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Preface

We are in an information era where generating and storing large amounts of data are commonplace. A growing
number of organizations routinely handle terabytes and exabytes of data, and individual digital data collections
easily reach multiple gigabytes. Along with the increases in volume, the modality of digitized data that requires
efficient management and the access modes to these data have become more varied. It is increasingly common for
business and personal data collections to include images, video, voice, and unstructured text; the retrieval of these
data comprises various forms, including structured queries, keyword search, and visual access. Data have become
a highly valued asset for governments, industries and individuals, and the management of these data collections
remains a critical technical challenge.

Database technology has matured over the past four decades and is now quite ubiquitous in many applications
that deal with more traditional business data. The challenges of expanding data management to include other data
modalities while maintaining the fundamental tenets of database management (data independence, data integrity,
data consistency, etc.) are issues that the community continues to work on. The lines between database
management and other fields such as information retrieval, multimedia retrieval, and data visualization are
increasingly blurred.

This multi-volume Encyclopedia of Database Systems provides easy access to important concepts on all aspects
of database systems, including areas of current interest and research results of historical significance. It is a
comprehensive collection of over 1,250 in-depth entries (3,067 including synonyms) that present coverage of the
important concepts, issues, emerging technology and future trends in the field of database technologies, systems,
and applications. The content of the Encyclopedia was determined through wide consultations. We were assisted
by an Advisory Board in coming up with the overall structure and content. Each of these areas were put under the
control of Area Editors (70 in total) who further developed the content for each area, soliciting experts in the field
as contributors to write the entries, and performed the necessary technical editing. Some of them even wrote
entries themselves. Nearly 1,000 authors were involved in writing entries.

The intended audience for the Encyclopedia is technically broad and diverse. It includes anyone concerned
with database system technology and its applications. Specifically, the Encyclopedia can serve as a valuable and
authoritative reference for students, researchers and practitioners who need a quick and authoritative reference to
the subject of databases, data management, and database systems. We anticipate that many people will benefit
from this reference work, including database specialists, software developers, scientists and engineers who need to
deal with (structured, semi-structured or unstructured) large datasets. In addition, database and data mining
researchers and scholars in the many areas that apply database technologies, such as artificial intelligence, software
engineering, robotics and computer vision, machine learning, finance and marketing are expected to benefit from
the Encyclopedia.

We would like to thank the members of the Advisory Board, the Editorial Board, and the individual
contributors for their help in creating this Encyclopedia. The success of the Encyclopedia could not have been
achieved without the expertise and the effort of the many contributors. Our sincere thanks also go to Springer’s
editors and staff, including Jennifer Carlson, Susan Lagerstrom-Fife, Oona Schmid, and Susan Bednarczyk for
their support throughout the project.

Finally, we would very much like to hear from readers for any suggestions regarding the Encyclopedia’s content.
With a project of this size and scope, it is quite possible that we may have missed some concepts. It is also possible
that some entries may benefit from revisions and clarifications. We are committed to issuing periodic updates and
we look forward to the feedback from the community to improve the Encyclopedia.

Ling Liu
M. Tamer Ozsu
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Definition

A temporal database contains time-referenced, or time-
stamped, facts. A time reference in such a database is
absolute if its value is independent of the context,
including the current time, now.

Key Points
An example is “Mary’s salary was raised on March 30,
2007.” The fact here is that Mary’s salary was raised.
The absolute time reference is March 30, 2007, which
is a time instant at the granularity of day.
Another example is “Mary’s monthly salary was
$ 15,000 from January 1, 2006 to November 30, 2007.”
In this example, the absolute time reference is the
time period [January 1, 2006 — November 30, 2007].
Absolute time can be contrasted with relative time.

Cross-references

» Now in Temporal Databases
» Relative Time

» Time Instant

» Time Period

» Temporal Database

» Temporal Granularity
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Synonyms
Historical query languages

Definition

Temporal query languages are a family of query lan-
guages designed to query (and access in general) time-
dependent information stored in temporal databases.
The languages are commonly defined as extensions of
standard query languages for non-temporal databases
with temporal features. The additional features reflect
the way dependencies of data on time are captured by
and represented in the underlying temporal data model.

Historical Background

Most databases store time-varying information. On
the other hand, SQL is often the language of choice
for developing applications that utilize the information
in these databases. Plain SQL, however, does not seem
to provide adequate support for temporal applications.
Example. To represent the employment histories of per-
sons, a common relational design would use a schema

Employment(FromDate,ToDate, EID, Company),

with the intended meaning that a person identified
by EID worked for Company continuously from
FromDate to ToDate. Note that while the above sche-
ma is a standard relational schema, the additional
assumption that the values of the attributes FromDate
and ToDate represent continuous periods of time is
itself not a part of the relational model.

Formulating even simple queries over such a schema
is non-trivial. For example, the query GAPS: “List all
persons with gaps in their employment history, together
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with the gaps” leads to a rather complex formulation in,
e.g., SQL over the above schema (this is left as a challenge
to readers who consider themselves SQL experts; for a
list of appealing, but incorrect solutions, including the
reasons why, see [9]). The difficulty arises because a
single tuple in the relation is conceptually a compact
representation of a set of tuples, each tuple stating that
an employment fact was true on a particular day.

The tension between the conceptual abstract tempo-
ral data model (in the example, the property that em-
ployment facts are associated with individual time
instants) and the need for an efficient and compact
representation of temporal data (in the example, the
representation of continuous periods by their start and
end instants) has been reflected in the development of
numerous temporal data models and temporal query
languages [3].

Foundations

Temporal query languages are commonly defined
using temporal extensions of existing non-temporal
query languages, such as relational calculus, relational
algebra, or SQL. The temporal extensions can be cate-
gorized in two, mostly orthogonal, ways:

e The choice of the actual temporal values manipulated
by the language. This choice is primarily deter-
mined by the underlying temporal data model.
The model also determines the associated opera-
tions on these values. The meaning of temporal
queries is then defined in terms of temporal values
and operations on them, and their interactions
with data (non-temporal) values in a temporal
database.

e The choice of syntactic constructs to manipulate tem-
poral values in the language. This distinction deter-
mines whether the temporal values in the language
are accessed and manipulated explicitly, in a way
similar to other values stored in the database, or
whether the access is implicit, based primarily on
temporally extending the meaning of constructs that
already exist in the underlying non-temporal lan-
guage (while still using the operations defined by
the temporal data model).

Additional design considerations relate to compatibility
with existing query languages, e.g., the notion of tem-
poral upward compatibility.

However, as illustrated above, an additional hurdle
stems from the fact that many (early) temporal query

languages allowed the users to manipulate a finite
underlying representation of temporal databases rather
than the actual temporal values/objects in the asso-
ciated temporal data model. A typical example of this
situation would be an approach in which the temporal
data model is based on time instants, while the query
language introduces interval-valued attributes. Such a
discrepancy often leads to a complex and unintuitive
semantics of queries.

In order to clarify this issue, Chomicki has intro-
duced the notions of abstract and concrete temporal
databases and query languages [2]. Intuitively, abstract
temporal query languages are defined at the concept-
ual level of the temporal data model, while their
concrete counterparts operate directly on an actual
compact encoding of temporal databases. The relation-
ship between abstract and concrete temporal query
languages is also implicitly present in the notion of
snapshot equivalence [7]. Moreover, Bettini et al. [1]
proposed to distinguish between explicit and implicit
information in a temporal database. The explicit infor-
mation is stored in the database and used to derive the
implicit information through semantic assumptions.
Semantic assumptions related to fact persistence play
a role similar to mappings between concrete and ab-
stract databases, while other assumptions are used to
address time-granularity issues.

Abstract Temporal Query Languages
Most temporal query languages derived by temporally
extending the relational calculus can be classified as
abstract temporal query languages. Their semantics are
defined in terms of abstract temporal databases which,
in turn, are typically defined within the point-stamped
temporal data model, in particular without any addi-
tional hidden assumptions about the meaning of
tuples in instances of temporal relations.
Example. The employment histories in an abstract tem-
poral data model would most likely be captured by a
simpler schema “Employment(Date, EID, Company)’,
with the intended meaning that a person identified by
EID was working for Company on a particular Date.
While instances of such a schema can potentially be very
large (especially when a fine granularity of time is used),
formulating queries is now much more natural.
Choosing abstract temporal query languages over
concrete ones resolves the first design issue: the temporal
values used by the former languages are time instants
equipped with an appropriate temporal ordering (which
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is typically a linear order over the instants), and possibly
other predicates such as temporal distance. The second
design issue — access to temporal values — may be re-
solved in two different ways, as exemplified by two
different query languages. They are as follows:

e Temporal Relational Calculus (TRC): a two-sorted
first-order logic with variables and quantifiers
explicitly ranging over the time and data domains.

e First-order Temporal Logic (FOTL): a language
with an implicit access to timestamps using tempo-
ral connectives.

Example. The GAPS query is formulated as follows:

TRC: Aty t3.t; < tr, < t3 Adc.Employment(ty, X, €) A
(—=dc.Employment(ty, X, €)) A
dc.Employment(ts, X, ¢);

FOTL: ®3dc.Employment(x,c) A
(—3dc.Employment(x, ¢)) A
O Jc.Employment(x, )

Here, the explicit access to temporal values (in
TRC) using the variables t;, t,, and 3 can be contrasted
with the implicit access (in FOTL) using the temporal
operators @ (read “sometime in the past”) and < (read
“sometime in the future”). The conjunction in the
FOTL query represents an implicit temporal join. The
formulation in TRC leads immediately to an equiva-
lent way of expressing the query in SQL/TP [9], an
extension of SQL based on TRC.

Example. The above query can be formulated in
SQL/TP as follows:

SELECT t.Date, el.EID
FROM Employment el, Time t, Employment e2
WHERE el .EID =e2.EID
AND el .Date < e2.Date
AND NOT EXISTS ( SELECT *
FROM Employment e3
WHERE el .EID = e3.EID
AND t.Date = e3.Date
AND el .Date < e3.Date
AND e3.Date < e2.Date )

The unary constant relation Time contains all time
instants in the time domain (in our case, all Dates)
and is only needed to fulfill syntactic SQL-style
requirements on attribute ranges. However, despite
the fact that the instance of this relation is not finite,
the query can be efficiently evaluated [9].

Note also that in all of the above cases, the formu-
lation is exactly the same as if the underlying temporal
database used the plain relational model (allowing for
attributes ranging over time instants).

The two languages, FOTL and TRC, are the coun-
terparts of the snapshot and timestamp models (cf. the
entry Point-stamped Data Models) and are the roots of
many other temporal query languages, ranging from
the more TRC-like temporal extensions of SQL to
more FOTL-like temporal relational algebras (e.g., the
conjunction in temporal logic directly corresponds to a
temporal join in a temporal relational algebra, as both
of them induce an implicit equality on the associated
time attributes).

Temporal integrity constraints over point-stamped
temporal databases can also be conveniently expressed
in TRC or FOTL.

Multiple Temporal Dimensions and Complex Values.
While the abstract temporal query languages are typi-
cally defined in terms of the point-based temporal data
model, they can similarly be defined with respect to
complex temporal values, e.g., pairs (or tuples) of time
instants or even sets of time instants. In these cases,
particularly in the case of set-valued attributes, it is
important to remember that the set values are treated
as indivisible objects, and hence truth (i.e., query se-
mantics) is associated with the entire objects, but not
necessarily with their components/subparts.

Concrete Temporal Query Languages

Although abstract temporal query languages provide a
convenient and clean way of specifying queries, they are
not immediately amenable to implementation. The main
problem is that, in practice, the facts in temporal data-
bases persist over periods of time. Storing all true facts
individually for every time instant during a period would
be prohibitively expensive or, in the case of infinite time
domains such as dense time, even impossible.

Concrete temporal query languages avoid these pro-
blems by operating directly on the compact encodings of
temporal databases. The most commonly used encoding
is the one that uses intervals. However, in this setting, a
tuple that associates a fact with such an interval is a
compact representation of the association between the
same fact and all the time instants that belong to this
interval. This observation leads to the design choices
that are commonly present in such languages:
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e Coalescing is used, explicitly or implicitly, to con-
solidate representations of (sets of) time instants
associated with the same fact. In the case of inter-
val-based encodings, this leads to coalescing ad-
joining or overlapping intervals into a single
interval. Note that coalescing only changes the con-
crete representation of a temporal relation, not its
meaning (i.e., the abstract temporal relation);
hence it has no counterpart in abstract temporal
query languages.

e Implicit set operations on time values are used
in relational operations. For example, conjunction
(join) typically uses set intersection to generate a
compact representation of the time instants attached
to the facts in the result of such an operation.

Example. For the running example, a concrete schema
for the employment histories would typically be de-
fined as “Employment (VT, EID, Company)’ where
VT is a valid time attribute ranging over periods (inter-
vals). The GAPS query can be formulated in a calculus-
style language corresponding to TSQL2 (see the entry
on TSQL2) along the following lines:

30, 1,.[3c.Employment (11, x, ¢)]A
[Fc.Employment (I, x,c)] Al precedes I,
AI=[end(I;) + 1,begin(l;) — 1].

In particular, the variables I; and I, range over periods
and the precedes relationship is one of Allen’s inter-
val relationships. The final conjunct,

I=[end(}) + 1,begin(h) — 1],

creates a new period corresponding to the time instants
related to a person’s gap in employment; this interval
value is explicitly constructed from the end and start
points of I} and L, respectively. For the query to be
correct, however, the results of evaluating the bracket-
ed subexpressions, e.g., “[c.Employment (I}, x, ¢)],
have to be coalesced. Without the insertion of the
explicit coalescing operators, the query is incorrect.
To see that, consider a situation in which a person p,
is first employed by a company ¢, then by ¢, and
finally by ¢;, without any gaps in employment. Then
without coalescing of the bracketed subexpressions of
the above query, po will be returned as a part of the
result of the query, which is incorrect. Note also that it
is not enough for the underlying (concrete) database to
be coalesced.

The need for an explicit use of coalescing often makes
the formulation of queries in some concrete SQL-based
temporal query languages cumbersome and error-prone.

An orthogonal issue is the difference between explicit

and implicit access to temporal values. This distinction
also carries over to the concrete temporal languages.
Typically, the various temporal extensions of SQL are
based on the assumption of an explicit access to temporal
values (often employing a built-in valid time attribute
ranging over intervals or temporal elements), while
many temporal relational algebras have chosen to use
the implicit access based on temporally extending stan-
dard relational operators such as temporal join or
temporal projection.
Compilation and Query Evaluation. An alternative to
allowing users direct access to the encodings of temporal
databases is to develop techniques that allow the evalua-
tion of abstract temporal queries over these encodings.
The main approaches are based on query compilation
techniques that map abstract queries to concrete queries,
while preserving query answers. More formally:

Q(IIEl) = lleval(Q)(E)I;

where Q an abstract query, eval(Q) the corresponding
concrete query, E is a concrete temporal database, and
IIl.Il a mapping that associates encodings (concrete
temporal databases) with their abstract counterparts
(cf. Fig.1). Note that a single abstract temporal data-
base, D, can be encoded using several different
instances of the corresponding concrete database, e.g.,
E, and E, in Fig.1.

Most of the practical temporal data models adopt a
common approach to physical representation of tem-
poral databases: with every fact (usually represented as
a tuple), a concise encoding of the set of time points at
which the fact holds is associated. The encoding is
commonly realized by intervals [6,7] or temporal ele-
ments (finite unions of intervals). For such an encod-
ing it has been shown that both First-Order Temporal
Logic [4] and Temporal Relational Calculus [8] queries
can be compiled to first-order queries over a natural
relational representation of the interval encoding of the
database. Evaluating the resulting queries yields the in-
terval encodings of the answers to the original queries, as
if the queries were directly evaluated on the point-
stamped temporal database. Similar results can be
obtained for more complex encodings, e.g., periodic
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/

Abstract Versus Concrete Temporal Query Languages. Figure 1. Query evaluation over interval encodings of point-

stamped temporal databases.

sets, and for abstract temporal query languages that
adopt the duplicate semantics matching the SQL stan-
dard, such as SQL/TP [9].

Key Applications

Temporal query languages are primarily used for que-
rying temporal databases. However, because of their
generality they can be applied in other contexts as well,
e.g., as an underlying conceptual foundation for que-
rying sequences and data streams [5].
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Synonyms

Component abstraction; Implementation abstraction;
Association; Aggregation; Composition; Grouping;
Specialization; Generalisation; Classification

Definition

Abstraction allows developers to concentrate on the
essential, relevant, or important parts of an applica-
tion. It uses a mapping to a model from things in
reality or from virtual things. The model has the trun-
cation property, i.e., it lacks some of the details in the
original, and a pragmatic property, i.e., the model use
is only justified for particular model users, tools of
investigation, and periods of time. Database engineer-
ing uses construction abstraction, context abstraction,
and refinement abstraction. Construction abstraction
is based on the principles of hierarchical structuring,
constructor composition, and generalization. Context
abstraction assumes that the surroundings of a concept
are commonly understood by a community or within a
culture and focuses on the concept, turning away at-
tention from its surroundings such as the environment
and setting. Refinement abstraction uses the principle
of modularization and information hiding. Developers
typically use conceptual models or languages for

representing and conceptualizing abstractions. The en-
hanced entity-relationship model schema are typically
depicted by an EER diagram.

Key Points

Database engineering distinguishes three kinds of
abstraction: construction abstraction, context abstrac-
tion, and refinement abstraction.

Constructor composition depends on the cons-
tructors as originally introduced by J. M. Smith and
D.C.W. Smith. Composition constructors must be well
founded and their semantics must be derivable by in-
ductive construction. There are three main methods for
construction: development of ordered structures on the
basis of hierarchies, construction by combination or
association, and construction by classification into
groups or collections. The set constructors C (subset), X
(product), and P (powerset) for subset, product and
nesting are complete for the construction of sets.

Subset constructors support hierarchies of object
sets in which one set of objects is a subset of some other
set of objects. Subset hierarchies are usually a rooted
tree. Product constructors support associations be-
tween object sets. The schema is decomposed into
object sets related to each other by association or
relationship types. Power set constructors support a
classification of object sets into clusters or groups of
sets — typically according to their properties.

Context abstraction allows developers to commonly
concentrate on those parts of an application that are
essential for some perspectives during development
and deployment of systems. Typical types of context
abstraction are component abstraction, separation of
concern, interaction abstraction, summarization, scop-
ing, and focusing on typical application cases.

Component abstraction factors out repeating,
shared or local patterns of components or functions
from individual concepts. It allows developers to con-
centrate on structural or behavioral aspects of similar
elements of components. Separation of concern allows
developers to concentrate on those concepts under
development and to neglect all other concepts that
are stable or not under consideration. Interaction ab-
straction allows developers to concentrate on parts of
the model that are essential for interaction with other
systems or users. Summarisation maps the conceptua-
lizations within the scope to more abstract concepts.
Scoping is typically used to select those concepts that
are necessary for current development and removes
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those concepts which that do not have an impact on
the necessary concepts.

Database models may cover a large variety of differ-
ent application cases. Some of them reflect exceptional,
abnormal, infrequent and untypical application situa-
tions. Focusing on typical application cases explicitly
separates models intended for the normal or typical
application case from those that are atypical. Atypical
application cases are not neglected but can be folded into
the model whenever atypical situations are considered.

The context abstraction concept is the main con-
cept behind federated databases. Context of databases
can be characterized by schemata, version, time, and
security requirements. Sub-schemata, types of the
schemata or views on the schemata, are associated
with explicit import/export bindings based on a
name space. Parametrization lets developers consider
collections of objects. Objects are identifiable under
certain assumptions and completely identifiable after
instantiation of all parameters.

Interaction abstraction allows developers to
display the same set of objects in different forms. The
view concept supports this visibility concept. Data is
abstracted and displayed in various levels of granularity.
Summarization abstraction allows developers to abstract
from details that are irrelevant at a certain point. Scope
abstraction allows developers to concentrate on a num-
ber of aspects. Names or aliases can be multiply used
with varying structure, functionality and semantics.

Refinement abstraction mainly concerns imple-
mentation and modularisation. It allows developers to
selectively retain information about structures. Refine-
ment abstraction is defined on the basis of the develop-
ment cycle (refinement of implementations). It refines,
summarizes and views conceptualizations, hides or
encapsulates details, or manages collections of versions.
Each refinement step transforms a schema to a schema
of finer granularity. Refinement abstraction may be
modeled by refinement theory and infomorphisms.

Encapsulation aspects
concentrates on interface components. Blackbox or
graybox approaches hide all aspects of the objects
being considered. Partial visibility may be supported
by modularization concepts. Hiding supports differen-
tiation of concepts into public, private (with the possi-
bility to be visible as “friends”) and protected (with
visibility to subconcepts). It is possible to define a

removes internal and

number of visibility conceptualizations based on
inflection. Inflection is used for the injection of

combinable views into the given view, for tailoring,
ordering and restructuring of views, and for enhance-
ment of views by database functionality. Behavioral
transparency is supported by the glassbox approach.
Security views are based on hiding. Versioning allows
developers to manage a number of concepts which can
be considered to be versions of each other.
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Synonyms
Authorization verification

Definition

Access control deals with preventing unauthorized
operations on the managed data. Access control is
usually performed against a set of authorizations stated
by Security Administrators (SAs) or users according to
the access control policies of the organization. Author-
izations are then processed by the access control mech-
anism (or reference monitor) to decide whether each
access request can be authorized or should be denied.

Historical Background

Access control models for DBMSs have been greatly
influenced by the models developed for the protection
of operating system resources. For instance, the model
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proposed by Lampson [16] is also known as the access
matrix model since authorizations are represented as a
matrix. However, much of the early work on database
protection was on inference control in statistical
databases.

