SPRINGER
EFERENCE

Ling Liu
M. Tamer Ozsu
Editors-in-Chief

Encyclopedia of
Database Systems

@ Springer

Encyclopedia of Database Systems

Ling Liu, M. Tamer Ozsu (Eds.)

Encyclopedia of
Database Systems

With 3,067 Entries

With 871 Authors

With 1,176 Figures and 101 Tables
With 6,900 Cross-references

With 10,696 Bibliographic references

@ Springer

LING LIU

Professor

College of Computing

Georgia Institute of Technology
266 Ferst Drive

Atlanta, GA 30332-0765

USA

M. TAMER OZSU

Professor and Director, University Research Chair
Database Research Group

David R. Cheriton School of Computer Science
University of Waterloo

200 University Avenue West

Waterloo, ON

Canada N2L 3G1

Library of Congress Control Number: 2009931217
ISBN: 978-0-387-35544-3

This publication is available also as:
Electronic publication under ISBN: 978-0-387-39940-9 and
Print and electronic bundle under ISBN: 978-0-387-49616-0

© Springer Science+Business Media, LLC 2009 (USA)

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the
publisher (Springer Science+Business Media, LLC., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in
connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such,
is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

springer.com

Printed on acid free paper SPIN: 11752127 2109SPi-543210

To our families

Preface

We are in an information era where generating and storing large amounts of data are commonplace. A growing
number of organizations routinely handle terabytes and exabytes of data, and individual digital data collections
easily reach multiple gigabytes. Along with the increases in volume, the modality of digitized data that requires
efficient management and the access modes to these data have become more varied. It is increasingly common for
business and personal data collections to include images, video, voice, and unstructured text; the retrieval of these
data comprises various forms, including structured queries, keyword search, and visual access. Data have become
a highly valued asset for governments, industries and individuals, and the management of these data collections
remains a critical technical challenge.

Database technology has matured over the past four decades and is now quite ubiquitous in many applications
that deal with more traditional business data. The challenges of expanding data management to include other data
modalities while maintaining the fundamental tenets of database management (data independence, data integrity,
data consistency, etc.) are issues that the community continues to work on. The lines between database
management and other fields such as information retrieval, multimedia retrieval, and data visualization are
increasingly blurred.

This multi-volume Encyclopedia of Database Systems provides easy access to important concepts on all aspects
of database systems, including areas of current interest and research results of historical significance. It is a
comprehensive collection of over 1,250 in-depth entries (3,067 including synonyms) that present coverage of the
important concepts, issues, emerging technology and future trends in the field of database technologies, systems,
and applications. The content of the Encyclopedia was determined through wide consultations. We were assisted
by an Advisory Board in coming up with the overall structure and content. Each of these areas were put under the
control of Area Editors (70 in total) who further developed the content for each area, soliciting experts in the field
as contributors to write the entries, and performed the necessary technical editing. Some of them even wrote
entries themselves. Nearly 1,000 authors were involved in writing entries.

The intended audience for the Encyclopedia is technically broad and diverse. It includes anyone concerned
with database system technology and its applications. Specifically, the Encyclopedia can serve as a valuable and
authoritative reference for students, researchers and practitioners who need a quick and authoritative reference to
the subject of databases, data management, and database systems. We anticipate that many people will benefit
from this reference work, including database specialists, software developers, scientists and engineers who need to
deal with (structured, semi-structured or unstructured) large datasets. In addition, database and data mining
researchers and scholars in the many areas that apply database technologies, such as artificial intelligence, software
engineering, robotics and computer vision, machine learning, finance and marketing are expected to benefit from
the Encyclopedia.

We would like to thank the members of the Advisory Board, the Editorial Board, and the individual
contributors for their help in creating this Encyclopedia. The success of the Encyclopedia could not have been
achieved without the expertise and the effort of the many contributors. Our sincere thanks also go to Springer’s
editors and staff, including Jennifer Carlson, Susan Lagerstrom-Fife, Oona Schmid, and Susan Bednarczyk for
their support throughout the project.

Finally, we would very much like to hear from readers for any suggestions regarding the Encyclopedia’s content.
With a project of this size and scope, it is quite possible that we may have missed some concepts. It is also possible
that some entries may benefit from revisions and clarifications. We are committed to issuing periodic updates and
we look forward to the feedback from the community to improve the Encyclopedia.

Ling Liu
M. Tamer Ozsu

Editors-in-Chief

Ling Liu is a Professor in the School of Computer Science, College of Computing, at Georgia Institute of
Technology. Dr. Liu directs the research programs in Distributed Data Intensive Systems Lab (DiSL), examining
various aspects of data intensive systems, ranging from database and Internet data management, data storage,
network computing, and mobile and wireless computing, with the focus on performance, availability, security,
privacy, and energy efficiency in building very large database and data management systems and services. She has
published over 200 international journal and conference articles in the areas of databases, data engineering, and
distributed computing systems. She is a recipient of the best paper award of ICDCS 2003, the best paper award of
WWW 2004, the 2005 Pat Goldberg Memorial Best Paper Award, and the best data engineering paper award of
Int. Conf. on Software Engineering and Data Engineering (2008). Dr. Liu served on the editorial board of IEEE
Transactions on Knowledge and Data Engineering and International Journal of Very Large Databases from 2004 to
2008 and is currently serving on the editorial board of several international journals, including Distributed and
Parallel Databases Journal, IEEE Transactions on Service Computing (TSC), International Journal of Peer-to-Peer
Networking and Applications (Springer), and Wireless Network (Springer). Dr. Liu’s current research is primarily
sponsored by NSF, IBM, and Intel.

Editors-in-Chief

M. Tamer Ozsu is a Professor of Computer Science and Director of the David R. Cheriton School of Computer
Science at the University of Waterloo. He holds a Ph.D. (1983) and an MS (1981) in Computer and Information
Science from The Ohio State University (1983) and a B.S. (1974) and M.S. (1978) in Industrial Engineering from
the Middle East Technical University, Turkey (1974).

Dr. Ozsu’s current research focuses on three areas: (a) Internet-scale data distribution that emphasizes stream data
management, peer-to-peer databases, and Web data management; (b) multimedia data management, concentrat-
ing on similarity-based retrieval of time series and trajectory data; and (c) the integration of database and
information retrieval technologies, focusing on XML query processing and optimization. His previous research
focused on distributed databases, interoperable information systems, object database systems and image data-
bases. He is the co-author of the book Principles of Distributed Database Systems (Prentice Hall), which is now in
its second edition (third edition to publish in 2009).

He currently holds a University Research Chair and has held a Faculty Research Fellowship at the University of
Waterloo (2000-2003), and a McCalla Research Professorship (1993-1994) at the University of Alberta where he
was faculty member between 1984 and 2000. He is a fellow of the Association for Computing Machinery (ACM),
a senior member of Institute of Electrical and Electronics Engineers (IEEE), and a member of Sigma Xi. He was
awarded the ACM SIGMOD Contributions Award in 2006. He is also the 2008 recipient of Ohio State University
College of Engineering Distinguished Alumnus Award.

He has held visiting positions at GTE Laboratories (USA), INRIA Rocquencourt (France), GMD-IPSI (Germany),
University of Jyviskyld (Finland), Technical University of Darmstadt (Germany), University of Udine (Italy),
University of Milano (Italy), ETH Ziirich (Switzerland), and National University of Singapore (Singapore).

Dr. Ozsu serves on the editorial boards of ACM Computing Surveys, Distributed and Parallel Databases Journal,
World Wide Web Journal, Information Technology and Management, and Springer Book Series on Advanced
Information & Knowledge Processing. Previously he was the Coordinating Editor-in-Chief of The VLDB Journal
(1997-2005) and was on the Editorial Board of Encyclopedia of Database Technology and Applications (Idea
Group). He has served as the Program Chair of VLDB (2004), WISE (2001), IDEAS (2003), and CIKM (1996)
conferences and the General Chair of CAiSE (2002), as well as serving on the Program Committees of many
conferences including SIGMOD, VLDB, and ICDE. He is also a member of Association for Computing Machin-
ery’s (ACM) Publications Board and is its Vice-Chair for New Publications.

Dr. Ozsu was the Chair of ACM Special Interest Group on Management of Data (SIGMOD; 2001-2005) and a past
trustee of the VLDB Endowment (1996-2002). He was a member and chair of the Computer and Information
Science Grant Selection Committee of the Natural Sciences and Engineering Research Council of Canada during
1991-94, and served on the Management Committee of the Canadian Genome Analysis and Technology Program
during 1992-93. He was Acting Chair of the Department of Computing Science at the University of Alberta
during 1994-95, and again, for a brief period, in 2000.

Advisory Board

Serge Abiteboul
INRIA-Futurs INRIA, Saclay
Orsay, Cedex

France

Gustavo Alonso
ETH Zirich
Zirich
Switzerland

Peter M. G. Apers
University of Twente
Enschede

The Netherlands

Ricardo Baeza-Yates
Yahoo! Research
Barcelona

Spain

Catriel Beeri

Hebrew University of Jerusalem
Jerusalem

Israel

Elisa Bertino
Purdue University
West Lafayette, IN
USA

Stefano Ceri
Politecnico di Milano
Milan

Italy

Asuman Dogac

Middle East Technical University
Ankara

Turkey

Alon Halevy
Google, Inc.
Mountain View, CA
USA

Jiawei Han

University of lllinios at Urbana-Champaign
Urbana, IL

USA

Theo Harder

University of Kaiserslautern
Kaiserslautern

Germany

Joseph M. Hellerstein
University of California-Berkeley
Berkeley, CA

USA

Ramesh Jain

University of California-Irvine
Irvine, CA

USA

Matthias Jarke
RWTH-Aachen
Aachen
Germany

Jai Menon

IBM Systems and Technology Group
San Jose, CA

USA

John Mylopoulos
University of Toronto
Toronto, ON

Canada

Beng Chin Ooi

National University of Singapore
Singapore

Singapore

Erhard Rahm
University of Leipzig
Leipzig

Germany

Xii

Advisory Board

Krithi Ramamritham
[IT Bombay

Mumbai

India

Schek Hans-Joerg
ETH Zirich

Zirich

Switzerland

Sellis Timos

National Technical University of Athens

Athens
Greece

Frank Wm. Tompa
University of Waterloo
Waterloo, ON

Canada

Patrick Valduriez
INRIA and LINA
Nantes

France

Gerhard Weikum

Max Planck Institute for Informatics
Saarbriicken

Germany

Jennifer Widom
Stanford University
Stanford, CA

USA

Lizhu Zhou
Tsinghua University
Beijing

China

Area Editors

Peer-to-Peer Data Management

KARL ABERER
EPFL-IC-IIF-LSIR
Lausanne
Switzerland

Database Management System
Architectures

ANASTASIA AILAMAKI
EPF Lausanne
Lausanne

Switzerland

Information Retrieval Models

GIAMBATTISTA AMATI
Fondazione Ugo Bordoni
Rome

Italy

XML Data Management

SIHEM AMER-YAHIA
Yahoo! Research
New York, NY

USA

Database Middleware

CHRISTIANA AMZA
University of Toronto
Toronto, ON

Canada

Database Tools
Database Tuning

PHILIPPE BONNET
University of Copenhagen
Copenhagen

Denmark

Visual Interfaces

Xiv

Area Editors

TIZIANA CATARCI
University of Rome
Rome

Italy

Stream Data Management

UGUR CETINTEMEL
Brown University
Providence, RI

USA

Querying Over Data Integration
Systems

KEVIN CHANG

University of Illinois at Urbana-Champaign
Urbana, IL

USA

Self Management

SURAJIT CHAUDHURI
Microsoft Research
Redmond, WA

USA

Text Mining

ZHENG CHEN
Microsoft Research Asia
Beijing

China

Extended Transaction Models
(Advanced Concurrency Control Theory)

PANOS K. CHRYSANTHIS
University of Pittsburgh
Pittsburgh, PA

USA

Area Editor_

XV

Privacy-Preserving Data Mining

CHRIS CLIFTON
Purdue University
West Lafayette, IN
USA

Active Databases

KLAUS DITTRICH
University of Ziirich
Zirich

Switzerland

Digital Libraries

AMR EL ABBADI

University of California-Santa Barbara
Santa Barbara, CA

USA

Data Models (Including Semantic
Data Models)

DAVID EMBLEY
Brigham Young University
Provo, UT

USA

Complex Event Processing

OPHER ETZION

IBM Research Lab in Haifa
Haifa

Israel

Database Security and Privacy

ELENA FERRARI
University of Insubria
Varese

Italy

XVi

Area Editors

Semantic Web and Ontologies

AVIGDOR GAL

Technion - Israel Institute of Technology

Haifa
Israel

Data Cleaning

VENKATESH GANTI
Microsoft Research
Redmond, WA

USA

Web Data Extraction

GEORG GOTTLOB
Oxford University
Oxford

UK

Sensor Networks

LE GRUENWALD

The University of Oklahoma
Norman, OK

USA

Data Clustering

DIMITRIOS GUNOPULOS
University of Athens

Athens

Greece

University of California — Riverside
Riverside, CA

USA

Scientific Databases

&/

AMARNATH GUPTA

University of California-San Diego
La Jolla, CA

USA

Area Editor_

XVii

Geographic Information Systems

RALF HARTMUT GUTING
University of Hagen

Hagen

Germany

Data Visualization

}

HANS HINTERBERGER
ETH Ziirich

Ziirich

Switzerland

Web Services and Service Oriented
Architectures

HANS-ARNO JACOBSEN
University of Toronto
Toronto, ON

Canada

Temporal Databases

CHRISTIAN JENSEN
Aalborg University
Aalborg

Denmark

Metadata Management

5

MANFRED JEUSFELD
Tilburg University
Tilburg

The Netherlands

Health Informatics Databases

VIPUL KASHYAP

Partners Health Care System
Wellesley, MA

USA

Xviii

Area Editors

Visual Data Mining

A

DANIEL KEIM
University of Konstanz
Konstanz

Germany

Data Replication

BETTINA KEMME
McGill University
Montreal, QC
Canada

Advanced Storage Systems
Storage Structures and Systems

MASARU KITSUREGAWA
The University of Tokyo
Tokyo

Japan

Views and View Management

YANNIS KOTIDIS

Athens University of Economics and Business
Athens

Greece

Semi-Structured Text Retrieval

MOUNIA LALMAS
University of Glasgow
Glasgow

UK

Information Quality

YANG LEE
Northeastern University
Boston, MA

USA

Area Editor_

XiX

Relational Theory

LEONID LIBKIN
University of Edinburgh
Edinburgh

UK

Information Retrieval Evaluation
Measures

WEIYI MENG

State University of New York at Binghamton
Binghamton, NY

USA

Data Integration

No Photo
available

RENEE MILLER
University of Toronto
Toronto, ON

Canada

Database Design

JOHN MYLOPOULOS
University of Toronto
Toronto, ON

Canada

Text Indexing Techniques

MARIO NASCIMENTO
University of Alberta
Edmonton, AB

Canada

Data Quality

FELIX NAUMANN
Hasso Plattner Institute
Potsdam

Germany

XX

Area Editors

Web Search and Crawl

CHRISTOPHER OLSTON
Yahoo! Research

Santa Clara, CA

USA

Multimedia Databases

VINCENT ORIA

New Jersey Institute of Technology

Newark, NJ
USA

Spatial, Spatiotemporal, and
Multidimensional Databases

DIMITRIS PAPADIAS

Hong Kong University of Science and Technology

Hong Kong
China

Data Warehouse

TORBEN BACH PEDERSEN
Aalborg University

Aalborg

Denmark

Association Rule Mining

JIAN PEI

Simon Fraser University
Burnaby, BC

Canada

Workflow Management

BARBARA PERNICI
Politecnico di Milano
Milan

Italy

Area Editor_ XXi

Query Processing and Optimization Query Languages

EVAGGELIA PITOURA TORE RISCH
University of Ioannina Uppsala University
Ioannina Uppsala

Greece Sweden

Data Management for the

Life Sciences Data Warehouse

STEFANO RIZZI

LOUIQA RASCHID A
University of Marlyand N nllver51ty of Bologna
College Park, MD ItOlogna

USA aly

Information Retrieval Operations Multimedia Databases

EDIE RASMUSSEN SHIN’ICHI SATOH
The University of British Columbia National Institute of Informatics
Vancouver, BC Tokyo

Canada Japan

XXii

Area Editors

Spatial, Spatiotemporal, and
Multidimensional Databases

TIMOS SELLIS

National Technical University of Athens
Athens

Greece

Database Tools
Database Tuning

DENNIS SHASHA
New York University
New York, NY

USA

Classification and Decision Trees

KYUSEOK SHIM

Seoul National University
Seoul

Republic of Korea

Temporal Databases

RICK SNODGRASS
University of Arizona
Tuscon, AZ

USA

Stream Mining

DIVESH SRIVASTAVA
AT&T Labs — Research
Florham Park, NJ
USA

Distributed Database Systems

KIAN-LEE TAN
National University of Singapore
Singapore
Singapore

Area Editor_

XXiii

Logics and Databases

VAL TANNEN

University of Pennsylvania
Philadelphia, PA

USA

Structured and Semi-Structured
Document Databases

FRANK WM. TOMPA
University of Waterloo
Waterloo, ON

Canada

Indexing

VASSILIS TSOTRAS

University of California — Riverside
Riverside, CA

USA

Parallel Database Systems

PATRICK VALDURIEZ
INRIA and LINA
Nantes

France

Advanced Storage Systems
Storage structures and systems

KALADHAR VORUGANTI
Network Appliance
Sunnyvale, CA

USA

Transaction Management

GOTTFRIED VOSSEN
University of Miinster

Miinster
Germany

XXiV

Area Editors

Self Management

GERHARD WEIKUM

Max Planck Institute for Informatics
Saarbriicken

Germany

Mobile and Ubiquitous Data
Management

OURI WOLFSON

University of Illinois at Chicago
Chicago, IL

USA

Multimedia Information Retrieval

JEFFREY XU YU

Chinese University of Hong Kong
Hong Kong

China

Approximation and Data Reduction
Techniques

XTAOFANG ZHOU

The University of Queensland
Brisbane, QLD

Australia

List of Contributors

W. M. P. van der Aalst

Eindhoven University of Technology
Eindhoven

The Netherlands

Daniel Abadi
Yale University
New Haven, CT
USA

Alberto Abello

Polytechnic University of Catalonia
Barcelona

Spain

Serge Abiteboul
INRIA, Saclay
Orsay, Cedex
France

loannis Aekaterinidis
University of Patras
Rio Patras

Greece

Nitin Agarwal

Arizona State University
Tempe, AZ

USA

Charu C. Aggarwal

IBM T. J. Watson Research Center
Yorktown Heights, NY

USA

Lalitha Agnihotri
Philips Research
Eindhoven

The Netherlands

Yanif Ahmad
Brown University
Providence, RI
USA

Gail-Joon Ahn

Arizona State University
Tempe, AZ

USA

Anastasia Ailamaki
EPFL

Lausanne
Switzerland

Yousef J. Al-Houmaily

Institute of Public Administration
Riyadh

Saudi Arabia

Robert B. Allen
Drexel University
Philadelphia, PA
USA

Gustavo Alonso
ETH Zurich
Zurich
Switzerland

Omar Alonso

University of California at Davis
Davis, CA

USA

Bernd Amann

Pierre & Marie Curie University (UPMCQ)
Paris

France

Giambattista Amati
Fondazione Ugo Bordoni
Rome

Italy

Rainer von Ammon

Center for Information Technology Transfer GmbH
(T

Regensburg

Germany

XXVi

List of Contributors

Robert A. Amsler
Csc

Falls Church, VA
USA

Cristiana Amza
University of Toronto
Toronto, ON

Canada

George Anadiotis

VU University Amsterdam
Amsterdam

The Netherlands

Mihael Ankerst
Allianz

Munich
Germany

Sameer Antani

National Institutes of Health

Bethesda, MD
USA

Grigoris Antoniou

Foundation for Research and Technology-Hellas

(FORTH)
Heraklion
Greece

Arvind Arasu
Microsoft Research
Redmond, WA
USA

Danilo Ardagna
Politecnico di Milano
Milan

Italy

Walid G. Aref
Purdue University
West Lafayette, IN
USA

Marcelo Arenas

Pontifical Catholic University of Chile

Santiago
Chile

Samuel Aronson
Harvard Medical School
Boston, MA

USA

Paavo Arvola
University of Tampere
Tampere

Finland

Noboru Babaguchi
Osaka University
Osaka

Japan

Shivnath Babu
Duke University
Durham, NC
USA

Kenneth Paul Baclawski
Northeastern University
Boston, MA

USA

Ricardo Baeza-Yates
Yahoo! Research
Barcelona

Spain

James Bailey

University of Melbourne
Melbourne, VIC
Australia

Peter Bak

University of Konstanz
Konstanz

Germany

Magdalena Balazinska
University of Washington
Seattle, WA

USA

Farnoush Banaei-Kashani

University of Southern California

Los Angeles, CA
USA

List of Contributor_

XXVii

Stefano Baraldi
University of Florence
Florence

Italy

Mauro Barbieri

Philips Research
Eindhoven

The Netherlands

Denilson Barbosa
University of Alberta
Edmonton, AL
Canada

Pablo Barcel6
University of Chile
Santiago

Chile

Luciano Baresi
Politecnico di Milano
Milan

Italy

llaria Bartolini
University of Bologna
Bologna

Italy

Sugato Basu
Google Inc.
Mountain View, CA
USA

Carlo Batini

University of Milan Bicocca
Milan

Italy

Michal Batko
Masaryk University
Brno

Czech Republic

Peter Baumann
Jacobs University
Bremen

Germany

Robert Baumgartner

Vienna University of Technology
Vienna, Austria

Lixto Software GmbH

Vienna

Austria

Sean Bechhofer
University of Manchester
Manchester

UK

Steven M. Beitzel
Telcordia Technologies
Piscataway, NJ

USA

Ladjel Bellatreche
LISI/ENSMA-Poitiers University
Futuroscope Cedex

France

Omar Benjelloun
Google Inc.
Mountain View, CA
USA

Véronique Benzaken
University Paris 11
Orsay Cedex

France

Mikael Berndtsson
University of Skovde
Skovde

Sweden

Philip A. Bernstein
Microsoft Corporation
Redmond, WA

USA

Damon Andrew Berry
University of Massachusetts
Lowell, MA

USA

XXViii

tof Contributors

Leopoldo Bertossi Philip Bohannon
Carleton University Yahoo! Research

Ottawa, ON Santa Clara, CA

Canada USA

Claudio Bettini Michael H. Bohlen
University of Milan Free University of Bozen-Bolzano
Milan Bozen-Bolzano

Italy Italy

Nigel Bevan Christian B6hm
Professional Usability Services University of Munich
London Munich

UK Germany

Bharat Bhargava Peter Boncz

Purdue University cwi

West Lafayette, IN Amsterdam

USA The Netherlands

Arnab Bhattacharya Philippe Bonnet

Indian Institute of Technology University of Copenhagen
Kanpur Copenhagen

India Denmark

Ernst Biersack Alexander Borgida
Eurecom Rutgers University

Sophia Antipolis New Brunswick, NJ
France USA

Alberto Del Bimbo Chavdar Botev

University of Florence Yahoo Research! and Cornell University
Florence Ithaca, NY

Italy USA

Alan F. Blackwell Sara Bouchenak
University of Cambridge University of Grenoble | — INRIA
Cambridge Grenoble

UK France

Carlos Blanco Luc Bouganim

University of Castilla-La Mancha INRIA Paris-Rocquencourt
Ciudad Real Le Chesnay Cedex

Spain France

Marina Blanton Nozha Boujemaa
University of Notre Dame INRIA Paris-Rocquencourt
Notre Dame, IN Le Chesnay Cedex

USA France

List of Contributor_

XXiX

Shawn Bowers

University of California-Davis
Davis, CA

USA

Stéphane Bressan

National University of Singapore
Singapore

Singapore

Martin Breunig
University of Osnabrueck
Osnabrueck

Germany

Scott A. Bridwell
University of Utah
Salt Lake City, UT
USA

Thomas Brinkhoff

Institute for Applied Photogrammetry and
Geoinformatics (IAPG)

Oldenburg

Germany

Andrei Broder
Yahoo! Research
Santa Clara, CA
USA

Nicolas Bruno
Microsoft Corporation
Redmond, WA

USA

Francois Bry
University of Munich
Munich

Germany

Yingyi Bu

Chinese University of Hong Kong
Hong Kong

China

Alejandro Buchmann

Darmstadt University of Technology
Darmstadt

Germany

Chiranjeeb Buragohain
Amazon.com

Seattle, WA

USA

Thorsten Biiring
Ludwig-Maximilians-University Munich
Munich

Germany

Benjamin Bustos

Department of Computer Science
University of Chile

Santiago

Chile

David Buttler

Lawrence Livermore National Laboratory
Livermore, CA

USA

Yanli Cai

Shanghai Jiao Tong University
Shanghai

China

Guadalupe Canahuate
The Ohio State University
Columbus, OH

USA

K. Selcuk Candan
Arizona State University
Tempe, AZ

USA

Turkmen Canli

University of lllinois at Chicago
Chicago, IL

USA

XXX

List of Contributors

Alan Cannon
Napier University
Edinburgh

UK

Cornelia Caragea
lowa State University
Ames, IA

USA

Barbara Carminati
University of Insubria
Varese

Italy

Michael W. Carroll

Villanova University School of Law
Villanova, PA

USA

Ben Carterette

University of Massachusetts Amherst
Amherst, MA

USA

Marco A. Casanova

Pontifical Catholic University of Rio de Janeiro
Rio de Janeiro

Brazil

Giuseppe Castagna

C.N.R.S. and University Paris 7
Paris

France

Tiziana Catarci
University of Rome
Rome

Italy

James Caverlee
Texas A&M University
College Station, TX
USA

Emmanuel Cecchet
EPFL

Lausanne
Switzerland

Wojciech Cellary

Poznan University of Economics
Poznan

Poland

Michal Ceresna

Lixto Software GmbH
Vienna

Austria

Ugur Cetintemel
Brown University
Providence, RI
USA

Soumen Chakrabarti

Indian Institute of Technology of Bombay

Mumbai
India

Don Chamberlin

IBM Almaden Research Center
San Jose, CA

USA

Allen Chan

IBM Toronto Software Lab
Markham, ON

Canada

Chee Yong Chan

National University of Singapore
Singapore

Singapore

K. Mani Chandy

California Institute of Technology
Pasadena, CA

USA

Edward Y. Chang
Google Research
Mountain View, CA
USA

Kevin C. Chang

University of lllinois at Urbana-Champaign

Urbana, IL
USA

List of Contributor_

XXXi

Surajit Chaudhuri
Microsoft Research
Redmond, WA
USA

Elizabeth S. Chen

Partners HealthCareSystem
Boston, MA

USA

James L. Chen

University of lllinois at Chicago
Chicago, IL

USA

Jinjun Chen

Swinburne University of Technology
Melbourne, VIC

Australia

Lei Chen

Hong Kong University of Science and Technology
Hong Kong

China

Peter P. Chen

Louisiana State University
Baton Rouge, LA

USA

Hong Cheng

University of lllinois at Urbana-Champaign
Urbana, IL

USA

Chinese University of Hong Kong

Hong Kong

China

Reynold Cheng

The University of Hong Kong
Hong Kong

China

Vivying S. Y. Cheng

Hong Kong University of Science and Technology
(HKUST)

Hong Kong

China

InduShobha N. Chengalur-Smith
University at Albany - SUNY
Albany, NY

USA

Mitch Cherniack
Brandeis University
Wattham, MA

USA

Yun Chi

NEC Laboratories America
Cupertino, CA

USA

Rada Chirkova

North Carolina State University
Raleigh, NC

USA

Jan Chomicki

State University of New York at Buffalo
Buffalo, NY

USA

Stephanie Chow

University of Ontario Institute of Technology (UOIT)

Oshawa, ON
Canada

Vassilis Christophides
University of Crete
Heraklion

Greece

Panos K. Chrysanthis
University of Pittsburgh
Pittsburgh, PA

USA

Paolo Ciaccia
University of Bologna
Bologna

Italy

John Cieslewicz
Columbia University
New York, NY

USA

XXXii

List of Contributors

Gianluigi Ciocca

University of Milano-Bicocca
Milan

Italy

Eugene Clark

Harvard Medical School
Boston, MA

USA

Charles L. A. Clarke
University of Waterloo
Waterloo, ON

Canada

Eliseo Clementini
University of L'Aguila
L'Aguila

Italy

Chris Clifton
Purdue University
West Lafayette, IN
USA

Edith Cohen

AT&T Labs-Research
Florham Park, NJ
USA

Sara Cohen

The Hebrew University of Jerusalem

Jerusalem
Israel

Sarah Cohen-Boulakia
University of Pennsylvania
Philadelphia, PA

USA

Carlo Combi
University of Verona
Verona

Italy

Mariano P. Consens
University of Toronto
Toronto, ON

Canada

Dianne Cook

lowa State University
Ames, IA

USA

Graham Cormode
AT&T Labs-Research
Florham Park, NJ
USA

Antonio Corral
University of Almeria
Almeria

Spain

Maria Francesca Costabile
University of Bari

Bari

Italy

Nick Craswell

Microsoft Research Cambridge
Cambridge

UK

Fabio Crestani
University of Lugano
Lugano

Switzerland

Marco Antonio Cristo
FUCAPI

Manaus

Brazil

Maxime Crochemore
King’s College London
London

UK

University of Paris-East
Paris

France

Matthew G. Crowson
University of lllinois at Chicago
Chicago, IL

USA

List of Contributor_

XXXiii

Michel Crucianu

National Conservatory of Arts and Crafts

Paris
France

Philippe Cudré-Mauroux

Massachussetts Institute of Technology

Cambridge, MA
USA

Francisco Curbera

IBM T.J. Watson Research Center
Hawthorne, NY

USA

Peter Dadam
University of Ulm
Ulm

Germany

Mehmet M. Dalkili¢
Indiana University
Bloomington, IN
USA

Nilesh Dalvi
Yahoo! Research
Santa Clara, CA
USA

Manoranjan Dash

Nanyang Technological University
Singapore

Singapore

Anwitaman Datta

Nanyang Technological University
Singapore

Singapore

lan Davidson

University of California-Davis
Davis, CA

USA

Antonios Deligiannakis
University of Athens
Athens

Greece

Alex Delis
University of Athens
Athens

Greece

Alan Demers
Cornell University
Ithaca, NY

USA

Ke Deng

University of Queensland
Brisbane, OLD

Australia

Amol Deshpande
University of Maryland
College Park, MD

USA

Zoran Despotovic

NTT DoCoMo Communications Laboratories Europe
Munich

Germany

Alin Deutsch

University of California-San Diego
La Jolla, CA

USA

Yanlei Diao

University of Massachusetts
Ambherst, MA

USA

Suzanne W. Dietrich
Arizona State University
Phoenix, AZ

USA

Nevenka Dimitrova
Philips Research
Eindhoven

The Netherlands

Bolin Ding

University of lllinois at Urbana-Champaign
Champaign, IL

USA

XXXV

tof Contributors

Chris Ding

University of Texas at Arlington
Arlington, TX

USA

Alan Dix

Lancaster University
Lancaster

UK

Hong-Hai Do
SAP AG
Dresden
Germany

Gillian Dobbie
University of Auckland
Auckland

New Zealand

Alin Dobra
University of Florida
Gainesville, FL

USA

Vlastislav Dohnal
Masaryk University
Brno

Czech Republic

Mario Doller
University of Passau
Passau

Germany

Carlotta Domeniconi
George Mason University
Fairfax, VA

USA

Josep Domingo-Ferrer
Universitat Rovira i Virgili
Tarragona

Spain

Guozhu Dong

Wright State University
Dayton, OH

USA

Xin Luna Dong
AT&T Labs-Research
Florham Park, NJ
USA

Chitra Dorai

IBM T. J. Watson Research Center

Hawthorne, NY
USA

Zhicheng Dou
Nankai University
Tianjin

China

Yang Du

Northeastern University
Boston, MA

USA

Marlon Dumas
University of Tartu
Tartu

Estonia

Susan Dumais
Microsoft Research
Redmond, WA
USA

Schahram Dustdar

Technical University of Vienna
Vienna

Austria

Curtis Dyreson

Utah State University
Logan, UT

USA

Todd Eavis
Concordia University
Montreal, QC
Canada

Johann Eder
University of Vienna
Vienna

Austria

List of Contributor_

XXXV

Ibrahim Abu El-Khair
Minia University
Minia

Egypt

Ahmed K. ElImagarmid
Purdue University
West Lafayette, IN

USA

Sameh Elnikety
Microsoft Research
Cambridge

UK

David W. Embley
Brigham Young University
Provo, UT

USA

Vincent Englebert
University of Namur
Namur

Belgium

AnnMarie Ericsson
University of Skovde
Skovde

Sweden

Martin Ester

Simon Fraser University
Burnaby, BC

Canada

Opher Etzion

IBM Research Labs-Haifa
Haifa

Israel

Patrick Eugster
Purdue University
West Lafayette, IN
USA

Ronald Fagin

IBM Almaden Research Center
San Jose, CA

USA

Hui Fang

University of Delaware
Newark, DE

USA

Wei Fan

IBM T.J. Watson Research
Hawthorne, NY

USA

Wenfei Fan

University of Edinburgh
Edinburgh

UK

Alan Fekete
University of Sydney
Sydney, NSW
Australia

Jean-Daniel Fekete

INRIA, LRI University Paris Sud
Orsay Cedex

France

Pascal Felber
University of Neuchatel
Neuchatel

Switzerland

Paolino Di Felice
University of L'Aguila
L'Aguila

Italy

Hakan Ferhatosmanoglu
The Ohio State University
Columbus, OH

USA

Eduardo B. Fernandez
Florida Atlantic University
Boca Raton, FL

USA

Eduardo Fernandez-Medina
University of Castilla-La Mancha
Ciudad Real

Spain

tof Contributors

Paolo Ferragina
University of Pisa
Pisa
Italy

Elena Ferrari
University of Insubria
Varese

Italy

Dennis Fetterly
Microsoft Research
Mountain View, CA
USA

Stephen E. Fienberg
Carnegie Mellon University
Pittsburgh, PA

USA

Peter M. Fischer
ETH Zurich
Zurich
Switzerland

Simone Fischer-Hiibner
Karlstad University
Karlstad

Sweden

Leila De Floriani
University of Genova
Genova

Italy

Christian Fluhr

CEA LIST, Fontenay-aux
Roses

France

Greg Flurry

IBM SOA Advanced Technology

Armonk, NY
USA

Edward A. Fox
Virginia Tech
Blacksburg, VA
USA

Chiara Francalanci
Politecnico di Milano University
Milan
Italy

Andrew U. Frank

Vienna University of Technology

Vienna
Austria

Michael J. Franklin
University of California-Berkeley
Berkeley, CA
USA

Keir Fraser

University of Cambridge
Cambridge

UK

Juliana Freire
University of Utah
Salt Lake City, UT
USA

Elias Frentzos
University of Piraeus
Piraeus

Greece

Johann-Christoph Freytag
Humboldt University of Berlin
Berlin

Germany

Ophir Frieder
Georgetown University
Washington, DC

USA

Oliver Frolich

Lixto Software GmbH
Vienna

Austria

Tim Furche
University of Munich
Munich

Germany

List of Contributor_

XXXVii

Ariel Fuxman
Microsoft Research
Mountain View, CA
USA

Ada Wai-Chee Fu

Hong Kong University of Science and Technology
Hong Kong

China

Silvia Gabrielli

Bruno Kessler Foundation
Trento

Italy

Isabella Gagliardi

National Research Council (CNR)
Milan

Italy

Avigdor Gal

Technion - Israel Institute of Technology
Haifa

Israel

Wojciech Galuba

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Lausanne

Switzerland

Johann Gamper

Free University of Bozen-Bolzano
Bolzano

Italy

Vijay Gandhi
University of Minnesota
Minneapolis, MN

USA

Venkatesh Ganti
Microsoft Research
Redmond, WA
USA

Dengfeng Gao

IBM Silicon Valley Lab
San Jose, CA

USA

Like Gao

Teradata Corporation
San Diego, CA

USA

Wei Gao

The Chinese University of Hong Kong
Hong Kong

China

Minos Garofalakis
Technical University of Crete
Chania

Greece

Wolfgang Gatterbauer
University of Washington
Seattle, WA

USA

Bugra Gedik

IBM T.J. Watson Research Center
Hawthorne, NY

USA

Floris Geerts
University of Edinburgh
Edinburgh

UK

Johannes Gehrke
Cornell University
Ithaca, NY

USA

Betsy George
University of Minnesota
Minneapolis, MN

USA

Lawrence Gerstley
PSMI Consulting
San Francisco, CA
USA

Michael Gertz

University of California - Davis
Davis, CA

USA

tof Contributors

Giorgio Ghelli
University of Pisa
Pisa

Italy

Gabriel Ghinita

National University of Singapore
Singapore

Singapore

Phillip B. Gibbons
Intel Research
Pittsburgh, PA
USA

Sarunas Girdzijauskas
EPFL

Lausanne

Switzerland

Fausto Giunchiglia
University of Trento
Trento

Italy

Kazuo Goda

The University of Tokyo
Tokyo

Japan

Max Goebel

Vienna University of Technology
Vienna

Austria

Bart Goethals
University of Antwerp
Antwerp

Belgium

Martin Gogolla
University of Bremen
Bremen

Germany

Aniruddha Gokhale
Vanderbilt University
Nashville, TN

USA

Lukasz Golab

AT&T Labs-Research
Florham Park, NJ
USA

Matteo Golfarelli
University of Bologna
Bologna

Italy

Michael F. Goodchild

University of California-Santa Barbara

Santa Barbara, CA
USA

Georg Gottlob
Oxford University
Oxford

UK

Valerie Gouet-Brunet
CNAM Paris

Paris

France

Ramesh Govindan

University of Southern California
Los Angeles, CA

USA

Goetz Graefe
Hewlett-Packard Laboratories
Palo Alto, CA

USA

Gosta Grahne
Concordia University
Montreal, QC
Canada

Fabio Grandi
University of Bologna
Bologna

Italy

Tyrone Grandison

IBM Almaden Research Center
San Jose, CA

USA

List of Contributor_

XXXIX

Peter M. D. Gray
University of Aberdeen
Aberdeen

UK

Todd J. Green

University of Pennsylvania
Philadelphia, PA

USA

Georges Grinstein
University of Massachusetts
Lowell, MA

USA

Tom Gruber
RealTravel
Emerald Hills, CA
USA

Le Gruenwald

The University of Oklahoma
Norman, OK

USA

Torsten Grust
University of Tlbingen
Tlbingen

Germany

Ralf Hartmut Giiting
University of Hagen
Hagen

Germany

Dirk Van Gucht
Indiana University
Bloomington, IN
USA

Carlos Guestrin

Carnegie Mellon University
Pittsburgh, PA

USA

Dimitrios Gunopulos

University of California-Riverside
Riverside, CA

USA

University of Athens

Athens

Greece

Amarnath Gupta

University of California-San Diego
La Jolla, CA

USA

Himanshu Gupta
Stony Brook University
Stony Brook, NY

USA

Cathal Gurrin

Dublin City University
Dublin

Ireland

Marc Gyssens

University of Hasselt & Transnational University of
Limburg

Diepenbeek

Belgium

Karl Hahn
BMW AG
Munich
Germany

Jean-Luc Hainaut
University of Namur
Namur

Belgium

Alon Halevy
Google Inc.
Mountain View, CA
USA

Maria Halkidi
University of Piraeus
Piraeus

Greece

Terry Halpin
Neumont University
South Jordan, UT
USA

Jiawei Han

University of lllinois at Urbana-Champaign
Urbana, IL

USA

x|

List of Contributors

Alan Hanjalic

Delft University of Technology
Delft

The Netherlands

David Hansen

The Australian e-Health Research Centre
Brisbane, QLD

Australia

Jorgen Hansson

Carnegie Mellon University
Pittsburgh, PA

USA

Nikos Hardavellas
Carnegie Mellon University
Pittsburgh, PA

USA

Theo Harder

University of Kaiserslautern
Kaiserslautern

Germany

David Harel

The Weizmann Institute of Science
Rehovot

Israel

Jayant R. Haritsa

Indian Institute of Science
Bangalore

India

Stavros Harizopoulos
HP Labs

Palo Alto, CA

USA

Per F. V. Hasle
Aalborg University
Aalborg

Denmark

Jordan T. Hastings

University of California-Santa Barbara
Santa Barbara, CA

USA

Alexander Hauptmann
Carnegie Mellon University
Pittsburgh, PA

USA

Helwig Hauser
University of Bergen
Bergen

Norway

Ben He

University of Glasgow
Glasgow

UK

Pat Helland
Microsoft Corporation
Redmond, WA

USA

Joseph M. Hellerstein
University of California-Berkeley
Berkeley, CA

USA

Jean Henrard
University of Namur
Namur

Belgium

John Herring
Oracle Corporation
Nashua, NH

USA

Nicolas Hervé

INRIA Paris-Rocquencourt
Le Chesnay Cedex

France

Marcus Herzog

Vienna University of Technology
Vienna

Austria

Lixto Software GmbH

Vienna

Austria

List of Contributor_

xli

Jean-Marc Hick
University of Namur
Namur

Belgium

Jan Hidders
University of Antwerp
Antwerpen

Belgium

Djoerd Hiemstra
University of Twente
Enschede

The Netherlands

Linda L. Hill

University of California-Santa Barbara
Santa Barbara, CA

USA

Alexander Hinneburg
Martin-Luther-University Halle-Wittenberg
Halle/Saale

Germany

Hans Hinterberger
ETH Zurich

Zurich

Switzerland

Erik Hoel

Environmental Systems Research Institute
Redlands, CA

USA

Vasant Honavar
lowa State University
Ames, |A

USA

Mingsheng Hong
Cornell University
Ithaca, NY

USA

Haruo Hosoya

The University of Tokyo
Tokyo

Japan

Wynne Hsu

National University of Singapore
Singapore

Singapore

Jian Hu

Microsoft Research Asia
Haidian

China

Kien A. Hua

University of Central Florida
Orlando, FL

USA

Xian-Sheng Hua
Microsoft Research Asia
Beijing

China

Jun Huan
University of Kansas
Lawrence, KS

USA

Haoda Huang
Microsoft Research Asia
Beijing

China

Michael Huggett

University of British Columbia
Vancouver, BC

Canada

Patrick C. K. Hung

University of Ontario Institute of Technology (UOIT)
Oshawa, ON

Canada

Jeong-Hyon Hwang
Brown University
Providence, RI

USA

Ichiro Ide

Nagoya University
Nagoya

Japan

xlii

List of Contributors

Alfred Inselberg
Tel Aviv University
Tel Aviv

Israel

Yannis loannidis
University of Athens
Athens

Greece

Panagiotis G. Ipeirotis
New York University
New York, NY

USA

Zachary lves

University of Pennsylvania
Philadelphia, PA

USA

Hans-Arno Jacobsen
University of Toronto
Toronto, ON

Canada

H. V. Jagadish
University of Michigan
Ann Arbor, Ml

USA

Alejandro Jaimes
Telefonica R&D
Madrid

Spain

Ramesh Jain

University of California-Irvine
Irvine, CA

USA

Sushil Jajodia

George Mason University
Fairfax, VA

USA

Greg Janée

University of California-Santa Barbara

Santa Barbara, CA
USA

Kalervo Jarvelin
University of Tampere
Tampere

Finland

Christian S. Jensen
Aalborg University
Aalborg

Denmark

Eric C. Jensen
Twitter, Inc.

