

Springer Series in Reliability Engineering

For further volumes:

http://www.springer.com/series/6917

Ajit Kumar Verma • Srividya Ajit •

Manoj Kumar

Dependability of Networked
Computer-based Systems

123

Prof. Ajit Kumar Verma
Department of Electrical Engineering
Indian Institute of Technology Bombay
(IITB)
Powai, Mumbai 400076
India
e-mail: akvmanas@gmail.com

Prof. Srividya Ajit
Department of Civil Engineering
Indian Institute of Technology Bombay
(IITB)
Powai, Mumbai 400076
India
e-mail: asvidya@civil.iitb.ac.in

Dr. Manoj Kumar
System Engineering Section
Control Instrumentation Division
Bhabha Atomic Research Centre (BARC)
Trombay, Mumbai 400085
India
e-mail: kmanoj@barc.gov.in

ISSN 1614-7839

ISBN 978-0-85729-317-6 e-ISBN 978-0-85729-318-3

DOI 10.1007/978-0-85729-318-3

Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

� Springer-Verlag London Limited 2011

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant Laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Cover design: eStudio Calamar, Berlin/Figueres

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Dedicated to

Our Parents

Sri Kedar Prasad Verma & Smt Sushila Verma

Sri B.C. Khanapuri & Smt Vibhavati B. Khanapuri

Sri Gayanand Singh & Smt Droupdi Devi

Our Gurus

Bhagwan Sri Sathya Sai Baba

Paramhansa Swami Sathyananda Saraswati

Sri B. Jairaman & Smt Vijaya Jairaman

Dr. C.S. Rao & Smt Kasturi Rao

Our Teachers

Prof. A.S.R. Murthy (Reliability Engg., IIT Kharagpur)

Prof. M.A. Faruqi (Mechanical Engg., IIT Kharagpur)

Prof. N.C. Roy (Chemical Engg., IIT Kharagpur)

Foreword

A compelling requirement in today’s context of the prevalent use of complex

processes and systems in process and service industries, military applications,

aerospace automotive and transportation, logistic, and other, is to maintain high

dependability and security. The first casualty of integrated real time complex

systems is dependability owing to an combinatorial like explosion of possible

states, some with unacceptable probability levels and many unsafe states as well.

The theoretical foundation for analytical treatment of such systems is crucial to

their understanding, design and implementation. This book aims to explore the

analysis, simulation and limitations in the implementation of such complex sys-

tems, addressing a multitude of issues and challenges in the application of com-

puter-based systems in dependability and safety critical applications. In my

opinion, this book is exceptional as it fulfills a long felt need of engineers,

scholars, researchers and designers for a coherent, yet effective and efficient

treatment of such systems and problems, built up with a conceptual hierarchy that

starts from the basics.

The real-time systems also need to have an extremely important characteristic

feature, timeliness. Most of the contemporary research work focuses on worst-case

timing guarantees. A probabilistic measure of timeliness is the new buzzword in

the dependability community. A highlight of this book is its emphasis on the

probabilistic measures of dependability and timeliness. System designers usually

face several problems while choosing an appropriate technology (in particular, a

network) for a given project. The derivation of a timeliness hazard rate enables an

integrated dependability modeling of the system which in turn helps the system

designer in making decisions based on specific requirements and uniform mea-

sure(s). This book contains some detailed, well explained and intuitively appealing

examples which the practitioner may find directly applicable in the analysis and

solution of his or her problems.

I wish to congratulate the authors for their endeavors in bringing forth such a

timely and insightful book on the dependability of networked computer-based

systems. Their deep knowledge of the area, combined with vision concerning the

present and future challenges, have led to this remarkable book. I am sure that this

vii

book will serve as an invaluable guide for scholars, researchers and practitioners

interested and working in the field of critical applications where reliance on

automation is indispensable.

October 2010 Academician Janusz Kacprzyk

Professor, Ph.D., D.Sc., Fellow of IEEE, IFSA

President of the Polish Society for Operational

and Systems Research, Immediate Past President

of IFSA (International Fuzzy Systems

Association), Systems Research Institute,

Polish Academy of Sciences,

Warsaw, Poland

viii Foreword

Preface

This book is meant for research scholars, scientists and practitioners involved with

the application of computer-based systems in critical applications. Ensuring

dependability of systems used in critical applications is important due to the

impact of their failures on human life, investment and environment. The individual

aspects of system dependability—reliability, availability, safety, timeliness and

security are the factors that determine application success. To answer the question

on reliance on computers in critical applications, this book explores the integration

of dependability attributes within practical, working systems. The book addresses

the growing international concern for system dependability and reflects the

important advances in understanding how dependability manifests in computer-

based systems.

Probability theory, which began in the seventeenth century is now a well-

established branch of mathematics and finds applications in various natural and

social sciences, i.e. from weather prediction to predicting the risk of new medical

treatments. The book begins with an elementary treatment of the basic definitions

and theorems that form the foundation for the premise of this work. Detailed

information on these can be found in the standard books on probability theory and

stochastic theory, for a comprehensive appraisal. The mathematical techniques

used have been kept as elementary as possible and Markov chains, DSPN models

and Matlab code are given where relevant.

Chapter 1 begins with an introduction to the premise of this book, where

dependability concepts are introduced. Chapter 2 provides the requisite foundation

on the essentials of probability theory, followed by introduction to stochastic

processes and models in Chap. 3. Various dependability models of computer-based

systems are discussed in Chap. 4. Markov models for the systems considering safe

failures, perfect and imperfect periodic proof tests, and demand rate have been

derived. Analysis has been done to derive closed form solution for performance-

based safety index and availability.

In Chap. 5, medium access control (MAC) protocol mechanisms of three

candidate networks are presented in detail. The MAC mechanism is responsible

for the access to the network medium, and hence effects the timing requirement

ix

http://dx.doi.org/10.1007/978-0-85729-318-3_1
http://dx.doi.org/10.1007/978-0-85729-318-3_2
http://dx.doi.org/10.1007/978-0-85729-318-3_3
http://dx.doi.org/10.1007/978-0-85729-318-3_4
http://dx.doi.org/10.1007/978-0-85729-318-3_5

of message transmission. A comparison of network parameters is also presented to

provide an understanding of the various network protocols that can be used as

primary guidelines for selecting a network solution for a given application.

Methods to probabilistically model network induced delay of two field bus

networks, CAN, MIL-STD-1553B and Ethernet are proposed in Chap. 6. Hazard

rates are derived from discrete time process for a fault tolerant networked com-

puter system. Models are derived for the three dependability attributes—reliability,

availability and safety, of NRT systems in Chap. 7. Timeliness hazard rate is

modeled as reward rate.

We hope this book will be a very useful reference for practicing engineers and

research community alike in the field of networked computer-based systems.

Mumbai, October 2010 Ajit Kumar Verma

Srividya Ajit

Manoj Kumar

x Preface

http://dx.doi.org/10.1007/978-0-85729-318-3_6
http://dx.doi.org/10.1007/978-0-85729-318-3_7

Acknowledgments

We are indebted to Department of Electrical Engineering & Department of Civil

Engineering, IIT Bombay and Control Instrumentation Division, BARC for their

encouragement and support during the project.

Many of our friends, colleagues and students carefully went through drafts and

suggested many changes changed improving the readability and correctness of the

text. Many thanks to Shri U. Mahapatra, Shri G.P. Srivastava, Shri P.P. Marathe,

Shri R.M. Suresh Babu, Shri M.K. Singh, Dr. Gopika Vinod, Prof. Vivek Agarwal,

Prof. Varsha Apte and Prof. P.S.V. Nataraj for their suggestions. The help by

publishing staff, especially of Mr. Claire, in timely preparation of the book is also

appreciated.

Mumbai, October 2010 Ajit Kumar Verma

Srividya Ajit

Manoj Kumar

xi

Contents

1 Introduction . 1

1.1 Evolution of computer based systems 2

1.2 Application areas: safety-critical, life-critical. 3

1.3 A review of system failures. 4

1.4 Example: Comparison of system reliability 5

1.5 Dependability . 6

1.5.1 Basic concepts . 6

1.5.2 Basic Definitions and Terminology 8

1.6 Motivation . 10

1.7 Summary . 11

References . 11

2 Probability Theory. 15

2.1 Probability Models . 15

2.2 Sample Space, Events and Algebra of Events 16

2.3 Conditional Probability . 18

2.4 Independence of Events . 18

2.5 Exclusive Events . 19

2.6 Bayes’ Rule . 19

2.7 Random Variables . 20

2.7.1 Discrete Random Variables. 20

2.7.2 Continuous Random Variables 26

2.8 Transforms . 30

2.8.1 Probability Generating Function 30

2.8.2 Laplace Transform. 31

2.9 Expectations . 32

2.10 Operations on Random Variables . 33

2.11 Moments. 34

2.12 Summary . 35

xiii

http://dx.doi.org/10.1007/978-0-85729-318-3_1
http://dx.doi.org/10.1007/978-0-85729-318-3_1
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec50
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec50
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec11
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec11
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec15
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec15
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec16
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Sec16
http://dx.doi.org/10.1007/978-0-85729-318-3_1#Bib1
http://dx.doi.org/10.1007/978-0-85729-318-3_2
http://dx.doi.org/10.1007/978-0-85729-318-3_2
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec10
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec10
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec12
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec12
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec13
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec13
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec14
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec14
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec15
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec15
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec16
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec16
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec17
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec17
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec18
http://dx.doi.org/10.1007/978-0-85729-318-3_2#Sec18

3 Stochastic Processes and Models. 37

3.1 Introduction. 37

3.2 Classification of Stochastic Processes 38

3.3 The Random Walk . 39

3.4 Markov Chain . 40

3.4.1 Markov Processes with Discrete State

in discrete time . 41

3.4.2 Markov Processes with Discrete States

in Continuous Time . 42

3.5 Non-Markovian Processes . 44

3.5.1 Markov Renewal Sequence . 44

3.5.2 Markov Regenerative Processes. 45

3.6 Higher Level Modeling Formalisms . 46

3.6.1 Petri Nets . 47

3.6.2 Structural Extensions . 48

3.6.3 Stochastic Petri Nets . 49

3.6.4 Generalized Stochastic Petri Nets 51

3.6.5 Stochastic Reward Nets (SRN) 51

3.6.6 Deterministic and Stochastic Petri Net (DSPN) 53

3.6.7 Queueing Networks . 53

3.6.8 Stochastic Process Algebra (SPA) 55

3.7 Tools . 56

3.7.1 SPNP . 56

3.7.2 TimeNet . 57

3.8 Summary . 57

References . 57

4 Dependability Models of Computer-Based Systems 59

4.1 Introduction. 59

4.2 Dependability Attributes . 60

4.3 Reliability Models . 61

4.3.1 Combinatorial Models . 61

4.3.2 Dynamic Models . 62

4.3.3 Software Reliability . 65

4.4 Availability Models . 66

4.5 Safety Models . 67

4.5.1 Modeling of Common Cause Failures (CCF) 68

4.5.2 Safety Model of IEC 61508 . 70

4.5.3 System Model . 71

4.5.4 Performance Based Safety and Availability Indices 74

4.6 Examples . 78

4.6.1 Example 1 . 78

4.6.2 Example 2 . 82

4.7 Advantage of Modeling Safe Failures. 98

xiv Contents

http://dx.doi.org/10.1007/978-0-85729-318-3_3
http://dx.doi.org/10.1007/978-0-85729-318-3_3
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec50
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec50
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec50
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec9
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec9
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec100
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec100
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec200
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec200
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec300
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec300
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec400
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec400
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec500
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec500
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec401
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec401
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec600
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec600
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec700
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec700
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec19
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec19
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec20
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec20
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec21
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec21
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec22
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Sec22
http://dx.doi.org/10.1007/978-0-85729-318-3_3#Bib1
http://dx.doi.org/10.1007/978-0-85729-318-3_4
http://dx.doi.org/10.1007/978-0-85729-318-3_4
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec11
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec11
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec12
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec12
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec13
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec13
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec14
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec14
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec17
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec17
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec18
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec18
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec19
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec19
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec23
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec23
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec24
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec24
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec28
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec28
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec32
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec32

4.8 DSPN Based Safety Models . 99

4.9 Summary . 100

References . 102

5 Network Technologies for Real-Time Systems 105

5.1 Introduction. 105

5.2 Network Basics . 105

5.3 Medium Access Control (MAC) Protocols 106

5.3.1 Carrier Sense Multiple Access/Collision Detection

(CSMA/CD) . 106

5.3.2 Carrier Sense Multiple Access/Collision Resolution

(CSMA/CR) . 107

5.3.3 Carrier Sense Multiple Access/Collision Avoidance

(CSMA/CA) . 107

5.3.4 Time Division Multiple Access (TDMA) 107

5.3.5 Flexible Time Division Multiple Access (FTDMA) 108

5.3.6 Distributed Solutions Relying on Tokens 108

5.3.7 Master/Slave . 108

5.4 Networks . 109

5.4.1 Ethernet . 109

5.4.2 Controller Area Network (CAN) 112

5.4.3 MIL-STD-1553B . 113

5.5 Real-Time Scheduling . 115

5.5.1 Time-Driven Scheduling. 116

5.5.2 Priority-Driven Scheduling . 117

5.5.3 Share-Driven Scheduling . 118

5.6 Real-Time Analysis . 120

5.6.1 Task Model. 120

5.6.2 Utilisation-Based Tests . 121

5.6.3 Demand-Based Tests . 122

5.6.4 Response-Time Tests . 123

5.7 Comparison of Networks . 127

5.8 Summary . 127

References . 127

6 Response-Time Models and Timeliness Hazard Rate 131

6.1 Introduction. 131

6.2 Review of Response-Time Models . 131

6.2.1 Tagged Customer Approach . 131

6.2.2 Probabilistic Response-Time Model 136

6.3 Response-Time Models. 138

6.3.1 CAN . 138

6.3.2 MIL-STD-1553B . 149

6.3.3 Ethernet . 151

Contents xv

http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec33
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec33
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec34
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Sec34
http://dx.doi.org/10.1007/978-0-85729-318-3_4#Bib1
http://dx.doi.org/10.1007/978-0-85729-318-3_5
http://dx.doi.org/10.1007/978-0-85729-318-3_5
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec9
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec9
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec10
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec10
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec11
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec11
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec12
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec12
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec16
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec16
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec17
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec17
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec18
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec18
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec19
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec19
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec20
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec20
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec23
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec23
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec26
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec26
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec27
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec27
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec28
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec28
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec31
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec31
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec33
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec33
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec36
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec36
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec37
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Sec37
http://dx.doi.org/10.1007/978-0-85729-318-3_5#Bib1
http://dx.doi.org/10.1007/978-0-85729-318-3_6
http://dx.doi.org/10.1007/978-0-85729-318-3_6
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec6
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec15
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec15
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec18
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec18

6.4 System Response-Time Models . 152

6.4.1 Sample to Actuation Delay and Response-Time 152

6.4.2 Effect of Node Redundancy . 157

6.4.3 Dependence of Response-Time Between

Consecutive Cycles . 159

6.4.4 Failure/Repair Within the System 160

6.5 Timeliness Hazard Rate . 161

6.5.1 Example 1 . 162

6.5.2 Example 2 . 164

6.6 Summary . 167

References . 167

7 Dependability of Networked Computer-Based Systems 169

7.1 Introduction. 169

7.2 Background. 169

7.3 Reliability Modeling. 170

7.3.1 System Model . 170

7.3.2 Analysis . 172

7.4 Safety Modeling . 173

7.4.1 Assumptions . 173

7.4.2 System Model . 174

7.5 Availability Modeling. 176

7.5.1 Timeliness Hazard Rate . 177

7.6 Example . 178

7.7 Summary . 180

References . 182

Appendix A: MATLAB Codes . 185

xvi Contents

http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec21
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec21
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec22
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec22
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec25
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec25
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec26
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec26
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec26
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec29
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec29
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec30
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec30
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec31
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec31
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec32
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec32
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec33
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Sec33
http://dx.doi.org/10.1007/978-0-85729-318-3_6#Bib1
http://dx.doi.org/10.1007/978-0-85729-318-3_7
http://dx.doi.org/10.1007/978-0-85729-318-3_7
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec1
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec2
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec3
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec4
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec5
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec7
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec8
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec9
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec9
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec10
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec10
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec11
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec11
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec12
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec12
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec13
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Sec13
http://dx.doi.org/10.1007/978-0-85729-318-3_7#Bib1

Acronyms

CAN Controller area network

CSMA Carrier sense multiple access

CTMC Continuous time Markov chain

CCF Common cause failure

DC Diagnostic coverage

DD Dangerous detected (failure category in IEC-61508)

DU Dangerous undetected (failure category in IEC-61508)

DF Dangerous failure (failure category in IEC-61508)

DEUC Damage to EUC (or accident)

DSPN Deterministic stochastic Petri net

EMI Electromagnetic interference

EUC Equipment under control or process plant

MBF Multiple beta factor

MRM Markov reward model

MTBD Mean time between demands

MTTF Mean time to failure

NLFS Node level fault tolerance

NRT Networked real-time

NCS Networked control system

PES Programmable electronic systems

PFD Average probability of failure on demand

PFaD Average probability of failure on actual demand

PFH Probability of failure per hour

TDMA Time division multiple access

TTA Time triggered architecture

SF Safe failure (failure category in IEC-61508)

QoP Quality of performance

Ri Response time of ith message

Ji Queuing jitter of ith message

qi Queuing time for ith message

Ci Worst-case transmission time of ith message

xvii

dij(t) pdf of transmission delay from node i to node j

Dij(t) CDF of transmission delay from node i to node j

sx
i Random variable denoting random time at node i for function x

kT Timeliness hazard rate

E (�) Expectation or mean operator

Tproof Proof-test interval

mAv Manifested availability

FDU Dangerous undetected state of the safety system

FS Safe failure state of the safety system

kSF Hazard rate of a channel leading to SF

kDD Hazard rate of a channel leading to DD

kDU Hazard rate of a channel leading to DU

l Repair rate of a channel in FS

lp(t) Time dependent proof-test rate

karr Demand arrival rate (1/MTBD)

D Probability redistribution matrix

Q Infinitesimal generator matrix

KTT Transition matrix from transient state to transient states

KTA Transition matrix from transient state to absorbing states

xviii Acronyms

Chapter 1

Introduction

Rapid advances in microelectronics and networking technology have lead to

penetration of computers and networks into almost every aspect of our life. When

these system are used in critical applications, such as, nuclear power plant, avi-

onics, process plants and automobiles etc., failure of these systems could result in

loss of huge investment, effort, life and damage to environment. In such case,

dependability analysis becomes an important tool for decision making at all stages

of system life-cycle – design, development, operation and phaseout. In fact for

systems concerned with safety of critical facilities such as nuclear plants, dem-

onstration of dependability through analysis is a mandatory requirement before

system can be deployed.

Real-time systems refer to reactive computer-based systems, used in various

control and on line processing applications requiring responses in real-time [1].

These computer systems are usually a part of a big system or network. Examples

of such systems are fly-by-wire system of an aircraft, safety systems of a nuclear

reactor, control system of vehicles (such as cars) and network routers to mention a

few.

In real-time systems, missing deadline is as dangerous as producing incorrect

response (i.e. value). So, real-time system failure has two causes, i) value, and ii)

failing to produce response at correct time (i.e. timeliness). Most dependability

models do not consider timeliness explicitly. They use worst-case guarantee to

ensure timeliness. Worst-case analysis is a deterministic method of analysis, which

considers worst-case scenarios irrespective of their likelihood. This is in contrast

to component failures, where probabilistic methods are used for analysis. Two

separate analysis for two types of failures pose difficulty in decision making. A

probabilistic measure for timeliness and its incorporation in dependability models

could solve this problem by providing a single dependability measure.

In this book, a method has been outlined to estimate response-time distribution

(mainly for CAN and MIL-STD-1553B networks) and timeliness hazard rate.

A. K. Verma et al., Dependability of Networked Computer-based Systems,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-318-3_1,
� Springer-Verlag London Limited 2011

1

Dependability models have been developed for networked real-time (NRT)

systems, incorporating timeliness failures along with hardware failures.

Markov process and Markov regenerative process based model are used for

dependability modeling. For higher level modeling and automated solution, DSPN

based software tool- TimeNET can be used. For response-time distribution, basic

probability theory operator such as, addition, minimum, maximum etc. are used.

Use of timeliness failure in dependability analysis is an evolving concept. In

related works, task arrival is assumed to follow random arrival (Poisson). This

basic concept has been extended to systems with periodic/deterministic tasks

arrivals with asynchronous phase relation. The advantage of the proposed

dependability model is it makes it possible to compare various designs with a

single dependability measure considering both failures – value and timeliness.

1.1 Evolution of computer based systems

A typical diagram of a traditional real-time system is shown in Figure 1.1. The

parallel bus could be synchronous (PCI) or asynchronous (EISA, VME, CAMAC,

etc). To acquire physical inputs and generate physical outputs, input-output

modules are used. Memory module(s) are used to store data and communication

module(s) are used for communication with other systems. Processor module

usually contain the computer (or processor) and performs the required logical &

arithmetic operations as per the stored software.

Traditional real-time systems have a point-to-point communication, i.e. dedi-

cated wires connecting computer with input points (or sensors) and output points

Parallel (synchronous or asynchronous) bus

Input/output

module(s)
Processor

Module(s)

Memory

module(s)

Communication

module(s)

Fig. 1.1 A typical diagram of traditional real-time systems

2 1 Introduction

(or actuators) [2–7]. Disadvantages of this approach [2, 3] includes lack of

following:

1. Modularity

2. Decentralization of control

3. Integrated diagnosis

4. Quick and easy maintenance

5. Low cost

A schematic of a networked real-time system is shown in Figure 1.2.

Here system is composed of nodes interconnected through one or more shared

communication network. The nodes are categorized in three groups; sensor,

processor and actuators.

Networked real-time system is one which has different nodes carrying out

different aspects of system’s function and uses network to interact.

Networked system removes most of the limitations and offers cost effectiveness

due to reduced cost of following:

1. Installation

2. Reconfiguration

3. Maintenances

The distributed nature of networked systems also introduces some problems,

namely:

1. Network induced time varying delay [8]

2. Control system stability [9]

3. QoP [8]

1.2 Application areas: safety-critical, life-critical

Main characteristics of real-time systems that distinguishes them from others is

that the correctness of the system depends on value as well as time of the response.

Real-time systems that used in critical applications such as, nuclear, avionics and

S1 Si

Sensors

P1 Pj

Processors
or

Controllers

A1 Ak

Actuators

Communication Network(s)

Fig. 1.2 A typical diagram of networked real-time systems [39, 40]

1.1 Evolution of computer based systems 3

automobiles etc. Their failure can cause damage to huge investment, effort, life

and/or environment. Based on the function(s) and extent of failure, these real-time

systems are categorized in the following three types:

1. Safety-critical systems: Systems required to ensure safety of EUC (equipment

under control), people and environment. Examples include, shutdown system of

nuclear reactor, digital flight control computer of aircraft etc.

2. Mission-critical systems: Systems whose failure results in failure of mission.

For example, control & coding unit (CCU) of an avionic system, navigation

system of an spacecraft etc.

3. Economically-critical systems: Systems whose failure result in unavailability

of EUC, causing massive loss of revenue. For example, Reactor control system

of nuclear power plant.

Dependability attributes [10] for different kind of systems are different. For

safety-critical systems, the dependability attribute, safety [11] is of concern.

Reliability is the appropriate dependability measure for mission-critical systems

[12–14]. Similarly, for economically-critical systems the dependability measure

availability is of importance [15].

Extensive literature exists on dependability modeling of programmable

electronic systems and/or real-time systems, i) Safety [11, 16–21], ii) Reliability

[7, 13, 22–27], and iii) Availability [13–15]. Reliability models for soft real-time

systems are discussed in [28–30]. Networked real-time system like real-time

systems may fail due to value or timeliness.

1.3 A review of system failures

With rapid development in electronics, computer and communication technology,

new technology based system has penetrated into almost every aspect of our

society. These development coupled with improvement in productivity, yield and

efficiency has resulted in cost effective deployment of these systems. These com-

puter and communication systems have become the underpinning of many national

infrastructures such as telecommunications, transport, water supply, electric power

grid, banking and financial services, governmental services, and national defense

systems, etc., which are vital to all crucial economic and social functions.

Besides the huge benefits obtained from networked systems, there exist

remarkable risks and threats when a failure occurs. Some major network failure

that have occurred during the past two decades are listed below:

• Outage of ARPAnet - the precursor of internet - for 4 hours on 27 October 1980.

The cause of the problem include the lack of parity checking in router memory.

• 9-hour nationwide long distance service outage due to software bug in signaling

system. It incurred about $60 million loss in revenue and a substantial damage to

AT&T’s reputation as a reliable long distance provider.

4 1 Introduction

• Network outage for three day in a Medical center in Massachusetts in Nov.

2002. The network outage interrupted the hospital’s Web-based applications

such as email, patient monitoring, clinical records management, and prescription

ordering. The cause of the problem was found to be a medical software pro-

ducing excessive traffic and a faulty configuration in structure propagating the

overload throughout the whole network.

From the above incidents it is clear that a networked system faces threats from

three sources:

1. The system may have faults occurring in its hardware and faults present in its

software subsystem.

2. A networked system tend to be fragile under adverse environmental conditions

such as storms, earthquakes, flooding, fires, cable cut ands and power outages.

3. The most troubling aspect of present networked systems’ weakness may come

from malicious attacks.

The first problem has been tried with the help of fault tolerant techniques, fault

diagnostics and fault removal. Today’s hardware systems could commonly reduce

the failure rate to a negligible values so that hardware faults are not a significant

contributor to a system failures. On the other hand, software reliability and quality

is far from satisfactory with its rapid growth in size and complexity. Software

faults accounts for a substantial part for a system failures, and the situation is

usually worsened by strict time constraints on functionality delivery in a com-

petitive business environment.

Adequate redundancy and diversity seems to be the key for second problem.

Diversity is important as common cause failure may defy redundancy, i.e. all

redundant system might fail together.

The Internet has created an open universe to all people and organizations

around the globe to interact with each other. However, this openness and the

accessibility to a huge volume of information and computing resources may be

taken advantage of by hackers, terrorists, and hostile states to launch attacks.

Malicious attacks are evolving along with the development of the Internet itself.

The same virtue of the Internet design that provides flexibility and productivity

also makes the attacks difficult to predict, identify, and defend against.

1.4 Example: Comparison of system reliability

Let’s consider a system with following reliability requirement, the system reli-

ability for a mission time of 10,000 hrs with repair, shall be 0.9. The system

implementation has three options, i) an analog, ii) a processor-based, and iii) a

networked based.

Analog implementation uses analog components. Analog systems do not have

sharing of resources, so for each function a dedicated resource is available.

Also, they have limited fault-diagnosis and fault-coverage. Processor-based

1.3 A review of system failures 5

implementation on the other hand are quite simple, as most of the complex

functions are implemented on a single processor. They have detailed fault-diag-

nosis and very good coverage. They can be easily interfaced with industry standard

communication link, through which fault information may be communicated,

displayed, stored and a detailed report can be generated. All this helps in a lower

time to repair-time. Networked based system has all advantages of processor-based

system, with much more modularity, i.e. further reduced repair-time and cost.

Reliability values considering hardware failures and repair-time for the three

options are given in Table 1.1.

From the table it seems that network-based system gives better reliability. But

the question is whether all failures mechanisms have been considered for processor

and network-based system. These system may fail due to missing of time deadline.

This problem of missing deadline is manageable to some extent in processor-based

system but in networked-based system it is really a challenge. So, Table 1.1 is of

limited use in making decision of which system will give better reliability - failure-

free operation - in application.

Let probability of missing deadline for the mission time for processor and

network-based system is given as 0.95 and 0.9, respectively, by some means. Now,

the system reliability considering deadline miss is given in Table 1.2.

From Table 1.2, it is clear that all three systems provides similar level of

reliability. This makes the comparison process uniform and simple.

The book provide methods which enable getting us the probability of deadline

miss and their incorporation in dependability models.

1.5 Dependability

1.5.1 Basic concepts

Dependability is a collective term used to describe the ability to deliver service that

can justifiably be trusted [10]. The service delivered by a system is its behavior as it

is perceived by its user(s); a user is another system (physical, human) that interacts

Table 1.1 Reliabilities
values

R(10000)

Analog system 0.91

Process-based system 0.93

Network-based system 0.97

Table 1.2 Reliabilities
values with probability of
deadline missing

R(10000)

Analog system 0.91

Process-based system 0:93� 0:99 ¼ 0:9207

Network-based system 0:97� 0:95 ¼ 0:9215

6 1 Introduction

with the former at the service-interface. The function of a system is what the system

is intended for, and is described by the system specification.

As per Laprie et al [10] concept of dependability consists of three parts: the

threat to, the attributes of, and the means by which dependability is attained.