Then, in the 1970s, as research in relational data-
bases began, attention was directed towards access con-
trol issues. As part of the research on System R at IBM
Almaden Research Center, there was much work on
access control for relational database systems [11,15],
which strongly influenced access control models and
mechanisms of current commercial relational DBMSs.
Around the same time, some early work on multilevel
secure database management systems (MLS/DBMSs)
was reported. However, it was only after the Air
Force Summer Study in 1982 [1] that developments
on MLS/DBMSs began. For instance, the early proto-
types based on the integrity lock mechanisms devel-
oped at the MITRE Corporation. Later, in the
mid-1980s, pioneering research was carried out at SRI
International and Honeywell Inc. on systems such as
SeaView and LOCK Data Views [9]. Some of the tech-
nologies developed by these research efforts were trans-
ferred to commercial products by corporations such
as Oracle, Sybase, and Informix. In the 1990s, numer-
ous other developments were made to meet the
access control requirements of new applications and
environments, such as the World Wide Web, data
warehouses, data mining systems, multimedia systems,
sensor systems, workflow management systems, and
collaborative systems. This resulted in several extensions
to the basic access control models previously developed,
by including the support for temporal constraints, deri-
vation rules, positive and negative authorizations, strong
and weak authorizations, and content and context-de-
pendent authorizations [14]. Role-based access control
has been proposed [12] to simplify authorization man-
agement within companies and organizations. Recently,
there have been numerous developments in access
control, mainly driven by developments in web data
management. For example, standards such as XML
(eXtensible Markup Language) and RDF (Resource De-
scription Framework) require proper access control
mechanisms [7]. Also, web services and the semantic
web are becoming extremely popular and therefore
research is currently carried out to address the related
access control issues [13]. Access control is currently
being examined for new application areas, such as
knowledge management [4], data outsourcing, GIS

[10], peer-to-peer computing and stream data manage-
ment [8]. For example, in the case of knowledge man-
agement applications, it is important to protect the
intellectual property of an organization, whereas when
data are outsourced, it is necessary to allow the owner to
enforce its access control policies, even if data are man-
aged by a third party.

Foundations

The basic building block on which access control relies
is a set of authorizations: which state, who can access
which resource, and under which mode. Authorizations
are specified according to a set of access control policies,
which define the high-level rules according to which
access control must occur. In its basic form, an autho-
rization is, in general, specified on the basis of three
components (s,0,p), and specifies that subject s is
authorized to exercise privilege p on object o. The
three main components of an authorization have the
following meaning:

e Authorization subjects: They are the “active” entities
in the system to which authorizations are granted.
Subjects can be further classified into the following,
not mutually exclusive, categories: users, that is,
single individuals connecting to the system; groups,
that is, sets of users; roles, that is, named collection
of privileges needed to perform specific activities
within the system; and processes, executing pro-
grams on behalf of users.

e Authorization objects: They are the “passive” com-
ponents (i.e., resources) of the system to which
protection from unauthorized accesses should be
given. The set of objects to be protected clearly
depends on the considered environment. For in-
stance, files and directories are examples of objects
of an operating system environment, whereas in a
relational DBMS, examples of resources to be pro-
tected are relations, views and attributes. Author-
izations can be specified at different granularity
levels, that is, on a whole object or only on some
of its components. This is a useful feature when an
object (e.g., a relation) contains information (e.g.,
tuples) of different sensitivity levels and therefore
requires a differentiated protection.

e Authorization privileges: They state the types of
operations (or access modes) that a subject can
exercise on the objects in the system. As for objects,
the set of privileges also depends on the resources
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to be protected. For instance, read, write, and exe-
cute privileges are typical of an operating system
environment, whereas in a relational DBMS privi-
leges refer to SQL commands (e.g., select, insert,
update, delete). Moreover, new environments such
as digital libraries are characterized by new access
modes, for instance, usage or copying access rights.

Depending on the considered domain and the way
in which access control is enforced, objects, subjects
and/or privileges can be hierarchically organized. The
hierarchy can be exploited to propagate authorizations
and therefore to simplify authorization management by
limiting the set of authorizations that must be explicitly
specified. For instance, when objects are hierarchically
organized, the hierarchy usually represents a “part-of”
relation, that is, the hierarchy reflects the way objects
are organized in terms of other objects. In contrast, the
privilege hierarchy usually represents a subsumption
relation among privileges. Privileges towards the bot-
tom of the hierarchy are subsumed by privileges to-
wards the top (for instance, the write privilege is at a
higher level in the hierarchy with respect to the read
privilege, since write subsumes read operations). Also
roles and groups can be hierarchically organized. The
group hierarchy usually reflects the membership of a
group to another group. In contrast, the role hierarchy
usually reflects the relative position of roles within an
organization. The higher the level of a role in the
hierarchy, the higher its position in the organization.

Access
control
policies

Authorizations are stored into the system and are
then used to verify whether an access request can be
authorized or not. How to represent and store author-
izations depends on the protected resources. For in-
stance, in a relational DBMS, authorizations are
modeled as tuples stored into system catalogs. In
contrast, when resources to be protected are XML
documents, authorizations are usually encoded using
XML itself. Finally, the last key component of the
access control infrastructure is the access control
mechanism (or reference monitor), which is a trusted
software module in charge of enforcing access control.
It intercepts each access request submitted to the sys-
tem (for instance, SQL statements in case of relational
DBMSs) and, on the basis of the specified authoriza-
tions, it determines whether the access can be partially
or totally authorized or should be denied. The refer-
ence monitor should be non-bypassable. Additionally,
the hardware and software architecture should ensure
that the reference monitor is tamper proof, that is, it
cannot be maliciously modified (or at least that any
improper modification can be detected). The main
components of access control are illustrated in Fig. 1.

A basic distinction when dealing with access con-
trol is between discretionary and mandatory access
control. Discretionary access control (DAC) governs
the access of subjects to objects on the basis of subjects’
identity and a set of explicitly specified authorizations
that specify, for each subject, the set of objects that

Authorizations

Access granted

Access request
_—

Reference
monitor

(totally/partially)

| > Access denied

Access Control. Figure 1. Access control: main components.
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he/she can access in the system and the allowed access
modes. When an access request is submitted to the
system, the access control mechanism verifies whether
or not the access can be authorized according to the
specified authorizations. The system is discretionary in
the sense that a subject, by proper configuring the set
of authorizations, is both able to enforce various access
control requirements and to dynamically change them
when needed (simply by updating the authorization
state). In contrast, mandatory access control (MAC)
specifies the accesses that subjects can exercise on the
objects in the system, on the basis of subjects and
objects security classification [14]. Security classes usu-
ally form a partially ordered set. This type of security
has also been referred to as multilevel security, and
database systems that enforce multilevel access control
are called Multilevel Secure Database Management Sys-
tems (MLS/DBMSs). When mandatory access control
is enforced, authorizations are implicitly specified, by
assigning subjects and objects proper security classes.
The decision on whether or not to grant an access
depends on the access mode and the relation existing
between the classification of the subject requesting
the access and that of the requested object. In addition
to DAC and MAC, role-based access control (RBAC)
has been more recently proposed [12]. RBAC is an
alternative to discretionary and mandatory access con-
trol, mainly conceived for regulating accesses within
companies and organizations. In RBAC, permissions
are associated with roles, instead of with users, and
users acquire permissions through their membership
to roles. The set of authorizations can be inferred by
the sets of user-role and role-permission assignments.

Key Applications

Access control techniques are applied in almost all envir-
onments that need to grant a controlled access to their
resources, including, but not limited, to the following:
DBMSs, Data Stream Management Systems, Operat
ing Systems, Workflow Management Systems, Digital
Libraries, GIS, Multimedia DBMSs, E-commerce ser-
vices, Publish-subscribe systems, Data warehouses.

Future Directions

Altough access control is a mature area with consoli-
dated results, the evolution of DBMSs and the require-
ments of new applications and environments pose new
challenges to the research community. An interesting

discussion on open research issues in the field can be
found in [6]. Some research issues which complement
those presented in [6] are discussed below.

Social networks. Web-based social networks (WBSNs)
are online communities where participants can estab-
lish relationships and share resources across the web
with other users. In recent years, several WBSNs have
been adopting semantic web technologies, such as
FOAF, for representing users’ data and relationships,
making it possible to enforce information interchange
across multiple WBSNs. Despite its advantages in terms
of information diffusion, this raised the need for giving
content owners more control on the distribution of
their resources, which may be accessed by a community
far wider than they expected. So far, this issue has been
mainly addressed in a very simple way, by some of the
available WBSNs, by only allowing users to state wheth-
er a specific information (e.g., personal data and
resources) should be public or accessible only by the
users with whom the owner of such information has a
direct relationship. Such simple access control strate-
gies have the advantage of being straightforward, but
they are not flexible enough in denoting authorized
users. In fact, they do not take into account the type
of the relationships existing between users and, conse-
quently, it is not possible to state that only, say, my
“friends” can access a given information. Moreover,
they do not allow to grant access to users who have an
indirect relationship with the resource owner (e.g., the
“friends of my friends”). Therefore, more flexible
mechanisms are needed, making a user able to decide
which network participants are authorized to access
his/her resources and personal information. Addition-
ally, since the number of social network users is consid-
erably higher than those in conventional DBMSs, the
traditional server-side way of enforcing access control,
that is, the one relying on a centralized trusted reference
monitor, should be revised and more efficient and
distributed strategies should be devised for WBSNG.
Until now, apart from [3], most of the security research
on WBSNs has focused on privacy-preserving mining
of social network data. The definition of a comprehen-
sive framework for efficiently enforcing access control
in social networks is therefore still an issue to be
investigated.

® Data streams. In many applications, such as tele-
communication, battle field monitoring, network
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monitoring, financial monitoring, sensor networks,
data arrive in the form of high speed data streams.
These data typically contain sensitive information
(e.g., health information, credit card numbers) and
thus unauthorized accesses should be avoided.
Although many data stream processing systems
have been developed so far (e.g., Aurora, Borealis,
STREAM, TelegraphCQ, and StreamBase), the
focus of these systems has been mainly on perfor-
mance issues rather than on access control. On the
other hand, though the data security community
has a very rich history in developing access control
models [9], these models are largely tailored to
traditional DBMSs and therefore they cannot be
readily applied to data stream management systems
[8]. This is mainly because: (i) traditional data are
static and bounded, while data streams are un-
bounded and infinite; (ii) queries in traditional
DBMSs are one time and ad-hoc, whereas queries
over data streams are typically continuous and long
running; (iii) in traditional DBMSs, access control
is enforced when users access the data; (iv) in data
stream applications access control enforcement is
data-driven (i.e., whenever data arrive), as such
access control is more computational intensive
in data stream applications and specific techniques
to handle it efficiently should be devised; (v) tem-
poral constraints (e.g., sliding windows) are more
critical in data stream applications than in tradi-
tional DBMSs.

Semantic web. The web is now evolving into the
semantic web. The semantic web [5] is a web that is
intelligent with machine-readable web pages. The
major components of the semantic web include
web infrastructures, web databases and services,
ontology management and information integra-
tion. There has been much work on each of these
areas. However, very little work has been devoted to
access control. If the semantic web is to be effective,
it is necessary to ensure that the information on the
web is protected from unauthorized accesses and
malicious modifications. Also, it must be ensured
that individual’s privacy is maintained. To cope
with these issues, it is necessary to secure all the
semantic web related technologies, such as XML,
RDF, Agents, Databases, web services, and Ontolo-
gies and ensure the secure interoperation of all
these technologies [13].
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Synonyms
Authorization administration policies; Authorization
administration privileges

Definition

Administration policies regulate who can modify the
authorization state, that is, who has the right to grant
and revoke authorizations.

Historical Background

Authorization management is a an important issue
when dealing with access control and, as such, research
on this topic is strongly related to the developments in
access control. A milestone in the field is represented
by the research carried out in the 1970s at IBM in
the framework of the System R project. In particular,
the work by Griffiths and Wade [9] defines a semantics
for authorization revocation, which had greatly influ-
enced the way in which authorization revocation has
been implemented in commercial Relational DBMSs.
Administrative policies for Object-oriented DBMSs
have been studied in [8]. Later on, some extensions
to the System R access control administration model,
have been defined [3], with the aim of making it more
flexible and adaptable to a variety of access control
requirements. Additionally, as the research on extend-
ing the System R access control model with enhanced
functionalities progresses, authorization administra-
tion has been studied for these extensions, such as
temporal authorizations [2], strong and weak and
positive and negative authorizations [4]. Also, admin-
istrative policies for new environments and data mod-
els such as WEMSs [1] and XML data [12] have been
investigated. Back in the 1990s, when research on role-
based access control began, administration policies for
RBAC were investigated [6,11,10,13]. Some of the
ideas developed as part of this research were adopted
by the current SQL:2003 standard [7].

Foundations
Access control administration deals with granting
and revoking of authorizations. This function is usually

regulated by proper administration policies. Usually, if
mandatory access control is enforced, the adopted ad-
ministration policies are very simple, so that the Security
Administrator (SA) is the only one authorized to change
the classification level of subjects and objects. In con-
trast, discretionary and role-based access control are
characterized by more articulated administration poli-
cies, which can be classified according to the following
categories [3]:

e SA administration. According to this policy, only the
SA can grant and revoke authorizations. Although
the SA administration policy has the advantage
of being very simple and easily implemented, it has
the disadvantage of being highly centralized (even
though different SAs can manage different portions
of the database) and is seldom used in current
DBMSs, apart from very simple systems.

o Object owner administration. This is the policy com-
monly adopted by DBMSs and operating systems.
Under this policy, whoever creates an object become
its owner and he/she is the only one authorized to
grant and revoke authorizations on the object.

e Joint administration. Under this policy, particularly
suited for collaborative environments, several subjects
are jointly responsible for administering specific
authorizations. For instance, under the joint admin-
istration policy it can be a requirement that the au-
thorization to write a certain document is given by
two different users, such as two different job functions
within an organization. Authorizations for a subject
to access a data object requires that all the adminis-
trators of the object issue a grant request.

The object owner administration policy can be further
combined with administration delegation, according to
which the administrator of an object can grant other
subjects the right to grant and revoke authorizations
on the object. Delegation can be specified for selected
privileges, for example only for read operations. Most
current DBMSs support the owner administration pol-
icy with delegation. For instance, the Grant com-
mand provided by the SQL:2003 standard [7]
supports a Grant Option optional clause. If a privi-
lege p is granted with the grant option on an object o,
the subject receiving it is not only authorized to exer-
cise p on object o but he/she is also authorized to grant
other subjects authorizations for p on object o with or
without the grant option. Moreover, SQL:2003 pro-
vides an optional Admin Option clause, which has
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the same meaning as the Grant option clause but it
applies to roles instead of to standard authorizations.
If a subject is granted the authorization to play a role
with the admin option he/she not only receives all the
authorizations associated with the role, but he/she can
also authorize other subjects to play that role.

If administration delegation is supported, different
administrators can grant the same authorization to
the same subject. A subject can therefore receive an
authorization for the same privilege on the same object
by different sources. An important issue is therefore
related to the management of revoke operations, that
is, what happens when a subject revokes some of the
authorizations he/she previously granted. For instance,
consider three users: Ann, Tom, and Alice. Suppose
that Ann grants Tom the privilege to select tuples from
the Employee relation with the grant option and
that, by having this authorization, Tom grants
Alice the same privilege on the Employee relation.
What happens to the authorization of Alice when
Ann revokes Tom the privilege to select tuples from the
Employee relation? The System R authorization
model [9] adopts the most conscious approach with
respect to security by enforcing recursive revocation:
whenever a subject revokes an authorization on a rela-
tion from another subject, all the authorizations that
the revokee had granted because of the revoked autho-
rization are recursively removed from the system. The

b

Access Control Administration Policies. Figure 1. Recursive revocation.

revocation is iteratively applied to all the subjects that
received an authorization from the revokee. In the
example above, Alice will lose the privilege to select
tuples from the Employee relation when Ann
revokes this privilege to Tom.

Implementing recursive revocation requires keeping
track of the grantor of each authorization, that is, the
subject who specifies the authorization, since the same
authorization can be granted by different subjects, as
well as of its timestamp, that is, the time when it was
specified. To understand why the timestamp is impor-
tant in correctly implementing recursive revocation,
consider the graph in Fig. 1la, which represents the
authorization state for a specific privilege p on a spe-
cific object 0. Nodes represent subjects, and an edge
from node n; to node n, means that n; has granted
privilege p on object o to m,. The edge is labeled with
the timestamp of the granted privilege and, optionally,
with symbol “g,” if the privilege has been granted with
the grant option. Suppose that Tom revokes the autho-
rization to Alice. As a result, the authorizations also
held by Matt and Ann are recursively revoked because
they could not have been granted if Alice did not
receive authorization from Tom at time 32. In contrast,
the authorization held by Paul is not revoked since it
could have been granted even without the authoriza-
tion granted by Tom to Alice at time 32, because of
the privilege Alice had received by Helen at time
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47. The authorization state resulting from the revoke
operation is illustrated in Fig. 1b. Although recursive
revocation has the advantage of being the most con-
servative solution with regard to security, it has the
drawback of in some cases the unnecessarily revoking
of too many authorizations. For instance, in an orga-
nization, the authorizations a user possesses are usually
related to his/her job functions within the organiza-
tion, rather than to his/her identity. If a user changes
his/her tasks (for instance, because of a promotion), it is
desirable to remove only the authorizations of the user,
without revoking all the authorizations granted by the
user before changing his/her job function. For this rea-
son, research has been carried out to devise alternative
semantics for the revoke operation with regard to
recursive revocation. Bertino et al. [5] have proposed
an alternative type of revoke operation, called noncas-
cading revocation. According to this, no recursive revo-
cation is performed upon the execution of a revoke
operation. Whenever a subject revokes a privilege on
an object from another subject, all authorizations
which the subject may have granted using the privilege
received by the revoker are not removed. Instead, they
are restated as if they had been granted by the revoker.

SQL:2003 [7] adopts the object owner administra-
tion policy with delegation. A revoke request can either
be issued to revoke an authorization from a subject for a
particular privilege on a given object, or to revoke the
authorization to play a given role. SQL:2003 supports
two different options for the revoke operation. If the
revoke operation is requested with the Restrict
clause, then the revocation is not allowed if it causes the
revocation of other privileges and/or the deletion of some
objects from the database schema. In contrast, if the
Cascade option is specified, then the system imple-
ments a revoke operation similar to the recursive revoca-
tion of the System R, but without taking into account
authorization timestamps. Therefore, an authorization is
recursively revoked only if the grantor no longer holds
the grant/admin option for that, because of the requested
revoke operation. Otherwise, the authorization is not
deleted, regardless of the time the grantor had received
the grant/admin option for that authorization. To illus-
trate the differences with regard to recursive revocation,
consider once again Fig. la, and suppose that Tom
revokes privilege p on object o to Alice with the
Cascade option. With difference to the System R
access control model, this revoke operation does not
cause any other changes to the authorization state. The

authorization granted by A1ice toMatt is not deleted,
because Alice still holds the grant option for that
access (received by Helen).

Key Applications

Access control administration policies are fundamental
in every environment where access control services are
provided.
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Synonyms
Authorization policy languages

Definition

An access control policy language is a particular set of
grammar, syntax rules (logical and mathematical), and
operators which provides an abstraction-layer for ac-
cess control policy specifications. Such languages com-
bine individual rules into a single policy set, which is
the basis for (user/subject) authorization decisions on
accessing content (object) stored in various informa-
tion resources. The operators of an access control poli-
cy language are used on attributes of the subject,
resource (object), and their underlying application
framework to facilitate identifying the policy that
(most appropriately) applies to a given action.

Historical Background

The evolution of access control policy languages is
inline with the evolving large-scale highly distributed
information systems and the Internet, which turned
the tasks of authorizing and controlling of accessing
on a global enterprise (or on Internet) framework
increasingly challenging and difficult. Obtaining a
solid and accurate view of the policy in effect across
its many and diverse systems and devices has guided
the development of access control policy languages
accordingly.

Access control policy languages followed the Digital
Rights Management (DRM) standardization efforts,
which had focused in introducing DRM technology
into commercial and mainstream products. Originally,
access control was practiced in the most popular
RDBMSs by policy languages that were SQL based.
Certainly, the access control policy languages evolution
was highly influenced by the wide adoption of XML
(late 1990s) mainly in the enterprise world and its
suitability for supporting access control acts. XML’
popularity resulted in an increasing need to support
more flexible provisional access decisions than the
initial simplistic authorization acts which were limited
in an accept/deny decision. In this context, proposals
of various access control policy languages were very

active starting around the year 2000. This trend seemed
to stabilize around 2005.

The historical pathway of such languages should
highlight the following popular and general-scope ac-
cess control policy languages:

e 1998: the Digital Property Rights Language (DPRL,
Digital Property Rights Language, http://xml.cover-
pages.org/dprl.html) mostly addressed to commer-
cial and enterprise communities was specified for
describing rights, conditions, and fees to support
commerce acts
e 2000: XML Access Control Language (XACL, XML
Access Control Language, http://xml.coverpages.org/
xacl.html) was the first XML-based access control
language for the provisional authorization model
e 2001: two languages were publicized:
> the eXtensible rights Markup Language (XrML,
The Digital Rights Language for Trusted Content
and Services, http://www.xrml.org/) promoted
as the digital rights language for trusted content
and services

» the Open Digital Rights Language (ODRL,
Open Digital Rights Language, http://odrl.net/)
for developing and promoting an open standard
for rights expressions for transparent use of digi-
tal content in all sectors and communities

e 2002: the eXtensible Media Commerce Language
(XMCL, eXtensible Media Commerce Language,
http://www.w3.org/TR/xmcl/) to
usage rules in an implementation-independent man-

communicate

ner for interchange between business systems and
DRM implementations

e 2003: the eXtensible Access Control Markup Lan-
guage (XACML, eXtensible Access Control Markup
Language, http://www.oasis-open.org/committees/
xacml/) was accepted as a new OASIS, Organization
for the Advancement of Structured Information
Standards, http://www.oasis-open.org/, Open Stan-
dard language, designed as an XML specification
with emphasis on expressing policies for informa-
tion access over the Internet.

e 2005: Latest version XACML 2.0 appeared and pol-
icy languages which are mostly suited for Web
services appear. These include WS-SecurityPolicy,
http://www-128.ibm.com/developerworks/library/
specification/ws-secpol/, which defines general se-
curity policy assertions to be applied into Web
services security frameworks.
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Foundations

Since Internet and networks in general are currently the
core media for data and knowledge exchange, a primary
issue is to assure authorized access to (protected)
resources located in such infrastructures. To support
access control policies and mechanisms, the use of an
appropriate and suitable language is the core require-
ment in order to express all of the various components
of access control policies, such as subjects, objects, con-
straints, etc. Initial attempts for expressing access
control policies (consisting of authorizations) involved
primary “participants” in a policy, namely the subject
(client requesting access), the object (protected re-
source), and the action (right or type of access).