San Fransisco, CA
USA

Manfred A. Jeusfeld
Tilburg University
Tilburg

The Netherlands

Heng Ji

New York University
New York, NY

USA

Ricardo Jimenez-Peris
Universidad Politecnica de Madrid
Madrid

Spain

Jiashun Jin

Carnegie Mellon University
Pittsburgh, PA

USA

Ryan Johnson

Carnegie Mellon University
Pittsburg, PA

USA

Theodore Johnson
AT&T Labs Research
Florham Park, NJ
USA

Christopher B. Jones
Cardiff University
Cardiff

UK

List of Contributor_

xliii

Rosie Jones
Yahoo! Research
Burbank, CA
USA

James B. D. Joshi
University of Pittsburgh
Pittsburgh, PA

USA

Vanja Josifovski
Uppsala University
Uppsala

Sweden

Marko Junkkari
University of Tampere
Tampere

Finland

Jan Jurjens

The Open University
Buckinghamshire
UK

Mouna Kacimi

Max-Planck Institute for Informatics

Saarbrucken
Germany

Tamer Kahveci
University of Florida
Gainesville, FL

USA

Panos Kalnis

National University of Singapore
Singapore

Singapore

Jaap Kamps

University of Amsterdam
Amsterdam

The Netherlands

James Kang

University of Minnesota
Minneapolis, MN

USA

Carl-Christian Kanne
University of Mannheim
Mannheim

Germany

Aman Kansal
Microsoft Research
Redmond, WA
USA

Murat Kantarcioglu
University of Texas at Dallas
Dallas, TX

USA

George Karabatis

University of Maryland Baltimore County (UMBC)
Baltimore, MD

USA

Grigoris Karvounarakis
University of Pennsylvania
Philadelphia, PA

USA

George Karypis
University of Minnesota
Minneapolis, MN

USA

Vipul Kashyap

Partners Healthcare System
Wellesley, MA

USA

Yannis Katsis

University of California-San Diego
La Jolla, CA

USA

Raghav Kaushik
Microsoft Research
Redmond, WA
USA

Gabriella Kazai

Microsoft Research Cambridge
Cambridge

UK

xliv

List of Contributors

Daniel A. Keim
University of Konstanz
Konstanz

Germany

Jaana Kekaldinen
University of Tampere
Tampere

Finland

Anastasios Kementsietsidis

IBM T.J. Watson Research Center
Hawthorne, NY

USA

Bettina Kemme
McGill University
Montreal, QC
Canada

Jessie Kennedy
Napier University
Edinburgh

UK

Vijay Khatri
Indiana University
Bloomington, IN
USA

Ashfaq Khokhar

University of lllinois at Chicago
Chicago, IL

USA

Daniel Kifer
Yahoo! Research
Santa Clara, CA
USA

Stephen Kimani

CSIRO Tasmanian ICT Centre
Hobart, TAS

Australia

Craig A. Knoblock

University of Southern California
Marina del Rey, CA

USA

Christoph Koch
Cornell University
Ithaca, NY

USA

Solmaz Kolahi

University of British Columbia
Vancouver, BC

Canada

George Kollios
Boston University
Boston, MA

USA

Poon Wei Koot

Nanyang Technological University
Singapore

Singapore

Flip R. Korn

AT&T Labs-Research
Florham Park, NJ
USA

Harald Kosch
University of Passau
Passau

Germany

Cartik R. Kothari

University of British Columbia
Vancouver, BC

Canada

Yannis Kotidis

Athens University of Economics and Business

Athens
Greece

Spyros Kotoulas

VU University Amsterdam
Amsterdam

The Netherlands

Manolis Koubarakis
University of Athens
Athens
Greece

List of Contributor_

xlv

Konstantinos Koutroumbas

Institute for Space Applications and Remote Sensing
Athens

Greece

Bernd J. Kramer
University of Hagen
Hagen

Germany

Peer Krogerand

Ludwig-Maximilians University of Munich
Munich

Germany

Werner Kriechbaum
IBM Development Lab
Boblingen

Germany

Hans-Peter Kriegel
Ludwig-Maximilians-University
Munich

Germany

Rajasekar Krishnamurthy
IBM Almaden Research Center
San Jose, CA

USA

Ravi Kumar
Yahoo Research
Santa Clara, CA
USA

Nicholas Kushmerick
Decho Corporation
Seattle, WA

USA

Mary Laarsgard

University of California-Santa Barbara
Santa Barbara, CA

USA

Alexandros Labrinidis
University of Pittsburgh
Pittsburgh, PA

USA

Zoé Lacroix

Arizona State University
Tempe, AZ

USA

Alberto H. F. Laender

Federal University of Minas Gerais
Belo Horizonte

Brazil

Bibudh Lahiri

lowa State University
Ames, |1A

USA

Laks V. S. Lakshmanan
University of British Columbia
Vancouver, BC

Canada

Mounia Lalmas
University of Glasgow
Glasgow

UK

Lea Landucci
University of Florence
Florence

Italy

Birger Larsen

Royal School of Library and Information Science
Copenhagen

Denmark

Per-Ake Larson
Microsoft Corporation
Redmond, WA

USA

Robert Laurini
LIRIS, INSA-Lyon
Lyon

France

Georg Lausen
University of Freiburg
Freiburg

Germany

xlvi

List of Contributors

Jens Lechtenborger
University of Milnster
Mdinster

Germany

Thierry Lecroq
University of Rouen
Rouen

France

Dongwon Lee

The Pennsylvania State University
University Park, PA

USA

Yang W. Lee
Northeastern University
Boston, MA

USA

Pieter De Leenheer

Vrije Universiteit Brussel, Collibra nv
Brussels

Belgium

Wolfgang Lehner

Dresden University of Technology
Dresden

Germany

Ronny Lempel
Yahoo! Research
Haifa

Israel

Kristina Lerman

University of Southern California
Marina del Rey, CA

USA

UIf Leser

Humboldt University of Berlin
Berlin

Germany

Carson Kai-Sang Leung
University of Manitoba
Winnipeg, MB

Canada

Stefano Levialdi

Sapienza University of Rome
Rome

Italy

Brian Levine

University of Massachusetts
Ambherst, MA

USA

Changgqing Li
Duke University
Durham, NC
USA

Chen Li

University of California-Irvine
Irvine, CA

USA

Chengkai Li

University of Texas at Arlington
Arlington, TX

USA

Hua Li

Microsoft Research Asia
Beijing

China

Jinyan Li

Nanyang Technological University

Singapore
Singapore

Ninghui Li
Purdue University
West Lafayette, IN
USA

Ping Li

Cornell University
Ithaca, NY

USA

Qing Li

City University of Hong Kong
Hong Kong

China

List of Contributor_

xlvii

Xue Li

The University of Queensland
Brisbane, QLD

Australia

Ying Li

IBM T.J. Watson Research Center
Hawthorne, NY

USA

Yunyao Li

IBM Almaden Research Center
San Jose, CA

USA

Leonid Libkin
University of Edinburgh
Edinburgh

UK

Sam S Lightstone
IBM, Canada Ltd.
Markham, ON
Canada

Jimmy Lin

University of Maryland
College Park, MD

USA

Tsau Young (T.Y.) Lin
San Jose State University

San Jose, CA
USA
Xuemin Lin

University of New South Wales
Sydney, NSW
Australia

Tok Wang Ling

National University of Singapore
Singapore

Singapore

Bing Liu

University of lllinois at Chicago
Chicago, IL

USA

Danzhou Liu

University of Central Florida
Orlando, FL

USA

Guimei Liu

National University of Singapore
Singapore

Singapore

Huan Liu

Arizona State University
Tempe, AZ

USA

Jinze Liu

University of Kentucky
Lexington, KY

USA

Ning Liu

Microsoft Research Asia
Beijing

China

Qing Liu

CSIRO Tasmanian ICT Centre
Hobart, TAS

Australia

Vebjorn Ljosa

Broad Institute of MIT and Harvard
Cambridge, MA

USA

David Lomet
Microsoft Research
Redmond, WA
USA

Phillip Lord
Newcastle University
Newcastle-Upon-Tyne
UK

Nikos A. Lorentzos

Agricultural University of Athens
Athens

Greece

xlviii

List of Contributors

Lie Lu

Microsoft Research Asia
Beijing

China

Bertram Ludascher
University of California-Davis
Davis, CA

USA

Yan Luo

University of lllinois at Chicago
Chicago, IL

USA

Yves A. Lussier
University of Chicago
Chicago, IL

USA

Craig MacDonald
University of Glasgow
Glasgow

UK

Ashwin Machanavajjhala
Cornell University

Ithaca, NY

USA

Sam Madden

Massachussetts Institute of Technology
Cambridge, MA

USA

Paola Magillo
University of Genova
Genova

Italy

David Maier

Portland State University
Portland, OR

USA

Paul Maier

Technical University of Munich
Munich

Germany

Nikos Mamoulis
University of Hong Kong
Hong Kong

China

Stefan Manegold
CwiI

Amsterdam

The Netherlands

Murali Mani

Worcester Polytechnic Institute
Worcester, MA

USA

Serge Mankovski
CA Labs, CA Inc.
Thornhill, ON
Canada

loana Manolescu

INRIA, Saclay—ile-de-France
Orsay

France

Yannis Manolopoulos

Aristotle University of Thessaloniki
Thessaloniki

Greece

Svetlana Mansmann
University of Konstanz
Konstanz

Germany

Florian Mansmann
University of Konstanz
Konstanz

Germany

Shahar Maoz

The Weizmann Institute of Science
Rehovot

Israel

Amélie Marian
Rutgers University
Piscataway, NJ
USA

List of Contributor_

xlix

Volker Markl

IBM Almaden Research Center
San Jose, CA

USA

Maria De Marsico

Sapienza University of Rome
Rome

Italy

David Martin
SRI International
Menlo Park, CA
USA

Maria Vanina Martinez
University of Maryland
College Park, MD

USA

Maristella Matera
Polytechnico di Milano
Milan

Italy

Marta Mattoso

Federal University of Rio de Janeiro

Rio de Janeiro
Brazil

Andrea Maurino
University of Milan Bicocca
Milan

Italy

Jan Matuszynski
Linkoping University
Linkdping

Sweden

Jose-Norberto Mazon
University of Alicante
Alicante

Spain

Kevin S. McCurley
Google Research
Mountain View, CA
USA

Andrew McGregor
Microsoft Research
Mountain View, CA
USA

Timothy McPhillips
University of California-Davis
Davis, CA

USA

Brahim Medjahed

The University of Michigan-Dearborn
Dearborn, Ml

USA

Carlo Meghini

The Italian National Research Council
Pisa

Italy

Tao Mei

Microsoft Research Asia
Beijing

China

Jonas Mellin
University of Skovde
Skovde

Sweden

Massimo Melucci
University of Padua
Padua

Italy

Weiyi Meng

State University of New York at Binghamton
Binghamton, NY

USA

Ahmed Metwally
Google Inc.
Mountain View, CA
USA

Gerome Miklau

University of Massachusetts
Amherst, MA

USA

List of Contributors

Harvey J. Miller
University of Utah
Salt Lake City, UT
USA

Renée J. Miller
University of Toronto
Toronto, ON

Canada

Tova Milo

Tel Aviv University
Tel Aviv

Israel

Prasenjit Mitra

The Pennsylvania State University
University Park, PA

USA

Michael Mitzenmacher
Harvard University
Boston, MA

USA

Mukesh Mohania

IBM India Research Lab
New Delhi

India

Mohamed F. Mokbel
University of Minnesota
Minneapolis, MN

USA

Angelo Montanari
University of Udine
Udine

Italy

Reagan W. Moore

University of California - San Diego
La Jolla, CA

USA

Konstantinos Morfonios
University of Athens
Athens

Greece

Peter Mork

The MITRE Corporation
McLean, VA

USA

Mirella M. Moro

Federal University of Rio Grande do Sol
Porto Alegre

Brazil

Edleno Silva de Moura

Federal University of Amazonas
Manaus

Brazil

Kyriakos Mouratidis

Singapore Management University
Singapore

Singapore

Kamesh Munagala
Duke University
Durham, NC

USA

Ethan V. Munson

University of Wisconsin-Milwaukee
Milwaukee, WI

USA

Shawn Murphy

Massachusetts General Hospital
Boston, MA

USA

John Mylopoulos
University of Toronto
Toronto, ON

Canada

Frank Nack

University of Amsterdam
Amsterdam

The Netherlands

Marc Najork
Microsoft Research
Mountain View, CA
USA

List of Contributor_

Ullas Nambiar

IBM India Research Lab
New Delhi

India

Alexandros Nanopoulos
Aristotle University
Thessaloniki

Greece

Vivek Narasayya
Microsoft Corporation
Redmond, WA

USA

Mario A. Nascimento
University of Alberta
Edmonton, AB
Canada

Alan Nash
Aleph One LLC
La Jolla, CA
USA

Harald Naumann

Vienna University of Technology
Vienna

Austria

Gonzalo Navarro
University of Chile
Santiago

Chile

Wolfgang NejdlI
University of Hannover
Hannover

Germany

Thomas Neumann

Max-Planck Institute for Informatics
Saarbriicken

Germany

Frank Neven

Hasselt University and Transnational University of
Limburg

Diepenbeek

Belgium

Chong-Wah Ngo

City University of Hong Kong
Hong Kong

China

Peter Niblett

IBM United Kingdom Limited
Winchester

UK

Naoko Nitta
Osaka University
Osaka

Japan

Igor Nitto
University of Pisa
Pisa

Italy

Cheng Niu

Microsoft Research Asia
Beijing

China

Vilém Novak
University of Ostrava
Ostrava

Czech Republic

Chimezie Ogbuji

Cleveland Clinic Foundation
Cleveland, OH

USA

Peter @hrstrom
Aalborg University
Aalborg

Denmark

Christine M. O'Keefe

CSIRO Preventative Health National Research
Flagship

Acton, ACT

Australia

Patrick O'Neil

University of Massachusetts
Boston, MA

USA

List of Contributors

ladh Ounis
University of Glasgow
Glasgow

UK

Mourad Ouzzani
Purdue University
West Lafayette, IN
USA

Fatma Ozcan

IBM Almaden Research Center

San Jose, CA
USA

M. Tamer Ozsu

University of Waterloo

Waterloo, ON
Canada

Esther Pacitti
University of Nantes
Nantes

France

Chris D. Paice
Lancaster University
Lancaster

UK

Noél De Palma
INPG - INRIA
Grenoble
France

Nathaniel Palmer

Workflow Management Coalition

Hingham, MA
USA

Biswanath Panda
Cornell University
Ithaca, NY

USA

Ippokratis Pandis

Carnegie Mellon University

Pittsburgh, PA
USA

Dimitris Papadias

Hong Kong University of Science and Technology

Hong Kong
China

Spiros Papadimitriou

IBM T.J. Watson Research Center
Hawthorne, NY

USA

Apostolos N. Papadopoulos
Aristotle University
Thessaloniki

Greece

Yannis Papakonstantinou
University of California-San Diego
La Jolla, CA

USA

Jan Paredaens
University of Antwerp
Antwerpen

Belgium

Christine Parent
University of Lausanne
Lausanne

Switzerland

Gabriella Pasi

University of Milano-Bicocca
Milan

Italy

Chintan Patel
Columbia University
New York, NY

USA

Jignesh M. Patel

University of Wisconsin-Madison
Madison, WI

USA

Marta Patifno-Martinez
Universidad Polytecnica de Madrid
Madrid

Spain

List of Contributor_

Norman W. Paton

University of Manchester

Manchester
UK

Cesare Pautasso
University of Lugano
Lugano

Switzerland

Torben Bach Pedersen
Aalborg University
Aalborg

Denmark

Fernando Pedone
University of Lugano
Lugano

Switzerland

Jovan Pehcevski

INRIA Paris-Rocquencourt

Le Chesnay Cedex
France

Jian Pei

Simon Fraser University
Burnaby, BC

Canada

Ronald Peikert
ETH Zurich
Zurich
Switzerland

Mor Peleg
University of Haifa
Haifa

Israel

Fuchun Peng
Yahoo! Inc.
Sunnyvale, CA
USA

Liam Peyton
University of Ottawa
Ottawa, ON

Canada

Mario Piattini

University of Castilla-La Mancha
Ciudad Real

Spain

Benjamin C. Pierce
University of Pennsylvania
Philadelphia, PA

USA

Karen Pinel-Sauvagnat
IRIT-SIG

Toulouse Cedex

France

Leo L. Pipino

University of Massachusetts
Lowell, MA

USA

Peter Pirolli

Palo Alto Research Center
Palo Alto, CA

USA

Evaggelia Pitoura
University of loannina
loannina

Greece

Benjamin Piwowarski
University of Glasgow
Glasgow

UK

Vassilis Plachouras
Yahoo! Research
Barcelona

Spain

Catherine Plaisant
University of Maryland
College Park, MD

USA

Claudia Plant
University of Munich
Munich

Germany

liv

List of Contributors

Christian Platzer

Technical University of Vienna
Vienna

Austria

Dimitris Plexousakis

Foundation for Research and Technology-Hellas

(FORTH)
Heraklion
Greece

Neoklis Polyzotis

University of California Santa Cruz
Santa Cruz, CA

USA

Raymond K. Pon

University of California - Los Angeles
Los Angeles, CA

USA

Lucian Popa

IBM Almaden Research Center
San Jose, CA

USA

Alexandra Poulovassilis
University of London
London

UK

Sunil Prabhakar
Purdue University
West Lafayette, IN
USA

Cecilia M. Procopiuc
AT&T Labs

Florham Park, NJ
USA

Enrico Puppo
University of Genova
Genova

Italy

Ross S. Purves
University of Zurich
Zurich

Switzerland

Vivien Quéma
CNRS, INRIA
Saint-Ismier Cedex
France

Christoph Quix

RWTH Aachen University
Aachen

Germany

Sriram Raghavan

IBM Almaden Research Center
San Jose, CA

USA

Erhard Rahm
University of Leipzig
Leipzig

Germany

Krithi Ramamritham
IIT Bombay

Mumbai

India

Maya Ramanath

Max-Planck Institute for Informatics
Saarbriicken

Germany

Georgina Ramirez

Yahoo! Research Barcelona
Barcelona

Spain

Edie Rasmussen

University of British Columbia
Vancouver, BC

Canada

Indrakshi Ray

Colorado State University
Fort Collins, CO

USA

Diego Reforgiato Recupero
University of Maryland
College Park, MD

USA

List of Contributor_

Colin R. Reeves
Coventry University
Coventry

UK

Payam Refaeilzadeh
Arizona State University
Tempe, AZ

USA

Bernd Reiner

Technical University of Munich
Munich

Germany

Frederick Reiss

IBM Almaden Research Center
San Jose, CA

USA

Harald Reiterer
University of Konstanz
Konstanz

Germany

Matthias Renz

Ludwig Maximillian University of Munich
Munich

Germany

Andreas Reuter

EML Research gGmbH Villa Bosch
Heidelberg

Germany

Technical University Kaiserslautern
Kaiserslautern

Germany

Peter Revesz

University of Nebraska-Lincoln
Lincoln, NE

USA

Mirek Riedewald
Cornell University
Ithaca, NY

USA

Rami Rifaieh

University of California-San Diego
San Diego, CA

USA

Stefanie Rinderle
University of Ulm
Ulm

Germany

Tore Risch
Uppsala University
Uppsala

Sweden

Thomas Rist

University of Applied Sciences
Augsburg

Germany

Stefano Rizzi
University of Bologna
Bologna

Italy

Stephen Robertson

Microsoft Research Cambridge
Cambridge

UK

Roberto A. Rocha

Partners Healthcare System, Inc.
Boston, MA

USA

John F. Roddick
Flinders University
Adelaide, SA
Australia

Thomas Roelleke

Queen Mary University of London
London

UK

Didier Roland
University of Namur
Namur

Belgium

Ivi

List of Contributors

Oscar Romero

Polytechnic University of Catalonia

Barcelona
Spain

Rafael Romero
University of Alicante
Alicante

Spain

Timothy Roscoe
ETH Zurich
Zurich
Switzerland

Kenneth A. Ross
Columbia University
New York, NY

USA

Prasan Roy

Aster Data Systems, Inc.
Redwood City, CA

USA

Yong Rui

Microsoft China R&D Group
Redmond, WA

USA

Dan Russler

Oracle Health Sciences
Redwood Shores, CA
USA

Michael Rys
Microsoft Corporation
Sammamish, WA

USA

Giovanni Maria Sacco
University of Torino
Torino

Italy

Simonas Saltenis
Aalborg University
Aalborg

Denmark

Kenneth Salem
University of Waterloo
Waterloo, ON

Canada

George Samaras
University of Cyprus
Nicosia

Cyprus

Giuseppe Santucci
University of Rome
Roma

Italy

Maria Luisa Sapino
University of Turin
Turin

Italy

Sunita Sarawagi
IIT Bombay
Mumbai

India

Anatol Sargin
University of Augsburg
Augsburg

Germany

Kai-Uwe Sattler

Technical University of llmenau
lImenau

Germany

Monica Scannapieco
University of Rome
Rome

Italy

Matthias Schéafer
University of Konstanz
Konstanz

Germany

Sebastian Schaffert
Salzburg Research
Salzburg

Austria

List of Contributor_

Ivii

Ralf Schenkel

Max-Planck Institute for Informatics
Saarbriicken

Germany

Raimondo Schettini
University of Milano-Bicocca
Milan

Italy

Peter Scheuermann
Northwestern University
Evanston, IL

USA

Ulrich Schiel

Federal University of Campina Grande
Campina Grande

Brazil

Markus Schneider
University of Florida
Gainesville, FL

USA

Marc H. Scholl
University of Konstanz
Konstanz

Germany

Michel Scholl
Cedric-CNAM
Paris

France

Tobias Schreck

Darmstadt University of Technology
Darmstadt

Germany

Michael Schrefl
University of Linz
Linz

Austria

Matthias Schubert
Ludwig-Maximilians-University
Munich

Germany

Heiko Schuldt
University of Basel
Basel

Switzerland

Heidrun Schumann
University of Rostock
Rostock

Germany

Felix Schwagereit

University of Koblenz-Landau
Koblenz

Germany

Nicole Schweikardt

Johann Wolfgang Goethe-University
Frankfurt

Germany

Fabrizio Sebastiani

The Italian National Research Council
Pisa

Italy

Nicu Sebe

University of Amsterdam
Amsterdam

The Netherlands
University of Trento
Trento

Italy

Monica Sebillo
University of Salerno
Salerno

Italy

Thomas Seidl

RWTH Aachen University
Aachen

Germany

Manuel Serrano

University of Castilla - La Mancha
Ciudad Real

Spain

Iviii

List of Contributors

Amnon Shabo (Shvo)
IBM Research Lab-Haifa
Haifa

Israel

Mehul A. Shah
HP Labs

Palo Alto, CA
USA

Nigam Shah
Stanford University
Stanford, CA

USA

Cyrus Shahabi

University of Southern California
Los Angeles, CA

USA

Jayavel Shanmugasundaram
Yahoo Research!

Santa Clara, CA

USA

Marc Shapiro

INRIA Paris-Rocquencourt and LIP6
Paris

France

Mohamed A. Sharaf
University of Toronto
Toronto, ON

Canada

Mehdi Sharifzadeh
Google

Santa Monica, CA
USA

Jayant Sharma
Oracle Corporation
Nashua, NH

USA

Guy Sharon

IBM Research Labs-Haifa
Haifa

Israel

Dennis Shasha
New York University
New York, NY

USA

Carpendale Sheelagh
University of Calgary
Calgary, AB

Canada

Shashi Shekhar
University of Minnesota
Minneapolis, MN

USA

Dou Shen

Microsoft Corporation
Redmond, WA

USA

Heng Tao Shen

The University of Queensland
Brisbane, QLD

Australia

Jialie Shen

Singapore Management University
Singapore

Singapore

Rao Shen
Yahoo!
Sunnyvale, CA
USA

Xuehua Shen
Google, Inc.
Mountain View, CA
USA

Frank Y. Shih

New Jersey Institute of Technology
Newark, NJ

USA

Arie Shoshani

Lawrence Berkeley National Laboratory

Berkeley, CA
USA

List of Contributor_

lix

Pavel Shvaiko
University of Trento
Trento

Italy

Wolf Siberski
University of Hannover
Hannover

Germany

Ronny Siebes

VU University Amsterdam
Amsterdam

The Netherlands

Adam Silberstein

Yahoo! Research Silicon Valley
Santa Clara, CA

USA

Sonia Fernandes Silva
Etruria Telematica Srl
Siena

Italy

Fabrizio Silvestri
ISTI-CNR

Pisa

Italy

Alkis Simitsis

IBM Almaden Research Center
San Jose, CA

USA

Simeon J. Simoff

University of Western Sydney
Sydney, NSW

Australia

Radu Sion

Stony Brook University
Stony Brook, NY

USA

Mike Sips

Stanford University
Stanford, CA

USA

Cristina Sirangelo
University of Edinburgh
Edinburgh

UK

Yannis Sismanis

IBM Almaden Research Center
Almaden, CA

USA

Spiros Skiadopoulos
University of Peloponnese
Tripoli

Greece

Richard T. Snodgrass
University of Arizona
Tucson, AZ

USA

Cees Snoek

University of Amsterdam
Amsterdam

The Netherlands

ll-Yeol Song
Drexel University
Philadelphia, PA
USA

Ruihua Song

Microsoft Research Asia
Beijing

China

Stefano Spaccapietra
EPFL

Lausanne

Switzerland

Greg Speegle
Baylor University
Waco, TX

USA

Padmini Srinivasan
The University of lowa
lowa City, IA

USA

List of Contributors

Venkat Srinivasan
Virginia Tech
Blacksburg, VA
USA

Divesh Srivastava
AT&T Labs-Research
Florham Park, NJ
USA

Steffen Staab

University of Koblenz-Landau
Koblenz

Germany

Maarten van Steen
VU University
Amsterdam

The Netherlands

Constantine Stephanidis

Foundation for Research and Technology - Hellas

(FORTH)
Heraklion
Greece

Robert Stevens
University of Manchester
Manchester

UK

Andreas Stoffel
University of Konstanz
Konstanz

Germany

Michael Stonebraker

Massachusetts Institute of Technology
Cambridge, MA

USA

Umberto Straccia

The Italian National Research Council
Pisa

Italy

Martin J. Strauss
University of Michigan
Ann Arbor, Ml

USA

Diane M. Strong

Worcester Polytechnic Institute
Worcester, MA

USA

Jianwen Su

University of California-Santa Barbara
Santa Barbara, CA

USA

Kazimierz Subieta

Polish-Japanese Institute of Information Technology
Warsaw

Poland

V. S. Subrahmanian
University of Maryland
College Park, MD

USA

Dan Suciu

University of Washington
Seattle, WA

USA

S. Sudarshan

Indian Institute of Technology
Bombay

India

Torsten Suel
Yahoo! Research
Sunnyvale, CA
USA

Jian-Tao Sun

Microsoft Research Asia
Beijing

China

Subhash Suri

University of California-Santa Barbara
Santa Barbara, CA

USA

Stefan Tai

University of Karlsruhe
Karlsruhe

Germany

List of Contributor_

Ixi

Kian-Lee Tan

National University of Singapore
Singapore

Singapore

Pang-Ning Tan

Michigan State University
East Lansing, Ml

USA

Wang-Chiew Tan

University of California-Santa Cruz
Santa Cruz

CA, USA

Letizia Tanca

Politecnico di Milano University
Milan

Italy

Lei Tang

Arizona State University
Tempe, AZ

USA

Wei Tang

Teradata Corporation
El Segundo, CA

USA

Egemen Tanin
University of Melbourne
Melbourne, VIC
Australia

Val Tannen

University of Pennsylvania
Philadelphia, PA

USA

Abdullah Uz Tansel
Baruch College — CUNY
New York, NY

USA

Yufei Tao

Chinese University of Hong Kong
Hong Kong

China

Sandeep Tata

IBM Almaden Research Center
San Jose, CA

USA

Nesime Tatbul
ETH Zurich
Zurich
Switzerland

Christophe Taton
INPG - INRIA
Grenoble

France

Paolo Terenziani
University of Turin
Turin

Italy

Evimaria Terzi

IBM Almaden Research Center
San Jose, CA

USA

Bernhard Thalheim
Christian-Albrechts University Kiel
Kiel

Germany

Martin Theobald
Stanford University
Stanford, CA

USA

Sergios Theodoridis
University of Athens
Athens
Greece

Yannis Theodoridis
University of Piraeus
Piraeus
Greece

Alexander Thomasian
Thomasian and Associates
Pleasantville, NY

USA

Ixii

List of Contributors

Bhavani Thuraisingham

The University of Texas at Dallas
Richardson, TX

USA

Srikanta Tirthapura
lowa State University
Ames, IA

USA

Wee Hyong Tok

National University of Singapore
Singapore

Singapore

David Toman
University of Waterloo
Waterloo, ON

Canada

Frank Wm. Tompa
University of Waterloo
Waterloo, ON

Canada

Rodney Topor
Griffith University
Nathan, QLD
Australia

Riccardo Torlone
University of Rome
Rome

Italy

Kristian Torp
Aalborg University
Aalborg

Denmark

Nicola Torpei
University of Florence
Florence

Italy

Nerius Tradisauskas
Aalborg University
Aalborg

Denmark

Goce Trajcevski
Northwestern University
Evanston, IL

USA

Peter Triantafillou
University of Patras
Rio Patras

Greece

Silke Tripl

Humboldt University of Berlin
Berlin

Germany

Andrew Trotman
University of Otago
Dunedin

New Zealand

Juan Trujillo
University of Alicante
Alicante

Spain

Theodora Tsikrika

Center for Mathematics and Computer Science
Amsterdam

The Netherlands

Vassilis J. Tsotras

University of California-Riverside
Riverside, CA

USA

Peter A. Tucker
Whitworth University
Spokane, WA

USA

Anthony K. H. Tung

National University of Singapore
Singapore

Singapore

Theodoros Tzouramanis
University of the Aegean
Salmos
Greece

List of Contributor_

Ixiii

Antti Ukkonen

Helsinki University of Technology
Helsinki

Finland

Mollie Ullman-Cullere
Harvard Medical School
Boston, MA

USA

Antony Unwin
Augsburg University
Augsburg

Germany

Ali Unlii

University of Augsburg
Augsburg

Germany

Susan D. Urban
Texas Tech University
Lubbock, TX

USA

Jaideep Vaidya
Rutgers University
Newark, NJ

USA

Shivakumar Vaithyanathan
IBM Almaden Research Center
San Jose, CA

USA

Athena Vakali
Aristotle University
Thessaloniki
Greece

Patrick Valduriez
INRIA and LINA
Nantes

France

Christelle Vangenot
EPFL

Lausanne
Switzerland

Stijn Vansummeren

Hasselt University and Transnational University
of Limburg

Diepenbeek

Belgium

Vasilis Vassalos

Athens University of Economics and Business
Athens

Greece

Michael Vassilakopoulos
University of Central Greece
Lamia

Greece

Panos Vassiliadis
University of loannina
loannina

Greece

Michalis Vazirgiannis

Athens University of Economics & Business
Athens

Greece

Olga Vechtomova
University of Waterloo
Waterloo, ON

Canada

Erik Vee

Yahoo! Research
Silicon Valley, CA
USA

Jari Veijalainen
University of Jyvaskyla
Jyvaskyla

Finland

Yannis Velegrakis
University of Trento
Trento

Italy

Suresh Venkatasubramanian
University of Utah

Salt Lake City, UT

USA

Ixiv

List of Contributors

Rossano Venturini
University of Pisa
Pisa

Italy

Victor Vianu

University of California-San Diego
La Jolla, CA

USA

K. Vidyasankar

Memorial University of Newfoundland
St. John’s, NL

Canada

Millist Vincent

University of South Australia
Adelaide, SA

Australia

Giuliana Vitiello
University of Salerno
Salerno

Italy

Michail Vlachos

IBM T.J. Watson Research Center
Hawthorne, NY

USA

Agneés Voisard

Fraunhofer Institute for Software and Systems
Engineering (ISST)