1.5.1.1 Threats

The threats are mainly three, failure, error and fault [10]. A system failure is an

event that occurs when the delivered service deviates from correct service. A

failure is a transition from correct service to incorrect service. An error is that part

of system state that may cause a subsequent failure: a failure occurs when an error

reaches the service interface and alters the service. A fault is the adjudged or

hypothesized cause of an error. A fault is active when it produces an error,

otherwise it is dormant.

1.5.1.2 Attributes

Dependability is an integrative concept that encompasses the following attributes:

• Availability: readiness for correct service [10, 31]

• Reliability: continuity of correct service [10, 31]

• Safety: absence of catastrophic consequences on the user(s) and environment

[10, 32, 11]

• Confidentiality: absence of unauthorized disclosure of information [10, 31,

33, 34]

• Integrity: absence of improper system state alteration [10, 31, 33, 34]

• Maintainability: ability to undergo repairs and modifications [10, 31]

1.5.1.3 Means

Traditionally combination of following means is used for development of

dependable computing system [10, 31]:

• Fault prevention: means to prevent the occurrence or introduction of faults

• Fault tolerance: means to deliver correct service in the presence of faults

• Fault removal: means to reduce the number or severity of faults

Another means to improve dependability has been proposed by Laprie et al

[10], it is fault forecasting.

1.5 Dependability 7

1.5.2 Basic Definitions and Terminology

Fault tolerance is the ability of a system to continue to perform its tasks after

occurrence of faults. The fault-tolerance requires fault detection, fault containment,

fault location, fault recovery and/or fault masking [12]. The definition of these terms

is as follows:

• Fault detection is the process of recognizing that a fault has occurred.

• Fault containment is the process of isolating a fault and preventing the effects of

that from propagating throughout the system.

• Fault location is the process of determining where a fault has occurred so that an

appropriate recovery can be implemented.

• Fault recovery is the process of remaining operational or regaining operational

status via reconfiguration even in the presence of fault.

• Fault masking is the process that prevents faults in a system from introducing

errors into the informational structure of that system. A system employing fault

masking achieves fault tolerance by ‘‘hiding’’ faults. Such systems do not

require that fault be detected before it can be tolerated, but it is required that the

fault be contained.

Systems that do not use fault masking require fault detection, fault location and

fault recovery to achieve fault tolerance. Redundancy is essential for achieving

fault tolerance. Redundancy is simply addition of information, resources, or time

beyond what is needed for normal system operation. The redundancy can take any

of the following form:

1. Hardware Redundancy is the addition of extra hardware, usually for the pur-

pose of either detecting or tolerating faults.

2. Software Redundancy is the addition of extra software, beyond what is needed

to perform a given function, to detect and possibly tolerate faults.

3. Information Redundancy is the addition of extra information beyond what is

needed to implement a given function.

4. Time redundancy uses additional time to perform the functions of a system

such that fault detection and often fault tolerance can be achieved.

1.5.2.1 Hardware Redundancy

The three basic form of redundancy:

1. Passive techniques use the concept of fault masking to hide the occurrence of

faults and prevent the fault from resulting in errors. Examples of passive

redundancy are Triple Modular Redundancy (TMR), N-Modular redundancy

etc, where majority voting or median of the module outputs are taking to decide

the final output and mask the fault of module(s).

8 1 Introduction

2. Active techniques also referred as dynamic method, achieves fault tolerance by

detecting the existence of faults and performing some action to remove the

faulty hardware from the system. Examples are Duplication with comparison,

standby sparing (cold or hot) etc, where faulty module is detected and control is

transferred to the healthy one.

3. Hybrid techniques combine the attractive features of both the passive and active

approaches. Fault masking is used in hybrid systems to prevent result from

being generated. Fault detection, fault location, and fault recovery are also used

in the hybrid approaches to improve fault tolerance by removing faulty hard-

ware and replacing it with spares. Examples are N-Modular redundancy with

spare, Self-purging redundancy, sift-out modular redundancy etc, which uses

fault masking as well as reconfiguration.

1.5.2.2 Information Redundancy

Additional information is stored with the data in following forms:

1. Parity

2. m-of-n codes

3. duplication codes

4. checksums

5. cyclic codes

6. arithmetic codes, etc.

1.5.2.3 Time Redundancy

Time redundancy methods attempt to reduce the amount of extra hardware at the

expense of using additional time. As it is clear, above two methods require use of

extra hardware. So time redundancy becomes important in applications where

more hardware cannot be put, but extra time can be provided using devices of

higher speed.

1. Transient Fault Detection The basic concept of the time redundancy is the

repetition of computations in ways that allow faults to be detected. In transient

fault detection the concept is to perform the same computation two or more

times and compare the results to determine if a discrepancy exists. If an error is

detected, the computations can be performed again to see if the disagreement

remains or disappears. Such approaches are often good for detecting errors

resulting from transient faults, but they cannot protect against errors resulting

from permanent faults.

2. Permanent Fault Detection One of the biggest potentials of time redundancy is

the ability to detect permanent faults while using a minimum of extra hardware.

The approaches for this are as follows:

a. Alternating Logic

b. Recomputing with Shifted Operands

1.5 Dependability 9

c. Recomputing with Swapped Operands

d. Recomputing with Duplication with Comparison

3. Recomputation for Error Correction Time redundancy approaches can also

provide error correction of logical operations if the computations are repeated

three or more times. Limitation is this approach cannot work for arithmetic

operations because the adjacent bits are not independent.

1.5.2.4 Software Redundancy

Software redundancy may come in many forms starting from few lines of extra

code to complete replica of program. There could be few lines of code to check the

magnitude of a signal or as a small routine used to periodically test a memory by

writing and reading specific locations. The major software redundancy techniques

are as follows:

1. Consistency check uses a priori knowledge about the characteristics of infor-

mation to verify the correctness of that information.

2. Capability checks are performed to verify that a system possesses the capability

expected.

3. N-Version Programming: Software does not break as hardware do, but instead

software faults are the result of incorrect software designs or coding mistakes.

Therefore, any technique that detects faults in software must detect design

flaws. A simple duplication and comparison procedure will not detect software

faults if the duplicated software modules are identical, because the design

mistakes will appear in both modules.

The concept of N-version programming allows certain design flaws in software

module to be detected by comparing design, code and results of N-versions of

same software.

From the above discussion it is clear that use of time and software redundancy

and reconfigurable hardware redundancy reduces the total hardware for achieving

fault-tolerance. In case of distributed systems, processing units called nodes, are

distributed and communicate through communication channels. Processing a task/

job requires multiple nodes. System can be made fault-tolerant by transferring its

processing to a different nodes, in case of error. Here system reconfigure itself and

make use of time redundancy, as the new node has to process the tasks/jobs of the

failed node in addition to its own.

1.6 Motivation

Real-time system used in critical applications are designed in accordance with

stringent guidelines and codes [35–38]. They are fault-tolerant at hardware and

protocol levels through redundancy and indulgent protocols [38], respectively.

10 1 Introduction

Software application residing in these systems, has deterministic execution cycle

[34, 37]. In literature, there is lack of probabilistic models for timeliness failures.

In literature, for real-time systems dependability attribute – reliability – is

mainly considered. While different dependability attributes may be required based

on the criticality of system failures, such as safety and availability.

A unified dependability model for NRT systems considering factors affecting

value and timeliness will provide a rational platform to assess the dependability of

NRT systems. These limitations are inspiration for this book.

1.7 Summary

Real-time systems has one additional failure mechanism, i.e. failure due to

deadline miss. When networked systems are used in real-time application this

failure mechanism becomes much more important. For ensuring timeliness, mostly

worst-case response-time guarantees are used, which are deterministic. Systems

with different timing characteristic cannot be compared based on a given

dependability measure, as dependability models do not consider timeliness.

The chapter points out this limitation with the help of an example. A refresher of

means to achieve dependability is given for the sake of completeness.

References

1. Buttazzo GC (2003) Hard Real-time Computing Systems - Predictable Scheduling
Algorithms and Applications. Springer

2. Lian F-L (2001) Analysis, Design, Modeling, and Control of Networked Control Systems.
PhD thesis, University of Michigan

3. Lian F-L, Moyne J, Tilbury D (2001) Performance evaluation of control networks: Ethernet,
controlnet, and devicenet. IEEE Control System Magazine 21:66–83

4. Lian F-L, Moyne J, Tilbury D (2002) Network design consideration for distributed control
systems. IEEE Transaction on Control System Technology 10:297–307

5. Nilsson J (1998) Real-Time Control Systems with Delays. PhD thesis Lund Institute of
Technology, Sweden

6. Nilsson J, Bernhardsson B, Wittenmark B (1998) Stochastic analysis and control of real-time
systems with random time delays. Automatica 34:57–64

7. Philippi S (2003) Analysis of fault tolerant and reliability in distributed real-time system
architectures. Reliability Engineering and System Safety 82:195–206

8. Yepez J, Marti P, Fuertes JM (2002) Control loop performance analysis over networked
control systems. In: Proceedings of IECON2002

9. Zhang W, Branicky MS, Phillips SM (2001) Stability of networked control systems. IEEE
Control System Magazine, p 84–99

10. Avizienis A, Laprie J-C, Randell B (2000) Fundamental concepts of dependability. In: Proc.
of 3rd Information Survivability Workshop, p 7–11

11. IEC 61508: Functional safety of electric/electronic/programmable electronic safety-related
systems, Parts 0-7; Oct. 1998-May (2000)

1.6 Motivation 11

12. Johnson BW (1989) Design and Analysis of Fault-Tolerant Digital Systems. Addison Wesley
Publishing Company

13. Mishra KB (1992) Reliability Analysis and Prediction. Elsevier
14. Trivedi KS (1982) Probability and Statistics with Reliability, Queueing, and Computer

Science Applications. Prentice-Hall, Englewood Cliffs New Jersey
15. Varsha Mainkar. Availability analysis of transaction processing systems based on user

perceived performance. In: Proceedings of 16th Symposium on Reliable Distributed Systems,
Durham, NC, Oct. 1997.

16. Zhang T, Long W, Sato Y (2003). Availability of systems with self-diagnostics components-
applying markov model to IEC 61508-6. Reliability Engineering and System Safety
80:133–141

17. Bukowski JV (2001) Modeling and analyzing the effects of periodic inspection on the
performance of safety-critical systems. IEEE Transaction Reliability 50(3):321–329

18. Choi CY, Johnson BW, Profeta III JA (1997) Safety issues in the comparative analysis of
dependable architectures.IEEE Transaction Reliability 46(3):316–322

19. Summers A (2000) Viewpoint on ISA TR 84.0.02-simplified methods and fault tree
analysis.ISA Transaction 39(2):125–131

20. Bukowski JV (2005) A comparison of techniques for computing PFD average. In: RAMS
2005 590–595

21. Goble WM, Bukowski JV (2001) Extending IEC 61508 reliability evaluation techniques to
include common circuit designs used in industrial safety systems. In: Proc. of Annual
Reliability and Maintainability Symposium 339–343

22. Khobare SK, Shrikhande SV, Chandra U, Govidarajan G (1998) Reliability analysis of micro
computer modules and computer based control systems important to safety of nuclear power
plants. Reliability Engineering and System Safety 59(2):253–258

23. Jogesh Muppala, Gianfranco Ciardo, Trivedi KS (1994). Stochastic reward nets for reliability
prediction. Communications in Reliability, Maintainability and Serviceability 1(2):9–20

24. Kim H, Shin KG (1997) Reliability modeling of real-time systems with deadline information.
In: Proc. of IEEE Aerospace application Conference 511–523

25. Kim H, White AL, Shin KG (1998) Reliability modeling of hard real-time systems.
In: Proceedings of 28th Int. Symp. on Fault Tolerant Computing 304–313

26. Tomek L, Mainkar V, Geist RM, Trivedi KS (1994) Reliability modeling of life-critical, real-
time systems. Proceedings of the IEEE 82:108–121

27. Lindgren M, Hansson H, Norstrom C, Punnekkat S (2000) Deriving reliability estimates of
distributed real-time systems by simulation.In: Proceeding of 7th International Conference on
Real-time Computing System and Applications 279–286

28. Mainkar V, Trivedi KS (1994) Transient analysis of real-time systems using deterministic
and stochastic petri nets. In: Int’l Workshop on Quality of Communication-Based Systems

29. Mainkar V, Trivedi KS (1995) Transient analysis of real-time systems with soft deadlines.
In: Quality of communication based systems

30. Muppala JK, Trivedi KS Real-time systems performance in the presence of failures. IEEE
Computer Magazine 37–47 May 1991.

31. Avizienis A, Laprie J-C, Randell B, Landwehr C (2004) Basic concepts and taxonomy of
dependable and secure computing. IEEE Transaction Dependable and Secure Computing
1(1):11–33

32. Atoosa Thunem P-J (2005). Security Research from a Multi-disciplinary and Multi-sectoral
Perspective. Lecture Notes in Computer Science (LNCS 3688). Springer Berlin / Heidelberg
381–389

33. Ross J.Anderson (2001) Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley Computer Publishing, USA

34. MIL-STD-1553B: Aircraft internal time division command/response multiplex data bus, 30
April 1975.

35. AERB/SG/D-25: Computer based systems of pressurised heavy water reactor, 2001.

12 1 Introduction

36. Safety guide NS-G-1.3 Instrumentation and control systems important to safety in nuclear
power plants, 2002.

37. IEC 60880-2.0: Nuclear power plants - instrumentation and control systems important to
safety - software aspects for computer-based systems performing category a functions, 2006.

38. Keidar I, Shraer A (2007) How to choose a timing model? In: Proc. 37th Annual IEEE/IFIP
Int. Conf. on Dependable Systems and Networks (DSN’07)

39. Yang H, Sikdar B (2007) Control loop performance analysis over networked control systems.
In: Proceedings of ICC 2007 241–246

40. Yang TC Networked control systems: a brief survey. IEE Proc.-Control Theory Applications
153(4):403–412, July 2006.

References 13

Chapter 2

Probability Theory

Probability theory deals with the study of events whose precise occurrence cannot

be predicted in advance. These kind of events are also termed as random events.

For example, a toss of a coin, the result may be either HEAD or TAIL. The precise

result cannot be predicted in advance, hence the event—tossing a coin—is an

example of random event.

Probability theory is usually discussed in terms of experiments and possible

outcomes of the experiments.

2.1 Probability Models

Probability is a positive measure associated with each simple event. From a strict

mathematical point of view it is difficult to define the concept of probability. A

relative frequency approach, also called the posteriori approach is usually used to

define probability.

In classical probability theory, all sample spaces are assumed to be finite, and

each sample point is considered to occur with equal frequency. The definition of

the probability P of an event A is described by relative frequency by which A

occurs:

P Að Þ ¼ h

n
ð2:1Þ

where h is the number of sample points in A and n is the total number of sample

points. This definition is also called probability definition based on relative

frequency.

Probability theory is based on the concepts of sets theory, sample space, events

and algebra of events. Before proceeding ahead, these will be briefly reviewed.

A. K. Verma et al., Dependability of Networked Computer-based Systems,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-318-3_2,
� Springer-Verlag London Limited 2011

15

2.2 Sample Space, Events and Algebra of Events

Probability theory is study of random experiments. The real life experiments may

consist of the simple process of noting whether a component is functioning

properly or has failed; measuring the response time of a system; queueing time at a

service station. The result may consist of simple observations such as ‘yes’ or ‘no’

period of time etc. These are called outcomes of the experiment.

The totality of possible outcomes of a random experiment is called sample

space of the experiment and it will be denoted by letter ‘S’.

The sample space is not always determined by experiment but also by the

purpose for which the experiment is carried out.

It is useful to think of the outcomes of an experiment, the elements of the

sample space, as points in a space of one or more dimensions. For example, if an

experiment consists of examining the state of a single component, it may be

functioning correctly, or it may have failed. The sample space can be denoted as

one-dimension. If a system consists of 2 components there are four possible

outcomes and it can be denoted as two-dimensional sample space. In general, if a

system has n components with 2 states, there are 2n possible outcomes, each of

which can be regarded as a point in n-dimensional space.

The sample space is conventionally classified according to the number of

elements they contain. If the set of all possible outcomes of the experiment is

finite, then the associated sample space is a finite sample space. Finite sample

space is also referred as countable or a discrete sample space.

Measurement of time—in response-time, queueing time, time till failure—

would have an entire interval of real numbers as possible values. Since the interval

of real number cannot be enumerated, they cannot be put into one-to-one corre-

spondence with natural numbers—such a sample space is said to be uncountable or

non denumerable. If the elements of a sample space constitute a continuum, such

as all the points of a line, all the points on a line segment, all the points in a plane,

the sample space is said to be continuous.

A collection or subset of sample points is called an event. Means, any statement

of conditions that defines this subset is called an event. The set of all experimental

outcomes (sample points) for which the statement is true defines the subset of the

sample space corresponding to the event. A single performance of the experiment

is known as trial. The entire sample space is an event called the universal event,

and so is the empty set called the null or impossible event. In case of continuous

sample space, consider an experiment of observing the time to failure of a com-

ponent. The sample space, in this case may be thought of as the set of all non-

negative real numbers, or the interval ½0;1Þ ¼ ftj0� t\1g.
Consider an example of a computer system with five identical tape drives. One

possible random experiment consists of checking the system to see how many tape

drives are currently available. Each of the tape drive is in one of two states: busy

(labeled 0) and available (labeled 1). An outcome of the experiment (a point

in sample space) can be denoted by a 5-tuple of 0’s and 1’s. A 0 in position i of the

16 2 Probability Theory

5-tuple indicates that tape drive i is busy and a 1 indicates that it is available. The

sample space S has 25 ¼ 32 sample points.

A set is a collection of well defined objects. In general a set is defined by capital

letter such as A;B;C; etc. and an element of the set by a lower case letter such as

a; b; c; etc.
Set theory is a established branch of mathematics. It has a number of opera-

tions, operators and theorems. The basic operators are union and intersection.

Some of the theorems are given below:

1. Idempotent laws:

A [A ¼ A A \ A ¼ A ð2:2Þ

2. Commutative laws:

A [B ¼ B [A A \ B ¼ B \ A ð2:3Þ

3. Associative laws:

A [ðB [CÞ ¼ ðA [BÞ [C ¼ A [B [C

A \ ðB \ CÞ ¼ ðA \ BÞ \ C ¼ A \ B \ C
ð2:4Þ

4. Distributive laws:

A \ ðB [CÞ ¼ ðA \ BÞ [ðA \ CÞ
A [ðB \ CÞ ¼ ðA [BÞ \ ðA [CÞ ð2:5Þ

5. Identity laws:

A [/ ¼ A A \ / ¼ /

A [U ¼ U A \ U ¼ A
ð2:6Þ

6. De Morgan’s laws:

A [Bð Þ ¼ A \ B

A \ Bð Þ ¼ A [B
ð2:7Þ

7. Complement laws:

A [A ¼ U A \ A ¼ /

A
� �

¼ A U ¼ / / ¼ U
ð2:8Þ

8. For any sets A and B:

A ¼ ðA \ BÞ [ðA \ BÞ ð2:9Þ

A set of a list of all possible outcomes of an experiment is called sample space.

The individual outcome is called sample point. For example, in an experiment of

throwing a dice, the sample space is set of f1; 2; 3; 4; 5; 6g.

2.2 Sample Space, Events and Algebra of Events 17

If the sample space has a finite number of points it is called a finite sample

space. Further, if it has many points as there are natural numbers it is called a

countable finite sample space or discrete sample space. If it has many points as

there are points in some interval it is called a non-countable infinite sample space

or a continuous sample space.

An event is a subset of sample space, i.e. it is a set of possible outcomes. An

event which consists of one sample point is called a simple event.

2.3 Conditional Probability

Condition probability deals with the relation or dependence between two or more

events. The kind of questions dealt with are ‘the probability that one event occurs

under the condition that another event has occurred’.

Consider an experiment, if it is known that an event B has already occurred,

then the probability that the event A has also occurred is known as the conditional

probability. This is denoted by PðAjBÞ, the conditional probability of A given B,

and it is defined by

P AjBð Þ ¼ P A \ Bð Þ
P Bð Þ ð2:10Þ

2.4 Independence of Events

Let there are two events A and B. It is possible for the probability of an event A to

decrease, remain the same, or increase given that event B has occurred. If the

probability of the occurrence of an event A does not change whether or not event B

has occurred, we are likely to conclude that two events are independent if and only if:

P A Bjð Þ ¼ P Að Þ ð2:11Þ

From the definition of conditional probability, we have [provided PðAÞ 6¼ 0 and

PðBÞ 6¼ 0]:

P A \ Bð Þ ¼ P Að ÞP B Ajð Þ ¼ P Bð ÞP A Bjð Þ ð2:12Þ

From this it can be concluded that the condition for the independence of A and

B can also be given either as PðAjBÞ ¼ PðAÞ or as PðA \ BÞ ¼ PðAÞPðBÞ. Note
that PðA \ BÞ ¼ PðAÞPðBjAÞ holds whether or not A and B are independent, but

PðA \ BÞ ¼ PðAÞPðBÞ holds only when A and B are independent.

Now, events A and B are said to be independent if

P A \ Bð Þ ¼ P Að ÞP Bð Þ ð2:13Þ

18 2 Probability Theory

2.5 Exclusive Events

An event is a well defined collection of some sample points in the sample space.

Two events A and B in a universal sample space S are said to be exclusive events

provided A \ B ¼ /. If A and B are exclusive events, then it is not possible for

both events to occur on the same trail.

A list of events A1;A2; . . .;An is said to be mutually exclusive if and only if:

Ai \ Aj ¼
Ai; if i ¼ j

/; otherwise

�

ð2:14Þ

So, a list of events is said to be composed of mutually exclusive events if no

point in the sample space is common in more than one event in the list.

A list of events A1;A2; . . .;An is said to be collectively exhaustive, if and only if:

A1 [A2 [. . . [An ¼ S ð2:15Þ

2.6 Bayes’ Rule

Bayes’ rule is mainly helpful in determining a events probability from conditional

probability of other events (exhaustive) in the sample space. Let A1;A2; . . .;Ak

be mutually exclusive events whose union is the sample space S. Then for any

event A,

P Að Þ ¼
X

n

i¼1

P A Aijð ÞP Aið Þ ð2:16Þ

The above relation is also known as the theorem of total probability.

In some experiments, a situation often arises in which the event A is known to

have occurred, but it is not known directly which of the mutually exclusive and

collectively exhaustive events A1;A2; . . .;An has occurred. In this situation, to

evaluate PðAijAÞ, the conditional probability that one of these events Ai occurs,

given that A occurs. By applying the definition of conditional probability followed

by the use of theorem of total probability, it comes out:

P Ai Ajð Þ ¼ P Ai Ajð Þ
P Að Þ

¼ P A Aijð ÞP Aið Þ
P

j

P A Aj

�

�

� �

P Aj

� �

ð2:17Þ

This relation is known as Bayes’ rule. From these probabilities of the events

A1;A2; . . .;Ak which can cause A to occur can be established. Bayes’ theorem

makes it possible to obtain PðAjBÞ from PðBjAÞ, which in general is not possible.

2.5 Exclusive Events 19

2.7 Random Variables

When a real number is assigned to each point of a sample space, i.e. each sample

point has a single real value. This is a function defined on the sample space. The

result of an experiment which assumes these real-valued numbers over the sample

space is called a random variable. Actually this variable is a function defined on

the sample space.

A random variable defined on a discrete sample space is called a discrete

random variable, and a stochastic variable defined on a continuous sample space

and takes on a uncountable infinite number of values is called a continuous random

variable.

In general a random variable is denoted by a capital letter (e.g. X; Y) whereas
the possible values are denoted by lower case letter (e.g. x; y).

A random variable partitions its sample space into mutually exclusive and

collectively exhaustive set of events. Thus, for a random variable X, and a real

number x, let’s define a Ax to be the subset of S consisting of all sample points s to

which the random variable X assign the value x:

Ax ¼ s 2 S X sð Þ ¼ xjf g ð2:18Þ

It is implied that Ax \ Ay ¼ / if x 6¼ y, and that:

[

x2<
Ax ¼ S ð2:19Þ

The collection of events Ax for all x defines an event space.

2.7.1 Discrete Random Variables

When the state space is discrete, and the random variable could take on values

from a discrete set of numbers, the random variable is either finite or countable.

Such random variables are known as discrete random variables. A random variable

defined on a discrete sample space will be discrete, but it is possible to define a

discrete random variable on a continuous sample space. For example, for a con-

tinuous sample space S, the random variable defined by XðsÞ ¼ 1 for all s 2 S is

discrete.

Let X be a random variable which take the values from sample space

fx1; x2; . . .; xng. If these values are assumed with probabilities given by

PfX ¼ xkg ¼ f ðxkÞ ð2:20Þ

This is also known as frequency (or mass) function. In general, a function f ðxÞ
is a mass function if

f ðxÞ� 0 ð2:21Þ

20 2 Probability Theory

and

X

x

f ðxÞ ¼ 1 ð2:22Þ

where the sum is to be taken over all possible values of x.

The following properties hold for the probability mass function (pmf):

(a) As PðX ¼ xkÞ is a probability, 0�PðX ¼ xkÞ� 1 must hold for all s 2 <.
(b) Since the random variable assigns some value x 2 < to each sample point

x 2 S, the following must satisfy:

X

x

f ðxÞ ¼ 1 ð2:23Þ

Let’s move to compute the probability of the set fsjXðsÞ 2 Ag for some subset

A of < other than a one-point set. It can be shown that:

s X sð Þ 2 Ajf g ¼
[

xi2A

s X sð Þ ¼ xijf g ð2:24Þ

If f ðxÞ denotes the probability mass function of random variable X, then from

above equation we have:

P X 2 Að Þ ¼
X

xi2A

f xið Þ ð2:25Þ

The function FðxÞ, defined by:

F xð Þ ¼ P �1\X� xð Þ

¼ P X� xð Þ

¼
P

xi � x

f xið Þ
ð2:26Þ

is called the probability distribution function or the cumulative distribution

function (CDF) of the random variable X. It follows from this definition that:

P a\X� bð Þ ¼ P X� bð Þ � P X� að Þ
¼ F bð Þ � F að Þ

ð2:27Þ

Several properties of FðxÞ follows directly from its definition:

1. 0�F xð Þ� 1 for �1\x\1, this follows from definition.

2. FðxÞ is a monotone nondecreasing function of x. This follows by observing that

the interval ð�1; x1� is contained in the interval ð�1; x2� whenever x1 � x2
and hence:

F x1ð Þ�F x2ð Þ ð2:28Þ

2.7 Random Variables 21

3. limx!1 F xð Þ ¼ 1 and limx!�1 F xð Þ ¼ 0

4. FðxÞ has a positive jump equal to f ðxiÞ at i ¼ 1; 2; . . . and in the interval

½xi; xiþ1Þ, FðxÞ has constant value.
The distribution function is obtained from the density function by noting that

FðxÞ ¼ PfX� xg ¼
X

u� x

f ðuÞ ð2:29Þ

When X takes values from discrete sample space. The above equations are

valid.

The cumulative distribution function contains most of the interesting infor-

mation about the underlying probabilistic system, and this is used extensively.

Often the concepts of sample space, event space, and probability measure, which

are fundamental in building the theory of probability, will fade into the back-

ground, and functions such as the distribution function or the probability mass

function become the most important entities.

2.7.1.1 Discrete Mathematical Distributions

Mostly used discrete probability distributions are as followed:

1. Bernoulli distribution

The Bernoulli pmf is the density function of a discrete random variable X

having 0 and 1 as its only possible values. It originates from the experiment

consisting of a single trial with two possible outcomes. Mathematically, it is

given by:

pX 0ð Þ ¼ P X ¼ 0ð Þ ¼ q

pX 1ð Þ ¼ P X ¼ 1ð Þ ¼ p
ð2:30Þ

where pþ q ¼ 1. The corresponding CDF is given by:

F Xð Þ ¼
0; for x\0

q; for 0� x\1

1; for x� 1

8

<

:

ð2:31Þ

2. Binomial distribution

In a series of Bernoulli trails, the number of successes (or failures) out of total

number of trials follows the Binomial distribution. Consider a sequence of n

independent Bernoulli trials with probability of success equal to p on each trial.

Let Yn denote the number of successes in n trials. The domain of the random

variable Yn is all the n-tuples of 0
0s and 10s, and the image is f0; 1; . . .; ng. The

value assigned to an n-tuple by Yn simply corresponds to the number of 10s in

the n-tuple.

22 2 Probability Theory

pk ¼ P Yn ¼ kð Þ

¼ C n; kð Þpkqn�k; for 0� k� n

0; otherwise

�

ð2:32Þ

The above equation gives the probability of k ‘successes’ in n independent

trials, where each trial has probability p of success.

3. Geometric distribution

Let’s consider a sequence of Bornoulli trials, and count the number of trial until

the first ‘‘success’’ occurs. Let 0 denote a failure and 1 denote a success, then

the sample space of these trials consists of all binary strings with an arbitrary

number of 00s followed by a single 1:

S ¼ 0i�11 i ¼ 1; 2; 3; . . .j
� �

ð2:33Þ

Note that this sample space has a countably infinite number of sample points.