To understand the access control policy languages
the context in which they are applied must be explained.
Hence, the following notions which appear under vary-
ing terminology must be noted:

e Content/objects: Any physical or digital content
which may be of different formats, may be divided
into subparts and must be uniquely identified.
Objects may also be encrypted to enable secure
distribution of content.

e Permissions/rights/actions: Any task that will en-
force permissions for accessing, using and acting
over a particular content/object. They may contain
constraints (limits), requirements (obligations),
and conditions (such as exceptions, negotiations).

e Subjects/users/parties: Can be humans (end users),
organizations, and defined roles which aim in con-
suming (accessing) content.

Under these three core entities, the policies are formed
under a particular language to express offers and agree-
ments. Therefore, the initial format of such languages
authorization was (subject, object, and action) defining
which subject can conduct what type of action over what
object. However, with the advent of databases, network-
ing, and distributed computing, users have witnessed (as
presented in the section “Historical background”) a
phenomenal increase in the automation of organization-
al tasks covering several physical locations, as well as the
computerization of information related services [6,7].
Therefore, new ideas have been added into modern
access control models, like time, tasks, origin, etc. This
was evident in the evolution of languages which initially
supported an original syntax for policies limited in a

Access Control Policy Languages. Table 1. Summary of most popular access control policy languages

Language/ Protection
technology Subject types Object types granularity Accessing core formats Focus
DPRL/XML DTDs Registered Digital XML data Fine- Digital licenses assigned
users sources, stored on grained for a time-limited period
repositories
XACL/XML syntax Group or Particular XML Fine- Set of particular specified
organization documents grained privileges
members
XrML/XML schema Registered digital XML data Fine- Granted rights under
users and/or sources grained specified conditions
parties
ODRL/open-source | Any user Trusted or untrusted | coarse- Digital or physical rights
schema-valid XML content grained
syntax
XMCL/XML Registered Trusted multimedia Coarse- Specified keyword-based | Particular
namespaces users content grained licenses business
models
XACML/XML schema | Any users Domain-specific input | Fine- Rule-based permissions
organized in grained
categories
WS-Security policy/ | Any Web users/ | Digital data sources Fine- Protection acts at SOAP | Web
XML, SOAP Web services grained Web services messages | services
level security
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3-tuple (subject, Subject primitive allows user IDs,
groups, and/or role names. object, Object primitive
allows granularity as fine as a single element within an
XML document, and action, Action primitive consists
of four kinds of actions: read, write, create, and delete.)
which then was found quite simplistic and limited and it
was extended to include non-XML documents, to allow
roles and collections as subjects and to support more
actions (such as approve, execute, etc).

Table 1 summarizes the most important characteris-
tics of the popular general scope access control policy
languages. It is evident that these languages differentiate
on the subjects/users types, on the protected object/con-
tent type (which is considered as trusted when it is
addressed to trusted audience/users) and on the capabil-
ities of access control acts, which are presented under
various terms and formats (rights, permissions, privileges,

etc). Moreover, this table highlights the level at which the
access control may be in effect for each language, i.e., the
broad categorization into fine- and coarse-grained pro-
tection granularity, respectively, refers to either partitions/
detailed or full document/object protection capability.
Moreover, the extensibility of languages which support
Web-based objects and content is noted.

To expand on the above, specific-scope languages
have also emerged mainly to support research-oriented
applications and tools. The most representative of such
languages include:

e X-Sec [1]: To support the specification of subject
credentials and security policies in Author-X and
Decentral Author-X [2]. X-Sec adopts the idea of
credentials which is similar to roles in that one user
can be characterized by more than one credentials.

Access Control Policy Languages. Table 2. Specific-scope access control languages characteristics

X-Sec XACL RBXAC XAS syntax
Objects
Protected resources | XML documents and XML documents and XML documents XML documents and
DTDs DTDs DTDs
Identification XPath XPath XPath XPath
Protection Content, attribute Element Content, attribute | Element
granularity
Subjects
Identification XML-expressed Roles, UIDs, groups Roles User ID, location
credentials
Grouping of No Yes No Yes
subjects
Subjects hierarchy | No Yes Role trees Yes
Support public No Yes No Yes
subject
Policies
Expressed in Policy base XACL policy file Access control files | XAS
Closed/open Closed Both Closed Closed
Permissions/denials | Both Both Permissions Both
Access modes Authoring, browsing Read, write, create, RI, WI, RC, WC Read
delete
Propagation No-prop, first-level, No/up/down According to role | Local, recursive
cascade tree
Priority Implicit rules ntp, ptp, dtd - Hard, soft
Conflict resolution | Yes According to priorities |- Implicitly, explicitly
and implicit rules
Other issues
Subscription-based | Yes Yes Yes Yes
Ownership No No Yes No
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e XAS Syntax: Designed to support the ACP (Access
Control Processor) tool [3]. It is a simplified XML-
based syntax for expressing authorizations.

e RBXAC: A specification XML-based language sup-
porting the role-based access control model [4].

e XACL: Which was originally based on a provisio-
nal authorization model and it has been designed
to support ProvAuth (Provisional Authorizations)
tool. Its main function is to specify security
policies to be enforced upon accesses to XML
documents.

e Cred-XACL [5]: A recent access control policy
language focusing on credentials support on dis-
tributed systems and the Internet.

The core characteristics of these specific-scope lan-
guages are given in Table 2, which summarizes them
with respect to their approach for objects and subjects
management, their policies practicing and their sub-
scription and ownership mechanisms. Such a summa-
ry is important in order to understand the “nature” of
each such language in terms of objects and subjects
identification, protection (sources) granularity and
(subject) hierarchies, policies expression and accessing
modes under prioritization, and conflict resolution
constraints. Finally, it should be noted that these high-
lighted characteristics are important in implementing
security service tasks which support several security
requirements from both the system and the sources
perspective.

Key Applications

Access control policy languages are involved in the trans-
parent and innovative use of digital resources which are
accessed in applications related to key nowadays areas
such as publishing, distributing and consuming of elec-
tronic publications, digital images, audio and movies,
learning objects, computer software and other creations
in digital form.

Future Directions

From the evolution of access control policy languages,
it appears that, in the future, emphasis will be given on
languages that are mostly suited for Web-accessed
repositories, databases, and information sources. This
trend is now apparent from the increasing interest on
languages that control accessing on Web services and
Web data sources. At the same time, it manages the

challenges posed by acknowledging and identifying
users/subjects on the Web.

URL to Code

Code, examples, and application scenarios may be
found for: ODRL application scenarios at http://www.
w3.org/TR/odrl/#46354 and http://odrl.net/, XrML at
http://www.xrml.org/, XMCL at http://www.w3.org/
TR/xmcl/, XACML at http://www.oasis-open.org/com-
mittees/xacml/, and WS-SecurityPolicy at http://www-
128.ibm.com/developerworks/library/specification/ws-
secpol/.
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Synonyms
Access path; Access methods

Definition

An access path specifies the path chosen by a data-
base management system to retrieve the requested
tuples from a relation. An access path may be either
(i) a sequential scan of the data file or (ii) an index scan
with a matching selection condition when there are
indexes that match the selection conditions in the
query. In general, an index matches a selection condi-
tion, if the index can be used to retrieve all tuples that
satisfy the condition.

Key Points

Access paths are the alternative ways for retrieving spe-
cific tuples from a relation. Typically, there is more than
one way to retrieve tuples because of the availability of
indexes and the potential presence of conditions speci-
fied in the query for selecting the tuples. Typical access
methods include sequential access of unordered data
files (heaps) as well as various kinds of indexes. All
commercial database systems implement heaps and
B+ tree indexes. Most of them also support hash indexes
for equality conditions.

To choose an access path, the optimizer first deter-
mines which matching access paths are available by ex-
amining the conditions specified by the query. Then,
it estimates the selectivity of each access path using
any available statistics for the index and data file. The
selectivity of an access path is the number of pages (both
index and data pages) accessed when the specific
access path is used to retrieve the requested tuples.
The access path having the smallest selectivity is
called the most selective access path. Clearly, using
the most selective access path minimizes the cost
of data retrieval. Additional information can be
found in [1].
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Synonyms
ACID properties; Atomicity; Isolation; Consistency
preservation; Durability; Persistence

Definition

The conceptual ACID properties (short for atomicity,
isolation, consistency preservation, and durability) of
a transaction together provide the key abstraction
which allows application developers to disregard irreg-
ular or even malicious effects from concurrency or
failures of transaction executions, as the transactional
server in charge guarantees the consistency of the un-
derlying data and ultimately the correctness of the
application [1-3]. For example, in a banking context
where debit/credit transactions are executed this means
that no money is ever lost in electronic funds transfers
and customers can rely on electronic receipts and bal-
ance statements. These cornerstones for building highly
dependable information systems can be successfully
applied outside the scope of online transaction proces-
sing and classical database applications as well.

Key Points

The ACID properties are what a database server guaran-
tees for transaction executions, in particular in the pres-
ence of multiple concurrently running transactions
and in the face of failure situations; they comprise the
following four properties (whose initial letters form
the word “ACID”):
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Atomicity. From the perspective of a client and
an application program, a transaction is executed
completely or not at all, i.e., in an all-or-nothing
fashion. So the effects of a program under execution
on the underlying data server(s) will only become
visible to the outside world or to other program
executions if and when the transaction reaches its
“commit” operation. This case implies that the trans-
action could be processed completely, and no errors
whatsoever were discovered while it was processed. On
the other hand, if the program is abnormally termi-
nated before reaching its commit operation, the data in
the underlying data servers will be left in or automati-
cally brought back to the state in which it was before
the transaction started, i.e., the data appears as if the
transaction had never been invoked at all.

Consistency preservation: Consistency constraints
that are defined on the underlying data servers (e.g.,
keys, foreign keys) are preserved by a transaction; so a
transaction leads from one consistent state to another.
Upon the commit of a transaction, all integrity con-
straints defined for the underlying database(s) must be
satisfied; however, between the beginning and the end
of a transaction, inconsistent intermediate states are
tolerated and may even be unavoidable. This property
generally cannot be ensured in a completely automatic
manner. Rather, it is necessary that the application is
programmed such that the code between the beginning
and the commit of a transaction will eventually reach a
consistent state.

Isolation: A transaction is isolated from other trans-
actions, i.e., each transaction behaves as if it was
operating alone with all resources to itself. In particu-
lar, each transaction will “see” only consistent data in
the underlying data sources. More specifically, it will
see only data modifications that result from committed
transactions, and it will see them only in their entirety,
and never any effects of an incomplete transaction.
This is the decisive property that allows to hide the
fallacies and pitfalls of concurrency from the applica-
tion developers. A sufficient condition for isolation is
that concurrent executions are equivalent to sequential
ones, so that all transactions appear as if they were
executed one after the other rather than in an inter-
leaved manner; this condition is made precise through
serializability.

Durability: When the application program from
which a transaction derives is notified that the trans-
action has been successfully completed (i.e., when

the commit point of the transaction has been
reached), all updates the transaction has made in
the underlying data servers are guaranteed to survive
subsequent software or hardware failures. Thus,
updates of committed transactions are durable
(until another transaction later modifies the same
data items) in that they persist even across failures of
the affected data server(s).

Therefore, a transaction is a set of operations
executed on one or more data servers which are issued
by an application program and are guaranteed to have
the ACID properties by the runtime system of the
involved servers. The “ACID contract” between the
application program and the data servers requires the
program to demarcate the boundaries of the transac-
tion as well as the desired outcome — successful or
abnormal termination — of the transaction, both in a
dynamic manner. There are two ways a transaction
can finish: it can commit, or it can abort. If it com-
mits, all its changes to the database are installed, and
they will remain in the database until some other
application makes further changes. Furthermore, the
changes will seem to other programs to take place
together. If the transaction aborts, none of its changes
will take effect, and the DBMS will rollback by restor-
ing previous values to all the data that was updated by
the application program. A programming interface of
a transactional system consequently needs to offer
three types of calls: (i) “begin transaction” to specify
the beginning of a transaction, (ii) “commit transac-
tion” to specify the successful end of a transaction, and
(iii) “rollback transaction” to specify the unsuccessful
end of a transaction with the request to abort the
transaction.

The core requirement for a transactional server is to
provide the ACID guarantees for sets of operations that
belong to the same transaction issued by an application
program requires that the server. This requires a concur-
rency control component to guarantee the isolation
properties of transactions, for both committed and
aborted transactions, and a recovery component to guar-
antee the atomicity and durability of transactions. The
server may or may not provide explicit support for con-
sistency preservation. In addition to the ACID contract,
a transactional server should meet a number of technical
requirements: A transactional data server (which most
often will be a database system) must provide good per-
formance with a given hardware/software configura-
tion, or more generally, a good cost/performance
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ratio when the configuration is not yet fixed. Perfor-
mance typically refers to the two metrics of high
throughput, which is defined as the number of success-
fully processed transactions per time unit, and of short
response times, where the response time of a transaction
is defined as the time span between issuing the trans-
action and its successful completion as perceived by the
client.

While the ACID properties are crucial for many
applications in which the transaction concept arises,
some of them are too restrictive when the transaction
model is extended beyond the read/write context. For
example, business processes can be cast into various
forms of business transactions, i.e., long-running trans-
actions for which atomicity and isolation are generally
too strict. In these situations, additional or alternative
guarantees need to be employed.
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Synonyms
Right-time data warehousing

Definition

Active Data Warehousing is the technical ability to
capture transactions when they change, and integrate
them into the warehouse, along with maintaining
batch or scheduled cycle refreshes. An active data
warehouse offers the possibility of automating routine
tasks and decisions. The active data warehouse exports
decisions automatically to the On-Line Transaction
Processing (OLTP) systems.

Real-time Data Warehousing describes a system that
reflects the state of the warehouse in real time. If a
query is run against the real-time data warehouse to
understand a particular facet about the business or
entity described by the warehouse, the answer reflects
the state of that entity at the time the query was run.
Most data warehouses have data that are highly latent —
or reflects the business at a point in the past. A real-
time data warehouse has low latency data and provides
current (or real-time) data.

Simply put, a real-time data warehouse can be built
using an active data warehouse with a very low latency
constraint added to it. An alternate view is to consider
active data warehousing as being a design methodology
suited to tactical decision-making based on very cur-
rent data while real-time data warehousing is a collec-
tion of technologies that refresh a data warehouse
frequently. A real-time data warehouse is one that
acquires, cleanses, transforms, stores, and disseminates
information in real time. An active data warehouse, on
the other hand, operates in a non-real-time response
mode with one-or-more OLTP systems.

Historical Background

A data warehouse is a decision support database that is
periodically updated by extracting, transforming, and
loading operational data from several OLTP databases.
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In the data warehouse, OLTP data is arranged using the
(multi) dimensional data modeling approach (see [1]
for a basic approach and [2] for details on translating
an OLTP data model into a dimensional model), which
classifies data into measures and dimensions. In recent
years, several multidimensional data models have been
proposed [3-6]. An in-depth comparison is provided
by Pedersen and Jensen in [5]. The basic unit of inter-
est in a data warehouse is a measure or fact (e.g., sales),
which represent countable, semisummable, or summa-
ble information concerning a business process. An
instance of a measure is called measure value. A mea-
sure can be analyzed from different perspectives, which
are called the dimensions (e.g., location, product, time)
of the data warehouse [7]. A dimension consists of a set
of dimension levels (e.g., time: Day, Week, Month,
Quarter, Season, Year, ALLTimes), which are organized
in multiple hierarchies or dimension paths [6] (e.g.,
Time[Day] — Time[Month] — Time[Quarter] —
Time[Year] — Time[ALLTimes]; Time[Day] — Time
[Week] — Time[Season] — Time[ALLTimes]). The
hierarchies of a dimension form a lattice having at
least one top dimension level and one bottom dimen-
sion level. The measures that can be analyzed by the
same set of dimensions are described by a base cube or
fact table. A base cube uses level instances of the lowest
dimension levels of each of its dimensions to identify a
measure value. The relationship between a set of mea-
sure values and the set of identifying level instances is
called cell. Loading data into the data warehouse means
that new cells will be added to base cubes and new level
instances will be added to dimension levels. If a dimen-
sion D is related to a measure m by means of a base
cube, then the hierarchies of D can be used to aggregate
the measure values of m using operators like SUM,
COUNT, or AVG. Aggregating measure values along
the hierarchies of different dimensions (i.e., rollup) cre-
ates a multidimensional view on data, which is known
as data cube or cube. Deaggregating the measures of a
cube to a lower dimension level (i.e., drilldown) creates
a more detailed cube. Selecting the subset of a cube’s
cells that satisfy a certain selection condition (i.e.,
slicing) also creates a more detailed cube.

The data warehouses are used by analysts to find
solutions for decision tasks by using OLAP (On-Line
Analytical Processing) [7] systems. The decision tasks
can be split into three, viz. non-routine, semi-routine,
and routine. Non-routine tasks occur infrequently
and/or do not have a generally accepted decision

criteria. For example, strategic business decisions
such as introducing a new brand or changing an exist-
ing business policy are non-routine tasks. Routine
tasks, on the other hand, are well structured problems
for which generally accepted procedures exist and they
occur frequently and at predictive intervals. Examples
can be found in the areas of product assortment
(change price, withdraw product, etc.), customer rela-
tionship management (grant loyalty discounts etc.),
and in many administrative areas (accept/reject paper
based on review scores). Semi-routine tasks are tasks
that require a non-routine solution — e.g., paper rated
contradictory must be discussed by program commit-
tee. Since, most tasks are likely to be routine, it is
logical to automate processing of such tasks to reduce
the delay in decision-making.

Active data warehouses [8] were designed to enable
data warehouses to support automatic decision-
making when faced with routine decision tasks and
routinizable elements of semi-routine decision tasks.
The active data warehouse design extends the technol-
ogy behind active database systems. Active database
technology transforms passive database systems into
reactive systems that respond to database and external
events through the use of rule processing features
[9,10]. Limited versions of active rules exist in com-
mercial database products [11,12].

Real-time data warehousing captures business activ-
ity data as it occurs. As soon as the business activity is
complete and there is data about it, the completed
activity data flows into the data warehouse and
becomes available instantly. In other words, real-time
data warehousing is a framework for deriving infor-
mation from data as the data becomes available.
Traditionally, data warehouses were regarded as an
environment for analyzing historic data, either to un-
derstand what has happened or simply to log the
changes as they happened. However, of late, businesses
want to use them to predict the future: e.g., to predict
customers likely to churn; and thereby seek better con-
trol of the business. However, until recently, it was not
practical to have zero-latency data warehouses —
the process of extracting data had too much of an
impact on the source systems concerned, and the vari-
ous steps needed to cleanse and transform the data
required multiple temporary tables and took several
hours to run. However, the increased visibility of (the
value of) warehouse data, and the take-up by a wider
audience within the organization, has lead to a number



Active and Real-Time Data Warehousing

23

of product developments by IBM [13], Oracle [14],
and other vendors that make real-time data warehous-
ing now possible.

Foundations

The two example scenarios below describe typical
situations in which active rules can be used to auto-
mate decision-making:

Scenario 1: Reducing the price of an article. Twenty
days after a soft drink has been launched on a market,
analysts compare the quantities sold during this period
with a standardized indicator. This indicator requires the
total quantities sold during the 20-day period do not
drop below a threshold of 10,000 sold items. If the
analyzed sales figures are below this threshold, the price
of the newly launched soft drink will be reduced by 15.

Scenario 2 : Withdrawing articles from a market. At
the end of every quarter, high-priced soft drinks which
are sold in Upper Austrian stores will be analyzed. If
the sales figures of a high-priced soft drink have con-
tinuously dropped, the article will be withdrawn from
the Upper Austrian market. Analysts inspect sales fig-
ures at different granularities of the time dimension
and at different granularities of the location dimen-
sion. Trend, average, and variance measures are used as
indicators in decision-making.

Rules that mimic the analytical work of a business
analyst are called analysis rules [8]. The components of
analysis rules constitute the knowledge model of an
active data warehouse (and also a real-time data ware-
house). The knowledge model determines what an
analyst must consider when he specifies an active rule
to automate a routine decision task.

An analysis rule consists of (i) the primary dimen-
sion level and (ii) the primary condition, which identify
the objects for which decision-making is necessary,
(iii) the event, which triggers rule processing, (iv) the
analysis graph, which specifies the cubes for analysis,
(v) the decision steps, which represent the conditions
under which a decision can be made, and (vi) the
action, which represents the rule’s decision task.
Below is a brief description of the components of an
analysis rule. Detailed discussion is given in [8].

Event: Events are used to specify the timepoints at
which analysis rules should be carried out. Active data
warehouses provide three kinds of events: (i) OLTP
method events, (ii) relative temporal events, and (iii)
calendar events. OLTP method events describe basic
happenings in the data warehouse’s sources. Relative

temporal events are used to define a temporal distance
between such a basic happening and carrying out an
analysis rule. Calendar events represent fixed points in
time at which an analysis rule may be carried out.
Structurally, every event instance is characterized by
an occurrence time and by an event identifier. In its
event part, an analysis rule refers to a calendar event or
to a relative temporal event.

An OLTP method event describes a happening in
the data warehouse’s source systems that is of interest
to analysis rules in the active data warehouse. Besides
occurrence time and event identifier, the attributes of
an OLTP method event are a reference to the dimen-
sion level for which the OLTP method event occurred
and the parameters of the method invocation. To make
OLTP method events available in data warchouses, a
data warehouse designer has to define the schema of
OLTP method events and extend the data warchouse’s
extract/transform/load mechanism. Since instances of
OLTP method events are loaded some time after their
occurrence, analysis rules cannot be triggered directly
by OLTP method events.

Temporal events determine the timepoints at which
decision-making has to be initiated. Scenario 1 uses the
relative temporal event “twenty days after launch”
while Scenario 2 uses the periodic temporal event
“end of quarter.” The conditions for decision-making
are based on indicators, which have been established in
manual decision-making. Each condition refers to a
multidimensional cube and therefore “analyzing”
means to evaluate the condition on this cube. Scenario
1 uses a quantity-based indicator, whereas scenario
2 uses value-based indicators for decision-making.
The decision whether to carry out the rule’s action
depends on the result of evaluating the conditions.
The action of scenario 1 is to reduce the price of an
article, whereas the action of scenario 2 is to withdraw
an article from a market.

Primary Condition: Several analysis rules may share
the same OLTP method as their action. These rules
may be carried out at different timepoints and may
utilize different multidimensional analyses. Thus, a
certain analysis rule usually analyzes only a subset of
the level instances that belong to the rule’s primary
dimension level. The primary condition is used to
determine for a level instance of the primary dimen-
sion level whether multidimensional analysis should be
carried out by the analysis rule. The primary condition
is specified as a Boolean expression, which refers to the
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describing attributes of the primary dimension level.
If omitted, the primary condition evaluates to TRUE.

Action: The purpose of an analysis rule is to auto-
mate decision-making for objects that are available in
OLTP systems and in the data warehouse. A decision
means to invoke (or not to invoke) a method on a
certain object in an OLTP system. In its action part, an
analysis rule may refer to a single OLTP method of the
primary dimension level, which represents a transac-
tion in an OLTP system. These methods represent the
decision space of an active data warehouse. To make the
transactional behavior of an OLTP object type available
in the active data warehouse, the data warehouse de-
signer must provide (i) the specifications of the OLTP
object type’s methods together with required para-
meters, (ii) the preconditions that must be satisfied
before the OLTP method can be invoked in the OLTP
system, and (iii) a conflict resolution mechanism,
which solves contradictory decisions of different anal-
ysis rules. Since different analysis rules can make a
decision for the same level instance of the rules’ pri-
mary dimension level during the same active data
warehouse cycle, a decision conflict may occur. Such
conflicts are considered as interrule conflicts. To detect
interrule conflicts, a conflict table covering the OLTP
methods of the decision space is used. The tuples of the
conflict table have the form <ml, m2, m3> , where m1
and m2 identify two conflicting methods and m3 spe-
cifies the conflict resolution method that will be finally
executed in OLTP systems. If a conflict cannot be
solved automatically it has to be reported to analysts
for manual conflict resolution.

Analysis Graph: When an analyst queries the data
warehouse to make a decision, he or she follows an
incremental topdown approach in creating and analyz-
ing cubes. Analysis rules follow the same approach. To
automate decision-making, an analysis rule must
“know” the cubes that are needed for multidimension-
al analysis. These cubes constitute the analysis graph,
which is specified once by the analyst. The n dimen-
sions of each cube of the analysis graph are classified
into one primary dimension, which represents the level
instances of the primary dimension level, and n — 1
analysis dimensions, which represent the multidimen-
sional space for analysis. Since a level instance of the
primary dimension level is described by one or more
cells of a cube, multidimensional analysis means to
compare, aggregate, transform, etc., the measure values
of these cells. Two kinds of multidimensional analysis

are carried out at each cube of the analysis graph: (i)
select the level instances of the primary dimension level
whose cells comply with the decision-making condi-
tion (e.g., withdraw an article if the sales total of
the last quarter is below USD 10,000) and (ii) select
the level instances of the primary dimension level
whose cells comply with the condition under which
more detailed analysis (at finer grained cubes) are
necessary (e.g., continue analysis if the sales total of
the last quarter is below USD 500,000). The multidi-
mensional analysis that is carried out on the cubes of
the analysis graph are called decision steps. Each deci-
sion step analyzes the data of exactly one cube of the
analysis graph. Hence, analysis graph and decision
steps represent the knowledge for multidimensional
analysis and decision-making of an analysis rule.

Enabling real-time data warehousing: As mentioned
earlier, real-time data warehouses are active data ware-
houses that are loaded with data having (near) zero
latency. Data warehouse vendors have used multiple
approaches such as hand-coded scripting and data ex-
traction, transformation, and loading (ETL) [15] solu-
tions to serve the data acquisition needs of a data
warehouse. However, as users move toward real-time
data warehousing, there is a limited choice of technolo-
gies that facilitate real-time data delivery. The challenge is
to determine the right technology approach or combina-
tion of solutions that best meets the data delivery needs.
Selection criteria should include considerations for fre-
quency of data, acceptable latency, data volumes, data
integrity, transformation requirements and processing
overhead. To solve the real-time challenge, businesses
are turning to technologies such as enterprise application
integration (EAI) [16] and transactional data manage-
ment (TDM) [17], which offer high-performance, low
impact movement of data, even at large volumes with
sub-second speed. EAI has a greater implementation
complexity and cost of maintenance, and handles smaller
volumes of data. TDM provides the ability to capture
transactions from OLTP systems, apply mapping, filter-
ing, and basic transformations and delivers to the data
warehouse directly. A more detailed study of the chal-
lenges involved in implementing a real-time data ware-
house is given in [18].

Key Applications

Active and Real-time data warehouses enable businesses
across all industry verticals to gain competitive advan-
tage by allowing them to run analytics solutions over the
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most recent data of interest that is captured in the
warehouse. This will provide them with the ability to
make intelligent business decisions and better under-
stand and predict customer and business trends based
on accurate, up-to-the-second data. By introducing
real-time flows of information to data warehouses,
companies can increase supply chain visibility, gain a
complete view of business performance, and increase
service levels, ultimately increasing customer retention
and brand value.

The following are some additional business benefits
of active and real-time data warehousing:

® Real-time Analytics: Real-time analytics is the abili-
ty to use all available data to improve performance
and quality of service at the moment they are
required. It consists of dynamic analysis and repor-
ting, right at the moment (or very soon after) the
resource (or information) entered the system. In a
practical sense, real time is defined by the need
of the consumer (business) and can vary from a
few seconds to few minutes. In other words, more
frequent than daily can be considered real-time,
because it crosses the overnight-update barrier.
With increasing availability of active and real-time
data warehouses, the technology for capturing and
analyzing real-time data is increasingly becoming
available. Learning how to apply it effectively
becomes the differentiator. Implementing real-time
analytics requires the integration of a number of
technologies that are not interoperable off-the-
shelf. There are no established best practices. Early
detection of fraudulent activity in financial transac-
tions is a potential environment for applying real-
time analytics. For example, credit card companies
monitor transactions and activate counter measures
when a customer’s credit transactions fall outside the
range of expected patterns. However, being able to
correctly identify fraud while not offending a well-
intentioned valuable customer is a critical necessity
that adds complexity to the potential solution.

e Maximize ERP Investments: With a real-time data
warehouse in place, companies can maximize their
Enterprise Resource Planning (ERP) technology
investment by turning integrated data into business
intelligence. ETL solutions act as an integral bridge
between ERP systems that collect high volumes
of transactions and business analytics to create
data reports.

e [Increase Supply Chain Visibility: Real-time data
warehousing helps streamline supply chains through
highly effective business-to-business communica-
tions and identifies any weak links or bottlenecks,
enabling companies to enhance service levels and
gain a competitive edge.

e Live 360° View of Customers: The active database
solutions enable companies to capture, transform,
and flow all types of customer data into a data
warehouse, creating one seamless database that
provides a 360° view of the customer. By tracking
and analyzing all modes of interaction with a cus-
tomer, companies can tailor new product offerings,
enhance service levels, and ensure customer loyalty
and retention.

Future Directions

Data warehousing has greatly matured as a technology
discipline; however enterprises that undertake data
warehousing initiatives continue to face fresh chal-
lenges that evolve with the changing business and
technology environment. Most future needs and chal-
lenges will come in the areas of active and real-time
data warehousing solutions. Listed below are some
future challenges:

e [ntegrating Heterogeneous Data Sources: The num-
ber of enterprise data sources is growing rapidly, with
new types of sources emerging every year. Enterprises
want to integrate the unstructured data generated
from customer emails, chat and voice call transcripts,
feedbacks, and surveys with other internal data in
order to get a complete picture of their customers
and integrate internal processes. Other sources for
valuable data include ERP programs, operational
data stores, packaged and homegrown analytic
applications, and existing data marts. The process
of integrating these sources into a data warehouse
can be complicated and is made even more difficult
when an enterprise merges with or acquires another
enterprise.

e Integrating with CRM tools: Customer relationship
management (CRM) is one of the most popular
business initiatives in enterprises today. CRM helps
enterprises attract new customers and develop loy-
alty among existing customers with the end result
of increasing sales and improving profitability. In-
creasingly, enterprises want to use the holistic view
of the customer to deliver value-added services to
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the customer based on her overall value to the
enterprise. This would include, automatically iden-
tifying when an important life event is happening
and sending out emails with necessary information
and/or relevant products, gauging the mood of the
customer based on recent interactions, and alerting
the enterprise before it is too late to retain the
customer and most important of all identifying
customers who are likely to accept suggestions
about upgrades of existing products/services or be
interested in newer versions. The data warehouse is
essential in this integration process, as it collects data
from all channels and customer touch points, and
presents a unified view of the customer to sales,
marketing, and customer-care employees. Going
forward, data warehouses will have to provide sup-
port for analytics tools that are embedded into the
warehouse, analyze the various customer interac-
tions continuously, and then use the insights to
trigger actions that enable delivery of the above-
mentioned value-added services. Clearly, this
requires an active data warehouse to be tightly
integrated with the CRM systems. If the enter-
prise has low latency for insight detection and
value-added service delivery then a real-time data
warehouse would be required.

e [n-built data mining and analytics tools: Users are
also demanding more sophisticated business intel-
ligence tools. For example, if a telecom customer
calls to cancel his call-waiting feature, real-time
analytic software can detect this and trigger a spe-
cial offer of a lower price in order to retain the
customer. The need is to develop a new generation
of data mining algorithms that work over data
warehouses that integrate heterogeneous data and
have self-learning features. These new algorithms
must automate data mining and make it more
accessible to mainstream data warehouse users by
providing explanations with results, indicating
when results are not reliable and automatically
adapting to changes in underlying predictive
models.
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Definition

An active database (aDB) or active database (manage-
ment) system (aDBS/aDBMS) is a database (man-
agement) system that supports reactive behavior
through ECA-rules.

Historical Background

The term active database was first used in the early
1980s [12]. Some related active database work was
also done within the area of expert database systems
in the mid 1980s, but it was not until the mid/late
1980s that the research on supporting ECA rules in
database systems took off, for example [10,12,18].
During the 1990s the area was extensively explored
through more than twenty suggested active database
prototypes and a large body of publications:

e Seven workshops were held between 1993 and 1997:
RIDS [12,16,17], RIDE-ADS [20], Dagstuhl Semi-
nar [5] and ARTDB [3,4].

e Two special issues of journals [8,9] and one special
issue of ACM Sigmod Record [1].

e Two text books [13,19] and one ACM Computing
Survey paper [15].

In addition, the groups within the ACT-NET consortium
(A European research network of Excellence on active
databases 1993—-1996) reached a consensus on what con-
stitutes an active database management system with the
publication of the Active Database System Manifesto [2].

Most of the active databases are monolithic and
assume a centralized environment, consequently, the ma-
jority of the prototype implementations do not consider
distributed issues. Initial work on how active databases
are affected by distributed issues are reported in [7].

Foundations

An active database can automatically react to events such
as database transitions, time events, and external signals
in a timely and efficient manner. This is in contrast to
traditional database systems, which are passive in their
behaviors, so that they only execute queries and trans-
actions when they are explicitly requested to do so.

Previous approaches to support reactive behavior can
broadly be classified into:

e Periodically polling the database.
e Embedding or encoding event detection and
related action execution in the application code.

The first approach implies that the queries must be run
exactly when the event occurs. The frequency of poll-
ing can be increased in order to detect such an event,
but if the polling is too frequent, then the database is
overloaded with queries and will most often fail. On
the other hand, if the frequency is too low, the event
will be missed.

The second approach implies that every application
which updates the database needs to be augmented
with condition checks in order to detect events. For
example, an application may be extended with code to
detect whether the quantity of certain items has fallen
below a given level. From a software engineering point
of view, this approach is inappropriate, since a change
in a condition specification implies that every applica-
tion that uses the modified condition needs to be
updated.

Neither of the two previous approaches can satisfac-
torily support reactive behavior in a database context
[10]. An active database system avoids the previous
disadvantages by moving the support for reactive behav-
ior inside the database (management) system. Reactive
behavior in an active database is supported by ECA-rules
that have the following semantics: when an event is
detected, evaluate a condition, and if the condition
1s true, execute an action.

Similar to describing an object by its static features
and dynamic features, an active database can be de-
scribed by its knowledge model (static features) and
execution model (dynamic features). Thus, by investi-
gating the knowledge model and execution model of
an active database, one can identify what type of ECA
rules that can be defined and how the active database
behave at run-time.

Key Applications
An aDB or aDBS/aDBMS is useful for any non-mission
critical application that require reactive behavior.

Future Directions
Looking back, the RIDS’97 workshop marks the end of
the active database period, since there are very few
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active database publications after 1997. However, the
concept of ECA-rules has resurfaced and has been picked
up by other research communities such as Complex
Event Processing and Semantic Web. In contrast to typi-
cal active database approaches that assume a centralized
environment, the current research on ECA rules within
Complex Event Processing and Semantic Web assume
that the environment is distributed and heterogeneous.
Thus, as suggested within the REWERSE project [3],
one cannot assume that the event, condition, and
action parts of an ECA rule are defined in one single
ECA rule language. For example, the event part of
an ECA-rule can be defined in one language (e.g.,
Snoop), whereas the condition part and action part are
defined in a completely different rule language.

The popularity of using XML for manipulating
data has also led to proposals of ECA rule markup
languages. These ECA rule markup languages are
used for storing information about ECA rules and
facilitates exchange of ECA-rules between different
rule engines and applications.

One research question that remains from the active
database period is how to model and develop applications
that use ECA rules. Some research on modeling ECA rules
has been carried out, but there is no widely agreed ap-
proach for modeling ECA rules explicitly in UML, or how
to derive ECA rules from existing UML diagrams.
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Synonyms
ADBMS infrastructure; ADBMS framework; ADBMS

Definition
The active database management system (ADBMS)
architecture is the software organization of a DBMS
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with active capabilities. That is, the architecture defines
support for active capabilities expressed in terms of
services, significant components providing the services
as well as critical interaction among these services.

Historical Background

Several architectures has been proposed: HiPAC [5,8],
REACH [4], ODE [14], SAMOS [10], SMILE [15], and
DeeDS [1]. Each of these architectures emphasize par-
ticular issues concerning the actual DBMS that they are
based on as well as the type of support for active
capabilities. Paton and Diaz [18] provide an excellent
survey on this topic. Essentially, these architectures
propose that the active capabilities of an ADBMS
require the services specified in Table 1. It is assumed
that queries to the database are encompassed in trans-
actions and hence transactions imply queries as well as
database manipulation operations such as insertion,
updates and deletion of tuples.

The services in Table 1 interact as depicted in Fig. 1.
Briefly, transactions are submitted to the scheduling
service that updates the dispatch table read by the
transaction processing service. When these transac-
tions are processed by the transaction processing ser-
vice events are generated. These events are signaled to
the event monitoring service that analyzes them.
Events that are associated with rules (subscribed
events) are signaled to the rule evaluation service that
evaluates the conditions of triggered rules (i.e., rules
associated with signaled events). The actions of the
rules whose conditions are true are submitted for
scheduling and are executed as dictated by the sched-
uling policy. These actions execute as part of some
transaction according to the coupling mode and can,
in turn, generate events. This is a general description
of the service interaction and it can be optimized
by refining it for a specific purpose, for example, in

immediate coupling mode no queues between the
services are actually needed.

In more detail, transactions are submitted to the
scheduling service via a queue of schedulable activities;
this queue of schedulable activities is processed and a
dispatch table of schedulable activities is updated. This
scheduling service encompasses scheduling of transac-
tions as well as ECA rule actions in addition to other
necessary schedulable activities. It is desirable for the
scheduling service to encompass all these types of sche-
dulable activities, because they impact each other, since
they compete for the same resources. The next step in
the processing chain is the monitored transaction proces-
sing service, which includes the transaction management,
lock management, and log management [11, Chap. 5],
as well as a database query engine (cf. query processor
[20, Chap. 1]), but not the scheduling service. Another
way to view the transaction processing service is as a
passive database management system without the trans-
action scheduling service. The transaction processing
service is denoted “monitored,” since it generates events
that are handled by the active capabilities. The monitored
transaction processing service executes transactions and
ECA rule actions according to the dispatch table. When
transactions execute, event occurrences are signaled to
the event monitoring service via a filtered event log.
When event monitoring executes, it updates the filtered
event log and submits subscribed events to the rule
evaluation service. An example of event log filtering is
that if a composite event occurrence is detected, then for
optimization reasons (cf. dynamic programming) this
event occurrence is stored in the filtered event log. An-
other example is that when events are no longer needed,
then they are pruned; for example, when a transaction is
aborted, then all event occurrences can be pruned unless
intertransaction events are allowed (implying that dirty
reads may occur). The rule evaluation service reads the

Active Database Management System Architecture. Table 1. Services in active database management systems

Service Responsibility

Event
monitoring

The event monitoring service is responsible for collecting events, analyzing events and disseminating
results of the analysis (in terms of events) to subscribers, in particular, ECA rules.

Rule evaluation | The rule evaluation service is responsible for invoking condition evaluation of triggered ECA rules and
submit actions for execution to the scheduler.

Scheduling

service actions, transactions etc. for execution.

The scheduling service is responsible for readying and ordering schedulable activities such as ECA rule
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architecture by Paton and Diaz [18]).

queue of subscribed events, finds the triggered rules and
evaluates their conditions. These conditions may be
queries, logical expressions or arbitrary code depending
on the active database system [9]. The rule evaluation
results in a set of actions that is submitted to the schedul-
ing service for execution.

The general view of active capabilities (in Fig. 1) can
be refined and implemented in different ways. As men-
tioned, it is possible to optimize an implementation
by removing the queues between the services if only
immediate coupling mode is considered; this result in
less overhead, but restricts the expressibility of ECA-
rules significantly. A service can be implemented via
one or more servers. These servers can be replicated to
different physical nodes for performance or depend-
ability reasons (e.g., availability, reliability).

In active databases, a set of issues have a major
impact on refinement and implementation of the gen-
eral service-oriented view depicted in Fig. 1. These

issues are: (i) coupling modes; (ii) interaction with
typical database management services such as transac-
tion management, lock management, recovery man-
agement (both pre-crash such as logging and
checkpointing and post-crash such as the actually re-
covery) (cf., for example, transaction processing by
Gray and Reuter [11, Chap. 4]); (iii) when and how
to invoke services; and (iv) active capabilities in
distributed active databases.

The coupling modes control how rule evaluation is
invoked in response to events and how the ECA rule
actions are submitted, scheduled, dispatched and exe-
cuted for rules whose conditions are true (see entry
“Coupling modes” for more detailed description).
There are different alternatives to interaction with a
database system. One alternative is to place active
database services on top of existing database manage-
ment systems. However, this is problematic if the data-
base management system is not extended with active
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capabilities [4]. For example, the deferred coupling
mode require that when a transaction is requested to
commit, then queued actions should be evaluated. This
requires that the transaction management to interact
with the rule evaluation and scheduling services during
commit processing (e.g., by using back hooks in the
database management system). Further, to be useful,
the detached coupling mode has a set of significant
varieties [4] that require the possibility to express
constraints between transactions.

The nested transaction model [16] is a sound basis
for active capabilities. For example, deferred actions
can be executed as subtransactions that can be com-
mitted or aborted independently of the parent transac-
tion. Nested transactions still require that existing
services are modified. Alternatively rule evaluation
can be performed as subtransactions.

To achieve implicit events the database schema
translation process needs to automatically instrument
the monitored systems. An inferior solution is to
extend an existing schema with instrumented entities,
for example, each class in an object-oriented database
can be inherited to an instrumented class. In this
example, there is no way to enforce that the instru-
mented classes are actually used. The problem is to
modify the database schema translation process, since
this is typically an intrinsic part in commercial
DBMSs.

Concerning issue (iii), the services must be allo-
cated to existing resources and scheduled together with
the transactions. Typically, the services are implemen-
ted as a set of server processes and transactions are
performed by transaction programs running as pro-
cesses (cf., [11]). These processes are typically sched-
uled, dispatched and executed as a response to the
requests from outside the database management sys-
tem or as a direct or indirect response to a timeout.
Each service is either invoked when something is
stored in the queue or table or explicitly invoked, for
example, when the system clock is updated to reflect
the new time. The issues concerning scheduling are
paramount in any database management system for
real-time system purposes [2].

Event monitoring can either be (i) implicitly
invoked whenever an event occurs, or it can be
(ii) explicitly invoked. This is similar to coupling
modes, but it is between the event sources (e.g., trans-
action processing service and application) and the

event monitoring service rather than in between the
services of the active capabilities. Case (i) is prevalent
in most active database research, but it has a negative
impact in terms of determinism of the result of event
monitoring. For example, the problem addressed in
the event specification and event detection entry
concerning the unintuitive semantics of the disjunctive
event operator is a result of implicit invocation. In
distributed and real-time systems, explicit invocation
is preferable in case (ii), since it provides the operating
system with the control when something should be
evaluated. Explicit invocation solves the problem of
disjunction operator (see event specification and
event detection entries), since the event expressions
defining composite event types can be explicitly eval-
uated when all events have been delivered to event
monitoring rather than implicitly evaluated whenever
an event is delivered.

In explicit invocation of event monitoring, the
different event contexts can be treated in different
ways. For example, in recent event context, only the
most recent result is of interest in implicit invocation.
However, in terms of explicit invocation, all possible
most recent event occurrences may be of interest, not
only the last one. For example, it may be desirable to
keep the most recent event occurrence per time slot
rather than per terminating event.

Issue (iv) has been addressed in, for example,
DeeDS [1], COBEA [15], Hermes [19], X2TS [5].
Further, it has been addressed in event based systems
for mobile networks by Miihl et al. [17]. Essentially, it
is necessary to perform event detection in a moving
time window, where the end of the time window is the
current time. All events that are older than the begin-
ning of the time window can be removed and ignored.
Further, the heterogeneity must be addressed and
there are XML-based solutions (e.g., Common Base
Events [6]).

Another issue that is significant in distributed ac-
tive databases is the time and order of events. For
example, in Snoop [8] it is suggested to separate global
and local event detection, because of the difference in
the time granularity of the local view of time and the
global (distributed) view of time.

Foundations
For a particular application domain, common significant
requirements and properties as well as pre-requisites of
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available resources need to be considered to refine the
general architecture. Depending on the requirements,
properties and pre-requisites, different compromises are
reached. One example is the use of composite event
detection in active real-time databases. In REACH [4],
composite event detection is disallowed for real-time
transactions. The reason for this is that during composite
event detection, contributing events are locked and
this locking affects other transaction in a harmful way
with respect to meeting deadlines. A different approach is
proposed in DeeDS [1], where events are stored in the
database and cached in a special filtered event log; during
event composition, events are not locked thus enabling
the use of composite event detection for transaction
with critical deadlines. The cost is that isolation of trans-
actions can be violated unless it is handled by the active
capabilities.

Availability is an example of a property that signifi-
cantly affects the software architecture. For example,
availability is often considered significant in distributed
systems; that is, even though physical nodes may fail,
communications links may be down, or the other
physical nodes may be overloaded, one should get, at
least, some defined level of service from the system.
An example of availability requirements is that emergen-
cy calls in phone switches should be prioritized over
non-emergency calls, a fact that entails that existing
phone call connections can be disconnected to let an
emergency call through. Another example to improve
availability is pursued in DeeDS [1], where eventual
consistency is investigated as a mean to improve avail-
ability of data. The cost is that data can temporarily be
inconsistent.

As addressed in the aforementioned examples, dif-
ferent settings affect the architecture. Essentially, there
are two approaches that can be mixed: (i) refine or
invent new method, tools, techniques to solve a prob-
lem, and these method, tools, techniques can stem
from different but relevant research areas; (ii) refine
the requirements or pre-requisites to solve the problem
(e.g., weaken the ACID properties of transactions).

Key Applications

The architecture of ADBMSs is of special interest to
developers of database management systems and their
applications. In particular, software engineering issues
are of major interest. Researchers performing experi-
ments can make use of this architecture to enable valid
experiments, study effects of optimizations etc.

Concerning real examples of applications, only sim-
ple things such as using rules for implementing alerters,
for example, when an integrity constraint is violated.
SQL Triggers implement simple ECA rules in immediate
coupling mode between event monitoring and rule eval-
uation as well as between rule evaluation and action
execution.

Researchers have aimed for various application
domains such as:

e Stock market
e Inventory control
e Bank applications

Essentially, any application domain in which there is
an interest to move functionality from the applications
to the database schema to reduce the interdependence
between applications and databases.

Future Directions

There are no silver bullets in computer science
or software engineering and each refinement of the
architecture (in Fig. 1) is a compromise providing or
enabling certain features and properties. For example,
by allowing only detached coupling mode it is easier to
achieve timeliness, an important property of real-time
systems; however, the trade-off is that it is difficult to
specify integrity rules in terms of ECA-rules, since the
integrity checks are performed in a different transac-
tion. The consequence is that dirty transactions as well
as compensating transactions that perform recovery
from violated integrity rules must be allowed.

It is desirable to study architectures addressing
how to meet specific requirement of the application
area (e.g., accounting information in mobile ad-hoc
networks), the specific environment in which the active
database are used (e.g., distributed systems, real-time
systems, mobile ad-hoc networks, limited resource
equipment). The major criteria for a successful archi-
tecture (e.g., by refining an existing architecture) is if
anyone can gain something from using it. For example,
Borr [3] reported that by refining their architecture by
employing transaction processing they improved pro-
ductivity, reliability as well as average throughput in
their heterogenous distributed reliable applications.

An area that has received little attention in active
database is optimization of processing. For example,
how can queries to the database be optimized with
condition evaluation if conditions are expressed as
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arbitrary queries? Another question is how to group
actions to optimize performance? So far, the emphasis
has been on expressibility as well as techniques how to
enable active support in different settings. Another
area that has received little attention is recovery pro-
cessing, both pre-crash and post-crash recovery. For
example, how should recovery with respect to detached
but dependent transactions be managed?

Intertransaction events and rules has been pro-
posed by, for example, Buchmann et al. [4]. How
should this be managed with respect to the isolation
levels proposed by Gray and Reuter [11, Chap. 7]?

There are several other areas with which active
database technology can be combined. Historical
examples include real-time databases, temporal data-
bases, main-memory databases, geographical informa-
tion systems. One area that has received little attention
is how enable reuse of database schemas.
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Definition

Coupling modes specify execution points for ECA rule
conditions and ECA rule actions with respect to the
triggering event and the transaction model.

Historical Background
Coupling modes for ECA rules were first suggested in
the HiPAC project [2,3].
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Foundations

Coupling modes are specified for event-condition cou-
plings and for condition-action couplings. In detail,
the event-condition coupling specifies when the con-
dition should be evaluated with respect to the trigger-
ing event, and the condition-action coupling specifies
when the rule action should be executed with respect
to the evaluated rule condition (if condition is evalu-
ated to true).

The three most common coupling modes are: im-
mediate, deferred, and decoupled. The immediate cou-
pling mode preempts the execution of the transaction
and immediately initiates condition evaluation and
action execution. In the deferred coupling mode, con-
dition evaluation and action execution is deferred to
the end of the transaction (before transaction commit).
Finally, in decoupled (also referred to as detached)
coupling mode, condition evaluation and action exe-
cution is performed in separate transactions.

Specifying event-condition couplings and condi-
tion-action couplings in total isolation from each
other is not a good idea. What first might seem to be
one valid coupling mode for event-condition and one
valid coupling mode for condition-action, can be an
invalid coupling mode when used together. Thus, when
combining event-condition couplings and condition-
action couplings, not all combinations of coupling
modes are valid. The HiPAC project [2,3] proposed
seven valid coupling modes, see Table 1.

e [mmediate, immediate: the rule condition is evalu-
ated immediately after the event, and the rule action
is executed immediately after the rule condition.

o [mmediate, deferred: the rule condition is evaluated
immediately after the event, and the execution of

Active Database Coupling Modes. Table 1. Coupling modes

the rule action is deferred to the end of the
transaction.

Immediate, decoupled: the rule condition is evalu-
ated immediately after the event, and the rule ac-
tion is decoupled in a totally separate and parallel
transaction.

Deferred, deferred: both the evaluation of the rule
condition and the execution of the rule action is
deferred to the end of the transaction.

Deferred, decoupled: the evaluation of the rule con-
dition is deferred to the end of the transaction, and
the rule action is decoupled in a totally separate and
parallel transaction.

Decoupled, immediate: the rule condition is decoupled
in a totally separate and parallel transaction, and the
rule action is executed (in the same parallel transac-
tion) immediately after the rule condition.
Decoupled, decoupled: the rule condition is
decoupled in a totally separate and parallel transac-
tion, and the rule action is decoupled in another
totally separate and parallel transaction.

The two invalid coupling modes are:

Deferred, immediate: this combination violates the
semantics of ECA rules. That is, rule conditions
must be evaluated before rule actions are executed.
One cannot preempt the execution of the transac-
tion immediately after the event and execute the
rule action and at the same time postpone the
condition evaluation to the end of the transaction.
Decoupled, deferred: this combination violates
transaction boundaries. That is, one cannot decou-
ple the condition evaluation in a separate and par-
allel transaction and at the same time postpone the

Condition-Action

Event- Immediate Deferred

Condition

Decoupled

Immediate | condition evaluated and action
executed after event

condition evaluated after
event, action executed at
end of transaction

condition evaluated after event, action
executed in a separate transaction

Deferred | not valid

transaction

condition evaluated and
action executed at end of

condition evaluated at end of
transaction, action executed in a
separate transaction

Decoupled | in a separate transaction: not valid
condition evaluated and action

executed after event

condition evaluated in one separate
transaction, action executed in another
separate transaction
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execution of the rule action to the end of the
original transaction, since one cannot know when
the condition evaluation will take place. Thus, there
is a risk that the action execution in the original
transaction will run before the condition has been
evaluated in the parallel transaction.

Rule actions executed in decoupled transactions can
either be dependent upon or independent of the trans-
action in which the event took place.

The research project REACH (REal-time ACtive
Heterogeneous System) [1] introduced two additional
coupling modes for supporting side effects of rule
actions that are irreversible. The new coupling modes
are variants of the detached casually dependent coupling
mode: sequential casually dependent, and exclusive ca-
sually dependent. In sequential casually dependent, a
rule is executed in a separate transaction. However, the
rule execution can only begin once the triggering trans-
action has committed. In exclusive casually dependent,
a rule is executed in a detached parallel transaction and
it can commit only if the triggering transaction failed.
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Definition
The execution model of an active database describes
how a set of ECA rules behave at run time.

Key Points

The execution model describes how a set of ECA rules
(i.e., active database rulebase) behave at run time [2,4].
Any execution model of an active database must have
support for: (i) detecting event occurrences, (ii) eval-
uating conditions, and (iii) executing actions.

If an active database supports composite event de-
tection, it needs a policy that describes how a composite
event is computed. A typical approach is to use the event
consumption modes as described in Snoop [1]: recent,
chronicle, continuous, and cumulative. In the recent event
context, only the most recent constituent events will be
used to form composite events. In the chronicle event
context, events are consumed in chronicle order. The ear-
liest unused initiator/terminator pair are used to form the
composite event. In the continuous event context, each
initiator starts the detection of a new composite event and
a terminator may terminate one or more composite event
occurrences. The difference between continuous and
chronicle event contexts is that in the continuous event
context, one terminator can detect more than one occur-
rence of the composite event. In the cumulative event
context, all events contributing to a composite event are
accumulated until the composite event is detected. When
the composite event is detected, all contributing events are
consumed. Another approach to these event consump-
tion modes is to specify a finer semantics for each event by
using logical events as suggested in [3].

Once an event has been detected, there are several
execution policies related to rule conditions and rule
actions that must be in place in the execution model.
Thus an execution model for an active database should
provide answers to the following questions [2,4,5]:

e When should the condition be evaluated and when
should the action should be executed with respect
to the triggering event and the transaction model?
This is usually specified by coupling modes.

e What happens if an event triggers several rules?

— Areall rules evaluated, a subset, or only one rule?

— Are rules executed in parallell, according to rule
priority, or non-deterministically?

e What happens if one’s rules trigger another set of
rules?

— What happens if the rule action of one rule
negates the rule condition of an already trig-
gered rule?

— Can cycles appear? For example, can a rule
trigger itself?
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The answers to the above questions are important to
know, as they dictate how a ECA rule system will
behave at run time. If the answers to the above ques-
tions are not known, then the behavior of the ECA rule
application becomes unpredictable.
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Definition

The knowledge model of an active database describes
what can be said about the ECA rules, that is what type
of events are supported, what type of conditions are
supported, and what type of actions are supported?

Key Points
The knowledge model describes what types of events,
conditions, and actions that are supported in an active
database. Another way to look at the knowledge model
is to imagine what type of features are available in an
ECA rule definition language.

A framework of dimensions for the knowledge
model is presented in [3]. Briefly, each part of an

ECA rule is associated with dimensions that describe
supported features. Thus, an event can be described as
either a primitive event or a composite event, how it
was generated (source), whether the event is generated
for all instances in a given set or only for a subset
(event granularity), what type (if event is a composite
event) of operators and event consumption modes are
used in the detection of the composite event.

Conditions are evaluated against a database state.
There are three different database states that a rule con-
dition can be associated with [3]: (i) the database state
at the start of the transaction, (ii) the database state when
the event was detected, and (iii) the database state
when the condition is evaluated.

There are four different database states that a rule
action can be associated with [3]: (i) the database state
at the start of the transaction, (ii) the database state
when the event was detected, and (iii) the database state
when the condition is evaluated, and (iv) the database
state just before action execution. The type of rule
actions range from internal database updates (e.g., up-
date a table) to external programs (e.g., send email).

Within the context of the knowledge model it is
also useful to consider how ECA rules are represented,
for example inside classes, as data members, or first
class objects. Representing ECA rules as first class
objects [1,2] is a popular choice, since rules can be
treated as any other object in the database and tradi-
tional database operations can be used to manipulate
the ECA rules. Thus, representing ECA rules as first
class objects implies that ECA rules are not dependent
upon the existence of other objects.

The knowledge model of an active database should
also describe whether the active database supports
passing of parameters between the ECA rule parts, for
example passing of parameters from the event part to
the condition part.

Related to the knowledge model is the execution
model that describes how ECA rules behave at run time.
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Definition
An active database rulebase is a set of ECA rules that
can be manipulated by an active database.

Key Points

An active database rulebase is a set of ECA rules that can
be manipulated by an active database. Thus, an ADB
rulebase is not static, but it evolves over time. Typically,
ECA rules can be added, deleted, modified, enabled,
and disabled. Each update of the ADB rulebase can
potentially lead to different behaviors of the ECA
rules at run time, in particular with respect to termina-
tion and confluence.

Termination concerns whether a set of rules is
guaranteed to terminate. A set of rules may have a
non-terminating behavior if rules are triggering each
other in a circular order, for example, if the execution
of rule R1 triggers rule R2 and the execution of rule R2
triggers rule R1. A set of rules is confluent if the
outcome of simultaneously triggered rules is unique
and independent of execution order.
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Synonyms
Active Disks; Intelligent Disks

Definition

Active Storage is a computer system architecture which
utilizes processing power in disk drives to execute ap-
plication code. Active Storage was introduced in sepa-
rate academic papers [1-3] in 1998. The term Active
Storage is sometimes identified merely with the com-
puter systems proposed in these papers. Two synonyms,
Active Disk and Intelligent Disk, are also used to refer to
Active Storage. The basic idea behind Active Storage is
to offload computation and data traffic from host
computers to the disk drives themselves such that the
system can achieve significant performance improve-
ments for data intensive applications such as decision
support systems and multimedia applications.

Key Points
A research group at Carnegie Mellon University pro-
posed, in [3], a storage device called Active Disk, which
has the capability of downloading application-level
code and running it on a processor embedded on
the device. Active Disk has a performance advantage
for /O bound scans, since processor-per-disk proces-
sing can potentially reduce data traffic on intercon-
nects to host computers and yield great parallelism of
scans. E. Riedel et al. carefully studied the potential
benefits of using Active Disks for four types of data
intensive applications, and introduced analytical per-
formance models for comparing traditional server sys-
tems and Active Disks. They also prototyped ten Active
Disks, each having a DEC Alpha processor and two
Seagate disk drives, and demonstrated almost linear
scalability in the experiments.

A research group at University of California at
Berkeley discussed a vision of Intelligent Disks (IDISKs)
in [2]. The approach of Intelligent Disk is similar to that
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of Active Disk. K. Keeton et al. carefully studied the
weaknesses of shared-nothing clusters of workstations
and then explored the possibility of replacing the cluster
nodes with Intelligent Disks for large-scale decision
support applications. Intelligent Disks assumed higher
complexity of applications and hardware resources in
comparison with CMU’s Active Disks.

Another Active Disk was presented by a research
group at the University of California at Santa Barbara
and University of Maryland in [1]. A. Acharya et al.
carefully studied programming models to exploit disk-
embedded processors efficiently and safely and pro-
posed algorithms for typical data intensive operations
such as selection and external sorting, which were vali-
dated by simulation experiments.

These three works are often recognized as opening
the gate for new researches of Intelligent Storage Sys-
tems in the post-“database machines” era.
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Synonyms
Active document; AXML

Definition
Active XML documents (AXML documents, for short)
are XML documents [12] that may include embedded

calls to Web services [13]. Hence, AXML documents
are a combination of regular “extensional” XML data
with data that is defined “intensionally;,” i.e., as a de-
scription that enables obtaining data dynamically (by
calling the corresponding service).

AXML documents evolve in time when calls to
their embedded services are triggered. The calls may
bring data once (when invoked) or continually (e.g., if
the called service is a continuous one, such as a sub-
scription to an RSS feed). They may even update exist-
ing parts of the document (e.g., by refreshing
previously fetched data).

Historical Background

The AXML language was originally proposed at INRIA
around 2002. Work around AXML has been going
there in the following years. A survey of the research
on AXML is given in [13]. The software, primarily
under the form of an AXML system, is available as
open source software. Resources on Active XML may
be found on the project’s Web site [11].

The notion of embedding function calls into data is
old. Embedded functions are already present in rela-
tional systems as stored procedures. Of course, method
calls form a key component of object databases. For the
Web, scripting languages such as PHP or JSP have made
popular the integration of processing inside HTML
or XML documents. Combined with standard database
interfaces such as JDBC and ODBC, functions are used
to integrate results of (SQL) queries. This idea can also
be found in commercial software products, for in-
stance, in Microsoft Office XP, SmartTags inside Office
documents can be linked to Microsoft’s .NET platform
for Web services.

The originality of the AXML approach is that it
proposed to exchange such documents, building on the
fact that Web services may be invoked from anywhere.
In that sense, this is truly a language for distributed
data management. Another particularity is that the
logic (the AXML language) is a subset of the AXML
algebra.

Looking at the services in AXML as queries, the
approach can be viewed as closely related to recent
works based on XQuery [14] where the query language
is used to describe query plans. For instance the
DXQ project [7] developed at ATT and UCSD
emphasizes the distributed evaluation of XQuery
queries. Since one can describe documents in an
XQquery syntax, such approaches encompass in
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some sense AXML documents where the service
calls are XQuery queries.

The connection with deductive databases is used in
[1] to study the diagnosis problems in distributed net-
works. A similar approach is followed in [8] for declar-
ative network routing.

It should be observed that the AXML approach
touches upon most database areas. In particular, the
presence of intensional data leads to views, deductive
databases and data integration. The activation of calls
contained in a document essentially leads to active
databases. AXML services may be activated by external
servers, which relates to subscription queries and
stream databases. Finally, the evolution of AXML docu-
ments and their inherent changing nature lead to an
approach of workflows and service choreography in the
style of business artifacts [10].

The management of AXML document raises a
number of issues. For instance, the evaluation of
queries over active documents is studied in [2]. The
“casting” of a document to a desired type is studied in

Newspaper

Le monde 2008/3/12 Today...

Newspaper

Le monde 2008/3M12 Today...

Paris

Active XML. Figure 1. An AXML document.

Weather

f@weather.com

Location

[9]. The distribution of documents between several
peers and their replication is the topic of [4].

Foundations
An AXML document is a (syntactically valid) XML
document, where service calls are denoted by special
XML elements labeled call. An example AXML docu-
ment is given in Fig. 1. The figure shows first the XML
serialized syntax, then a more abstract view of the same
document as a labeled tree. The document in the
figure describes a (simplified) newspaper homepage
consisting of (i) some extensional information (the
name of the newspaper, the current date, and a news
story), and (ii) some intensional information (service
calls for the weather forecast, and for the current exhi-
bits). When the services are called, the tree evolves. For
example, the tree at the bottom is what results from a call
to the service f at weather.com to obtain the tempera-
ture in Paris.

AXML documents fit nicely in a peer-to-peer archi-
tecture, where each peer is a persistent store of AXML

Weather Shows
f@weather.com Events @timeout.com
Location City

Paris Paris

Shows

Celsius Events @timeout.com

City

Paris
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documents, and may act both as a client, by invoking the
service calls embedded in its AXML documents, and as a
server, by providing Web services over these documents.

Two fundamental issues arise when dealing with
AXML documents. The first one is related to the
exchange of AXML documents between peers, and the
second one is related to query evaluation over such data.

Documents Exchange: When exchanged between
two applications/peers, AXML documents have a cru-
cial property: since Web services can be called from
anywhere on the Web, data can either be materialized
before sending, or sent in its intensional form and
left to the receiver to materialize if and when needed.
Just like XML Schemas do for standard XML, AXML
schemas let the user specify the desired format of the
exchanged data, including which parts should remain
intensional and which should be materialized. Novel
algorithms allow the sender to determine (statically or
dynamically) which service invocations are required to
“cast” the document to the required data exchange
format [9].

Query evaluation: Answering a query on an AXML
document may require triggering some of the service
calls it contains. These services may, in turn, query
other AXML documents and trigger some other ser-
vices, and so on. This recursion, based on the manage-
ment of intensional data, leads to a framework in the
style of deductive databases. Query evaluation on
AXML data can therefore benefit from techniques de-
veloped in deductive databases such as Magic Sets [6].
Indeed, corresponding AXML query optimization
techniques where proposed in [1,2].

Efficient query processing is, in general, a critical
issue for Web data management. AXML, when proper-
ly extended, becomes an algebraic language that
enables query processors installed on different peers
to collaborate by exchanging streams of (A)XML data
[14]. The crux of the approach is (i) the introduction
of generic services (i.e., services that can be provided
by several peers, such as query processing) and
(ii) some explicit control of distribution (e.g., to
allow delegating part of some work to another peer).

Key Applications

AXML and the AXML algebra target all distributed
applications that involve the management of distri-
buted data. AXML is particularly suited for data inte-
gration (from databases and other data resources

exported as Web services) and for managing (active)
views on top of data sources. In particular, AXML can
serve as a formal foundation for mash-up systems.
Also, the language is useful for (business) applications
based on evolving documents in the style of business
artifacts, and on the exchange of such information.
The fact that the exchange is based on flows of XML
messages makes it also well-adapted to the manage-
ment of distributed streams of information.
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Synonyms
Step; Node; Task; Work element

Definition

A description of a piece of work that forms one logical
step within a process. An activity may be a manual
activity, which does not support computer automation,
or a workflow (automated) activity. A workflow activity
requires human and/or machine resources to support
process execution; where human resource is required an
activity is allocated to a workflow participant.

Key Points

A process definition generally consists of many process
activities which are logically related in terms of their
contribution to the overall realization of the business
process.

An activity is typically the smallest unit of
work which is scheduled by a workflow engine during
process enactment (e.g., using transition and pre/post-
conditions), although one activity may result in several
work items being assigned (to a workflow participant).

Wholly manual activities may form part of a busi-
ness process and be included within its associated
process definition, but do not form part of the auto-
mated workflow resulting from the computer sup-
ported execution of the process.

An activity may therefore be categorized as
“manual,” or “automated.” Within this document,
which is written principally in the context of workflow
management, the term is normally used to refer to an
automated activity.

Cross-references
» Activity Diagrams
» Actors/Agents/Roles
» Workflow Model
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Synonyms
Control flow diagrams; Object flow diagrams; Flow-
charts; Data flow diagrams

Definition

Activity diagrams, also known as control flow and
object flow diagrams, are one of the UML (unified
modeling language [11]) behavioral diagrams. They
provide a graphical notation to define the sequential,
conditional, and parallel composition of lower-level
behaviors. These diagrams are suitable for business
process modeling and can easily be used to capture
the logic of a single use case, the usage of a scenario, or
the detailed logic of a business rule. They model the
workflow behavior of an entity (system) in a way
similar to state diagrams where the different activities
are seen as the states of doing something. Although
they could also model the internal logic of a complex
operation, this is not their primary use since tangled
operations should always be decomposed into simpler
ones [1,2].

An activity [3] represents a behavior that is com-
posed of individual elements called actions. Actions
have incoming and outgoing edges that specify control
and data flow from and to other nodes. Activities may
form invocation hierarchies invoking other activities,
ultimately resolving to individual actions.

The execution of an activity implies that each
contained action be executed zero, one, or more
times depending on the execution conditions and the
structure of the activity. The execution of an action is
initiated by the termination of other actions, the avail-
ability of particular objects and data, or the occurrence
of external events. The execution is based on token
flow (like Petri Nets). A token contains an object,
datum, or locus of control, and is present in the activi-
ty diagram at a particular node. When an action begins
execution, tokens are accepted from some or all of its
input edges and a token is placed on the node. When
an action completes execution, a token is removed
from the node and tokens are moved to some or all
of its output edges.
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Historical Background

OMG (Object Management Group, [10]) proposed
and standardized activity diagrams by borrowing con-
cepts from flow-based notations and some formal
methods. As for the first class, these diagrams mimic
flowcharts [6] in their idea of step-by-step representa-
tion of algorithms and processes, but they also resem-
ble data and control flow diagrams [4]. The former
provide a hierarchical and graphical representation of
the “flow” of data through a system inspired by the
idea of data flow graph. They show the flow of data
from external entities into the system, how these data
are moved from one computation to another, and how
they are logically stored. Similarly, object flow diagrams
show the relationships among input objects, methods,
and output objects in object-based models. Control flow
diagrams represent the paths that can be traversed while
executing a program. Each node in the graph represents a
basic block, be it a single line or an entire function, and
edges render how the execution jumps among them.

Moving to the second group, activity diagrams are
similar to state diagrams [8], where the evolution of a
system is rendered by the identification of the states,
which characterize the element’s life cycle, and of the
transitions between them. A state transition can be
constrained by the occurrence of an event and by an
additional condition; its firing can cause the execution
of an associated action. Mealy et al. propose different
variations: Mealy assumes that actions be only asso-
ciated with transitions, Moore only considers actions
associated with states, and Harel’s state charts [7] merge
the two approaches with actions on both states and
transitions, and enhance their flat model with nested
and concurrent states.

The dynamic semantics of activity diagrams is
clearly inspired by Petri Nets [9], which are a simple
graphical formalism to specify the behavior of concur-
rent and parallel systems. The nodes are partitioned
into places and transitions, with arcs that can only
connect nodes of different type. Places may contain
any number of tokens and a distribution of tokens over
the places of a net is called a marking. A transition can
only fire when there is at least a token in all its input
places (i.e., those places connected to the transition
by means of incoming edges), and its firing removes
a token for all these places and produces a new one
in each output place (i.e., a place connected to the
transition through an outgoing edge). P/T nets only
consider tokens as placeholders, while colored nets

augment them with typed data and thus with firing
conditions that become more articulated and can
predicate on the tokens’ values in the input places.

Activity diagrams also borrow from SDL (Specifica-
tion and Description Language, [5]) as event handling.
This is a specification language for the unambiguous
description of the behavior of reactive and distributed
systems. Originally, the notation was conceived for
the specification of telecommunication systems, but
currently its application is wider and includes process
control and real-time applications in general. A system
is specified as a set of interconnected abstract machines,
which are extensions of finite state machines. SDL offers
both a graphical and a textual representation and its
last version (known as SDL-2000) is completely object-
orientated.

Foundations

Figure 1 addresses the well-known problem of order
management and proposes a first activity diagram
whose aim is twofold: it presents a possible formaliza-
tion of the process, and it also introduces many of the
concepts supplied by these diagrams.

Each atomic step is called action, with an initial
node and activity final nodes to delimit their ordering
as sequences, parallel threads, or conditional flows.
A fork splits a single execution thread into a set of
parallel ones, while a join, along with an optional
join specification to constrain the unification, is used
to re-synchronize the different threads into a single
execution. Similarly, a decision creates alternative
paths, and a merge re-unifies them. To avoid misun-
derstandings, each path must be decorated with the
condition, in brackets, that must be verified to make
the execution take that path.

The diagram of Fig. 1 also exemplifies the use of
connectors to render flows/edges that might tangle the
representation. This is nothing but an example, but the
solution is interesting to avoid drawing flows that cross
other elements or move all around the diagram. Another
key feature is the use of a rake to indicate that action
Fill Order is actually an activity invocation, and
hides a hierarchical decomposition of actions into
activities.

Besides the control flow, activity diagrams can
also show the data/object flow among the actions.
The use of object nodes allows users to state the
artifacts exchanged between two actions, even if they
are not directly connected by an edge. In many cases
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Activity Diagrams. Figure 1. Example activity diagram.

control and object flows coincide, but this is not
mandatory.

Activities can also comprise input and output para-
meters to render the idea that the activity’s execution
initiates when the inputs are available, and produces
some outputs. For example, activity Fill Order of
Fig. 2, which can be seen as a refinement of the invo-
cation in Fig. 1, requires that at least one Request be
present, but then it considers the parameter as a
stream, and produces Shipment Information and
Rejected Items. While the first outcome is the
“normal” one, the second object is produced only in
case of exceptions (rendered with a small triangle on
both the object and the flow that produces it). In a
stream, the flow is annotated from action Compose
Requests to the join with its weight to mean that
the subsequent processing must consider all the
requests received when the composition starts.

The execution can also consider signals as
enablers or outcomes of special-purpose actions.
For example, Fig. 2 shows the use of an accept signal,
to force that the composition of orders (Compose
Orders) must be initiated by an external event, a
time signal, to make the execution wait for a given
timeframe (be it absolute or relative), and a send signal,
to produce a notification to the customer as soon as
the action starts.

Basic diagrams can also be enriched with swimlanes
to partition the different actions with respect to their

[Payment i

accepted]

Activity final

Accept
payment

responsibilities. Figure 3 shows a simple example: The
primitive actions are the same as those of Fig. 1, but
now they are associated with the three players in charge
of activate the behaviors in the activity. The standard
also supports hierarchical and multi-dimensional par-
titioning, that is, hierarchies of responsible actors or
matrix-based partitions.

The warehouse can also receive Cancel Order
notifications to asynchronously interrupt the execu-
tion as soon as the external event arrivers. This is
obtained by declaring an interruptable region, which
contains the accept signal node and generates the in-
terrupt that stops the computation in that region
and moves the execution directly to action Cancel
Order by means of an interrupting edge. More gener-
ally, this is a way to enrich diagrams with specialized
exception handlers similarly to many modern program-
ming and workflow languages. The figure also intro-
duces pins as a compact way to render the objects
exchanged between actions: empty boxes correspond
to discrete elements, while filled ones refer to streams.

The discussion thus far considers the case in which
the outcome of an action triggers a single execution of
another action, but in some cases conditions may exist
in which the “token” is structured and a single result
triggers multiple executions of the same action. For
example, if the example of Fig. 1 were slightly modif-
ied and after receiving an order, the user wants to
check the items in it, a single execution of action
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Receive Order would trigger multiple executions
of validate Item. This situation is depicted in the
left-hand side of Fig. 4, where the star *
information described so far.

conceives the

The same problem can be addressed in a more
complete way (right-hand side of figure) with an
expansion region. The two arrays are supposed to

store the input and output elements. In some cases,
the number of input and output tokens is the same,
but it might also be the case that the behavior in the
region filters the incoming elements.

In the left-hand side of Fig. 4, it is assumed that
some items are accepted and fill the output array, while
others are rejected and thus their execution flow ends



Activity Diagrams

45

Expansion region
(shorthand)

Validate
item

Receive
order

Expansion region

Activity Diagrams. Figure 4. Expansion region.

there. This situation requires that a flow final be used to
state that only the flow is ended and not the whole
activity. Flow final nodes are a means to interrupt
particular flows in this kind of regions, but also in
loops or other similar cases.

The execution leaves an expansion region as soon
as all the output tokens are available, that is, as soon as
all the executions of the behavior embedded in the
region are over. Notice that these executions can be
carried out both concurrently (by annotating the rect-
angle with stereotype concurrent) or iteratively (with
stereotype iterative). The next action considers the
whole set of tokens as a single entity.

Further details about exceptions and other advanced
elements, like pre- and post-conditions associated with
single actions or whole activities, central buffers, and
data stores are not discussed here, but the reader is
referred to [11] for a thorough presentation.

Key Applications

Activity diagrams are usually employed to describe com-
plex behaviors. This means that they are useful to model
tangled processes, describe the actions that need to take
place and when they should occur in use cases, render
complicated algorithms, and model applications with
parallel and alternative flows. Nowadays, these necessi-
ties belong to ICT specialists, like software engineering,
requirements experts, and information systems archi-
tects, but also to experts in other fields (e.g., business
analysts or production engineers) that need this kind of
graphical notations to describe their solutions.

Activity diagrams can be used in isolation, when
the user needs a pure control (data) flow notation, but
they can also be adopted in conjunction with other
modeling techniques such as interaction diagrams,
state diagrams, or other UML diagrams. However,
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[Rejected] H
|
|
|
/
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-

|
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|\ Flow final

activity diagrams should not take the place of other
diagrams. For example, even if the border between
activity and state diagrams is sometimes blurred,
activity diagrams provide a procedural decomposition
of the problem under analysis, while state diagrams
mostly concentrate on how studied elements behave.
Moreover, activity diagrams do not give details about
how objects behave or how they collaborate.
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Synonyms
Workflow participant;
performer

Player; End user; Work

Definition
A resource that performs the work represented by a
workflow activity instance.

This work is normally manifested as one or more
work items assigned to the workflow participant via
the worklist.

Key Points

These terms are normally applied to a human resource
but it could conceptually include machine-based
resources such as an intelligent agent.

Where an activity requires no human resource and
is handled automatically by a computer application,
the normal terminology for the machine-based re-
source is Invoked Application.

An Actor, Agent or Role may be identified directly
within the business process definition, or (more nor-
mally) is identified by reference within the process
definition to a role, which can then be filled by one
or more of the resources available to the workflow
system to operate in that role during process
enactment.
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Synonyms
Context-aware interfaces; Personalized interfaces

Definition

A specific class of user interfaces that are able to change
in some way in response to different characteristics of
the user, of the usage environment or of the task the
user is supposed to accomplish. The aim is to improve
the user’s experience, by providing both interaction
mechanisms and contents that best suit the specific
situation of use.

Key Points

There are a number of ways in which interface adap-
tivity can be exploited to support user interaction.
The interaction dimensions that are adapted vary
among functionality (e.g., error correction or active
help), presentation (user presentation of input to the
system, system presentation of information to the user),
and user tasks (e.g., task simplification based on the
user’s capabilities). Adaptivity along such dimensions
is achieved by capturing and representing into some
models a number of characteristics: the user’s character-
istics (preferences, experience, etc.); the tasks that the
user accomplishes through the system; the characteris-
tics of the information with which the user must be
provided.

Due to current advances in communication and
network technologies, adaptivity is now gaining
momentum. Different types of mobile devices indeed
offer support to access — at any time, from anywhere,
and with any media — services and contents custo-
mized to the users’ preferences and usage environ-
ments. In this new context, content personalization,
based on user profile, has demonstrated its benefits
for both users and content providers and has been
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commonly recognized as fundamental factor for aug-
menting the overall effectiveness of applications. Going
one step further, the new challenge in adaptive inter-
faces is now context-awareness. It can be interpreted as
a natural evolution of personalization, addressing
not only the user’s identity and preferences, but also
the environment that hosts users, applications, and
their interaction, i.e., the context. Context-awareness,
hence, aims at enhancing the application usefulness
by taking into account a wide range of properties of
the context of use.
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Synonyms

Autonomous message queuing systems; Adaptive
message-oriented middleware; Autonomous message-
oriented middleware

Definition

Distributed database systems are usually built on top
of middleware solutions, such as message queuing
systems. Adaptive message queuing systems are able
to improve the performance of such a middleware
through load balancing and queue provisioning.

Historical Background

The use of message oriented middlewares (MOMs) in
the context of the Internet has evidenced a need
for highly scalable and highly available MOM. A
very promising approach to the above issue is to im-
plement performance management as an autonomic
software. The main advantages of this approach are:
(i) Providing a high-level support for deploying and
configuring applications reduces errors and adminis-
trator’s efforts. (ii) Autonomic management allows the
required reconfigurations to be performed without
human intervention, thus improving the system reac-
tivity and saving administrator’s time. (iii) Autonomic
management is a means to save hardware resources,
as resources can be allocated only when required
(dynamically upon failure or load peak) instead of
pre-allocated.

Several parameters may impact the performance of
MOM:s. Self-optimization makes use of these parameters
to improve the performance of the MOM. The proposed
self-optimization approach is based on a queue clustering
solution: a clustered queue is a set of queues each run-
ning on different servers and sharing clients. Self-opti-
mization takes place in two parts: (i) the optimization
of the clustered queue load-balancing and (ii) the
dynamic provisioning of a queue in the clustered
queue. The first part allows the overall improvement
of the clustered queue performance while the second
part optimizes the resource usage inside the clustered
queue. Thus the idea is to create an autonomic system
that fairly distributes client connections among the
queues belonging to the clustered queue and dynami-
cally adds and removes queues in the clustered queue
depending on the load. This would allow to use the
adequate number of queues at any time.

Foundations

Clustered Queues

A queue is a staging area that contains messages which
have been sent by message producers and are waiting
to be read by message consumers. A message is
removed from the queue once it has been read. For
scalability purpose, a queue can be replicated forming
a clustered queue. The clustered queue feature pro-
vides a load balancing mechanism. A clustered queue
is a cluster of queues (a given number of queue desti-
nations knowing each other) that are able to exchange
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messages depending on their load. Each queue of a
cluster periodically reevaluates its load factor and
sends the result to the other queues of the cluster.
When a queue hosts more messages than it is author-
ized to do, and according to the load factors of the
cluster, it distributes the extra messages to the other
queues. When a queue is requested to deliver messages
but is empty, it requests messages from the other
queues of the cluster. This mechanism guarantees
that no queue is hyper-active while some others are
lazy, and tends to distribute the work load among the
servers involved in the cluster.

Clustered Queue Performance

Clustered queues are standard queues that share a
common pool of message producers and consumers,
and that can exchange message to balance the load.
All the queues of a clustered queue are supposed to
be directly connected to each other. This allows
message exchanges between the queues of a cluster in
order to empty flooded queues and to fill draining
queues.

The clustered queue Q. is connected to N, message
producers and to M, message consumers. Q. is com-
posed of standard queues Q,(i € [1..k]). Each queue Q;
is in charge of a subset of N; message producers and
of a subset of M; message consumers:

Nc:Zi N
Mc:ZiMi

The distribution of the clients between the queues Q; is
described as follows: x; (resp. y;) is the fraction of
message producers (resp. consumers) that are directed

tOQi.
{Ni:xi~NC {Zix,-zl

M=y, M.’ Ziyizl

The standard queue Q; to which a consumer or pro-
ducer is directed to cannot be changed after the client
connection to the clustered queue. This way, the only
action that may affect the client distribution among
the queues is the selection of an adequate queue when
the client connection is opened.

The clustered queue Q. is characterized by its
aggregate message production rate p. and its aggregate
message consumption rate ¢.. The clustered queue Q.
also has a virtual clustered queue length /. that aggre-
gates the length of all contained standard queues:
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The clustered queue length . obeys to the same law as a
standard queue:

1. Q. is globally stable when Al. = 0. This configura-
tion ensures that the clustered queue is globally
stable. However Q. may observe local unstabilities
if one of its queues is draining or is flooded.

2. If Al > 0, the clustered queue will grow and eventu-
ally saturate; then message producers will have to wait.

3. If Al. < 0, the clustered queue will shrink until it
is empty; then message consumers will also have
to wait.

Now, considering that the clustered queue is global-
ly stable, several scenarios that illustrate the impact
of client distribution on performance are given
below.

Optimal client distribution of the clustered queue
Q. is achieved when clients are fairly distributed
among the k queues Q,. Assuming that all queues and
hosts have equivalent processing capabilities and that
all producers (resp. consumers) have equivalent mes-
sage production (resp. consumption) rates (and that all
produced messages are equivalent: message cost is uni-
formly distributed), this means that:

{xi: 1/k {Ni:%,

yi=1/k" | M; =H¢

In these conditions, all queues Q; are stable and the

queue cluster is balanced. As a consequence, there are

no internal queue-to-queue message exchanges, and

performance is optimal. Queue clustering then pro-
vides a quasi-linear speedup.

The worst clients distribution appears when one
queue only has message producers or only has message
consumers. In the example depicted in Fig. 1, this is
realized when:

x1:1 x2:0 NIZNC N2:0
y=0 |y,=1 M, =0" | M,=M,

Indeed, this configuration implies that the whole mes-
sage production is directed to queue Q. Q, then
forwards all messages to Q, that in turn delivers
messages to the message consumers.

Local instability is observed when some queues Q;
of Q. are unbalanced. This is characterized by a
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Figure 1. Clustered queue Q..

mismatch between the fraction of producers and the
fraction of consumers directed to Q;

Xi # Y

In the example showed in Fig. 1, Q. is composed of
two standard queues Q; and Q,. A scenario of local
instability can be envisioned with the following clients
distribution:

ST (ot

This distribution implies that Q; is flooding and will
have to enqueue messages, while Q, is draining and
will see its consumer clients wait. However the queue
cluster Q. ensures the global stability of the system
thanks to internal message exchanges from Q; to Q..

A stable and unfair distribution can be observed
when the clustered queue is globally and locally stable,
but the load is unfairly balanced within the queues.
This happens when the client distribution is non-
uniform.

In the example presented in Fig. 1, this can be
realized by directing more clients to Q; than Q.:

(o s

In this scenario, queue Q; processes two third of the
load, while queue Q, only processes one third. Suc
situation can lead to bad performance since Q; may
saturates while Q, is lazy.

It is worthwhile to indicate that these scenarios may
all happen since clients join and leave the system in an
uncontrolled way. Indeed, the global stability of a (clus-
tered) queue is under responsability of the application
developper. For instance, the queue can be flooded for a
period; it is assumed that it will get inverted and drain-
ing after, thus providing global stability over time.

Provisioning

The previous scenario of stable and non-optimal dis-
tribution raises the question of the capacity of a queue.
The capacity C; of standard queue Q; is expressed as an
optimal number of clients. The queue load L; is then
expressed as the ratio between its current number of
clients and its capacity:

~ Ni+ M,

L;
C;

1. L; < 1: queue Q;is underloaded and thus lazy; the
message throughput delivered by the queue can be
improved and resources are wasted.

2. L; > 1: queue Q; is overloaded and may saturate;
this induces a decreased message throughput and
eventually leads to thrashing.

3. L; = 1: queue Q; is fairly loaded and delivers its
optimal message throughput.

These parameters and indicators are transposed to
queue clusters. The clustered queue Q. is characterized
by its aggregated capacity C. and its global load L.

N.+ M, Li- C;
CE = Z Ci; L= * = El

The load of a clustered queue obeys to the same law as
the load of a standard queue.

However a clustered queue allows to control k, the
number of inside standard queues, and thus to control
its aggregated capacity C, = Ele C;. This control is
indeed operated with a re-evaluation of the clustered
queue provisioning.

1. When L. < 1, the clustered queue is underloaded: if
the clients distribution is optimal, then all the stan-
dard queues inside the cluster will be underloaded.
However, as the client distribution may be non-
optimal, some of the single queues may be over-
loaded, even if the cluster is globally lazy. If the load
is too low, then some queues may be removed from
the cluster.
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2. When L, > 1, the clustered queue is overloaded:
even if the distribution of clients over the queues
is optimal, there will exist at least one standard
queue that will be overloaded. One way to handle
this case is to re-provision the clustered queue by
inserting one or more queues into the cluster.

Control Rules for a Self-Optimizing Clustered Queue
The global clients distribution D of the clustered queue
Q_ is captured by the fractions of message producers x;
and consumers y;. The optimal clients distribution
D,y is realized when all queues are stable (Vi x; = y;)
and when the load is fairly balanced over all queues
(Vi, jx; = x; yi = y;). This implies that the optimal
distribution is reached when x; = y; = Vk.

X1y 1/k 1/k
) D opt =

Xk Vi 1/k 1/k

Local instabilities are characterized by a mismatch

between the fraction of message producers x; and

consumers y; on a standard queue. The purpose of

this rule is the stability of all standard queues so as to

minimize internal queue-to-queue message transfer.

1. [(R)] x; > yi Q; is flooding with more message
production than consumption and should then
seek more consumers and/or fewer producers.

2. [(R)] x; < y;z Q is draining with more message
consumption than production and should then
seek more producers and/or fewer consumers.

Load balancing rules control the load applied to a single
standard queue. The goal is then to enforce a fair load
balancing over all queues.

1. [(R3)] L; > 1: Q; is overloaded and should avoid
accepting new clients as it may degrade its
performance.

2. [(Ry)] L; < 1: Q;is underloaded and should request
more clients so as to optimize resource usage.

Global provisioning rules control the load applied to the
whole clustered queue. These rules target the optimal
size of the clustered queue while the load applied to the
system evolves.

1. [(Rs)] L. > 1: the queue cluster is overloaded and
requires an increased capacity to handle all its cli-
ents in an optimal way.

2. [(Re)] L. < 1: the queue cluster is underloaded and
could accept a decrease in capacity.

Key Applications

Adaptive middleware for message queuing systems
helps building autonomous distributed systems to im-
prove their performance while minimizing their re-
source usage, such as distributed Internet services and
distributed information systems.
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Definition

While in traditional query processing, a query is first
optimized and then executed, adaptive query processing
techniques use runtime feedback to modify query pro-
cessing in a way that provides better response time,
more efficient CPU utilization or more useful incre-
mental results. Adaptive query processing makes query
processing more robust to optimizer mistakes, un-
known statistics, and dynamically changing data, run-
time and workload characteristics. The spectrum of
adaptive query processing techniques is quite broad:
they may span the executions of multiple queries or
adapt within the execution of a single query; they may
affect the query plan being executed or just the sched-
uling of operations within the plan.

Key Points

Conventional query processing follows an optimize-
then-execute strategy: after generating alternative query
plans, the query optimizer selects the most cost-efficient
among them and passes it to the execution engine that
directly executes it, typically with little or no runtime
decision-making. As queries become more complex, this
strategy faces many limitations such as missing statistics,
unexpected correlations, and dynamically changing data,
runtime, and workload characteristics. These problems
are aggregated in the case of long-running queries over
data streams as well as in the case of queries over multi-
ple potentially heterogeneous data sources across wide-
area networks. Adaptive query processing tries to address
these shortcomings by using feedback during query exe-
cution to tune query processing. The goal is to increase
throughput, improve response time or provide more
useful incremental results.

To implement adaptivity, regular query execution is
supplemented with a control system for monitoring
and analyzing at run-time various parameters that
affect query execution. Based on this analysis, certain
decisions are made about how the system behavior
should be changed. Clearly, this may introduce consid-
erable overheads.

The complete space of adaptive query processing
techniques is quite broad and varied. Adaptability
may be applied to query execution of multiple queries
or just a single one. It may also affect the whole query
plan being executed or just the scheduling of operations
within the plan. Adaptability techniques also differ
on how much they interleave plan generation and

execution. Some techniques interleave planning and exe-
cution just a few times, by just having the plan re-opti-
mized at specific points, whereas other techniques
interleave planning and execution to the point where
they are not even clearly distinguishable.

A number of fundamental adaptability techniques
include:

e Horizontal partitioning, where different plans are
used on different portions of the data. Partitioning
may be explicit or implicit in the functioning of the
operator.

e Query execution by tuple routing, where query exe-
cution is treated as the process of routing tuples
through operators and adaptability is achieved by
changing the order in which tuples are routed.

e Plan partitioning, where execution progresses in
stages, by interleaving optimization and execution
steps at a number of well-defined points during
query execution.

e Runtime binding decisions, where certain plan
choices are deferred until runtime, allowing the
execution engine to select among several alternative
plans by potentially re-invoking the optimizer.

e In-operator adaptive logic, where scheduling and
other decisions are made part of the individual
query operators, rather than the optimizer.

Many adaptability techniques rely on a symmetric hash
join operator that offers a non-blocking variant of join
by building hash tables on both the input relations.
When an input tuple is read, it is stored in the appro-
priate hash table and probed against the opposite table,
thus producing incremental output. The symmetric
hash join operator can process data from either input,
depending on availability. It also enables additional
adaptivity, since it has frequent moments of symmetry,
that is, points at which the join order can be changed
without compromising correctness or losing work.

The eddy operator provides an example of fine-
grained run-time control by tuple routing through
operators. An eddy is used as a tuple router; it moni-
tors execution, and makes routing decisions for the
tuples. Eddies achieve adaptability by simply changing
the order in which the tuples are routed through the
operators. The degree of adaptability achieved depends
on the type of the operators. Pipelined operators, such
as the symmetric hash join, offer the most freedom,
whereas, blocking operators, such as the sort-merge
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join, are less suitable since they do not produce output
before consuming the input relations in their entirety.
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Definition

When querying long-lived data streams, the character-
istics of the data may change over time or data may
arrive in bursts — hence, the traditional model of opti-
mizing a query prior to executing it is insufficient. As a
result, most data stream management systems employ
feedback-driven adaptive stream processing, which con-
tinuously re-optimizes the query execution plan based
on data and stream properties, in order to meet certain
performance or resource consumption goals. Adaptive
stream processing is a special case of the more general
problem of adaptive query processing, with the special
property that intermediate results are bounded in size
(by stream windows), but where query processing may
have quality-of-service constraints.

Historical Background

The field of adaptive stream processing emerged in the
early 2000s, as two separate developments converged.
Adaptive techniques for database query processing had

become an area of increasing interest as Web and
integration applications exceeded the capabilities of
conventional static query processing [10]. Simulta-
neously, a number of data stream management syst-
ems [1,6,8,12] were emerging, and each of these
needed capabilities for query optimization. This led
to a common approach of developing feedback-based
re-optimization strategies for stream query computa-
tion. In contrast to Web-based adaptive query proces-
the focus
processing has especially been on maintaining quality

sing techniques, in adaptive stream

of service under overload conditions.

Foundations

Data stream management systems (DSMSs) typically
face two challenges in query processing. First, the data
to be processed comes from remote feeds that may
be subject to significant variations in distribution or
arrival rates over the lifetime of the query, meaning
that no single query evaluation strategy may be appro-
priate over the entirety of execution. Second, DSMSs
may be underprovisioned in terms of their ability to
handle bursty input at its maximum rate, and yet may
still need to meet certain quality-of-service or resource
constraints (e.g., they may need to ensure data is pro-
cessed within some latency bound). These two chal-
lenges have led to two classes of adaptive stream
processing techniques: those that attempt to minimize
the cost of computing query results from the input data
(the problem traditionally faced by query optimiza-
tion), and those that attempt to manage query proces-
sing, possibly at reduced accuracy, in the presence of
limited resources. This article provides an overview of
significant work in each area.

Minimizing Computation Cost

The problem of adaptive query processing to minimize
computation cost has been well-studied in a variety of
settings [10]. What makes the adaptive stream proces-
sing setting unique (and unusually tractable) is the fact
that joins are performed over sliding windows with size
bounds: As the data stream exceeds the window size,
old data values are expired. This means intermediate
state within a query plan operator has constant maxi-
mum size; as opposed to being bounded by the size of
the input data. Thus a windowed join operator can be
modeled as a pair of filter operators, each of which
joins its input with the bounded intermediate state
produced from the other input. Optimization of joins



Adaptive Stream Processing

53

in data stream management systems becomes a minor
variation on the problem of optimizing selection or
filtering operators; hence certain theoretical optimality
guarantees can actually be made.

Eddies Eddies [2,11,14]
operators that model select-project-join expressions.

are composite dataflow

An eddy consists of a tuple router, plus a set of primi-
tive query operators that run concurrently and each
have input queues. Eddies come in several variations;
the one proposed for distributed stream management
uses state modules (SteMs) [14,11]. Figure 1 shows an
example of such an eddy for a simplified stream SQL
query, which joins three streams and applies a selection
predicate over them.

Eddy creation. The eddy is created prior to execu-
tion by an optimizer: every selection operation (op in
the example) is converted to a corresponding operator;
additionally, each base relation to be joined is given a
state module, keyed on the join attribute, to hold the
intermediate state for each base relation [14] (P g, Mg,
>r). If a base relation appears with multiple different
join attributes, then it may require multiple SteMs.
In general, the state module can be thought of as
one of the hash tables within a symmetric or pipelined
hash join. The optimizer also determines whether the
semantics of the query force certain operators to exe-
cute before others. Such constraints are expressed in an
internal routing table, illustrated on the right side of
the figure. As a tuple is processed, it is annotated with
a tuple signature specifying what input streams’ data it
contains and what operator may have last modified
it. The routing table is a map from the tuple signature
to a set of valid routing destinations, those operators
that can successfully process a tuple with that particu-
lar signature.

Select *
fromR,S,T
where R.x = S.x and S.x = T.x and op(t)

Query execution/tuple routing. Initially, a tuple from
an input data stream (R, S, or T) flows into the eddy
router. The eddy (i) adds the data to the associated SteM
or SteMs, and (ii) consults the routing table to determine
the set of possible destination operators. It then chooses
a destination (using a policy to be described later) and
sends the tuple to the operator. The operator then
either filters the tuple, or produces one or more output
tuples, as a result of applying selection conditions or
joining with the data within a SteM. Output tuples are
marked as having been processed by the operator that
produced them. If they have been processed by all
operators, they will be sent to the query output, and
if not, they will be sent back to the eddy’s router and to
one of the remaining operators.

Routing policies. The problem of choosing among
alternate routing destinations has been addressed with
a variety of strategies.

Tickets and lottery scheduling [2]. In this scheme,
each operator receives a ticket for each tuple it receives
from the router, and it returns the ticket each time it
outputs a tuple to the router. Over time, each operator
is expected to have a number of tickets proportional to
(1 — p) where p is the operator’s selectivity. The router
holds a lottery among valid routing destinations, where
each operator’s chance of winning is proportional to its
number of tickets. Additionally, as a flow control
mechanism, each operator has an input queue, and if
this queue fills, then the operator may not participate
in the lottery.

Deterministic with batching [9]. A later scheme was
developed to reduce the per-tuple overhead of eddies
by choosing destinations for batches of tuples. Here,
each operator’s selectivity is explicitly monitored and
each predicate is assumed to be independent. Periodi-
cally, a rank ordering algorithm is used to choose a

,Tuple signature

Valid routing
destinations

{«S, MT, op}
{xR, W, op}
{mR, S, op}
{HR, op}
{MS, KT}

Contains From

R} {}

(s {}

{m} {}

{S,T} {S, T}
R} {op}

Adaptive Stream Processing. Figure 1. lllustration of eddy with SteMs.
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destination for a batch of tuples: the rank ordering
algorithm sorts predicates in decreasing order of
¢;/(1 — p;), where ¢;is the cost of the applying predicate
o; and p; is its selectivity.

Content-based routing [7]. (CBR) attempts to learn
correlations between attribute values and selectivities.
Using sampling, the system determines for each oper-
ator the attribute most strongly correlated with its
selectivity — this is termed the classifier attribute. CBR
then builds a table characterizing all operators’ selec-
tivities for different values of each classifier attribute.
Under this policy, when the eddy needs to route a
tuple, it first looks up the tuple’s classifier attribute
values in the table and determines the destination
operators’ selectivities. It routes the tuple probabilisti-
cally, choosing a next operator with probability in-
versely proportional to its selectivity.

Other optimization strategies. An alternative strate-
gy that does not use the eddies framework is the
adaptive greedy [5] (A-greedy) algorithm. A-greedy
continuously monitors the selectivities of query pre-
dicates using a sliding window profile, a table with one
Boolean attribute for each predicate in the query, and
sampling. As a tuple is processed by the query, it
may be chosen for sampling into the sliding window
profile — if so, it is tested against every query predicate.
The vector of Boolean results is added as a row to the
sliding window profile. Then the sliding window pro-
file is then used to create a matrix view V [, j] contain-
ing, for each predicate o;, the number of tuples in the
profile that satisfy y...0;_; but not ¢;. From this ma-
trix view, the reoptimizer seeks to maintain the con-
straint that the ith operation over an input tuple
must have the lowest cost/selectivity ratio ¢;/(1 — p
(Si|S1,-->S;—1)). The overall strategy has one of the
few performance guarantees in the adaptive query
processing space: if data properties were to converge,
then performance would be within a factor of 4 of
optimal [5].

Managing Resource Consumption

A common challenge in data stream management sys-
tems is limiting the use of resources — or accommodat-
ing limited resources while maintaining quality of
service, in the case of bursty data. We discuss three
different problems that have been studied: load
shedding to ensure input data is processed by the
CPU as fast as it arrives, minimizing buffering and

memory consumption during data bursts, and
minimizing network communication with remote
streaming sites.

Load Shedding. Allows the system to selectively drop
data items to ensure it can process data as it arrives.
Both the Aurora and STREAM DSMSs focused heavily
on adaptive load shedding.

Aurora. In the Aurora DSMS [15], load shedding
for a variety of query types are supported: the main
requirement is that the user has a utility function de-
scribing the value of output data relative to how much
of it has been dropped. The system seeks to place load
shedding operators in the query plan in a way that
maximizes the user’s utility function while the system
achieves sufficient throughput. Aurora precomputes
conditional load shedding plans, in the form of a load
shedding road map (LRSM) containing a sequence of
plans that shed progressively more load; this enables
the runtime system to rapidly move to strategies that
shed more or less load.

LRSMs are created using the following heuristics:
first, load shedding points are only inserted at data
input points or at points in which data is split to two
or more operators. Second, for each load shedding
point, a loss/gain ratio is computed: this is the reduc-
tion in output utility divided by the gain in cycles,
R(p - L — D), where R is the input rate into the drop
point, p is the ratio of tuples to be dropped, L is the
amount of system load flowing from the drop point,
and D is the cost of the drop operator. Drop operators
are injected at load shedding points in decreasing order
of loss/gain ratio. Two different types of drops are
considered using the same framework: random drop,
in which an operator is placed in the query plan to
randomly drop some fraction p of tuples; and semantic
drop, which drops the p tuples of lowest utility. Aurora
assumes for the latter case that there exists a utility
function describing the relative worth of different at-
tribute values.

Stanford STREAM. The Stanford STREAM system
[4] focuses on aggregate (particularly SUM) queries.
Again the goal is to process data at the rate it arrives,
while minimizing the inaccuracy in query answers:
specifically, the goal is to minimize the maximum
relative error across all queries, where the relative error
of a query is the difference between actual and approx-
imate value, divided by the actual value.
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A Statistics Manager monitors computation and
provides estimates of each operator’s selectivity and
its running time, as well as the mean value and stan-
dard deviation of each query g;s aggregate operator.
For each gq; STREAM computes an error threshold
C;, based on the mean, standard deviation, and num-
ber of values. (The results are highly technical so
the reader is referred to [4] for more details.) A sam-
pling rate P; is chosen for query g; that satisfies P; >
C;,/€;, where €; is the allowable relative error for
the query.

As in Aurora’s load shedding scheme, STREAM
only inserts load shedding operators at the inputs or
at the start of shared segments. Moreover, if a node has
a set of children who all need to shed load, then a
portion of the load shedding can be “pulled up” to
the parent node, and all other nodes can be set to shed
some amount of additional load relative to this. Based
on this observation, STREAM creates a query dataflow
graph in which each path from source to sink initially
traverses through a load shedding operator whose
sampling rate is determined by the desired error
rate, followed by additional load shedding operators
whose sampling rate is expressed relative to that first
operator. STREAM iterates over each path, determines
a sampling rate for the initial load shedding operator
to satisfy the load constraint, and then computes the
maximum relative error for any query. From this, it can
set the load shedding rates for individual operators.

Memory Minimization. STREAM also addresses the
problem of minimizing the amount of space required
to buffer data in the presence of burstiness [3]. The
Chain algorithm begins by defining a progress chart for
each operator in the query plan: this chart plots the
relative size of the operator output versus the time it
takes to compute. A point is plotted at time 0 with the
full size of the input, representing the start of the
query; then each operator is given a point according
to its cost and relative output size. Now a lower enve-
lope is plotted on the progress chart: starting with the
initial point at time 0, the steepest line is plotted to any
operator to the right of this point; from the point at the
end of the first line, the next steepest line is plotted to a
successor operator; etc. Each line segment (and the
operators whose points are plotted beside it) represents
a chain, and operators within a chain are scheduled
together. During query processing, at each time “tick,”

the scheduler considers all tuples that have been output
by any chain. The tuple that lies on the segment with
steepest slope is the one that is scheduled next; as a tie-
breaker, the earliest such tuple is scheduled. This Chain
algorithm is proven to be near-optimal (differing by at
most one unit of memory per operator path for queries
where selectivity is at most one).

Minimizing Communication. In some cases, the con-
strained resource is the network rather than CPU or
memory. Olston et al. [13] develop a scheme for reducing
network I/O for AVERAGE queries, by using accuracy
bounds. Each remote object O is given a bound width
wo: the remote site will only notify the central query
processor if O’s value V falls outside this bound. Mean-
while, the central site maintains a bound cache with the
last value and the bound width for every object.

If given a precision constraint §; for each query Q;,
then if the query processor is to provide query answers
within J;, the sum of the bound widths for the data
objects of Q; must not exceed J; times the number of
objects. The challenge lies in the selection of widths
for the objects.

Periodically, the system tries to tighten all bounds, in
case values have become more stable; objects whose
values fall outside the new bounds get reported back to
the central site. Now some of those objects’ bounds must
be loosened in a way that maintains the precision con-
straints over all queries. Each object O is given a burden
score equal to co/(powo), where co is the cost of
sending the object, wg is its bound width, and pg is
the frequency of updates since the previous width
adjustment. Using an approximation method based
on an iterative linear equation solver, Olston et al.
compute a burden target for each query, i.e., the lowest
overall burden score required to always meet the query’s
precision constraint. Next, each object is assigned a
deviation, which is the maximum difference between
the object’s burden score and any query’s burden tar-
get. Finally, a queried objects’ bounds are adjusted in
decreasing order of deviation, and each object’s bound
is increased by the largest amount that still conforms
to the precision constraint for every query.

Key Applications

Data stream management systems have seen significant
adoption in areas such as sensor monitoring and pro-
cessing of financial information. When there are
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associated quality-of-service constraints that might re-
quire load shedding, or when the properties of the data
are subject to significant change, adaptive stream pro-
cessing becomes vitally important.

Future Directions

One of the most promising directions of future study is
how to best use a combination of offline modeling,
selective probing (in parallel with normal query execu-
tion), and feedback from query execution to find opti-
mal strategies quickly. Algorithms with certain
optimality guarantees are being explored in the online
learning and theory communities (e.g., the k-armed
bandit problem), and such work may lead to new
improvements in adaptive stream processing.
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Synonyms
ARBAC97; SARBAC

Definition

The central ideal of administration model for RBAC is
to use the role itself to manage roles. There are two
well-known families of administration RBAC models.

Administrative RBAC

The Administrative RBAC family of models known as
ARBAC97 [3] introduces administrative roles that are
used to manage the regular roles. These roles can form
a role hierarchy and may have constraints. ARBAC97
consists of three administrative models, the user-role
assignment (URA97) model, the permission-role as-
signment (PRA97) model, and the role-role adminis-
tration (RRA97) model. URA97 defines which
administrative roles can assign which users to which
regular roles by means of the relation: can_assign.
Similarly, PRA97 defines which administrative roles
can assign which permissions to which regular roles
by means of the relation: can_assignp. Each of these
relations also has a counterpart for revoking the as-
signment (e.g., can_revoke). RRA97 defines which ad-
ministrative roles can change the structure (add roles,
delete roles, add edges, etc.) of which range of the
regular roles using the notion of encapsulated range
and the relation: can_modify.

Scoped Administrative RBAC

The SARBAC model uses the notion of administrative
scope to ensure that any operations executed by a role r
will not affect other roles due to the hierarchical rela-
tions among them [1]. There are no special administra-
tive roles in SARBAC, and each regular role has a scope
of other regular roles called administrative scope that
can be managed by it. Each role can only be managed

by its administrators. For example, a senior-most role
should be able to manage all its junior roles.

Key Points

ARBAC model is the first known role-based adminis-
tration model and uses the notion of range and
encapsulated range. Role range is essentially a set of
regular roles. To avoid undesirable side effects,
RRA97 requires that all role ranges in the can_modify
relation be encapsulated, which means the range
should have exactly one senior-most role and one
junior-most role. Sandhu et al. later extended the
ARBAC97 model into ARBAC99 model where the no-
tion of mobile and immobile user/permission was
introduced [4]. Oh et al. later extended ARBAC99 to
ARBACO02 by adding the notion of organizational
structure to redefine the user-role assignment and the
role-permission assignment [2]. Recently, Zhang et al.
have proposed an ARBAC07 model that extends the
family of ARBAC models to deal with an RBAC model
that allows hybrid hierarchies to co-exit [6].

SARBAC

The most important notion in SARBAC is that of the
administrative scope, which is similar to the notion of
encapsulated range in ARBAC97. A role r is said to be
within to be the administrative scope of another role a
if every path upwards from r goes through a4, and a is
said to be the administrator of . SARBAC also consists
of three models: SARBAC-RHA, SARBAC-URA, and
SARBAC-PRA. In SARBAC-RHA, each role can only
administer the roles that are within its own administra-
tive scope. The operations include adding roles, deleting
roles, adding permissions, and deleting permissions.
The semantics for SARBAC-URA and SARBAC-PRA
is similar to URA97 and PRA97. The administrative
scope can change dynamically. Zhang et al. have extend-
ed SARBAC to also deal with hybrid hierarchy [5].
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Definition

Modern database systems provide a collection of utilities
and programs to assist a database administrator with
tasks such as database installation and configuration,
import/export, indexing (index wizards are covered in
the self-management entry), and backup/restore.

Historical Background

Database Administrators have been skeptical of any
form of automation as long as they could control the
performance and security of a relatively straightfor-
ward installation. The advent of enterprise data man-
agement towards the end of the 1990s, where few
administrators became responsible for many, possibly
diverse database servers, has led to the use of graphical
automation tools. In the mid-1990s, third party
vendors introduced such tools. With SQL Server 6.5,
Microsoft was the first constructor to provide an ad-
ministration wizard.

Foundations

Installation and Configuration

Database servers are configured using hundreds of
parameters that control everything buffer size, file lay-
out, concurrency control options and so on. They are
either set statically in a configuration file before
the server is started, or dynamically while the server is
running. Out-of-the-box database servers are equipped
with a limited set of typical configurations.

The installation/configuration wizard is a graphical
user interface that guides the administrator through
the initial server configuration. The interface provides
high-level choices (e.g., OLTP vs. OLAP workload), or
simple questions (e.g., number of concurrent users)
that are mapped onto database configuration values
(log buffer size and thread pool size respectively).

Data Import/Export

Import/export wizards are graphical tools that help
database administrators map a database schema with
an external data format (e.g., XML, CSV, PDF), or
generate scripts that automate the transfer of data
between a database and an external data source (possi-
bly another database server).

Back-up/Restore

Back-up/restore wizards automate the back-up proce-
dure given a few input arguments: complete/incremental
backup, scope of the back-up/restore operations (file,
tablespace, database), target directory.

Key Applications
Automation of the central database administration
tasks.

Cross-references
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Definition

An aggregate function is a function that receives as
input a multiset of values, and returns a single value.
For example, the aggregate function countreturns the
number of input values. An aggregate query is simply a
query that mentions an aggregate function, usually
as part of its output. Aggregate queries are commonly

used to retrieve concise information from a database,
since they can cover many data items, while returning
few. Aggregation is allowed in SQL, and the addition of
aggregation to other query languages, such as relation-
al algebra and datalog, has been studied.

The problem of determining query expressiveness is
to characterize the types of queries that can be expressed
in a given query language. The study of query exp-
ressiveness for languages with aggregation is often
focused on determining how aggregation increases the
ability to formulate queries. It has been shown that
relational algebra with aggregation (which models
SQL) has a locality property.

Query containment is the problem of determining,
for any two given queries g and q’, whether g(D)C
q'(D), for all databases D, where g(D) is the result
of applying g to D. Similarly, the query equivalence
problem is to determine whether q(D)=¢'(D) for all
databases D. For aggregate queries, it seems that char-
acterizing query equivalence may be easier than
characterizing query containment. In particular, almost
all known results on query containment for aggre-
gate queries are derived by a reduction from query
equivalence.

Historical Background

The SQL standard defines five aggregate functions,
namely, count, sum, min, max and avg(average).
Over time, it has become apparent that users would
like to aggregate data in additional ways. Therefore,
major database systems have added new built-in aggre-
gate functions to meet this need. In addition, many
database systems now allow the user to extend the set
of available aggregate functions by defining his own
aggregate functions.

Aggregate queries are typically used to summarize
detailed information. For example, consider a database
with the relations Dept (deptId, deptName) and
Emp (empld, deptId, salary). The following SQL
query returns the number of employees, and the total
department expenditure on salaries, for each depart-
ment which has an average salary above $10,000.

(Q1l) SELECT deptID, count (empID),
sum(salary)
FROM Dept, Emp
WHERE Dept.deptID = Emp.deptID
GROUP BY Dept .deptID
HAVING avg (salary) > 10000
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Typically, aggregate queries have three special
components. First, the GROUP BY clause is used to
state how intermediate tuples should be grouped
before applying aggregation. In this example, tuples
are grouped by their value of deptID, i.e., all tuples
with the same value for this attribute form a
single group. Second, a HAVING clause can be used to
determine which groups are of interest, e.g., those
with average salary above $10,000. Finally, the output-
ted aggregate functions are specified in the SELECT
clause, e.g., the number of employees and the sum of
salaries.

The inclusion of aggregation in SQL has motivated
the study of aggregation in relational algebra, as an
abstract modeling of SQL. One of the earliest studies
of aggregation was by Klug [11], who extended rela-
tional algebra and relational calculus to allow aggregate
functions and showed the equivalence of these two
languages. Aggregation has also been added to Datalog.
This has proved challenging since it is not obvious
what semantics should be adopted in the presence of
recursion [15].

Foundations

Expressiveness

The study of query expressiveness deals with deter-
mining what can be expressed in a given query lan-
guage. The expressiveness of query languages with
aggregation has been studied both for the language of
relational algebra, as well as for datalog, which may
have recursion.

Various papers have studied the expressive power
of nonrecursive languages, extended with aggregation,
e.g., [7,9,13]. The focus here will be on [12], which has
the cleanest, general proofs for the expressive power of
languages modeling SQL.

In [12], the expressiveness of variants of relational
algebra, extended with aggregation, was studied. First,
[12] observes that the addition of aggregation to rela-
tional algebra strictly increases its expressiveness. This
is witnessed by the query Q2:

(Q2) SELECT 1
FROM R1
WHERE (SELECT COUNT (*) FROMR) >
(SELECT COUNT (*) FROM S)

Observe that Q2 returns 1 if R contains more tuples
than s, and otherwise an empty answer. It is known
that first-order logic cannot compare cardinalities, and
hence neither can relational algebra. Therefore, SQL
with aggregation is strictly more expressive than SQL
without aggregation.

The language ALG,gg, is presented in [12]. Basically,
AlGgggr is relational algebra, extended by arbitrary
aggregation and arithmetic functions. In ALG,gg,
non-numerical selection predicates are restricted to
using only the equality relation (and not order com-
parisons). A purely relational query is one which is
applied only to non-numerical data. It is shown that
all purely relational queries in ALG,gg,
tively, the answers to local queries are determined by
looking at small portions of the input.

The formal definition of local queries follows. Let D
be a database. The Gaifman graph G(D) of D is the
undirected graph on the values appearing in D, with
(a,b)eG(D) if a and b belong to the same tuple
of some relation in D. Let d =(ay,...,a;) be a tuple of
values, each of which appears in D. Let r be an integer,
and let SP(d) be the set of values b such that dist (a;
b)<rin G(D), for some i. The r-neighborhood NP ()
of d is a new database in which the relations of D are
restricted to contain only the values in SP(d). Then, @
and b are (D, r)-equivalent if there is an isomorphism
h: NP(d@) — NP(b) such that h(d@) = b. Finally, a q
is local if there exists a number r such that for all D,
if (d) and (E) are (D,r)-equivalent, then d € gq(D) if
and only if b € (D).

There are natural queries that are not local. For

are local. Intui-

example, transitive closure (also called reachability) is
not local. Since all queries in ALG,g,, are local, this
implies that transitive closure cannot be expressed in
ALGaggr.

In addition to ALGagg, [12] introduces the lan-
guages ALGi,’;I and ALGaSg‘S . ALGaSggI and ALGaSg'gf
are the extensions of ALG,g,, Which allow order com-
parisons in the selection predicates, and allow natural
numbers and rational numbers, respectively, in the
database. It is not known whether transitive closure
can be expressed in ALG;I;’ng . More precisely, [12]
shows that if transitive closure is not expressible in
ALGaSg'grf, then the complexity class Uniform TC® is
properly contained in the complexity class NLOG-
SPACE. Since the latter problem (i.e., determining

strict containment of TC® in NLOGSPACE) is believed
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to be very difficult to prove, so is the former. Moreover,
this result holds even if the arithmetic functions are
restricted to {+,-,<,0,1} and the aggregate functions
are restricted to {sum}. On the other hand, ALGaSg’g
extended by arbitrary aggregation and arithmetic func-
tions, can express all computable queries.

The languages ALG,ggy, ALGaSg;j}I and ALGagg’g‘? are
based on relational algebra, and therefore, do not
allow recursion. The Datalog language allows queries
to be defined as programs, containing recursion.
The meaning of an aggregate function within a recur-
sive program, is not always well-defined. One solution
is to restrict the program to have only stratified aggre-
gation. Stratification means that if a derived predicate
p is defined by applying an aggregate function on a
derived predicate g, then the definition of g does not
depend, syntactically, upon the definition of p. For

example, consider the following Datalog program, P;.

p(X; sum(Y)) < q(X,Y)
q(X,Y) «— a(X,Y)
q(X,Z) «— q(X,Y),q(Y,2)

The program P is stratified. Replacing the final rule in

q(X,Z) — q(X,Y),p(Y,Z)

would yield a program with nonstratified aggregation.

The expressiveness of stratified aggregation was
studied in [14]. Only the aggregate functions sum,
avg, min, max and count were allowed. It is shown
that that stratified aggregation cannot express summar-
ized explosion (i.e., the number of instances of a part
needed to construct a bigger part). On the other hand,
if the language is extended to allow the function +, as
well as the constants 0 and 1, then all computable
queries on the integer domain can be expressed. This
is correct even if the only aggregate function allowed
is max. Additional results of this type, i.e., expressibility
of other fragments of stratified Datalog, also appear
in [14].

Query Containment

The equivalence and containment problems for aggre-
gate queries have been studied for nonrecursive Data-
log programs. A survey of the containment and
equivalence problems for aggregate queries, containing
references to most works on this topic, appears in [2].

Deriving general characterizations of containment
(or equivalence) for aggregate queries is difficult, since
each aggregate function tends to have its own idiosyn-
crasies. For example, count is sensitive to the number
of occurrences of each value, but not to the values
themselves, whereas max ignores repeated values, but
is sensitive to the exact values appearing. As another
example, sum ignores the value 0, whereas prod
ignores 1. In addition, prod always returns 0 if it
is applied to a bag containing 0.

Due to aggregate function quirks, it is often the case
that equivalent queries are no longer so, if the aggre-
gate function appearing in their head changes. To dem-
onstrate, consider the two pairs of queries g;, g{ and

LI2, qé

¢ (X, count) «— a(X,Y)
q; (X, count) « a(X,Y),a(X, Z)
@(X,max(Y)) — a(X,Y)
g (X,max(Y)) < a(X,Y),a(X, Z)

The queries g; and ¢, (and similarly g} and g5) have
the same conditions in their body, and differ only
on the output aggregate function. One may show that
q: is not equivalent to g (nor is there containment in
either direction), as witnessed by the database

D, = {a(c,O), a(cv 1)7 a(dv 0)}

over which ¢;(D;) ={(c,2),(&1)} and q{(D,) =
{(c, 4),(d,1)}. On the other hand, ¢,= g5 does hold.

The different oddities of aggregate functions
make finding a general solution for the equivalence
and containment problems very difficult. Thus, char-
acterizations for equivalence of aggregate queries often
are defined separately for each aggregate function.
Most known characterizations for equivalence are
based on checking for the existence of special types of
mappings between the queries. For example, conjunc-
tive queries (i.e., Datalog programs consisting of a
single rule, and no negation) with the aggregate func-
tion count, are equivalent if and only if they are
isomorphic [1,4].

For other types of aggregate functions, as well as for
count queries with comparisons or disjunctions, iso-
morphism is not a necessary condition for equivalence.
To demonstrate, each pair of queries g; g/ below is
equivalent, yet not isomorphic:
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gs(count) «— b(X),b(Y),b(2),X <Y, X< Z
qy(count) «— b(X),b(Y),b(2),X < Z, Y < Z

ga(sum(Y)) — b(Y),b(Z),Y >0,Z>0

qy(sum(Y)) « b(Y),b(Z),Y >0,Z >0

gs(avg(Y)) < b(Y)
gs(avg(Y)) < b(Y), b(Z)

gs(max(Y)) «— b(Y),b(%), (%), Z1 < Z,
qs(max(Y)) — b(Y),b(Z2),Z <Y

Characterizations for equivalence are known for queries
of the above types. Specifically, characterizations have
been presented for equivalence of conjunctive queries
with the aggregate functions count, sum, max and
count-distinct [4] and these were extended in
[5] to queries with disjunctive bodies. Equivalence of
conjunctive queries with avgand with percent were
characterized in [8].

It is sometimes possible to define classes of aggre-
gate functions and then present general characteriza-
tions for equivalence of queries with any aggregate
function within the class of functions. Such character-
izations are often quite intricate since they must
deal with many different aggregate functions. A char-
acterization of this type was given in [6] to decide
equivalence of aggregate queries with decomposable
aggregate functions, even if the queries contain nega-
tion. Intuitively, an aggregate function is decompos-
able if partially computed values can easily be
combined together to return the result of aggregating
an entire multiset of values, e.g., as is the case for
count, sum and max.

Interestingly, when dealing with aggregate queries
it seems that the containment problem is more elusive
than the equivalence problem. In fact, for aggregate
queries, containment is decided by reducing to the
equivalence problem. A reduction of containment
to equivalence is presented for queries with expandable
aggregate functions in [3]. Intuitively, for expan-
dable aggregate functions, changing the number of
occurrences of values in bags B and B’ does not affect
the correctness of the formula o(B)=o(B), as long
as the proportion of each value in each bag remains
the same, e.g., as is the case for count, sum, max,

count-distinct and avg.

The study of aggregate queries using the count
function is closely related to the study of nonaggregate
queries evaluated under bag-set semantics. Most past
research on query containment and equivalence for non-
aggregate queries assumed that queries are evaluated
under set semantics. In set semantics, the output of a
query does not contain duplicated tuples. (This corre-
sponds to SQL queries with the DISTINCT operator.)
Under bag-set semantics the result of a query is a multiset
of values, i.e., the same value may appear many times. A
related semantics is bag semantics in which both the
database and the query results may contain duplication.

To demonstrate the different semantics, recall the
database D, defined above. Consider evaluating, over
D,, the following variation of ¢;:

q)(X) < a(X,Y)

Under set-semantics g”1(D;) ={ (c),(d)}, and under
bag-set semantics g”,(D;) ={{ (c),(c),(d)}}. Note the
correspondence between bag-set semantics and using
the count function, as in ¢g;, where count returns
exactly the number of duplicates of each value. Due
to this correspondence, solutions for the query con-
tainment problem for queries with the count function
immediately give rise to solutions for the query con-
tainment problem for nonaggregate queries evaluated
under bag-set semantics, and vice-versa.

The first paper to directly study containment and
equivalence for nonaggregate queries under bag-set
semantics was [1], which characterized equivalence
for conjunctive queries. This was extended in [4] to
queries with comparisons, in [5] to queries with dis-
junctions and in [6] to queries with negation.

Key Applications

Query Optimization

The ability to decide query containment and equiva-
lence is believed to be a key component in query
optimization. When optimizing a query, the database
can use equivalence characterizations to remove re-
dundant portions of the query, or to find an equiva-
lent, yet cheaper, alternative query.

Query Rewriting

Given a user query ¢, and previously computed queries
Vi,. . .V, the query rewriting problem is to find a query
r that (i) is equivalent to g, and (ii) uses the queries
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V...V, instead of accessing the base relations. (Other
variants of the query rewriting problem have also been
studied.) Due to Condition (i), equivalence character-
izations are needed to solve the query rewriting prob-
lem. Query rewriting is useful as an optimization
technique, since it can be cheaper to use past results,
instead of evaluating a query from scratch. Integrating
information sources is another problem that can be
reduced to the query rewriting problem.

Future Directions

Previous work on query containment does not consid-
er queries with HAVING clauses. Another open problem
is containment for queries evaluated under bag-set
semantics. In this problem, one wishes to determine
if the bag returned by g is always sub-bag of that
returned by gq’. (Note that this is different from the
corresponding problem of determining containment
of queries with count, which has been solved.) It has
shown [10] that bag-set containment is undecidable
for conjunctive queries containing inequalities. How-
ever, for conjunctive queries without any order com-
parisons, determining bag-set containment is still an
open problem.
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Definition

Text retrieval is concerned with the retrieval of docu-
ments in response to user queries. This is achieved by
(i) representing documents and queries with indexing
features that provide a characterisation of their infor-
mation content, and (ii) defining a function that uses
these representations to perform retrieval. Structured
text retrieval introduces a finer-grained retrieval para-
digm that supports the representation and subsequent
retrieval of the individual document components
defined by the document’s logical structure. Aggrega-
tion-based structured text retrieval defines (i) the rep-
resentation of each document component as the
aggregation of the representation of its own informa-
tion content and the representations of information
content of its structurally related components, and
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(ii) retrieval of document components based on these
(aggregated) representations.

The aim of aggregation-based approaches is to
improve retrieval effectiveness by capturing and
exploiting the interrelations among the components
of structured text documents. The representation of
each component’s own information content is gener-
ated at indexing time. The recursive aggregation of
these representations, which takes place at the level of
their indexing features, leads to the generation, either
at indexing or at query time, of the representations
of those components that are structurally related with
other components.

Aggregation can be defined in numerous ways; it
is typically defined so that it enables retrieval to focus
on those document components more specific to
the query or to each document’s best entry points,
i.e., document components that contain relevant in-
formation and from which users can browse to further
relevant components.

Historical Background

A well-established Information Retrieval (IR) tech-
nique for improving the effectiveness of text retrieval
(i.e., retrieval at the document level) has been the
generation and subsequent combination of multiple
representations for each document [3]. To apply this
useful technique to the text retrieval of structured text
documents, the typical approach has been to exploit
their logical structure and consider that the individual
representations of their components can act as the dif-
ferent representations to be combined [11]. This defini-
tion of the representation of a structured text document
as the combination of the representations of its compo-
nents was also based on the intuitive idea that the infor-
mation content of each document consists of the
information content of its sub-parts [2,6].

As the above description suggests, these combina-
tion-based approaches, despite restricting retrieval only
at the document level, assign representations not only
to documents, but also to individual document compo-
nents. To generate these representations, structured
text documents can simply be viewed as series of
non-overlapping components (Figure la), such as
title, author, abstract, body, etc. [13]. The proliferation
of SGML and XML documents, however, has led to the
consideration of hierarchical components (Figure 1b),
and their interrelated representations [1]. For these

(disjoint or nested) document components, the combi-
nation of their representations can take place (i) directly
at the level of their indexing features, which typically
correspond to terms and their statistics (e.g., [13]), or
(ii) at the level of retrieval scores computed indepen-
dently for each component (e.g., [15]). Overall, these
combination-based approaches have proven effective for
the text retrieval of structured text documents
[11,13,15].

Following the recent shift towards the structured
text retrieval paradigm [2], which supports the retriev-
al of document components (including whole docu-
ments), it was only natural to try to adapt these
combination-based approaches to this new require-
ment for retrieval at the sub-document level. Here,
the focus is on each document component: its repre-
sentation corresponds to the combination of its own
representation with the representations of its structur-
ally related components, and its retrieval is based on
this combined representation. Similarly to the case of
combination-based approaches for text retrieval, two
strands of research can be identified: (i) approaches
that operate at the level of the components’ indexing
features (e.g., [12]), referred to as aggregation-based
structured text retrieval (described in this entry), and
(ii) approaches that operate at the level of retrieval
scores computed independently for each component
(e.g., [14]), referred to as propagation-based structured
text retrieval.

Figure 2b illustrates the premise of aggregation-
and propagated-based approaches for the simple struc-
tured text document depicted in Figure 2a. Since
these approaches share some of their underlying
motivations and assumptions, there has been a cross-
fertilisation of ideas between the two. This also implies
that this entry is closely related to the entry on
propagation-based structured text retrieval.

Foundations

Structured text retrieval supports, in principle, the
representation and subsequent retrieval of document
components of any granularity; in practice, however, it
is desirable to take into account only document com-
ponents that users would find informative in response
to their queries [1,2,4,6]. Such document components
are referred to as indexing units and are usually chosen
(manually or automatically) with respect to the
requirements of each application. Once the indexing
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units have been determined, each can be assigned a
representation of its information content, and, hence,
become individually retrievable.

Aggregation-based structured text retrieval appro-
aches distinguish two types of indexing units: atomic
and composite. Atomic components correspond to
indexing units that cannot be further decomposed,
i.e.,, the leaf components in Figure 1b. The repres-
entation of an atomic component is generated by

considering only its own information content. Compo-
site components, on the other hand, i.e., the non-leaf
nodes in Figure 1b, correspond to indexing units
which are related to other components, e.g., consist
of sub-components. In addition to its own informa-
tion content, a composite component is also depen-
dent on the information content of its structurally
related components. Therefore, its representation can
be derived via the aggregation of the representation of its
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Aggregation-Based Structured Text Retrieval. Figure 2. Simple example illustrating the differences between

aggregation- and propagation-based approaches.

own information content with the representations of the
information content of its structurally related compo-
nents; this aggregation takes place at the level of their
indexing features. Given the representations of atomic
components and of composite components’ own infor-
mation content, aggregation-based approaches recur-
sively generate the aggregated representations of
composite components and, based on them, perform
retrieval of document components of varying
granularity.

In summary, each aggregation-based approach
needs to define the following: (i) the representation
of each component’s own information content, (ii) the
aggregated representations of composite components,
and (iii) the retrieval function that uses these repre-
sentations. Although these three steps are clearly inter-
dependent, the major issues addressed in each step
need to be outlined first, before proceeding with the
description of the key aggregation-based approaches in
the field of structured text retrieval.

1. Representing each component’s own information

content: In the field of text retrieval, the issue of

representing documents with indexing features that
provide a characterisation of their information content
has been extensively studied in the context of several IR
retrieval models (e.g., Boolean, vector space, probabi-
listic, language models, etc.). For text documents, these
indexing features typically correspond to term statis-
tics. Retrieval functions produce a ranking in response
to a user’s query, by taking into account the statistics of
query terms together with each document’s length.
The term statistics most commonly used correspond
to the term frequency tf (t, d) of term fin document d
and to the document frequency df (¢, C) of term ¢ in the
document collection C, leading to standard tf x idf
weighting schemes.

Structured text retrieval approaches need to generate
representations for all components corresponding to
indexing units. Since these components are nested, it
is not straightforward to adapt these term statistics
(particularly document frequency) at the component
level [10]. Aggregation-based approaches, on the
other hand, directly generate representations only for
components that have their own information content,
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while the representations of the remaining compo-
nents are obtained via the aggregation process. There-
fore, the first step is to generate the representations of
atomic components and of the composite components’
own information content, i.e., the content not contained
in any of their structurally related components. This
simplifies the process, since only disjoint units need
to be represented [6], as illustrated in Figure 3 where
the dashed boxes enclose the components to be repre-
sented (cf. [5]).

Text retrieval approaches usually consider that
the information content of a document corresponds
only to its textual content, and possibly its metadata
(also referred to as attributes). In addition to that,
structured text retrieval approaches also aim at repre-
senting the information encoded in the logical structure
of documents. Representing this structural information,
i.e., the interrelations among the documents and their
components, enables retrieval in response to both con-
tent-only queries and content-and-structure queries.

Aggregation-based approaches that only represent
the textual content typically adapt standard represen-
tation formalisms widely employed in text retrieval

approaches to their requirements for representation
at the component level (e.g., [9,11]). Those that con-
sider richer representations of information content
apply more expressive formalisms (e.g., various logics
[2,4]).

2. Aggregating the representations: The concept
underlying aggregation-based approaches is that of
augmentation [4]: the information content of a docu-
ment component can be augmented with that of its
structurally related components. Given the already
generated representations (i.e., the representations of
atomic components and of composite components’
own information content), the augmentation of com-
posite components is performed by the aggregation
process.

The first step in the aggregation process is the
identification 