the other hand, it is known
that the constant c cannot be arbitrarily close to
1 unless certain unlikely consequence occurs in
complexity theory [8].

Experimental Results

A number of research groups have implemented
some of the ideas of the algorithm in Theorem 3
or its variations, including the Parallel Bioin-
formatics project in Carleton University [2], the
High Performance Computing project in Univer-
sity of Tennessee [1], and the DARWIN project
in ETH Zürich [10, 11]. As reported in [5], these
implementations showed that this algorithm and
the related techniques are “quite practical” for the
VERTEX COVER problem with parameter value k
up to around 400.
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Problem Definition

The whole process of designing, analyzing, im-
plementing, tuning, debugging and experimen-
tally evaluating algorithms can be referred to as
Algorithm Engineering. Algorithm Engineering
views algorithmics also as an engineering dis-
cipline rather than a purely mathematical disci-
pline. Implementing algorithms and engineering
algorithmic codes is a key step for the transfer
of algorithmic technology, which often requires
a high-level of expertise, to different and broader
communities, and for its effective deployment in
industry and real applications.

Experiments can help measure practical indi-
cators, such as implementation constant factors,
real-life bottlenecks, locality of references, cache
effects and communication complexity, that may
be extremely difficult to predict theoretically.
Unfortunately, as in any empirical science, it
may be sometimes difficult to draw general con-
clusions about algorithms from experiments. To
this aim, some researchers have proposed accu-
rate and comprehensive guidelines on different
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aspects of the empirical evaluation of algorithms
maturated from their own experience in the field
(see, for example [1, 15, 16, 20]). The interested
reader may find in [18] an annotated bibliography
of experimental algorithmics sources addressing
methodology, tools and techniques.

The process of implementing, debugging, test-
ing, engineering and experimentally analyzing
algorithmic codes is a complex and delicate task,
fraught with many difficulties and pitfalls. In this
context, traditional low-level textual debuggers
or industrial-strength development environments
can be of little help for algorithm engineers, who
are mainly interested in high-level algorithmic
ideas rather than in the language and platform-
dependent details of actual implementations. Al-
gorithm visualization environments provide tools
for abstracting irrelevant program details and
for conveying into still or animated images the
high-level algorithmic behavior of a piece of
software.

Among the tools useful in algorithm
engineering, visualization systems exploit
interactive graphics to enhance the development,
presentation, and understanding of computer
programs [27]. Thanks to the capability of
conveying a large amount of information in
a compact form that is easily perceivable by
a human observer, visualization systems can
help developers gain insight about algorithms,
test implementation weaknesses, and tune
suitable heuristics for improving the practical
performances of algorithmic codes. Some
examples of this kind of usage are described
in [12].

Key Results

Systems for algorithm visualization have ma-
tured significantly since the rise of modern com-
puter graphic interfaces and dozens of algorithm
visualization systems have been developed in
the last two decades [2, 3, 4, 5, 6, 8, 9, 10,
13, 17, 25, 26, 29]. For a comprehensive sur-
vey the interested reader can be referred to [11,
27] and to the references therein. The remain-
der of this entry discusses the features of al-

gorithm visualization systems that appear to be
most appealing for their deployment in algorithm
engineering.

Critical Issues
From the viewpoint of the algorithm developer,
it is desirable to rely on systems that offer visu-
alizations at a high level of abstraction. Namely,
one would be more interested in visualizing the
behavior of a complex data structure, such as
a graph, than in obtaining a particular value of
a given pointer.

Fast prototyping of visualizations is another
fundamental issue: algorithm designers should be
allowed to create visualization from the source
code at hand with little effort and without heavy
modifications. At this aim, reusability of visual-
ization code could be of substantial help in speed-
ing up the time required to produce a running
animation.

One of the most important aspects of algo-
rithm engineering is the development of libraries.
It is thus quite natural to try to interface visu-
alization tools to algorithmic software libraries:
libraries should offer default visualizations of
algorithms and data structures that can be refined
and customized by developers for specific pur-
poses.

Software visualization tools should be able
to animate not just “toy programs”, but signif-
icantly complex algorithmic codes, and to test
their behavior on large data sets. Unfortunately,
even those systems well suited for large infor-
mation spaces often lack advanced navigation
techniques and methods to alleviate the screen
bottleneck. Finding a solution to this kind of
limitations is nowadays a challenge.

Advanced debuggers take little advantage
of sophisticated graphical displays, even in
commercial software development environments.
Nevertheless, software visualization tools may
be very beneficial in addressing problems
such as finding memory leaks, understanding
anomalous program behavior, and studying
performance. In particular, environments that
provide interpreted execution may more easily
integrate advanced facilities in support to
debugging and performance monitoring, and
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many recent systems attempt at exploring this
research direction.

Techniques
One crucial aspect in visualizing the dynamic
behavior of a running program is the way it is
conveyed into graphic abstractions. There are two
main approaches to bind visualizations to code:
the event-driven and the state-mapping approach.

Event-Driven Visualization
A natural approach to algorithm animation con-
sists of annotating the algorithmic code with calls
to visualization routines. The first step consists
of identifying the relevant actions performed by
the algorithm that are interesting for visualization
purposes. Such relevant actions are usually re-
ferred to as interesting events. As an example, in
a sorting algorithm the swap of two items can be
considered an interesting event. The second step
consists of associating each interesting event with
a modification of a graphical scene. Animation
scenes can be specified by setting up suitable vi-
sualization procedures that drive the graphic sys-
tem according to the actual parameters generated
by the particular event. Alternatively, these visu-
alization procedures may simply log the events in
a file for a post-mortem visualization. The calls
to the visualization routines are usually obtained
by annotating the original algorithmic code at the
points where the interesting events take place.
This can be done either by hand or by means
of specialized editors. Examples of toolkits based
on the event-driven approach are Polka [28] and
GeoWin, a CCC data type that can be easily
interfaced with algorithmic software libraries of
great importance in algorithm engineering such
as CGAL [14] and LEDA [19].

State Mapping Visualization
Algorithm visualization systems based on state
mapping rely on the assumption that observing
how the variables change provides clues to the ac-
tions performed by the algorithm. The focus is on
capturing and monitoring the data modifications
rather than on processing the interesting events
issued by the annotated algorithmic code. For this
reason they are also referred to as “data driven”

visualization systems. Conventional debuggers
can be viewed as data driven systems, since they
provide direct feedback of variable modifications.
The main advantage of this approach over the
event-driven technique is that a much greater
ignorance of the code is allowed: indeed, only the
interpretation of the variables has to be known
to animate a program. On the other hand, fo-
cusing only on data modification may sometimes
limit customization possibilities making it diffi-
cult to realize animations that would be natural
to express with interesting events. Examples of
tools based on the state mapping approach are
Pavane [23, 25], which marked the first paradigm
shift in algorithm visualization since the intro-
duction of interesting events, and Leonardo [10]
an integrated environment for developing, visual-
izing, and executing C programs.

A comprehensive discussion of other tech-
niques used in algorithm visualization appears
in [7, 21, 22, 24, 27].

Applications

There are several applications of visualization
in algorithm engineering, such as testing and
debugging of algorithm implementations, visual
inspection of complex data structures, identifica-
tion of performance bottlenecks, and code opti-
mization. Some examples of uses of visualization
in algorithm engineering are described in [12].

Open Problems

There are many challenges that the area of al-
gorithm visualization is currently facing. First of
all, the real power of an algorithm visualization
system should be in the hands of the final user,
possibly inexperienced, rather than of a profes-
sional programmer or of the developer of the tool.
For instance, instructors may greatly benefit from
fast and easy methods for tailoring animations
to their specific educational needs, while they
might be discouraged from using systems that are
difficult to install or heavily dependent on partic-
ular software/hardware platforms. In addition to
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being easy to use, a software visualization tool
should be able to animate significantly complex
algorithmic codes without requiring a lot of ef-
fort. This seems particularly important for fu-
ture development of visual debuggers. Finally,
visualizing the execution of algorithms on large
data sets seems worthy of further investigation.
Currently, even systems designed for large in-
formation spaces often lack advanced navigation
techniques and methods to alleviate the screen
bottleneck, such as changes of resolution and
scale, selectivity, and elision of information.
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Problem Definition

This problem is concerned with scheduling jobs
with as little energy as possible by adjusting the
processor speed wisely. This problem is moti-

vated by dynamic voltage scaling (DVS) (or speed
scaling) technique, which enables a processor to
operate at a range of voltages and frequencies.
Since energy consumption is at least a quadratic
function of the supply voltage (hence CPU fre-
quency/speed), it saves energy to execute jobs as
slowly as possible while still satisfying all timing
constraints. The associated scheduling problem
is referred to as min-energy DVS scheduling.
Previous work showed that the min-energy DVS
schedule can be computed in cubic time. The
work of Li and Yao [7] considers the discrete
model where the processor can only choose its
speed from a finite speed set. This work designs
an O.dn log n/ two-phase algorithm to compute
the min-energy DVS schedule for the discrete
model (d represents the number of speeds) and
also proves a lower bound of Ω.n log n/ for the
computation complexity.

Notations and Definitions

In the variable voltage scheduling model, there
are two important sets:

1. Set J (job set) consists of n jobs: j1; j2; : : :jn.
Each job jk has three parameters as its in-
formation: ak representing the arrival time of
jk ; bk representing the deadline of jk , and Rk

representing the total CPU cycles required by
jk . The parameters satisfy 0 � ak < bk � 1.

2. Set SD (speed set) consists of the possible
speeds that can be used by the processor.
According to the property of SD, the schedul-
ing model is divided into the following two
categories:

Continuous model: The set SD is the set of
positive real numbers.

Discrete model: The set SD consists of d pos-
itive values: s1 > s2 > � � � > sd .

A schedule S consists of the following two
functions: s.t/ which specifies the processor
speed at time t and job.t) which specifies the job
executed at time t . Both functions are piecewise
constant with finitely many discontinuities.
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A feasible schedule must give each job its
required number of cycles between arrival time
and deadline, therefore satisfying the propertyZ bk

ak

s.t/ı.k; job.t//dt D Rk , where ı.i; j / D 1

if i D j and ı.i; j / D 0 if otherwise.
The EDF principle defines an ordering on the

jobs according to their deadlines. At any time t ,
among jobs jk that are available for execution,
that is, jk satisfying t 2 Œak ; bk/ and jk not yet
finished by t , it is the job with minimum bk that
will be executed during Œt; t C ��.

The power P , or energy consumed per unit
of time, is a convex function of the proces-
sor speed. The energy consumption of a sched-
ule S D .s.t/; job.t// is defined as E.S/ DZ 1

0

P.s.t//dt .

A schedule is called an optimal schedule if
its energy consumption is the minimum possible
among all the feasible schedules. Note that for the
continuous model, the optimal schedule uses the
same speed for the same job.

The work of Li and Yao considers the problem
of computing an optimal schedule for the discrete
model under the following assumptions.

Assumptions

1. Single processor: At any time t , only one job
can be executed.

2. Preemptive: Any job can be interrupted dur-
ing its execution.

3. Non-precedence: There is no precedence re-
lationship between any pair of jobs.

4. Offline: The processor knows the information
of all the jobs at time 0.

This problem is called min-energy discrete dy-
namic voltage scaling (MEDDVS).

Problem 1 (MEDDVSJ;SD)

INPUT: Integer n, set J D fj1; j2; : : : ; jng and
SD D fs1; s2; : : : ; sd g � jk D fak ; bk ; Rkg.

OUTPUT: Feasible schedule S D .s.t/; job.t//

that minimizes E.S/.

Kwon and Kim [6] proved that the optimal
schedule for the discrete model can be obtained
by first calculating the optimal schedule for the
continuous model and then individually adjusting
the speed of each job appropriately to adjacent
levels in set SD. The time complexity is O.n3/.

Key Results

The work of Li and Yao finds a direct approach
for solving the MEDDVS problem without first
computing the optimal schedule for the continu-
ous model.

Definition 1 An s-schedule for J is a schedule
which conforms to the EDF principle and uses
constant speed s in executing any job of J .

Lemma 1 The s-schedule for J can be com-
puted in O.n log n/ time.

Definition 2 Given a job set J and any speed s,
let J �s and J <s denote the subset of J consisting
of jobs whose executing speeds are �s and <s,
respectively, in the optimal schedule for J in
the continuous model. The partition J �s; J <s is
referred to as the s-partition of J .

By extracting information from the s-schedule,
a partition algorithm is designed to prove the
following lemma:

Lemma 2 The s-partition of J can be computed
in O.n log n/ time.

By applying s-partition to J using all the d

speeds in SD consecutively, one can obtain d

subsets J1; J2; : : : ; Jd of J where jobs in the
same subset Ji use the same two speeds si and
siC1 in the optimal schedule for the Discrete
Model .sdC1 D 0/.

Lemma 3 Optimal schedule for job set Ji using
speeds si and siC1 can be computed in O.n log n/

time.

Combining the above three lemmas together, the
main theorem follows:

Theorem 1 The min-energy discrete DVS sched-
ule can be computed in O.dn log n/ time.



Voltage Scheduling 2339

V

A lower bound to compute the optimal schedule
for the discrete model under the algebraic deci-
sion tree model is also shown by Li and Yao.

Theorem 2 Any deterministic algorithm for
computing min-energy discrete DVS schedule
with d � 2 voltage levels requires Ω.n log n/

time for n jobs.

Applications

Currently, dynamic voltage scaling technique is
being used by the world’s largest chip companies,
e.g., Intel’s SpeedStep technology and AMD’s
PowerNow technology. Although the schedul-
ing algorithms being used are mostly online al-
gorithms, offline algorithms can still find their
places in real applications. Furthermore, the tech-
niques developed in the work of Li and Yao for
the computation of optimal schedules may have
potential applications in other areas.

People also study energy-efficient scheduling
problems for other kinds of job sets. Yun and
Kim [10] proved that it is NP-hard to compute the
optimal schedule for jobs with priorities and gave
an FPTAS for that problem. Aydin et al. [1] con-
sidered energy-efficient scheduling for real-time
periodic jobs and gave an O.n2 log n/ scheduling
algorithm. Chen et al. [4] studied the weakly dis-
crete model for non-preemptive jobs where speed
is not allowed to change during the execution of
one job. They proved the NP-hardness to compute
the optimal schedule.

Another important application for this work is
to help investigating scheduling model with more
hardware restrictions (Burd and Brodersen [3]
explained various design issues that may happen
in dynamic voltage scaling). Besides the single-
processor model, people are also interested in the
multiprocessor model [11].

Open Problems

A number of problems related to the work
of Li and Yao remain open. In the discrete
model, Li and Yao’s algorithm for computing

the optimal schedule requires time O.dn log n/.
There is a gap between this and the currently
known lower bound Ω.n log n/. Closing this gap
when considering d as a variable is an open
problem.

Another open research area is the computa-
tion of the optimal schedule for the continu-
ous model. Li, Yao, and Yao [8] obtained an
O.n2 log n/ algorithm for computing the optimal
schedule. The bottleneck for the log n factor
is in the computation of s-schedules. Reducing
the time complexity for computing s-schedules
is an open problem. It is also possible to look
for other methods to deal with the continuous
model.
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Problem Definition

Suppose there is some set of objects p called sites
that exert influence over their surrounding space,
M . For each site p, we consider the set of all
points ´ in M for which the influence of p is
strongest.

Such decompositions have already been con-
sidered by R. Descartes [5] for the fixed stars
in solar space. In mathematics and computer
science, they are called Voronoi diagrams, hon-
oring work by G.F. Voronoi on quadratic forms.
Other sciences know them as domains of ac-
tion, Johnson-Mehl model, Thiessen polygons,
Wigner-Seitz zones, or medial axis transform.

In the case most frequently studied, the space
M is the real plane, the sites are n points, and
influence corresponds to proximity in the Eu-
clidean metric, so that the points most strongly
influenced by site p are those for which p is
the nearest neighbor among all sites. They form
a convex region called the Voronoi region of p.
The common boundary of two adjacent regions
of p and q is a segment of their bisector B.p; q/,
the locus of all points of equal distance to p and
q. An example of 10 point sites is depicted in
Fig. 1.

Let us assume that the set S of point sites is
in general position, so that no three points are
situated on a line, and no four on a circle. Then
the Voronoi diagram V.S/ of S is a connected
planar graph. Its vertices are those points in the
plane which have three nearest neighbors in S ,
while the interior edge points have two. As a
consequence of the Euler formula, V.S/ has only
O.n/ many edges and vertices.

If we connect with line segments, those sites in
S whose Voronoi regions share an edge in V.S/,
a triangulation D.S/ of S results, called the
Delaunay triangulation or Dirichlet tessellation;
see Fig. 1. Each triangle with vertices p; q; r in
S is dual to a vertex v of V.S/ situated on the
boundary of the Voronoi regions of p; q; and r .
Because p; q; r are the nearest neighbors of v in
S , the circle through p; q; r centered at v contains
no other point of S . Thus, D.S/ consists of
triangles with vertices in S whose circumcircles
are empty of points in S ; see Fig. 2. Conversely,
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Voronoi Diagrams and
Delaunay
Triangulations, Fig. 1
Voronoi diagram and
Delaunay triangulation of
10 point sites in the
Euclidean plane

Voronoi Diagrams and
Delaunay
Triangulations, Fig. 2
The empty circle property

v

p

q

r

each triangle with empty circumcircle occurs in
D.S/.

Given a set S of n point sites, the problem is
to efficiently construct one of V.S/ or D.S/; the
dual structure can then easily be obtained in linear
time.

Generalizations
Voronoi diagrams can be generalized in sev-
eral ways. Instead of point sites, other geomet-
ric objects can be considered. One can replace
the Euclidean distance with distance measures
more suitable to model a given situation. Instead
of forming regions of all points that have the

same nearest site, one can consider higher-order
Voronoi diagrams where all points share a region
for which the nearest k sites are the same, for
some k between 2 and n � 1. Many more variants
can be found in [9] and [1]. Abstract Voronoi
diagrams provide a unifying framework for some
of the variants mentioned; see the corresponding
chapter in this encyclopedia.

Key Results

Quite a few algorithms for constructing the
Voronoi diagram or the Delaunay triangulation
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Voronoi Diagrams and
Delaunay
Triangulations, Fig. 3
The sweepline advancing
to the right
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of n points in the Euclidean plane have been
developed.

Divide and Conquer
The first algorithm was presented in the sem-
inal paper [11], which gave birth to the field
of computational geometry. It applies the divide
and conquer paradigm. Site set S is split by a
line into subsets L and R of equal cardinality.
After recursively computing V.L/ and V.R/, one
needs to compute the bisector B.L; R/, the locus
of all points in the plane that have a nearest
neighbor in L and in R. This bisector is an
unbounded monotone polygonal chain. In time
O.n/ one can find a starting segment of B.L; R/

at infinity, and trace the chain through V.L/ and
V.R/ simultaneously. Thus, the algorithm runs
in time O.n log n/ and linear space, which is
optimal.

Sweep
How to design a left-to-right sweepline algorithm
for constructing V.S/ is not obvious. When the
advancing sweepline H enters the Voronoi region
of p before site p has been detected, it is not clear
how to correctly maintain the Voronoi diagram
along H . This difficulty has been overcome in [7]

by applying a transformation that ensures that
each site is the leftmost point of its Voronoi
region. In [10] and [4], a more direct version of
this approach was suggested. At each time during
the sweep, one maintains the Voronoi diagram of
all point sites to the left of sweepline H , and of
H itself, which is considered a site of its own;
see Fig. 3. Because the bisector of a point and
a line is a parabola, the Voronoi region of H

is bounded by a connected chain of parabolic
segments, called the wavefront W . As H moves
to the right, W follows at half the speed. Each
point ´ to the left of W is closer to some point
site p left of H than to H and, all the more,
to all point sites to the right of H that are yet
to be discovered. Thus, the Voronoi regions of
the point sites to the left of W keep growing,
as sweepline H proceeds, along the extensions
of Voronoi edges beyond W ; these spikes are
depicted by dashed lines in Fig. 3.

There are two kinds of events one needs to
handle during the sweep. When sweepline H

hits a new point site (like point p6 in Fig. 3),
a new wave separating this point site from H

must be added to W . When wavefront W hits
the intersection of two neighboring spikes, the
wave between them must be removed from W ;
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this will first happen in Fig. 3 when W 0 arrives
at v0. Intersections between neighboring spikes
can be determined as in the standard line segment
intersection algorithm [2]. There are only O.n/

many events, one for each point site and one for
each Voronoi vertex v of V.S/. Since wavefront
W is always of linear size, the sweepline algo-
rithm runs in O.n log n/ time using linear space.

Reduction to Convex Hull
A rather different approach [3] obtains the De-
launay triangulation in dimension 2 from the
convex hull in dimension 3, which can itself
be constructed in time O.n log n/. As suggested
in [6], one vertically lifts the point sites to the
paraboloid Z D X2 C Y 2 in 3-space. The lower
convex hull of the lifted points, projected onto
the XY -plane, equals the Delaunay triangulation,
D.S/.

Incremental Construction
Another, very intuitive algorithm first suggested
in [8] constructs the Delaunay triangulation in-
crementally. In order to insert a new point site pi

into an existing Delaunay triangulation D.Si�1/,
one first finds the triangle containing pi and
connects pi to its vertices by line segments.
Should pi be contained in the circumcircles of
adjacent triangles, the Delaunay property must be
restored by edge flips that replace the common
edge of two adjacent triangles T; T 0 by the other
diagonal of the convex quadrilateral formed by
T and T 0. If the insertion sequence of the pi is
randomly chosen, a running time in O.n log n/

can be expected. Details on all algorithms can be
found in [1].

Applications

Although of linear size, Voronoi diagram and
Delaunay triangulation contain a lot of informa-
tion on the point set S . Once V.S/ or D.S/ are
available, quite a few distance problems can be
solved very efficiently. We mention only the most
basic applications here and refer to [1] and [9] for
further reading.

By definition, the Voronoi diagram reduces the
post office or nearest neighbor problem to a point
location problem: given an arbitrary query point
´, the site in S nearest to ´ can be found by deter-
mining the Voronoi region containing ´. In order
to find the largest empty circle whose center ´ lies
inside a convex polygon C over m vertices, one
needs to inspect only three types of candidates
for ´, the vertices of V.S/, the intersections of
the edges of V.S/ with the boundary of C , and
the vertices of C . All these can be done in time
O.n C m/.

If the site set S is split into subsets L and R,
then the closest pair p 2 L and q 2 R forms an
edge of the Delaunay triangulation D.S/ (which
crosses the Voronoi edge separating the regions of
p and q). This fact has nice consequences. First,
the nearest neighbor of a site p 2 S must be one
of its neighboring vertices in D.S/. Hence, all
nearest neighbors and the closest pair in S can
be found in linear time once D.S/ is available,
because D.S/ has only O.n/ many edges. Sec-
ond, D.S/ contains the minimum spanning tree
of S , which can be extracted from D.S/ in linear
time.

Remarkable and useful is the equiangularity
property of D.S/. Of all (exponentially many)
triangulations of S , the Delaunay triangulation
maximizes the ascending sequence of angles oc-
curring in the triangles, with respect to lexico-
graphic order. In particular, the minimum angle
is as large as possible. In fact, if a triangulation is
not Delaunay, it must contain two adjacent trian-
gles, such that the circumcircle of one contains
the third vertex of the other. By flipping their
common edge, a new triangulation with larger
angles is obtained.

Cross-References

� 3D Conforming Delaunay Triangulation
�Abstract Voronoi Diagrams
�Delaunay Triangulation and Randomized Con-

structions
�Optimal Triangulation
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Problem Definition

The traditional use of locking to maintain con-
sistency of shared data in concurrent programs
has a number of disadvantages related to soft-
ware engineering, robustness, performance, and
scalability. As a result, a great deal of research
effort has gone into nonblocking synchronization
mechanisms over the last few decades.

Herlihy’s seminal paper Wait-Free Syn-
chronization [12] studied the problem of
implementing concurrent data structures in
a wait-free manner, i.e., so that every operation
on the data structure completes in a finite number
of steps by the invoking thread, regardless of how
fast or slow other threads run and even if some
or all of them halt permanently. Implementations
based on locks are not wait-free because, while
one thread holds a lock, others can take an
unbounded number of steps waiting to acquire

the lock. Thus, by requiring implementations to
be wait-free, some of the disadvantages of locks
may potentially be eliminated.

The first part of Herlihy’s paper examined the
power of different synchronization primitives for
wait-free computation. He defined the consensus
number of a given primitive as the maximum
number of threads for which we can solve wait-
free consensus using that primitive (together with
read-write registers). The consensus problem re-
quires participating threads to agree on a value
(e.g., true or false) amongst values proposed by
the threads. The ability to solve this problem is
a key indicator of the power of synchronization
primitives because it is central to many natural
problems in concurrent computing. For exam-
ple, in a software transactional memory system,
threads must agree that a particular transaction
either committed or aborted.

Herlihy established a hierarchy of synchro-
nization primitives according to their consensus
number. He showed (i) that the consensus
number of read-write registers is 1 (so wait-
free consensus cannot be solved for even two
threads), (ii) that the consensus number of
stacks and FIFO queues is 2, and (iii) that
there are so-called universal primitives, which
have consensus number 1. Common examples
include compare-and-swap (CAS) and
the load-linked/store-conditional
(LL/SC) pair.

There are a number of papers which examine
Herlihy’s hierarchy in more detail. These show
that seemingly minor variations in the model or

© Springer Science+Business Media New York 2016
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in the semantics of primitives can have a sur-
prising effect on results. Most of this work is
primarily of theoretical interest. The key practi-
cal point to take away from Herlihy’s hierarchy
is that we need universal primitives to support
effective wait-free synchronization in general.
Recognizing this fact, all modern shared-memory
multiprocessors provide some form of universal
primitive.

Herlihy additionally showed that a solution to
consensus can be used to implement any shared
object in a wait-free manner, and thus that any
universal primitive suffices for this purpose.
He demonstrated this idea using a so-called
universal construction, which takes sequential
code for an object and creates a wait-free
implementation of the object using consensus
to resolve races between concurrent operations.
Despite the important practical ramifications of
this result, the universal construction itself was
quite impractical. The basic idea was to build
a list of operations, using consensus to determine
the order of operations, and to allow threads
to iterate over the list applying the operations
in order to determine the current state of the
object. The construction required O(N3) space to
ensure enough operations are retained to allow
the current state to be determined. It was also
very slow, requiring many threads to recompute
the same information, and thus preventing
parallelism between operations in addition.

Later, Herlihy [13] presented a more concrete
universal construction based on the LL/SC in-
struction pair. This construction required N C 1

copies of the object for N threads and still did
not admit any parallelism; thus it was also not
practical. Despite this, work following on from
Herlihy’s has brought us to the point today that
we can support practical programming models
that provide nonblocking implementations of ar-
bitrary shared objects. The remainder of this
chapter discusses the state of nonblocking syn-
chronization today, and mentions some history
along the way.

Weaker Nonblocking Progress Conditions
Various researchers, including us, have had
some success attempting to overcome the

disadvantages of Herlihy’s wait-free construc-
tions. However, the results remain impractical
due to excessive overhead and overly complicated
algorithms. In fact, there are still no nontrivial
wait-free shared objects in widespread practical
use, either implemented directly or using
universal constructions.

The biggest advances towards practicality
have come from considering weaker progress
conditions. While theoreticians worked on
wait-free implementations, more pragmatic
researchers sought lock-free implementations
of shared objects. A lock-free implementation
guarantees that, after a finite number of steps
of any operation, some operation completes.
In contrast to wait-free algorithms, it is in
principle possible for one operation of a lock-
free data structure to be continually starved by
others. However, this rarely occurs in practice,
especially because contention control techniques
such as exponential backoff [1] are often used to
reduce contention when it occurs, which makes
repeated interference even more unlikely. Thus,
the lack of a strong progress guarantee like wait-
freedom has often been found to be acceptable
in practice.

The observation that weaker nonblocking
progress conditions allow simpler and more prac-
tical algorithms led Herlihy et al. [15] to define
an even weaker condition: An obstruction-free
algorithm does not guarantee that an operation
completes unless it eventually encounters no
more interference from other operations. In our
experience, obstruction-free algorithms are easier
to design, simpler, and faster in the common
uncontended case than lock-free algorithms. The
price paid for these benefits is that obstruction-
free algorithms can “livelock”, with two or more
operations repeatedly interfering with each other
forever. This is not merely a theoretical concern:
it has been observed to occur in practice [16].
Fortunately, it is usually straightforward to
eliminate livelock in practice through contention
control mechanisms that control and manipulate
when operations are executed to avoid repeated
interference.

The obstruction-free approach to synchro-
nization is thus to design simple and efficient
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algorithms for the weak obstruction-free progress
condition, and to integrate orthogonal contention
control mechanisms to facilitate progress
when necessary. By largely separating the
difficult issues of correctness and progress,
we significantly ease the task of designing
effective nonblocking implementations: the
algorithms are not complicated by tightly
coupled mechanisms for achieving lock-freedom,
and it is easy to modify and experiment with
contention control mechanisms because they are
separate from the algorithm and do not affect its
correctness. We have found this approach to be
very powerful.

Transactional Memory
The severe difficulty of designing and verifying
correct nonblocking data structures has led re-
searchers to investigate the use of tools to produce
them, rather than designing them directly. In
particular, transactional memory [5, 17, 23] has
emerged as a promising direction. Transactional
memory allows programmers to express sections
of code that should be executed atomically, and
the transactional memory system (implemented
in hardware, software, or a combination of the
two) is responsible for managing interactions
between concurrent transactions to ensure this
atomicity. Here we concentrate on software trans-
actional memory (STM).

The progress guarantee made by a concurrent
data structure implemented using STM depends
on the STM implementation. It is possible
to characterize the progress conditions of
transactional memory implementations in
terms of a system of threads in which
each operation on a shared data structure
is executed by repeatedly attempting to
apply it using a transaction until an attempt
successfully commits. In this context, say
the transactional memory implementation is
obstruction-free if it guarantees that, if a thread
repeatedly executes transactions and eventually
encounters no more interference from other
threads, then it eventually successfully commits
a transaction.

Key Results

This section briefly discusses some of the most
relevant results concerning nonblocking synchro-
nization, and obstruction-free synchronization in
particular.

While progress towards practicality was made
with lock-free implementations of shared objects
as well as lock-free STM systems, this progress
was slow because simultaneously ensuring cor-
rectness and lock-freedom proved difficult. Be-
fore the introduction of obstruction-freedom, the
lock-free STMs still had some severe disadvan-
tages such as the need to declare and initialize
all memory to be accessed by transactions in
advance, the need for transactions to know in ad-
vance which memory locations they will access,
unacceptable constraints on the layout of such
memory, etc.

In addition to the work on tools such as STM
for building nonblocking data structures, there
has been a considerable amount of work on direct
implementations. While this work has not yielded
any practical wait-free algorithms, a handful of
practical lock-free implementations for simple
data structures such as queues and stacks have
been achieved [21, 24]. There are also a few
slightly more ambitious implementations in the
literature that are arguably practical, but the al-
gorithms are complicated and subtle, many are
incorrect, and almost none has a formal proof.
Proofs for such algorithms are challenging, and
minor changes to the algorithm require the proofs
to be redone.

The next section, discusses some of the re-
sults that have been achieved by applying the
obstruction-free approach. The remainder of this
section, briefly discusses a few results related to
the approach itself.

An important practical aspect of using an
obstruction-free algorithm is how contention
is managed when it arises. In introducing
obstruction-freedom, Herlihy et al. [15] ex-
plained that contention control is necessary to fa-
cilitate progress in the face of contention because
obstruction-free algorithms do not directly make
any progress guarantee in this case. However,
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they did not directly address how contention
control mechanisms could be used in practice.

Subsequently, Herlihy et al. [16] presented
a dynamic STM system (see next section) that
provides an interface for a modular contention
manager, allowing for experimentation with
alternative contention managers. Scherer and
Scott [22] experimented with a number of
alternatives, and found that the best contention
manager depends on the workload. Guerraoui
et al. [9] described an implementation that
supports changing contention managers on
the fly in response to changing workload
conditions.

All of the contention managers discussed
in the above-mentioned papers are ad hoc
contention managers based on intuition; no
analysis is given of what guarantees (if any)
are made by the contention managers. Guerraoui
et al. [10] made a first step towards a formal
analysis of contention managers by showing that
their Greedy contention manager guarantees
that every transaction eventually completes.
However, using the Greedy contention manager
results in a blocking algorithm, so their proof
necessarily assumes that threads do not fail while
executing transactions.

Fich et al. [7] showed that any obstruction-
free algorithm can be automatically transformed
into one that is practically wait-free in any real
system. “Practically” is said because the wait-free
progress guarantee depends on partial synchrony
that exists in any real system, but the transformed
algorithm is not technically wait-free, because
this term is defined in the context of a fully
asynchronous system. Nonetheless, an algorithm
achieved by applying the transformation of Fich
et al. to an obstruction-free algorithm does guar-
antee progress to non-failed transactions, even if
other transactions fail.

Work on incorporating contention manage-
ment techniques into obstruction-free algorithms
has mostly been done in the context of STM,
so the contention manager can be called
directly from the STM implementation. Thus,
the programmer using the STM need not be
concerned with how contention management
is integrated, but this does not address how

contention management is integrated into
direct implementations of obstruction-free data
structures.

One option is for the programmer to manually
insert calls to a contention manager, but this
approach is tedious and error prone. Guerraoui
et al. [11] suggested a version of this approach
in which the contention manager is abstracted
out as a failure detector. They also explored what
progress guarantees can be made by what failure
detectors.

Attiya et al. [4] and Aguilera et al. [2] sug-
gested changing the semantics of the data struc-
ture’s operations so that they can return a special
value in case of contention, thus allowing con-
tention management to be done outside the data
structure implementation. These approaches still
leave a burden on the programmer to ensure that
these special values are always returned by an
operation that cannot complete due to contention,
and that the correct special value is returned
according to the prescribed semantics.

Another option is to use system support to en-
sure that contention management calls are made
frequently enough to ensure progress. This sup-
port could be in the form of compiled-in calls,
runtime support, signals sent upon expiration of
a timer, etc. But all of these approaches have dis-
advantages such as not being applicable in gen-
eral purpose environments, not being portable,
etc.

Given that it remains challenging to design
and verify direct obstruction-free implementa-
tions of shared data structures, and that there are
disadvantages to the various proposals for inte-
grating contention control mechanisms into them,
using tools such as STMs with built-in contention
management interfaces is the most convenient
way to build nonblocking data structures.

Applications

The obstruction-free approach to nonblocking
synchronization was introduced by Herlihy
et al. [15], who used it to design a double-ended
queue (deque) based on the widely available CAS
instruction. All previous nonblocking deques
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either require exotic synchronization instructions
such as double-compare-and-swap
(DCAS), or have the disadvantage that operations
at opposite ends of the queue always interfere
with each other.

Herlihy et al. [16] introduced Dynamic STM
(DSTM), the first STM that is dynamic in the fol-
lowing two senses: new objects can be allocated
on the fly and subsequently accessed by transac-
tions, and transactions do not need to know in
advance what objects will be accessed. These two
advantages made DSTM much more useful than
previous STMs for programming dynamic data
structures. As a result, nonblocking implementa-
tions of sophisticated shared data structures such
as balanced search trees, skip lists, dynamic hash
tables, etc. were suddenly possible.

The obstruction-free approach played a key
role in the development of both of the results
mentioned above: Herlihy et al. [16] could
concentrate on the functionality and correctness
of DSTM without worrying about how to achieve
stronger progress guarantees such as lock-
freedom.

The introduction of DSTM and of the
obstruction-free approach have led to numerous
improvements and variations by a number of
research groups, and most of these have similarly
followed the obstruction-free approach. However,
Harris and Fraser [8] presented a dynamic STM
called OSTM with similar advantages to DSTM,
but it is lock-free. Experiments conducted at
the University of Rochester [20] showed that
DSTM outperformed OSTM by an order of
magnitude on some workloads, but that OSTM
outperformed DSTM by a factor of 2 on others.
These differences are probably due to various
design decisions that are (mostly) orthogonal to
the progress condition, so it is not clear what we
can conclude about how the choice of progress
condition affects performance in this case.

Perhaps a more direct comparison can be
made between another pair of algorithms, again
an obstruction-free one by Herlihy et al. [14]
and a similar but lock-free one by Harris and
Fraser [8]. These algorithms, invented indepen-
dently of each other, implement MCAS (CAS
generalized to access M independently chosen

memory locations). The two algorithms are very
similar, and a close comparison revealed that the
only real differences between them were due to
Harris and Fraser’s desire to have a lock-free im-
plementation. As a result of this, their algorithm
is somewhat more complicated, and also requires
a minimum of 3M C 1 CAS operations, whereas
the algorithm of Herlihy et al. [14] requires only
2M C 1. The authors are unaware of any direct
performance comparison of these algorithms,
but they believe the obstruction-free one would
outperform the lock-free one, particularly in the
absence of conflicting MCAS operations.

Open Questions

Because transactional memory research has
grown out of research into nonblocking data
structures, it was long considered mandatory
for STM implementations to support the
development of nonblocking data structures.
Recently, however, a number of researchers have
observed that at least the software engineering
benefits of transactional memory can be delivered
even by a blocking STM. There are ongoing
debates whether STM needs to be nonblocking
and whether there is a fundamental cost to being
nonblocking.

While we agree that blocking STMs are con-
siderably easier to design, and that in many cases
a blocking STM is acceptable, this is not always
true. Consider, for example, an interrupt handler
that shares data with the interrupted thread. The
interrupted thread will not run again until the
interrupt handler completes, so it is critical that
the interrupted thread does not block the interrupt
handler. Thus, if using STM is desired to simplify
the code for accessing this shared data, the STM
must be nonblocking. The authors are therefore
motivated to continue research aimed at improv-
ing nonblocking STMs and to understand what
fundamental gap, if any, exists between blocking
and nonblocking STMs.

Progress in improving the common-case per-
formance of nonblocking STMs continues [19],
and the authors see no reason to believe that non-
blocking STMs should not be very competitive
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with blocking STMs in the common case, i.e., un-
til the system decides that one transaction should
not wait for another that is delayed (an option that
is not available with blocking STMs).

It is conjectured that indeed a separation
between blocking and nonblocking STMs can
be proved according to some measure, but that
this will not imply significant performance
differences in the common case. Indeed
results of Attiya et al. [3] show a separation
between obstruction-free and blocking algo-
rithms according to a measure that counts
the number of distinct base objects accessed
by the implementation plus the number of
“memory stalls”, which measure how often
the implementation can encounter contention
for a variable from another thread. While this
result is interesting, it is not clear that it is useful
for deciding whether to implement blocking or
obstruction-free objects, because the measure
does not account for the time spent waiting by
blocking implementations, and thus is biased in
their favor. For now, remain optimistic that STMs
can be made to be nonblocking without paying
a severe performance price in the common case.

Another interesting question, which is
open as far as the authors know, is whether
there is a fundamental cost to implementing
stronger nonblocking progress conditions versus
obstruction-freedom. Again, they conjecture that
there is. It is known that there is a fundamental
difference between obstruction-freedom and
lock-freedom in systems that support only
reads and writes: It is possible to solve
obstruction-free consensus but not lock-free
consensus in this model [15]. While this is
a fascinating observation, it is mostly irrelevant
from a practical standpoint as all modern
shared memory multiprocessors support stronger
synchronization primitives such as CAS, with
which it is easy to solve consensus, even wait-
free. The interesting question therefore is whether
there is a fundamental cost to being lock-free as
opposed to obstruction-free in real systems.

To have a real impact on design directions,
such results need to address common case per-

formance, or some other measure (perhaps space)
that is relevant to everyday use. Many lower
bound results establish a separation in worst-
case time complexity, which does not necessar-
ily have a direct impact on design decisions,
because the worst case may be very rare. So
far, efforts to establish a separation according
to potentially useful measures have only led to
stronger results than we had conjectured were
possible. In the authors first attempt [18], they
tried to establish a separation in the number
of CAS instructions needed in the absence of
contention to solve consensus, but found that this
was not a very useful measure, as were able to
come up with a wait-free implementation that
avoids CAS in the absence of contention. The
second attempt [6] was to establish a separation
according to the obstruction-free step complexity
measure, which counts the maximum number of
steps to complete an operation once the opera-
tion encounters no more contention. They knew
we could implement obstruction-free DCAS with
constant obstruction-free step complexity, and
attempt to prove this impossible for lock-free
DCAS, but achieved such an algorithm. These
experiences suggest that, in addition to their di-
rect advantages, obstruction-free algorithms may
provide a useful stepping stone to algorithms with
stronger progress properties.

Finally, while a number of contention
managers have proved effective for various
workloads, it is an open question whether
a single contention manager can adapt to be
competitive with the best on all workloads,
and how close it can come to making optimal
contention management decisions. Experience to
date suggests that this will be very challenging
to achieve. Therefore, as in any system, the
first priority should be avoiding contention
in the first place. Fortunately, transactional
memory has the potential to make this much
easier than in lock-based programming models,
because it offers the benefits of fine-grained
synchronization without the programming
complexity that accompanies fine-grained
locking schemes.
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Problem Definition

A radio network is modeled as a directed,
strongly connected graph G with n nodes.
The nodes of a network G correspond to
transmitting/receiving wireless devices, and
directed edges represent their immediately
reached neighbors: if a node w is within the
transmission range of a node v, then G contains
an edge .v; w/. We call w an out-neighbor of v

and v an in-neighbor of w.
Each node v has a unique label `v from the set

ŒN � D f1; : : : ; N g, where N D O.n/. Initially,
each node knows only its label and the values of
n and N .

The time is divided into discrete time steps. It
is assumed that nodes have unlimited computing
power and can perform arbitrary computations
within one time step. However, only one trans-
mission or message receipt is allowed in one time
step. Each node has its own local clock, whose

initial value at the time of its activation is 0. All
local clocks run at the same speed.

A message M transmitted in time step t by a
node v is sent instantly to all its out-neighbors.
However, an out-neighbor w of v successfully
receives M in time step t only if no collision
occurred in this time step, that is, if no other in-
neighbor of w transmits in step t . Collision cannot
be distinguished from the background noise: if w
does not receive any message in time step t , it
knows that either none of its in-neighbors trans-
mitted in step t , or that at least two did, but it does
not know which of these two events occurred.
It is assumed that nodes only transmit wake-up
signals (to their neighbors); no other messages
are used.

A wake-up schedule is a vector ! D .!x/x2V ,
where !x denotes the time step in which x wakes-
up spontaneously. For any set X � V , !X

denotes the earliest wake-up time step in X , i.e.,
!X D minx2X !x . Without loss of generality,
one can assume that !V D minx2V !x D 0. A
wake-up network is the pair hG; !i, where G is a
radio network G and ! is a wake-up schedule.

A deterministic wake-up protocol W is a func-
tion that, for each label ` and for each � D

1; 2; 3; : : :, given all past messages received by
the node v with label `v D `, specifies whether v

will transmit the wake-up signal in time step �

since its activation. A randomized wake-up pro-
tocol is defined for each node as a probability dis-
tribution over the class of deterministic protocols
for that node.

The running time of a wake-up protocol W is
the smallest T such that, for any wake-up net-
work hG; !i, all nodes are activated by time T .

Synchronizers
All efficient deterministic wake-up algorithms are
based on the combinatorial notion of a radio
synchronizer, called also a synchronizer for short
(see also a simpler notion of related structures
called selectors [5], efficiently exploited in the
context of broadcasting in radio networks).

Let S D fSxgx2ŒN �, where each Sx D

Sx
1 Sx

2 : : : Sx
m is a 0-1 sequence of length m. The

set S is a .N; k; m/-synchronizer if it satisfies the
following property:
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.�/ For any nonempty set X � ŒN � of cardinal-
ity at most k, and for any wake-up schedule !,
there exists t , where !X < t � !X C m, such
that,

X

x2X

Sx
t�!x

D 1:

It is assumed here that Sx
i D 0 for i � 0.

The set S as above can be interpreted as a
transmission protocol, where Sx

i D 1 indicates
that node x transmits in time step !x C i . Thus
the condition .�/ states that, in at most m time
steps after the first node in X wakes-up, there
will be a time step when exactly one node in X

transmits.
More details about radio synchronizers and

synchronization protocols can be found in the
survey [8].

Key Results

A Deterministic Wake-Up Protocol

Lemma 1 ([3, 4]) Let C � 31 be an integer
constant. For each N and k � N; there exists
an .N; k; m/-synchronizer with m D C k2 log N .

The key ingredient of the wake-up algorithm
in [3, 4] ([3] is a conference version of [4]) is
an application of .N; k; m/-synchronizer with
k D N 1=3 and m D CN 2=3 log N , where
C D 31. The analysis of this algorithm relies
on the fact that it is sufficient to prove that
the algorithm satisfies claimed time bounds
for path graphs. A directed graph H is
called a path graph if the nodes of H can
be partitioned into sets Li , i D 0; : : : ; D,
each with a distinguished node vi 2 Li and
the edges of H are of the form .v; viC1/,
where 0 � i < D and v 2 Li . Moreover,
LD D fvDg.

Theorem 1 ([3, 4]) There exists a deterministic
protocol that completes the wake-up process in
each n-node strongly connected directed graph in
time O.n5=3 log n/.

A Randomized Wake-Up Protocol
In [7], the authors presented a randomized wake-
up protocol Probability Increase for complete
networks working in time O.log n log.1=�// with
probability 1 � � (see [6] for deterministic wake-
up algorithms for complete graphs). Using this
protocol along with appropriate formal analysis,
one can obtain a randomized Monte Carlo wake-
up protocol for general multi-hop radio networks.

Theorem 2 ([3, 4]) One can build a random-
ized protocol which completes wake-up in time
O.D log n log.n=�// in each wake-up network
with n nodes and diameter D with probability at
least 1 � �.

The Monte Carlo protocol from Theorem 2
can be modified to obtain Las Vegas protocol with
low expected running time.

Theorem 3 ([3, 4]) One can build a randomized
protocol which completes wake-up in expected
time O.D log2 n/ in each wake-up network with
n nodes and diameter D.

All the above randomized protocols do not
require labels.

Applications

Universal Synchronizers and Faster
Wake-Up Protocols
The notion of a synchronizer has been general-
ized to a universal synchronizer [1].

Let g W N � N ! N be a nondecreasing
function. Let S D fSxgŒN �, where each
Sx D Sx

1 Sx
2 : : : Sx

m is a 0-1 sequence of
length g.N; N /. The set S is a .N; g/-universal
synchronizer if it satisfies the following property:

.�/ For any nonempty set X � ŒN � and for
any wake-up schedule !, there exists t , where
!X < t � !X C g.N; jX j/, such that,

X

x2X

Sx
t�!x

D 1:

Chlebus and Kowalski proved in [1] that there
exist .N; g/-universal synchronizers for g.k/ D

O.k minfk;
p

ng log n/. Using this result they
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showed that there exists a wake-up protocol run-
ning in time O.n3=2 log n/. In [2], Chlebus et
al. provided an existential proof of the fact that
much shorter universal synchronizers exist and
obtained a corresponding faster wake-up proto-
col.

Lemma 2 ([2]) For each N there exists a
.N; g/-universal synchronizer for g.N; k/ D

ck log k log N , where c is a fixed constant.

Theorem 4 ([2]) There exists a deterministic
protocol that completes the wake-up process in
each n-node strongly connected directed graph
in time O.n log2 n/.

Leader Election and Clock Synchronization
In [3,4], applications of wake-up protocols for the
problems of leader election and clock synchro-
nization were considered.

In the leader election problem, the goal
is to designate one node as the leader, and
to announce its identity to all nodes in the
network. In the clock synchronization problem,
upon the completion of the protocol, all nodes
must agree on a common global time. For
clock synchronization, messages may include
numerical values representing the global
time.

It has been shown in [3, 4] that any wake-
up protocol W (deterministic or randomized)
can be transformed into a leader election
protocol or a clock synchronization protocol
with only a logarithmic overhead. The leader
election protocol is obtained by an execution of
appropriately composed O.log n/ executions of
a wake-up protocol, in which nodes gradually
learn consecutive bits of the node with the
largest label. In the clock synchronization
protocol, the leader is elected first and then
it broadcasts its clock state over the whole
network.

Open Problems

The exact complexity of the wake-up problem
is not known – there is a logarithmic gap

between the complexities of the best known
protocols and lower bounds. No efficient
algorithms for a construction of (universal)
synchronizers described in Lemmata 1 and 2
are known (i.e., polynomial time construction
with a polylogarithmic overhead to the
length), and thus the results from Theorems 1
and 4 are nonconstructive either. It is not
known whether the logarithmic overhead in
the complexity of leader election and clock
synchronization with respect to wake-up is
necessary.
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Problem Definition

The wavelet tree is a data structure that represents
a recursive partition of a sequence S of length n

according to its symbols. Letting ˙ D f1; : : : �g

be the alphabet of symbols of S , the wavelet tree
for S has the root representing S itself and �

leaves representing the positions of the symbols:
leaf c 2 ˙ represents all the positions i such
that SŒi � D c and 1 � i � n. The internal
nodes describe how the symbols are grouped. In
the original wavelet tree, nodes are binary and
thus there are two groups, called the 0-group and
the 1-group, which form an alphabet partition. In
the multi-ary wavelet tree, the nodes are obtained
by forming more than two groups each time. We
focus on binary wavelet trees in the following.

For example, consider the sequence S D

SENSELESSNESS# in Fig. 1. Here we divide
the symbols in two groups fE;Lg, and fN;S;#g,
giving rise to the two children of the root: the
left child contains the subsequence of S ob-
tained by copying the symbols in fE;Lg; the right
child contains the subsequence of S obtained
by copying the rest of the symbols (which are
in fN;S;#g). The partition of fE;Lg into fEg

and fLg produces two leaves. The partition of
fN;S;#g into fNg and fS;#g gives rise to a leaf
and an internal node. The latter represents the
partition of fS;#g giving rise to two leaves.

In general each internal node of the wavelet
tree represents a subsequence S 0 of the input se-
quence S , obtained by selecting certain symbols
from S . More precisely, if ˙ 0 is the alphabet for
the symbols in S 0, then S 0 is formed by selecting
all the symbols of S belonging to ˙ 0. Note that
˙ 0 D fcg if and only if the node storing S 0 is
the leaf whose associated symbol is c. For an
internal node, its two children are determined by
the choice of the 0-group ˙ 0

0 and of the 1-group
˙ 0
1 partitioning ˙ 0 D ˙ 0

0 [ ˙ 0
1. To this end, a

bitvector BS 0 is associated with S 0, where the 0’s
mark which positions of S 0 contain symbols from
˙ 0
0 and the 1’s mark which positions contain

symbols from 1-group ˙ 0
1.

It is worth noting that any choice for the
recursive alphabet partitioning in 0- and 1-groups
can be translated into a simple dichotomy test at
each node by suitably reordering the alphabet ˙ :
without loss of generality, we assume that given
a node representing S 0 over alphabet ˙ 0, there
exists a symbol c0 2 ˙ 0 such that c belongs to
the 0-group ˙ 0

0 if and only if c 2 ˙ 0 and c � c0.
Finally, the sequences S and S 0 can be actually

dropped from the nodes of the wavelet tree: just
knowing the symbols from ˙ associated with
its leaves allows us to reconstruct the dropped
sequences in its internal nodes as we discuss next.

Key Results

Despite its simplicity, the wavelet tree is a versa-
tile data structure that offers solutions to a variety
of situations using small additional space.

• Compressed sequences. Sequence S can be
stored using a number of bits close to the
0-order entropy and still supporting random
access and other operations such as rank and
select of individual symbols.

• Geometric points and 2D data. The leaves rep-
resent the individual points in x-order, while
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Wavelet Trees, Fig. 1 A
wavelet tree for the
sequence
S D SENSELESSNESS#
with ˙ D fE;L;N;S;#g.
Only the symbols in the
leaves and the bitvectors
are actually stored

1 0 1 1 0 0 0 1 1 1 0 1 0 0
S E N S E L E S S N E S S #

0 0 1 0 0
E E L E E

1 0 1 1 1 0 1 1 1
S N S S S N S S #

0 0 0 0 0 0 1
S S S S S S #E L N

S #

the root represents the same points but in y-
order. Range and percentile queries can be
performed in this way.

• Permutations, shufflings, and reorderings. The
leaves represent the elements in a certain order
and the root represents the same set in a
permuted order. Mapping these two orders can
be done efficiently.

As for the construction of the wavelet tree, it
can be easily done in O.n log �/ time and space.
More sophisticated algorithms have been devel-
oped to lower the construction time and/or the
additional working space. In the following, we fo-
cus here on the usage of the original wavelet tree.

Compressed Sequences
The first natural question is how to access
symbol SŒi � from the wavelet tree for S . We can
only use the bitvectors BS 0 in the internal nodes
and the mapping from the leaves to the symbols
of ˙ . We start out from the root, check bit BS Œi �,
and count the number i 0 of bits equal to BS Œi � in
the first i positions of BS . After that, we repeat
the step on the left child (if BS Œi � D 0) or the
right child (if BS Œi � D 1), setting the new value
of i D i 0 and using the bitvector BS 0 of that child.
Eventually we end up in a leaf, and the symbol c

corresponding to that leaf gives the answer that
SŒi � D c.

Regarding the time and space complexity, we
need an operation to count how many 1’s occur in
the first i positions of a bitvector (as the number
of 0’s can be obtained by subtracting this count
from i ). This operation is called rank in the lit-
erature and takes constant time by preprocessing
the bitvector and adding a little-oh number of bits
to it. In this way, the cost of access operation is
given by the height of the wavelet tree, which is
O.log �/ in case of a balanced shape.

As for the space complexity, note that any
binary tree shape with � leaves is feasible. Using
a Huffman tree shape, less frequent symbols cor-
respond to deeper leaves. Note that each symbol
occurrence in a leaf can be charged a bit from
each bitvector in its ancestors. Equivalently, the
sum of the lengths of the bitvectors in all the in-
ternal nodes of the wavelet tree is equal to the sum
of the lengths of the Huffman encodings of the
symbols of the input sequence S . In other words,
the space required by the bitvectors is equal to
the space achieved by the Huffman encoding. The
additional rank data structures use little-oh of
that space. Letting H0 � log � (logarithms in
base 2) denote the 0-order entropy of S , the total
space to store a wavelet tree is therefore nH0 C

o.nH0/ bits, which can be lowered to nH0 C

o.n/ with additional machinery. For compressible
sequences S , this is better than storing them in
n log � bits with the standard format. In general,
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any prefix-free encoding of the symbols in ˙ can
be used in place of the Huffman coding, giving
the same number of bits of the chosen encoding:
it suffices to choose as a shape the resulting prefix
tree of the chosen encoding of the symbols in
˙ . (Note that storing the tree shape and symbol
mappings requires O.� log �/ further bits.)

Interestingly, the above space bound can
be obtained using any shape if the bitvectors
are stored in compressed format. For example,
one compressed bitvector representation stores
a bitvector of length m with k 1’s using the
theoretic information minimum of log

�
m
k

�
C

o.m/ bits and supports constant time rank and
select operations. The latter operation returns
the position of the j th 1 in the bitvector (same
for the j th 0). It can be shown that for any shape
of the wavelet tree, summing the log

�
m
k

�
C o.m/

contribution of all the bitvectors in its nodes still
gives a total space of nH0 C o.n/ bits to store the
wavelet tree. In other words, the 0-order entropy
bound can be achieved independently of the tree
shape.

As a by-product of what we discussed above,
the wavelet tree allows us to extend the rank
and select operations from a bitvector to any
sequence over an alphabet ˙ . To see why, sup-
pose we want to know how many occurrences of
symbols c occur in the first i positions of S . We
perform the same steps as described above for the
access operation (where we initially set i 0 D i )
except that now we already know that the path to
follow is from the root to the leaf representing c.
In the generic step, we can easily test if c belongs
to the 0- or 1-group of the current node, and
branch according to the target leaf, updating the
value of i 0. However, when we reach the leaf for
c, we have to return the corresponding value of
i 0 as the answer for rank of c, since it tells
how many c’s are up to position i . As for the
select operation on c, suppose that we want
to identify the j th occurrence of c in S . This
time we proceed from the leaf corresponding to
c backwards to the root. We initially set i 0 D j

and then reverse the branching process: at the
generic step, we are in a node storing S 0 and on
position i 0. We reach the parent p of the current
node, and select the i 0th 0 (if arriving from the

left child) or the i 0th 1 (if arriving from the right
child) in the bitvector stored in p. We set i 0 to be
the resulting position and iterate. Eventually we
reach the root and return the current value of i 0 as
the answer for select of c.

Time cost is proportional to the height of the
wavelet tree, which is O.log �/ in case of a
balanced shape. Using multi-ary wavelet trees,
the height can be reduced and so does the cost,
achieving O.1 C log �= log w/ time with a word
size w D ˝.log n/.

Geometric Points and Two-Dimensional
Data
Given a set of n points hxi ; yi i in the plane, or
equivalently 2D data, where x1 � x2 � � � � xn,
we can use the wavelet tree as a space-efficient
data structure for storing and querying them. We
store these coordinates in two vectors X and Y ,
such as XŒi� D xi and Y Œi � D yi for 1 � i � n.
We then build the wavelet tree where S 	 Y and
˙ is the set of distinct values in Y .

As a result, we obtain a compacted hierar-
chical space decomposition for the n points. To
see why, we can conceptually think of the n

points as belonging to a n � n grid stored in
the root of the wavelet tree, where the actual
coordinates are those stored in X and Y . The
geometric interpretation of alphabet partitioning
in 0- and 1-groups is that of choosing a value
y0 and splitting the points in two groups, those
having coordinate yi � y0 (the 0-group) and
those having yi > y0 (the 1-group). Let n0 be
the size of the 0-group for the root and n1 be the
size of the 1-group, where n D n0 C n1. In each
group, only the rows and the columns that still
contain points survive. As a result, two grids of
size n0 � n0 and n1 � n1 are produced from one
of size n � n. Here, the left child corresponds to a
subsequence Y 0

0 of Y that represents the n0 points
(with yi � y0) in the grid of size n0 � n0, and
the right child represents the sequence Y 0

1 of n1

points (with yi > y0) in the grid of size n1 � n1.
The leaves of the wavelet tree are in y-order, and
each of them stores the points sharing the same
y-coordinate.

As for the storage, we observe that the values
in X can be represented compactly as they are in
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x-order. The values of Y do not need to be stored
separately as they are represented in the wavelet
tree. Total space is O.n log n/ bits but can be less
if the sequences of coordinates are compressible.

The supported operations exploit the afore-
mentioned hierarchical space decomposition for
the two-dimensional data as illustrated next. For
example, consider the classical 2D range query,
reporting (or counting) the points contained in the
range Œa : : : b��Œc : : : d �. If the current cutting co-
ordinate y0 is outside the range Œc : : : d �, we move
to one of the two children; otherwise, we branch
on both children, using respectively the ranges
Œa : : : b�� Œc : : : y0� and Œa : : : b�� .y0 : : : d �. Note
that the restriction Œa : : : b� on the x-coordinates
can be used to test if the grid represented by the
reached child has a nonempty intersection with
the range: the mechanism is the same as that of
rank. This means that each reported occurrence
potentially requires a traversal down to a leaf;
thus the cost is proportional to the number of
reported points times the height of the wavelet
tree. A refined version of this idea allows for
O.log n= log log n/ time for a counting query.

Another interesting use is quantile queries. For
the range Œa : : : b�, consider the values in Vab D

fyi j a � xi � bg obtained as the y-coordinates
of the points in that range. For any given a, b,
and k, the query asks to find the kth element in
Vab . Using the above wavelet tree, we can find the
rank ia of a and that ib of b. Then, using rank
operations on the bitvector BS in the root, we can
count how many 0’s and 1’s are in BsŒia : : : ib�.
If there are at least k 0’s, we know that the kth
value in Vab is smaller than or equal than the
cutting coordinate y0, and we iterate in the left
child; otherwise, we subtract the number of 0’s
from k, and we iterate in the right child. When
we reach a leaf, we return the associated value as
the answer for the quantile query. Along the same
lines, we can also report the topmost k values in
Vab . Once again, the cost is proportional to the
wavelet tree height for each reported value.

Permutations, Shufflings, and Reorderings
The above discussion brings the combinatorial
structure of wavelet tree to light as we can store
two orders inside it: the former is the order in

the sequence stored at the root, and the latter is
obtained by a left-to-right traversal of the leaves.
The bitvectors are internal routers that guide how
elements are permuted and shuffled to produce
the reordering. Mergesort can be modeled ac-
cording to this view: the internal nodes merge
the content of their children, and the bitvectors
tell who goes where in the resulting merged
reordering.

An immediate application of the above ob-
servations is setting S to be a permutation �

of the integers in f1; 2; : : : ; ng. Traversing the
wavelet tree upward (as in the select) com-
putes �.i/, while traversing it downward com-
putes the inverse permutation ��1. The best cost
is O.log n= log log n/ time.

In general, we can store two orders using
the wavelet tree, one being a permutation of
the other. Inverted lists in information retrieval
can store document IDs in increasing order of
enumeration, but they also want to store these
IDs in decreasing order of importance through
some raking function. As it is clear now, these are
two orders that can be simultaneously preserved
inside the wavelet tree.

Applications

Looking back at previous work, some ideas be-
hind the wavelet tree can be found in Kärkkäi-
nen’s PhD thesis and in Chazelle’s functional
approach to data structures for multidimensional
searching. The wavelet tree in its explicit and
fully functional form has been introduced by
Grossi, Gupta, and Vitter to store the Burrows-
Wheeler transform (BWT) for obtaining com-
pressed text indexes (able to support fast pattern
searching). Its natural application is supporting
rank and select queries for the symbols of
the resulting compressed BWT. Since then, many
papers have explored the properties of the wavelet
trees in several applications. Apart from com-
pressed full-text indexes, researchers have em-
ployed wavelet trees in inverted lists, graphs, bi-
nary relations, numeric sequences, colored range
queries, XPath queries, semi-structure data, and
frequent item sets, to name a few. The wavelet
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trie extends the wavelet tree to store a sequence
of strings, rather than a sequence of symbols, thus
allowing the supported operations to operate also
on the prefixes of the strings. The wavelet matrix
is a variant of a balanced wavelet tree, in which all
the bitvectors on the same level are concatenated,
and is particularly efficient for large alphabet
size � .
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Problem Definition

This problem is concerned with a weighted
version of the classical minimum connected
dominating set problem. This problem has
numerous motivations including wireless
networks and distributed systems. Previous
work [1, 2, 4, 5, 6, 14] in wireless networks
focuses on designing efficient distributed
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algorithms to construct the connected dominating
set which can be used as the virtual backbone for
the network. Most of the proposed methods try to
minimize the number of nodes in the backbone
(i.e., the number of clusterheads). However,
in many applications, minimizing the size of
the backbone is not sufficient. For example, in
wireless networks different wireless nodes may
have different costs for serving as a clusterhead,
due to device differences, power capacities, and
information loads to be processed. Thus, by
assuming each node has a cost to being in the
backbone, there is a need to study distributed
algorithms for weighted backbone formation.
Centralized algorithms to construct a weighted
connected dominating set with minimum weight
have been studied [3, 7, 9]. Recently, the work
of Wang, Wang, and Li [12, 13] proposes
an efficient distributed method to construct
a weighted backbone with low cost. They proved
that the total cost of the constructed backbone
is within a small constant factor of the optimum
when either the nodes’ costs are smooth (i.e.,
the maximum ratio of costs of adjacent nodes
is bounded) or the network maximum node
degree is bounded. To the best knowledge of
the entry authors, this work is the first to consider
this weighted version of minimum connected
dominating set problem and provide a distributed
approximation algorithm.

Notations
A communication graph G D .V; E/ over a set
V of wireless nodes has an edge uv between
nodes u and v if and only if u and v can com-
municate directly with each other, i.e., inside
the transmission region of each other. Let dG(u)
be the degree of node u in a graph G and �

be the maximum node degree of all wireless
nodes (i.e., � D maxu2V dG.u/). Each wireless
node u has a cost c(u) of being in the backbone.
Let ı D maxij 2E c.i/=c.j /, where ij is the edge
between nodes i and j, E is the set of commu-
nication links in the wireless network G, and
the maximum operation is taken on all pairs of
adjacent nodes i and j in G. In other words, ı

is the maximum ratio of costs of two adjacent
nodes and can be called the cost smoothness of

the network. When ı is bounded by some small
constant, the node costs are smooth. When the
transmission region of every wireless node is
modeled by a unit disk centered at itself, the
communication graph is often called a unit disk
graph, denoted by UDG(V). Such networks are
also called homogeneous networks.

A subset S of V is a dominating set if each node
in V is either in S or is adjacent to some node
in S. Nodes from S are called dominators, while
nodes not in S are called dominatees. A subset
B of V is a connected dominating set (CDS)
if B is a dominating set and B induces a con-
nected subgraph. Consequently, the nodes in B
can communicate with each other without using
nodes in V � B . A dominating set with mini-
mum cardinality is called minimum dominating
set (MDS). A CDS with minimum cardinality is
the minimum connected dominating set (MCDS).
In the weighted version, assume that each node u
has a cost c(u). Then a CDS B is called weighted
connected dominating set (WCDS). A subset B of
V is a minimum weighted connected dominating
set (MWCDS) if B is a WCDS with minimum
total cost. It is well-known that finding either
the minimum connected dominating set or the
minimum weighted connected dominating set is
a NP-hard problem even when G is a unit disk
graph. The work of Wang et al. studies efficient
approximation algorithms to construct a low-cost
backbone which can approximate the MWCDS
problem well. For a given communication graph
G D .V; E; C / where V is the set of nodes, E is
the edge set, and C is the set of weights for edges,
the corresponding minimum weighted connected
dominating set problem is as follows.

Problem 1 (Minimum Weighted Connected
Dominating Set)
INPUT: The weighted communication graph
G D .V; E; C /.
OUTPUT: A subset A of V is a minimum weighted
connected dominating set, i.e., (1) A is a domi-
nating set; (2) A induces a connected subgraph;
(3) the total cost of A is minimum.

Another related problem is independent set prob-
lem. A subset of nodes in a graph G is an
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independent set if for any pair of nodes, there
is no edge between them. It is a maximal inde-
pendent set if no more nodes can be added to
it to generate a larger independent set. Clearly,
any maximal independent set is a dominating set.
It is a maximum independent set (MIS) if no
other independent set has more nodes. The inde-
pendence number, denoted as ˛(G), of a graph
G is the size of the MIS of G. The k-local
independence number, denoted by ˛Œk�.G/, is
defined as ˛Œk�.G/ D maxu2V ˛.Gk.u//. Here,
Gk(u) is the induced graph of G on k-hop neigh-
bors of u (denoted by Nk(u)), i.e., Gk(u) is de-
fined on Nk(u), and contains all edges in G with
both end-points in Nk(u). It is well-known that
for a unit disk graph, ˛Œ1�.UDG/ � 5 [2] and
˛Œ2�.UDG/ � 18 [11].

Key Results

Since finding the minimum weighted con-
nected dominating set (MWCDS) is NP-
hard, centralized approximation algorithms for
MWCDS have been studied [3, 7, 9]. In [9],
Klein and Ravi proposed an approximation
algorithm for the node-weighted Steiner tree
problem. Their algorithm can be generalized
to compute a O.log �/ approximation for
MWCDS. Guha and Khuller [7] also studied
the approximation algorithms for node-weighted
Steiner tree problem and MWCDS. They
developed an algorithm for MWCDS with an
approximation factor of .1:35 C �/ log � for
any fixed � > 0. Recently, Ambuhl et al. [3]
provided a constant approximation algorithm
for MWCDS under UDG model. Their
approximation ratio is bounded by 89. All
these algorithms are centralized algorithms,
while the applications in wireless ad hoc
networks prefer distributed solutions for
MWCDS.

In [12, 13], Wang et al. proposed a distributed
algorithm that constructs a weighted connected
dominating set for a wireless ad hoc network G.
Their method has two phases: the first phase
(clustering phase, Algorithm 1 in [12, 13])
is to find a set of wireless nodes as the

dominators (clusterheads) and the second
phase (Algorithm 2 in [12, 13]) is to find
a set of nodes, called connectors, to connect
these dominators to form the final backbone.
Wang et al. proved that the total cost of
the constructed backbone is no more than
min.˛Œ2�.G/ log .� C 1/; .˛Œ1�.G/ � 1/ı C 1/

C2˛Œ1�.G/ times of the optimum solution.
Algorithm 1 first constructs a maximal inde-

pendent set (MIS) using classical greedy method
with the node cost as the selection criterion. For
each node v in MIS, it then runs a local greedy set
cover method on the local neighborhood N2.v/

to find some nodes (GRDYv) to cover all one-hop
neighbors of v. If GRDYv has a total cost smaller
than v, then it uses GRDYv to replace v, which
further reduces the cost of MIS. The following
theorem of the total cost of this selected set is
proved in [12, 13].

Theorem 1 For a network modeled by a graph
G, Algorithm 1 (in [12, 13]) constructs a dom-
inating set whose total cost is no more than
min.˛Œ2�.G/ log.�C1/; .˛Œ1�.G/�1/ıC1/ times
of the optimum.

Algorithm 2 finds some connectors among all
the dominatees to connect the dominators into
a backbone (CDS). It forms a CDS by finding
connectors to connect any pair of dominators u
and v if they are connected in the original graph
G with at most 3 hops. A distributed algorithm
to build a MST then is performed on the CDS.
The following theorem of the total cost of these
connectors is proved in [12, 13].

Theorem 2 The connectors selected by Algo-
rithm 2 (in [12, 13]) have a total cost no more
than 2 � ˛Œ1�.G/ times of the optimum for net-
works modeled by G.

Combining Theorems 1 and 2, the following
theorem is the main contributions of the work of
Wang et al..

Theorem 3 For any communication graph
G, Algorithm 1 and Algorithm 2 construct
a weighted connected dominating set whose total
cost is no more than
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min.˛Œ2�.G/ log.� C 1/; .˛Œ1�.G/ � 1/ı C 1/

C 2˛Œ1�.G/

times of the optimum.

Notice that, for homogeneous wireless net-
works modeled by UDG, it implies that the
constructed backbone has a cost no more than
min.18 log.� C 1/; 4ı C 1/ C 10 times of the
optimum. The advantage of the constructed
backbone is that the total cost is small compared
with the optimum when either the costs of
wireless nodes are smooth, i.e., two neighboring
nodes’ costs differ by a small constant factor, or
the maximum node degree is low.

In term of time complexity, the most time-
consuming step in the proposed distributed
algorithm is building the MST. In [10], Kuhn
et al. gave a lower bound on the distributed
time complexity of any distributed algorithm
that wants to compute a minimum dominating
set in a graph. Essentially, they proved that even
for the unconnected and unweighted case, any
distributed approximation algorithm with poly-
logarithmic approximation guarantee for the
problem has to have a time-complexity of at
least ˝.log �= log log �/.

Applications

The proposed distributed algorithms for
MWCDS can be used in ad hoc networks or
distributed system to form a low-cost network
backbone for communication application. The
cost used as the input of the algorithms could
be a generic cost, defined by various practical
applications. It may represent the fitness or
priority of each node to be a clusterhead.
The lower cost means the higher priority. In
practice, the cost could represent the power
consumption rate of the node if a backbone
with small power consumption is needed; the
robustness of the node if fault-tolerant backbone
is needed; or a function of its security level if
a secure backbone is needed; or a combined
weight function to integrate various metrics

such as traffic load, signal overhead, battery
level, and coverage. Therefore, by defining
different costs, the proposed low-cost backbone
formation algorithms can be used in various
practical applications. Beside forming the
backbone for routing, the weighted clustering
algorithm (Algorithm 1) can also be used in
other applications, such as selecting the mobile
agents to perform intrusion detection in ad
hoc networks [8] (to achieve more robust and
power efficient agent selection), or select the
rendezvous points to collect and store data in
sensor networks [15] (to achieve the energy
efficiency and storage balancing).

Open Problems

A number of problems related to the work of
Wang, Wang, and Li [12, 13] remain open. The
proposed method assumes that the nodes are
almost-static in a reasonable period of time. How-
ever, in some network applications, the network
could be highly dynamic (both the topology or
the cost could change). Therefore, after the gen-
eration of the weighted backbone, the dynamic
maintenance of the backbone is also an important
issue. It is still unknown how to update the
topology efficiently while preserving the approx-
imation quality.

In [12, 13], the following assumptions on
wireless network model is used: omni-directional
antenna, single transmission received by all
nodes within the vicinity of the transmitter.
The MWCDS problem will become much more
complicated if some of these assumptions are
relaxed.

Experimental Results

In [12, 13], simulations on random networks are
conducted to evaluate the performances of the
proposed weighted backbone and several back-
bones built by previous methods. The simulation
results confirm the theoretical results.
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Problem Definition

Consider the problem of matching a set of indi-
viduals X to a set of items Y where each individual
has a weight and a personal preference over the
items. The objective is to construct a matching
M that is stable in the sense that there is no
matching M0 such that the weighted majority vote
will choose M0 over M.

More formally, a bipartite graph .X; Y; E/,
a weight w.x/ 2 RC for each individual x 2 X ,
and a rank function r W E ! f1; : : : ; jY jg

encoding the individual preferences are
given. For every applicant x and items
y1; y2 2 Y say applicant x prefers y1 over y2 if
r.x; y1/ < r.x; y2/, and x is indifferent between
y1 and y2 if r.x; y1/ D r.x; y2/. The preference
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lists are said to be strictly ordered if applicants are
never indifferent between two items, otherwise
the preference lists are said to contain ties.

Let M and M0 be two matchings. An appli-
cant x prefers M over M0 if x prefers the item
he/she gets in M over the item he/she gets in M0.
A matching M is more popular than M0 if the
applicants that prefer M over M0 outweigh those
that prefer M0 over M. Finally, a matching M is
weighted popular if there is no matching M0 more
popular than M.

In the weighted popular matching problem
it is necessary to determine if a given instance
admits a popular matching, and if so, to produce
one. In the maximum weighted popular matching
problem it is necessary to find a popular matching
of maximum cardinality, provided one exists.

Abraham et al. [2] gave the first polynomial
time algorithms for the special case of these
problems where the weights are uniform. Later,
Mestre [8] introduced the weighted variant and
developed polynomial time algorithms for it.

Key Results

Theorem 1 The weighted popular matching and
maximum weighted popular matching problems
on instances with strictly ordered preferences can
be solved in O.jX j C jEj/ time.

Theorem 2 The weighted popular matching and
maximum weighted popular matching problems
on instances with arbitrary preferences can be
solved in O.minfk

p
jX j; jX jgjEj/ time.

Both results rely on an alternative easy-to-
compute characterization of weighted popular
matchings called well-formed matchings. It can
be shown that every popular matching is well-
formed. While in unweighted instances every
well-formed matching is popular [2], in weighted
instances there may be well-formed matchings
that are not popular. These non-popular well-
formed matchings can be weeded out by pruning
certain bad edges that cannot be part of any
popular matching. In other words, the instance
can be pruned so that a matching is popular if and

only if it is well-formed and is contained in the
pruned instance [8].

Applications

Many real-life problems can be modeled us-
ing one-sided preferences. For example, the as-
signment of graduates to training positions [5],
families to government-subsidized housing [10],
students to projects [9], and Internet rental mar-
kets [1] such as Netflix where subscribers are
assigned DVDs.

Furthermore, the weighted framework allows
one to model the naturally occurring situation
in which some subset of users has priority over
the rest. For example, an Internet rental site may
offer a “premium” subscription plan and promise
priority over “regular” subscribers.
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Problem Definition

The problem of random sampling without re-
placement (RS) calls for the selection of m dis-
tinct random items out of a population of size n. If
all items have the same probability to be selected,
the problem is known as uniform RS. Uniform
random sampling in one pass is discussed in

[1, 6, 11]. Reservoir-type uniform sampling algo-
rithms over data streams are discussed in [12].
A parallel uniform random sampling algorithm
is given in [10]. In weighted random sampling
(WRS) the items are weighted and the probability
of each item to be selected is determined by its
relative weight. WRS can be defined with the
following algorithm D:

Algorithm D, a definition of WRS
Input: A population V of n weighted items
Output: A set S with a WRS of size m
1: For k D 1 to m do
2: Let pi .k/ D wi =

P
sj 2V �S wj be the probability

of item vi to be selected in round k
3: Randomly select an item vi 2 V � S and insert it into

S
4: End-For

Problem 1 (WRS)
INPUT: A population V of n weighted items.
OUTPUT: A set S with a weighted random
sample.

The most important algorithms for WRS are the
Alias Method, Partial Sum Trees and the Accep-
tance/Rejection method (see [9] for a summary
of WRS algorithms). None of these algorithms is
appropriate for one-pass WRS. In this work, an
algorithm for WRS is presented. The algorithm
is simple, very flexible, and solves the WRS
problem over data streams. Furthermore, the al-
gorithm admits parallel or distributed implemen-
tation. To the best knowledge of the entry authors,
this is the first algorithm for WRS over data
streams and for WRS in parallel or distributed
settings.

Definitions
One-pass WRS is the problem of generating
a weighted random sample in one-pass over
a population. If additionally the population size
is initially unknown (e.g., a data streams), the
random sample can be generated with reservoir
sampling algorithms. These algorithms keep an
auxiliary storage, the reservoir, with all items that
are candidates for the final sample.
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Notation and Assumptions
The item weights are initially unknown, strictly
positive reals. The population size is n, the size
of the random sample is m and the weight of
item vi is wi. The function random(L, H) gener-
ates a uniform random number in (L, H). X de-
notes a random variable. Infinite precision arith-
metic is assumed. Unless otherwise specified,
all sampling problems are without replacement.
Depending on the context, WRS is used to denote
a weighted random sample or the operation of
weighted random sampling.

Key Results

All the results with their proofs can be found
in [4].

The crux of the WRS approach of this work is
given with the following algorithm A:

Algorithm A
Input: A population V of n weighted items
Output: A WRS of size m
1: For each vi 2 V , ui D random.0; 1/ and

ki D u.1=wi /

i

2: Select the m items with the largest keys ki as a
WRS

Theorem 1 Algorithm A generates a WRS.

A reservoir-type adaptation of algorithm A is the
following algorithm A-Res:

Algorithm A with a Reservoir (A-Res)
Input: A population V of n weighted items
Output: A reservoir R with a WRS of size m
1: The first m items of V are inserted into R
2: For each item vi 2R: Calculate a key ki Du.1=wi /

i
,

where ui D random.0; 1/
3: Repeat Steps 4–7 for iDm C 1; m C 2; : : : ; n
4: The smallest key in R is the current threshold T
5: For item vi: Calculate a key ki D u.1=wi /

i
, where

ui D random.0; 1/
6: If the key ki is larger than T, then:
7: The item with the minimum key in R is replaced

by item vi

Algorithm A-Res performs the calculations re-
quired by algorithm A and hence by Theorem 1
A-Res generates a WRS. The number of reservoir
operations for algorithm A-Res is given by the
following Proposition:

Theorem 2 If A-Res is applied on n weighted
items, where the weights wi > 0 are independent
random variables with a common continuous dis-
tribution, then the expected number of reservoir
insertions (without the initial m insertions) is:

nX

iDmC1

P Œitem i is inserted into S� D

nX

iDmC1

m

i

D O
�
m � log

� n

m

��
:

Let Sw be the sum of the weights of the items
that will be skipped by A-Res until a new item
enters the reservoir. If Tw is the current threshold
to enter the reservoir, then Sw is a continuous
random variable that follows an exponential dis-
tribution. Instead of generating a key for every
item, it is possible to generate random jumps
that correspond to the sum Sw. Similar techniques
have been applied for uniform random sampling
(see for example [3]). The following algorithm A-
ExpJ is an exponential jumps-type adaptation of
algorithm A:

Theorem 3 Algorithm A-ExpJ generates a WRS.

The number of exponential jumps of A-ExpJ
is given by Proposition 2. Hence algorithm A-
ExpJ reduces the number of random variates
that have to be generated from O(n) (for A-
Res) to O.m log.n=m//. Since generating
high-quality random variates can be a costly
operation this is a significant improvement
for the complexity of the sampling algo-
rithm.

Applications

Random sampling is a fundamental problem in
computer science with applications in many fields



Weighted Random Sampling 2367

W

Algorithm A with exponential jumps (A-ExpJ)
Input: A population V of n weighted items
Output: A reservoir R with a WRS of size m
1: The first m items of V are inserted into R
2: For each item vi 2 R: Calculate a key

ki D u.1=wi /

i
, where ui D random.0; 1/

3: The threshold Tw is the minimum key of R
4: Repeat Steps 5–10 until the population is

exhausted
5: Let r D random.0; 1/ and Xw D log.r/=

log.Tw/
6: From the current item vc skip items until item vi,

such that:
7: wc C wcC1 C � � � C wi�1 < Xw � wcC

wcC1 C � � � C wi�1 C wi

8: The item in R with the minimum key is replaced
by item vi

9: Let tw D Tw
wi , r2 D random.tw; 1/ and vi’s key:

ki D r2
.1=wi /

10: The new threshold Tw is the new minimum key
of R

including databases (see [5, 9] and the refer-
ences therein), data mining, and approximation
algorithms and randomized algorithms [7]. Con-
sequently, algorithm A for WRS is a general
tool that can find applications in the design of
randomized algorithms. For example, algorithm
A can be used within approximation algorithms
for the k-Median [7].

The reservoir based versions of algorithm
A, A-Res and A-ExpJ, have very small
requirements for auxiliary storage space (m keys
organized as a heap) and during the sampling
process their reservoir continuously contains
a weighted random sample that is valid for
the already processed data. This makes the
algorithms applicable to the emerging area
of algorithms for processing data streams
[2, 8].

Algorithms A-Res and A-ExpJ can be used
for weighted random sampling with replacement
from data streams. In particular, it is possible
to generate a weighted random sample with
replacement of size k with A-Res or A-
ExpJ, by running concurrently, in one pass,
k instances of A-Res or A-ExpJ respectively.
Each algorithm instance must be executed
with a trivial reservoir of size 1. At the end,

the union of all reservoirs is a WRS with
replacement.

URL to Code

The algorithms presented in this work are easy
to implement. An experimental implementation
in Java can be found at: http://utopia.duth.gr/~
pefraimi/projects/WRS/index.html
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Problem Definition

Well-separated pair decomposition, introduced
by Callahan and Kosaraju [4], has found numer-
ous applications in solving proximity problems
for points in the Euclidean space. A pair of point
sets .A; B/ is c well separated if the distance
between A and B is at least c times the diam-
eters of both A and B . A well-separated pair
decomposition of a point set consists of a set of
well-separated pairs that “cover” all the pairs of
distinct points, i.e., any two distinct points belong
to the different sets of some pair. Callahan and
Kosaraju [4] showed that for any point set in a
Euclidean space and for any constant c � 1,
there always exists a c-well-separated pair de-
composition (c-WSPD) with linearly many pairs.
This fact has been very useful for obtaining
nearly linear-time algorithms for many problems,
such as computing k-nearest neighbors, N -body
potential fields, geometric spanners, approximate
minimum spanning trees, etc. Well-separated pair
decomposition has also been shown to be very
useful for obtaining efficient dynamic, parallel,
and external memory algorithms.

The definition of well-separated pair decom-
position can be naturally extended to any metric
space. However, a general metric space may not
admit a well-separated pair decomposition with

a subquadratic size. Indeed, even for the metric
induced by the shortest path distance in a star
tree with unit weight on each edge, any well-
separated pair decomposition requires quadrati-
cally many pairs. This makes the well-separated
pair decomposition useless for such a metric.
However, it has been shown that for the unit-
disk graph metric, there do exist well-separated
pair decompositions with almost linear size, and
therefore many proximity problems under the
unit-disk graph metric can be solved efficiently.

Unit-Disk Graphs
Denote by d.�; �/ the Euclidean metric. For a set of
points S in the plane, the unit-disk graph I.S/ D

.S; E/ is defined to be the weighted graph where
an edge e D .p; q/ is in the graph if d.p; q/ �

1, and the weight of e is d.p; q/. Likewise, one
can define the unit-ball graph for points in higher
dimensions [5].

Unit-disk graphs have been used extensively to
model the communication or influence between
objects [9, 12] and have been studied in many
different contexts [5, 10]. For an example, wire-
less ad hoc networks can be modeled by unit-disk
graphs [8], as two wireless nodes can directly
communicate with each other only if they are
within a certain distance. In unsupervised learn-
ing, for a dense sampling of points from some
unknown manifold, the length of the shortest
path on the unit-ball graph is a good approxi-
mation of the geodesic distance on the underly-
ing (unknown) manifold if the radius is chosen
appropriately [6, 14]. By using well-separated
pair decomposition, one can encode the all-pair
distances approximately by a compact data struc-
ture that supports approximate distance queries in
O(1) time.

Metric Space
Suppose that .S;  / is a metric space where S

is a set of elements and   the distance function
defined on S � S . For any subset S1 � S ,
the diameter D .S1/ (or D.S1/ when   is
clear from the context) of S is defined to be
maxs1;s22 S1

 .s1; s2/. The distance  .S1; S2/

between two sets S1; S2 � S is defined to be
mins1;2S1;s22S2

 .s1; s2/.
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Well-Separated Pair Decomposition
For a metric space .S;  /, two nonempty sub-
sets S1; S2 � S are called c well separated if
 .S1; S2/ � c � max.D .S1/; D .S2//.

Following the definition in [4], for any two sets
A and B , a set of pairs P D fP1; P2; : : : ; Pmg,
where Pi D .Ai ; Bi /, is called a pair decomposi-
tion of .A; B/ (or of A if A D B) if:

• For all the i ’s, Ai � A, and Bi � B .
• Ai \ Bi D ¿.
• For any two elements a 2 A and b 2 B , there

exists a unique i such that a 2 Ai , and b 2 Bi .
Call .a; b/ is covered by the pair .Ai ; Bi /.

If in addition, every pair in P is c well separated,
P is called a c-well-separated pair decomposition
(or c-WSPD for short). Clearly, any metric space
admits a c-WSPD with quadratic size by using
the trivial family that contains all the pairwise
elements.

Key Results

In [7], it was shown that for the metric induced
by the unit-disk graph on n points and for any
constant c � 1, there does exist a c-WSPD
with O.n log n/ pairs, and such a decomposition
can be computed in O.n log n/ time. It was also
shown that the bounds can be extended to higher
dimensions. The following theorems state the key
results for two and higher dimensions:

Theorem 1 For any set S of n points in the plane
and any c � 1, there exists a c-WSPD P of S

under the unit-disk graph metric where P con-
tains O

�
c4n log n

�
pairs and can be computed in

O
�
c4n log n

�
time.

Theorem 2 For any set S of n points in Rk , for
k � 3, and for any constant c � 1, there exists a
c-WSPD P of S under the unit-ball graph metric
where P contains O

�
n2�2=k

�
pairs and can be

constructed in O
�
n4=3polylog n

�
time for k D 3

and in O
�
n2�2=k

�
time for k � 4.

The difficulty in obtaining a well-separated
pair decomposition for the unit-disk graph metric

is that two points that are close in space are
not necessarily close under the graph metric.
The above bounds are first shown for the point
set with constant-bounded density, i.e., a point
set where any unit disk covers only a constant
number of points in the set. The upper bound
on the number of pairs is obtained by using a
packing argument similar to the one used in [1].

For a point set with unbounded density, one
applies a clustering technique similar to the one
used in [8] to the point set and obtains a set
of “clusterheads” with a bounded density. Then
the result for bounded density is applied to those
clusterheads. Finally, the well-separated pair de-
composition is obtained by combining the well-
separated pair decomposition for the bounded
density point sets and for the Euclidean metric.
The number of pairs is dominated by the number
of pairs constructed for a constant density set,
which is in turn dominated by the bound given by
the packing argument. It has been shown that the
bounds on the number of pairs is tight for k � 3.

Applications

For a pair of well-separated sets, the distance
between two points from different sets can be
approximated by the “distance” between the two
sets or the distance between any pair of points
in different sets. In other words, a well-separated
pair decomposition can be thought of as a com-
pressed representation to approximate the ‚.n2/

pairwise distances. Many problems that require
the pairwise distances to be checked can there-
fore be approximately solved by examining those
distances between the well-separated pairs of
sets. When the size of the well-separated pair
decomposition is subquadratic, it often results in
more efficient algorithms than examining all the
pairwise distances. Indeed, this is the intuition
behind many applications of the geometric well-
separated pair decomposition. By using the same
intuition, one can apply the well-separated pair
decomposition in several proximity problems un-
der the unit-disk graph metric.
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Suppose that .S; d/ is a metric space. Let
S1 � S . Consider the following natural proxim-
ity problems:

• Furthest neighbor, diameter, center. The
furthest neighbor of p 2 S1 is the point in
S1 that maximizes the distance to p. Related
problems include computing the diameter,
the maximum pairwise shortest distance for
points in S1, and the center, the point that
minimizes the maximum distance to all the
other points.

• Nearest neighbor, closest pair. The nearest
neighbor of p 2 S1 is the point in S1 with
the minimum distance to p. Related problems
include computing the closest pair, the pair
with the minimum shortest distance, and the
bichromatic closest pair, the pair that mini-
mizes the distance between points from two
different sets.

• Median. The median of S is the point in S

that minimizes the average (or total) distance
to all the other points.

• Stretch factor. For a graph G defined on S ,
its stretch factor with respect to the unit-disk
graph metric is defined to be the maximum
ratio  G.p; q/= .p; q/, where  G ;   are the
distances induced by G and by the unit-disk
graph, respectively.

All the above problems can be solved or
approximated efficiently for points in the
Euclidean space. However, for the metric induced
by a graph, even for planar graphs, very little
is known besides solving the expensive all-
pair shortest-path problem. For computing the
diameter, there is a simple linear-time method
that achieves a 2-approximation (Select an
arbitrary node v and compute the shortest-path
tree rooted at v. Suppose that the furthest node
from v is distance D away. Then the diameter
of the graph is no longer than 2D, by triangle
inequality.) and a 4/3-approximate algorithm

with running time O
�
m

p
n log n C n2 log n

�
,

for a graph with n vertices and m edges, by
Aingworth et al. [2].

By using the well-separated pair decompo-
sition, Gao and Zhang [7] showed that one
can obtain better approximation algorithms
for the above proximity problems for the unit-
disk graph metric. Specifically, one can obtain
almost linear-time algorithms for computing

the 2.42-approximation and O
�
n

p
n log n="3

�

time algorithms for computing the .1 C ©/-
approximation for any © > 0. In addition, the
well-separated pair decomposition can be used to
obtain an O.n log n=©4/ space distance oracle so
that any .1 C ©/ distance query in the unit-disk
graph can be answered in O(1) time.

The bottleneck of the above algorithms turns
out to be computing the approximation of
the shortest-path distances between O.n log n/

pairs. The algorithm in [7] only constructs
well-separated pair decompositions without
computing a good approximation of the
distances. The approximation ratio and the
running time are dominated by that of the
approximation algorithms used to estimate the
distance between each pair in the well-separated
pair decomposition. Once the distance estimation
has been made, the rest of the computation only
takes almost linear time.

For a general graph, it is unknown whether
O.n log n/ pairs shortest-path distances can
be computed significantly faster than all-pair
shortest-path distances. For a planar graph,
one can compute the O.n log n/ pairs shortest-

path distances in O
�
n

p
n log n

�
time by using

separators with O
�p

n
�

size [3]. This method
extends to the unit-disk graph with constant-
bounded density since such graphs enjoy a
separator property similar to that of planar
graphs [13]. As for approximation, Thorup [15]
recently discovered an algorithm for planar
graphs that can answer any .1 C ©/-shortest-
distance query in O.1=©/ time after almost linear-
time preprocessing. Unfortunately, Thorup’s
algorithm uses balanced shortest-path separators
in planar graphs which do not obviously extend
to the unit-disk graphs. On the other hand, it is
known that there does exist a planar 2.42-spanner
for a unit-disk graph [11]. By applying Thorup’s
algorithm to that planar spanner, one can compute
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the 2.42-approximate shortest-path distance for
O.n log n/ pairs in almost linear time.

Open Problems

The most notable open problem is the gap be-
tween 	.n/ and O.n log n/ on the number of
pairs needed in the plane. Also, the time bound
for .1 C ©/-approximation is still about QO

�
n

p
n
�

due to the lack of efficient methods for computing
the .1 C ©/-approximate shortest-path distances
between O.n/ pairs of points. Any improvement
to the algorithm for that problem will immedi-
ately lead to improvement to all the .1 C ©/-
approximate algorithms presented in this entry.
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Problem Definition

Notations
Given a finite point set A in R

d , its bounding
box R.A/ is the d -dimensional hyperrectangle
Œa1; b1� � Œa2; b2� � � � � � Œad ; bd � that contains
A and has minimum extension in each dimen-
sion.

Two point sets A, B are said to be well sepa-
rated with respect to a separation parameter s > 0

if there exist a real number r > 0 and two d -
dimensional spheres CA and CB of radius r each,
such that the following properties are fulfilled:

1. CA \ CB D ;

2. CA contains the bounding box R.A/ of A

3. CB contains the bounding box R.B/ of B

4. jCACB j � s � r .

Here jCACB j denotes the smallest Euclidean dis-
tance between two points of CA and CB , respec-
tively. An example is depicted in Fig. 1. Given the
bounding boxes R.A/, R.B/, it takes time only
O.d/ to test if A and B are well separated with
respect to s.

Two points of the same set, A or B , have a
Euclidean distance at most 2/s times the distance
any pair .a; b/ 2 A � B can have. Also, any
two such pairs .a; b/; .a0; b0/ differ in their dis-
tances ja � bj; ja0 � b0j by a factor of at most
1 C 4=s.

Given a set S of n points in R
d , a well-

separated pair decomposition of S with

respect to separation parameter s is a sequence
.A1; B1/; .A2; B2/; : : : ; .Am; Bm/ where

1. Ai ; Bi 
 S , for i D 1 : : : m.
2. Ai and Bi are well separated with respect to s,

for i D 1 : : : m.
3. For all points a; b 2 S; a ¤ b, there exists

a unique index i in 1 : : : m such that a 2

Ai and b 2 Bi , or b 2 Ai and a 2 Bi

hold.

Obviously, each set S D fs1; : : : ; sng possesses
a well-separated pair decomposition. One can
simply use all singleton pairs ({si },{sj }) where
i < j . The question is if decompositions con-
sisting of fewer than O.n2/, many pairs exist and
how to construct them efficiently.

Key Results

In fact, the following result has been shown by
Callahan and Kosaraju [1, 2].

Theorem 1 Given a set S of n points in R
d

and a separation parameter s, there exists a
well-separated pair decomposition of S with re-
spect to s that consists of O.sd d d=2n/ many
pairs .Ai ; Bi /. It can be constructed in time
O(dnlog n C sd d d=2C1n/.

Thus, if dimension d and separation param-
eter s are fixed – which is the case in many
applications – then the number of pairs is in

R (A)
R (B)

C(B)

≥

C(A)

B
r r

s •r
A

Well Separated Pair Decomposition for Unit-Disk Graph, Fig. 1 The sets A; B are well-separated with respect
to s
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O.n/, and the decomposition can be computed in
time O.n log n/.

The main tool in constructing the well-
separated pair decomposition is the split tree
T .S/ of S . The root, r , of T .S/ contains the
bounding box R.S/ of S . Its two child nodes are
obtained by cutting through the middle of the
longest dimension of R.S/, using an orthogonal
hyperplane. It splits S into two subsets Sa; Sb ,
whose bounding boxes R.Sa) and R.Sb) are
stored at the two children a and b of root r .
This process continues until only one point of
S remains in each subset. These singleton sets
form the leaves of T .S/. Clearly, the split tree
T .S/ contains O.n/ many nodes. It needs not
be balanced, but it can be constructed in time
O(dnlog n/.

A well-separated pair decomposition of S ,
with respect to a given separation parameter s,
can now be obtained from T .S/ in the following
way. For each internal node of T .S/ with chil-
dren v and w, the following recursive procedure
FindPairs.v; w/ is called. If Sv and Sw are well
separated, then the pair .Sv; Sw/ is reported.
Otherwise, one may assume that the longest di-
mension of R.Sv) exceeds in length the longest
dimension of R.Sw) and that vl ; vr are the child
nodes of v in T .S/. Then, FindPairs.vl ; w/ and
FindPairs.vr ; w/ are invoked.

The total number of procedure calls is
bounded by the number of well-separated
pairs reported, which can be shown to be
in O.sd d d=2n/ by a packing argument.
However, the total size of all sets Ai ; Bi in
the decomposition is in general quadratic
in n.

Applications

From now on the dimension d is assumed to be a
constant. The well-separated pair decomposition
can be used in efficiently solving proximity prob-
lems for points in R

d .

Theorem 2 Let S be a set of n points in R
d .

Then a closest pair in S can be found in optimal
time O.n log n/.

Indeed, let q 2 S be a nearest neighbor of
p 2 S . One can construct a well-separated pair
decomposition with separation parameter s > 2

in time O.n log n/, and let .Ai ; Bi / be the pair
where p 2 Ai and q 2 Bi . If there were another
point p0 of S in Ai , one would obtain j pp0j �

2=s � j pq j < jpqj, which is impossible. Hence,
Ai is a singleton set. If .p; q/ is a closest pair
in S , then Bi must be singleton, too. Therefore,
a closest pair can be found by inspecting all
singleton pairs among the O.n/ many pairs of the
well-separated pair decomposition.

With more effort, the following generalization
can be shown.

Theorem 3 Let S be a set of n points in R
d , and

let k � n. Then for each p 2 S , its k nearest
neighbors in S can be computed in total time
O.n log n C nk). In particular, for each point in
S can a nearest neighbor in S be computed in
optimal time O.n log n/.

In dimension d D 2, one would typically use
the Voronoi diagram for solving these problems.
But as the complexity of the Voronoi diagram
of n points can be as large as nbd=2c, the well-
separated pair decomposition is much more con-
venient to use in higher dimensions.

A major application of the well-separated pair
decomposition is the construction of good span-
ners for a given point set S . A spanner of S of
dilation t is a geometric network N with vertex
set S such that for any two vertices p; q 2 S , the
Euclidean length of a shortest path connecting
p and q in N is at most t times the Euclidean
distance jpqj.

Theorem 4 Let S be a set of n points in R
d ,

and let t > 1. Then a spanner of S of dilation
t containing O.sd n/ edges can be constructed in
time O.sd nCn log n/, where s D 4.t C1/.t �1/.

Indeed, if one edge .ai ; bi / is chosen from
each pair .Ai ; Bi / of a well-separated pair de-
composition of S with respect to s, these edges
form a t -spanner of S , as can be shown by
induction on the rank of each pair .p; q/ 2 S2

in the list of all such pairs, sorted by distance.
Since spanners have many interesting applica-

tions of their own, several articles of this encyclo-
pedia are devoted to this topic.
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Open Problems

An important open question is which metric
spaces admit well-separated pair decompositions.
It is easy to see that the packing arguments used
in the Euclidean case carry over to the case of
convex distance functions in R

d . More generally,
Talwar [6] has shown how to compute well-
separated pair decompositions for point sets of
bounded aspect ratio in metric spaces of bounded
doubling dimension.

On the other hand, for the metric induced
by a disk graph in R

2, a quadratic number of
pairs may be necessary in the well-separated pair
decomposition. (In a disk graph, each point p 2

S is center of a disk Dp of radius rp . Two points
p; q are connected by an edge if and only if
Dp\Dq ¤ ;. The metric is defined by Euclidean
shortest path length in the resulting graph. If this
graph is a star with rays of identical length, a
well-separated pair decomposition with respect to
s > 4 must consist of singleton pairs.) Even for
a unit disk graph, 	.n2�2=d / many pairs may be
necessary for points in R

d , as Gao and Zhang [4]
have shown.

Cross-References

�Applications of Geometric Spanner Networks
�Geometric Spanners

Recommended Reading

1. Callahan P (1995) Dealing with higher dimen-
sions: the well-separated pair decomposition and
its applications. Ph.D. thesis, The Johns Hopkins
University

2. Callahan PB, Kosaraju SR (1995) A decomposition
of multidimensional point sets with applications to k-
nearest neighbors and n-body potential fields. J ACM
42(1):67–90

3. Eppstein D (1999) Spanning trees and spanners. In:
Sack JR, Urrutia J (eds) Handbook of computational
geometry. Elsevier, Amsterdam, pp 425–461

4. Ghao J, Zhang L (2005) Well-separated pair de-
composition for the unit disk graph metric and its
applications. SIAM J Comput 35(1):151–169

5. Narasimhan G, Smid M (2007) Geometric
spanner networks. Cambridge University Press,
New York

6. Talwar K (2004) Bypassing the embedding:
approximation schemes and compact representations
for low dimensional metrics. In: Proceedings
of the thirty-sixth annual ACM symposium
on theory of computing (STOC’04), Chicago,
pp 281–290

Wire Sizing

Chris Chu
Department of Electrical and Computer
Engineering, Iowa State University, Ames,
IA, USA

Keywords

Interconnect optimization; VLSI physical
design; Wire sizing; Wire tapering

Years and Authors of Summarized
Original Work

1999; Chu, Wong

Problem Definition

The problem is about minimizing the delay of an
interconnect wire in a very-large-scale integration
(VLSI) circuit by changing the width (i.e., siz-
ing) of the wire. The delay of interconnect wire
has become a dominant factor in determining
VLSI circuit performance for advanced VLSI
technology. Wire sizing has been shown to be an
effective technique to minimize the interconnect
delay. The work of Chu and Wong [1] shows
that the wire sizing problem can be transformed
into a convex quadratic program. This quadratic
programming approach is very efficient and can
be naturally extended to simultaneously consider
buffer insertion, which is another popular inter-
connect delay minimization technique. Previous
approaches apply either a dynamic programming
approach [2], which is computationally more ex-
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pensive, or an iterative greedy approach [3, 4],
which is hard to combine with buffer insertion.

The wire sizing problem is formulated as fol-
lows and is illustrated in Fig. 1. Consider a wire
of length L. The wire is connecting a driver
with driver resistance RD to a load with load
capacitance CL. In addition, there is a set H D

fh1; : : : ; hng of n wire widths allowed by the
fabrication technology. Assume h1 > � � � > hn.
The wire sizing problem is to determine the wire
width function f .x/ W Œ0; L� ! H so that the
delay for a signal to travel from the driver through
the wire to the load is minimized.

As in most previous works on wire sizing, the
work of Chu and Wong uses the Elmore delay
model to compute the delay. The Elmore delay
model is a delay model for RC circuits (i.e.,
circuits consisting of resistors and capacitors).
The Elmore delay for a signal path is equal to
the sum of the delays associated with all resistors
along the path, where the delay associated with
each resistor is equal to its resistance times its
total downstream capacitance. For a wire segment
of length l and width h, its resistance is r0l=h

and its capacitance is c.h/l , where r0 is the wire

sheet resistance and c.h/ is the unit length wire
capacitance. c.h/ is an increasing function in
practice. The wire segment can be modeled as a
�-type RC circuit as shown in Fig. 2.

Key Results

Lemma 1 The optimal wire width func-
tion f .x/ is a monotonically decreasing
function.

Lemma 1 above can be used to greatly sim-
plify the wire sizing problem. It implies that
an optimally sized wire can be divided into n

segments such that the width of i -th segment is
hi . The length of each segment is to be deter-
mined. The simplified problem is illustrated in
Fig. 3.

Lemma 2 For the wire in Fig. 3, the Elmore
delay is

D D
1

2
lT ˚l C �T l C RDCL

where

˚ D

0

BBBBB@

c.h1/r0=h1 c.h2/r0=h1 c.h3/r0=h1 � � � c.hn/r0=h1

c.h2/r0=h1 c.h2/r0=h2 c.h3/r0=h2 � � � c.hn/r0=h2

c.h3/r0=h1 c.h3/r0=h2 c.h3/r0=h3 � � � c.hn/r0=h3

:::
:::

:::
: : :

:::

c.hn/r0=h1 c.hn/r0=h2 c.hn/r0=h3 � � � c.hn/r0=hn

1

CCCCCA
;

� D

0

BBBBB@

RDc.h1/ C CLr0=h1

RDc.h2/ C CLr0=h2

RDc.h3/ C CLr0=h3

:::

RDc.hn/ C CLr0=hn

1

CCCCCA
and l D

0

BBBBB@

l1
l2
l3
:::

ln

1

CCCCCA
:

So the wire sizing problem can be written in
the following quadratic program:

WS W minimize 1
2
lT ˚l C �T l

subject to l1 C � � � C ln D L

li � 0 for 1 � i � n

Quadratic programming is NP-hard in
general. In order to solve WS efficiently,
some properties of the Hessian matrix ˚ are
explored.

Definition 1 (Symmetric Decomposable Ma-
trix) Let Q D .qij / be an n � n symmetric
matrix. If for some ˛ D .˛1; : : : ; ˛n/T and
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Wire Sizing, Fig. 1 The
wire sizing problem

h1
h2

hn
f(x)

RD

CL
0 Lx

Wire Sizing, Fig. 2 The
model of a wire segment
by a �-type RC circuit

l

h

r0l / h

2 2
c(h)l c(h)l

Wire Sizing, Fig. 3 The
simplified wire sizing
problem

l2 lnll

h1

RD

CL

hn

L

h2

v D .v1; : : : ; vn/T such that 0 < ˛1 < � � � < ˛n,
qij D qj i D ˛i vi vj for i � j , then Q is called
a symmetric decomposable matrix. Let Q be
denoted as SDM.˛; v/.

Lemma 3 If Q is symmetric decomposable, then
Q is positive definite.

Lemma 4 ˚ in WS is symmetric decompos-
able.

Lemma 3 together with Lemma 4 implies that
the Hessian matrix ˚ of WS is positive definite.
Hence, the problem WS is a convex quadratic
program and is solvable in polynomial time [5].

The work of Chu and Wong proposes to solve
WS by active set method. The active set method
transforms a problem with some inequality con-
straints into a sequence of problems with only
equality constraints. The method stops when the
solution of the transformed problem satisfies both
the feasibility and optimality conditions of the
original problem. For the problem WS , the active
set method keeps track of an active set A in
each iteration. The method sets lj D 0 for all
j 2 A and ignores the constraints lj � 0 for all
j 62 A. Let fj1; : : : ; jrg D f1; : : : ; ng � A. Then

WS is transformed into the following equality-
constrained wire sizing problem:

ECWS W minimize 1
2
lT
A˚AlA C �T

AlA
subject to � AlA D L

where lA D .lj1
; : : : ; ljr

/T , � A D .1 1 � � � 1/,
�A D .RDc.hj1

/CCLr0=hj1
; : : : ; RDc.hjr

/C

CLr0=hjr
/T , and ˚A is the symmetric

decomposable matrix corresponding to A (i.e.,

˚A D SDM.˛A; vA/ with ˛A D

�
r0

c.hj1
/hj1

;

: : : ;
r0

c.hjr
/hjr

�T

and vA D .c.hj1
/; : : : ;

c.hjr
//T ).

Lemma 5 The solution of ECWS is


A D �.� A˚�1
A � T

A/�1.� A˚�1
A �A C L/

lA D �˚�1
A � T

A
A � ˚�1
A �A

Lemma 6 If Q is symmetric decomposable,
then Q�1 is tridiagonal. In particular, if
Q D SDM.˛; v/, then Q�1 D .�ij /
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where �i i D
1

.˛i � ˛i�1/v2
i

C
1

.˛iC1 � ˛i /v
2
i

,

�i;iC1 D �iC1;i D
�1

.˛iC1 � ˛i /vi viC1

for 1 �

i � n � 1, �nn D
1

.˛n � ˛n�1/v2
n

, and �ij D 0

otherwise.

By Lemmas 5 and 6, ECWS can be solved
in O.n/ time. To solve WS , in practice, the
active set method takes less than n iterations
and hence the total runtime is O.n2/. Note that
unlike previous works, the runtime of this convex
quadratic programming approach is independent
of the wire length L.

Applications

The wire sizing technique is commonly applied
to minimize the wire delay and hence to improve
the performance of VLSI circuits. As there are
typically millions of wires in modern VLSI cir-
cuits, and each wire may be sized many times
in order to explore different architecture, logic
design, and layout during the design process, it
is very important for wire sizing algorithms to be
very efficient.

Another popular technique for delay mini-
mization of slow signals is to insert buffers (also
called repeaters) to strengthen and accelerate the
signals. The work of Chu and Wong can be natu-
rally extended to simultaneously handle buffer in-
sertion. It is shown in [1] that the delay minimiza-
tion problem for a wire by simultaneous buffer
insertion and wire sizing can also be formulated
as a convex quadratic program and be solved by
active set method. The runtime is only m times
more than that of wire sizing, where m is the
number of buffers inserted. m is typically 5 or less
in practice.

About one third of all nets in a typical VLSI
circuit are multi-pin nets (i.e., nets with a tree
structure to deliver a signal from a source to
several sinks). It is important to minimize the
delay of multi-pin nets. The work of Chu and
Wong can also be applied to optimize multi-pin
nets. The extension is described in Mo and Chu
[6]. The idea is to integrate the quadratic pro-

gramming approach into a dynamic programming
framework. Each branch of the net is solved as a
convex quadratic program, while the overall tree
structure is handled by dynamic programming.

Open Problems

After two decades of active research, the wire
sizing problem by itself is now considered a well-
solved problem. Some important solutions are
[1–4, 6–15]. The major remaining challenge is
to simultaneously apply wire sizing with other
interconnect optimization techniques to improve
circuit performance. Wire sizing, buffer inser-
tion, and gate sizing are three most commonly
used interconnect optimization techniques. It has
been demonstrated that better performance can be
achieved by applying these three techniques si-
multaneously rather sequentially. One very prac-
tical problem is to perform simultaneous wire siz-
ing, buffer insertion, and gate sizing to a combi-
national circuit such that the total resource usage
(e.g., wire/buffer/gate area, power consumption)
is minimized while the delay of all input-to-
output paths are less than a given target.
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Problem Definition

In the k-Server Problem, the task is to schedule
the movement of k-servers in a metric space M

in response to a sequence % D r1; r2; : : : ; rn of
requests, where ri 2 M for all i . The servers
initially occupy some configuration X0 � M.
After each request ri is issued, one of the k-
servers must move to ri . A schedule S specifies
which server moves to each request. The task is
to compute a schedule with minimum cost, where
the cost of a schedule is defined as the total dis-
tance traveled by the servers. The example below
shows a schedule for 2 servers on a sequence of
requests (Fig. 1).

In the offline case, if the complete request
sequence % is known, the optimal schedule can
be computed in polynomial time [9].

Most of the research on the k-Server Problem
focussed on the online variant, where the requests
are issued one at a time. After the i th request
ri is issued, an online algorithm must decide,
irrevocably, which server to move to ri before the
next request riC1 is issued. It is quite easy to see
that in this Online scenario it is not possible to
guarantee an optimal schedule for all request se-
quences. The accuracy of solutions produced by

x1

x2

r1 r2

r5

r6 r4

r7

r3

Work-Function Algorithm for k-Servers, Fig. 1 A
schedule for 2 servers on a request sequence % D
r1; r2; : : : ; r7. The initial configuration is X0 D
fx1; x2g. Server 1 serves r1; r2; r5; r6, while server 2
serves r3; r4; r7. The cost of this schedule is d.x1; r1/C
d.r1; r2/ C d.r2; r5/ C d.r5; r6/ C d.x2; r3/ C
d.r3; r4/ C d.r4; r7/, where d.x; y/ denotes the dis-
tance between points x; y
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such online algorithms is often evaluated within
the framework of competitive analysis. Denote
by costA.%/ the cost of the schedule produced
by an online k-server algorithm A on a request
sequence %, and let opt.%/ be the cost of an
optimal schedule on %. A is called R-competitive
if costA.%/ � R � opt.%/ C B , where B is a
constant that may depend on M and X0. The
smallest such R is called the competitive ra-
tio of A. Of course, the smaller the ratio R

the better.
The k-Server Problem was introduced by

Manasse, McGeoch, and Sleator [14, 15], who
proved that no (deterministic) online algorithm
can achieve a competitive ratio smaller than k,
in any metric space with at least k C 1 points.
They also gave a 2-competitive algorithm for
k D 2 and stated what is now known as the
k-Server Conjecture, which postulates that there
exists a k-competitive online algorithm for all
k. Koutsoupias and Papadimitriou [11, 12] (see
also [3, 8, 10]) proved that the Work-Function
Algorithm, presented in the next section, has
competitive ratio at most 2k � 1, which to date
remains the best upper bound on the competitive
ratio.

Key Results

The idea of the Work-Function Algorithm is to
balance two greedy strategies when a new re-
quest is issued. The first one is to simply serve
the request with the closest server. The second
strategy attempts to follow the optimum schedule.
Roughly, from among the k possible new con-
figurations, this strategy chooses the one where
the optimum schedule would be at this time, if no
more requests remained to be issued.

To formalize this idea, for each request se-
quence % and a k-server configuration X , let
!%.X/ be the minimum cost of serving % under
the constraint that at the end the server config-
uration is X . (Assume, for simplicity, that the
initial configuration X0 is fixed.) The function
!%.�/ is called the work function after the request
sequence %.

Algorithm WFA. Denote by � the sequence of
past requests, and suppose that the current server
configuration is S D fs1; s2; : : : ; skg, where sj

is the location of the j -th server. Let r be the
new request. Choose sj 2 S that minimizes the
quantity !�r .S�

˚
sj

�
[frg/Cd.sj ; r/, and move

server j to r .

Theorem 1 ([11, 12]) Algorithm WFA is .2k �

1/-competitive.

As observed in [6], Algorithm WFA can be
interpreted as a primal-dual algorithm.

Applications

The k-Server Problem can be viewed as an ab-
straction of online problems that arise in emer-
gency crew scheduling, caching (or paging) in
two-level memory systems, scheduling of disk
heads, and other. Nevertheless, in its pure abstract
form, it is mostly of theoretical interest.

Algorithm WFA can be applied to some gener-
alizations of the k-Server Problem. In particular,
it is .2n�1/-competitive for n-state metrical task
systems, matching the lower bound [3, 4, 8]. See
[1, 3, 5] for other applications and extensions.

Open Problems

Theorem 1 comes tantalizingly close to settling
the k-Server Conjecture described earlier in this
section. In fact, it has been even conjectured that
Algorithm WFA itself is k-competitive for k-
servers, but the proof of this conjecture, so far,
remains elusive.

For k � 3, k-competitive online k-server
algorithms are known only for some restricted
metric spaces, including trees, metric spaces with
up to k C 2 points, and the Manhattan plane
for k D 3 (see [2, 7, 9, 13]). As the analysis
of Algorithm WFA in the general case appears
difficult, it would be of interest to prove its k-
competitiveness for some natural special cases,
for example in the plane (with any reasonable
metric) for k � 4 servers.
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Very little is known about the competitive ratio
of the k-Server Problem in the randomized case.
In fact, it is not even known whether a ratio better
than 2 can be achieved for k D 2.
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Balanced Min-Cut Approach
Circuit Placement
Circuit Retiming
Circuit Retiming: An Incremental Approach
Clique Enumeration
Clock Synchronization
Closest String and Substring Problems
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Control
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Semi-supervised Learning
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Set Agreement
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Information
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Similarity Between Compressed Strings
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Single and Multiple Buffer Processing
Single-Source Fully Dynamic Reachability
Single-Source Shortest Paths
Ski Rental Problem
Slicing Floorplan Orientation
Sliding Window Algorithms
Smooth Surface and Volume Meshing
Smoothed Analysis
Snapshots in Shared Memory
Sorting by Transpositions and Reversals

(Approximate Ratio 1.5)
Sorting Signed Permutations by Reversal

(Reversal Distance)
Sorting Signed Permutations by Reversal

(Reversal Sequence)
Spanning Trees with Low Average Stretch
Sparse Fourier Transform
Sparse Graph Spanners
Sparsest Cut
Speed Scaling
Sphere Packing Problem
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Squares and Repetitions
Stable Marriage
Stable Marriage and Discrete Convex Analysis
Stable Marriage with One-Sided Ties
Stable Marriage with Ties and Incomplete Lists
Stable Partition Problem
Stackelberg Games: The Price of Optimum
Staged Assembly
Statistical Multiple Alignment
Statistical Query Learning
Statistical Timing Analysis
Steiner Forest
Steiner Trees
Stochastic Knapsack
Stochastic Scheduling
String Matching
String Sorting
Strongly Connected Dominating Set
Subexponential Parameterized Algorithms
Subset Sum Algorithm for Bin Packing
Substring Parsimony
Succinct and Compressed Data Structures for

Permutations and Integer Functions
Succinct Data Structures for Parentheses

Matching
Suffix Array Construction

Suffix Tree Construction
Suffix Tree Construction in Hierarchical

Memory
Suffix Trees and Arrays
Sugiyama Algorithm
Superiority and Complexity of the Spaced Seeds
Support Vector Machines
Surface Reconstruction
Symbolic Model Checking
Symmetric Graph Drawing
Synchronizers, Spanners
Table Compression
Tail Bounds for Occupancy Problems
Technology Mapping
Teleportation of Quantum States
Temperature Programming in Self-Assembly
Testing Bipartiteness in the Dense-Graph Model
Testing Bipartiteness of Graphs in Sublinear

Time
Testing if an Array Is Sorted
Testing Juntas and Related Properties of Boolean

Functions
Text Indexing
Three-Dimensional Graph Drawing
Thresholds of Random k-SAT
Topology Approach in Distributed Computing
Trade-Offs for Dynamic Graph Problems
Transactional Memory
Traveling Sales Person with Few Inner Points
Tree Enumeration
Treewidth of Graphs
Trial and Error Algorithms
Triangulation Data Structures
Truthful Mechanisms for One-Parameter

Agents
Truthful Multicast
TSP-Based Curve Reconstruction
Two-Dimensional Scaled Pattern Matching
Two-Interval Pattern Problems
Undirected Feedback Vertex Set
Unified View of Graph Searching and

LDFS-Based Certifying Algorithms
Uniform Covering of Rings and Lines by

Memoryless Mobile Sensors
Unique k-SAT and General k-SAT
Universal Sequencing on an Unreliable

Machine
Upward Graph Drawing
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Utilitarian Mechanism Design for
Single-Minded Agents

Vector Bin Packing
Vector Scheduling Problems
Vertex Cover Kernelization
Vertex Cover Search Trees
Visualization Techniques for Algorithm

Engineering
Voltage Scheduling
Voronoi Diagrams and Delaunay Triangulations
Wait-Free Synchronization

Wake-Up Problem in Multi-Hop Radio
Networks

Wavelet Trees
Weighted Connected Dominating Set
Weighted Popular Matchings
Weighted Random Sampling
Well Separated Pair Decomposition
Well Separated Pair Decomposition for

Unit-Disk Graph
Wire Sizing
Work-Function Algorithm for k-Servers

This encyclopedia includes no entries for X, Y & Z


	Encyclopedia of Algorithms
	Preface
	About the Editor
	Area Editors
	Contributors

	A
	Abelian Hidden Subgroup Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Discussion: What About Non-Abelian Groups?

	Cross-References
	Recommended Reading

	Abstract Voronoi Diagrams
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Generalizations
	Cross-References
	Recommended Reading

	Active Learning – Modern Learning Theory
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Formal Setup

	Key Results
	Disagreement-Based Active Learning
	Margin-Based Active Learning
	Cluster-Based Active Learning

	Cross-References
	Recommended Reading

	Active Self-Assembly and Molecular Robotics with Nubots
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	The Complexity of Assembling Lines
	Computational Power
	Synchronization and Composition of Nubot Algorithms
	Agitation Versus the Movement Rule
	Intrinsic Universality and Simulation
	Brownian Nubots

	Cross-References
	Recommended Reading

	Adaptive Partitions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Historical Note

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Additive Spanners
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Recommended Reading

	Adwords Pricing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Algorithm DC-Tree for k-Servers on Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Algorithmic Cooling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Basic Concepts
	Loss-Less In-Place Data Compression
	Spin Temperature, Polarization Bias, and Effective Cooling

	Key Results
	Molecular-Scale Heat Engines
	Heat-Bath Algorithmic Cooling
	Practicable Algorithmic Cooling
	Exhaustive Algorithmic Cooling
	Other Results

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Algorithmic Mechanism Design
	Years and Authors of Summarized Original Work
	Problem Definition
	A Motivating Example: Shortest Paths
	Abstract Formulation

	Key Results
	Problem Domain 1: Job Scheduling
	Problem Domain 2: Digital Goods and Revenue Maximization
	Problem Domain 3: Combinatorial Auctions
	Problem Domain 4: Online Auctions
	Advanced Issues
	Monotonicity
	Impossibilities of truthful design
	Alternative solution concepts


	Applications
	Cross-References
	Recommended Reading

	Algorithms for Combining Rooted Triplets into a Galled Phylogenetic Network
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	All Pairs Shortest Paths in Sparse Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Definition of Distance
	Classic Algorithms
	Integer-Weighted Graphs

	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	All Pairs Shortest Paths via Matrix Multiplication
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Alon-Galil-Margalit Algorithm
	Takaoka Algorithm

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	All-Distances Sketches
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Preprocessing Cost
	Supported Queries

	Key Results
	Definition
	Relation to MinHash Sketches
	Direction
	Node Weights

	Algorithms
	Estimation
	Distance Distribution
	Closeness Centrality (Distance-Decaying)
	Closeness Similarity and Influence
	Approximate Distance Oracles


	Applications
	Extensions

	Cross-References
	Recommended Reading

	Alternate Parameterizations
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Structural Parameterizations
	Above or Below Guarantee Parameterizations

	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Alternative Performance Measures in Online Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Relative Worst-Order Ratio
	Loose Competitiveness
	Diffuse Adversary Model
	Bijective Analysis
	Smoothed Competitiveness
	Search Ratio

	Cross-References
	Recommended Reading

	Amortized Analysis on Enumeration Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Amortization by Children
	Push-Out Amortization
	Push-Out Condition (PO Condition) T(X) ≥αT(X) - β(|C(X)|+1)T*

	Matching Enumeration
	Elimination Ordering

	Recommended Reading

	AMS Sketch
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Data Structure Description

	Applications
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Analyzing Cache Behaviour in Multicore Architectures
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Paging
	Paging in Multicore Caches

	Key Results
	Online Paging
	Offline Paging
	Other Models

	Open Problems
	Cross-References
	Recommended Reading

	Analyzing Cache Misses
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Caches, Models, and Cache Analysis
	Related Problems

	Key Results
	Multiple Sequence Access with Additional Working Set

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Applications of Geometric Spanner Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation and Definitions
	Survey of Related Research

	Key Results
	Pruning
	Bucketing
	Main Results

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Approximate Dictionaries
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Problem and the Model
	Related Work

	Key Results
	Randomized Schemes with Two-Sided Error
	Randomized Schemes with One-Sided Error
	Deterministic Schemes
	Power of Few Bitprobes

	Applications
	Recommended Reading

	Approximate Distance Oracles with Improved Query Time
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Oracle with O(log k) Query Time
	Oracle with Constant Query Time

	Applications
	Open Problems
	Recommended Reading

	Approximate Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Algorithms for Exact MWM
	Approximate Matching

	Key Results
	Approximate Maximum Cardinality Matching
	Approximate Maximum Weighted Matching

	Applications
	Cross-References
	Recommended Reading

	Approximate Regular Expression Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Approximate String Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Approximate Tandem Repeats
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	URL to Code
	Cross-References
	Recommended Reading

	Approximating Fixation Probabilities in the Generalized Moran Process
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Bounding the Fixation Probability
	Bounding the Absorption Time
	Approximation Algorithms

	Recommended Reading

	Approximating Metric Spaces by Tree Metrics
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Approximating the Diameter
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Recommended Reading

	Approximating the Partition Function of Two-Spin Systems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Ferromagnetic Two-Spin Systems
	Antiferromagnetic Two-Spin Systems
	Algorithms for Graphs with Bounded Connective Constant

	Cross-References
	Recommended Reading

	Approximation Schemes for Bin Packing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Approximation Schemes for Geometric Network Optimization Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Overview of Methods
	Arora's Dissection Method
	The m-Guillotine Method
	Generalizations to Other Metrics

	Applications to Network Optimization

	Open Problems
	Cross-References
	Recommended Reading

	Approximation Schemes for Makespan Minimization
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	The Dual Approximation Framework and Common Preprocessing Steps
	The Case of Identical Machines
	The Case of Related Machines

	Cross-References
	Recommended Reading

	Approximation Schemes for Planar Graph Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Approximations of Bimatrix Nash Equilibria
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation
	Bimatrix Games
	Approximate Nash Equilibria

	Key Results
	Applications
	Recommended Reading

	Arbitrage in Frictional Foreign Exchange Market
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Arithmetic Coding for Data Compression
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Modeling
	Implementation Issues
	Incremental Output
	Use of Integer Arithmetic
	Limited-Precision Arithmetic Coding


	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Assignment Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	High-Level Description
	More Efficient Implementation

	Applications
	Open Problems
	Recommended Reading

	Asynchronous Consensus Impossibility
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Terminology

	Key Results
	Applications
	Open Problems
	Related Work
	Cross-References
	Recommended Reading

	Atomic Broadcast
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Related Work
	Notations and Assumptions
	Problem Definition

	Key Results
	Atomic Broadcast for Omission Failures
	Atomic Broadcast for Timing Failures
	Atomic Broadcast for Byzantine Failures
	Bounds

	Applications
	Cross-References
	Recommended Reading

	Attribute-Efficient Learning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Automated Search Tree Generation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Analysis
	Case Distinction

	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading


	B
	Backdoors to SAT
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Backtracking Based k-SAT Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	ResolveSat Algorithm
	Analysis of ResolveSat

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Bargaining Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Solution Concept
	Feasible Solution
	Outside Option
	Stable Solution
	Balanced Solution


	Key Results
	Existence of Stable and Balanced Solutions
	Cooperative Game Theory Perspective
	Core
	Prekernel
	Nucleolus

	Finding Stable and Balanced Solutions

	Open Problems
	Cross-References
	Recommended Reading

	Bend Minimization for Orthogonal Drawings of Plane Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Bend Minimization Problem

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Best Response Algorithms for Selfish Routing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Model
	Best Response
	Flows and Common Best Response
	Layered and Series-Parallel Graphs

	Key Results
	The Greedy Best Response Algorithm (GBR)
	The Characterization

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Beyond Evolutionary Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Consensus Network Reconstruction
	Reconciliation of Gene Trees and Species Trees

	Key Results
	Consensus Networks
	Reconciliation

	Open Problems
	Cross-References
	Recommended Reading

	Beyond Hypergraph Dualization
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Strong Duality
	Weak Duality
	Complexity

	Applications
	Frequent Conjunctive Queries
	Rigid Sequences

	Open Problems
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Beyond Worst Case Sensitivity in Private Data Analysis
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Computing the Median: A Motivating Example

	Notions of Sensitivity
	Global Sensitivity [11]
	Local Sensitivity
	Smooth Sensitivity[11]

	Key Results
	Algorithm 1: Smooth Sensitivity Based
	Algorithm 2: Propose-Test-Release (PTR) Framework

	Application 1: Computing the Median
	Application 2: Selection from a Discrete Set
	Reference Notes
	Recommended Reading

	BG Distributed Simulation Algorithm
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	System Model
	Processes
	Failure Model
	Communication
	Tasks
	Simulation


	Key Results
	Simulation of Memory
	The Safe-Agreement Object
	Overview of the Simulation

	Applications
	Recommended Reading

	Bidimensionality
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Graph Classes
	Bidimensional Parameters

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Bin Packing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Worst-Case Behavior
	Asymptotic Worst-Case Ratios
	Online Algorithms
	Bounded-Space Algorithms

	Average-Case Behavior
	Continuous Distributions
	Discrete Distributions


	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Bin Packing with Cardinality Constraints
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem 1 (Bin Packing with Cardinality Constraints)

	Key Results
	Approximation Algorithms
	Online Algorithms
	Bounded-Space Online Algorithms

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Bin Packing, Variants
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Cross-References
	Recommended Reading

	Binary Decision Graph
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Boolean Functions
	Boolean Circuits
	Boolean Formulas
	Shannon Trees

	Key Results
	Definitions
	BDD Operations
	Variable Ordering

	Applications
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Binary Space Partitions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Line Segments in the Plane
	Simplices in Rd
	Axis-Parallel Segments, Rectangles, and Hyperrectangles
	Tilings

	Applications
	Open Problems
	Recommended Reading

	Block Shaping in Floorplan
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Boosting Textual Compression
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Notation: The Empirical Entropy
	The Burrows-Wheeler Transform
	The Compression Boosting Algorithm


	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Branchwidth of Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Definition

	Key Results
	Algorithms for Branchwidth

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Broadcast Scheduling – Minimizing Average Response Time
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Linear Programming Formulation
	Rounding Techniques
	The Half-Integrality Assumption
	Viewing the LP Solution as a Convex Combination of Blocks
	Rounding the Solution to Minimize Backlog: Attempt 1 [1]
	Rounding the Solution to Minimize Backlog: Attempt 2 [3] 
	Rounding the Solution to Minimize Backlog: Attempt 3 [2] 

	Hardness Results
	Online Broadcast Scheduling
	Recommended Reading

	Broadcasting in Geometric Radio Networks
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	The Model Overview
	The Problem
	Terminology and Notation
	Related Work

	Key Results
	Arbitrary GRN in the Model Without Collision Detection
	Large Knowledge Radius
	Knowledge Radius Zero

	Symmetric GRN
	The Model with Collision Detection
	The Model Without Collision Detection


	Applications
	Open Problems
	Cross-References
	Recommended Reading

	B-trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Variants and Extensions
	Update Operations

	Key Results
	Applications
	Databases
	Priority Queues
	Buffered Data Structures
	B-trees as Base Structures
	Amortized Analysis

	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Burrows-Wheeler Transform
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Notation
	The Burrows-Wheeler Transform
	Algorithmic Issues
	The Burrows-Wheeler Compression Algorithm

	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Byzantine Agreement
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	System Model
	Definition of the Byzantine Agreement Problem
	Timing Model
	Overview

	Key Results
	Crash Failures
	Omission Failures
	Byzantine Failures with Authentication
	Byzantine Failures Without Authentication
	Arbitrary Network Topologies
	Interactive Consistency and Byzantine Generals
	Firing Squad
	General Translation Techniques

	Applications
	Cross-References
	Recommended Reading


	C
	Cache-Oblivious B-Tree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Cache-Oblivious Model
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Cache-Oblivious Sorting
	Keywords
	Problem Definition
	Model
	Sorting

	Key Results
	Funnelsort
	Implicit Cache-Oblivious Sorting
	The Role of the Tall Cache Assumption

	Applications
	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Cache-Oblivious Spacetree Traversals
	Keywords
	Years and Authors of Summarized Original Work
	Background
	Problem Definition
	Key Results
	Space-Filling Curve Orders on Tree-Structured Grids
	Space-Filling-Curve Traversals
	SFC Traversals in the Cache-Oblivious Model
	Multiscale Depth-First and Breadth-First Traversals
	Toward Parallel Tree Traversals
	Recursion Unrolling and Parallelism
	Other Tree-Structured Meshes and Space-Filling Curves

	Applications
	Cross-References
	Recommended Reading

	Canonical Orders and Schnyder Realizers
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Canonical Order
	Schnyder Realizer
	Drawing Planar Graphs
	Equivalency of Canonical Orders and Schnyder Realizers

	Cross-References
	Recommended Reading

	Causal Order, Logical Clocks, State Machine Replication
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	System Model
	Causal Order
	Logical Clocks
	State Machine Replication

	Key Results
	Logical Clocks
	State Machine Replication

	Applications
	Cross-References
	Recommended Reading

	Certificate Complexity and Exact Learning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Exact Learning Model
	Query Complexity of Exact Learning
	Improper Learning and the Halving Algorithm
	Proper Learning and Certificates

	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Channel Assignment and Routing in Multi-Radio Wireless Mesh Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Joint Routing, Channel Assignment, and Link Scheduling Algorithm
	A Linear Programming-Based Routing Algorithm
	Channel Assignment
	Link Flow Scheduling

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Circuit Partitioning: A Network-Flow-Based Balanced Min-Cut Approach
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Optimal-Network-Flow-Based Min-Net-Cut Bipartition

	Min-Cut Balanced-Bipartition Heuristic
	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Circuit Placement
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Combinatorial Techniques for Wire Length Minimization
	Quadratic and Nonlinear Wire Length Approximations
	Quadratic, Linearized Quadratic, and Bound-to-Bound Placement
	Half-perimeter Wire Length Placement:

	Analytic Techniques for Target Density Constraints
	Force-Based Spreading
	Fixed-Point Spreading
	Generalized Force-Directed Spreading
	Potential Function Spreading


	Applications
	Experimental Results and Data Sets
	Cross-References
	Recommended Reading

	Circuit Retiming
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Constraints
	Key Results
	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Circuit Retiming: An Incremental Approach
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Clique Enumeration
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Efficient Algorithms for Clique Enumeration

	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Clock Synchronization
	Years and Authors of Summarized Original Work
	Problem Definition
	Background and Overview
	Formal Model
	Algorithms
	Problem Statement

	Key Results
	Later Developments

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Closest String and Substring Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Applications
	A More General Problem
	Open Problems
	Recommended Reading

	Closest Substring
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Clustered Graph Drawing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Clustering Under Stability Assumptions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Related Notions

	Open Problems
	Recommended Reading

	Color Coding
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Method Description
	Derandomization

	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Colouring Non-sparse Random Intersection Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	An Efficient Algorithm
	Coloring Random Hypergraphs

	Applications
	Open Problems
	Recommended Reading

	Combinatorial Gray Code
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Binary Reflected Gray Codes
	Combinations as Represented by Bit Strings

	Generating Permutations via Plain Changes
	Hamiltonicity
	The Representation Issue
	Algorithmic Issues
	CAT Algorithms, Loopless Algorithms


	Key Results
	Numerical Partitions [5,9]
	Spanning Trees
	Basic Words of Antimatroids [7]
	Words in a Bubble Language [8,11]
	Permutations via σ and τ [16] 
	Middle Two Levels of the Boolean Lattice [6]

	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Combinatorial Optimization and Verification in Self-Assembly
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Tile Assembly Models

	Key Results
	Minimum Tile Set Problem
	Concentration Optimization
	Assembly Verification

	Open Problems
	Cross-References
	Recommended Reading

	Communication Complexity
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Problem-Specific Results
	Equality Testing
	Comparison
	Indexing and Bipartite Pointer Jumping
	Inner Product Parity
	Set Disjointness
	Gap Hamming Distance

	General Complexity-Theoretic Results
	Determinism vs. Public vs. Private Randomness
	The Log-Rank Conjecture and Further Matrix Analysis
	Direct Sum, Direct Product, and Amortization
	Round Elimination


	Applications
	Data Stream Algorithms
	Data Structures
	Circuit Complexity
	Further Applications

	Recommended Reading

	Communication in Ad Hoc Mobile Networks Using Random Walks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Motion Space
	The Motion of the Nodes-Adversaries

	Key Results
	Applications
	Related Work

	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Compact Routing Schemes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Recommended Reading

	Competitive Auction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Complexity Dichotomies for Counting Graph Homomorphisms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Complexity of Bimatrix Nash Equilibria
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Complexity of Core
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Compressed Document Retrieval on String Collections
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Notations and Basic Framework
	An Index of Size 2|CSA| Bits
	Space-Optimal Index

	Cross-References
	Recommended Reading

	Compressed Range Minimum Queries
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Indexing Versus Encoding Model
	Model of Computation

	Key Results
	Extensions
	Surpassing the Lower Bound
	Top-k Queries
	Range Selection
	Higher Dimensions
	Further Extensions

	Applications
	Cross-References
	Recommended Reading

	Compressed Representations of Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Outerplanar, Planar, and k-Page Graphs
	Arbitrary Directed Graphs, DAGs, Undirected Graphs, and Posets

	Cross-References
	Recommended Reading

	Compressed Suffix Array
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Ψ-Based CSAs
	FM-Index

	Cross-References
	Recommended Reading

	Compressed Suffix Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Objective

	Key Results
	Classical Results
	Succinct Results

	Applications
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Compressed Text Indexing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	URL to Code and Data Sets
	Cross-References
	Recommended Reading

	Compressed Tree Representations
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Preliminaries

	Key Results
	LOUDS
	BP Representation
	DFUDS
	Fully Functional BP Representation
	Other Representations

	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Compressing and Indexing Structured Text
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation and Basic Facts

	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Compressing Integer Sequences
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Constraints

	Key Results
	Unary and Binary Codes
	Elias Codes
	Fibonacci-Based Codes
	Byte-Aligned Codes
	Golomb Codes
	Other Static Codes
	Elias-Fano Codes
	Packed Codes
	Context-Sensitive Codes

	Applications
	Cross-References
	Recommended Reading

	Computing Cutwidth and Pathwidth of Semi-complete Digraphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Recommended Reading

	Computing Pure Equilibria in the Game of Parallel Links
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Subclasses of PLG
	Algorithmic Questions Concerning PLG
	Status of Problem 1
	Status of Problem 2, 5 and 6
	Status of Problem 3 and 4

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Concurrent Programming, Mutual Exclusion
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Concurrency, Synchronization and Resource Allocation
	The Mutual Exclusion Problem

	Key Results
	Atomic Operations
	Algorithms and Lower Bounds

	Applications
	Cross-References
	Recommended Reading

	Connected Dominating Set
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Historical Background

	Key Results
	Central Area
	Boundary Area
	Putting Together

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Connected Set-Cover and Group Steiner Tree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Connectivity and Fault Tolerance in Random Regular Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Configurations and Translation Lemmata
	Multiconnectivity Properties of Gn,pr
	Gn,pr Becomes Disconnected
	Existence of a Giant Component in Gn,pr 

	Applications
	Open Problems
	Recommended Reading

	Consensus with Partial Synchrony
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Partial Synchrony
	Basic Round Model
	Consensus Algorithm for Benign Faults (Requires   f<n/2  )
	Consensus Algorithm for Byzantine Faults (Requires   f < n/3  )
	The Special Case of Synchronous Communication
	Implementation of the Basic Round Model
	Upper Bound for Resiliency

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Convex Graph Drawing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Convex Drawing Algorithm
	Convex Testing Algorithm

	Applications
	Open Problems
	Recommended Reading

	Convex Hulls
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	Lower Bound
	Divide and Conquer by Preparata and Hong [8]
	Graham Scan [4]
	Jarvis's March or Gift Wrapping [5]
	Chan's Algorithm [2]

	Implementation
	Cross-References
	Recommended Reading

	Coordinated Sampling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	What Is Sample Coordination?
	Why Use Coordination?
	Co-located Data
	Dispersed Data
	Implicit Data


	Key Results
	Applications
	Recommended Reading

	Counting by ZDD
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Constraints
	Key Results
	BDDs/ZDDs for Graph Enumeration
	Frontier-Based Method
	Applications
	Open Problems
	Experimental Results
	A Related YouTube Video
	Graphillion: Open Software Library
	URLs to Code and Data Sets
	Recommended Reading

	Counting Triangles in Graph Streams
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Outline of the Rest of the Article

	Key Results
	The Algorithm of [12] and Its Analysis
	A key Algorithmic Tool: A Reservoir of Uniform Edges
	A Key Analytical Tool: The Birthday Paradox

	Related Work
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Count-Min Sketch
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Data Structure Description
	Update Procedure
	Point Queries
	Range, Heavy Hitter, and Quantile Queries
	Inner Product Queries
	Conservative Update


	Applications
	Experimental Results
	URLs to Code and Data Sets
	Cross-Reference
	Recommended Reading

	CPU Time Pricing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	The CPU Job-Scheduling Problem

	Key Results
	Applications
	Cross-References
	Recommended Reading

	Critical Range for Wireless Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Cryptographic Hardness of Learning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	PAC Learning
	Cryptographic Primitives

	Key Results
	Relationship to Hardness Results for Proper Learning

	Applications and Related Work
	Open Problems
	Cross-References
	Recommended Reading

	Cuckoo Hashing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Prehistory
	Cuckoo Hashing
	Generalizations of Cuckoo Hashing

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Current Champion for Online Bin Packing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Curve Reconstruction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Closed Smooth Curves
	Open Smooth Curves
	Closed Curves with Corners
	Open and Closed Curves with Corners
	Noisy Sample Sets

	Cross-References
	Recommended Reading


	D
	Data Migration
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Notations and Lower Bounds
	Data Migration Algorithm
	Representatives for Big Sets
	Representatives for Small Sets
	Scheduling Migrations
	Analysis


	Applications
	Data Migration in Storage Systems
	Gossiping and Broadcasting

	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Data Reduction for Domination in Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Data Stream Verification
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Streaming Verification Model
	Costs
	Differences Between Models
	Summary of Models

	Key Results
	Annotated Data Streams
	Streaming Interactive Proofs
	Computationally Sound Protocols
	Implementations
	Detailed Example
	Properties and Costs of the Sum-Check Protocol
	The SIP for Frequency Moments


	Open Problems
	Cross-References
	Recommended Reading

	3D Conforming Delaunay Triangulation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Cross-References
	Recommended Reading

	Decoding Reed–Solomon Codes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Reed–Solomon Codes

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Decremental All-Pairs Shortest Paths
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	History of the Problem

	Key Results
	Applications
	URL to Code
	Cross-References
	Recommended Reading

	Decremental Approximate-APSP in Directed Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	A History of Decremental APSP

	Key Results
	From Weighted Distances to Hop Distances
	Shortcut Edges

	Cross-References
	Recommended Reading

	Degree-Bounded Planar Spanner with Low Weight
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Degree-Bounded Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Delaunay Triangulation and Randomized Constructions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Delaunay Properties
	Empty Ball Property
	Size of the Triangulation
	First Algorithms

	Randomized Construction
	Conflict Graph
	Backward Analysis
	Delaunay Hierarchy
	A Less Randomized Construction


	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Derandomization of k-SAT Algorithm
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Notation
	A Promise Version of k-SAT
	Preliminaries: A Slower Algorithm
	Speeding Up the Algorithm
	k-ary Covering Codes
	Cross-References
	Recommended Reading

	Deterministic Broadcasting in Radio Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Deterministic Searching on the Line
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Extensions
	Constraints

	Key Results
	Searching with No Information
	Searching with an Upper Bound on the Target Distance

	Applications
	Cross-References
	Recommended Reading

	Dictionary Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Text Indexing
	Dictionary Matching
	Dynamic Dictionary Matching

	Text Indexing and Dictionary Matching with Errors
	Approximate Text Indexing
	Approximate Dictionary Matching

	Text Indexing and Dictionary Matching Within (Small) Distance k

	Applications
	Cross-References
	Recommended Reading

	Dictionary-Based Data Compression
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	The LZ78 Algorithm
	The LZ77 Algorithm
	Entropy Bounds
	Algorithmic Issues
	Greedy vs. Non-Greedy Parsing

	Applications
	Prefetching
	String Alignment
	Compressed Full-Text Indexing
	Substring Compression Problems
	Grammar Generation

	URL to Code
	Cross-References
	Recommended Reading

	Differentially Private Analysis of Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Bibliographical Notes

	Key Results
	Focus on a ``Preferred Subset''
	``Down'' Sensitivity
	Lipschitz Extensions and Higher-Dimensional Releases

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Dilation of Geometric Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Related Work
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Direct Routing Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Hardness of Direct Routing
	Direct Routing in General Graphs
	Direct Routing in Specific Graphs
	Tree
	Mesh
	Butterfly
	Hypercube

	Lower Bound for Buffering
	Related Work

	Applications
	Cross-References
	Recommended Reading

	Directed Perfect Phylogeny (Binary Characters)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Discrete Ricci Flow for Geometric Routing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Discrete Ricci Flow Algorithm
	Discrete Hyperbolic Ricci Flow
	Generalized Discrete Surface Ricci Flow

	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Recommended Reading

	Distance Oracles for Sparse Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Recommended Reading

	Distance-Based Phylogeny Reconstruction (Fast-Converging)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Introduction
	Formal Definitions
	Popular Random Models
	Neyman Model [14]
	General Markov Model


	Key Results
	Applications
	Cross-References
	Recommended Reading

	Distance-Based Phylogeny Reconstruction: Safety and Edge Radius
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Neighbor Joining (NJ) Algorithm of Saitou and Nei [18]
	Balanced Minimum Evolution and Algorithms Inspired by It
	The Fast Neighbor Joining (FNJ) Algorithm of Elias and Lagergren [7]
	Safety Radius Performance Analysis (Atteson [1])

	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Distributed Algorithms for Minimum Spanning Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Distributed Computing for Enumeration
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Synchronization
	Load Balancing
	Data Locality
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Distributed Randomized Broadcasting in Wireless Networks under the SINR Model
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	The Model with Strong Sensitivity and Strong Connectivity
	The Model with Strong Sensitivity and Weak Connectivity
	The Model with Weak Sensitivity and Strong Connectivity
	The Model with Weak Sensitivity and Weak Connectivity

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Distributed Snapshots
	Keywords
	Years and Authors of Summarized Original Work
	Preliminary Remark
	The Notion of a Global State
	Modeling the Execution of a Process: The Event Point of View
	Modeling the Execution of a Process: The Local State Point of View
	Orphan and In-Transit Messages
	Consistent Global State
	The Lattice of Global States

	Problem Definition
	Specification of the Computation of a Consistent Global State
	Principles of CGS Algorithms

	Key Result 1: Chandy-Lamport's Algorithm
	Assumption
	The Algorithm in Two Rules
	Properties of the Computed Global State
	The Inherent Uncertainty on the Computed Global State
	Message-Passing Snapshot Versus Shared Memory Snapshot
	Other Assumptions and Algorithms

	Key Result 2: A Necessary and Sufficient Condition
	The Issue
	The Result

	Applications: Global Snapshots in Action
	Detection of Stable Properties
	Checkpointing

	Cross-References
	Recommended Reading

	Distributed Vertex Coloring
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	Cross-References
	Recommended Reading

	Document Retrieval on String Collections
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Document Listing Problem
	Top-k Document Retrieval
	External Memory Document Retrieval

	Cross-References
	Recommended Reading

	Double Partition
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Objective
	Constraints
	Problem 1 (Minimum Weight Connected Dominating Set in Unit Disk Graph)

	Key Results
	Double Partition Technique
	MWDS in K × K Squares
	MWDC for the Whole Region

	Performance Ratio
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Dynamic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and Derandomization
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Dynamic Approximate-APSP
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Approaches

	Key Results
	Shortcut Edges

	Open Problems
	Cross-References
	Recommended Reading

	Dynamic Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Path Decomposition
	Tree Contraction
	Linearization
	Lower Bounds

	Applications
	Experimental Results
	Cross-References
	Recommended Reading


	E
	Edit Distance Under Block Operations
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Exact Computation of the Standard and Permutation Edit Distance
	Approximate Computation of the Standard Edit Distance
	Approximate Computation of Edit Distances Involving Block Edits

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Efficient Decodable Group Testing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Minimize Number of Tests
	Efficient Decoding
	Applications
	Open Problems
	Recommended Reading

	Efficient Dominating and Edge Dominating Sets for Graphs and Hypergraphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	ED for Graphs
	EED for Graphs
	XC, ED, and EED for Hypergraphs

	Recommended Reading

	Efficient Methods for Multiple Sequence Alignment with Guaranteed Error Bounds
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations and Definitions
	The Sum of Pairs (SP) Measure
	The Tree Alignment (TA) Measure
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	Cross-References
	Recommended Reading

	Efficient Polynomial Time Approximation Scheme for Scheduling Jobs on Uniform Processors
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Known Techniques
	New Results
	Integer Linear Programming and Grouping Techniques
	Algorithm Avoiding the MILP
	Lower Bounds

	Open Problems
	Experimental Results
	Recommended Reading

	Engineering Algorithms for Computational Biology
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Phylogeny Reconstruction

	Experimental Results
	Cross-References
	Recommended Reading

	Engineering Algorithms for Large Network Applications
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	First Approach: Graph Annotation
	Second Approach: Auxiliary Graph
	Modeling Issues

	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Engineering Geometric Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Decomposition
	Point Location

	Applications
	Triangulations
	Arrangements

	Open Problems
	URL to Code
	Cross-References
	Recommended Reading

	Enumeration of Non-crossing Geometric Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Enumeration of Triangulations
	Enumeration of Non-crossing Geometric Graphs
	Enumeration of Non-crossing Perfect Matchings

	Open Problems
	Cross-References
	Recommended Reading

	Enumeration of Paths, Cycles, and Spanning Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Path and Cycles
	Spanning Trees

	Applications
	Recommended Reading

	Equivalence Between Priority Queues and Sorting
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	Background

	Key Results
	The Reduction in Theorem 1
	The Reduction in Theorem 2
	Further Improvement

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Estimating Simple Graph Parameters in Sublinear Time
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Estimating the Average Distance

	Comments for the Recommended Reading
	Recommended Reading

	Euclidean Traveling Salesman Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Euclidean Traveling Salesman Problem (TSP)
	Related Work

	Key Results
	Applications
	Euclidean Minimum Steiner Tree
	Euclidean k-median
	Euclidean k-TSP
	Euclidean k-MST
	Euclidean Minimum-Cost k-Connected Subgraph
	Extensions to Planar Graphs and Metric Spaces with Bounded Doubling Dimension

	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Exact Algorithms and Strong Exponential Time Hypothesis
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Lower Bounds on General Problems
	k-Dominating Set
	2Sat+2Clauses
	HornSat+kClauses
	3-Party Set Disjointness
	k-SUM
	k-Hitting Set
	k-Set Splitting
	k-NAE-Sat
	c-VSP-Circuit-SAT

	Problems Parameterized by Treewidth
	Independent Set
	Dominating Set
	Max Cut
	Odd Cycle Transversal
	Graph Coloring
	Partition Into Triangles

	Showing Difficulty Via Set Cover
	Steiner Tree
	Connected Vertex Cover
	Set Partitioning
	Subset Sum


	Open Problems
	Cross-References
	Recommended Reading

	Exact Algorithms and Time/Space Tradeoffs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	A Space Efficient Algorithm for Subset Sum
	The Discrete Fourier Transform
	Using the Discrete Fourier Transform for Subset Sum
	Evaluating Equation 2 with Finite Precision

	A Generic Framework

	Applications
	Cross-References
	Recommended Reading

	Exact Algorithms for Bandwidth
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Bucketing
	Dynamic Programming
	Further Improvements

	Related Work
	Open Problems
	Cross-References
	Recommended Reading

	Exact Algorithms for Dominating Set
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Known Results
	Exact Exponential Algorithms

	Key Results
	Branch and Reduce and Measure and Conquer
	Getting Faster MDS Algorithms
	Counting Dominating Sets

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Exact Algorithms for General CNF SAT
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	Bounds for β and γ
	General Approach and a Bound for β
	Simplification Rules
	A Bound for γ
	A Bound for α


	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Exact Algorithms for Induced Subgraph Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Branching on Forbidden Induced Subgraphs
	Exploiting a Large Substructure
	Potential Maximal Cliques

	Recommended Reading

	Exact Algorithms for k SAT Based on Local Search
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Exact Algorithms for Maximum Independent Set
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Bounding the Size of the Search Tree
	Refined Branching Rules
	Measure and Conquer
	Memorization

	Cross-References
	Recommended Reading

	Exact Algorithms for Maximum Two-Satisfiability
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation
	Key Result
	Key Idea
	Main Algorithm
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Exact Algorithms for Treewidth
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Exact Algorithms on Graphs of Bounded Average Degree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Bounded Degree Graphs
	Traveling Salesman Problem
	Chromatic Number

	Bounded Average Degree
	Generalizing Algorithms for Bounded Degree Graphs
	Counting Perfect Matchings in Bipartite Graphs


	Cross-References
	Recommended Reading

	Exact Graph Coloring Using Inclusion-Exclusion
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Recommended Reading

	Exact Quantum Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Early Results
	Recent Developments
	Methods

	Experimental Results
	Cross-References
	Recommended Reading

	Experimental Implementation of Tile Assembly
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Experimental Results
	Cross-References
	Recommended Reading

	Experimental Methods for Algorithm Analysis
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Data Sets
	URL to Code
	Recommended Reading

	Exponential Lower Bounds for k-SAT Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	The PPSZ Algorithm
	A Very Brief Sketch of the Analysis of PPSZ

	Hard Instances for the PPSZ Algorithm
	The Probabilistic Construction

	Open Problems
	Cross-References
	Recommended Reading

	External Sorting and Permuting
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Sorting by Distribution
	Sorting by Merging
	Handling Duplicates: Bundle Sorting
	Permuting and Transposition
	Fast Fourier Transform and Permutation Networks
	Lower Bounds on I/O

	Applications
	Open Problems
	URL to Code
	Cross-References
	Recommended Reading


	F
	Facility Location
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Variants and Related Problems

	Key Results
	The Algorithms of Shmoys, Tardos, and Aardal
	UFL
	max-UFL
	k-Median, k-Center
	Capacitated Facility Location
	k-Level Problem

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Failure Detectors
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	The Failure Detector Abstraction
	Consensus Algorithms
	Failure Detector Reductions

	Applications
	A Practical Perspective
	A Theoretical Perspective

	Open Problems
	Cross-References
	Recommended Reading

	False-Name-Proof Auction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Fast Minimal Triangulation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Fast Subset Convolution
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem (Subset Convolution)

	Key Results
	Fast Evaluation via the Union Product
	Extensions and Variations

	Applications
	Boolean Subset Convolution
	Min-Sum Subset Convolution

	Cross-References
	Recommended Reading

	Faster Deterministic Fully-Dynamic Graph Connectivity
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	A Simple Data Structure
	A Faster Data Structure

	Open Problems
	Recommended Reading

	Fault-Tolerant Connected Dominating Set
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Mathematical Formulation

	Key Results
	Constant Approximation for 3-Connected m-Dominating Set
	Core Idea
	Brief Description


	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Fault-Tolerant Quantum Computation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Readings

	Finding Topological Subgraphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Previous Work

	Key Results
	Outline of the Proof
	G has Bounded Tree-Width
	G has Large Tree-Width, but no Large Clique Minor
	G has a Large Clique Minor


	Applications
	Recommended Readings

	First Fit Algorithm for Bin Packing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Applications
	Key Results
	Methods
	New Lower Bound Construction

	Open Problems
	Cross-References
	Recommended Readings

	Fixed-Parameter Approximability and Hardness
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Our Subject
	Our Complexity Assumption

	Key Results
	Other Parameters
	Fixed-Parameter Inapproximability

	Cross-References
	Recommended Readings

	Floorplan and Placement
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Key Results
	Minimum Area Placement from SP = (Γ+, Γ-)
	Applications
	Open Problems
	BSG
	SP or SS
	Open Problem (SP)
	Cross-References
	Recommended Readings

	Flow Time Minimization
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Input
	Goal
	Off-line versus On-line
	Further Assumptions in the On-line Case
	Performance Metric
	Preemption

	Key Results
	Algorithms
	Complexity
	Extensions


	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Force-Directed Graph Drawing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Fixed Boundary
	Orthogonality
	Distances
	Repulsion

	Recommended Reading

	FPGA Technology Mapping
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Introduction
	Data Representation and Preliminaries
	Problem Formulation

	Key Results
	Structure of Depth-Optimal K-Covers
	Minimum Height K-Feasible Cut Computation
	K-Cover Construction

	Applications
	Complicated Delay Models
	Complicated Architectures
	Multiple Optimization Objectives
	Integration with Other Optimizations

	Cross-References
	Recommended Reading

	Fractional Packing and Covering Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Definitions and Notation
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Frequent Graph Mining
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	gSpan
	Gaston

	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Frequent Pattern Mining
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Algorithms
	Apriori
	Backtrack Algorithm
	Database Reduction
	Delivery

	Generalizations and Extensions
	Frequent Sequence Mining
	Frequent Ordered Tree Mining

	Recommended Reading

	Fully Dynamic All Pairs Shortest Paths
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	Cross-References
	Recommended Reading

	Fully Dynamic Connectivity
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Applications
	URL to Code
	Cross-References
	Recommended Reading

	Fully Dynamic Connectivity: Upper and Lower Bounds
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	Cross-References
	Recommended Reading

	Fully Dynamic Higher Connectivity
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Fully Dynamic Higher Connectivity for Planar Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Fully Dynamic Minimum Spanning Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	Cross-References
	Recommended Reading

	Fully Dynamic Planarity Testing
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Fully Dynamic Transitive Closure
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading


	G
	Gate Sizing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	General Equilibrium
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Market Model

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Generalized Steiner Network
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Techniques

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Generalized Two-Server Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Online Routing Problems

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Generalized Vickrey Auction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Geographic Routing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Geometric Approaches to Answering Queries
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Query Release
	Marginal Queries
	Matrix Notation


	Key Results
	The Sensitivity Polytope
	The Generalized Gaussian Mechanism
	The Projection Mechanism
	Running in Time Sublinear in |X|
	Optimal Error for Small Databases


	Recommended Reading

	Geometric Dilation of Geometric Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Geometric Object Enumeration
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Enumeration of All Floor Plans
	Enumeration of Triangulations

	Cross-References
	Recommended Reading

	Geometric Shortest Paths in the Plane
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Visibility Graph Algorithms
	Continuous Dijkstra Algorithms
	Continuous Dijkstra with Sector Propagation Queries

	Continuous Dijkstra in a Conforming Subdivision

	Extensions
	Cross-References
	Recommended Reading

	Geometric Spanners
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Spanners of Points in Euclidean Space
	The Θ-Graph

	Skip-List Spanners
	Gap Greedy
	The WSPD Graph
	The Greedy Spanner
	The Transformation Technique

	Fault-Tolerant Spanners
	Spanners Among Obstacles
	Dynamic and Kinetic Spanners

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Global Minimum Cuts in Surface-Embedded Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem 1 (Minimum (s,t)-Cut)
	Problem 2 (Global Minimum Cut)

	Key Results
	Topological Background
	Crossing Sequences
	Z2-Homology Cover
	Global Minimum Cuts

	Open Problems
	Cross-References
	Recommended Reading

	Global Routing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Cross-References
	Recommended Reading

	Gomory-Hu Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems

	Experimental Results
	Recommended Reading

	Grammar Compression
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Hardness
	Algorithms for Finding Small Grammars
	Heuristics
	Approximation Algorithms

	Decompression

	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Graph Bandwidth
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Local Density

	Key Results
	Volume-Respecting Embeddings

	Applications
	Open Problems
	Recommended Reading

	Graph Coloring
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Vector Coloring of Graphs

	Key Results
	Applications
	Open Problems
	Recommended Reading

	Graph Connectivity
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Lower Bounds for k-Connected Spanning Subgraphs
	DFS-Based Approaches
	Matching-Based Approaches
	  1+1k   Algorithm for k-VCSS
	  1+2k+1   Algorithm for k-ECSS
	Better Algorithms for Small k


	Applications
	Recommended Reading

	Graph Isomorphism
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Formal Description
	Canonical Labeling

	Key Results
	Applications
	Isomorphism of Edge-Colored Graphs
	Isomorphism of Hypergraphs and Designs
	Other Examples

	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Graph Sketching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Linear Sketches

	Key Results
	Connectivity
	Basic Non-sketch Algorithm
	Designing the Sketches
	Emulation Basic Algorithm via Sketches


	Extensions and Further Work
	Cross-References
	Recommended Reading

	Greedy Approximation Algorithms
	Keywords
	Problem Definition
	Key Results
	The Role of Submodularity
	Greedy Algorithm B

	Giving Up Submodularity
	Applications
	Open Problems
	Cross-References
	Acknowledgments

	Recommended Reading

	Greedy Set-Cover Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Other Results

	Applications
	Recommended Reading


	H
	Hamilton Cycles in Random Intersection Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Haplotype Inference on Pedigrees Without Recombinations
	Keywords
	Years aud Authors of Summarized Original Work
	Problem Definition
	Key Results
	Cross-References
	Recommended Reading

	Hardness of Proper Learning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Harmonic Algorithm for Online Bin Packing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Related Results
	Cross-References
	Recommended Reading

	Hierarchical Self-Assembly
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Definitions
	Power of Hierarchical Assembly Compared to Seeded
	Assembly Time

	Key Results
	Power of Hierarchical Assembly Compared to Seeded
	Assembly Time

	Open Problems
	Cross-References
	Recommended Reading

	Hierarchical Space Decompositions for Low-Density Scenes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Binary Space Partitions
	Compressed Quadtrees
	Low-Density Scenes

	Key Results
	Binary Space Partitions
	Compressed Quadtrees
	Improvements and Generalizations

	Cross-References
	Recommended Reading

	High Performance Algorithm Engineering for Large-Scale Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Holant Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Holographic Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Matchgate Identities
	Basis Collapse
	From Art to Science

	Applications
	Recommended Reading

	Hospitals/Residents Problem
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Extensions of HR
	Open Problems
	URL to Code
	Cross-References
	Recommended Reading

	Hospitals/Residents Problems with Quota Lower Bounds
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Minimizing the Number of Blocking Pairs
	HR with the Option of Closing a Hospital
	Classified HR

	Key Results
	Recommended Reading

	Hub Labeling (2-Hop Labeling)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	General Hub Labelings
	Hierarchical Hub Labelings
	From Orderings to Labelings
	Vertex Ordering Heuristics

	Label Representation and Queries

	Experimental Results
	Recommended Reading

	Huffman Coding
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Constraints

	Key Results
	Example Weights
	Huffman's Algorithm
	Implementing Huffman's Algorithm
	Nonbinary Output Alphabets
	Dynamic Huffman Coding

	Applications
	Cross-References
	Recommended Reading


	I
	I/O-Model
	Keywords
	Years and Authors of Summarized Original Work
	Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Implementation Challenge for Shortest Paths
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The 9th DIMACS Implementation Challenge: The Shortest Path Problem

	Key Results
	Applications
	Open Problems
	Data Sets
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Implementation Challenge for TSP Heuristics
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	URL to Code
	Cross-References
	Recommended Reading

	Implementing Shared Registers in Asynchronous Message-Passing Systems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Implementing a Regular Register
	Implementing an Atomic Register

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Incentive Compatible Selection
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem Description
	Formal Definitions
	Notations
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Independent Sets in Random Intersection Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Other Related Work

	Open Problems
	Cross-References
	Recommended Reading

	Indexed Approximate String Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Inexact Matching When k = 1
	Inexact Matching When k ≥2
	Practically Fast Inexact Matching
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Indexed Regular Expression Matching
	Keywords
	Years and Authors of Summarized Work
	Problem Definition
	Notations

	Key Results
	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Indexed Two-Dimensional String Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Two-Dimensional Suffix Trees
	Online Suffix Trees
	Two-Dimensional Suffix Arrays
	Submatrix Trees


	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Inductive Inference
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation
	Learning Models

	Key Results
	Accuracy and Convergence Constraints
	The Impact of Accuracy and Convergence Constraints
	Refutability
	Learning All Recursive Functions

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Influence and Profit
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Independent Cascade (IC) and Linear Threshold (LT) Models
	Problem 1: Influence Maximization Problem (InfMax) [1]
	Price-Related Propagation (PR) Frame
	Pricing Strategies in the PR Frame

	Problem 2: Balanced Influence and Profit Maximization Problem (BIPMax) [2]

	Key Results
	Submodularity and Monotony
	Algorithm for InfMax
	Algorithms for BIPMax
	Determine the Seeds and Prices Under BYC
	Determine the Seeds and Prices Under PAP


	Cross-References
	Recommended Reading

	Influence Maximization
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Influence Diffusion
	Problem (Influence Maximization)
	Activation Models

	Key Results
	Greedy Algorithm
	Inapproximation Results
	Degree-Bounded Graphs


	Applications
	Cross-Reference
	Recommended Reading

	Intersections of Inverted Lists
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Objective
	Design Choices
	Variants

	Key Results
	Multi-list Processing
	Uncompressed Lists
	Compressed Lists
	List Indexes
	Bitvectors
	Other Approaches
	Ranking
	Reordering


	Applications
	Open Problems
	Experimental Results
	URLs to Code and Datasets
	Cross-References
	Recommended Reading

	Intrinsic Universality in Self-Assembly
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Simulation and Intrinsic Universality

	Key Results
	The Abstract Tile Assembly Model Is Intrinsically Universal
	Noncooperative Assembly Is Weaker than Cooperative Assembly
	One Tile to Rule Them All
	Two Hands

	Open Problems
	Cross-References
	Acknowledgments

	Recommended Reading


	J
	Jamming-Resistant MAC Protocols for Wireless Networks
	Keywords
	Years and Authors of Summarized Original Work
	Motivation
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Recommended Reading


	K
	k-Best Enumeration
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Kernelization, Bidimensionality and Kernels
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Kernelization
	Graph Classes
	CMSO Logic
	CMSO-Optimization Problems
	Bidimensionality
	Separability

	Key Results
	Cross-References
	Recommended Reading

	Kernelization, Constraint Satisfaction Problems Parameterized above Average
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Cross-References
	Recommended Reading

	Kernelization, Exponential Lower Bounds
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Compositionality
	Transformations
	Cross Composition
	Other Models and Improvements
	Problems Without Kernels

	Cross-References
	Recommended Reading

	Kernelization, Matroid Methods
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Background on Matroids
	Linearly Represented Matroids
	Gammoids

	Representative Sets
	Closest Sets and Gammoids


	Key Results
	Applications
	Representative Sets: Direct Usage
	Indirect Usage
	Further Applications

	Cross-References
	Recommended Reading

	Kernelization, Max-Cut Above Tight Bounds
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	λ-Extendibility and the Poljak-Turzík Bound

	Key Results
	Extensions to Π-Subgraph APT

	Open Problems
	Cross-References
	Recommended Reading

	Kernelization, MaxLin Above Average
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	MaxLin2-AA
	Max-r-Lin2-AA

	Open Problems
	Cross-References
	Recommended Reading

	Kernelization, Partially Polynomial Kernels
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Kernelization, Permutation CSPs Parameterized above Average
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Kernelization, Planar F-Deletion
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Tools

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Kernelization, Polynomial Lower Bounds
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Kernelization, Preprocessing for Treewidth
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Tree Decompositions and Treewidth
	Parameters
	Kernelization

	Key Results
	Open Problems
	Recommended Reading

	Kernelization, Turing Kernels
	Keywords
	Years and Authors of Summarized Original Work
	Definition and Discussion
	Out-Branching: Showing the Difference
	Problem Definition
	Key Results
	Hierarchies Based on Turing Kernels
	How Much Oracle Access Is Needed?
	Open Problems
	Cross-References
	Recommended Reading

	Kinetic Data Structures
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Knapsack
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Recommended Reading

	Knowledge in Distributed Systems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Modeling Knowledge
	Common Knowledge and Coordinated Attack
	The Coordinated Attack Problem

	A Hierarchy of States of Knowledge and Common Knowledge
	Knowledge Gain and Loss in Asynchronous Systems
	Applications and Extensions

	Cross-References
	Recommended Reading


	L
	Large-Treewidth Graph Decompositions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Erdős-Pósa-Type Results
	Improved Running Times for Fixed-Parameter Tractability

	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Recommended Reading

	Layout Decomposition for Multiple Patterning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem: Multiple Patterning Decomposition

	Key Results
	Multiple Patterning Decomposition for Standard Cell Designs
	Minimizing Stitches
	Multiple Patterning Coloring Constraint

	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Layout Decomposition for Triple Patterning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Learning Automata
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Learning Model
	Multiplicity Automata
	Key Results

	Applications
	Classes of Polynomials
	Classes of Boxes
	Classes of DNF Formulae
	Classes of Decision Trees
	Negative Results

	Cross-References
	Recommended Reading

	Learning Constant-Depth Circuits
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Positive Results
	Negative Results

	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Learning DNF Formulas
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Learning Heavy Fourier Coefficients of Boolean Functions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Application in Cryptography
	Application in Computational Learning Theory

	Cross-References
	Recommended Reading

	Learning Significant Fourier Coefficients over Finite Abelian Groups
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Applications in Computational Learning Theory
	Applications in Coding Theory
	Applications in Cryptography
	Application in Algorithms

	Cross-References
	Recommended Reading

	Learning with Malicious Noise
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Learning with the Aid of an Oracle
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	LEDA: a Library of Efficient Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Lempel-Ziv Compression
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	LZ78
	LZ77
	Compression and Decompression Complexity
	Compression Effectiveness
	Convergence to Empirical Entropy
	Relationship to Grammar Compression

	Greedy Versus Non-greedy Parsing

	Applications
	Pattern Matching in Compressed Space
	String Alignment

	Open Problems
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Leontief Economy Equilibrium
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	LexBFS, Structure, and Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Terminology
	Example
	LexBFS

	Key Results
	First Example of Application
	Sketch of Proof
	Truemper Configurations
	Speeding Up of Known Algorithms
	New Algorithms

	Open Problems
	Recommended Reading

	Linearity Testing/Testing Hadamard Codes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Alternative Formulation

	Key Results
	Applications
	Self-Testing/Correcting Programs
	Probabilistically Checkable Proofs
	The BLR Test as a Building Block

	Open Problems
	Cross-References
	Recommended Reading

	Linearizability
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	The Locality Property
	The Non-blocking Property
	Other Correctness Properties

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	List Decoding near Capacity: Folded RS Codes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Description of the Code

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	List Ranking
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	List-Ranking Algorithms in Parallel External Memory
	Computing a Large Independent Set of L

	Lower Bounds

	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	List Scheduling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Load Balancing of Temporary Tasks
	Scheduling with Release Times and Precedence Constraints

	Open Problems
	Cross-References
	Recommended Reading

	Local Alignment (with Affine Gap Weights)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Pairwise Local Alignment Problem
	Basic Step
	Recursion Step

	Applications
	URL to Code
	Recommended Reading

	Local Alignment (with Concave Gap Weights)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem
	Key Results
	Applications
	Open Problem
	Experimental Results
	Cross-References
	Recommended Reading

	Local Approximation of Covering and Packing Problems
	Synomyms
	Years and Authors of Summarized Original Work
	Problem Definition
	Distributed Computation Model
	Distributed Covering and Packing Problems
	Bounded Independence Graphs

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Local Computation in Unstructured Radio Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Recommended Reading

	Local Reconstruction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Connections with Other Models

	Key Results
	Monotonicity
	Lipschitz Continuity
	Dense Graph Properties
	Connectivity Properties of Sparse Graphs
	Convexity in 2, 3-Dimensions

	Open Problems
	The Curse of Dimensionality for Monotonicity and Lipschitz
	Filters for Convexity
	Filters for Properties of Bounded-Degree Graphs

	Cross-References
	Recommended Reading

	Local Search for K-medians and Facility Location
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	k-Medians
	Facility Location
	Capacitated Variants
	Related Algorithmic Techniques

	Applications
	Cross-References
	Recommended Reading

	Locality in Distributed Graph Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Computational Model
	Classical Tasks

	Key Results
	Local Algorithms
	Almost Local Algorithms
	Additional Results

	Open Problems
	Recommended Reading

	Locally Decodable Codes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation and Formal Definition

	Key Results
	Low-Query Regime
	High-Rate Regime

	Applications
	Open Problems
	Recommended Reading

	Locally Testable Codes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Local Testability of Hadamard Codes
	Local Testability of Reed-Muller Codes

	Open Problems
	Cross-References
	Recommended Reading

	Low Stretch Spanning Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Lower Bounds Based on the Exponential Time Hypothesis: Edge Clique Cover
	Keywords
	Years and Authors of Summarized Original Work
	The Exponential Time Hypothesis and Its Consequences
	Problem Definition
	Key Results
	Discussion
	Recommended Reading

	Lower Bounds for Dynamic Connectivity
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Partial-Sums Problem
	Relation to Dynamic Connectivity

	Key Results
	Understanding Hierarchies
	Epochs
	Time Hierarchies
	An Optimal Epoch Construction

	Technical Difficulties
	Nondeterminism
	Alternative Histories
	Bit-Probe Complexity


	Applications
	Open Problems
	Recommended Reading

	Lower Bounds for Online Bin Packing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Lowest Common Ancestors in Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	RMQ
	Reducing LCA to RMQ
	Reducing RMQ to LCA
	An Algorithm for RMQ

	LCA on Special Trees and RMQ on Special Arrays
	Paths and Balanced Binary Trees
	An "426830A O(n), O(1) "526930B -Time Algorithm for 1RMQ

	Labeling Schemes
	Succinct Representations
	Cross-References
	Recommended Reading

	LP Based Parameterized Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Method Description

	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	LP Decoding
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Error-Correcting Codes and Maximum-Likelihood Decoding
	LP Decoding
	Comparing with ML Decoding
	Normal Cones and C-Symmetry
	Using a Dual Witness to Prove Error Bounds

	Key Results
	Low-Density Parity-Check Codes
	Expander Codes
	Turbo Codes

	Applications
	Open Problems
	Cross-References
	Recommended Reading


	M
	Majority Equilibrium
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Manifold Reconstruction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Cocone Complex
	Čech Complex
	Tangential Delaunay Complex
	Implicit Function

	Cross-References
	Recommended Reading

	Market Games and Content Distribution
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Uncoordinated Two-Sided Markets
	Distributed Caching Problem
	Strategic Games
	Best-Response Moves
	Nash Equilibria
	State Graph
	Price of Anarchy
	Distributed Caching Games
	Special Cases
	Many-to-One Two-Sided Markets with Ties
	Monotone and Matroid Markets

	Key Results
	Centralized Approximation Algorithm
	Price of Anarchy
	Pure Nash Equilibria: Existence and Convergence
	Convergence Time to Equilibria

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Matching in Dynamic Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Result
	Ideas Underlying the Algorithm
	The 2-level Algorithm
	Handling Insertion of an Edge
	Handling Deletion of an Edge
	Analysis of the Algorithm
	The log2 n-level Algorithm

	Open Problems
	Recommended Reading

	Matching Market Equilibrium Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Extensions
	Cross-References
	Recommended Reading

	Matroids in Parameterized Complexity and Exact Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Parameterized and Exact Algorithms

	Open Problems
	Cross-References
	Recommended Reading

	Max Cut
	Keywords
	Synonyms
	Year and Authors of Summarized Original Work
	Problem Definition
	Linear Programming Relaxations
	Eigenvalue Upper Bounds

	Key Result
	A Semidefinite Relaxation
	Random-Hyperplane Rounding
	Integrality Gap and Hardness
	Better-than-Half Approximations Without SDPs

	Applications
	Cross-References
	Recommended Reading

	Max Leaf Spanning Tree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Objective A: FPT Algorithms
	Objective B: Polynomial-Time Preprocessingand Data-Reduction Routines
	Objective C: Gradients and Solution Transformations for Local Search
	Objective D: Polynomial-TimeApproximation Algorithms
	Objective E: Structure To Exploitin The Ecology of Complexity

	Applications
	Open Problems
	Branching Strategies
	Turing Kernelizability
	Algorithmic Forms of The Boundary Lemma Approach
	Problem Annotation

	Cross-References
	Recommended Reading

	Maximizing the Minimum Machine Load
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Approximation Algorithms
	Online and Semi-online Problem

	Applications
	Cross-References
	Recommended Reading

	Maximum Agreement Subtree (of 2 Binary Trees)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Previous Work
	Our Contribution
	Special Case 1
	Special Case 2
	Improvement 1
	Improvement 2

	The Multiple Degree Case
	Applications
	Motivation


	Cross-References
	Recommended Reading

	Maximum Agreement Subtree (of 3 or More Trees)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Proper Domination Relation
	Applications
	Cross-References
	Recommended Reading

	Maximum Agreement Supertree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Maximum Cardinality Stable Matchings
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Benchmark Results
	Upper Bounds: The General Case
	Upper Bounds: Special Cases
	Lower Bounds

	Applications
	Recommended Reading

	Maximum Compatible Tree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Exact Algorithms
	Approximation Algorithms

	Applications
	Open Problems
	URLs to Code and Datasets
	Cross-References
	Recommended Reading

	Maximum Lifetime Coverage
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Formal Definition of MLCP

	Key Results
	Integer Linear Programming and Heuristic Algorithms Proposed by Cardei et al. ch617:cardeiinfocom
	Performance-Guaranteed Approximation Algorithm Proposed by Ling et al. ch617:ling2012

	Experimental Results
	Recommended Reading

	Maximum Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Classical Approach
	Algebraic Approach

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Maximum-Average Segments
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	An Extension to Multiple Segments

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Maximum-Sum Segments
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	An Extension to Multiple Segments
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Max-Min Allocation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Sketch of the Techniques
	Summary

	Recommended Reading

	Mechanism Design and Differential Privacy
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Generic Problems
	Basic Differentially Private Mechanisms

	Key Results
	Privacy-Aware Mechanism Design
	Worst-Case Privacy Model
	Per-Outcome Privacy Model

	Comparison with Worst-Case Privacy
	Purchasing Privacy
	Insensitive Valuation Model
	Sensitive Value Model


	Recommended Reading

	Mellor-Crummey and Scott Mutual Exclusion Algorithm
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Local-Spin Algorithms and the RMRs Metric
	Read-Modify-Write Operations

	Key Results
	The Algorithm

	Cross-References
	Further Reading
	Recommended Reading

	Memory-Constrained Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Considerations on the Input
	Considerations on the Workspace

	Key Results
	Selection and Sorting in Multi-pass Models
	Selection
	Randomized Algorithms
	Improvements

	Undirected Graph Connectivity in the Random Access Model
	Problem Background
	Reingold's Algorithm

	Other Models of Note
	Compressed Stack
	Block Reconstruction


	Cross-References
	Recommended Reading

	Memoryless Gathering of Mobile Robotic Sensors
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Basic Impossibility Results
	Gathering with Common Coordinate Systems
	Convergence and Near-Gathering
	Convergence in Ssync
	Convergence in Async
	Near-Gathering


	Open Problems
	Recommended Reading

	Meshing Piecewise Smooth Complexes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Message Adversaries
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition: The Notion of a Message Adversary
	Reliable Synchronous Systems
	Message Adversary

	Key Results
	Key Results in Synchronous Systems
	The Spanning Tree Adversary
	Consensus in the Presence of Message Adversaries
	Impossibility Agreement-Related Results
	d-Solo Executions

	Key Results in Asynchronous Systems

	Applications
	Cross-References
	Recommended Reading

	Metric TSP
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	Cross-References
	Recommended Reading

	Metrical Task Systems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results*-1pc 
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Min-Hash Sketches
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Set Operations
	Queries

	Key Results
	Structure
	Rank Distribution
	Streaming: Number of Updates
	Inserting an Element
	Merging
	Estimators

	Applications
	Extensions
	Weighted Elements
	Hash Functions

	Cross-References
	Recommended Reading

	Minimal Dominating Set Enumeration
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Minimal Perfect Hash Functions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem Formulation

	Key Results
	From a PHF to a MPHF
	The Hypergraph-Based Construction
	The ``Hash, Displace, and Compress'' Construction

	Open Problems
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Minimum Bisection
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Overview
	Cuts and Bisections
	Balanced Cuts and Edge Separators

	Key Results
	Related Work

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Minimum Congestion Redundant Assignments
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations and Definitions

	Key Results*-1pc
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Minimum Connected Sensor Cover
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Minimum Energy Broadcasting in Wireless Geometric Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Analysis

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Minimum Energy Cost Broadcasting in Wireless Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Minimum Flow Time
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Extensions

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Minimum Geometric Spanning Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Approximate and Dynamic Solutions
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Minimum k-Connected Geometric Networks
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Related Work

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Minimum Spanning Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	History
	Related Problems
	Optimality Conditions
	The Generic Greedy Algorithm
	Modeling MST Algorithms

	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Minimum Weight Triangulation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	The Quasi-Greedy Triangulation Approximates the MWT
	Computing the Exact Minimum Weight Triangulation

	Applications
	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Minimum Weighted Completion Time
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Min-Sum Set Cover and Its Generalizations
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Histogram-Based Analysis
	Latency Argument-Based Analysis
	LP and Randomized Rounding

	Applications
	Open Problems
	Recommended Reading

	Misra-Gries Summaries
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Preliminaries: The Majority Algorithm
	Misra-Gries Summary

	Applications
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Mobile Agents and Exploration
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Mobile Agents
	Network Model
	Efficiency Measures for Exploration
	Main Problems

	Key Results
	Exploration in General Graphs
	Exploration in Trees
	Exploration in a Geometric Setting
	Rendezvous

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Model Checking with Fly-Automata
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Graph Algebras and Monadic Second-Order Logic
	Counting and Optimizing Automata
	Edge Set Quantifications and Tree-Width
	Beyond MS Logic

	Open Problems
	Experimental Results
	Recommended Reading

	Modularity Maximization in Complex Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Computational Complexity
	Exact Solutions
	Approximation Algorithms
	Modularity in Dynamic Networks

	Applications
	Recommended Reading

	Monotone Minimal Perfect Hash Functions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem Formulation

	Key Results
	Trivial Solution
	A Constant-Time, O(n logw)-Space Solution
	A O(logw)-Time, O(n loglogw)-Space Solution
	Different Approaches

	Open Problems
	URLs to Code and Datasets
	Cross-References
	Recommended Reading

	Monotonicity Testing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Property Testing Framework

	Key Results
	Sketch of the Techniques
	Boolean Monotonicity Testing

	Open Problems
	Cross-References
	Recommended Reading

	Multi-armed Bandit Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Definitions and Notation

	Key Results
	Variants

	Applications
	Cross-References
	Recommended Reading

	Multicommodity Flow, Well-linked Terminals and Routing Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Generalizations and Variants

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Multicut
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Multidimensional Compressed Pattern Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Multidimensional String Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Multilevel Feedback Queues
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Multilinear Monomial Detection
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Overview of the Algorithm
	A Negative Result
	A Generalization

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Multiple String Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Multiple Unit Auctions with Budget Constraint
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Multiplex PCR for Gap Closing (Whole-Genome Assembly)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Multitolerance Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Efficient Algorithms
	Classification of Multitolerance Graphs

	Open Problems
	Recommended Reading

	Multiway Cut
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Previous Work

	Key Results
	Notation
	LP-Relaxation
	Rounding

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Musite: Tool for Predicting Protein Phosphorylation Sites
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Machine Learning Approach
	Features
	Bootstrap and Aggregation
	Cross Validation
	Musite as a Toolkit

	Applications
	Open Problems
	URLs to Code
	Cross-References
	Recommended Reading


	N
	Nash Equilibria and Dominant Strategies in Routing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Nearest Neighbor Interchange and Related Distances
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Unweighted Trees
	Weighted Trees

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Negative Cycles in Weighted Digraphs
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Network Creation Games
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	Techniques

	Recommended Reading

	Non-approximability of Bimatrix Nash Equilibria
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Non-shared Edges
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Non-shared Edge Distance Problem
	All-Pairs Non-shared Edge Distance Problem
	Extension
	General Non-shared Edge Distance Problem

	Key Results
	Applications
	Recommended Reading

	Nowhere Crownful Classes of Directed Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Nucleolus
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading


	O
	O(log logn)-Competitive Binary Search Tree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Extensions and Promising Research Directions
	Cross-References
	Recommended Reading
	Recommended Reading

	Oblivious Routing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Techniques

	Applications
	Cross-References
	Recommended Reading

	Oblivious Subspace Embeddings
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Constructing OSEs
	Applying OSEs
	Least Squares Regression
	Low-Rank Approximation
	Other Applications


	Recommended Reading

	Obstacle Avoidance Algorithms in Wireless Sensor Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Geographic Routing
	The Power of Simple Geographic Routing

	Problem Statement

	Key Results
	Basic Idea of the Algorithm
	Inertia Mode
	Rescue Mode

	Main Findings

	Applications
	Replacement for Greedy Forwarding
	Wireless Sensor Networks with Large Obstacles
	Dynamic Networks

	Open Problems
	Cross-References
	Recommended Reading

	Online Interval Coloring
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Online Learning and Optimization
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Online Convex Programming

	Key Results
	Cross-References
	Recommended Reading

	Online List Update
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Randomized Algorithms
	Locality of Reference

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Online Load Balancing of Temporary Tasks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Identical Machines
	Uniformly Related Machines
	Restricted Assignment
	Unrelated Machines

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Online Node-Weighted Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Online Paging and Caching
	Keywords
	Years and Authors of Summarized Original Work
	Synonyms
	Problem Definition
	Key Results
	Paging
	Weighted Caching
	File Caching
	Other Theoretical Models
	Analyses of Deterministic Algorithms
	Extension to File Caching
	Analysis of the Randomized Marking Algorithm.

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Online Preemptive Scheduling on Parallel Machines
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Key Techniques
	Semi-online Scheduling
	Small Number of Machines
	Open Problems
	Cross-References
	Recommended Reading

	Optimal Crowdsourcing Contests
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Questions
	The Model
	Bayesian Nash Equilibrium

	Key Results
	Rank-Based-Reward Contests
	Optimal Symmetric Contest
	Utilization Ratio of Crowdsourcing
	Related Work

	Open Problems
	Multi-round Contests

	Cross-References
	Recommended Reading

	Optimal Probabilistic Synchronous Byzantine Agreement
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	System Model

	Key Results
	Applications
	Cross-References
	Recommended Reading

	Optimal Stable Marriage
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Optimal Triangulation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	The Edge-Flip Approach
	The Edge-Insertion Approach
	The Subgraph Approach

	Applications
	Open Problems
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Optimal Two-Level Boolean Minimization
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Karnaugh Maps
	The Quine–McCluskey Algorithm

	Applications
	Cross-References
	Recommended Reading

	Orienteering Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Undirected Graphs
	Directed Graphs
	Orienteering with Time Windows

	Open Problems
	Recommended Reading

	Orthogonal Range Searching on Discrete Grids
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Orthogonal Range Reporting
	Two Dimensions
	Three Dimensions
	Multi-dimensional Queries
	Emptiness Queries and One-Reporting Queries
	Two-Dimensional Range Successor and Sorted Range Reporting Queries

	Orthogonal Range Counting

	Open Problems
	Cross-References
	Recommended Reading


	P
	P2P
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Unstructured Overlays
	Structured Overlays Without Locality Awareness
	Chord
	Constant Per-Node State
	Content Addressable Network
	Overlay Routing Inspired by “Small-World” Networks
	Overlay Networks Supporting Range Queries
	Summary of Non-Locality-Aware Networks

	Locality Awareness
	Growth-Bounded Networks


	Applications
	Caching
	Multicast
	Routing Infrastructure
	Collaborative Content Delivery

	Cross-References
	Recommended Reading

	PAC Learning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Packet Routing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Network Emulations
	Job Shop Scheduling

	Open Problems
	Recommended Reading

	Packet Switching in Multi-queue Switches
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Unit Value Packets
	Deterministic Algorithms
	Randomized Algorithms

	Arbitrary Value Packets

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Packet Switching in Single Buffer
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	PageRank Algorithm
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Linear Algebra-Based Definition
	Random Surfer Model

	Applications
	Recommended Reading

	Parallel Algorithms for Two Processors Precedence Constraint Scheduling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Preliminaries
	Auxiliary Problems

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Parallel Connectivity and Minimum Spanning Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Parameterization in Computational Social Choice
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Recommended Reading

	Parameterized Algorithms for Drawing Graphs
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Applications
	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Parameterized Pattern Matching
	Years and Authors of Summarized Work
	Problem Definition
	Key Results
	Parameterized Suffix Trees
	More Methods for Parameterized Matching
	Two-Dimensional Parameterized Matching
	Approximate Parameterized Matching

	Applications
	Cross-References
	Recommended Reading

	Parameterized SAT
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Satisfiability Parameters Based on Graph Invariants
	Satisfiability Parameters Based on Backdoor Sets

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Parity Games
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Algorithms for Parity Games

	Applications
	Parity Games for Model Checking

	Open Problems
	Cross-References
	Recommended Reading

	Pattern Matching on Compressed Text
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Collage Systems

	Key Results
	Theoretical Aspect
	Practical Aspect

	Cross-References
	Recommended Reading

	Patterned Self-Assembly Tile Set Synthesis
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Peptide De Novo Sequencing with MS/MS
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	URL to Code
	Recommended Reading

	Perceptron Algorithm
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Perfect Phylogeny (Bounded Number of States)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Perfect Phylogeny Haplotyping
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Perfect Phylogeny Haplotyping Problem (PPH)

	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Performance-Driven Clustering
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Permutation Enumeration
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Permutation Enumeration
	Efficiency of Enumeration Algorithms

	Key Results
	Enumeration by Partition Search
	Enumeration by Gray Code
	Enumeration by Reverse Search

	Recommended Reading

	Phylogenetic Tree Construction from a Distance Matrix
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Planar Directed k-Vertex-Disjoint Paths Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Key Techniques for Planar Directed Graphs
	The Schrijver's Algorithm
	The Fixed-Parameter Algorithm


	Cross-References
	Recommended Reading

	Planar Geometric Spanners
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Planar Maximum Flow – Multiple-Source Multiple-Sink Maximum Flow in Directed Planar Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Near-Linear Time Algorithm

	Applications
	Recommended Reading

	Planar Maximum s-t Flow
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	st-Planar Graphs
	Undirected Planar Graphs
	Directed Planar Graphs
	Leftmost-Path Algorithm

	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Planarisation and Crossing Minimisation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Planarization Algorithms
	Exact Approaches

	Open Problems
	URLs to Code and Data Sets
	Recommended Reading

	Planarity Testing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	URL to Code
	Cross-References
	Recommended Reading

	Point Location
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Walking in a Triangulation
	Trapezoidal Decomposition
	Hierarchical Triangulation
	Hybrid and Refined Approaches

	Experimental Results
	Cross-References
	Recommended Reading

	Point Pattern Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Polygon Triangulation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Polygon Triangulation in o(Nlog N) Time
	Polygon Triangulation via Trapezoidation
	Polygon Triangulation in Linear Time
	Randomized Polygon Triangulation in Expected Linear Time

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Position Auction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Model and Its Notations
	Definitions

	Key Results
	Facts of NE and SNE
	A Sufficient and Necessary Condition of the Existence of a Pure Strategy Nash Equilibrium in the Position Auction Game

	Applications
	Cross-References
	Recommended Reading

	Power Grid Analysis
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Hierarchy-Based Solvers
	Multigrid-Based Solvers
	Random Walk-Based Solvers

	Applications
	Experimental Results
	URLs to Code and Data Sets
	Recommended Reading

	Predecessor Search
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Upper Bounds
	Lower Bounds
	Bucketing

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Predecessor Search, String Algorithms and Data Structures
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Useful Concepts
	Balanced Binary Search Tree
	Trie


	Key Results
	Van Emde Boas
	Searching a Compacted Trie (Fusion Trees)
	Beame and Fich
	Exponential Search Trees
	Deterministic Dynamic Bounds
	Optimal Static Bounds
	Optimal Randomized Dynamic Bounds

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Price of Anarchy
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	Maximum Social Cost
	Average Social Cost: Total Latency

	Applications
	Cross-References
	Recommended Reading

	Price of Anarchy for Machines Models
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Early Work
	Tight Bounds for the Price of Anarchy

	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Privacy Preserving Auction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Objective 1: Maximizing Social Welfare
	Objective 2: Incentive Compatibility
	Objective 3: Protecting Agents' Privacy
	Related Work

	Key Results
	Social Choice Problems
	Resource Allocation Problems

	Open Problems
	Cross-References
	Recommended Reading

	Private Spectral Analysis
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Approximation Guarantee
	Principal Angle
	Expressed Variance

	Privacy Guarantee

	Key Results
	Noisy Power Method
	Gaussian Mechanism

	Applications
	Principal Component Analysis
	Low-Rank Approximation

	Open Problems
	Recommended Reading

	Probabilistic Data Forwarding in Wireless Sensor Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Wireless Sensor Networks
	A Simple Model

	Key Results
	The Basic Idea
	The PFR Protocol
	Phase 1: The “Front” Creation Phase
	Phase 2: The Probabilistic Forwarding Phase

	The φ-calculation Subprotocol (see Fig4)
	Performance Properties of PFR
	The Correctness of PFR
	The Energy Efficiency of PFR
	The Robustness of PFR

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Probe Selection
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Prophet Inequality and Online Auctions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Different Variants

	Key Results
	Applications
	Cross-Reference
	Recommended Reading


	Q
	Quadtrees and Morton Indexing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Complexity of Quadtrees for Points in the Plane
	The Complexity of Quadtrees for Line Segments in the Plane
	Quadtrees and Morton Indexing

	Key Results
	Point Quadtrees
	PM Quadtrees
	Star-Quadtrees
	Guard-Quadtrees
	K-Quadtrees

	Datasets
	Experimental Results
	Extensions
	Recommended Reading

	Quantification of Regulation in Networks with Positive and Negative Interaction Weights
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Quantum Algorithm for Element Distinctness
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Element Distinctness: Summary of Results
	Element Distinctness: The Methods
	Generalization to Arbitrary Markov Chains
	Learning Graphs

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Quantum Algorithm for Factoring
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Quantum Algorithm for Finding Triangles
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	An O(n+nm) Algorithm Using Amplitude Amplification
	An O(n10/7) Algorithm Using Amplitude Amplification
	An O(n13/10) Algorithm Using Quantum Walks
	An O(n35/27) Algorithm Using Learning Graphs
	An O(n9/7) Algorithm Using Learning Graphs
	An O(n5/4) Algorithm Using Quantum Walks

	Cross-References
	Recommended Reading

	Quantum Algorithm for Search on Grids
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Early Results
	Quantum Walks
	Further Developments

	Applications
	Cross-References
	Recommended Reading

	Quantum Algorithm for Solving Pell's Equation
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Quantum Algorithm for the Collision Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Recommended Reading

	Quantum Algorithm for the Discrete Logarithm Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Description of the Discrete Logarithm Algorithm
	Generalizations of the Discrete Logarithm Algorithm

	Applications
	Cross-References
	Recommended Reading

	Quantum Algorithm for the Parity Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Quantum Algorithms for Class Group of a Number Field
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Quantum Algorithms for Graph Connectivity
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Previous Algorithm
	Main Algorithm

	Applications
	Cross-References
	Recommended Reading

	Quantum Algorithms for Matrix Multiplication and Product Verification
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Matrix Product Verification over Rings
	Matrix Multiplication over Rings
	Boolean Matrix Product Verification
	Boolean Matrix Multiplication
	Matrix Multiplication over Other Semirings

	Open Problems
	Cross-References
	Recommended Reading

	Quantum Algorithms for Simulated Annealing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem

	Key Results
	Quantum Walks for QSA
	Evolution Randomization and QSA Implementation
	Analytical Properties of W


	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Quantum Algorithms for Systems of Linear Equations
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Quantum Algorithm for Linear Systems

	Hardness Results and Comparison to Classical Algorithms
	Applications and Extensions
	Machine Learning
	Differential Equations
	Boundary-Value Problems

	Cross-References
	Recommended Reading

	Quantum Analogues of Markov Chains
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Spatial Search and Walk Processes
	The Quantum Walk Algorithm

	Key Results
	Walk Definitions
	Hitting Time
	Element Distinctness
	General Markov Chains
	Subsequent Developments

	Applications
	Triangle Finding
	Matrix Product Verification and Matrix Multiplication
	Group Commutativity Testing
	Forbidden Subgraph Property
	3-Distinctness

	Open Problems
	Search Problem
	Sampling Problem

	Cross-References
	Recommended Reading

	Quantum Approximation of the Jones Polynomial
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Understanding the Algorithm

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Quantum Dense Coding
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Quantum Error Correction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Discretization of Noise
	Syndrome Decoding and the Need for Fresh Ancillas
	Conditions for General Quantum Codes
	Constructing Quantum Codes
	Asymptotically Good Codes

	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Quantum Key Distribution
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Protocols
	Key Rate as a Function of Robustness and Security
	Security Against Individual Attacks
	Security Against Collective Attacks
	Security Against General Attacks


	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Quantum Search
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Brief Description
	Formal Construction

	Key Results
	Applications
	NP-Complete Problems
	Quantum Counting
	Element Distinctness
	Distributed Search
	Fixed-Point Search
	Spatial Search
	Markov Chain Evolution
	Recursive Search

	Open Problems
	Hamiltonian Evolution
	Molecular Biology
	Ordered Search
	Search with Additional Structure
	Perspective

	Cross-References
	Recommended Reading

	Query Release via Online Learning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Answering Many Queries via No-Regret Learning
	Computational Complexity and Optimality

	Faster Algorithms for Marginal Queries via Efficient Learning

	Recommended Reading

	Quorums
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Access Protocol

	Key Results
	Voting and Related Notions
	Measures
	Load
	Availability

	The Load and Availability of Quorum Systems
	Byzantine Quorum Systems
	Masking quorum system

	Probabilistic Quorum Systems

	Applications
	Cross-References
	Recommended Reading


	R
	Radiocoloring in Planar Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Random Planted 3-SAT
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation
	Distributions

	Key Results
	Applications
	Open Problems
	Data Sets
	URL to Code
	Recommended Reading

	Randomization in Distributed Computing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Consensus Problems
	Wait-Free
	Multi-writer Multi-reader Register
	The Adversary

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Randomized Broadcasting in Radio Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Randomized Protocols
	The Procedure Decay
	The Broadcast Protocol
	Additional Properties of the Broadcast Protocol

	A Lower Bound on Deterministic Algorithms

	Applications
	Cross-References
	Recommended Reading

	Randomized Contraction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	High-Level Intuition
	Recursive Understanding
	High-Connectivity Phase

	Related Work
	Recommended Reading

	Randomized Energy Balance Algorithms in Sensor Networks
	Keywords
	Years and Authors of SummarizedOriginalWork
	ProblemDefinition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Randomized Gossiping in Radio Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Randomized Minimum Spanning Tree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Background

	Key Results
	Further Comments

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Randomized Parallel Approximations to Max Flow
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Maximum Flows and Matchings

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Randomized Rounding
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Randomized Searching on Rays or the Line
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Randomized Self-Assembly
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Definitions
	Problems

	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Range Searching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Orthogonal Range Searching
	Simplex Range Searching
	Approximate Range Searching

	Cross-References
	Recommended Reading

	Rank and Select Operations on Bit Strings
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Memory Usage Models
	Models of Computation

	Key Results
	Relation to Predecessor Search
	Reductions
	Succinct Indices for Bit Vectors
	Bit Vectors in the Unrestricted Model

	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Rank and Select Operations on Sequences
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Dynamic Sequences

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Ranked Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations and Definitions

	Key Results
	Techniques
	Strict Instances
	General Instances


	Applications
	Cross-References
	Recommended Reading

	Rate-Monotonic Scheduling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Periodic Task Model
	The Rate-monotonic Scheduling Algorithm

	Key Results
	Results from[11]
	Results Since [11]

	Applications
	Open Problems
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Rectilinear Spanning Tree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Rectilinear Steiner Tree
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Recursive Separator Decompositions for Planar Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Reducing Bayesian Mechanism Design to Algorithm Design
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Model
	Environment
	Strategic Agents
	Designer
	Game Theoretic Definitions

	Bayesian Mechanism Design (BMeD)
	Generalized Objective Optimization Problem (GOOP)

	Key Results
	Applications
	Revenue Maximization
	Job Scheduling on Unrelated Machines
	Fair Allocation of Indivisible Goods

	Tools for Convex Optimization
	Open Problems
	Recommended Reading

	Registers
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Timestamp System

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Regular Expression Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Finite Automata
	Classical Solutions
	Lazy Construction and Modules
	Bit Parallelism
	Filtration
	Related Problems

	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Reinforcement Learning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation
	Markov Decision Process

	Problems Formulation
	Planning
	Value Iteration
	Policy Iteration
	Linear Programming
	Learning
	Q-Learning


	Key Results
	Applications
	Open Problems
	Function Approximation
	Factored Markov Decision Process


	Cross-References
	Recommended Reading

	Renaming
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Revenue Monotone Auctions
	Keywords
	Introduction
	Related Work
	Our Results

	Preliminaries
	Image-Text Auctions
	Video-Pod Auctions
	Lower Bound
	Recommended Reading

	Reverse Search; Enumeration Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Introduction
	Key Results
	Examples
	Avoiding Long Delays
	Note
	Recommended Reading

	RNA Secondary Structure Boltzmann Distribution
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation
	Energy Model

	Key Results
	Applications
	Open Problems
	URL to Code
	Cross-References
	Recommended Reading

	RNA Secondary Structure Prediction by Minimum Free Energy
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation
	Energy Model

	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	RNA Secondary Structure Prediction Including Pseudoknots
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation
	Scoring Schemes

	Key Results
	Applications
	Open Problems
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Robotics
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Navigation and Exploration
	Performance Measure, Competitive Analysis
	Different Models

	Key Results
	Navigation
	Exploration
	Dependency Between Searching and Exploration

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Robust Bin Packing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Techniques

	Open Problems
	Cross-References
	Recommended Reading

	Robust Geometric Computation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	Constructive Zero Bounds
	Approximate Expression Evaluation
	Numerical Filters

	Applications
	Open Problems
	URL to Code
	Recommended Reading

	Robust Scheduling Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Greedy Approaches
	Robust Approximation Schemes

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Robustness in Self-Assembly
	Keywords
	Years and Authors of Summarized Original Work
	Robustness in Self-Assembly
	KTAM

	Problem Definition
	Key Results
	Proofreading Tilesets
	Snaked Proofreading Tilesets

	Recommended Reading

	Routing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations and Definitions

	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Routing in Geometric Networks
	Synonyms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Network Model
	Communication Protocol
	Geometric Routing

	Key Results
	General (Non-geometric) Networks

	Open Problems
	Cross-References
	Recommended Reading

	Routing in Road Networks with Transit Nodes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Routing-Cost Constrained Connected Dominating Set
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	GOC-MCDS-C: The Centralized Algorithm
	GOC-MCDS-D: The Distributed Algorithm

	Open Problems
	Cross-References
	Recommended Reading

	R-Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Rumor Blocking
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem1 [2]
	Two Influence Diffusion Models

	Problem2 [8]
	Independent Cascade Model


	Key Results
	For Problem 1
	Variants of Problem 1
	Selection of Fixed Number of Protectors
	Protection of a Subset of Nodes
	Game Theory Aspect

	For Problem 2
	Bond Percolation Method [7]
	Estimation Method

	Variants of Problem 2

	Applications
	Open Problems
	Cross-References
	Recommended Reading


	S
	Schedulers for Optimistic Rate Based Flow Control
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Scheduling in Data Broadcasting
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Objective
	Constraints
	Problem 1 (Scheduling in Data Broadcasting)

	Key Results
	Hardness Analysis
	Randomized Algebraic Algorithm
	Preliminaries
	Algorithm Description

	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Scheduling with a Reordering Buffer
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Metric Space Generalization
	Block Operation Setting
	Minor Variants Found in the Literature
	Key Results
	The Online Problem
	Deterministic Algorithms
	Randomized Algorithms
	Other Metric Spaces
	Stochastic Inputs

	The Off-Line Problem
	Bicriteria Approximations
	The Maximization Problem

	Online Minimum Makespan Scheduling
	Non-preemptive Scheduling
	Job Migrations

	Preemptive Scheduling
	Cross-References
	Recommended Reading

	Secretary Problems and Online Auctions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Optimization Angle
	Mechanism Design Angle

	Key Results
	Optimization
	Mechanism Design

	Open Problems
	Cross-References
	Recommended Reading

	Self-Assembly at Temperature 1
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Assembling Simple Shapes Efficiently
	The Role of Geometry
	Three-Dimensional Noncooperative Self-Assembly
	Allowing Erroneous Blocking

	Simulation up to Rescaling
	Important Particular Cases

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Self-Assembly of Fractals
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Variants

	Key Results
	Weak Self-Assembly
	Strict Self-Assembly
	Approximate Self-Assembly

	Open Problems
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Self-Assembly of Squares and Scaled Shapes
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Abstract Tile Assembly Model

	Key Results
	n×n Squares
	Thin Rectangles
	Scaled Shapes

	Open Problems
	Cross-References
	Recommended Reading

	Self-Assembly with General Shaped Tiles
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Models
	Efficient Construction
	Computational Power

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Selfish Bin Packing Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Related Results
	Cross-References
	Recommended Reading

	Selfish Unsplittable Flows: Algorithms for Pure Equilibria
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Selfish Behavior

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Self-Stabilization
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Complexity Metrics

	Key Results
	Composition
	Synchronization Tasks
	Graph Algorithms
	Transformation
	General Methods
	Fault Tolerance

	Applications
	Cross-References
	Recommended Reading

	Semi-supervised Learning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	A Formal Framework
	Examples
	Intuition


	Key Results
	Co-Training
	Semi-supervised SVMs
	Graph-Based Methods

	Open Problems
	Recommended Reading

	Separators in Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Related Results
	Implementation

	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Sequence and Spatial Motif Discovery in Short Sequence Fragments
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Spatial Motifs by Permutation Model
	Expectation for Interacting Residues of the Same Type
	Expectation for Interacting Residues of Different Types
	Significance of Spatial Motifs
	Sequences of Different Lengths

	Sequence Motifs by Permutation Model
	Expectation of XYk and XXk Two-Residue Motifs
	Significance of XYk and XXk Two-Residue Sequence Motifs
	Propensity of Multi-residue Sequence Motifs
	Remark

	Spatial Motifs by Positional Null Model
	Expectation and Significance of Interacting Residue Pairs
	Expectation and Significance of Sequence Motifs


	Applications
	Open Problems
	Recommended Reading

	Sequential Circuit Technology Mapping
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Cut Enumeration
	Label Computation
	Mapping Solution Generation
	Applications
	Cross-References
	Recommended Reading

	Set Agreement
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Short History
	Definition
	The Trivial Case

	Key Results
	Key Results in Synchronous Systems
	The Synchronous Model
	Main Results
	Other Failure Models

	Key Results in Asynchronous Systems
	Impossibility
	Circumventing the Impossibility


	Applications
	Cross-References
	Recommended Reading

	Set Cover with Almost Consecutive Ones
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notation

	Key Results
	Data Reduction Rules
	Algorithms

	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Shadowless Solutions for Fixed-Parameter Tractability of Directed Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Directed Multiway Cut
	Directed Subset Feedback Vertex Set

	Open Problems
	Directed Multicut
	Directed Odd Cycle Transversal

	Cross-References
	Recommended Reading

	Shortest Elapsed Time First Scheduling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Shortest Paths Approaches for Timetable Information
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Modeling
	Algorithmic Models

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Shortest Paths in Planar Graphs with Negative Weight Edges
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Shortest Vector Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	URL to Code
	Cross-References
	Recommended Reading

	Similarity Between Compressed Strings
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Run-Length Encoding
	LZ Compression
	Block Computation

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Simple Algorithms for Spanners in Weighted Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Algorithm I
	Algorithm II
	Computing a 3-Spanner in Linear Time

	Other Related Works
	Additive Spanners
	(α,β)-Spanner


	Applications
	Open Problems
	Recommended Reading

	Simpler Approximation for Stable Marriage
	Keywords
	Years and Authors of Summarized Original Work
	Introduction
	Problem Definition
	Key Results
	Algorithm
	Preliminary Definitions and Concepts for the Algorithm
	The Algorithm
	Running Time, Locality


	Cross-References
	Recommended Reading

	Single and Multiple Buffer Processing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	General Model Description
	Competitive Analysis

	Key Results
	Uniform Processing, Uniform Value, Shared Memory Switch
	Non-Push-Out Policies
	Push-Out Policies

	Uniform Processing, Uniform Value, Multiple Separated Queues
	Uniform Processing, Variable Values, Single Queue
	Non-Push-Out Policies
	Push-Out Policies

	Uniform Processing, Variable Values, Multiple Separated Queues
	Uniform Processing, Variable Values, Shared Memory Switch
	Uniform Processing, CIOQ Switches
	Uniform Values
	Variable Values

	Uniform Processing, Crossbar Switches
	Uniform Values, Variable Processing, Single Queue
	Non-Push-Out Policies
	Push-Out Policies
	Copying Cost

	Uniform Values, Variable Processing, Multiple Separated Queues
	Uniform Values, Variable Processing, Shared Memory Switch
	Non-Push-Out Policies
	Push-Out Policies


	Open Problems
	Cross-References
	Recommended Reading

	Single-Source Fully Dynamic Reachability
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Approaches

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Single-Source Shortest Paths
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Ski Rental Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	History and Further Reading
	Cross-References
	Recommended Reading

	Slicing Floorplan Orientation
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Slicing Floorplan
	Slicing Tree
	Orientation Optimization

	Key Results
	Pseudocode Stockmeyer()
	Correctness
	Runtime

	Applications
	Recommended Reading

	Sliding Window Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Formal Definition
	History


	Key Results
	Smooth Histogram

	Applications
	Open Problems
	Recommended Reading

	Smooth Surface and Volume Meshing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Surface Meshing
	Volume Meshing

	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Smoothed Analysis
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Simplex Method
	Binary Optimization Problems

	Open Problems
	Cross-References
	Recommended Reading

	Snapshots in Shared Memory
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	A Simple Non-blocking Implementation from Small Registers
	Wait-Free Implementations fromLarge Registers
	Wait-Free Implementations from Small, Stronger Objects

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Sorting by Transpositions and Reversals (Approximate Ratio 1.5)
	Keywords
	Problem Definition
	Notations and Definition

	Key Results
	Linear vs. Circular Permutations
	The Breakpoint Graph
	Transformation into 3-Permutations
	Cycle Types
	Cycle Configurations
	The Algorithm

	Applications
	Cross-References
	Recommended Reading

	Sorting Signed Permutations by Reversal (Reversal Distance)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Sorting Signed Permutations by Reversal (Reversal Sequence)
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	The O(n4) Self-Reduction

	The Quadratic Roof
	A Promising New but Still Quadratic Method
	Composing with Data Structures

	Extensions
	Applications
	Open Problems
	Experimental Results
	URL to Code
	Cross-References
	Recommended Reading

	Spanning Trees with Low Average Stretch
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Petal Decomposition
	Highways
	Cones and Petals
	Fast Petal Construction
	Ideas in the Analysis

	Recommended Reading

	Sparse Fourier Transform
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Formal Definition
	Related Work

	Key Results
	Algorithm Overview
	One-Sparse Recovery
	Partial k-Sparse Recovery
	Full k-Sparse Recovery

	Recommended Reading

	Sparse Graph Spanners
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Sparsest Cut
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Speed Scaling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Sphere Packing Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Congruent Sphere Packing Problem

	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Split Decomposition via Graph-Labelled Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Graph Classes
	Distance Hereditary Graphs
	Subclasses of Totally Decomposable Graphs
	Circle Graphs
	Perfect Graphs

	Related Graph Decompositions
	Modular Decomposition
	Width Parameters


	Recommended Reading

	Squares and Repetitions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Stable Marriage
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Stable Marriage and Discrete Convex Analysis
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Discrete Convex Analysis: M#-Concave Functions
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Stable Marriage with One-Sided Ties
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Problem 1 (MAX SMOTI)
	Problem 2 (MAX SSMTI)
	Examples

	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Stable Marriage with Ties and Incomplete Lists
	Synonyms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Definition of the Approximation Ratio

	Key Results
	SMTI and MAX SMTI in Super-Stability and Strong Stability
	SMTI and MAX SMTI in Weak Stability
	(p, q)-MAX SMTI in Weak Stability

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Stable Partition Problem
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Trivial Encoding
	Anonymous Preferences
	Additive Preferences
	Preferences Derived from the Best and/or Worst Player

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Stackelberg Games: The Price of Optimum
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Models and Notations
	Nonatomic Flows
	Atomic Splittable Flows
	Atomic Unsplittable Flows
	Key Results
	Example
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Staged Assembly
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Lines
	Squares
	General Shapes

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Statistical Multiple Alignment
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Substitutions
	Insertions and Deletions
	Evolutionary Trees
	Multiple Hidden Markov Models


	Key Results
	Applications
	Open Problems
	Recommended Reading

	Statistical Query Learning
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Definitions and Notation

	Key Results
	Statistical Queries and Noise-Tolerance
	Statistical Query Algorithms
	Statistical Query Dimension

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Statistical Timing Analysis
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Orthogonalizing Process Parameter Distributions
	Gate Delay Distribution
	Circuit Delay Distribution

	Applications
	Experimental Results
	URLs to Code and Data Sets
	Recommended Reading

	Steiner Forest
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Formal Definition and Notation
	Related Problems

	Key Results
	Related Work
	Primal-Dual Algorithm

	Applications
	Cross-References
	Recommended Reading

	Steiner Trees
	Keywords
	Years and Authors of Summarized Original Work
	Definition
	History and Background

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Stochastic Knapsack
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Extensions
	Correlated Stochastic Knapsack
	Budgeted Multi-armed Bandit
	Stochastic Orienteering

	Applications
	Open Problems
	Recommended Reading

	Stochastic Scheduling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	String Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Online Text Parsing
	Algorithms Sublinear on the Average
	Time-Space Optimal Algorithms
	Bit-Parallel Solution

	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	String Sorting
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Strongly Connected Dominating Set
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Hardness Results
	MSCDAS in General Digraph
	MSCDAS in Disk Graph

	Applications
	Open Problems
	Recommended Reading

	Subexponential Parameterized Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	FAST
	Fill-In

	Completion to Graph Classes
	Open Problems
	Cross-References
	Recommended Reading

	Subset Sum Algorithm for Bin Packing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Lower Bound on R∞SS
	Upper Bound on R∞SS
	Parametric Case

	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Substring Parsimony
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	URL to Code
	Cross-References
	Recommended Reading

	Succinct and Compressed Data Structures for Permutations and Integer Functions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Succinct Data Structures
	``Shortcut'' Index Supporting π() and π-1()
	``Cycle'' Data Structure Supporting πk()
	``Benes Network'' Data Structure Supporting πk()

	Compressed Data Structures
	Runs
	Heads of Strict Runs
	Shuffled Subsequences
	LRM Subsequences
	Number of Inversions
	Removing Elements


	Applications
	Integer Functions

	Open Problems
	Other Measures of Disorder
	Sorting and Encoding Multisets
	Compressed Data Structures Supporting πk()

	Recommended Reading

	Succinct Data Structures for Parentheses Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Balanced Parentheses
	Trees
	Graphs

	Key Results
	Applications
	Succinct Representation of Suffix Trees
	Succinct Representation of Functions
	Multiple Parentheses and Graphs

	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Suffix Array Construction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Suffix Tree Construction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Constraints

	Key Results
	Applications
	Open Problems
	Experimental Results
	URLs to Code and Data Sets

	Cross-References
	Recommended Reading

	Suffix Tree Construction in Hierarchical Memory
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Model of Computation
	Notation

	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Suffix Trees and Arrays
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Top-Down
	Bottom-Up
	Top-Down and Suffix Links
	Top-Down in the Suffix-Link Tree
	Any Order
	String Depth Annotation
	Frequency Annotation
	String Depth and Frequency Annotation
	Positional Annotations


	Applications
	Cross-References
	Recommended Reading

	Sugiyama Algorithm
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Reduction of the Number of Edge Crossings
	Determination of x-Coordinates of Vertices

	Applications
	Cross-References
	Recommended Reading

	Superiority and Complexity of the Spaced Seeds
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Support Vector Machines
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Classification
	Maximizing the Margin

	Key Results
	Soft Margin
	Regression
	Speeding Up the Quadratic Program
	Kernel Methods
	Choosing the Kernel
	Kernels for General Data

	Applications
	Text Categorization
	Handwritten Character Recognition
	Bioinformatics

	URL to Code
	Cross-References
	Recommended Reading

	Surface Reconstruction
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Crust Algorithm
	Cocone Algorithm
	Powercrust Algorithm
	Noisy Samples
	Complexity

	Applications
	Open Problems
	URLs to Code and Data Sets
	Cross-References
	Recommended Reading

	Symbolic Model Checking
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Hardware Verification
	State Explosion
	Hardware Model
	Invariant Checking
	Key Results
	Image Computation
	Invariant Checking
	Applications
	Experimental Results
	Data Sets
	Cross-References
	Recommended Reading

	Symmetric Graph Drawing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Computing a Planar Automorphism Group of Maximum Size
	Overview of the Drawing Algorithm
	The Cyclic Case
	One Axial Symmetry
	The Dihedral Case

	Cross-References
	Recommended Reading

	Synchronizers, Spanners
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading


	T
	Table Compression
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Combinatorial Dependency and Joint Entropy of Random Variables
	Column Dependency and Conditional Entropy of Random Variables

	Key Results
	Combinatorial Dependency
	Column Dependency
	Motifs


	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Tail Bounds for Occupancy Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Technology Mapping
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Teleportation of Quantum States
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Super-Dense Coding
	Lower Bounds on Resources
	Remote State Preparation
	Teleportation as a Private Quantum Channel
	Quantum State Redistribution

	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Temperature Programming in Self-Assembly
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Thin Rectangles
	Squares
	Scaled Finite Shapes

	Open Problems
	Cross-References
	Recommended Reading

	Testing Bipartiteness in the Dense-Graph Model
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Comments for the Recommended Reading
	Recommended Reading

	Testing Bipartiteness of Graphs in Sublinear Time
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Comments for the Recommended Reading
	Recommended Reading

	Testing if an Array Is Sorted
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Bibliographical Notes

	Key Results
	Hamming Testers for Sortedness
	A Tester Based on Binary Search ch700:EKKRV00
	Analysis of the First Tester
	A Tester Based on Graph Spanners ch700:BGJRW12
	Analysis of the Second Tester
	L1-Tester for Sortedness
	Running time


	Applications
	Open Problem
	Cross-References
	Recommended Reading

	Testing Juntas and Related Properties of Boolean Functions
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Testing 1-Juntas
	Testing k-Juntas
	Junta-Testing Algorithm

	Applications
	Feature Selection
	Testing by Implicit Learning
	Testing Function Isomorphism

	Open Problems
	Distance Approximation
	Testing with Random Samples

	Cross-References
	Recommended Reading

	Text Indexing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Three-Dimensional Graph Drawing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Track Layouts
	An Algorithm for Graphs of Bounded Treewidth
	Other Models for 3D Graph Drawing

	Recommended Reading

	Thresholds of Random k-Sat
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Algorithm Greedy
	Algorithm CL

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Topology Approach in Distributed Computing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Trade-Offs for Dynamic Graph Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Dynamic Transitive Closure
	Dynamic Shortest Paths

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Transactional Memory
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	TM C/C++ Specification and Compiler Support
	HTM in Mainstream Processors
	STM Implementations
	Hardware Lock Elision
	Hybrid TM
	TM Applications

	Cross-References
	Recommended Reading

	Traveling Sales Person with Few Inner Points
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results*-1pc
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Tree Enumeration
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Enumeration of All Ordered Trees
	Enumeration of All Unordered Trees

	Cross-References
	Recommended Reading

	Treewidth of Graphs
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	Cross-References
	Recommended Reading

	Trial and Error Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Time Complexity
	Trial Complexity

	Key Results
	Related Work
	Learning
	Ellipsoid Method

	Cross-References
	Recommended Reading

	Triangulation Data Structures
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Mesh Structures: Definition
	Data Structures: Classification
	Standard Mesh Representations

	Key Results
	A Theoretically Optimal Representation
	A More Practical Solution
	Reducing Redundancy Throughout Face Reordering
	More Compact (Static) Representations

	A Dynamic Representation

	Experimental Results
	Cross-References
	Recommended Reading

	Truthful Mechanisms for One-Parameter Agents
	Keywords
	Synonyms
	Years and Authors of Summarized Original Work
	Problem Definition
	The Mechanism Design Framework
	Scheduling on Related Machines

	Key Results
	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Truthful Multicast
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	TSP-Based Curve Reconstruction
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Finite Precision
	Relation to Local Feature Size

	Applications
	Open Problems
	Experimental Results
	Data Sets
	URL to Code
	Cross-References
	Recommended Reading

	Two-Dimensional Scaled Pattern Matching
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Two-Interval Pattern Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations
	Constraints

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading


	U
	Undirected Feedback Vertex Set
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Recommended Reading

	Unified View of Graph Searching and LDFS-Based Certifying Algorithms
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Problem Definition (cont.)
	Key Results (cont.)
	Open Problems
	Recommended Reading

	Uniform Covering of Rings and Lines by Memoryless Mobile Sensors
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	The Model
	The Problem

	Key Results
	The Ring
	Exact Uniform Covering
	Approximate Covering

	The Line
	Exact Uniform Covering
	Approximate Covering


	Applications
	Open Problems
	Recommended Reading

	Unique k-SAT and General k-SAT
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Open Problems
	Cross-References
	Recommended Reading

	Universal Sequencing on an Unreliable Machine
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Bounding the Performance of a Universal Sequence
	A Universal Sequencing Algorithm
	Randomized Universal Schedules
	Generalizations
	Global Cost Functions
	Precedence Constraints
	Release Dates

	Instance-Sensitive Performance Guarantee

	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Upward Graph Drawing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Polynomial-Time Upward Planarity Testing

	Applications
	Experimental Results
	Cross-References
	Recommended Reading

	Utilitarian Mechanism Design for Single-Minded Agents
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Utilitarian Mechanism Design
	Mechanism
	Monotonicity
	Additional Definitions

	Key Results
	Monotone Approximation Schemes
	Truthful Primal-Dual Mechanisms

	Applications
	Applications of Monotone Approximation Schemes
	Applications of the primal dual algorithms
	Survey of Other Results

	Cross-References
	Recommended Reading


	V
	Vector Bin Packing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Generalizations of Classical Bin Packing Algorithms
	Generalizing First Fit and First Fit Decreasing
	Generalizing the de la Vega and Lueker Asymptotic Approximation Scheme

	Hardness of Approximation Results
	Algorithms with RA∞(d) < d

	Experimental Results
	Cross-References
	Recommended Reading

	Vector Scheduling Problems
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Constant Dimension d
	General Dimension d
	Extensions

	Open Problems
	Cross-References
	Recommended Reading

	Vertex Cover Kernelization
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Preprocessing Based on Vertex Degrees
	Nemhauser-Trotter Theorem
	A Faster Nemhauser-Trotter Construction
	Crown Reduction

	Applications
	Experimental Results
	Data Sets
	Cross-References
	Recommended Reading

	Vertex Cover Search Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Kernelization
	Folding
	Branch and Search

	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Visualization Techniques for Algorithm Engineering
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Critical Issues
	Techniques
	Event-Driven Visualization
	State Mapping Visualization


	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Voltage Scheduling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations and Definitions
	Assumptions
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Voronoi Diagrams and Delaunay Triangulations
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Generalizations

	Key Results
	Divide and Conquer
	Sweep
	Reduction to Convex Hull
	Incremental Construction

	Applications
	Cross-References
	Recommended Reading


	W
	Wait-Free Synchronization
	Years and Authors of Summarized Original Work
	Problem Definition
	Weaker Nonblocking Progress Conditions
	Transactional Memory

	Key Results
	Applications
	Open Questions
	Cross-References
	Recommended Reading

	Wake-Up Problem in Multi-Hop Radio Networks
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Synchronizers

	Key Results
	A Deterministic Wake-Up Protocol
	A Randomized Wake-Up Protocol

	Applications
	Universal Synchronizers and Faster Wake-Up Protocols
	Leader Election and Clock Synchronization

	Open Problems
	Cross-References
	Recommended Reading

	Wavelet Trees
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Compressed Sequences
	Geometric Points and Two-Dimensional Data
	Permutations, Shufflings, and Reorderings

	Applications
	Cross-References
	Recommended Reading

	Weighted Connected Dominating Set
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Applications
	Open Problems
	Experimental Results
	Cross-References
	Recommended Reading

	Weighted Popular Matchings
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Cross-References
	Recommended Reading

	Weighted Random Sampling
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Definitions
	Notation and Assumptions

	Key Results
	Applications
	URL to Code
	Cross-References
	Recommended Reading

	Well Separated Pair Decomposition
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Unit-Disk Graphs
	Metric Space
	Well-Separated Pair Decomposition

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Well Separated Pair Decomposition for Unit-Disk Graph
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Notations

	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Wire Sizing
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading

	Work-Function Algorithm for k-Servers
	Keywords
	Years and Authors of Summarized Original Work
	Problem Definition
	Key Results
	Applications
	Open Problems
	Cross-References
	Recommended Reading


	List of Entries