Let define a random variable Z on this sample space so that the value assigned

to the sample points 0i�11 is i. Thus Z is the number of trials up to and

including the first success. Therefore, Z is a random variable with image

f1; 2; 3; . . .g, which is a countably infinite set. To find the pmf of Z, we note

that the event ½Z ¼ i� occurs if and only if we have a sequence of i� 1 failures

followed by one success. This is a sequence of independent Bernoulli trails with

probability of success equal to p. Hence, we have:

pZ ið Þ ¼ qi�1p

¼ p 1� pð Þi�1; for i ¼ 1; 2; 3; . . .
ð2:34Þ

The geometric distribution has an important property, known as the Markov (or

memoryless) property. This is the only discrete distribution with this property.

To illustrate this property, consider a sequence of Bernoulli trials and let Z

represent the number of trials until the first success. Now assume that we have

observed a fixed number n of these trials and found them all to be failures. Let Y

denote the number of additional trails that must be performed until the first

success. Then Y ¼ Z � n, and the conditional probability is:

qi ¼ P Y ¼ i Z[njð Þ
¼ P Z � n ¼ i Z[njð Þ
¼ P Z ¼ nþ i Z[njð Þ

¼
P Z ¼ nþ i and Z[nð Þ

P Z[nð Þ

¼
P Z ¼ nþ ið Þ
P Z[nð Þ

¼
pqnþi�1

1� 1� qnð Þ

¼
pqnþi�1

qn

¼ pqi�1

¼ pZ ið Þ

ð2:35Þ

2.7 Random Variables 23

We see that condition on Z[n, the number of trails remaining until the first

success, Y ¼ Z � n, has the same pmf as Z had originally.

4. Negative binomial distribution

In geometric pmf, Bernoulli trials until the first success are observed. If r

success need to be observed, then the process results in negative binomial pmf.

Negative binomial pmf is given as:

pr nð Þ ¼ prC �r; n� rð Þ �1ð Þn�r
1� pð Þn�r

where : n ¼ r; r þ 1; r þ 2; . . .
ð2:36Þ

As negative binomial is generalization of Geometric pmf, for r ¼ 1, this

reduces to Geometric pmf.

5. Poisson distribution

Let’s observe the arrival jobs to a large computing center for the interval ð0; t�.
It is reasonable to assume that for each small interval of time Dt the probability

of a new job arrival is k:Dt, where k is a constant that depends upon the user

population of the computing center. If Dt is sufficiently small, then the prob-

ability of two or more jobs arriving in the interval of duration Dt may be

neglected. We are interested in calculating the probability of k jobs arriving in

the interval of duration t.

Suppose that the interval ð0; t� is divided into n sub-intervals of length t=n, and
suppose further that the arrival of a job in any given interval is independent of

the arrival of a job in any other interval. Then for a sufficiently large n, we can

think of the n intervals as constituting a sequence of Bernoulli trials with the

probability of success p ¼ kt=n. It follows that the probability of k arrivals in a

total of n intervals each with a duration t=n is approximately given by:

b k; n;
kt

n

� 	

¼ C n; kð Þ kt

n

� 	k

1� kt

n

� 	n�k

; k ¼ 0; 1; . . .; n ð2:37Þ

Since the assumption that the probability of more than one arrival per interval

can be neglected is reasonable only if t=n is very small, we will take the limit of

the above probability mass function as n approaches 1.

b k; n;
kt

n

� 	

¼ n n� 1ð Þðn� 2Þ � � � ðn� k þ 1Þ
k!nk

ðktÞk 1� kt

n

� 	ðn�kÞ

¼ n

n
� n� 1

n
� � � n� k þ 1

n
� ðktÞ

k

k!
� 1� kt

n

� 	�k

� 1� kt

n

� 	n
ð2:38Þ

We are interested in what happens to this expression as n increases, because

then the subinterval width approaches zero, and the approximation involved

gets better and better. In the limit as n approaches infinity, the first k factors

24 2 Probability Theory

approach unity, the next factor is fixed, the next approaches unity, and the last

factor becomes:

lim
n!1

1� kt

n

 ��n=kt
 !�kt

ð2:40Þ

Setting �kt=n ¼ h, this factor is:

lim
h!0

1þ hð Þ1=h
h i�kt

¼ e�kt ð2:41Þ

Since the limit the bracket is the common definition of e. Thus, the binomial

probability mass function approaches:

e�kt ktð Þk
k!

; k ¼ 0; 1; 2; . . . ð2:42Þ

Now replacing kt by a single parameter a, we get the well-known Poisson pmf:

f k; að Þ ¼ e�a a
k

k!
; k ¼ 0; 1; 2; . . . ð2:43Þ

It can be seen that Binomial probability mass function approaches Poisson

probability mass function when n is large and p is small:

C n; kð Þ ¼ pk 1� pð Þn�k’ e�a a
k

k!
; where a ¼ np ð2:44Þ

6. Hypergeometric distribution

In Binomial distribution, probability of occurance of events remain same during

each experiment. In experiments such as drawing samples from a fixed set of

samples, binomial corresponds to ‘sampling with replacement’. But in some

experiments, the chance of occurance of events changes with the course of

experimentations. The Hypergeometric distribution is obtained while ‘sampling

without replacement’.

Suppose we select a random sample of n components from a box containing N

components, d of which are known to be defective. For the first component

selected, the probability that it is defective is given by d=N, but for the second
selection it remain same if the first is replaced. Otherwise, this probability is

ðd � 1Þ=ðN � 1Þ or ðdÞ=ðN � 1Þ, depending on whether or not a defective

component was selected in first experiment. In this experiment constant

chances of occurance, as in Bernoulli trials, is not satisfied. The probability

distribution of such kind of experiments are referred as Hypergeometric.

Hypergeometric probability mass function, hðk; n; d;NÞ, defined to be the

probability of choosing k defective components in a random sample of n

2.7 Random Variables 25

components, chosen without replacement, from a total of N components, d of

which are defective. The sample space of the experiment consist of CðN; nÞ
sample points. The k defectives can be selected from d defectives in Cðd; kÞ
ways, and ðn� kÞ non-defective components may be selected from ðN � dÞ
non-defectives in CðN � d; n� kÞ ways. The whole sample of n components

with k defectives can be selected in Cðd; kÞ � CðN � d; n� kÞ ways. Assuming

an equiprobable sample space, the required probability is:

h k; n; d;Nð Þ ¼ C d; kð ÞC N � d; n� kð Þ
C N; nð Þ ; max 0; d þ n� Nð Þ� k� min d; nð Þ

ð2:45Þ

7. Uniform distribution

Let X be a discrete random variable with a finite set of image fx1; x2; . . .; xNg.
When all the image elements has equal chance of occurance, then probability

mass function is given as:

pX xið Þ ¼
1
N
; xi in the image of X

0; otherwise

�

ð2:46Þ

Such a random variable is said to have a discrete uniform distribution. This

distribution plays an important role in the theory of random numbers and its

application to Monte-Carlo simulation. It may be noted that the concept of

uniform distribution cannot be extended to a discrete random variable with a

countably infinite image, fx1; x2; . . .g. The requirements that
P

pXðxiÞ ¼ 1 and

pXðxiÞ ¼ constant (for i ¼ 1; 2; . . .) are incompatible.

Let X take on the values f1; 2; . . .;Ng with pXðiÞ ¼ 1=N; 1� i�N, then its

distribution function is given by:

F tð Þ ¼
X

N

i¼1

pX ið Þ ð2:47Þ

2.7.2 Continuous Random Variables

In the previous section, we saw random variables and their distributions. In

physical systems, such random variables denote the number of objects of certain

type, such as number of failures detected during periodic inspection, or the number

of call arrival at telephone exchange in a given time etc.

Many situations require the use of random variables that are continuous rather

than discrete. As described earlier, a random variable is a real-valued function on

the sample space S. When the sample space S is not countable, not every subset of

the sample space is an event that can be assigned a probability.

26 2 Probability Theory

A random variable X on a sample space is a function X : S ! < that assigns a

real number XðsÞ to each sample point s 2 S, such that for every real number x, the

set fsjXðsÞ� xg is an event.

The distribution function FX of a random variable X is defined to be the function

FX xð Þ ¼ P X� xð Þ; �1\x\1 ð2:48Þ

The subscript X is used to indicate the random variable under consideration.

When there is no ambiguity the subscript will be dropped, and FXðxÞ will be

denoted by FðxÞ.
The distribution function of a discrete random variable grows only by jumps as

described in last section. The distribution function of a continuous random variable

has no jumps, but grows continuously. Thus, a continuous random variable X is

characterized by a distribution function FXðxÞ that is a continuous function of x for

all x i.e. �1\x\1.

For continuous random variable, the random variable X takes any one particular

value is in general zero. The probability that X is in between two different values is

meaningful. In fact ‘‘a\X� b’’ is the event corresponding to the set ða; b�.
For a continuous random variable, X; f ðxÞ ¼ dFðxÞ=dx is called the probability

density function (pdf) of X.

The pdf enables us to obtain the CDF by integrating under the pdf:

FX xð Þ ¼ P X� xð Þ ¼

Z

x

�1

fX tð Þdt; �1\x\1 ð2:49Þ

Other probabilities of interest are obtained as:

P X 2 ða; b�ð Þ ¼ P a\X� bð Þ

¼ P X� bð Þ � P X� að Þ

¼

Z

b

�1

fX tð Þdt �

Z

a

�1

fX tð Þdt

¼

Z

b

a

fX tð Þdt

ð2:50Þ

The pdf, f ðxÞ, satisfies the following properties:

1. f ðxÞ� 0 for all x.

2.
R1
�1 fX xð Þdx ¼ 1

It should be noted that, unlike the probability mass function, the values of the

pdf are not probabilities and thus it is acceptable if f ðxÞ[1 at a points x.

2.7 Random Variables 27

2.7.2.1 Continuous Mathematical Distributions

Mostly used continuous probability distribution are as followed:

1. Exponential distribution

The CDF of exponential distribution is given by:

F xð Þ ¼ 1� e�kx; for 0� x\1
0; otherwise

�

ð2:51Þ

If a random variable X possesses CDF given by above equation, the pdf of X is

given by:

f xð Þ ¼
ke�kx; for x[0

0; otherwise

�

ð2:52Þ

This distribution is also called negative exponential distribution. This

distribution is widely used in applications such as reliability theory and

queueing theory. Reasons for its wide use include its memoryless property (this

result in analytical tractability) and its relation to the discrete Poisson and

modified geometric distributions. The following random variables will often be

modeled as exponential (provided experimental validation):

(a) Time between two successive job arrivals to a computing center

(b) Service time at a server in a queueing network

(c) Time to failure of a electronic component

(d) Time to repair a faulty component

2. Hypoexponential distribution

Some processes can be divided into sequential phases for mathematical rep-

resentation. If the time the process spends in each phase is independent and

exponentially distributed, then the overall time is hypoexponentially distrib-

uted. The distribution has r parameters, one for each of its distinct phases.

3. Erlang and Gamma distribution

When r sequential phases have independent identical exponential distributions,

then the resulting density is known as r-stage Erlang. Mathematically, it’s pdf is

given as:

f ðtÞ ¼
krtr�1e�kt

r � 1ð Þ!
; t[0; k[0; r ¼ 1; 2; 3; . . . ð2:53Þ

and the CDF is given as:

28 2 Probability Theory

F tð Þ ¼ 1�
X

r�1

k¼0

ktð Þk
k!

e�kt; t� 0; k[0; r ¼ 1; 2; 3; . . . ð2:54Þ

If r takes non integer values, then the process results in Gamma distribution.

The density function is given as:

f tð Þ ¼ krtr�1e�kt

Cr
; t[0; k[0; r[0 ð2:55Þ

The Gamma function is defined as:

Cn ¼
Z

1

0

xn�1e�xdx; n[0 ð2:56Þ

And another useful identity is:

Z

1

0

xn�1e�kxdx ¼ Cn

kn
ð2:57Þ

4. Weibull distribution

Weibull distribution is widely used for statistical curve fitting of lifetime data.

The distribution has been used to describe fatigue failure, vacuum tube failure

and ball bearing failure. The density function is given as:

f ðx; k; kÞ ¼ k

k

x

k

�
k�1

e
�

x

k

�
k

; x� 0

0; x\0

8

<

:

ð2:58Þ

where k[0 is the shape parameter, and k[0 is the scale parameter of the density

function.

5. Normal distribution

This distribution is extremely important in statistical applications because of the

central limit theorem, which states that, under very general assumption, the

mean of a sample of n mutually independent random variables (having distri-

butions with finite mean and variance) is normally distributed in the limit

n ! 1. It has been observed that errors of measurement often possess this

distribution.

The normal density has the well-known bell-shaped curve and is given by:

f xð Þ ¼ 1

r
ffiffiffiffiffiffi

2p
p e

� x�l
ffiffi

2
p

r

�
2

ð2:59Þ

2.7 Random Variables 29

where �1\x; l\1 and r[0. Here l stands for mean and r for standard

deviation. As the above integral of above function does not have close form,

distribution function FðxÞ does not have close form. So for every pair of limits

a and b, probabilities relating to normal distributions are usually obtained

numerically or normal tables.

CDF of normal distribution with zero mean (l ¼ 0) and unity standard devi-

ation (r ¼ 0) is given as:

FXðxÞ ¼
1
ffiffiffiffiffiffi

2p
p

Z

x

�1

e
�t2

2 dt ð2:60Þ

2.8 Transforms

A transform can provide a compact description of a distribution, and it is easy to

compute widely used properties such as mean, variance and other moments.

2.8.1 Probability Generating Function

Probability generating function (PGF) is a mathematical tool that simplifies

computations involving integer-valued, discrete random variables. For a given

nonnegative integer-valued discrete random variable X with PðX ¼ kÞ ¼ pk, PGF

is defined as:

GXðzÞ ¼
X

1

i¼0

piz
i ¼ p0 þ p1zþ p2z

2 þ � � � þ pkz
k þ � � � ð2:61Þ

Equation 2.12 looks similar to z� transform of X. GXðzÞ converges for any

complex number z such that jzj\1. For z ¼ 1, it is easy to prove that,

GXð1Þ ¼ 1 ¼
X

1

i¼0

pi ð2:62Þ

In many problems PGF GXðzÞ will be known or derivable without the knowledge

of pmf of X. It will be shown in later sections that interesting quantities such as

mean and variance of X can be estimated from PGF itself. One reason for the

usefulness of PGF is found in the following theorem, which has been quoted here

without proof.

Theorem 2.1 If two discrete random variables X and Yhave same PGF’s, then

they must have the same distributions and pmf’s.

It means if a random variable has same PGF as that of another random variable

with a known pmf, then this theorem assures that the pmf of the original random

variable must be the same.

30 2 Probability Theory

PGF of some widely used distributions is given below:

1. Bernoulli random variable

GXðzÞ ¼ PðX ¼ 0Þz0 þ PðX ¼ 0Þz1

¼ qþ pz

¼ 1� pþ pz

ð2:63Þ

2. Binomial random variable

GXðzÞ ¼
X

n

k¼0

Cðn; kÞpkð1� pÞn�k
zk

¼ ðpzþ 1� pÞn
ð2:64Þ

3. Poisson random variable

GX zð Þ ¼
X

1

k¼0

ak

k!
e�azk

¼ e�aeaz

¼ eaðz�1Þ

¼ e�að1�zÞ

ð2:65Þ

4. Uniform random variable

GX zð Þ ¼
X

N

k¼1

1

N
zk

¼ 1

N

X

N

k¼1

zk

ð2:66Þ

2.8.2 Laplace Transform

As PGF simplifies computation of integer-valued, discrete random variable,

Laplace transform simplifies computation of real-valued, continuous random

variables. For a given nonnegative real-valued, integrable, continuous random

variable X with pdf pXðxÞ, Laplace transform is defined as:

L pX xð Þ½ � ¼ L sð Þ ¼
Z

1

0

e�sxpX xð Þdx ð2:67Þ

The transform can give a number of interesting parameters. For s ¼ 0, it

reduces to:

2.8 Transforms 31

L 0ð Þ ¼
Z

1

0

PX xð Þdx ð2:68Þ

Laplace distribution of widely used random distributions, are given below:

1. Exponential distribution

L sð Þ ¼
Z

1

0

e�sxke�kxdx

¼ k

kþ s

ð2:69Þ

2. Erlang distribution

L sð Þ ¼
Z

1

0

e�sxke
�kx kxð Þr�1

r � 1ð Þ! dx

¼ k

kþ s

� 	r

ð2:70Þ

3. Gamma distribution

L sð Þ ¼
Z

1

0

e�sxke
�kx kxð Þr�1

Cr
dx

¼ k

kþ s

� 	r

ð2:71Þ

2.9 Expectations

The distribution function FðxÞ or the density f ðxÞ(or pmf for a discrete random

variable) complete characterizes the behavior of a random variable X. Frequently,

more concise description such as a single number or a few numbers, rather than an

entire function. One such number is the expectation or the mean, denoted by E½X�.
Similarly, others are median, mode, and variance etc. The mean, median and mode

are often called measures of central tendency of a random variable X.

Definition 2.1 The expectation, E½X�, of a random variable X is defined by:

E½X� ¼
P

i xip xið Þ; for discrete,
R1
�1 x f xð Þdx; for continuous,

(

ð2:72Þ

32 2 Probability Theory

Equation 2.21 valid provided that the relevant sum or integral is absolutely

convergent; that is,

X

i

jxijp xið Þ\1

Z

1

�1

jxjf xð Þdx\1
ð2:73Þ

If these sum or integral are not absolutely convergent, then E½X� does not exist.
Example 2.1 Let X be a continuous random variable with an exponential density

given by:

f xð Þ ¼ ke�kx; 8x[0 ð2:74Þ

Expectation of X is evaluated as:

E½X� ¼
Z

1

�1

x f xð Þdx ¼
Z

1

0

kxe�kxdx ð2:75Þ

Let z ¼ kx, then dz ¼ kdx, putting these in above equation:

E½X� ¼ 1

k

Z

1

0

ze�zdz ð2:76Þ

Please note definition of Gamma function:

Z

1

0

xne�xdx ¼ Cðnþ 1Þ; 8n 2 < ð2:77Þ

Using this E½X� reduces to

E½X� ¼ 1

k
C2 ¼ 1

k
1! ¼ 1

k
ð2:78Þ

This gives a widely used result in reliability engineering. If a component obeys

an exponential failure law with parameter k, then its expected life, or its mean time

to failure (MTTF), is 1
k
.

2.10 Operations on Random Variables

While dealing with random variables, situation often arises which requires addi-

tion, maximum, minimum, mean, median, etc. In this section, these are discussed.

Let’s determine the pdf of random variable Z, where Z ¼ X1 þ X2 þ � � � þ Xn.

X1;X2, . . . are independent random variables with known pdf. On a n�dimensional

2.9 Expectations 33

event space, this event is represented by all the events on the plane

X1 þ X2 þ � � � þ Xn ¼ t. The probability of this event may be computed by adding

the probabilities of all the event points on this plane.

P Z ¼ tð Þ ¼
X

x1;x2;...;xnf g
P X1 ¼ x1;X2 ¼ x2; . . .Xn ¼ xn; x1 þ x2 � � � þ xn ¼ tð Þ

pz tð Þ ¼ p1 tð Þ � p2 tð Þ � � � � � pn tð Þ
ð2:79Þ

This summation turn out to be convolution (discrete or continuous).

Let Z1; Z2; . . .; Zn be random variables obtained by permuting the set,

X1;X2; . . .;Xn so as to be in increasing order.

Z1 ¼ min X1;X2; . . .;Xnf g
and

Zn ¼ max X1;X2; . . .;Xnf g
ð2:80Þ

The random variable Zk is called k�th order statistic. To derive the distribution

function of Zk, note that the probability that exactly j of the Xi’s lie in ð�1; z� and
ðn� jÞ lie in ðz;1Þ is:

C n; jð ÞFj zð Þ 1� Fn�j zð Þ
� �

ð2:81Þ

since the binomial distribution with parameters n and p ¼ FðzÞ is applicable. Then:

FZk zð Þ ¼ P Zk � zð Þ
¼ P ‘‘at least k of the Xi’s lie in the interval ð�1; zÞ’’ð Þ

¼
P

n

j¼k

C n; jð ÞFj zð Þ 1� Fn�j zð Þ½ �;�1\z\1
ð2:82Þ

In particular, the distribution function of Z1 and Zn can be obtained from 2.82

as:

FZ1 zð Þ ¼ 1� 1� F zð Þ½ �n

FZn zð Þ ¼ F zð Þn
ð2:83Þ

2.11 Moments

Moment is generalization of expectation. In expectation, random variable along

with pdf is summed (or integrated) over the entire sample space. Replacing ran-

dom variable with another function of random variable, gives moment.

E gðXÞ½ � ¼

P

i gðxiÞpX xið Þ; for discrete,
R1
�1 gðxÞfX xð Þdx; for continuous,

(

ð2:84Þ

34 2 Probability Theory

Above equation is valid provided the sum or integral is absolutely conver-

gent.

A interesting case of interest is the power function of X, i.e. gðXÞ ¼ Xk. For

k ¼ 1; 2; 3; . . . moment is known as the kth moment of the random variable X. For

k ¼ 1, the first moment, E½X�, is the ordinary mean or expectation of X.

Isomorphic property: If two random variables X and Y have matching corre-

sponding moments of all orders, then X and Y have the same distribution.

Sum and product of two random variables are of special interest. Hence

expectation of these are discussed here.

Theorem 2.2 Let X and Y be two random variables. Then the expectation of their

sum is the sum of their expectations if E½Z� ¼ E½X þ Y � ¼ E½X� þ E½Y �.
The above theorem does not require that X and Y be independent. It can be

generalized to the case of n variable:

E
X

n

i¼1

Xi

" #

¼
X

n

i¼1

E Xi½ � ð2:85Þ

and

E
X

n

i¼1

aiXi

" #

¼
X

n

i¼1

aiE Xi½ � ð2:86Þ

where a1; . . .; an are constants.

Theorem 2.3 Let X and Y be two independent random variables. Then the expec-

tation of their product is the product of their expectations. E½XY � ¼ E½X�E½Y �.

2.12 Summary

Probability theory forms the basis of all probabilistic modeling. Dependability

modeling is also based on these concepts. A complete treatment to this subject is

beyond the scope of this book. In this chapter only basic concepts and theorems are

refreshed. Interested readers may refer text dedicated to probability theory.

2.11 Moments 35

Chapter 3

Stochastic Processes and Models

3.1 Introduction

The theory of stochastic processes is generally defined as the ‘‘dynamic’’ part of

the probability theory, in which one studies a collection of random variables

(called a stochastic process) from the point of view of their interdependence and

limiting behavior. One is observing a stochastic process whenever one examines a

process developing in time in a manner controlled by probabilistic laws. Examples

of stochastic processes are provided by the path of a particle in Brownian motion,

the growth of a population such as a bacterial colony and the fluctuating number of

particles emitted by a radioactive source, etc.

The measurements of an experiment, weather forecast, behavior of servo-

mechanism, behavior of communication system, market price fluctuation and

brain-wave records—all faces a problem of random variation to which theory of

stochastic processes1 may be relevant. The theory is an essential part of such

diverse fields as statistical physics, theory of population growth, communication

and control theory, operation research (management science), computer perfor-

mance analysis and dependability analysis.

Definition 3.1 (stochastic process) A stochastic process is a family of random

variables XðtÞjt 2 Tf g, defined on a given probability space, indexed by the

parameter t, where t varies over an index set T:
The values assumed by the random variable XðtÞ are called states, and the set

of all possible values forms the state space of the process.

If the state space of a stochastic process is discrete, then it is called a

discrete-state process, often referred to as a chain. In this case, the state space is

often assumed to be integers. If the state space is continuous, then we have a

1 The word ‘‘stochastic’’ is of Greek origin. In seventeenth century English, the word
‘‘stochastic’’ had the meaning ‘‘to conjecture, to aim at mark’’. It is not quite clear how it acquired
the meaning it has today of ‘‘pertaining to chance’’.

A. K. Verma et al., Dependability of Networked Computer-based Systems,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-318-3_3,
� Springer-Verlag London Limited 2011

37

continuous-state process. Similarly, if the index set T is discrete, then we have a

discrete-parameter process; otherwise a continuous parameter process.

3.2 Classification of Stochastic Processes

For a given time t ¼ t0, process Xðt0Þ is a simple random variable that describes

the state of the process at time t0. For a fixed number x1, the probability of the

event ½Xðt0Þ� x1� gives the cumulative distribution function (CDF) of the random

variable Xðt0Þ. Mathematically, this is given as:

FX t1ð Þ x1ð Þ ¼ P X t1ð Þ� x1½ � ð3:1Þ

Fðx1; t1Þ is known as the first-order distribution of the process XðtÞ. Given two

time instants t1 and t2;Xðt1Þ and Xðt2Þ are two random variables on the same

probability space. Their joint distribution is known as the second-order distribution

of the process and is given by:

F x1; x2; t1; t2ð Þ ¼ P X t1ð Þ� x1;X t2ð Þ� x2ð Þ ð3:2Þ

In general, the nth order joint distribution of the stochastic process fXðtÞ; t 2 Tg
by:

F x : tð Þ ¼ P X t1ð Þ� x1; . . .;X tnð Þ� xn½ � ð3:3Þ

for all x ¼ ðx1; . . .; xnÞ 2 R
n and t ¼ ðt1; . . .; tnÞ 2 Tn such that t1\t2\ � � �\tn.

Many processes of practical interest, however, permit a much simpler description.

The processes can be classified based on time-shift, independence and memory,

as follows:

1. A stochastic process fXðtÞg is said to be stationary in the strict sense if for

n� 1, its nth-order joint CDF satisfies the condition:

F x : tð Þ ¼ F x : t þ sð Þ ð3:4Þ

for all vector x 2 <n and t 2 Tn, and all scalars s such that ti þ s 2 T . The

notation t þ s implies that the scaler s is added to all components of vector t:
Let l(t) = E[X(t)] denote the time-dependent mean of the stochastic process.

l(t) is often called the ensemble average of the stochastic process. Applying the

definition of the strictly stationary process to the first-order CDF, F(x; t) = F(x;

t ? s) for all s. It follows that a strict-sense stationary process has a time-

independent mean; that is, l(t) = l for all t [T.

2. A stochastic process fXðtÞg is said to be an independent process provided its

nth-order joint distribution satisfies the condition:

F x : tð Þ ¼
Y

n

i¼1

F xi: tið Þ ¼
Y

n

i¼1

P X tið Þ� xi½ � ð3:5Þ

3. A renewal process is defined to be a discrete-parameter independent process

fXnjn ¼ 1; 2; . . .g where X1;X2; . . ., are independent, identically distributed,

nonnegative random variables.

38 3 Stochastic Processes and Models

Consider a system in which the repair after failure is performed, requiring

negligible time. The time between successive failures might be independent,

identically distributed random variables fXnjn ¼ 1; 2; . . .g of a renewal process.

3.3 The Random Walk

Random walk has its origin in study of movement of a particle in fluid. But the

random walk has been used in widely variety of applications such as modeling of

insurance risk, escape of comets from the solar system, content of dam and

queueing system, etc. Consider a particle which can move only in one dimension

i.e. x-axis. At time n ¼ 1 the particle undergoes a step or jump Z1, where Z1 is a

random variable having a given distribution. At time n = 2 the particle undergoes

a jump Z2, where Z2 is independent of Z1 and with the same distribution, and so on.

As the particle moves along a straight line and after one jump is at the position

X0 þ Z1, after two jumps at X0 þ Z1 þ Z2 and, in general, after n jumps the

position of the particle is given as Xn ¼ X0 þ Z1 þ Z2 þ � � � þ Zn. Here Zi is a

sequence of mutually independent, i.i.d. random variables. This can be represented

as Xn ¼ Xn�1 þ Zn for n ¼ 1; 2; . . .
Now for a particular case where the steps Zi can only take the values 1; 0;�1

with the probability:

P Zi ¼ 1ð Þ ¼ p

P Zi ¼ �1ð Þ ¼ q

P Zi ¼ 0ð Þ ¼ 1� p� q

ð3:6Þ

The above particular process is a stochastic process in discrete time with discrete

state space. If the particle continues to move indefinitely according to above

relation the random walk is said to be unrestricted. The motion of the particles may

be restricted by use of barriers. These barriers could be absorbing or reflection

barriers. Till now, we have restricted the discussion to one-dimensional jumps/

steps only. When the jumps are in two or three dimension, it results in two or

three-dimensional random walk, respectively.

Example The escape of comets from the solar system. This example has been

taken from Cox [1]. This problem was originally studied by Kendell. He has made

an interesting application of the random walk to the theory of comets. Comets

revolve around earth and during one revolution round the earth the energy of a

comet undergoes a change brought about by the disposition of the planets. In

successive revolutions the change in energy of the comet are assumed to be

independent and identically distributed random variables Z1; Z2; If initially the

comet has positive energy X0 then after n revolutions the energy will be

Xn ¼ X0 þ Z1 þ Z2 þ � � � þ Zn ð3:7Þ

3.2 Classification of Stochastic Processes 39

If at any stage the energy Xn becomes zero or negative, the comet escapes from the

solar system. Thus the energy level of the comet undergoes a random walk starting

at X0 [0 with an absorbing barrier at 0. Absorption corresponds to escape from

the solar system.

3.4 Markov Chain

Definitions 3.2 (Markov Chain) A discrete-state stochastic process fXðtÞ; t� 0g
is called a Markov chain if, for any t1\t2\ � � �\tn, the conditional probability of

being in any state j is such that: [1–3]

Pr XðtnÞ ¼ j X tn�1ð Þ ¼ in�1; . . .;X t0ð Þ ¼ i0jf g ¼ Pr XðtnÞ ¼ j X tn�1ð Þ ¼ in�1jf g

ð3:8Þ

This condition is calledMarkov property, which means the state of a Markov chain

after a transition probabilistically depends only on the state immediately before it.

In other words, at the time of a transition the entire past history is summarized by

the current state (and implicitly by the current time t).

A homogeneous discrete-time Markov chain may be represented by one-step

transition probability matrix P with elements:

pij ¼ P Xnþ1 ¼ xj Xn ¼ xij
� �

ð3:9Þ

where xi represents the state of the system at discrete-time-step t 2 N.

pij is the probability of xj being the next state given that xi is the current state.

So all the entries of P satisfies:

ð1Þ 0\pij\1 8i; j

ð2Þ
X

j

pij ¼ 1 8i ð3:10Þ

Definition 3.3 (Irreducible Markov Chain) A Markov chain is said to be irreducible

if every state can be reached from every other state in a finite number of steps [2].

In other words, for all i; j 2 I, there is an integer n[1 such that pijðnÞ[0.

Definition 3.4 (Recurrent State) A state i is said to be recurrent if and only if, starting

from state i, the process eventually returns to state i with probability one [2].

Definition 3.5 (Mean recurrence time) The mean recurrence time of recurrent state

xj is [4]

Mj ¼
X

mfj mð Þ ð3:11Þ

where: fjðmÞ denote the probability of leaving state xj and first returning to that

same state in m steps.

40 3 Stochastic Processes and Models

IfMj ¼ 1 state xj is recurrent null; otherwiseMj\1 and xj is recurrent non-null.

Theorem The states of an irreducible Markov chain are either all transient or all

recurrent non-null or all recurrent null. If the states are periodic, then they all

have the same period.

Limiting probability distribution: The limiting probability distribution fpjg of a

discrete-time Markov chain is given by:

pj ¼ lim
m!1

pj mð Þ ð3:12Þ

Theorem In an irreducible and aperiodic homogeneous Markov chain, the lim-

iting probabilities fpjg always exists and are independent of initial probability

distribution.

Also one of the following conditions hold:

• Every state xj is transient or every state xj is recurrent null, in which case pj ¼ 0

for all xj and there exists no stationary distribution (even though the limiting

probability distribution exists). In this case, the state space must be infinite.

• Every state xj is recurrent non-null with pj [0 for all xj, in which case the set

fpjg is a limiting and stationary probability distribution and

pj ¼
1

Mj

ð3:13Þ

In this case, the pj are uniquely determined form the set of equations:

pj ¼
X

i

pipij subject to
X

i

pi ¼ 1 ð3:14Þ

If p ¼ ðp1; p2; . . .Þ is a vector of limiting probabilities, then they can be eval-

uated by:

p ¼ pP ð3:15Þ

where P is the transition probability matrix. The vector P is called the steady-

state solution of the Markov chain.

3.4.1 Markov processes with Discrete state in discrete time

In discrete time Markov chain, the process can change its state only at discrete

time points. The time process spends in a given state will be investigated here. Due

to Markov property, the next transition does not depend up on how this state is

reached and how much time has passed in this state. Let process has already spent

3.4 Markov Chain 41

n0 time quanta in a given state. The random variable ‘transition time’ is denoted by

X and the random variable ‘transition time after n0’ as Y and Y ¼ X � n0. Let

conditional probability of Y ¼ n0, given that X[n0, be denoted by ZðnÞ.

Z nð Þ ¼ P Y ¼ n X[n0jð Þ

¼ P X � n0 ¼ n X[n0jð Þ

¼ P X ¼ nþ n0 X[n0jð Þ

¼
P X ¼ nþ n0 and X[n0ð Þ

P X[n0ð Þ

¼
P X ¼ nþ n0ð Þ

P X[n0ð Þ

ð3:16Þ

So, in a discrete timeMarkov process, the distribution of resident time in a state posses

a unique property. That is, given that it has already spent a specified time n0, does not

affect distribution of residual time. Means, process does not have time memory.

For a discrete-time Markov chain, the only sojourn time distribution, which sat-

isfies the memory less, sojourn time condition is the geometric distribution.

If the conditional probability defined above is invariant with respect to the

time origin tn, then theMarkov chain is said to be homogeneous, i.e., for any t and tn,

Pr XðtÞ ¼ j X tnð Þ ¼ injf g ¼ Pr Xðt � tnÞ ¼ j X 0ð Þ ¼ injf g ð3:17Þ

If the states in a Markov can change only at discrete time points, the Markov chain

is called a discrete-time Markov chain (DTMC). If the transitions between states

may take place at any instance, the Markov chain is called a continuous-time

Markov chain (CTMC).

3.4.2 Markov Processes with Discrete States in

Continuous Time

In the last section we sawMarkov process with discrete states and defined at discrete

time instant. Let the state space of the process remain discrete and parameter space

t ¼ ½0;1Þ. As per the definition of Markov process, a discrete-state continuous-

parameter (time) stochastic process fXðtÞ; t� 0g is a Markov process if

P X tð Þ ¼ x X tnð Þ ¼ xn;X tn�1ð Þ ¼ xn�1; . . .;X t0ð Þ ¼ x0;j½ � ¼ P X tð Þ ¼ x X tnð Þ ¼ xnj½ �

ð3:18Þ

where

t0\t1\t2; . . .;\tn\t

xi 2 state-space of process If g

42 3 Stochastic Processes and Models

A homogeneous continuous-time Markov chain may be represented by set of states

and an infinitesimal generator matrix Q where Qij; i 6¼ j represents the exponen-

tially distributed transition rate between xi and xj. The parameter of the expo-

nential distribution of the sojourn time in state xi is given by—Qij, where

Qij ¼ �
P

i6¼j Qij:

Note that the entries of Q must satisfy:

X

j

Qij ¼ 0 8i ð3:19Þ

Theorem In a finite, irreducible, homogeneous continuous-time Markov chain,

the limiting probabilities fpjg always exit and are independent of the initial

probability distribution.

The steady state probability vector p ¼ ðp1; p2; . . .Þ can be determined from the

following equations:

ð1Þ pQ ¼ 0

ð2Þ
X

i

pi ¼ 1 ð3:20Þ

For a finite state-space process, the sum of all state probabilities equals to unity.

The evolution of Markov process over time can be realized using Chapman–

Kolmogorov (C–K) equation. C–K enables to build up conditional pdf over ‘long’

time interval from those over the ‘short’ time intervals. The transition probabilities

of a Markov chain fXðtÞ; t� 0g satisfy the C–K equation for all i; j 2 I,

pij v; tð Þ ¼
X

k2I

pik v; uð Þpkj u; tð Þ

for

0� v\u\t

ð3:21Þ

A Markov process transits from one state to other, this state transition is captured

by state-transition matrix. Unlike in discrete time Markov process, in continuous

time process state transition may occur at any time. These two condition imposes

restriction on the probability distribution a Markov process may have. Considering

the Markov property and these two conditions together with time of transition, it is

clear that time the process spends in a given state before transition does not

depends on the time it has already spent in that state.

Let process has already spent time t0 in a given state. The random variable

‘transition time’ is denoted by X and the random variable ‘transition time after t0’

as Y and Y ¼ X � t0. Let conditional probability of Y � t, given that X[t0, be

denoted by ZðtÞ.

3.5 Markov Processes with Discrete States in Continuous Time 43

Z tð Þ ¼ P Y � t X [t0jð Þ

¼ P X � t0 � t X[t0jð Þ

¼ P X� t þ t0 X[t0jð Þ

¼
P X� t þ t0 andX[t0ð Þ

P X[t0ð Þ

¼
P t0 �X� t þ t0ð Þ

P X[t0ð Þ

ð3:22Þ

Let pdf of X is given as f ðxÞ, then ZðtÞ is given as

Z tð Þ ¼

R tþt0
t0

f xð Þdx
R1
t

f xð Þdx
ð3:23Þ

For homogeneous time process, one such distribution is exponential distribution

which fulfill this restriction. This implies for homogeneous continuous time

parameter Markov process time to transition follows exponential distribution.

The distinction between homogeneous CTMC and non-homogeneous CTMC is

that the sojourn time distribution in the homogeneous CTMC is exponential dis-

tribution. The sojourn time distribution in the non-homogeneous case is quite

complex.

3.5 Non-Markovian Processes

We have seen in the last section, in a Markov process future evolution depends

only on the present state, i.e. it does not depend on how that state is reached and

how much time has already elapsed in that state. Any process not fulfilling these

properties are termed as non-Markovian process. Some of the non-Markov pro-

cesses with some unique property are of special interest, some of them are dis-

cussed in this section.

3.5.1 Markov Renewal Sequence

Markov renewal sequences [3, 5] play an important role in the formulation of

semi-Markov, Markov renewal and Markov regenerative process.

Definition 3.6 Let S be a discrete state space. A sequence of bivariate random

variables fðYn; TnÞ; n� 0g is called a Markov renewal sequence if:

1. T0 ¼ 0; Tnþ1 � TnTn 2 R
þ; Yn 2 S8n� 0

2. 8n� 0;

44 3 Stochastic Processes and Models

Pr Ynþ1 ¼ j; Tnþ1 � Tn � x Yn ¼ i; Tn; Yn�1; Tn�1; . . .; Y0; T0jf g

¼ Pr Ynþ1 ¼ j; Tnþ1 � Tn � x Yn ¼ ijf g

¼ Pr Y1 ¼ j; T1 � x Y0 ¼ ijf g

¼ ki;j xð Þ

ð3:24Þ

The first equation indicates the Markov property at time point fTng, and the second

indicates the time homogeneity. The matrix KðxÞ ¼ ki;j xð Þ
�� �� is referred to as the

kernel of the Markov renewal sequence. The definition of Markov regenerative

process (MRGP) is based on Markov renewal sequences.

3.5.2 Markov Regenerative Processes

Markov regenerative processes are the processes with embedded Markov renewal

sequences. The formal definition is as follows.

Definition 3.7 A stochastic process fZðtÞ; t� 0g is called a Markov regenerative

process if there exists a Markov renewal sequence fðYn; TnÞ; n� 0g of random

variables such that all the conditional finite distributions of fZðTn þ tÞ; t� 0g
given fZðuÞ; 0� u� Tn; Yn ¼ ig are the same as those of fZðtÞ; t� 0g given

Y0 ¼ i. [1, 3, 5–7]

The above definition implies that:

Pr Z Tn þ tð Þ ¼ j Z uð Þ; 0� u� Tn; Yn ¼ ijf g ¼ Pr Z tð Þ ¼ j Y0 ¼ ijf g ð3:25Þ

It also implies that the future of the Markov regenerative process fZðtÞ; t� 0g
from ft ¼ Tng onwards depends on the past fZðtÞ; 0� t� Tng only through Yn.

Let vi;jðtÞ ¼ Pr Z tð Þ ¼ j Y0 ¼ ijf g. The matrix V tð Þ ¼ vi;j tð Þ
�� �� is referred to as

conditional transient probability matrix of MRGPs. The following theorem gives

the generalized Markov renewal equation satisfied by VðtÞ. For the sake of con-

ciseness, ðK � VÞðtÞ to denote the matrix whose element ði; jÞ is defined as follows:

k � vð Þi;j tð Þ ¼
X

h2S

Z t

0

dki;h uð Þvh;j t � uð Þ ð3:26Þ

Means, ðK � VÞðtÞ is a matrix of functions of t whose generic element is obtained

as the row by column convolution of the matrix KðtÞ and matrix VðtÞ.

Theorem 3.1 Let fZðtÞ; t� 0g be an MRGP with embedded Markov renewal

sequence fðYn;TnÞ; n� 0g with kernel K �ð Þ [1, 2, 3, 5, 6, 7]. Let

ei;j tð Þ ¼ Pr Z tð Þ ¼ j; T1 [t Y0 ¼ ijf g ð3:27Þ

and E tð Þ ¼ ei;j tð Þ
�� ��. Then Vð�Þ satisfies the following Markov renewal equation:

V tð Þ ¼ E tð Þ þ

Z t

0

V t � xð ÞdK xð Þ ¼ E tð Þ þ K tð Þ � V tð Þ ð3:28Þ

3.5 Non-Markovian Processes 45

The proof of this theorem is shown in [6, 7]. Note that EðtÞ contains information

about the behavior of MRGP over the first ‘‘cycle’’ ð0; S1Þ. Thus this theorem

relates the behavior of the process at time t to its behavior over the first cycle.

Consider an M/G/1 queuing system, let ZðtÞ be the number of customers at time

t, we can define the embedded Markov renewal sequence, fðYn; SnÞ; n� 0g, as
S0 ¼ 0 and Sn is the time of the nth customer departure; and Yn ¼ ZðSnþÞ [6, 7].
Note that fZðtÞ; t� 0g satisfies the property of Definition 3.7 Hence, it is Markov

regenerative process.

3.6 Higher Level Modeling Formalisms

Model based dependability/performance evaluation of engineering systems is a

powerful and inexpensive way of predicting the dependability/performance before

the actual implementation. Its importance increases with the system complexity

and criticality of applications. Markov models provide suitable framework for

dependability, performance and performability [8, 9] evaluation. But, there are

some difficulties in using Markov models [10].

1. State space grows much faster than the number of components in the system

being modeled. A large state space can make a model difficult to specify

correctly.

2. A Markov model of a system is sometimes far removed from the shape and

general feel of the system being modeled. System designers may have difficulty

in directly translating their problem into a Markov model.

These difficulties can be overcome by using a modeling technique that is more

concise in its specification and whose form is close to a designer’s intuition about

what a model should look like. One of the most popular approach is to use Petri net

based stochastic models. Molloy [11] showed stochastic Petri nets can be used to

automatically generate an underlying Markov model, which can then be analyzed

to yield results of interests. In this case the ‘‘user-level representation’’ of a system

is translated into a different ‘‘analytical representation’’. The analytical represen-

tation is processed to evaluate results.

The analytical tractability of Markov models is based on the exponential

assumption of the distribution of the holding time in a given state. This implies

that the future evolution of the system depends only on the current state and, based

on this assumption, simple and tractable equations can be derived for both tran-

sient and steady state analysis.

Nevertheless, the exponential assumption has been regarded as one of the main

restrictions in the application of Markov models. In practice there is a very wide

range of circumstances in which it is necessary to model phenomenon whose times

to occurrence is not exponentially distributed. The hypothesis of exponential

distribution thus allows the definition of models which can give a more qualitative

46 3 Stochastic Processes and Models

rather than quantitative analysis of real systems. The existence of deterministic or

other non-exponentially distributed event times, such as timer expiration, propa-

gation delay, transmission of fixed length packets, etc. gives rise to stochastic

models that are non-Markovian in nature.

In recent years considerable effort has been devoted to enrich Petri nets for-

malism in order to improve their capability to easily capture system behavior and

to deal with generally distributed delays.

3.6.1 Petri Nets

Petri net is a directed, bipartite graph consisting of two kinds of nodes, called

places and transitions, where arcs are either from a place to transition or from a

transition to place [12–14]. Mathematically, Petri net structure is defined as a 5-

tuple. Petri net: N ¼ fP; T ; I;O;M0g; where:
• P is a finite set of ‘‘places’’

• T is a finite set of ‘‘transitions’’

• I ¼ ðP� TÞ defines the input function

• O ¼ ðT � PÞ defines the output function

• M0 is the initial ‘‘marking’’ of the net, where a ‘‘marking’’ is the number of

‘‘tokens’’ contained in each place.

A transition ti is said to be ‘‘enabled’’ by a marking m if and only if IðtiÞ is

contained in m. Any transition ti enabled by marking mj can ‘‘fire’’. When it does,

token(s) is removed from each place IðtiÞ and added to each place OðtiÞ. This may

result in a new marking mk. If a marking enables more than one transition, the

enabled transitions are said to be in conflict. Any of the enabled transition may fire

first. This firing may disable transitions which were previously enabled.

Petri nets are generally represented graphically. Places are drawn as circles and

transitions as bars. The input and output functions are represented by directed arcs

from places to transitions and transitions to places, respectively. Tokens are rep-

resented by black dots or number inside places.

An example of Petri net model is given in Fig. 3.1. The PN consists of five

places fp1; p2; p3; p4; p5g and 4 transitions ft1; t2; t3; t4g . The initial marking M0 =

(1,0,0,1,0). In the present marking transition t2 is only enabled. Firing of transition

removes the token from place p1 and deposit one token each in places p2 and p3.

One of the possible firing sequence is t2; t1; t3; t4; . . .
The analysis of Petri nets revolves around investigating the possible markings.

The Petri net semantic does not state which of multiple simultaneously enabled

transitions fires first, so a Petri net analysis must examine every possible firing order.

Petri nets can be used to capture the behavior of many real-world situations

including sequencing, synchronization, concurrency, and conflict. The main fea-

ture which distinguishes PNs from queuing networks is the ability of the former to

represent concurrent execution of activities. If two transitions are simultaneously

3.6 Higher Level Modeling Formalisms 47

enabled, this means that the activities they represent are proceeding in parallel.

Transition enabling corresponds to the starting of an activity, while transition

firing corresponds to the completion of an activity. When the firing of a transition

causes a previously enabled transition to become disabled, it means the interrupted

activity was aborted before being completed.

3.6.2 Structural Extensions

Many extensions to PNs have been proposed to increase either the class of

problems that can be represented or their capability to deal with the common

behavior of real systems [10, 15]. These extension are aimed to increase, (1)

modeling power, (2) modeling convenience, and (3) decision power [10]. Mod-

eling power is the ability of a formalism to capture the details of a system.

Modeling convenience is the practical ability to represent common behavior.

Decision power is defined to be the set of properties that can be analyzed. The

generally accepted conclusion is that increasing the modeling power decreases the

p1p2

p3

p4 p5

t1

t2

t3

t4

Fig. 3.1 Petri net

48 3 Stochastic Processes and Models

decision power. Thus each possible extension to the basic PN formalism requires

an in depth evaluation of its effect upon modeling and decision power.

Extensions which affect only modeling convenience can be removed by

transforming an extended PN into an equivalent PN so they can usually be adopted

without introducing any analytical complexity. These kind of extensions provide a

powerful way to improve the ability of PNs to model real problems. Some

extension of this type have proved so effective that they are now considered part of

the standard PN definition. They are [10, 15]:

• arc multiplicity

• inhibitor arcs

• transition priorities

• marking-dependent arc multiplicity

Arc multiplicity is a convenient extension for representing a case when more

than one token is to be moved to or from a place. The standard notation is to

denote multiple arcs as a single arc with a number next to it giving its multiplicity.

Inhibitor arcs are another useful extension of standard PN formalism. An

inhibitor arc from place p to transition t disables t for any marking where p is not

empty. Graphically, inhibitor arcs connect a place to a transition and are drawn

with a small circle instead of an arrowhead. It is possible to use the arc multiplicity

extension in addition to inhibitor arcs. In this case a transition t is disable

whenever place p contains at least as many tokens as the multiplicity of the

inhibitor arc. Inhibitor arcs are used to model contention of limited resources to

represent situations in which one activity must have precedence over another.

Another way to represent the latter situation is by using transition priorities, an

extension in which an integer ‘‘priority level’’ is assigned to each transition. A

transition is enabled only if no higher priority transition is enabled. However, the

convenience of priorities comes at a price. If this extension is introduced, the standard

PNs ability to capture the entire system behavior graphically is partially lost.

Practical situations often arise where the number of tokens to be transferred

(or to enable a transition) depends upon the system state. These situations can

be easily managed adopting marking-dependent arc multiplicity, which allows the

multiplicity of an arc to vary according to the marking of the net. Marking

dependent arc multiplicities allow simpler and more compact PNs than would

be otherwise possible in many situations. When exhaustive state space explora-

tion techniques are employed, their use can dramatically reduce the state space.

3.6.3 Stochastic Petri Nets

PNs lack the ‘‘concept of time’’ and ‘‘probability’’. Modeling power can be

increased by associating random firing times with either the places or the transi-

tions. When waiting times are associated with places, a token arriving into a place

enables a transition only after the place’s waiting time has elapsed. When waiting

3.6 Higher Level Modeling Formalisms 49

times are associated with transitions, an enabled transition fires only after the

waiting time has elapsed, which is also referred as firing time.

Stochastic Petri net (SPN) models increase modeling power by associating

exponentially distributed random firing times with the transitions [11]. A transi-

tion’s firing time represents the amount of time required by the activity associated

with the transition. It is counted from the instant the transition is enabled to the

instant it actually fires, assuming that no other transition firing affects it.

An SPN example from Molloy [11] is taken. The SPN model is shown in

Fig. 3.2. To illustrate derivation of CTMC (continuous time Markov chain) from

this SPN, first all possible markings are estimated.

All possible markings of the SPN of Fig. 3.2 is shown in Table 3.1

Each marking corresponds to a state in the Markov chain. Possible transitions

from each states corresponds to transitions of Markov chain. The equivalent

Markov chain is shown in Fig. 3.3.

p1

p5p4

p2 p3

t5

t4 t3

t1

t2

Fig. 3.2 Stochastic Petri net
[11]

Table 3.1 Reachability
graph of SPN [11]

P1 P2 P3 P4 P5

M1 1 0 0 0 0

M2 0 1 1 0 0

M3 0 0 1 1 0

M4 0 1 0 0 1

M5 0 0 0 1 1

50 3 Stochastic Processes and Models

Like basic PN models, SPN models can have more than one transition enabled

at a time. To specify which transition will fire among all of those enabled in a

marking, an ‘‘execution policy’’ has to be specified. Two alternatives are the ‘‘race

policy’’ and the ‘‘pre-selection policy’’. Under the race policy, the transition whose

timing time elapses first is assumed to be the one that will fire. Under the pre-

selection policy, the next transition to fire in a given marking is chosen from

among the enabled transitions using a probability distribution independent of their

firing times. SPN models use the race policy.

3.6.4 Generalized Stochastic Petri Nets

Generalized stochastic petri nets (GSPNs), proposed by Marsan et al. [16], are an

extension of Stochastic Petri nets obtained by allowing the transitions of the

underlying PN to be immediate as well as timed. Immediate transitions (drawn as

thin black bars) are assumed to fire in zero time once enabled. Timed transitions

(represented by rectangular boxes or thick bars) are associated firing time just as in

SPNs.

When both immediate and timed transitions are enabled in a marking, only the

immediate transitions can fire; the timed transitions behave as if they were not

enabled. When a marking m enables more than one immediate transition, it is

necessary to specify a probability mass function according to which the selection

of the first transition to fire is made. The markings of a GSPN can be classified into

‘‘vanishing’’ markings in which at least one immediate transition is enabled, and

‘‘tangible’’ markings, in which no immediate transitions are enabled. The reach-

ability graph of a GSPN can be converted into a CTMC by eliminating vanishing

markings and solved using known methods.

3.6.5 Stochastic Reward Nets (SRN)

Stochastic Reward Nets (SRN) introduce a stochastic extension into SPNs con-

sisting of the possibility to associate reward rates with the markings. The reward

M1 M2 M3 M4 M5

t1
t2

t3

t5

t3

t2

t4
t4

Fig. 3.3 Equivalent CTMC
of the SPN [11]

3.6 Higher Level Modeling Formalisms 51

rate definitions are specified at the net level as a function of net primitives like the

number of tokens in a place or the rate of a transition. The underlying Markov

model is then transformed into a Markov reward model thus permitting evaluation

of not only performance and availability but also a combination of the two.

A stochastic reward net (SRN) is an extension of a stochastic petri net (SPN). A

rigorous mathematical description of stochastic reward nets is there in Muppala

et al. [15].

Petri net in its original definition suffers from the problem of state-space

explosion. So, over the time various features such as guard, priority relationship,

and inhibitor arcs have been added to PNs to provide a concise description of a

given system.

Associating exponentially distributed firing times with the transitions of the PN

results in a Stochastic Petri net (Molly [11]). Allowing transition to have either

zero firing times (immediate transitions) or exponentially distributed firing times

(timed transitions) gives rise to the Generalized Stochastic Petri Net (GSPN)

(Ajmone-Marson et al. [17, 18]) as already seen.

By associating reward rates with the markings of the SPN, SRN is obtained. As

SRN can be automatically converted into a Markov reward model thus permitting

the evaluation of not only performance and availability but also their combination.

Putting all this together, SRN can formally be defined as:

SRN: A marked SRN is a tuple A ¼ ðP; T ;DI;DO;DH; bG; [; k;PS;M0; rÞ
[19] where:

P ¼ p1; p2; . . .; pN is a finite set of places

T ¼ t1; t2; . . .; tM is a finite set of transitions

8pi 2 P; 8tj 2 T ;DIij : IN
N ! IN is the marking dependent multiplicity of the

input arc from place pi to transition tj; if the multiplicity is zero, the input arc is

absent

8pi 2 P; 8tj 2 T ;DOij : IN
N ! IN is the marking dependent multiplicity of the

output arc from transition tj to place pi; if the multiplicity is zero, the output arc is

absent

8pi 2 P; 8tj 2 T ;DHij : IN
N ! IN is the marking dependent multiplicity of the

inhibitor arc from place pi to transition tj; if the multiplicity is zero, the inhibitor

arc is absent

8tj 2 T ; Ĝj : IN
N ! 0; 1f g is the marking dependent guard of the transition tj

[is a transitive and irreflexive relation imposing a priority among transitions.

In a marking Mj; t1 is enabled iff it satisfies its input and inhibitor conditions, its

guard evaluates to 1, and no other transition t2 exists such that t2 [t1, and t2
satisfies all other conditions for enabling

8tj 2 T such that tj is a timed transition, kj : IN
N ! IRþ is the marking

dependent firing rate of transition tj and k ¼ ½kj�
8tj 2 T such that tj is an immediate transition, PStj : IN

N ! ½0; 1� is the marking

dependent firing probability for transition tj, given that the transition is enabled.

M0 2 INN is the initial marking

52 3 Stochastic Processes and Models

rj 2 IR is a reward rate associated with each tangible marking Mj that is

reachable from the initial marking M0, and r ¼ ½rj�

3.6.6 Deterministic and Stochastic Petri Net (DSPN)

Stochastic Petri nets (SPNs) are well suited for model-based performance and

dependability evaluation. Most commonly, the firing times for the transitions are

exponentially distributed, leading to an underlying CTMC (continuous timeMarkov

chain). In order to increase modeling power, several classes of non-Markovian SPNs

were defined, in which the transition may fire after a non-exponentially distributed

firing time.

A particular case of non-Markovian SPNs is the class of deterministic and

stochastic Petri nets (DSPNs) [19], which allows transitions to have deterministic

firing times along with transition with exponential firing times. A DSPN with

restriction that at any time at most one deterministic transition may be enabled.

When this condition is met, it has been shown that the marking process corre-

sponds to Markov regenerative process [6, 7]. Being a non-Markovian system,

analysis method popular for solving DSPNs are bases on Supplementary variable

and imbedded Markov chain [1]. Stationary analysis method for DSPNs with

mentioned conditions are presented in [20] and citemarsanon and the transient

analysis are addressed in [6].

3.6.7 Queueing Networks

Queueing networks are a widely used performance analysis technique for those

systems, which can be naturally represented as networks of queues. Systems,

which have been successfully with queueing networks, include computer systems,

communication networks, and flexible manufacturing systems [4].

A queueing system consists of three types of components:

1. Service centers: a service center consists of one or more queues and one or

more servers. The server represent the resources of the system available to

service customers. An arriving customer will immediately be served if a free

server can be allocated to the customer or if a customer in service is preempted.

Otherwise, the customer must wait in one of the queues, until a server become

available.

2. Customers: a customer is one which demand service from the service centers

and which represent load on the system.

3. Routes: routes are the paths which workloads follow through a network of

service centers. The routing of customers may be dependent on the state of the

network. If the routing is such that no customers may enter or leave the system,

3.6 Higher Level Modeling Formalisms 53

the system is said to be closed. If the customers arrive externally and eventually

depart, the system is said to be open. If some classes of customers are closed

and some are open, then the system is said to be mixed.

To complete specify the queueing network following parameters are defined:

• The number of service centers

• The number of queues at each service center. For each of these queues, we

further need to define:

– The capacity of each queue, which may be of finite capacity k or infinite.

– The queue scheduling discipline, which determines the order of customer

service. Different customer classes may have different scheduling priorities.

Common scheduling rules include First-Come First-Serve (FCFS), Last-Come

First Serve, highest priority first with or without preemption, round robin

(RR) and processor sharing (PS)

– For open classes of customers, we need to define an input source distribution

of each customer class at each queue. (this distribution is usually given by an

exponential distribution with parameter k)

• The number of servers at each service center. For each of these servers we

further need to define:

– The service time distribution for each customer class at each server. (this is

usually exponential with parameter l)

• The routing probability matrix for each customer class. This matrix specifies the

probabilistic routing of customers between service centers, with the (i, j)th

element giving the probability that a customer leaving service center i will

proceed to service center j. These transition are assumed to be instantaneous.

Queueing networks can be mapped into CTMC or DTMC, which ever may be

appropriate and can be analysed.

A certain class of networks which satisfy reversibility can be efficiently ana-

lysed using so called product-form solution techniques, the two most well-known

of which are Mean-Value Analysis (MVA) and the convolution method.

Queueing networks are widely used because they are often easy to define,

parameterise and evaluate. However, they lack of facilities to describe synchro-

nization mechanism and difficult to solve under varying scheduling policies.

Queueing networks have been successfully used in performance modeling of

computer and communication systems [20]. They are especially suited for repre-

senting resource contention and queueing for service. Most of the analysis tech-

nique so far have concentrated on the evaluation of averages of various

performance measures like throughput, utilization and response time using effi-

cient algorithms such as convolution and mean value analysis (MVA). For real-

time systems, however, the knowledge of response time distributions is required in

order to compute and/or minimize the probability of missing a deadline.

54 3 Stochastic Processes and Models

3.6.8 Stochastic Process Algebra (SPA)

A process algebra (PA) is an abstract language which differs from the formalisms

we have considered so far because it is not based on a notion of flow. Instead,

systems are modeled as a collection of cooperating agents or processes which

execute atomic actions. These actions can be carried out independently or can be

synchronized with the actions of other agents.

Since models are typically built from smaller components using a small set of

combinators, process algebras are particularly suited to the modeling of large

systems with hierarchical structure. This support for compositionality is comple-

mented by mechanisms to provide abstraction and compositional reasoning.

Widely known process algebras are Hoare’s Communicating Sequential Pro-

cess (CSP) and Miner’s Calculus of Communicating Systems. These algebras do

not include notion of time so they can only be used to determine qualitative

correctness properties of the system such as free from racing, deadlock and live-

lock. Stochastic Process Algebras (SPAs) additionally allow for quantitative per-

formance/reliability analysis by associating a random variable, representing

duration, with action/state. Several tools have been developed for SPA, such as

PEPA, TIPP, MPA, SPADES and EMPA.

We will describe SPA, using Markovian SPA PEPA. PEPA models are built

from components which perform activities of form ða; rÞ; where a is the action

type and r 2 <þ [T is the exponentially distributed rate of the action. The special

symbol t denotes an passive activity that may only take place in synchrony with

another action whose rate is specified [21].

Interaction between components is expressed using a small set of combinators,

which are briefly described below [21]:

Sequential composition: Given a process P; ða; rÞ. P represents a process that

performs an activity of type a, which has a duration exponentially distributed with

mean 1=r, and then evolves into P.

Constant: Given a process Q;P ¼ Q means that P is process which behaves in

exactly the same way as Q.

Selection: Given processes P and Q, Pþ Q represents a process that behaves

either as P or as Q. The current activities of both P and Q are enabled and a race

condition determines into which component the process will evolve.

Synchronization: Given processes P and Q and a set of action types L;P . /Q
defines the concurrent synchronized execution of P and Q over the cooperation set

L. No synchronization takes place for any activity a 62 L, so that activities can take

place independently. However, an activity a 2 L only occurs when both P and Q

are capable of performing the action. The rate at which the action occurs is given

by the minimum of the rates at which the two components would have executed

the action in isolation.

Cooperation over the empty set P . /Q represents the independent concurrent

execution of processes P and Q and is denoted as PjjQ.

3.6 Higher Level Modeling Formalisms 55

Encapsulation: Given process P and a set of actions L;P=L represents a pro-

cess that behaves like P except that activities a 2 L are hidden and performed as a

silent activity. Such activities cannot be part of a cooperation set.

PEPA specifications can be mapped onto continuous time Markov chains in a

straightforward manner. Based on the labeled transition system semantics that are

normally specified for a process algebra system, a transition diagram or derivation

graph can be associated with any language expression. This graph describe all

possible evolutions of a component and, like a reachability graph in the context of

GSPNs, is isomorphic to a CTMC which can be solved for its steady-state

distribution.

The main advantage of process algebras over other formalisms is their support

for compositionality, i.e. the ability to construct complex models in a stepwise

fashion from smaller building blocks, and abstraction, which provides a way to

treat components as black boxes, making their internal structure invisible. How-

ever, unlike the other formalisms we have considered, process algebras lack an

intuitive graphical notion so does not always present a clear image of the dynamic

behavior of the model.

3.7 Tools

3.7.1 SPNP

Stochastic Petri Net Package (SPNP) [22] is a versatile modeling tool for per-

formance, dependability and performability analysis of complex systems. Input

models based on theory of stochastic reward nets are solved by efficient and

numerically stable algorithms. Steady-state, transient, cumulative transient, time-

averaged and up-to-absorption measures can be computed. Parametric sensitivity

analysis of these measures is possible. Some degree of logical analysis capabilities

are also available in the form of assertion checking and the number and types of

markings in the reachability graph. Advanced constructs, such as marking

dependent arc multiplicities, guards, arrays of places and transitions, are available.

The modeling complexities can be reduced with these advanced constructs. The

most powerful feature of SPNP is the ability to assign reward rates at the net level

and subsequently compute the desired measures of the system being modeled.

SPNP Version 6.0 has the capability to specify non-Markovian SPNs and Fluid

Stochastic Petri Nets (FSPNPs). Such SPN are solved using discrete-event simu-

lation rather than by analytical-numeric methods. Several types of simulation

methods are available: standard discrete-event simulation with independent rep-

lications or batches, importance splitting techniques (splitting and Restart),

importance sampling, regenerative simulation without or with importance sam-

pling, thinning with independent replications, batches or importance sampling.

56 3 Stochastic Processes and Models

3.7.2 TimeNET

TimeNet [23, 24] is a graphical and interactive toolkit for modeling with stochastic

Petri nets. TimeNET has been developed at the Institut fur Technische Informatik

of the Technische Universitat Berlin, Germany. It provides a unified framework

for modeling and performance evaluation of non-Markovian stochastic Petri nets.

It uses a refined numerical solution algorithm for steady-state evaluation of DSPNs

with only one deterministic transition enable in any marking. Ex-polynomial

distributed firing times are allowed for transitions. Different solution algorithms

can be used, depending on the net class. If the transition with non-exponential

distributed firing times are mutually exclusive, TimeNET can compute steady-

state solution. DSPNs with more than one enabled deterministic transition in a

marking are called concurrent DSPNs. TimeNET provides an approximate anal-

ysis technique for this class. If the mentioned restrictions are violated or the

reachability graph is too complex for a model, an efficient simulation component is

available. A master/slave concept with parallel replications and techniques for

monitoring the statistical accuracy as well as reducing the simulation length in

case of rare events are applied. Analysis, approximation, and simulation can be

performed to the same model classes. For more details refer to TimeNET user

manual [24].

3.8 Summary

Real life system are usually complex, to model then a family random variables is

required. These family of random variables are termed as stochastic variables.

These stochastic variables have some unique characteristic. Dealing at lower level,

i.e. state-transition, for a complex problem becomes unmanageable. So, higher

level modeling formalisms are required. This is the theme of this chapter.

References

1. Cox DR, Miller HD (1970) The theory of stochastic processes. Methuen, London
2. Trivedi KS (1982) Probability statistics with reliability, queueing, and computer science

applications. Wiley, New York
3. Xinyu Z. (1999) Dependability modeling of computer systems and networks. Ph.D. thesis,

Department of Electrical and Computer Engineering, Duke University
4. IEC 60880-2.0: Nuclear power plants—instrumentation and control systems important to

safety—software aspects for computer-based systems performing category a functions, 2006
5. Erhan C (1975) Introduction to stochastic processes. Prentice-Hall, Englewood Cliffs
6. Choi H, Kulkarni VG, Trivedi KS (1993) Transient analysis of deterministic and stochastic

petri nets. In: Proceedings of the14th international conference on application and theory of
petri nets, pp 166–185

3.7 Tools 57

7. Choi H, Kulkarni VG, Trivedi KS (1994) Markov regenerative stochastic petri nets. Perform
Eval 20:337–357

8. Meyer JF (1980) On evaluating the performability of degradable computing systems. IEEE
Trans Comp C 29(8):720–731

9. Meyer JF (1982) Closed-form solutions of performability. IEEE Trans Comp C 31(7):648–657
10. Puliafito A, Telek M, Trivedi KS (1997) The evolution of stochastic petri nets. In:

Proceedings of World Congress of Systems and Simulation, WCSS 97:97
11. Molloy MK (1982) Performance analysis using stochastic petri nets. IEEE Trans Comp C

31(9):913–917
12. Murata T (1989) Petri nets: properties, analysis and applications. Proceedings IEEE

77(4):541–580
13. Peterson PL (1977) Petri nets. ACM Comput Surv 9(3)
14. Peterson PL (1981) Petri net theory and modeling of systems. PHI, Englewood Cliffs
15. Jogesh M, Gianfranco C, Trivedi KS (1994) Stochastic reward nets for reliability prediction.

Commun Reliab Maintainabil Serviceabil 1(2):9–20
16. Marsan MA, Balbo G, Conte G (1984) A class of generalized stochastic Petri nets for the

performance evaluation of multiprocessor systems. ACM Trans Comp Syst 93:93–122
17. Ajmone Marsan M, Balbo G, Conte G (1984) A class of generalized stochastic petri nets for

the performance evaluation of multiprocessor systems. ACM Trans Comp Syst 2(2):93–122
18. Marson MA, Balbo G, Bobbio A, Chiola G, Conte G, Cumani A (1989) The effect of

execution policies on the semantics and analysis of stochastic petri nets. IEEE Trans Softw
Eng 15(7):832–846

19. Bukowski JV (2001) Modeling and analyzing the effects of periodic inspection on the
performance of safety-critical systems. IEEE Trans Reliabil 50(3):321–329

20. Marsan MA, Chiola G (1987) On petri nets with deterministic and exponentially distributed
firing times. In: Advances in Petri Nets 1986, Lecture Notes in Computer Science 266,
pp 132–145

21. Diaz JL, Lopez JM, Gracia DF (2002) Probabilistic analysis of the response time in a real
time system. In: Proceedings of the 1st CARTS workshop on advanced real-time
technologies, October

22. Trivedi KS (2001) SPNP user’s manual. version 6.0. Technical report
23. Zimmermann A (2001) TimeNET 3.0 user manual
24. Zimmermann A, Michael Knoke (2007) Time NET 4.0 user manual. Technical report, August

58 3 Stochastic Processes and Models

Chapter 4

Dependability Models of Computer-Based

Systems

4.1 Introduction

Computer-based reactive systems which interact with their environment in a

timely manner are called real-time systems. The main characteristics of real-time

systems which distinguishes them from others is that the correctness (or healthi-

ness) of the system depends not only on the value of its response, but also on the

time at which it is produced. So, in real-time systems two kinds of hazardous faults

are recognized: (i) incorrect response (value failure) and, (ii) deadline miss

(timeliness failure).

Computer-based systems (CBS) which continuously interact with their envi-

ronment and try to keep some parameters of environment under pre-defined limits

are called control systems. The main characteristic of control system is stability,

and quality of performance. So, a control system is said to be failed if it becomes

unstable or its quality of performance deteriorates than acceptable.

When these systems are used in critical applications, failure of these may cause

loss of life, damage to environment and/or huge investment (or economic) loss.

These systems are also referred as critical systems. These critical systems can be

categorized as, (i) safety-critical, (ii) mission-critical and, (iii) economically-

critical systems based on type or extent of loss/damage. Examples of safety-

critical CBS are shutdown system of nuclear reactor, digital flight control

computer of aircraft, braking system of wire-by-brake system of a automobile etc.

Control & coding unit (CCU) of an avionic system, navigation system of a

spacecraft and navigation system of a guided missile etc., are example of mission-

critical systems. Economically-critical systems include reactor control system of a

nuclear reactor, fuel-injection system of automobile etc.

In this chapter, dependability attributes applicable to above critical systems are

discussed. Methods and models available in literature for these attributes are also

discussed.

A. K. Verma et al., Dependability of Networked Computer-based Systems,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-318-3_4,
� Springer-Verlag London Limited 2011

59

4.2 Dependability Attributes

Dependability of computing system is defined by Algirdas Avizienis et al. [1] as

‘‘ability to deliver service that can justifiably be trusted’’. The service delivered by

a system is its behavior as it is perceived by its user(s). User could be another

system (physical, human) that interacts with the former. Service is delivered when

the service implements the system function, where function is the behavior of the

system described by its specification.

A system failure is an event that occurs when the delivered service deviates

from correct service. A failure is a transition from correct service to incorrect

service. Failure is manifestation of error, which in turn is caused by fault [1–3].

Based on domain, faults are categorized as physical and information faults.

As discussed earlier, a computer-based system when used in critical applica-

tions, can be categorized as safety-critical, mission-critical and economically

critical. Dependability attributes applicable to these systems are safety, reliability

and availability, respectively. Figure 4.1 shows the applicable dependability

attributes pictorially.

Definition 4.1 Safety-critical systems: systems required to ensure safety of

equipment under control (EUC), people and environment.

Definition 4.2 Mission-critical systems: systems whose failure results in failure/

loss of mission.

Definition 4.3 Economically-critical systems: systems whose failure result in

availability of EUC, causing massive loss of revenue.

In next section a review of dependability attributes—reliability, availability and

safety—are presented. Dependability attribute, safety has been discussed with

great emphasis on new safety model incorporating demand rate.

Computer-based Systems

Safety-critical systems Mission-critical systems Economically-critical systems

Safety Reliability Availability

Based on usage in critical applications

Dependability attributes

Fig. 4.1 Failure domains and dependability attributes

60 4 Dependability Models of Computer-Based Systems

4.3 Reliability Models

In case of computer-based systems, component or hardware faults and software faults

are the causes of system failure. CBS are implemented using electronic components.

To estimate hazard rate (k) of electronic components two accepted techniques are

there, (i) accelerated life testing, (ii) component reliability models. These failure

models are based on failure data of components. Accepted models are MIL-HDBK-

217F, Telcordia TR/SR 332, British Telecom HRD4 and HRD5 etc. These models

give hazard rate based on operating condition and various stress factors.

Electronic components do not have moving parts, so fatigue failures are not

there. Failure can be assumed random and system posses no time memory, i.e. age.

So, once hazard rate is available exponential distribution can be used for mathe-

matical representation of component reliability with time.

4.3.1 Combinatorial Models

Combinatorial models are a class of reliability models that represent system failure

behaviors in terms of combination of component failures [4, 5]. Because of their

concise representation of system failure, combinatorial models have long been

used for reliability analysis. Reliability block diagrams, fault trees and reliability

graphs are three major types of combinatorial models. A brief description of these

is given below.

4.3.1.1 Reliability Block Diagrams

RBD is a graphical tool consisting of blocks. Individual blocks may represent

single component, module, sub-system, and/or logical blocks etc. The blocks are

connected in a manner to depict the reliability-wise relationship among the blocks.

This is the reason RBD is also termed as structure-oriented method. For example,

pair of shoes is reliability-wise in series, while a pair of eyes is in parallel. For the

system to be successful in its operation at least one path must exist between input

block and output block. The RBD can be analyzed using analytical or simulation

methods. Analytical methods include, series-parallel method, MooN (M out-of N)

and Bayes Method. Simulation method includes Monte-Carlo simulation. For

complex system with large number blocks and/or complex interaction among

blocks simulation is used.

4.3.1.2 Reliability Graphs

A reliability graph model consists of a set of nodes and edges, where the edges

represent components that can fail or structural relationship between the

4.3 Reliability Models 61

components. The graph contains nodes, a node with no incoming edges is called

source, while a node with no outgoing edges is termed as sink. Reliability graphs

are similar to RBD and comes under the broad category of structure-oriented

models. Reliability graphs are mostly suited for complex system where reliability-

wise relationship among bocks is more complicated then series-parallel. Graph

theoretic methods—cut-set, path-set and BDD [4]—be used for solution.

4.3.1.3 Fault Trees

A fault tree is a graphical representation of the combination of events that can cause

the occurrence of overall desired event, e.g. system failure in case of reliability

modeling. RBD and RG can only model hardware failures, while fault tree can

model hardware failures as well as failures on account of software failure, human

errors, operation and maintenance errors and environment influences on the system.

Fault tree identifies relationships between an undesired system event and the

subsystem failure events that may contribute to its occurrence. Fault tree devel-

opment employs a top-down approach, descending from the system level to more

detailed levels of subsystems and component levels. It is well suited to evaluate the

reliability considerations at each stage of the system design.

Fault tree provides both qualitative or quantitative system reliability. Envi-

ronmental and other external influences can easily be considered in fault tree

analysis. It provides visual and graphical aid to the analyst.

4.3.2 Dynamic Models

Combinatorial models are the simplest and widely used methods for reliability

modeling. These methods are not suitable for modeling where system failure

depends upon sequence of failure occurrence. Combinatorial models give point

estimate of reliability, i.e. for a given scenario. While system may degrade with

time, components may fail and could be repaired and restored back. This repair

could be perfect or imperfect.

To include sequence of failure fault trees are extended to dynamic fault tree.

Markov models are suitable to model sequence of failure, degradation with time,

failure and repair, and reliability with time. Brief description of these two are

given below:

4.3.2.1 Dynamic Fault Trees

Fault tree discussed above has a major shortcoming—inability to capture sequence

dependencies [6]. For example consider a dynamic redundant system with one

active component and one standby spare connected with a switch unit. If the

62 4 Dependability Models of Computer-Based Systems

switch unit fails before the active component fails, then the standby unit cannot be

switched into active operation and the system fails when the active components

fails. Thus, the failure criteria depends not only on the combination of events, but

also on their sequence.

Dynamic fault tree tries to eliminate this limitation—sequence of failure—of

fault tree by incorporating functional dependency and priority gates.

4.3.2.2 Markov Models

Markov chains are widely used for modeling and analyzing problems of stochastic

nature. A stochastic process is a Markov process if its future evolution depends on

its current state only. Means, the next state of the process is independent of the

history of the process, i.e. it only depends upon its current state. The processes of

this nature are termed as Markov process. Equation 4.1 describe a Markov Process

[7, 8].

Pr Xðtn ¼ j Xðtn�1Þ ¼ in�1; . . .;Xðt0Þ ¼ i0jf g ¼ Pr XðtnÞ ¼ j Xðtn�1Þ ¼ in�1jf g

ð4:1Þ

Whether a particular system leads to a Markov process depends on how the

random variables specifying the stochastic process are defined. For example,

consider a component, such as a IC, which may fail. Let the component be checked

periodically and classified as being in one of three states, (i) satisfactory, (ii)

unsatisfactory and, (iii) failed. Let these three states are termed as state 0, 1 and 2

respectively. The process has been depicted in Fig 4.2. The transition probabilities

of this example is given as:

P ¼
0

1

2

p00 p01 p02
0 p11 p12
0 0 1

2

4

3

5

0 1 2

ð4:2Þ

In (4.2) rows correspond to initial state while column to final state. Transition

matrix element p00 depicts the probability of remaining in state 0, while p01 depicts

probability of transition to state 1 from state 0. Using this transition matrix, next

state probabilities can be estimated using following relation:

pnþ1 ¼ pnP ð4:3Þ

where p is the state probability; P is the transition matrix.

From (4.3), it is evident that component state at any instant n + 1 is dependent

only on the previous state at instant n, and these two states are related to each other

by transition matrix. So, this component state problem in current form is modeled

by a Markov process.

Now, modify the problem statement, if state 1 (unsatisfactory) is entered, the

component remain in that state for exactly two time periods before passing to state 2.

4.3 Reliability Models 63

From this modified problem definition, it is evident that system has memory in state

1, and by definition it cannot be modeled directly as Markov process. New process is

described as:

prob pnþ1 ¼ 1jpn ¼ 1; pn�1 ¼ 0ð Þ ¼ 1

prob pnþ1 ¼ 1jpn ¼ 1; pn�1 ¼ 1ð Þ ¼ 0
ð4:4Þ

But a simple extension to state space of this problem converts the problem into

Markov process. The process involves dividing the original state 1 into two states,

(1,0) and (1,1), where (1,0) is the state corresponding to pn ¼ 1; pn�1 ¼ 0 and

(1,1) the state corresponding to pn ¼ 1; pn�1 ¼ 1. The new process with four

states has transition probability matrix as:

P ¼

0

ð1; 0Þ
ð1; 1Þ
2

p00 p01 0 p02
0 0 1 0

0 0 0 1

0 0 0 1

2

664

3

775

0 ð1; 0Þð1; 1Þ 2

ð4:5Þ

The addition of this new state enables the problem to modeled as Markov

process.

A Markov process is characterized by its states and transitions. Time to tran-

sition and states may be discrete or continuous, independent of each other. So a

Markov process can further be divided into four domains. A Markov process with

discrete states and continuous time to transition is termed as ‘‘Continuous Time

Markov Chain’’ (CTMC), while process with discrete state and discrete time is

termed as ‘‘Discrete Time Markov Chain’’ (DTMC). CTMC is well suited for

reliability analysis of electronic equipments, as their failure process is character-

ized as Markov. In reliability analysis states of the CTMC depicts the state of the

system and transition depicts the failure rate. CTMCs are capable of taking

redundancy and repair activity into account.

0 1 2

p00

p01

p11

p12

1

p02

Fig. 4.2 Discrete time Markov model of component example

64 4 Dependability Models of Computer-Based Systems

4.3.3 Software Reliability

Software is an integral part of any computer-based system. Software can cause

system failure. Major causes of system failure due to software, as per literature are

as follows:

• Specification

• Design

• Interaction

• Stress

In literature, unlike electronic components, there is no widely accepted, stan-

dardized method for software reliability prediction. A number of methods has been

proposed by contemporary researchers. Various models of software worthiness

estimation and growth—failure rate models, reliability models and reliability

growth models—are available in literature. Some of them are given as below [9–

11]:

1. Failure Rate models these are based on modeling the software failure intensity

from software test data.

(a) Jelinski–Moranda model

(b) Schick–Walvertom model

(c) Jelinski–Moranda Geometric model

(d) Goel–Okumoto debugging model [12]

2. NHPP software Reliability model it assumes faults are dormant, and time to

uncover follows non-homogeneous Poisson process.

3. State based models these models use control flow graph of the software to

represent the architecture of the system, which could be modeled as DTMC,

CTMC or SMP (semi-Markov process).

(a) Littlewood model [13]

(b) Cheung model [14]

(c) Laprie model [15]

0 (1,0) 2

p00

p01 1

1

p02

(1,1)

1

Fig. 4.3 Discrete time Markov model of component example

4.3 Reliability Models 65

(d) Kubat model [16]

(e) Gokhale et al. model [17, 18]

(f) Ledoux model [19]

(g) Gokhale et al. reliability simulation approach

4. Path-based approach Here the software reliability is computed considering

the possible execution paths of the program.

(a) Shooman model [20]

(b) Krishnamuthy and Mathur model

(c) Yacoub model [21]

5. Additive models these models estimate the system failure intensity as sum of

component failure intensities under the assumption that individual component

reliabilities can be modeled by NHPP.

(a) Xie and Wohlin model [22]

(b) Everett model [23]

In this text, software reliability of CBS is assumed to be known a priori.

4.4 Availability Models

Availability is a measure for system which are subjected to failure and repair.

Availability refers to fraction of time system spends in UP state. Mathematically it

is described as:

availability upto time t ¼ AðtÞ ¼ Total time spent in UP

Total time ‘t’
ð4:6Þ

From (4.6), it is evident that once system history (time spent in UP and DN

state) is available, availability can be determined.

AðtÞ ¼ tUP

tUP þ tDN
ð4:7Þ

Figure 4.4 gives a typical trace of system state with time. From this, statistically

mean value of tUP and tDN can be determined. With this, availability seems to be

a posteriori measure of system dependability. A estimate of being in UP state for a

given duration may give availability estimate a priori. For computer-based system,

Markov models are widely used to estimate the time a system spend in UP state.

For a repairable system MTBF and MTTR can be found from system history or

estimate using model, in that case availability is given as:

A ¼ MTBF

MTBF þMTTR
ð4:8Þ

66 4 Dependability Models of Computer-Based Systems

4.5 Safety Models

Safety-critical systems are used for automatic shutdown of EUC; whenever the

equipment or plant parameters go beyond the acceptable limits for more than

acceptable time. These kinds of systems are used in a variety of industries; such as

oil refining, nuclear power plant, chemical and pharmaceutical manufacturing etc.

When the safety system is functioning correctly (successfully), it permits the EUC

to continue provided its parameters remain within safe limits. If the parameters

move outside of an acceptable operating range for a specified time, the safety

system automatically shutdowns the EUC in a safe manner.

The safety systems generally have some redundancy and can tolerate some

failures while continuing to operate successfully. As discussed in ref. [24–27]

system’s independent channels can fail leading system to following states:

1. Safe failure (SF) state where it erroneously commands to shutdown a properly

operating equipment. Taking a channel off line and shut-down of a channel is

also referred as safe failure.

2. Fail Dangerous Detected (DD) state where channel(s) is (are) failed in dan-

gerous mode, but detected by internal diagnostics, and announced.

3. Fail Dangerous Undetected (DU) state where channel(s) is failed in dangerous

mode and not detected by internal diagnostics, hence not announced.

The safety system can fail in distinctly two different ways [24–28]

1. Safe Failure (FS), failure which does not have potential to put the safety

system in a hazardous or fail-to-function state [24]. This occurs when more

than tolerable numbers of channels are in safe failure. This type of failure is

referred to in a variety of ways including fail safe [25, 28], false trip and false

alarm.

2. Dangerous Failure (DF), failure which has the potential to put the safety system

in a hazardous or fail-to-function state [24]. More than tolerable number of

UP

DN

S
y
s
te

m
 s

ta
te

Time

t=
0 t1 t2 t3 t4 t5 t6 t7 t8

Fig. 4.4 System state UP, DN history plot

4.4 Availability Models 67

channel in DD and/or DU lead to this failure. The system fails in such a way

that it is unable to shutdown the EUC properly when shutdown is required

(or demanded).

Dangerous failures are important from safety point of view. A survey of recent

research work related to safety quantification indicates that there are diverse safety

indices, methods and assumptions about the safety systems. Safety indices used are

PFD (probability of failure on demand) [24, 26, 27, 29–33], MTTFD (mean time to

dangerous failure) [25, 28], MTTFsys (mean time to system failure) [34], MTTUF

(mean time to unsafe failure) & SSS (steady state safety) [35], and MTTHE (mean

time to hazardous event) [36]. Simplified equations [24, 26, 29, 32, 33], Markov

model [25, 27, 28, 30, 31, 34–37] and fault tree [33] are the methods used for

safety quantification. Safety indices of [35, 36] consider only repair. Bukowski

[25] considers repair as well as periodic inspection to uncover undetected faults.

Refs. [24, 26, 27, 29, 32, 33] consider common cause failures (CCF), periodic

inspection along with repair, and [37] consider demand rate. Ref. [32] discusses

the CCF model (b factor) of [24] and suggests generalization, multiple beta factor

(MBF) (multiple beta factor).

4.5.1 Modeling of Common Cause Failures (CCF)

4.5.1.1 b-Factor Model

b-factor model is very simple method to model common cause failure (CCF). The

problem with b-factor model is that it has no distinction between different voting

logics. To overcome this problem, different b’s, based on heuristics are used for

different voting logics.

4.5.1.2 Multiple Beta Factor (MBF) for Common Cause Failures (CCF)

There exists some apparent inconsistency or ambiguity regarding the definition

and use of terms random hardware failures and systematic failures, and the way

these are related to common cause failures (CCFs) [32]. In this section this clas-

sification is discussed and some suggestions are outlined.

IEC 61508 uses b-factor model for CCF. b-factor model does not distinguishes

between performance of various voting logics like 1oo2 and 2oo3. Before pro-

ceeding further, it is better to have a look at the failure classification of IEC 61508.

As per standard, failures of SIS (safety instrumented system) can be categorized

either as a random hardware failure or as a systematic failure. Where random

hardware failure means failure that occurs without the failed component

being exposed to any kind of ‘excessive’ stress [32]. While systematic failure

is related in deterministic way to a certain cause, which can be eliminated by

68 4 Dependability Models of Computer-Based Systems

improving/modifying design, manufacturing process, operational procedure etc.

[32]. So, it includes all types of failures caused by design errors.

Most safety standards makes a clear distinction between these two failures

categories, and quantify only random hardware failures only. IEC 61508 in context

of CCF describes: ‘‘However, some failures, i.e. common cause failures, which

result from a single cause, may effect more than one channel. These may result

from a systematic fault (for example, a design or specification mistake) or an

external stress leading to an early random hardware failure.’’ Therefore, the CCFs

may either result from a systematic fault or it is random hardware failure due to

common excessive stress on the components. While these standards model CCFs

arising from excessive stresses on the hardware are quantified. Hoskstad et al. [32]

present a detailed failure classification by cause of failure, it is shown in Fig. 4.5.

As shown in the figure, random failures are physical failures. The main causes

of random failures are time (age) and stress. On the other hand, systematic failures

are non-physical and its causes of introduction are design and interactions. Design

includes mistakes made in specifications, during engineering and construction.

Interaction mainly deals with man-made errors during operation or maintenance/

testing.

Random hardware failures are detected by deviation of performance or service

from specified due to physical degradation. Due to systematic failure, the delivered

service or performance deviates from the specified, without a random hardware

failure being present. Safety standards such as IEC 61508, does not quantify

systematic failures. But it may be advantageous to introduce various measures for

loss of safety, arising from different contributions.

Failure

Random hardware
(physical)

Systematic
 (non-physical)

Aging InteractionDesignStress

Independent Dependent (CCF)

Fig. 4.5 Failure classification by cause of failure [32]

4.5 Safety Models 69

4.5.2 Safety Model of IEC 61508

Safety index PFD [24] has already been published as a standard. As per IEC 61508

[24], a typical trace of system states is given in Fig. 4.6. The mean probability of

being in DD or DU state is PFD. In the figure times marked as tDi denotes

occurrence of ith detected dangerous failure, tRj completion of jth repair, tUk
occurrence of kth undetected dangerous failure, and tpl time of lth proof-test.

IEC 61508 [24] gives simplified equations for safety evaluation. Since the

inception of IEC 61508 [24], its concepts and methods for loss of safety have been

made clearer and substantiated by Markov models. A review of different techniques

by Rouvroye [38] suggests Markov analysis covers most aspects for quantitative

safety evaluation. Bukowski [30] also compares various techniques for PFD eval-

uation and defends Markov models. Zhang [27] provides Markov model for PFD

evaluation without considering demand rate and modeling imperfect proof-tests.

Demand refers to a condition when the safety system must shut down EUC. The

condition arises when EUC parameters move outside of an acceptable operating

range for a specified time. A trace of system state considering demand is shown in

Fig. 4.7. Downward arrows at Demand Incidence line shows the time epochs of

demand arrival. Epochs marked as � at DEUC line, denote successful action taken

by safety system at demand arrival. While epoch marked as �, denotes unsafe

failure of the safety system and damage to EUC.

Bukowski [37] proposes a Markov model based safety model, similar to PFD,

considering demand rate. This model does not consider periodic proof-tests.

Detailed comparison of these models with the one proposed here is given in

Sect. 4.5.4.2.

System model developed here is similar to the model of IEC 61508 [24]. It uses

Markov model for analysis. This model explicitly consider periodic proof-test

(perfect or imperfect), demand rate and safe failures. Incorporation of safe failure

OK

DD

DU

tp1 tp2t=0 tD01 tR01 tD02 tR02 tU0 tR1 tR2tU1

Time

S
y
s
te

m
 s

ta
te

Fig. 4.6 A typical trace of system states as per IEC 61508 [24]. System may make transitions to
states DD and DU, based on the type of failure. System can be restored back from DD state by
means of repair, after the failure is detected. DU state can be detected only during proof-test. So,
a system will remain in DU state till proof-tests. Safety measure of IEC 61508 [24], PFD, gives
the mean probability of finding the system in state DD or DU

70 4 Dependability Models of Computer-Based Systems

enables modeling of all possible system states and estimation of additional mea-

sures such as availability (or probability of being in one or more specified states)

for a specified amount of time.

System description and assumptions about the system to derive Markov model

is given in next section.

4.5.3 System Model

The computer-based systems fall in category of programmable electronic system

(PES) as defined in IEC [24]. These systems are used for control, protection or

monitoring based on one or more programmable electronic devices [24]. The

elements of the system (sensors, processing devices, actuators, power supplies and

wiring etc.) are grouped into channels that independently perform(s) a function.

To model the system, most of the assumptions taken for the proposed model are

similar as given in Annex B of part-6 of IEC [24]. Assumptions such as (i) failure

rate are constant over system life, (ii) channels in a voted group all have the same

failure rate, diagnostic rate, diagnostic coverage, Mean time to restore and proof-

test interval, are taken unchanged. Some of the assumptions of IEC [24] are

modified/generalized. These are given below along with new ones:

1. Overall channel failure rate of a channel is the sum of the dangerous failure

rate and safe failure rate for that channel. There values need not to be equal.

This is generalization of the assumption [24, 26] that these two failure rates

are equal in value.

2. At least one repair team is available to work on all known failure. This is

generalization of the assumption in [24, 26]. One repair facility work for one

OK

DD

DU

t=0 tD1 tR1 tD2 tR2 tD3 tR3 tPtU

Time

S
ta

te
s
/E

v
e

n
ts

Demand
Incidence

DEUC .

t1 t2 t3 t4 t5

Fig. 4.7 A typical trace of system states considering demands. This trace is same as Fig. 4.6,
with addition of demand arrival epoch and state DEUC. The safety system will damage EUC, if it
is in DD or DU state, at demand arrival. Safety measure considering demand is the probability of
reaching state, DEUC

4.5 Safety Models 71

known failure only. Availability of single repair crew in many cases has been

discussed in [30].

3. The fraction of failures specified by diagnostic coverage is detected, corre-

sponding channel is put into a safe state and restored thereafter. This assumption

is on contrary to assumption of IEC [24] for low demand case which assumes on

line repair, but in case of high demand IEC [24] assumes system achieves safe

state after detecting a dangerous fault. With this assumption, 1oo1 and 1oo2

voted group, on any detected fault EUC is put into the safe state.

4. A failure of any kind (SF, DD, DU) once occurred to any channel cannot be

changed to other types without being restored to healthy state [35]. This means

if a channel fails to SF state, then unless it is repaired back to healthy state it

cannot have failures of type DD or DU and vice versa.

5. Proof-tests (inspections or functional tests) are conducted on line. Proof-test of

a healthy channel neither changes system’s state nor EUC’s. While a channel

with undetected faults is put into safe state following proof-tests. This is a new

assumption. It is mainly based on the practice followed in nuclear industry.

6. Proof-tests are periodic with negligible duration. The proof-test interval is at

least 3 orders of magnitude greater than diagnostic test interval. This assump-

tion modifies the assumption of IEC [24] which put the limit of 1 order of

magnitude. This assumption is based on the fact that order of diagnostic test

interval is usually less than or equal to 10s of seconds, while proof-tests interval

are not less than a day.

7. Expected interval between demands is at least 3 order of magnitude greater

than diagnosis test interval. IEC [24] defines two different limits for low

demand and high demand mode of operation. Here limit of high demand

operation is taken with limit increased to 3 orders. This is based on the

assumption that expected interval between demands is not less than a day [37]

even in high demand mode.

8. On occurrence of safe fault, the channel is put into safe state, independent of

other channels. Hence all safe failures even in voted groups are detectable.

9. Time between demands is assumed to follow exponential distribution with

parameter demand rate. This is as in Bukowski [37].

10. Time to restart the EUC following safety action by safety system on demand is

assumed negligible.

11. Following safe failure of safety system, EUC can be started as soon as suf-

ficient number of channels of safety system is operational.

12. The fraction of failures that have a common cause are assumed be equal for

both safe and dangerous undetected failures.

State-transition diagram of a generic system is given in Fig. 4.8 .System state

OK represents healthy state of all its channels. When system has some channels

either in SF or DU state but sufficient number of channels are in healthy state to

take safety action on demand is denoted by Dr. When more than tolerable number

of channels are either in SF state or DU state, it leads the system to go to FS or FDU

respectively. Demand for safety action when system is in FDU lead to DEUC or

72 4 Dependability Models of Computer-Based Systems

accident condition. Transitions from OK state to Dr state is represented by k1;2.

This includes CCF of more than one channel, considering MBF [32]. Failure of all

channels due to CCF to safe or dangerous undetected is represented by k1;3 and k1;4
respectively. Further safe or dangerous faults of healthy channels from system

state Dr, lead the system to safe sate (FS) or dangerous undetected state (FDU)

respectively. These transition rates are denoted by k2;3 and k2;4 including CCF

more than one healthy channel. By means of repair channels with SF get restored

to healthy state, this is denoted by il. Here i denote either the number of known

failures or identical repair facilities whichever is minimum. From FDU system goes

to DEUC state on demand arrival as represented by karr. Proof-test is modeled by

lPðtÞ. Proof test convert the channels with DU failure to go to SF.

The state-transition diagram of Fig. 4.8 explicitly considers safe failures. Refs.

[25, 28, 31] also model safe failure state for different purposes. Here the intention

is to be able to estimate probability of being in all possible states up to a specified

time. In addition to IEC [24, 26, 27], periodic inspections (proof-tests) are con-

sidered in [25]. Bukowski [25] defined MTTFD & MTTFS. While estimating

MTTFS (or MTTFD) it assumes repair (or restoration) from MTTFD (or MTTFS).

Means, it give mean time to reach safe (or danger) state irrespective of the number

of visits to dangerous failure (or safe) state. Similarly it defines availability as

probability system is successfully operating at time t without regard to previous

failure or repair.

OK

1

Dr

2

F
S

3

F
DU

4
DEUC

5

1,2

i

2,3

j

2,4

1,3

arr

P
(t)

P
(t)

2,4

λ

λλ

µ

µ

µµ

λ
λ

λ

Fig. 4.8 Generic state-transition diagram for a safety system. State OK depicts the healthy state,
Dr degraded working state, FS safe failure state, FDU unsafe failure state and, DEUC damage to
EUC state. ki;j denoted the transition from state i to j, due to failure(s), karr is the arrival rate of

demands and, il and jl is the repair rate from the corresponding states. lpðtÞ denotes the time-

dependent proof-test event

4.5 Safety Models 73

Demand rate is incorporated in [37] as in the proposed model. If system is in

dangerous failure state on demand arrival, then system goes to a state similar to

DEUC of our model. Except modeling of demand, model of ref. [37] is totally

different than the one considered here. The key differences are as follows [39–41]:

1. change of safety system state on demand arrival in healthy states

2. considers online repair

3. does not incorporate safe failures

4. does not incorporate CCF

5. does not incorporated periodic proof-tests (or inspection or functional test)

The proposed model can be considered combining, in conceptual sense, the

ideas of periodic proof-test [25] and process demand rate [37].

4.5.4 Performance Based Safety and Availability Indices

All transitions in Markov model of Fig. 4.8, except lPðtÞ are constant and inde-

pendent of time. Exclusion of this transition (i.e. lPðtÞ ¼ 0 for all t) from state-

transition diagram, transforms the state transition diagram in to a continuous-time

Markov chain (CTMC) [7, 42]. The infinitesimal generator matrix, Q of the CTMC

of Fig. 4.8 is given by,

Q ¼ KTT 0

KTA 0

� �

ð4:9Þ

The CTMC of Fig. 4.8 is absorbing, so its infinitesimal matrix, Q, is singular,

i.e Qj j ¼ 0. To analyze such a system analytically, use of Darroch and Seneta [43]

technique of only considering transient state is proposed. KTT is the infinitesimal

generator matrix of CTMC considering transient states only. All transient state of

the CTMC communicate to absorbing state, ensures KTT is regular (i.e. KTT 6¼ 0)

[43]. Time dependent transient state probabilities are given by solving following

Chapman–Kolmogrov equation [7, 42].

_pðtÞ ¼ KTTpðtÞ
pðtÞ ¼ ½P1ðtÞ P2ðtÞ P3ðtÞ P4ðtÞ�

ð4:10Þ

Solution of (4.10) gives time varying transient state probabilities without

periodic proof-tests. Incorporation of periodic proof-tests in this model makes it a

non-Markovian model. Marsan [44] proposed a method to analyze a non-Mar-

kovian system for steady state which satisfies following two conditions:

1. non-Markovian event is deterministic

2. only one deterministic event is enabled at any instant

Varsha [45] uses a method based on Markov regenerative process [42] to solve

availability problems with periodic load pattern. As per Markov regenerative

74 4 Dependability Models of Computer-Based Systems

process, time instances, in present context, Tproof , 2Tproof , 3Tproof . . .; are called

Markov regeneration epochs. State probabilities of the model can be obtained by

sequentially solving the Markov chain between Markov regenerative epochs and

redistributing the state probabilities at regeneration epochs. Bukowski [25] also

uses the similar method to determine MTTF under various conditions, and call it

piece-wise CTMC method. Here, Markov regenerative process based analysis to

determine state probabilities with periodic proof-tests has been employed.

State probabilities for time up to first regenerative epoch can be obtained from

(4.10).

pðtÞ ¼ eKTT tpð0Þ 0� t\Tproof ð4:11Þ

State probability just first before proof-test are given by

pðs Þ ¼ eKTTspð0Þ s ¼ Tproof ð4:12Þ

Let state probability redistribution matrix is given by

D ¼ ½dij� ð4:13Þ

Redistribution matrix (D) is a square matrix. The rows of this matrix correspond

to each state of the Markov model. In any state, channels of the system can have

OK, SF or DU states. Values of elements of redistribution matrix (Dij) are

determined as follows:

dij ¼

1 8i ¼ j and all channels are either OK of SF in system state corresponding to i

ð1� gÞ 8i ¼ j and any channel state is DU in system state corresponding to i

g 8 state i is having channels with SF, state j having channels with DU,

and conversion of all channels with DU of state j to SF leads to state i

0 otherwise

8
>>>><

>>>>:

ð4:14Þ

where g is measure of the degree of perfection of proof-tests.

State probabilities just following the first proof test is given by

pðsþÞ ¼ DeKTTspð0Þ s ¼ Tproof ð4:15Þ

and

pðtÞ ¼ pðsþ SÞ ¼ eKTTSDeKTTspð0Þ s\t\2s; s ¼ Tproof ð4:16Þ

Generalization of the above equation gives,

pðtÞ ¼ pðnsþ SÞ ¼ eKTTSanpð0Þ ns\t\ðnþ 1Þs ð4:17Þ

where a ¼ DeKTTs.

Let system operates continuously for time duration of T , then mean state

probabilities for this duration can be computed as:

4.5 Safety Models 75

E½pðtÞ� ¼ �p ¼
R T

0
pðtÞdt
R T

0
dt

ð4:18Þ

�p ¼ 1

T

Xn

j¼1

Zjs

ðj�1Þs

pðtÞdtþ

ZnsþS

ns

pðtÞdt

0

B@

1

CA ð4:19Þ

�p ¼
1

T
K�1

TT ½eKTTs � I�½I � a��1½I � an� þ ½eKTTS � I�an
� �

pð0Þ
h i

ð4:20Þ

where T ¼ nsþ s.

Equation 4.20 gives the closed form solution for state probabilities considering

demand rate and periodic proof-test (perfect as well as imperfect).

4.5.4.1 Safety Index: Probability of Failure on Actual Demand (PFaD)

The safety index probability of failure on actual demand (PFaD) is intended to

measure the probability of reaching DEUC state. pðtÞ of (4.17) gives the proba-

bility of all the states except DEUC. From the state-transition diagram of Fig. 4.8,

it is clear that system is conservative. Sum of all state probabilities at any instant

shall be ‘1’, i.e. system shall be in either of 5 states. The probability of not being in

states, defined in pðtÞ, is DEUC state probability, i.e. PFaD. PFaDðtÞ is given by,

PFaDðtÞ ¼ 1� ½1x�pðtÞ ð4:21Þ

where 1x is the vector of 1s; equal to size of pðtÞT.
Average probability of failure on demand, PFaD can be evaluated using (4.20)

and (4.21)

meanPFaD ¼ 1� ½1x��p ð4:22Þ

where 1x is the vector of 1s equal to size of �pT.

The Markov model being absorbing pðtÞ will decrease to 0 with increasing

time. So, PFaDðtÞ like failure distribution (complement of reliability) [7] is a non-

decreasing function of time.

4.5.4.2 Comparison with PFDPRS

As discussed earlier, formulation of PFaD can be considered as combination of

research work of [25] and [37]. Ref. [25] uses index (MTTF) while [37] uses a

similar performance based safety index, PFDPRSðtÞ. PFDPRSðtÞ does not include
periodic proof-test. When proof-tests are not considered in safety index PFaD(t)

then PFaDðtÞ and PFDPRSðtÞ, by definition, are same except differences in

respective models.

76 4 Dependability Models of Computer-Based Systems

To compare PFaDðtÞ values with that of PFDPRSðtÞ [37], parameter values of

[26] are taken. Ref. [26] does not consider safe failure hazard rate and periodic

proof-tests. Safe failures hazard rate are taken to be zero and proof-test interval is

taken more than operation time for analysis. For convenience all parameter values

are given in Table 4.1.

Result of the two models for different demand rates are given in Table 4.2. At

higher demand rate, PFaDðtÞ values are less than that of corresponding

PFDPRSðtÞ values. The main reason for this is difference is Bukowski’s [37]

model considers online repair and unsafe failure from dangerous detected state. At

low demand rate, both models are in good agreement.

Mean PFaD values for the specified time duration, T = 5,000 h is also given in

Table 4.2. For the parameter values of Table 4.1, avg. PFD and PFH values are

5:25� 10�3 and 2� 10�7, respectively. These two values are the probability of

being in dangerous undetected state in low demand mode and high demand mode.

While the safety index avg. PFaD for the specified operational time gives the

actual probability of failing on demand or probability of damage to EUC.

4.5.4.3 Availability Index: Manifested Availability

PFaDðtÞ denotes the fraction of system failed on demand by time t. Failing on

demand often lead to endangering plant or EUC. Safety systems which failed on

demand can not be brought back to operation.

Table 4.1 Parameter values
used for comparison of
PFaD(t) and PFDPRSðtÞ [37]

Parameter Value

kS 0 h�1

kD 2� 10�6 h�1

DC 0.9

g 1

l 1=8 h�1

T 5,000 h

TProof 6,000 h

Table 4.2 Comparison of results, PFaDðtÞ and PFDPRS(t) [37]. First column shows MTBD
(mean time between demands), second column shows value of safety index PFDPRSðtÞ, PFaD(t)
and its mean value are given in third and fourth column, % relative difference between
PFDPRS(t) and PFaD(t) are given in column 5

MTBD PFDPRS(t)
[37]

PFaD(t) PFaD % difference

1/day 0.0015 0.000995 0.000495 33.688667

1/week 0.0014 0.000966 0.000467 31.007143

1/month 0.00085 0.000856 0.000377 -0.6752941

1/year 0.00022 0.000238 0.000083 -0.3636364

1/10 years 0.00002 0.000028 0.000009 -0.39965

4.5 Safety Models 77

Let a safety system survives from unsafe failures (i.e. DEUC) up to time t, then

conditional state probability are given as:

�piðtÞ ¼
piðtÞP
i piðtÞ

¼ piðtÞ
1� PFaDðtÞ

ð4:23Þ

With this condition, probability of not being in FS gives the availability of

safety system. This availability is termed as manifested Availability (mAv).

Average mAv value up to time 0t0 is given as:

avg:mAvðtÞ ¼ 1�
X

i

p̂iðtÞ where system state corresponding to i 2 FS ð4:24Þ

This definition of availability is different from Bukowski [25], which considers

probability of being in state OK (with reference to Markov model of Fig. 4.8), is

availability. mAv takes into account both types of failures affecting availability of

EUC.

4.6 Examples

4.6.1 Example 1

4.6.1.1 System Description

To illustrate effect of proof-test interval along with demand rate, a hypothetical

protection system of a nuclear reactor is taken. The purpose of the system is to take

safety action (shutdown the reactor) at demand. Composition and number of

modules required to configure one channel is shown in Fig. 4.9. Channel uses in

house developed programmable electronic modules. Module 8687EURO is pro-

cessor module containing x86 processor and math co-processor. SMM256 contains

EPROMs and RAMs. EPROMs are used for storing program while RAM is used

as scratch pad area. Modules RORB, DIFIT, DOSC and ADA12 are input/output

modules. These are used for acquiring inputs and generating outputs. Module

WDT (watchdog timer) is used to ensure a channel’s outputs go to safe failure

Backplane

8687EURO

(1)

SMM256

(1)

RORB

(2)

DIFIT

(3)

ADA12

(1)

DOSC

(3)

WDT

(1)

Fig. 4.9 Composition of a channel. Number within braces shows the quantity of such modules in
a channel

78 4 Dependability Models of Computer-Based Systems

state, when a dangerous failure is detected in the channel. Module failure (hazard)

rates are taken from Khobare et al. [46]. Based on module hazard rates channel

hazard rate is estimated assuming any module failure lead to channel failure.

Protection system is configured as 2oo3 i.e. TMR (Triple Modular Redundant).

The 2oo3 system configuration is shown in Fig. 4.12b. Three channels operate

independently and open their control switches to shutdown the EUC. Control

switches from individual channels are wired to form a 2oo3 majority voting logic.

This enables the system to tolerate one channel’s failure of either type safe or

unsafe.

Ratio of safe failure to unsafe failures and coverage factor are taken from [47].

Module hazard rate values are given in Table 4.3, diagnostic parameters given in

Table 4.4 and derived parameters required for model are given in Table 4.5.

4.6.1.2 Model

The first step is derivation of Markov model for the system. Markov model of the

system is shown in Fig. 4.10. States are marked with 3-tuple, (i, j, k), i shows the

number of healthy channels, j channel(s) in safe failure state and k channel(s) in

dangerous failure state. Transition rate is in terms of safe, dangerous and repair

rate. MATLAB code for the example is given below:

Table 4.3 Module hazard rate and calculation of channel hazard rate

S. No. Module name Quantity Module hazard rate Total hazard rate

1 8687EURO 1 1.22E-05 1.22E-05

2 SMM-256 1 4.42E-06 4.42E-06

3 DIFIT 3 1.07E-05 3.21E-05

4 RORB 2 3.03E-06 6.05E-06

5 ADA-12 1 6.73E-06 6.73E-06

6 DOSC 3 7.11E-06 2.13E-05

7 WDT 1 2.80E-06 2.80E-06

8 Backplane 1 0 0

Channel hazard rate (k) 8.56E-05

Table 4.4 Diagnostic
parameters

S. No. Parameter Value

1 Fraction dangerous 0.48

2 Diagnostic coverage (DC) 0.74

3 Demand rate 5.0 9 10-4 h-1

4 Diagnosis rate 0.1 h-1

5 Repair rate 1 h-1

6 Proof-test interval 2,000 h

4.6 Examples 79

80 4 Dependability Models of Computer-Based Systems

4.6.1.3 Results

Mean PFaD values for different demand rates and proof-test interval are plotted in

Fig. 4.11. If required value of PFaD is assumed 1� 10�4. From the figure, it can

be observed to meet this target safety value frequent proof-test are required. At

design time demand rate of a new EUC is not known clearly. So this plot can be

used to choose a proof-test interval which guarantees the required PFaD value for

maximum anticipated demand.

Table 4.5 Derived
parameter values for safety
model

Parameter Value

kS 4.45 9 10-5 h-1

kD 4.10 9 10-5 h-1

DC 0.74

g 1

l 1 h-1

Tproof [100, 100, 10,000] h

karr [2/year, 1/year, 1/5year, 1/10year]

T 6 year

4.6 Examples 81

4.6.2 Example 2

To illustrate evaluation of PFaD and manifested availability, 2 commonly used

hardware architectures; 1oo2 and 2oo3 of a safety system are chosen. Schematic of

these architectures are shown in Fig. 4.12.

1oo2 architecture consists of 2 s-identical channels with output switches wired

in series, also called output ORing. If either channel is SF, then its control switch

opens and EUC is shutdown. Therefore, 1oo2 architecture is sensitive to safe

failures of its channels: even a single channel’s safe failure causes the EUC to

shutdown. On the other hand, if one channel is in FDU , then its switch is unable to

3,0,0 2,1,0

2,0,1 1,1,1

1

2

arr

1,2,0 0,3,0

0,2,1

1,0,2 0,1,2

0,0,3

DEUC

1 1

1 1

1

2 2

2 2

2

1
 =

S
+ C

D

2
 = (1-C)

D

Fig. 4.10 Markov model for safety analysis of Example 1. This safety model is based on generic
safety model shown in Fig. 4.8. State {(3,0,0)} corresponds to OK state, states {(2,1,0), (2,0,1),
(1,1,0)} corresponds to Dr state and, states {(1,2,0), (0,3,0), (0,2,1)} corresponds to FS state of
Fig. 4.8. States {(1,0,2), (0,1,2), (0,0,3)} corresponds to FDU states. System may fail dangerously
from any of the FDU states. Transition rate karr from each of these state is same due to distribution
property of transitions, i.e. ðP102 þ P012 þ P003Þ:karr ¼ P102:karr þ P012:karr þ P003:karr

82 4 Dependability Models of Computer-Based Systems

open at demand, but other channel’s switch open and EUC shutdown is ensured.

So, 1oo2 system can endanger EUC, only if both channels are in DU at demand.

So, 1oo2 with output ORing can tolerate one channel’s DU failures only. Both

channels can fail to SF or DU due to CCF. Beta-factor model [24, 32] for CCF is

used. The Markov model of the system with one repair station is shown in

Fig. 4.13.

The states of the Markov chain are denoted by a 3-tuple, ði; j; kÞ
• i denotes the number of channels in OK state

• j denotes the number of channels in SF state

• k denote the number of channels on DU state

2oo3 consists of 3 s-identical channels with a pair of output control switches

from each channel. These control switches are used in implementing majority

voting logic. 2oo3 architecture shutdowns the EUC when two channels go to SF, It

endangers the EUC when 2 channels are in dangerous failure states (DU) at

demand. Means, 2oo3 can tolerate one channel’s safe or dangerous failure. To

incorporate CCF we have used MBF (multiple beta factor) of Hokstad [32]. The

advantage of MBF is it can model variety of cases, beta-factor, gamma-factor, and

base case. Beta-factor allows only simultaneous failure of three channels, gamma-

factor allows simultaneous failure of two channels only, while base case allows

combination of simultaneous failure of two and three channels. The Markov model

of the system with one repair station is shown in Fig. 4.14.

10
1

10
2

10
3

10
4

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Proof-test interval (Hr.)

P
F

a
D

2/Yr

1/Yr

1/5Yr

1/10Yr

Demand rate

Fig. 4.11 PFaD values with respect to proof-test interval at different demand rates. This plots
relationship between mean PFaD and proof-test interval for 4 different demand rates

4.6 Examples 83

4.6.2.1 Parameter Values

Table 4.6 gives system parameter values such as the channel hazard rate, repair

along with proof-test interval or mission time used for the example architectures.

Probability redistribution matrix, D, for 2 architectures is derived from dis-

cussion of Sect. 4.5.3. These are given as below:

For 1oo2

D ¼

1 0 0 0 0 0

0 1 0 0:9 0 0

0 0 1 0 0:9 0:9
0 0 0 0:1 0 0

0 0 0 0 0:1 0

0 0 0 0 0 0:1

2

6666664

3

7777775
ð4:25Þ

Channel

System

Channel

Control switches

Channel

System

Channel

Channel
C

A

B

C

A

B

B

C

A

2oo3 voting
logic

(a) 1oo2

(b) 2oo3

Fig. 4.12 Schematic of 1oo2 and 2oo3 architectures

84 4 Dependability Models of Computer-Based Systems

For 2oo3

D ¼

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0:9 0 0 0 0 0

0 0 1 0 0 0:9 0 0:9 0 0

0 0 0 1 0 0 0:9 0 0:9 0:9
0 0 0 0 0:1 0 0 0 0 0

0 0 0 0 0 0:1 0 0 0 0

0 0 0 0 0 0 0:1 0 0 0

0 0 0 0 0 0 0 0:1 0 0

0 0 0 0 0 0 0 0 0:1 0

0 0 0 0 0 0 0 0 0 0:1

2

666666666666664

3

777777777777775

ð4:26Þ

2,0,0

1,0,1

arr

1
 =

S
 + DC

D

2
 = (1-DC)

D

1,1,0 0,2,0

0,1,1

0,0,2 DEUC

1

1

2 2

2

1

2

 = ∼β β

2∼βλ1

2∼βλ2

Fig. 4.13 Markov model of 1oo2 system of Example 2. Markov model is based on generic
Markov model of Fig. 4.8. State {(2,0,0)} corresponds to OK, {(1,0,1)} to Dr, {(1,1,0), (0,2,0),
(0,1,1)} to FS and {(0,0,2)} to DU state of Fig. 4.8. b represents the fraction of failures due to
CCF. k1 is hazard rate of safe failures, while k2 is hazard rate of dangerous failures

4.6 Examples 85

MATLAB code for the example is given below:

Fig. 4.14 Markov model of 2oo3 system of Example 2. Markov model is based on generic
Markov model of Fig. 4.8. State {(3,0,0)} corresponds to OK, {(2,1,0), (2,0,1), (2,1,0)} to Dr,
{(1,2,0), (0,3,0), (0,2,1)} to Fs and {(1,0,2), (0,1,2), (0,0,3)} to DU state of Fig. 4.8. b and b2
represents the fraction of failures due to CCF, a is fraction of individual failures. k1 is hazard rate
of safe failures, while k2 is hazard rate of dangerous failures

86 4 Dependability Models of Computer-Based Systems

4.6 Examples 87

4.6.2.2 Calculation and Results

Average PFaD and availability values for the specified period are evaluated. These

values are evaluated with parameter values given in Table 4.6 for proof-test

interval [100 h, 12,000 h] at increment of 100 h. The plots of average PFaD and

mAv for 1oo2 and 2oo3 architectures are given in Figs. 4.15 and 4.16 respectively.

Step-wise detailed calculation is given below for better clarity:

Case-1 1oo2 architecture.

Step 1 First step is to determine infinitesimal generator matrix, Q, which is

composed of KTT and KTA. KTT is infinitesimal generator matrix for transient

states, {(2,0,0), (1,1,0), (0,2,0), (1,0,1), (0,1,1), (0,0,2)}, and KTA is infinitesimal

generator matrix for absorbing state DEUC.

Q ¼ KTT 0

KTA 0

� �

Table 4.6 Parameter values
for Example 2

Parameter Value

kS 5 9 10-6 h-1

kD 5 9 10-6 h-1

DC 0.9

g 0.9

l 1/8 h-1

b 0.1

b2 0.3

T 87,600 h

MTBD 43,800 h

88 4 Dependability Models of Computer-Based Systems

0 2000 4000 6000 8000 10000 12000
0

1

2

3

4

5

6

7

x 10
-4

Proof-test interval (Hrs)

m
e
a
n
 P

F
a

D

1oo2
2oo3

Fig. 4.15 Variation of avg. PFaD w.r.t. Tproof . For both hardware architectures mean PFaD is

evaluated for proof-test interval [100 h, 12,000 h] at a increment of 100 h for operating time of
T = 87,600 h. So, each point gives mean PFaD value for corresponding proof-test s (Tproof)

value. This saw tooth behavior is observed because of ‘S’ of (4.20). With varying proof-test
interval, ‘S’ may have value from 0 to approx. equal to proof-test interval. For proof-test values,
at which ‘S’ is zero, mean PFaD be local minimum

0 2000 4000 6000 8000 10000 12000
0.9995

0.9995

0.9996

0.9996

0.9997

0.9997

0.9998

0.9998

0.9999

0.9999

1

Proof-test interval (Hrs)

m
A

v

1oo2
2oo3

Fig. 4.16 Variation of avg. mAv w.r.t. Tproof

4.6 Examples 89

From the Fig. 4.13, kTT and kTA is given as:

KTT ¼

P200

P110

P020

P101

P011

P002

�ððbþ2~bÞk1þðbþ2~bÞk2Þ l 0 0 0 0

2~bk1 �ðk1þk2þlÞ l 0 0 0

bk1 k1 �l 0 0 0

2~bk2 0 0 �ðk1þk2Þ l 0

0 k2 0 k1 �l 0

bk2 0 0 k2 0 �karr

2

6666666666664

3

7777777777775

KTA ¼

P200

P110

P020

P101

P011

P002

0

0

0

0

0

karr

2

66666664

3

77777775

From the parameter values given in Table 4.6, KTT and KTA is given as:

KTT¼

�1:9�10�5 1:25�10�1 0 0 0 0

1:71�10�5 �1:25�10�1 1:25�10�1 0 0 0

9:5�10�7 9:5�10�6 �1:25�10�1 0 0 0

9:0�10�7 0 0 �1:0�10�5 1:25�10�1 0

0 5:0�10�7 0 9:5�10�6 �1:25�10�1 0

5:0�10�8 0 0 5:0�10�7 0 �2:283�10�5

2

66666666664

3

77777777775

Similarly

KTA ¼

0

0

0

0

0

2:283� 10�5

2

6666664

3

7777775

90 4 Dependability Models of Computer-Based Systems

Step 2 Evolution of transient states with time is given by:

_pðtÞ ¼ KTTpðtÞ

pðtÞ ¼

P200ðtÞ
P110ðtÞ
P020ðtÞ
P101ðtÞ
P011ðtÞ
P002ðtÞ

2

66666666664

3

77777777775

and

pðtÞ ¼

1

0

0

0

0

0

2

666666664

3

777777775

Step 3 Let proof-test interval, Tproof is 100 h, then state-probabilities just before

Ist proof-test, for example 99 h, is given by:

pðs�Þ ¼ eKTTspð0Þ s ¼ Tproof

pð99Þ ¼

9:99� 10�1

1:44� 10�4

7:60� 10�6

8:90� 10�5

6:80� 10�9

4:94� 10�6

2

66666666664

3

77777777775

Step 4 State probability just after Ist proof-test, i.e. at t = 100 h and after proof-

test.

pðsþÞ ¼ DeKTTspð0Þ s ¼ Tproof

4.6 Examples 91

State probability redistribution matrix, D as per (4.6) is given as:

D ¼

1 0 0 0 0 0

0 1 0 g 0 0

0 0 1 0 g g

0 0 0 1� g 0 0

0 0 0 0 1� g 0

0 0 0 0 0 1� g

2

666666664

3

777777775

Probability redistribution matrix, D for the example is as:

D ¼

1 0 0 0 0 0

0 1 0 0:9 0 0

0 0 1 0 0:9 0:9
0 0 0 0:1 0 0

0 0 0 0 0:1 0

0 0 0 0 0 0:1

2

6666664

3

7777775

The state probabilities just after Ist proof-test are given as:

pð100Þ ¼

9:99� 10�1

2:25� 10�4

1:22� 10�5

8:99� 10�6

6:86� 10�10

4:99� 10�7

2

66666664

3

77777775

Step 5 State probabilities between Ist and IInd proof-test interval is given by (4.7)

pðsþÞ ¼ DeKTTspð0Þ s ¼ Tproof

and

pðtÞ ¼ pðsþ SÞ ¼ eKTTSDeKTTspð0Þ s\t\2s; s ¼ Tproof

Following this step progressively for next proof-test intervals will enable

computation of state-probabilities for any specified time.

pðtÞ ¼ pðnsþ SÞ ¼ eKTTSanpð0Þ ns\t\ðnþ 1Þs

where a ¼ DeKTTs.

92 4 Dependability Models of Computer-Based Systems

For operation time T = 87,600 h, n and S of above equation are 876 and 0,

respectively, state probabilities at t ¼ T can be obtained as:

pð87;600Þ ¼

9:20� 10�1

6:67� 10�2

2:46� 10�3

7:39� 10�3

5:62� 10�7

2:72� 10�4

2

6666666664

3

7777777775

Step 6 Once state probabilities with time are known, using mean operator mean

probabilities can be obtained:

E½pðtÞ� ¼ �p ¼

R T

0
pðtÞdt
R T

0
dt

�p ¼
1

T
K�1

TT ½eKTTs � I�½I � a��1½I � an� þ ½eKTTS � I�an
� �

pð0Þ
h i

where T ¼ nsþ S.

so for example case it is given as,

�p ¼

9:99� 10�1

1:52� 10�4

8:00� 10�6

5:49� 10�5

4:23� 10�9

3:05� 10�6

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

Step 7 Determination of mean safety index,

meanPFaD ¼ 1� ½1x��p

mean PFaD ¼ 3:043� 10�6

Following these steps, state-probabilities and safety index for various proof-test

intervals can be estimated.

Case-2 2oo3 architecture. This is similar to previous case. For a given value of

proof-test interval, safety index can be evaluated following the described 7 steps.

Step 1 Determination of infinitesimal generator matrix.

From the parameters given in example, KTT and KTA is given as:

4.6 Examples 93

K
T
T
¼

P
3
0
0

P
2
1
0

P
1
2
0

P
0
3
0

P
2
0
1

P
2
1
1

P
0
2
1

P
1
0
2

P
0
1
2

P
0
0
3

�
2
:7
3
�
1
0
�
5

1
:2
5
�
1
0
�
1

0
0

0
0

0
0

0
0

2
:3
6
�
1
0
�
5

�
1
:2
5
�
1
0
�
1

1
:2
5
�
1
0
�
1

0
0

0
0

0
0

0

1
:9
9
�
1
0
�
6

1
:7
1
�
1
0
�
5

�
1
:2
5
�
1
0
�
1

1
:2
5
�
1
0
�
1

0
0

0
0

0
0

2
:8
5
�
1
0
�
7

9
:5
0
�
1
0
�
7

9
:5
0
�
1
0
�
6

�
1
:2
5
�
1
0
�
1

0
0

0
0

0
0

1
:2
4
�
1
0
�
6

0
0

0
�
1
:9
0
�
1
0
�
5

1
:2
5
�
1
0
�
1

0
0

0
0

0
9
:0
0
�
1
0
�
7

0
0

1
:7
1
�
1
0
�
5

�
1
:2
5
�
1
0
�
1

1
:2
5
�
1
0
�
1

0
0

0

0
0

5
:0
0
�
1
0
�
7

0
9
:5
0
�
1
0
�
7

9
:5
0
�
1
0
�
6

�
1
:2
5
�
1
0
�
1

0
0

0

1
:0
5
�
1
0
�
7

0
0

0
9
:0
0
�
1
0
�
7

0
0

�
3
:2
8
�
1
0
�
5

1
:2
5
�
1
0
�
1

0

0
5
:0
0
�
1
0
�
8

0
0

0
5
:0
0
�
1
0
�
7

0
9
:5
0
�
1
0
�
6

�
1
:2
5
�
1
0
�
1

0

1
:5
0
�
1
0
�
8

0
0

0
5
:0
0
�
1
0
�
8

0
0

5
:0
0
�
1
0
�
7

0
�
2
:2
8
�
1
0
�
5

2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 4

3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 5

:

94 4 Dependability Models of Computer-Based Systems

Similarly

KTA ¼

0

0

0

0

0

0

0

2:28� 10�5

2:28� 10�5

2:28� 10�5

2

666666666666664

3

777777777777775

Step 2 Evolution of transient states with time is given by:

_pðtÞ ¼ KTTpðtÞ

pðtÞ ¼

P300

P210

P120

P030

P201

P211

P021

P102

P012

P003

2

666666666666664

3

777777777777775

Step 3 State probability just before Ist proof-test, i.e. 99 h. (For proof-test

interval 100 h)

pðs�Þ ¼ eKTTsp 0ð Þ s ¼ Tproof

pð99Þ ¼

9:99� 10�1

2:07� 10�4

1:82� 10�5

2:28� 10�6

1:23� 10�4

1:78� 10�8

9:35� 10�10

1:03� 10�5

8:08� 10�10

1:48� 10�6

2

666666666666664

3

777777777777775

Step 4 State probability just after Ist proof-test, i.e. 100 h. (For proof-test

interval 100 h)

4.6 Examples 95

pðsþÞ ¼ DeKTTspð0Þ s ¼ Tproof

State probability redistribution matrix, D is given in example, it is again given

here.

D ¼

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0:9 0 0 0 0 0

0 0 1 0 0 0:9 0 0:9 0 0

0 0 0 1 0 0 0:9 0 0:9 0:9

0 0 0 0 0:1 0 0 0 0 0

0 0 0 0 0 0:1 0 0 0 0

0 0 0 0 0 0 0:1 0 0 0

0 0 0 0 0 0 0 0:1 0 0

0 0 0 0 0 0 0 0 0:1 0

0 0 0 0 0 0 0 0 0 0:1

2

666666666666666666664

3

777777777777777777775

The state probabilities just after Ist proof-test are given as:

pð100Þ ¼

9:99� 10�1

3:18� 10�4

2:76� 10�5

3:61� 10�6

1:23� 10�5

1:78� 10�9

9:35� 10�11

1:03� 10�6

8:08� 10�11

1:48� 10�7

2

666666666666666666664

3

777777777777777777775

Step 5 State probabilities between Ist and IInd proof-test interval is given by (4.7)

pðsþÞ ¼ DeKTTspð0Þ s ¼ Tproof

and

pðtÞ ¼ pðsþ SÞ ¼ eKTTSDeKTTspð0Þ s\t\2s; s ¼ Tproof

96 4 Dependability Models of Computer-Based Systems

Following this step progressively for next proof-test intervals will enable

computation of state-probabilities for any specified time.

pðtÞ ¼ pðnsþ SÞ ¼ eKTTSanpð0Þ ns\t\ðnþ 1Þs

where a ¼ DeKTTs.

For operation time T = 87,600 h, n and S of above equation are 876 and 0,

respectively, state probabilities at t ¼ T can be obtained as:

pð87;600Þ ¼

8:87� 10�1

8:88� 10�2

5:30� 10�3

6:60� 10�4

9:85� 10�3

1:42� 10�6

7:49� 10�8

5:85� 10�4

4:45� 10�8

7:30� 10�5

2

66666666666666664

3

77777777777777775

Step 6 Once state probabilities with time are known, using mean operator mean

probabilities can be obtained:

E½pðtÞ� ¼ �p ¼

R T

0
pðtÞdt
R T

0
dt

�p ¼
1

T
K�1

TT ½eKTTs � I�½I � a��1½I � an� þ ½eKTTS � I�an
� �

pð0Þ
h i

where T ¼ nsþ S.

So for example case it is given as,

�p ¼

9:99� 10�1

2:18� 10�4

1:92� 10�5

2:40� 10�6

7:60� 10�5

1:11� 10�8

5:80� 10�10

6:41� 10�6

5:09� 10�10

9:15� 10�7

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Step 7 Determination of mean safety index,

4.6 Examples 97

mean PFaD ¼ 1� ½1x��p

mean PFaD ¼ 7:321� 10�6

Following these steps, state-probabilities and safety index for various proof-test

interval can be derived.

4.6.2.3 Discussion

For the systems with identical channels PFaD values of 1oo2 architecture is lower

than 2oo3 architecture for all proof-test intervals. PFaD values for both the

architecture increases with increase in proof-test interval. Manifested availability

values of 2oo3 architecture are high compared with 1oo2. From Fig. 4.16 it can be

observed that there is no appreciable decrease in availability of 2oo3 architecture

with proof-test interval. While 1oo2 architecture shows decrease in availability

with increasing proof-test interval.

One factor for higher PFaD value of 1oo2 architecture is it spends more time

(compared with 2oo3) in FS (i.e. safe shutdown). Lower value of availability for

1oo2 proves this fact.

4.7 Advantage of Modeling Safe Failures

Safety index PFaDðtÞ along with availability index mAv(t) can be very useful at

the time of safety system design as well as operation phase. During design phase,

these two indices can be evaluated for different design alternatives (architecture,

hazard rates, DC, CCF) with specified external factors (Proof-test interval, MTBD)

for a specified time. The design alternative which gives lowest PFaDðtÞ (lower

than required) and maximum mAv(t) is best design option.

Table 4.7 System parameter values for comparison

Parameter Case-I Case-II Case-III

kS 2 9 10-6 h-1 4.45 9 10-5 h-1 4.45 9 10-6 h-1

kD 2 9 10-6 h-1 4.10 9 10-5 h-1 4.10 9 10-6 h-1

DC 0.9 0.99 0.99

g 1 1 1

b 0 0 0

b2 0 0 0

l 1/8 h-1 1 h-1 1 h-1

T 10,000 h

MTBD [5,000, 7,500] h

TProof 2,000 h

98 4 Dependability Models of Computer-Based Systems

An example with three cases is taken, system parameter values along with

common environment parameter values foe all three are given in Table 4.7. Both

PFaD and availability are evaluated for all the 3 cases for 1oo2 and 2oo3 archi-

tectures at two different values of MTBD. The results are shown in Table 4.8.

Case-I with 1oo2 architecture and case-III with 2oo3 architecture gives lowest

value of PFaD for both MTBD values compared to others. Now looking at

availability values gives that availability is highest. So, case-III with 2oo3 archi-

tecture seems to be preferable.

During operational phase of system mainly proof-test interval is tuned to

achieve the target safety. Frequent proof-tests increase safety but decrease the

availability of safety system as well as of EUC. These two indices are helpful in

deciding the maximum proof-test interval which will met required PFaDðtÞ value
with maximizes mAvðtÞ.

4.8 DSPN Based Safety Models

The safety model discussed here, require Markov models to be manually made and

various matrices to be deduced from the system parameters. Stochastic Petri based

tools- SPNP [48], TimeNET [49] proves to be helpful as they provide a graphical

interface to specify the problem and numerically gives desired measure. The safety

model discussed here, have a deterministic event- periodic proof-test. A class of

SPN called DSPN can model and solve systems with combination of exponential

and deterministic events. DSPNs have some limitations, a detail overview of Petri

net based tools is given in [48, 49].

DSPN based safety models of 1oo2 and 2oo3 system architectures are shown in

Figs. 4.17 and 4.18, respectively.

Table 4.8 PFaD and mAv values for comparison

MTBD Case-I Case-II Case-III

5,000 h 7,500 h 5,000 h 7,500 h 5,000 h 7,500 h

(a) PFaD values

1oo2 4.36E-08 3.11E-08 1.82E-07 1.25E-07 3.19E-08 1.09E-07

2oo3 1.31E-07 8.97E-08 5.50E-07 3.78E-07 3.33E-08 5.29E-08

(b) Availability values

1oo2 0.99993666 0.99993665 0.99982906 0.99982906 0.99998292 0.99998292

2oo3 0.99999999 0.99999999 0.99999996 0.99999996 1 1

4.7 Advantage of Modeling Safe Failures 99

4.9 Summary

For computer-based systems, applicable dependability attributes depends on its

usage application area. If a computer-based system is used in safety-critical

application, dependability attribute safety is the most appropriate. Similarly, for

mission-critical and economically-critical application reliability and availability,

respectively, are the most appropriate. A brief survey of reliability, availability and

Fig. 4.17 DSPN based safety model of 1oo2 system. Number of tokens in places OK, SF and
DU represent number of channels in healthy state, safe failure and dangerous failure state
respectively. Transition T1 (T4) represents safe (dangerous) hazard rate due to CCF. Transition T2
(T3) represents safe (dangerous) hazard rate without CCF. T5 depicts the repair rate of channel
from safe failure state. Demand arrival rate is shown with transition T6. Places P0 and P1 along
with deterministic transition Tproof and immediate transition T7 model periodic proof-test. When

token is in place P0, transition Tproof is enabled and fires after a deterministic time. On firing a

token is deposited in place P1. In this marking immediate transition T7 become enable and fires
immediately and removes all the tokens from place DU. All the token of DU are deposited in
place P2 and one token is deposited in P0. From P2 tokens may go to place SF or DU based on
degree of proof-test

100 4 Dependability Models of Computer-Based Systems

safety models from literature is given. Safety models of IEC 61508 has been

extended to incorporate demand rate, the method is illustrated in detail.

Quantitative safety index PFD is published in safety standard IEC 61508.

Various researchers have contributed to make the method more clear, usable and

relevant. Contributing in the same direction Markov model for the systems con-

sidering safe failures, periodic proof-tests (perfect as well as imperfect) and

demand rate have been derived. The analysis has been done to derive closed form

Fig. 4.18 DSPN based safety model of 2oo3 system. Number of tokens in places OK, SF and
DU represent number of channels in healthy state, safe failure and dangerous failure state
respectively. Transition T1, T2 (T5, T6) represents safe (dangerous) hazard rate due to CCF.
Transition T3 (T4) represents safe (dangerous) hazard rate without CCF. T7 depicts the repair rate
of channel from safe failure state. Demand arrival rate is shown with transition T8. Places P0 and
P1 along with deterministic transition Tproof and immediate transition T9 model periodic proof-

test. When token is in place P0, transition Tproof is enabled and fires after a deterministic time. On

firing a token is deposited in place P1. In this marking immediate transition T9 become enable and
fires immediately and removes all the tokens from place DU. All the token of DU are deposited in
place P2 and one token is deposited in P0. From P2 tokens may go to place SF or DU based on
degree of proof-test

4.9 Summary 101

solution for performance based safety index PFaD and availability. The advan-

tages of modeling safe failures are shown with the help of an example.

Reliable data on process demands is needed to correctly estimate demand rate

and its distribution.

References

1. Avizienis A, Laprie J-C, Randell B (2000) Fundamental concepts of dependability.
In: Proceeding of 3rd Information Survivability Workshop, pp 7–11, October 2000

2. Johnson BW (1989) Design and analysis of fault-tolerant digital systems. Addison Wesley,
New York

3. Lala PK (1985) Fault tolerant and fault testable hardware design. PHI
4. Zang X, Sun H, Trivedi KS (1999) A BDD-based algorithm for reliability graph analysis.

IEEE Trans Reliab 48(1):50–60
5. Zang X (1999) Dependability modeling of computer systems and networks. PhD thesis,

Department of Electrical and Computer Engineering, Duke University
6. Dugan JB, Bavso SJ, Boyd MA (1992) Dynamic fault-tree models for fault-tolerant computer

systems. IEEE Trans Reliab 41(3):362–377
7. Trivedi KS (1982) Probability & statistics with reliability, queueing, and computer science

applications. Prentice-Hall, Englewood Cliffs
8. Mishra KB (1992) Reliability analysis and prediction. Elsevier, Amsterdam
9. Goseva-Popstojanova K, Trivedi KS (2001) Architecture-based approach to reliability

assessment of software systems. Performance Evaluation 45(2–3):179–204
10. Pham H (2000) Software reliability. Springer, Berlin
11. Pham H (1996) A software cost model with imperfect debugging random life cycle and

penalty cost. Int J Syst Sci 25(5):455–463
12. Goel AL (1985) Software reliability models: Assumptions, limitations, and applicability.

IEEE Trans Softw Eng SE-2(12):1411–1423
13. Littlewood B (1975) A reliability model for systems with markov structure. Appl Stat

24(2):172–177
14. Cheung RC (1980) A user-oriented software reliability model. IEEE Trans Softw Eng

6(2):118–125
15. Laprie JC (1984) Dependability evaluation of software systems in operation. IEEE Trans

Softw Eng 10(6):701–714
16. Kubat P (1989) Assessing reliability of modular software. Oper Res Lett 8:35–41
17. Gokhale SS, Trivedi KS (2006) Analytical models for architecture-based software reliability

prediction: a unification framework. IEEE Trans Reliab 55(4):578–590
18. Gokhale SS, Trivedi KS (1999) A time/structure based software reliability model. Ann Softw

Eng 8:85–121
19. Ledoux J (1999) Availability modeling of modular software. IEEE Trans Softw Eng

48(2):159–168
20. Shooman M (1976) Structural models for software reliability prediction. In: Proceeding of

2nd International Conference on Software Engineering. San Francisco, CA, pp 268–280
21. Yacoub S, Cukic B, Ammar HH (2004) A scenario-based reliability analysis approach for

component-based software. IEEE Trans Reliab 53(4):465–480
22. Xie M, Wohlin C (1995) An additive reliability model for the analysis of modular software

failure data. In: Proceedings of the 6th International Symposium on Software Reliability
Engineering (ISSRE’95), Toulouse, France, pp 188–194

102 4 Dependability Models of Computer-Based Systems

23. Everett W (1999) Software component reliability analysis. In: Proceeding of the symposium
on Application-Specific Systems and Software Engineering Technology (ASSET’99), Dallas,
TX, pp 204–211

24. IEC 61508: Functional safety of electric/electronic/programmable electronic safety-related
systems, Parts 0–7; October 1998–May 2000

25. Bukowski JV (2001) Modeling and analyzing the effects of periodic inspection on the
performance of safety-critical systems. IEEE Trans Reliab 50(3):321–329

26. Guo H, Yang X (2007) A simple reliability block diagram method for safety integrity
verification. Reliab Eng Syst Saf 92:1267–1273

27. Zhang T, Long W, Sato Y (2003) Availability of systems with self-diagnostics components-
applying markov model to IEC 61508-6. Reliab Eng Syst Saf 80:133–141

28. Bukowski JV, Goble WM (2001) Defining mean time-to-failure in a particular failure-state
for multi-failure-state systems. IEEE Trans Reliab 50(2):221–228

29. Brown S (2000) Overview of IEC 61508: functional safety of electrical/electronic/
programmable electronic safety-related systems. Comput Control Eng J 11(1):6–12

30. Bukowski JV (2005) A comparison of techniques for computing PFD average. In: RAMS
2005, pp 590–595

31. Goble WM, Bukowski JV (2001) Extending IEC61508 reliability evaluation techniques to
include common circuit designs used in industrial safety systems. In: Proceeding of Annual
Reliability and Maintainability Symposium, pp 339–343

32. Hokstad P, Carneliussen K (2004) Loss of safety assesment and the IEC 61508 standard.
Reliab Eng Syst Saf 83:111–120

33. Summers A (2000) Viewpoint on ISA TR84.0.02-simplified methods and fault tree analysis.
ISA Trans 39(2):125–131

34. Scherrer C, Steininger A (2003) Dealing with dormant faults in an embedded fault-tolerant
computer system. IEEE Trans Reliab 52(4):512–522

35. Delong TA, Smith T, Johnson BW (2005) Dependability metrics to assess safety-critical
systems. IEEE Trans Reliab 54(2):498–505

36. Choi CY, Johnson RW, Profeta JA III (1997) Safety issues in the comparative analysis of
dependable architectures. IEEE Trans Reliab 46(3):316–322

37. Bukowski JV (2006) Incorporating process demand into models for assessment of safety
system performance. In: RAMS 2006, pp 577–581

38. Rouvroye JL, Brombacher AC (1999) New quantitative safety standards: different
techniques, different results? Reliab Eng Syst Saf 66:121–125

39. Manoj K, Verma AK, Srividya A (2007) Analyzing effect of demand rate on safety of
systems with periodic proof-tests. Int J Autom Comput 4(4):335–341

40. Manoj K, Verma AK, Srividya A (2008) Modeling of demand rate and imperfect proof-test
and analysis of their effect on system safety. Reliab Eng Syst Saf 93:1720–1729

41. Manoj K, Verma AK, Srividya A (2008) Incorporating process demand in safety evaluation
of safety-related systems. In: Proceeding of Int Conf on Reliability, Safety and Quality in
Engineering (ICRSQE-2008), pp 378–383

42. Cox DR, Miller HD (1970) The theory of stochastic processes. Methuen & Co, London
43. Darroch JN, Seneta E (1967) On quasi-stationary distributions in absorbing continuous-time

finite markov chains. J Appl Probab 4:192–196
44. Marsan MA, Chiola G (1987) On petri nets with deterministic and exponentially distributed

firing times. In: Advances in Petri Nets 1986, Lecture Notes in Computer Science 266,
pp 132–145

45. Varsha M, Trivedi KS (1994) Transient analysis of real-time systems using deterministic and
stochastic petri nets. In: Int’l Workshop on Quality of Communication-Based Systems

46. Khobare SK, Shrikhande SV, Chandra U, Govidarajan S (1998) Reliability analysis of micro
computer modules and computer based control systems important to safety of nuclear power
plants. Reliab Eng Syst Saf 59(2):253–258

References 103

47. Khobare SK, Shrikhande SV, Chandra U, Govidarajan G (1995) Reliability assessment of
standardized microcomputer circuit boards used in C&I systems of nuclear reactors.
Technical report BARC/1995/013

48. Trivedi KS (2001) SPNP user’s manual, version 6.0. Technical report
49. Zimmermann A, and Knoke M (2007) TimeNET 4.0 user manual. Technical report, August

2007

104 4 Dependability Models of Computer-Based Systems

Chapter 5

Network Technologies for Real-Time

Systems

5.1 Introduction

The purpose of this chapter is to introduce basic term and concepts of network

technology. Main emphasis of is on schedulers and real-time analysis of these

networks. Networks used in critical applications, such as, CAN and MIL-STD-

1553B are discussed in detail.

5.2 Network Basics

Network aims at providing reliable, timely and deterministic communication of

data between connected devices. The communication is carried out over a com-

munication network relying on either a wired or a wireless medium.

To manage the complexity of communication protocol, reference model have

been proposed such as ISO/ISO layers [1]. The model contains seven layers—

Application layer, Presentation layer, Session layer, Transport layer, Network

layer, Data link layer, and Physical layer. The lowest three layers—Network, Data

link and Physical—are networks dependent, the physical layer is responsible for

the transmission of raw data on the medium used. The data link layer is responsible

for the transmission of data frames and to recognise and correct errors related to

this. The network layer is responsible for the setup and maintenance of network

wide connections. The upper three layers are application oriented, and the inter-

mediate layers (transport layer) isolates the upper three and the lower three layers

from each other, i.e. all layers above the transport layer can transmit messages

independent of the underlying network infrastructure.

In this book, the lower layers of the ISO/OSI reference model are of great

importance, where for real-time communications, the Medium Access Control

(MAC) protocol determines the degree of predictability of the network technology.

A. K. Verma et al., Dependability of Networked Computer-based Systems,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-318-3_5,
� Springer-Verlag London Limited 2011

105

Usually, the MAC protocol is considered a sub layer of the physical layer or the

data link layer.

5.3 Medium Access Control (MAC) Protocols

In a node with networking capabilities a local communication adapter mediates

access to the medium used for message transmission. Upper layer application that

sends messages send them to the local communication adapter. Then, the

communication adapter takes care of the actual message transmission. Also, the

communication adapter receivesmessages from themedium.When data is to be sent

from the communication adapter to the physical medium, the message transmission

is controlled by the medium access control protocols (MAC protocols).

MAC protocol are mainly responsible for variation in end-to-end delay times.

Widely used MAC protocols can be classified as follows [2]:

• random access protocols, examples are,

– CSMA/CD (Carrier Sense Multiple Access/Collision Detection)

– CSMA/CR (Carrier Sense Multiple Access/Collision Resolution)

– CSMA/CA (Carrier Sense Multiple Access/Collision Avoidance)

• fixed-assignment protocols, examples are,

– TDMA (Time Division Multiple Access)

– FTDMA (Flexible TDMA)

• demand-assignment protocols, examples are,

– distributed solutions relying on tokens

– centralised solutions by the usage of masters

These MAC protocols are used for both real-time and non real-time commu-

nications, and each of them have different timing characteristics.

5.3.1 Carrier Sense Multiple Access/Collision Detection

(CSMA/CD)

In carrier sense multiple access/collision detection (CSMA/CD) collision may occur

but it relies on detection of collision. In the network collisions between messages on

the medium are detected by simultaneously writing the messages on the medium are

detected by simultaneously writing the message and reading the transmitted signal

on the medium. Thus, it is possible to verify if the transmitted signal is the same as

the signal currently being transmitted. If both are not the same, one or more parallel

transmissions are going on. Once a collision is detected the transmitting stations stop

their transmissions and wait for some time (i.e. backoff) before retransmitting the

106 5 Network Technologies for Real-Time Systems

message in order to reduce the risk of the same messages colliding again. However,

due to the possibility of successive collisions, the temporal behavior of CSMA/CD

networks can be somewhat hard to predict. 1-persistent CSMA/CD is used for

Ethernet [3].

5.3.2 Carrier Sense Multiple Access/Collision Resolution

(CSMA/CR)

Operation of carrier sense multiple access/collision resolution (CSMA/CR) is

similar to CSMA/CD. The difference is CSMA/CR does not go into backoff mode

once there is a collision detected. Instead, CSMA/CR resolves collisions by

determining one of the message transmitters involved in the collision that is

allowed to go on with an uninterrupted transmission of its messages. The other

message(s) involved in the collision are retransmitted at another time. Due to the

collision resolution feature of CSMA/CR, it has the possibility to become more

predictable in its temporal behavior compared to CSMA/CD. An example of a

network technology that implements CSMA/CR is CAN [22].

5.3.3 Carrier Sense Multiple Access/Collision Avoidance

(CSMA/CA)

In some cases it is not possible to detect collisions although it might still be

desirable to try to avoid them. For example, using a wireless medium often makes

it impossible to simultaneously read and write (send and receive) to the medium,

as (at the communication adapter) the signal sent is so much stronger than (and

therefore overwrites) the signal received. Carrier Sense Multiple Access/Collision

Avoidance (CSMA/CA) protocols can avoid collisions by the usage of some

handshake protocol in order to guarantee a free medium before the initiation of a

message transmission. CSMA/CA is used by ZigBee [3].

5.3.4 Time Division Multiple Access (TDMA)

Time Division Multiple Access (TDMA) is a fixed assignment MAC protocol

where time is used to achieve temporal partitioning of the medium. Messages are

sent at predetermined instances in time, called message slots. Often, a schedule of

slots or exchange table is prepared, and this schedule is then followed and repeated

during runtime.

Due to the time slotted nature of TDMA networks, their temporal behavior is

very predictable and deterministic. TDMA networks are therefore very suitable for

safety-critical systems with hard real-time guarantees. A drawback of TDMA

5.3 Medium Access Control (MAC) Protocols 107

networks is that they are not flexible, as messages can not be sent at an arbitrary

time and changing message table is somewhat difficult. A message can only be

sent in one of the message’s predefined slots, which affect the responsiveness of

the message transmissions. Also, if a message is shorter than its allocated slot,

bandwidth is wasted since the unused portion of the slot cannot be used by another

message. Example of TDMA real-time network is MIL-STD-1553B [4] and TTP/

C [5]. In both these, exchange tables are created offline. One example of an online

scheduled TDMA network is the GSM network.

5.3.5 Flexible Time Division Multiple Access (FTDMA)

Another fixed assignment MAC protocol is Flexible Time Division Multiple Access

(FTDMA). As regular TDMA networks, FTDMA networks avoid collisions by

dividing time into slots. However, FTDMA networks use mini slotting concept in

order to make more efficient use of bandwidth, compared to TDMA network.

FTDMA is similar to TDMA with the difference in run-time slot size. In an

FTDMA schedule the size of a slot is not fixed, but will vary depending on whether

the slot is used or not. In case all slots are used in a FTDMA schedule, FTDMA

operated the same way as TDMA. However, if a slot is not used within a small time

offset after its initiation, the schedule will progress to its next slot. Hence, unused

slots will be shorter compared to a TDMA network where all slots have fixed size.

However, used slots have the same size in both FTDMA and TDMA networks.

Variant of FTDMA can be found in Byteflight [6], and FlexRay [7].

5.3.6 Distributed Solutions Relying on Tokens

An alternative way of eliminating collisions on the network is to achieve mutual

exclusion by the usage of token based demand assignment MAC protocols. Token

based MAC protocols provide a fully distributed solution allowing for exclusive

usage of the communications networks to one transmitter at a time.

In token (unique within the network) networks only the owner of the token is

allowed to transmit messages on the network. Once the token holder is done with

transmitting messages, or has used its alloted time, the token is passed to another

node. Examples of the protocols are TTP (Timed Token Protocol) [8], IEEE 802.5

Token Ring Protocol, IEEE 802.4 Token Bus Protocol and PROFIBUS [9, 10].

5.3.7 Master/Slave

Another example of demand assignment MAC protocols is the centralised solution

relying on a specialised node called the master node. The other nodes in the system

108 5 Network Technologies for Real-Time Systems

are called slave nodes. In master/slave networks, elimination of message collisions

is achieved by letting the master node control the traffic on the network, deciding

which messages are allowed to be sent and when. This approach is used in TTP/A

[5, 11] and PROFIBUS [9, 10].

5.4 Networks

Communication network technologies are either wired networks or wireless.

The medium can be either wired, transmitting electrical or optical signals in cables

or optical fibres, or wireless, transmitting radio signals or optical signals. In this

text, we will constraint ourself to wired networks only.

5.4.1 Ethernet

In parallel with the development of various fieldbus technologies providing

real-time communication for avionics, trains, industrial and process automation,

and building and home automation, Ethernet established itself as the de facto

standard for non real-time communications. Comparing networking solutions for

automation networks and office networks, fieldbuses were initially the choice for

DCCSs and automation networks. At the same time, Ethernet evolved as the

standard for office automation, due to its popularity, prices on Ethernet based

networking solutions dropped. A lower price on Ethernet controllers made it

interesting to develop additions and modifications to Ethernet for real-time

communications, allowing Ethernet to compete with established real-time

networks.

Ethernet is not very suitable to real-time communication due to its handling of

message collisions. DCCSs and automation networks require timing guarantees for

individual messages. Several proposals to minimise or eliminate the occurrence of

collisions on Ethernet have been proposed over the years. The stronger candidate

today is the usage of a switch based infrastructure, where the switches separate

collision domains to create a collision free network providing real-time message

transmissions over Ethernet [12, 13].

Other proposals providing real-time predictability using Ethernet include, mak-

ing Ethernet more predictable using TDMA [14], offline scheduling or token algo-

rithms [15]. Note that a dedicated network is usually required when using tokens,

where all nodes sharing the network must obey the token protocol [8]. A different

approach for predictability is to modify the collision resolution algorithm.

Other predictable approaches are usage of a master/slave concept as

FTT-Ethernet [16], or the usage of Virtual Time CSMA (VTCSMA) [17] protocol,

where packets are delayed in a predictable way in order to eliminate the occur-

rence of collisions. Moreover, window protocols [18] are using a global window

5.3 Medium Access Control (MAC) Protocols 109

(synchronized time interval) that also remove collisions. The window protocol is

more dynamic and somewhat more efficient in its behavior compared to the

VTCSMA approach.

Without modification to the hardware or networking topology (infrastructure),

the usage of traffic smoothing [19, 20] can eliminate bursts of traffic, which have

severe impact on the timely delivery of message packets on the Ethernet. By

keeping the network load below a given threshold, a probabilistic guarantee of

message delivery can be provided. Some more detail about the Ethernet is given

below:

Ethernet is the most widely used local area networking (LAN) technology for

home and office use in the world today. Ethernet is in existence for almost 3

decades. A brief history of evolution of Ethernet over the years is given below.

5.4.1.1 Evolution of Ethernet

Ethernet network system was invented for interconnecting advanced computer

workstations, making it possible to send data to one another and to high-speed

laser printers. It was invented at the Xerox Palo Alto Research Center, USA by

Bob Metcalfe in 1973. To make the wide spread use of Ethernet in market and

interoperability, a need to standardize Ethernet was felt. Due to initiative of DEC-

Intel-Xerox (DIX), the first 10Mbps Ethernet was published in 1980. The standard,

entitled The Ethernet, A Local Area Network: Data Link Layer and Physical Layer

Specifications, contained specifications for operation as well as media. After the

DIX standard was published, a new effort by IEEE to develop open network

standard also started. The IEEE standard was formulated under the direction of

IEEE Local and Metropolitan Networks (LAN/MAN) Standards Committee,

which identifies all the standards it develop with number 802. There has been a

number of networking standards published in the 802 branch of IEEE, including

the 802.3* Ethernet and 802.5 Token Ring Standards.

5.4.1.2 CSMA/CD in Ethernet

Carrier Sense Multiple Access with Collision Detection is base-band multiple

access technique. It outlines a complete algorithm [1]. Ethernet is based on CSMA/

CD, it is 1-persistence CSMA/CD with exponential backoff algorithm. Simplified

transmission protocol can be specified as follows:

• No slots

• Node with data ready for transmission checks the medium whether it is idle or

busy. This is called carrier sense.

• Transmitting node aborts when it senses that another node is transmitting, that

is, collision detection.

• before attempting a retransmission, adapter waits a random time.

110 5 Network Technologies for Real-Time Systems

The transmission procedure can be described as:

5.4.1.3 Switched Ethernet

Switched Ethernet is a full duplex operation of Ethernet. This capability allows

simultaneous two-way transmission over point-to-point links. This transmission

is functionally much simpler than half-duplex transmission because it involves

no media contention, no collisions, no need to schedule retransmissions, and no

need for extension bits on the end of short frames. The result is not only more

time available for transmission, but also an effective doubling of the link

bandwidth because each link can now support full-rate, simultaneous, two-way

transmission.

Transmission can usually begin as soon as frames are ready to send with only

restriction of minimum inter frame gap between successive frames as per Ethernet

frame standards.

When sending a frame in full-duplex mode, the station ignores carrier sense and

does not defer to traffic being received on the channel. But it waits for the inter

frame gap. Providing inter frame gap ensures that the interfaces a each end of the

link can keep up with the full frame rate of the link. In full-duplex mode, the

stations at each end of the link ignore any collision detect signals that come from

the transceiver. The CSMA/CD algorithm used on shared half-duplex Ethernet

channels is not used on a link operating in full-duplex mode. A station on a full-

duplex link sends whenever it likes, ignoring carrier sense (CS). There is no

multiple access (MA) since there is only one station at each end of the link and the

Ethernet channel between them is not the subject of access contention by multiple

stations. Since there is no access contention, there will be no collision either, so the

station at each end of the link is free to ignore collision detect (CD).

get a datagram from upper layer

K := 0; n:=0;

repeat:

wait for K*512 bit-time;

while (bus busy) wait;

wait for 96 bit-time after detecting no signal;

transmit and detect collision;

if detect collision

stop and transmit a 48-bit jam;

n++;

m:=min(n,10), where n is the number of collisions

choose K randomly from 0, 1, 2, ..., 2m - 1

if n < 16 goto repeat

else giveup

else done!

5.4 Networks 111

5.4.2 Controller Area Network (CAN)

Controller Area Network (CAN) is a broadcast bus- a single pair of wires- where a

number of nodes are connected to the bus. It employs carrier sense multiple access

with collision detection and arbitration based on message priority (CSMA/AMP)

[21]. The basic features [21, 22] of CAN are:

1. High-speed serial interface: CAN is configurable to operate from a few kilobits

to 1 Mega bits per second.

2. Low cost physical medium: CAN operates over a simple inexpensive twisted

wire pair.

3. Short data lengths: The short data length of CAN messages mean that CAN has

very low latency when compared to other systems.

4. Fast reaction times: The ability to transmit information without requiring a token

or permission from a bus arbitrator results in extremely fast reaction times.

5. Multi master and peer-to-peer communication: Using CAN it is simple to

broadcast information to all or a subset nodes on the bus and just an easy to

implement peer-to-peer communication.

6. Error detection and correction: The high level of error detection and number of

error detection mechanisms provided by the CAN hardware means that CAN is

extremely reliable as a networking solution.

Data is transmitted as message, consisting of up to 8 bytes. Format of CAN

message set is shown in Fig. 5.1. Every message is assigned a unique identifier.

The identifier serves two purposes, filtering messages upon reception and

assigning priority to the message.

The use of identifier as priority is the most important part of CAN regrading

real-time performance. The identifier field of CAN message is used to control

access to the bus after collision by taking advantage of certain electrical charac-

teristics. In case of multiple stations transmitting simultaneously, all stations will

see 0 if any one of the node puts 0 bit (dominant), while all stations will see 1 if all

transmitting node put 1 bit. So, during arbitration, by monitoring the bus a node

SOF Interframe
space

RTR

IDE

0 to 8 bytesDLC11 bit identifier

ACKbus idle arbitration field control data CRC EOF bus idle

15 bits

Fig. 5.1 CAN message format. It does not have source/destination address. 11-bit identifier is
used for filtering at receiver as well as to arbitrate access to bus. It has 7 control bits- RTR
(remote retransmission request), IDE (identifier extension), reserve bit for future extensions and 4
bits to give length of data field, DLC (data length code). Data field can be 0 to 8 bytes in length
and CRC field contain 15-bit code that can be used to check frame integrity. Following CRC field
is acknowledge (ACK) field comprising an ACK slot bit and an ACK delimiter bit

112 5 Network Technologies for Real-Time Systems

detects if there is a competing higher priority message and stops transmission if

this is the case. A node transmitting the last bit of the identifier without detecting a

higher priority message must be transmitting the highest priority ready message,

and hence can continue. Figure 5.2 shows the arbitration mechanism and electrical

diagram of CAN.

CAN uses principle of hard synchronization [22]. So, to allow receivers to

synchronize and adjust internal timing, CAN insert a bit of opposite polarity when

5 consecutive bit of same polarity are transmitted on the bus. This process is called

bit-stuffing and bits inserted by this process are called stuff-bits. The stuff-bits are

removed at the receiver. Bit-stuffing affects the transmission time of message.

For more details on CAN, interested readers are requested to refer [21, 22].

5.4.3 MIL-STD-1553B

MIL-STD-1553B is a military standard that defines the electrical and protocol

characteristics for a data bus. The data bus is used to provide a medium for

exchange of data and information between various nodes of a system. This standard

defines requirement for digital, command/response, time division multiplexing

techniques for a 1 MHz serial data bus and specifies the data bus and its interface

electronics [4]. Originally this standard was intended for Air Force applications.

But with its wide acceptance and usage, it is being used in a large number of critical

applications, such as, space shuttles, space stations, surface ships, submarines,

helicopters, tanks, subways and manufacturing production lines.

A summary of the characteristics of MIL-STD-1553B is given in Table 5.1 [23].

The standard defines four hardware elements. These are:

1. Transmission media

2. Remote terminals

3. Bus controllers

4. Bus monitors

10 0 0 0 1 1 0 1 1 0C ID=310=136H=00100110110

10 0 0 0 1 1 0 1 1 1B ID=311=137H=00100110111

10 0 0 0 1 1 1 1 1 1A ID=319=13FH=00100111111

10 0 0 0 1 1 0 1 1 0bus

arbitration field

Resulting bus level

A loses B loses

Node A Node B Node C

(a) (b)

Fig. 5.2 a CAN’s electrical interface (wired-OR) which enables priority based arbitration,
b arbitration mechanism when 3 nodes are transmitting simultaneously

5.4 Networks 113

A typical network consisting of a bus controller and a remote terminal with dual

redundant bus is shown in Fig. 5.3.

The control, data flow, status reporting, and management of the bus are pro-

vided by three word types:

1. Command words

2. Data words

3. Status words

Word formats are shown in Fig. 5.4.

The primary purpose of the data bus is to provide a common media for the

exchange of data between terminals of system. The exchange of data is based on

Table 5.1 Characteristics of MIL-STD-1553B

Data rate 1 MHz

Word length 20 bits

Data bits/word 16 bits

Message length Maximum of 32 data words

Transmission technique Half-duplex

Operation Asynchronous

Encoding Manchester II bi-phase

Protocol Command/response

Bus control Single or multiple

Fault tolerance Typically dual redundant, second bus in ‘‘Hot Backup’’ status

Message formats 1. Bus controller to terminal

2. Terminal to bus controller

3. Terminal to terminal

4. Broadcast

5. System control

Number of remote terminals Maximum of 31

Terminal types 1. Remote terminals

2. Bus controller

3. Bus monitor

Transmission media Twisted shielded pair

Coupling Transformer and direct

Bus Controller Remote Terminal ‘1’ Remote Terminal ‘2’ Remote Terminal ‘31’

Bus
Terminator

Bus
Terminator

Primary bus

Secondary bus

Trunk line

Stub line

CouplerCouplerCouplerCoupler

Coupler Coupler Coupler Coupler

Fig. 5.3 MIL-STD-1553B network

114 5 Network Technologies for Real-Time Systems

message transmission formats. The standard defines ten types of message trans-

mission formats. All of these formats are based on the three word types defined in

succeeding paragraph. A RT-RT information transfer format is shown in Fig. 5.5.

Intermessage gap shown in Fig. 5.5, is the minimum gap time that the bus

controller shall provide between messages. Its typical value is 4 ls. Response time

is time period available for terminals to respond to a valid command word. This

period is of 4–12 ls. A time out occurs if a terminal do not respond within No-

Response timeout, it is defined as the minimum time that a terminal shall wait

before considering that a response has not occurred, it is 14 ls.

5.5 Real-Time Scheduling

A real-time scheduler schedules real-time tasks sharing a resource. The goal of the

real-time scheduler is to ensure that the timing constraints of these tasks are

satisfied. The scheduler decides, based on the task timing constraints, which task to

execute or to use the resource at any given time.

Traditionally, real-time schedulers are divided into offline and online sched-

ulers. Offline schedulers make all scheduling decisions before the system is

executed. At run-time a simple dispatcher is used to activate tasks according to

the schedule generated before run-time. Online schedulers, on the other hand,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

5 1 5 5 1

SYNC Terminal Address T/R Subaddress/Mode Word count/Mode code Parity

16 1

SYNC Data Parity

5 1 1

SYNC Terminal Address

M
e
s
s
a
g
e

E
rr

o
r Parity

1 1 3 1 1 1 1 1

In
s
tr

u
m

e
n
ta

ti
o
n

S
e
rv

ic
e

R
e
q
u
e
s
t

Reserved

B
ro

a
d
c
a
s
t

C
o
m

m
a
n
d

R
e
c
e
iv

e
d

B
u

s
y

S
u
b
s
y
s
te

m
F

la
g

D
y
n
a
m

ic
B

u
s

A
c
c
e
p
ta

n
c
e

T
e
rm

in
a
l

F
la

g

Bit Times

Command
Word

Data Word

Status Word

Fig. 5.4 Messages formats

Receive
Command

Transmit
Command

Status
Word

Data
Word

Data
Word

Status
Word

Command
Word

#@@

Next

RT-RT

 # : Inter-message gap
@ : Response Time

Fig. 5.5 RT-RT information transfer format

5.4 Networks 115

make scheduling decisions based on the system’s timing constraints during

run-time.

There are different schedulers developed in the research community [24, 25],

only the basic concepts of different types of schedulers are presented here.

The schedulers are divided into three categories: time-driven schedulers, pri-

ority-driven schedulers and share-driven schedulers. This classification of real-

time schedulers is depicted in Fig. 5.6.

Note that there also exist combinations of the predicted time-driven schedulers

and the more flexible priority-driven schedulers and there exists methods to

convert one policy to another.

5.5.1 Time-Driven Scheduling

Time-driven schedulers [26] work in the following way: The scheduler creates a

schedule (exchange table). Usually the schedule is created before the system is

started (offline), but it can also be done during run-time (online). At run-time, a

dispatcher follows the schedule, and makes sure that tasks are executing at their

predetermined time slots.

By creating a schedule offline, complex timing constraints, such as irregular task

arrival patterns and precedence constraints, can be handled in a predictable manner

that would be difficult to do online during run-time (tasks with precedence

constraints require a special order of task executions, e.g., task A must execute

before task B). The schedule that is created offline is the schedule that will be used

at run-time. Therefore, the online behavior of time-driven schedulers is very pre-

dictable. Because of this predictability, time-driven schedulers are the more com-

monly used schedulers in applications that have very high safety-critical systems.

However, since the schedule is created offline, the flexibility is very limited, in the

sense that as soon as the system will change (due to adding of functionality or

change of hardware), a new schedule has to be created and given to dispatcher.

Creating a new schedule non-trivial and sometimes very time consuming. This

motivates the usage of priority-driven schedulers described below.

Real-time

Schedulers

Time-driven

schedulers

Priority-driven

schedulers

Share-driven

schedulers

Online + offline schedulers
Online schedulers

Fig. 5.6 Real-time schedulers

116 5 Network Technologies for Real-Time Systems

5.5.2 Priority-Driven Scheduling

Scheduling policies that make their scheduling decisions during run-time are

classified as online schedulers. These schedulers make their scheduling decisions

online based on the system’s timing constraints, such as, task priority. Schedulers

that base their scheduling decisions on task priorities are called priority-driven

schedulers.

Using priority-driven schedulers the flexibility is increased (compared to time-

driven schedulers), since the schedule is created online based on the currently

active task’s properties. Hence, priority-driven schedulers can cope with change in

work-load as well as adding and removing of tasks and functions, as long as the

schedulability of the complete task-set is not violated. However, the exact

behavior of the priority-driven schedulers is hard to predict. Therefore, these

schedulers are not used as often in the most safety-critical applications.

Priority-driven scheduling policies can be divided into Fixed Priority Sched-

ulers (FPS) and Dynamic Priority Schedulers (DPS). The difference between these

scheduling policies is whether the priorities of the real-time tasks are fixed or if

they can change during execution (i.e. dynamic priorities).

5.5.2.1 Fixed Priority Schedulers

When using FPS, once priorities are assigned to tasks they are not changed. Then,

during execution, the task with the highest priority among all tasks that are available

for execution is scheduled for execution. Priorities can be assigned in many ways,

and depending on the system requirements some priority assignments are better than

others. For instance, using a simple task model with strictly periodic non-interfering

tasks with deadlines equal to the period of the task, a Rate Monotonic (RM) priority

assignment has been shown by Liu and Layland [27] to be optimal in terms of

schedulability. In RM, the priority is assigned based on the period of the task.

The shorter the period is the higher priority will be assigned to the task.

5.5.2.2 Dynamic Priority Schedulers

The most well known DPS is the Earliest Deadline First (EDF) scheduling policy

[27]. Using EDF, the task with the nearest (earliest) deadline among all tasks ready

for execution gets the highest priority. Therefore the priority is not fixed, it

changes dynamically over time. For simple task models, it has been shown that

EDF is an optimal scheduler in terms of schedulability. Also, EDF allows for

higher schedulability compared with FPS. Schedulability is in the simple scenario

guaranteed as long as the total load in the scheduled system is B100%, whereas

FPS in these simple cases has a schedulability bound of about 69%. For a good

comparison between RM and EDF interested readers are referred to [24].

5.5 Real-Time Scheduling 117

Other DPS are Least Laxity First (LLF) (sometimes also called Least Slack

Time first (LST)) [28]. Here the priorities of the tasks are generated at the time of

scheduling from the amount of laxity (for LLF, or slack for LST) available before

the deadline is violated. Laxity (or slack time) is defined as the maximum time a

task can be delayed on its activation and still complete within its deadline [24].

5.5.3 Share-Driven Scheduling

Another way of scheduling a resource is to allocate a share [29] of the resource to a

user or task. This is useful, for example, when dealing with aperiodic tasks when

their behavior is not completely known. Using share-driven scheduling it is pos-

sible to allocate a fraction of the resource to these aperiodic tasks, preventing them

from interfering with other tasks that might be scheduled using time-driven or

priority-driven scheduling techniques.

In order for the priority-driven schedulers to cope with aperiodic tasks, dif-

ferent service methods have been presented. The objective of these service

methods is to give a good average response-time for aperiodic requests, while

preserving the timing constraints of periodic and sporadic tasks. These services

can be implemented as share-driven scheduling policies, either based on General

Processor Sharing (GPS) [30, 31] algorithms, or using special server based

schedulers [24, 32–34]. In the scheduling literature many types of servers are

described, implementing server-based schedulers. In general, each server is

characterised partly by its unique mechanism for assigning deadlines (for DPS

based servers), and partly by a set of parameters used to configure the server.

Examples of such parameters are priority (for FPS based servers), bandwidth,

period, and capacity.

5.5.3.1 Share-Driven Scheduling in Fixed Priority Systems

Several server-based schedulers for FPS systems exist where the simplest one is

the Polling Server (PS) [32]. A polling server allocates a share of the CPU to its

users. This share is defined by the server’s period and capacity, i.e., the PS is

guaranteed to allow its users to execute within the server’s capacity during each

server period. The server is scheduled according to RM together with the normal

tasks (if existing) in the system. However, a server never executes by itself.

A server will only mediate the right to execute for its users, if some of its users

have requested to use the server’s capacity. Otherwise the server’s capacity will be

left unused for that server period. However, if the PS is activated and no user is

ready to use the server capacity, the capacity is lost for that server period and the

server’s users have to wait to the next server period to be served. Hence, the worst-

case service a user can get is when it requests capacity right after the server is

activated (with its capacity replenished). The behavior of a PS server is in the

118 5 Network Technologies for Real-Time Systems

worst-case equal to a task with the period of the server’s period, and a worst-case

execution time equal to the server’s capacity. Hence, the analysis of a system

running PS is straightforward.

Another server-based scheduler for FPS systems that is slightly better than the

PS (in terms of temporal performance) is the Deferrable Server (DS) [34]. Here, the

server is also implemented as a periodic task scheduled according to RM together

with the (if existing) other periodic tasks. The difference from PS is that the server is

not polling its users, i.e., checking if there are any pending users each server period

and if not drop all its capacity. Instead, the DS preserves its capacity throughout the

server period allowing its users to use the capacity at any time during the server

period. As with the PS, the DS replenish its capacity at the beginning of each server

period. In general, the DS is giving better response times than the PS. However, by

allowing the servers’ users to execute at any time during the servers’ period it

violates the rules govern by the traditional RM scheduling (where the highest

priority task has to execute as soon it is scheduled), lowering the schedulability

bound for the periodic task set. A trade-off to the DS allowing a higher schedula-

bility but a slight degradation in the response times is the Priority Exchange (PE)

algorithm. Here the servers’ capacities are preserved by exchanging it for the

execution time of a lower priority periodic task. Hence, the servers’ capacities are

not lost but preserved at the priority of the low priority task involved in the

exchange. Note that the PE mechanisms are computationally more complex than

the DS mechanisms, which should be taken into consideration in the trade-off.

By changing the way capacity is replenished, the Sporadic Server (SS) [32] is a

server-based scheduler for FPS systems that allows high schedulability without

degradation. Instead of replenishing capacity at the beginning of the server period,

SS replenishes its capacity once the capacity has been consumed by its users. As

DS, SS violates the traditional RM scheduling by not executing the highest priority

task once it is scheduled for execution. However, this violation does not impact on

the schedulability as the same schedulability bound is offered for a system running

both with and without SS.

There are server-based schedulers for FPS systems having better performance

in terms of response-time. However, this usually comes at a cost of high com-

putational and implementation complexity as well as high memory requirements.

One of these schedulers is the Slack Stealer. It should be noted that there are no

optimal algorithms in terms of minimising the response time. The non existence of

an algorithm that can both minimise the response time offered to users and at the

same time guarantees the schedulability of the periodic tasks has been proven in

[35]. Hence, there is a trade-off between response-time and schedulability when

finding a suitable server-based scheduler for the intended target system.

5.5.3.2 Share-driven Scheduling in Dynamic Priority Systems

Looking at DPS systems, a number of server-based schedulers have been devel-

oped over the years. Many of the server-based schedulers for FPS systems have

5.5 Real-Time Scheduling 119

also been extended to EDF based DPS systems, e.g., an extension of PE called the

Dynamic Priority Exchange (DPE) [36], and an extension of the SS called the

Dynamic Sporadic Server (DSS) [36]. A very simple (implementation wise) ser-

ver-based scheduler that provides faster response-times compared with SS yet not

violating the overall load of the system (causing other tasks to miss their dead-

lines) is the Total Bandwidth Server (TBS) [36]. TBS makes sure that the server

never uses more bandwidth than allocated to it (under the assumption that the users

do not consume more capacity than specified by their worst-case execution times),

yet providing a fast response time to its users (i.e., assigning its users with a close

deadline as the system is scheduled according to EDF). Also, TBS has been

enhanced by improving its deadline assignment rule [36]. A quite complex server-

based scheduler is the Earliest Deadline Late server (EDL) [36] (which is a DPS

version of the Slack Stealer). