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Preface

The 6th Conference on Security and Cryptography for Networks (SCN 2008)
was held in Amalfi, Ttaly, on September 10-12, 2008. The first four editions of
the conference where held in Amalfi, while, two years ago, the fifth edition was
held in the nearby Maiori. This year we moved back to the traditional location.

Security and privacy are increasing concerns in computer networks such as
the Internet. The availability of fast, reliable, and cheap electronic communica-
tion offers the opportunity to perform, electronically and in a distributed way,
a wide range of transactions of a most diverse nature. The conference brought
together researchers in the fields of cryptography and security in communication
networks with the goal of fostering cooperation and exchange of ideas. The main
topics of the conference this year included anonymity, implementations, authen-
tication, symmetric-key cryptography, complexity-based cryptography, privacy,
cryptanalysis, cryptographic protocols, digital signatures, public-key cryptogra-
phy, hash functions, identification.

The international Program Committee consisted of 24 members who are top
experts in the conference fields. The PC received 71 submissions and selected
26 papers for presentation at the conference. These proceedings include the 26
accepted papers and the abstract of the invited talk by Shai Halevi.

The PC selected papers on the basis of originality, quality and relevance to
the conference scope. Due to the high number of submissions, paper selection
was a difficult task and many good papers had to be rejected. Each paper was
refereed by three or four reviewers. We thank the members of the PC for the
effort invested in the selection process. We also gratefully acknowledge the help
of the external reviewers who evaluated submissions in their area of expertise.
The names of these reviewers are listed on page VIII, and we apologize for any
inadvertent omissions or mistakes.

Finally, we would like to thank the authors of all submitted papers and the
conference participants, who ultimately made this conference possible.

September 2008 R. Ostrovsky
R. De Prisco
I. Visconti
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Storage Encryption: A Cryptographer’s View

Shai Halevi

IBM Research, Hawthorne, NY, USA

shaih@alum.mit.edu

Abstract. Encryption is the bread-and-butter of cryptography, with
well-established notions of security and a large variety of schemes to meet
these notions. So what is left for researchers in cryptography to look at
when it comes to encrypting storage? In this talk I will cover cryptogra-
phy issues that arise when introducing encryption to real-world storage
systems, with some examples drawn from the work of the IEEE 1619
standard committee that deals with standardizing aspects of storage en-
cryption. The issues that I plan to touch upon include:

Encryption Schemes and Modes-of-Operation: The use of “authen-
ticated” vs. “transparent” encryption, “wide block” vs. “narrow block”
transparent encryption modes, and other considerations.

Issues with Key-Management and IV-Management: How to avoid
nonce collision when your nonces are only 96-bit long, why you may want
to use deterministic encryption for key-wrapping, what is the difference
between key-wrapping and KEM/DEM, and related questions.

Self-Encryption of Keys: Can an encryption scheme remain secure
when used to encrypt its own secret key? It turns out that this require-
ment sometimes comes up when encrypting storage. I will talk about
several aspects of this problem, including the not-so-bad, the bad, and
the ugly.

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, p. 1, 2008.
© Springer-Verlag Berlin Heidelberg 2008



Implementing Two-Party Computation
Efficiently with Security Against Malicious
Adversaries*

Yehuda Lindell!, Benny Pinkas?, and Nigel P. Smart?

! Dept. Of Computer Science,
Bar Ilan University,
Ramat Gan, Israel

lindell@cs.bju.ac.il

2 Dept. of Computer Science,
University of Haifa
Haifa 31905, Israel
benny@pinkas.net

3 Dept. Computer Science,
University of Bristol,
Woodland Road, Bristol, BS8 1UB, United Kingdom

nigel@cs.bris.ac.uk

Abstract. We present an implementation of the protocol of Lindell and
Pinkas for secure two-party computation which is secure against mali-
cious adversaries [I3]. This is the first running system which provides
security against malicious adversaries according to rigorous security def-
inition and without using the random oracle model. We ran experiments
showing that the protocol is practical. In addition we show that there is
little benefit in replacing subcomponents secure in the standard model
with those which are only secure in the random oracle model. Throughout
we pay particular attention to using the most efficient subcomponents in
the protocol, and we select parameters for the encryption schemes, com-
mitments and oblivious transfers which are consistent with a security
level equivalent to AES-128.

1 Introduction

Secure multi-party computation is a process which allows multiple participants
to implement a joint computation that, in real life, may only be implemented
using a trusted party. The participants, each with its own private input, com-
municate without the help of any trusted party, and can compute any function

* The first author was supported by The Israel Science Foundation (grant No. 781/07)
and by an Infrastructures grant from the Israeli Ministry of Science. The other au-
thors were supported by the European Union under the FP7-STREP project CACE.
The second author was also supported by The Israel Science Foundation (grant
No. 860/06).

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 2-20] 2008.
© Springer-Verlag Berlin Heidelberg 2008



Implementing Two-Party Computation 3

without revealing information about the inputs (except for the value of the func-
tion). A classic example of such a computation is the Millionaires’ problem, in
which two millionaires want to know who is richer, without revealing their actual
worth.

Multi-party computation has been considered by the theoretical cryptography
community for a long time, starting with the pioneering work of Yao [24] in 1986.
Yao’s garbled circuit construction is relatively simple, and runs in a constant
number of rounds. Yao’s construction still remains the most attractive choice
for generic secure two-party computation.

In recent years attention has focused on whether the theoretical work has any
practical significance. In the two-party case the main contribution has been the
FairPlay compiler [I5], which is a generic tool translating functions written in
a special high-level language to Java programs which execute a secure protocol
implementing them. There are two major drawbacks with the current FairPlay
implementation. Firstly it only provides weak security against malicious adver-
saries (where reducing the cheating probability to 1/k requires increasing the
overhead by a factor of k), and has no proof of security (in particular, it is clear
that it cannot be proven secure under simulation-based definitions). As such, its
usage can only be fully justified for providing security against honest but curious
(aka semi-honest) adversaries[] Secondly it does not make use of the latest and
most efficient constructions of its various component parts.

In recent years the theoretical community has considered a number of ways
of providing a variant of Yao’s protocol which is secure against malicious ad-
versaries. In the current paper we examine one of the more recent and efficient
protocols for providing security for Yao’s protocol against malicious adversaries,
namely the protocol of Lindell and Pinkas [I3] which is proved to be secure ac-
cording to a standard simulation based definition, and as such can be securely
used as a primitive in more complex protocols (see [8, Chapter 7], which in turn
follows [6]).

Our work presents the following contributions:

— We provide an efficient implementation of the protocol of [13], which is se-
cure against malicious adversaries. This is, to our best knowledge, the first
implementation of a generic two-party protocol that is secure against mali-
cious adversaries according to a standard simulation based definition. The
implementation demonstrates the feasibility of the use of such protocols.

— We derive a number of optimizations and extensions to the protocol and to
the different primitives that it uses. Unlike prior implementations we pay
particular attention to using the most efficient constructions for the vari-
ous components. For example we use elliptic curve based oblivious transfer
protocols instead of finite field discrete logarithm based protocols.

! The cryptographic community denotes adversaries which can operate arbitrarily as
“malicious”. Semi-honest (or honest but curious) adversaries are supposed to follow
the protocol that normal users are running, but they might try to gain information
from the messages they receive in the protocol. It is, of course, easier to provide
security against semi-honest adversaries.
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— We also examine the difference between using protocols which are secure in
the random oracle model (ROM) and protocols in the standard model @ Of
particular interest is that our results show that there appears to be very
little benefit in using schemes which are secure in the ROM as opposed to
the standard model

1.1 Related Work

Research on security against malicious adversaries for computationally secure
protocols started with the seminal GMW compiler [9]. As we have mentioned,
we base our work on the protocol of [I3], and we refer the reader to that work
for a discussion of other approaches for providing security against malicious
adversaries (e.g., [IATTI23]). We note that a simulation based proof of security
(as in [13]) is essential in order to enable the use of a protocol as a building
block in more complex protocols, while proving the security of the latter using
general composition theorems like those of [6I8]. This is a major motivation
for the work we present in this paper, which enables efficient construction of
secure function evaluation primitives that can be used by other protocols. (For
example, the secure protocol of [2] for finding the k'" ranked element is based on
invoking several secure computations of comparisons, and provides simulation
based security against malicious adversaries if the invoked computations have a
simulation based proof. Our work enables to efficiently implement that protocol.)

The first generic system implementing secure two-party computation was Fair-
Play [I5], which provided security against semi-honest adversaries and limited se-
curity against malicious adversaries (see discussion above). FairPlayMP is a generic
system for secure multi-party computation, which only provides security against
semi-honest adversaries [3]. Another system in the multi-party scenario is SIMAP,
developing a secure evaluation of an auction using general techniques for secure
computation [Bl4]. It, too, supports only security against semi-honest adversaries.

1.2 Paper Structure

Section Plintroduces Yao’s protocol for secure two-party computation, while Sec-
tion [3] presents the protocol of [I3] which is secure against malicious adversaries.
Section Ml presents the different efficient sub-protocols that we used. Finally,
Section [B] presents the results of our experiments.

2 A random oracle is a function which is modeled as providing truly random answers.
This abstraction is very useful for proving the security of cryptographic primitives.
However, given any specific implementation of a function (known to the users who
use it), this assumption no longer holds. Therefore it is preferable to prove security
in the standard model, namely without using any random oracle.

This is surprising since for more traditional cryptographic constructions, such as
encryption schemes or signature schemes, the random oracle constructions are almost
always twice as efficient in practice compared to the most efficient standard model
schemes known. Part of the reason for the extreme efficiency of our standard model
constructions is our use of a highly efficient oblivious transfer protocol which reduces
the amortized number of zero-knowledge proofs which are required to be performed.
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2 Yao’s Garbled Circuit

Two-party secure function evaluation makes use of the famous garbled circuit
construction of Yao [24]. In this section we briefly overview the idea. Note, how-
ever, that the following basic protocol is not secure against malicious adversaries,
which is why the advanced protocol in the next section is to be preferred. The
basic idea is to encode the function to be computed via a Binary circuit and
then to securely evaluate the circuit on the players’ inputs.

We consider two parties, denoted as P; and P,, who wish to compute a func-
tion securely. Suppose we have a simple Binary circuit consisting of a single
gate, the extension to many gates given what follows is immediate. The gate has
two input wires, denoted wy and wsy, and an output wire ws. Assume that P;
knows the input to wire wy, which is denoted by, and that P, knows the input to
wire wo, which is denoted by. We assume that each gate has a unique identifier
Gid (this is to enable circuit fan out of greater than one, i.e. to enable for the
output wire of a gate to be used in more than one other gate). We want P» to
determine the value of the gate on the two inputs without P; learning anything,
and without P, determining the input of P; (bar what it can determine from
the output of the gate and its own input). We suppose that the output of the
gate is given by the function G(b1,b2) € {0,1}.

Yao’s construction works as follows. P; encodes, or garbles, each wire w; by
selecting two different cryptographic keys kY and k} of length ¢, where t is a
computational security parameter which suffices for the length of a symmetric
encryption scheme. In addition to each wire it associates a random permutation
m; of {0,1}. The garbled value of the wire w; is then represented by the pair
(K%, ¢;), where ¢; = m;(b;).

An encryption function Ej . (m) is selected which has as input two keys
of length ¢, a message m, and some additional information s. The additional
information s must be unique per invocation of the encryption function (i.e.,
used only once for any choice of keys). The precise encryption functions used are
described in Section LIl The gate itself is then replaced by a four entry table
indexed by the values of ¢; and co, and given by

. Gid”(,'lHCQ G(bl,bg)
C1,Co E k3 ||Cg s

by 4 ba
kit ko

where by = 71 ! (c1), by = 5 *(c2), and ¢z = 73(G (b1, b2)). Note that each entry
in the table corresponds to a combination of the values of the input wires, and
contains the encryption of the garbled value corresponding to these values of the
input wires, and the corresponding ¢ value. The resulting look up table (or set
of look up tables in general) is called the Garbled Circuit.

P, then sends to P, the garbled circuit, its input value kll’l, the value ¢; =
m1(b1), and the mapping from the set {k$,ki} to {0,1} (i.e. the permutation
m3). P and P, engage in an oblivious transfer (OT) protocol so that Py learns
the value of k32,02 where ¢y = ma(b2). P can then decrypt the entry in the
look up table indexed by (c1,c2) using kll’l and kg"’; this will reveal the value of
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k3G (bl’b2)||C3 and P, can determine the value of G(b1,b2) by using the mapping
75 ! from the set ¢ to {0,1}.

In the general case the circuit consists of multiple gates. P; chooses random
garbled values for all wires and uses them for constructing tables for all gates.
It sends these tables (i.e., the garbled circuit) to Ps, and in addition provides P,
with the garbled values and the ¢ values of P;’s inputs, and with the permutations
7 used to encode the output wires of the circuit. P, uses invocations of oblivious
transfer to learn the garbled values and ¢ values of its own inputs to the circuits.
Given these values P, can evaluate the gates in the first level of the circuit, and
compute the garbled values and the ¢ values of the values of their output wires.
It can then continue with this process and compute the garbled values of all
wires in the circuit. Finally, it uses the m permutations of the output wires of
the circuit to compute the real output values of the circuit.

Traditionally, for example in hardware design, one uses circuits which are
constructed of simple gates which take at most two inputs and produce as most
one output. In a Yao circuit a gate which takes n inputs and produces m outputs
is encoded as a look up table which has 2™ rows, each consisting of a string of
O(m - t) bits (where ¢ is the security parameter which denotes the length of a
key). Hence, it is often more efficient to use non-standard gates in a Yao circuit
construction. For example a traditional circuit component consisting of k 2-to-1
gates, with n input and m output wires can be more efficiently encoded as a
single n-to-m gate if 4k > 2". In what follows we therefore assume the more
suitable n-to-m gate construction. The extension of the above gate description
to this more general case is immediate.

3 The Lindell-Pinkas Protocol

The protocol was presented in [I3] and was proved there to be secure according
to the real/ideal-model simulation paradigm [6I8]. The proof is in the standard
model, with no random oracle model or common random string assumptions. We
describe below the protocol in some detail, for full details see [I3]. We remark
that this description is not essential in order to understand the results of our
paper. The important things to note are the basic structure of the protocol,
as described in the next paragraph, and the fact that the protocol is based
on the use of different types of commitments (statistically binding, statistically
hiding, and computational), and of an oblivious transfer protocol. We describe
the implementation of these primitives in Section Ml

The basic structure of the protocol: The protocol proceeds in the following
steps. It has statistical security parameters s; and so. We replace P»’s input wires
with a new set of O(sz) input wires, and change the original circuit by adding
to it a new part which translates the values of the new input wires to those of
the original wires. Then P; generates s; copies of Yao circuits and passes them
to Py, along with O(s?) commitments to the inputs. The input decommitments
for P;’s inputs are transferred to P, via a batched oblivious transfer. Finally,
after executing a number of cut-and-choose checks on the transferred circuits and
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commitments, P, evaluates half of the circuits and determines the output value
as the majority value of the outputs of these circuits. One of the contributions
of this paper is to examine each of the above operations in turn and optimize
the parameters and components used in the Lindell-Pinkas description.

3.1 The Protocol in Detail

As explained in [I3] it suffices to present a protocol for the case where the output
is learnt by P, and P; learns nothing. We consider the computation of f(z,y)
where Py’s input is « € {0,1}™ and P»’s input is y € {0,1}™.

The protocol is parameterized by two statistical security parameters s; and ss.
(In [I3] these are a single statistical security parameter but we shall see later that
in order to optimize performance these parameters really need to be treated sepa-
rately.) The protocol takes as input a circuit description C°(z, i) which describes
the function f(x,y). We use the notation comy, to refer to a statistically binding
commitment scheme, comy, to refer to a statistically hiding commitment scheme,
and com, to refer to a commitment scheme which is only computationally binding
and hiding. See Section [ for our precise choice of these protocols.

The protocol itself is quite elaborate, but, as demonstrated in Section [, it
can be implemented quite efficiently.

0. CIRCUIT CONSTRUCTION: The parties replace C°, in which P, has n input
wires, with a circuit C' in which P has £ input wires, where £ = max(4n, 8s3).
The only difference between the circuits is that each original input wire of P
in O is replaced with an internal value which is computed as the exclusive-
or of a random subset of the ¢ input wires of C. (Given an input to the
original circuit, P, should therefore choose a random input to the new circuit,
subject to the constraint that the internal values are equal to the original
input values.) The exact construction is presented in Section 5.2 of [I3]. (In
order to avoid unnecessary extra gates in the circuit segment that computes
the original input wires as a function of the new input wires, we designed
the exact wiring using a variant of structured Gaussian elimination.)

We let the new input wires of P» be given by § < ¢1,..., .

1. COMMITMENT CONSTRUCTION: Py constructs the circuits and commits to
them, as followsﬂ
(a) Py constructs s; independent copies of a garbled circuit of C, denoted

GCy,...,GCy,.

(b) Py commits to the garbled values of the wires corresponding to P»’s input
to each circuit. That is, for every input wire ¢ corresponding to an input
bit of Py, and for every circuit GC,., P; computes the ordered pair

(C?,Tﬂ Czl,r) — (Comc(k?,r)ﬂ Comc(kil,r))a
where k?ﬁr is the garbled value associated with b on input wire % in circuit
GC,.. We let (dc?’T, dc})r) denote the associated decommitment values.

4 In [13] this commitment is done with a perfectly binding commitment scheme, how-
ever one which is computationally binding will suffice to guarantee security.
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(¢) Py computes commitment-sets for the garbled values that correspond
to its own inputs to the circuits. That is, for every wire ¢ that corre-
sponds to an input bit of P;, it generates s; pairs of commitment sets
Wi ;, W, }] 1, in the following way:

Denote by kP the garbled value that was assigned by P; to the value
be{0,1} of ere i in GC,. Then, P; chooses b < {0,1} and computes

Wi« <comc(b),comc(kf)l)7 .. .,comp(kfsl»
W”» — <comc(1—b),comc(ki15b)7. comc(kllglb».

There are a total of n - s; commitment-sets (s; per input wire). We
divide them into s; supersets, where superset S; is defined to be the set
containing the jth commitment set for all wires. Namely, it is defined as
Sj ={(Wh.js Wi ;) Yy -

2. OBLIVIOUS TRANSFERS: For every input bit of P, parties P, and P, run a
1-out-of-2 oblivious transfer protocol in which P; receives the garbled values
for the wires that correspond to its input bit (in every circuit).

Let 41,...,1, be the input wires that correspond to P»’s input, then, for
every j = 1,...,w, parties P; and P> run a l-out-of-2 OT protocol in which:
(a) Pi’sinput is the pair of vectors [dcf, 1,...,dc], ], and [de}, 4, ..., dc;

15, 51] Zj,Sl]'

(b) P»’s input are the bits ¢;, and its output should be [dcZ RTERE dcfj e

3. SEND CIRCUITS AND COMMITMENTS: P; sends to P, the garbled circuits, as
well as all of the commitments that it prepared above.

4. PREPARE CHALLENGE STRINGS:

(a) P2 chooses a random string ps < {0,1}** and sends comy,(p2) to Pi.
(b) Py chooses a random string p; € {0,1}°* and sends comy(p1) to Ps.

(¢) P, decommits, revealing ps.

(d) Py decommits, revealing p;.

(e) Py andPy set p — p1 @ pa.

The above steps are run a second time, defining an additional string p'.

5. DECOMMITMENT PHASE FOR CHECK-CIRCUITS: We refer to the circuits for
which the corresponding bit in p is 1 as check-circuits, and we refer to the
other circuits as evaluation-circuits. Likewise, if the jth bit of p’ equals 1,
then all commitments sets in superset S; = {(W ijs Wi ;) }ie, are referred to
as check-sets; otherwise, they are referred to as evaluatlon—sets.

For every check-circuit GC,., party P; operates in the following way:
(a) For every input wire ¢ corresponding to an input bit of P, party P de-
commits to the pair (¢, ¢} ).
(b) For every input wire i corresponding to an input bit of Py, party P; de-
commits to the appropriate values in the check-sets {W; ;, W/ ;}.
For every pair of check-sets (W; mW ), party P; decommits to the first
value in each set i.e., to the value that is supposed to be a commitment to
the indicator bit, com(0) or com(1)).

® In [I3] it is proposed to use perfectly binding and computationally hiding com-
mitments here, but statistically binding and computationally hiding commitments
actually suffice.
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6. DECOMMITMENT PHASE FOR P;’S INPUT IN EVALUATION-CIRCUITS: P; de-
commits to the garbled values that correspond to its inputs in the evaluation-
circuits.

7. CORRECTNESS AND CONSISTENCY CHECKS: Player P, performs the following
checks; if any of them fails it aborts.

(a) Checking correctness of the check-circuits: Py verifies that each check-
circuit GC; is a garbled version of C.

(b) Verifying Py’s input in the check-circuits: Py verifies that P;’s decom-
mitments to the wires corresponding to P’s input values in the check-
circuits are correct, and agree with the logical values of these wires
(the indicator bits). P, also checks that the inputs it learned in the
oblivious transfer stage for the check-circuits correspond to its actual
input.

(¢) Checking Py’s input to evaluation-circuits: Finally, P, verifies that for
every input wire ¢ of P; the following two properties hold:

i. In every evaluation-set, P, chooses one of the two sets and decom-
mitted to all the commitments in it which correspond to evaluation-
circuits.

ii. For every evaluation-circuit, all of the commitments that P; opened
in evaluation-sets commit to the same garbled value.

8. CIRCUIT EVALUATION: If any of the above checks fails, P, aborts and outputs
L. Otherwise, P, evaluates the evaluation circuits (in the same way as for the
semi-honest protocol of Yao). It might be that in certain circuits the garbled
values provided for P;’s inputs, or the garbled values learned by P» in the
OT stage, do not match the tables and so decryption of the circuit fails. In
this case P» also aborts and outputs L. Otherwise, P> takes the output that
appears in most circuits, and outputs it.

3.2 The Statistical Security Parameters

The protocol uses two statistical security parameters, s; and so. The parame-
ter s1 is mainly used to prevent P; from changing the circuit that is evaluated,
or providing inconsistent inputs to different copies of the circuit. The protocol
requires Py to provide s; copies of the garbled circuit, and provide (s1)? commit-
ments for each of its input bits. The security proof in [I3] shows that a corrupt
P; can cheat with a success probability that is exponentially small in s;. The
original proof in [I3] bounds the cheating probability at 2-51/17 which would
require a large value of s; in order to provide a meaningful security guarantee.
We conjecture that a finer analysis can provide a bound of 27°1/4 and in the
full version of this paper we intend to prove this; this conjecture is based on an
analysis of a similar problem that was shown in [I0]. A bound of 2751/4 would
mean that a relatively moderate value of s; can be used [

6 The experiments in Section ] assume a bound of 2751/4 The overhead of different
parts of the protocol is either linear or quadratic in s;. If we end up using a worse
bound of 27%1/¢, where 4 < ¢ < 17, the timings in the experiments will be increased
by factor in the range c¢/4 to (c/4)%.
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The parameter sy is used to prevent a different attack by P;, in which it
provides corrupt values to certain inputs of the oblivious transfer protocol and
then uses P»’s reaction to these values to deduce information about P»’s inputs
(see [I3] for details). It was shown that setting the number of new inputs to be
¢ = max(4n, 8s2) bounds the success probability of this type of attack by 2752.
The values of s; and so should therefore be chosen subject to the constraint
that the total success probability of a cheating attempt, max(2~51/4,2752)  is
acceptable. Therefore, one should set s; = 4s5.

3.3 Optimizing the Protocol Components

The protocol uses many components, which affect its overall overhead. These
include the encryption scheme, the commitment schemes, and oblivious transfer.
Much of our work was concerned with optimizing these components, in order to
improve the performance of the entire protocol. We describe in the next section
the different optimizations that we applied to the different components.

4 Subprotocols

To implement the above protocol requires us to define a number of sub-protocols:
various commitment schemes, OT protocols and encryption schemes. In what fol-
lows we select the most efficient schemes we know of, in both the random oracle
model (ROM) and the standard model. We assume that the concrete computa-
tional security parameter (as opposed to the statistical security parameter) is
given by ¢. By this we mean that we select primitives which have security equiv-
alent to t bits of block cipher security. Thus we first select an elliptic curve E of
prime order ¢ ~ 22!, and a symmetric cryptographic function with a ¢-bit key.

Elliptic curve. We let (P) = (Q) = E, an elliptic curve of prime order q ~ 2%,
where no party knows the discrete logarithm of Q with respect to P.

Symmetric cryptographic function. The function that will be used for sym-
metric key cryptography is defined as a key derivation function KDF(m, 1), which
takes an input string m and outputs a bit string of length {. We use the KDF
defined in ANSI X9.63, which is the standard KDF to use in the elliptic curve
community [19]. Tt is essentially implemented as encryption in CTR mode where
the encryption function is replaced by the SHA-1 hash function.

4.1 Encryption Scheme for Garbled Circuits

The encryption scheme Ef (m) used to encrypt the values in the Yao circuit
is defined by the algorithms in Figure[ll We assume that k; € {0,1}'. The ROM
version is secure on the assumption that the function KDF is modelled as a
random oracle, whilst the standard model scheme is secure on the assumption
that KDF(k||s,l) is a pseudo-random function, when considered as a function
on s keyed by the key k. We remark that the encryption is secure as long as
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the string s is used only once for any choice of key k. Note that the non-ROM
version requires two invocations of the KDF, since we do not know how to
analyze the security of a pseudo-random function if part of its key is known to
an adversary (namely, if we use KDF (k1| k2]|s, |m]|), where KDF is modeled as a
pseudo-random function, ks is secret and k1 is known to an adversary, we cannot
argue that the output is pseudo-random).

Input: Keys ki, k2 of length ¢, and a string s. For encryption an [-bit message m in
also given. For decryption, an [-bit ciphertext c is given.

ROM Version Non-ROM Version
Encryption Ej, ,,(m) Encryption Ej .. (m)
1. k « KDF (k1] k2]|s, |m]|). 1. k — KDF(k1||s, |m|).
2. c—k®dm. 2. k' — KDF(kz||s, |m|).
3.c—makaok
Decryption
Decryption
1. k < KDF (k1| k2]|s, |m]).
2. m—k&ec 1. k «— KDF(k1]|s,|c])-
3. Return m. 2. k' — KDF(kz||s,]|c|)-
3. me—chkdk.
4. Return m.

Fig. 1. ROM and non-ROM encryption algorithms for the Yao circuits

4.2 Commitment Schemes

Recall we have three types of commitment schemes; statistically binding, statis-
tically hiding and computationally binding/hiding, to commit to a value m €
{0,1}%. (Note that the elliptic curve E is of order q ~ 2% and so we can view m
as a number in Zg if desired.)

A Statistically Binding Commitment : comy(m)

We define the statistically binding commitment scheme as in Figure[2l The ran-
dom oracle model based scheme is statistically binding, since to break the binding
property we need to find collisions in the hash function H. Since H is modelled
as a random oracle, the probability of any adversary finding a collision given
a polynomial number of points of H is negligible, even if it is computationally
unbounded. The scheme is also computationally hiding by the fact that H is
modelled as a random oracle (in fact, it’s even statistically hiding if the adver-
sary is limited to a polynomial number of points of H). The non-ROM scheme
is statistically binding because P and c¢; fully determine r, which together with
Q@ and c¢o in turn fully determine m. The fact that it is computationally hiding
follows directly from the DDH assumption over the elliptic curve used.
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ROM Version Non-ROM Version
H is a hash function modeled as a random P and @ are elements on an elliptic
oracle. curve, as described above.
Commitment comy(m) Commitment comy(m)
1. 7« {0,1}". 17— Zg.
2. ¢« H(ml|r). 2. ¢1 < [r]P.
3. Return c. 3. ¢ — [r][m]Q.
4. Return (cq1,c2).
Decommitment
Decommitment
1. Reveal m and r.
2. Check if ¢ = H(m||r). 1. Reveal m and r.
3. Return m. 2. Check if ¢; = [r]P.
3. Check if ¢o = [r][m]Q.
4. Return m.

Fig.2. ROM and non-ROM statistically binding commitment schemes

The Statistically Hiding Commitment : comp,(m)
For the statistically hiding commitment scheme we use the Pederson commit-

ment [18]:
comy,(m) — [r]P + [m]Q

where r is a random number of size ¢ and we treat m as an integer modulo gq.
Note that 0 < m < 2! < ¢ < 2%, Decommitment is performed by revealing r
and m, and then verifying the commitment is valid. This is actually a perfectly
hiding commitment (since given comy(m) there exists, for any possible value
of m/, a corresponding value ' for which comy(m) = [r']P + [m/]Q) and so in
particular the commitment is also statistically hiding. That the commitment is
computationally binding follows from the fact that any adversary who can break
the binding property can determine the discrete logarithm of Q with respect to P.

A Computational Commitment Scheme : com.(m)

We use the ROM version of the statistically binding commitment scheme in
Figure 2] for both the ROM and non-ROM commitments here. This is clearly
suitable in the ROM. Regarding the non-ROM case, this scheme is computation-
ally binding on the assumption that H is collision-resistant. Furthermore, it is
computationally hiding when H (m/||r) is modelled as a PRF with key r and mes-
sage m. We remark that when m is large, this latter assumption clearly does not
hold for typical hash functions based on the Merkle-Damgard paradigm (where
given H(k|/m) one can easily compute H (k|m|m’) for some m’). However, it
is reasonable when m fits into a single iteration of the underlying compression
function (as is the case here where m € {0,1}" and ¢ is a computational security
parameter which we set to the value t = 128.).
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4.3 Oblivious Transfer

Recall in our main protocol we need to perform w = max(4n,8ss) 1-out-of-
2 oblivious transfers in Stage 2. We batch these up so as to perform all the
OT’s in a single batch. The OT’s need to be performed in a manner which has
a simulation based proof of security against malicious adversaries, hence the
simple protocols of [T7I12] are not suitable for our purposes (the simulation
based proof is needed in order to be able to use a composition of the OT protocol
in our protocol, see [6]). We therefore use a modification of the batched version
of the protocol of Hazay and Lindell [10], which we now describe in the elliptic
curve setting. (We note that this protocol has a simulation based proof of security
in the standard model, without any usage of a random oracle.)
We assume that P;’s input is two vectors of values

[29,...,2%] and [z],...,2L],
where |29| = |2]|. Party P, has as input the bits i1,..., 4, and wishes to obtain
the vector [z}, ..., 2lv].

We assume two zero-knowledge proofs-of-knowledge protocols which we shall
describe in Appendix[Al The first, DL([z] P; z), proves, in zero-knowledge, knowl-
edge of the discrete logarithm z of [z]P; the second, DH (P, [a]P, [b]P, [ab]P),
proves that the tuple P,[a]P,[b] P,[ab] P is a Diffie-Hellman tuple.

The protocol follows. The main things to notice are that the zero-knowledge
proofs of knowledge are performed only once, regardless of the number of items
to be transfered, and that protocol is composed of only two rounds (in addition
to the rounds needed by the zero-knowledge proofs).

1. P, chooses ag, a1 € Z, and computes Qo — [ag]P and Q1 < [a1]P, it then
executes the protocol DL(Qo; cg) with party Pj.

2. For j=1,...,w party P, chooses r; € Z, and computes U; « [r;]P, Vo ; <

[r;]1Qo + [i]P, Vi ; < [r;]Q1 + [i;]P. These values are then sent to P;.

Py chooses pj € Zg, for j =1,...,w and sends them to P.

4. Both parties then locally compute

©w

w

U= lplUj V= lp](Vo,; —Viy)

j=1 j=1

Party P, executes the protocol DH (P, Qo — Q1,U, V) with party Pj.
5. For j =1,...,w P; then performs the following steps:

(a) Select Ry j, R1; € (P) at random.

(b) Select So)j,to’j, Sl)j,tl’j S Zq.

(C) Set €0,5 < (WoJ, Z()J,]/OJ) where

Wo,j < [50,5]U + [to,5] P,

Zo,5 < [50,j]Vo + [to,;]Qo + Ro,j,
Yo,j < x? (&) KDF(ROJ‘, |1‘?|)
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(d) Set ey j «— (Wi, Z1,91,5) where

Wi j « [s1;]U + [t1,5]P,
Zyj — [s15](Vi = P) + [t15]Q1 + Ry j,
Yi,j < le @ I(DF(]%L]‘7 \le\)

The values (eg,j,e1,;) are then sent to P for each value of j.
6. For j =1,...,w, party P, then computes

R— Z;; j — i ;]Wi, 5

and outputs ‘ ‘
xj —yi, ; ©KDF(R, [27]).

For each index in the vector of inputs, the protocol requires P; to perform 10
multiplications, and P, to perform 8 multiplications. (This is without consider-
ing the zero-knowledge proofs, which are performed once in the protocol.) The
security of the above scheme is fully proven in [I0], with the only exception that
here a KDF is used to derive a random string in order to mask (i.e., encrypt) the
9 and z} values (in [10] it is assumed that 2 and 2} can be mapped into points
in the Diffie-Hellman group). The use of a KDF for this purpose was proven
secure in the context of hashed ElGamal in [22], on the assumption that KDF
is chosen from a family of hash functions which are entropy smoothing.

5 Timings

In our implementation we selected t = 128 as the security parameter. As a result,
we chose the KDF to be implemented by SHA-256, and as the elliptic curve E
we selected the curve secp256r1 from the SECG standard [20].

We performed a set of experiments which examined the system using a circuit
which evaluates the function x > y for inputs  and y of n = 16 bits in length.
The standard circuit (using simple 2-to-1 gates) for this problem consists of 61
2-to-1 gates and 93 internal wires. We optimized this circuit by replacing it with
a circuit consisting of 48 internal wires and fifteen 3-to-1 gates and one 2-to-1
gate. We only looked at the case of P, obtaining the result, the extension to
the first party obtaining the result is standard and requires an extension to the
circuit to be made, for which similar optimizations can be made.

The size of the modified circuit: Step 0 of the protocol replaces the circuit
with a different one which has max(4n, 8s2) input wires. The statistical security
parameter ss therefore affects the size of the circuit, both in terms of the number
of wires and the number of gates. When n < 2ss, as in our experiments, we have
8s9 new input wires. Each original input wire is replaced with the exclusive-or of
about 4ss input wires, which can be computed using 4s, — 1 gates. The circuit
therefore grows by about 4nss gates, which in our case translate to 2560 gates for
s9 = 40, and 3840 gates for so = 60. We managed to optimize this construction
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by using a variant of structured Gaussian elimination in order to reuse gates.
As a result, for the case of so = 40, the augmented circuit produced in Stage 0
has over one thousand gates and over one thousand five hundred internal wires.
If s5 is increased to 60 then the augmented circuit now has over one thousand
five hundred gates and over two thousand internal wires. The exact increase in
size depends on the random choices made in Stage 0, but the above values are
indicative.

Implementation: The program was implemented in C++ using standard li-
braries; the elliptic curve routines made use of specially written assembly func-
tions to perform the arithmetic instructions. On the machine that was used for
the experiments, and the curve we were using, the software needed 3.9 millisec-
onds for a basic multiplication, 1.2 milliseconds to multiply the fixed generator,
and 5.1 milliseconds in order to compute (aP + bQ) (using a variant of the
method described in Algorithm 14.88 of [16]).

The input to the program was a circuit represented by a text file, each line of
the text file represented a gate. For example the line

210 16 32 0100

represents a 2-to-1 gate which has input wires numbered 0 and 16 and produces
the output wire 32. The value of the gate is given by the string which follows.
The above example implements a two-bit “less than” gate, namely it will output
a 1 on wire 32 only if wg < wsg, i.e. the value of wire 0 is zero and the value of
wire 16 is one.

Experiments: We performed a set of experiments with different values of the
statistical security parameters s; and ss, and using both the ROM and standard
model versions of the protocol. The run times, in seconds, are presented in Table
Ml and are reported for each step of the protocol. Timings are performed using
the standard Linux system timing facilities, and are as such only indicative.
The wall time is measured using the standard time function and the system and
user times are measured using the getrusage function. The wall time represents
the elapsed wall clock time in running the program, the user time represents
the amount of time each party actually performed some computation, whereas
the syst time represents the time spent by each party in system routines (for
example transmitting data, or writing to disk, etc.). All timings were performed
on an Intel Core 2 6420 running at 2.13 GHZ with 4096 KB of cache and 2 GB
of RAM and are given in seconds.

Basic observations: The computation is not instantaneous but overall the run
time is quite reasonable (the overall run time is about 2-3 minutes for a security
parameter s; = 160). The run time is affected, of course, by the fact that 160
copies of the circuit are being used in the computation (compared to a protocol
secure against semi-honest adversaries, which uses only a single copy of the
circuit), and the fact that each circuit is much larger than its original form (in
the experiment more than 1000 gates are added to the circuit in Step 0, where
the original circuit consisted of less than 20 gates).
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Oblivious transfers: It is a little surprising that Step 2, which includes the
oblivious transfers, is not the main bottleneck of the protocol. This is true even
though we implemented an OT protocol which is secure against malicious ad-
versaries according to a full simulation definition.

Preprocessing: About half of the run time is consumed by Step 1, where P;
prepares the circuits and the commitments. This step can be run offline, before
the inputs are known, reducing the online run time by about 50%.

Scaling: Increasing s; by a factor of ¢; increases by a factor of ¢? the number
of commitments generated by P in Step 1, and increases the number of circuits
by c1. Increasing so by a factor of c¢o increases the size of the modified part of
the circuit (which is the bulk of the circuit in our experiments) by a factor of
c2, and therefore the total size of the circuits is increased by a factor of cjcs.
In the experiments, we increased both s; and so by a factor of 1.5 (from 40 to
60, and from 160 to 240, respectively). We therefore expected the overhead to
increase by a factor of 2.25. The actual measurements showed an increase by a
factor slightly larger than 2.

We did not conduct experiments with circuits of different sizes. When all
other parameters are fixed, we expect the run time to be linear in the size of
the modified circuit (after the modifications done in Step 0). We can estimate
the size of the modified circuit as follows: If P, has n input wires in the original
circuit, then the modified circuit is expected to have about [ max(4n, 8s2) more
gates. (Applying structured Gaussian elimination can enable us to reuse gates
and minimize the size of the modified circuit.)

Performance in the ROM and in the standard model: What is interest-
ing about the timings is that there is very little difference between the timings
in the ROM and those in the standard model. In Step 1 the ROM version
is more efficient simply due to the slightly more efficient encryption scheme
used[] Given the large number of encryptions needed to produce the garbled
circuit this translates into a small advantage for the ROM version compared
to the standard-model implementation. For a similar reason one obtains a per-
formance improvement in the ROM in Step 7 in which the circuit is evaluated
by P,. The decrease in performance of the ROM compared to the standard
model in Step 3 we cannot explain, but it is likely to be caused by experimental
erTor.

In viewing the timings it should be born in mind that the main place that
the random oracle model is used is in the oblivious transfers in Step 2. At this
point we use the ROM to reduce the round complexity of the two required
zero-knowledge proofs (see Appendix [A] for details of this). However, these two

" The KDF is invoked in the standard model protocol about twice as many times
as in the ROM protocol (since the encryption function in the standard model calls
the KDF twice). The increase in the run time of Step 1 when changing the ROM
implementation to the standard-model implementation (for s; = 160) is from 60sec
to 67sec. We therefore estimate that the circuit construction (Step 1(a)) takes about
7 seconds in the ROM protocol and 14 seconds in the standard model protocol.
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proofs are only used once in the whole run of the protocol as we have batched
the oblivious transfers, and therefore the run time of Step 2 is about the same
in both the ROM and the standard model protocols.

What is surprising about the fact that the standard model is comparable in
performance to the ROM is that for simpler cryptographic functionalities, such
as encryption or signature schemes, the performance of the best ROM based
scheme is often twice as fast as the best known standard model scheme.

6 Future Work

An obvious task is to develop the current implementation into a complete system
for secure computation. In particular, the system should include a front end that
will enable users to provide a high-level specification of the function that they
want to compute, and specify the different security parameters that shall be used.
A natural approach for this task would be to modify the FairPlay compiler [15]
to support our implementation.

Table 1. Run times of our experiments

Run Times in the Random Oracle Run Times in the standard Model
Model
Step Step

Time 1 2 345 6 7 8Total Time 1 2 345 6 7 8 Total
P1,81:160, 82:40 P1,51:160, 82:40

Wall 74 20240 7 10 0 0 135 Wall 84 20240 7 7 00 142
User 60 17120 3 4 00 User 67 181005 3 00
Syst 16 2 300 0 00 Syst 15 0 500 0 00
P2,81:160, 82:40 P2,51:160, 82:40

Wall 74 20240 8 9 351 171 Wall 84 20240 7 7 402 184
User 0 8 1408 7 291 User 0 10130 7 5 324
Syst 0 01002 4 80 Syst 0 01101 3 82
P1,81:240, 82:60 P1,81:240, 82:60

Wall 159345101913 0 0 276 Wall 181354501812 0 0 291
User 1233024011 6 0 0 User 145302408 8 00

Syst 35 2 901 0 00 Syst 35 0 701 2 00
Pz, S1 = 240, So = 60 Pz, S1 = 240, S = 60

Wall 159 345101913783 358 Wall 1813545018 12875 362
User 0 12280171061 2 User 0 1223015 9 707

Syst 0 02207 5 180 Syst 0 02104 3 200

The performance of the system is greatly affected by the circuit modification in
Step 0 of the protocol, which increases the number of inputs and the size of the cir-
cuit. We implemented this step according to the randomized construction in [I3].
Another option is to use a linear error-correction code for defining the relation be-
tween the original and new input wires of the circuit. (A careful examination of
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the proof in [13] shows that this is sufficient.) We need an [N, k, d] linear binary
code which encodes k bit words into N bit words with a distance of d = sz (say,

d:

40). The parameter k corresponds to the number of original input wires of Ps,

while N corresponds to the number of new input wires. The code should satisfy
two criteria: (1) the rate k/N should be as high as possible, to keep the number
of new input wires close to the number of original input wires, and (2) the block
length & should be minimized, to enable the code to be applied (and the rate k/N
to be achieved) even if P»’s input is relatively short.
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A Zero Knowledge Proofs

We now describe the zero-knowledge proof-of-knowledge protocols required in
the OT protocol. In the ROM we use the standard Fiat-Shamir transform of an
interactive honest-verifier X-protocol into a non-interactive protocol via hashing
the commitment with the random oracle so as to produce the random challenge.

In the standard model we need to cope with non-honest verifiers by getting
the verifier to commit to his challenge before the prover’s commitment is is-
sued. We use a highly-efficient transformation described in [I0] to transform an
honest-verifier Sigma protocol to a protocol that is a zero-knowledge proof of
knowledge (the transformation is proven secure under the assumption that the
discrete logarithm problem is hard and hence is highly suitable for proofs of
Diffie-Hellman type statements).

A.1 DL(Q;=x)

We assume a prover Pro who knows x and a verifier Ver who only knows @
and P. The two protocols, one in the ROM and one in the standard model, are
presented in Fig. Bl They are based on the HVZK proof of Schnorr [21].

A.2 DDH(P,|a]P,[b]P, [ab]P)

We assume a prover Pro who knows b and a verifier Ver who only knows the
four protocol inputs P, @ = [a]P, U = [b]P and V = [b]Q. The two variants of
the protocol are given in Fig. d] both are based on the HVZK protocol from [7].
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ROM Version

— Pro computes k «— Zq, R — [k|P, s «— H(R), z <— xs+k. It sends R and z to Ver.
— Ver computes s «— H(R). and accepts if [z]P = [s]Q + R.

Non-ROM Version

— Pro computes a < Zg, A < [a]P. It sends A to Ver.

— Ver computes s,t « Zq, C' < [s]P + [t]A. and sends C to Pro.

— Pro computes k < Zq, R < [k]P. and sends R to Ver.

— Ver sends s,t to Pro.

— Pro checks whether C' = [s]P + [t]A. and sends z «— s + k and a to Ver.
— Ver accepts if [z]P = [s]Q + R and A = [a]P.

Fig. 3. ROM and non-ROM zero-knowledge proof of knowledge of discrete logarithms

ROM Version

— Pro computes r — Zq, A < [r]P, B — [r]Q, s — H(A|B), z < bs + r. and sends
A, B and z to Ver.

— Ver computes s «— H(A||B) and accepts if [z]P = [s]U + A and [z]Q = [s]V + B .
Non-ROM Version

— Pro computes w <« Zg, W «— [w]P and sends V to Ver.

— Ver computes s,t <« Zq, C < [s]|P + [t]A and sends C to Pro.

— Pro computes r «— Zq, A — [r]P, B «— [r]Q and sends A and B to Ver.
— Versends s,t to Pro.

— Pro checks whether C' = [s]P + [t]V. and sends z < bs + r and w to Ver.
— Ver accepts if [z]P = [s]U + A, [2]Q = [s]V + B and W = [w]P.

Fig.4. ROM and non-ROM zero-knowledge proof of knowledge of DDH tuple
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Abstract. Ethernet and IP form the basis of the vast majority of LAN
installations. But these protocols do not provide comprehensive security
mechanisms, and thus give way for a plethora of attack scenarios. In this
paper, we introduce a layer 2/3 security extension for LANs, the Cryp-
tographic Link Layer (CLL). CLL provides authentication and confiden-
tiality to the hosts in the LAN by safeguarding all layer 2 traffic including
ARP and DHCP handshakes. It is transparent to existing protocol im-
plementations, especially to the ARP module and to DHCP clients and
servers. Beyond fending off external attackers, CLL also protects from
malicious behavior of authenticated clients. We discuss the CLL proto-
col, motivate the underlying design decisions, and finally present imple-
mentations of CLL for both Windows and Linux. Their performance is
demonstrated through real-world measurement results.

1 Introduction

Ethernet and the Internet Protocol (IP) are the main building blocks for the vast
majority of modern Local Area Networks (LANs). However, these protocols,
and thus virtually all installed LANs, do not provide comprehensive security
mechanisms. Hence, malicious local users are potentially able to eavesdrop, to
inject or modify information, or to take on fake identities.

One especially critical component is the Address Resolution Protocol (ARP) [20].
It performs the task of coupling the network layer with the link layer by resolving
IP addresses into the corresponding MAC addresses. However, ARP lacks an au-
thentication mechanism, making it vulnerable to different types of attacks. This
constitutes a severe threat in every LAN that is accessible to not fully trustworthy
users. By emitting ARP messages with wrong IP/MAC mappings—commonly re-
ferred to as A RP spoofing—a malicious user can impersonate other hosts, intercept
and modify foreign IP traffic by becoming a Man in the Middle (MiM), or mount
a Denial of Service (DoS) attack against other hosts. Using freely available tools,
e.g. [I8.9], ARP spoofing can be easily performed even by users without deeper
knowledge of the underlying protocols.

Preventing ARP attacks in the case of dynamic IP addresses requires to take
also the Dynamic Host Configuration Protocol (DHCP) [1] into account. It is
employed in almost every LAN to automatically assign IP addresses and con-
figuration parameters. It does not provide an authentication mechanism either

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 21 2008.
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and thus can also become the target of various attacks. By setting up a rogue
DHCP server and announcing forged IP addresses for the default gateway or the
DNS server, an adversary is able to run a MiM or DoS attack against clients
requesting an IP address via DHCP. Furthermore, the legitimate DHCP server
is also vulnerable. In a DHCP starvation attack the adversary takes on many
different client identities (usually MAC addresses) and requests each time a new
IP address, until the server’s address pool gets exhausted. Thereby the attacker
can prevent new clients from acquiring a valid IP configuration.

Since modern operating systems enable the injection of raw Ethernet packets
containing arbitrary MAC and IP addresses in their headers even in user mode,
there exists no external barrier which would impede address fraud. The outlined
attack scenarios are covered in more detail, e. g., in [1LE23].

In this paper, we tackle the challenge of securing the communication in local
area networks, including ARP and DHCP. We introduce a comprehensive layer
2/3 security protocol—the Cryptographic Link Layer (CLL). It provides authen-
tication and confidentiality between neighboring hosts in Ethernet LANs. Each
machine gets identified by its IP/MAC address pair. Beyond safeguarding ARP
and DHCP, CLL protects arbitrary layer 2 traffic, especially all encapsulated TP
packets. We propose to employ CLL, e.g., in enterprise and campus networks
being often accessed by frequently changing, not fully trustworthy users as well
as in all kinds of publicly accessible LANs (like Internet cafés or Wi-Fi hotspots).
Note that CLL does not affect the operation of higher layer security protocols.

Beginning with an ARP request, CLL applies public key cryptography to per-
form an initial handshake between two hosts with the aim to establish a security
association. The two hosts prove their identity to each other and exchange keying
material. Hereupon, secured IP data packets may be sent.

We have implemented and evaluated CLL on both Windows and Linux. In
typical LANs running at 100 Mbit/s, our implementation operates at full wire-
speed, thus securing the network without compromising the throughput. To ease
the migration procedure, CLL-enabled machines can be configured to interoper-
ate with ordinary, unsecured hosts. We make our CLL implementation available
for free download including the sources, and complement it with a toolkit for
key and certificate management [12].

The remainder of this paper is organized as follows. In the next section, we re-
view previous approaches on securing ARP, DHCP, and the link layer. Section [3]
sketches the architecture of CLL, before Section [ justifies the underlying crypto-
graphic design decisions. In Sections[Band @ we detail the operation of CLL’s pro-
tocol components. Section [0 describes the implementation of CLL and
evaluates its performance. Finally, we conclude the paper with a summary in
Section

2 Related Work

Above the link layer, there already exist well-proven security protocols which
provide authentication and confidentiality by means of cryptography. SSH [24]
and SSL /TLS [6] operate at the application level or directly below it. At the
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network layer, IPsec [I3] can protect IP datagrams being exchanged between
two end-points. However, IPsec does not authenticate the IP address of the
communicating party. This enables an authorized IPsec user to impersonate the
IP address of another host that is temporarily switched off or knocked out by
a DoS attack. While SSH, SSL/TLS, and IPsec cannot protect from attacks on
ARP and DHCP, the encryption performed by these protocols will still prevent
the disclosure of sensitive data. An attacker would have to content himself with
the power of rendering his victims unable to communicate.

Reviewing the attempts to cope with the insecurity of ARP, there exist two
main directions. One is to detect the bulk of ARP attacks by means of a spe-
cialized Intrusion Detection System (IDS) like Antidote [2] or ArpWatch [3] and
to warn the user or network administrator in time. Such tools monitor all in-
coming ARP messages and trigger an alarm, e.g., on observing an abnormally
high number of ARP replies or a changed IP/MAC mapping. However, these
ARP watchdogs cannot provide full protection against ARP attacks; in particu-
lar, they are not able to distinguish whether the MAC address in the first ARP
reply is genuine or not. The other approach is to secure ARP by using cryp-
tographic techniques. In the following, we discuss some current research taking
this direction.

Gouda and Huang [10] specify a theoretical architecture with an ARP server
sharing a symmetric key for message authentication with every host in the LAN.
Each host periodically notifies the server about its current IP/MAC mapping
and resolves the MAC addresses of its neighbors with the aid of the ARP server.
However, this does not prevent an authorized machine from purposely announc-
ing a mapping of a neighboring host’s IP address to its own MAC address. In
contrast, CLL authenticates all hosts based on their IP/MAC address pair. It
thus also avoids ARP spoofing attempts originating from malicious, but autho-
rized users. Furthermore, CLL does not require a central server.

In [B], Bruschi et al. introduce Secure ARP (S-ARP) which uses public key
signatures to authenticate the ARP replies. All hosts in the LAN hold a pri-
vate/public key pair and initially enroll at a central server, the Authoritative
Key Distributor (AKD). The AKD maintains a repository of public keys and
the corresponding (static) IP addresses. Whenever a host requires a neighbor’s
public key to verify the signature of an ARP reply, it inquires about it from the
AKD. The AKD’s reply packet is digitally signed as well and the AKD’s pub-
lic key is preinstalled on all machines. S-SARP comes with an implementation
for Linux 2.4, but it requires a kernel patch and does not support dynamically
assigned IP addresses.

On the basis of S-ARP, Lootah et al. propose Ticket-based ARP (TARP) [16].
It foregoes a central key server and instead employs digitally signed attestations
of IP/MAC mappings, so-called tickets. The tickets are issued by a trusted party,
the Local Ticket Agent (LTA). The host responding to an ARP request attaches
its ticket to the ARP reply and thereby proves the validity. Since the LTA’s
public key is preinstalled on each host, received tickets can be verified quickly.
In comparison to S-ARP, TARP requires at most one public key operation per
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ARP exchange and no private key operations, and thus offers better performance.
However, the authors state that an attacker is able to impersonate a host that
is currently offline, by replaying its previously captured ticket. TARP has been
implemented on Linux 2.6 with support for DHCP-assigned IP addresses. Note,
however, that both S-ARP and TARP aim to secure only ARP, while CLL
provides overall layer 2 security by safeguarding DHCP and data packets as well.

RFC 3118 [8] specifies how DHCP can be extended by an authentication
mechanism. In this scheme, the DHCP server shares with each client a symmetric
key. It is used to authenticate the DHCP messages. However, DHCPDISCOVER,
the first message sent by the client, remains unauthenticated. Consequently, users
still might be able to perform a DHCP starvation attack. This is not the case
with CLL. Another drawback is that currently no DHCP implementations with
RFC 3118 support are available.

Applying cryptography at the link layer is common in Wi-Fi networks. Wi-
Fi Protected Access (WPA) and WPA2 provide authentication and confiden-
tiality between wireless nodes and the access point. The IEEE working group
802.1AE [11] specifies MACsec as the analog of WPA/WPA2 for LANs. In con-
trast to CLL, WPA/WPA2 and MACsec authenticate hosts based only on their
MAC address. The content of ARP and DHCP control packets encapsulated in
layer 2 frames is not examined. Therefore these protocols cannot protect from
ARP and DHCP attacks originating from legitimate users. Moreover, we are not
aware of any MACsec implementation being available at this time.

The main contribution of this paper is a novel, comprehensive approach to
layer 2 security, which provides a more complete protection of the LAN than even
a combination of three existing protocols (e.g., TARP, RFC 3118, and IPsec)
could achieve. That is because besides eliminating the discussed shortcomings of
these protocols, CLL also authenticates broadcast traffic. The tackled security
problems are all related to each other—they arise from the lack of authentication
at layer 2 and the link to layer 3. Thus, a comprehensive approach to solve them
seems appropriate.

3 Protocol Overview

CLL is designed as a transparent filtering service between the network adapter
and the IP stack. It thus operates at the border between the link and the net-
work layer, as displayed in Figure[Il All outgoing packets including the Ether-
net header are authenticated and their payload is optionally encrypted before
they are handed over to the network card for transmission. Incoming packets are
passed to the IP stack only after they have been successfully authenticated and—
if applicable—decrypted. CLL can be enabled or disabled without modifying the
other protocol stack components. For them, CLL’s services are transparent. But
in fact, CLL appends its cryptographic headers to outgoing packets, and puts
its own ID into the EtherType field of the Ethernet header. From successfully
authenticated incoming packets CLL strips off its cryptographic headers and
restores the original EtherType value before passing them up. While the opera-
tion of CLL does not require any modifications to switches, routers must either
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application layer ?

network layer Ip

link and physical layer

Fig. 1. CLL in the protocol stack

support CLL (and benefit from it) or exchange packets with the end systems in
the standard, insecure manner.

CLL identifies hosts by their IP/MAC address pair. Each machine on the
LAN holds a private/public key pair and a certificate issued by the local Cer-
tificate Authority (CA)—usually the network administrator—which establishes
the binding between its public key, the MAC and the IP address. To verify cer-
tificates, each host requires the CA’s public key. Typically it will be installed in
the form of a self-signed certificate along with the host’s own certificate, but a
more complex Public Key Infrastructure (PKI) to support multiple LANs is also
conceivable.

Basically, CLL divides all network traffic into four packet types: ARP and
DHCH]Y control packets, unicast and broadcast IP data packets. Authentication
is performed for all packet types and, in addition, an optional payload encryption
is provided for unicast IP packets.

While ARP and broadcast IP packets are authenticated by means of public key
cryptography (digital signatures in conjunction with certificates), unicast IP and
DHCP packets get secured using fast symmetric key algorithms. Safeguarding
unicast IP packets with a message authentication code and optionally a block
cipher requires each pair of communicating hosts to share a secret key. For
that purpose, CLL employs a key exchange protocol to negotiate shared keys
on-demand. Since the IP traffic flow between two hosts always begins with an
ARP exchange, CLL adopts it to establish a security association (SA) between
the two peers. The two machines authenticate each other, negotiate a secret
key and agree on the cryptographic algorithms to protect their IP packets. The
establishment of an SA is subsequently referred to as handshake.

To determine the sender’s (claimed) identity during the authentication of
incoming packets, CLL examines the Ethernet header and, depending on the

! Though being encapsulated in an UDP segment and an IP datagram, we handle
DHCP messages as a separate layer 3 packet type due to the functional position of
DHCP below the network layer.
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protocol, also the ARP, IP, or DHCP header. Where applicable, it performs a
consistency check: the sender’s MAC address can be also found in the ARP
header or—in case of a DHCP client—in the DHCP header, and it must match
the address specified in the Ethernet header. Such a cross-layer consistency check
is not performed by other protocol layers. It is, however, crucially important to
ward off ARP spoofing and DHCP starvation attacks. Layer 2 authentication
alone would not suffice for this purpose.

The following listing summarizes the various LAN attacks fended off by CLL:

e ARP spoofing: impersonation, MiM and DoS attack

e DHCP spoofing: rogue DHCP server (MiM & DoS), DHCP starvation attack
(DoS)

e generic unicast attacks: injection of spoofed packets, eavesdropping

e generic broadcast attacks: injection of spoofed packets, special case: smurf
attac

4 Cryptographic Design Decisions

The security philosophy of CLL is to provide the user with a suite of up-to-
date cryptographic algorithms and corresponding parameters, letting her choose
between them on her own responsibility. Such a design has the advantage of con-
sidering individual security perceptions, allowing to trade off between highest-
level security and best performance, and supporting the prompt exchange of an
algorithm being reported as broken. With our implementation, we nevertheless
provide a reasonable default configuration to assist users without deeper un-
derstanding of cryptography. The general level of protection provided by CLL
may be also selected. Either CLL just authenticates all types of packets or it
additionally also encrypts the payload of unicast IP packets (including the IP
header). Skipping the encryption step will result in a better performance and
should be done whenever a higher layer security protocol like IPsec already en-
sures confidentiality. CLL allows to use different ciphers and hash functions in
each direction of an SA. With regard to system complexity, we however prescribe
the algorithms used for key exchange, key derivation, and DHCP packet authen-
tication. Table [Il summarizes the algorithms proposed for CLL and supported
by our implementation.

During the handshake CLL applies the Diffie-Hellman key agreement protocol
to exchange a symmetric master key with perfect forward secrecy between the
two peers. Since handshake packets are digitally signed, there exists no suscep-
tibility to man-in-the-middle attacks. To the negotiated master key we apply a
deterministic key derivation function to generate for each direction two properly
sized keys—one for the message authentication code and one for the optional
cipher.

2 Flooding the victim via spoofed broadcast ping messages being answered by all other
hosts.



CLL: A Cryptographic Link Layer for Local Area Networks 27

Table 1. Algorithms and parameters in CLL

¢ HMAC with MDS5, SHA-160/256, RIPEMD-160 or HAS-160
e 128-256 bit key length
e optionally with a block cipher in CBC mode, 128-256 bit key length

message auth. codes

encryption e available ciphers: Twofish, AES, RC6, RCS5, Blowfish, MARS,
Serpent, CAST-128/256, SEED, GOST

key exchange Diffie-Hellman, 2048-bit group No. 14 from the IPsec specification

key derivation IEEE 1363a Key Derivation Function 2 (KDF2) using RIPEMD-160

key rollover periodically on demand, e. g., every 30 min

e RSA with variable key length (typically 1024-2048 bits)
o RSASSA-PSS signature scheme with SHA-160/256 or RIPEMD-160
certificates X.509 v3 with RSA signature, ASN.1 BER/DER encoding

digital signatures

CLL guarantees the authenticity of unicast IP and DHCP packets by means
of a Hashed Message Authentication Code (HMAC) [4] attached to the end of
each packet. In addition to authentication, CLL offers to protect unicast 1P
packets from eavesdropping by optionally encrypting them with a block cipher
in Cipher Block Chaining (CBC) mode. When establishing an SA, we generate
a random Initialization Vector (IV) and use afterwards the last encrypted block
of the preceding packet as the next packet’s IV. Since transmissions on the link
layer are unreliable, the sender also prepends the current IV to each packet. If
the payload size is not a multiple of the block size, random padding bytes are
appended. We first encrypt the plaintext and then compute the HMAC for the
ciphertext, since this is the only order that is generally considered secure [I4].
It also enables to detect a forged packet without the need to decrypt it.

To sign handshake and broadcast IP packets, CLL applies the well-known
RSA algorithm in conjunction with certificates. RSA offers the great advantage
of supporting public key signatures and encryption with a single key pair. And
though CLL’s security architecture does not require any public key encryption,
in practice the local CA can make use of RSA encryption to securely deploy the
DHCP HMAC keys to the users.

5 Operation of CLL in Detail

5.1 Basic Packet Format

When securing Ethernet frames, CLL inserts its own headers and replaces the
EtherType value in the Ethernet header with its own identifier (0x07D0, other-
wise unassigned by IEEE). Figure [ depicts the generic layout of an Ethernet
frame safeguarded by CLL. The CLL header is placed behind the Ethernet
header. It has been designed as a compact bit field to save overhead. It consists
of a version number (currently 1) like in IP, a field specifying the encapsulated
packet type (unicast or broadcast IP packet, ARP handshake packet, DHCP client
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; destination MAC address |} 6 bytes

Ethernet | :

header | source MAC address i 6 bytes
| EtherType: oxo7p0 (ctL) |} 2 bytes
CLL version (1) ! 3bits

CLL : packet type 4 bits -1 byte

header ! ) 60 - 1514 bytes

; compressed (yes/no) 1 1bit

more CLL headers |
(depending on packet type)

payload (IP* / ARP/ DHCP)
* possibly encrypted

; | HMAC / RSA signature | : )

Fig. 2. An Ethernet frame in CLL

or server packet, internal certificate packet), and a Boolean flag stating whether
the payload has been optionally compressed by CLL. This main CLL header is
followed by one or more inner headers depending on the encapsulated packet’s
type. Therein we store, among cryptographic parameters, the original EtherType
number. Behind the inner headers resides the payload, i. e., an ARP, IP, or DHCP
packet. Finally, each secured Ethernet frame terminates with an authentication
field containing either an HMAC (unicast IP and DHCP packets) or an RSA
signature (ARP handshake and broadcast IP packets) computed over the whole
frame.

5.2 ARP Handshake and SA Setup

Overview. To safeguard unicast IP packets, CLL needs to establish an SA
between each pair of communicating hosts. For this, CLL takes advantage of the
ARP mechanism and expands it at the same time with authentication. Figure Bl
illustrates this ARP handshake between two hosts A and B.

When started, a CLL implementation should first flush the ARP cache, thus
ensuring that all IP traffic to other hosts is preceded by an ARP request. Having
intercepted the ARP request, CLL wraps it up into a digitally signed handshake

Diffie-Hellman A
crypto algorithms A timestamp A
nonce certificate A (MAC + IP)

e RSA
Diffie-Hellman B signa-

crypto algorithms B  timestamp B ture
nonce certificate B (MAC + IP)

Fig. 3. ARP handshake: Diffie-Hellman key exchange in conjunction with RSA signa-
tures
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packet. It includes the host certificate and cryptographic parameters to establish
the SA. The handshake packet is broadcasted like an ordinary ARP request and
every station on the LAN checks whether it holds the inquired IP address. At the
destination host, CLL verifies the certificate of the requesting host and validates
the packet’s signature. Invalid packets are dropped. Then it must be checked
whether the sender’s IP/MAC address pair claimed in the ARP request (and
its MAC address stated in the Ethernet header) matches the one specified in its
certificate.

If the handshake packet turns out to be valid, CLL creates a new SA with the
requesting host, based on the local and the received cryptographic parameters.
Finally, CLL strips off everything from the handshake packet except for the
ARP header, restores the ARP EtherType number in the Ethernet header and
passes the resulting ordinary ARP request up the protocol stack to the ARP
module. The ARP module creates then an ARP table entry for the requesting
host, and responds with an ARP reply. This reply gets intercepted again and is
encapsulated into a digitally signed handshake packet analogously to the ARP
request, along with the local cryptographic parameters and the host certificate.
CLL then unicasts this second handshake packet to the requesting host like a
usual ARP reply. In the following, we refer to the first handshake packet as
the handshake request and to the second one as the handshake reply. On the
requesting host the handshake reply undergoes the same verification process
before the SA is established and the ARP reply is passed up to the ARP module.

Creating an SA implies the computation of a joint master key from the public
and private Diffie-Hellman values. From the master key, CLL then derives the
four keys for the HMAC and the optional block cipher. At any time, only one
SA is permitted per host pair.

Handshake Packet Details. We employ a UNIX timestamp and a nonce
to protect against replay attacks. CLL requires the clocks of all hosts on the
LAN to be synchronized within reasonable limits decided on by the network
administrator, e. g., in the range of 2-5 minutes. This can be easily achieved if the
users manually adjust their computer’s clock occasionally. An automatic clock
synchronization, for instance by using NTP [I7], is also possible after having
established an SA to a trustworthy server.

The nonce is a random 64-bit number generated by the initiator of the hand-
shake, which expects to find it repeated in the handshake reply. It ensures that
the peer actually participates in the protocol, i.e., its handshake reply has not
been replayed. Due to the nonce, it is not necessary to verify the timestamp in the
handshake reply. It must, however, be stored for comparisons with timestamps
of possibly future handshake requests.

The other important handshake element are the cryptographic parameters.
Each host specifies the hash function configured for the HMAC and the block
cipher potentially chosen to protect the payload against eavesdropping, along
with the key sizes. A compression algorithm may be specified as well, if a host
intends to compress its outgoing unicast IP packets. Moreover, each party states
how long the SA should be valid before it is either extended or removed due
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to inactivity. The actual SA validity period is the minimum of the two claims.
However, it may not fall below a threshold currently set to 15 minutes to prevent
permanent handshakes or renegotiations.

Retransmissions and Conflicts. CLL addresses the possibility of a handshake
packet loss by means of retransmissions. In case of a lost (or just unanswered)
handshake request the standard ARP retransmission mechanism will trigger a
new ARP request. Having intercepted this ARP request, CLL retransmits the
respective cached handshake request after updating its timestamp and signature.
Through caching we avoid the computation-intensive generation of new Diffie-
Hellman values.

The loss of a handshake reply will also result in a retransmission of the cor-
responding handshake request. The answering peer caches the received original
handshake request as well as its own handshake reply. It is therefore able to
recognize the incoming duplicate handshake request, and retransmits its hand-
shake reply. Due to the receiver relying on the nonce, we can even omit to update
timestamp and signature in this case.

Theoretically, it is conceivable that two hosts without an SA concurrently
send each other a handshake request, when both of them have a pending IP
datagram destined for the other one. However, only the creation of a single SA
is allowed between two hosts. CLL resolves this issue by performing an integer
comparison between the two 48-bit MAC addresses: the handshake request of
the host with the higher MAC address “wins”.

Complete and Incomplete SAs. From the point of view of a host, we refer
to an SA as complete when it is known for sure that the peer has also established
the SA. Host A as the initiator of an ARP handshake can set up the SA with
its peer B only after having received the handshake reply. A’s SA is therefore
complete right from the start. Host A can immediately send secured unicast IP
packets to its peer B and be certain that B will be able to verify and decrypt
them.

In contrast, host B first has an incomplete SA, as long as it cannot be sure
whether A has received its handshake reply. Usually, the IP datagram of host A
that triggered the ARP request will quickly reach host B and thereby confirm
the set up SA. However, as long as this is not the case, host B may not transmit
any IP packets to its peer—A might not be able to authenticate them. Instead,
in the unlikely case that B wants to transmit to A before A has sent the first
packet, B must queue its IP datagram and send a new handshake request to A.
This enforces the creation of a new SA, replacing the existing incomplete one.

Safeguarding against Replay Attacks. While the initiator of the SA pro-
tects itself against a replayed handshake reply with the aid of a nonce, its peer
has to rely on the timestamp check when judging the freshness of an incoming
handshake request. However, a timestamp is considered valid within a period
of several minutes (smaller than the minimum SA duration) to tolerate time
deviations. It hence does not assure a complete protection by itself. An attacker
may try to replace an existing SA by replaying a captured outdated handshake
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B

Fig. 4. Transmission of unicast IP packets safeguarded with a block cipher and a
message authentication code

request bearing a timestamp which is still valid. CLL fends off such attacks by
comparing the timestamp of a new handshake request with the timestamp of
the handshake request or reply which led to the establishment of the currently
existing SA. The use of timestamps avoids the necessity of a third message for
a second nonce in the other direction, which would render the ARP handshake
more complex.

5.3 Unicast IP Packets

Having created ARP table entries and established an SA, unicast IP packets
can be transmitted between the two peers. This is illustrated in Figure @l While
host A encrypts its packets with the block cipher AES and authenticates them
with an HMAC using the hash function SHA-1, its peer B employs Twofish and
MD5. Taking the sender’s MAC address the receiver looks up the corresponding
SA to verify the packet’s HMAC, sequence number, source IP address, and to
decrypt the IP datagram. Only if the peer is a router, its IP address may differ
from the source address stated in the IP header.

Each unicast IP packet contains a sequence number to protect against replay
attacks. It is incremented by one with each packet sent to the respective desti-
nation. The receiver tolerates packet losses and only checks whether a packet’s
sequence number is larger than that of its predecessor. The sequence numbers
are transmitted as plaintext to avoid an unnecessary decryption of replayed uni-
cast IP packets. However, in order not to reveal the number of packets exchanged
between two hosts so far, we generate the initial sequence numbers—one for each
direction—at random.

Note that once having created an SA, CLL can also secure unicast packets
carrying some other layer 3 protocol, e. g., Novell’s IPX.

5.4 Periodical Key Rollover

By design, an SA has a short lifetime of typically 15-60 minutes like an ARP
cache entry. But if any IP packets are transmitted during this period, it is re-
newed by a new Diffie-Hellman key exchange. New session keys for the HMAC
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Fig. 5. Renegotiation—renewing an SA

and block cipher as well as sequence numbers are derived from a new master key.
We call the extension of an SA renegotiation. Figure [l illustrates the messages
exchanged between two peers to extend their SA.

The renegotiation request and reply are the counterparts of the handshake
request and reply. They are transferred through the existing SA like usual uni-
cast packets. Each peer establishes a new SA after receiving the corresponding
renegotiation packet. Just like when initially setting up an SA, host A’s SA is
complete from the beginning on, while host B first has an incomplete SA. But in
case of a renegotiation, we cannot expect that an IP packet will be transmitted
from A to B shortly and render B’s SA complete as well. Therefore, host A has
to explicitly acknowledge the reception of the renegotiation reply. It does so by
means of a renegotiation ack sent through the new SA.

The renegotiation is initiated by the peer that first determines the expiration of
the SA according to its clock. Concurrent renegotiation attempts are resolved in
the same way as in the ARP handshake by performing a MAC address comparison.

During the renegotiation the peers re-exchange and re-validate their current
certificates to address a possible expiration of the previous ones, especially in case
of short-lived certificates issued via DHCP. While a renegotiation is in progress,
pending IP packets destined for the peer can be still transferred through the old
SA, i.e., there is no need to delay and queue them. We address the possibility
of renegotiation packet losses by means of a retransmission mechanism.

5.5 Broadcast Packets

CLL authenticates broadcast IP packets like handshake packets by means of an
RSA signature. To verify the signature, the receivers require the sender’s host
certificate. However, the variable payload size of a broadcast packet may well be
too large to piggyback the certificate and still stay within the maximum segment
size limit. Therefore, we broadcast the certificate in advance in a special certifi-
cate packet. CLL sends a certificate packet only when dispatching a broadcast
packet and when more than a minute has passed since the previous certificate
transmission, i.e., periodically on demand. All hosts on the LAN cache the re-
ceived host certificates. Thus they need to validate each certificate only once
and henceforth have the correct public key readily available for future signature
verifications.

Like handshake packets, broadcast packets are protected against replay at-
tacks by means of a timestamp combined with an additional counter. If a host
sends more than one broadcast packet at the same UNIX time (i. e., within one
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second), it increments this counter with each packet by one. All receivers store
for each sender the timestamp and counter from its last broadcast packet. Sub-
sequent packets from the same sender must bear a newer timestamp or the same
timestamp with a higher counter value.

When dealing with high-rate broadcast traffic, the generation of RSA signa-
tures on a per-packet basis may become computationally infeasible in real-time.
However, in this case it is conceivable to queue outgoing broadcast packets for a
short time and sign the accumulated group of packets as a whole with a single
private key operation before dispatching them. The receivers would reassemble
this group and verify the overall signature attached to the last packet. A sophis-
ticated but also more complex approach tolerating packet losses might be the
application of a specialized broadcast authentication protocol like TESLA [19].

6 Integrating and Securing DHCP

6.1 Basic Concept

So far, we have described the case of a static IP configuration, where the lo-
cal CA creates for each machine a host certificate incorporating its MAC and
IP address. However, CLL also supports the automatic assignment of IP ad-
dresses by means of DHCP. The DHCP message exchange is safeguarded and
extended. CLL protects DHCP not only from unauthorized attackers, but also
from malicious behavior originating from authenticated hosts.

In case DHCP is used, the local CA issues a base certificate for each host, bear-
ing only the machine’s MAC address and no IP address. The DHCP server uses
the base certificate as a template to generate a full-fledged host certificate, which
contains the assigned IP address. Thus, it acts as a second CA. The host certificate
issued by the DHCP server has the same validity period as the IP address lease.
When extending the DHCP lease, the host certificate is renewed accordingly.

Securing DHCP implies the authentication of all DHCP packets and a con-
sistency check of the DHCP header in client-originated messages. Since CLL
supervises the complete DHCP traffic in a transparent way, it also takes on the
automatic application for a host certificate and its issuing. Its operation does not
require any modifications on the employed DHCP client or server. On the client
side, CLL attaches the base certificate to the DHCPREQUEST message. On the
server CLL verifies this request and strips off its own headers, before passing it
up to the DHCP module. It then waits for the outgoing DHCPACK message.
This message constitutes the confirmation that the DHCP server has assigned
the requested IP address. CLL extracts from it the allocated IP address along
with the lease time, and issues a corresponding host certificate. Piggybacked on
the DHCPACK message, the new host certificate finally reaches the client, which
can now finalize its IP configuration and is ready to establish SAs.

6.2 Authenticating the Packets

We have designed the authentication of DHCP packets in a way that allows to
employ an HMAC from the beginning, without requiring an initial public key
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handshake. DHCP traffic occurs only between the clients and typically one single
trusted server controlled by the local CA. Therefore, the number of communi-
cating host pairs is limited and it is feasible to statically configure pre-shared
HMAC keys. This task may be performed during the certificate enrollment with-
out any additional effort. The local CA can generate a secret HMAC key for a
host along with its base certificate. After encrypting the HMAC key with the
host’s public RSA key it can deliver these items to the user, e.g., via e-mail.

If the issued HMAC key were completely random, one would have to promptly
configure it on the DHCP server as well, which involves some effort. Instead, we
use a single DHCP master key, a concept adopted from [8]. From this master
key we derive for each host the corresponding HMAC key by means of a key
derivation function. The master key is known only to the local CA and the DHCP
server. The pair <MAC address, expiration time of the base certificate>, in the
following denoted as client ID, serves as the derivation parameter. This scheme
does not require to inform the DHCP server about any newly certified hosts.

Since all hosts include their client ID into every sent DHCP packet, the DHCP
server can deduce the corresponding HMAC key in an ad-hoc fashion and authen-
ticate the packet. Conversely, when the DHCP server responds to the client, it
has the right HMAC key already available. By incorporating the expiration time
of the base certificate into the client ID we restrict the lifetime of the HMAC key.
DHCP packets with expired client IDs are thus easily dropped without further
verification. This allows, for instance, to immediately ignore DHCPDISCOVER
messages sent by no longer authorized hosts.

To protect against replay attacks, we employ the same technique already
introduced with broadcast packets, i.e., a UNIX timestamp in conjunction with
a counter for packets bearing the same timestamp. A consistency check of the
MAC and IP addresses stated in the DHCP header renders the authentication
complete.

6.3 Further Security Measures

We consider the two DHCP messages DHCPDECLINE and DHCPRELEASE as
a security risk. The first one allows a malicious client to spuriously tell the DHCP
server that the IP address assigned to it is already in use by some other machine,
thus making a DHCP starvation attack possible. The second one is utilized to
release an assigned IP address to the DHCP server’s address pool before the
corresponding lease has expired. However, we cannot force a host to give up its
certificate, and a malicious user might continue to use its certificate and with it
the released TP address, while the address has also been assigned to some other
machine. Therefore, we decided to simply drop these messages. Note that this
does not violate the DHCP specification: these messages are transmitted in an
unreliable manner without any retransmissions, i. e., they may get lost en route
anyway. Moreover, no host is obliged to release its IP address ahead of time.
CLL allows to restrict the number of authenticated DHCP packets originated
by the same host that the DHCP server will process during a specified time
interval. Thereby the server can be secured against overload caused by malicious
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or misconfigured clients, attempting to renew their IP address lease extremely
often. This would force the server to continuously issue new host certificates,
which includes an expensive private key operation.

These security measures prevent malicious behavior originating from authen-
ticated hosts. Without them attacks on DHCP would be still feasible and one
would have to extensively analyze the server’s DHCP logfiles to backtrack the
identity of the attacker.

7 Implementation and Evaluation

7.1 CLL as a Cross-Platform Service

We have implemented CLL in C++ as a user-mode service on both Windows
(2000, XP, 2003, Vista) and Linux (kernels 2.4 and 2.6) using Visual C++ 2005
and GNU GCC 4.x respectively. Our CLL implementation consists of a platform
independent core, which interoperates with a tailored portability layer providing
a consistent interface for OS specific functionality. The responsibilities of the
portability layer include crafting and filtering raw Ethernet frames, configuring
the network interface (ARP, IP, MTU), and the interfaces for threads and timers.

To set up a filter handler for Ethernet frames in user-mode, we employ the
packet filtering framework WinpkFilter [21] on Windows. On Linux, we have im-
plemented a link layer filtering solution on our own. We unbind the real network
adapter from the IP stack, transparently replace it with a virtual one (a tap de-
vice), and set up a raw PF PACKET socket to send and receive Ethernet frames
through the unbound real network adapter. A maybe somewhat more efficient
kernel-level implementation of CLL’s packet processing engine would constitute
a complex and error-prone task, especially when targeting multiple platforms.
We therefore leave it for future work. But despite the overhead of additional
context switches, our user-mode approach achieves good performance, and is
able to operate at wire-speed in 100 Mbit LANs. To support the large number of
cryptographic algorithms proposed for CLL, we employ the comprehensive open
source crypto library Botan [15].

Aiming to provide a real-world solution, we address in our implementation
such issues like persistent storage of SA configurations (to tolerate an OS re-
boot) and backward compatibility. To support non-CLL capable devices like
network printers or NAS and to enable a step-by-step migration, CLL can be
configured to communicate with legacy hosts in the standard, insecure fash-
ion. This is accomplished by providing the CLL-enabled hosts with a list of the
legacy IP/MAC address pairs. CLL then sets up static ARP entries and thereby
provides at least an unidirectional protection against ARP spoofing.

Since the drivers of common Wi-Fi adapters exhibit an Ethernet-compatible
interface to the network stack, Wi-Fi networks can be secured by CLL as well.

7.2 Performance Evaluation

We have conducted a performance evaluation with two hosts A and B, where A
is a laptop equipped with an AMD64 Turion 1.8 GHz CPU running Linux 2.6.20
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Table 2. Performance of the ARP handshake

action duration in ms
Ist ping A — B using CLL: ARP handshake 27.4
1st ping A — B without CLL: usual ARP exchange 0.92
generating the private & public DH value (2048 bits) host A: 26.3 host B: 44.1
deriving the master key with DH host A: 7.2 host B: 15.7
computing an RSA-1024 signature host A: 3.1  host B: 5.7

(32-bit) and B is a PC with an Intel Core 2 Duo E6400 2.13 GHz processor
running Windows XP SP-2. The presented results are averaged over multiple
runs.

The first series of measurements, shown in Table 2 is devoted to the over-
head of the ARP handshake. For digital signatures both hosts use an RSA-1024
module. By pinging the neighboring host with no previously established SA we
measure the time to perform the ARP handshake and the subsequent ICMP echo
exchange. We compare it to the delay of the first ping in an ordinary unsecured
setup, including a plain ARP message exchange.

Though it takes 30 times longer than a usual ARP exchange, the one-time
delay of 27.4 ms induced by the ARP handshake with CLL is negligibly short for
practical purposes. This low value is achieved due to an optimization in our im-
plementation: we precompute the Diffie-Hellman values in a background thread,
and thus have them readily available at the beginning of an ARP handshake.
Otherwise the handshake would last 26.3 + 44.1 = 70.4ms longer. The delay
of 27.4ms can be broken down by measuring the computation time of the two
dominating operations—the derivation of the master key with Diffie-Hellman
and the creation of an RSA signatureﬁ. Deriving the master key is performed
in parallel, thus taking max{7.2,15.7} = 15.7ms, while signing is carried out
sequentially and requires 3.1 + 5.7 = 8.8 ms. Summing this up yields 24.5 ms.
The remaining 2.9 ms are used for by the verification of the host certificates and
handshake signatures, and also include the network round-trip time (RTT).

In the second series of measurements, we analyze the TCP throughput (using
the tool ttep [22]), the CPU load incurred at the sender and receiver, and the
RTT between two hosts already sharing an SA. The results are shown in Table[3]
When comparing the TCP throughput achievable with CLL to the result using
a conventional, unsecured protocol stack, we observe only a very small decrease
in speed of approximately 2% without encryption and 3% with encryption.
It can be attributed quite exactly to the overhead induced by the additional
CLL headers and fields. Encryption and authentication of packets with CLL
apparently has virtually no effect on the achievable data rate in 100 Mbit LANs,
which proves the feasibility of our approach.

3 Though host B’s CPU is faster than host A’s CPU, the public key operations are
slowed down by missing big integer assembler optimizations in Botan on Windows
platforms.
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Table 3. Performance of unicast transmissions in a 100 Mbit LAN

action measured values
TCP throughput using CLL:

A —B: 11263KB/s  55/26% CPU (tx/rx)
B— A: 11312KB/s  22/60% CPU (tx/rx)
A—B: 11113KB/s  75/38 % CPU (tx/rx)
B— A: 11160KB/s  31/76% CPU (tx/rx)
A —B: 11522KB/s  45/17 % CPU (tx/rx)
B— A: 11519KB/s  10/44 % CPU (tx/rx)
RTT: 100 pings A — B using CLL  |min: 0.287ms @: 0.377ms max: 0.501 ms o: 0.046 ms
RTT: 100 pings A — B without CLL|min: 0.178 ms ©: 0.198 ms max: 0.231ms o: 0.012ms

o HMAC(MDS)

o Twofish/ HMAC(MDS)

TCP throughput without CLL

By comparing the CPU utilization with and without CLL being used, we
assess the induced additional CPU load. The overhead of piping the packets
through the user-mode and computing the HMAC turns out to be
entirely admissible. Even when enabling the block cipher, host A still has a
quarter of its CPU time left for other tasks when processing packets at full
wire-speed. The faster host B runs with a CPU utilization of only one third in
the same situation. This machine obviously has the potential to operate CLL
even in a Gigabit LAN, and to achieve a throughput of at least some hundred
Mbit/s. Just like the TCP throughput, the RTT measured when running CLL
in the Twofish / HMAC(MDS5) configuration is very satisfactory. On average it
is 0.38ms, i.e., only twice the ordinary RTT without CLL. It should thus not
represent a drawback for any typical application scenario.

8 Conclusion

In this paper, we have introduced the Cryptographic Link Layer (CLL). CLL em-
ploys public key cryptography to identify all hosts in the Ethernet LAN based
on their IP/MAC address pairs. It safeguards the packets transmitted between
them against different spoofing attacks and eavesdropping. Pairs of hosts will-
ing to communicate first establish security associations by an extension of the
ARP handshake. In the course of this, the hosts authenticate each other, ex-
change cryptographic parameters, and negotiate symmetric session keys to pro-
tect their following unicast packets with a message authentication code and an
optional cipher. Broadcast packets are also secured by CLL using digital signa-
tures. When IP addresses are to be configured dynamically, CLL extends DHCP
to automatically issue host certificates with the leased IP address. In the course
of this, it also adds authentication to DHCP and safeguards it against various
attacks.

We have implemented CLL on both Windows and Linux without modifying
the existing protocol stack. Backward compatibility to ordinary, unsecured hosts
can be enabled to support a step-by-step migration and retain legacy devices.



38

Y.I. Jerschow et al.

The evaluation of CLL demonstrated the excellent performance of our protocol
in a 100 Mbit Ethernet LAN, where it achieved wire-speed throughput and short
round-trip times.
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Abstract. When verifying digital signatures, achieving a high through-
put can be crucial. We present a technique that is useful for ECDSA
and DSA signatures. It assumes that common domain parameters are
used (which is typical of ECDSA) and that at least some signers recur
(as in many application scenarios). We can achieve noticeable speedups
in very different environments—from highly restricted ones where mem-
ory is very scarce to larger machines without severe memory restrictions.
Requirements for the target platform are very small for a beneficial appli-
cation of our technique. This makes it attractive for embedded systems,
where ECDSA is a signature scheme of choice.

More generally, what we consider is the task of computing power prod-
ucts [T, ., 95" (“multi-exponentiation”) where base elements g2, . . ., gk
are fixed while g; is variable between multi-exponentiations but may re-
peat, and where the exponents are bounded (e.g., in a finite group). We
present a new technique that entails two different ways of computing
such a product. The first way applies to the first occurrence of any gi
where, besides obtaining the actual result, we create a cache entry based
on g1, tnvesting very little memory or time overhead. The second way
applies to any multi-exponentiation once such a cache entry exists for
the g1 in question and provides for a significant speed-up.

Keywords: Efficient implementation, elliptic curve cryptography, ex-
ponentiation, ECDSA, DSA, embedded cryptography.

1 Introduction

Consider a scenario where we repeatedly have to verify ECDSA signatures [1],
trying to keep the computational delay small for each verification. A time-
consuming step in ECDSA signature verification is computing a linear com-
bination u1G + u2@ of elliptic curve points G and @, where G is specified by
domain parameters (i.e., fixed) and where @ constitutes the signer’s public key,
with integers u; and usg in the interval (0, ord(G)— 1) both depending on the spe-
cific signature. The same group with the same point G will typically be shared

* Work done while the author was with the Horst Gortz Institute for IT Security.
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by many signers since elliptic curve domain parameters are often taken from
(intersecting) standards such as [I9, Appendix 6], [I, Annex J], and [6] (with
domain parameter specifications NIST P-192 aka prime192v1 aka secp192ril
and NIST P-256 aka prime256v1 aka secp256rl common to all three of these).
Also, we usually can expect some signers and thus their ) values to recur. For
instance, consider public-key infrastructures:

— A verifying party will encounter end-entity certificates signed by possibly
very many different intermediate certification authorities. When a new cer-
tification authority appears for the first time, the verifying party does not
yet know how popular this particular certification authority is, i.e. if it has
signed many or just very few end-entity certificates.

— The same applies to signatures on documents, such as the ECDSA signa-
tures stored on the new digital “e-passports”. When verifying a passport for
airport immigration procedures, then quite possibly the next passenger in
line may be using a passport signed by the same agency. On the other hand,
the current passenger could be the only one from this particular country for
days.

Thus, for a given G, we have to compute linear combinations u; G + u9() where
@ sometimes is “new” and sometimes is “old” (has been seen before); but
when a new @) appears, we generally do not know if and how frequently it will
reappear.

There are well-known techniques to compute u1G + 1@ much faster than by
computing both u1G and u2(@) individually, and this can be done yet faster if G
and @ are both fixed and a one-time precomputation depending on these points
has been done. Performing such precomputation whenever a “new” ) shows up
may pay out if @ turns out to repeat, so that G and @ are fixed for a number
of linear combinations. However, this is an investment of resources that would
be lost if this particular @ does in fact not repeat.

We present a new technique that nearly avoids this drawback, provided that
space for permanently fixed precomputation depending on G only is not severely
limited. The first occurrence of some point ) in a computation u1G + usQ)
will incur very little penalty in terms of memory or time, and yet will leave
behind useful precomputed data that can be cached to speed up subsequent
linear combination computations involving the same G and Q.

While the ECDSA scenario best illustrates the practical use of our techniqueEl,
the approach is in fact not restricted to the ECDSA or DSA case but may be

! Another approach to speed up ECDSA signature verification is due to Antipa
et al. [224]. It works best for a slightly modified variant of the original signature
scheme, dubbed ECDSA*, but under appropriate circumstances, it can be useful for
the verification of standard ECDSA signatures. Where it makes sense to use the
technique from [2124], our technique may be preferable depending on the expected
proportion of “old” to “new” @ values. In fact, we can get some of the benefit of
[2124] for any “new” @ and all of the benefit of our technique for any “old” @ by
using a combination of both techniques in the case of a “new” @, using specific
imbalanced-scalar parameterizations within [2I24]. We omit further details on this.
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applied in more general settings: It is suitable for any abelian group or (more
generally) abelian semigroup with an identity element, henceforth written mul-
tiplicatively so that what we just described as linear combinations now turns
into power products. Computing power products sometimes is called multi-
exponentiation since it is a generalization of computing powers (exponentiation).
The computational task that we will consider is computing power products of

the form
II o
1<i<k

where base elements go, ..., g; are fixed once and for all, whereas g; is variable
between multi-exponentiations and may repeat, while all exponents e; are as-
sumed to be ephemeral. We will assume that the exponents are positive and
at most ¢ bits long. (An appropriate value of ¢ is usually implied by the group
order. A negative exponent for a group can be handled through inversion of the
base element, or by reduction of the exponent modulo o where o is some multiple
of the order of the base element, such as the group order.) For our technique
to work as intended, we also assume that the exponent to variable base g is
not pathologically short (i.e., its length not just a fraction of ¢); rare statisti-
cal outliers are no problem. Besides ECDSA signature verification, this setting
also covers DSA signature verification [19]; however, it only applies when using
common domain parameters, which is much more customary for ECDSA.

Concerning the implementation platform, we only need to make very mild
assumptions that are, in particular, commonly satisfied by embedded systems:
We assume that at least read-only memory is not severely limited, so that pre-
computation depending on gs, . . ., gr can be permanently stored. We also assume
that some memory is available for caching at least one group element with an
integer. Such data will be put into cache memory when performing a multi-
exponentiation [[,.,., ¢;" involving a “new” g¢; (i.e., one for which no cache
entry currently exists), and can be used to speed up any subsequent multi-
exponentiation repeating the same g; as long as the cache entry is kept. While
the method is easier to describe assuming that dedicated cache memory is avail-
able, Appendix [(] will show that the technique can be quite useful even if this
is not the case and a portion of fast read/write memory has to be sacrificed
instead: In a specific example scenario where read/write memory is very scarce
(which is typical of smart cards and other embedded devices), our technique
already leads to a 10% average speed advantage. The technique is also useful
for devices without such constraints; the specific speed advantage factor gained
by using our method strongly depends on the concrete application scenario and
can be significantly higher than the 10 % in said example.

Like many approaches for exponentiation using precomputation (such as the
Lim/Lee approach [12]), our technique has roots that can be traced back to
Pippenger [21122]; see also [4]. The novelty here in this regard is that for cached
precomputation, we do not store powers of the form gfn as by [21]], which would
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impose some computational overhead while computing [[,.,., ¢;" when g; is
new. Instead, we store other powers of g; that happen to come up without effort
if we arrange the computation suitably.

Section describes preliminaries for our technique: interleaved multi-
exponentiation, and radix-2 exponent splitting. Then, Section B] presents the
novel multi-exponentiation technique, which relies on caching certain interme-
diate results that can be obtained by investing very little additional read/write
memory or time, allowing us to speed up later multi-exponentiations if an
appropriate cache entry is available. Section Ml gives example performance
figures for the new technique in certain application scenarios. Appendix [Al
provides a comprehensive example to illustrate the technique. Appendix [Bl dis-
cusses some implementation aspects. Finally, Appendix [C] considers a particu-
lar scenario to demonstrate the performance gain achievable by using the new
technique.

2 Multi-exponentiation

We show known techniques that we later will use and combine in a novel way.
Section [Z1] describes interleaved multi-exponentiation, an approach for com-
puting power products. It also briefly describes some properties of radix-2 ex-
ponent representations that can be used in interleaved multi-exponentiation.
Section describes the technique of radiz-2 exponent splitting, which can be
used to obtain shorter exponents by converting exponentiation tasks into multi-
exponentiation tasks, or converting k-fold multi-exponentiation tasks into k’-fold
multi-exponentiation tasks with &’ > k. Radix-2 exponent splitting is a useful
technique for fixed bases (namely, for exponentiation or multi-exponentiation
with precomputation that can be done in advance).

2.1 Interleaved Multi-exponentiation

We build on the straightforward multi-exponentiation strategy that has been
called interleaving in [14], which generalizes well-known methods for single expo-
nentiations such as the (left-to-right) binary or sliding window methods. Assume
that radix-2 representations e; = Zogg‘ge bi; - 27, bij € By, of all exponents are
given where each B; is a set of integers. We write e; = (b; ¢, b5 0—1, ..., 0i1,bi0)2
and call the b; ; digits and B; a digit set. We require that every g? for b € B;\ {0}
be available from precomputed data. Note that in a group where inversion is
particularly easy (such as those used in elliptic curve cryptography where an
inversion requires just obtaining an additive inverse in the underlying field or
performing a field addition), obtaining g, ¥ from precomputed data is easy if gt
has been stored; so both b and —b can be included in set B; if the single element
g? has been stored in a precomputed table of powers. In this setting, interleaved
multi-exponentiation computes the power product as follows.
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A — 1¢ {Start with identity element}

for j = ¢ down to 0 do
A — A?
for i =1 to k do
if bi’j 75 0 then
A—A- gf “7 {Multiply by [inverse of] precomputed element }
return A

This is a left-to-right technique in that it proceeds from the most significant
digits (“left”) down to the least significant digits (“right”).

Typical digits sets are of the form B¥(m) = {£1,43, 45,47, ...,+m,0} for
groups where inversion is easy, or B(m) = {1,3,5,7,...,m,0} for semigroups
in general. Here parameter m is an odd integer, often but not necessarily of
the form (11...11)g, ie. m = 2¥ — 1, w > 1 an integer. This special form
applies to the sliding window technique (cf. [9]) and to various variants of it that
employ signed-digit representations of exponents, such as those introduced in [I3]
using a right-to-left conversion from binary to signed-digit representation and in
[T7U3120] using left-to-right conversions. The general case with an arbitrary odd
m was introduced as fractional window representations in [I5], with left-to-right
conversions for the signed-digit case suggested in [TTJ23/T6]. Different digits sets
can be used for different exponents, so we have B; = B(m;) or B; = B¥(m;)
with per-exponent parameters m; when employing such representations.

The length of a representation is the number of digits that remain if we drop
any leading zeros (so the length of (b, by_1,...,b1,b0)2 is £+ 1 if by # 0). Max-
imum length I + 1 is sufficient to represent any I-bit integer e (2!7! < e < 21)
in any of the representations mentioned above [I8] (length [ is sufficient for any
of the unsigned-digit representations), and the minimum length with these rep-
resentations is [ + 1 — [log2 m]. Thus, the maximum outer loop index ¢ in the
algorithm as shown above is sufficient for integers up to ¢ bits.

The weight of a representation is the number of digits that are non-zero. The
conversion techniques mentioned above are known to achieve, for any integer e,
the minimum weight possible given the respective digit set [I8/16]. For unsigned
and signed fractional window representations using digit set {1,3,5,...,m,0} or
{+1,+£3,£5,...,£m,0}, the average weight for random integers up to ¢ bits is
slightly above

J4 q J4
m+1 an m-+1"’

w(m) + ouw(m) 1+w(m)+ qw(m)

respectively, where w(m) = UogQ(m + 1)J; for the average density (weight di-
vided by ¢), we have convergence to the resulting estimates as £ goes to oo
(see [16]). For the special case m = 2% — 1 (i.e., the sliding window technique
and its non-fractional signed-digit counterparts), such that w(m) = w, the above
is simply ¢/(1 + w) and ¢/(2 4+ w), respectively.

Observe that in the interleaved multi-exponentiation algorithm as shown
above, (semi-)group operations need not actually be performed until after the
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first multiplication of A by a precomputed element or its inverse, since A = 1
holds up to this point. This means that the initial squarings of 1¢ can be skipped,
and the first operation A «— A - gf “7 amounts to an assignment A «— gf .

To estimate the time required to perform an interleaved multi-exponentiation,
we thus need the maximum length of the representations of the e; to determine
the number of squarings, and the weight of the representation of each e; to deter-
mine the number of other multiplications by elements available from precomputed
data. (The maximum length is one more than the number of squarings, and the
sum of the weights is one more than the number of other multiplications.) This is
not counting any group inversions, since we would only use these in the algorithm
if inversion is easy. In addition to this, we have to look at the time needed for pre-
computation. If g; is a fixed base, we can assume that the required powers g¢ have
been precomputed in advance (and possibly built into ROM) and thus do not enter
the time estimate. However, if g; is not fixed, some effort goes into precomputing
these powers: from g;, the powers g3, . . ., g;"" can be computed using one squaring
(to obtain g? as an intermediate value) and "”;1 other multiplications.

(Note that the minimum-weight property of a conversion technique does not
mean that it always provides the best radix-2 representation possible given the
particular digit set. As discussed in [I5] Section 5.1] and [16, Section 4], modified
signed fractional window representations can sometimes reduce length without
increasing weight. In certain situations, it may even be of advantage to accept
a slight increase of weight for the sake of length reduction if saved squarings
[due to length reduction] outweigh the additional multiplications [due to weight
increase]. To pursue this approach, we can generalize the concept of radix-2
representations: e.g., (100000)y = 2° could be converted into 3 -22+5-22, which

is not a proper radix-2 representation but might be written as (g 00) using a
2

“double digit” of weight 2. Details are out of the scope of the present paper; we
just mention this as a reminder that minimum-weight radix-2 representations
can sometimes be improved by applying appropriate substitution rules.)

2.2 Radix-2 Exponent Splitting

We have seen that the length of exponent representations is important to effi-
ciency since it determines the number of squarings needed for interleaved multi-
exponentiation. For an exponent e, this length is around log, e with any of the
representations mentioned in Section 2] as long as parameter m is reasonably
small. Radiz-2 exponent splitting, shown in the following, is a simple but effec-
tive idea (underlying [5] and made explicit in [§]) to get better performance if
all bases are fixed.

For exponentiations ¢g¢ with exponent representations e = (bs,...,bg)2 of
maximum length ¢ + 1, we can decide to split each such representation into
some number s of shorter exponent representations. To wit, let £ + 1 = L1 +
-+ 4+ Ly with positive integers L; ~ €t17 and then let e = (bg,—1,...,b0)a2,
es = (br,4Lo-1,---,01,)2, and so on:
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e=(be,...,b0)2 = (britetLo1s--osOL1tetly 1
S -~ -
€s
DLydedLe 1=1s - OLyitetLe 9y --vy DLi—1,--, bo)g
~ ~ - ~ ~ ~
€s—1 €1

Then from e =Y, e; - 2F1TTLi=1 it follows that

€ €1

=g 2L1)62 o (g2L1+"'+Lsf2)ekl ] (g2L1+"'+Ls—1)es

-(g

and thus by defining ¢g; = gQZlSI<iLI we have transformed the task of com-
puting ¢¢ into the s-fold multi-exponentiation [[,.,., ¢;'. There is no need to
actually evaluate the e; as integers here since we already have appropriate rep-
resentations of them—mnamely, portions of the original representation as shown.

Thanks to exponent splitting, the maximum length of exponent representa-
tions can go down from ¢ + 1 to th] if the L; are chosen accordingly. If ¢ is
fixed (and the parameters L; are constant), then so are the g; as defined here.
Thus, the powers g° needed by the interleaved multi-exponentiation algorithm
in Section [Z]] can be precomputed in advance. So using additional memory for
precomputed data (possibly ROM) allows us to save time in each exponentiation.

So far, we have looked at radix-2 exponent splitting applied to exponentia-
tion, not to multi-exponentiation: each single exponentiation is converted into a
multi-exponentiation. Radix-2 exponent splitting can just as well be applied
for any fixed base in multi-exponentiation tasks, converting a k-fold multi-
exponentiation into some k’-fold multi-exponentiation, &/ > k. However, since

the exponent splitting technique needs additional precomputed data (the powers

= i .
gi = g* =" " of base g), it cannot be used to advantage for bases that are

not fixed. Thus, if there is any base that is not fixed (as in the case of DSA
and ECDSA signature verification), long exponent representations may remain,
and radix-2 exponent splitting hence will typically provide essentially no speed
advantage in this situation.

3 Faster Multi-exponentiation by Caching Intermediate
Results

This section describes a mnovel technique for computing power products
[l<ick 95" assuming that go,..., g are fixed base elements, while g; is a vari-
able base element whose values may recur. The technique is based on interleaved
multi-exponentiation and on exponent splitting, but adds new features. It con-
sists of two different multi-exponentiation algorithms. The first algorithm, de-
scribed below in Section B.I] is employed whenever a “new” ¢; value appears.
This algorithm not only computes the multi-exponentiation result, but also out-
puts certain intermediate results, intended to be cached for later use. The second
algorithm, described below in Section 3.2 can be employed whenever an “old” ¢;
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value appears, namely one for which a cache entry already exists. This algorithm
then exploits the cache entry created by the first algorithm to compute the new
multi-exponentiation result faster.

For both algorithms, we assume that parameters for radix-2 exponent splitting
have been fixed, i.e. we have constant integers s and L1, ..., L as described in
Section 2.2 used identically for all bases ga, ..., gx. We demand that Ly +1 >
maxi<i<s L;. For these bases, we furthermore assume that digit sets for exponent
representations have been fixed (see Section 2.1]), and that there is a fixed length
limit /41 for exponent representations. (This is enough for exponents up to ¢ bits,
using any of the representations mentioned in Section [2I]1) We also require that
powers of ga, ..., gr as required for radix-2 exponent splitting using the given
digit sets and exponent splitting parameters are precomputed in advance. These
are constant elements, so they may be stored in ROM. Due to our assumption
that at least read-only memory is not severely limited, it should be possible to
store quite a number of such precomputed elements, allowing us to use reasonably
large digit sets in the representations of exponents es, ..., e, that will undergo
radix-2 exponent splitting.

Of course, since cache entries take up read /write memory, they eventually may
have to be expired as new g; values occur. Once the cache entry for a certain ¢,
has been deleted, this particular value again will have to be considered “new” if
it occurs once more later. In extreme cases, the cache might provide space just
for a single cache entry. Then, depending on the caching strategy implemented,
g1 might be recognized as “old” only if two immediately consecutive multi-
exponentiations involve the same ¢g; value, since any new value might lead to
an instant cache eviction to make space for a new entry. However, it would also
be possible to keep the existing cache entry for a while even if new ¢; values
appear, meaning that any cacheable data created for such a new ¢; value would
have to be discarded for lack of space. Which caching strategy is to be preferred
depends very much on the statistical properties of the application scenario.

3.1 Multi-exponentiation for a New Base g;

If no cache entry based on g; is available, ], ;.. ¢;" should be computed as
follows. As in Section 2], we assume that the exponents are given in represen-
tations e; = Zoﬁjff bi)j . 2j, bi’j € B;.

First, apply radix-2 exponent splitting (Section 22 to the representations
of exponents e; through ey such that all of the resulting exponent represen-
tations observe maximum length L = maxi<,<s L; (=~ Etl). This transforms
the k-fold multi-exponentiation task into a multi-exponentiation task with more
bases, where the exponent to g7 appears unchanged but all other exponent rep-
resentations have been split into parts no longer than L digits. The list of bases
has expanded from (g1, g2, - . ., gr) into

oLi++Ls_1 2L1+"'+Ls—l)
b

21 21
(917 92,92 - 92 y e GksGk - 9k

we will assume that g7 keeps its index (i = 1). Now apply the interleaved multi-
exponentiation algorithm from Section 2] to this new (1 + (k — 1)5)—f01d power
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product. (Remember that appropriate precomputed powers of the bases except g;
are assumed to be available e.g. from ROM.) This will generate the desired result,
[I,<i<k 9;"- Additionally, it will generate certain intermediate values that turn
out to be very useful.

Observe that no loop iteration before j = L1 may involve non-zero exponent
digits for any base other than g¢; (since we have Ly + 1 > L, for any of the
exponent splitting parameters Lo, ..., L). In other words, before this round,
A has never been multiplied with a power of a base other than g; . In particular,
we have A = g§bl'z"”’b1‘Ll)2 just after the inner loop iteration for j = Ly,i =1
(and still after the outer loop iteration for j = L; if L1 > max; L;). From this
and earlier loop iterations, we can obtain the following s — 1 intermediate values:

(b1,e5esb1, Ly 4 4Ly q)2

j=L1+'-'+LS_1 = A:gl

G=Lii=1 = A=glmeomtrn

Thus, we can output the following data to be cached—a cache entry comprising
g1 itself (as index to the cache) and s — 1 pairs, each consisting of an integer and
the corresponding power of gi:

by ereonbr,
<g17 ((bl,fa"'abl,lzl)% g§ v 1L1)2>a

.y

(b1,esesb1, Ly 4 4L )2
((bm v b1 L1 )2, 9y )

Note that when writing this to cache, the integers may be evaluated as such—
there is no need to store the specific radix-2 representations. (However, since all
of these integers are derived from e; following a fixed rule, it is clear that at most
¢ bits are sufficient to store complete information on all of them, should memory
efficiency be an utmost concern.) With any of the representations mentioned in
Section 1] these partial integers are guaranteed to be non-negative, with

(b1,ey-.bin)2 > oo > (b b1, L 4qna_y)2 > 0.

Furthermore, if e; is uniformly random from some set (0,...,q) of integers
where ¢ is an (-bit integer, then (unless L, is very small) all of these inte-
gers will actually be positive with high probability (and will be reasonably
close to 26711 . 2f0=-La==Lim1 | yegpectively; ie., since £ = Y, L;, to
Lot tbs 9L,

Depending on the assumed distribution of ey, it may be a good idea to skip
writing a cache entry if it ever turns out that (b1¢,...,01,0,44L, ;)2 = 0. In
any case, writing a cache entry should be skipped if all of the integers in it would
be zero (and thus the corresponding powers of g; trivial).
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3.2 Multi-exponentiation for an Old Base g1

If a cache entry based on g¢; is available (created as described in Section B]),
then [[,..<, g;" may be computed as follows. First, parse the cache entry as
(91, (\,G1), ..., (As—1,Gs_1)). Here we have G; = gt for1<i<s—1,and
if one of the exponent representations mentioned in Section [Z] was used while
creating the cache entry as specified in Section[B.I we have A\ > ... > \;_1 > 0.
Now split e; into integers E; (1 <i < s):

— let do = €1;
— for 1 < 1 <s— 1, let Ei = LdgzlJ and dz = di—l — EZ>\1,
— and finally, let Ey = ds_1.

In the exceptional case that A\; = 0, F; = 0 should be substituted for Ld;‘_l J By

this construction, we have e; = E1 A1 + -+ + Es_1As_1 + Es. It follows that
E E._ E,
g?:Gll""'Gs—ll'gl ,

and thus we have transformed the power gi* into a power product using new
exponents F;. This step is similar to radix-2 exponent splitting; we call it modular
exponent splitting. Suitable digit sets for radix-2 representations of each of the
new exponents can be chosen depending on how much read/write memory is
available for storing powers of the bases G1,...,Gs_1 and g; (cf. Section 2.T]).

For the exponents to the fixed bases ga,..., gk, we again (exactly as in Sec-
tion B.I)) assume that these are given in representations e; = 35y bij - 27,
bi; € B;. We apply radix-2 exponent splitting to these, giving us exponent
representations of maximum length L.

In total, by applying both modular exponent splitting and radix-2 exponent
splitting, we have converted the k-fold multi-exponentiation into a ks-fold multi-
exponentiation. The maximum length of exponent representations here may ex-
ceed L since we do not have strict guarantees regarding the F;. However, under
the assumptions regarding the distribution of e; stated in Section Bl the max-
imum length will remain around L with high probability.

This completes the description of our new technique. For an illustrative ex-
ample we refer the reader to Appendix [Al

4 Performance

Our multi-exponentiation technique can be used under many different
parameterizations—the number of bases may vary; the length of exponents
may vary; the amount of memory available for fixed precomputation (such as
ROM) may vary; the amount of memory available for cache entries (such as
slow read/write memory) may vary; the amount of memory available for vari-
able precomputed elements (i.e., intermediate powers) needed by the interleaved
exponentiation algorithm may vary; and under any of these parameterizations,
we have to decide on parameters s and L1, ..., Ly for exponent splitting (s-fold
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exponent splitting with exponent segment lengths L;), and we have to decide
on digit sets and representation conversion techniques for the exponents to the
fixed bases go,...,gr on the one hand, and for any of the s partial exponents
created from e; when the algorithm from Section uses a cache entry on the
other hand. This encompasses a large variety of different settings.

In the present section, we will look at a specific range of rather simple
use scenarios for our new technique to assess its performance. Let us assume
that we want to implement the multi-exponentiation technique in an environ-
ment where only a very limited amount of fast read/write memory is avail-
able but where we have some slower memory suitable for the cache, and where
we have plenty of read-only memory for permanently fixed precomputed ele-
ments. As powers of g; are frequently needed in the course of the algorithm,
this is what we will use such fast memory for. As particular examples, let us
consider the cases where we have such fast memory space to store 4, 8, 16 or
32 group elements, and let ¢ be 160, 192 or 256, which are practical values for
ECDSA. Note that restricting the space for storing powers of a base also limits
the number of different digit values that we can use in exponent representations
for the interleaved multi-exponentiation algorithm. We have implemented our
new multi-exponentiation strategy and counted certain group operations under
these prerequisites for different values of the splitting parameter s, always using
reasonable L; = E'gl and a left-to-right signed fractional window representa-
tion using appropriate digit sets B¥(m) = {£1,+3,...,4m,0} such as to fully
utilize the fast memory. (See [ITI23I16] for details regarding left-to-right signed
fractional window conversions.)

We have repeatedly simulated the behavior of our technique for uniformly
random exponents in the interval (0,...,2¢ — 1), covering both the case of “new
bases” to create cache entries (Section[3]) and the case of “old bases” to observe
the performance given such cache entries (Section B.2)). In these simulations, we
have counted the following operations:

— Squarings (S) and other multiplications (M) used for precomputing powers
of g1 (including powers of cache entries derived from g¢);

— squarings (S) and multiplications (M) by precomputed powers of g1 (or of
cache entries) within the interleaved multi-exponentiation algorithm.

We have excluded from counting any of the multiplications by fixed precomputed
elements (from ROM), since these are not a limiting factor given the assumption
that plenty of space is available for these elements: low-weight exponent represen-
tations accordingly may be used for the corresponding exponents, so changes of
the parameterization have less of an impact here. (Refer to Section2Z]for applica-
ble weight estimates.) The simulation results can be found in Table[Il The values
in the first row (s = 1) reflect the special situation when no splitting at all is done.
This applies to the multi-exponentiation algorithm for a new base g; for which no
cache entry is available (Section Bl), where a signed-digit representation is used
for the full-length exponent e;. The remaining rows contain operation counts for
cases where g; is an old base, i.e., an existing cache entry is used (Section B.2).
As we can see from the table, the number of squarings will be reduced to about
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Table 1. Experimental performance figures (squarings and multiplications with powers
of g1) for s-fold exponent splitting with exponents up to ¢-bits, with space for 4, 8, 16,
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or 32 elements for variable precomputation

Hvar = 4 H#Hvar = 8 #var = 16 #Hvar = 32
precomp. 1S + 3M 1S + 7™M 1S + 15M 1S + 31M

¢ =160 159.9S + 31.5M 156.0S + 26.1M 155.0S + 22.3M 154.0S + 19.5M

s=1 =192 188.95 + 37.9M 187.9S5 + 31.4M 187.0S + 26.9M 186.0S + 23.5M

£ =256 252.95 + 50.6M 251.95 + 42.1M 251.0S + 36.0M 250.0S + 31.5M
precomp. 25 + 2M 25 + 6M 2S5 + 14M 2S5 + 30M

£ =160 79.55 + 39.9M 79.1S + 32.0M 78.6S + 26.8M 78.6S + 23.2M

S=2 §=192 095.7S + 47.9M 94.7S + 38.5M 95.0S + 32.2M 93.7S + 27.8M

¢ =256 127.6S + 63.9M 126.9S + 51.4M 126.6S + 42.8M 126.8S + 36.8M
precomp. 1S + 1M 3S + 5M 3S + 13M 3S + 29M

¢ =160 54.7S + 49.4M 53.4S + 37.4M 52.85 4 30.5M 52.4S + 25.9M

S=3 (=192 64.35 + 59.1M 63.35 + 44.7TM 62.95 + 36.6M 62.35 + 31.1M

£ =256 85.85 + 78.6M 85.05 + 59.6M 84.5S 4 48.5M 84.5S + 41.1M
precomp. 0S + 0M 4S8 + 4M 4S8 + 12M 4S8 + 28M

¢ =160 40.6S + 53.9M 40.7S + 40.7TM 39.3S + 32.8M 38.8S + 27.8M

s=4 § =192 48.4S + 64.5M 47.6S + 48.6M 47.6S + 39.2M 46.95 + 33.1M

¢ =256 64.1S + 85.7TM 64.1S + 64.7TM 63.4S 4+ 52.1M 62.9S + 43.8M
precomp. 3S + 3M 58 + 11M 58 4+ 27TM

£ =160 33.0S + 46.4M 31.9S + 36.0M 31.1S + 30.0M

s=5 =192 39.7S + 55.8M 39.4S + 43.1M 38.4S + 35.7TM

£ = 256 51.858 4+ 73.7TM 51.4S 4 56.9M 50.5S 4+ 47.1M
precomp. 28 + 2M 6S + 10M 6S + 26 M

£ =160 29.4S + 50.4M 29.0S + 38.8M 27.8S + 31.9M

s=6 y—192 32.0S + 59.6M 32.2S + 45.9M 31.7S + 37.7TM

£ = 256 45.08 + 79.7TM 45.7S + 60.9M 44.3S + 49.8M
precomp. 1S + 1M 7S + 9M 7S 4+ 25M

£ =160 27.85 + 53.8M 26.9S + 40.8M 26.0S + 33.5M

s=T =192 30.1S + 64.0M 28.9S + 48.6M 28.4S + 39.5M

£ = 256 40.5S8 + 84.7TM 39.4S + 64.1M 38.2S + 52.1M

{/s as expected using the new modular exponent splitting technique. Moreover,
the number of multiplications performed during the multi-exponentiation slightly
increases from row to row: this due to the fact that smaller digit sets have to be
used to obey the space limits while the splitting parameter is increased. (Note that
s > 5 cannot be used with space for only 4 dynamically precomputed elements,
so the corresponding parts of the table are left empty.)

Note that the size of cache entries does not affect the statistics as reflected
in the table. With severe memory constraints for the cache, s = 2 might be the
only option. Comparing the row s = 1 (which describes the case of a multi-
exponentiation not using a cache entry) with the row s = 2 shows that our
technique provides for a noticeable speed-up even with just s = 2.

It also should be noted that our multi-exponentiation technique for old
bases g1 (Section B2]) involves s — 1 divisions with remainder to perform s-fold
modular exponent splitting. This starts with an ¢-bit denominator and a divisor
around £ — ﬁ bits; both operands will decrease by around i in each subsequent
division. Thus, the total extra cost of these modular divisions should usually be
reasonably small. The typical size of results means that around ¢ bits will still
suffice to store the resulting shorter exponents.

Please refer to Appendix for certain implementation aspects. See Ap-
pendix [C] for a performance comparison of our technique with an immediate
approach in a particular scenario.
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A An Example

As an illustrative toy example, let us apply our new technique to multi-exponentiations
g% - g5 with exponents of size at most £ = 18 bits. To keep the example simple, we use
unsigned-digit (instead of signed-digit) exponent representations. Let the digit sets
for the fixed base be Bo = {1,3,5,7,0}. For radix-2 and modular exponent split-
ting, we use splitting parameter s = 3. Thus, g2 is replaced a priori by three fixed
bases g2, 93,94 where g3 = g§6, gs = g%m. Accordingly, we precompute the powers
(g2, 95,95, 95, 93,95, 95, 9%, 94,93, 93, 91) and save this data in ROM. We consider an
environment with a limited amount of fast read/write memory and assume that we
have only space to store 8 powers of the variable base g1. Hence, we can choose digit
set By = {1,3,...,15,0} for exponentiations with a new base (Section B1) and digit
sets B1 = {1,3,0}, Bag, = Ba, = {1,3,5,0} for exponentiations with an old base

(Section 32).

Multi-exponentiation for a New Base gi. Let us now consider the com-
putation of gf - g5 for d = 205802 = (110010001111101010)2 and e = 245153 =
(111011110110100001)2 where g1 is a new base, i.e. no cached precomputed data based
on g; is available. Before the actual multi-exponentiation, we compute the powers
(g1,4%,...,g1%) and save these in fast read/write memory. Encoding e; := d using B;
yields

e1 = (3,0,0,1,0,0,0,0,0,0,15,0,0,5,0,1,0)a.

Encoding e using B2 and then splitting into three parts ez, es, es4 yields

€4 = (77 07070)27
es = (7,0,0,5,0,0)2,
€2 = (57 07 07 07 07 1)2

The following table shows what happens while performing the multi-exponentiation
H?zl g;* as described in Section Bl based on interleaved multi-exponentiation as
explained in Section 2.1}
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j A Cache entry (so far)
171 (91)

16 gl

13 (g1)% :g

12 (g 5) P’ (91, (50, g7))

6 ( )26 15 3215 ( (3215 93215) (5079%0))
5 (g 1)2 5 7_9(134309597

3 (g913043 7) gBgl = g25725 420438 47

2 (g2 25725 20 g28gT)2g3 = gP1450 4061 14

1 (g° 51450 40 gSlgity2g, — 102001 /50 122 28

0 (gt 102901 80 gi2228Y2, Z 4205802 161 (344 )56

As we can see here, until and including round j = 6, the variable A contains no powers
of bases other than g;. Intermediate powers of g; for caching are available at the points
j =12 and j = 6 of the computation.

Multi-exponentiation for an Old Base g;. Let us compute g - g5 for d =
73660 = (10001111110111100)2, e = 236424 = (111001101110001000)2 where g1 is
an old base for which the cache entry (g1, (A1 = 3215,G1 = ¢32'%), (M2 = 50,G2 =
g7%)) as created above is available. First, the powers (g1, 4%, G1,G%,GY, Ge,G3,G3)
are precomputed and stored in fast read/write memory. Next, we perform modular
exponent splitting as described in Section 3.2}

do = d = 73660,
Ey = Ld | =22 and di = do — E1 A1 = 2930,
E2 L J = 58 and d2 = d1 Ez)\g = 30,
FEs =ds =30
Encoding E1, 2 and E3 using Bg,, Ba, and B; yields
Ei1 = (10110)2 = (5,1,0)2,
E, = (111010)2 = (3,0,0,5,0)2,
Es = (11110)2 (3,0,3,0)2.

By encoding e using B2 and then splitting into 3 parts ez, s, e4 (using radix-2 exponent
splitting), we obtain

€4 = (77 07070)27
es = (3,0,0,0,7,0)q,
€ = (1,0,0,0)2.

The table below shows what happens in the interleaved multi-exponentiation to com-
t GElG Eg e ez eq,
pute 2791792793794 ¢

93

(gg)2G3 ngs 5

(ngs) 919294 G2919293 94

(G2919293 91)°GY = G1G5°gig3 g3 g1

(G5G2 909595 91" )>G1G3 gl g5 = G1'G3°91° 92957 93°
(G1'G391°9393°91%)? = GT*G3%g1 g5 93" gi°

S =N Wk O,
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B Implementation Aspects

On-The-Fly Signed-Digit Conversions. In our descriptions of multi-
exponentiation algorithms, we have employed radix-2 representations of exponents by
referring to their individual digits. However, this by no means is meant to imply that
these digits need to be explicitly obtained and stored in advance, which would be quite
inconvenient if memory is scarce. Left-to-right signed fractional window representa-
tions [ITI23I16] are very convenient for our purposes since (for any given maximum
digit value m) there is a finite-state machine that transforms the binary representation
into the corresponding signed-digit representation. As the name suggests, this conver-
sion machine starts at the most significant digit (“left”) and continues towards the
least significant digit (“right”). Since interleaved multi-exponentiation is a left-to-right
technique as well, this often means that the signed digits can be obtained on the fly.

To make this work with radix-2 exponent splitting, we need to add an additional
first left-to-right pass through the binary representation. This is essentially a dry run of
the signed fractional window conversion, used to determine the first binary digits that
will affect each of the segments of the signed-digit representation. For s-fold radix-2
exponent splitting, such a dry run can be used to initialize each of s finite-state ma-
chines, which afterwards can be used to obtain the digits of the individual segments
(exactly as in the case of the on-the-fly conversion using just a single such machine
that we would use in the case without splitting).

A simpler alternative would be to first split the binary representation, and then
generate the signed-digit representations individually. This could be done truly on
the fly, i.e., without the additional left-to-right pass. However, this strategy often will
increase the total weight of the resulting representations [15], so the two-pass technique
usually should lead to better performance.

Variants of the Signed Fractional Window Representation. In our per-
formance estimates in Section [ we optimistically assumed that besides ROM and fast
read/write memory, there is another kind of memory that we can use for the cache.
This is an assumption that we made for simplicity, but which is not necessary. In fact
we may use some of the fast read/write memory for a small cache without completely
losing this memory for precomputed powers of g;.

This can be achieved by observing that we may modify the parameter m for the
left-to-right signed fractional window representation while performing the conversion.
Thus, in the algorithm from Section [3.I] provided that m > 2s— 1, we may initially use
some maximum-size digit set B*(m) = {£1,+3,...,£m,0} for signed digits b1 ¢, down

(b1,0--5b1, Ly 44 Lg_q)2 .
to bi,L,+...+L, ,, then cache the current group element g, ! =% in the

memory space that so far held ¢7*, and then use the smaller digit set Bi(m — 2) for
subsequent digits b1,,+..4+, ,—1 down to b1, +..41, ,. Continuing in this fashion,
we eventually give up digits +m, +(m —2), ..., £(m —2(s — 1)).

C Performance Comparison

This appendix demonstrates the merits of our new technique for multi-exponentiation
with caching in one particular situation where very little memory is available for use as
a cache. We show that our method is of advantage even under this severe restriction.
We make the following assumptions:
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— We look at two-fold multi-exponentiation, gi* g52. Base element g2 is fixed; base el-
ement g; is variable such that the current value will repeat in the directly following
multi-exponentiation with probability Pogq = ;

— The exponents e; and ez are uniformly random integers up to £ = 256 bits.

— Storage is available for 128 fixed precomputed elements in read-only memory (de-
rived from the fixed base g2), and for only 2 precomputed elements in read/write
memory. The latter includes input value g;. In addition to this, we have space for
variable A in the algorithm from Section [2-I] and the memory holding the expo-
nents. (Note that typically the memory needed for the exponents is less than the
memory needed for a single group element: for elliptic curve cryptography using
projective coordinates over a 256-bit field, one group element takes 768 bits.)

— Different from the assumptions as used in Section [ we have no additional cache
memory. That is, a group element to be cached has to be kept in one of the two
read /write storage units for precomputed elements.

— We use rough estimates S = 0.7 and M = 1 for the amount of time spent on
each group squaring (e.g., elliptic curve point doubling) and on each group multi-
plication (e.g., elliptic curve point addition). (For example, when using Jacobian
projective coordinates for elliptic curves over prime fields, a point doubling takes
10 or 8 field multiplications depending on the curve, and a general point addi-
tion requires 16 field multiplications [I0], or 11 field multiplications in the case
of “mixed coordinates” [7]. Mixed coordinates require a one-time conversion step
to one of the inputs to convert it into affine coordinates, which is reasonable for
precomputed values. Accordingly, 181 =~ 0.73 is one way to justify our estimate

1?4 ~ 0.7, although in the following we neglect the cost of the conversion.)

If (instead of applying our new caching strategy) we directly use interleaved multi-
exponentiation in this situation, employing signed-digit representation as explained in
Section [} we can keep precomputed values g2, 93,93, ...,g5°° in read-only memory,
and use read/write memory for g1 and g3, thus achieving an exponentiation cost of

approximately 056 256

( T )M + 2558 ~ 268.1
(or 89.5M 42545 =~ 267.3 according to experimental simulation results) plus 1M +1S =
1.7 to precompute g from g1 when g1 has changed from the previous computation. By
assumption, this happens with probability ;, resulting in a total estimate of 268.1 +
1; ~ 269.0 (for the simulation: 268.2).

Our method initially performs worse than this, namely, in the case with a new base
(Section B]). Here, the read-only memory will contain g, 95,95,...,93%, plus similar
powers of 93128. The read/write memory initially is filled with precomputed elements g1
and g¢3. To perform the multi-exponentiation as described in Section Bl we use radix-2
exponent splitting for exponent ez to obtain partial exponent representations no longer
than 129 digits. For exponent e, we use a signed fractional window representation
variant as sketched in Appendix[B] i.e., where digit set parameter m is modified within
the conversion: the more significant digits can use digits set {£1, 43,0}, whereas the
less significant digits (digits b1,127,...,01,0) are restricted to digit set {£1,0}. This
is because we no longer keep g7 in memory when the method from Section B has
determined a group element to be cached, thus freeing a memory location for use as
cache space. The performance estimate for this multi-exponentiation is

128 128
() +

956
M + 2558 ~ 281.6
4 T3 " 9) +
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(simulation: 102.7M + 253.8S = 280.4) plus 1M + 1S =~ 1.7 to precompute g3 from
g1. We benefit from the extra effort put into this computation whenever the same g;
reappears in the following multi-exponentiation. In this case, the multi-exponentiation
will only take approximate effort

(128 128 n 256)

M + 1275 ~ 202.7
3 3 *

(simulation: 113.9M +128.2S ~ 203.6). The average cost given Pola = ; comes to 242.1
(simulation: 242.0). Thus, our method provides an average 10 percent performance
improvement in this specific scenario.
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Abstract. Regular (non-private) data mining can be applied to manage
and utilize accumulated transaction data. For example, the accumulated
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vidual transaction data from which the user compliance with a service
agreement can be determined and possibly billing can be processed. Nev-
ertheless, due to user privacy concerns, cryptographic research developed
transactions based on unlinkable anonymous credentials. Given the na-
ture of anonymous credentials the ease of managing accumulated data
(e.g., per user) is lost. To restore the possibility of management and accu-
mulation of data it seems that a suitable form of privacy preserving data
mining is needed. Indeed, privacy preserving data mining methods have
been suggested for various protocols and interactions where individual
data can be contributed in an encrypted form, but not within the context
of anonymous credentials. Given our motivation we suggest a new no-
tion of performing “privacy preserving data mining within the context of
anonymous cryptographic credential systems,” so as to protect both the
privacy of individually contributed data and the identity of their sources
while revealing only what is needed. To instantiate our approach we focus
on a primitive we call “data mining group signatures” (DMGS), where it
is possible for a set of authorities to employ distributed quorum control
for conducting privacy preserving data mining operations on a batch of
transactions while preserving maximum possible anonymity. We define
and model the new primitive and its security goals, we then present a
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the way we build a methodology that safely combines multi-server pro-
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1 Introduction

Private (i.e., anonymous) transactions protect civil liberties. Moreover, they help
service providers adhere to regulations as well as reduce potential liability. It is
expected that anonymous transactions in the future will be based on notions
like electronic cash [SIIT], anonymous credentials [T0/9], and group signatures
[12]. For example, recently, it has even been proposed to integrate anonymous
credentials into the new security architecture of the next generation Internet
that is currently being investigated (cf., [25J31]); the intent is to aid in prevent-
ing network abuses such as Distributed Denial-of-Service (DDoS) attacks while
protecting the privacy of the honest users.

However, what we claim here is that the impact of privacy on the management
aspect of anonymous transaction systems, namely how to properly manage and
utilize the anonymous transaction data while retaining user privacy, is not well
understood, and has not been investigated sufficiently. This is true even though
deanonymization of transactions has been identified as an important requirement
for anonymous transaction systems (for example, group signatures (e.g., [213])
enable the deanonymization of a certain transaction, traceable signatures [21]
enable the identification of all transactions of a certain user, fair blind signatures
[30] enable the “unblinding” of the signing protocol, offline e-cash [I1] enable the
deanonymization of the transaction source in case of double spending or even
n-time spending in the case of [7], and unclonable identification [I3[6] prohibits
over-usage within time periods).

Still, deanonymization is only one limited aspect of what administration of
an anonymous system is interested in. As a matter of fact, in none of the anony-
mous transaction systems mentioned above it is possible to extract, for example,
information about usage statistics within a time period without revoking the
anonymity of the transactions first. Such management operations are crucial in
assuring that users perform within usage bounds (that are “percentage-wise”
within time periods, e.g., no more than 10% of transactions in a batch), and in
enabling billing users based on their (e.g.) monthly usage etc. In general, the
administration may be interested in performing various management operations
on the transaction data, and in revealing different aspects of the data distribu-
tion and perhaps imposing deanonymization when the distribution gets skewed
for some of the transaction originators.

The goal of this paper is to initiate the study of privacy in data available
from anonymous credential transaction systems. To this end we present the no-
tion of “data mining group signatures,” which enable administrators to write
small “code snippets” that will be carried out distributedly by a set of mining
authorities and will compute (in a distributed manner over a protocol proce-
dures library) the desired output of a mining operation in a privacy preserving
manner.

Other related work. Previous studies on privacy preserving data mining (see,
e.g., 2ATIT6I22120] ), focused on processing multiple private datasets, which are
in the form of plaintext but should not be mutually disclosed. The difference here
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is that the data being processed are the “identification tags,” which are implicitly
collected from anonymous transactions and are in the form of ciphertexts.

1.1 Owur Results

Basic contributions. Let us reiterate that our first contribution is identifying
the need of privacy preserving data mining in the context of anonymous trans-
actions. We focus on designing a transaction system that enables distributed
operations on the scrambled identity tags that accompany anonymous transac-
tions. The notion allows a group of system servers to perform data mining with
trusted quorum control: as long as the majority of servers is honest, only the
required mining operations are performed and system privacy is preserved. This
general notion and its applications for operation and control are then modeled in
the context of group signatures, a very basic, general and long-lived anonymous
credential system.

In addition we propose a model for performing and sequentially combining
a suite of multi-server secure computational tasks (threshold cryptography, and
round table protocols). The composition preserves the security correctness and
robustness of the functionality when performed by a single trusted (black-box)
entity. This leads to a proof of security and correctness against a static minority-
controlling adversary. While earlier works considered such proofs of protocols
in isolation, a proof for a dynamic combination of protocols among a suite of
protocol procedures was not available in the literature.

Implications. Our motivation gives rise to two exemplifying usage characteris-
tics called “usage histogram” and “blinded usage histogram with outlier detec-
tion,” which are implemented efficiently within a data mining group signature
scheme without further privacy exposures. Usage histograms can be computed
in order to aggregate transactions per user. A typical application of a usage
histogram is statistics or billing. While there is no linking to the original trans-
actions, the data mining system in this case is capable of obtaining a histogram
that shows the number of transactions per user. Compared to usage histograms,
blinded usage histograms can better protect the users’ anonymity because there
is no identity information in the histograms — the histogram is extracted but
the names corresponding to each column are blinded. A typical application may
be in detection of misbehavior in violation of a service agreement by observing
the usage histograms and isolating columns that are, say, too high. The data
mining system can then obtain unmasked identities of exactly those users that
correspond to the selected columns.

Applications. We stress that using our methodology one can write other little
abstract programs (i.e., snippets) that can use the suite of basic procedures and
be executed by the mining servers to run any mining operation. Nevertheless,
the exemplifying histograms and blinded histograms by themselves can already
find specific applications such as the following.
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* For each period of time (e.g., every month), the authorities can extract the
usage counts of each user’s data mining group signatures. This allows the
authority to detect any significant deviation from a user’s normal usage,
which may cause further investigations. This utility can be used as a way to
detect misbehaving parties or simply maintain statistics about the system
(without actually linking a user to the actual transactions).

Given the network log of packets during a packet flooding attack, where each
packet has an associated data mining group signature (that is validated for
packets to be routed) as suggested in one of the next generation Internet se-
curity architecture proposals, the authority (i.e., a set of parties running the
distributed cryptosystems presented in this paper) can identify the senders
that send packets more than a threshold because they are potentially the
attackers, whereas the senders who send a small number of packets remain
anonymous. Note that signing and verifying need only be applied to fractions
of packets to preserve efficiency.

In business management, usage histograms can be utilized for operations like
billing (as mentioned above). This can also be used to detect dead accounts
(where there was no usage). Moreover, the histograms can also serve as a
basis for developing more advanced applications such as privacy preserving
decision tree mining [23] and Bayes classifier learning [32].

Discussion: Our approach vs. E-cash. One may consider employing (virtual) e-
cash for usage monitoring (not as a payment but for monitoring purposes). Let
us examine how one may attempt to use e-cash as a technical tool for monitoring
activities. Recall that in the e-cash model every user gets coins (or an amount
that can be split into coins); in our setting each participant will draw from the
bank “server coins” that will be used for transactions in the next time period.
When a user performs an anonymous transaction a coin is used so that the
user cannot be traced and the transaction remains anonymous. This has several
implications.

First, in e-cash the maximum usage has to be known a-priori. If the a-priori
number differs among users, it already reveals something about their intended
usage and is in violation of anonymity. For example, if the a-priori amount is used
and a user needs additional coins, this reveals over-usage before the monitoring
is conducted (the bank knows the identity of users). On the other hand, if the
bank is prohibited from knowing the identity of users (as a remedy to the above
drawback), users may draw a lot of coins beyond need (and malicious users may
combine their pool of coins without initially committing to “who will use the
money” ).

As another remedy, one may suggest that in the case of users drawing the same
number of coins (which as indicated above it is already problematic), at the end
of the period users who did not use all their coins will deposit back their coin (so
a user that did not get any service will deposit all her coins). This would require
all users to act in a period even if they have no intention whatsoever of using the
service; forcing subscribers to take action even if they are not active in a period
is a problem from usability/system-management and may be unacceptable from
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a user point of view (e.g., user may be allowed to be off-line for a period); on
the other hand, not forcing all users to be active may reveal usage intention
in violation of anonymity. Regarding depositing the unused coins, it should be
also assured that a depositing user is indeed depositing the coins she withdrew
(without combining them with other users) while also possibly preserving the
anonymity of the user who is depositing back her coins. Otherwise, misbehaving
users combining their states can bias the anonymous distribution, so that if one
user over-used the system and the second user under-used the system, they can
negotiate coin exchange so they show that they both are behaving well. If a user
shows the unspent coins under his name, this is not a blinded histogram any
more. Additionally, even the case of a named histogram, which may be used to
detect over-spending and under-spending at the same time, cannot be achieved
because if a user under-spent, she may choose not to show all her remaining
coins and thus cheat the system simply this way.

The above limitations are caused by the fact that monitoring via long-lived
credentials as we do here can be used in itself for billing and is a natural “pay
per use” method, whereas e-cash has to be drawn first and represents essentially
a “debit card” like instrument.

Moreover, as argued above, the coins themselves are anonymous. Thus, to
allow usage histograms based on names, the coins have to be de-anonymized,
(i.e., escrowed coins — a mechanism that exists). But once de-anonymized, the
coins are still associated with the transactions where they were spent (where
the “payment” took place). This jeopardizes the anonymity of the transactions.
Therefore, we do not see that e-cash helps in such anonymous monitoring of
usage that is independent of the transactions without requiring another layer of
anonymization.

In summary, the e-cash method as a tool to solve privacy-preserving usage
monitoring in the case of anonymous credentials, does not seem to solve the
problem, though superficially it seems related. Its inadequacy is based on various
objections, some based on attacks on the system and misuses, and some based
on unsuitability to the target goal of usage monitoring. Finally we recall that, in
fact, e-cash is a form of anonymous credentials that the mechanisms we propose
here can augment to accommodate some form of monitoring if suitably modified;
but we chose to demonstrate our approach based on group signatures whose
long-lived credential nature is particularly suited to our objectives.
Organization: The rest of the paper is organized as follows. In section 2] we
discuss our methodology for composing multiserver protocols for ciphertext com-
putations. In section [B] we present a model for data mining group signatures
(DMGS). In section F] we present a concrete DMGS scheme. In section [l we
conclude the paper.

2 MultiServer Protocols and Their Composition

The section presents our methodology of composing a suite of distributed mul-
tiserver protocols for specialized computation over ciphertexts. This building
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block will be used to construct the data-mining group signature scheme in sec-
tion 4l The model of allowing arbitrary sequential composition of such protocols
is novel; for ease of presentation and simplification we will employ the random
oracle model in our construction and assume a static adversary throughout. The
protocols will be carried out by a set of servers My,..., M,,.

Distributed Multi-server Protocols. An m-server protocol execution is based on
an interactive program P that is run by all servers and, provided that m > 1,
an adversarial program 4 who controls at most ¢ — 1 of the servers subject to
the constraint m > 2t — 1; the execution has the following characteristics:

— Participants. The servers My, ..., M,, and the adversary A. At the start of
the protocol the adversary selects a set of up to ¢t — 1 servers to corrupt such
that m > 2t — 1.

— Input and Output. Each participating server is given private and public input.
The input to each server includes the number of servers m (it is assumed
that the protocol P operates on any given number of servers). At the end of
the computation each server running program P will produce private output
as well as a public output that should be equal among all honest servers. The
private input of corrupted servers as well as the public input is given to the
adversary at the start of the protocol. The public input includes the security
parameter 1" (and note that all parties are polynomial-time bounded in &).

— Communication Model. We assume that the communication is synchronous
and that the protocol execution proceeds in rounds. In each round the pro-
gram of each server using its current state and history of communication
up and including the previous round produces two types of messages to be
delivered to other servers; the first type is a point-to-point private message
that is delivered privately to the intended recipient. This type of transmis-
sion models secure authenticated point to point channels between a pair of
servers. The second type of message is a broadcast message that will be
delivered to all servers at the beginning of the next round. At each round
a server produces private messages for all other servers as well as a public
broadcast message.

— Adwversarial Operation. At each round the adversary is activated last, after
the honest participants have submitted their messages. Based on the private
messages directed to the corrupted parties, the public broadcast messages
as well as all information available from previous rounds to the corrupted
parties, the adversary decides the public and private messages that will be
delivered from the servers under its control, i.e., the corrupted servers in this
round.

A suite of m-server protocols Suite = (PROTy,...,PROT;) is a set of protocols
that can be executed sequentially and use a joint state. In particular after an
initialization protocol is performed (by convention PROT;) subsequent protocols
executions can be sequentially composed in an arbitrary fashion and they will
all employ the same state. The private input of the server in each protocol will
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be the current state of the server. The public input to the set of servers will be
provided externally. We will use a special notation (Proty, ..., Prots) to denote
the single server versions of the programs of the protocols (PROTy,...,PROTy)
(recall that each PROTy is defined for any number of servers).

An execution of an m-server protocol suite Suite denoted by E5M*¢(1%,1™)
where A is the adversary, is a simulation of the program of A that proceeds as
follows: (i) First the adversary A is executed with inputs 1™, 1% and it selects a
set of at most t—1 servers to corrupt subject to the constraint m > 2¢—1. (ii) The
initialization protocol Prot; is executed as described above with the adversary
participating on behalf of the corrupted servers; note that this protocol requires
no private inputs for any of the servers and its public input is 1”, m; the private
outputs of honest servers are maintained as an internal state of the execution that
is inaccessible to the adversary. (iii) Subsequently, the adversary A may provide
a public input and ask the honest servers to execute together with the corrupted
servers under the adversary’s control any of the protocols in the suite. This step
can be repeated sequentially as many times as the adversary commands. (iv)
The adversary A may terminate the execution at any time outputing a single
bit which is also the output of the execution £.

Definition 1. A suite of m-server protocols Suite = (PROTy,...,PROTs) is
called t-distribution-safe if for all adversaries A corrupting less than t servers,
it holds that there exists an expected polynomial-time simulator S such that for
allm>2t—1,

|Prob[£5M¢(1%,1™) = 1] — Prob[SF™t Pt (1%) = 1]| = negl(k)

The intuition behind this definition is that an adversary that controls at most
t—1 servers is incapable of gaining any advantage due to server corruption while
executing an arbitrary sequential composition of the protocols in the suite. This
is argued by the fact that the adversary’s knowledge gain can be simulated
by a sequential execution of the same set of protocols with a single trusted
server (represented by the set of oracles available to the simulator S). Given
that anything the adversary can compute in the corrupted server setting, it can
also compute while interacting with a single honest server we conclude that the
protocol suite is “distribution-safe.” Note that distribution-safety as a property
suggests that a single-server functionality is distributed to a set of servers in a
manner that any correctness or security property that the protocol suite may
satisfy is preserved. Distribution safety does not impose by itself any correctness
or security guarrantee on the protocol suite (and these will be argued separately).

We next define a protocol suite that relates to ElGamal encryption and we will
take advantage of in our construction. We first describe the encryption function
itself that is loosely based on [29] and then we describe the protocol suite that
we will need. Let (G1) be a group of prime order ¢; the public key includes
G1,Ga, H,q where G, H € (G1). The secret key is the value w = logs, H. Given
a plaintext M € Z, the encryption is the tuple (U1, Us, C) = (GY, G5, H"GM)
where r < Z, accompanied with a non-interactive proof of knowledge for the
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statement PK(p : Uy = G AUy = G%); this is a proof of equality of discrete-
logs that can be made non-interactive following the Fiat-Shamir heuristic [15].
Overall the ciphertext will have the form 2 = (U, Uz, C, 7) with 7 standing for
the non-interactive proof of knowledge. Occasionally, we may use the notation
2° to denote (U, Uz, C) and call this the “reduced ciphertext.” This would be
useful in contexts where it is certain that the ciphertext is valid (i.e., the Uy, Us
are properly formed).

We note that we do not require the actual recovery of M (thus encrypting
GM does not hurt the efficiency of decryption); alternatively one can think of
the size of the plaintext space as polynomial in x (this would be indeed the case
in our setting) and thus the recovery of M is possible through exhaustive search
(or even a baby-step giant-step strategy). Following [29] one can show that the
above cryptosystem is IND-CCA2 in the random oracle model assuming the
Decisional Diffie Hellman assumption.

We proceed next to define a protocol suite for the encryption scheme defined
above that is parameterized by two hash functions H, H’. Each server maintains
a set QUAL that contains the set of properly acting servers in a sequence of an
execution. The way that the protocols in the suite maintain Q UA L will guarantee
that all honest servers maintain the same set and in all cases |QUAL| > t. The
protocols for the servers My, ..., M,, are as follows:

— ParGen is an m-server protocol with public output defined by the proba-
bilistic function f, where f(1%) is a tuple that includes the description of a
group that contains G as well as the k-bit prime ¢ which is the order of Gj.
We assume that this the group is selected from a predetermined table (that
contains one entry for each k) and thus ParGen is non-interactive.

— ExpGen is an m-server protocol that using the group description of (G;) and
the parameters ¢, m, it enables the i-th server to compute a public output
(H,Hy,...,H;_1) as well as the private output w; where H = Hy = GV is

(t,m

a random element of (G;1) and it holds that w Sl (wiy, ..., w;, ,) where

QUAL = {i1,...,im'} € {1,...,m} as well as HOH? . ..H;{l = G" for

. t, .
¢ =1,...,m'. The notation w (Bm) (w1, ..., wy) means that wy, ..., wy, is

a secret-sharing of w (cf. [28]) so that using any ¢ out of the m shares it is
possible to reconstruct w but any less than ¢ shares reveal no information
about w.

This protocol can be realized by the distributed key generation DKG pro-
tocol of [18] which builds on [I4)27].

We note that the DKG protocol relies on Pedersen commitments which
also require a value F' € (G1) with unknown discrete-logarithm. Such value
can be calculated by having each server computing F' = H(7) where 7 is a
fixed string known to all parties (and is unique for each invocation of the
system); we assume that the range of H can be mapped to (G1). Note that
the protocol fails if ' =1 (a negligible probability event).
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— PkGen2. This is an m-server protocol to compute the value G5. The calcu-
lation of G5 can be done in the same way as the value F' given above but
using the hash function H’ instead.

Init : the sequential composition of the protocols (ParGen, ExpGen, PkGen2)
in this order constitutes the initialization of the protocol suite. Subsequent
protocol executions employ the parameters generated by this execution.

— ExpRecon is an m-server protocol that on input V' € (G;) it produces the

. t,m’ . .
public output V¥ where w Gm) (wiy, ..., w;_,) is the secret-sharing of the

secret-key (committed to H = G") that is held by the QUAL = {iy,...,im}
subset of the m servers.

The protocol is realized as follows: The i-th server broadcasts V; = V"
as well as a non-interactive proof of knowledge of the statement PK(« :
Vi = V*A HOHf...Hft = (G%); this is a proof of equality of discrete-
logarithms that is made non-interactive using the hash function H’. Upon
receiving the values V;,,...,V; , accompanied by the NIZK’s m;,,...,m; ,,
each server finds ¢ values V; for which the proofs are valid, say A = (i1, ... 1)

and computes [T, 4 Vi;\LA where A\, ..., A\ are the Lagrange coefficients that
satisfy >,c 4 A/' - p(ir) = p(0) for all polynomials p of degree less than ¢ in
Zyq.

If a server finds that the proof m; is not valid, it removes server i from
the set QUAL.

— DEC is an m-server protocol that on input a ciphertext (Uy, Us, C, ) it returns
the decryption GM of the ciphertext or the value L to stand for failure.
Specifically, given a ciphertext, the i-th server checks whether the proof 7 is
valid; in case the test fails the server outputs L. Otherwise, the servers in
QUAL execute the ExpGen protocol on input U; to compute U{’ = H" and
subsequently decrypt C' by returning C'/H" as public output.

— MIXis an m-server protocol that on input a sequence of ciphertexts {2y, ...,{2,
it outputs a sequence of ciphertexts (21,..., 2/ such that if (Ly,...,Ly) is
the vector of plaintexts of the given ciphertexts, the output of the protocol
is a vector of ciphertexts whose plaintexts are as follows (Lp1y,- .-, Lpn))
for some randomly selected permutation p.

The MIX protocol follows a roundtable format: according to a schedule,
each server reencrypts and shuffles a vector of ciphertexts (£27,...,§22); then
it broadcasts the shuffled list together with a proof of a correct shuffle that
ensures that all plaintext values have been retained. Note that each server
acts on the output of a previous server according to the schedule. If a server
is found to produce an incorrect shuffle, the protocol restarts with the mis-
behaving server removed from QUAL. There are a number of protocols that
are suitable for our setting e.g., [ITI26I19]. Below we describe our MIX based
on a shuffling protocol that builds on [19].

The first server M; in the schedule will check all NIZK proofs that ac-
company the input vector of ciphertexts. It will then operate on the reduced
ciphertexts 25, ..., 2. We modify the shuffle protocol of [19] as follows: in
a first stage each server will broadcast a commitment to the permutation it
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will use as well as an NIZK that ensures the commitment is properly formed
(broadcasting this commitment is also part of the shuffling protocol). Once
this stage is completed the servers will execute the shuffling protocol ac-
cording to the schedule adhering to their original commitments and using
the Fiat-Shamir heuristic with the hash function H’ to make the proof non-
interactive. The parameters for the Pedersen type of commitment as the one
used in [I9] can be produced by the m servers by executing the protocol
PkGen2 prior to the execution of the mixing protocol (using fixed strings
derived from the 7 string each time).

— CMP is an m-server protocol that on input two ciphertexts (2, 2" it returns

public output 1 if and only if DEC({2) = DEC({2') (and 0 otherwise). We
notice that CMP as a protocol relates to a private equality test (or PET), see,
e.g., [I6]. However, PET is a two-party protocol where two parties wish to
check whether their private values are equal or not; on the other hand in a
CMP protocol a set of servers operate on two ciphertexts and wish to check
whether the corresponding plaintexts are equal when nobody gets to know
the decryption of the ciphertexts.

We present two solutions to the above CMP protocol problem that, depend-

ing on the network connectivity between the servers either one can be more
suitable. The basic idea underlying them is the following observation: Let 2 =
(Uy,Us,C,m) and 2 = (U, U4, C", "), and define ¥° = (U, /Uy, U /U3, C/C").
Observe that, assuming (2, {2 were valid ciphertexts encrypting GM,GM' re-
spectively, ¥° is a valid reduced ciphertext for the value GM~M" Tt follows that
if M = M’ the reduced ciphertext ¥° encrypts G° and this property can be
tested without leaking substantial information about M, M’.

Roundtable protocol for CMP. The first solution is suitable for settings
where the servers prefer to minimize broadcasting. It includes the following
stages:

1

. Each server M selects a random value a; selected from Z; and broadcasts

a commitment to a; denoted by ¢ = C(a;) as well as a NIZK proof that the
commitment is well-formed.

Given the ciphertexts §2, {2, the server M, where j is the smallest value in
r—

QUAL, “random scales” the ciphertext, an operation denoted by ¥° =
U’° that proceeds as follows: the server computes ¥'° = (V4,V5,D) =
(U}7,Uy7,C%) where ¥° = (Uy,Usz,C) and a; is the value committed in
stage 1. The server broadcasts ¥’'°. Observe that after this operation is exe-
cuted by the first server the resulting ciphertext £2’° is either an encryption of
GO (if My = Ms>) or a valid ciphertext of the plaintext G (M1=M2) Moreover,
if My # My, then a;(M; — M>) is uniformly distributed over Zj. Finally M
computes a NIZK proof PK(a: Vi = UP AVa =US AD =C* Ay = C(qa;j))
based on the hash function H’. The next server in QUAL collects (V4, Va, D),
verifies the proof and repeats the process. If a server produces an invalid proof
it is removed from QUAL and the protocol is restarted.
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3. After at least ¢ of the participating servers execute step 2 (this will be guar-
ranteed by the assumption that m > 2¢ — 1 and the fact that the adversary
controls at most ¢t — 1 servers), the servers enter the third stage of the proto-
col: if ¥° is the final result from stage 2, the servers execute the protocol DEC
on ¥° (omitting the part where the proof is being checked). The servers con-
clude by returning “1” if the decryption of ¥° results in 1 (i.e., GY mod P)
and “0” otherwise.

Threshold protocol for CMP. The second protocol solution to CMP is more
suitable for cases where there is a great number of servers and broadcasting is
an inexpensive operation (in this setting the roundtable approach of the first
solution may be inefficient). It will be broken into the following stages:

1. The servers execute ExpGen on group (G1) to produce Zy, Z1,...,Z4—1 €

(G1); recall that this results in Z = Zy = G* such that z (b (Ziyseeos2i,,)

for some subset QUAL' = {i1,... iy } of QUAL. The internal state of each
server contains now the share z;.

2. The servers in QUAL’ as determined from the previous stage, execute three
instances of the protocol ExpRecon on input Uj,Us, C respectively, where
U° = (Uy,Usy,C). This results in the scaled ciphertext W'° = (Vq, Vs, D) =
(U, U5,C%).

3. The servers execute the protocol DEC on ¥'° (omitting the part where the
proof is being checked). The servers conclude by returning “1” if the decryp-
tion of ¥'° results in 1 (i.e., GY mod P) and “0” otherwise.

We conclude the section by showing that the protocol suite we defined above
is t-distribution-safe:

Theorem 1. The suile of m-server protocols ParGen, ExpGen, PkGen2, DEC, MIX,
CMP) described above is t-distribution-safe assuming the discrete-logarithm as-
sumption and that H is a random oracle controlled by the simulator, for m >
2t — 1 servers.

3 Data Mining Group Signatures (DMGS): Model

We now define “data mining group signatures” (DMGS), that extend the notion
of group signatures with a MINING code snippet: a distributed algorithm that can
be executed by a quorum of mining servers and will be based on the ciphertext
manipulations and operations of the previous section; the code computes a given
usage characteristic (the data mining objective of the system). The participants
involved in the system are the users/signers, the DMGS manager (i.e., credential
issuer) that is denoted by DMGM, and the data mining servers My, ..., M,,.
The adversary we will assume will be ¢t-threshold meaning that it can corrupt
at most ¢ — 1 mining servers. While the corruptions of the mining servers will
be assumed to be static in our security modeling the adversary can adaptively
corrupt the group members.
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Definition 2. (DMGS) A data-mining group-signature scheme is comprised of:

1.

Setup: This stage consists of two parts.

(a) KeyGpmem: On input a security parameter k and an upper bound on
the number of users n, this probabilistic algorithm outputs the data min-
ing group signature manager’s public key Yomem (including all system
parameters), the public user database, and the secret keys of all users
ski,...,sky. The secret keys sky, ...,sk, are distributed privately to the
users and the DMGM terminates by discarding all its random coin tosses.
To each user key sk; there is a corresponding public-key pk; and a name
id; that are part of the public user database {id;, pk;}:; (we may refer to
this table as: public user database). The table can be accessed through
a function tableLook(-), that given pk; returns id;, the identity of the i-
th user. Without loss of generality we will assume that id; = i but in
practice id; may contain more information about the user.

(b) KeyGpyy,: this is an m-server protocol that with public input the parame-
ters 1% t,m, it enables the data mining servers My, ..., My, to produce
as public output the public key Ypm that will be attached to the public key
of the system, which is denoted by Y = Yomem||Vom. At the completion
of the protocol each data mining server will also return the private output
S; which will be a share of the virtual key skpm.

Sign: A probabilistic algorithm that given the system public key Y, a user’s
secret key sk;, and a message M, it outputs a signature for the message M.
We write SIGN(Y, sk;, M) to denote the application of the signing algorithm.
A signature 6 produced by the SIGN algorithm contains a mining tag denoted
by mts.
Verify: An algorithm for establishing the validity of a signature on a mes-
sage with respect to a system public key Y. Notice that VERIFY(), M,§) €
{TRUE, FALSE}.
OPEN s an m-server protocol that given a signature 0, it enables the mining
servers Si,...,Sm recover a value pk; that can be used to identify a user
from the public user database, or the value L. When it will be clear from
the context what servers are participating in the execution we will denote the
output of the protocol simply by OPEN(0).
MINING: This is an m-server protocol that enables the mining servers to col-
laboratively compute some application-dependent usage characteristic func-
tion usageChar : N* — T where T is some arbitrary range. The protocol
MINING will be expressed as an algorithm that is executed by each mining
server locally and includes calls to the subprotocols MIX, tableLook(DEC),
and CMP that operate on the mining tags of a given vector of valid signa-
tures. Two concrete implementations will be presented in Section[]] When it
will be clear from the context what servers are participating in the execution
we will denote the output of the protocol by simply MINING(81,...,0k).

A ppT adversary A for a DMGS has access to the following oracles: Setup via
KeyGppmem and KeyGpy,; OSign which receives a user’s identity ¢ and a message
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M, returns Sign(Y, sk;, M), and sets hist(Sign) = hist(Sign)||(¢, M ); MINING and
tableLook; Corrupt which receives a group signature user’s identity ¢ and returns
sk; and sets Corr = Corr U {i}.

The formalization of the security properties will be performed in the setting
of a single honest mining server. Subsequently, arguing the security of our multi-
server construction will be split in two steps: first we will prove that it satisfies
the properties stated below in the single server setting; then we will show that it
satisfies distribution-safety as defined in the previous section, hence the advan-
tage cannot gain significant advantage from corrupting a minority of servers.

Definition 3. (security of DMGS) The security properties of data mining group
stgnatures are:

1. Correctness: We require that a scheme possesses “signature correctness” that
suggests the following probability is overwhelming:

(Ybmem, public user database,sky,...,sky) < KeyGpyem (1, n);
Pr | (Vom,S) < KeyGpy(Vomem,t =1,m =1); Y := Yomaem||Vom;
& « Sign(Y,sk;, M) : TRUE = Verify(), M, 6) A i = tableLook(OPEN()

and similarly for “mining correctness” the following probability is overwhelm-

mng:
(Yomem, public user database, sk, ..., sky) < KeyGpyem (1, n);
(Yom, S) «— KeyGpy (Vomem, t =1,m =1); Y := Vomem||Vowm;
Pr (61, . 61{) - AOSign,MINING,Corrupt(lm);

output; < usageChar(tableLook(OPEN(81)), ..., tableLook(OPEN(6x)));
outputy, < MINING(éy,...,0k)] : output; = output,

recall that the MINING protocol is a code snippet that employs the subprotocols
DEC, CMP and MIX (as defined in section[d) that operate on the mining tags
of the signatures.

2. Traceability: For any PPT adversary A, the following probability is negligible:

(Yomem, public user database,sky,...,sky) < KeyGpuyem (1™, n);
(aux, Yom,S1, - - . Smym, t) — A(Vomem); Y = Yomem||Vowm;
(M, 8) «— ASEnComupt(y) aux) s.t. (i, M) & hist(Sign);

TRUE «— VERIFY(), M, 6); i+« tableLook(OPEN(Y)) :

(i ¢ Corr)V (i ¢ {1,...,n})

Pr

3. Anonymity: an adversary A against anonymity is a PPT that receives the
public-key Y of the system as well as it is allowed to corrupt any number of
signers adaptively. The identifiers of the corrupted signers are maintained in
a set Corr. Furthermore A interacts with three oracles OSign, Open, Mining,
where OSign stands for an oracle that receives (i, M) and returns a signature
on behalf of i-th signer whereas Open and Mining stand for the single (honest)
server executions of the corresponding two protocols defined above.
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Consider now an oracle anonSign with the specification that it takes as
input a pair (i, M) but it ignores its first input (which is the user’s iden-
tity) and records all its answers. We also define two oracles anonOpen and
anonMining. (1) anonOpen takes as input a signature 6 on M ; if 6 is not valid
it returns L; if 6 was the output of anonSign on input (i, M) it returns pk,
(the public-key of the user on whose behalf anonSign produced a signature),
otherwise (if & was not produced by anonSign) the oracle behaves as Open as
long as Open returns some pk; such that i € Corr (otherwise, if i & Corr
the oracle returns 1 ). (2) anonMining is given as input a sequence of valid
signatures 61, ...,0k; if 6; was the output of anonSign on input (i, M), set
L; = i. Otherwise, compute i = tableLook(Open(6;)) and if i € Corr set
L; = i; if on the other hand, i ¢ Corr return L. Finally, the anonMining
oracle returns usageChar(Ly, ..., Lg).

A data mining group signature, satisfies anonymity if there exists an ora-
cle anonSign such that for the oracles anonOpen, anonMining as defined above
it holds that any PPT anoymity adversary A cannot distinguish between these
three oracles and the OSign, Open, Mining oracles.

Some remarks about the definition above are in place: The definition of anonymity
is in the sense of indistinguishability between the real implementation of Mining
and Open functionalities and an idealized version of them. This allows maximum
flexibility in designing distributed datamining schemes.

The definition of anonymity implies the non-malleability of the encryption
algorithm employed in DMGS, since if an adversary is capable of modifying
the signature of an uncorrupted user without affecting its validity, this would
force the anonOPEN oracle to return L (something that would not occur in the
case of the OPEN oracle). Furthermore, observe that the definition of anonymity
implies that the encryption algorithm satisfies IND-CPA security (as all signa-
tures and hence ciphertexts can be simulated by anonSign without the plaintext
information that corresponds to the signer’s identity).

Note that the functions of anonOpen, anonMining can consult the correspon-
dence between simulated signatures and identities and thus maintain correctness
as in a real world execution.

4 Data Mining Group Signatures: Efficient Construction

Here we present a concrete DMGS scheme based on the short group signature
of Boneh et al. [4], which is based on bilinear maps. The public parameters of
the scheme are the following:

(pl) Two groups of order p where p is a ¢,-bit prime, denoted by G1 = (g1)
and Ga = (g2), so that e : G; X G2 — Gr is a bilinear map such that (1)
for all u € Gy, v € Ga, a,b € Z, e(u®,v*) = e(u,v)?, and (2) e(g1, g2) #
1g,. Moreover, let ¢ be a computable isomorphism from Gs to G; with
V(g2) = g1-

(p2) An elliptic curve group of prime order ¢ where ¢ is £4,-bit prime, denoted
by (G1), over which the Decisional Diffie-Hellman is hard.
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We assume p = ¢ for simplicity but our construction can also be ported to the
more general setting that different size groups are being used. We notice that ¢,
can be quite small, e.g., the order of 170 bits is sufficient. Now we specify the
signature scheme.

KeyGpmem: The public parameters are selected as described above in (pl) and
(p2). The key-generator selects v <« Z, and sets w = gJ. The key Yomam
is set to (g1, g2, w, u,desc(G1||G2||Gr||e),n), where desc(-) is a description of
the given groups including membership test and definition of group operation,
and the users’ secret keys are set to sk; = (x;,0; = gl/(7+$1)) for x; —p Z,.
Note that e(o;, g5'w) = e(g1, g2) is the property satisfied by all user secret keys,
and that o; or G¥ will uniquely identify the user. We also let ©v € Gy to be
a generator of the group. The DMGM maintains a user database that contains
entries of the form {(id;, G*?)};. The algorithm tableLook(:) on input G* will
return the identity id;. Note that id;, G*# can be required to be digitally signed
by the user so that non-repudiation is facilitated (but we do not consider this
aspect in our current modeling).

KeyGpy: here we use the m-server protocols ExpGen and PkGen2 from section
over the group (G1). Recall that the protocol is based on parameters m,t and
will produce the values Ho, Hy,...,H;—1 € {G1) as well as the private output
S; for each server i such that GSt = HyH? ... Hi", . The public-key that will be

used for encryption will be Hy = Gf with s &) (S1,-..,Sm). Additionally the

protocol PkGen2 produces value G € (G1).

Remark 1. If the DMGM should not know the private keys of the users (i.e., if
the property of exculpability is required), then according to [4] one can achieve

this by extending the above KeyGpygu algorithm as follows: instead of giving

user 7 the private key (o; = gl/ (r+23) 2., the user and the key issuer can execute

an interactive protocol so that at the end user ¢ will obtain a triple (o, x;, y;)
such that o] "*'hY" = g1, where hy € G, is a public parameter, and y; «r Z, is
chosen by the user and kept secret from the group manager. If done so, the SIGN
protocol below needs to be extended correspondingly (but this can be done in a
straightforward manner).

Sign: Given a user’s secret key (z, o) and a message M. The signing algorithm will
be obtained by applying the Fiat-Shamir heuristics on an appropriately selected
proof of knowledge. The proof will also be helpful for the non-malleability aspects
of the ciphertext that is embedded into the signature. Below we explam this proof
in detail. First, the signer computes the followmg values: T1 = gju* , To =g{ o
T3 =G, Ty = Gy, Ts = H{G*, where r, 2,2 g Z,.

Subsequently the signer will construct the signature on a given message M by
providing a proof for a suitable set of relations; the signer knows the witnesses
Uy Usgy Uy Uz, Ugzr, Uy that satisfy the following relationships: T3 = gj*u’=" in
Gy, T3 = Gil)r in <G1>, T, = Ggr in <C711>7 Ts = UTGU“” in <G1>, TlvT = gqf‘“u”m'

v

in G1, and e(T2, 92)"" - e(g1,92) " "= - e(g1,w) """ = e(g1, g2)/e(T2, w) in Gr.
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As a consequence, the signature is constructed as follows: first the values
Pz P2ty Pa> Pazs Poz R Ly and p, «—p Zg are selected. Then the following values
are computed:

Ry = g7"u"", Ry = e(Ts, g2) - e(g1,92) == - e(g1, w) ™"~
R3 = G/17T’ R4 — G§7‘7 R5 _ HgTszy RG — Tlpxg;pxz (u)*sz'7

Then we employ the hash function H’ to compute
¢ H (M||Y||M||T1||T2||T5||T4||T5 || Ra| | R2|| Rs || Ra| | R5 || Ro )

Subsequently the following values are computed: s, = p; + cz in Z,, s, =
Pzt czinZy, Sy = py +c2' 0 Zy, Sy = pyr + €x2 0 Ly, Sy = Pay + cxz’
in Zy, s, = pr + cr in Z4. The output of the signing algorithm is the tuple:
6= (T1,T2,T5, T4, T5,C, Suy Sz, 520, Swzs Swar s S )-

Verify: Signature verification is achieved by the following test: ¢ = H’ (J/ [|M||T1]|
Tl Tl (7473 g3 Ty | BIIG T |G Ty 157G Hr [T g uex )
where E = e(T3, g2)* - €(g1,92) "= - (g1, w) ™" - (e(g1, g2)/e(T2, w)) "

OPEN: this m-server protocol is a modification of the DEC protocol of section
The only essential difference is that the test for signature validity based on
the public-key ) substitutes the verification of the proof that accompanies the
ciphertext there. Observe that the tuple mt = (73,74, T5) can be parsed out of
6 and corresponds to a reduced ciphertext in the terminology of section 2 The
mining servers execute the DEC protocol as described there to produce the value
G* = DEC(mt) that can be used to identify the signer in conjunction with the
tableLooK function. Recall that the user database contains entries of the form
{(id;, G**)}; and the table can be queried by the function tableLook(-) that on
input G** will return id;.

MINING: The MINING protocol will be an m-server protocol that is given as input
a vector of signatures (61, . ..,0k) (with the precondition that they are valid) out
of which their mining tags (mts,, ..., mts, ) can be parsed; these correspond to
reduced ciphertexts of the underlying encryption scheme. We present two differ-
ent MINING protocols that employ the MIX,DEC, CMP as sub-protocols operating
over the mining tags that are parsed from the given vector of valid signatures.

(I) Usage histogram: The usage histogram functionality asks for a histogram
(id;, count;) for @ = 1,...,n where count; is the number of signatures signer id;
contributed.

Code snippet for MINING: usage histogram
Parse 61,...,0x to obtain mts,, ..., mts,;
(mt] ... mth) — MIX(mts,, ..., Mts, );

for i =1 to K do id; « tableLook(DEC(mt}));
SORT(id1, . ..,idk);



Privacy Preserving Data Mining within Anonymous Credential Systems 73

The complexity of the usage-histogram functionality is equal to O(K log K +
Kdec+ miz(K)), where dec is the cost of DEC and mix is the cost of MIX (note
that SORT is implemented locally by each server on its local output).

(IT) Blinded usage histogram with outlier detection : Given the sequence of signa-
tures, we want to create a histogram that contains entries of the form (4, count;)
where i corresponds to one of the signers that produced some of the signatures
among 41, ..., 0k and count; corresponds to the number of signatures that were
contributed by this user; note that here i does not identify the user (it is not
equal to the user’s identity and not correlated with it — it is simply a histogram-
specific pseudonym for the user and is used only for the presentation of the his-
togram). Besides this, detecting outliers requires the mining servers to discover
the identity of signers that either over-use (e.g. spammers) or under-use (e.g.
those that haven’t seen enough advertisements) the system. To facilitate this
the algorithm takes two parameters lo, hi € {1,..., K} and requires the recovery
of the identity of any signer whose usage is below (resp. above) lo (resp. hi):

Code snippet for MINING blinded usage histogram with outlier detection

Parse 61,...,0x to obtain mts,, ..., mts,;
(mt] ... mty) «— MIX(mts,, ..., Mts, );
fori =1 to K do
k=0;
if mt] # NIL then
k=Fk+1,;
count[k] = 1;

forj =i+ 1 to K do
if mt} # NIL then
test < CMP(mt;, mt});
if test == 1 then
count[k] = count[k] + 1;
mt/, = NIL;
output (k, count[k]);
if (count[k] < lo) or (count[k] > hi)
then output id « tableLook(DEC(mt}));

The complexity of the blinded usage histogram generation is O(K2cmp+miz(K)),
where cmp is the cost of CMP.

Correctness and Security Arguments. Below we argue how our construction spec-
ified above satisfies the model that we put forth in sections 2] and

Our security arguments will be split into steps. First we will show that our
suite of multi-server protocols is t-distribution safe for m > 2t — 1 servers. This
will enable us to reduce any adversary that takes advantage of the multi-server
nature of the system and corrupt a set of ¢ — 1 servers to an adversary that
performs the same attack against a single honest server. Then, we will show
that our scheme in the single server setting satisfies the properties we put forth
in section
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Theorem 2. The suite of m-server protocol suite (KeyGpy,, OPEN, DEC, MIX, CMP)
is t-distribution-safe under the discrete-logarithm assumption and that 'H is a
random oracle that is controlled by the simulator provided that m > 2t — 1.

Theorem 3. The DMGS scheme introduced above satisfies (i) correctness, (ii)
traceability, (iii) anonymity, based on: the Strong-Diffie Hellman Assumption
over Gy, Gs, the Decisional Diffie-Hellman Assumption over (G1) and the as-
sumption that H' is modeled as a random oracle.

5 Conclusion

We conceptualized the notion of privacy preserving data mining within anony-
mous credential systems. We advocated this general notion as fundamental to
adapting anonymous credentials in general systems. We then instantiated it in
the context of group signatures as “data mining group signatures” and presented
two particular instantiations of it. We included a modeling of the notion, intro-
duced distribution safety as a way to modularly argue the security of distributed
cryptosystems and we presented an explicit construction of our notion. A num-
ber of issues remain for further investigation: Extending the mining instances
to other cases crucial in transaction systems while maintaining efficiency is an
important direction. Our definition of the notion is based on combining the
properties of correctness, traceability and anonymity; considering attackers that
adaptively decide which of the properties to violate (as in a simulation-based
“ideal functionality” formulation) is an open subject to consider. Even further,
presenting constructions without the random oracle idealization or in a fully
concurrent execution model are open questions as well.
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Abstract. In 2004, Molnar and Wagner introduced a very appealing
protocol dedicated to the identification of RFID tags. Their scheme relies
on a binary tree of secrets which are shared — for all nodes except the
leaves — amongst the tags. Hence the compromise of one tag also has
implications on the other tags with whom it shares keys. We describe a
new man-in-the-middle attack against this protocol which allows to break
privacy even without opening tags. Moreover, it can be applied to some
other RFID protocols which use correlated keys as the one described
recently by Damgard and Pedersen at CT-RSA 2008.

We introduce a modification of the initial scheme to allow us to thwart
this and to strengthen RFID tags by implementing secrets with Physi-
cal Obfuscated Keys (POKs). This doing, we augment tags and scheme
privacy, particularly general resistance against physical threats.

Keywords: RFID tags, Tree-Based Hash Protocol, POK, PUF, Privacy.

1 Introduction

Radio Frequency Identification (RFID) tags are made of a small chip containing
a unique identification number. They communicate in the air with the system
via a reader. One of their main applications is to track objects on which they
are attached.

RFID systems have to deal with the scarcity of tags resources as well as the pri-
vacy needed for tag identification. In [I0JI1], a protocol which seems well suited
to handle these two constraints has been introduced. Indeed, the identification
protocol of Molnar et al. requires only limited cryptographic functionality and
has some useful properties such as the delegation of some identifications from
a Trusted Center to readers. This protocol relies on a binary tree of secrets.
The secret corresponding to a leaf is uniquely associated to one tag, but all the
other secrets in the tree are shared with different tags. Thus, as it is studied
in [4T2IT3], the compromise of the keying material of some tag leads to learn
the shared keys with some other tags. If many tags are compromised, this could
allow to track some non-compromised tags. This can be considered as a main
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threat to the privacy of the system. This problem has already been addressed in
[2], the compromise of tags still leaks information about the keying material of
the system.

To thwart this, we want to increase the resistance of tags against physical
threats. Physical Obfuscated Keys (POKs) have been introduced by Gassend [0]
as a mean to securely store a secret inside a chip. They are strongly related
to Physical Unclonable Functions (PUFs). Indeed, POKs were introduced as a
proposition to implement keys in a more secure manner. They are built such that
their observations by an adversary corrupt the chip and then destroy them. Note
that the use of PUFs inside RFID tags has already been considered in [3UI5].

The main achievement of this paper is to describe how to replace each secret
by two POKs during the Tree-Based Hash protocol. They are activated alter-
nately and each one taken separately does not reveal anything on the secret.
Cryptographic computations are carried out with two steps, where during a
step, only one POK is activated. Moreover an adversary can gain access only to
one POK by sacrificing the chip. By construction the underlying key is thus safe
from this compromise of one POK.

Our paper is as follows. In Sect. 2] we recall the principles of the Tree-Based
Hash protocol [II] and those of POKs. In Sect. Bland Ml we describe our privacy
model. In Sect. Bl we explain why some private informations leak with a Tree-
Based Hash protocol. In fact, we show a new attack against [I1] and [5] where
an adversary is able to track tags even without compromising any tags. In Sect.
[6l we describe our modification of the protocol. Section [0 examines the security
of our proposition and Section [ examines the privacy of our scheme to formally
prove the latter in the random oracle model. Section[d concludes. Security proofs
and practical implementations are sketched in appendices [A] and

2 Preliminaries

2.1 The Protocol [11I] in a Nutshell

In the following, we describe the general principles of the Tree-Based Hash pro-
tocol and invite the readers to go through [I1] to get full details.

During system initialization, a Trusted Center generates a tree of secrets (keys),
for instance a binary one. Each leaf is associated to a tag. A tag knows all keys
Ki,..., K4 along the path from the root to its leaf. Let F' denotes an appropri-
ate public pseudo-random function. When a tag is challenged by a reader which
sends to it a random value r, it responds by generating a new value each time —
Fi,(r,r"), Fr,(r,7"), ..., Fi,(r,7") — where r’ is another random value generated
and transmitted by the tag. The Trusted Center can easily check to which key
corresponds the received value in its tree of secrets by verifying for a given (r,'):

to which node corresponds F, (7, 1),

between the 2 children of this node, which one is associated with F, (r, 1),
repeat this verification, level after level from the root to the leaves,

and then identify which leaf (tag) comes with Fi,(r,r").

==
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A Practical Example. To get a better idea of the involved figures, we take
back the example given in [I1]. They have 220 tags. The binary tree is replaced
by a tree with a branching factor Q = 2'° and is made of two levels. Each tag
stores two 64-bit secrets. Using a Tree-Based identification protocol enables to
reduce the number of tests a Trusted Center needs to do. In this example, a
Trusted Center has to compute only 2 x 2'9 times the function F, 2'° for each
round, instead of 220 without this protocol. This improvement is very interesting,
because if the system’s size is S, the number of computation for the Trusted
Center is always in O(logg(S)Q) computation.

It should be noted that this protocol is very similar to a popular RFIDs
singulation algorithm: the tree walking algorithm [I]. Using this protocol leads
to an optimized singulation.

2.2 Physical Unclonable Function and Physically Obfuscated Key

Gassend in [0] introduces the concept of PUF. A Physical Unclonable Function
(PUF) is a function that maps challenges (stimuli) to responses, that is embodied
by a physical device, and that has the following properties:

1. easy to evaluate,

2. hard to characterize, from physical observation or from chosen challenge-
response pairs,

3. hard to reproduce.

For a given challenge, a PUF always gives the same answer. The hardness of
characterization and the reproduction is hard; i.e. it is impossible to reproduce
or to characterize the PUF thanks to a reasonable amount of resources (time,
money, ...). PUF can thus be viewed as pseudo-random functior] where the
randomness is insured thanks to physical properties. In the rest of this paper,
PUFs are formalized as perfect random functions, i.e. functions with maximal
output’s entropy.

We also write GenPUF(IQk) for a generator of random, independent PUFs.

One kind of PUF, as mentioned in [I5] as I-PUF for Integrated Physical Un-
clonable Function, has other interesting properties:

1. The I-PUF is inseparably bound to a chip. This means that any attempt to
remove the PUF from the chip leads to the destruction of the PUF and of
the chip.

2. It is impossible to tamper with the communication (measurement data) be-
tween the chip and the PUF.

3. The output of the PUF is inaccessible to an attacker.

These properties insure the impossibility to analyze physically a PUF without
changing its output. Hence, physical attacks corrupt the PUF and the chip leav-
ing the attacker without any information about the PUF. Particularly, volatile

! Note however that they can be limited in the number of possible challenge-response
pairs as explained in [g].
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memory cannot be read out without destroying the I-PUF. Silicon PUF have been
already described in [7] and can be taken as relevant examples of I-PUF, they are
based on delay comparison among signals running through random wires. More-
over, they only require a few resources to be implemented. A practical example
of implementation is described in [I4].

In [6], it is shown how to implement a key with a PUF, this implementation
is called a Physically Obfuscated Key (POK), by applying a fixed hard-wired
challenge to the PUF. In fact, using different challenges, several POKs can be
obtained from one PUF. In the sequel, we refer to a POK as a value, stored in a
tag, which is accessible only when the underlying PUF is stimulated.

2.3 How We Use POKs

The key has to be stored digitally when involved in some computations, whatever
the use of the tag is. Consequently, it could be possible to get a dump of the
volatile memory and then to obtain the value of the key. This type of attack
has been considered in [2] with a general line of defense for POKs: split the
computations with the key in two steps. Of course, the difficulty we encounter
is to cope with cryptographic computations and to find a way to split them.

A key K of the tree would be hard-wired thanks to two POKs K’ and K”
such that K = K’ ® K”where the two parts K’ and K" are different for each
tag.

Note that challenges used to stimulate the PUF to generate keys are stored
in the tag. Because the equality K = K’ @ K" stands for all tags in the same
branch, neither K’ and K" need to be known from the outside, nor pairs of
input/output from the PUF do.

3 Security Model

Here we propose to apply to RFID systems the following security model for
completeness and soundness. This is a simplification of [16].

3.1 Adversary Model

We sketch the possible actions of an adversary over a system. The system con-
tains a Trusted Center TC which wants to communicate with N tags. We as-
sume that the protocol is a challenge-response protocol: to authenticate a tag,
the Trusted Center sends a challenge and then waits for a response from the tag.

— SENDTC: this function enables the adversary to interact with the TC. Using
this function, he gets a challenge ay and he possibly tries to answer by
playing the role of a tag, in order to gain information over the key material.
Nevertheless, he does not receive the result of the identification.

— SENDTAG: this function enables an adversary to communicate with a tag.
SENDTAG(T, ap) means the adversary sends ag to the tag 7. This leads to
the complete output from the tag.
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— RESULT: this function allows an adversary to determine whether a bit string,
taken as input by the function, is a valid communication transcript of the
protocol. RESULT gives the authentication result the TC would have pro-
duced for a sent challenge and a response from a tag which are read in the
input bit string.

— CORRUPT: this function enables the adversary to open a tag to get all the
memory, volatile and non-volatile. CORRUPT enables an adversary to get
keys — if any — inside a tag and to get the volatile memory at any moment
of the tag computation.

We also suppose that an adversary has access to any random oracle which may
be used in the protocol.

3.2 Completeness

Definition 1. The scheme is complete when the probability of a genuine tag
to fail during the identification process is negligible. L.e. for all tags T,

Pr (ResuLT (o), SENDTAG (T, a{ )) = false|a]" = SENDTC())

1s negligible.

3.3 Soundness

Definition 2. The scheme is sound, if any polynomially bounded adversary
A cannot produce a valid communication transcript C 4, except with a negligible
probability. Furthermore, C 4 must neither lead to the identification of a corrupted
tag nor be an eavesdropped communication. I.e.

Pr (RESULT (C4) = true)
1s negligible.

These definitions are the adaptation of the usual correctness and soundness in
the model. Correctness ensures a legitimate tag identifies itself with an over-
whelming probability. Soundness ensures that no adversary can impersonate a
tag. Nevertheless, in the definition of soundness, we assume that adversaries are
active. For instance, they can impersonate a TC or eavesdropped communica-
tions or even corrupt tags to get information on secrets of the system.

4 Privacy Model

We present here our model of privacy. To define privacy, we define a game. An
adversary relevant against privacy is able to win this game with a non negligible
probability.

Thanks to the experiment described in Fig. [l A is an adversary who wants

to find a privacy leakage in the protocol (where & denotes an element taken at
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random). The privacy is defined as the advantage of the adversary over two tags
amongst two systems of tags he had chosen. If the advantage of A is negligible,
this means he is not able to link any tag inside S; and Ss. If A is relevant for this
game, he is able to construct subsystems with a special property: given a tag,
he can determine in which subsystem it belongs. This definition is more general
than anonymity and untraceability. If tags can be identified from an adversary
or can be traced, it is easy for an adversary to construct subsystems in order to
succeed at our game.

Experiment Expy’s riv.

Setup:
1. Initialize one system S.
Phase 1 (learning):
1. A may do the following in any interleaved order:
(a) make arbitrary SENDTAG queries to any tag in S,
b) make arbitrary SENDTC queries,
¢) make arbitrary RESULT queries,
d) make arbitrary CORRUPT queries to any tag in .S,
e) make arbitrary calls to the random oracle.
Phase 2 (challenge):
A selects two subset of S: S7 and Sa,
A selects two non corrupted tags 71 € S; and 73 € So.
Remove 77 and 75 from S7 and Ss.
Let b & {1, 2} to select 7, one of these tags.
A may do the following in any interleaved order:
a) make arbitrary SENDTAG queries to any tag in S1\71, S2\72 and 7,
) make arbitrary SENDTC queries,
(c) make arbitrary RESULT queries,
)
)

,_\/\A/\

Cul W=

make arbitrary CORRUPT queries to any tag in S1\71, S2\72,
make arbitrary calls to the random oracle.
6. A outputs a guess index b’

Exp’y ' TV succeeds if b= b'.

Fig. 1. Privacy Experiment

Definition 3. A protocol in a RFID system is private if for a polynomially
bounded adversary A following the experiment Expﬁc ‘s, then

|Pr[b) = b] — Pr[b) # b]|
1s megligible.

In each step, A is allowed to use the random oracle, but we omit it to simplify.

This privacy definition is more general than the privacy definition of Juels and
Weis in [9]. This is a consequence of the possibility to consider shared keys inside
tags whereas it is not taken in account in their model. Indeed in their model,
they suppose keys inside tags are all independent. In this case, it is unnecessary
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to consider the whole system to determine whether an adversary has advantages
on distinguishing two tags, whereas it is an important threat to consider in Tree-
Based protocols. Furthermore, the original Tree-Based Hash protocol is private
in their model although it is not in ours (cf. Sect. H).

Vaudenay in [16] defines a new model of privacy. Privacy is defined as a leakage
of information of the whole system. In the Vaudenay’s model, a system of tags is
private if it is possible to perfectly simulate the system. An adversary should not
be able to distinguish whether he is attacking a legitimate system or a simulated
one. From now on, this seems to be the most general model as it is clear that a
privacy leakage is a gain of information on the system. Nevertheless, a system
could not be perfectly simulated — as it is the case for our scheme introduced in
Sect. [fl when we allow the adversary to use the RESULT oracle — without implying
that there exists a way to obtain information over tags inside the system. That is
why we introduce our privacy definition which can be seen as a kind of trade-off
between [9] and [16].

5 A New Privacy Leakage Against Tree-Based Hash
Protocols

The original Tree-Based Hash protocol proposed in [I1] had been proved to have
some privacy leakage in [IT2/T3]. Opening a tag, while keys are not protected,
leads to the knowledge of shared keys in the system. Note that in one version
of the protocol in [IT](the one described in section 2I), there are cases where
it is possible to determine whether two tags share keys even without getting
physically the keys.

Let us denote Cf (r) = Fi, (r,7"),...,CT(r) = Fg,(r,") the outputs of the
tag 7 for the challenge r. C7 (r) = F,(r,r') is the output needed to authenti-
cate at the depth i in the tree of keys. Suppose the C7 (r) are independent from
each other. As a consequence, C’iT (r) can be computed without the knowledge of
CL(r),....CE(r),CL(r),...,CT(r). In this case, using one RESULT query and
two SENDTAG queries, it is possible to determine whether two tags share one key.

Getting a random challenge r from SENDTC, the adversary can use SEND-
TAG(T,r) and SENDTAG(7’, 7). He is then in possession of two communications
CL(r),...,CT(r) and CT (r),...,CT (r). For instance, to test whether the two
tags have the same first key, the adversary uses the RESULT query on the commu-
nication (n o' (r),CT(r),..., CdT(r)>. If this communication is an admissible
one, this means 7 and 7’ share the same first key. Otherwise, they do not. Of
course, it is possible to do the same for a key at a different position.

This attack is practically feasible as the adversary only needs to interact with
two tags and a reader. In fact, it is a general privacy threat that concerns RFID
systems using correlated keys inside tags. As soon as the different components
of a response (the C; above) are not linked together, an adversary can mix the
answers of several tags to learn if they share keys.

For instance it is the case of the new protocol recently introduced in [5]: It is a
protocol with correlated keys, but unlike [I1] it does not rely on a tree of secrets



84 J. Bringer, H. Chabanne, and T. Icart

in order to increase the possible choices of tuples of keys associated to tags, which
allows to increase the resistance against corruption. However messages answered
by a tag are still independent and the technique above still attacks the privacy
of the scheme. In the next section, our protocol is constructed to avoid also this
kind of vulnerability.

6 Owur Proposition

6.1 System Parameters

Because of PUF and use of different random values for each key inside a tag, our
protocol strengthens tags against the privacy leakage described in the previous
section (see section [§ for this result).

We now give the parameters of our scheme. Our RFID system is made of
N tags, the tree of key has a branching factor Q and a depth d. We use a
pseudo-random function H implemented by a hash function.

The length of the random challenge ag sent by the TC is [, the length of keys
is [k and the length of the output of the hash function is (. The number of
tags NV is usually smaller than 24°. A probability is considered negligible as soon
as it is negligible in at least one of the following parameters: N, [,k ,lg. These
systems is denoted S(N, @, d, L, g, k).

Setup. To create our system of tags, we need a generator function: Gen(1*) outputs
a random element of size k. To create our system of tags, we first use Q + Q2 +
...+ Q% times the function Gen to create our tree of keys. Each key is an output of
Gen(1'%). During the creation of a new tag, a set of keys is given, which enabled it
to identify itself. The set of keys is made thanks to our tree of keys, which means it
represents a path from the root to a leaf. All the tags have of course different sets of
keys, with possibly d — 1 keys shared. For one tag 7, it is denoted as K7 , ..., K7.
A tag is created with a new PUF obtained from GenPUF(IQZK ). As shown before,
each key is implemented inside a tag via two POKs. To generate the value of these
POKs, we once more use Gen. For each K7, Gen(1!¢) outputs a challenge c. This
challenge is hard-wired with the PUF and outputs PUF(¢) = KZ{T. The couple
of POKs associated to the key K7 is (K/7,K!'"7 = K7 @ K7). As the PUF is
considered to be a perfect random-function, K7 and K7 are considered to be
random values of entropy /. This means that the knowledge of only one of these
values does not reveal anything on K ZT .

6.2 The Protocol

In Fig. Bl is the description of our new protocol, where K 7 denotes the key at
the depth i on the j** branch of the tree. The TC sends to the tag a challenge
ag, which is a random value. The tag 7 computes a random value r7 and sends
a1 = H(ag,r¥). The tag switches on the first POK to get Kj7 and computes
A" =rT @ K{7. This operation erases in volatile memory r7 . The second POK

is switched on to get K77, and this erases K7 . Finally the tag computes A” =
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Tag 7 TC

ag .
«————— pick ag

pick r¥

a1 = H(ao, r?)

The first POK is
switched on to get K77
A =rT o KT

The second POK is
switched on to get K77
A// _ A/ @ Ki/T

= rlT DK f

ay, TIT@KlT

pick rZ
aq = H(ad,l,rdT)

ag, rg-EBKg

fori=1tod
forj=1toQ
Tf’ :f(f erl @ K7
Zf a; = H(ai_hrgl)
then go to the next stage
associated to the found key
end for
if no match, fails
end for

Fig. 2. The Identification Protocol

A’ @ K{'T and sends r7 @ K{. The tag picks a random value rZ and computes
as = H(ay,r]) and sends it to the TC. It computes 77 & K7 using the same
tricks as before. It repeats these operations d — 1 times. A

Then the Trusted Center (TC) tries amongst all the key K7 in the tree’s first
level whether it gets the equality H(ao,r7 ® K7 ® KJ) = ay. If it finds one
correct key, it searches the next key amongst the possible keys in the tree. If the
operation is successful for the d levels then the tag is authenticated.

This protocol has all the advantages of the Tree-Based Hash protocols: it
allows delegation and to have less computation for the TC than the exhaustive
search but with an increased time of computation for the tag.
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7 Security Analysis

In our protocol, SENDTAG outputs (a1,7{ @ K7 ,... aq,r} @ KI) and RESULT
returns whether the 2d + 1-tuple (ag,a1,77 @ K{ ..., aq,77 @ K7) is correct.

7.1 Restriction on the Corrupt Query Due to POKs

In our case, we make the hypothesis that corrupting a tag 7 leads an adversary
to the knowledge of only one of the three possible type of sets:

T T
1. aj—1,r; and a; = H(a;—1,7] ),
2. a;_1, 17, a; = H(a;_1,r7) and r] @ K/7,
3. ai—1, a; = H(aj—1,77), r? @ K!I' and r} @ K7 .

Note that in the two first cases, an adversary does not learn the final output.
Thanks to the possible actions of the adversary as defined in Sect. [3.] we can
prove:

Theorem 1. CORRUPT queries leak at most as many information on the key
material as SENDTAG queries.

Proof. Getting a;_1, 77 and a; is trivially of no interest. Getting a;_1, r7, a; and

r7 @ K!7 is equivalent as getting a;_1, 7 and K/7. As K!7 is a random value of
maximal entropy [, this leaks no information about KiT . Finally, getting a;_1,
ai, 77 @ KI'T and r] @ K7 is equivalent as getting a;_1, a;, K7 and r7 © K7 .
Because K/'7 is a random value of entropy Ix, this is equivalent as getting a; 1,
a;, and 77 @ K7 which is exactly a part of an output of a SENDTAG query. O

In the sequel, we do not distinguish CORRUPT from SENDTAG in proofs.

Remark 1. Formalizing CORRUPT this way is convenient for our model and our
proofs. The reality behind this formalization is still an open implementation
issue. More concretely, the ability of an adversary to obtain a key from a POK
without destroying the tag has to be evaluated precisely. This topic is however
outside the scope of this paper.

7.2 Completeness and Soundness

Theorem 2. Our scheme is complete. If H is preimage and collision resistant,
then our scheme is sound.

The proofs are available in Appendix [Al

8 Privacy Analysis

As shown before in Sect. [l this is an important point to determine whether an
adversary gains any advantage using different outputs from different tags while
he is using RESULT queries. In this paper, the protocol described has the property
that an adversary cannot use different outputs from tags to make a new one which
has a good probability of being admissible. This is shown in the following.
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Proposition 1. If H is collision resistant, an adversary, by mizing different
outputs from different tags in a RESULT query gets a positive answer only with
a negligible probability.

Proof. A uses the SENDTAG query on tags in S. Then he uses the RESULT query.
His query is of the form ay, . . . aZT 1 Tie 1€9KT Z 7 EBKT . To be a valid
communication, it has to exist a key K such that al” = H(aZT 157 EBKT o K).
We also have the equality a7 = H(aZ’,,rZ"). If the first equality occurs, while
T', T2 and T* represent different tags, this leads to a collision on the output of
H as r} ° and r7" are generated randomly and a; 11 and a; 31 are outputs from
H. So this proves this communication is valid With a neghgible probability. O

Hence, in the sequel, we suppose an adversary never uses different SENDTAG
outputs in one RESULT query.

Remark 2. Furthermore, if A tries some RESULT queries on a randomly mod-
ified communication from one tag, he gets a positive answer with a negligible
probability. Consequently, RESULT query can just be used to verify whether a
communication from one tag is valid or not.

Below, the random oracle H represents the hash function used in our protocol
and we assume that the random generator in each tag is perfect.

Theorem 3. Our protocol, in the random oracle model, is private.

Proof. Let Lé’lp be the list of all the communications of A with tags in S; during
the learning phase and Lé’Cp during the challenge phase except 7. Let Lg be the
communication with 7;. Let LY and Lt the RESULT (or SENDTC or CORRUPT)
queries used in the experiment. Let LP = L1 Py L2 Py Lg and L = Lé’Cp U
LZPULY. Let L' be Ly U LY and L2 be LY U L.

To determlne whether 7}, isin 51 or Sy, A has to determine whether 7, shares
keys with tags in S; or in Se. To achieve this, either he made some queries to
the random oracle or not.

— Case 1: A did not make any random oracle query. So A can obtain a clue
that 7y is in S; just by looking at L?, L’ and L%. We already proved in
Sect. [ that use of RESULT only helps to verify whether a communication
from one tag is valid or not. To get a useful information, A has to compare
the communications in L', L? and Lb

To this aim, amongst triplets (a7 ,,a? , 77 ® K7), A needs to distinguish
Valueb which are correlated to the same keys. However, a triplet (a? |, a7,
r7 @ K7) is indistinguishable from a random one under the random oracle
hypothesis as long as he does not make a query to the oracle. The only way
to distinguish communications is thus to find at least one collision between
Lg and L' U L2. The probability to get such a collision is negligible.

— Case 2: A made some random oracle queries but none of the form H @7, 7@
KTEBK) where K is a key in S; or Sy and al ,r7T @ K7 is a part of an output
from a tag. In this case, A has no more information than in the previous
case, and the conclusion is the same
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— Case 3: A made some random oracle queries and one of them is of the
form H(a?,r7 @ K7 @ K). This means A got a key of this system. As we
already proved in a previous remark, this event has a negligible probability
to happen.

The overall advantage of A is negligible in the security parameters for a polyno-
mially bounded adversary. O

9 Conclusion

Following a general trend in inserting PUFs inside RFIDs, we modify the Tree-
Based Hash protocols to allow the integration of POKs. Because of the fact that
keys inside a tag are now physically obfuscated, we show that an adversary is
not able to impersonate a tag. Moreover, we prove our tag system has no privacy
leakage. We thus believe that our work helps to strengthen the security of the
overall protocol.
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A Security Proofs

Completeness

In our scheme, errors could occur because of collisions in the output of the hash
function. For instance, a part of a communication (a;_1, H(a;_1,77),r7 & K}F)
could lead to an error when for a tag 7', we get the equality H(a; 1,7} ) =
H(ai—1, 7] & KT & KT'). This could appear with a probability at most 2, .
Because there are d stages, the overall probability to fail in the identification is
O( Q ) which is negligible in the parameters.

2l

Soundness

We first remark the following. Let us define a family of functions H,; derived
from H. bis a bit string of size . H,p is a function from {0, 1}"* to {0, 1}!# such
that H,p(x) = H(a,b® ). As H is preimage resistant, we can consider that an
adversary has a negligible probability to find a preimage of H, ,(z) whatever a
and b are. If there are polynomially many a; and b;, an adversary has a negligible
probability to find 2 even if he knows H,, 3, () for all a; and b;.

Now, we denote L; the list of all the communications produced via the
SENDTAG queries, Lo the communications sent to the TC either with the
SENDTC query or the RESULT query.

To simplify the notation, we prove that the scheme is sound with d = 1. This
is a sufficient condition, as the difficulty to authenticate increases with d. We
denote M, the maximum number of operations made by A.

Assume A has received the challenge a© and outputs the couple (aq,z;). We
overestimate the probability of success of A. There are two cases:

— Case 1: A did not use H to output aq. This means:
e cither ol had been tested by A thanks to the SENDTAG query, this

could arise with a probability less than QZV,[T ,
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Table 1. Resources needed in the first case

Tag Tag — TC TC
numbers non-volatile computation communication computation
memory
220 200 bits 2 AES and 2 random 328 bits 2 x 2"
230 300 bits 3 AES and 3 random 492 bits 3 x 2%

e or he tried a random answer. In this sub-case, he has a probability of

success less than ]‘2{}? thanks to the collision resistance property.

— Case 2: A used H to output a;. So we denote a; = H(aOTC, x}). This means

e cither there is no key K like ) =z @ K. The probability of success is
thus less than ]‘2{}?,

e or there is a key K in the key material such that 2} = z; & K. Conse-
quently A possesses one key. He could achieve this only using the infor-
mation from L and Ls. A only knows triplets of the form (ao, H{(ag,r7),
rT @ KT) for some tags 7. A change of variable leads to: ag, H,, ,7 (K7),
rT. Thanks to the previous remark on preimage resistance property, we

can conclude that the probability .4 got one key is negligible.

We can conclude that our scheme is sound as the overall probability of any
adversary is negligible.

B Practical Example

We propose for our protocol, as an example, the following parameters:

— the size of the reader challenge [, is 64,
— the size of any POK g is 100
— the size of the output of H [y is 64.
For instance, the first 64 bits of AES,, | | q|jr (@i-1]|7i1.64)-

They have been chosen to minimize the non-volatile memory inside the tag and
the communication between tags and readers, but they should lead to a sufficient
security to insure the secrecy of the keys and the impossibility to authenticate
without the knowledge of the keys. We use AES as it is possible to implement
it with not too many gates and because the problem to find a preimage or any
collision is usually believed intractable.

Security can be improved by increasing the parameters:

— the size of the reader challenge [, is 64,
— the size of any POK [ is 116
— the size of the output of H [y is 64.
For instance, the first 64 bits of AES,, | | ,|pr, (@i-1]|7i1.64)-

The two tables Table 1 and Table 2 summarize the concrete resources used in
our scheme in the two previous cases for some example parameters. We use a
branching factor of 210 in all cases.



Improved Privacy of the Tree-Based Hash Protocols

Table 2. Resources needed in the second case

Tag Tag — TC TC
numbers non-volatile computation communication computation
memory
220 232 bits 2 AES and 2 random 360 bits 2 x 210

230 348 bits 3 AES and 3 random 540 bits 3 x 210
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Abstract. In this paper, we build, in a generic way, two asymmetric
cryptosystems with a careful study of their security. We present first an
additively homomorphic scheme which generalizes, among others, the
Paillier cryptosystem, and then, another scheme, built from a deter-
ministic trapdoor function. Both schemes are proved semantically se-
cure against chosen plaintext attacks in the standard security model and
modify versions can be proved secure against adaptive chosen ciphertext
attacks.

By implementing these constructions with quotients of Z, elliptic
curves and quadratic fields quotients we get some cryptosystems yet
described in the past few years and provide variants that achieve higher
levels of security than the original schemes. In particular, using quadratic
fields quotients, we show that it is possible to build a new scheme se-
cure against adaptive chosen ciphertext attacks in the standard security
model.

Keywords: Probabilistic Encryption, Homomorphic Scheme, Generic
Construction, Paillier Cryptosystem, Quadratic Fields, IND-CPA and
IND-CCAZ2 security, Standard Model.

1 Introduction

In 1984, Goldwasser and Micali have designed the first probabilistic cryptosystem
and defined the adequate notion of security for this type of scheme: the notion
of semantic security. After this system, based on quadratic residuosity, many
probabilistic schemes built from the same principle have been proposed: chrono-
logically by Benaloh ([Ben88]), Naccache and Stern ([NS98]), Okamoto and
Uchiyama ([OU98]) and at last, the most achieved system have been proposed
by Paillier ([Pai99]) and then generalized by Damgard and Jurik (cf. [DJOI]),
allowing to encrypt larger messages. All these schemes use quotients of Z, their
one-wayness is based on factoring and their semantic security is based on the
hardness of distinguishing some powers. Moreover, these schemes are additively
homomorphic, i. e., if we got a multiplicative group structure on the ciphertexts
set and an additive one on the plaintexts set, then, if ¢; is a valid encryption of
m;, with ¢ € {1,2}, ¢1¢2 is a valid ciphertext of mj +msy. This property has many

R. Ostrovsky, R. De Prisco, and L. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 92-108, R00S.
© Springer-Verlag Berlin Heidelberg 2008
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applications, for example the systems of Paillier and Damgard and Jurik can be
used to design electronic vote systems (cf. [Jur03]), for Private Infor-
mation Retrieval (cf. [Lip05]), or for building Mix-nets (cf. [NSNKO6, Jur03]).
At the present time, the Paillier and Damgard-Jurik cryptosystems are almost
the only schemes that are additively homomorphic and practical. The system
of Paillier has also been adapted in elliptic curves over Z/n?Z by Galbraith
in [Gal02]. Another finite group, simpler than elliptic curves over finite ring can
be used to adapt this system: the group of norm 1 quadratic integers modulo n,
where n is an RSA integer (this adaptation was only briefly sketched in [Cas07]).

A fast and non-homomorphic variant of the Paillier scheme has been pro-
posed by Catalano, Gennaro et al. in m7 and later adapted in elliptic
curves by Galindo, Martin et al. (cf. [GMMVO03]) and again in quadratic fields
quotients in [Cas07]. These schemes can also be seen like probabilistic variants
of deterministic trapdoor functions: respectively RSA, KMOV (cf. [KMOV92])
and LUC (cf. [SLI3]).

In this paper, we propose two generic constructions that capture the ideas of
all these schemes. In section 2, we show how to build a generic homomorphic
encryption trapdoor whose semantic security is based on the hardness of the
problem of distinguishing k*" powers of a group, for a well-chosen integer k.
Note that this construction is essentially known as it is a direct generalization of
the Paillier scheme. We include it here for completeness as a formal exposition is
not known by the author. Then, in section 3, we modify the previous construction
in order to get more efficient schemes. This will result in a method to build a
probabilistic trapdoor function from a deterministic trapdoor function which
satisfies some properties.

For each construction, we do a careful study of both one-wayness and semantic
security. For the first one, we begin with a scheme secure against chosen-plaintext
attacks (the homomorphic schemes can not be secure against chosen-ciphertext
attacks because of their obvious malleability) and then we show that we can
modify this construction to use universal hash proof systems (cf. [CS02]) in order
to build an IND-CCA2 scheme in the standard model. The second construction
can be viewed as a simple way to transform a deterministic trapdoor function
into an encryption primitive IND-CPA secure in the standard model against a
decision problem relative to the properties of the deterministic trapdoor function
used. We also present a variant IND-CCA2 secure in the random oracle model
by using standard techniques.

In section 4, we apply these generic constructions in quotients of Z, elliptic
curves and quadratic fields quotients. By doing this, we will see that a large
number of probabilistic schemes proposed these last years can be considered as
applications of the generic constructions. This study also leads to an historical
treatment of probabilistic encryption based on factoring. With quadratic fields
quotients, the application of the generic construction of section 2 leads to a
concise but detailed description of the practical homomorphic cryptosystem only
briefly sketched at the end of [Cas07]. Moreover, we will show that this scheme
can be transformed to build an IND-CCA2 secure cryptosystem in the standard
model.
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Notations: In all the paper, G will denote a finite multiplicative abelian group,
k a nonnegative integer and g an element of G of order k. We will denote |G| the
order of the group G. Let G* be the subgroup of k" power of G. We will suppose
that k| |G| and denote A := |G| /k. Moreover, we will suppose that A and k are
coprime. Given a group element h, (h) will denote the group generated by h.

Given an integer 1, |i|, will denote the size of 7 in bits, i. e., |i|, := [logy k| +1.

We will denote by n an RSA integer, i. e., n will be the product of two distinct
odd primes p and ¢, large enough, such that the factorization of n is infeasible
in reasonable time (. e., |n|, > 1024).

For two algorithmic problems A and B, we will denote A <2 B whenever A

is polynomial-time reducible to B, and A <L> B whenever the two problems are
polynomial-time equivalent.

2 Additively Homomorphic Trapdoor Function

Let us first state a straightforward result of group theory.

Theorem 1. Let G be a finite multiplicative abelian group, k a monnegative
integer such that k divides |G| and that k and X\ :== |G| /k are coprime, then

the order of G* is \;

the order of the quotient group G /G is k;

Gh={re G o =1);

If g is an element of G of order k then G/G* is cyclic and G/G* = (n(g))
where T denotes the canonic surjection m: G — G/GF.

B Lo o~

Proof (sketch). We use the decomposition of G in a direct sum of cyclic groups,
and the fact that in a cyclic group of order n, the equation z* = 1 has zero or
ged(n, k) roots. As a consequence, there are k k'™ roots of unity in G' and the
kernel of the map x — x* has order k. This proves 1. and 2.; to prove 3. and 4.,
one uses the fact that A and k are coprime. a

From this theorem, one can also deduce that G has order k and that G* is
actually the subgroup of k*® roots of unity of G. Note that g will be a generator
of G*, i.e., G* = (g). One can see that there is an isomorphism:

G x GF = G

The evaluation of this isomorphism if easy: one simply multiply the two elements.
The decomposition of an element of G in a product of a k' root of unity by a k"
power is less obvious, unless one knows the values of A and k. As these integers
are coprime, there exists p and v such that y\ + vk = 1 and ¢ = (c/‘)A(c")k.
In the following, we are going to use this isomorphism to build the trapdoor
function. Before that, we define a decision problem.
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Definition 1. We will call the decision residuosity problem of degree k in G,
and will denote Resq 1. 4, the following problem: Given c an element of G and g
an element of order , decide whether ¢ € G* or not.

We want to build an homomorphic encryption whose semantic security is based
on the difficulty of the decision residuosity problem of degree k in G. This con-
struction will generalize, among others, the system of Paillier (cf. [Pai99]) where

G = (Z/n*Z)” with n an RSA integer and k = n.

Public Key. The group G, the integer k and the element g will be public.
Plaintext messages will be the elements of Z/kZ. We will suppose known an
efficient algorithm to generate random elements of G*, and an efficient algorithm
to compute the discrete logarithm to base g in (g).

Encryption Primitive:

Z/kZ G
Eakyg - { /K2 —

m —g"p

where p is a random element of G*.

According to Theorem[ B, if 7w denotes the canonic surjection 7 : G — G/GF,
7(g) is a generator of the quotient group G//G*. So if ¢ € G is an encryption of
m € Z/kZ, we will have

m =10g ., (7(c)).

As a consequence, the decryption function associated to Eg kg Will be a surjective
morphism from (G, x) to (Z/kZ,+), and a cryptosystem based on the £ 4
primitive will be additively homomorphic. As the scheme is homomorphic, it
also enjoys the “self-blinding” property: given ¢ an encryption of m, one can
produce another valid ciphertext ¢’ of m by computing ¢’ := cp’, where p’ is a
random element of G*.

Private Key and Decryption Algorithm. The integer A is a trapdoor for
the g 1., function. Let ¢ « Eg 1. 4(m). There exists an element p € G* such
that ¢ = ¢™p. According to Theorem [[ B, ¢* = ¢g™*. Thanks to the public
algorithm for the discrete logarithm problem in (g), we can recover mA in the
ring Z/kZ, and them m, as A and k are coprime.

One-Wayness. Let us define a new computational problem.

Definition 2. Given ¢ an element of G we will call the residuosity class of
degree k of c the element m of Z/kZ such that m = log ., (7(c)). We will
denote Classg ., the problem of computing the residuosity class of degree k of
elements of G.

! This condition is technical, in order to prove the equivalence in Theorem Bl We will
see that in practice, (cf. section 4), given G and k, it will be easy to find an element
of order k in G.
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A scheme built from the &g 4 function will be one-way if and only if the
Classg,k,g problem is hard. It is easy to see that this problem is random self-
reducible (so all the instances of the problem have the same complexity) and does
not depend of the choice of the element g of order k, thanks to the properties of
the discrete logarithm.

In the decryption algorithm, we have seen that one can decrypt an encryption
c = g™p of m thanks to the knowledge of \. It is also possible to decrypt ¢ by
computing the element z of G such that z* = ¢ (mod G*). Note that z is indeed
unique modulo G* = (g), the subgroup of k" roots of unity. As

m = logﬂ'(g) (F(C)) = logﬂ'(g) (W(C/xk))7

and as ¢/2" is an element of G* = (g), one can recover m by computing the
discrete logarithm of ¢/z* to base g in (g). As a consequence of the existence
of this decryption process, we define another computational problem in order to
analyse the Classg,k,4 problem.

Definition 3. We will denote C-RSA g i, the following problem: Given ¢ an
element of G, find x such that z* = ¢ (mod G?).

Remark 1. If one knows how to manipulate the elements of G/G* and to lift
them in G, the C-RSA g, problem is equivalent to the problem of the local
inversion of the automorphism x ~— x* of G/G*, which is a generalization of the
RSA function (G/G* has order A which is prime to the exponent k).

If one knows A, i. e., the order of G, one can solve the C-RSA ¢ j, problem: given
c € (G, the element

o= ekt mod A
verifies ¥ = ¢ (mod G™). As a consequence, we can state the following theorem
which generalizes Theorem 1 and 2 of [Pai99].

Theorem 2. Let G be a finite multiplicative abelian group, k a monnegative
integer such that k divides |G| and that k and |G| /k are coprime, and let g be
an element of G of order k. We have the following reductions:

Classg, <= (C-RSAgx A Dlog(,) <= (Orderg A Diogy, ).
where Dlog (,y denotes the discrete logarithm problem in (9) and Order¢ the
problem of computing |G|.

Remark 2. The problem Dlog ,y appears in the previous theorem for complete-
ness, but in practice, as we said earlier, we will hope that this problem is easy
in order to be able to decrypt efficiently.

Semantic Security

Theorem 3. Let G be a finite multiplicative abelian group, k a monnegative
integer such that k divides |G| and that k and |G| /k are coprime, and let g be
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an element of G of order k. An encryption scheme built from the Eq 1, g primitive
is semantically secure against Chosen-Plaintext Attacks if and only there exists
no polynomial algorithm to solve the decision residuosity problem of degree k in

G.

Proof. To prove that a scheme is semantically secure, one can use the “real or
random property”: i. e., prove that no polynomial time algorithm can distinguish
an encryption of a chosen message, m, from an encryption of a random message.
In our construction, an encryption of a random message is a random element of
G. So we have to distinguish a random element of G from an encryption of m.
As the scheme is homomorphic, this is equivalent to distinguish encryption of 0
in G, that is an element of G*, in G. O

Generation of Random Elements of G*. To generate random elements of
G*, one can just take at random elements of G’ and raise them to the power of k.
If one can work in the quotient group G/G* and lift the elements of this group
in G, one can also use the isomorphism G/G* — G*, z — . The encryption
function becomes:

, C[Z/kZ x G/GN = G
Gha L (mo, p) gt

It is trivial to see that 5&7,67!; is a group isomorphism.

Remark 3. If one can not generate random elements of G or random elements
of G/G*, a solution to generate elements of G¥ is to publish an element p of
G* of high order and to generate others k' powers by raising p to a random
power. Note that in this case, the semantic security of the scheme relies on a
slightly different problem: the decision problem of distinguishing the elements of
(p) in G.

IND-CCA2 Variant in the Standard Model. The system of Paillier, gener-
alized by the previous construction, has been used in [CS02] to build an IND-
CCAZ2 cryptosystem in the standard security model by an application of a general
framework built from a subset membership problem and some projective hash
families. Our construction with the decision residuosity problem can be easily
adapted to fit the framework of [CS02] with only one extra hypothesis. We refer
the reader to [CS02] for definitions.

Suppose that the group G is cyclic. Denote H = Hom(G, G). Then, from the
example 7.4.2 in [CS02], one can prove that the group system G := (H, G, G*, G)
is diverse and that the projective hash family derived from G is 1/p-universal
where p is the smallest prime dividing A (Theorem 2 of [CS02]). With this, we get
an 1/p-universal hash proof system (UHPFS). Following the general construction
of [CS0O2], from this UHPFS, one can build a scheme that is IND-CCA2 secure
in the standard model, providing that p is sufficiently large, and assuming the
hardness of the decision residuosity problem.
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3 Non-homomorphic Trapdoor Function

In this section, we change the previous construction in order to reduce the en-
cryption and decryption costs. The idea is to replace the most costly step of the
encryption process: the evaluation of the function z — z*. This exponentiation
will be replaced by a function f, cheaper to evaluate. This idea corresponds to
the scheme of [CGHT01], which uses a function built from the RSA function.
By doing this, we will loose the homomorphic property.

We have to build the function f in order to still have an efficient way to
decrypt. In the previous section, we saw that if was possible to decrypt by
inverting the automorphism x ~— z¥ of G/ (g). We are going to replace this
automorphism by a known determinist trapdoor function f, permutation of a
subset of G/ (g). The function f will be built from f. As a consequence, the
construction of this section will enable oneself to build a probabilistic trapdoor
function from a determinist one.

Construction of f. We suppose that we know a trapdoor permutation f
of a subset A of G/ (g). In this section, = will denote the canonical surjection
G — G/ {(g). We suppose that 7 is computable at low cost for anyone who knows
G and g.

We define £2 := 77 1(A) and A, a subset of 2 such that A be a representative
set of A, i.e., m(A) = 7(2) = A and 7 is a bijection from A to A. We suppose
that it is easy to find the unique representative of a class of A in A. Let f be a
function from A to {2 such that the following diagram commutes:

A ! 7} e
14 T
O
A - AcC G/ {9)
f

Public Key. The group G, the integer k and the element g will be public.
Plaintext messages will be the elements of Z/kZ. We will suppose known an
efficient algorithm that returns random elements of A, an efficient algorithm
to evaluate the function f, and an efficient algorithm to compute the discrete
logarithm to base g in (g).

Encryption Primitive:

c .{Z/kaA—> 1%,
GLe = (m, p)— g™ f(p)

It is easy to see that &g ¢4 is well defined as (g) f(A) = 2 and bijective:

suppose that g™ f(p1) = g™ f(p2) then 7 (f(p1)) = 7 (f(p2)). Aswo f = form,
7o f is bijective so p1 = pa. As a consequence, my = mo in Z/kZ.
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Private Key and Decryption Algorithm. The private key is the trapdoor
that allows to invert f. Let ¢ € {2 be a ciphertext. To decrypt ¢, we have to
recover m € Z/kZ such that there exists p € A such that ¢ = ¢ f(p). We have
mw(c) = mo f(p) = fom(p). With the private key we recover m(p) and then its
representative p € A. Then, by computing ¢/ f(p) we get g”* and then m thanks
to the algorithm for the discrete logarithm problem in (g).

One-Wayness. Let us give the definition of the problem on which relies the
one-wayness of a scheme built from the g,y , primitive.

Definition 4. We will denote Classg, .4 the following problem: given c an ele-
ment of 2, find m € Z/kZ such that there exists p in A such that ¢ = g™ f(p).

Now we define two others problems and we give a theorem that links the three
problems.

Definition 5. We will denote Henselg 4— f the following problem: given c an
element of A = (£2), find the element c of {2 such that ¢ = f(p) where p is the
element of A such that ¢ = w(f(p)). We will denote Inv — f the problem of local
inversion of the trapdoor f, i.e., given ¢ an element of A, find p in A such that

c=f(p)

Theorem 4. Let G be a finite multiplicative abelian group, k a monnegative
integer, g an element of G of order k, A a subset of G/ {g), A a representative
set of A in G and f a trapdoor permutation of A. We denote 7 the canonic
surjection from G to G/ {g) and f a function from A to 2 := w—1(A) such that
mo f = fomn. We have the following relations:

Classg, .9 PR (Henselgﬁg—f A Dlog<g>) £ (Inv—f A D10g<g>)

where Dlog ,y denotes the discrete logarithm problem in (9).

Proof. We prove the left equivalence, the reduction on the right will follow from
the decryption algorithm. Suppose that we have two oracles that solve respec-
tively the Henselg ¢— f and Dlog,, problems. Let ¢ be an element of (2. We
want to recover m € Z/kZ in the decomposition ¢ = g™ f(p) with p € A. We
have 7(c) = 7(f(p)). We give m(c) to the oracle for the Henselg 4— f problem.
We get the element ¢’ of {2 such that ¢/ = f(p). Given ¢/, the oracle for the
Dlog (4 problem returns m.

For the opposite way, we have an oracle that solve the Classg, ¢4 problem.
If ¢’ is an element of (g), we take a random element p in A. By giving ¢'f(p)
to the oracle, we get m, the discrete logarithm of ¢’ to base g. Suppose now
that we have an element ¢, of A, for which we want to solve the Henselg, 4— f
problem. We take m’ at random in Z/kZ. We denote ¢ the element of A such
that 7(c) = ¢. We give " ¢ € £2 to the oracle (note that it is a random query
for the oracle). We then get from the oracle the element m of Z/kZ such that
g™ ¢ = g™ f(p) with p element of A. As 7(g™'¢) = ¢ = 7(f(p)), the element

’
mo—m

g c is a correct answer to the Henselg 4— f problem. a
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Remark 4. This theorem establishes that the security of a system built from the
&a,f,q Primitive relies on the security of the trapdoor f. For the Catalano et al.
scheme, (cf. [CGHT01] and section 4), an instance of this construction in which
[ is the classic RSA function, the result of [CNS02] states that the equivalence
actually holds. Unfortunately, the proof of this result uses intrinsic properties of
the RSA function and can not be exploited for the generalized case.

Semantic Security

Definition 6. Let us denote Resg r 4, the problem of distinguishing the ele-
ments of f(A) in (2.

Theorem 5. An encryption scheme built from the Eq. 4 primitive is semanti-
cally secure against Chosen-Plaintext Attacks if and only there exists no polyno-
mial algorithm that solve the decision Resg,f,q problem.

Proof. A scheme built from the construction of the previous section, and a
scheme built from &g f 4 shares a similar property:

c
(e Easam) = (5 € 1),
As a consequence, the proof of Theorem [ can be easily adapted. a

IND-CCA2 Variant in the ROM. Using standard techniques, one can modify the
Ea,f,¢ Primitive to make it resistant against adaptive chosen-ciphertext attacks
in the random oracle model. One can simply add h(m,p) to the ciphertext,
where h is an hash function viewed like a random oracle. One can also use the
Fujisaki-Okamoto conversion (cf. [FO99]) in order to reduce the ciphertexts size.

4 Applications

We will use the constructions of sections 2 and 3 in algebraic groups over
(Z/n*Z)™ where s is a nonnegative integer. RSA integers will allow to use the
group order as a trapdoor. This would lead to an historical of probabilistic cryp-
tography based on factoring.

The idea of working modulo n® with s > 1 is due to Paillier (cf. [Pai99]) and
Damgard and Jurik (cf. [DJOI]) for the case s > 2. As we shall see in the following,
this enables oneself to meet the hypothesis of the generic construction: the subgroup
of n'M roots of unity of the group considered will be the kernel of the reduction mod-
ulo n, and its elements will be easy to describe. As a consequence, we will exhibit
an element g of order n such that the discrete logarithm problem in (g) is easy.

4.1 Schemes in Quotients of Z

The first probabilistic cryptosystem, proposed by Goldwasser and Micali in
1984 (cf. [GM84]) is very similar to the generic construction explained in section
2. Tts semantic security is based on a well-known problem, the quadratic resid-
uosity problem (i. e., k = 2), but its expansion is awful as one bit is encrypted
with |n|, bits.
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G = (Z/nZ)*, k Prime, k | ¢(n), Benaloh (88). The cryptosystem of
Goldwasser-Micali has been generalized by Benaloh in [Ben88|. The group G is
now (Z/nZ)™, the integer k is an odd prime such that & divides (n) and k does
not divide A := ¢(n)/k. Let g be an element of order k, to encrypt an element
m € Z/kZ, one uses the encryption primitive £g 1,4 defined in section 2} an
encryption of m is g™r" where 1 is a random element of (Z/nZ)”. The drawback
of this system is that k£ has to be small because there is no particular algorithm
for computing discrete logarithms in (g). As a consequence, the expansion of the
system, |n|, /|k|, remains high.

G = (Z/nZ)*, k Smooth, k | ¢(n), Naccache-Stern (98). Naccache and
Stern have improved in [NS98] the previous system. They still use G' = (Z/nZ)™
but & is chosen smooth. This leads to a more efficient algorithm for computing
discrete logarithms in (g) by using the Pohlig-Hellman algorithm. Naccache and
Stern state that the expansion can be reduced to 4.

Okamoto and Uchiyama have proposed in [OU98] to work modulo n = p%q.
The following system is an improvement of their proposal.

G = (Z/n?Z) X, k = n, Paillier (99). The system of Paillier (cf. [Pai99]) cor-
responds to an application of the £ 1, 4 encryption function with G = (Z/n?Z) ",
and k = n. If we suppose that ged(n, p(n)) = 1, as |G| = ne(n), k divides |G|
and k is prime to \ := |G| /k = ¢(n). One can see that the subgroup G* of G, the
subgroup of n'™ roots of unity, is the kernel of the surjective homomorphism:
(Z/n2Z)X — (Z/nZ)™. As a consequence, this subgroup is a cyclic group of
order n, generated by g := 1 +n (mod n?). Moreover, the discrete logarithm
problem in (g) is trivial as for all i € Z/nZ, g* = 1 +in (mod n?). To encrypt,
one can use the isomorphism £ ;. defined in section[2l The encryption function
is thus the isomorphism:

{Z/nZ x (Z/nZ)* = (Z/n*Z)"

(m.r) e gme

where m is the plaintext and r a random element. The trapdoor is ¢(n), i. e.,
the factorization of n, and the decryption algorithm is the application of the
generic algorithm described in section Pl The expansion of this system is 2.

An IND-CCA2 variant of this scheme has been designed by Cramer and Shoup
in [CS02]. As previously said, this variant can also be obtained from the con-
struction of section 2, if the group G is cyclic. One can have a cyclic group by
choosing Sophie Germain primes for p and ¢: with this choice there exists a cyclic
group of order np(n)/2 in (Z/nQZ)X, isomorphic to Z/nZ x (Z/nZ)*, where
(Z/nZ)" is the subgroup of elements of (2/nZ) * that have a positive Jacobi
symbol (see [CS02] subsection 8.2 for details).

Damgard and Jurik have proposed in a generalization of the Pail-

lier cryptosystem. They work in the group G = (Z/nSHZ)X with s > 1 and
k = n®. One obtains a system that allows oneself to encrypt messages of arbitrary



102 G. Castagnos

length (by increasing s). This can have many applications (cf. [DJOIL [Jur03]).
The expansion of this scheme is 1+ 1/s.

G = (Z/nZZ)X, f = RSA, Catalano et al. (01). In [CGHT01], Catalano,
Gennaro et al. have proposed a probabilistic encryption scheme presented like a
fast variant of the Paillier cryptosystem. With the help of the generic construc-
tion of section B, one can also see this scheme as a probabilistic version of the
RSA cryptosystem. Let G = (Z/n*Z) * and g =1+4n (mod n?). The quotient
group G/ (g) is isomorphic to (Z/nZ)”. We denote respectively {2 and A, the
sets of elements of G and G/ (g), i. e.,

Q2:={reN,0<r<n? ged(r,n) =1},

and
A:={reN,0<r<n,ged(rn)=1}.

With the notation of section B, one actually has A := A, and the set A is a
representative set of the classes of {2 modulo n. Let e be an integer prime to
©(n), the RSA function, f : x — (2° mod n) is a permutation of A. This function
is lifted from A to §2 by considering f : z — (2 mod n?), so that 7o f = f o .
To encrypt, we use the £z, ¢4 primitive and we obtain the following encryption

function:
{Z/nZ X A — 9

(m , r)— ¢™r°mod n?

where m is the plaintext and r a random element. The decryption is done has
described in section [Bt one reduces the ciphertext modulo n and recover r by
inverting the RSA function, thanks to the knowledge of d, the inverse of e modulo
p(n), the trapdoor of the function f.

Remark 5. The previous scheme can be generalized by taking G = (Z/n**1Z)”
with s > 1, in order to decrease the expansion. One has to redefine the set (2
accordingly and to lift f in f: z — 2° mod n°*".

One can apply the non-homomorphic construction of section3] with all the known

trapdoor functions of Z/nZ, e. g., Demytko’s (cf. [Dem94]) or LUC (cf. [SL93]).
Note that with the LUC function, one gets a scheme already proposed in [Cas07].

4.2 Schemes in Elliptic Curves over Z/n*t'Z

Both constructions can be applied in elliptic curves. This leads respectively to the
systems of Galbraith (cf. [Gal02]) and Galindo, Martin et al. (cf. [GMMV03]).

G = E/(Z/n*t1Z), k = n®, Galbraith (02). In [Gal02], Galbraith has
adapted the Damgard and Jurik scheme (and hence the Paillier scheme) in el-
liptic curves. This homomorphic scheme can also be viewed as an application of
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the £ kg primitive of section 2l The group G is the group of points of an elliptic
curve over Z/n*t1Z, i. e., the set of elements (X : Y : Z) of P?(Z/n**t1Z) such
that

Y?Z = X3 +aXZ?+ 023,

where a and b are two elements of Z/n*t1Z such that 4a® + 27b% is invertible.
We denote this group E,,/(Z/n*1Z) (See [Gal02] for more details on elliptic
curves over rings).

One can prove that the order of this group is n® |E,/(Z/nZ)|. By taking
k = n®, and supposing that n® is prime to A := |E,/(Z/nZ)|, one can apply
the generic construction. The tricky part of this adaptation is to find an element
g of G of order n® such that the discrete logarithm problem is easy in {g). Once
again, we look for g in the kernel of the reduction modulo n from E, /(Z/n*T'Z)
to E,p/(Z/nZ). One can see that the element g := (n:1:n3+an” +bn’+---)
is of order n® and that discrete logarithms are easy to compute in (g) (again
see [Gal02] for details on this element g, on the subgroup (¢g) and how to compute
the group law in this subgroup and in G).

To encrypt a message m of Z/n°Z, one use the g 1 4 primitive of section 2k
a ciphertext for m is a point of the form m.g + P where P is a random “pstt
power”. To produce a such P, as it is difficult to produce an element of the curve
without knowing the factorization of n, one can not take a random element of
G or of E,/(Z/nZ) and take it to the “power” n®. Hence, we use the method
exposed in Remark Bt a ns" power is part of the public key.

A drawback of this scheme is its cost as one has to do costly scalar multi-
plications in elliptic curve over a huge base ring (as the security is based on
factorization and not on the discrete logarithm problem, we can not reduce the
size of this ring).

G = E/(Z/n?Z), f = KMOV, Galindo et al. (03). In [GMMV03],
Galindo, Martin et al. have proposed a non-homomorphic scheme based on the
KMOV trapdoor permutation (cf. [KMOV92]). This scheme is not a direct adap-
tation of the generic construction of section [3 as the KMOV function is not a
permutation of a subset of a group. Indeed, the KMOV function is a permutation
of the set

{(Ly) € Z/nZ x Z/nZ, (y*> —2*) € (Z/nZ)X},

and maps (z,y) to e.(z,y), where the scalar multiplication is performed on the
elliptic curve Ey 2,3 /(Z/nZ) where e is prime to (p + 1)(¢ + 1) and p and ¢
are chosen congruent to 2 modulo 3 (it is hard to take points on a fixed curve
without knowing p and ¢). So, one has to apply the generic construction with
a group G that depends on the plaintext message. One define ad hoc subsets A
and (2 of Z/n?Z and lift the KMOV function from A to {2 by computing e.(z, y)
in a curve modulo n?. See [GMMV03] for more details.
Again, one can generalize this scheme by working modulo n® with s > 2.
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4.3 Additively Homomorphic Scheme in Quadratic Fields Quotients

In this subsection, we apply the generic construction of section 2 in another
finite group, not widely used in cryptography, the group of norm 1 elements of
a quadratic field modulo n. We will obtain the system only briefly sketched at

the end of [Cas(7].

Definition 7. Let A be a non-square integer, and a an odd integer prime to A.
We will denote (Oa/aOA)" the group of norm one elements of O 5/aO s, where
O denotes the ring of integers of Q(vVA). We will denote pa(a) the order of
the group (Oa/aOA)".

We refer the reader to [Cas(7] for the basic properties of this group. We only
recall that exponentiation can be efficiently computed in this group by using

the Lucas sequence, and that if n is prime to A, then for s > 1, the order of
s+1 A .
(OA /n OA) is

sy e o= (3)) - (2):

where (?) denotes the well-known Legendre symbol. Moreover, note that the

group (O /p*O4)" is cyclic (the same holds modulo ¢*).

G = ((’)A/n2(’)A)A, k = n,. We apply the construction of section 2l with
G = ((’)A/nQOA)/\7 where A is a non-square integer prime to n. The order of
G is npa(n), so we set k = n and A = pa(n) and suppose that k and A are
coprime.

Element of order n: As previously seen, we look for an element of order n
in the kernel of the reduction modulo n from (OA/nQOA)A to (Oa/nOA)".
This reduction is surjective by the Hensel Lemma. The element g = 1 + nv/A
(mod n?) is a generator of this kernel and ¢ is indeed of order n as g" = 1+nrv A
(mod n?) for all integer 7. As a consequence of this expression of ¢”, the discrete
logarithm problem in (g) is easy.

kY powers generation: To simplify, we suppose that A is neither a square modulo
p nor modulo ¢. It is easy to see that the map a +— a/a from (Oa/nOA)" to
(Oa/nOA)" is surjective and that its kernel is (Z/nZ)”. As a consequence, the
map

gL TTVA A 2 VA
r—vA r2—A r2-A
from Z/nZ to (Oa/n0OA)" is well-defined, injective and is almost surjective (we
only miss 1 and elements that allow to factor n (elements different from 1 and
that are congruent to 1 modulo p or 1 modulo ¢). Moreover, the map 3 — £"
from (Oa/nOA)" to G™ is an isomorphism. As a consequence, the map

Z/nZ — G" :r— ¥(r)",

is still injective and almost surjective.
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Encryption function: The encryption function is

Z/nZ x (Z/nZ)" — G
(m , ) — g (r)"
where m is the plaintext and r a random element, and the public key is (n, A)
where n = pq is an RSA integer, A is a non-square integer, prime to n and A is
neither a square modulo p nor modulo q.

Decryption algorithm: The trapdoor is A = @a(n). The decryption algorithm
is the same as the generic one. Note that it can be sped up by using Chinese
remaindering (this is true for all the others schemes presented in this paper).

Security: The one-wayness of the scheme is based on the Classg 4 problem
and the reductions of Theorem 2lhold. The semantic security is based on the the
difficulty of distinguishing the elements of G™ in G (As the map r — ¥ (r)™ is in-
jective and almost surjective, almost all the element of G™ can be produced. The
ones that are not produced are either easy to distinguish or allow to factor n).

Ezxpansion: The cryptosystem expansion is 4, a priori, but can be reduced to
3. One defines a lifting L of the elements of (Oa/nOA)" in (OA/nQOA)A

Then, an element « of (OA/nQOA)A is represented by the couple (k,« mod n) €
Z/nZ x (O5/nO)" with k such that a = (1 + nv/A)* L(a mod n). Note that
the computation of this representation (by using the Hensel Lemmma) only costs
a few multiplications and one inversion. This method can also be applied for the
system of Galbraith.

Comparison with others additively homomorphic systems: In the following table,
we compare this system with the Paillier and Galbraith schemes. The unity of
complexity is the cost of a multiplication modulo n. We use the following esti-
mations: a multiplication modulo n? costs as much as 3 multiplications modulo
n (by using radix n representation), a multiplication modulo p? costs as much as
a multiplication modulo n and three multiplications modulo p as much as a mul-
tiplication modulo n. An inversion modulo n costs as much as 10 multiplications
modulo n. We have used Chinese remaindering for all the schemes.

Cryptosystem Paillier Galbraith QF scheme
Group (Z/n2Z)X E/(Z/n*Z) ((’)A/nQOA)A
Encryption 3lnly+1 35|n|y+ 3 9|n|, + 20
Decryption Slnly+ 5 21|nly+ 3 3nly+ 5

We see that the scheme in quadratic fields is much more faster than the
system that uses elliptic curves, thanks to efficient exponentiation using Lucas
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sequences. This scheme complexity is not far from the Paillier cryptosystem (the
factor two is inherited from the respective costs of exponentiation in Z/n*Z and
in (OA/nQOA)A). As a result, this scheme is still practical.

If all the schemes are based on factorization, from Theorem Bl we see that
the intermediate problems on which the one-wayness of the schemes are based
are not the same. For Paillier, it is the RS A,, problem i. e., the inversion of the
map x +— 2" in (Z/nZ)”. For the presented scheme, it is the adaptation of this
problem in (Oa/nOA)", i. e., the inversion of the map o — a”. We do not know
if one problem is easier than the other (as the only known way to solve them is to
factor n), but this scheme brings some diversity as the Paillier scheme is almost
the only practical additively homomorphic scheme known. Another advantage
of this scheme is that one has more choice for the public key than for the Paillier
scheme: one can choose freely the modulus n and the discriminant A.
Generalization: This scheme can also be generalized by working modulo n**!
with s > 1 in order to encrypt messages of Z/n°Z. One has only to find an ele-
ment g of order n® and an efficient algorithm for the discrete logarithm problem.
One can see that the following element:

. 1 2 1 2.4 1 3,,6 5 4,8
gi=nVA+1+ An® = At A8 — ATt

obtained by successive applications of the Hensel Lemma is indeed of order
n®. Given g*, one can still compute the discrete logarithm %k at low cost, by
computing recursively £ mod n?, k mod n?,...

IND-CCA2 wariant of this scheme: Similarly to the Paillier cryptosystem, one
can design a variant that is IND-CCA2 in the standard model. A cyclic group
is obtained in the same way, by using primes p and ¢ such that (p — (4/p))/2
and (¢ — (A4/q))/2 are both primes. Then, one obtains a subgroup of order
noa(n)/2. Note that some optimisations used by Cramer and Shoup in [CS02]
to get compact ciphertexts for the adaptation of the Paillier scheme can also be
done here as (OA/nQOA)A is very similar to (Z/n?Z) <

5 Conclusion

We have proposed two generic constructions that generalize many probabilistic
cryptosystems already proposed. This process helps to capture the ideas behind
these schemes. In particular, we have seen that the efficient homomorphic cryp-
tosystem proposed in the group of norm 1 elements of a quadratic field is very
similar to the Paillier scheme and can serve to construct an IND-CCA2 secure
system in the standard model, which is a rare object. We hope that these generic
constructions will help to propose new probabilistic cryptosystems. One possible
domain of application could be class groups of quadratic orders such as those
used in the NICE cryptosystem (cf. [PT00]).
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Abstract. In the seminal paper of Eurocrypt 2006, Dent defined a new
assumption, simulatability, and showed that the well-known Cramer-
Shoup public-key encryption scheme satisfied the weakest version of the
plaintext awareness, the computational plaintext awareness, under the
simulatability assumption, the DDH assumption, the DHK assumption,
and the collision resistance of the hash function. However, a tricky aspect
of the computational plaintext awareness was later shown. Moreover,
the definition of the simulatability is elaborated. In this paper, we show
that the Cramer-Shoup scheme satisfies a stronger variant of the plain-
text awareness, the statistical plaintext awareness, under a weaker and
simpler assumption than the simulatability. In particular, we show the
statistical PA2-ness of the Cramer-Shoup scheme under computational
assumptions.

Keywords: Statistical Plaintext Awareness, Standard Model, Cramer-
Shoup Scheme.

1 Introduction

1.1 Background

Plaintext Awareness (PA2) [BR94,BDPR98 HLMO03,BP04,D06,TO06,BD0g] is
one of the most fundamental notions about Public-Key Encryption schemes
(PKEs). Intuitively, a PA2 secure PKE is a scheme such that an adversary
cannot generate a ciphertext “without knowing” the corresponding plaintext.
More precisely, a PKE is called PA2 secure, if there exists an extractor which
can extract the plaintext from the ciphertext generated by the adversary.
Although PA2-ness was first defined in the random oracle model
[BR94,BDPR98], Bellare and Palacio [BP04] succeeded in defining PA2-
ness in the standard model. They gave three variants of standard model
PA2-ness: perfect/statistical/computational PA2-ness, depending on whether
the extracted plaintext was perfectly/statistically/computationally indistin-
guishable from the decryption. The PA2-nesses are important even in the

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 109 2008.
© Springer-Verlag Berlin Heidelberg 2008
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standard model, because they can bring some insight into or an alternative
perception of the design of existing PKEs, as said by Bellare and Palacio [BP04].

In the seminal paper [D06], Dent provided a sufficient condition for compu-
tational PA2-ness and showed the computational PA2-ness of the well-known
Cramer-Shoup scheme [CS98] by using it.

Theorem 1 (Cramer-Shoup is Computationally PA2 Secure[D06]).
The Cramer-Shoup scheme is computationally PA2 secure, if the underlying
group satisfies the simulatability [D06], the DHK assumption [D91,BP04] and
the DDH assumption, and also if the hash function is collision resistant.

Here, the simulatability is an assumption which Dent newly introduced in [D06].
The intuitive meaning of it is as follows: there exist polytime computable func-
tions o : {0,1}¥ — G and 3 : G — {0,1}¢ such that o 8 and (o a are
computationally indistinguishable from the identity maps. The intuitive mean-
ing of the DHK assumption is as follows: “If an adversary A(g, h) outputs (u,v)
such that (g, h, u,v) is a DDH-tuple, then A knows r satisfying (u,v) = (¢", h").”

The above result is quite important for the study of the PA-ness, because
the Cramer-Shoup scheme is the only known example of the standard model
PA secure scheme. However, the formal definition of the underlying assumption,
simulatability, is elaborate despite the simplicity of the intuition behind it. In
fact, the formal definition allows a distinguisher to execute an “adaptively chosen
message attack”, and therefore prevents us from describing it simply.

Moreover, although Dent showed the computational PA2-ness of the Cramer-
Shoup scheme, a tricky aspect of the computational PA2-ness was later
shown:

Proposition 2 (Tricky Aspect of the Computationally PA2-nes§TO06]).
There exists a computationally PA2 secure PKE and an adversary such that no
extractor can succeed in extracting the correct plaintext.

It is also shown in [TOO06] that there are no such PKE and an adversary in the
case of the statistical PA-ness. Thus, we can say that the statistical PA2-ness is
more similar to our intuition.

1.2 Our Results

Statistical PA2-ness of Cramer-Shoup Scheme: In this paper, we show that the
Cramer-Shoup scheme satisfies a stronger PA2 security, statistical PA-ness, un-
der assumption weaker and simpler than that of [D06]. That is, we introduce a
weaker and simpler assumption, the computationally random-like property whose
intuitive meaning is a “known message attack version of simulatability,” and
show the following theorem:

Theorem 3 (Cramer-Shoup is Statisitically PA2 Secure under Weaker
Assumption). The Cramer-Shoup scheme is statistically PA2 secure if the un-
derlying group satisfies the computationally random-like property, the DDH as-
sumption and the DHK assumption, and also if the hash function is collision
resistant.
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We stress that we show the statistical PA2-ness of the Cramer-Shoup scheme
under only computational assumptions. See Subsection 4.3, for the reason we
can show the statistical PA-ness from the computational assumptions.

Sufficient Condition for the PA2-ness: In order to prove the PA2-ness of the
Cramer-Shoup scheme, we give a sufficient condition for the statistical PA2-ness.
Although Dent [D06] already gave another sufficient condition for the compu-
tational PA2-ness, our condition is not for the computational PA2-ness but for
the statistical PA2-ness.

Moreover, our sufficient condition is formalized in a more practical way than
that descrebed by Dent [DO06]. That is, we formalize a part of our sufficient
condition based on a slightly modified version of the IND-CCA2 game. Therefore,
we can prove this part of our sufficient condition by slightly modifying the proof
of the IND-CCAZ2 security of [CS98]. This means that we can prove the PA2-ness
more easily.

2 Preliminary

In this section, we review the definition of notions described in Section 1.1. See
Section 1.1 for the intuitions behind the definitions.

Definition 4 (Standard Model PA-ness[BP04]). Let IT = (Gen, Enc, Dec)
be a PKE. Let A, K, and P be polytime machines, which are respectively called
adversary, extractor, and plaintext creator.

For plaintext creator P, its state stp, and its random tape pu, we let
Encpk o P(Q; 1) denote the algorithm which executes the following procedures:
(M,stp) — P(Q,stp; ), C « Encpk(M), and output C. Note that the state stp
was initialized to the null string e.

For security parameter A, we define two experiments PA%‘?;’EHCCJP()\) and
PA;%)A’EHCOP(A), shown in Fig. 1, where Ra, p, and p are the random tapes of
A, K, and P, List is the list of encryption queries of A, and stk is the state of K.

We say that extractor K is perfectly, statistically, or computationally successful
for A if, for any P, PAIDfi\’Encop()\) and PAIKIA’Encop()\) are perfectly, statistically,
or computationally indistinguishable respectively.

We say that a PKE IT is perfectly, statistically, or computationally PA2 secure
if for any adversary A, there exists a perfectly, statistically, or computationally
successful extractor K for A. We also say that a PKE IT is perfectly, statistically,
or computationally PA1 secure if, for any adversary A which makes no encryp-
tion query, there exists a perfectly, statistically, or computationally successful
extractor K for A.

Definition 5 (DHK Assumption [D91,BP04]). Let A be a security param-
eter. Let G = G, be a family of cyclic groups with the prime order ¢ = ¢,. Let A
and K be polytime machines, named adversary and extractor respectively. We
define an experiment DHKE’A()\) shown in Fig.2. Here, NonDH is a symbol which
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7PA1D7e,CA,EncoP()‘)7 7PAIKT,A,EncoP()‘)7

(pk, sk) «— Gen(1%). (pk, sk) «— Gen(1%).

Take Ra and p randomly. Take Ra, p, and p randomly.
* | Initialize List and stk to ¢.

Run A(pk; Ra). Run A(pk; Ra).

If A makes an encryption query (enc, Q) If A makes an encryption query (enc, Q)
C — Encpk o P(Q; ). * C «— Encp 0 P(Q; ), List « List||C.
Send C to A as the reply. Send C to A as the reply.

If A makes a decryption query (dec, Q) If A makes a decryption query (dec, Q)
M — Decx(Q). * (M, stk) < K(pk, Q, Ra, List, stk; p).
Send M to A as the reply. Send M to A as the reply.

Return an output 7" of A. Return an output 7" of A.

Fig. 1. Experiments for the Standard Model PA Security [BP04]

—DHK§ A(\)—

Take random tapes Ra and p randomly.

g<— G, x— Zq, h — g”. Initialize stk to e.

Run A(g, h; Ra).

If A makes a query Q = (u,v) € G*

(7‘, StK) — K(g, h, Q, Ra, stk; p).
If r € Zq and (u,v) = (g",h"), send r to A as the reply.
If = NonDH and v # u”, send r to A as the reply.
Otherwise, return 0 and terminate the experiment.

Return 1.

Fig. 2. Experiment for the DHK assumption

means that “I think that (g, h,u,v) is not a DH-tuple.” We say that the DHK
assumption on G holds, if G satisfies the following property:

VAIK : Pr[DHKg)A()\) # 1] is negligible for \.

Definition 6 (Simulatable Group [D06]). Let A be a security parameter.
Let G = G, be a family of cyclic groups with the prime order ¢ = ¢). We say that
G is simulatable if there exist a polynomial ¢ = £(\), a deterministic polytime
function a : {0,1}¥ — G and a probabilistic polytime function 3 : G — {0,1}*
satisfying the following properties:

(1) a(fB(a;p)) = a holds for any a € G and p.

(2) Let OY,, be the oracle such that, on inputting a symbol query, selects R €

{0,1}¢ and a random tape p of 8 randomly and outputs R or B(a(R);p),
depending on whether b = 0 or b = 1. Then, for any polytime adversary A,
the following probability is negligible:

| Pr[b — {0,1}, 8 — AC%a(1}) 1 b=1] —
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(3) Let O% be the oracle such that, on inputting a symbol query, selects R €
{0,1}¢ and a € G randomly, outputs a(R) or a, depending on whether b = 0
or b = 1. Then, for any polytime adversary A, the following probability is
negligible:

| Pr[b — {0,1},0 — AP (1Y) : b =] —

3 Sufficient Condition for Statistical PA2-ness

In [DO06], Dent provided a very elegant idea for showing the PA2-ness, i.e. “if a
ciphertext seems random, the encryption oracle is meaningless and therefore the
PA2-ness is almost equivalent to the PAl-ness.” Then he provided a sufficient
condition for the computational PA2-ness by formalizing this idea.

In this section, we explain a new sufficient condition for the PA2-ness. Al-
though our sufficient condition is also based on the Dent’s above-mentioned
idea. ours allows us to show not the computational PA2-ness but the statisti-
cal PA2-ness. Moreover, our condition is formalized in a more practical way, as
described in Section 1.2.

3.1 Our Sufficient Condition

In order to formalize our sufficient condition, we introduce two notions, a com-
putationally random-like PKE and an EPA1 security, whose intuitive meanings
are “a ciphertext seems random” and “almost equivalent to the PAl-ness.” Be-
fore giving them, we introduce a new notion, computationally random-like set,
whose intuitive meaning is described in Section 1.

Definition 7 (Computationally Random-like Set). Let A be a security
parameter and X = &)\ be a finite set parametrized by A. We say that X is
computationally random-like if there exists a polynomial £ = ¢()), a deterministic
polytime function « : {0,1}* — X and a probabilistic polytime function 3 :
X — {0,1}* such that, for uniformly randomly selected R « {0,1}¢, a «
X, and a random tape p, the distributions of (a(R),R) and (a,B(a;p)) are
computationally indistinguishable.

We now define the computationally random-like PKE. Intuitively, we say that a
PKE is computationally random-like if there exists a computationally random-
like set X’ such that a ciphertext is indistinguishable from a randomly selected
element of X, even if a distinguisher has access to a decryption oracle. The
precise definition is as follows:

Definition 8 (Computationally Random-Like PKE). Let IT = (Gen, Enc,
Dec) be a PKE. We say that IT is computationally random-like if there exists a
computationally random-like set X = X of (honestly or dishonestly generated)
ciphertexts such that for any polytime adversary A,

[Prlb — {0,1}, (pk, sk) — Gen(1%), b «— AEX5Dx (pl) : b = b'] — (1/2)
is negligible.
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7EPA5);,CA{<EncoP()‘)7 7EPA1+IDIE:XK()‘)7

Take Ra, p, and p randomly. Take Ra, p, and p randomly.
(pk,sk) «— Gen(1%), stx « List — e. (pk,sk) «— Gen(1%), stx — List «— e.
Run A(pk; Ra). Run A(pk; Ra).

If A makes an encryption query (enc, @), || *|| If A makes an randomness query rand,
C — Encpk o P(Q; ), List — List||C. * Select a bit string R randomly?,
Send C' to A as the reply. * Send R to A as the reply.

If A makes a decryption query (dec, @), If A makes a decryption query (dec, @),
M «— Dec(Q). M — Dec(Q).

(M, stk) < K(pk, Q, Ra, List, stk; p). (M’ stk) «— K(pk, Q, Ra, List, stk; p).
If M # M, If M # M,
Return 0 and halt the experiment. Return 0 and halt the experiment.
Send M to A as the reply. Send M to A as the reply.
Return 1. Return 1.

Fig. 3. Experiments for the Equality-PA2 (left) and for the Equality-PA1" (right)

Here, onzk is an oracle such that, if an adversary sends a plaintext M, it
outputs Cy < Encpx(M) or Cy «+ X, depending on whether b = 0 holds or not.
A is not allowed to send to the decryption oracle answers from the Engk—oracle.

We next introduce a variant of the PA security, equality-PA (EPA) security.
Recall that the definition of PA-ness only requires that M’ ~ Decy(C') holds,
where M’ is an output of extractor, “~" is indistinguishability, C' is a decryption
query of an adversary. Our EPA-ness is a variant of the PA-ness which requires
not only that M’ ~ Decg(C) but M’ = Decg(C') with overwhelming probability.

Definition 9 (Equality-PA Security). We take II = (Gen, Enc, Dec), A, K,
and P as in Definition 4 and define Encyi o P(Q; ) as in Definition 4. For a
security parameter \, we define an experiment EPA%eXKEnCOP()\) shown in the left
of Fig. 3. We say that extractor K is successful for /—\; if it satisfies the following
property:

VP Pr[EPAYRE cop(A) = 1] is negligible for .

We let EPA%‘?Z’K(}\) denote EPA%?X’EHCOP()\) if adversary A makes no encryption
query to a plaintext creator P.

We say that PKE IT is Equality-PA2 (EPA2) secure if, for any A, there exists
a successful extractor K. We say that PKE IT is Equality-PA1 (EPA1) secure if,
for any polytime adversary A which makes no encryption query, there exists a
successful extractor K.

Since equality implies the indistinguishability, the following theorem clearly
holds:

Theorem 10 (EPA2 = Statistical PA2). If a« PKE is EPA2 secure, then it
is statistically PA2 secure.

! One can set the length of the bit string R arbitrarily, because A can obtain a bit
string of arbitrary length by making randomness queries many times.
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We now describe our sufficient condition. See Section 3.3 for the proof.

Theorem 11 (Comp. Random-Like + EPA1 = EPA2 (= Stat. PA2)).
If a PKE is a computationally random-like and EPA1 secure, then it is EPA2
secure (and therefore is statistically PA2 secure).

3.2 Randomness Oracle

Before showing Theorem 11, we review notions and a result given by Dent [D06].
In [D06], Dent defined an oracle named the randomness oracle which defined
as follows: if an adversary makes a query a symbol query, it selects a random
bit string R and sends R back to the adversary. Dent then gave a variant of
the PA1 security, PAIT security, where an adversary was allowed to access the
randomness oracle. He formalized his sufficient condition by using the PA1T
security.

Since Dent had to carefully discuss about the difference from the PA1 security
and the PA1T security, one may think that we also have to discuss carefully
about the difference between the EPA1 security and the EPA1T security. Here
the EPA1T security is a variant of the EPA1 security where an adversary was
allowed to access the randomness oracle. However, such careful discussion is
unnecessary because the EPA1Y security is equivalent to EPA1 security.

In order to formalize the above discussion, we give the formal definition of
EPA1T security. Let EPAl*IDfXK(A) be the experiment depicted at the right of

Fig.3. We say that PKE IT is EPAI" secure if YAJKYP : Pr[EPALY RN (\) = 1]
is negligible for A.

Theorem 12 (EPA1 < EPA17"). A PKE is EPA1 secure if and only if it is
EPAIT secure.

Proof. Since EPA17 security clearly implies EPA1 security, we prove that the con-
verse is also true. Let I be an EPA1 secure PKE and Aj be an adversary for the
EPA1" security. We let Ra, be the random tape of Ag, ng be the number of the
randomness queries of Ag, and R; be the answer to the i-th randomness query.

In order to show that Ag has a successful extractor, we will construct adver-
sary Bg for the EPA1 security satisfying the following property: the behavior of
Bo(pk; Ra, || R1|| - - - || Rny) is the same as that of Ag(pk; Ra,) which is given R;
as the answer to the i-th randomness query. Here “Bo(pk; Ra,||R1ll -« || Rny)”
means that By is given a public key pk as an input and R, ||Ry|| - - - || Rn, as the
random tape. Since the hypothesis ensures the existence of a successful extractor
Lo for By, we will construct the extractor Ko for Ay by using L.

We now describe the algorithm of adversary By for the EPA security. For a
public key pk and a random tape Rg,, Bo(pk; Rg,) parses its random tape Rg, as
Rp, || R1] - - - || Ry and executes Ag (pk; Ra, ). If Ag makes the i-th randomness query,
By sends back R; as an answer. If Ag makes a decryption query, By answers it by
passing the queries to the decryption oracle. By finally outputs the output of Ag.
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From the assumption, there is a successful extractor, named Lg, of the EPA1T
security for Bg. We construct an extractor Kg for Ag by using Lg. We denote how
Ko extracts the plaintext from C},, where jo is an arbitrary integer and Cj, is
the jo-th decryption query of Ag. Our basic idea behind the construction of Ky
is quite simple: “Since the behavior of By is almost the same as that of Ag, Lo
cannot distinguish the jyo-th decryption query of By from that of Ag. Thus, Kg
can extract the plaintext by feeding C, to Lo.”

We subtly modify the above idea, because Ay and By have one small but
essential discrepancy. Recall that Bo(pk; Bo) = Bo(pk; Ra, || R1]| - - - [[Rny) can be
executed only if all of Ra,, Ri, ..., Rn, are given in advance as the random
tape. In contrast, when Ag makes decryption query Cj,, Ag only knows Ra,, 11,

. R’% but does not know Rk_j0+1’ ..., Ry,. Here kj, is the number of times
that Ag has made the randomness queries before it makes the jo-th decryption
query. From the definitions, extractor Ly and Ky have to extract plaintexts only
from data which By and Ay know respectively. Thus, Lo needs all of Ra,, R,

-y R, although Ko can use only Ry, ..., Ry, .
In order to resolve this discrepancy, Ko selects Ry ...,

no Tandomly,
sets REY = B || Ral| -+ || Ry, 1Ry, 41+ [| Ry, simulates EPALT DG (A) with

feeding Rl[gj;’] as the random tape of By, obtains an answer of Ly to the jo-th
decryption query of By, and outputs the answer.

We now give the precise description of Ky. Since Ky uses the same algorithm
as Ag as a subroutine of By, we denote the subroutine as Ag in order to dis-
tinguish the subroutine from Ag itself. The inputs of Ky are a public key pk,

Q)

the ciphertext Cj,, the random tape Ra, of Ao, the list List = Ry - | Ry,
of the answers from the randomness oracle, the state stk,, and the random
tape pk, of Ko. On inputting them, Ky parses pk, as R;Cj0+1||...||R;LO||pLO,

sets Rgel = Rl R+ | Riy, | By all -+ | B
ecutes Ag(pk; Ra,). If Ag makes the i-th query to the randomness oracle for
i < kj,, Ko sends R; back to Ag. If Ag makes the i-th query to the random-
ness oracle for ¢ > kj,, the extraction has failed. In this case, Ko outputs fail
and terminates, (although we can prove that the extraction never failed). If Ag

no» initializes st., to € and ex-

makes the j-th decryption query C; for j < jo, Ko computes (M[]O] str,) <
Lo(pk, Oy, RY®) sti,: pr,) and sends M back to Ag. If Ay makes the jo-th
decryption query Cj,, Ko computes (M%O],stLO) — Lo(pk, C’jo,Pbl[gs],st._o;p._o)7
outputs (M[ o] stk, ), and terminates.

Jo 7
The only difference between the behavior of Ko and that of EPAITPE())

is as follows: Ky does not check whether M Lol _ = Decq(C;) holds or not, al-
though EPA1+?7?E(IJ‘°()\) does. However, since the output M][”] of extractor Lo for
the EPA1T security is equal to Decg(C;) with overwhelming probability, this

[d0] B

checking is unnecessary. Therefore, the messages M; oM %0] generated by

Ko are equal to Decq(C'1), ..., Deca(C,) with overwhelming probability.
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By using induction, we show that the output M%O] = Dec«(Cj,) of Ko is
equal to Decg (Cj,) with overwhelming probability. Suppose that K succeeds
in outputting the decrypted plaintexts for j < jo. From the definition of K,
adversary Ag and the subroutine Ay of Ky are given the same input pk, the
same random tape Ra,, and the same answer Ry,..., Ry, to the randomness
queries. From the induction hypothesis, both Ay and Ag are given the decrypted
plaintexts as an answers for the the first, ..., (jo — 1)-th decryption queries.
These facts mean that Ag and Ag makes the same jo-th decryption query. That
is, Cj, = C}, holds. Hence, M][ff] = Decs(Cj,) = Dece(Cj,). This means that
Ko is successful. O

We can see that the above proof becomes invalid if we consider not the EPA
security but computational PA security. Recall that the computational PA-ness
ensures the computational indistinguishability between a tuple (My,. .., M,) of
outputs of extractor and (Decs(C1), . .., Decek(Ch)), only if all C; are output by
the same adversary By with the same random tape Rg,. Here Decs(C;) is the
i-th decryption query of By.

In the above proof, Ky inputs new Rl[gjg] to extractor Ly each times Ky is exe-

cuted. Therefore, we cannot conclude that the tuple (M 1[1], A Mr[féo]) of outputs
of Ly is computationally indistinguishable from (Decg(CY), . . ., Decek (Ch, ), if we
only assume the computational PA-security of I1. Since an answer of Kg to the
Jo-th encryption query of Ag is M %0], this means that Ky may not be a successful
extractor for the computational PA2 security.

3.3 Proof of Theorem 11

Proof. Let II be a PKE which is computationally random-like and EPA1 secure.
From Theorem 12, IT is EPA1T secure. Since II is computationally random-
like, there exist a computationally random-like set X = X\ and functions « :
{0,1} — X and 3 : X — {0, 1}* satisfying the property described in Definition 8
and 7.

Let Ag be an adversary for the EPA2 security of IT and ng be the number of
steps of Ag. In order to show that Ag has a successful extractor, we will construct
an adversary By for the EPA1T security, which executes Ag, obtains random bits

1., 1, from the randomness oracle, and feeds C] = a(R}), ..., C;, = a(R})
to Ag as an answer to the encryption queries. The EPA1T property of I ensures
the existence of extractor Ly for By. We will construct extractor Kg for Ay by
using Lo.

The precise description of adversary By for the EPA1T security is as follows.
Bo(pk; R) executes Ag(pk; R). If Ag makes a decryption query, By answers it by
making a decryption query. If Ay makes the i-th encryption query @;, By sends
query to the randomness oracle, receives an answer R}, computes C! = a(R}),
and sends C! back to Ag. Finally, By outputs the output of Ag.

From the EPA1™ security of II, there exists an extractor Ly for By. We con-
struct extractor Ko for Ag by using Ly. We would like to denote how K extracts
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the plaintext from C’j, where j is an arbitrary integer and C’j is the j-th decryp-
tion query of Ag. Let k be the number of times that Ay has made the encryption
queries before it makes the j-th decryption query.

Our idea behind the construction of K is as follows: Ky obtains Decsk(C'j) by
feeding C'j to Lo. However, recall that Ly is an extractor for adversary By of the
EPA1T security although Ky is an extractor for adversary Ag of the statistical
PA?2 security. This means that Lo requires the list List’ = R} || - - - || R}, as an input
although Ky is given the list CList = C,||---|[C) as an input. Here List’ is the
list of the answers from the randomness oracle to By and CList is the list of
the answers from the encryption oracle to Ag. Therefore, Kg selects p1, ..., pk
randomly, sets Ry = B(Cy;p1), ..., Ri = B(Cy;pr), and feeds not List’ but
List = R1|| s ||]“?,}c to Lo.

The precise description of Ky is as follows. Ko (pk, C'j7 R, Clist, st; pk,) parses
Clist as Clist = Ci|| -+ [|Ck, parses pk, as pk, = piollp1ll -« [lpny, computes
Ry = B(C1;p1), - -, Ri = B(Ck; pr), sets List = Rq|| - - - | R, obtains (M, st) <
Lo(pk, C;j, R, List, st; pi, ), and outputs (M;,st).

Finally we show that extractor Ky for Ag is successful. We fix an arbitrary
plaintext creator Py. Our idea behind the proof of the successfulness of Ky is as
follows. Since Lg is successful, output Mj of Lo(--- ,C’j, -, List’,--+) is equal to

Decgk (C;) with overwhelming probability in EPA1+?;:E’L‘° (N). From the definitions

of EPA1+%(TE’(IJ‘°()\) and By, the experimenter of EPA1+?7?E(IJ‘°()\) feeds to Lo the
list List’ of answers R}, ..., R}, from the randomness oracle, and By feeds C] =
a(RY), ..., C;, = a(R},) to its subroutine Ag. Since X is random-like, (C}, R}) =
(a(R}), R}) is computationally indistinguishable from (CY, 3(CY, p;)), where C¥
is a randomly selected element of X and p; is a randomly selected bit string.
Since IT is random-like, a randomly selected element C' of X’ is computationally
indistinguishable from a ciphertext C; = Encpk(M;;r;). Here M; is a plaintext
computed by a plaintext creator Py from the i-th encryption query of Ag, and
r; is a random tape. In particular, if we set R = 3(CY, p;) and R; = B(Ci, pi),
R!' is computationally indistinguishable from R;.

Therefore, output J\ij of Lo(--- ,C'j7~-~ ,List,--+) is equal to Decsk(é’j)
with overwhelming probability, even in the following experiment: Ag is fed
C1 = Encp(Mi;ri), ..., Cx = Encp(My;7,) as answers to encryption

queries, and Lo is fed List = Ri||---[[Rx = B(Ci;p1)|l--- |B(Cripr). Since
Ko feeds List = G(C1;p1)| - --18(Ck; pr) to Lo, the above experiment is the
same as EPA?{X?O()\). Thus, output M; of Ko(---,Cj,---,Clist,---) is equal
to Decy(C;) with overwhelming probability, where Clist = Ci||---[|Cx =
Enco(M1;71)|| - - - ||Encpk (Mp; 7). This means that K is successful.

We now formally prove that Ky is successful. We fix an arbitrary plaintext
creator Py and construct a distinguisher Dy for the random-like property of X
and an adversary Cp for the game (depicted in Definition 8) of the random-
like property of II. Let (C*, R*) be an instance of for distinguishing game of
Definition 7. Dg would like to know whether C* = a(R*) holds or R* = 5(C*; p*)
holds for some random tape p*. Do(C*, R*) obtains (pk,sk) < Gen(1%), selects
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io € {1,...,m9} randomly, selects R and pp, randomly, initializes List' and
st to ¢, and executes Ag(pk; R). If Ap makes the i-th encryption query Q; for
i < ig, Do selects C! € X and p; randomly, computes R = [(C/; p;), resets
List" « List'||R”, and sends C/ back to Ag. If Ag makes the i-th encryption
query Q;,, Do resets List! — ListT||R*, and sends C* back to Ag. If Ag makes
the i-th encryption query @Q; for i > ig, Do selects R, € {0,1}* randomly,
computes C! = a(R}), resets List' — List'|R], and sends C/ back to Ag. If
Ap makes the j-th decryption query C'j7 Dy computes Mj — Decsk(C'j) and
(M]Qst) — Lo(pk,Cj, R, List',st; pi,). If M; # M]’ holds, Dy outputs 0 and
terminates. Otherwise, Dy sends J\ij back to Ag. If Ag terminates, Dy outputs 1
and terminates.

We next construct an adversary Cy for the game described in Definition 8.
Let pk, be an instance of this game. Co(pk,) sets pk = pk,, and selects
iop € {1,...,n0} randomly, selects random tapes R, pr,, and p randomly, ini-
tializes st, stp,, and List’ to e, and executes Ao(pk; R). If Ap makes the i-th
encryption query Q; for i < ig, Co selects a random tape r; randomly, computes
(M;,stp,) < Po(Qi,stp,; 1) and C; «— Encp(M;; 1), computes R, «— B(Cy; pi),
resets Listt «— Listi||Ri, and sends C; back to Ag. If Ag makes the ig-th en-
cryption query Q;,, Co computes (M;,,stp,) < Po(Qi,,Stp,; 1), makes query
M;, to EoX-oracle, obtains an answer C} , computes R} <« B(C;;pi,), re-
sets List? Listi||R;‘O, and sends C7 back to Ag. If Ag makes the i-th en-
cryption query Q; for i < ig, Co selects C/ € X and p; randomly, computes
R — B(CV; p;), resets List' — List!||R”, and sends C/ back to Ag. If Ag makes
the j-th decryption query C'j, Co makes decryption query C’j, obtains an answer
Mj, and computes (M]{,st) — Lo(pk, C’j,R, List", st; pL,)- If Mj * M]’ holds, Cq
outputs 0 and terminates. Otherwise, Cy sends M ; back to Ag. If Ag terminates,
Co outputs 1 and terminates.

One can easily show that the following the distributions of 1. and 2. are equal,
the distributions of 3. and 4. are equal, and the distributions of 5. and 6. are
equal.

+Dec,L
An output of EPAL™ ;77g (A).
An output of Dy, in the case where iy = 1 and C, = a(R,) hold.
An output of Dy, in the case where iy = ng and R, = 5(C.; ps) hold.

Ll

An output of Cy, in the case where i9 = 1 hold and Cj, is a randomly selected
element of X.

5. An output of Cp, in the case where ig = ny hold and C;, = Encyi(M;,) holds.
6. An output of EPA%‘?Z’?O(A).

Since PKE [T is computationally random-like, a hybrid argument shows that
the distribution of 2. and 3. are computationally indistinguishable and the dis-
tribution of 4. and 5. are computationally indistinguishable also. Therefore, the
theorem holds. O
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4 Statistical PA2-ness of Cramer-Shoup Scheme

In this section, we show that the Cramer-Shoup scheme is statistically PA2
secure under a weaker assumption than Dent assumed in [D06]. The description
of the Cramer-Shoup scheme is reviewed in Fig.4.

4.1 Our Assumption Is Weaker Than Dent’s One[D06]

First, we show that our assumption, the random-like property, is weaker than
Dent’s one [D06], simulatability.

Theorem 13 (Simulatable Group = Random-Like Group). If a prime
order cyclic group G is simulatable, then it is computationally random-like.

Proof. Suppose that there exists a group G which is not computationally random-
like but is simulatable. From the simulatability of G, there exists a polynomial
¢ = ((\), a deterministic polytime function « : {0,1}* — G and a probabilistic
polytime function 3 : G — {0,1}* satisfying the properties (1), (2), and (3) of
Definition 6.

We show that (¢, «, ) satisfies the condition of the computationally random-
like property of G. That is, we show that, for any polytime distinguisher D,
| Pr[D(a(R), R) = 1] — Pr[D(a, B(a; p)) = 1]| is negligible. Here R € {0,1}*, p,
and a € G are randomly selected.

To this end, we take an arbitrary distinguisher Dy. By using Dy, we construct
polytime adversaries Bo and Bg for the experiments of (2) and (3) of Definition 6.
B2(1*) sends query to (’)gow obtains R, as an answer, executes Do(a(R.), R.),
obtains an outputs b’ of Dy, and outputs b’. In contrast, B3(1*) sends query
to 0%, obtains a, as an answer, selects p randomly, executes Do(a., 3(a«;p)),
obtains an outputs b’ of Dg, and outputs b'.

One can easily show that the following properties hold:

— The distribution of Do(ca(R.), R.) for randomly selected R, € {0,1}" is the

same as that of an output of BQO?’O".

— The distribution of an output of Bgofl*w is the same as that of
an output of B3® a, because the property (1) of Definition 6 implies
(0(B(a(R.): p)). Bla(R.): p) = (a(R,), B(o(R.); ).

— The distribution of an output of B3%« is the same as that of Dg(a, 3(a)) for
randomly selected a € G.

—Gen(1*)— —Encok(M)— —Decx (C)—
g.h— G, 2,2z 2y, y — ZLq. v 7, 0 — H(u,v,e).
(b,e,d) — (g°h*, g°h®", g"h¥"). (u,v,€) « (g", A", Mb"). Tf u®+0Uy™ +0%" oL 7
pk — ( ,h bcd) 0 — H(u,v,e). output L.

sk «— (z,2",z,2",y,y). 7 (ed?)". Otherwise,

Output (pk, sk). Output C = (u,v,e, 7). output e/u*v?

Fig. 4. The Cramer-Shoup Scheme
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Since | Pr[Do(a(Rx), Ry) = 1] — Pr[Do(ax, a(a.; p«)) = 1]] is non-negligible,
this means that the winning probability of Bo or Bs is non-negligible. This con-
tradicts the property (2) or (3) of Definition 6.

4.2 Proof of Main Theorem

We finally show our main theorem, Theorem 3. From our sufficient condition
(Theorem 11), all we have to prove is that the Cramer-Shoup scheme is compu-
tationally random-like and is EPA1 secure. Recall that our experiment for the
definition of a random-like PKE is quite similar to that for the definition of the
IND-CCAZ2 security. Therefore, we can prove this part of our sufficient condition
by slightly modifying the proof of the IND-CCA2 security of [CS98].

Proof (The Cramer-Shoup Scheme is Random-Like). We set X = G*. Since G is
computationally random-like, G* is clearly computationally random-like. Recall
the proof [CS98] of the IND-CCAZ2 security of the Cramer-Shoup scheme. In the
proof, the authors of [CS98] showed that a ciphertext is indistinguishable from a
random element of G* even if an adversary can access the decryption oracle. This
means that the winning advantage that an adversary enjoys the game descrebed
in Definition 8 is negligible. O

We next prove the EPA1 security of the Cramer-Shoup scheme. To do so, we
introduce a new notion, regularity. Intuitively, we say that a PKE is regular
if, for any ciphertext C' satisfying Dece(C) # L, there exists (M, r) satisfying
C = Encp(M;r) with overwhelming probability. This property clearly holds if
C is an honestly generated ciphertext. The essence of the regularity is that the
property holds even if C' is maliciously generated. The precise definition of the
regularity is as follows:

Definition 14 (Regularity). Let IT = (Gen,Enc,Dec) be an encryption
scheme. For a public key/secret key pair (pk,sk) of I1, let Dg be the set of
the bit string C satisfying Decq(C') # L, and let Ex be the set of the bit string
C satistying C' = Encyi(M;r) for some M and 7.

We say that II is regular, if for any pk, and Cj,

Pr[(pk,sk) < Gen(1*),Co € D \ Epk, | Pk = pky]
is negligible for A.

Note that some artificial PKEs do not satisfy the regularity. See the full paper
for an example. One can easily show the following lemma:

Lemma 15. The Cramer-Shoup scheme is reqular.
We now prove EPA1 security of the Cramer-Shoup scheme.

Proof (The Cramer-Shoup Scheme is EPA1 Secure). Since the underlying
group G is computationally random-like, there exists a polynomial £ = ¢()), and
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functions « : {0,1}* — G and 3 : G — {0, 1} satisfying the property described
in Definition 7.

Let Ag be an adversary against EPA1 security and ng be the number of steps
of Ag. We have to construct an extractor for Ag. A basic strategy for construct-
ing an extractor for Ag is as follows. Let pk = (g, h, b, ¢, d) be a public key. We
construct adversary By for the DHK property, which executes Ag, obtains de-
cryption queries C7 = (u1,v1,e1,7m1),Co = (ug, va,e2,m2), ... of Ay, and makes
a query (u;,v;) for each i. Then the DHK assumption ensures the existence of
extractor Lo for Bg. From the definition, Ly succeeds in outputting r; with over-
whelming probability. Here r; is an element of Z, satisfying (u;,v;) = (g™, h").
(To simplify, we here omit to consider the case where r; = NonDH.) The plain-
text M; = Decg(C;) is easily computable from C;, if we know the random
tape 1; of C; = Encok(M;;73) = (wi,vi,e4,m) = (g7, h", M;b"i | (ed?)™). Here
0; = H(u;,v;,e;). Therefore, we can construct extractor Kg for Ag by using L.

However, we have to subtly modify the above basic strategy, because there is
a small discrepancy between By and Ag. Let Ra, and Rp, be the random tapes
of Ag and By. From the definition of the DHK assumption, By are given g, h and
Rg, only, although Ag are given g,h,b,c,d and Ra,. Thus, in order to execute
Ao, Bo has to construct (b,c,d, Rp,) in a deterministic way, by using its input
(g9, h, Rg,) only. Therefore, By parses Rg, as Rg, = Ry||Rc||Ral|Ra,, and sets
(bv () d) = (a<Rb)7 a(RC)v OZ(Rd))

The precise description of By is as follows. Bo(g,h; Rg,) parses Rg, as
Rg, = Ru||Rc||Ral|Rp,, computes (b,c,d) = (a(Rp), a(R.),(Rq)), sets pk =
(g, h,b,c,d), and executes Ag(pk; Ra,). If Ag makes the i-th decryption query
Ci = (u4,v;, €4, m;), Bo makes query (u;,v;) and obtains answer r;. If r; = NonDH
holds, By sends L to Agp. Otherwise, By computes 0; = H(u;,v;,e;) and
m = (ed?)"i. If m; = 7! holds, By sends e;/b™ to Ag. Otherwise, By sends
1 to Ag. If Ag terminates, By terminates.

From the DHK assumption, there exists an extractor Ly of the DHK prop-
erty for By. By using Ly as a subroutine, we construct an extractor Ky of Ag
for the EPA1 property. The basic strategy to construct Ky has already been
described. However, we have to modify the basic strategy because of the pre-
viously mentioned discrepancy between By and Ag. From the definitions, ex-
tractor Lo and Ko have to extract plaintexts only from data known by By and
Ao respectively. Recall that By is given (g, h, Rg,) = (g, h, Rp||Re||Rall Ra, ), al-
though Ag is given (g, h,b,c,d,Ra,) = (g,h,a(Rp), a(R.), (Rq), Ra,). That
is, Bo knows (R, R., R4) although Ao does not know (Rp, R, Rq) itself but
(a(Rp),a(R.),a(Ry)) only. Thus, Lo needs (g, h, Rp, R, R, Ra,) although Ko
can use (g, h, a(Ryp), a(R.), a(Rq), Ra,) only.

In order to resolve this discrepancy, Ky selects pp, pe, and pg randomly, sets

, = B(b, ), R. = B(c,pe), and R, = ((d, pa), and executes Ly by feeding
(9,h, R}, R., R, Ra,). We will show that (R}, R., R/)) is indistinguishable from
(Rp, Re, Rq) by using the random-like property of G. Hence, we will be able to show
that Ly can output the correct discrete logarithm r; even if Lo isnot fed (Ry, R., Rq)
but (Rj, R.., R!)). Therefore, we will be able to show that K is successful.
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We now give the precise description of Ky. We describe how K extract a plain-
text from C;, where 7 is an arbitrary number and Cj is the i-th encryption query
of Ag. On input public key pk, ciphertext C;, random tape Rpa, of Ag, the state
st of Ko, and the random tape pk, of Ko, Ko perform as follows. Ky parses pk
as (g, h,b,c,d), C; as (u;,v;,e;,m;), and pk, as pollpellpdallpLy, computes R, =
B(b; pu), Ry = B(c; pe), and Ry = B(d; pa), sets R, = Ry || R||Ry|| Ra,, executes
Lo(g, h, (ui, i), Ry, st; pL, ), and obtains the output (r;, st) of Lo. If 7; = NonDH
holds, Ko outputs (L,st). Otherwise, Ko computes 0; = H(u;,v;,e;) and 7, =
(ed%)me. 1f m; = m! holds, Ko outputs (e;/b™, st). Otherwise, Ko outputs (L, st).

In order to show that K is successful, we show that subroutine Ly of Ko can
output the correct discrete logarithm with overwhelming probability even in the
experiment EPA?;;’L(” (M). To this end, we use the assumption that G is random-
like. We construct an adversary Cq for the computationally random-like property
of G. Let (a4, Ry) be an instance of the game of computationally random-like
property. Co would like to know whether a. = a(R.) holds or R, = [(ax; ps)
holds for some p.. Co(ax, Ry ) selects jo € {1, 2,3} randomly, selects R; randomly
and sets a; = a(R;) for j < jo, sets Rj, = R. and aj, = a., selects a; € G
and a random tape p; randomly, and sets R; = ((a;;p;) for j > jo. Then
Co sets (bT, ¢t dl, Rl RY, RY) = (a1, a9, a3, Ry, Ra, R3), randomly selects g € G,
x € Z,, and a random tapes Ra, and pi,, sets h = g%, pk = (g, h,bT,cf,d"),
st =¢, and RTBO = Ra, ||RZ||R£||R2;7 and executes Ag(pk; Ra, ). If Ag makes the i-
th decryption query (u;,v;, e, 7;), Co executes Lo(g, h, (ui, v;), RJ{BO, st; pL, ), and
obtains the output (r;,st) of Lg. If 7; = NonDH and v; = u;® hold, Cy outputs
0 and terminates. If r; € Z, and (u;,v;) # (¢™,h™) hold, Cy outputs 0 and
terminates. Otherwise, Co computes 6; = H (u;, v;, ;) and 7} = (cd? )i If 71; =
7, holds, Cy sends e;/b" back to Ag. Otherwise, Cy sends L back to Ag. If Ag
terminates, Cyp outputs 1 and terminates.

If R. = B(a«; p«) and jo = 1 holds, the distribution of output of Cy is the same
as that of DHKE‘?BO(A). If a. = a(R,) and jo = 3, the distribution of output of

Co is the same as that of EPA?;;’L(”()\). This means that Lg outputs the correct

discrete logarithm with overwhelming probability even in EPA?;;X(')(O()\).

We now show that Ko (pk, C;, Ra,, st; pk, ) outputs the correct answer with over-
whelming probability. As before, we write pkas (g, h, b, ¢, d) and C; as (u;, v;, e;, ;).
Let (4, st) be the output of Lo(g, h, (ui, vi), Ry, St; pLy ), sk = (2, 2/, z, 2’ y, v/, pk)
be the unknown secret key corresponding to pk and 6; be H (u;, v, €;).

We first consider the case where r; # NonDH. Since Ly outputs the cor-
rect discrete logarithm with overwhelming probability, (u;,v;) = (g7, h"#) holds
with overwhelming probability. From the definition of the Cramer-Shoup en-
cryption scheme, Decg(C;) is equal to e; /ufviz/ or L, depending on whether
w07 0" — 7 holds or not. From (ui,v;) = (g™, k™), it follows that
ei/uizviZ’ — ei/grizhriZ’ = ¢; /b7 and uim+9iyvi$'+9iy' — gri$+riﬁiyhriw'+n9iy' —
(g"h*" ) (gvh¥" )0 = (¢d®)" . Recall that Ko outputs e;/u;*v;* or L, depending
on whether (cd’ )" = e; holds or not. This means that the output of Ky is equal
to Decg (Cp) with overwhelming probability.
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We next consider the case where r; = NonDH. Since Ly outputs the cor-
rect output with overwhelming probability, there is no s € Z, satisfying
(us,vi) = (g% h®). This means that there is no (M,s) € G x Z, satisfying
C; = Ency(M;s). Since the Cramer-Shoup scheme is regular, Decg (C;) = L
holds with overwhelming probability. Since the output of Ky is L, the output of
Ko is equal to Decg(Cp) with overwhelming probability. O

4.3 The Reason We Succeed in Showing the Statistical PA-ness

The main theorem, Theorem 3, shows the statistical PA2-ness of the Cramer-
Shoup scheme based on computational assumptions, such as the computationally
random-like assumption and the DDH assumption. This seems strange at first
glance. Hence, we here see why the statistical PA2-ness can be derived from
computational assumptions. We proved the statistical PA2-ness as follows:

1. Prove that “EPA1 4+ computationally random-like = statistically PA2”
(Theorem 11).

2. Prove that EPA1-ness of the Cramer-Shoup scheme from the DHK assump-
tion.

3. Prove the computational random-like property of the Cramer-Shoup scheme
from the computational assumptions.

The key point for proving the statistical PA2-ness is our new notion, the
EPA1 security. In fact, we fail to prove the statistical PA2-ness of it, if we
replace the EPAl-ness of Theorem 11 with the statistical PAl-ness. Recall that
X ~gar Y and Y ~comp Z only implies X ~comp £, where X, Y, and Z are
random variables. Therefore, statistical PAl-ness + computationally random-like
property only implies (at most) computational PA2 security.

In contrast, FPA1 security + computationally random-like property implies
the statistical PA2 security. The reason is as follow. Recall that the EPA1 (Fqual-
ity-PA1) security means that “the equality M = Decg(C) holds with over-
whelming probability,” where M is an output of an extractor K(--- , C, List, - - - ).
Clearly, the computational indistinguishability changes the probability only neg-
ligibly. That is, if List” is computationally indistinguishable from List, the equality
M’ = Decg(C) also holds with overwhelming probability, where M’ is an output
of an extractor K(- -, C, List’, - - -). (Here List is the list of random elements of X
and List’ is the list of encryptions. Their computational indistinguishability is en-
sured by the computational random-like property.) Hence, the Equality-PAl-ness
+ the computationally random-like implies the Equality-PA2-ness (and therefore
implies statistical PA2-ness). Therefore, we can say that the EPA1 security al-
lows us to show the statistical PA2-ness.

Another reason we can succeed in proving the statistical PA2-ness is in the
definition of the DHK assumption. Recall that the DHK assumption ensures that
an output of an extractor is not only indistinguishable but equal to the discrete
logarithm with overwhelming probability. Hence, we can prove the Fquality-PA1-
ness of the Cramer-Shoup scheme under the DHK assumption and therefore can
prove its statistical PA2-ness by using Theorem 11.
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Abstract. While recent timed-release encryption (TRE) schemes are
implicitly supported by a certificateless encryption (CLE) mechanism,
the security models of CLE and TRE differ and there is no generic
transformation from a CLE to a TRE. This paper gives a generalized
model for CLE that fulfills the requirements of TRE. This model is se-
cure against adversaries with adaptive trapdoor extraction capabilities,
decryption capabilities for arbitrary public keys, and partial decryption
capabilities. It also supports hierarchical identifiers. We propose a con-
crete scheme under our generalized model and prove it secure without
random oracles, yielding the first strongly-secure security-mediated CLE
and the first TRE in the standard model. In addition, our technique of
partial decryption is different from the previous approach.

Keywords: Security-mediated certificateless encryption, timed-release
encryption, standard model.

1 Introduction

In identity-based encryption (IBE) [29], encryption is done with respect to any
arbitrary string viewed an identifier (ID). Since the birth of practical IBE con-
structions, this idea has been used to achieve other security goals, such as cer-
tificateless encryption (CLE) [IUT4JT6] and timed-release encryption (TRE) [3].

CLE is intermediate between IBE and traditional public key encryption
(PKE). Traditional PKE requires a certification infrastructure but allows users
to create their own public/private key pairs so that their private keys are truly
private. Conversely, IBE avoids the need for certificates at the expense of adding
a trusted key generation center (KGC) that generates the private keys, which
means the KGC has the capability to decrypt all messages. CLE combines the
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advantages of both: no certificates are needed and messages can only be de-
crypted by the recipient. Generally, CLE is constructed by combining IBE and
PKE. The existence of the PKE component means that the KGC cannot de-
crypt messages. Instantaneous revocation is difficult for typical CLE schemes.
Security-mediated certificateless encryption (SMCLE) addresses this issue.

In TRE, a message is encrypted under a public key and a time; both the
private key and a time-dependent trapdoor are needed for decryption. A time-
server is trusted to keep a trapdoor confidential until an appointed time. Apart
from delayed release of information, TRE supports many other applications due
to its small trapdoor size and its commitment provision (see [ITIT18]).

1.1 The Difficulty of Converting between CLE and TRE

A practical TRE requires system parameters to be small relative to the number of
supported time periods. IBE supports an efficient time-based unlock mechanism
by treating the identities as time periods [4J26]. This approach supports only
universal disclosure of encrypted documents since one trapdoor can decrypt all
ciphertexts for a specific time; the inherent key-escrow property of IBE prohibits
the encryption for a designated receiver.

Since CLE is an “escrow-free version” of IBE, and both TRE and CLE are a
kind of double-encryption, it is natural to think CLE is what we are looking for to
realize a TRE. While most recent TRE schemes can be viewed as containing an
implicit CLE mechanism, a generic transformation from CLE to TRE is unlikely
to be provable secure [7]. Difficulty in reducing the confidentiality of TRE to that
of CLE arises when the adversary is a “curious” time-server. In CLE, an identity
is associated with only one public key, so a curious KGC is not allowed to replace
the public key associated with an identifier arbitrarily (otherwise, decryption is
trivial since it holds both parts of secrets). On the other hand, in TRE a time
identifier is never bound to any public key, so the public key associated with a
time identifier can be replaced. There is no way to simulate this implicit public
key replacement when CLE is viewed as a black box.

There is another subtle difference in modeling of curious users. In a secure
multi-user system, the security of a user is preserved even if other users are
compromised. In CLE, the user secret key together with the trapdoor given by
the KGC give the full private key. With the assumption that the user secret key
will be securely deleted after the combination, most CLE models assume the
adversary can get only trapdoors and full private keys. For most CLE schemes
under this model (e.g. [I7]), the user secret key cannot be recovered from the
trapdoor and the full private key. Moreover, some CLE formulations [2I24/30] do
not have user secret keys at all. In TRE, user secret keys are held by each user,
which makes it impossible to reduce the security of TRE to that of CLE.

1.2 Owur Contributions

Our generalized model for CLE overcomes the aforementioned difficulties and
has sufficient power to fulfill the requirements of TRE. Our model is secure
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against an adversary with adaptive trapdoor extraction capabilities for arbitrary
identifiers (instead of selective identifiers, e.g. [427]), decryption capabilities for
arbitrary public keys (as considered in strongly-secure CLE [I7]) and partial
decryption capabilities (as considered in security-mediated CLE [12]). Our model
also supports hierarchical identifiers which have not been considered formally for
CLE and TRE. Design choices behind our formulation are justified.

All previous concrete TRE schemes [BI7ISQITO/THIIRIZTIZS], and the only con-
crete SMCLE scheme [12], were proven in the random oracle model. Our model is
strong but achievable: our proposed scheme is the first strongly-secure SMCLE.
With our security-preserving transformation from a general CLE to a TRE, it
also yields the first TRE in the standard model.

This work enriches the study of SMCLE by providing a novel partial decryp-
tion technique which is different from that in [I2], and enriches TRE by sup-
porting a new business model for the time-server. Finally, hierarchy of identifiers
makes decryption of ciphertext for passed periods more manageable.

2 Related Work

2.1 Timed-Release Encryption

Early TRE schemes require interaction with the time-server. Rivest, Shamir and
Wagner’s idea [28] require senders to reveal the release-time of the messages
in their interactions with the server, so the senders cannot be anonymous to
the server. In Di Crescenzo, Ostrovsky and Rajaopalan ’s scheme [15], it is the
receiver who interacts with the time-server by invoking a “conditional oblivious
transfer protocol”, which is computationally intensive.

Blake and Chan made the first attempt to construct a non-interactive TRE
[3]. The formal security model of message confidentiality was later considered
independently by Cheon et al. [I0] and Cathalo, Libert and Quisquater [7]. The
former focuses on authenticated TRE. The latter also formalizes the release-time
confidentiality. The recovery of past time-dependent trapdoors from a current
trapdoor was studied in [9] and [26], which employs a hash chain and a tree
structure [6] respectively. The study of the pre-open capability in TRE was
initiated in [23] and improved by [I8]. Recently, Chalkias, Hristu-Varsakelis and
Stephanides proposed an efficient TRE scheme [§] with random oracles.

2.2 Certificateless Encryption

Al-Riyami and Paterson [I] proposed certificateless encryption in 2003. Exten-
sive surveys of CLE security models and constructions can be found in [I4/T6].
Two types of adversaries are considered in certificateless encryption. A Type-I
adversary models coalitions of rogue users without the master secret. Due to the
lack of a certificate, the adversary is allowed to replace the public keys of users.
A Type-II adversary models a curious KGC who has the master key but cannot
replace the public keys of any users. In Al-Riyami and Paterson’s security model
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for encryption [I], a Type-I adversary can ask for the decryption of a cipher-
text under a replaced public key. Schemes secure against such attacks are called
“strongly-secure” [I7], and the oracle is termed a “strong decryption oracle”. A
weaker type of adversary, termed Type-I~, can only obtain a correct plaintext
if the ciphertext is submitted along with the corresponding user secret key.
The Al-Riyami and Paterson scheme [I] is secure against both Type-I and
Type-II adversaries in the random oracle model. It was believed [2412527] that
[25] gave the first CLE in the standard model. However, it is possible to in-
stantiate a prior generic construction in [I2] with a PKE and an IBE in the
standard model to obtain a secure CLE without random oracles. Both [25] and
the instantiation of [T2] are only secure against Type-I~ attacks. Based on [19], a
selective-ID secure CLE without random oracles was proposed [27]. This scheme
cannot be efficiently extended to a TRE since the user’s public key is depen-
dent on the identity, which is never coupled with a fixed time-identifier in TRE.
Recently, the first strongly-secure CLE in the standard model is proposed [I7].
Al-Riyami and Paterson give an extension for hierarchical CLE [I]. However,
no security model is given. We are not aware of any literature with formal work
on hierarchical CLE, particularly none proven secure in the standard model.
Baek et al. proposed the first CLE that does not use pairings [2]. The CLE
proposal [24] uses similar ideas, but their security proof ignores the public key
replacement of the target user being attacked. This limitation is removed in Sun,
Zhang and Baek’s work [30]. To replace the pairing, these schemes make part of
the user’s public key dependent on the identity-specific trapdoor given by the
KGC, which means TRE cannot be obtained trivially from these constructions.
Security-mediated certificateless encryption (SMCLE), introduced by Chow,
Boyd and Gonzalez Nieto [12], adds a security-mediator (SEM) who performs
partial decryption for the user by request. This idea gives a more general treat-
ment of the decryption queries in the CLE paradigm: the adversary can ask for
partial decryption results under either the SEM trapdoor generated by the KGC
or the user secret key A concrete construction in the random oracle model and
a generic construction in the standard model are proposed in [12]. Prior to our
work, no strongly-secure SMCLE existed in the standard model.

3 General Security-Mediated Certificateless Encryption

3.1 Notation

We use an ID-vector ID = (ID1,IDg,--- ,IDyp) to denote a hierarchy of identifiers
(ID1,IDg,--- ,IDy). The length of ID is denoted by |ID\ L. Let IDHID denote
the vector (ID17 ID2, -+, 1D, 1D;.) of length \ID| +1. We Ve say that 1D is a prefix
of ID if \ID| < |ID \ and ID; = ID] for all 1 < i < \ID| We use ) to denote
an empty ID-vector where || = 0 and 0|[ID,. = ID,.. Finally, we use the notation
({0,1}™)=" to denote the set of vectors of length less than or equal to h, where
each component is a n-bit long bit-string.
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3.2 Syntax

We propose a new definition of the (security-mediated) certificateless encryption,
which also extends the definition of a 1-level SMCLE scheme in [12] to h levels.

Definition 1. An h-level SMCLE scheme for identifiers of length n is defined
by the following sextuple of PPT algorithms:

— Setup (run by the server) is a probabilistic algorithm which takes a security
parameter 12, outputs a master secret key Msk (which can also be denoted as
dy), and the global parameters Pub (which include h = h(\) and n = n(\)
implicitly) We assume all other algorithms take Pub implicitly as an input.

— Extract (run by the server or any one who holds a trapdoor) is a possibly
probabilistic algorithm which takes a trapdoor dip corresponding to an h-level
identifier 1D € ({0,1})=h | and a string 1D, € {0,1}", outputs a trapdoor
key dI—D>|||DT associated with the ID-vector I—ﬁHIDr. The master secret key
Msk is a trapdoor corresponding to a 0-level identifier.

— KGen (run by a user) is a probabilistic algorithm which generates a pub-
lic/private key pair (pk,,,sky,).

— Enc (run by a sender) is a probabilistic algorithm which takes a message m
from some implicit message space, an identifier ID e ({0,1}")=h, and the
receiver’s public key pk, as input , returns a ciphertext C'.

— Dec’ (run by any one who holds the trapdoor, either a SEM in SMCLE or a
receiver in CLE) is a possibly probabilistic algorithm which takes a ciphertext
C and a trapdoor key dip, returns either a token D which can be seen as a
partial decryption, or an invalid flag L (which is not in the message space).

— DecV (run by a receiver) is a possibly probabilistic algorithm which takes the
ciphertext C, the receiver’s secret key sk, and a token D as input, returns
either the plaintext, an invalid flag L p denoting D is an invalid token, or
an invalid flag Lo denoting the ciphertext is invalid.

For correctness, we require that Dec” (C, sk, Dec® (C, Extract(Msk, m))) =m for
all A € N, all (Pub, Msk) & Setup(1%), all (pk, sk) & KGen, all message m, all
ID-vector ID in ({0,1}™)=" and all C & Enc(m, 1D, pk).

3.3 Security
Each adversary has access to the following oracles:

1. An ExtractO oracle that takes an ID-vector 1D € ({0,1}™)=" as input and
returns its trapdoor d;3.

2. An UskO oracle that takes a public key pk as input and returns its corre-
sponding private key sk. .

3. A DecO” oracle that takes a ciphertext C' and an ID-vector ID, and outputs
DecS(C’, drp). Note that C' may or may not be encrypted under I.D.

4. A DecOY oracle that takes a ciphertext C, a public key pk and a token D,
and outputs Dch(C’, sk, D) where sk is the secret key that matches pk.
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5. A DecO oracle that takes a ciphertext C', an ID-vector 1_15, and a public
key pk; outputs DecV (C, sk, D) where sk is the secret key that matches pk,
D = Dec”(C, dip) and C may or may not be encrypted under ID and pk.

Following common practice, we consider the two kinds of adversaries.

1. A Type-I adversary that models any coalition of rogue users, and who aims
to break the confidentiality of another user’s ciphertext.

2. A Type-II adversary that models a curious KGC, who aims to break the
confidentiality of a user’s (31phertex‘.

We use the common security model in which the adversary plays a two-phased
game against a challenger. The game is modeled by the experiment below, X €
{I,II} denotes whether an PPT adversary A = (Afind, Aguess) is of Type-I or II,
and determines the allowed oracle queries O and the auxiliary data Aux.

Definition 2. Experiment ExpCCA X(\)

(Pub, Msk) < Setup(1*)

(mo, mq, pk™, ID*, state) & AL (Pub, Aux)
R {0,1}, C* & Enc(mmﬁ*, pk™)

b & A9 (C*, state)

guess

If (Jjmo| # |ma|) V (b # V') then return 0 else return 1
O is a set of oracles ExtractO(-), UskO(-), DecO®(-,-), DecOY (-, -, -), DecO(-, -, -).

Variables marked with * refer to challenges by the adversary. The adversary
chooses a public key pk™ and an ID-vector ID* to be challenged with, and
the challenger returns a challenge ciphertext C*. The following two definitions
prohibit the adversary from trivially using the oracles to query for the answer
to (parts of) the challenge.

Definition 3. A hierarchical security-mediated certificateless encryption scheme

s (t,qm,qp,€) CCA-secure against a Type-1 adversary if \Pr[ExpCCA '()\) =
1] — é\ < € for all t-time adversary A making at most qp extraction queries and
qp decryption queries (of any type), subjects to the following constraints:

Aux =0, i.e. no, auziliary information is given to the adversary

No ExtractO(ID’) query throughout the game, where 1D is a prefix of 1D
No UskO(pk) query throughout the game for any pk.

No DecOS(C*,I_lj*) query throughout the game.

No DecO(C*, ﬁ*, pk*) query throughout the game.

SRS

All public keys in the game are chosen by the adversary. It is natural to assume
the adversary knows the corresponding secret keys.

L A rogue SEM is weaker than a Type-II adversary.
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Definition 4. A hierarchical security-mediated certificateless encryption scheme
is (t,qr,qp,€) CCA-secure against a Type-II adversary if | Pr[ExpS‘CA_“(/\) =
1] — %\ <€ for all t-time adversary A making at most qp decryption queries (of
any type), subjects to the following conditions:

1. Aux = (Msk, {pky,---,pk;, }), i.e. A is given the master secret and a set of
challenge public keys.

2. pk* € {pky, -+ ,pky, }, i.e. the challenge public key must be among the set
given by the challenger.

3. No UskO(pk) query throughout the game if pk & {pky,--- , pky, } or pk = pk".

4. No DecOU(C’*7 pk*, D) query throughout the game, where D is outputted by
the algorithm Dec®(C*, dip.)-

5. No DecO(C*, ﬁ*, pk™) query throughout the game.

Since Msk is given to the adversary, the challenge public key must be in the set
given by the challenger.

3.4 Discussions on Our Choices for Definition

This section explains the intuitions behind the choices made in formulating our
definition and highlights the relationship between existing definitions and ours.

User key generation. In order to support more general applications like TRE,
the interface for the algorithms needs a more general syntax. A subtle change is
that our user key generation algorithm KGen only takes the system parameter as
input but not the identifier. In some CLE schemes [212427/30] the inclusion of
the identifier, or the trapdoor for an identifier, is essential for the generation of
the user public key. For these schemes, KGen can be executed only after Extract,
so straightforward adaption results in inefficient TREs in which the size of the
user public key grows linearly with the number of supported time periods.

Simplification of Type-I adversary. In existing models for 1-level CLE [II17],
ExtractO query of ID* is allowed; if such a query is issued, the challenge public
key pk™ can no longer be chosen by the adversary. In our discussion, we sepa-
rate this behavior frg)n the Type;I> model and conﬂer this type of adversarial
behavior (ExtractO(ID’) where ID’ is a prefix of ID*) as a weaker variant of,
and hence covered by, a Type-II adversary. It is true that our resulting defi-
nition for Type-I adversary is weaker, but the “missing part” is not omitted
from the security requirement since CLEs must consider Type-II adversaries;
this simplification was justified and adopted in [22, Section 2.3].

Existing models also allow full private key extraction for the public keys pre-
pared by the challenger. In our Type-I game, all of the public keys to be attacked
are generated by the adversary, so UskO query is prohibited. The remaining sce-
nario, where the adversary intends to attack a public key given by the challenger,
is also a weaker variant of our Type-II model. To conclude, we keep the essence
of the existing models, and include the adversarially chosen public keys (for
Type-I) and UskO (for Type-II) to match with TRE.
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Strong decryption oracle. In our definition, the decryption oracle works even
if the public key is adversarially chosen but the secret key is not supplied. The
original definition of CLE [I] does not allow a strong decryption oracle for curious
KGC adversary, but it is considered in recent work [I7]. Adding the following
restriction weakens Definition [ to correspond to a Type-II~ attack:

5. (Type-1I— ) No DecO(C, 175, pk) query throughout the game for any C if pk ¢
{pky, - pky, }, unless the corresponding secret key sk is supplied when the
DecO query is made.

The Type-I~ game can be obtained by adding Aux = {pkj, - - -pky, } and the
above restriction to Definition Bl but with a restriction on UskO as in Definition [l

Implicit public key replacement. In our generalization of CLE, we “remove”
(i.e. make implicit) the oracle for replacing the public key corresponding to an
identifier. This change may affect the following choices:

1. The adversary’s choice of the victim user it wishes to be challenged with,
2. The choice of user in decryption oracle queries.

However, there are other “interfaces” in our model such that the adversary can
still make the above choices. Our model still allows the adversary to choose which
identifier /public key it wants to attack. For decryption queries, the adversary
can just supply different combination of identifier and public key to the DecO”
and DecOY oracles. In this way, implicit replacement is done. In other words,
when compared with the original model [IJ], the security model is not weakened,
but generalized to cover applications of CLE such as TRE.

Reason for “removing” public key request and replacement oracles.
In traditional definitions of CLE [I], oracles for retrieving and replacing public
key depend upon the fact that an identifier is always bound to a particular
user. Replacing a user’s public key means changing the public key associated
with a certain identifier. In TRE, identifiers correspond to policies governing the
decryption, so a single identifier may be “shared” among multiple users. For this
reason, our model must be free from the concept of “user = identifier”.

Alternative definition of public key replacement. What about allowing
a restricted public key replacement, such that a public key associated with an
identifier can be replaced by a public key associated with another identifier, but
not an arbitrary one supplied by the adversary? This definition still requires an
identifier to belong to a single user. Moreover, this definition makes the treatment
of a strong decryption oracle complicated: the idea of restricted replacement
among a fixed set of public keys does not match well with decrypting under
adversarially chosen public keys.

SMCLE is more general than plain CLE. The two separate decryption
oracles in the SMCLE model provide a more general notion than CLE:

1. Some CLE schemes are not CCA-secure when the adversary has access to a
partial decryption oracle (see [12]).
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2. Since the decryption oracle is separated in two, the SMCLE model does not
have the notion of a “full” private key which is present in previous CLE
models (a full private key is a single secret for the complete decryption of
the ciphertext). On the ground that separated secrets can always be concate-
nated into a single full one, this simplification (of private key) has already
been adopted in more recent models [22].

Difference with the previous SMCLE definition. Our user decryption
oracle DecOY returns different invalid flags for the cases of invalid token from
the SEM or invalid ciphertext. This distinction was not captured in [12].

User decryption oracle in SMICLE. To exclude trivial attacks, our Type-II
adversary model disallows the challenge ciphertext C* to be decrypted by the
decryption oracle under the challenge public key and a token D obtained from the
algorithm (not the oracle) Dec®(C*,ID*), where ID* is the challenge identifier.
To implement this restriction, our new SMCLE definition checks whether a token
D is a valid token, corresponding to a ciphertext and an identifier.

While our security definition is tightly coupled with the ability to check the
token, we think that it is natural for the user to be able to perform such a test
(especially if the user pays for each token). Even without an explicit testing
algorithm, the challenger may do the test as well since it simulates the scheme’s
execution. It gives a weaker definition if we prohibit any decryption query for
the challenge ciphertext under the challenge public key, irrespective of the token.

Justifications for our definition of hierarchical CLE. In the hierarchical
scheme of [I], an entity at level k derives a trapdoor for its children at level
k + 1 using both its trapdoor and its secret key. In our proposed model, a level
k entity uses only the trapdoor obtained from its parent at level kK — 1 to derive
keys for its children. We do not see any practical reason for requiring the secret
key in the trapdoor derivation. Our definition avoids certain complications: for
example, in [I], the decryption requires the public keys of all the ancestors.

__We do allow the decryption of the ciphertext under 1D’ which is a prefix of
ID*. This is stronger than the counterpart in some hierarchical IBE models [20].

Theorem 1. If there exists a secure 1-level SMCLE scheme under Definition[3
and [J), there exists a CLE scheme which is secure under the definition of [1J].

Proof. Our aim is to build a simulator 5 which uses an adversary A of CLE
to break the security of our 1-level SMCLE scheme. The simulator basically
forwards everything (the system parameters, the oracle queries and responses,
and the guess) back and forth between its own SMCLE challenger and the CLE
adversary. Faced with a Type-II adversary of CLE, the simulator acts as a Type-
I security of 1-level SMCLE. For a Type-I adversary of CLE, B flips a fair coin to
determine its guess whether A will issue an ExtractO query of I D*. If it guesses
not, B just plays the Type-I game as usual. If it guesses so, B will try to use A to
win the Type-II game of SMCLE instead. The ExtractO query can be answered
by B because it owns Msk now. The reduction tightness is reduced by a factor
of 2. This simple trick is also used in [I7, Appendix B, Game 4].
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We omit the details for most queries, but focus on the distinctions that involve
public key requests and replacement. The simulator must maintain a table to
store the binding between an identifier and a public key. Whenever a Type-I
adversary issues a public key request query, B executes (pk, sk) & KGen, stores
sk (so B can reply if A asks for it), and returns pk. For a Type-II adversary,
B picks a random public key from {pkj,---,pk; } and assigns it as the public
key of the queried ID. When A makes a key replacement query, the simulator
updates its own table. For every other request regarding a particular identifier,
the simulator retrieves the corresponding public key from its table and queries
its own challenger accordingly. Finally, decryption queries of the CLE adversary
are answered by combining results from the two partial decryption oracles. O

4 Our Proposed Construction
4.1 Preliminaries

Let G and Gp be multiplicative groups of prime order p for which there exists
an efficiently computable bilinear map é : G x G — G such that

1. Bilinearity: For all u,v € G and 7, s € Zp, é(u",v*) = é(u,v)"".

2. Non-degeneracy: é(u,v) # lg, for all u,v € G\ {1g}.

Our scheme’s security relies on the intractability of the following problems:
Definition 5. The Decision 3-Party Diffie-Hellman Problem (3-DDH) in G is
to decide if T = ¢”7° given (g,9°,97,9°,T) € G®. Formally, defining the advan-
tage of a PPT algorithm D, Advi PPH(N), as

$ $ .
| Prl < D(g,9°,97,9°, T)|T — g%° A B3,7,6 < Z;)]
— P11 £ D(g,6%,97,¢°, )T < G A B,7,6 £ ;).

We say 3-DDH is intractable if AdeD_DDH()\) is negligible in \ for all PPT D.
Compared with the Bilinear Diffie-Hellman (BDH) problem, the problem in-
stance of 3-DDH is purely in G while that of BDH contains an element ¢ € Gy.
If BDH problem is solvable, one can solve 3-DDH by feeding (g, g%, g7, ¢°, é(g, T))
to a BDH oracle. The above assumption has been employed in [I7].
Weintroduce a variant of the weak Bilinear Diffie-Hellman Inversion* (wBDHI*)
assumption [4] below in the favor of 3-DDH. The original h~-wBDHI* problem in

(G,Gr) [ is to decide whether t = é(g, g“*)”thrl . The term “inversion” comes from
the equivalence to the problem of deciding whether ¢ = é(g, g”)l/ @,

Definition 6. The h-Weak Diffie-Hellman Exponent Problem (h-wDHE) in G
is to decide if T = g'YU“hJr1 given (g,g'y,go‘,gaz,--- ,gah,T) € GM3. Formally,
defining the advantage of a PPT algorithm D as

Advly " PIE() = [Pr{l & D(g, 97, ¢%, 9%, g D)IT— 9" " ayy & 2
- PI'[]_ i D(QVQ’ngaagazv e 7gahﬂT)‘T i G Ao,y i Z;H
We say h-wDHE is intractable if Adv%ﬁWDHE(A) is megligible in X\ for all PPT D.
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We require a family of collision resistant hash functions H too.

Definition 7. A hash function H & H(N) is collision resistant if

AdvSR(N) = Pr[H(z) = H(y) A # yl(z,y) & CON H) A H & H(N)]

1s negligible as a function of the security parameter \ for all PPT algorithms C.

4.2 Proposed Construction

Our construction is an h-level generalization of the concrete construction for
1-level in [I7]. While [I7] uses the technique of [5] to achieve strong decryp-
tion oracle, we use the same technique for a different purpose, which is a new
way (other than the only known way in [12]) to support partial decryption oracle.

Setup(1*,n): Let G, Gz be two multiplicative groups with a bilinear map ¢ as
defined before. They are of the same order p, which is a prime and 2* < p < 221,

— Encryption key: choose two generators g, g2 €r G.

— Master public key: choose an exponent o €r Z;, and set g1 = g*.

— Hash key for identifier-based key derivation: choose h many (¢ + 1)-
length vectors ﬁh ﬁh €r G, where each ﬁ = (uf,uj1, - uj0),
1<j<h lisa tunable parameter which is a factor of nand 1 < /¢ < n.
Each vector U (1< j < h) corresponds to the j-th level of the hierarchy.

We use the notation ID = (IDy,---,ID;,---,IDy) to denote a hierarchy
of k n-bit string ID;’s. We write ID; as £ blocks each of length n/¢ bits
(IDj1, -+ ,1D; ). We define Fg (ID;) = u TT;_, u) )"

— Hash key for ciphertext va11d1ty choose an (n + 1)-length vector V=
(v v, 7vn) €r G"T'. This vector defines the hash function Fyp(w) =

’H 1Yj b where w is a n-bit string biby - - - by,.
— Hash functlon pick a function H : {0,1}* — {0,1}" from a family of
collision-resistant hash functions according to the parameter \.

The public parameters Pub and the master secret key Msk are given by
Pub = (Aap7G7GTv é(7 '),’ﬂ, Eagaghg% [_jla ) ﬁhv ‘77H())7 Msk = gg

We require the discrete logarithms (with respect to g) of all G elements in Pub
except g, g1 to be unknown to the KGC. In practice, these elements can be gen-
erated from a pseudorandom function of a public seed.

Extract(d;g, 1D,): For ID = (IDq,---,IDg) for k < h, a trapdoor is in the form:

k
dﬁ = (alaa2a ?k-‘rlf o 7?h) = (gg : (HFﬁ](ID]))r7gT7 (Uk-‘rl) [ 7(Uh) )7

Jj=1

where r €5 Z and (U;) = ()", (uj1)" -+, (uje)")-
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Note that (a1, az) is sufficient for decryption7 while Zp11,-+-, Z1 can help the
derivation of the trapdoor for (IDq, - - , IDg, IDg1) for any n-bit string IDg41 and
k +1 < h. To generate d;p3 B||ip, barse dID = (a1, a2, (Zkt1, Zht1,15 " » Zht1,0)s

s (Zhs2nas o 20) and parse D, as ¢ blocks (ID, 1, - ,ID;¢) where each
block is of length n/¢ bits, pick ¢ €g Z; and output where the multiplication of

¢ k+1
_ ID,; t t > 7o > (77
dipo, = (ar-zei [ [(zrer) ([T Fo, (D) as-", Zkia-(Uksa) -+, Zn-(Un)
i=1 j=
: . — =g
two vectors are defined component-wise, i.e. Z;-7; = (255,251 Vi1, Zj0-

vj.e). dip3 becomes shorter as the length of 1D increases.
KGen(): Pick sk € Z3, return pk = (X,Y) = (g%, g§*) and sk as the key pair.
Enc(mJT), pk): To encrypt m € Grp for ID = (IDq,---,IDg) where k < h,

parse pk as (X,Y), then check that it is a valid public key by Verifyin£ that
é(X,g1) = é(g,Y). If equality holds, pick s €g Z; and compute

C= (01,0277'70') :(mé(KQQ)Sa Dj)s7gsaF‘7(w)s)

=t
5|

where w = H(C4,Ca, T, I_D), pk).

DecS(C dip): Parse C as (C1,Cs,7,0), and dip as (ay,az,---). First check
if e(r H] 1 Fg,(ID;) - Fip(w')) = é(g,C2 - 0) where w’ = H(C1,Ca,7,1D, pk).
Return L if mequahty holds or any parsing is not possible, otherwise pick t €r Z,,
and return

D = (Dl,D27D3) = (a1 . F‘—;(w’)t,ag,gt).

Dec(C, sk, D): Parse C as (Cy,Cy,7,0) and check if é(r, H§:1 F,—jj(IDj) .

Fp(w')) = é(g,C-0) where w’ = H(Cy, Ca, T, 1D, pk). If equality does not hold
or parsing is not possible, return L. Next, parse D as (D1, D2, D3) and check
if é(g, D1) = é(g1,92)é(Da, [15—, Fir,(1D;))é(Ds, Fyr (w')B. If equality does not
hold or parsing is not possible, return 1p. Othervvlse return
&(Ca, Da)é(o, D3)\*
-
ne < é(r, D)

? One pairing computation can be saved by a trick adopted in [I7]: pick £ €r Zy, and
compute C1 = m - é(Y, g2 - %)% /é(X, ¢5°).

3 The same trick for minimizing the number of pairing computations involved in check-
ing the ciphertext and the token can be incorporated to the final decryption step.
The modified decryption algorithm only uses 4 pairing computations; however, it
gives a random message (instead of an invalid flag 1) for an invalid ciphertext.
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4.3 Analysis

Similar to [4], the ciphertext size of our scheme is independent of the hierarchy
length. This is also beneficial when it is used as a TRE (see Section [5.H]).

In the concrete SMCLE scheme of Chow, Boyd and Gonzélez Nieto [12],
partial decryption uses the pairing function é(-,-) to pair part of the ciphertext
and the ID-based private key. To make this partial decryption result verifiable
requires turning a generic interactive proof-of-knowledge non-interactive. Our
scheme employs a different technique such that the token generated by the partial
decryption is publicly and non-interactively verifiable.

Our scheme’s security is asserted by Theorem [2} [I3] contains a proof.

Theorem 2. Our scheme is secure against Type-I attack and Type-1I attack
(Definition[3 and [J) if h-wDHE problem and 3-DDH problem is intractable.

5 Applying General Certificateless Encryption to TRE

5.1 Syntax of Timed-Release Encryption

For ease of discussion, consider only 1-level of time-identifiers as in [7]. It can be
shown that our results hold for an h-level analog.

Definition 8. A TRE scheme for time-identifiers of length n (n is a
polynomially-bounded function) is defined by the following sextuple of PPT
algorithms:

— Setup (run by the server) is a probabilistic algorithm which takes a security
parameter 1*, outputs a master secret key Msk, and the global parameters
Pub. We assume that X and n = n(X) are implicit in Pub and all other
algorithms take Pub implicitly as an input.

— Extract (run by the server) is a possibly probabilistic algorithm which takes
the master secret key Msk and a string ID € {0,1}™, outputs a trapdoor key
dip associated with the identifier 1D.

— KGen (run by a user) is a probabilistic algorithm which generates a pub-
lic/private key pair (pk,,,skqy).

— Enc (run by a sender) is a probabilistic algorithm which takes a message
m from some implicit message space, an identifier ID € {0,1}", and the
receiver’s public key pk,, as input, returns a ciphertext C.

— Dec” (run by any one who holds the trapdoor, either a SEM or a receiver) is
a possibly probabilistic algorithm which takes a ciphertext C and a trapdoor
key dip as input, returns either a token D which can be seen as a partial
decryption of C, or an invalid flag L (which is not in the message space).

— Dec? (run by a receiver) is a possibly probabilistic algorithm which takes the
ciphertext C, the receiver’s secret key sk, and a token D as input, returns
either the plaintext, an invalid flag L p denoting D is an invalid token, or
an invalid flag Lo denoting the ciphertext is invalid.
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For correctness, we require that Dec? (C, sk, Dec® (C, Extract(Msk, ID))) = m for
all A € N, all (Pub, Msk) < Setup(1*), all (pk,sk) <~ KGen, all message m, all
identifier 1D in {0,1}™ and all C & Enc(m, ID, pk).

5.2 Timed-Release Encryption from Certificateless Encryption

Given a SMCLE scheme {SMC.Setup, SMC.Extract, SMC.KGen, SMC.Enc,
SMC.Dec®, SMC.Dec’}, a TRE scheme {7TRE.Setup, TRE.Extract,
TRE KGen, TRE .Enc, TRE .Dec®, TRE.Dec”} can be built as below.

TRE Setup(1*,n): Given a security parameter A and the length of the time-
identifier n, execute (Msk, Pub) «— SMC.Setup(1*,n), retain Msk as the master
secret key and publish Pub as the global parameters.

TRE Extract(Msk, ID): For a time-identifier ID € {0,1}", the time-server returns
dip +— SMC .Extract(Msk, ID).

TRE.KGen(): Return (sk, pk) «— SMC.KGen() as the user’s key pair.

TRE.Enc(m, 1D, pk): To encrypt m € Gr for pk under the time ID € {0,1}",
return SMC.Enc(m, ID, pk), which may be L if pk is an invalid public key.

TRS.DeCS(C’, dip): To partially decrypt C' by a time-dependent trapdoor dip,
return D «— SMC.Dec® (C, dip).

’1'7'\’,<5'.Dch(C’7 sk, D): To decrypt C' by the secret key sk and the token D, just
return SMC.Dec” (C, sk, D).

Theorem 3. If SMC is an 1-level SMCLE scheme which is CCA-secure against
Type-1 adversary (Definition[3), TRE is CCA-secure against Type-I adversary.

Theorem 4. If SMC is an 1-level SMCLE scheme which is CCA-secure against
Type-1I adversary (Definition[f)), TRE is CCA-secure against Type-II adversary.

Proof. The security models of TRE can be found in [I3]. We prove by contradic-
tion. Suppose A is a Type-X adversary such that | Pr[ExpS‘CALX(A) =1]- ; | > e,
we construct an adversary B with | Pr[Expg™ () = 1] — 3| > € in the face of
a SMCLE challenger C where the running times of B and A are equal.

Setup: When C gives B (Pub, Aux), B just forwards it to .A. The public key to
be passed to A is either chosen from the a set of public key in Aux (in Type-II
game), or chosen by B itself (in Type-I game).

First Phase of Queries: B forwards every request of A to the oracles of its
own challenger C. From the description of 7RE, we can see that every legitimate
oracle query made by A can be answered faithfully.
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Challenge: When A gives B (mq, m1, pk*,ID*), B just forwards it to C.

Second Phase of Queries: Again, B just forwards every request of A to the
oracles of its own challenger C. From the description of 7RE, it is easy to see
that every oracle query which does not violate the restriction enforced by A also
does not violate the restriction enforced by C.

Output: Finally, A outputs a bit b, B forwards it to C as its own answer. The
probability for A to win the TRE experiment simulated by B is equal to the
probability for B to win the SMCLE game played against C. It is easy to see
that the running times of A and B are the same. O

These theorems show that the scheme presented in section [ can be instantiated
as a TRE scheme without a random oracle.

5.3 Certificateless Encryption from Timed-Release Encryption

One may expect that a general CLE can be constructed from any TRE. The
usage of time-identifiers, however, is only one specific instantiation of the timed-
release idea. Other formulations of TRE, different from Definition [§] exist; for
example, in [9], time is captured by the number of repeated computations of one-
way hash function. Also, the notion of CLE supports an exponential number of
arbitrary identiﬁera-ﬁ7 so a CLE scheme cannot be realized by a TRE if the total
number of time periods supported is too few.

There is an important difference in the definitions of security between CLE
and TRE: the public keys in TRE are certified while there is no certification in
CLE, so public keys can be chosen adversarially. Typically in TRE [3ISITOJT8|23],
a single public key is given to the adversary as the target of attack. However,
the non-standard TRE formulation in [7] does allow uncertified public keys.

5.4 Security-Mediator in Timed-Release Encryption

The introduction of a security-mediator to the TRE paradigm gives a new busi-
ness model for the time-server due to the support for partial decryption. Tradi-
tional TRE allows the time-server to release only a system-wide time-dependent
trapdoor. The time-server can charge for each partial decryption request of a
ciphertext by the time-dependent trapdoor; the partial decryption of one ci-
phertext would not help the decryption of any other ciphertext.

5.5 Time Hierarchy

Since each identifier corresponds to a single time period, the server must publish
t private keys once t time-periods have passed. The amount of data that must
be posted can be reduced given a hierarchical CLE by using the Canetti, Halevi

4 Even though the scheme may be insecure when more than a polynomial number of
trapdoors are compromised by a single adversary.
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and Katz (CHK) forward secure encryption [0] in reverse [4]. For a total of T
time periods, the CHK framework is set up as a tree of depth log T'. To encrypt a
message for time ¢t < T', the time identifier is the CHK identifier for time period
T —t. Release of trapdoor is done in the same manner: the private key for the time
period T — t is released on the t*™ time period. This single private key enables
anyone to derive the private keys for CHK time periods T'— ¢, T —t+1,--- , T,
so the user can obtain trapdoors for times 1, - - -, ¢. This trick enables the server
to publish only a single private key of O(log? T') group elements at any time.

6 Conclusions

Cryptographers seek and try to achieve the strongest possible security definition.
Previous models of certificateless encryption (CLE) were too restrictive: they
could not give the desired security properties when instantiated as timed-release
encryption (TRE). Our generalized CLE model supports the requirements of
TRE; all future CLE proposals in our general model automatically give secure
TRE schemes. Our model is defined against full-identifier extraction, decryption
under arbitrary public key, and partial decryption, to achieve strong security. Our
concrete scheme yields the first strongly-secure (hierarchical) security-mediated
CLE and the first TRE in the standard model.
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Abstract. In this paper, we propose a new Certificate-Based Encryp-
tion (CBE) scheme which is fully secure in the standard model. We
achieve chosen ciphertext (CCA) security directly without any transfor-
mation. When compared to all previous generic constructions (in either
random oracle or standard model), our scheme is far more efficient than
those schemes. When compared to the CBE scheme in [I6] (which is the
only concrete implementation secure in the standard model), we enjoy
a great improvement in terms of space efficiency. Their scheme requires
more than 160 group elements for the public parameters in order to gain
an acceptable security. Our scheme just requires 5 group elements. In
addition, the message space of our scheme is almost double as the one in
[16]. A larger message space implies that it requires a smaller number of
encryption operations of the same plaintext, resulting in a smaller overall
ciphertext and overhead as well.

1 Introduction

Public Key Infrastructure (PKI). In traditional public key cryptography
(PKC), a user Alice signs a message using her private key. A verifier Bob verifies
the signature using Alice’s public key. However, the public key is just a random
string and it does not provide authentication of the signer by itself. This problem
can be solved by using a certificate generated by a trusted party called the Cer-
tificate Authority (CA) that provides an unforgeable signature and trusted link
between the public key and the identity of the signer. The hierarchical framework
is called public key infrastructure (PKI) to issue and manage certificate (chain).
In this case, before the verification of a signature, Bob needs to obtain Alice’s
certificate in advance and verify the validity of her certificate. If it is valid, Bob
extracts the corresponding public key which is then used to verify the signature.
In the point of view of a verifier, it takes two verification steps for independent
signatures. It seems not efficient and not practical enough, especially when the
number of users is very large.
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Identity-Based cryptography (IBC). Identity-based cryptography (IBC),
invented by Shamair [I7] in 1984, solves this problem by using Alice’s identity
(or email address) which is an arbitrary string as her public key while the cor-
responding private key is a result of some mathematical operation that takes
as input the user’s identity and the master secret key of a trusted authority,
referred as “Private Key Generator (PKG)”. In this way, the certificate is im-
plicitly provided and it is no longer necessary to explicitly authenticate public
keys. The main disadvantage of identity-based cryptography is an unconditional
trust to the PKG. This is even worse than traditional PKC since the secret key
of every user is generated by the PKG, it can impersonate any user, or decrypt
any ciphertext.

Certificate-Based cryptography (CBC). To integrate the merits of IBC
into PKI, Gentry [I0] introduced the concept of Certificate-Based encryption
(CBE). A CBE scheme combines a public key encryption scheme and an identity
based encryption scheme between a certifier and a user. Each user generates his
own private and public key and request a certificate from the CA while the
CA uses the key generation algorithm of an identity based encryption (IBE) [5]
scheme to generate certificate. Unlike traditional PKI, the certificate in CBC
is implicitly used as part of the user private key for decryption, which requires
both the user-generated private key and the certificate. Although the CA knows
the certificate, it does not have the user private key. Thus it cannot decrypt
anything. In addition to encryption, several certificate-based signature schemes
[T2UT3UT5] and ring signature scheme [4] were also proposed.

In parallel to CBC, certificateless cryptography [1] and self-generated-certificate
public key cryptography [I4] are another solutions to the key escrow problem in-
herited by IBC.

1.1 Related Works

The original scheme of Gentry relied on the original identity-based encryption
(IBE) scheme of Boneh-Franklin [5] and then on the Fujisaki-Okamoto transform
[8] to obtain full security in the random oracle model. Some generic constructions
were proposed in [I87] for constructing a CBE from an IBE (although Yum-
Lee construction [I8] was broken by Galindo et al. [9]) while another generic
construction was given in [2] from a certificateless encryption (CLE) scheme. A
concrete construction in the standard model was also proposed in [16].

1.2 Contribution

In this paper, we propose a new CBE scheme that is fully chosen ciphertext
(CCA) secure in the standard model. Although there are some previous results
for generic construction of a CBE from either existing IBE or CLE scheme,
they are not comparable in efficiency to our scheme. When compare to the one
proposed in [16], we enjoy a number of efficiency improvements:

1. We greatly reduce the size of public parameters. Their scheme requires the
size of public parameters to be n 4+ 4 group elements, where n is the length
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of a bitstring representing the user public information (e.g. hash of public
key). n should be at least 160 in order to claim a reasonable security. On
the other side, we just need 5 group elements, no matter how large the user
public information is.

2. Their scheme requires Boneh-Katz transform [6] to achieve CCA security. It
needs a message authentication code (MAC) and an encapsulation scheme
in addition to the basic scheme. One of the main drawback is the reduction
of message space. Normally for a pairing e : G x G — Gp , usually the
size of a group element in Gp representation is about 1024 bits. Without
the Boneh-Katz transform, the message space of their scheme is G, that is,
1024 bits. However, after applying the transform, it is reduced by at least 448
bits [6] due to the additional encapsulation information. Thus it only allows
to encrypt a 576 bits message for a single encryption operation. In contrast,
our scheme achieves CCA security directly without any transformation. Our
message space remains 1024 bits. A larger message space implies that it
requires a smaller number of encryption operations (which includes pairings
and exponentiations) for the same plaintext, resulting in a smaller overall
ciphertext as well.

Organization. In the rest of the paper, it is organized as follow. We review some
preliminaries in Section[2l Security model is given in Section[Bl Our proposed CBE
scheme is presented in Sectionfd] Finally a concluding remarks is given in Section[5l

2 Preliminaries
2.1 Notations

Pairing. Let e be a bilinear map such that e : G x G — G such that it has
the following properties:

— G and Gy are cyclic multiplicative groups of prime order p.
— each element of G and G has unique binary representation.
— g is a generator of G.

— (Bilinear) Vx,y € G and a, b € Z,, e(z%,y°) = e(z,y)?.

— (Non-degenerate) e(g, g) # 1.

2.2 Mathematical Assumptions

Definition 1 (Truncated Decision ¢-Augmented Bilinear Diffie-Hellman
Exponent Assumption (¢-ABDHE)). We define the truncated decision q-
ABDHE problem [T1] as follows: Given a vector of ¢ + 3 elements:

~ o~ ()92 o a)? )
(3.9 .9.9%¢",....g'") € GIF

and an element Z € Gr as input, output 1 if Z = e(g(“)q+1,§) and output 0
otherwise. We say that the decision (t,¢€, q)-ABDHE assumption holds in (G, Gr)
if mo t-time algorithm has advantage at least € over random guessing in solving
the decision q-ABDHE problem in (G, Gr).



Efficient Certificate-Based Encryption in the Standard Model 147

Definition 2 (Decisional Bilinear Diffie-Hellman (DBDH) Assum ption).
The Decisional Bilinear Diffie-Hellman (DBDH) problem in G is defined as fol-
lows: On input (g, 9%, ¢°,g°) € G* and Z € Gr, output 1 if Z = e(g,g)?*® and 0
otherwise. We say that the (t,e)-DBDH assumption holds in (G, Gr) if no t-time
algorithm has advantage at least € over random guessing in solving the DBDH
problem in (G,Gr).

3 Security Model

We use the simplified model of [2] in the definition of our scheme and the security
model.

Definition 3. A certificate-based encryption (CBE) scheme is defined by siz
algorithms:

— Setup is a probabilistic algorithm taking as input a security parameter. It
returns the certifier’s master key msk and public parameters param. Usually
this algorithm is run by the CA.

— UserKeyGen is a probabilistic algorithm that takes param as input. When
run by a client, it returns a public key PK and a secret key usk.

— Certify is a probabilistic algorithm that takes as input (msk, T, param, A\, PK)
where X\ is a bit string containing user identification information. It returns
Cert! which is sent to the client. Here T is a string identifying a time period.

— Consolidate is a deterministic certificate consolidation algorithm taking as
input (param, T, Cert.) and optionally Cert,_y. It returns Cert,, the cer-
tificate used by a client in time period T.

— Encrypt is a probabilistic algorithm taking as input (1,param,\, PK,m)
where m is a message. It outputs a ciphertext C'.

— Decrypt is a deterministic algorithm taking (param, Cert.,usk,C) as input
in time period T. It returns either a message m or the special symbol L
indicating a decryption failure.

We require that if C is the result of applying algorithm Encrypt with intput
(1, param, PK,m) and (usk, PK) is a valid key-pair, then m is the result of
applying algorithm Decrypt on input (param, Cert,,usk,C), where Cert, is the
output of Certify and Consolidate algorithms on input (msk, param, T, PK). That
18, we have

Decryptceyy, ., (Encrypt, pr(m)) =m

We also note that a concrete CBE scheme may not involve certificate consolida-
tion. In this situation, algorithm Consolidate will simply output Cert, = Cert.,.

In the rest of this paper, for simplicity, we will omit Consolidate and the time
identifying string 7 in all notations.

The security of CBE is defined by two different games and the adversary
chooses which game to play. In Game 1, the adversary models an uncertified
entity while in Game 2, the adversary models the certifier in possession of the
master key msk attacking a fixed entity’s public key.
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Definition 4 (CBE Game 1). The challenger runs Setup, gives param to the
adversary Ay and keeps msk to itself. The adversary then interleaves certification
and decryption queries with a single challenge query. These queries are answered
as follows:

— On certification query (A, PK,usk), the challenger checks that (PK,usk)
is a valid key-pair. If so, it runs Certify on input (msk, param, \, PK) and
returns Cert. Else it returns L.

— On decryption query (A, PK,usk, C'), the challenger checks that (PK, usk) is
a valid key-pair. If so, it generates Cert by using algorithm Certify with inputs
(msk, param, A, PK) and outputs Decryptc,; s (C). Else it returns L

— On challenge query \*, PK*, usk*, mo, my), the challenger checks that (PK*,
usk®) is a walid key-pair. If so, it chooses a random bit b €r {0,1} and
returns C* = Encrypty. py-(msp). Else it returns L.

Finally Ay outputs a bit b € {0,1}. The adversary wins the game if b = V'
and (N, PK*, usk*, C*) was not submitted to the decryption oracle after the
challenge, and (\*, PK*, usk™) was not submitted to the certification query. We
define Ay’s advantage in this game to be Adv(Ar) = 2|Prlb=0b"] — }|.

Definition 5 (CBE Game 2). The challenger runs Setup, gives param and
msk to the adversary As. The challenger then runs UserKeyGen to obtain a
key-pair (PK*,usk*) and gives \*, PK* to the adversary As. The adversary
interleaves decryption queries with a single challenge query. These queries are
answered as follows:

— On decryption query (C), the challenger generates Cert, by using algorithm
Certify with inputs (msk,param,\*, PK™). It then outputs Decryptc..,; s+ (C).

— On challenge query (mo,m1), the challenger randomly chooses a bit b €g
{0,1} and returns C* = Encrypty. py«(ms).

Finally As outputs a guess b’ € {0,1}. The adversary wins the game if b = V'
and C* was not submitted to the decryption oracle after the challenge. We define
As’s advantage in this game to be Adv(As) = 2| Pr[b=1b"] — 1|.

We note that our model does not support security against Malicious Certifier.
That is, we assume that the certifier generates all public parameters honest,
according to the algorithm specified. The adversarial certifier is only given the
master secret key, instead of allowing to generate all public parameters. Although
malicious certifier has not been discussed in the literature, similar concept of
Malicious Key Generation Centre (KGC) [3] has been formalized in the area of
certificateless cryptography.

Definition 6 (Secure CBE). A CBE scheme is said to be (t,qc, qq,€)-secure
against adaptive chosen ciphertext attack if all t-time adversary making at most

! Note that in the decryption oracle of Game 1, we need to take the user secret key
as input. This is the same as all previous CBE schemes [T0[2].
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qe certification query (for Game 1 only) and at most qq chosen ciphertext decryp-
tion queries have advantage at most € in either CBE Game 1 or CBE Game 2.

4 The Proposed Scheme

4.1 Construction

Our scheme is motivated by Gentry’s identity based encryption scheme [11].
Details are as follow.

Setup. Let e : G x G — G be a pairing. Let p be the group order of G and Gr.
The CA chooses generators g, g2, g5, g5 € G and randomly selects a €r Z,,. It
computes g1 = ¢g*. It also chooses two hash functions H, H' : {0,1}* — Z,, from
a family of universal one-way hash functions. The master secret msk is o while
the public parameters param are (H, H' e, p, g, 91,92, 95, g5)-

UserKeyGen. The user randomly selects 3,7, 9, &, 6, ¢’ €r Z, and computes hy =
g% hy = g7, hs = ¢°, hy = ¢, hy = ¢°, b, = ¢¢'. The public key PK is
(h1,ha, hs, ha, By, b)) and the user secret key usk is (3,7,6,&,6",£).

Certify. Suppose a user with public key PK and identification information A €
{0,1}* wants to be certified. He sends pk = (hy, ha, hg, ha, b5, 1)) and X to the
CA. The CA randomly selects r1,7], 7] €r Z, and computes h = H(hq, ha, hs,
hq, b5, by, A) and

1 1

1 ’ "
re = (gag™ ") e o =(gog TV )en 1Y = (ggg TV )e-n

The certificate Cert is (r1,re, vy, 5,71, 74). Similar to [11], we require that the
CA always uses the same random values ri, 7,7} for this user. This can be
accomplished, for example, by using an internal log to ensure consistency.

Encrypt. To encrypt a message m € Gp using public key (hy, ho, hs, ha, h%, b))
and A, randomly selects s €g Z,,, computes h = H(hq, ha, hs, hq, h%, b, A) and

Ci=gig™™" Ca=elg,9)° Cs=m-e(g,92)"°e(h1,ha)"*
Ca=e(g,95)° - €(,95)°" - e(h1, ha)® - e(h3, ha)® - e(hi, h})*?
where ¢ = H'(C1, Cs, C3). Outputs the ciphertext C' = (Cy,Cy, Cs, Cy).

Decrypt. To decrypt ciphertext C' = (Cy,Cq,Cs,C4) with certificate (r1,r2,
i, rh, ), rh) and secret key (3,7, 6, &, ¢’, &) with respect to public key (hq, ha, h,
hq, b5, h}) and A, computes

m = 03 . 6(01,7"2) . (CQ)TIJFB’Y
and ¢ = H'(C1,C4,Cs). Outputs m if
Ci = e(Cy, i}y ®) (Co) it o+ ArHoea'es

Otherwise outputs L.
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Correctness. If the ciphertext is well formed, we have

e(Cr,rry ) (@) T o HIocHES

. ’ 1 a7 5]
=e(gig " (ghg™ ") en (ghg "))

~e(g,9) T e(g,g)* 7 - e(g, 9)*¢ - e(g, 9)* ¢
=e(g®,g598") - e(g®, g~ 1TTID) (g, g)>UritTEe)
e(9”.97) - elg®, g°)* - elg” . g% )™
=e(g,95)° - e(g,95)°" - e(h1, ha)® - e(h3, hy)® - e(hfy, hly)*?
=Cy

On the other side, we have

Cs-e(Cy,ra) - (CQ)TlJFﬁ’Y
=m-e(g,92) " - e(h1, ha) ™" - e(gg ™", (9297 ) ")
e(g,9)*™ - e(g, 9)*""
el ) el (5" )
e(g,9)"™ - e(g”, g7)°

=m-e(g,92) " -e(hi,ha)"" - e(g,92)° - e(g,9)
= m.

—S8ry

-e(g9,9)°"" - e(h1, ha)®

4.2 Security Analysis

Theorem 1. Let g = q.+1 where q. is the number of certification query allowed.
Assume thetruncated decision (t,€,q)-ABDHE assumption holds for (G,Gr,e).
Then our proposed CBE scheme is (t', €, g, qq) secure against Game 1 adversary,
where

t'=t—O(tewp - ¢*) € =e+qq/p

where teyp 1s the time required for an exponentiation in G.

Proof. The Game 1 security of our scheme is more or less similar to the IND-ID-
CCA security of Gentry’s IBE scheme [I1]. In this extended abstract, we may
omit some of the details here. Readers may refer to [I1] for the full explanation
of some steps.

Let A; be an adversary that (¢',¢€, ¢c, qq)-wins Game 1. We construct an
algorithm B that solves the truncated decision ¢-ABDHE problem, as follows. 13
takes an input a random truncated decision ¢-ABDHE challenge (g, §(q+2), 9> 9(1)

-+, 9(q)» Z), where Z is either e(g(4+1), g) or a random element of Gr (we denote

90y = 9'*"). Algorithm B proceeds as follow.

Setup: B generates random polynomials f(x), f'(x), f"(z) € Zp[z] of degree g.
It sets g1 = g1y and g2 = g7 (@) computing g, from (9,91)s - -+ 9(q))- Similarly,
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it also sets gy = ¢/ (® and g§ = ¢/"(®. B also chooses two hash functions
H,H':{0,1}* — Z, from a family of universal one-way hash functions.

It sends the public parameters (H, H', g, g1, g2, g5, 95 ) to A;. Since g, o, f(x),
1/ (x), f"(x) are chosen uniformly at random, g2, g5, g5 are also uniformly random
and the public parameters have a distribution identical to that in the actual
construction.

Oracle Queries:

— Certification Query: B responds to a query on public key PK = (hy, ho,
hs, ha, b, h}), user identification information A and secret key usk = (3,7, 9,
£,0",¢"). B checks whether PK is corresponding to usk. If it is not, output
L. Then it computes h = H(hy, ha, hs, ha, b5, R}, A). If h = «, B uses « to
solve truncated decision ¢-ABDHE immediately. Else, to generate let Fy,(x)
denote the (¢ — 1)-degree polynomial (f(z)— f(h))/(z—h). B sets (ri,r2) =
(f(h), g™ (). These are valid certificate values for h, since

Fnle) — g(f(@)=f(h)/(a=h) — ( f(h))l/(a*h)

g gog

as required. It computes the remainder of the certificate in a similar way.

— Decryption Query: To respond to a decryption query on (\, PK,usk,C), B
generates a certificate for PK as above. It then decrypts C' by performing
the usual Decrypt algorithm with the certificate and the secret key usk.

Challenge: A; outputs a challenged public key PK* = (h}, h3, hi, b}, W5, b)),
user identification information \*, secret key usk* = (3%,~v*,8%,£*,8, &™) and
two messages mg, mi. Again, B checks whether PK* usk* is a valid key pair.
It outputs L if it is not. Else, B computes h* = H(h%, hi, hi, hi, b5, B/ 5, A%).
If h* = a, B uses a to solve truncated decision ¢-ABDHE immediately. Else 13
chooses a random bit b € {0, 1}, and computes a certificate (ry,re, rj, 5, 77, r5)
for PK* as in the certification query. Let fa(z) = 2972 and let Fyp-(x) =
(f2(z) — f2(h*))/ (z — h*), which is a polynomial of degree ¢ + 1. B sets

q .
Cf =g R0 O = Z-e(g, ][ ™0 ) s G5 =
=0

my,
(CF,m2)(C3) (C3)P "

where Fy p,- ; is the coefficient of 27 in Fy j,« (). After setting ¢ = H'(C7,C3,C3),
B sets
Ci = e(Cf rhry ) (Cg)ritrio T tone oo
It sends (C,C5,C5,C5) to A; as the challenge ciphertext.
Let s = (log, §)F2 (). If Z = e(g(q41),9), then C} = g*@=h") and

my/Cy = e(CF,72)(C3)™(C3)"7 = elg, g2) e(hi, h3)*
Thus (C7,C5,C5,CY) is a valid ciphertext for (PK*, mp) under randomness s.

Since log,, g is uniformly random, s is random, and so (C7, C3, C3, C}) is a valid,
appropriately-distributed challenge to Aj;.
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Output: Finally A; outputs a bit o' € {0,1}. If b = ¥/, B outputs 1 indicating
that Z = e(g(g+1), ). Otherwise it outputs 0.

Probability Analysis: When B’s input is sampled according to the problem in-
stance, B’s simulation appears perfect to A; if A; makes only certification
queries. B’s simulation still appears perfect if A; makes decryption queries only
on public keys for which it queries the certificate, since B’s responses give Ay
no additional information. Furthermore, querying well-formed ciphertexts to the
decryption oracle does not help A4; distinguish between the simulation and the
actual construction, since by the correctness of Decrypt, well-formed ciphertexts
will be accepted. Finally querying a non-well-formed ciphertext does not help
A; distinguish, since this ciphertext will fail the Decrypt check under every valid
certificate. Thus, by following the approach of Lemma 1 of [I1], we claim that
the decryption oracle, in the simulation and in the actual construction, rejects
all invalid ciphertexts under public keys not queried by A;, except with proba-

bility qq/p-

Time Complexity: In the simulation, B’s overhead is dominated by computing
g™ (@) in response to A;’s certification query on PK, where F},(x) is a polynomial
of degree g — 1. Each such computation requires O(g) exponentiations in G. Since
A; makes at most ¢ — 1 such queries, t =t/ + O(tesp - ¢°). O

Theorem 2. Assume (t,e)-DBDH assumption holds for (G,Gr,e). Then our
proposed CBE scheme is (t',€,q.,qa) secure against Game 2 adversary, where

t'=t & =e+aqp

Proof. Let Ay be an adversary that (¢, €, qc, ¢q)-wins Game 2. We construct
an algorithm B that solves the DBDH problem, as follows. B takes an input
abe

a random DBDH challenge (g, 9% g%, g%, Z), where Z is either e(g,g)®¢ or a
random element of Gp. Algorithm B proceeds as follow.

Setup: B randomly generates a, v, x,y,t, w,t’,w’ €r Z, and sets g1 = g%, g2 =
9, g5 = g%, g4 = ¢g¥. B also chooses two hash functions H,H' : {0,1}* — Z,
from a family of universal one-way hash functions.

The public parameters param are (H,H',g,91,92, g5,95) while the master
secret key msk is a. B also sets hy = g%, hy = g°, hs = g', hy = g%, h} =
gt'7 N = gw' as the challenged public key PK. B also constructs some binary
string as the identification information A. (param, msk, A\, PK) are given to the
adversary As. Obviously the public parameters and the challenged public key
have a distribution identical to that in the actual construction.

Oracle Queries:

— Decryption Query: To respond to a decryption query on C' = (C, Co, Cs, Cy),
B first computes ¢ = H'(Cy,Cs, C5) and
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Cy-C5-C3
C§+y¢+tw+t’w’¢>

_ 6(979/2)5 : e(g7g’2’)s¢ : 6(h1, hQ)S ’ 6(h3, h4)s : e(héa hﬁl)sd)
e(g,9%)% - e(g,9Y)%? - e(gt, gv)* - e(g", g )¢
~m-e(g,g2)" " - e(hi,ha) " e(g,9")°
=m

It then generates the certificate (11,72, 7,75, 7{,r5) using the knowledge of
a, and further checks

2 e e(Cryrhry®) - (Coyritriottuttu'omy
Cy = .
3

It outputs m if it is equal, otherwise outputs L.

Challenge: As outputs two messages mg, mi. B randomly chooses a bit b €p
{0,1}, computes h = H(hq, ha, hg, ha, h%, ), \) and sets

Ci=(g9"" C5=elg,g9) Cs=my-e(g%97")- 27"

Ci=e(g®,9")-elg9)" - Z-e(gg™) - elg 9" ")?
where ¢ = H'(C5,C5,C5). The challenged ciphertext C* = (Cy,C5,C%,C5) is
sent to A. It can be easily seen that if Z = e(g, )?*¢, C* is a valid, appropriately-
distributed challenge ciphertext.

Output: Finally Az outputs a bit o’ € {0,1}. If b = ¥/, B outputs 1 indicating
that Z = e(g, g)?*°. Otherwise it outputs 0.

Probability Analysis: Similar to Game 1, the simulation remains perfect except
with probability gq/p that the decryption oracle will not reject all invalid ci-
phertext.

Time Complexity: The time complexity for 5 depends only on A. Thus we have
t'=t. |

4.3 Efficiency Analysis

Previous generic constructions [I8[72] are not comparable to our scheme in terms
of efficiency. When compare to the one in [I6] (the only concrete implementation
that is fully secure in the standard model), we enjoy a great improvement in
terms of space efficiency. First, our scheme requires just 5 group elements (about
800 bits, assuming each group element costs 160 bits in the optimal case) in the
public parameters. But the scheme in [16] needs 164 group elements (about 26240
bits) in order to achieve the same level of security.

Second, the message space of our scheme is in Gp, which is about 1024 bits.
The message space of the scheme in [I6] is around 576 bits only. The main
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reason for this difference is that. Although the chosen plaintext secure (CPA)
version of the scheme in [I6] allows the message space to be in G, in order
achieve CCA security, it requires an additional encapsulation scheme and the
Boneh-Katz transform. The transform modifies the scheme a bit, by encrypting
M = m||dec where m is the original message, dec is the decommitment string
and M is the combined message which should be in Gr. According to [G], the
suggested length of dec should be at least 448 bits. That is, the message space
of the original message is reduced to 1024 — 448 = 576 bits. If we want to
encrypt a message of 1024 bits, we need to split it into two parts and encrypt
it part by part. It results in a double increase of both computation cost and
ciphertext size, and maybe security reduction as well. This difference becomes
significant if we want to encrypt a large message. On the other side, as we do
not require any transformation or encapsulation scheme to achieve CCA security,
our message space can be remained as 1024 bits, without suffering any efficiency
reduction.

In terms of computation cost, although we require some pairing operations
in the encryption algorithm, they can be pre-computed by the CA and given as
part of the public parameters. For those pairing operations related to the public
key of the intended receiver, they can be pre-computed by the receiver and given
as part of the public key as well. In this way, the encryptor does not need to
compute any pairing operation. For the decryption algorithm, we require two
pairing operations.

5 Concluding Remarks

In this paper, we propose a new CBE scheme which is motivated from Gentry’s
IBE scheme [II]. Our scheme is fully CCA secure in the standard model. We
do not require any MAC or encapsulation scheme to achieve CCA security. This
facilitates us to achieve significant improvement in efficiency when compared to
[16]. We believe the concept of certificate-based encryption with our efficient
implementation allows it to be used in some practical applications, and particu-
larly suitable to be employed in computation limited devices, or wireless sensor
network.

We also remark that our scheme does not support malicious CA security.
That is, we assume that the CA generates the public parameters according to
the algorithm honestly. This is the same as all CBE schemes in the literature.
However, recently Au et al. [3] pointed out that a malicious KGC in certificateless
cryptography (with respect to CA in certificate-based setting) may pose some
security risks to the system, by generating the public parameters in a malicious
way. We note that our system (and all previous CBE schemes) may suffer similar
attack. We have not discussed those risks in this paper. We leave it as an open
problem to future research.
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Abstract. We consider the problem of building robust fuzzy extractors,
which allow two parties holding similar random variables W, W' to agree
on a secret key R in the presence of an active adversary. Robust fuzzy
extractors were defined by Dodis et al. in Crypto 2006 to be noninterac-
tive, i.e., only one message P, which can be modified by an unbounded
adversary, can pass from one party to the other. This allows them to be
used by a single party at different points in time (e.g., for key recovery
or biometric authentication), but also presents an additional challenge:
what if R is used, and thus possibly observed by the adversary, before
the adversary has a chance to modify P. Fuzzy extractors secure against
such a strong attack are called post-application robust.

We construct a fuzzy extractor with post-application robustness that
extracts a shared secret key of up to (2m—mn)/2 bits (depending on error-
tolerance and security parameters), where n is the bit-length and m is
the entropy of WW. The previously best known result, also of Dodis et al.,
extracted up to (2m — n)/3 bits (depending on the same parameters).

1 Introduction

Consider the following scenario. A user Charlie has a secret w that he wants to
use to encrypt and authenticate his hard drive. However, w is not a uniformly
random key; rather, it is a string with some amount of entropy from the point
of view of any adversary A. Naturally, Charlie uses an extractor [NZ96|], which
is a tool for converting entropic strings into uniform ones. An extractor Ext is
an algorithm that takes the entropic string w and a uniformly random seed 1,
and computes R = Ext(w;¢) that is (almost) uniformly random even given .

It may be problematic for Charlie to memorize or store the uniformly random
R (this is in contrast to w, which can be, for example, a long passphrase already
known to Charlie, his biometric, or a physical token, such as a physical one-way
function [PRTGO02]). Rather, in order to decrypt the hard drive, Charlie can
use ¢ again to recompute R = Ext(w;?). The advantage of storing 7 rather than
R is that ¢ need not be secret, and thus can be written, for example, on an
unencrypted portion of the hard drive.

Even though the storage of i need not be secret, the authenticity of i is
very important. If A could modify i to 4/, then Charlie would extract some
related key R’, and any guarantee on the integrity of the hard drive would
vanish, because typical encryption and authentication schemes do not provide

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 156008.
© Springer-Verlag Berlin Heidelberg 2008
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any security guarantees under related-key attacks. To authenticate ¢, Charlie
would need to use some secret key, but the only secret he has is w.

This brings us to the problem of building robust extractors: ones in which the
authenticity of the seed can be verified at reconstruction time. A robust extractor
has two procedures: a randomized Gen(w), which generates (R, P) such that R
is uniform even given P (think of P as containing the seed 7 as well as some
authentication information), and Rep(w, P’), which reproduces R if P’ = P and
outputs | with high probability for an adversarially produced P’ # P.

Note that in the above scenario, the adversary A, before attempting to produce
P’ # P, gets to see the value P and how the value R is used for encryption and
authentication. Because we want robust fuzzy extractors to be secure for a wide
variety of applications, we do not wish to restrict how R is used and, therefore,
what information about R is available to A. Rather, we will require that A has
low probability of getting Rep(w, P’) to not output L even if A is given both P
and R. This strong notion of security is known as post-application robustness.

An additional challenge may be that the value w when Gen is run is slightly
different from the value w’ available when Rep is run: for example, the user may
make a typo in a long passphrase, or a biometric reading may differ slightly.
Extractors that can tolerate such differences and still reproduce R exactly are
called fuzzy [DORSO§|. Fuzzy extractors are obtained by adding error-correcting
information to P, to enable Rep to compensate for errors in w’. The specific
constructions depend on the kinds of errors that can occur (e.g., Hamming errors,
edit distance errors, etc.).

Robust (fuzzy) extractors are useful not only in the single-party setting de-
scribed above, but also in interactive settings, where two parties are trying to
derive a key from a shared (slightly different in the fuzzy case) secret w that
either is nonuniform or about which some limited information is known to the
adversary A. One party, Alice, can run Gen to obtain (R, P) and send P to the
other party, Bob, who can run Rep to also obtain R. However, if A is actively
interfering with the channel between Alice and Bob and modifying P, it is impor-
tant to ensure that Bob detects the modification rather than derives a different
key R'. Moreover, unless Alice can be sure that Bob truly received P before she
starts using R in a communication, post-application robustness is needed.

PrIOR WORK. Fuzzy extractors, defined in [DORSO0S], are essentially the non-
interactive variant of privacy amplification and information reconciliation proto-
cols, considered in multiple works, including [BBR8S, Mau93,[BBCM95].
Robust (fuzzy) extractors, defined in [BDKT 05, [DKRS06], are the noninteractive
variant of privacy amplification (and information reconciliation) secure against
active adversaries [Mau97, MWOIT, [Wol98, MWO03, RW03, RW04].

Let the length of w be n and the entropy of w be m. Post-application robust
fuzzy extractors cannot extract anything out of w if m < n/2, because an extrac-
tor with post-application robustness implies an information-theoretically secure
message authentication code (MAC) with w as the keyll, which is impossible if

! The MAC is obtained by extracting R, using it as a key to any standard information-
theoretic MAC (e.g., [WC8I]), and sending P along with the tag to the verifier.
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m < n/2 (see [DS02] for impossibility of deterministic MACs if m < n/2 and its
extension by [Wic08] to randomized MACs). Without any set-up assumptions,
the only previously known post-application robust extractor, due to [DKRS06],
extracts R of length }(m —n/2 —log ;) (or even less if R is required to be
very close to uniform), where ¢ is the probability that the adversary violates ro-
bustness. Making it fuzzy further reduces the length of R by an amount related
to the error-tolerance. (With set-up assumptions, one can do much better: the
construction of extracts almost the entire entropy m, reduced by an
amount related to security and, in the fuzzy case, to error-tolerance. However,
this construction assumes that a nonsecret uniformly random string is already
known to both parties, and that the distribution on w, including adversarial
knowledge about w, is independent of this string.)

Our REsULTS. The robust extractor construction of [DKRS06] is parameterized
by a value v that can be decreased in order to obtain a longer R. In fact, as shown
in [DKRS06], a smaller v can be used for pre-application robustness (a weaker
security notion, in which A gets P but not R). We show in Theorem [2] that the
post-application-robustness analysis of is essentially tight, and if v is
decreased, the construction becomes insecure.

Instead, in Section Bl we propose a new construction of an extractor with
post-application robustness that extracts R of length m —n/2 —log ;, improving
the previous result by a factor of 3/2 (more if R is required to be very close
to uniform). While this is only a constant-factor increase, in scenarios where
secret randomness is scarce it can make a crucial difference. Like [DKRS06], we
make no additional set-up assumptions. Computationally, our construction is
slightly more efficient than the construction of [DKRS06]. Our improved robust
extractor translates into an improved robust fuzzy extractor using the techniques
of [DKRS0G], with the same factor of 3/2 improvement.

In addition, we show (in Section[3.2) a slight improvement for the pre-application
robust version of the extractor of [DKRS06], applicable when the extracted string
must be particularly close to uniform.

2 Preliminaries

NoTATION. For binary strings a,b, a||b denotes their concatenation, |a| denotes
the length of a. For a binary string a, for we denote by [a]!, the substring
b= a;ait1...a;. If S'is a set, v < S means that x is chosen uniformly from S.
If X is a probability distribution (or a random variable), then z «+— X means that
x is chosen according to distribution X. If X and Y are two random variables,
then X x Y denotes the product distribution (obtained by sampling X and Y
independently). All logarithms are base 2.

RANDOM VARIABLES, ENTROPY, EXTRACTORS. Let U; denote the uniform dis-
tribution on {0,1}!. Let X1, X5 be two probability distributions over some set
S. Their statistical distance is
1
D (X, X,) = Pr[X, € T] — Pr[X, € T]} =
SD (X1, Xo) # pa{PelXs € T = Pl € Tl =, 3

Skl -Gl
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(they are said to be e-close if SD (X7, X3) < ¢). We will use the following lemma
on statistical distance that was proven in [DKRS0S§]:

Lemma 1. For any joint distribution (A, B) and distributions C and D over
the ranges of A and B respectively, if SD ((A, B),C x D) < «, then SD((4, B),
C x B) < 2a.

MIN-ENTROPY. The min-entropy of a random variable W is defined as Ho, (W)
= —log(max,, Pr[IW = w]) (all logarithms are base 2, unless specified other-
wise). Following [DORSO0S], for a joint distribution (W, E), define the (average)
conditional min-entropy of W given F as

Hoo(W | B) = —log( E_(27H=("1F=))

(here the expectation is taken over e for which Pr[E = e] is nonzero). A com-
putationally unbounded adversary who receives the value of £ cannot find the
correct value of W with probability greater than 2~ He(WIE) We will use the
following lemma from [DORSO0S]:

Lemma 2. Let A, B,C be random variables. If B_has at most 2> possible val-
ues, then Hoo(A|B,C) > Hoo((A, B)|C) — XA > Ho(A4|C) — A\. In particular,
H..(A|B) > Hoo (A, B)) — A > Hoo(A) — A

Because in this paper the adversary is sometimes assumed to have some external
information E about Alice and Bob’s secrets, we need the following variant,
defined in [DORSO08], Definition 2], of the definition of strong extractors of [NZ96]:

Definition 1. Let Ext : {0,1}" — {0,1}! be a polynomial time probabilistic
function that uses r bits of randomness. We say that Ext is an average-case
(n,m, 1, e)-strong extractor if for all pairs of random variables (W, E) such that
w € W is an n-bit string and Hao (W | E) > m, we have SD((Ext(W; X), X, E),
(U, X, E)) <e, where X is the uniform distribution over {0,1}".

Any strong extractor can be made average-case with a slight increase in input
entropy Section 2.5]. We should note that some strong extractors, such
as universal hash functions [CW79, [HILL99] discussed next, generalize without
any loss to average-case.

THE LEFTOVER HASH LEMMA We first recall the notion of universal hash-
ing [CWT79]:
Definition 2. A family of efficient functions H = {h; : {0,1}" — {0,1}*}
is universal if for all distinct x, 2" we have Pr;_r[h;(x) = h;(2')] < 27L.

‘H is pairwise independent if for all distinct x,x’ and all y,y’ it holds that
Priclhi(z) =y A hi(2') = '] <272 O

Lemma 3 (Leftover Hash Lemma, average-case version [DORSO08]).
For ¢;m,e > 0, H is a strong (m,e) average-case extractor (where the index
of the hash function is the seed to the extractor) if H is universal and ¢ <
m+ 2 — 2log ;

el
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This Lemma easily generalizes to the case when H is allowed to depend on the
extra information E about the input X. In other words, every function in H takes
an additional input e, and the family H is universal for every fixed value of e.

SECURE SKETCHES AND Fuzzy EXTRACTORS. We start by reviewing the def-
initions of secure sketches and fuzzy extractors from [DORS08]. Let M be a
metric space with distance function dis (we will generally denote by n the length
of each element in M). Informally, a secure sketch enables recovery of a string
w € M from any “close” string w’ € M without leaking too much information
about w.

Definition 3. An (m,m,t)-secure sketch is a pair of efficient randomized pro-
cedures (SS,SRec) s.t.:

1. The sketching procedure SS on input w € M returns a bit string s € {0,1}".
The recovery procedure SRec takes an element w' € M and s € {0,1}".

2. Correctness: If dis(w,w’) <t then SRec(w’,SS(w)) = w.

3. Security: For any distribution W over M with min-entropy m, the (average)
min-entropy of W conditioned on s does not decrease very much. Specifically,
if Hoo (W) > m then Hoo (W | SS(W)) > .

The quantity m — m is called the entropy loss of the secure sketch. &

In this paper, we will construct a robust fuzzy extractor for the binary Hamming
metric using secure sketches for the same metric. We will briefly review the
syndrome construction from [DORS08| Construction 3] that we use (see also
references therein for its previous incarnations). Consider an efficiently decodable
[n,n — k,2t + 1] linear error-correcting code C. The sketch s = SS(w) consists
of the k-bit syndrome w with respect to C. We will use the fact that s is a
(deterministic) linear function of w and that the entropy loss is at most |s| = k
bits in the construction of our robust fuzzy extractor for the Hamming metric.

We note that, as was shown in [DKRS06|, the secure sketch construction for
the set difference metric of can be used to extend the robust fuzzy
extractor construction in the Hamming metric to the set difference metric.

While a secure sketch enables recovery of a string w from a close string w’,
a fuzzy extractor extracts a close-to-uniform string R and allows the precise
reconstruction of R from any string w’ close to w.

Definition 4. An (m,/, t,e)-fuzzy extractor is a pair of efficient randomized pro-
cedures (Gen, Rep) with the following properties:

1. The generation procedure Gen, on input w € M, outputs an extracted string
R € {0,1} and a helper string P € {0,1}". The reproduction procedure Rep
takes an element w' € M and a string P € {0,1}" as inputs.

2. Correctness: If dis(w,w’) <t and (R, P) < Gen(w), then Rep(w’, P) = R.

3. Security: For any distribution W over M with min-entropy m, the string R is
close to uniform even conditioned on the value of P. Formally, if Hoo (W) >
m and (R, P) «— Gen(W), then we have SD ((R, P),Uy x P) < e. O
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Note that fuzzy extractors allow the information P to be revealed to an adversary
without compromising the security of the extracted random string R. However,
they provide no guarantee when the adversary is active. Robust fuzzy extractors
defined (and constructed) in [DKRS06] formalize the notion of security against
active adversaries. We review the definition below.

If W, W’ are two (correlated) random variables over a metric space M, we say
dis(W,W’) < t if the distance between W and W' is at most ¢ with probability
one. We call (W, W’) a (t,m)-pair if dis(W, W') <t and Hoo (W) > m.

Definition 5. An (m,{,t,¢)-fuzzy extractor has post-application (resp., pre-appli-
cation) robustness § if for all (t,m)-pairs (W,W') and all adversaries A, the
probability that the following experiment outputs “success” is at most §: sample
(w,w') from (W,W'); let (R, P) = Gen(w); let P = A(R, P) (resp., P = A(P));
output “success” if P # P and Rep(w', P) #1. &

We note that the above definitions can be easily extended to give average-case
fuzzy extractors (where the adversary has some external information E corre-
lated with W), and that our constructions satisfy those stronger definitions,
as well.

3 The New Robust Extractor

In this section we present our new extractor with post-application robustness.
We extend it to a robust fuzzy extractor in Section Bl Our approach is similar
to that of [DKRS06]; a detailed comparison is given in Section [l

STARTING POINT: KEY AGREEMENT SECURE AGAINST A PASSIVE ADVERSARY.
Recall that a strong extractor allows extraction of a string that appears uniform
to an adversary even given the presence of the seed used for extraction. Therefore,
a natural way of achieving key agreement in the errorless case is for Alice to
pick a random seed i for a strong extractor and send it to Bob (in the clear).
They could then use R = Ext(w;i) as the shared key. As long as the adversary
is passive, the shared key looks uniform to her. However, such a protocol can
be rendered completely insecure when executed in the presence of an active
adversary because A could adversarially modify 7 to ¢’ such that R’ extracted by
Bob has no entropy. To prevent such malicious modification of i we will require
Alice to send an authentication of ¢ (along with i) to Bob. In our construction,
we authenticate ¢ using w as the key and then extract from w using i as the
seed. Details follow.

CONSTRUCTION. For the rest of the paper we will let w € {0, 1}". We will assume
that n is even (if not, drop one bit of w, reducing its entropy by at most 1). To
compute Gen(w), let a be the first half of w and b the second: a = [w}?m, b=
(W}, /241 View a,b as elements of Fy,/2. Let v =n —m + log 5, where 0 is the
desired robustness. Choose a random i € Fy./2. Compute y = ia + b. Let o
consist of the first v bits of y and the extracted key R consist of the rest of y:
o = [y}, R = [y} Output P = (i,0).
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Gen(w):
n/2 n
L Let a = [w]}’?,b = [w]? .,
2. Select a random ¢ «— Fyn /2
3. Set o = [ia + ]}, R = [ia+ b}:ﬁ and output P = (i,0)

Rep(w, P’ = (i', "))

L Let a=[w]}’? b= [w]?,,,

2.1f o/ = [i’a + b)Y then compute R’ = [i'a + bmﬁ else output L
Theorem 1. Let M = {0,1}™. Setting v = n/2 — £, the above construction
is an (m,?,0,¢) — fuzzy extractor with robustness 0, for any m,l,e,0 satisfying

Egm—n/2—log§ as long astn/2—|—2logi.

If £ is so low that the constraint m > n/2 + 2logi is not satisfied, then the
construction can be modified as shown in Section 3.1l

Proof. EXTRACTION. Our goal is to show that R is nearly uniform given P. To
do so, we first show that the function h;(a,b) = (o, R) is a universal hash family.
Indeed, for (a,b) # (a’,b") consider

Pr[h;(a,b) = hi(a’,b")] = Prlia + b = ia’ + V']

7

= Pir[i(a —ad)=(b-1V)
< 27n/2 ]

To see the last inequality recall that (a,b) # (a’,b’). Therefore, if a = o, then
b # b/ making the Pr;[i(a —a') = (b—0")] = 0. If a # @/, then there is a unique
i=(b—"V")/(a—a') that satisfies the equality. Since 7 is chosen randomly from
Fo. 2, the probability of the specific i occurring is 2-"/2.

Because |(R,0)| = n/2, Lemma Bl gives us SD ((R, P),Ujg x Ujp|) < €/2 as
long as n/2 < m +2 — 2log 2, or, equivalently, (R, P) is 2("/2=™)/2=1close to
Uig| x Ujp|. Applying Lemmallto A= R, B=P,C =Uy_,,, D =Uy x Uy,
we get that (R, P) is e-close to Uny_, x P, for e = 2(n/2=m)/2 From here it
follows that for extraction to be possible, m > n/2 + 2log ;

PosT-APPLICATION ROBUSTNESS. In the post-application robustness security
game, the adversary A on receiving (P = (i,0), R) (generated according to
procedure Gen) outputs P’ = (i’,0’), and is considered successful if (P’ # P) A
[i'a + b]y = o’. In our analysis, we will assume that i’ # 7. We claim that this
does not reduce A’s success probability. Indeed, if ' = ¢ then, for P’ # P to
hold, A would have to output ¢’ # . However, when ' = i, Rep would output
1 unless ¢’ = 0.

In our analysis, we allow A to be deterministic. This is without loss of gen-
erality since we allow an unbounded adversary. We also allow A to arbitrarily
fix 4. This makes the result only stronger since we demonstrate robustness for a
worst-case choice of 1.
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Since 4 is fixed and A is deterministic, (o, R) determines the transcript tr =
(i,0,R,i’,0"). For any particular tr, let Succy, be the event that the transcript
is tr and A wins, i.e., that ia +b = o||R A [i'a + b]} = 0’. We denote by Bady,
the set of w = a||b that make Succy, true. For any tr, Pr,,[Succy| < [Bady |27,
because each w in Bady, occurs with probability at most 27™. We now partition
the set Bady, into 2¢ disjoint sets, indexed by R’ € {0,1}%:

Bad % {w|w € Bady A [i'a + )%, = R'}

For a particular value of (tr, R’), w = al|b is uniquely determined by the con-
straints that define the above set i.e; |[Bad{l | = 1. Since Bad, = Urreqoye Badf,
we get |Bady | < 2¢ = 27/27%. From here it follows that

Pr[Succy| < [Badg |27 < on/2—v—m

Pr[Succt,] measures the probability that the transcript is tr and A succeeds.
To find out the probability that A succeeds, we need to simply add Pr[Succy]
over all possible tr. Since a transcript is completely determined by o, R, the total
number of possible transcripts is 2/71H17l = 27/2 and, therefore, A’s probability
of success is at most 2"V,

To achieve d-robustness, we need to set v to at least n —m + log é. From here
it follows that £ = —v < J(2m —n — 2log ). O

3.1 Getting Closer to Uniform

If € is so low that the constraint m > n/2 + 210gi is not satisfied, then in
our construction we can simply shorten R by 8 = n/2 + 210g:: — m bits, as
follows: keep v = n—m+log } (regardless of ), and let R = [ia + b]f‘)j'_’{? for any
£ <2m—n—log ; — 2log i This keeps o the same, but shortens R enough for
the leftover hash lemma to work. The proof remains essentially the same, except

"2 for free

that to prove robustness, we will give the remaining bits [ia + b],1,

to A.

3.2 Improving the Construction of [DKRS06] When the Uniformity
Constraint Dominates

The construction of Dodis et al. parses w as two strings a and b of
lengths n — v and v, respectively. The values o, R are computed as o = [ia]} + b
and R = [ia]}},; P = (i,0). In order to get R to be uniform given P, the value
v is increased until the leftover hash lemma can be applied to (R, o). However,
we observe that this unnecessarily increases the length of o (i.e., for every bit
added to v, two bits are subtracted from R). Instead, we propose to improve this
construction with essentially the same technique as we use for our construction
in Section Bl The idea is to simply shorten R without increasing the length of
o. This improvement applies to both pre- and post-application robustness.
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For post-application robustness, suppose the uniformity constraint dominates,
ie., 2log i > (2m—n+log (13)/3. Modify the construction of by setting
v = (2n—m-+log })/3 and R = [ia];iffﬁ, where # = 2log ! —(2m—n—log })/3.
This will result in an extracted key of length ¢ = (4m — 2n — log ;)/3 — 2log i
However, even with the improvement, the extracted key will be always shorter
than the key extracted by our scheme, as explained in Section

In contrast, this improvement seems useful in the case of pre-application ro-
bustness. Again, suppose the uniformity constraint dominates, i.e., 210gi >
log ;. Modify the construction of [DKRS06] by setting v = n — m + log ; and
R = [ia]’77 ™7, where 3 = 2log ! —log L. This will result in an extracted key of
length ¢ = 2m —n — 2log ; — log é, which is 2 log ; — log ; longer than the key
extracted without this modification.

4 Comparison with the Construction of [DKRS06]

4.1 When the Robustness Constraint Dominates

Recall that the construction of Dodis et al. [DKRS06] parses w as two strings
a and b of lengths n — v and v, respectively. The values o, R are computed as
o = [ia]{ +band R = [ia]},,; P = (i,0). Notice that, like in our construction,
increasing v improves robustness and decreases the number of extracted bits. For
pre-application robustness, setting v = n —m + log ; suffices, and thus the con-
struction extracts nearly (2m—n) bits. However, for post-application robustness,
a much higher v is needed, giving only around }(2m — n) extracted bits.

The post-application robustness game reveals more information to A about w
than the pre-application robustness game. This additional information—mnamely,
R—may make it easier for A to guess ¢’ for a well-chosen ’. The key to our
improvement is in the pairwise independence of the function ia+b that computes
both o and R: because of pairwise independence, the value (o, R) of the function
on input ¢ tells A nothing about the value (¢/, R') on another input ¢’. (This
holds, of course, for uniformly chosen key (a, b); when (a, b) has entropy m, then
A can find out n — m bits of information about o’.)

In contrast, in the construction of [DKRS06], only o is computed using a
pairwise independent hash function. This works well (in fact, better than our
construction, because b can be shorter) for pre-application robustness, where A
does not find out R. But it makes it possible for R to decrease A’s uncertainty
about ¢’ by as much as ¢ = |R|, thus necessitating the length v of ¢’ (and hence
o) to be v > ¢+ (n —m) (the (n —m) term is the amount of entropy already
potentially “missing” from o’ because of the nonuniformity of w). See Section 3]
for a detailed description of an adversarial strategy that utilizes R to obtain ¢’
in the construction.

Another way to see the differences between the two constructions is through
the proof. In the proof of post-application robustness, the transcript tr includes
R, which makes for 2¢ times more transcripts than in the proof of pre-application
robustness. However, the fact that this R imposes an additional constraint of w,
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thus reducing the size of the set Bady,, can compensate for this increase. It turns
out that for the construction of [DKRS06], this additional constraint can be
redundant if the adversary is clever about choosing i’ and o', and the size of
Bad, doesn’t decrease. Using a pairwise-independent function for computing R
in our construction ensures that this additional constraint decreases the size
of Bady, by 2¢. Thus, our construction achieves the same results for pre- and
post-application robustness.

4.2 When the Uniformity Constraint Dominates

It should be noted that there may be reasonable cases when the uniformity con-
straint € on R is strong enough that the construction of [DKRS06] extracts even
fewer bits, because it needs to take v > n—m+2log :: to ensure near-uniformity
of R given P. In that case, as long as m > n/2 + 2log ;, our construction will
extract the same amount of bits as before, thus giving it an even bigger advan-
tage. And when m < n/2 + 2log ; our construction still extracts at least 3/2
times more bits than the construction of [DKRS06], even with the improvement
of Section B2 applied (this can be seen by algebraic manipulation of the relevant
parameters for the post-application robustness case).

4.3 Why the Construction of [DKRS06] Cannot Extract More Bits

Recall that the robust fuzzy extractor of [DKRS06] operates as follows: parse w
as two strings a, b of lengths n — v, v respectively and compute o = [ia]} + b and
R = [ia]qy)LJrl; P = (i70)'

For post-application robustness, the concern is that R can reveal information
to the adversary about ¢’ for a cleverly chosen i’. Because the length of ¢’ is v
and £+ (n —m) bits of information about ¢’ may be available (the £ term comes
from |R|, and (n—m) term comes from the part of w which has no entropy), this
leads to the requirement that v > ¢ +n —m + log g to make sure the adversary
has to guess at least log}S bits about ¢’. Plugging in £ = n — 2v, we obtain
¢ < Z(m—n/2—log ;), which is the amount extracted by the construction.

Here we show an adversarial strategy that indeed utilizes R to obtain infor-
mation about ¢’ to succeed with probability §/2. This demonstrates that the
analysis in [DKRS06] is tight up to one bit. To do so we have to fix a particular
(and somewhat unusual) representation of field elements. (Recall that any rep-
resentation of field elements works for constructions here and in [DKRS06], as
long as addition of field elements corresponds to the exclusive-or of bit strings.)
Typically, one views Fon—v as Fa[z]/(p(x)) for some irreducible polynomial p
of degree n — v, and represents elements as [Fo-valued vectors in the basis
(xnmv=t gn=v=2 22 x,1). We will do the same, but will reorder the basis ele-
ments so as to separate the even and the odd powers of z: (z? =0~ z"~v=3 ... z,
anv=2 gnv=4 1) (assuming, for concreteness, that n — v is even). The ad-
vantage of this representation for us is that the top half of bits of some value
z € Fyn—v is equal to the bottom half of the bits of z/z, as long as the last bit
of z is 0.



166 B. Kanukurthi and L. Reyzin

Now suppose the distribution on w is such that the top n — m bits of b are 0
(the rest of the bits of w are uniform). Then by receiving o and R, the adversary
gets to see the top £+ (n—m) bits of ia. Therefore, the adversary knows ¢+ (n—m)
bits from the bottom half of ia/x as long as the last bit of ia is 0, which happens
with probability 1/2. To use this knowledge, the adversary will simply ensure
that the difference between ¢’ and o is [ia/z]}, by letting i’ =i + i/x.

Thus, the adversarial strategy is as follows: let i’ = i + i/x; let 7 consist of
the ¢ bits of R, the top n — m bits of o, and log (15 =v —{ — (n —m) randomly
guessed bits, and let ¢/ = o 4+ 7. The adversary wins whenever 7 = [ia/x]},
which happens with probability 2v=¢~("=m) /2 = §/2 because all but log ; bits
of 7 are definitely correct as long as the last bit of ia is 0.

The above discussion gives us the following result.

Theorem 2. There erists a basis for GF(2"™") such that for any integer m
there exists a distribution W of min-entropy m for which the post-application
robustness of the construction from [DKRS06, Theorem 3] can be violated with
probability at least 6/2, where v is set as required for robustness 0 by the con-
struction (i.e., v=(n—10)/2 for { = (2m —n — 2log ;)/3).

Note that our lower bound uses a specific representation of field elements, and
hence does not rule out that for some particular representation of field elements, a
lower value of v and, therefore, a higher value of ¢ is possible. However, a security
proof for a lower value of v would have to then depend on the properties of that
particular representation and would not cover the construction of [DKRS06] in
general.

5 Tolerating Binary Hamming Errors

We now consider the scenario where Bob has a string w’ that is close to Alice’s
input w (in the Hamming metric). In order for them to agree on a random string,
Bob would first have recover w from w’. To this end, Alice could send the secure
sketch s = SS(w) to Bob along with (i, o). To prevent an undetected modification
of s to &, she could send an authentication of s (using w as the key) as well.
The nontriviality of making such an extension work arises from the fact that
modifying s to s’ also gives the adversary the power to influence Bob’s verification
key w* = SRec(w’, s’"). The adversary could perhaps exploit this circularity to
succeed in an active attack (the definition of standard authentication schemes
only guarantee security when the keys used for authentication and verification
are the same).

We break this circularity by exploiting the algebraic properties of the Ham-
ming metric space, and using authentication secure against algebraic manipula-
tion [DKRS06, [CDFF08]. The techniques that we use are essentially the same
as used in [DKRS06], but adapted to our construction. We present the con-
struction here and then discuss the exact properties that we use in the proof of
security.
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CONSTRUCTION. Let M be the Hamming metric space on {0,1}"™. Let W be a
distribution of min-entropy m over M. Let s = SS(w) be a deterministic, linear
secure sketch; let |s| = k, n’ = n — k. Assume that SS is a surjective linear
function (which is the case for the syndrome construction for the Hamming
metric mentioned in Section [2]). Therefore, there exists a k x n matrix S of rank
k such that SS(w) = Sw. Let S* be an n’ x n matrix such that n x n matrix
(SSL) has full rank. We let SS*(w) = S+ (w).

To compute Gen(w), let s = SS(w), ¢ = SS*(w); |¢| = n’. We assume that
n' is even (if not, drop one bit of ¢, reducing its entropy by at most 1). Let
a be the first half of ¢ and b the second. View a,b as elements of Fy.//». Let
L =2[ k7 (it will important for security that L is even). Pad s with Os to
length Ln’/2, and then split it into L bit strings sz,—1, ..., so of length n'/2 bits
each, viewing each bit string as an element of Fy,./,2. Select ¢ <= Fy,.//2. Define
fsi(z) =23 +a?(spqal ™+ sy oxl ™2+ 4 50) +im. Set o = [fs,i(a) + b)Y,
and output P = (s,i,0) and R = [fs,(a) + b}:;/lz

Gen(w):

1. Set s = SS(w), ¢ = SSH(w), k = |s|, n' = |¢|.

Leta=[d] /% b= [C]Z:/2+1
- Let L =2[%]. Pad s with Os to length Ln’/2.
- Parse the padded s as sp_1||sp—2|| ... ||so for s; € Fonr.

2. Select i« Fynr/a.

3. Set o = [fs.i(a) + by, and output R = [fs,:(a) + b];i/lz and P = (s,i,0).

Rep(w', P’ = (s',',0")):
1. Compute w* = SRec(w’, s)
- Verify that dis(w*,w’) <t and SS(w*) = §’. If not, output L.
2. Let ¢ = SS*(w*). Parse ¢ as o/||l/.
3. Compute o* = [fo i (a') + b']}.
- Verify that o*=0¢". If so, output R=|fs s (a’)er’]ZJr/lz7 else output L.

In the theorem statement below, let B denote the volume of a Hamming ball
or radius ¢ in {0,1}" (log B < nHs(t/n) [MSTT, Chapter 10, §11, Lemma 8] and
log B < tlog(n + 1) [DKRS06]).
Theorem 3. Assume SS is a deterministic linear (m,m — k,t)—secure sketch
of output length k for the Hamming metric on {0,1}™. Settingv = (n—k)/2—1,
the above construction is an (m,l,t,€) fuzzy extractor with robustness § for any
m,l,t,e satisfyingl <m —n/2 —k —log B — log (2 [nfk-‘ + 2) — log g as long
asm > y(n+k)+2log!.

Again, if m < %(n + k) + 2log ; the construction can be modified, as shown in

Section .11

Proof. EXTRACTION. Our goal is to show that R is nearly uniform given P =
(i,s,0). To do so, we first note that for every s, the function h;(c) = (o, R) is a
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universal hash family. Indeed for ¢ # ¢’ there is a unique 7 such that h;(c) = h;(c)
(since i(a — ') is fixed, like in the errorless case). We also note that Hao(c |
SS(W)) > Huo(¢,SS(W)) — k = Hoo(W) — k = m — k by Lemma Bl Because
[(R,0)| =n'/2, Lemma[3 (or, more precisely, its generalization mentioned in the
paragraph following the lemma, needed here because h; depends on s) gives us

SD ((R, P),Ujg| X SS(W) X Ups /o x Uy) < /2

for n'/2 < m — k + 2 — 2log(2/¢). This is equivalent to saying that (R, P) is
2(n'/2=m+k) 3=1_cloge to Uig) X SS(W) x Uy o x U,.
Applying Lemmalto A= R, B = P, C = Uy /3_y, D = SS(w) X Uy j3 x Uy,

we get that (R, P) is e-close to U, x P, fore = 90y —m+k)/2_
2
From here it follows that for extraction to be possible, m > %(n—i—k) +2log i .

PosT-APPLICATION ROBUSTNESS. In the post-application robustness security
game, the adversary A on receiving (P = (s,4,0), R) (generated according to
procedure Gen) outputs P’ = (s',i’,0’), and is considered successful if (P’ #
P) ARep(w',s") # L. In our analysis, we will assume that (¢/,s") # (i,s). We
claim that this does not reduce A’s success probability. Indeed, if (i/,s") = (i, s)
then, ¢’ computed within Rep will equal c¢. So, for P’ # P to hold, A would
have to output ¢’ # o. However, when (i, ¢, s") = (i, ¢, s), Rep would compute
o* = o, and therefore would output L unless ¢/ = o.

In our analysis, we allow 4 to be deterministic. This is without loss of gen-
erality since we allow an unbounded adversary. We also allow A to arbitrarily
fix 4. This makes the result only stronger since we demonstrate robustness for a
worst-case choice of .

Since 7 is fixed and A is deterministic, the tr = (i,s,0, R,i’,s’,0’) is deter-
mined completely by (s, o, R). Recall that the prime challenge in constructing a
robust fuzzy extractor was that A could somehow relate the key used by Rep to
verify ¢’ to the authentication key that was used by Gen to come up with o. As
was done in [DKRS06|, we will argue security of our construction by showing
that the MAC scheme implicitly used in our construction remains unforgeable
even when A could force the verification key to be at an offset (of her choice) from
the authentication key. We will formalize such an argument by assuming that
A learns A = w' — w. Recall that w* = SRec(w’,s’) and ¢/ = o/[|p’ = SS™(w™*).
The following claim that was proven in [DKRS0G] states that given (A,s), A
can compute the offsets A, = a’ —a, A, = b — b induced by her choice of s'.

Claim. Given A = w' — w, and the sketches s, s’, A can compute A, = o’ — a
and A, = b — b, or determine that Rep will reject before computing a’, .

In other words, she can compute the offset between the authentication key that
Gen used to come up with o and the verification key that Rep will use to verify o”.
We will now argue that as long as W has sufficient min-entropy, even knowing
the offset does not help A succeed in an active attack. Recall that since i is
arbitrarily fixed by A, A’s success depends on w,w’, or, alternatively, on w, A.
Fix some A. For any particular tr, let Succyy o be the event that the transcript
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is tr and A wins, i.e., that fs;(a) +b=0||[RA[fs.v(a")+ V] = 0" ASS(w) = s,
conditioned on the fact that w' — w is A. We denote by Badi A the set of w

that make Succy, o true. We now partition the set Bady 4 into 2t disjoint sets,
indexed by R’ € {0,1}":

Badf y © {w|w € Bady A A [for 0 (a) + 0], = R’}
= {w|(fsi(a) +b=0l|R) A (foi(a') + " =0'[|[R") ANSS(w) = s}.

By Claim 1, fixing (tr, A), also fixes A,, Ay. It follows that every w € Badff:A
needs to satisfy

fsila) = fsi(la+ Ay) = (Ap+ 0 —')||[(R— R") ASS(w) = s.

For a given tr, A, R’, the right hand side of the first equation takes a fixed value.
Let us now focus on the polynomial fs;(a) — fs i(a+ A,). We will consider two
cases:

— A, = 0: In this case, fs,i(z) — fo i (x) is a polynomial in which a coefficient
of degree 2 or higher is nonzero if s # s’ and a coefficient of degree 1 or
higher is nonzero if 7 # 7’

— A, # 0: Observe that the leading term of the polynomial is ((L + 3) mod
2) A2zl 2. Since we forced L to be even, the coefficient of the leading term
is nonzero, making fs ;(x) — fo .o (x + Ag) a polynomial of degree L + 2.

Therefore, in either case, the fs;(z) — fo v (x + A,) is a nonconstant poly-
nomial of degree at most L + 2. A nonconstant polynomial of degree d can
take on a fixed value at most d times. It, therefore, follows that there are
at most L + 2 values of a such that fs;(a) — foi(a + Ay) = (Ap + 0 —
o)|[(R — R'). Each such a uniquely determines b = (o||R) — fs,i(a). And w
is uniquely determined by ¢ = a||b = SS*(w) and s = SS(w). Therefore, there
are at most L + 2 values of w in the set Badff:A ie, \Badff:A| < L + 2. Since
Badir,a = Upreqo1ye BadtPf:A, we get |Bady.a| < (L 4 2)2¢ = (L + 2)27/>7v,
Thus, Pr,[Succy, a] < |Bady |27 He(12) < (L 4 2)27/2-v—Heo(w]4),

To find out the probability Pr,,[Succa] that A succeeds conditioned on a par-
ticular A, we need to add up Pr,,[Succyy a] over all possible transcripts. Recalling
that each transcript is determined by o, R and s and hence there are on'[2+k of
them, and that n’ + k = n, we get Pr,,[Succa] < (L + 2)2n v~ Heo(w]A),

Finally, the probability of adversarial success it at most

EPT[SUCCA] S (L + 2)2n—v—ﬁm(w|A) )

In particular, if the errors A are independent of w, then Hoo (w|A) = Hoo (w) =
m, and the probability of adversarial success is at most (L + 2)2"~?~"™. In the
worst case, however, the entropy of w may decrease at most by the number of
bits needed to represent A. Let B be the volume of the hamming ball of radius ¢
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in {0,1}". Then, A can be represented in log B bits and ﬁoo(w|A) > m—log B,
by Lemma 21 From here it follows that

Pr[A’s success] < B(L 4 2)2" V=™

To achieve d—robustness, we want B(L+2)2""v"™ < § i.e., v > n—m-+log B+
log(L + 2) + log ;. Setting v = n — m + log B + log(L + 2) + log }, and using
L= Q[ka] it follows that

Egm—n/Q—k—logB—log<2[nﬁk—‘+2>—logé. O

5.1 Getting Closer to Uniform

If ¢ is so low that m > }(n + k) + 2log ! does not hold, we can modify our

construction just as we did in section 1] by shortening R by 8 = 5(n + k) +
2 log i — m. That is, keep v = n — m + log B + log(L + 2) + log ; fixed and let
R =[fsi(a) + b]ﬁi”l, where £ < n/2—v— (.
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Abstract. In this work we study linear secret sharing schemes for s-t
connectivity in directed graphs. In such schemes the parties are edges of a
complete directed graph, and a set of parties (i.e., edges) can reconstruct
the secret if it contains a path from node s to node t. We prove that
in every linear secret sharing scheme realizing the st-con function on
a directed graph with n edges the total size of the shares is £2(n'?).
This should be contrasted with s-t connectivity in undirected graphs,
where there is a scheme with total share size n. Our result is actually
a lower bound on the size monotone span programs for st-con, where
a monotone span program is a linear-algebraic model of computation
equivalent to linear secret sharing schemes. Our results imply the best
known separation between the power of monotone and non-monotone
span programs. Finally, our results imply the same lower bounds for
matching.

1 Introduction

Secret sharing schemes, introduced by [I1I35l26], are a method in which a dealer
holding a secret can distribute shares to parties in a network such that only pre-
defined authorized sets of parties can reconstruct the secret from their shares.
These schemes, whose original motivation was secure storage, have found nu-
merous applications as a building box in complex cryptographic schemes, e.g.,
Byzantine agreement [32], secure multiparty computations [R[T6/17], threshold
cryptography [20], access control [30], and attribute based encryption [25]. In
most applications it is important that the scheme is linear, that is, the shares
are a linear combination of the secret and some random elements. Linear secret
sharing schemes are equivalent to monotone span programs, a computational
model introduced by Karchmer and Wigderson [28].

In this work we study linear secret sharing schemes for a natural function: the
parties are edges of a complete directed graph, and a set of parties (i.e., edges)
is authorized if it contains a path from node s to node t. We prove that in every
linear secret sharing scheme realizing the st-con function on a directed graph
with n edges the total size of the shares is £2(n!-%). Studying linear secret shar-
ing for this function has both a cryptographic motivation and a computational
complexity motivation. We first discuss the cryptographic motivation. Benaloh
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and Rudich [I0] (see also [4I28]) showed that there exists a simple and very effi-
cient linear secret sharing scheme for the analogous function where the graph is
undirected. This scheme was used in [30] to design a protocol for reliable access
control. The obvious open problem is if this scheme can be generalized to deal
with directed graphs. The computational complexity motivation is separating the
power of monotone and non-monotone span programs. Our results imply that
over infinite fields and large finite fields non-monotone span programs are more
efficient than monotone span programs by a multiplicative factor of 2(n%%).
This is the best separation known to-date.

1.1 Previous Results

In this section we will give a short background on secret sharing schemes, lin-
ear secret sharing schemes, monotone span programs, and the equivalence of
the latter two notions. Finally, we will discuss some known results on the s-t
connectivity function.

Secret-sharing schemes were first introduced by Blakley [I1] and Shamir [35]
for the threshold case, that is, for the case where the subsets that can reconstruct
the secret are all the sets whose cardinality is at least a certain threshold. Secret-
sharing schemes for general access structures were introduced by Ito, Saito, and
Nishizeki [26]. More efficient schemes were presented in, e.g., [AS6ITA28B7I22].
Even with the more efficient schemes, the size of the shares for general access
structures with n parties is 290" where the secret is an £-bit string. Lower
bounds for secret sharing schemes were proved in [2909UTHIT3I2TITRITIT2U3T].
The best lower bound was proved by Csirmaz [I8], proving that, for every n,
there is an access structure with n parties such that sharing an ¢-bit secrets
requires shares of length £2(¢n/logn). Still there is an exponential gap between
the lower-bounds and the upper-bounds.

Span programs and monotone span programs, introduced by Karchmer and
Wigderson [2§], are linear-algebraic models of computation. More specifically,
a monotone span program is presented as a matrix over some field, with rows
labeled by variables. The span program accepts an input if the rows whose
variables are satisfied by the input span a fixed nonzero vector. The size of a
span program is its number of rows. A detailed definition is given in Section 2
Lower bounds for monotone span programs have been studied in several papers.
Beimel, Gél, and Paterson [6] provided a technique for proving lower bounds for
monotone span programs and proved a lower bound of O(n?®) for a function
with n variables. Babai, G4l, and Wigderson [2], using the technique of [6],
proved the first super-polynomial lower bound — they prove an nf?(logn/loglogn)
lower bound for the size of monotone span programs for the clique problem.
G4l [23] gave a characterization of span program size and improved the lower
bound for the clique function to n?(°2™) Proving exponential lower bounds for
an explicit function is an open problem (it is known that such lower bound holds
for most functions [34]). G4l and Pudldk [24] have shown limitations of current
techniques for proving lower bounds for monotone span programs. Beimel and
Weinreb [7] showed a separating of the power of monotone span programs over
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different fields, for example, they showed that there are functions that have
small monotone span program over the field GF(2), however, they require super
polynomial monotone span programs over fields whose characteristic is not 2.

In most applications of secret sharing schemes it is important that the scheme
is linear, that is, the shares are a linear combination of the secret and some
random elements. Linearity implies that if we sum shares distributed for two
secrets, then we get shares of the sum of the secrets. This property is useful,
for example, when designing secure multi-party protocols [SII6/T7]. Karchmer
and Wigderson [28] showed that monotone span programs imply linear secret
sharing schemes (this result was implicitly proved also by Brickell [14]). More
precisely, if there is a monotone span of size s computing a function f over a
field F then there is a secret sharing scheme realizing f such that the domain
of secrets is F and the total number of bits of the shares is slog|F|. In fact,
monotone span programs and linear secret sharing schemes are equivalent [3].
Thus, proving lower bounds for monotone span programs implies the same lower
bounds for linear secret sharing schemes.

In this work we prove lower bounds for the st-con function. This function is
widely studied in complexity both for directed and undirected graphs. For ex-
ample, st-con in directed graphs is NL-complete, while Reingold [33] has proved
that st-con in undirected graphs is in deterministic log-space. Another exam-
ple where undirected st-con is easier than directed st-con was given by Ajtai
and Fagin [I]; they showed that while undirected st-con is definable in monadic
second order logic, the directed case is not. We continue this line of research
by proving that for monotone span programs undirected st-con is easier than
directed st-con, although the gap we can prove is much smaller.

The circuit complexity of st-con has been studied as well. The directed (and
undirected) st-con function has a polynomial-size monotone circuit of depth
O(logn); this circuit has unbounded fan-in. This implies a monotone formula for
st-con of size n©(°8™) and, using the construction of Benaloh and Leichter [9],
there is a secret sharing scheme realizing the st-con function in which the size of
the shares is n©(°8™) Karchmer and Wigderson [27] have proved that for mono-
tone formulae this is optimal — every monotone formula computing undirected
(and, hence, directed) st-con function has size n ‘(1087

1.2 Our Results

In this work we prove that a monotone span program computing the st-con
function on a directed graph with n edges has size 2(n'-®). We supply two proofs
of this lower bound. The first proof uses the characterization of span program
size given by Gé&l [23]; this proof only holds for finite fields. The second proof
uses the condition of Beimel, Gal, and Paterson [6]; this proof holds for every
field. As monotone span program are equivalent to linear secret sharing schemes,
our result implies that in every linear secret sharing scheme realizing the st-con
function in directed graphs, the total size of the shares is 2(n'?).

Our lower bound has a few additional implications. First, it shows that, for
monotone span programs and linear secret sharing, undirected st-con is easier
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than directed st-con. This is true since there is a monotone span program real-
izing undirected st-con whose size is n [T0J28] (see Example [l below).

Furthermore, our lower bound supplies the best known separation between
the power of monotone and non-monotone span programs. Beimel and G4l [5]
proved that over infinite fields and large finite fields the directed st-con function
on graphs with n edges has a non-monotone span program of size O(n). Thus,
our result shows a separation of multiplicative factor of 2(n°?) between mono-
tone and non monotone span programs for directed st-con. Separations between
monotone and non-monotone models of computation is an important question
in complexity, e.g., the exponential separation between the power of monotone
and non-monotone circuits [38]. Separations between the power of monotone and
non-monotone span programs is interesting since monotone span programs can
be exponentially more powerful than monotone circuits [2].

Finally, our result implies the same lower bound for matching and bipartite
matching. This follows from the projection reduction from directed st-con to
bipartite matching. Babai, Gal, and Wigderson [2] constructed a non-monotone
span program, over large enough fields, for matching whose size is n (where n is
the number of edges in the graph). Thus, the same separation between monotone
and non-monotone span programs holds for matching.

1.3 Organization

In Section 2] we define monotone span programs. In Section [§] we give our first

proof of the lower bound and in Section ] we give our second proof of the lower
bound.

2 Preliminaries
2.1 Monotone Span Programs

We start with the definition of monotone span programs. As discussed above,
monotone span programs are equivalent to linear secret sharing schemes; we use
monotone span programs to prove lower bounds on linear secret sharing schemes.

Definition 1 (Monotone Span Program [28]). A monotone span program
over a field F is a triplet M= (M, p,v), where M is a matriz over F, v is a
nonzero row vector called the target vector (it has the same number of coordinates
as the number of columns in M ), and p is a labeling of the rows of M by variables
from {x1,...,xn} (every row is labeled by one variables, and the same variable
can label many rows).

A monotone span program accepts or rejects an input by the following crite-
rion. For every input u € {0,1}" define the sub-matriz M, of M consisting of
those rows whose labels are satisfied by the assignment u. The monotone span
program M accepts u if and only if v € span(M,,), i.e., some linear combination
of the rows of M, gives the target vector v. A monotone span program computes
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a Boolean function f if it accepts exactly those inputs u where f(u) = 1. The
size of M s the number of rows in M

Monotone span programs compute only monotone functions, and every mono-
tone Boolean function can be computed by a monotone span program. The size of the
smallest monotone span program over F that computes f is denoted by mSPg(f).

Ezample 1. Consider the undirected-st-con function, whose input is an undi-
rected graph with two designated nodes s and ¢ and its output is 1 iff the graph
contains a path from s to t. Formally, we consider the following function: The
input is an undirected graph with m + 2 nodes; the variables of the function
are the n = ("]?) possible edges. Karchmer and Wigderson [28] construct a
monotone span program of size n for this function, that is, each edge labels ex-
actly one row in the program (a linear secret sharing scheme equivalent to this
program was previously shown in [10]).

We next describe this span program. Assume the nodes of the input graph
are 2, ..., 2Zm+1, where zop = s and z,,11 = t. The program has m + 2 columns
and n rows. For every edge (z;, #;), where ¢ < j, there is a row in the program;
in this row all entries in the row are zero, except for the ith entry which is 1
and the jth entry which is —1. The target vector is the same as the row labeled
by (s,t), that is, (1,0,...,0,—1). It can be proven that over every field F, this
program computes the undirected-st-con function.

2.2 The st-con Function

In the rest of the paper we will refer to the st-con function in directed graphs as
st-con. Formally, we consider the following function: The input is a directed graph
with m+ 2 nodes. The graph contains two designated nodes s, t. The variables are
the n = m(m + 1) possible edges in the graph. The function outputs 1 iff there is
a directed path from node s to node t. Our main results are summarized below.

Theorem 1. For every field F
mSPr(st-con) = 2(n'?).

Theorem 2. For every finite field F and every linear secret sharing scheme over
F realizing st-con the total number of bits in the shares is

2(n*?log [F|).

3 First Proof
3.1 Proof Outline
We use the following theorem of Gal [23] to prove our lower bound.

! The choice of the fixed nonzero vector v does not affect the size of the span program.
It is always possible to replace v by another nonzero vector v” via a change of basis
without changing the function computed and the size of the span program. Most
often v is chosen to be the 1 vector (with all entries equal 1).
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Theorem 3 ([23]). Let f : {0,1}" — {0,1} be a monotone function. Let U
denote the set of maxterms of f, and V denote the set minterms of f, and let
U' C UV CV. If there exists a monotone span program of size s computing
[ over a field F, then there exist matrices Fy, ..., Fy,, each matriz has |U’| rows
and |V'| columns (each row of the matriz is labeled by a v € U’ and each column
is labeled by a v € V') such that

1. Y | F; =1 (that is, the sum of the matrices over F is the all-one matriz).

2. The non-zero entries in F; are only in rows labeled by a w € U’ such that
u; = 0 and in columns labeled by a v € V' such that v; = 1.

3. 0 rankg(F;) < s.

In this section, we prove the result for GF(2), but the proof easily generalizes
to other finite fields. The skeleton of the proof is as follows. We appropriately
choose subsets U’, V'’ of the maxterms and minterms of st-con. We show that for
any matrices Iy, ..., F, satisfying () and (2)) in Theorem [3] there exist “many”
(2(n)) matrices F,, such that a large fraction (£2(1)) of the entries of F, are
zero entries. Also, every F, has some “singleton” 1 entries at fixed positions,
which are “well-spread” over the matrix. We then prove that every matrix F,
with “many” zero entries has rank 2(n-®), this proof uses the partial knowledge
on the distribution of singletons, and the large number of zeros. By Theorem [3]
this implies that the size of every monotone span program computing st-con over
GF(2) has at least 2(n°%%-n) = 2(n'-%) rows.

3.2 Details

To apply Theorem [ we need to understand the minterms and maxterms of
st-con. Every minterm of st-con is a simple directed paths from s to t. Every
maxterm can be specified by a partition S UT of V with s € S;t € T where
the edges in S x T are excluded and all other edges are included in the maxterm
(that is, the maxterm contains all edges in S x S, T'x T, and T x S).

Defining U’,V': Let w = m/d, where d is some constant to be fixed later @ We ar-
range the nodes of the graph in layers Lo, L1, ..., Lgy1, where Lo = {s}, Lgt1 =
{t}, and all other layers contain w nodes. We consider the restriction st-con’
of the st-con function to directed graphs that contain only edges directed from
layer L; to layer L;11. Note that the number of edges in the restricted function
st-con’ is a constant fraction of the number of edges in the function st-con, so
every lower bound for st-con’ implies the same lower bound for st-con (up to a
constant factor). We define the subsets U’, V' as follows. Let V’ be all the s-t
paths, that is, paths s,v1,...,v4,t, where v; € L;. Let U’ be the set of all s-t
cuts where 1/2 of the nodes in each layer L;, where 1 < i < d, are in S (and
the other half is in 7"). Additionally, {s} UL; C S and {t} ULy C T. Note that

V'] = w? and |U'| = (u}jz)H.

2 As we see later, d = 4 will do.
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Assume there is a monotone span program over F computing st-con’ and let
Fi,..., F, be the matrices guaranteed by Theorem B For an edge e = (z,y),
let R, denote the restriction of F, to rows labeled by a cut u € U’ such that
ue = 0 (that is, the maxterm does not contain the edge (z,y)) and to columns
labeled by a path v € V' such that v, = 1 (that is, the path contains the edge

(x,%)). Note that R, has w?2 = |V'|/w? columns and 0.25(15’;2)d_2 = |U'|/4
rows (as we consider cuts such that x € S and y € T)H By @) in Theorem [3]
rankp(R.) = rankp(F.). We say that R. covers (u,v) if u, = 0 and v, = 1.
Denote the set of edges e such that R, covers (u,v) by S(u,v).

We start with a few simple observations. Obseration[Iland Obseration[2] follow

directly from () and (@) in Theorem [l and the definition of the R.’s.

Observation 1. If |S(u,v)| = 1, then F.(u,v) = Re(u,v) = 1 for the edge e €
S(u,v). We refer to such entries (u,v) as “singletons”.

Observation 2. If |S(u,v)| is even, then R.(u,v) = 0 for some e € S(u,v).

Sy
L Lo Ly Ly

Ty

Fig. 1. An illustration of a path and a cut for which |S(u,v)| is even. The vertices in
S. are black and the vertices in T, are white. The edges in S(u, v) are the edge between
L1 and Lo and the edge between Lz and La.

Lemma 1. Let ¢ = Hél. For d = 4 there are at least c|U'||V'| pairs (u,v) such
that |S(u,v)| is even

Proof. From the definition of U’, V’, and ([2]) in Theorem[3] it follows that S(u,v)
is precisely the set of edges in v that belong to S, x Ti (where the partition
Sy UT, specifies the maxterm u). Fix some cut w € U’. For a path v the size of
S(u,v) is even if the path has an even number of edges going from S, to T;,. For
d = 4 this is true if the vertex in Lo is in T} and the vertex in L3 is in Sy, that

3 For an edge ¢ = (s,x) or ¢ = (x,t), the matrix F. = 0 (by the definition of the
maxterms). We, therefore, ignore such matrices).

4 This is true if z € Lj for 2 < j < d—1; the number of rows for x € Ly or x € Lg—1
is 0.5(,%5,)" % = |U"]/2

5 For d = 5, the constant ¢ is 0.5 and for any sufficiently large d, this constant ap-
proaches 1/2.
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is, the edges in S(u,v) are the edge between L; and Lo and the edge between
L3 and Ly. See Fig. [l for a description. Since half of the vertices of Ly are in Ty,
and half of the vertices of L3 are in 9, for a quarter of the paths v € V', the
size of S(u,v) is even. O

‘We now move to our two main lemmas.

Lemma 2. There exist at least cw? edges e such that R. contains at least a g

fraction of zeros, where ¢ is the constant from Lemma [

Proof. We construct a set of edges as required, proceeding in iterations. By
Lemma [T for all (u,v) the set

B = {(u,v) : |S(u,v)| is even}

must satisfy Re(u,v) = 0 for some edge e € S(u,v). That is, we need to “cover”
the set B by edges in this sense, where e covers (u,v) € B if Re(u,v) =0.
Denote by B; the set of entries uncovered at the beginning of iteration 4. In
particular, By = B. By Lemmalll |B;| = ¢|U’||V’| for some constant c. We start
an iteration i if |B;| > ¢|U’||V’|/2. Since there are at most w?(d — 1) — i <
w?d edges to choose from, at least one of them should cover at least C‘U/UQV/V 2
uncovered entries (by the pigeon hole principle). We pick any of those e’s and
add it to the list. Note that the rectangle R, has at most |U’|/2-|V’|/w? entriedd,
thus a fraction of at least ¢/d of the entries of R, are 0. Each selected edge e
covers at most |U’[|V’|/2w? uncovered entries (the number of entries in R.).
Since we halt only when at least ¢|U’||V’|/2 pairs in B have been covered, at
least cw? iterations are needed. O

To complete the proof, it remains to show that every rectangle R, with “many”
zeros, as in Lemma [ has high degree.

Lemma 3. Let R, for e = (z,y), be a rectangle with a fraction of at least ¢/d
zero entries. Then rankgr2)(Re) = 2(n%5).

Proof. In the following proof we restrict our attention only to the rows and
columus of R.. First note that a fraction of at least ¢/2d of the rows contain at
a fraction of at least ¢/2d zero entries (otherwise the fraction of zero entries in
R, is less than ¢/2d- 14 (1 —¢/2d) - ¢/2d < ¢/d). Thus, the number of rows with
at least c|V’|/(2w?d) zero entries is at least c|U’|/(8d). We will show that these
rows contain many distinct rows, which will imply that R, has rank £2(n°5).

Fix any row ug of R, with at least ¢|V’|/(2w?d) zero entries. We show that
the row ug can only appear in R, a small number of times (labeled by different
u’s ). Let M be the set of columns in which this row has zero entries; the size of
M is at least ¢|V'|/(4d). Let e = (x,y), where = belongs to layer L; for some j
and Yy e Lj+1.

We first prove that M contains a subset M’ of paths of size € - w for some
sufficiently small constant € (to be fixed later) such that every two paths in M’

5 This is the number of entries if = € L1, otherwise this number is |U’|/4 - |V'|/w?.
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have no nodes in common except for z,y, s, t. Similarly to the proof of Lemma[2]
we construct this set iteratively. In the first iteration, we add to M’ some arbi-
trary path in M. We continue adding paths until there are ew paths. In iteration
i+ 1, we have added i paths to M'. We prove that another path can be added
so that all the paths in M’ satisfy the invariant of being disjoint up to including
s, x,y,t. Any path using one of the w — 7 unused nodes in every layer Lj, where
k # 4,7+ 1, can be used here. The number of all columns of R, with this prop-
erty is at least (w — )92 > (w(1 — €))9~2, thus the number of columns in R,
violating this property is at most

w2 —(w(1—€) 2 =w?2(1-(1—6) %) = wi2e(d—2) = |V'|e(d—2) < |V'|ed.

(for a sufficiently small constant €). Taking ¢ < c/(4d?), there are at least
c|V'/(4d) — |V'|ed > 1 paths in M satisfying this property.
Having proved M’ = {v1,..., v} as above exists, we consider the set of
rows
B ' ={u:e¢uand |S(u,v)| > 1 for every v € M'}.

Notice that for every u ¢ B’, where e ¢ u, there exists a v € M’ such that
[S(u,v)] = 1, thus, by Obseration [l R.(u,v) = 1, however, R.(ug,v) = 0
since v € M (where M is the set of columns with zero entries in the row wyg).
Thus, B’ is the set of rows in R, that can be equal to the row ug. Recall that
e = (z,y) € S(u,v) for every row u of R, and every column v of R. (by the
definition of R.). Thus, S(u,v) > 1 if the cut u does not contain at least one
edge on the path v in addition to the edge (z,y).

We next show that B’ is of negligible size. We do this by calculating the prob-
ability that a cut chosen with uniform distribution is B’. We choose a random
cut u = (S,T) by first choosing for each node in v; if its in S or in T', then the
nodes corresponding to ve, and so on, where the inclusion in S or T is selected
at random according to the proportion of the remaining colors for that layer
(conditioned on the choices for the previous v;’s). The cut u forms a singleton
with a given v;, selected in iterations 4, if the node in v; from Lj, for j' < j are in
S, and the rest of the nodes in v; are in T'. This happens with probability at least
(1/2 —€)¥2 = 1 — f. Thus, with probability at most f the cut u does not form
a singleton with a given v;. Note f is some constant. Therefore, |S(u,v)| > 1 for
every v € M’ with probability at most

f‘M’| — few — 2—0(10).

This implies that the size of B’ is at most 2~(*)|U’|/2.

Since there are at least ¢|U’|/(4d) rows with a fraction of at least ¢/(2d) zeros,
and each such row can appear at most 2~%(*)|U’|/2 in R, the number of distinct
rows in R, is at least

c|U']/(4d)
2—0(w)‘U/‘/2

This implies that rankgpe) (Fe) =rankgre) (Re) =log(20)) =0 (w) = O(n°®). O

_ 29(10).
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By Lemma 2] and Lemma[Bl there are {2(n) matrices F, such that
rankgp() (Fe) = 0(n°).

Thus, by Theorem [3, every monotone span program computing st-con has size
Q(nl's).

4 Second Proof

In this proof we use a technique of [6] to prove lower bounds for monotone span
programs. They prove that if the set of minterms of f contains a “big” set of
self-avoiding minterms as defined below, then for every field F the size of every
monotone span program over [ computing f is “big”.

Definition 2 (Self-Avoiding Minterms). Let f be a monotone Boolean func-
tion and V' be the set of all of its minterms. Let V! C V be a subset of the
minterms of f. We say that V' is self avoiding for f, if every v € V' contains
a set C(v) C v, called the core of v, such that the following three conditions are
satisfied.

1. |C(v)] > 2.

2. The set C(v) uniquely determines v in V'. That is, no other minterm in V'
contains C(v).

3. For any subset Y C C(v) , the set

Sy= |J 4\

AeV/ ANY #)
does not contain any minterm in V.

Note that ([@) requires that Sy contains no minterm from f, not just none
from V.

Theorem 4. Let f be a monotone Boolean function, and let V' be a self-avoiding
subset of minterms for f. Then for every field F,

As in the first proof, we consider a graph with m+2 nodes, and let w = m/4. We
arrange the nodes of the graph in layers Lo, Ly, ..., Ls, where Ly = {s}, Ls =
{t}, and all other layers contain w nodes. We denote the nodes in layer L;,
where 1 < j < 4 by v;1,...,0;,. We consider the restriction st-con’ of the
st-con function to directed graphs that contain only edges directed from layer
L; to layer L;11. We prove that every monotone span program for st-con’ has
size 2(w?) = 2(n'%). The proof is by exhibiting a self-avoiding set of minterms
as defined in Definition 2
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The self-avoiding set for st-con’. For every a,b,c € {1,...,w} there is a path
Py, in the set:
S7vl,a7v2,bav3,(1av4,aat'

That is, the indices of the nodes from L; and Ly are equal. The core C(P,p.c)
is {(v1,4,V2,), (U3,¢,v4,4)}. Clearly, the core determines the path Py ..

We have to show that for every Y C C(P) the set Sy does not contain a path
from s to t. If |[Y| = 1 then Sy does not contain an edge from one layer. E.g., if
Y = {(v1,4,v2,5)} then Sy does not contain any edges going from V; to V5.

We next consider the somewhat more complex case when |Y'| = 2. In this case
Sy is composed of the following edges:

(s,v1,q) from the first level.

(v1,q,v2,p) for every b’ # b from the second level.

(vap, v3,¢) for every ¢, and (va,, v3,c) for every b’ from the third level.
(v3,0/,V4,4) for every ¢ # ¢ from the fourth level.

(v4,q,t) from the fifth level.

G o

Assume Sy contains a path from s to t. Since vs ; does not have any incoming
edges then the path has to pass through vs j for some o # b. Thus it must pass
through vs .. But vs . has no outgoing edges in Sy, contradiction.

To conclude, we have proved that st-con’ has a self-avoiding set of size w
O(n*®) and Theorem H implies our main result — Theorem [l

3:
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Abstract. In this work, we propose a new generalization of the notion
of group signatures, that allows signers to cover the entire spectrum
from complete disclosure to complete anonymity. Previous group signa-
ture constructions did not provide any disclosure capability, or at best a
very limited one (such as subset membership). Our scheme offers a very
powerful language for disclosing exactly in what capacity a subgroup of
signers is making a signature on behalf of the group.

1 Introduction

Collective signatures allow an individual to make a signed statement
anonymously on behalf of a coalition. Whereas ring signatures [30] are uncon-
ditionally anonymous, group signatures [I7] come with an anti-abuse protec-
tion mechanism, whereby a tracing authority can lift a signature’s anonymity
to uncover the identity of the signer in case of necessity. In group signatures,
membership to the group must be restricted and subject to a formal vetting
and enrollment process of its members: these are desirable properties in many
applications.

In many contexts, the blunt anonymity provided by group signatures goes
too far, and it would be preferable to go half-way between full anonymity and
full disclosure — e.g., to boost the credibility of a statement without completely
engaging the individual responsibility of the signer. This is especially important
in groups with many members, or with members of differing competences, or
any time several signers wish to sign a joint statement while retaining some
anonymity within a larger group.

The “Ad Hoc Group Signatures” from [20] at Eurocrypt 2004 provided a
partial answer, by allowing a signer to disclose that he or she belongs to a
particular subset of the group, not just the entire group. The “Mesh Signatures”
from [TT] at Eurocrypt 2007 went further by providing a very expressive language
that signer(s) could use to make very specific statements as to the capacity in
which they created the signature (such as, “undersigned by, either, five senators,
or, two deputies and the prime minister”). Unfortunately mesh signatures were
a generalization of ring signatures with no provision for traceability.

In this work, we propose a group signature with a mesh-like expressive lan-
guage for proving and verifying complex propositions about group membership,

R. Ostrovsky, R. De Prisco, and I. Visconti (Eds.): SCN 2008, LNCS 5229, pp. 185 008.
© Springer-Verlag Berlin Heidelberg 2008
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including those whose fulfillment requires credentials from more than one group
member. Given a valid signature, anyone can verify that it was created by a
subgroup of signers that satisfied a certain condition (stated as an expression
given with the signature), and learn nothing else. However, the tracing author-
ity is able to unblind the signature and find out exactly how the condition was
fulfilled, and thus who the signers are.

The construction we propose is based primarily on the mesh signatures of [11],
which we modify in order to equip with a tracing capability. The tracing mecha-
nism is inspired by a number of recent group signature constructions [T2/TIT3I2T],
which all made use of zero-knowledge proof systems in bilinear groups of com-
posite order [TOI2223]. Compared to those, however, the present work provides a
technical novelty: the composite algebraic group and the zero-knowledge proofs
had to be flipped “inside out” in order to be compatible with the more expressive
language that we implement.

Our signatures are efficient, both in the asymptotic and the practical sense: the
signature size will be linear in the size of the expression that it represents, with
a small proportionality constant. Although it would surely be nice to shrink the
cryptographic part of the signature further down to a constant-size component,
this is not of great importance here since the total signature size and verification
time would still have to be linear or worse — because the verification expression
has to be stated and used somewhere, and the access structure it represents is
likely to change from one signature to the next. (Contrast this with regular group
signatures, where it is more desirable to have signatures of constant size, because
the group composition is fixed and need not be repeated.) For comparison, our
fine-grained group signature is essentially as short and efficient as the mesh
signature of [I1], which is the most relevant benchmark for it is the only known
anonymous signature that is as expressive as ours (albeit lacking the tracing
capability).

Our scheme satisfies (suitable version of) the usual two main security prop-
erties of group signatures originally defined in [5]. The two properties are here:
Full Anonymity for CPA-attacks [9] and Full Traceability with Dynamic Join
[6], from which other natural requirements such as existential unforgeability,
non-frameability, strong exculpability, collusion resistance, etc., can be shown
to follow (see [5l6]). We shall define the two core properties precisely as they
generalize to our more expressive notion of group signatures, and prove that
our scheme satisfies them under previously analyzed complexity assumptions,
in the standard model (unless a join protocol is used for strongly exculpability,
in which case we need either random oracles or a common reference string to
realize extractable commitments).

The name “Expressive Subgroup Signatures” is meant to capture that at
the core these are group signatures, albeit not ones whose level of (revocable)
anonymity is fixed and depends only on the group composition, but can be
adjusted “in the field” with great precision, any time a new signature is created
by any subgroup of signer(s) within the group boundaries.
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1.1 Related Work

Ring signatures. Ring signatures were introduced in [30]. Each user in the system
has a public key, and can generate a ring signature. Such a signature implicates
some other users, chosen by the signer, and is such that a verifier is convinced
that someone in the ring formed by the public keys of the signer and the chosen
members is responsible for the signature, but nothing else. Constant-size ring
signatures were constructed in [20]. Recently, a number of ring signatures without
random oracles have been constructed from pairings, such as [ISI7USTITT].

Mesh signatures. Mesh signatures were recently proposed [I1] as a powerful gen-
eralization of ring signatures, with a rich language for striking the desired balance
from full disclosure to full anonymity and almost anything in between (including
complex statements involving, inter alia, trees of conjunctions and disjunctions
of multiple potential signers). The work of [I1] gave the first unconditionally
anonymous ring signatures without random oracles as a special case.

Group signatures. Group signatures were first proposed in [I7] to allow any
member of a specific group to sign a message on behalf of the group, while
keeping the signer anonymous within the group. However, a tracing authority
has the ability to uncover the identity of the signer, which it should only do
in certain extenuating circumstances. Group signatures have attracted much
attention in the research community; we mention for example the works of
MG T3 ATT6RT29/32.

For completeness, we mention the recently proposed notion of “attribute-
based group signature” [26/25], which, contrarily to what the name might sug-
gest, is a far cry from fulfilling our goal. (These signatures are rather inflexible,
as they require that the attribute trees be constructed by the setup authority,
and not the signer. Furthermore, verifying each attribute tree requires a different
public key which must be requested interactively from the setup authority.)

2 Preliminaries

2.1 Composite-Order Pairings

Our construction makes use of bilinear pairings defined over groups of composite
order, whose cryptographic applications were first investigated in [10].

A (symmetric) composite-order pairing is an efficiently computable function
e:G x G — Gy, where G and G are finite cyclic groups of order N = pq, and
with the following properties:

Bilinearity: Yu,v € G, Va,b € Z, we have e(u®,v®) = e(u,v)? med N,
Non-degeneracy: Jg € G such that e(g, g) has order N and thus generates Gy .

Although the composite group order N can be made public, it is usually impor-
tant that the factorization N = pq remains a secret. The most common hardness
assumption that relies on hardness of factoring in the context of bilinear maps
is called the Decision Subgroup assumption.
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The Decision Subgroup Assumption. Let G be a bilinear group of order
N = pq. Let G, be the subgroup of points of order p with no residue of order g,
that is, u € G, iff u? = 1 € G. Similarly, we let G4 be the subgroup of points of
order g congruent to 1 in G,.

Informally, the decision subgroup assumption says that one cannot efficiently
distinguish G from G, with non-negligible advantage.

Formally, we consider an “instance generator” G, which, on input 1*, outputs
a tuple (p,q,G,Gr,e), where p and ¢ are random A-bit primes, G and G are
cyclic groups of order N = pq, and e : G x G — G is a bilinear pairing. The
subgroup decision problem is, given (N, G, Gr,e) derived from an execution of
G(1*), to decide whether a given element w was chosen randomly in G or in G,,.
The Subgroup Decision assumption states that this is infeasible in polynomial
time with non-negligible probability above 1/2, that of a random guess.

An alternative definition is to give the distinguisher two reference generators
gy € G and g, € G, in addition to (N,G,Gr,e) and w; the task remains to
decide whether w € G or w € G,,. We use this definition to simplify our proofs.

The Poly-SDH Assumption. The traceability proof of the ESS scheme will
be based on the unforgeability of the mesh signature scheme of [I1], which was
itself proved from the so-called Poly-SDH assumption in bilinear groups. The
(g, ¢)-Poly-SDH is a parametric assumption that mildly generalizes the earlier
Strong Diffie-Hellman assumption [§] in such groups. It can be stated as:

(Poly-SDH) Given g, ¢**, ..., ¢* € G and ¢/ pairs (w; j, gt/ (@itwis)) for
1<i<{?and1<j<gq, choose a list of values wy, ..., wy € F,, and output
¢ pairs (w;, ¢g"/(*+w)) such that 25:1 ri = 1.

2.2 Group Signatures

A group signature scheme involves a group manager, an opening manager, group
members and outsiders. The group manager is able to add new members by
issuing private keys thanks to a master key MK, while the opening manager can
use the tracing key TK to revoke the anonymity of any group signature.

Such a scheme is specified as a tuple GSS = (Setup, Join, Sign, Verify, Trace) of
algorithms described as follows:

— The setup algorithm Setup generates, according to a security parameter, a
public verification key PK, a master key MK, and a tracing key TK.

— The enrollment algorithm, Join, that generates a private signing key using
the master key MK. The private key is then given to the new user.

— The group signing algorithm, Sign, that outputs a signature ¢ on a message
M, using a group member’s private key.

— The (usually deterministic) group signature verification algorithm, Verify,
that takes as input the group verification key PK and a signature o on a
message M, and outputs either valid or invalid.

— The (usually deterministic) tracing algorithm, Trace, that takes a valid signa-
ture o and a tracing key TK, and outputs the identity of a group member or L.

The following correctness and security properties are required.
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Consistency. Given a group signature generated by a honest group member, the
verify algorithm should output valid, and the tracing algorithm should identify
the actual signer.

Security. Bellare, Micciancio, and Warinschi [B] characterize the fundamental
properties of group signatures in terms of two crucial security properties from
which a number of other properties follow. The two important properties are
Full Anonymity and Full Traceability.

It is noted in [5] that the full traceability property implies that of ezculpability
[4], which is the requirement that no party should be able to frame a honest group
member as the signer of a signature he did not make, not even the group manager.
However, the model of [B] does not consider the possibility of a (long-lived)
group master, which leaves it as a potential framer. To address this problem
and achieve the notion of strong exculpability, introduced in [2] and formalized
in [2906], one also needs an interactive enrollment protocol, call Join, at the end
of which only the user himself knows his full private key; the same mechanism
may also enable concurrent dynamic group enrollment [6l29]. In this work, we
opt for this stronger notion and thus we shall explicitly describe such a Join
protocol.

We refer the reader mainly to [5] for more precise definitions of these and
related notions.

2.3 Mesh Signatures

We now briefly recapitulate the notion of mesh signature introduced in [11].

In short, a mesh signature is a non-interactive witness-indistinguishable proof
that some monotone boolean expression ¥'(L1,..., L,) is true, where the input
literals L; denote the validity of “atomic signatures” of the form {Msg, } kc,, for
arbitrary messages and different keys. (The special case of ring signatures [30]
corresponds to 7" being a flat disjunction.)

Admissible mesh expressions 1" consist of trees of And, Or, and Threshold
gates, and single-use input literals, generated by the following grammar:

EXPR ::= L1 | ... | Lg single-use input symbols
| >{EXPRy,...,EXPR, } t-out-of-m threshold, with 1 <t <m
| A{EXPRq, ..., EXPRy,} m-wise conjunction, with 1 < m
| V{EXPRq, ..., EXPR;,} m-wise disjunction, with 1 < m

Not all literals need to be true in order for 7" to be satisfied. However the
mesh signature must only attest to the truth of 7" without revealing how it is
satisfied: this is the anonymity property. Conversely, a signer should not be able
to create a mesh signature without possessing a valid atomic signature for every
literal set to true: this is the unforgeability property.

2.4 Security of Expressive Subgroup Signatures

ESS are just as expressive as mesh signatures, and provide the same anonymity,
except that the latter can be lifted by a tracing authority. We require:
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ESS Anonymity. The notion of anonymity we seek is not that we wish to
hide the identity of the users named in the ESS expression 7" (which is public
anyway), but to hide who among the users actually created the signature.

Precisely, we require that the identity of the actual signer(s) be computation-
ally indistinguishable in the set of all valid ESS signatures specified by the same
expression 7', even under full exposure of all user keys. This is the same notion as
in the mesh signatures of [I1], except that here the requirement is computational
and not information-theoretic in order not to stymie the tracing authority, and
is of course conditional on the secrecy of the tracing key.

ESS Traceability. Traceability is the group-signature version of unforgeability.
For ESS, as for mesh signatures before them, this notion is tricky to formalize
because of the potentially complex dependences that may exist between good
and forged signatures. To see this, consider a coalition of two forgers, Uy, Us,
and a honest user, Us. Suppose that the forgers fabricate a valid ESS signature
o for the expression 7" = {m1}y, V {ma}v, A {ms}u,), that can be traced the
subgroup Us, Us. Is that a successful forgery? What if o traced to Us only?

The answer is a double “yes”: in the first case, because Us was wrongly des-
ignated by the tracer; and in the second case, because U, alone could not have
satisfied 7", which means that some guilty party escaped detection. If on the
other hand, the finger were pointed at Uj, the signature would have a satisfac-
tory explaination that involves only (the parties that we know to be) the culprits:
this would be a failed forgery since the coalition got caught.

The ESS traceability challenge is thus, for any coalition of signers, to come
up with a valid signature o for an expression 7'(L1, ..., L,), such that o, either,
traces to at least one user outside of the coalition, or, traces to a subset of the
coalition that does not validate 7" (that is, when 7" is “false” after setting the
designated literals L; to “true” and only those).

Strong Exculpability. This last notion is borrowed straight from group signa-
tures [2I2916], and is orthogonal to the above. It gives any user the possibility to
dispute his alleged binding to any certificate that he did not request. To defend
from such accusation, the group manager (who signed the disputed certificate)
must produce a valid certificate request signed by the user’s individual key reg-
istered in some PKI. The enrollment protocol must guarantee that only the user
learns the private key associated with their certificates. Together, this prevents
the ESS group manager from framing users for signatures they did not make.

2.5 Formal Security Models

We now specify the formal ESS security model in accordance with the previously
stated requirements.

Anonymity. The ESS anonymity game is played between a challenger and an
adversary.

Initialization. The challenger gives to the adversary the public param-
eters of an ESS.
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Interaction. The following occurs interactively, in any order, driven by
the adversary.
User enrollment. The adversary may ask the challenger to enroll
a polynomially bounded number of new users in the group. The
adversary may either impersonate the user in the enrollemnt pro-
tocol, or ask the challenger to simulate it all by itself. The re-
sulting public certificates are published.
Signature queries. The adversary may ask the challenger to sign
any ESS expression 7" on behalf of the users it controls.
Key recovery. The adversary may ask the challenger to reveal the
group signing key of any user.
The challenger processes each request before accepting the next one.
Challenge: The adversary finally output a specification 1" and two sets
of assignments x; and y» to its literals L;, that both cause T to be
satisfied. These truth assignments indicate which users are supposed
to sign 7. The adversary must also supply the necessary atomic
signatures for the users for which it has the keys.
The challenger chooses one assignment b € {1,2} at random, and
creates an ESS signature o on the specification 7" using only atomic
signatures corresponding to the true literals in x;. The signature o
is given to the adversary.
Guess: The adversary makes a guess b’, and wins the game if b = 0'.

The adversary’s advantage in the ESS anonymity game is Pr[b = b'] — 1/2, where
the probability is defined over the random coins used by all the parties.

Traceability. The ESS traceability game is played between a challenger and an
adversary.

Initialization. The challenger gives to the adversary the public param-
eters of an ESS. The challenger also reserves a number ¢ of user
indices to represent the “honest users” under its control.

Interaction. The following occurs interactively, in any order, driven by
the adversary.

Honest user enrollment. The adversary may request that the
challenger create up to ¢ honest users, kept in the challenger’s
control. The challenger publishes the corresponding certificates.

Corrupted user enrollment. The adversary makes polynomially
user enrollment queries, for the users under the adversary’s con-
trol. The adversary chooses or receives the user secret keys in
accordance with the chosen enrollment protocol. The challenger
computes the corresponding certificates in accordance with the
enrollment protocol, and publishes them.

ESS signature queries. The adversary makes up to ¢ ESS signa-
ture queries, one at a time, on specifications 75, indicating to
the challenger which ones of the honest users are supposed to
issue the signature. To be acceptable, each request must be for
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a signature that the specified subset of honest users is supposed
to be able to make based on the specification and supporting
atomic signatures provided by the adversary.
The adversary may also make up to ¢ queries for atomic signa-
tures, to each of the users controlled by the challenger.
The challenger processes each request before accepting the next one.
Forgery: The adversary finally output a fresh valid ESS signature o
for some specification 1" of its choice. It wins the game if the list of
literals L; designated by the tracing algorithm on input o fails to
satisfy the two following properties:

1. All the designated literals L; correspond to atomic signatures
{Msg; } user, under the adversary’s control (either because the
adversary controls the corresponding user, or had obtained the
atomic signature by querying the challenger).

2. The specification formula 7(..., L;, ...) can be satisfied by setting
all the designated literals to “true” (T) and all the other literals
to “false” (L).

The adversary’s advantage in the ESS traceability game is simply the probability
that it wins the game. The probability is defined over the random coins used by
all the parties.

3 Construction

Our Expressive Subgroup Signature construction will bring together a number
of different techniques.

To get the anonymity properties we seek, we will naturally start with the
ring/mesh signatures from [I1], which comes with a powerful language and proof
system. We use it to create an anonymous group identification mechanism for
certificates issued by the group manager. Since we need a signature scheme and
not just an identification scheme, we shall extend the certificates into certificate
chains ending with actual signatures from users’ keys. This part is easy to do us-
ing the mesh language, so this step will be a simple matter of specifying how the
various terminal signatures and their supporting certificates should be assem-
bled. This gives us a multi-user anonymous signature with a central authority.
However, we still lack traceability.

To get traceability, we need to build a trapdoor that will remove the blinding
from the mesh signatures. Recall that the ring and mesh signatures from [IT] con-
sist of one signature element per ring or mesh member. Some of those elements
are “live”, meaning that they were created using the member’s actual secret key.
The remaining elements are “blank” and do not contribute to the verification
equation. Since it would be easy to tell who the signers were just by finding the
live elements, the elements are information-theoretically blinded so that they all
look the same. Here, to get traceability, we shall swap out the perfect blinding
for one that has a trapdoor. Since the mesh signatures require a bilinear pairing
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for their verification, we shall add the trapdoor into the bilinear group, using a
standard trick used in several previous constructions [22]. We simply translate
the signatures into a bilinear group of composite order, and restrict the blind-
ing elements to one of its two algebraic subgroups. An adversary will just see
smoke under the proper hardness assumption [I0]; but a tracing authority that
knows the order of the subgroups will be able to cancel the blinding (by pairing
each signature component with a neutral element in that subgroup), and hence
distinguish which signature components are live and which ones are blank.

In the following subsections, we explain step-by-step how to construct expres-
sive subgroup signatures. We work in an algebraic group G of composite order
N = pq and equipped with a bilinear pairing e : G x G — Gp. We call G the
bilinear group and Gr the targer group; both are of order N. Bilinearity is the
property that Yu,v € G, Ya,b € Z, e(u®,v®) = e(u,v)?® med N

3.1 User Credentials

Users must be affiliated with the group in order to create signatures, which
means that they must have acquired proper credentials from the group manager
(which controls the user vetting and enrollment process).

In its most basic instantiation, a certificate for user ¢ could simply be a secret
key for the Boneh-Boyen signature scheme [8]. The secret key (yi,z) € Z:
would be securely handed over to the user, and the corresponding public key
(g%, g**) € G? signed by the group manager and perhaps published as part of the
group description. A signature on m € Z, would be a random pair (¢, S) € Z,xG,
where § = g"/witm+= which is verifiable by testing e(S, g% g™ g¢*') = e(g, g).
The drawback is that the group manager would know y; and z; and would thus
be able to create signatures on the user’s behalf. We would also need to embed
a tracing trapdoor into all user-generated signatures.

In the preferred instantiation, a group certificate will depend on a secret
component that is known only to the user, to prevent users from being framed.
It should also depend on a secret from the manager, to guarantee traceability.
Using a technique close to the one proposed by Delerablée and Pointcheval [19],
we let the credentials for user i consist of a secret key (z;, v, 2;) and a public
certificate (A;, By, C;), where A; = g"/0+=0 B, = g"/0+=0 and C; = g™/0+=0),
for some random x;. Here, v and I = h” are respectively the secret and public
key of the group manager, and g and h are two fixed generators of the group G.
The certificate of user 7 is the triple (A4;, B;, C;) signed by the group manager.
For randomly chosen t € Z,, an “atomic signature” on m € Z, will be a pair:

o=(t5) €L, xG st S=(Dh")wrmtnn

The verification equation is thus: e(S, 4;B"C?) = e(h, g).

For simplicity reasons, we can merely suppose a enrollment protocol where
the user chooses (y;,2;), sends (g%, ¢*") to the group manager along with a
proof of knowledge, and receives (x;, A;, B;, C;) in return. Nevertheless, following
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a technique from [19], in Section B77 we present a more complex “dynamic”
enrollment protocol, which renders our scheme secure under concurrent join [28§],
and provides strong user exculpability [6] against dishonest managers.

3.2 Atomic Signatures

Using their credentials, users are able to create atomic signatures on any message
of their choice, which for simplicity we assume represented as an integer m € Zj,.
Atomic signatures provide no anonymity; they merely serve as building blocks
in more complex assemblies.

An atomic signature created from credentials as above is a pair (¢,5) € Z, xG
that satisfies a verification equation of the form,

e(S, AiB}"C}) = e(h,g)

R

with respect to a publicly verifiable certificate (A;, B;, C;) associated to user i.
We observe for later use that this is exactly a Boneh-Boyen signature, and that
the right-hand side e(h, g) in the verification equation is the same for all users.

3.3 Ring Signatures

Once we have atomic signatures of the previous form, we can easily construct an
information-theoretically anonymous ring signature, based on the approach pro-
posed in [I]. Suppose that there are n users with public certificates (A1, By, Ch)
through (A, By, Cy), and consider the following verification equation for some
message m, or more generally, for respective user messages mi through m,,:

n

He(Si,AiBZnini) =e(h,g) .

i—1 ~
i R

Any one of the n users is able to create, by himself, a vector of n pseudo-
signatures (¢;,S;) for i = 1,...,n that will jointly verify the preceding equation.
In order to do so, the user will need his own key and everyone else’s certificates.

For example, user 1 would pick random 7o, ...,7,, and t1,...,t,, and set:
n

Sy = ([h®)Yermtaitn {HR?] . Se=[R7?], ..., Sp=[R{™].
i=2

It is easy to see that, for any random choice of r; € Z,, the blinding terms
in the square brackets will cancel each other in the product of pairings in the
verification equation; e.g., e(R4?, Ry) from S will cancel e(R] ™, R2) from Ss.
What is left is the Boneh-Boyen signature component (I'h®t)"®1+mit=1t1) in Sy
which in the verification equation will produce the value e(h, g) we seek.
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For the example of user 1 being the actual signer, the cancellation that occurs
is, in extenso, if we let S§ = (Ih®1)Y/witmitaitn),

f[e(Si,Ri) = 6 517R1 HR H (Si7Ri)
i=1 =2
e(Sy, Ri) - HR ) - [Je® Ri)
1=2

=e(h,g) - He(Ri, Ry)" - []e(Ri, Ry~ =e(g,h)

=2

The point is that user 2 (or any other user j) could have achieved the same
result by using his own secret key inside Sy (or S;), but nobody else could,
without one of the users’ key. Also, because there are 2n components in the
signature, but 2n — 1 randomization parameters and 1 perfectly symmetric
verification equation, it is easy to see that the joint distribution of the full
signature (¢;,.5;)"_; is the same regardless of which one of the n listed users
created it.

Hence, this is a ring signature, i.e., a witness-indistinguishable proof for the
disjunction “{mq }user, V {matuser, V ...V {my}user,”. The signature can be
shown to be unconditionally anonymous, and existentially unforgeable under the
n-Poly-SDH assumption [IT], which slightly generalizes the SDH assumption [9].

3.4 Mesh Signatures

The next step is to turn those ring signatures into something that is much more
expressive. Recall that ring signatures can be viewed as witness-indistinguishable
“disjunctions” of individual signatures. Since the disjunction L1V Lo V...V L, is
the least restrictive of all (non-trivial) propositional expressions over L1, ..., Ly,
it should be possible to express different statements by adding more constraints
to the signature. E.g., we could require that supplemental verification equa-
tions be satisfied conjointly. The “mesh signatures” of [I1I] are based on this
principle.

A classic result from [24] shows that any monotone propositional expression
over a set of literals can be represented efﬁciently and deterministically using
a system of linear equations {} ;" A jv; = }k+1 over the same number of
variables: a literal L; will be true in a true assignment if and only if the corre-
sponding variable v; has a non-zero value in the corresponding system solution
(of which there may be many).

In the construction of [I], the linear system coefficients \; ; will become
public exponents in the verification equations. Depending on the expression it
represents, a mesh signature (t;,.5;)" ; requires 1 < k 4+ 1 < n verification
equations (with the usual R; = AiB;niC’fi computable from public values):
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[1eSi, Ri) = e(h,g),
=1
[Tes: Ry =1,

i=1

n

HB(SZ,Rl)Alk =1.

i=1
To make a signature, the signer, or coalition of signers, must prove that the
propositional expression has a solution, i.e., that there is a vector of S; that
passes all the equations. This can be done by setting S; «— ((I"h®i)"/witmitz1t0)vi
given any solution vector (v1,...,v,) of the linear system. However, for every
index ¢ with a non-zero solution v; # 0, the signer(s) will be unable to create S;
unless they possess or are able to create the atomic signature (I"h%#)"/ w1 tm+=1t1)
Only for v; = 0 can they get by without it.

This procedure results in a valid signature, but not in an anonymous one. The
last step is thus to hide the witness, i.e., the vector (v, ..., ;) used to build the
S;. This is done by adding blinding terms to the .S; just as in the ring signature.
The result is an unconditionally anonymous signature for arbitrary monotone
propositional expressions.

The entire mesh signing process and its security proofs are somewhat more
involved. Full mesh signatures also require a presence of a dummy user “in the
sky” (with a public random public key and no known secret key), who will “sign”
a hash of the entire mesh expression in order to “seal” it. We refer the reader to
[11] for details.

3.5 Tracing Trapdoor

We now have an expressive anonymous signature, albeit not a traceable one. To
make mesh signatures traceable, we need to redefine the mesh signature scheme
in bilinear groups of composite order N. The factorization N = pq is a trapdoor
that is only known to the tracing authority. Let thus Gy ~ G, ® G,.

ESS signatures are defined as mesh signatures in a composite-order group G.
We do require however that the “main” generator g generate only the subgroup
G, of order p. That is, we impose that g’ =1 € G or equivalently g = 1 € G,.
Since the A;, B;, C;, and thus the R;, are powers of g, all those elements will
belong in the subgroup G,, of order p. It is easy to see that, since the verification
equation is of the form []e(S;, R;) = e(h, g), both sides will always evaluate into
the target subgroup of order p, with no contribution of order ¢q. It follows that
only the G, components of the S; will matter for ESS verification.

In order to provide a tracing capability, we pick h as a generator of the entire
group G, hence with a non-trivial component h # 1 € G,. The same will be true
for the public key I = h”. As a result, all the user-created atomic signatures of
the form S = (I'h%)"/¢) will also contain a non-trivial component S # 1 € G,
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which has no effect on the ESS verification equation, per the preceding argument.
These order-g components will be our tracers, since they appear in all atomic
signatures (which are powers of h € G), but not in any of the blinding coefficients
(which are powers of g € G,).

Since we now work in a composite-order group of order N, we redefine the
user’s signing exponents in Zy instead of Z,.

Remark that if ~ had no residue of order g, then everything would be in G,,.
It would be as if the subgroup G, did not exist, and the ESS scheme would
reduce to an information-theoretically untraceable mesh signature in G,. As the
Decision Subgroup assumption [I0] states that h € G and h € G, should look
the same to an outsider, it follows that our tracing mechanism cannot be public
and will thus require some trapdoor (in this case, the factorization of N).

3.6 Tracing Procedure

The presence of a non-trivial residue of order ¢ in A will act as a silent tracer for

lifting the anonymity of any signature, using the factorization of NV as trapdoor.
To unblind an ESS signature (¢;,5;)7,, the tracing authority raises each S;

to the power of p, to strip it from all components of order p. Then, for each i:

— If the residue (5;)P = 1, there was no contribution from h in S;, hence v; = 0,
and thus the truth value of the associated literal L; is “false”. Conclusion:
user ¢ did not participate in the creation of the ESS signature.

— If the residue (S;)P # 1, there was some h contribution in S;, hence v; # 0,
and thus the truth value of the associated literal L; is “true”. Conclusion:
(an atomic signature issued by) user i took part in the ESS signature.

The tracer can thus efficiently determine the exact set of users that are involved
(and in what capacity).

We emphasize that, unlike tracing schemes in many other contexts that can
only guarantee that one of the guilty parties will be exposed, here the tracing
authority finds out exactly how the signature was constructed, and thus uncovers
the identity of all of the culprits.

Notice also that such detailed “exhaustive tracing” requires signatures whose
size is (at least) linear in the size of the propositional expression. Hence, in that
respect, our scheme is optimally compact up to a constant factor.

3.7 Concurrent Join Protocol

As in [T9] we can define a Join protocol, using some standard techniques: an ex-
tractable commitment (Ext-Commit), a zero-knowledge proof of equality of the
discrete logarithms (NIZKPEgDL), and a zero-knowledge proof of knowledge of a
discrete logarithm (NIZKPoKDL). During this protocol, a future group member
(U;) interacts with the group manager (GM), in order to obtain a valid group
certificate (A;, B;,C;), with a private key (z;, i, 2:), with (y;, z;) not known
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by the group manager. We suppose, as in [I9] that there is a separated PKI
environment: each user U; has a personal secret key usk[i] and the corresponding
certified public key upk[i].

We refer to the full version of the paper for the details of the Join protocol.

3.8 The Full ESS Construction

The step-by-step construction outlined above gives us the complete ESS scheme.
The only operational differences with the mesh signature scheme of [I1]
are:

1. the setup, which asks for a bilinear group G of composite order N = pq, two
generators g € G, and h € G, and a group manager’s public key I' = h7;

2. the existence of two additional algorithms or protocols: one for joining the
group, the other for tracing a signature.

For reference purposes, the complete ESS construction in full detail as well as
security proofs can be found in the full version of the paper. The construction
follows exactly the outline given above. Most of the technicalities are borrowed
directly from the mesh signature scheme of [I1], with which the ESS scheme
shares many similarities.

4 Security

Theorem 1 (Anonymity). There is no PPT algorithm that wins the Expres-
sive Subgroup Signature anonymilty game over G with advantage € in time T,
unless the Decision Subgroup problem in G is decidable in time " ~ T with
advantage € > €/2.

Theorem 2 (Traceability). There is no PPT algorithm that wins the Expres-
sive Subgroup Signature traceability game over G with advantage € in time T,
unless the Decision Subgroup problem is decidable in time 7' with advantage €,
and mesh signatures in G, can be existentially forged in time 7" with advantage
€”, where 7' + 7" ~ 7 and € + €’ > ¢/2.

5 Conclusion

In this work, we have proposed a new generalization of the notion of group
signatures, that allows signers to cover the entire spectrum from complete dis-
closure to complete anonymity. Previous group signature constructions did not
provide any disclosure capability, or at best a very limited one (such as subset
membership). Our scheme offers a very powerful language for disclosing exaclty
in what capacity a subgroup of signers is making a signature on behalf of the
group.
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Abstract. We define a general model for consecutive delegations of sign-
ing rights with the following properties: The delegatee actually signing
and all intermediate delegators remain anonymous. As for group signa-
tures, in case of misuse, a special authority can open signatures to reveal
the chain of delegations and the signer’s identity. The scheme satisfies a
strong notion of non-frameability generalizing the one for dynamic group
signatures. We give formal definitions of security and show them to be
satisfiable by constructing an instantiation proven secure under general
assumptions in the standard model. Our primitive is a proper generaliza-
tion of both group signatures and proxy signatures and can be regarded
as non-frameable dynamic hierarchical group signatures.

1 Introduction

The concept of delegating signing rights for digital signatures is a well studied
subject in cryptography. The most basic concept is that of proxy signatures, in-
troduced by Mambo et al. [MUO96] and group signatures, introduced by Chaum
and van Heyst [CvH91]. In the first, a delegator transfers the right to sign on
his behalf to a proxy signer in a delegation protocol. Now the latter can produce
proxy signatures that are verifiable under the delegator’s public key. Security of
such a scheme amounts to unforgeability of proxy signatures, in that an adver-
sary cannot create a signature without having been delegated, nor impersonate
an honest proxy signer.

On the other hand, in a group signature scheme, an authority called the
1ssuer distributes signing keys to group members, who can then sign on behalf
of the group, which can be viewed as delegating the group’s signing rights to
its members—there is one single group signature verification key. The central
feature is anonymity, meaning that from a signature one cannot tell which one
of the group members actually signed. In contrast to ring signatures [RSTO1],
to preclude misuse, there is another authority holding an opening key by which
anonymity of the signer can be revoked. Generally, one distinguishes static and
dynamic groups, depending on whether the system and the group of signers
are set up once and for all or members can join dynamically. For the dynamic
case, a strong security notion called non-frameability is conceivable: Nobody—
not even the issuer nor the opener—is able to produce a signature that opens to
a member who did not sign. The two other requirements are traceability (every
valid signature can be traced to its signer) and anonymity, that is, no one except
the opener can distinguish signatures of different users.
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It is of central interest in cryptography to provide formal definitions of primi-
tives and rigorously define the notions of security they should achieve. Only then
can one prove instantiations of the primitive to be secure. Security of group sig-
natures was first formalized by Bellare et al. [BMWO03] and then extended to
dynamic groups in [BSZ05]. The model of proxy signatures and their security
were formalized by Boldyreva et al. [BPW03] [

The main result of this paper is to unify the two above-mentioned seemingly
rather different concepts, establishing a general model which encompasses proxy
and group signatures. We give security notions which imply the formal ones for
both primitives. Moreover, we consider consecutive delegations where all del-
egators (except the first of course) remain anonymous. As for dynamic group
signatures, we define an opening authority separated from the issuer and which
in addition might even be different for each user (for proxy signatures, a plausible
setting would be to enable the users to open signatures on their behalf). We call
our primitive anonymous proxy signatures, a term that already appeared in the
literature (see e.g. [SK02])—however without providing a rigorous definition nor
security proofs. As it is natural for proxy signatures, we consider a dynamic set-
ting allowing to define non-frameability which we extend to additionally protect
against wrongful accusation of delegation.

The most prominent example of a proxy signature scheme is “delegation-by-
certificate”: The delegator signs a document called the warrant containing the
public key of the proxy and passes it to the latter. A proxy signature then consists
of a regular signature by the proxy on the message and the signed warrant which
together can by verified using the delegator’s verification key only. Although not
adaptable to the anonymous case—after all, the warrant contains the proxy’s
public key—, a virtue of the scheme is the fact that the delegator can restrict
the delegated rights to specific tasks specified in the warrant. Since our model
supports re-delegation, it is conceivable that a user wishes to re-delegate only a
reduced subset of tasks she has been delegated for. We represent tasks by natural
numbers and allow delegations for arbitrary sets of them, whereas re-delegation
can be done for any subsets.

The primary practical motivation for the new primitive is GRID Computing,
where Alice, after authenticating herself, starts a process. Once disconnected, the
process may remain active, launch sub-processes and need additional resources
that require further authentication. Alice thus delegates her rights to the process.
On the one hand, not trusting the environment, she will not want to delegate all
her rights, which can be realized by delegation-by-certificate. On the other hand,
there is no need for the resources to know that it was not actually Alice who was
authenticated, which is practically achieved solely by full delegation, i.e., giving
the private key to the delegatee. While the first solution exposes the proxy’s
identity, the second approach does not allow for restriction of delegated rights

! Their scheme has later been attacked by [TL04]. Note, however, that our definition
of non-frameability prevents this attack, since an adversary querying PSig(-, warr, -)
and then creating a signature for task’ is considered successful (cf. Sect. B3)).
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nor provide any means to trace malicious signers. Anonymous proxy signatures
incorporate both requirements at one blow.

Another benefit of our primitive is that due to possible consecutiveness of
delegations it can be regarded as mnon-frameable, dynamic hierarchical group
signatures, a concept introduced by Trolin and Wikstrom [TWO05] for the static
setting.

After defining the new primitive and a corresponding security model, in order
to show satisfiability of the definitions, we give an instantiation and prove it
secure under the (standard) assumption that families of trapdoor permutations
exist. The problem of devising a more efficient construction is left for future work.
We emphasize furthermore that delegation in our scheme is non-interactive (the
delegator simply sends a warrant she computed w.r.t. the delegatee’s public key)
and does not require a secure channel.

2 Algorithm Specification

We describe an anonymous proxy signature scheme by giving the algorithms it
consists of. First of all, running algorithm Setup with the security parameter A
creates the public parameters of the scheme, as well as the issuing key ik given
to the issuer in order to register users and the opener’s certification key ock
given to potential openers. When a user registers, she and her opening authority
run the interactive protocol Reg with the issuer. I