Berlin

Germany

Kaladhar Voruganti
Network Appliance
Sunnyvale, CA

USA

Gottfried Vossen
University of Miinster
Mdinster

Germany

Kenichi Wada
Hitachi Limited
Tokyo

Japan

Feng Wang

City University of Hong Kong
Hong Kong

China

Jianyong Wang
Tsinghua University
Beijing

China

Jun Wang

Queen Mary University of London
London

UK

Meng Wang

Microsoft Research Asia
Beijing

China

X. Sean Wang
University of Vermont
Burlington, VT

USA

Xin-Jing Wang
Microsoft Research Asia
Beijing

China

Matthew O. Ward

Worcester Polytechnic Institute
Worcester, MA

USA

Segev Wasserkrug
IBM Research

Haifa

Israel

Hans Weda
Philips Research
Eindhoven

The Netherlands

Gerhard Weikum
Max-Planck Institute for Informatics
Saarbriicken
Germany

List of Contributor_

Ixv

Michael Weiner

Indiana University School of Medicine

Indianapolis, IN

USA

Michael Weiss
Carleton University
Ottawa, ON

Canada

Ji-Rong Wen

Microsoft Research Asia
Beijing

China

Chunhua Weng
Columbia University
New York, NY

USA

Mathias Weske
University of Potsdam
Potsdam

Germany

Thijs Westerveld
Teezir Search Solutions
Ede

The Netherlands

Karl Wiggisser
University of Klagenfurt
Klagenfurt

Austria

Jef Wijsen

University of Mons-Hainaut
Mons

Belgium

Mark D. Wilkinson

University of British Columbia
Vancouver, BC

Canada

Graham Wills
SPSS Inc.
Chicago, IL
USA

lan H. Witten
University of Waikato
Hamilton

New Zealand

Kent Wittenburg

Mitsubishi Electric Research Laboratories, Inc.
Cambridge, MA

USA

Eric Wohlstadter

University of British Columbia
Vancouver, BC

Canada

Dietmar Wolfram

University of Wisconsin-Milwaukee
Milwaukee, WI

USA

Ouri Wolfson

University of lllinois at Chicago
Chicago, IL

USA

Janette Wong
IBM Canada Ltd.
Markham, ON
Canada

Raymond Chi-Wing Wong

Hong Kong University of Science and Technology
Hong Kong

China

Peter T. Wood

Birkbeck, University of London
London

UK

David Woodruff

IBM Almaden Research Center
San Jose, CA

USA

Marcel Worring
University of Amsterdam
Amsterdam

The Netherlands

Ixvi

List of Contributors

Adam Wright
Partners HealthCare
Boston, MA

USA

Yuqing Wu
Indiana University
Bloomington, IN
USA

Alex Wun

University of Toronto
Toronto, ON

Canada

Ming Xiong
Bell Labs
Murray Hill, NJ
USA

Guandong Xu
Victoria University
Melbourne, VIC
Australia

Hua Xu

Columbia University
New York, NY

USA

Jun Yan

Microsoft Research Asia
Haidian

China

Xifeng Yan

IBM T. J. Watson Research Center
Hawthorne, NY

USA

Jun Yang

Duke University
Durham, NC
USA

Li Yang

Western Michigan University
Kalamazoo, Ml

USA

Ming-Hsuan Yang

University of California at Merced
Merced, CA

USA

Seungwon Yang
Virginia Tech
Blacksburg, VA
USA

Yu Yang

City University of Hong Kong
Hong Kong

China

Yun Yang

Swinburne University of Technology
Melbourne, VIC

Australia

Yong Yao
Cornell University
Ithaca, NY

USA

Mikalai Yatskevich
University of Trento
Trento

Italy

Hiroshi Yoshida
Fujitsu Limited
Yokohama
Japan

Masatoshi Yoshikawa
University of Kyoto
Kyoto

Japan

Matthew Young-Lai
Sybase iAnywhere
Waterloo, ON
Canada

List of Contributor_

Ixvii

Cong Yu
Yahoo! Research
New York, NY
USA

Hwanjo Yu
University of lowa
lowa City, IA

USA

Jeffrey Xu Yu

Chinese University of Hong Kong
Hong Kong

China

Philip S. Yu

IBM T.J. Watson Research Center
Yorktown Heights, NY

USA

Ting Yu

North Carolina State University
Raleigh, NC

USA

Vladimir Zadorozhny
University of Pittsburgh
Pittsburgh, PA

USA

llya Zaihrayeu
University of Trento
Trento

Italy

Mohammed J. Zaki

Rensselaer Polytechnic Institute
Troy, NY

USA

Carlo Zaniolo

University of California-Los Angeles
Los Angeles, CA

USA

Hugo Zaragoza
Yahoo! Research
Barcelona

Spain

Stan Zdonik
Brown University
Providence, Rl
USA

Demetrios Zeinalipour-Yazti
University of Cyprus

Nicosia

Cyprus

Hans Zeller

Hewlett-Packard Laboratories
Palo Alto, CA

USA

Pavel Zezula
Masaryk University
Brno

Czech Republic

ChengXiang Zhai

University of lllinois at Urbana-Champaign
Urbana, IL

USA

Aidong Zhang

State University of New York at Buffalo
Buffalo, NY

USA

Benyu Zhang
Microsoft Research Asia
Beijing

China

Donghui Zhang
Northeastern University
Boston, MA

USA

Ethan Zhang

University of California-Santa Cruz and Yahoo! Inc.
Santa Cruz, CA

USA

Ixviii

List of Contributors

Jin Zhang

University of Wisconsin-Milwaukee
Milwaukee, WI

USA

Kun Zhang

Xavier University of Louisiana
New Orleans, LA

USA

Lei Zhang

Microsoft Research Asia
Beijing

China

Li Zhang

Peking University
Beijing

China

Qing Zhang

The Australian e-health Research Center
Brisbane, QLD

Australia

Rui Zhang

University of Melbourne
Melbourne, VIC
Australia

Yanchun Zhang
Victoria University
Melbourne, VIC
Australia

Yi Zhang

University of California-Santa Cruz
Santa Cruz, CA

USA

Yue Zhang

University of Pittsburgh
Pittsburgh, PA

USA

Zhen Zhang

University of lllinois at Urbana-Champaign
Urbana, IL

USA

Feng Zhao
Microsoft Research
Redmond, WA
USA

Ying Zhao
Tsinghua University
Beijing

China

Baihua Zheng

Singapore Management University
Singapore

Singapore

Yi Zheng

University of Ontario Institute of
Technology (UOIT)

Oshawa, ON

Canada

Jingren Zhou
Microsoft Research
Redmond, WA
USA

Li Zhou

Partners HealthCare System Inc. and Harvard

Medical School
Boston, MA
USA

Zhi-Hua Zhou
Nanjing University
Nanjing

China

Huaiyu Zhu

IBM Almaden Research Center
San Jose, CA

USA

Xingquan Zhu

Florida Atlantic University
Boca Ration, FL

USA

List of Contributor_

Ixix

Cai-Nicolas Ziegler
Siemens AG
Munich

Germany

Hartmut Ziegler
University of Konstanz
Konstanz

Germany

Arthur Zimek

Ludwig-Maximilians University of Munich
Munich

Germany

Esteban Zimanyi

Free University of Brussels
Brussels

Belgium

A

I
Absolute Time

CHRISTIAN S. JENSEN', RICHARD T. SNODGRASS>
'Aalborg University, Aalborg, Denmark
2University of Arizona, Tucson, AZ, USA

Definition

A temporal database contains time-referenced, or time-
stamped, facts. A time reference in such a database is
absolute if its value is independent of the context,
including the current time, now.

Key Points
An example is “Mary’s salary was raised on March 30,
2007.” The fact here is that Mary’s salary was raised.
The absolute time reference is March 30, 2007, which
is a time instant at the granularity of day.
Another example is “Mary’s monthly salary was
$ 15,000 from January 1, 2006 to November 30, 2007.”
In this example, the absolute time reference is the
time period [January 1, 2006 — November 30, 2007].
Absolute time can be contrasted with relative time.

Cross-references

» Now in Temporal Databases
» Relative Time

» Time Instant

» Time Period

» Temporal Database

» Temporal Granularity

Recommended Reading

1. Bettini C.,, Dyreson C.E., Evans W.S., Snodgrass R.T., and
Wang X.S. A glossary of time
In Temporal Databases: Research and Practice. O. Etzion,
S. Jajodia, S. Sripada (eds.). LNCS, vol. 1399. Springer, 1998,
pp. 406-413.

2. Jensen C.S. and Dyreson C.E. (eds.). A consensus glossary

granularity concepts.

of temporal database concepts — February 1998 version. In
Temporal Databases: Research and Practice, O. Etzion, S. Jajodia,
S. Sripada (eds.). LNCS, vol. 1399. Springer, 1998, pp. 367—405.

© 2009 Springer Science+Business Media, LLC

|
Abstract Versus Concrete Temporal
Query Languages

JaN CHomicki, Davip ToOMAN?

IState University of New York at Buffalo, Buffalo,
NY, USA

2University of Waterloo, Waterloo, ON, Canada

Synonyms
Historical query languages

Definition

Temporal query languages are a family of query lan-
guages designed to query (and access in general) time-
dependent information stored in temporal databases.
The languages are commonly defined as extensions of
standard query languages for non-temporal databases
with temporal features. The additional features reflect
the way dependencies of data on time are captured by
and represented in the underlying temporal data model.

Historical Background

Most databases store time-varying information. On
the other hand, SQL is often the language of choice
for developing applications that utilize the information
in these databases. Plain SQL, however, does not seem
to provide adequate support for temporal applications.
Example. To represent the employment histories of per-
sons, a common relational design would use a schema

Employment(FromDate,ToDate, EID, Company),

with the intended meaning that a person identified
by EID worked for Company continuously from
FromDate to ToDate. Note that while the above sche-
ma is a standard relational schema, the additional
assumption that the values of the attributes FromDate
and ToDate represent continuous periods of time is
itself not a part of the relational model.

Formulating even simple queries over such a schema
is non-trivial. For example, the query GAPS: “List all
persons with gaps in their employment history, together

Abstract Versus Concrete Temporal Query Languages

with the gaps” leads to a rather complex formulation in,
e.g., SQL over the above schema (this is left as a challenge
to readers who consider themselves SQL experts; for a
list of appealing, but incorrect solutions, including the
reasons why, see [9]). The difficulty arises because a
single tuple in the relation is conceptually a compact
representation of a set of tuples, each tuple stating that
an employment fact was true on a particular day.

The tension between the conceptual abstract tempo-
ral data model (in the example, the property that em-
ployment facts are associated with individual time
instants) and the need for an efficient and compact
representation of temporal data (in the example, the
representation of continuous periods by their start and
end instants) has been reflected in the development of
numerous temporal data models and temporal query
languages [3].

Foundations

Temporal query languages are commonly defined
using temporal extensions of existing non-temporal
query languages, such as relational calculus, relational
algebra, or SQL. The temporal extensions can be cate-
gorized in two, mostly orthogonal, ways:

e The choice of the actual temporal values manipulated
by the language. This choice is primarily deter-
mined by the underlying temporal data model.
The model also determines the associated opera-
tions on these values. The meaning of temporal
queries is then defined in terms of temporal values
and operations on them, and their interactions
with data (non-temporal) values in a temporal
database.

e The choice of syntactic constructs to manipulate tem-
poral values in the language. This distinction deter-
mines whether the temporal values in the language
are accessed and manipulated explicitly, in a way
similar to other values stored in the database, or
whether the access is implicit, based primarily on
temporally extending the meaning of constructs that
already exist in the underlying non-temporal lan-
guage (while still using the operations defined by
the temporal data model).

Additional design considerations relate to compatibility
with existing query languages, e.g., the notion of tem-
poral upward compatibility.

However, as illustrated above, an additional hurdle
stems from the fact that many (early) temporal query

languages allowed the users to manipulate a finite
underlying representation of temporal databases rather
than the actual temporal values/objects in the asso-
ciated temporal data model. A typical example of this
situation would be an approach in which the temporal
data model is based on time instants, while the query
language introduces interval-valued attributes. Such a
discrepancy often leads to a complex and unintuitive
semantics of queries.

In order to clarify this issue, Chomicki has intro-
duced the notions of abstract and concrete temporal
databases and query languages [2]. Intuitively, abstract
temporal query languages are defined at the concept-
ual level of the temporal data model, while their
concrete counterparts operate directly on an actual
compact encoding of temporal databases. The relation-
ship between abstract and concrete temporal query
languages is also implicitly present in the notion of
snapshot equivalence [7]. Moreover, Bettini et al. [1]
proposed to distinguish between explicit and implicit
information in a temporal database. The explicit infor-
mation is stored in the database and used to derive the
implicit information through semantic assumptions.
Semantic assumptions related to fact persistence play
a role similar to mappings between concrete and ab-
stract databases, while other assumptions are used to
address time-granularity issues.

Abstract Temporal Query Languages
Most temporal query languages derived by temporally
extending the relational calculus can be classified as
abstract temporal query languages. Their semantics are
defined in terms of abstract temporal databases which,
in turn, are typically defined within the point-stamped
temporal data model, in particular without any addi-
tional hidden assumptions about the meaning of
tuples in instances of temporal relations.
Example. The employment histories in an abstract tem-
poral data model would most likely be captured by a
simpler schema “Employment(Date, EID, Company)’,
with the intended meaning that a person identified by
EID was working for Company on a particular Date.
While instances of such a schema can potentially be very
large (especially when a fine granularity of time is used),
formulating queries is now much more natural.
Choosing abstract temporal query languages over
concrete ones resolves the first design issue: the temporal
values used by the former languages are time instants
equipped with an appropriate temporal ordering (which

Abstract Versus Concrete Temporal Query Languages

is typically a linear order over the instants), and possibly
other predicates such as temporal distance. The second
design issue — access to temporal values — may be re-
solved in two different ways, as exemplified by two
different query languages. They are as follows:

e Temporal Relational Calculus (TRC): a two-sorted
first-order logic with variables and quantifiers
explicitly ranging over the time and data domains.

e First-order Temporal Logic (FOTL): a language
with an implicit access to timestamps using tempo-
ral connectives.

Example. The GAPS query is formulated as follows:

TRC: Aty t3.t; < tr, < t3 Adc.Employment(ty, X, €) A
(—=dc.Employment(ty, X, €)) A
dc.Employment(ts, X, ¢);

FOTL: ®3dc.Employment(x,c) A
(—3dc.Employment(x, ¢)) A
O Jc.Employment(x,)

Here, the explicit access to temporal values (in
TRC) using the variables t;, t,, and 3 can be contrasted
with the implicit access (in FOTL) using the temporal
operators @ (read “sometime in the past”) and < (read
“sometime in the future”). The conjunction in the
FOTL query represents an implicit temporal join. The
formulation in TRC leads immediately to an equiva-
lent way of expressing the query in SQL/TP [9], an
extension of SQL based on TRC.

Example. The above query can be formulated in
SQL/TP as follows:

SELECT t.Date, el.EID
FROM Employment el, Time t, Employment e2
WHERE el .EID =e2.EID
AND el .Date < e2.Date
AND NOT EXISTS (SELECT *
FROM Employment e3
WHERE el .EID = e3.EID
AND t.Date = e3.Date
AND el .Date < e3.Date
AND e3.Date < e2.Date)

The unary constant relation Time contains all time
instants in the time domain (in our case, all Dates)
and is only needed to fulfill syntactic SQL-style
requirements on attribute ranges. However, despite
the fact that the instance of this relation is not finite,
the query can be efficiently evaluated [9].

Note also that in all of the above cases, the formu-
lation is exactly the same as if the underlying temporal
database used the plain relational model (allowing for
attributes ranging over time instants).

The two languages, FOTL and TRC, are the coun-
terparts of the snapshot and timestamp models (cf. the
entry Point-stamped Data Models) and are the roots of
many other temporal query languages, ranging from
the more TRC-like temporal extensions of SQL to
more FOTL-like temporal relational algebras (e.g., the
conjunction in temporal logic directly corresponds to a
temporal join in a temporal relational algebra, as both
of them induce an implicit equality on the associated
time attributes).

Temporal integrity constraints over point-stamped
temporal databases can also be conveniently expressed
in TRC or FOTL.

Multiple Temporal Dimensions and Complex Values.
While the abstract temporal query languages are typi-
cally defined in terms of the point-based temporal data
model, they can similarly be defined with respect to
complex temporal values, e.g., pairs (or tuples) of time
instants or even sets of time instants. In these cases,
particularly in the case of set-valued attributes, it is
important to remember that the set values are treated
as indivisible objects, and hence truth (i.e., query se-
mantics) is associated with the entire objects, but not
necessarily with their components/subparts.

Concrete Temporal Query Languages

Although abstract temporal query languages provide a
convenient and clean way of specifying queries, they are
not immediately amenable to implementation. The main
problem is that, in practice, the facts in temporal data-
bases persist over periods of time. Storing all true facts
individually for every time instant during a period would
be prohibitively expensive or, in the case of infinite time
domains such as dense time, even impossible.

Concrete temporal query languages avoid these pro-
blems by operating directly on the compact encodings of
temporal databases. The most commonly used encoding
is the one that uses intervals. However, in this setting, a
tuple that associates a fact with such an interval is a
compact representation of the association between the
same fact and all the time instants that belong to this
interval. This observation leads to the design choices
that are commonly present in such languages:

Abstract Versus Concrete Temporal Query Languages

e Coalescing is used, explicitly or implicitly, to con-
solidate representations of (sets of) time instants
associated with the same fact. In the case of inter-
val-based encodings, this leads to coalescing ad-
joining or overlapping intervals into a single
interval. Note that coalescing only changes the con-
crete representation of a temporal relation, not its
meaning (i.e., the abstract temporal relation);
hence it has no counterpart in abstract temporal
query languages.

e Implicit set operations on time values are used
in relational operations. For example, conjunction
(join) typically uses set intersection to generate a
compact representation of the time instants attached
to the facts in the result of such an operation.

Example. For the running example, a concrete schema
for the employment histories would typically be de-
fined as “Employment (VT, EID, Company)’ where
VT is a valid time attribute ranging over periods (inter-
vals). The GAPS query can be formulated in a calculus-
style language corresponding to TSQL2 (see the entry
on TSQL2) along the following lines:

30, 1,.[3c.Employment (11, x, ¢)]A
[Fc.Employment (I, x,c)] Al precedes I,
AI=[end(I;) + 1,begin(l;) — 1].

In particular, the variables I; and I, range over periods
and the precedes relationship is one of Allen’s inter-
val relationships. The final conjunct,

I=[end(}) + 1,begin(h) — 1],

creates a new period corresponding to the time instants
related to a person’s gap in employment; this interval
value is explicitly constructed from the end and start
points of I} and L, respectively. For the query to be
correct, however, the results of evaluating the bracket-
ed subexpressions, e.g., “[c.Employment (I}, x, ¢)],
have to be coalesced. Without the insertion of the
explicit coalescing operators, the query is incorrect.
To see that, consider a situation in which a person p,
is first employed by a company ¢, then by ¢, and
finally by ¢;, without any gaps in employment. Then
without coalescing of the bracketed subexpressions of
the above query, po will be returned as a part of the
result of the query, which is incorrect. Note also that it
is not enough for the underlying (concrete) database to
be coalesced.

The need for an explicit use of coalescing often makes
the formulation of queries in some concrete SQL-based
temporal query languages cumbersome and error-prone.

An orthogonal issue is the difference between explicit

and implicit access to temporal values. This distinction
also carries over to the concrete temporal languages.
Typically, the various temporal extensions of SQL are
based on the assumption of an explicit access to temporal
values (often employing a built-in valid time attribute
ranging over intervals or temporal elements), while
many temporal relational algebras have chosen to use
the implicit access based on temporally extending stan-
dard relational operators such as temporal join or
temporal projection.
Compilation and Query Evaluation. An alternative to
allowing users direct access to the encodings of temporal
databases is to develop techniques that allow the evalua-
tion of abstract temporal queries over these encodings.
The main approaches are based on query compilation
techniques that map abstract queries to concrete queries,
while preserving query answers. More formally:

Q(IIEl) = lleval(Q)(E)I;

where Q an abstract query, eval(Q) the corresponding
concrete query, E is a concrete temporal database, and
IIl.Il a mapping that associates encodings (concrete
temporal databases) with their abstract counterparts
(cf. Fig.1). Note that a single abstract temporal data-
base, D, can be encoded using several different
instances of the corresponding concrete database, e.g.,
E, and E, in Fig.1.

Most of the practical temporal data models adopt a
common approach to physical representation of tem-
poral databases: with every fact (usually represented as
a tuple), a concise encoding of the set of time points at
which the fact holds is associated. The encoding is
commonly realized by intervals [6,7] or temporal ele-
ments (finite unions of intervals). For such an encod-
ing it has been shown that both First-Order Temporal
Logic [4] and Temporal Relational Calculus [8] queries
can be compiled to first-order queries over a natural
relational representation of the interval encoding of the
database. Evaluating the resulting queries yields the in-
terval encodings of the answers to the original queries, as
if the queries were directly evaluated on the point-
stamped temporal database. Similar results can be
obtained for more complex encodings, e.g., periodic

Abstract Versus Concrete Temporal Query Languages

/ All timestamp/snapshot temporal databases

~

Finitely representable temporal databases

{ (1990, John, IBM...., (1997, john, IBM), Q(0)

(2003, John, MS)...., (2008, John, MS), { (1998, John), (1999, John),

(1992, Sue, MS),..., (2005, Sue, MS), .., (2002, John) }

(2005, Sue, SAP),... }

(=9 1 Ell Il (W]
/ {([1990, 1997], John, IBM), \

([2003, 2008], John, MS), eval (Q)(E,) { ([1998, 1999], John),
([1992. 1999], Sue, MS).
([2000, 2005], Sue, MS), ([2000, 2002], John) }
([2005. + =], Sue, SAP) }

{ ([1990, 1997], John, IBM),
([2003, 2008], John, MS),

eval (Q)(E,)

([1992, 2005], Sue, MS),
([2005, + =], Sue, SAP) }

\ Interval-encoded temporal databases

{([1998, 2002], John)}

/

Abstract Versus Concrete Temporal Query Languages. Figure 1. Query evaluation over interval encodings of point-

stamped temporal databases.

sets, and for abstract temporal query languages that
adopt the duplicate semantics matching the SQL stan-
dard, such as SQL/TP [9].

Key Applications

Temporal query languages are primarily used for que-
rying temporal databases. However, because of their
generality they can be applied in other contexts as well,
e.g., as an underlying conceptual foundation for que-
rying sequences and data streams [5].

Cross-references

» Allen’s Relations

» Bitemporal Relation

» Constraint Databases

» Key

» Nested Transaction Models

» Non First Normal Form

» Point-Stamped Temporal Models
» Relational Model

» Snapshot Equivalence

» SQL

» Telic Distinction in Temporal Databases

» Temporal Coalescing

» Temporal Data Models

» Temporal Element

» Temporal Granularity

» Temporal Integrity Constraints
» Temporal Joins

» Temporal Logic in Database Query Languages
» Temporal Relational Calculus
» Time Domain

» Time Instant

» Transaction Time

» TSQL2

» Valid Time

Recommended Reading

1. Bettini C., Wang X.S., and Jajodia S. Temporal Semantic
Assumptions and Their Use in Databases. Knowl. Data Eng,,
10(2):277-296, 1998.

2. Chomicki J. Temporal query languages: a survey. In Proc. Ist Int.

Conf. on Temporal Logic, 1994, pp. 506-534.

3. Chomicki J. and Toman D. Temporal databases. In Handbook

of Temporal Reasoning in Artificial Intelligence, Fischer M.,
Gabbay D., and Villa L. (eds.). Elsevier Foundations of
Artificial Intelligence, 2005, pp. 429-467.

Abstraction

4. Chomicki J., Toman D., and Bohlen M.H. Querying ATSQL
databases with temporal logic. ACM Trans. Database Syst.,
26(2):145-178, 2001.

5. Law Y.-N., Wang H., and Zaniolo C. Query languages and
data models for database sequences and data streams. In Proc.
30th Int. Conf. on Very Large Data Bases, 2004, pp. 492-503.

6. Navathe S.B. and Ahmed R. In Temporal Extensions to the
Relational Model and SQL. Tansel A., Clifford J., Gadia S.,
Jajodia S., Segev A., and Snodgrass R.T. (eds.). Temporal Data-
bases: Theory, Design, and Implementation.
Cummings, Menlo Park, CA, 1993, pp. 92-109.

7. Snodgrass R.T. The temporal query language TQuel. ACM
Trans. Database Syst., 12(2):247-298, 1987.

8. Toman D. Point vs. interval-based query languages for temporal

15th ACM SIGACT-SIGMOD-SIGART

Symp. on Principles of Database Systems, 1996, pp. 58-67.

Benjamin/

databases. In Proc.

9. Toman D. Point-based temporal extensions of SQL. In Proc. 5th
Int. Conf. on Deductive and Object-Oriented Databases, 1997,
pp. 103-121.

I
Abstraction

BERNHARD THALHEIM
Christian-Albrechts University Kiel, Kiel, Germany

Synonyms

Component abstraction; Implementation abstraction;
Association; Aggregation; Composition; Grouping;
Specialization; Generalisation; Classification

Definition

Abstraction allows developers to concentrate on the
essential, relevant, or important parts of an applica-
tion. It uses a mapping to a model from things in
reality or from virtual things. The model has the trun-
cation property, i.e., it lacks some of the details in the
original, and a pragmatic property, i.e., the model use
is only justified for particular model users, tools of
investigation, and periods of time. Database engineer-
ing uses construction abstraction, context abstraction,
and refinement abstraction. Construction abstraction
is based on the principles of hierarchical structuring,
constructor composition, and generalization. Context
abstraction assumes that the surroundings of a concept
are commonly understood by a community or within a
culture and focuses on the concept, turning away at-
tention from its surroundings such as the environment
and setting. Refinement abstraction uses the principle
of modularization and information hiding. Developers
typically use conceptual models or languages for

representing and conceptualizing abstractions. The en-
hanced entity-relationship model schema are typically
depicted by an EER diagram.

Key Points

Database engineering distinguishes three kinds of
abstraction: construction abstraction, context abstrac-
tion, and refinement abstraction.

Constructor composition depends on the cons-
tructors as originally introduced by J. M. Smith and
D.C.W. Smith. Composition constructors must be well
founded and their semantics must be derivable by in-
ductive construction. There are three main methods for
construction: development of ordered structures on the
basis of hierarchies, construction by combination or
association, and construction by classification into
groups or collections. The set constructors C (subset), X
(product), and P (powerset) for subset, product and
nesting are complete for the construction of sets.

Subset constructors support hierarchies of object
sets in which one set of objects is a subset of some other
set of objects. Subset hierarchies are usually a rooted
tree. Product constructors support associations be-
tween object sets. The schema is decomposed into
object sets related to each other by association or
relationship types. Power set constructors support a
classification of object sets into clusters or groups of
sets — typically according to their properties.

Context abstraction allows developers to commonly
concentrate on those parts of an application that are
essential for some perspectives during development
and deployment of systems. Typical types of context
abstraction are component abstraction, separation of
concern, interaction abstraction, summarization, scop-
ing, and focusing on typical application cases.

Component abstraction factors out repeating,
shared or local patterns of components or functions
from individual concepts. It allows developers to con-
centrate on structural or behavioral aspects of similar
elements of components. Separation of concern allows
developers to concentrate on those concepts under
development and to neglect all other concepts that
are stable or not under consideration. Interaction ab-
straction allows developers to concentrate on parts of
the model that are essential for interaction with other
systems or users. Summarisation maps the conceptua-
lizations within the scope to more abstract concepts.
Scoping is typically used to select those concepts that
are necessary for current development and removes

Access Control

those concepts which that do not have an impact on
the necessary concepts.

Database models may cover a large variety of differ-
ent application cases. Some of them reflect exceptional,
abnormal, infrequent and untypical application situa-
tions. Focusing on typical application cases explicitly
separates models intended for the normal or typical
application case from those that are atypical. Atypical
application cases are not neglected but can be folded into
the model whenever atypical situations are considered.

The context abstraction concept is the main con-
cept behind federated databases. Context of databases
can be characterized by schemata, version, time, and
security requirements. Sub-schemata, types of the
schemata or views on the schemata, are associated
with explicit import/export bindings based on a
name space. Parametrization lets developers consider
collections of objects. Objects are identifiable under
certain assumptions and completely identifiable after
instantiation of all parameters.

Interaction abstraction allows developers to
display the same set of objects in different forms. The
view concept supports this visibility concept. Data is
abstracted and displayed in various levels of granularity.
Summarization abstraction allows developers to abstract
from details that are irrelevant at a certain point. Scope
abstraction allows developers to concentrate on a num-
ber of aspects. Names or aliases can be multiply used
with varying structure, functionality and semantics.

Refinement abstraction mainly concerns imple-
mentation and modularisation. It allows developers to
selectively retain information about structures. Refine-
ment abstraction is defined on the basis of the develop-
ment cycle (refinement of implementations). It refines,
summarizes and views conceptualizations, hides or
encapsulates details, or manages collections of versions.
Each refinement step transforms a schema to a schema
of finer granularity. Refinement abstraction may be
modeled by refinement theory and infomorphisms.

Encapsulation aspects
concentrates on interface components. Blackbox or
graybox approaches hide all aspects of the objects
being considered. Partial visibility may be supported
by modularization concepts. Hiding supports differen-
tiation of concepts into public, private (with the possi-
bility to be visible as “friends”) and protected (with
visibility to subconcepts). It is possible to define a

removes internal and

number of visibility conceptualizations based on
inflection. Inflection is used for the injection of

combinable views into the given view, for tailoring,
ordering and restructuring of views, and for enhance-
ment of views by database functionality. Behavioral
transparency is supported by the glassbox approach.
Security views are based on hiding. Versioning allows
developers to manage a number of concepts which can
be considered to be versions of each other.

Cross-references

» Entity Relationship Model

» Extended Entity-Relationship Model
» Language Models

» Object Data Models

» Object-Role Modeling

» Specialization and Generalization

Recommended Reading

1. Borger E. The ASM refinement method. Formal Aspect.
Comput., 15:237-257, 2003.

2. Smith J.M. and Smith D.C.W. Data base abstractions: aggre-
gation and generalization. ACM Trans. Database Syst., 2
(2):105-133, 1977.

3. Thalheim B. Entity-Relationship Modeling — Foundations
of Database Technology. Springer, 2000.

I
Access Control

ELENA FERRARI
University of Insubria, Varese, Italy

Synonyms
Authorization verification

Definition

Access control deals with preventing unauthorized
operations on the managed data. Access control is
usually performed against a set of authorizations stated
by Security Administrators (SAs) or users according to
the access control policies of the organization. Author-
izations are then processed by the access control mech-
anism (or reference monitor) to decide whether each
access request can be authorized or should be denied.

Historical Background

Access control models for DBMSs have been greatly
influenced by the models developed for the protection
of operating system resources. For instance, the model

Access Control

proposed by Lampson [16] is also known as the access
matrix model since authorizations are represented as a
matrix. However, much of the early work on database
protection was on inference control in statistical
databases.

Then, in the 1970s, as research in relational data-
bases began, attention was directed towards access con-
trol issues. As part of the research on System R at IBM
Almaden Research Center, there was much work on
access control for relational database systems [11,15],
which strongly influenced access control models and
mechanisms of current commercial relational DBMSs.
Around the same time, some early work on multilevel
secure database management systems (MLS/DBMSs)
was reported. However, it was only after the Air
Force Summer Study in 1982 [1] that developments
on MLS/DBMSs began. For instance, the early proto-
types based on the integrity lock mechanisms devel-
oped at the MITRE Corporation. Later, in the
mid-1980s, pioneering research was carried out at SRI
International and Honeywell Inc. on systems such as
SeaView and LOCK Data Views [9]. Some of the tech-
nologies developed by these research efforts were trans-
ferred to commercial products by corporations such
as Oracle, Sybase, and Informix. In the 1990s, numer-
ous other developments were made to meet the
access control requirements of new applications and
environments, such as the World Wide Web, data
warehouses, data mining systems, multimedia systems,
sensor systems, workflow management systems, and
collaborative systems. This resulted in several extensions
to the basic access control models previously developed,
by including the support for temporal constraints, deri-
vation rules, positive and negative authorizations, strong
and weak authorizations, and content and context-de-
pendent authorizations [14]. Role-based access control
has been proposed [12] to simplify authorization man-
agement within companies and organizations. Recently,
there have been numerous developments in access
control, mainly driven by developments in web data
management. For example, standards such as XML
(eXtensible Markup Language) and RDF (Resource De-
scription Framework) require proper access control
mechanisms [7]. Also, web services and the semantic
web are becoming extremely popular and therefore
research is currently carried out to address the related
access control issues [13]. Access control is currently
being examined for new application areas, such as
knowledge management [4], data outsourcing, GIS

[10], peer-to-peer computing and stream data manage-
ment [8]. For example, in the case of knowledge man-
agement applications, it is important to protect the
intellectual property of an organization, whereas when
data are outsourced, it is necessary to allow the owner to
enforce its access control policies, even if data are man-
aged by a third party.

Foundations

The basic building block on which access control relies
is a set of authorizations: which state, who can access
which resource, and under which mode. Authorizations
are specified according to a set of access control policies,
which define the high-level rules according to which
access control must occur. In its basic form, an autho-
rization is, in general, specified on the basis of three
components (s,0,p), and specifies that subject s is
authorized to exercise privilege p on object o. The
three main components of an authorization have the
following meaning:

e Authorization subjects: They are the “active” entities
in the system to which authorizations are granted.
Subjects can be further classified into the following,
not mutually exclusive, categories: users, that is,
single individuals connecting to the system; groups,
that is, sets of users; roles, that is, named collection
of privileges needed to perform specific activities
within the system; and processes, executing pro-
grams on behalf of users.

e Authorization objects: They are the “passive” com-
ponents (i.e., resources) of the system to which
protection from unauthorized accesses should be
given. The set of objects to be protected clearly
depends on the considered environment. For in-
stance, files and directories are examples of objects
of an operating system environment, whereas in a
relational DBMS, examples of resources to be pro-
tected are relations, views and attributes. Author-
izations can be specified at different granularity
levels, that is, on a whole object or only on some
of its components. This is a useful feature when an
object (e.g., a relation) contains information (e.g.,
tuples) of different sensitivity levels and therefore
requires a differentiated protection.

e Authorization privileges: They state the types of
operations (or access modes) that a subject can
exercise on the objects in the system. As for objects,
the set of privileges also depends on the resources

Access Control

to be protected. For instance, read, write, and exe-
cute privileges are typical of an operating system
environment, whereas in a relational DBMS privi-
leges refer to SQL commands (e.g., select, insert,
update, delete). Moreover, new environments such
as digital libraries are characterized by new access
modes, for instance, usage or copying access rights.

Depending on the considered domain and the way
in which access control is enforced, objects, subjects
and/or privileges can be hierarchically organized. The
hierarchy can be exploited to propagate authorizations
and therefore to simplify authorization management by
limiting the set of authorizations that must be explicitly
specified. For instance, when objects are hierarchically
organized, the hierarchy usually represents a “part-of”
relation, that is, the hierarchy reflects the way objects
are organized in terms of other objects. In contrast, the
privilege hierarchy usually represents a subsumption
relation among privileges. Privileges towards the bot-
tom of the hierarchy are subsumed by privileges to-
wards the top (for instance, the write privilege is at a
higher level in the hierarchy with respect to the read
privilege, since write subsumes read operations). Also
roles and groups can be hierarchically organized. The
group hierarchy usually reflects the membership of a
group to another group. In contrast, the role hierarchy
usually reflects the relative position of roles within an
organization. The higher the level of a role in the
hierarchy, the higher its position in the organization.

Access
control
policies

Authorizations are stored into the system and are
then used to verify whether an access request can be
authorized or not. How to represent and store author-
izations depends on the protected resources. For in-
stance, in a relational DBMS, authorizations are
modeled as tuples stored into system catalogs. In
contrast, when resources to be protected are XML
documents, authorizations are usually encoded using
XML itself. Finally, the last key component of the
access control infrastructure is the access control
mechanism (or reference monitor), which is a trusted
software module in charge of enforcing access control.
It intercepts each access request submitted to the sys-
tem (for instance, SQL statements in case of relational
DBMSs) and, on the basis of the specified authoriza-
tions, it determines whether the access can be partially
or totally authorized or should be denied. The refer-
ence monitor should be non-bypassable. Additionally,
the hardware and software architecture should ensure
that the reference monitor is tamper proof, that is, it
cannot be maliciously modified (or at least that any
improper modification can be detected). The main
components of access control are illustrated in Fig. 1.

A basic distinction when dealing with access con-
trol is between discretionary and mandatory access
control. Discretionary access control (DAC) governs
the access of subjects to objects on the basis of subjects’
identity and a set of explicitly specified authorizations
that specify, for each subject, the set of objects that

Authorizations

Access granted

Access request
_—

Reference
monitor

(totally/partially)

| > Access denied

Access Control. Figure 1. Access control: main components.

Access Control

he/she can access in the system and the allowed access
modes. When an access request is submitted to the
system, the access control mechanism verifies whether
or not the access can be authorized according to the
specified authorizations. The system is discretionary in
the sense that a subject, by proper configuring the set
of authorizations, is both able to enforce various access
control requirements and to dynamically change them
when needed (simply by updating the authorization
state). In contrast, mandatory access control (MAC)
specifies the accesses that subjects can exercise on the
objects in the system, on the basis of subjects and
objects security classification [14]. Security classes usu-
ally form a partially ordered set. This type of security
has also been referred to as multilevel security, and
database systems that enforce multilevel access control
are called Multilevel Secure Database Management Sys-
tems (MLS/DBMSs). When mandatory access control
is enforced, authorizations are implicitly specified, by
assigning subjects and objects proper security classes.
The decision on whether or not to grant an access
depends on the access mode and the relation existing
between the classification of the subject requesting
the access and that of the requested object. In addition
to DAC and MAC, role-based access control (RBAC)
has been more recently proposed [12]. RBAC is an
alternative to discretionary and mandatory access con-
trol, mainly conceived for regulating accesses within
companies and organizations. In RBAC, permissions
are associated with roles, instead of with users, and
users acquire permissions through their membership
to roles. The set of authorizations can be inferred by
the sets of user-role and role-permission assignments.

Key Applications

Access control techniques are applied in almost all envir-
onments that need to grant a controlled access to their
resources, including, but not limited, to the following:
DBMSs, Data Stream Management Systems, Operat
ing Systems, Workflow Management Systems, Digital
Libraries, GIS, Multimedia DBMSs, E-commerce ser-
vices, Publish-subscribe systems, Data warehouses.

Future Directions

Altough access control is a mature area with consoli-
dated results, the evolution of DBMSs and the require-
ments of new applications and environments pose new
challenges to the research community. An interesting

discussion on open research issues in the field can be
found in [6]. Some research issues which complement
those presented in [6] are discussed below.

Social networks. Web-based social networks (WBSNs)
are online communities where participants can estab-
lish relationships and share resources across the web
with other users. In recent years, several WBSNs have
been adopting semantic web technologies, such as
FOAF, for representing users’ data and relationships,
making it possible to enforce information interchange
across multiple WBSNs. Despite its advantages in terms
of information diffusion, this raised the need for giving
content owners more control on the distribution of
their resources, which may be accessed by a community
far wider than they expected. So far, this issue has been
mainly addressed in a very simple way, by some of the
available WBSNs, by only allowing users to state wheth-
er a specific information (e.g., personal data and
resources) should be public or accessible only by the
users with whom the owner of such information has a
direct relationship. Such simple access control strate-
gies have the advantage of being straightforward, but
they are not flexible enough in denoting authorized
users. In fact, they do not take into account the type
of the relationships existing between users and, conse-
quently, it is not possible to state that only, say, my
“friends” can access a given information. Moreover,
they do not allow to grant access to users who have an
indirect relationship with the resource owner (e.g., the
“friends of my friends”). Therefore, more flexible
mechanisms are needed, making a user able to decide
which network participants are authorized to access
his/her resources and personal information. Addition-
ally, since the number of social network users is consid-
erably higher than those in conventional DBMSs, the
traditional server-side way of enforcing access control,
that is, the one relying on a centralized trusted reference
monitor, should be revised and more efficient and
distributed strategies should be devised for WBSNG.
Until now, apart from [3], most of the security research
on WBSNs has focused on privacy-preserving mining
of social network data. The definition of a comprehen-
sive framework for efficiently enforcing access control
in social networks is therefore still an issue to be
investigated.

® Data streams. In many applications, such as tele-
communication, battle field monitoring, network

Access Control

11

monitoring, financial monitoring, sensor networks,
data arrive in the form of high speed data streams.
These data typically contain sensitive information
(e.g., health information, credit card numbers) and
thus unauthorized accesses should be avoided.
Although many data stream processing systems
have been developed so far (e.g., Aurora, Borealis,
STREAM, TelegraphCQ, and StreamBase), the
focus of these systems has been mainly on perfor-
mance issues rather than on access control. On the
other hand, though the data security community
has a very rich history in developing access control
models [9], these models are largely tailored to
traditional DBMSs and therefore they cannot be
readily applied to data stream management systems
[8]. This is mainly because: (i) traditional data are
static and bounded, while data streams are un-
bounded and infinite; (ii) queries in traditional
DBMSs are one time and ad-hoc, whereas queries
over data streams are typically continuous and long
running; (iii) in traditional DBMSs, access control
is enforced when users access the data; (iv) in data
stream applications access control enforcement is
data-driven (i.e., whenever data arrive), as such
access control is more computational intensive
in data stream applications and specific techniques
to handle it efficiently should be devised; (v) tem-
poral constraints (e.g., sliding windows) are more
critical in data stream applications than in tradi-
tional DBMSs.

Semantic web. The web is now evolving into the
semantic web. The semantic web [5] is a web that is
intelligent with machine-readable web pages. The
major components of the semantic web include
web infrastructures, web databases and services,
ontology management and information integra-
tion. There has been much work on each of these
areas. However, very little work has been devoted to
access control. If the semantic web is to be effective,
it is necessary to ensure that the information on the
web is protected from unauthorized accesses and
malicious modifications. Also, it must be ensured
that individual’s privacy is maintained. To cope
with these issues, it is necessary to secure all the
semantic web related technologies, such as XML,
RDF, Agents, Databases, web services, and Ontolo-
gies and ensure the secure interoperation of all
these technologies [13].

Cross-references
» Access Control Policy Languages
» Discretionary Access Control

» Mandatory Access Control

» Multilevel Secure Database Management System
» Role Based Access Control
» Storage Security

Recommended Reading

1.

10.

11.

12.

13.

14.

15.

16.

Air Force Studies Board, Committee on Multilevel Data
Management Security. Multilevel data management security.
National Research Council, 1983.

. Berners-Lee T. et al. The semantic web. Scientific American,

2001.

. Bertino E., and Sandhu R.S. Database security: concepts,

approaches, and challenges. IEEE Trans. Dependable and
Secure Computing, 2(1):2-19, 2005.

. Bertino E., Khan L.R., Sandhu R.S., and Thuraisingham B.M.

Secure knowledge management: confidentiality, trust, and
privacy. IEEE Trans. Syst. Man Cybern. A, 36(3):429-438, 2006.

. Carminati B., Ferrari E., and Perego A. Enforcing access control in

web-based social networks. ACM trans. Inf. Syst. Secur., to appear.

. Carminati B., Ferrari E., and Tan K.L. A framework to enforce

access control over Data Streams. ACM Trans. Inf. Syst. Secur., to
appear.

. Carminati B., Ferrari E., and Thuraisingham B.M. Access control

for web data: models and policy languages. Ann. Telecomm., 61
(3—4):245-266, 2006.

. Carminati B., Ferrari E., and Bertino E. Securing XML data

in third party distribution systems. In Proc. of the ACM Four-
teenth Conference on Information and Knowledge Manage-
ment, 2005.

. Castano S., Fugini M.G., Martella G., and Samarati P. Database

security. Addison Wesley, 1995.

Damiani M.L. and Bertino E. Access control systems for
geo-spatial data and applications. In Modelling and management
of geographical data over distributed architectures, A. Belussi, B.
Catania, E. Clementini, E. Ferrari (eds.). Springer, 2007.

Fagin R. On an authorization mechanism. ACM Trans. Database
Syst., 3(3):310-319, 1978.

Ferraiolo D.F, Sandhu R.S., Gavrila S.I., Kuhn D.R., and
Chandramouli R. Proposed NIST standard for role-based access
control. ACM Trans. Inf. Syst. Secur., 4(3):224-274, 2001.
Ferrari E. and Thuraisingham B.M. Security and privacy for web
databases and services. In Advances in Database Technology, Proc.
9th Int. Conf. on Extending Database Technology, 2004, pp. 17-28.
Ferrari E. and Thuraisingham B.M. Secure database systems.
In O. Diaz, M. Piattini (eds.). Advanced databases: technology
and design. Artech House, 2000.

Griffiths P.P. and Wade B.W. An authorization mechanism for a
relational database system. ACM Trans. Database Syst., 1
(3):242-255, 1976.

Lampson B.W. Protection. Fifth Princeton Symposium on
Information Science and Systems, Reprinted in ACM Oper.
Sys. Rev., 8(1):18-24, 1974.

Access Control Administration Policies

I
Access Control Administration
Policies

ELENA FERRARI
University of Insubria, Varese, Italy

Synonyms
Authorization administration policies; Authorization
administration privileges

Definition

Administration policies regulate who can modify the
authorization state, that is, who has the right to grant
and revoke authorizations.

Historical Background

Authorization management is a an important issue
when dealing with access control and, as such, research
on this topic is strongly related to the developments in
access control. A milestone in the field is represented
by the research carried out in the 1970s at IBM in
the framework of the System R project. In particular,
the work by Griffiths and Wade [9] defines a semantics
for authorization revocation, which had greatly influ-
enced the way in which authorization revocation has
been implemented in commercial Relational DBMSs.
Administrative policies for Object-oriented DBMSs
have been studied in [8]. Later on, some extensions
to the System R access control administration model,
have been defined [3], with the aim of making it more
flexible and adaptable to a variety of access control
requirements. Additionally, as the research on extend-
ing the System R access control model with enhanced
functionalities progresses, authorization administra-
tion has been studied for these extensions, such as
temporal authorizations [2], strong and weak and
positive and negative authorizations [4]. Also, admin-
istrative policies for new environments and data mod-
els such as WEMSs [1] and XML data [12] have been
investigated. Back in the 1990s, when research on role-
based access control began, administration policies for
RBAC were investigated [6,11,10,13]. Some of the
ideas developed as part of this research were adopted
by the current SQL:2003 standard [7].

Foundations
Access control administration deals with granting
and revoking of authorizations. This function is usually

regulated by proper administration policies. Usually, if
mandatory access control is enforced, the adopted ad-
ministration policies are very simple, so that the Security
Administrator (SA) is the only one authorized to change
the classification level of subjects and objects. In con-
trast, discretionary and role-based access control are
characterized by more articulated administration poli-
cies, which can be classified according to the following
categories [3]:

e SA administration. According to this policy, only the
SA can grant and revoke authorizations. Although
the SA administration policy has the advantage
of being very simple and easily implemented, it has
the disadvantage of being highly centralized (even
though different SAs can manage different portions
of the database) and is seldom used in current
DBMSs, apart from very simple systems.

o Object owner administration. This is the policy com-
monly adopted by DBMSs and operating systems.
Under this policy, whoever creates an object become
its owner and he/she is the only one authorized to
grant and revoke authorizations on the object.

e Joint administration. Under this policy, particularly
suited for collaborative environments, several subjects
are jointly responsible for administering specific
authorizations. For instance, under the joint admin-
istration policy it can be a requirement that the au-
thorization to write a certain document is given by
two different users, such as two different job functions
within an organization. Authorizations for a subject
to access a data object requires that all the adminis-
trators of the object issue a grant request.

The object owner administration policy can be further
combined with administration delegation, according to
which the administrator of an object can grant other
subjects the right to grant and revoke authorizations
on the object. Delegation can be specified for selected
privileges, for example only for read operations. Most
current DBMSs support the owner administration pol-
icy with delegation. For instance, the Grant com-
mand provided by the SQL:2003 standard [7]
supports a Grant Option optional clause. If a privi-
lege p is granted with the grant option on an object o,
the subject receiving it is not only authorized to exer-
cise p on object o but he/she is also authorized to grant
other subjects authorizations for p on object o with or
without the grant option. Moreover, SQL:2003 pro-
vides an optional Admin Option clause, which has

Access Control Administration Policies

13

the same meaning as the Grant option clause but it
applies to roles instead of to standard authorizations.
If a subject is granted the authorization to play a role
with the admin option he/she not only receives all the
authorizations associated with the role, but he/she can
also authorize other subjects to play that role.

If administration delegation is supported, different
administrators can grant the same authorization to
the same subject. A subject can therefore receive an
authorization for the same privilege on the same object
by different sources. An important issue is therefore
related to the management of revoke operations, that
is, what happens when a subject revokes some of the
authorizations he/she previously granted. For instance,
consider three users: Ann, Tom, and Alice. Suppose
that Ann grants Tom the privilege to select tuples from
the Employee relation with the grant option and
that, by having this authorization, Tom grants
Alice the same privilege on the Employee relation.
What happens to the authorization of Alice when
Ann revokes Tom the privilege to select tuples from the
Employee relation? The System R authorization
model [9] adopts the most conscious approach with
respect to security by enforcing recursive revocation:
whenever a subject revokes an authorization on a rela-
tion from another subject, all the authorizations that
the revokee had granted because of the revoked autho-
rization are recursively removed from the system. The

b

Access Control Administration Policies. Figure 1. Recursive revocation.

revocation is iteratively applied to all the subjects that
received an authorization from the revokee. In the
example above, Alice will lose the privilege to select
tuples from the Employee relation when Ann
revokes this privilege to Tom.

Implementing recursive revocation requires keeping
track of the grantor of each authorization, that is, the
subject who specifies the authorization, since the same
authorization can be granted by different subjects, as
well as of its timestamp, that is, the time when it was
specified. To understand why the timestamp is impor-
tant in correctly implementing recursive revocation,
consider the graph in Fig. 1la, which represents the
authorization state for a specific privilege p on a spe-
cific object 0. Nodes represent subjects, and an edge
from node n; to node n, means that n; has granted
privilege p on object o to m,. The edge is labeled with
the timestamp of the granted privilege and, optionally,
with symbol “g,” if the privilege has been granted with
the grant option. Suppose that Tom revokes the autho-
rization to Alice. As a result, the authorizations also
held by Matt and Ann are recursively revoked because
they could not have been granted if Alice did not
receive authorization from Tom at time 32. In contrast,
the authorization held by Paul is not revoked since it
could have been granted even without the authoriza-
tion granted by Tom to Alice at time 32, because of
the privilege Alice had received by Helen at time

Access Control Administration Policies

47. The authorization state resulting from the revoke
operation is illustrated in Fig. 1b. Although recursive
revocation has the advantage of being the most con-
servative solution with regard to security, it has the
drawback of in some cases the unnecessarily revoking
of too many authorizations. For instance, in an orga-
nization, the authorizations a user possesses are usually
related to his/her job functions within the organiza-
tion, rather than to his/her identity. If a user changes
his/her tasks (for instance, because of a promotion), it is
desirable to remove only the authorizations of the user,
without revoking all the authorizations granted by the
user before changing his/her job function. For this rea-
son, research has been carried out to devise alternative
semantics for the revoke operation with regard to
recursive revocation. Bertino et al. [5] have proposed
an alternative type of revoke operation, called noncas-
cading revocation. According to this, no recursive revo-
cation is performed upon the execution of a revoke
operation. Whenever a subject revokes a privilege on
an object from another subject, all authorizations
which the subject may have granted using the privilege
received by the revoker are not removed. Instead, they
are restated as if they had been granted by the revoker.

SQL:2003 [7] adopts the object owner administra-
tion policy with delegation. A revoke request can either
be issued to revoke an authorization from a subject for a
particular privilege on a given object, or to revoke the
authorization to play a given role. SQL:2003 supports
two different options for the revoke operation. If the
revoke operation is requested with the Restrict
clause, then the revocation is not allowed if it causes the
revocation of other privileges and/or the deletion of some
objects from the database schema. In contrast, if the
Cascade option is specified, then the system imple-
ments a revoke operation similar to the recursive revoca-
tion of the System R, but without taking into account
authorization timestamps. Therefore, an authorization is
recursively revoked only if the grantor no longer holds
the grant/admin option for that, because of the requested
revoke operation. Otherwise, the authorization is not
deleted, regardless of the time the grantor had received
the grant/admin option for that authorization. To illus-
trate the differences with regard to recursive revocation,
consider once again Fig. la, and suppose that Tom
revokes privilege p on object o to Alice with the
Cascade option. With difference to the System R
access control model, this revoke operation does not
cause any other changes to the authorization state. The

authorization granted by A1ice toMatt is not deleted,
because Alice still holds the grant option for that
access (received by Helen).

Key Applications

Access control administration policies are fundamental
in every environment where access control services are
provided.

Cross-references

» Access Control

» Discretionary Access Control
» Role Based Access Control

Recommended Reading

1. Atluri V., Bertino E., Ferrari E., and Mazzoleni P. Supporting
delegation in secure workflow management systems. In Proc.
17th TFIP WG 11.3 Conf. on Data and Application Security,
2003, pp. 190-202.

2. Bertino E., Bettini C., Ferrari E., and Samarati P. Decentralized
administration for a temporal access control model. Inf. Syst.,
22:(4)223-248, 1997.

3. Bertino E. and Ferrari E. Administration policies in a multi-
policy authorization system. In Proc. 11th IFIP WG 11.3
Conference on Database Security, 1997, pp. 341-355.

4. Bertino E., Jajodia S., and Samarati P. A flexible authorization
mechanism for relational data management systems. ACM
Trans. Inf. Syst., 17:(2)101-140, 1999.

5. Bertino E., Samarati P., and Jajodia S. An extended authorization
model. IEEE Trans. Knowl. Data Eng., 9:(1)85-101, 1997.

6. Crampton J. and Loizou G. Administrative scope: a foundation
for role-based administrative models. ACM Trans. Inf. Syst.
Secur., 6:(2)201-231, 2003.

7. Database Languages — SQL,ISO/IEC 9075-%, 2003.

8. Fernandez E.B., Gudes E., and Song H. A model for evaluation
and administration of security in object-oriented databases.
IEEE Trans. Knowl. Data Eng., 6:(2)275-292, 1994.

9. Griffiths PP. and Wade B.W. An authorization mechanism for
a relational database system. ACM Trans. Database Syst., 1:(3)
242-255, 1976.

10. Oh S., Sandhu R.S., and Zhang X. An effective role admini-
stration model using organization structure. ACM Trans.
Inf. Syst. Secur., 9:(2)113-137, 2006.

11. Sandhu R.S., Bhamidipati V., and Munawer Q. The ARBAC97
model for role-based administration of roles. ACM Trans. Inf.
Syst. Secur., 2:(1)105-135, 1999.

12. Seitz L., Rissanen E., Sandholm T., Sadighi Firozabadi B., and
Mulmo O. Policy Administration control and delegation
using XACML and delegent. In Proc. 6th IEEE/ACM Int. Work-
shop on Grid Computing, 2005, pp. 49-54.

13. Zhang L., Ahn G., and Chu B. A rule-based framework for
role-based delegation and revocation. ACM Trans. Inf. Syst.
Secur., 6:(3)404—441, 2003.

Access Control Policy Languages

15

|
Access Control Policy Languages

ATHENA VAKALI
Aristotle University, Thessaloniki, Greece

Synonyms
Authorization policy languages

Definition

An access control policy language is a particular set of
grammar, syntax rules (logical and mathematical), and
operators which provides an abstraction-layer for ac-
cess control policy specifications. Such languages com-
bine individual rules into a single policy set, which is
the basis for (user/subject) authorization decisions on
accessing content (object) stored in various informa-
tion resources. The operators of an access control poli-
cy language are used on attributes of the subject,
resource (object), and their underlying application
framework to facilitate identifying the policy that
(most appropriately) applies to a given action.

Historical Background

The evolution of access control policy languages is
inline with the evolving large-scale highly distributed
information systems and the Internet, which turned
the tasks of authorizing and controlling of accessing
on a global enterprise (or on Internet) framework
increasingly challenging and difficult. Obtaining a
solid and accurate view of the policy in effect across
its many and diverse systems and devices has guided
the development of access control policy languages
accordingly.

Access control policy languages followed the Digital
Rights Management (DRM) standardization efforts,
which had focused in introducing DRM technology
into commercial and mainstream products. Originally,
access control was practiced in the most popular
RDBMSs by policy languages that were SQL based.
Certainly, the access control policy languages evolution
was highly influenced by the wide adoption of XML
(late 1990s) mainly in the enterprise world and its
suitability for supporting access control acts. XML’
popularity resulted in an increasing need to support
more flexible provisional access decisions than the
initial simplistic authorization acts which were limited
in an accept/deny decision. In this context, proposals
of various access control policy languages were very

active starting around the year 2000. This trend seemed
to stabilize around 2005.

The historical pathway of such languages should
highlight the following popular and general-scope ac-
cess control policy languages:

e 1998: the Digital Property Rights Language (DPRL,
Digital Property Rights Language, http://xml.cover-
pages.org/dprl.html) mostly addressed to commer-
cial and enterprise communities was specified for
describing rights, conditions, and fees to support
commerce acts
e 2000: XML Access Control Language (XACL, XML
Access Control Language, http://xml.coverpages.org/
xacl.html) was the first XML-based access control
language for the provisional authorization model
e 2001: two languages were publicized:
> the eXtensible rights Markup Language (XrML,
The Digital Rights Language for Trusted Content
and Services, http://www.xrml.org/) promoted
as the digital rights language for trusted content
and services

» the Open Digital Rights Language (ODRL,
Open Digital Rights Language, http://odrl.net/)
for developing and promoting an open standard
for rights expressions for transparent use of digi-
tal content in all sectors and communities

e 2002: the eXtensible Media Commerce Language
(XMCL, eXtensible Media Commerce Language,
http://www.w3.org/TR/xmcl/) to
usage rules in an implementation-independent man-

communicate

ner for interchange between business systems and
DRM implementations

e 2003: the eXtensible Access Control Markup Lan-
guage (XACML, eXtensible Access Control Markup
Language, http://www.oasis-open.org/committees/
xacml/) was accepted as a new OASIS, Organization
for the Advancement of Structured Information
Standards, http://www.oasis-open.org/, Open Stan-
dard language, designed as an XML specification
with emphasis on expressing policies for informa-
tion access over the Internet.

e 2005: Latest version XACML 2.0 appeared and pol-
icy languages which are mostly suited for Web
services appear. These include WS-SecurityPolicy,
http://www-128.ibm.com/developerworks/library/
specification/ws-secpol/, which defines general se-
curity policy assertions to be applied into Web
services security frameworks.

Access Control Policy Languages

Foundations

Since Internet and networks in general are currently the
core media for data and knowledge exchange, a primary
issue is to assure authorized access to (protected)
resources located in such infrastructures. To support
access control policies and mechanisms, the use of an
appropriate and suitable language is the core require-
ment in order to express all of the various components
of access control policies, such as subjects, objects, con-
straints, etc. Initial attempts for expressing access
control policies (consisting of authorizations) involved
primary “participants” in a policy, namely the subject
(client requesting access), the object (protected re-
source), and the action (right or type of access).

To understand the access control policy languages
the context in which they are applied must be explained.
Hence, the following notions which appear under vary-
ing terminology must be noted:

e Content/objects: Any physical or digital content
which may be of different formats, may be divided
into subparts and must be uniquely identified.
Objects may also be encrypted to enable secure
distribution of content.

e Permissions/rights/actions: Any task that will en-
force permissions for accessing, using and acting
over a particular content/object. They may contain
constraints (limits), requirements (obligations),
and conditions (such as exceptions, negotiations).

e Subjects/users/parties: Can be humans (end users),
organizations, and defined roles which aim in con-
suming (accessing) content.

Under these three core entities, the policies are formed
under a particular language to express offers and agree-
ments. Therefore, the initial format of such languages
authorization was (subject, object, and action) defining
which subject can conduct what type of action over what
object. However, with the advent of databases, network-
ing, and distributed computing, users have witnessed (as
presented in the section “Historical background”) a
phenomenal increase in the automation of organization-
al tasks covering several physical locations, as well as the
computerization of information related services [6,7].
Therefore, new ideas have been added into modern
access control models, like time, tasks, origin, etc. This
was evident in the evolution of languages which initially
supported an original syntax for policies limited in a

Access Control Policy Languages. Table 1. Summary of most popular access control policy languages

Language/ Protection
technology Subject types Object types granularity Accessing core formats Focus
DPRL/XML DTDs Registered Digital XML data Fine- Digital licenses assigned
users sources, stored on grained for a time-limited period
repositories
XACL/XML syntax Group or Particular XML Fine- Set of particular specified
organization documents grained privileges
members
XrML/XML schema Registered digital XML data Fine- Granted rights under
users and/or sources grained specified conditions
parties
ODRL/open-source | Any user Trusted or untrusted | coarse- Digital or physical rights
schema-valid XML content grained
syntax
XMCL/XML Registered Trusted multimedia Coarse- Specified keyword-based | Particular
namespaces users content grained licenses business
models
XACML/XML schema | Any users Domain-specific input | Fine- Rule-based permissions
organized in grained
categories
WS-Security policy/ | Any Web users/ | Digital data sources Fine- Protection acts at SOAP | Web
XML, SOAP Web services grained Web services messages | services
level security

Access Control Policy Languages

17

3-tuple (subject, Subject primitive allows user IDs,
groups, and/or role names. object, Object primitive
allows granularity as fine as a single element within an
XML document, and action, Action primitive consists
of four kinds of actions: read, write, create, and delete.)
which then was found quite simplistic and limited and it
was extended to include non-XML documents, to allow
roles and collections as subjects and to support more
actions (such as approve, execute, etc).

Table 1 summarizes the most important characteris-
tics of the popular general scope access control policy
languages. It is evident that these languages differentiate
on the subjects/users types, on the protected object/con-
tent type (which is considered as trusted when it is
addressed to trusted audience/users) and on the capabil-
ities of access control acts, which are presented under
various terms and formats (rights, permissions, privileges,

etc). Moreover, this table highlights the level at which the
access control may be in effect for each language, i.e., the
broad categorization into fine- and coarse-grained pro-
tection granularity, respectively, refers to either partitions/
detailed or full document/object protection capability.
Moreover, the extensibility of languages which support
Web-based objects and content is noted.

To expand on the above, specific-scope languages
have also emerged mainly to support research-oriented
applications and tools. The most representative of such
languages include:

e X-Sec [1]: To support the specification of subject
credentials and security policies in Author-X and
Decentral Author-X [2]. X-Sec adopts the idea of
credentials which is similar to roles in that one user
can be characterized by more than one credentials.

Access Control Policy Languages. Table 2. Specific-scope access control languages characteristics

X-Sec XACL RBXAC XAS syntax
Objects
Protected resources | XML documents and XML documents and XML documents XML documents and
DTDs DTDs DTDs
Identification XPath XPath XPath XPath
Protection Content, attribute Element Content, attribute | Element
granularity
Subjects
Identification XML-expressed Roles, UIDs, groups Roles User ID, location
credentials
Grouping of No Yes No Yes
subjects
Subjects hierarchy | No Yes Role trees Yes
Support public No Yes No Yes
subject
Policies
Expressed in Policy base XACL policy file Access control files | XAS
Closed/open Closed Both Closed Closed
Permissions/denials | Both Both Permissions Both
Access modes Authoring, browsing Read, write, create, RI, WI, RC, WC Read
delete
Propagation No-prop, first-level, No/up/down According to role | Local, recursive
cascade tree
Priority Implicit rules ntp, ptp, dtd - Hard, soft
Conflict resolution | Yes According to priorities |- Implicitly, explicitly
and implicit rules
Other issues
Subscription-based | Yes Yes Yes Yes
Ownership No No Yes No

Access Methods

e XAS Syntax: Designed to support the ACP (Access
Control Processor) tool [3]. It is a simplified XML-
based syntax for expressing authorizations.

e RBXAC: A specification XML-based language sup-
porting the role-based access control model [4].

e XACL: Which was originally based on a provisio-
nal authorization model and it has been designed
to support ProvAuth (Provisional Authorizations)
tool. Its main function is to specify security
policies to be enforced upon accesses to XML
documents.

e Cred-XACL [5]: A recent access control policy
language focusing on credentials support on dis-
tributed systems and the Internet.

The core characteristics of these specific-scope lan-
guages are given in Table 2, which summarizes them
with respect to their approach for objects and subjects
management, their policies practicing and their sub-
scription and ownership mechanisms. Such a summa-
ry is important in order to understand the “nature” of
each such language in terms of objects and subjects
identification, protection (sources) granularity and
(subject) hierarchies, policies expression and accessing
modes under prioritization, and conflict resolution
constraints. Finally, it should be noted that these high-
lighted characteristics are important in implementing
security service tasks which support several security
requirements from both the system and the sources
perspective.

Key Applications

Access control policy languages are involved in the trans-
parent and innovative use of digital resources which are
accessed in applications related to key nowadays areas
such as publishing, distributing and consuming of elec-
tronic publications, digital images, audio and movies,
learning objects, computer software and other creations
in digital form.

Future Directions

From the evolution of access control policy languages,
it appears that, in the future, emphasis will be given on
languages that are mostly suited for Web-accessed
repositories, databases, and information sources. This
trend is now apparent from the increasing interest on
languages that control accessing on Web services and
Web data sources. At the same time, it manages the

challenges posed by acknowledging and identifying
users/subjects on the Web.

URL to Code

Code, examples, and application scenarios may be
found for: ODRL application scenarios at http://www.
w3.org/TR/odrl/#46354 and http://odrl.net/, XrML at
http://www.xrml.org/, XMCL at http://www.w3.org/
TR/xmcl/, XACML at http://www.oasis-open.org/com-
mittees/xacml/, and WS-SecurityPolicy at http://www-
128.ibm.com/developerworks/library/specification/ws-
secpol/.

Cross-references

» Access Control

» Database Security

» Role-Based Access Control

» Secure Database Development

Recommended Reading

1. Bertino E., Castano S., and Ferrari E. On specifying security
policies for web documents with an XML-based language. In
Proc. 6th ACM Symp. on Access Control Models and Technol-
ogies, 2001, pp. 57-65.

2. Bertino E., Castano S., and Ferrari E. Securing XML documents
with author-X. IEEE Internet Computing, May—June 2001,
pp. 21-31.

3. Damiani E., De Capitani di Vimercati S., Paraboschi S., and
Samarati P. Desing and implementation of an access control
processor for XML documents. In Proc. 9th Int. World Wide
Web Conference, 2000, pp. 59-75.

4. He H. and Wong R.K. A role-based access control model for
XML repositories. In Proc. 1st Int. Conf. on Web Information
Systems Eng., 2000, pp. 138-145.

5. Stoupa K. Access Control Techniques in distributed systems and
the Internet, Ph.D. Thesis, Aristotle University, Department of
Informatics, 2007.

6. Stoupa K. and Vakali A. Policies for web security services,
Chapter III. In Web and Information Security, E. Ferrari,
B. Thuraisingham (eds.), Idea-Group Publishing, USA, 2006.

7. Vuong N.N,, Smith G.S., and Deng Y. Managing security policies
in a distributed environment using eXtensible markup language
(XML). In Proc. 16th ACM Symp. on Applied Computing, 2001,
pp. 405-411.

I
Access Methods

» Access Path

ACID Properties

19

I
Access Path

EVAGGELIA PITOURA
University of Ioannina, Ioannina, Greece

Synonyms
Access path; Access methods

Definition

An access path specifies the path chosen by a data-
base management system to retrieve the requested
tuples from a relation. An access path may be either
(i) a sequential scan of the data file or (ii) an index scan
with a matching selection condition when there are
indexes that match the selection conditions in the
query. In general, an index matches a selection condi-
tion, if the index can be used to retrieve all tuples that
satisfy the condition.

Key Points

Access paths are the alternative ways for retrieving spe-
cific tuples from a relation. Typically, there is more than
one way to retrieve tuples because of the availability of
indexes and the potential presence of conditions speci-
fied in the query for selecting the tuples. Typical access
methods include sequential access of unordered data
files (heaps) as well as various kinds of indexes. All
commercial database systems implement heaps and
B+ tree indexes. Most of them also support hash indexes
for equality conditions.

To choose an access path, the optimizer first deter-
mines which matching access paths are available by ex-
amining the conditions specified by the query. Then,
it estimates the selectivity of each access path using
any available statistics for the index and data file. The
selectivity of an access path is the number of pages (both
index and data pages) accessed when the specific
access path is used to retrieve the requested tuples.
The access path having the smallest selectivity is
called the most selective access path. Clearly, using
the most selective access path minimizes the cost
of data retrieval. Additional information can be
found in [1].

Cross-references

» Index Structures for Biological Sequences
» Query Optimization

» Selectivity Estimation

Recommended Reading

1. Selinger P.G., Astrahan M.M., Chamberlin D.D., Lorie R.A.,
Price T.G. Access path selection in a relational database manage-
ment system. In Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, 1979, pp. 23-34.

|
Accountability

» Auditing and Forensic Analysis

|
ACID Properties

GOTTFRIED VOSSEN
University of Miinster, Miinster, Germany

Synonyms
ACID properties; Atomicity; Isolation; Consistency
preservation; Durability; Persistence

Definition

The conceptual ACID properties (short for atomicity,
isolation, consistency preservation, and durability) of
a transaction together provide the key abstraction
which allows application developers to disregard irreg-
ular or even malicious effects from concurrency or
failures of transaction executions, as the transactional
server in charge guarantees the consistency of the un-
derlying data and ultimately the correctness of the
application [1-3]. For example, in a banking context
where debit/credit transactions are executed this means
that no money is ever lost in electronic funds transfers
and customers can rely on electronic receipts and bal-
ance statements. These cornerstones for building highly
dependable information systems can be successfully
applied outside the scope of online transaction proces-
sing and classical database applications as well.

Key Points

The ACID properties are what a database server guaran-
tees for transaction executions, in particular in the pres-
ence of multiple concurrently running transactions
and in the face of failure situations; they comprise the
following four properties (whose initial letters form
the word “ACID”):

20

ACID Properties

Atomicity. From the perspective of a client and
an application program, a transaction is executed
completely or not at all, i.e., in an all-or-nothing
fashion. So the effects of a program under execution
on the underlying data server(s) will only become
visible to the outside world or to other program
executions if and when the transaction reaches its
“commit” operation. This case implies that the trans-
action could be processed completely, and no errors
whatsoever were discovered while it was processed. On
the other hand, if the program is abnormally termi-
nated before reaching its commit operation, the data in
the underlying data servers will be left in or automati-
cally brought back to the state in which it was before
the transaction started, i.e., the data appears as if the
transaction had never been invoked at all.

Consistency preservation: Consistency constraints
that are defined on the underlying data servers (e.g.,
keys, foreign keys) are preserved by a transaction; so a
transaction leads from one consistent state to another.
Upon the commit of a transaction, all integrity con-
straints defined for the underlying database(s) must be
satisfied; however, between the beginning and the end
of a transaction, inconsistent intermediate states are
tolerated and may even be unavoidable. This property
generally cannot be ensured in a completely automatic
manner. Rather, it is necessary that the application is
programmed such that the code between the beginning
and the commit of a transaction will eventually reach a
consistent state.

Isolation: A transaction is isolated from other trans-
actions, i.e., each transaction behaves as if it was
operating alone with all resources to itself. In particu-
lar, each transaction will “see” only consistent data in
the underlying data sources. More specifically, it will
see only data modifications that result from committed
transactions, and it will see them only in their entirety,
and never any effects of an incomplete transaction.
This is the decisive property that allows to hide the
fallacies and pitfalls of concurrency from the applica-
tion developers. A sufficient condition for isolation is
that concurrent executions are equivalent to sequential
ones, so that all transactions appear as if they were
executed one after the other rather than in an inter-
leaved manner; this condition is made precise through
serializability.

Durability: When the application program from
which a transaction derives is notified that the trans-
action has been successfully completed (i.e., when

the commit point of the transaction has been
reached), all updates the transaction has made in
the underlying data servers are guaranteed to survive
subsequent software or hardware failures. Thus,
updates of committed transactions are durable
(until another transaction later modifies the same
data items) in that they persist even across failures of
the affected data server(s).

Therefore, a transaction is a set of operations
executed on one or more data servers which are issued
by an application program and are guaranteed to have
the ACID properties by the runtime system of the
involved servers. The “ACID contract” between the
application program and the data servers requires the
program to demarcate the boundaries of the transac-
tion as well as the desired outcome — successful or
abnormal termination — of the transaction, both in a
dynamic manner. There are two ways a transaction
can finish: it can commit, or it can abort. If it com-
mits, all its changes to the database are installed, and
they will remain in the database until some other
application makes further changes. Furthermore, the
changes will seem to other programs to take place
together. If the transaction aborts, none of its changes
will take effect, and the DBMS will rollback by restor-
ing previous values to all the data that was updated by
the application program. A programming interface of
a transactional system consequently needs to offer
three types of calls: (i) “begin transaction” to specify
the beginning of a transaction, (ii) “commit transac-
tion” to specify the successful end of a transaction, and
(iii) “rollback transaction” to specify the unsuccessful
end of a transaction with the request to abort the
transaction.

The core requirement for a transactional server is to
provide the ACID guarantees for sets of operations that
belong to the same transaction issued by an application
program requires that the server. This requires a concur-
rency control component to guarantee the isolation
properties of transactions, for both committed and
aborted transactions, and a recovery component to guar-
antee the atomicity and durability of transactions. The
server may or may not provide explicit support for con-
sistency preservation. In addition to the ACID contract,
a transactional server should meet a number of technical
requirements: A transactional data server (which most
often will be a database system) must provide good per-
formance with a given hardware/software configura-
tion, or more generally, a good cost/performance

Active and Real-Time Data Warehousing

21

ratio when the configuration is not yet fixed. Perfor-
mance typically refers to the two metrics of high
throughput, which is defined as the number of success-
fully processed transactions per time unit, and of short
response times, where the response time of a transaction
is defined as the time span between issuing the trans-
action and its successful completion as perceived by the
client.

While the ACID properties are crucial for many
applications in which the transaction concept arises,
some of them are too restrictive when the transaction
model is extended beyond the read/write context. For
example, business processes can be cast into various
forms of business transactions, i.e., long-running trans-
actions for which atomicity and isolation are generally
too strict. In these situations, additional or alternative
guarantees need to be employed.

Cross-references

» Atomicity

» Concurrency Control

» Extended Transaction Models

» Multi-Level Recovery and the ARIES Algorithm
» Serializability

» Snapshot Isolation

» SQL Isolation Levels

» Transaction Model

Recommended Reading

1. Bernstein P.A., Hadzilacos V., and Goodman N. Concurrency
Control and Recovery in Database Systems. Addison-Wesley,
Reading, MA, 1987.

2. Bernstein P.A. and Newcomer E. Principles of Transaction
Processing for the Systems Professional. Morgan Kaufmann,
San Francisco, CA, 1997.

3. Gray J. and Reuter A. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann, San Francisco, CA, 1993.

! ACID Transaction

» Transaction

|
Acquisitional Query Languages

» Database Languages for Sensor Networks

I
Active and Real-Time Data
Warehousing

MukesH MoHANIAY, UrLas NaMBIAR', MICHAEL
SCHREFLZ, MILLIST VINCENT®

'IBM India Research Lab, New Delhi, India
2University of Linz, Linz, Austria

’University of South Australia, Adelaide, SA, Australia

Synonyms
Right-time data warehousing

Definition

Active Data Warehousing is the technical ability to
capture transactions when they change, and integrate
them into the warehouse, along with maintaining
batch or scheduled cycle refreshes. An active data
warehouse offers the possibility of automating routine
tasks and decisions. The active data warehouse exports
decisions automatically to the On-Line Transaction
Processing (OLTP) systems.

Real-time Data Warehousing describes a system that
reflects the state of the warehouse in real time. If a
query is run against the real-time data warehouse to
understand a particular facet about the business or
entity described by the warehouse, the answer reflects
the state of that entity at the time the query was run.
Most data warehouses have data that are highly latent —
or reflects the business at a point in the past. A real-
time data warehouse has low latency data and provides
current (or real-time) data.

Simply put, a real-time data warehouse can be built
using an active data warehouse with a very low latency
constraint added to it. An alternate view is to consider
active data warehousing as being a design methodology
suited to tactical decision-making based on very cur-
rent data while real-time data warehousing is a collec-
tion of technologies that refresh a data warehouse
frequently. A real-time data warehouse is one that
acquires, cleanses, transforms, stores, and disseminates
information in real time. An active data warehouse, on
the other hand, operates in a non-real-time response
mode with one-or-more OLTP systems.

Historical Background

A data warehouse is a decision support database that is
periodically updated by extracting, transforming, and
loading operational data from several OLTP databases.

22

Active and Real-Time Data Warehousing

In the data warehouse, OLTP data is arranged using the
(multi) dimensional data modeling approach (see [1]
for a basic approach and [2] for details on translating
an OLTP data model into a dimensional model), which
classifies data into measures and dimensions. In recent
years, several multidimensional data models have been
proposed [3-6]. An in-depth comparison is provided
by Pedersen and Jensen in [5]. The basic unit of inter-
est in a data warehouse is a measure or fact (e.g., sales),
which represent countable, semisummable, or summa-
ble information concerning a business process. An
instance of a measure is called measure value. A mea-
sure can be analyzed from different perspectives, which
are called the dimensions (e.g., location, product, time)
of the data warehouse [7]. A dimension consists of a set
of dimension levels (e.g., time: Day, Week, Month,
Quarter, Season, Year, ALLTimes), which are organized
in multiple hierarchies or dimension paths [6] (e.g.,
Time[Day] — Time[Month] — Time[Quarter] —
Time[Year] — Time[ALLTimes]; Time[Day] — Time
[Week] — Time[Season] — Time[ALLTimes]). The
hierarchies of a dimension form a lattice having at
least one top dimension level and one bottom dimen-
sion level. The measures that can be analyzed by the
same set of dimensions are described by a base cube or
fact table. A base cube uses level instances of the lowest
dimension levels of each of its dimensions to identify a
measure value. The relationship between a set of mea-
sure values and the set of identifying level instances is
called cell. Loading data into the data warehouse means
that new cells will be added to base cubes and new level
instances will be added to dimension levels. If a dimen-
sion D is related to a measure m by means of a base
cube, then the hierarchies of D can be used to aggregate
the measure values of m using operators like SUM,
COUNT, or AVG. Aggregating measure values along
the hierarchies of different dimensions (i.e., rollup) cre-
ates a multidimensional view on data, which is known
as data cube or cube. Deaggregating the measures of a
cube to a lower dimension level (i.e., drilldown) creates
a more detailed cube. Selecting the subset of a cube’s
cells that satisfy a certain selection condition (i.e.,
slicing) also creates a more detailed cube.

The data warehouses are used by analysts to find
solutions for decision tasks by using OLAP (On-Line
Analytical Processing) [7] systems. The decision tasks
can be split into three, viz. non-routine, semi-routine,
and routine. Non-routine tasks occur infrequently
and/or do not have a generally accepted decision

criteria. For example, strategic business decisions
such as introducing a new brand or changing an exist-
ing business policy are non-routine tasks. Routine
tasks, on the other hand, are well structured problems
for which generally accepted procedures exist and they
occur frequently and at predictive intervals. Examples
can be found in the areas of product assortment
(change price, withdraw product, etc.), customer rela-
tionship management (grant loyalty discounts etc.),
and in many administrative areas (accept/reject paper
based on review scores). Semi-routine tasks are tasks
that require a non-routine solution — e.g., paper rated
contradictory must be discussed by program commit-
tee. Since, most tasks are likely to be routine, it is
logical to automate processing of such tasks to reduce
the delay in decision-making.

Active data warehouses [8] were designed to enable
data warehouses to support automatic decision-
making when faced with routine decision tasks and
routinizable elements of semi-routine decision tasks.
The active data warehouse design extends the technol-
ogy behind active database systems. Active database
technology transforms passive database systems into
reactive systems that respond to database and external
events through the use of rule processing features
[9,10]. Limited versions of active rules exist in com-
mercial database products [11,12].

Real-time data warehousing captures business activ-
ity data as it occurs. As soon as the business activity is
complete and there is data about it, the completed
activity data flows into the data warehouse and
becomes available instantly. In other words, real-time
data warehousing is a framework for deriving infor-
mation from data as the data becomes available.
Traditionally, data warehouses were regarded as an
environment for analyzing historic data, either to un-
derstand what has happened or simply to log the
changes as they happened. However, of late, businesses
want to use them to predict the future: e.g., to predict
customers likely to churn; and thereby seek better con-
trol of the business. However, until recently, it was not
practical to have zero-latency data warehouses —
the process of extracting data had too much of an
impact on the source systems concerned, and the vari-
ous steps needed to cleanse and transform the data
required multiple temporary tables and took several
hours to run. However, the increased visibility of (the
value of) warehouse data, and the take-up by a wider
audience within the organization, has lead to a number

Active and Real-Time Data Warehousing

23

of product developments by IBM [13], Oracle [14],
and other vendors that make real-time data warehous-
ing now possible.

Foundations

The two example scenarios below describe typical
situations in which active rules can be used to auto-
mate decision-making:

Scenario 1: Reducing the price of an article. Twenty
days after a soft drink has been launched on a market,
analysts compare the quantities sold during this period
with a standardized indicator. This indicator requires the
total quantities sold during the 20-day period do not
drop below a threshold of 10,000 sold items. If the
analyzed sales figures are below this threshold, the price
of the newly launched soft drink will be reduced by 15.

Scenario 2 : Withdrawing articles from a market. At
the end of every quarter, high-priced soft drinks which
are sold in Upper Austrian stores will be analyzed. If
the sales figures of a high-priced soft drink have con-
tinuously dropped, the article will be withdrawn from
the Upper Austrian market. Analysts inspect sales fig-
ures at different granularities of the time dimension
and at different granularities of the location dimen-
sion. Trend, average, and variance measures are used as
indicators in decision-making.

Rules that mimic the analytical work of a business
analyst are called analysis rules [8]. The components of
analysis rules constitute the knowledge model of an
active data warehouse (and also a real-time data ware-
house). The knowledge model determines what an
analyst must consider when he specifies an active rule
to automate a routine decision task.

An analysis rule consists of (i) the primary dimen-
sion level and (ii) the primary condition, which identify
the objects for which decision-making is necessary,
(iii) the event, which triggers rule processing, (iv) the
analysis graph, which specifies the cubes for analysis,
(v) the decision steps, which represent the conditions
under which a decision can be made, and (vi) the
action, which represents the rule’s decision task.
Below is a brief description of the components of an
analysis rule. Detailed discussion is given in [8].

Event: Events are used to specify the timepoints at
which analysis rules should be carried out. Active data
warehouses provide three kinds of events: (i) OLTP
method events, (ii) relative temporal events, and (iii)
calendar events. OLTP method events describe basic
happenings in the data warehouse’s sources. Relative

temporal events are used to define a temporal distance
between such a basic happening and carrying out an
analysis rule. Calendar events represent fixed points in
time at which an analysis rule may be carried out.
Structurally, every event instance is characterized by
an occurrence time and by an event identifier. In its
event part, an analysis rule refers to a calendar event or
to a relative temporal event.

An OLTP method event describes a happening in
the data warehouse’s source systems that is of interest
to analysis rules in the active data warehouse. Besides
occurrence time and event identifier, the attributes of
an OLTP method event are a reference to the dimen-
sion level for which the OLTP method event occurred
and the parameters of the method invocation. To make
OLTP method events available in data warchouses, a
data warehouse designer has to define the schema of
OLTP method events and extend the data warchouse’s
extract/transform/load mechanism. Since instances of
OLTP method events are loaded some time after their
occurrence, analysis rules cannot be triggered directly
by OLTP method events.

Temporal events determine the timepoints at which
decision-making has to be initiated. Scenario 1 uses the
relative temporal event “twenty days after launch”
while Scenario 2 uses the periodic temporal event
“end of quarter.” The conditions for decision-making
are based on indicators, which have been established in
manual decision-making. Each condition refers to a
multidimensional cube and therefore “analyzing”
means to evaluate the condition on this cube. Scenario
1 uses a quantity-based indicator, whereas scenario
2 uses value-based indicators for decision-making.
The decision whether to carry out the rule’s action
depends on the result of evaluating the conditions.
The action of scenario 1 is to reduce the price of an
article, whereas the action of scenario 2 is to withdraw
an article from a market.

Primary Condition: Several analysis rules may share
the same OLTP method as their action. These rules
may be carried out at different timepoints and may
utilize different multidimensional analyses. Thus, a
certain analysis rule usually analyzes only a subset of
the level instances that belong to the rule’s primary
dimension level. The primary condition is used to
determine for a level instance of the primary dimen-
sion level whether multidimensional analysis should be
carried out by the analysis rule. The primary condition
is specified as a Boolean expression, which refers to the

24

Active and Real-Time Data Warehousing

describing attributes of the primary dimension level.
If omitted, the primary condition evaluates to TRUE.

Action: The purpose of an analysis rule is to auto-
mate decision-making for objects that are available in
OLTP systems and in the data warehouse. A decision
means to invoke (or not to invoke) a method on a
certain object in an OLTP system. In its action part, an
analysis rule may refer to a single OLTP method of the
primary dimension level, which represents a transac-
tion in an OLTP system. These methods represent the
decision space of an active data warehouse. To make the
transactional behavior of an OLTP object type available
in the active data warehouse, the data warehouse de-
signer must provide (i) the specifications of the OLTP
object type’s methods together with required para-
meters, (ii) the preconditions that must be satisfied
before the OLTP method can be invoked in the OLTP
system, and (iii) a conflict resolution mechanism,
which solves contradictory decisions of different anal-
ysis rules. Since different analysis rules can make a
decision for the same level instance of the rules’ pri-
mary dimension level during the same active data
warehouse cycle, a decision conflict may occur. Such
conflicts are considered as interrule conflicts. To detect
interrule conflicts, a conflict table covering the OLTP
methods of the decision space is used. The tuples of the
conflict table have the form <ml, m2, m3> , where m1
and m2 identify two conflicting methods and m3 spe-
cifies the conflict resolution method that will be finally
executed in OLTP systems. If a conflict cannot be
solved automatically it has to be reported to analysts
for manual conflict resolution.

Analysis Graph: When an analyst queries the data
warehouse to make a decision, he or she follows an
incremental topdown approach in creating and analyz-
ing cubes. Analysis rules follow the same approach. To
automate decision-making, an analysis rule must
“know” the cubes that are needed for multidimension-
al analysis. These cubes constitute the analysis graph,
which is specified once by the analyst. The n dimen-
sions of each cube of the analysis graph are classified
into one primary dimension, which represents the level
instances of the primary dimension level, and n — 1
analysis dimensions, which represent the multidimen-
sional space for analysis. Since a level instance of the
primary dimension level is described by one or more
cells of a cube, multidimensional analysis means to
compare, aggregate, transform, etc., the measure values
of these cells. Two kinds of multidimensional analysis

are carried out at each cube of the analysis graph: (i)
select the level instances of the primary dimension level
whose cells comply with the decision-making condi-
tion (e.g., withdraw an article if the sales total of
the last quarter is below USD 10,000) and (ii) select
the level instances of the primary dimension level
whose cells comply with the condition under which
more detailed analysis (at finer grained cubes) are
necessary (e.g., continue analysis if the sales total of
the last quarter is below USD 500,000). The multidi-
mensional analysis that is carried out on the cubes of
the analysis graph are called decision steps. Each deci-
sion step analyzes the data of exactly one cube of the
analysis graph. Hence, analysis graph and decision
steps represent the knowledge for multidimensional
analysis and decision-making of an analysis rule.

Enabling real-time data warehousing: As mentioned
earlier, real-time data warehouses are active data ware-
houses that are loaded with data having (near) zero
latency. Data warehouse vendors have used multiple
approaches such as hand-coded scripting and data ex-
traction, transformation, and loading (ETL) [15] solu-
tions to serve the data acquisition needs of a data
warehouse. However, as users move toward real-time
data warehousing, there is a limited choice of technolo-
gies that facilitate real-time data delivery. The challenge is
to determine the right technology approach or combina-
tion of solutions that best meets the data delivery needs.
Selection criteria should include considerations for fre-
quency of data, acceptable latency, data volumes, data
integrity, transformation requirements and processing
overhead. To solve the real-time challenge, businesses
are turning to technologies such as enterprise application
integration (EAI) [16] and transactional data manage-
ment (TDM) [17], which offer high-performance, low
impact movement of data, even at large volumes with
sub-second speed. EAI has a greater implementation
complexity and cost of maintenance, and handles smaller
volumes of data. TDM provides the ability to capture
transactions from OLTP systems, apply mapping, filter-
ing, and basic transformations and delivers to the data
warehouse directly. A more detailed study of the chal-
lenges involved in implementing a real-time data ware-
house is given in [18].

Key Applications

Active and Real-time data warehouses enable businesses
across all industry verticals to gain competitive advan-
tage by allowing them to run analytics solutions over the

Active and Real-Time Data Warehousing

25

most recent data of interest that is captured in the
warehouse. This will provide them with the ability to
make intelligent business decisions and better under-
stand and predict customer and business trends based
on accurate, up-to-the-second data. By introducing
real-time flows of information to data warehouses,
companies can increase supply chain visibility, gain a
complete view of business performance, and increase
service levels, ultimately increasing customer retention
and brand value.

The following are some additional business benefits
of active and real-time data warehousing:

® Real-time Analytics: Real-time analytics is the abili-
ty to use all available data to improve performance
and quality of service at the moment they are
required. It consists of dynamic analysis and repor-
ting, right at the moment (or very soon after) the
resource (or information) entered the system. In a
practical sense, real time is defined by the need
of the consumer (business) and can vary from a
few seconds to few minutes. In other words, more
frequent than daily can be considered real-time,
because it crosses the overnight-update barrier.
With increasing availability of active and real-time
data warehouses, the technology for capturing and
analyzing real-time data is increasingly becoming
available. Learning how to apply it effectively
becomes the differentiator. Implementing real-time
analytics requires the integration of a number of
technologies that are not interoperable off-the-
shelf. There are no established best practices. Early
detection of fraudulent activity in financial transac-
tions is a potential environment for applying real-
time analytics. For example, credit card companies
monitor transactions and activate counter measures
when a customer’s credit transactions fall outside the
range of expected patterns. However, being able to
correctly identify fraud while not offending a well-
intentioned valuable customer is a critical necessity
that adds complexity to the potential solution.

e Maximize ERP Investments: With a real-time data
warehouse in place, companies can maximize their
Enterprise Resource Planning (ERP) technology
investment by turning integrated data into business
intelligence. ETL solutions act as an integral bridge
between ERP systems that collect high volumes
of transactions and business analytics to create
data reports.

e [Increase Supply Chain Visibility: Real-time data
warehousing helps streamline supply chains through
highly effective business-to-business communica-
tions and identifies any weak links or bottlenecks,
enabling companies to enhance service levels and
gain a competitive edge.

e Live 360° View of Customers: The active database
solutions enable companies to capture, transform,
and flow all types of customer data into a data
warehouse, creating one seamless database that
provides a 360° view of the customer. By tracking
and analyzing all modes of interaction with a cus-
tomer, companies can tailor new product offerings,
enhance service levels, and ensure customer loyalty
and retention.

Future Directions

Data warehousing has greatly matured as a technology
discipline; however enterprises that undertake data
warehousing initiatives continue to face fresh chal-
lenges that evolve with the changing business and
technology environment. Most future needs and chal-
lenges will come in the areas of active and real-time
data warehousing solutions. Listed below are some
future challenges:

e [ntegrating Heterogeneous Data Sources: The num-
ber of enterprise data sources is growing rapidly, with
new types of sources emerging every year. Enterprises
want to integrate the unstructured data generated
from customer emails, chat and voice call transcripts,
feedbacks, and surveys with other internal data in
order to get a complete picture of their customers
and integrate internal processes. Other sources for
valuable data include ERP programs, operational
data stores, packaged and homegrown analytic
applications, and existing data marts. The process
of integrating these sources into a data warehouse
can be complicated and is made even more difficult
when an enterprise merges with or acquires another
enterprise.

e Integrating with CRM tools: Customer relationship
management (CRM) is one of the most popular
business initiatives in enterprises today. CRM helps
enterprises attract new customers and develop loy-
alty among existing customers with the end result
of increasing sales and improving profitability. In-
creasingly, enterprises want to use the holistic view
of the customer to deliver value-added services to

26

Active and Real-Time Data Warehousing

the customer based on her overall value to the
enterprise. This would include, automatically iden-
tifying when an important life event is happening
and sending out emails with necessary information
and/or relevant products, gauging the mood of the
customer based on recent interactions, and alerting
the enterprise before it is too late to retain the
customer and most important of all identifying
customers who are likely to accept suggestions
about upgrades of existing products/services or be
interested in newer versions. The data warehouse is
essential in this integration process, as it collects data
from all channels and customer touch points, and
presents a unified view of the customer to sales,
marketing, and customer-care employees. Going
forward, data warehouses will have to provide sup-
port for analytics tools that are embedded into the
warehouse, analyze the various customer interac-
tions continuously, and then use the insights to
trigger actions that enable delivery of the above-
mentioned value-added services. Clearly, this
requires an active data warehouse to be tightly
integrated with the CRM systems. If the enter-
prise has low latency for insight detection and
value-added service delivery then a real-time data
warehouse would be required.

e [n-built data mining and analytics tools: Users are
also demanding more sophisticated business intel-
ligence tools. For example, if a telecom customer
calls to cancel his call-waiting feature, real-time
analytic software can detect this and trigger a spe-
cial offer of a lower price in order to retain the
customer. The need is to develop a new generation
of data mining algorithms that work over data
warehouses that integrate heterogeneous data and
have self-learning features. These new algorithms
must automate data mining and make it more
accessible to mainstream data warehouse users by
providing explanations with results, indicating
when results are not reliable and automatically
adapting to changes in underlying predictive
models.

Cross-references

» Cube Implementations

» Data Warehouse Interoperability

» Data Warehousing Systems: Foundations and Archi-
tectures

» ETL

» Multidimensional Modeling

» On-Line Analytical Processing

» Query Processing in Data Warehouses

» Transformation

Recommended Reading

1.

12.

13.

14.

15.

16.

18.

19.

Kimball R. and Strethlo K. Why decision support fails and how
to fit it. ACM SIGMOD Rec., 24(3):91-97, 1995.

. Golfarelli M., Maio D., and Rizzi S. Conceptual design of

data warehouses from E/R schemes. In Proc. 31st Annual
Hawaii Int. Conf. on System Sciences, Vol. VIL. 1998,
pp. 334-343.

. Lehner W. Modeling large scale OLAP scenarios. In Advances in

Database Technology, Proc. 6th Int. Conf. on Extending Data-
base Technology, 1998, pp. 153-167.

. Li C. and Wang X.S. A data model for supporting on-line

analytical processing. In Proc. Int. Conf. on Information and
Knowledge Management, 1996, pp. 81-88.

. Pedersen T.B. and Jensen C.S. Multidimensional data modeling

for complex data. In Proc. 15th Int. Conf. on Data Engineering,
1999, pp. 336-345.

. Vassiliadis P. Modeling multidimensional databases, cubes and

cube operations. In Proc. 10th Int. Conf. on Scientific and
Statistical Database Management, 1998, 53-62.

. Chaudhuri S. and Dayal U. An overview of data warehousing

and OLAP technology. ACM SIGMOD Rec., 26(1):65-74, 1997.

. Thalhammer T., Schrefl M., and Mohania M. Active data ware-

houses: complementing OLAP with analysis rules. Data Knowl.
Eng., 39(3):241-269, 2001.

. ACT-NET Consortium. The active database management system

manifesto: a rulebase of ADBMS featueres. ACM SIGMOD Rec.,
25(3), 1996.

. Simon E. and Dittrich A. Promises and realities of active data-

base systems. In Proc. 21th Int. Conf. on Very Large Data Bases,
1995, pp. 642-653.

. Brobst S. Active data warehousing: a new breed of decision

support. In Proc. 13th Int. Workshop on Data and Expert
System Applications, 2002, pp. 769-772.

Borbst S. and Rarey J. The five stages of an active data warehouse
evolution. Teradata Mag., 38—44, 2001.

IBM DB2 Data Warehouse Edition. http://www-306.ibm.com/
software/data/db2/dwe/.

Rittman M. Implementing Real-Time Data Warehousing Using
Oracle 10g. Dbazine.com. http://www.dbazine.com/dataware-
house/dw-articles/rittman5.

Kimball R. and Caserta J. The Data Warehouse ETL Toolkit:
Practical Techniques for Extracting, Cleaning, Conforming,
and Delivering Data. Wiley, 2004.

Linthicum R.S. Enterprise Application Integration. Addison-
Wesley, 1999.

. Improving SOA with Goldengate TDM Technology. GoldenGate

White Paper, October 2007.

Langseth J. Real-Time Data Warehousing: Challenges and Solu-
tions. DSSResources.COM, 2004.

Paton N.W. and Diaz O. Active Database Systems. ACM Com-
put. Surv., 1(31),1999.

Active Database, Active Database (Management) System

27

I
Active Database, Active Database
(Management) System

MIKAEL BERNDTSSON, JONAS MELLIN
University of Skovde, Skovde, Sweden

Definition

An active database (aDB) or active database (manage-
ment) system (aDBS/aDBMS) is a database (man-
agement) system that supports reactive behavior
through ECA-rules.

Historical Background

The term active database was first used in the early
1980s [12]. Some related active database work was
also done within the area of expert database systems
in the mid 1980s, but it was not until the mid/late
1980s that the research on supporting ECA rules in
database systems took off, for example [10,12,18].
During the 1990s the area was extensively explored
through more than twenty suggested active database
prototypes and a large body of publications:

e Seven workshops were held between 1993 and 1997:
RIDS [12,16,17], RIDE-ADS [20], Dagstuhl Semi-
nar [5] and ARTDB [3,4].

e Two special issues of journals [8,9] and one special
issue of ACM Sigmod Record [1].

e Two text books [13,19] and one ACM Computing
Survey paper [15].

In addition, the groups within the ACT-NET consortium
(A European research network of Excellence on active
databases 1993—-1996) reached a consensus on what con-
stitutes an active database management system with the
publication of the Active Database System Manifesto [2].

Most of the active databases are monolithic and
assume a centralized environment, consequently, the ma-
jority of the prototype implementations do not consider
distributed issues. Initial work on how active databases
are affected by distributed issues are reported in [7].

Foundations

An active database can automatically react to events such
as database transitions, time events, and external signals
in a timely and efficient manner. This is in contrast to
traditional database systems, which are passive in their
behaviors, so that they only execute queries and trans-
actions when they are explicitly requested to do so.

Previous approaches to support reactive behavior can
broadly be classified into:

e Periodically polling the database.
e Embedding or encoding event detection and
related action execution in the application code.

The first approach implies that the queries must be run
exactly when the event occurs. The frequency of poll-
ing can be increased in order to detect such an event,
but if the polling is too frequent, then the database is
overloaded with queries and will most often fail. On
the other hand, if the frequency is too low, the event
will be missed.

The second approach implies that every application
which updates the database needs to be augmented
with condition checks in order to detect events. For
example, an application may be extended with code to
detect whether the quantity of certain items has fallen
below a given level. From a software engineering point
of view, this approach is inappropriate, since a change
in a condition specification implies that every applica-
tion that uses the modified condition needs to be
updated.

Neither of the two previous approaches can satisfac-
torily support reactive behavior in a database context
[10]. An active database system avoids the previous
disadvantages by moving the support for reactive behav-
ior inside the database (management) system. Reactive
behavior in an active database is supported by ECA-rules
that have the following semantics: when an event is
detected, evaluate a condition, and if the condition
1s true, execute an action.

Similar to describing an object by its static features
and dynamic features, an active database can be de-
scribed by its knowledge model (static features) and
execution model (dynamic features). Thus, by investi-
gating the knowledge model and execution model of
an active database, one can identify what type of ECA
rules that can be defined and how the active database
behave at run-time.

Key Applications
An aDB or aDBS/aDBMS is useful for any non-mission
critical application that require reactive behavior.

Future Directions
Looking back, the RIDS’97 workshop marks the end of
the active database period, since there are very few

28

Active Database Management System Architecture

active database publications after 1997. However, the
concept of ECA-rules has resurfaced and has been picked
up by other research communities such as Complex
Event Processing and Semantic Web. In contrast to typi-
cal active database approaches that assume a centralized
environment, the current research on ECA rules within
Complex Event Processing and Semantic Web assume
that the environment is distributed and heterogeneous.
Thus, as suggested within the REWERSE project [3],
one cannot assume that the event, condition, and
action parts of an ECA rule are defined in one single
ECA rule language. For example, the event part of
an ECA-rule can be defined in one language (e.g.,
Snoop), whereas the condition part and action part are
defined in a completely different rule language.

The popularity of using XML for manipulating
data has also led to proposals of ECA rule markup
languages. These ECA rule markup languages are
used for storing information about ECA rules and
facilitates exchange of ECA-rules between different
rule engines and applications.

One research question that remains from the active
database period is how to model and develop applications
that use ECA rules. Some research on modeling ECA rules
has been carried out, but there is no widely agreed ap-
proach for modeling ECA rules explicitly in UML, or how
to derive ECA rules from existing UML diagrams.

Cross-references

» Active Database Execution Model
» Active Database Knowledge Model
» Complex Event Processing

» ECA Rules

Recommended Reading

1. ACM SIGMOD Record. Special Issue on Rule Management and
Processing in Expert Databases, 1989.

2. ACT-NET Consortium The active database management system
manifesto: a rulebase of ADBMS features. ACM SIGMOD Rec.,
25(3):40-49, 1996.

3. Alferes J.J., Amador R., and May W. A general language for
evolution and reactivity in the semantic Web. In Proc. 3rd
Workshop on Principles and Practice of Semantic Web
Reasoning, 2005, pp. 101-115.

4. Andler S.F. and Hansson J. (eds.). In Proc. 2nd International
Workshop on Active, Real-Time, and Temporal Database Systems,
LNCS, vol. 1553, Springer, 1998.

5. Berndtsson M. and Hansson J. Workshop report: the first inter-
national workshop on active and real-time database systems.
SIGMOD Rec., 25(1):64—66, 1996.

6. Buchmann A., Chakravarthy S., and Dittrich K. Active Data-
bases. Dagstuhl Seminar No. 9412, Report No. 86, 1994.

7. Biiltzingsloewen G., Koschel A., Lockemann P.C., and Walter H.D.
ECA Funtionality in a Distributed Environment. Monographs in
Computer Science, chap. 8, Springer, 1999, pp. 147-175.

8. Chakravarthy S. (ed.), Special Issue on Active Databases, vol. 15,
IEEE Quarterly Bulletin on Data Engineering, 1992.

9. Chakravarthy S. and Widom J. (eds.), Special Issue on the Active
Database Systems, Journal of Intelligent Information Systems 7,
1996.

10. Dayal U., Blaustein B., Buchmann A., et al. S.C. HiPAC:
A Research Project in Active, Time-Constrained Database Man-
agement. Tech. Rep. CCA-88-02, Xerox Advanced Information
Technology, Cambridge, 1988.

11. Dittrich K.R., Kotz A.M., and Mulle J.A. An Event/Trigger Mech-
anism to Enforce Complex Consistency Constraints in Design
Databases. ACM SIGMOD Rec., 15(3):22-36, 1986.

12. Geppert A. and Berndtsson M. (eds.). Proc. 3rd International
Workshop on Rules in Database Systems, LNCS, vol. 1312,
Springer, 1997.

13. Morgenstern M. Active Databases as a Paradigm for Enhanced
Computing Environments. In Proc. 9th Int. Conf. on Very Data
Bases, 1983, pp. 34-42.

14. Paton N.W. (ed.) Active Rules in Database Systems. Monographs
in Computer Science, Springer, 1999.

15. Paton N.W. and Diaz O. Active Database Systems. ACM
Comput. Surv, 31(1):63-103, 1999.

16. Paton N.W. and Williams M.W. (eds.). In Proc. Ist International
Workshop on Rules in Database Systems, Springer, Berlin, 1994.

17. Sellis T. (ed.). In Proc. 2nd International Workshop on Rules in
Database Systems, vol. 905, Springer, 1995.

18. Stonebraker M., Hearst M., and Potamianos S. Commentary on
the POSTGRES Rules System. SIGMOD Rec., 18(3):5-11, 1989.

19. Widom J. and Ceri S. (eds.) Active Database Systems: Triggers
and Rules For Advanced Database Processing. Morgan
Kaufmann, 1996.

20. Widom J. and Chakravarthy S. (eds.). In Proc. 4th International
Workshop on Research Issues in Data Engineering — Active
Database Systems, 1994.

|
Active Database Management
System Architecture

JonAs MELLIN, MIKAEL BERNDTSSON
University of Skovde, Skovde, Sweden

Synonyms
ADBMS infrastructure; ADBMS framework; ADBMS

Definition
The active database management system (ADBMS)
architecture is the software organization of a DBMS

Active Database Management System Architecture

29

with active capabilities. That is, the architecture defines
support for active capabilities expressed in terms of
services, significant components providing the services
as well as critical interaction among these services.

Historical Background

Several architectures has been proposed: HiPAC [5,8],
REACH [4], ODE [14], SAMOS [10], SMILE [15], and
DeeDS [1]. Each of these architectures emphasize par-
ticular issues concerning the actual DBMS that they are
based on as well as the type of support for active
capabilities. Paton and Diaz [18] provide an excellent
survey on this topic. Essentially, these architectures
propose that the active capabilities of an ADBMS
require the services specified in Table 1. It is assumed
that queries to the database are encompassed in trans-
actions and hence transactions imply queries as well as
database manipulation operations such as insertion,
updates and deletion of tuples.

The services in Table 1 interact as depicted in Fig. 1.
Briefly, transactions are submitted to the scheduling
service that updates the dispatch table read by the
transaction processing service. When these transac-
tions are processed by the transaction processing ser-
vice events are generated. These events are signaled to
the event monitoring service that analyzes them.
Events that are associated with rules (subscribed
events) are signaled to the rule evaluation service that
evaluates the conditions of triggered rules (i.e., rules
associated with signaled events). The actions of the
rules whose conditions are true are submitted for
scheduling and are executed as dictated by the sched-
uling policy. These actions execute as part of some
transaction according to the coupling mode and can,
in turn, generate events. This is a general description
of the service interaction and it can be optimized
by refining it for a specific purpose, for example, in

immediate coupling mode no queues between the
services are actually needed.

In more detail, transactions are submitted to the
scheduling service via a queue of schedulable activities;
this queue of schedulable activities is processed and a
dispatch table of schedulable activities is updated. This
scheduling service encompasses scheduling of transac-
tions as well as ECA rule actions in addition to other
necessary schedulable activities. It is desirable for the
scheduling service to encompass all these types of sche-
dulable activities, because they impact each other, since
they compete for the same resources. The next step in
the processing chain is the monitored transaction proces-
sing service, which includes the transaction management,
lock management, and log management [11, Chap. 5],
as well as a database query engine (cf. query processor
[20, Chap. 1]), but not the scheduling service. Another
way to view the transaction processing service is as a
passive database management system without the trans-
action scheduling service. The transaction processing
service is denoted “monitored,” since it generates events
that are handled by the active capabilities. The monitored
transaction processing service executes transactions and
ECA rule actions according to the dispatch table. When
transactions execute, event occurrences are signaled to
the event monitoring service via a filtered event log.
When event monitoring executes, it updates the filtered
event log and submits subscribed events to the rule
evaluation service. An example of event log filtering is
that if a composite event occurrence is detected, then for
optimization reasons (cf. dynamic programming) this
event occurrence is stored in the filtered event log. An-
other example is that when events are no longer needed,
then they are pruned; for example, when a transaction is
aborted, then all event occurrences can be pruned unless
intertransaction events are allowed (implying that dirty
reads may occur). The rule evaluation service reads the

Active Database Management System Architecture. Table 1. Services in active database management systems

Service Responsibility

Event
monitoring

The event monitoring service is responsible for collecting events, analyzing events and disseminating
results of the analysis (in terms of events) to subscribers, in particular, ECA rules.

Rule evaluation | The rule evaluation service is responsible for invoking condition evaluation of triggered ECA rules and
submit actions for execution to the scheduler.

Scheduling

service actions, transactions etc. for execution.

The scheduling service is responsible for readying and ordering schedulable activities such as ECA rule

30

Active Database Management System Architecture

— - _
{ \
| |
| I —_—
| Monitored | Event
| transaction | - monitoring
| processing | _ service
| system T v
| | gem
| | 28, .
| | - 8
| t =0
| I
| [[
| Dis | CITTTITIT.
. , Dispaich table X
| T of acivities ' Subscribed
| | event occurrences
| 4 |
| |
I [— I Triggered
actions Condition
| i -« ;
| Sgpv?éj:lmg 82 evaluation
| < g service
| g, |
| o |
| ®] | X ot
| | ubmitte
_ _ _Database management system transactions
Legend:
[TTTTTT [0 Queueofitems
—- Data flow: event occurrences, actions, transactions
———— —— Manipulation: insert, update, delete

Active Database Management System Architecture. Figure 1. Service interaction view of architecture (based on

architecture by Paton and Diaz [18]).

queue of subscribed events, finds the triggered rules and
evaluates their conditions. These conditions may be
queries, logical expressions or arbitrary code depending
on the active database system [9]. The rule evaluation
results in a set of actions that is submitted to the schedul-
ing service for execution.

The general view of active capabilities (in Fig. 1) can
be refined and implemented in different ways. As men-
tioned, it is possible to optimize an implementation
by removing the queues between the services if only
immediate coupling mode is considered; this result in
less overhead, but restricts the expressibility of ECA-
rules significantly. A service can be implemented via
one or more servers. These servers can be replicated to
different physical nodes for performance or depend-
ability reasons (e.g., availability, reliability).

In active databases, a set of issues have a major
impact on refinement and implementation of the gen-
eral service-oriented view depicted in Fig. 1. These

issues are: (i) coupling modes; (ii) interaction with
typical database management services such as transac-
tion management, lock management, recovery man-
agement (both pre-crash such as logging and
checkpointing and post-crash such as the actually re-
covery) (cf., for example, transaction processing by
Gray and Reuter [11, Chap. 4]); (iii) when and how
to invoke services; and (iv) active capabilities in
distributed active databases.

The coupling modes control how rule evaluation is
invoked in response to events and how the ECA rule
actions are submitted, scheduled, dispatched and exe-
cuted for rules whose conditions are true (see entry
“Coupling modes” for more detailed description).
There are different alternatives to interaction with a
database system. One alternative is to place active
database services on top of existing database manage-
ment systems. However, this is problematic if the data-
base management system is not extended with active

Active Database Management System Architecture

31

capabilities [4]. For example, the deferred coupling
mode require that when a transaction is requested to
commit, then queued actions should be evaluated. This
requires that the transaction management to interact
with the rule evaluation and scheduling services during
commit processing (e.g., by using back hooks in the
database management system). Further, to be useful,
the detached coupling mode has a set of significant
varieties [4] that require the possibility to express
constraints between transactions.

The nested transaction model [16] is a sound basis
for active capabilities. For example, deferred actions
can be executed as subtransactions that can be com-
mitted or aborted independently of the parent transac-
tion. Nested transactions still require that existing
services are modified. Alternatively rule evaluation
can be performed as subtransactions.

To achieve implicit events the database schema
translation process needs to automatically instrument
the monitored systems. An inferior solution is to
extend an existing schema with instrumented entities,
for example, each class in an object-oriented database
can be inherited to an instrumented class. In this
example, there is no way to enforce that the instru-
mented classes are actually used. The problem is to
modify the database schema translation process, since
this is typically an intrinsic part in commercial
DBMSs.

Concerning issue (iii), the services must be allo-
cated to existing resources and scheduled together with
the transactions. Typically, the services are implemen-
ted as a set of server processes and transactions are
performed by transaction programs running as pro-
cesses (cf., [11]). These processes are typically sched-
uled, dispatched and executed as a response to the
requests from outside the database management sys-
tem or as a direct or indirect response to a timeout.
Each service is either invoked when something is
stored in the queue or table or explicitly invoked, for
example, when the system clock is updated to reflect
the new time. The issues concerning scheduling are
paramount in any database management system for
real-time system purposes [2].

Event monitoring can either be (i) implicitly
invoked whenever an event occurs, or it can be
(ii) explicitly invoked. This is similar to coupling
modes, but it is between the event sources (e.g., trans-
action processing service and application) and the

event monitoring service rather than in between the
services of the active capabilities. Case (i) is prevalent
in most active database research, but it has a negative
impact in terms of determinism of the result of event
monitoring. For example, the problem addressed in
the event specification and event detection entry
concerning the unintuitive semantics of the disjunctive
event operator is a result of implicit invocation. In
distributed and real-time systems, explicit invocation
is preferable in case (ii), since it provides the operating
system with the control when something should be
evaluated. Explicit invocation solves the problem of
disjunction operator (see event specification and
event detection entries), since the event expressions
defining composite event types can be explicitly eval-
uated when all events have been delivered to event
monitoring rather than implicitly evaluated whenever
an event is delivered.

In explicit invocation of event monitoring, the
different event contexts can be treated in different
ways. For example, in recent event context, only the
most recent result is of interest in implicit invocation.
However, in terms of explicit invocation, all possible
most recent event occurrences may be of interest, not
only the last one. For example, it may be desirable to
keep the most recent event occurrence per time slot
rather than per terminating event.

Issue (iv) has been addressed in, for example,
DeeDS [1], COBEA [15], Hermes [19], X2TS [5].
Further, it has been addressed in event based systems
for mobile networks by Miihl et al. [17]. Essentially, it
is necessary to perform event detection in a moving
time window, where the end of the time window is the
current time. All events that are older than the begin-
ning of the time window can be removed and ignored.
Further, the heterogeneity must be addressed and
there are XML-based solutions (e.g., Common Base
Events [6]).

Another issue that is significant in distributed ac-
tive databases is the time and order of events. For
example, in Snoop [8] it is suggested to separate global
and local event detection, because of the difference in
the time granularity of the local view of time and the
global (distributed) view of time.

Foundations
For a particular application domain, common significant
requirements and properties as well as pre-requisites of

32

Active Database Management System Architecture

available resources need to be considered to refine the
general architecture. Depending on the requirements,
properties and pre-requisites, different compromises are
reached. One example is the use of composite event
detection in active real-time databases. In REACH [4],
composite event detection is disallowed for real-time
transactions. The reason for this is that during composite
event detection, contributing events are locked and
this locking affects other transaction in a harmful way
with respect to meeting deadlines. A different approach is
proposed in DeeDS [1], where events are stored in the
database and cached in a special filtered event log; during
event composition, events are not locked thus enabling
the use of composite event detection for transaction
with critical deadlines. The cost is that isolation of trans-
actions can be violated unless it is handled by the active
capabilities.

Availability is an example of a property that signifi-
cantly affects the software architecture. For example,
availability is often considered significant in distributed
systems; that is, even though physical nodes may fail,
communications links may be down, or the other
physical nodes may be overloaded, one should get, at
least, some defined level of service from the system.
An example of availability requirements is that emergen-
cy calls in phone switches should be prioritized over
non-emergency calls, a fact that entails that existing
phone call connections can be disconnected to let an
emergency call through. Another example to improve
availability is pursued in DeeDS [1], where eventual
consistency is investigated as a mean to improve avail-
ability of data. The cost is that data can temporarily be
inconsistent.

As addressed in the aforementioned examples, dif-
ferent settings affect the architecture. Essentially, there
are two approaches that can be mixed: (i) refine or
invent new method, tools, techniques to solve a prob-
lem, and these method, tools, techniques can stem
from different but relevant research areas; (ii) refine
the requirements or pre-requisites to solve the problem
(e.g., weaken the ACID properties of transactions).

Key Applications

The architecture of ADBMSs is of special interest to
developers of database management systems and their
applications. In particular, software engineering issues
are of major interest. Researchers performing experi-
ments can make use of this architecture to enable valid
experiments, study effects of optimizations etc.

Concerning real examples of applications, only sim-
ple things such as using rules for implementing alerters,
for example, when an integrity constraint is violated.
SQL Triggers implement simple ECA rules in immediate
coupling mode between event monitoring and rule eval-
uation as well as between rule evaluation and action
execution.

Researchers have aimed for various application
domains such as:

e Stock market
e Inventory control
e Bank applications

Essentially, any application domain in which there is
an interest to move functionality from the applications
to the database schema to reduce the interdependence
between applications and databases.

Future Directions

There are no silver bullets in computer science
or software engineering and each refinement of the
architecture (in Fig. 1) is a compromise providing or
enabling certain features and properties. For example,
by allowing only detached coupling mode it is easier to
achieve timeliness, an important property of real-time
systems; however, the trade-off is that it is difficult to
specify integrity rules in terms of ECA-rules, since the
integrity checks are performed in a different transac-
tion. The consequence is that dirty transactions as well
as compensating transactions that perform recovery
from violated integrity rules must be allowed.

It is desirable to study architectures addressing
how to meet specific requirement of the application
area (e.g., accounting information in mobile ad-hoc
networks), the specific environment in which the active
database are used (e.g., distributed systems, real-time
systems, mobile ad-hoc networks, limited resource
equipment). The major criteria for a successful archi-
tecture (e.g., by refining an existing architecture) is if
anyone can gain something from using it. For example,
Borr [3] reported that by refining their architecture by
employing transaction processing they improved pro-
ductivity, reliability as well as average throughput in
their heterogenous distributed reliable applications.

An area that has received little attention in active
database is optimization of processing. For example,
how can queries to the database be optimized with
condition evaluation if conditions are expressed as

Active Database Coupling Modes

33

arbitrary queries? Another question is how to group
actions to optimize performance? So far, the emphasis
has been on expressibility as well as techniques how to
enable active support in different settings. Another
area that has received little attention is recovery pro-
cessing, both pre-crash and post-crash recovery. For
example, how should recovery with respect to detached
but dependent transactions be managed?

Intertransaction events and rules has been pro-
posed by, for example, Buchmann et al. [4]. How
should this be managed with respect to the isolation
levels proposed by Gray and Reuter [11, Chap. 7]?

There are several other areas with which active
database technology can be combined. Historical
examples include real-time databases, temporal data-
bases, main-memory databases, geographical informa-
tion systems. One area that has received little attention
is how enable reuse of database schemas.

Cross-references

» Active Database Coupling Modes
» Active Database Execution Model
» Active Database Knowledge Model
» Event Detection

» Event Specification

Recommended Reading

1. Andler S., Hansson J., Eriksson J., Mellin J., Berndtsson M., and
Eftring B. DeeDS Towards a Distributed Active and Real-Time
Database System. ACM SIGMOD Rec., 25(1), 1996.

2. Berndtsson M. and Hansson J. Issues in active real-time
databases. In Proc. 1st Int. Workshop on Active and Real-Time
Database System, 1995, pp. 142-150.

3. Borr A.J. Robustness to crash in a distributed database: A non
shared-memory multi-processor approach. In Proc. 10th Int.
Contf. on Very Large Data Bases, 1984, pp. 445-453.

4. Buchmann A.P,, Zimmermann J., Blakeley J.A., and Wells D.L.
Building an Integrated Active OODBMS: Requirements, Archi-
tecture, and Design Decisions. In Proc. 11th Int. Conf. on Data
Engineering, 1995, pp. 117-128.

5. Chakravarthy S., Blaustein B., Buchmann A.P., Carey M., Dayal
U., Goldhirsch D., Hsu M., Jauhuri R., Ladin R., Livny M.,
McCarthy D., McKee R., and Rosenthal A. HiPAC: A Research
Project In Active Time-Constrained Database Management.
Tech. Rep. XAIT-89-02, Xerox Advanced Information Technol-
ogy, 1989.

6. Common Base Events. Http://www.ibm.com/developerworks/li-
brary/specification/ws-cbe/.

7. Chakravarthy S., Krishnaprasad V., Anwar E., and Kim S.K.
Composite Events for Active Database: Semantics, Contexts,
and Detection. In Proc. 20th Int. Conf. on Very Large Data
Bases, 1994, pp. 606-617.

8. Dayal U., Blaustein B., Buchmann A., Chakravarthy S., Hsu M.,
Ladin R., McCarty D., Rosenthal A., Sarin S., Carey M.,
Livny M., and Jauharu R. The HiPAC Project: Combining
active databases and timing constraints. ACM Sigmod Rec.,
17(1), 1988.

9. Eriksson J. Real-Time and Active Databases: A Survey. In Proc.
2nd Int. Workshop on Active, Real-Time, and Temporal Data-
base Systems, 1997, pp. 1-23.

10. Gatziu S. Events in an Active Object-Oriented Database System.
Ph.D. thesis, University of Zurich, Switzerland, 1994.

11. Gray J. and Reuter A. Transaction processing: Concepts and
techniques. Morgan Kaufmann, Los Altos, CA, 1994.

12. Jaeger U. Event Detection in Active Databases. Ph.D. thesis,
University of Berlin, 1997.

13. Liebig C.M. and Malva A.B. Integrating Notifications and
Transactions: Concepts and X2TS Prototype. In Second
International Workshop on Engineering Distributed Objects,
2000, pp. 194-214.

14. Lieuwen D.E, Gehani N., and Arlein R. The ODE active data-
base: Trigger semantics and implementation. In Proc. 12th Int.
Conf. on Data Engineering, 1996, pp. 412—420.

15. Ma C. and Bacon J. COBEA: A CORBA-based Event Architec-
ture. In Proc. 4th USENIX Conf. Object-Oriented Technologies
and Syst., 1998, pp. 117-132.

16. Moss J.E.B. Nested transactions: An approach to reliable
distributed computing. MIT, 1985.

17. Mihl G., Fiege L., and Pietzuch P.R. Distributed event-based
systems. Springer, Berlin, 2006.

18. Paton N. and Diaz O. Active database systems. ACM Comput.
Surv., 31(1):63-103, 1999.

19. Pietzuch P. and Bacon J. Hermes: A Distributed Event-
Based Middleware Architecture. In Proc. 22nd Int. Conf. on
Distributed Computing Systems Workshop. Vienna, Austria,
2002, pp. 611-618.

20. Ullman J.D. Principles of Database Systems. Computer Science,
1982.

! Active Database Coupling Modes

MIKAEL BERNDTSSON, JONAS MELLIN
University of Skovde, Skovde, Sweden

Definition

Coupling modes specify execution points for ECA rule
conditions and ECA rule actions with respect to the
triggering event and the transaction model.

Historical Background
Coupling modes for ECA rules were first suggested in
the HiPAC project [2,3].

34

Active Database Coupling Modes

Foundations

Coupling modes are specified for event-condition cou-
plings and for condition-action couplings. In detail,
the event-condition coupling specifies when the con-
dition should be evaluated with respect to the trigger-
ing event, and the condition-action coupling specifies
when the rule action should be executed with respect
to the evaluated rule condition (if condition is evalu-
ated to true).

The three most common coupling modes are: im-
mediate, deferred, and decoupled. The immediate cou-
pling mode preempts the execution of the transaction
and immediately initiates condition evaluation and
action execution. In the deferred coupling mode, con-
dition evaluation and action execution is deferred to
the end of the transaction (before transaction commit).
Finally, in decoupled (also referred to as detached)
coupling mode, condition evaluation and action exe-
cution is performed in separate transactions.

Specifying event-condition couplings and condi-
tion-action couplings in total isolation from each
other is not a good idea. What first might seem to be
one valid coupling mode for event-condition and one
valid coupling mode for condition-action, can be an
invalid coupling mode when used together. Thus, when
combining event-condition couplings and condition-
action couplings, not all combinations of coupling
modes are valid. The HiPAC project [2,3] proposed
seven valid coupling modes, see Table 1.

e [mmediate, immediate: the rule condition is evalu-
ated immediately after the event, and the rule action
is executed immediately after the rule condition.

o [mmediate, deferred: the rule condition is evaluated
immediately after the event, and the execution of

Active Database Coupling Modes. Table 1. Coupling modes

the rule action is deferred to the end of the
transaction.

Immediate, decoupled: the rule condition is evalu-
ated immediately after the event, and the rule ac-
tion is decoupled in a totally separate and parallel
transaction.

Deferred, deferred: both the evaluation of the rule
condition and the execution of the rule action is
deferred to the end of the transaction.

Deferred, decoupled: the evaluation of the rule con-
dition is deferred to the end of the transaction, and
the rule action is decoupled in a totally separate and
parallel transaction.

Decoupled, immediate: the rule condition is decoupled
in a totally separate and parallel transaction, and the
rule action is executed (in the same parallel transac-
tion) immediately after the rule condition.
Decoupled, decoupled: the rule condition is
decoupled in a totally separate and parallel transac-
tion, and the rule action is decoupled in another
totally separate and parallel transaction.

The two invalid coupling modes are:

Deferred, immediate: this combination violates the
semantics of ECA rules. That is, rule conditions
must be evaluated before rule actions are executed.
One cannot preempt the execution of the transac-
tion immediately after the event and execute the
rule action and at the same time postpone the
condition evaluation to the end of the transaction.
Decoupled, deferred: this combination violates
transaction boundaries. That is, one cannot decou-
ple the condition evaluation in a separate and par-
allel transaction and at the same time postpone the

Condition-Action

Event- Immediate Deferred

Condition

Decoupled

Immediate | condition evaluated and action
executed after event

condition evaluated after
event, action executed at
end of transaction

condition evaluated after event, action
executed in a separate transaction

Deferred | not valid

transaction

condition evaluated and
action executed at end of

condition evaluated at end of
transaction, action executed in a
separate transaction

Decoupled | in a separate transaction: not valid
condition evaluated and action

executed after event

condition evaluated in one separate
transaction, action executed in another
separate transaction

Active Database Execution Model

35

execution of the rule action to the end of the
original transaction, since one cannot know when
the condition evaluation will take place. Thus, there
is a risk that the action execution in the original
transaction will run before the condition has been
evaluated in the parallel transaction.

Rule actions executed in decoupled transactions can
either be dependent upon or independent of the trans-
action in which the event took place.

The research project REACH (REal-time ACtive
Heterogeneous System) [1] introduced two additional
coupling modes for supporting side effects of rule
actions that are irreversible. The new coupling modes
are variants of the detached casually dependent coupling
mode: sequential casually dependent, and exclusive ca-
sually dependent. In sequential casually dependent, a
rule is executed in a separate transaction. However, the
rule execution can only begin once the triggering trans-
action has committed. In exclusive casually dependent,
a rule is executed in a detached parallel transaction and
it can commit only if the triggering transaction failed.

Cross-references
» Active Database Execution Model
» ECA-rules

Recommended Reading

1. Branding H., Buchmann A., Kudrass T., and Zimmermann J.
Rules in an Open System: The REACH Rule System. In Proc. 1st
International Workshop on Rules in Database Systems, Work-
shops in Computing, 1994, pp. 111-126.

2. Dayal U., Blaustein B.A., Buchmann S.C., et al. The HiPAC
project: Combining active databases and timing constraints.
ACM SIGMOD Rec., 17(1):51-70, 1988.

3. Dayal U, Blaustein B., Buchmann A., Chakravarthy S., and et al.
HiPAC: A Research Project in Active, Time-Constrained Data-
base Management. Tech. Rep. CCA-88-02, Xerox Advanced
Information Technology, Cambridge, 1988.

I
Active Database Execution Model

MIKAEL BERNDTSSON, JONAS MELLIN
University of Skovde, Skovde, Sweden

Definition
The execution model of an active database describes
how a set of ECA rules behave at run time.

Key Points

The execution model describes how a set of ECA rules
(i.e., active database rulebase) behave at run time [2,4].
Any execution model of an active database must have
support for: (i) detecting event occurrences, (ii) eval-
uating conditions, and (iii) executing actions.

If an active database supports composite event de-
tection, it needs a policy that describes how a composite
event is computed. A typical approach is to use the event
consumption modes as described in Snoop [1]: recent,
chronicle, continuous, and cumulative. In the recent event
context, only the most recent constituent events will be
used to form composite events. In the chronicle event
context, events are consumed in chronicle order. The ear-
liest unused initiator/terminator pair are used to form the
composite event. In the continuous event context, each
initiator starts the detection of a new composite event and
a terminator may terminate one or more composite event
occurrences. The difference between continuous and
chronicle event contexts is that in the continuous event
context, one terminator can detect more than one occur-
rence of the composite event. In the cumulative event
context, all events contributing to a composite event are
accumulated until the composite event is detected. When
the composite event is detected, all contributing events are
consumed. Another approach to these event consump-
tion modes is to specify a finer semantics for each event by
using logical events as suggested in [3].

Once an event has been detected, there are several
execution policies related to rule conditions and rule
actions that must be in place in the execution model.
Thus an execution model for an active database should
provide answers to the following questions [2,4,5]:

e When should the condition be evaluated and when
should the action should be executed with respect
to the triggering event and the transaction model?
This is usually specified by coupling modes.

e What happens if an event triggers several rules?

— Areall rules evaluated, a subset, or only one rule?

— Are rules executed in parallell, according to rule
priority, or non-deterministically?

e What happens if one’s rules trigger another set of
rules?

— What happens if the rule action of one rule
negates the rule condition of an already trig-
gered rule?

— Can cycles appear? For example, can a rule
trigger itself?

36

Active Database Knowledge Model

The answers to the above questions are important to
know, as they dictate how a ECA rule system will
behave at run time. If the answers to the above ques-
tions are not known, then the behavior of the ECA rule
application becomes unpredictable.

Cross-references

» Active Database Coupling Modes
> Active Database Rulebase

» Composite Event

» Database Trigger

» ECA Rules

Recommended Reading

1. Chakravarthy S., Krishnaprasad V., Anwar E., and Kim S.K.
Composite Events for Active Databases: Semantics Contexts
and Detection. In Proc. 20th Int. Conf. on Very Large Data
Bases, 1994, pp. 606—617.

2. Dayal U, Blaustein B., Buchmann A., and Chakravarthy S. et al.
HiPAC: A Research Project in Active, Time-Constrained
Database Management. Technical Report CCA-88-02, Xerox
Advanced Information Technology, Cambridge, 1988.

3. Gehani N, Jagadish H.V., and Smueli O. Event specification
in an active object-oriented database. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, 1992, pp. 81-90.

4. Paton N.W. and Diaz O. Active Database Systems. ACM Com-
put. Surv, 31(1):63—-103, 1999.

5. Widom J. and Finkelstein S. Set-Oriented Production Rules
in Relational Database Systems. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, 1990, pp. 259-270.

|
Active Database Knowledge Model

MIKAEL BERNDTSSON, JONAS MELLIN
University of Skovde, Skovde, Sweden

Definition

The knowledge model of an active database describes
what can be said about the ECA rules, that is what type
of events are supported, what type of conditions are
supported, and what type of actions are supported?

Key Points
The knowledge model describes what types of events,
conditions, and actions that are supported in an active
database. Another way to look at the knowledge model
is to imagine what type of features are available in an
ECA rule definition language.

A framework of dimensions for the knowledge
model is presented in [3]. Briefly, each part of an

ECA rule is associated with dimensions that describe
supported features. Thus, an event can be described as
either a primitive event or a composite event, how it
was generated (source), whether the event is generated
for all instances in a given set or only for a subset
(event granularity), what type (if event is a composite
event) of operators and event consumption modes are
used in the detection of the composite event.

Conditions are evaluated against a database state.
There are three different database states that a rule con-
dition can be associated with [3]: (i) the database state
at the start of the transaction, (ii) the database state when
the event was detected, and (iii) the database state
when the condition is evaluated.

There are four different database states that a rule
action can be associated with [3]: (i) the database state
at the start of the transaction, (ii) the database state
when the event was detected, and (iii) the database state
when the condition is evaluated, and (iv) the database
state just before action execution. The type of rule
actions range from internal database updates (e.g., up-
date a table) to external programs (e.g., send email).

Within the context of the knowledge model it is
also useful to consider how ECA rules are represented,
for example inside classes, as data members, or first
class objects. Representing ECA rules as first class
objects [1,2] is a popular choice, since rules can be
treated as any other object in the database and tradi-
tional database operations can be used to manipulate
the ECA rules. Thus, representing ECA rules as first
class objects implies that ECA rules are not dependent
upon the existence of other objects.

The knowledge model of an active database should
also describe whether the active database supports
passing of parameters between the ECA rule parts, for
example passing of parameters from the event part to
the condition part.

Related to the knowledge model is the execution
model that describes how ECA rules behave at run time.

Cross-references
» Active Database Execution Model
» ECA Rules

Recommended Reading

1. Dayal U, Blaustein B., Buchmann A. et al. S.C. HiPAC:
A Research Project in Active, Time-Constrained Database
Management. Tech. Rep. CCA-88-02, Xerox Advanced Infor-
mation Technology, Cambridge, 1988.

Active Storage

37

2. Dayal U, Buchmann A., and McCarthy D. Rules are objects too: a
knowledge model for an active, object-oriented database system.
In Proc. 2nd Int. Workshop on Object-Oriented Database Systems,
1988, pp. 129-143.

3. Paton N.W. and Diaz O. Active database systems. ACM Comput.
Surv., 31(1):63-103, 1999.

! Active Database Rulebase

ANNMARIE ERICSSONI, MIKAEL BERNDTSSONZ, JoNas
MELLIN®
University of Skovde, Skovde, Sweden

Definition
An active database rulebase is a set of ECA rules that
can be manipulated by an active database.

Key Points

An active database rulebase is a set of ECA rules that can
be manipulated by an active database. Thus, an ADB
rulebase is not static, but it evolves over time. Typically,
ECA rules can be added, deleted, modified, enabled,
and disabled. Each update of the ADB rulebase can
potentially lead to different behaviors of the ECA
rules at run time, in particular with respect to termina-
tion and confluence.

Termination concerns whether a set of rules is
guaranteed to terminate. A set of rules may have a
non-terminating behavior if rules are triggering each
other in a circular order, for example, if the execution
of rule R1 triggers rule R2 and the execution of rule R2
triggers rule R1. A set of rules is confluent if the
outcome of simultaneously triggered rules is unique
and independent of execution order.

Cross-references
» ECA Rules

| .
Active Databases

» Event Driven Architecture

I
Active Disks

» Active Storage

I
Active Document

» Active XML

|
Active Storage

Kazvo Gopa
The University of Tokyo, Tokyo, Japan

Synonyms
Active Disks; Intelligent Disks

Definition

Active Storage is a computer system architecture which
utilizes processing power in disk drives to execute ap-
plication code. Active Storage was introduced in sepa-
rate academic papers [1-3] in 1998. The term Active
Storage is sometimes identified merely with the com-
puter systems proposed in these papers. Two synonyms,
Active Disk and Intelligent Disk, are also used to refer to
Active Storage. The basic idea behind Active Storage is
to offload computation and data traffic from host
computers to the disk drives themselves such that the
system can achieve significant performance improve-
ments for data intensive applications such as decision
support systems and multimedia applications.

Key Points
A research group at Carnegie Mellon University pro-
posed, in [3], a storage device called Active Disk, which
has the capability of downloading application-level
code and running it on a processor embedded on
the device. Active Disk has a performance advantage
for /O bound scans, since processor-per-disk proces-
sing can potentially reduce data traffic on intercon-
nects to host computers and yield great parallelism of
scans. E. Riedel et al. carefully studied the potential
benefits of using Active Disks for four types of data
intensive applications, and introduced analytical per-
formance models for comparing traditional server sys-
tems and Active Disks. They also prototyped ten Active
Disks, each having a DEC Alpha processor and two
Seagate disk drives, and demonstrated almost linear
scalability in the experiments.

A research group at University of California at
Berkeley discussed a vision of Intelligent Disks (IDISKs)
in [2]. The approach of Intelligent Disk is similar to that

38

Active XML

of Active Disk. K. Keeton et al. carefully studied the
weaknesses of shared-nothing clusters of workstations
and then explored the possibility of replacing the cluster
nodes with Intelligent Disks for large-scale decision
support applications. Intelligent Disks assumed higher
complexity of applications and hardware resources in
comparison with CMU’s Active Disks.

Another Active Disk was presented by a research
group at the University of California at Santa Barbara
and University of Maryland in [1]. A. Acharya et al.
carefully studied programming models to exploit disk-
embedded processors efficiently and safely and pro-
posed algorithms for typical data intensive operations
such as selection and external sorting, which were vali-
dated by simulation experiments.

These three works are often recognized as opening
the gate for new researches of Intelligent Storage Sys-
tems in the post-“database machines” era.

Cross-references
» Database Machine
» Intelligent Storage Systems

Recommended Reading

1. Acharya A., Mustafa U., and Saltz J.H. Active disks: program-
ming model, algorithms and evaluation. In Proc. 8th Int. Conf.
Architectural Support for Programming Lang. and Operating
Syst., 1998, pp. 81-91.

2. Keeton K., Patterson D.A., and Hellerstein J.M. A case for intel-
ligent disks (IDISKs). SIGMOD Rec., 27(3):42-52, 1998.

3. Riedel E,, Gibson G.A., and Faloutsos C. Active storage for large-
scale data mining and multimedia. In Proc. 24th Int. Conf. on
Very Large Data Bases, 1998, pp. 62-73.

|
Active XML

SERGE ABITEBOUL'!, OMAR BEN]ELLOUNZ,

Tova Mo’

'INRIA, Saclay ile-de-France, Orsay, Cedex, France
*Google Inc., Mountain view, CA, USA

*Tel Aviv University, Tel Aviv, Israel

Synonyms
Active document; AXML

Definition
Active XML documents (AXML documents, for short)
are XML documents [12] that may include embedded

calls to Web services [13]. Hence, AXML documents
are a combination of regular “extensional” XML data
with data that is defined “intensionally;,” i.e., as a de-
scription that enables obtaining data dynamically (by
calling the corresponding service).

AXML documents evolve in time when calls to
their embedded services are triggered. The calls may
bring data once (when invoked) or continually (e.g., if
the called service is a continuous one, such as a sub-
scription to an RSS feed). They may even update exist-
ing parts of the document (e.g., by refreshing
previously fetched data).

Historical Background

The AXML language was originally proposed at INRIA
around 2002. Work around AXML has been going
there in the following years. A survey of the research
on AXML is given in [13]. The software, primarily
under the form of an AXML system, is available as
open source software. Resources on Active XML may
be found on the project’s Web site [11].

The notion of embedding function calls into data is
old. Embedded functions are already present in rela-
tional systems as stored procedures. Of course, method
calls form a key component of object databases. For the
Web, scripting languages such as PHP or JSP have made
popular the integration of processing inside HTML
or XML documents. Combined with standard database
interfaces such as JDBC and ODBC, functions are used
to integrate results of (SQL) queries. This idea can also
be found in commercial software products, for in-
stance, in Microsoft Office XP, SmartTags inside Office
documents can be linked to Microsoft’s .NET platform
for Web services.

The originality of the AXML approach is that it
proposed to exchange such documents, building on the
fact that Web services may be invoked from anywhere.
In that sense, this is truly a language for distributed
data management. Another particularity is that the
logic (the AXML language) is a subset of the AXML
algebra.

Looking at the services in AXML as queries, the
approach can be viewed as closely related to recent
works based on XQuery [14] where the query language
is used to describe query plans. For instance the
DXQ project [7] developed at ATT and UCSD
emphasizes the distributed evaluation of XQuery
queries. Since one can describe documents in an
XQquery syntax, such approaches encompass in

Active XML

39

some sense AXML documents where the service
calls are XQuery queries.

The connection with deductive databases is used in
[1] to study the diagnosis problems in distributed net-
works. A similar approach is followed in [8] for declar-
ative network routing.

It should be observed that the AXML approach
touches upon most database areas. In particular, the
presence of intensional data leads to views, deductive
databases and data integration. The activation of calls
contained in a document essentially leads to active
databases. AXML services may be activated by external
servers, which relates to subscription queries and
stream databases. Finally, the evolution of AXML docu-
ments and their inherent changing nature lead to an
approach of workflows and service choreography in the
style of business artifacts [10].

The management of AXML document raises a
number of issues. For instance, the evaluation of
queries over active documents is studied in [2]. The
“casting” of a document to a desired type is studied in

Newspaper

Le monde 2008/3/12 Today...

Newspaper

Le monde 2008/3M12 Today...

Paris

Active XML. Figure 1. An AXML document.

Weather

f@weather.com

Location

[9]. The distribution of documents between several
peers and their replication is the topic of [4].

Foundations
An AXML document is a (syntactically valid) XML
document, where service calls are denoted by special
XML elements labeled call. An example AXML docu-
ment is given in Fig. 1. The figure shows first the XML
serialized syntax, then a more abstract view of the same
document as a labeled tree. The document in the
figure describes a (simplified) newspaper homepage
consisting of (i) some extensional information (the
name of the newspaper, the current date, and a news
story), and (ii) some intensional information (service
calls for the weather forecast, and for the current exhi-
bits). When the services are called, the tree evolves. For
example, the tree at the bottom is what results from a call
to the service f at weather.com to obtain the tempera-
ture in Paris.

AXML documents fit nicely in a peer-to-peer archi-
tecture, where each peer is a persistent store of AXML

Weather Shows
f@weather.com Events @timeout.com
Location City

Paris Paris

Shows

Celsius Events @timeout.com

City

Paris

40

Active XML

documents, and may act both as a client, by invoking the
service calls embedded in its AXML documents, and as a
server, by providing Web services over these documents.

Two fundamental issues arise when dealing with
AXML documents. The first one is related to the
exchange of AXML documents between peers, and the
second one is related to query evaluation over such data.

Documents Exchange: When exchanged between
two applications/peers, AXML documents have a cru-
cial property: since Web services can be called from
anywhere on the Web, data can either be materialized
before sending, or sent in its intensional form and
left to the receiver to materialize if and when needed.
Just like XML Schemas do for standard XML, AXML
schemas let the user specify the desired format of the
exchanged data, including which parts should remain
intensional and which should be materialized. Novel
algorithms allow the sender to determine (statically or
dynamically) which service invocations are required to
“cast” the document to the required data exchange
format [9].

Query evaluation: Answering a query on an AXML
document may require triggering some of the service
calls it contains. These services may, in turn, query
other AXML documents and trigger some other ser-
vices, and so on. This recursion, based on the manage-
ment of intensional data, leads to a framework in the
style of deductive databases. Query evaluation on
AXML data can therefore benefit from techniques de-
veloped in deductive databases such as Magic Sets [6].
Indeed, corresponding AXML query optimization
techniques where proposed in [1,2].

Efficient query processing is, in general, a critical
issue for Web data management. AXML, when proper-
ly extended, becomes an algebraic language that
enables query processors installed on different peers
to collaborate by exchanging streams of (A)XML data
[14]. The crux of the approach is (i) the introduction
of generic services (i.e., services that can be provided
by several peers, such as query processing) and
(ii) some explicit control of distribution (e.g., to
allow delegating part of some work to another peer).

Key Applications

AXML and the AXML algebra target all distributed
applications that involve the management of distri-
buted data. AXML is particularly suited for data inte-
gration (from databases and other data resources

exported as Web services) and for managing (active)
views on top of data sources. In particular, AXML can
serve as a formal foundation for mash-up systems.
Also, the language is useful for (business) applications
based on evolving documents in the style of business
artifacts, and on the exchange of such information.
The fact that the exchange is based on flows of XML
messages makes it also well-adapted to the manage-
ment of distributed streams of information.

Cross-references

» Active Document

» BPEL

» Web Services

» W3C XML Query Language
» XML

» XML Types

Recommended Reading

1. Abiteboul S., Abrams Z., and Milo T. Diagnosis of Asynchronous
Discrete Event Systems — Datalog to the Rescue! In Proc. 24th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Data-
base Systems, 2005, pp. 358-367.

2. Abiteboul S., Benjelloun O., Cautis B., Manolescu I., Milo T,,
and Preda N. Lazy Query Evaluation for Active XML. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, 2004,
pp. 227-238.

3. Abiteboul S., Benjelloun O., and Milo T. The Active XML
project, an overview, VLDB J, 17(5):1019-1040, 2008.

4. Abiteboul S., Bonifati A., Cobena G., Manolescu 1., and Milo T.
Dynamic XML Documents with Distribution and Replication.
In Proc. ACM SIGMOD Int. Conf. on Management of Data,
2003, pp. 527-538.

5. Abiteboul S., Manolescu I., and Taropa E. A Framework for
Distributed XML Data Management. In Advances in Database
Technology, Proc. 10th Int. Conf. on Extending Database Tech-
nology, 2006.

6. Bancilhon E, Maier D., Sagiv Y., and Ullman J.D. Magic Sets and
Other Strange Ways to Implement Logic Programs. In Proc.
5th ACM SIGACT-SIGMOD Symp. on Principles of Database
Systems, 1986, pp. 1-15.

7. DXQ: Managing Distributed System Resources with Distributed
XQuery. http://db.ucsd.edu/dxq/.

8. Loo B.T., Condie T., Garofalakis M., Gay D.E, Hellerstein J.M.,
Maniatis P,, Ramakrishnan R., Roscoe T., and Stoica I. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, 2006,
pp. 97-108.

9. Milo T., Abiteboul S., Amann B., Benjelloun O., and Ngoc ED.
Exchanging Intensional XML data. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, 2003, pp. 289-300.

10. Nigam A. and Caswell N.S. Business artifacts: an approach to
operational specification. IBM Syst. J., 42(3):428-445, 2003.
11. The Active XML homepage. http://www.activexml.net/.

Activity Diagrams

41

12. The Extensible Markup Language (XML) 1.0 (2nd edn). http://
www.w3.0rg/TR/REC-xml.

13. The W3C Web Services Activity. http://www.w3.0rg/2002/ws.

14. The XQuery language. http://www.w3.org/TR/xquery.

|
Activity

NATHANIEL PALMER
Workflow Management Coalition, Hingham, MA, USA

Synonyms
Step; Node; Task; Work element

Definition

A description of a piece of work that forms one logical
step within a process. An activity may be a manual
activity, which does not support computer automation,
or a workflow (automated) activity. A workflow activity
requires human and/or machine resources to support
process execution; where human resource is required an
activity is allocated to a workflow participant.

Key Points

A process definition generally consists of many process
activities which are logically related in terms of their
contribution to the overall realization of the business
process.

An activity is typically the smallest unit of
work which is scheduled by a workflow engine during
process enactment (e.g., using transition and pre/post-
conditions), although one activity may result in several
work items being assigned (to a workflow participant).

Wholly manual activities may form part of a busi-
ness process and be included within its associated
process definition, but do not form part of the auto-
mated workflow resulting from the computer sup-
ported execution of the process.

An activity may therefore be categorized as
“manual,” or “automated.” Within this document,
which is written principally in the context of workflow
management, the term is normally used to refer to an
automated activity.

Cross-references
» Activity Diagrams
» Actors/Agents/Roles
» Workflow Model

|
Activity Diagrams

LuciaNO BARESI
Politecnico di Milano University, Milan, Italy

Synonyms
Control flow diagrams; Object flow diagrams; Flow-
charts; Data flow diagrams

Definition

Activity diagrams, also known as control flow and
object flow diagrams, are one of the UML (unified
modeling language [11]) behavioral diagrams. They
provide a graphical notation to define the sequential,
conditional, and parallel composition of lower-level
behaviors. These diagrams are suitable for business
process modeling and can easily be used to capture
the logic of a single use case, the usage of a scenario, or
the detailed logic of a business rule. They model the
workflow behavior of an entity (system) in a way
similar to state diagrams where the different activities
are seen as the states of doing something. Although
they could also model the internal logic of a complex
operation, this is not their primary use since tangled
operations should always be decomposed into simpler
ones [1,2].

An activity [3] represents a behavior that is com-
posed of individual elements called actions. Actions
have incoming and outgoing edges that specify control
and data flow from and to other nodes. Activities may
form invocation hierarchies invoking other activities,
ultimately resolving to individual actions.

The execution of an activity implies that each
contained action be executed zero, one, or more
times depending on the execution conditions and the
structure of the activity. The execution of an action is
initiated by the termination of other actions, the avail-
ability of particular objects and data, or the occurrence
of external events. The execution is based on token
flow (like Petri Nets). A token contains an object,
datum, or locus of control, and is present in the activi-
ty diagram at a particular node. When an action begins
execution, tokens are accepted from some or all of its
input edges and a token is placed on the node. When
an action completes execution, a token is removed
from the node and tokens are moved to some or all
of its output edges.

42

Activity Diagrams

Historical Background

OMG (Object Management Group, [10]) proposed
and standardized activity diagrams by borrowing con-
cepts from flow-based notations and some formal
methods. As for the first class, these diagrams mimic
flowcharts [6] in their idea of step-by-step representa-
tion of algorithms and processes, but they also resem-
ble data and control flow diagrams [4]. The former
provide a hierarchical and graphical representation of
the “flow” of data through a system inspired by the
idea of data flow graph. They show the flow of data
from external entities into the system, how these data
are moved from one computation to another, and how
they are logically stored. Similarly, object flow diagrams
show the relationships among input objects, methods,
and output objects in object-based models. Control flow
diagrams represent the paths that can be traversed while
executing a program. Each node in the graph represents a
basic block, be it a single line or an entire function, and
edges render how the execution jumps among them.

Moving to the second group, activity diagrams are
similar to state diagrams [8], where the evolution of a
system is rendered by the identification of the states,
which characterize the element’s life cycle, and of the
transitions between them. A state transition can be
constrained by the occurrence of an event and by an
additional condition; its firing can cause the execution
of an associated action. Mealy et al. propose different
variations: Mealy assumes that actions be only asso-
ciated with transitions, Moore only considers actions
associated with states, and Harel’s state charts [7] merge
the two approaches with actions on both states and
transitions, and enhance their flat model with nested
and concurrent states.

The dynamic semantics of activity diagrams is
clearly inspired by Petri Nets [9], which are a simple
graphical formalism to specify the behavior of concur-
rent and parallel systems. The nodes are partitioned
into places and transitions, with arcs that can only
connect nodes of different type. Places may contain
any number of tokens and a distribution of tokens over
the places of a net is called a marking. A transition can
only fire when there is at least a token in all its input
places (i.e., those places connected to the transition
by means of incoming edges), and its firing removes
a token for all these places and produces a new one
in each output place (i.e., a place connected to the
transition through an outgoing edge). P/T nets only
consider tokens as placeholders, while colored nets

augment them with typed data and thus with firing
conditions that become more articulated and can
predicate on the tokens’ values in the input places.

Activity diagrams also borrow from SDL (Specifica-
tion and Description Language, [5]) as event handling.
This is a specification language for the unambiguous
description of the behavior of reactive and distributed
systems. Originally, the notation was conceived for
the specification of telecommunication systems, but
currently its application is wider and includes process
control and real-time applications in general. A system
is specified as a set of interconnected abstract machines,
which are extensions of finite state machines. SDL offers
both a graphical and a textual representation and its
last version (known as SDL-2000) is completely object-
orientated.

Foundations

Figure 1 addresses the well-known problem of order
management and proposes a first activity diagram
whose aim is twofold: it presents a possible formaliza-
tion of the process, and it also introduces many of the
concepts supplied by these diagrams.

Each atomic step is called action, with an initial
node and activity final nodes to delimit their ordering
as sequences, parallel threads, or conditional flows.
A fork splits a single execution thread into a set of
parallel ones, while a join, along with an optional
join specification to constrain the unification, is used
to re-synchronize the different threads into a single
execution. Similarly, a decision creates alternative
paths, and a merge re-unifies them. To avoid misun-
derstandings, each path must be decorated with the
condition, in brackets, that must be verified to make
the execution take that path.

The diagram of Fig. 1 also exemplifies the use of
connectors to render flows/edges that might tangle the
representation. This is nothing but an example, but the
solution is interesting to avoid drawing flows that cross
other elements or move all around the diagram. Another
key feature is the use of a rake to indicate that action
Fill Order is actually an activity invocation, and
hides a hierarchical decomposition of actions into
activities.

Besides the control flow, activity diagrams can
also show the data/object flow among the actions.
The use of object nodes allows users to state the
artifacts exchanged between two actions, even if they
are not directly connected by an edge. In many cases

Activity Diagrams

43

Connector
. ‘/’/
Action [Order 0 Fork
Initial node b} rejected] *
h Receive
Fill order Ship order
order th
y [Order A
/ accepted)] r Mei e
Decision Activity invocation g

Flow/edge

~

RN

Send
invoice

Make
payment

Invoice

A

Object node

Activity Diagrams. Figure 1. Example activity diagram.

control and object flows coincide, but this is not
mandatory.

Activities can also comprise input and output para-
meters to render the idea that the activity’s execution
initiates when the inputs are available, and produces
some outputs. For example, activity Fill Order of
Fig. 2, which can be seen as a refinement of the invo-
cation in Fig. 1, requires that at least one Request be
present, but then it considers the parameter as a
stream, and produces Shipment Information and
Rejected Items. While the first outcome is the
“normal” one, the second object is produced only in
case of exceptions (rendered with a small triangle on
both the object and the flow that produces it). In a
stream, the flow is annotated from action Compose
Requests to the join with its weight to mean that
the subsequent processing must consider all the
requests received when the composition starts.

The execution can also consider signals as
enablers or outcomes of special-purpose actions.
For example, Fig. 2 shows the use of an accept signal,
to force that the composition of orders (Compose
Orders) must be initiated by an external event, a
time signal, to make the execution wait for a given
timeframe (be it absolute or relative), and a send signal,
to produce a notification to the customer as soon as
the action starts.

Basic diagrams can also be enriched with swimlanes
to partition the different actions with respect to their

[Payment i

accepted]

Activity final

Accept
payment

responsibilities. Figure 3 shows a simple example: The
primitive actions are the same as those of Fig. 1, but
now they are associated with the three players in charge
of activate the behaviors in the activity. The standard
also supports hierarchical and multi-dimensional par-
titioning, that is, hierarchies of responsible actors or
matrix-based partitions.

The warehouse can also receive Cancel Order
notifications to asynchronously interrupt the execu-
tion as soon as the external event arrivers. This is
obtained by declaring an interruptable region, which
contains the accept signal node and generates the in-
terrupt that stops the computation in that region
and moves the execution directly to action Cancel
Order by means of an interrupting edge. More gener-
ally, this is a way to enrich diagrams with specialized
exception handlers similarly to many modern program-
ming and workflow languages. The figure also intro-
duces pins as a compact way to render the objects
exchanged between actions: empty boxes correspond
to discrete elements, while filled ones refer to streams.

The discussion thus far considers the case in which
the outcome of an action triggers a single execution of
another action, but in some cases conditions may exist
in which the “token” is structured and a single result
triggers multiple executions of the same action. For
example, if the example of Fig. 1 were slightly modif-
ied and after receiving an order, the user wants to
check the items in it, a single execution of action

44

Activity Diagrams

Activity name
K Accept signal Output parameter
Fill order ¥ A w
Ship to Compose Shipment
Streaming customer orders information
e {Stream}
1
Weight = all} :
Compose\ { Notify
Request —= JAN
[requests customer Rejected
[items |3
f-‘ Time s:gnal
Input parameter a\ , Send signal Exception
Wait end of the week
Activity Diagrams. Figure 2. Activity diagrams with signals.
Interrupling edge
Interruptable Il N £ Cancel
region | Cancel | ;L order
. | order |
|
5 o
2 | rejected]
© ' Recei . Cl
@ eceive ose
© . ~ Fill order @
T I order ! h order
= | [Order
l accepted]
R DR
o
o
S Send Accept
G L o8N P
k= invoice payment
5 Swimi
2 Invoice wu.rz ane
AN

Invoice

payment

Customer

Pin

Activity Diagrams. Figure 3. Example swimlanes.

Receive Order would trigger multiple executions
of validate Item. This situation is depicted in the
left-hand side of Fig. 4, where the star *
information described so far.

conceives the

The same problem can be addressed in a more
complete way (right-hand side of figure) with an
expansion region. The two arrays are supposed to

store the input and output elements. In some cases,
the number of input and output tokens is the same,
but it might also be the case that the behavior in the
region filters the incoming elements.

In the left-hand side of Fig. 4, it is assumed that
some items are accepted and fill the output array, while
others are rejected and thus their execution flow ends

Activity Diagrams

45

Expansion region
(shorthand)

Validate
item

Receive
order

Expansion region

Activity Diagrams. Figure 4. Expansion region.

there. This situation requires that a flow final be used to
state that only the flow is ended and not the whole
activity. Flow final nodes are a means to interrupt
particular flows in this kind of regions, but also in
loops or other similar cases.

The execution leaves an expansion region as soon
as all the output tokens are available, that is, as soon as
all the executions of the behavior embedded in the
region are over. Notice that these executions can be
carried out both concurrently (by annotating the rect-
angle with stereotype concurrent) or iteratively (with
stereotype iterative). The next action considers the
whole set of tokens as a single entity.

Further details about exceptions and other advanced
elements, like pre- and post-conditions associated with
single actions or whole activities, central buffers, and
data stores are not discussed here, but the reader is
referred to [11] for a thorough presentation.

Key Applications

Activity diagrams are usually employed to describe com-
plex behaviors. This means that they are useful to model
tangled processes, describe the actions that need to take
place and when they should occur in use cases, render
complicated algorithms, and model applications with
parallel and alternative flows. Nowadays, these necessi-
ties belong to ICT specialists, like software engineering,
requirements experts, and information systems archi-
tects, but also to experts in other fields (e.g., business
analysts or production engineers) that need this kind of
graphical notations to describe their solutions.

Activity diagrams can be used in isolation, when
the user needs a pure control (data) flow notation, but
they can also be adopted in conjunction with other
modeling techniques such as interaction diagrams,
state diagrams, or other UML diagrams. However,

. Receive Check
order item

- N

[Accepted]

[Rejected] H
|
|
|
/

4

-

|

|

| -

|\ Flow final

activity diagrams should not take the place of other
diagrams. For example, even if the border between
activity and state diagrams is sometimes blurred,
activity diagrams provide a procedural decomposition
of the problem under analysis, while state diagrams
mostly concentrate on how studied elements behave.
Moreover, activity diagrams do not give details about
how objects behave or how they collaborate.

Cross-references

» Unified Modeling Language
» Web Services

» Workflow modeling

Recommended Reading

1. Arlow J. and Neustadt I. UML 2 and the Unified Process:
Practical Object-Oriented Analysis and Design, 3rd edn.
Addison-Wesley, Reading, MA, 2005.

2. Booch G., Rumbaugh J., and Jacobson I. The Unified Modeling
Language User Guide, 2nd edn. Addison-Wesley, Reading, MA,
2005.

3. Fowler M. UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd edn. Addison-Wesley, Reading, MA,
2003.

4. Gane C. and Sarson T. Structured System Analysis. Prentice-
Hall, Englewood Cliffs, NJ, 1979.

5. Gaudin E., Najm E., and Reed R. In Proceedings of SDL 2007:
Design for Dependable Systems, 13th International SDL Forum,
LNCS, vol. 4745, Springer, 2007.

6. Goldstine H. The Computer from Pascal to Von Neumann.
Princeton University Press, Princeton, NJ, 1972, pp. 266-267.

7. Harel D. and Naamad A. The STATEMATE Semantics of State-
charts. ACM Trans. Softw. Eng. Methodol., 5(4):293-333, 1996.

8. Hopcroft J. and Ullman J. Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley, Reading, MA,
2002.

9. Murata T. Petri Nets: Properties, Analysis, and Applications.
Proc. IEEE, 77(4):541-580, 1989.

10. Object Management Group, http://www.omg.org/
11. OMG, Unified Modeling Language, http://www.uml.org/

46

Actors/Agents/Roles

|
Actors/Agents/Roles

NATHANIEL PALMER
Workflow Management Coalition, Hingham, MA, USA

Synonyms
Workflow participant;
performer

Player; End user; Work

Definition
A resource that performs the work represented by a
workflow activity instance.

This work is normally manifested as one or more
work items assigned to the workflow participant via
the worklist.

Key Points

These terms are normally applied to a human resource
but it could conceptually include machine-based
resources such as an intelligent agent.

Where an activity requires no human resource and
is handled automatically by a computer application,
the normal terminology for the machine-based re-
source is Invoked Application.

An Actor, Agent or Role may be identified directly
within the business process definition, or (more nor-
mally) is identified by reference within the process
definition to a role, which can then be filled by one
or more of the resources available to the workflow
system to operate in that role during process
enactment.

Cross-references
» Activity
» Workflow Model

! Ad hoc Retrieval models

» Information Retrieval Models

! Adaptation

» Mediation

|
Adaptive Database Replication

» Autonomous Replication

|
Adaptive Interfaces

MARISTELLA MATERA
Politecnico di Milano University, Milan, Italy

Synonyms
Context-aware interfaces; Personalized interfaces

Definition

A specific class of user interfaces that are able to change
in some way in response to different characteristics of
the user, of the usage environment or of the task the
user is supposed to accomplish. The aim is to improve
the user’s experience, by providing both interaction
mechanisms and contents that best suit the specific
situation of use.

Key Points

There are a number of ways in which interface adap-
tivity can be exploited to support user interaction.
The interaction dimensions that are adapted vary
among functionality (e.g., error correction or active
help), presentation (user presentation of input to the
system, system presentation of information to the user),
and user tasks (e.g., task simplification based on the
user’s capabilities). Adaptivity along such dimensions
is achieved by capturing and representing into some
models a number of characteristics: the user’s character-
istics (preferences, experience, etc.); the tasks that the
user accomplishes through the system; the characteris-
tics of the information with which the user must be
provided.

Due to current advances in communication and
network technologies, adaptivity is now gaining
momentum. Different types of mobile devices indeed
offer support to access — at any time, from anywhere,
and with any media — services and contents custo-
mized to the users’ preferences and usage environ-
ments. In this new context, content personalization,
based on user profile, has demonstrated its benefits
for both users and content providers and has been

Adaptive Middleware for Message Queuing Systems

47

commonly recognized as fundamental factor for aug-
menting the overall effectiveness of applications. Going
one step further, the new challenge in adaptive inter-
faces is now context-awareness. It can be interpreted as
a natural evolution of personalization, addressing
not only the user’s identity and preferences, but also
the environment that hosts users, applications, and
their interaction, i.e., the context. Context-awareness,
hence, aims at enhancing the application usefulness
by taking into account a wide range of properties of
the context of use.

Cross-references
» Visual Interaction

|
Adaptive Message-Oriented
Middleware

» Adaptive Middleware for Message Queuing Systems

|
Adaptive Metric Techniques

» Learning Distance Measures

! Adaptive Middleware for Message
Queuing Systems

CHRISTOPHE TATON', NOEL DE PALMA', SARA
BOUCHENAK®

'INPG - INRIA, Grenoble, France

2University of Grenoble I - INRIA, Grenoble, France

Synonyms

Autonomous message queuing systems; Adaptive
message-oriented middleware; Autonomous message-
oriented middleware

Definition

Distributed database systems are usually built on top
of middleware solutions, such as message queuing
systems. Adaptive message queuing systems are able
to improve the performance of such a middleware
through load balancing and queue provisioning.

Historical Background

The use of message oriented middlewares (MOMs) in
the context of the Internet has evidenced a need
for highly scalable and highly available MOM. A
very promising approach to the above issue is to im-
plement performance management as an autonomic
software. The main advantages of this approach are:
(i) Providing a high-level support for deploying and
configuring applications reduces errors and adminis-
trator’s efforts. (ii) Autonomic management allows the
required reconfigurations to be performed without
human intervention, thus improving the system reac-
tivity and saving administrator’s time. (iii) Autonomic
management is a means to save hardware resources,
as resources can be allocated only when required
(dynamically upon failure or load peak) instead of
pre-allocated.

Several parameters may impact the performance of
MOM:s. Self-optimization makes use of these parameters
to improve the performance of the MOM. The proposed
self-optimization approach is based on a queue clustering
solution: a clustered queue is a set of queues each run-
ning on different servers and sharing clients. Self-opti-
mization takes place in two parts: (i) the optimization
of the clustered queue load-balancing and (ii) the
dynamic provisioning of a queue in the clustered
queue. The first part allows the overall improvement
of the clustered queue performance while the second
part optimizes the resource usage inside the clustered
queue. Thus the idea is to create an autonomic system
that fairly distributes client connections among the
queues belonging to the clustered queue and dynami-
cally adds and removes queues in the clustered queue
depending on the load. This would allow to use the
adequate number of queues at any time.

Foundations

Clustered Queues

A queue is a staging area that contains messages which
have been sent by message producers and are waiting
to be read by message consumers. A message is
removed from the queue once it has been read. For
scalability purpose, a queue can be replicated forming
a clustered queue. The clustered queue feature pro-
vides a load balancing mechanism. A clustered queue
is a cluster of queues (a given number of queue desti-
nations knowing each other) that are able to exchange

48

Adaptive Middleware for Message Queuing Systems

messages depending on their load. Each queue of a
cluster periodically reevaluates its load factor and
sends the result to the other queues of the cluster.
When a queue hosts more messages than it is author-
ized to do, and according to the load factors of the
cluster, it distributes the extra messages to the other
queues. When a queue is requested to deliver messages
but is empty, it requests messages from the other
queues of the cluster. This mechanism guarantees
that no queue is hyper-active while some others are
lazy, and tends to distribute the work load among the
servers involved in the cluster.

Clustered Queue Performance

Clustered queues are standard queues that share a
common pool of message producers and consumers,
and that can exchange message to balance the load.
All the queues of a clustered queue are supposed to
be directly connected to each other. This allows
message exchanges between the queues of a cluster in
order to empty flooded queues and to fill draining
queues.

The clustered queue Q. is connected to N, message
producers and to M, message consumers. Q. is com-
posed of standard queues Q,(i € [1..k]). Each queue Q;
is in charge of a subset of N; message producers and
of a subset of M; message consumers:

Nc:Zi N
Mc:ZiMi

The distribution of the clients between the queues Q; is
described as follows: x; (resp. y;) is the fraction of
message producers (resp. consumers) that are directed

tOQi.
{Ni:xi~NC {Zix,-zl

M=y, M.’ Ziyizl

The standard queue Q; to which a consumer or pro-
ducer is directed to cannot be changed after the client
connection to the clustered queue. This way, the only
action that may affect the client distribution among
the queues is the selection of an adequate queue when
the client connection is opened.

The clustered queue Q. is characterized by its
aggregate message production rate p. and its aggregate
message consumption rate ¢.. The clustered queue Q.
also has a virtual clustered queue length /. that aggre-
gates the length of all contained standard queues:

— R _ pc:Zipi
lc—le_pc CC’{CC:ZiCi

The clustered queue length . obeys to the same law as a
standard queue:

1. Q. is globally stable when Al. = 0. This configura-
tion ensures that the clustered queue is globally
stable. However Q. may observe local unstabilities
if one of its queues is draining or is flooded.

2. If Al > 0, the clustered queue will grow and eventu-
ally saturate; then message producers will have to wait.

3. If Al. < 0, the clustered queue will shrink until it
is empty; then message consumers will also have
to wait.

Now, considering that the clustered queue is global-
ly stable, several scenarios that illustrate the impact
of client distribution on performance are given
below.

Optimal client distribution of the clustered queue
Q. is achieved when clients are fairly distributed
among the k queues Q,. Assuming that all queues and
hosts have equivalent processing capabilities and that
all producers (resp. consumers) have equivalent mes-
sage production (resp. consumption) rates (and that all
produced messages are equivalent: message cost is uni-
formly distributed), this means that:

{xi: 1/k {Ni:%,

yi=1/k" | M; =H¢

In these conditions, all queues Q; are stable and the

queue cluster is balanced. As a consequence, there are

no internal queue-to-queue message exchanges, and

performance is optimal. Queue clustering then pro-
vides a quasi-linear speedup.

The worst clients distribution appears when one
queue only has message producers or only has message
consumers. In the example depicted in Fig. 1, this is
realized when:

x1:1 x2:0 NIZNC N2:0
y=0 |y,=1 M, =0" | M,=M,

Indeed, this configuration implies that the whole mes-
sage production is directed to queue Q. Q, then
forwards all messages to Q, that in turn delivers
messages to the message consumers.

Local instability is observed when some queues Q;
of Q. are unbalanced. This is characterized by a

Adaptive Middleware for Message Queuing Systems

49

M2

N
A

Adaptive Middleware for Message Queuing Systems.

Figure 1. Clustered queue Q..

mismatch between the fraction of producers and the
fraction of consumers directed to Q;

Xi # Y

In the example showed in Fig. 1, Q. is composed of
two standard queues Q; and Q,. A scenario of local
instability can be envisioned with the following clients
distribution:

ST (ot

This distribution implies that Q; is flooding and will
have to enqueue messages, while Q, is draining and
will see its consumer clients wait. However the queue
cluster Q. ensures the global stability of the system
thanks to internal message exchanges from Q; to Q..

A stable and unfair distribution can be observed
when the clustered queue is globally and locally stable,
but the load is unfairly balanced within the queues.
This happens when the client distribution is non-
uniform.

In the example presented in Fig. 1, this can be
realized by directing more clients to Q; than Q.:

(o s

In this scenario, queue Q; processes two third of the
load, while queue Q, only processes one third. Suc
situation can lead to bad performance since Q; may
saturates while Q, is lazy.

It is worthwhile to indicate that these scenarios may
all happen since clients join and leave the system in an
uncontrolled way. Indeed, the global stability of a (clus-
tered) queue is under responsability of the application
developper. For instance, the queue can be flooded for a
period; it is assumed that it will get inverted and drain-
ing after, thus providing global stability over time.

Provisioning

The previous scenario of stable and non-optimal dis-
tribution raises the question of the capacity of a queue.
The capacity C; of standard queue Q; is expressed as an
optimal number of clients. The queue load L; is then
expressed as the ratio between its current number of
clients and its capacity:

~ Ni+ M,

L;
C;

1. L; < 1: queue Q;is underloaded and thus lazy; the
message throughput delivered by the queue can be
improved and resources are wasted.

2. L; > 1: queue Q; is overloaded and may saturate;
this induces a decreased message throughput and
eventually leads to thrashing.

3. L; = 1: queue Q; is fairly loaded and delivers its
optimal message throughput.

These parameters and indicators are transposed to
queue clusters. The clustered queue Q. is characterized
by its aggregated capacity C. and its global load L.

N.+ M, Li- C;
CE = Z Ci; L= * = El

The load of a clustered queue obeys to the same law as
the load of a standard queue.

However a clustered queue allows to control k, the
number of inside standard queues, and thus to control
its aggregated capacity C, = Ele C;. This control is
indeed operated with a re-evaluation of the clustered
queue provisioning.

1. When L. < 1, the clustered queue is underloaded: if
the clients distribution is optimal, then all the stan-
dard queues inside the cluster will be underloaded.
However, as the client distribution may be non-
optimal, some of the single queues may be over-
loaded, even if the cluster is globally lazy. If the load
is too low, then some queues may be removed from
the cluster.

Adaptive Query Optimization

2. When L, > 1, the clustered queue is overloaded:
even if the distribution of clients over the queues
is optimal, there will exist at least one standard
queue that will be overloaded. One way to handle
this case is to re-provision the clustered queue by
inserting one or more queues into the cluster.

Control Rules for a Self-Optimizing Clustered Queue
The global clients distribution D of the clustered queue
Q_ is captured by the fractions of message producers x;
and consumers y;. The optimal clients distribution
D,y is realized when all queues are stable (Vi x; = y;)
and when the load is fairly balanced over all queues
(Vi, jx; = x; yi = y;). This implies that the optimal
distribution is reached when x; = y; = Vk.

X1y 1/k 1/k
) D opt =

Xk Vi 1/k 1/k

Local instabilities are characterized by a mismatch

between the fraction of message producers x; and

consumers y; on a standard queue. The purpose of

this rule is the stability of all standard queues so as to

minimize internal queue-to-queue message transfer.

1. [(R)] x; > yi Q; is flooding with more message
production than consumption and should then
seek more consumers and/or fewer producers.

2. [(R)] x; < y;z Q is draining with more message
consumption than production and should then
seek more producers and/or fewer consumers.

Load balancing rules control the load applied to a single
standard queue. The goal is then to enforce a fair load
balancing over all queues.

1. [(R3)] L; > 1: Q; is overloaded and should avoid
accepting new clients as it may degrade its
performance.

2. [(Ry)] L; < 1: Q;is underloaded and should request
more clients so as to optimize resource usage.

Global provisioning rules control the load applied to the
whole clustered queue. These rules target the optimal
size of the clustered queue while the load applied to the
system evolves.

1. [(Rs)] L. > 1: the queue cluster is overloaded and
requires an increased capacity to handle all its cli-
ents in an optimal way.

2. [(Re)] L. < 1: the queue cluster is underloaded and
could accept a decrease in capacity.

Key Applications

Adaptive middleware for message queuing systems
helps building autonomous distributed systems to im-
prove their performance while minimizing their re-
source usage, such as distributed Internet services and
distributed information systems.

Cross-references

» Distributed Database Systems
» Distributed DBMS

» Message Queuing Systems

Recommended Reading

1. Aron M., Druschel P, and Zwaenepoel W. Cluster reserves: a
mechanism for resource management in cluster-based network
servers. In Proc. 2000 ACM SIGMETRICS Int. Conf. on Mea-
surement and Modeling of Comp. Syst., 2000, pp. 90-101.

2. Menth M. and Henjes R. Analysis of the message waiting time
for the fioranoMQ JMS server. In Proc. 23rd Int. Conf. on
Distributed Computing Systems, 2006, pp. 1.

3. Shen K., Tang H., Yang T., and Chu L. Integrated resource
management for cluster-based internet services. In Proc. 5th
USENIX Symp. on Operating System Design and Implementa-
tion, 2002.

4. Urgaonkar B. and Shenoy P. Sharc: Managing CPU and network
bandwidth in shared clusters. IEEE Trans. Parall. Distrib. Syst.,
15(1):2-17, 2004.

5. Zhu H,, Ti H,, and Yang Y. Demand-driven service differentia-
tion in cluster-based network servers. In Proc. 20th Annual Joint
Conf. of the IEEE Computer and Communications Societies,
vol. 2, 2001, pp. 679-688.

|
Adaptive Query Optimization

» Adaptive Query Processing

|
Adaptive Query Processing

EVAGGELIA PITOURA
University of loannina, loannina, Greece

Synonyms
Adaptive query optimization; Eddies; Autonomic
query processing

Adaptive Query Processing

51

Definition

While in traditional query processing, a query is first
optimized and then executed, adaptive query processing
techniques use runtime feedback to modify query pro-
cessing in a way that provides better response time,
more efficient CPU utilization or more useful incre-
mental results. Adaptive query processing makes query
processing more robust to optimizer mistakes, un-
known statistics, and dynamically changing data, run-
time and workload characteristics. The spectrum of
adaptive query processing techniques is quite broad:
they may span the executions of multiple queries or
adapt within the execution of a single query; they may
affect the query plan being executed or just the sched-
uling of operations within the plan.

Key Points

Conventional query processing follows an optimize-
then-execute strategy: after generating alternative query
plans, the query optimizer selects the most cost-efficient
among them and passes it to the execution engine that
directly executes it, typically with little or no runtime
decision-making. As queries become more complex, this
strategy faces many limitations such as missing statistics,
unexpected correlations, and dynamically changing data,
runtime, and workload characteristics. These problems
are aggregated in the case of long-running queries over
data streams as well as in the case of queries over multi-
ple potentially heterogeneous data sources across wide-
area networks. Adaptive query processing tries to address
these shortcomings by using feedback during query exe-
cution to tune query processing. The goal is to increase
throughput, improve response time or provide more
useful incremental results.

To implement adaptivity, regular query execution is
supplemented with a control system for monitoring
and analyzing at run-time various parameters that
affect query execution. Based on this analysis, certain
decisions are made about how the system behavior
should be changed. Clearly, this may introduce consid-
erable overheads.

The complete space of adaptive query processing
techniques is quite broad and varied. Adaptability
may be applied to query execution of multiple queries
or just a single one. It may also affect the whole query
plan being executed or just the scheduling of operations
within the plan. Adaptability techniques also differ
on how much they interleave plan generation and

execution. Some techniques interleave planning and exe-
cution just a few times, by just having the plan re-opti-
mized at specific points, whereas other techniques
interleave planning and execution to the point where
they are not even clearly distinguishable.

A number of fundamental adaptability techniques
include:

e Horizontal partitioning, where different plans are
used on different portions of the data. Partitioning
may be explicit or implicit in the functioning of the
operator.

e Query execution by tuple routing, where query exe-
cution is treated as the process of routing tuples
through operators and adaptability is achieved by
changing the order in which tuples are routed.

e Plan partitioning, where execution progresses in
stages, by interleaving optimization and execution
steps at a number of well-defined points during
query execution.

e Runtime binding decisions, where certain plan
choices are deferred until runtime, allowing the
execution engine to select among several alternative
plans by potentially re-invoking the optimizer.

e In-operator adaptive logic, where scheduling and
other decisions are made part of the individual
query operators, rather than the optimizer.

Many adaptability techniques rely on a symmetric hash
join operator that offers a non-blocking variant of join
by building hash tables on both the input relations.
When an input tuple is read, it is stored in the appro-
priate hash table and probed against the opposite table,
thus producing incremental output. The symmetric
hash join operator can process data from either input,
depending on availability. It also enables additional
adaptivity, since it has frequent moments of symmetry,
that is, points at which the join order can be changed
without compromising correctness or losing work.

The eddy operator provides an example of fine-
grained run-time control by tuple routing through
operators. An eddy is used as a tuple router; it moni-
tors execution, and makes routing decisions for the
tuples. Eddies achieve adaptability by simply changing
the order in which the tuples are routed through the
operators. The degree of adaptability achieved depends
on the type of the operators. Pipelined operators, such
as the symmetric hash join, offer the most freedom,
whereas, blocking operators, such as the sort-merge

52

Adaptive Stream Processing

join, are less suitable since they do not produce output
before consuming the input relations in their entirety.

Cross-references

» Adaptive Stream Processing
» Cost Estimation

» Multi-query Optimization
» Query Optimization

» Query Processing

Recommended Reading

1. Avnur R. and Hellerstein J.M. Eddies: continuously adaptive
query processing. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 2000, pp. 261-272.

2. Babu S. and Bizarro P. Adaptive query processing in the looking
glass. In Proc. 2nd Biennial Conf. on Innovative Data Systems
Research, 2005, pp. 238-249.

3. Deshpande A., Ives Z.G., and Raman V. Adaptive query proces-
sing. Found. Trends Databases, 1(1):1-140, 2007.

|
Adaptive Stream Processing

ZACHARY IVES
University of Pennsylvania, Philadelphia, PA, USA

Synonyms
Adaptive query processing

Definition

When querying long-lived data streams, the character-
istics of the data may change over time or data may
arrive in bursts — hence, the traditional model of opti-
mizing a query prior to executing it is insufficient. As a
result, most data stream management systems employ
feedback-driven adaptive stream processing, which con-
tinuously re-optimizes the query execution plan based
on data and stream properties, in order to meet certain
performance or resource consumption goals. Adaptive
stream processing is a special case of the more general
problem of adaptive query processing, with the special
property that intermediate results are bounded in size
(by stream windows), but where query processing may
have quality-of-service constraints.

Historical Background

The field of adaptive stream processing emerged in the
early 2000s, as two separate developments converged.
Adaptive techniques for database query processing had

become an area of increasing interest as Web and
integration applications exceeded the capabilities of
conventional static query processing [10]. Simulta-
neously, a number of data stream management syst-
ems [1,6,8,12] were emerging, and each of these
needed capabilities for query optimization. This led
to a common approach of developing feedback-based
re-optimization strategies for stream query computa-
tion. In contrast to Web-based adaptive query proces-
the focus
processing has especially been on maintaining quality

sing techniques, in adaptive stream

of service under overload conditions.

Foundations

Data stream management systems (DSMSs) typically
face two challenges in query processing. First, the data
to be processed comes from remote feeds that may
be subject to significant variations in distribution or
arrival rates over the lifetime of the query, meaning
that no single query evaluation strategy may be appro-
priate over the entirety of execution. Second, DSMSs
may be underprovisioned in terms of their ability to
handle bursty input at its maximum rate, and yet may
still need to meet certain quality-of-service or resource
constraints (e.g., they may need to ensure data is pro-
cessed within some latency bound). These two chal-
lenges have led to two classes of adaptive stream
processing techniques: those that attempt to minimize
the cost of computing query results from the input data
(the problem traditionally faced by query optimiza-
tion), and those that attempt to manage query proces-
sing, possibly at reduced accuracy, in the presence of
limited resources. This article provides an overview of
significant work in each area.

Minimizing Computation Cost

The problem of adaptive query processing to minimize
computation cost has been well-studied in a variety of
settings [10]. What makes the adaptive stream proces-
sing setting unique (and unusually tractable) is the fact
that joins are performed over sliding windows with size
bounds: As the data stream exceeds the window size,
old data values are expired. This means intermediate
state within a query plan operator has constant maxi-
mum size; as opposed to being bounded by the size of
the input data. Thus a windowed join operator can be
modeled as a pair of filter operators, each of which
joins its input with the bounded intermediate state
produced from the other input. Optimization of joins

Adaptive Stream Processing

53

in data stream management systems becomes a minor
variation on the problem of optimizing selection or
filtering operators; hence certain theoretical optimality
guarantees can actually be made.

Eddies Eddies [2,11,14]
operators that model select-project-join expressions.

are composite dataflow

An eddy consists of a tuple router, plus a set of primi-
tive query operators that run concurrently and each
have input queues. Eddies come in several variations;
the one proposed for distributed stream management
uses state modules (SteMs) [14,11]. Figure 1 shows an
example of such an eddy for a simplified stream SQL
query, which joins three streams and applies a selection
predicate over them.

Eddy creation. The eddy is created prior to execu-
tion by an optimizer: every selection operation (op in
the example) is converted to a corresponding operator;
additionally, each base relation to be joined is given a
state module, keyed on the join attribute, to hold the
intermediate state for each base relation [14] (P g, Mg,
>r). If a base relation appears with multiple different
join attributes, then it may require multiple SteMs.
In general, the state module can be thought of as
one of the hash tables within a symmetric or pipelined
hash join. The optimizer also determines whether the
semantics of the query force certain operators to exe-
cute before others. Such constraints are expressed in an
internal routing table, illustrated on the right side of
the figure. As a tuple is processed, it is annotated with
a tuple signature specifying what input streams’ data it
contains and what operator may have last modified
it. The routing table is a map from the tuple signature
to a set of valid routing destinations, those operators
that can successfully process a tuple with that particu-
lar signature.

Select *
fromR,S,T
where R.x = S.x and S.x = T.x and op(t)

Query execution/tuple routing. Initially, a tuple from
an input data stream (R, S, or T) flows into the eddy
router. The eddy (i) adds the data to the associated SteM
or SteMs, and (ii) consults the routing table to determine
the set of possible destination operators. It then chooses
a destination (using a policy to be described later) and
sends the tuple to the operator. The operator then
either filters the tuple, or produces one or more output
tuples, as a result of applying selection conditions or
joining with the data within a SteM. Output tuples are
marked as having been processed by the operator that
produced them. If they have been processed by all
operators, they will be sent to the query output, and
if not, they will be sent back to the eddy’s router and to
one of the remaining operators.

Routing policies. The problem of choosing among
alternate routing destinations has been addressed with
a variety of strategies.

Tickets and lottery scheduling [2]. In this scheme,
each operator receives a ticket for each tuple it receives
from the router, and it returns the ticket each time it
outputs a tuple to the router. Over time, each operator
is expected to have a number of tickets proportional to
(1 — p) where p is the operator’s selectivity. The router
holds a lottery among valid routing destinations, where
each operator’s chance of winning is proportional to its
number of tickets. Additionally, as a flow control
mechanism, each operator has an input queue, and if
this queue fills, then the operator may not participate
in the lottery.

Deterministic with batching [9]. A later scheme was
developed to reduce the per-tuple overhead of eddies
by choosing destinations for batches of tuples. Here,
each operator’s selectivity is explicitly monitored and
each predicate is assumed to be independent. Periodi-
cally, a rank ordering algorithm is used to choose a

,Tuple signature

Valid routing
destinations

{«S, MT, op}
{xR, W, op}
{mR, S, op}
{HR, op}
{MS, KT}

Contains From

R} {}

(s {}

{m} {}

{S,T} {S, T}
R} {op}

Adaptive Stream Processing. Figure 1. lllustration of eddy with SteMs.

54

Adaptive Stream Processing

destination for a batch of tuples: the rank ordering
algorithm sorts predicates in decreasing order of
¢;/(1 — p;), where ¢;is the cost of the applying predicate
o; and p; is its selectivity.

Content-based routing [7]. (CBR) attempts to learn
correlations between attribute values and selectivities.
Using sampling, the system determines for each oper-
ator the attribute most strongly correlated with its
selectivity — this is termed the classifier attribute. CBR
then builds a table characterizing all operators’ selec-
tivities for different values of each classifier attribute.
Under this policy, when the eddy needs to route a
tuple, it first looks up the tuple’s classifier attribute
values in the table and determines the destination
operators’ selectivities. It routes the tuple probabilisti-
cally, choosing a next operator with probability in-
versely proportional to its selectivity.

Other optimization strategies. An alternative strate-
gy that does not use the eddies framework is the
adaptive greedy [5] (A-greedy) algorithm. A-greedy
continuously monitors the selectivities of query pre-
dicates using a sliding window profile, a table with one
Boolean attribute for each predicate in the query, and
sampling. As a tuple is processed by the query, it
may be chosen for sampling into the sliding window
profile — if so, it is tested against every query predicate.
The vector of Boolean results is added as a row to the
sliding window profile. Then the sliding window pro-
file is then used to create a matrix view V [, j] contain-
ing, for each predicate o;, the number of tuples in the
profile that satisfy y...0;_; but not ¢;. From this ma-
trix view, the reoptimizer seeks to maintain the con-
straint that the ith operation over an input tuple
must have the lowest cost/selectivity ratio ¢;/(1 — p
(Si|S1,-->S;—1)). The overall strategy has one of the
few performance guarantees in the adaptive query
processing space: if data properties were to converge,
then performance would be within a factor of 4 of
optimal [5].

Managing Resource Consumption

A common challenge in data stream management sys-
tems is limiting the use of resources — or accommodat-
ing limited resources while maintaining quality of
service, in the case of bursty data. We discuss three
different problems that have been studied: load
shedding to ensure input data is processed by the
CPU as fast as it arrives, minimizing buffering and

memory consumption during data bursts, and
minimizing network communication with remote
streaming sites.

Load Shedding. Allows the system to selectively drop
data items to ensure it can process data as it arrives.
Both the Aurora and STREAM DSMSs focused heavily
on adaptive load shedding.

Aurora. In the Aurora DSMS [15], load shedding
for a variety of query types are supported: the main
requirement is that the user has a utility function de-
scribing the value of output data relative to how much
of it has been dropped. The system seeks to place load
shedding operators in the query plan in a way that
maximizes the user’s utility function while the system
achieves sufficient throughput. Aurora precomputes
conditional load shedding plans, in the form of a load
shedding road map (LRSM) containing a sequence of
plans that shed progressively more load; this enables
the runtime system to rapidly move to strategies that
shed more or less load.

LRSMs are created using the following heuristics:
first, load shedding points are only inserted at data
input points or at points in which data is split to two
or more operators. Second, for each load shedding
point, a loss/gain ratio is computed: this is the reduc-
tion in output utility divided by the gain in cycles,
R(p - L — D), where R is the input rate into the drop
point, p is the ratio of tuples to be dropped, L is the
amount of system load flowing from the drop point,
and D is the cost of the drop operator. Drop operators
are injected at load shedding points in decreasing order
of loss/gain ratio. Two different types of drops are
considered using the same framework: random drop,
in which an operator is placed in the query plan to
randomly drop some fraction p of tuples; and semantic
drop, which drops the p tuples of lowest utility. Aurora
assumes for the latter case that there exists a utility
function describing the relative worth of different at-
tribute values.

Stanford STREAM. The Stanford STREAM system
[4] focuses on aggregate (particularly SUM) queries.
Again the goal is to process data at the rate it arrives,
while minimizing the inaccuracy in query answers:
specifically, the goal is to minimize the maximum
relative error across all queries, where the relative error
of a query is the difference between actual and approx-
imate value, divided by the actual value.

Adaptive Stream Processing

55

A Statistics Manager monitors computation and
provides estimates of each operator’s selectivity and
its running time, as well as the mean value and stan-
dard deviation of each query g;s aggregate operator.
For each gq; STREAM computes an error threshold
C;, based on the mean, standard deviation, and num-
ber of values. (The results are highly technical so
the reader is referred to [4] for more details.) A sam-
pling rate P; is chosen for query g; that satisfies P; >
C;,/€;, where €; is the allowable relative error for
the query.

As in Aurora’s load shedding scheme, STREAM
only inserts load shedding operators at the inputs or
at the start of shared segments. Moreover, if a node has
a set of children who all need to shed load, then a
portion of the load shedding can be “pulled up” to
the parent node, and all other nodes can be set to shed
some amount of additional load relative to this. Based
on this observation, STREAM creates a query dataflow
graph in which each path from source to sink initially
traverses through a load shedding operator whose
sampling rate is determined by the desired error
rate, followed by additional load shedding operators
whose sampling rate is expressed relative to that first
operator. STREAM iterates over each path, determines
a sampling rate for the initial load shedding operator
to satisfy the load constraint, and then computes the
maximum relative error for any query. From this, it can
set the load shedding rates for individual operators.

Memory Minimization. STREAM also addresses the
problem of minimizing the amount of space required
to buffer data in the presence of burstiness [3]. The
Chain algorithm begins by defining a progress chart for
each operator in the query plan: this chart plots the
relative size of the operator output versus the time it
takes to compute. A point is plotted at time 0 with the
full size of the input, representing the start of the
query; then each operator is given a point according
to its cost and relative output size. Now a lower enve-
lope is plotted on the progress chart: starting with the
initial point at time 0, the steepest line is plotted to any
operator to the right of this point; from the point at the
end of the first line, the next steepest line is plotted to a
successor operator; etc. Each line segment (and the
operators whose points are plotted beside it) represents
a chain, and operators within a chain are scheduled
together. During query processing, at each time “tick,”

the scheduler considers all tuples that have been output
by any chain. The tuple that lies on the segment with
steepest slope is the one that is scheduled next; as a tie-
breaker, the earliest such tuple is scheduled. This Chain
algorithm is proven to be near-optimal (differing by at
most one unit of memory per operator path for queries
where selectivity is at most one).

Minimizing Communication. In some cases, the con-
strained resource is the network rather than CPU or
memory. Olston et al. [13] develop a scheme for reducing
network I/O for AVERAGE queries, by using accuracy
bounds. Each remote object O is given a bound width
wo: the remote site will only notify the central query
processor if O’s value V falls outside this bound. Mean-
while, the central site maintains a bound cache with the
last value and the bound width for every object.

If given a precision constraint §; for each query Q;,
then if the query processor is to provide query answers
within J;, the sum of the bound widths for the data
objects of Q; must not exceed J; times the number of
objects. The challenge lies in the selection of widths
for the objects.

Periodically, the system tries to tighten all bounds, in
case values have become more stable; objects whose
values fall outside the new bounds get reported back to
the central site. Now some of those objects’ bounds must
be loosened in a way that maintains the precision con-
straints over all queries. Each object O is given a burden
score equal to co/(powo), where co is the cost of
sending the object, wg is its bound width, and pg is
the frequency of updates since the previous width
adjustment. Using an approximation method based
on an iterative linear equation solver, Olston et al.
compute a burden target for each query, i.e., the lowest
overall burden score required to always meet the query’s
precision constraint. Next, each object is assigned a
deviation, which is the maximum difference between
the object’s burden score and any query’s burden tar-
get. Finally, a queried objects’ bounds are adjusted in
decreasing order of deviation, and each object’s bound
is increased by the largest amount that still conforms
to the precision constraint for every query.

Key Applications

Data stream management systems have seen significant
adoption in areas such as sensor monitoring and pro-
cessing of financial information. When there are

56

Adaptive Workflow/Process Management

associated quality-of-service constraints that might re-
quire load shedding, or when the properties of the data
are subject to significant change, adaptive stream pro-
cessing becomes vitally important.

Future Directions

One of the most promising directions of future study is
how to best use a combination of offline modeling,
selective probing (in parallel with normal query execu-
tion), and feedback from query execution to find opti-
mal strategies quickly. Algorithms with certain
optimality guarantees are being explored in the online
learning and theory communities (e.g., the k-armed
bandit problem), and such work may lead to new
improvements in adaptive stream processing.

Cross-references
» Distributed Stream
» Query Processor

» Stream Processing

Recommended Reading

1. Abadi D.J., Carney D., Cetintemel U., Cherniack M., Convey C.,
Lee S., Stonebraker M., Tatbul N., and Zdonik S. Aurora: a new
model and architecture for data stream management. VLDB J.,
12(2):120-139, 2003.

2. Avnur R. and Hellerstein J.M. Eddies: continuously adaptive
query processing. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, 2000, pp. 261-272.

3. Babcock B., Babu S., Datar M., and Motwani R. Chain: operator
scheduling for memory minimization in data stream systems.
In Proc. ACM SIGMOD Int. Conf. on Management of Data,
2003, pp. 253-264.

4. Babcock B., Datar M., and Motwani R. Load shedding for
aggregation queries over data streams. In Proc. 20th Int. Conf.
on Data Engineering, 2004, p. 350.

5. Babu S., Motwani R., Munagala K., Nishizawa I., and Widom]J.
Adaptive ordering of pipelined stream filters. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, 2004, pp. 407-418.

6. Balazinska M., BalaKrishnan H., and Stonebraker M. Demon-
stration: load management and high availability in the Medusa
distributed stream processing system. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, 2004, pp. 929-930.

7. Bizarro P, Babu S., DeWitt D.J., and Widom J. Content-based
routing: different plans for different data. In Proc. 31st Int. Conf.
on Very Large Data Bases, 2005, pp. 757-768.

8. Chandrasekaran S., Cooper O., Deshpande A., Franklin M.J.,
Hellerstein J.M., Hong W., Krishnamurthy S., Madden S.,
Raman V., Reiss E, and Shah M.A. TelegraphCQ: continuous
dataflow processing for an uncertain world. In Proc. 1st Biennial
Conf. on Innovative Data Systems Research, 2003.

9. Deshpande A. An initial study of overheads of eddies. ACM
SIGMOD Rec., 33(1):44—49, 2004.

10. Deshpande A., Ives Z., and Raman V. Adaptive query processing.
Found. Trends Databases, 1(1):1-140, 2007.

11. Madden S., Shah M.A., Hellerstein J.M., and Raman V.
Continuously adaptive continuous queries over streams. In
Proc. ACM SIGMOD Int. Conf. on Management of Data,
2002, pp. 49-60.

12. Motwani R., Widom J., Arasu A., Babcock B., Babu S., Datar M.,
Manku G., Olston C., Rosenstein J., and Varma R. Query pro-
cessing, resource management, and approximation in a data
stream management system. In Proc. lst Biennial Conf. on
Innovative Data Systems Research, 2003.

13. Olston C.,Jiang J., and Widom J., Adaptive filters for continuous
queries over distributed data streams. In Proc. ACM SIGMOD
Int. Conf. on Management of Data, 2003, pp. 563—-574.

14. Raman V., Deshpande A., and Hellerstein J.M. Using state
modules for adaptive query processing. In Proc. 19th Int.
Conf. on Data Engineering, 2003, pp. 353-366.

15. Tatbul N., Cetintemel U., Zdonik S.B., Cherniack M., and Stone-
braker M. Load shedding in a data stream manager. In Proc. 29th
Int. Conf. on Very Large Data Bases, 2003, pp. 309-320.

|
Adaptive Workflow/Process
Management

» Workflow Evolution

' ADBMS

» Active Database Management System Architecture

! ADBMS Framework

» Active Database Management System Architecture

I
ADBMS Infrastructure

» Active Database Management System Architecture

| Adding Noise

» Matrix Masking

Administration Model for RBAC

57

I
Additive Noise

» Noise Addition

! Administration Model for RBAC

YUE ZHANG, JAMES B. D. JosHI
University of Pittsburgh, Pittsburgh, PA, USA

Synonyms
ARBAC97; SARBAC

Definition

The central ideal of administration model for RBAC is
to use the role itself to manage roles. There are two
well-known families of administration RBAC models.

Administrative RBAC

The Administrative RBAC family of models known as
ARBAC97 [3] introduces administrative roles that are
used to manage the regular roles. These roles can form
a role hierarchy and may have constraints. ARBAC97
consists of three administrative models, the user-role
assignment (URA97) model, the permission-role as-
signment (PRA97) model, and the role-role adminis-
tration (RRA97) model. URA97 defines which
administrative roles can assign which users to which
regular roles by means of the relation: can_assign.
Similarly, PRA97 defines which administrative roles
can assign which permissions to which regular roles
by means of the relation: can_assignp. Each of these
relations also has a counterpart for revoking the as-
signment (e.g., can_revoke). RRA97 defines which ad-
ministrative roles can change the structure (add roles,
delete roles, add edges, etc.) of which range of the
regular roles using the notion of encapsulated range
and the relation: can_modify.

Scoped Administrative RBAC

The SARBAC model uses the notion of administrative
scope to ensure that any operations executed by a role r
will not affect other roles due to the hierarchical rela-
tions among them [1]. There are no special administra-
tive roles in SARBAC, and each regular role has a scope
of other regular roles called administrative scope that
can be managed by it. Each role can only be managed

by its administrators. For example, a senior-most role
should be able to manage all its junior roles.

Key Points

ARBAC model is the first known role-based adminis-
tration model and uses the notion of range and
encapsulated range. Role range is essentially a set of
regular roles. To avoid undesirable side effects,
RRA97 requires that all role ranges in the can_modify
relation be encapsulated, which means the range
should have exactly one senior-most role and one
junior-most role. Sandhu et al. later extended the
ARBAC97 model into ARBAC99 model where the no-
tion of mobile and immobile user/permission was
introduced [4]. Oh et al. later extended ARBAC99 to
ARBACO02 by adding the notion of organizational
structure to redefine the user-role assignment and the
role-permission assignment [2]. Recently, Zhang et al.
have proposed an ARBAC07 model that extends the
family of ARBAC models to deal with an RBAC model
that allows hybrid hierarchies to co-exit [6].

SARBAC

The most important notion in SARBAC is that of the
administrative scope, which is similar to the notion of
encapsulated range in ARBAC97. A role r is said to be
within to be the administrative scope of another role a
if every path upwards from r goes through a4, and a is
said to be the administrator of . SARBAC also consists
of three models: SARBAC-RHA, SARBAC-URA, and
SARBAC-PRA. In SARBAC-RHA, each role can only
administer the roles that are within its own administra-
tive scope. The operations include adding roles, deleting
roles, adding permissions, and deleting permissions.
The semantics for SARBAC-URA and SARBAC-PRA
is similar to URA97 and PRA97. The administrative
scope can change dynamically. Zhang et al. have extend-
ed SARBAC to also deal with hybrid hierarchy [5].

Cross-references
» Role Based Access Control

Recommended Reading

1. Crampton J. and Loizou G. Administrative scope: a foundation
for role-based administrative models. ACM Trans. Inf. Syst.
Secur., 6(2):201-231, 2003.

2. Oh S. and Sandhu R. A model for role administration using
organization structure. In Proc. 7th ACM Symp. on Access
Control Models and Technologies, 2002, pp. 155-162.

58

Administration Wizards

3. Sandhu R., Bhamidipati V., and Munawer Q. The ARBAC97
model for role-based administration of roles. ACM Trans. Inf.
Syst. Secur., 2(1):105-135, 1999.

4. Sandhu R. and Munawer Q. The ARBAC99 model for adminis-
tration of roles (1999). In Proc. 15th Computer Security Appli-
cations Conf. Arizona, 1999, pp. 229.

5. Zhang Y., James B., and Joshi D. “SARBACO07: scoped adminis-
tration model for RBAC with hybrid hierarchy. In Proc. 3rd
Int. Symp. on Information Assurance and Security, 2007,
pp. 149-154.

6. ZhangY. and Joshi J.B.D. ARBACO7: a role based administration
model for RBAC with hybrid hierarchy. In Proc. IEEE Int. Conf.
Information Reuse and Integration, 2007, pp. 196-202.

I
Administration Wizards

PHILIPPE BONNETI, DENNIS SHASHA?
"University of Copenhagen, Copenhagen, Denmark
New York University, New York, NY, USA

Definition

Modern database systems provide a collection of utilities
and programs to assist a database administrator with
tasks such as database installation and configuration,
import/export, indexing (index wizards are covered in
the self-management entry), and backup/restore.

Historical Background

Database Administrators have been skeptical of any
form of automation as long as they could control the
performance and security of a relatively straightfor-
ward installation. The advent of enterprise data man-
agement towards the end of the 1990s, where few
administrators became responsible for many, possibly
diverse database servers, has led to the use of graphical
automation tools. In the mid-1990s, third party
vendors introduced such tools. With SQL Server 6.5,
Microsoft was the first constructor to provide an ad-
ministration wizard.

Foundations

Installation and Configuration

Database servers are configured using hundreds of
parameters that control everything buffer size, file lay-
out, concurrency control options and so on. They are
either set statically in a configuration file before
the server is started, or dynamically while the server is
running. Out-of-the-box database servers are equipped
with a limited set of typical configurations.

The installation/configuration wizard is a graphical
user interface that guides the administrator through
the initial server configuration. The interface provides
high-level choices (e.g., OLTP vs. OLAP workload), or
simple questions (e.g., number of concurrent users)
that are mapped onto database configuration values
(log buffer size and thread pool size respectively).

Data Import/Export

Import/export wizards are graphical tools that help
database administrators map a database schema with
an external data format (e.g., XML, CSV, PDF), or
generate scripts that automate the transfer of data
between a database and an external data source (possi-
bly another database server).

Back-up/Restore

Back-up/restore wizards automate the back-up proce-
dure given a few input arguments: complete/incremental
backup, scope of the back-up/restore operations (file,
tablespace, database), target directory.

Key Applications
Automation of the central database administration
tasks.

Cross-references
» Self-Management

Recommended Reading

1. Bersinic D. and Gile S. Portable DBA: SQL Server. McGraw Hill,
New York, 2004.

2. Schumacher R. DBA Tools Today. DBMS Magazine, January
1997.

! Advanced Transaction Models

» Extended Transaction Models and the ACTA
Framework
» Generalization of ACID Properties

» Open Nested Transaction Models

I
Adversarial Information Retrieval

» Web Spam Detection

Aggregation: Expressiveness and Containment

59

I
Affix Removal

» Stemming

" AFI

» Approximation of Frequent Itemsets

|
Aggregate Queries in P2P Systems

» Approximate Queries in Peer-to-Peer Systems

|
Aggregation

» Abstraction

|
Aggregation Algorithms for
Middleware Systems

» Top-k Selection Queries on Multimedia Datasets

|
Aggregation and Threshold
Algorithms for XML

» Ranked XML Processing

|
Aggregation: Expressiveness and
Containment

SarRA COHEN
The Hebrew University of Jerusalem, Jerusalem, Israel

Definition

An aggregate function is a function that receives as
input a multiset of values, and returns a single value.
For example, the aggregate function countreturns the
number of input values. An aggregate query is simply a
query that mentions an aggregate function, usually
as part of its output. Aggregate queries are commonly

used to retrieve concise information from a database,
since they can cover many data items, while returning
few. Aggregation is allowed in SQL, and the addition of
aggregation to other query languages, such as relation-
al algebra and datalog, has been studied.

The problem of determining query expressiveness is
to characterize the types of queries that can be expressed
in a given query language. The study of query exp-
ressiveness for languages with aggregation is often
focused on determining how aggregation increases the
ability to formulate queries. It has been shown that
relational algebra with aggregation (which models
SQL) has a locality property.

Query containment is the problem of determining,
for any two given queries g and q’, whether g(D)C
q'(D), for all databases D, where g(D) is the result
of applying g to D. Similarly, the query equivalence
problem is to determine whether q(D)=¢'(D) for all
databases D. For aggregate queries, it seems that char-
acterizing query equivalence may be easier than
characterizing query containment. In particular, almost
all known results on query containment for aggre-
gate queries are derived by a reduction from query
equivalence.

Historical Background

The SQL standard defines five aggregate functions,
namely, count, sum, min, max and avg(average).
Over time, it has become apparent that users would
like to aggregate data in additional ways. Therefore,
major database systems have added new built-in aggre-
gate functions to meet this need. In addition, many
database systems now allow the user to extend the set
of available aggregate functions by defining his own
aggregate functions.

Aggregate queries are typically used to summarize
detailed information. For example, consider a database
with the relations Dept (deptId, deptName) and
Emp (empld, deptId, salary). The following SQL
query returns the number of employees, and the total
department expenditure on salaries, for each depart-
ment which has an average salary above $10,000.

(Q1l) SELECT deptID, count (empID),
sum(salary)
FROM Dept, Emp
WHERE Dept.deptID = Emp.deptID
GROUP BY Dept .deptID
HAVING avg (salary) > 10000

60

Aggregation: Expressiveness and Containment

Typically, aggregate queries have three special
components. First, the GROUP BY clause is used to
state how intermediate tuples should be grouped
before applying aggregation. In this example, tuples
are grouped by their value of deptID, i.e., all tuples
with the same value for this attribute form a
single group. Second, a HAVING clause can be used to
determine which groups are of interest, e.g., those
with average salary above $10,000. Finally, the output-
ted aggregate functions are specified in the SELECT
clause, e.g., the number of employees and the sum of
salaries.

The inclusion of aggregation in SQL has motivated
the study of aggregation in relational algebra, as an
abstract modeling of SQL. One of the earliest studies
of aggregation was by Klug [11], who extended rela-
tional algebra and relational calculus to allow aggregate
functions and showed the equivalence of these two
languages. Aggregation has also been added to Datalog.
This has proved challenging since it is not obvious
what semantics should be adopted in the presence of
recursion [15].

Foundations

Expressiveness

The study of query expressiveness deals with deter-
mining what can be expressed in a given query lan-
guage. The expressiveness of query languages with
aggregation has been studied both for the language of
relational algebra, as well as for datalog, which may
have recursion.

Various papers have studied the expressive power
of nonrecursive languages, extended with aggregation,
e.g., [7,9,13]. The focus here will be on [12], which has
the cleanest, general proofs for the expressive power of
languages modeling SQL.

In [12], the expressiveness of variants of relational
algebra, extended with aggregation, was studied. First,
[12] observes that the addition of aggregation to rela-
tional algebra strictly increases its expressiveness. This
is witnessed by the query Q2:

(Q2) SELECT 1
FROM R1
WHERE (SELECT COUNT (*) FROMR) >
(SELECT COUNT (*) FROM S)

Observe that Q2 returns 1 if R contains more tuples
than s, and otherwise an empty answer. It is known
that first-order logic cannot compare cardinalities, and
hence neither can relational algebra. Therefore, SQL
with aggregation is strictly more expressive than SQL
without aggregation.

The language ALG,gg, is presented in [12]. Basically,
AlGgggr is relational algebra, extended by arbitrary
aggregation and arithmetic functions. In ALG,gg,
non-numerical selection predicates are restricted to
using only the equality relation (and not order com-
parisons). A purely relational query is one which is
applied only to non-numerical data. It is shown that
all purely relational queries in ALG,gg,
tively, the answers to local queries are determined by
looking at small portions of the input.

The formal definition of local queries follows. Let D
be a database. The Gaifman graph G(D) of D is the
undirected graph on the values appearing in D, with
(a,b)eG(D) if a and b belong to the same tuple
of some relation in D. Let d =(ay,...,a;) be a tuple of
values, each of which appears in D. Let r be an integer,
and let SP(d) be the set of values b such that dist (a;
b)<rin G(D), for some i. The r-neighborhood NP ()
of d is a new database in which the relations of D are
restricted to contain only the values in SP(d). Then, @
and b are (D, r)-equivalent if there is an isomorphism
h: NP(d@) — NP(b) such that h(d@) = b. Finally, a q
is local if there exists a number r such that for all D,
if (d) and (E) are (D,r)-equivalent, then d € gq(D) if
and only if b € (D).

There are natural queries that are not local. For

are local. Intui-

example, transitive closure (also called reachability) is
not local. Since all queries in ALG,g,, are local, this
implies that transitive closure cannot be expressed in
ALGaggr.

In addition to ALGagg, [12] introduces the lan-
guages ALGi,’;I and ALGaSg‘S . ALGaSggI and ALGaSg'gf
are the extensions of ALG,g,, Which allow order com-
parisons in the selection predicates, and allow natural
numbers and rational numbers, respectively, in the
database. It is not known whether transitive closure
can be expressed in ALG;I;’ng . More precisely, [12]
shows that if transitive closure is not expressible in
ALGaSg'grf, then the complexity class Uniform TC® is
properly contained in the complexity class NLOG-
SPACE. Since the latter problem (i.e., determining

strict containment of TC® in NLOGSPACE) is believed

Aggregation: Expressiveness and Containment

61

to be very difficult to prove, so is the former. Moreover,
this result holds even if the arithmetic functions are
restricted to {+,-,<,0,1} and the aggregate functions
are restricted to {sum}. On the other hand, ALGaSg’g
extended by arbitrary aggregation and arithmetic func-
tions, can express all computable queries.

The languages ALG,ggy, ALGaSg;j}I and ALGagg’g‘? are
based on relational algebra, and therefore, do not
allow recursion. The Datalog language allows queries
to be defined as programs, containing recursion.
The meaning of an aggregate function within a recur-
sive program, is not always well-defined. One solution
is to restrict the program to have only stratified aggre-
gation. Stratification means that if a derived predicate
p is defined by applying an aggregate function on a
derived predicate g, then the definition of g does not
depend, syntactically, upon the definition of p. For

example, consider the following Datalog program, P;.

p(X; sum(Y)) < q(X,Y)
q(X,Y) «— a(X,Y)
q(X,Z) «— q(X,Y),q(Y,2)

The program P is stratified. Replacing the final rule in

q(X,Z) — q(X,Y),p(Y,Z)

would yield a program with nonstratified aggregation.

The expressiveness of stratified aggregation was
studied in [14]. Only the aggregate functions sum,
avg, min, max and count were allowed. It is shown
that that stratified aggregation cannot express summar-
ized explosion (i.e., the number of instances of a part
needed to construct a bigger part). On the other hand,
if the language is extended to allow the function +, as
well as the constants 0 and 1, then all computable
queries on the integer domain can be expressed. This
is correct even if the only aggregate function allowed
is max. Additional results of this type, i.e., expressibility
of other fragments of stratified Datalog, also appear
in [14].

Query Containment

The equivalence and containment problems for aggre-
gate queries have been studied for nonrecursive Data-
log programs. A survey of the containment and
equivalence problems for aggregate queries, containing
references to most works on this topic, appears in [2].

Deriving general characterizations of containment
(or equivalence) for aggregate queries is difficult, since
each aggregate function tends to have its own idiosyn-
crasies. For example, count is sensitive to the number
of occurrences of each value, but not to the values
themselves, whereas max ignores repeated values, but
is sensitive to the exact values appearing. As another
example, sum ignores the value 0, whereas prod
ignores 1. In addition, prod always returns 0 if it
is applied to a bag containing 0.

Due to aggregate function quirks, it is often the case
that equivalent queries are no longer so, if the aggre-
gate function appearing in their head changes. To dem-
onstrate, consider the two pairs of queries g;, g{ and

LI2, qé

¢ (X, count) «— a(X,Y)
q; (X, count) « a(X,Y),a(X, Z)
@(X,max(Y)) — a(X,Y)
g (X,max(Y)) < a(X,Y),a(X, Z)

The queries g; and ¢, (and similarly g} and g5) have
the same conditions in their body, and differ only
on the output aggregate function. One may show that
q: is not equivalent to g (nor is there containment in
either direction), as witnessed by the database

D, = {a(c,O), a(cv 1)7 a(dv 0)}

over which ¢;(D;) ={(c,2),(&1)} and q{(D,) =
{(c, 4),(d,1)}. On the other hand, ¢,= g5 does hold.

The different oddities of aggregate functions
make finding a general solution for the equivalence
and containment problems very difficult. Thus, char-
acterizations for equivalence of aggregate queries often
are defined separately for each aggregate function.
Most known characterizations for equivalence are
based on checking for the existence of special types of
mappings between the queries. For example, conjunc-
tive queries (i.e., Datalog programs consisting of a
single rule, and no negation) with the aggregate func-
tion count, are equivalent if and only if they are
isomorphic [1,4].

For other types of aggregate functions, as well as for
count queries with comparisons or disjunctions, iso-
morphism is not a necessary condition for equivalence.
To demonstrate, each pair of queries g; g/ below is
equivalent, yet not isomorphic:

62

Aggregation: Expressiveness and Containment

gs(count) «— b(X),b(Y),b(2),X <Y, X< Z
qy(count) «— b(X),b(Y),b(2),X < Z, Y < Z

ga(sum(Y)) — b(Y),b(Z),Y >0,Z>0

qy(sum(Y)) « b(Y),b(Z),Y >0,Z >0

gs(avg(Y)) < b(Y)
gs(avg(Y)) < b(Y), b(Z)

gs(max(Y)) «— b(Y),b(%), (%), Z1 < Z,
qs(max(Y)) — b(Y),b(Z2),Z <Y

Characterizations for equivalence are known for queries
of the above types. Specifically, characterizations have
been presented for equivalence of conjunctive queries
with the aggregate functions count, sum, max and
count-distinct [4] and these were extended in
[5] to queries with disjunctive bodies. Equivalence of
conjunctive queries with avgand with percent were
characterized in [8].

It is sometimes possible to define classes of aggre-
gate functions and then present general characteriza-
tions for equivalence of queries with any aggregate
function within the class of functions. Such character-
izations are often quite intricate since they must
deal with many different aggregate functions. A char-
acterization of this type was given in [6] to decide
equivalence of aggregate queries with decomposable
aggregate functions, even if the queries contain nega-
tion. Intuitively, an aggregate function is decompos-
able if partially computed values can easily be
combined together to return the result of aggregating
an entire multiset of values, e.g., as is the case for
count, sum and max.

Interestingly, when dealing with aggregate queries
it seems that the containment problem is more elusive
than the equivalence problem. In fact, for aggregate
queries, containment is decided by reducing to the
equivalence problem. A reduction of containment
to equivalence is presented for queries with expandable
aggregate functions in [3]. Intuitively, for expan-
dable aggregate functions, changing the number of
occurrences of values in bags B and B’ does not affect
the correctness of the formula o(B)=o(B), as long
as the proportion of each value in each bag remains
the same, e.g., as is the case for count, sum, max,

count-distinct and avg.

The study of aggregate queries using the count
function is closely related to the study of nonaggregate
queries evaluated under bag-set semantics. Most past
research on query containment and equivalence for non-
aggregate queries assumed that queries are evaluated
under set semantics. In set semantics, the output of a
query does not contain duplicated tuples. (This corre-
sponds to SQL queries with the DISTINCT operator.)
Under bag-set semantics the result of a query is a multiset
of values, i.e., the same value may appear many times. A
related semantics is bag semantics in which both the
database and the query results may contain duplication.

To demonstrate the different semantics, recall the
database D, defined above. Consider evaluating, over
D,, the following variation of ¢;:

q)(X) < a(X,Y)

Under set-semantics g”1(D;) ={ (c),(d)}, and under
bag-set semantics g”,(D;) ={{ (c),(c),(d)}}. Note the
correspondence between bag-set semantics and using
the count function, as in ¢g;, where count returns
exactly the number of duplicates of each value. Due
to this correspondence, solutions for the query con-
tainment problem for queries with the count function
immediately give rise to solutions for the query con-
tainment problem for nonaggregate queries evaluated
under bag-set semantics, and vice-versa.

The first paper to directly study containment and
equivalence for nonaggregate queries under bag-set
semantics was [1], which characterized equivalence
for conjunctive queries. This was extended in [4] to
queries with comparisons, in [5] to queries with dis-
junctions and in [6] to queries with negation.

Key Applications

Query Optimization

The ability to decide query containment and equiva-
lence is believed to be a key component in query
optimization. When optimizing a query, the database
can use equivalence characterizations to remove re-
dundant portions of the query, or to find an equiva-
lent, yet cheaper, alternative query.

Query Rewriting

Given a user query ¢, and previously computed queries
Vi,. . .V, the query rewriting problem is to find a query
r that (i) is equivalent to g, and (ii) uses the queries

Aggregation-Based Structured Text Retrieval

63

V...V, instead of accessing the base relations. (Other
variants of the query rewriting problem have also been
studied.) Due to Condition (i), equivalence character-
izations are needed to solve the query rewriting prob-
lem. Query rewriting is useful as an optimization
technique, since it can be cheaper to use past results,
instead of evaluating a query from scratch. Integrating
information sources is another problem that can be
reduced to the query rewriting problem.

Future Directions

Previous work on query containment does not consid-
er queries with HAVING clauses. Another open problem
is containment for queries evaluated under bag-set
semantics. In this problem, one wishes to determine
if the bag returned by g is always sub-bag of that
returned by gq’. (Note that this is different from the
corresponding problem of determining containment
of queries with count, which has been solved.) It has
shown [10] that bag-set containment is undecidable
for conjunctive queries containing inequalities. How-
ever, for conjunctive queries without any order com-
parisons, determining bag-set containment is still an
open problem.

Cross-references

» Answering Queries using Views

» Bag Semantics

» Data Aggregation in Sensor Networks

» Expressive Power of Query Languages

» Locality

» Query Containment

» Query Optimization (in Relational Databases)
» Query Rewriting using Views

Recommended Reading

1. Chaudhuri S. and Vardi M.Y. Optimization of real conjunctive
queries. In Proc. 12th ACM SIGACT-SIGMOD-SIGART Symp.
on Principles of Database Systems, 1993, pp. 59-70.

2. Cohen S. Containment of aggregate queries. ACM SIGMOD
Rec., 34(1):77-85, 2005.

3. Cohen S., Nutt W.,, and Sagiv Y. Containment of aggre-
gate queries. In Proc. 9th Int. Conf. on Database Theory, 2003,
pp. 111-125.

4. Cohen S., Nutt W., and Sagiv Y. Deciding equivalences among
conjunctive aggregate queries. J. ACM, 54(2), 2007.

5. Cohen S., Nutt W,, and Serebrenik A. Rewriting aggregate queries
using views. In Proc. 18th ACM SIGACT-SIGMOD-SIGART
Symp. on Principles of Database Systems, 1999, pp. 155-166.

6. Cohen S, Sagiv Y., and Nutt W. Equivalences among aggregate
queries with negation. ACM Trans. Comput. Log., 6(2):328-360,
2005.

7. Consens M.P. and Mendelzon A.O. Low complexity aggregation
in graphlog and datalog. Theor. Comput. Sci., 116(1 and 2):
95-116, 1993.

8. Grumbach S., Rafanelli M., and Tininini L. On the equivalence
and rewriting of aggregate queries. Acta Inf., 40(8):529-584, 2004.

9. Hella L., Libkin L., Nurmonen J., and Wong L. Logics with
aggregate operators. J. ACM, 48(4):880-907, 2001.

10. Jayram T.S., Kolaitis P.G., and Vee E. The containment problem
for real conjunctive queries with inequalities. In Proc. 25th ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of Database
Systems, 2006, pp. 80—89.

11. Klug A.C. Equivalence of relational algebra and relational
calculus query languages having aggregate functions. J. ACM,
29(3):699-717, 1982.

12. Libkin L. Expressive power of SQL. Theor. Comput. Sci.,
3(296):379-404, 2003.

13. Libkin L. and Wong L. Query languages for bags and aggregate
functions. J. Comput. Syst. Sci., 55(2):241-272, 1997.

14. Mumick L.S. and Shmueli O. How expressive is statified aggre-
gation? Ann. Math. Artif. Intell., 15(3—4):407—434, 1995.

15. Ross K.A. and Sagiv Y. Monotonic aggregation in deductive
database. J. Comput. Syst. Sci., 54(1):79-97, 1997.

|
Aggregation-Based Structured Text
Retrieval

THEODORA TSIKRIKA
Center for Mathematics and Computer Science,
Amsterdam, The Netherlands

Definition

Text retrieval is concerned with the retrieval of docu-
ments in response to user queries. This is achieved by
(i) representing documents and queries with indexing
features that provide a characterisation of their infor-
mation content, and (ii) defining a function that uses
these representations to perform retrieval. Structured
text retrieval introduces a finer-grained retrieval para-
digm that supports the representation and subsequent
retrieval of the individual document components
defined by the document’s logical structure. Aggrega-
tion-based structured text retrieval defines (i) the rep-
resentation of each document component as the
aggregation of the representation of its own informa-
tion content and the representations of information
content of its structurally related components, and

64

Aggregation-Based Structured Text Retrieval

(ii) retrieval of document components based on these
(aggregated) representations.

The aim of aggregation-based approaches is to
improve retrieval effectiveness by capturing and
exploiting the interrelations among the components
of structured text documents. The representation of
each component’s own information content is gener-
ated at indexing time. The recursive aggregation of
these representations, which takes place at the level of
their indexing features, leads to the generation, either
at indexing or at query time, of the representations
of those components that are structurally related with
other components.

Aggregation can be defined in numerous ways; it
is typically defined so that it enables retrieval to focus
on those document components more specific to
the query or to each document’s best entry points,
i.e., document components that contain relevant in-
formation and from which users can browse to further
relevant components.

Historical Background

A well-established Information Retrieval (IR) tech-
nique for improving the effectiveness of text retrieval
(i.e., retrieval at the document level) has been the
generation and subsequent combination of multiple
representations for each document [3]. To apply this
useful technique to the text retrieval of structured text
documents, the typical approach has been to exploit
their logical structure and consider that the individual
representations of their components can act as the dif-
ferent representations to be combined [11]. This defini-
tion of the representation of a structured text document
as the combination of the representations of its compo-
nents was also based on the intuitive idea that the infor-
mation content of each document consists of the
information content of its sub-parts [2,6].

As the above description suggests, these combina-
tion-based approaches, despite restricting retrieval only
at the document level, assign representations not only
to documents, but also to individual document compo-
nents. To generate these representations, structured
text documents can simply be viewed as series of
non-overlapping components (Figure la), such as
title, author, abstract, body, etc. [13]. The proliferation
of SGML and XML documents, however, has led to the
consideration of hierarchical components (Figure 1b),
and their interrelated representations [1]. For these

(disjoint or nested) document components, the combi-
nation of their representations can take place (i) directly
at the level of their indexing features, which typically
correspond to terms and their statistics (e.g., [13]), or
(ii) at the level of retrieval scores computed indepen-
dently for each component (e.g., [15]). Overall, these
combination-based approaches have proven effective for
the text retrieval of structured text documents
[11,13,15].

Following the recent shift towards the structured
text retrieval paradigm [2], which supports the retriev-
al of document components (including whole docu-
ments), it was only natural to try to adapt these
combination-based approaches to this new require-
ment for retrieval at the sub-document level. Here,
the focus is on each document component: its repre-
sentation corresponds to the combination of its own
representation with the representations of its structur-
ally related components, and its retrieval is based on
this combined representation. Similarly to the case of
combination-based approaches for text retrieval, two
strands of research can be identified: (i) approaches
that operate at the level of the components’ indexing
features (e.g., [12]), referred to as aggregation-based
structured text retrieval (described in this entry), and
(ii) approaches that operate at the level of retrieval
scores computed independently for each component
(e.g., [14]), referred to as propagation-based structured
text retrieval.

Figure 2b illustrates the premise of aggregation-
and propagated-based approaches for the simple struc-
tured text document depicted in Figure 2a. Since
these approaches share some of their underlying
motivations and assumptions, there has been a cross-
fertilisation of ideas between the two. This also implies
that this entry is closely related to the entry on
propagation-based structured text retrieval.

Foundations

Structured text retrieval supports, in principle, the
representation and subsequent retrieval of document
components of any granularity; in practice, however, it
is desirable to take into account only document com-
ponents that users would find informative in response
to their queries [1,2,4,6]. Such document components
are referred to as indexing units and are usually chosen
(manually or automatically) with respect to the
requirements of each application. Once the indexing

Aggregation-Based Structured Text Retrieval

Abstract

’ John smith ‘ | XML retrieval |

Intreduction
XML retrieval

‘ This article...

has been...

‘ XML retrieval |

This article...

| John smith l

A component’s
own content

- XML retrieval
Introduction

has been...

Retrieving document
components...

b

‘ Passage retrieval l

Aggregation-Based Structured Text Retrieval. Figure 1. Two views on the logical structure of a structured text

document.

units have been determined, each can be assigned a
representation of its information content, and, hence,
become individually retrievable.

Aggregation-based structured text retrieval appro-
aches distinguish two types of indexing units: atomic
and composite. Atomic components correspond to
indexing units that cannot be further decomposed,
i.e.,, the leaf components in Figure 1b. The repres-
entation of an atomic component is generated by

considering only its own information content. Compo-
site components, on the other hand, i.e., the non-leaf
nodes in Figure 1b, correspond to indexing units
which are related to other components, e.g., consist
of sub-components. In addition to its own informa-
tion content, a composite component is also depen-
dent on the information content of its structurally
related components. Therefore, its representation can
be derived via the aggregation of the representation of its

66

Aggregation-Based Structured Text Retrieval

‘ wi{ty) witay) w(ts) ‘

| W(tyo) Witpo) W(lsp) ‘ ’ w(ty3) Wltos) W(tss) ‘

Aggregation: retrieval_score’ (component;) = f(w(t), w(t;), w(ts))

Where:
wity) = wityy) @ w(tyz) ® w(ts)
w(ty) = w(tpy) @ W(tps) © witps)
w(ts) = witsy) @ W(lsp) © w(tgs)

Propagation: retrieval_score’ (component,) = retrieval_score (component,) @
retrieval_score (component,) @ retrieval_score (components)

Where:
retrieval_score (componenty) = f(w(ty4), w(taq), w(tsq))
retrieval_score (componenty) = f(w(tyo), w(ts,), w(tsn))
retrieval_score (components) = f(w(tyg), w(tss), w(tss))

b

Aggregation-Based Structured Text Retrieval. Figure 2. Simple example illustrating the differences between

aggregation- and propagation-based approaches.

own information content with the representations of the
information content of its structurally related compo-
nents; this aggregation takes place at the level of their
indexing features. Given the representations of atomic
components and of composite components’ own infor-
mation content, aggregation-based approaches recur-
sively generate the aggregated representations of
composite components and, based on them, perform
retrieval of document components of varying
granularity.

In summary, each aggregation-based approach
needs to define the following: (i) the representation
of each component’s own information content, (ii) the
aggregated representations of composite components,
and (iii) the retrieval function that uses these repre-
sentations. Although these three steps are clearly inter-
dependent, the major issues addressed in each step
need to be outlined first, before proceeding with the
description of the key aggregation-based approaches in
the field of structured text retrieval.

1. Representing each component’s own information

content: In the field of text retrieval, the issue of

representing documents with indexing features that
provide a characterisation of their information content
has been extensively studied in the context of several IR
retrieval models (e.g., Boolean, vector space, probabi-
listic, language models, etc.). For text documents, these
indexing features typically correspond to term statis-
tics. Retrieval functions produce a ranking in response
to a user’s query, by taking into account the statistics of
query terms together with each document’s length.
The term statistics most commonly used correspond
to the term frequency tf (t, d) of term fin document d
and to the document frequency df (¢, C) of term ¢ in the
document collection C, leading to standard tf x idf
weighting schemes.

Structured text retrieval approaches need to generate
representations for all components corresponding to
indexing units. Since these components are nested, it
is not straightforward to adapt these term statistics
(particularly document frequency) at the component
level [10]. Aggregation-based approaches, on the
other hand, directly generate representations only for
components that have their own information content,

Aggregation-Based Structured Text Retrieval

67

This
------------------ 1| article...

A component’s
own content

XML retrieval
has been...

Retrieving document :
components... '

Aggregation-Based Structured Text Retrieval. Figure 3. Representing the components that contain their own

information.

while the representations of the remaining compo-
nents are obtained via the aggregation process. There-
fore, the first step is to generate the representations of
atomic components and of the composite components’
own information content, i.e., the content not contained
in any of their structurally related components. This
simplifies the process, since only disjoint units need
to be represented [6], as illustrated in Figure 3 where
the dashed boxes enclose the components to be repre-
sented (cf. [5]).

Text retrieval approaches usually consider that
the information content of a document corresponds
only to its textual content, and possibly its metadata
(also referred to as attributes). In addition to that,
structured text retrieval approaches also aim at repre-
senting the information encoded in the logical structure
of documents. Representing this structural information,
i.e., the interrelations among the documents and their
components, enables retrieval in response to both con-
tent-only queries and content-and-structure queries.

Aggregation-based approaches that only represent
the textual content typically adapt standard represen-
tation formalisms widely employed in text retrieval

approaches to their requirements for representation
at the component level (e.g., [9,11]). Those that con-
sider richer representations of information content
apply more expressive formalisms (e.g., various logics
[2,4]).

2. Aggregating the representations: The concept
underlying aggregation-based approaches is that of
augmentation [4]: the information content of a docu-
ment component can be augmented with that of its
structurally related components. Given the already
generated representations (i.e., the representations of
atomic components and of composite components’
own information content), the augmentation of com-
posite components is performed by the aggregation
process.

The first step in the aggregation process is the
identification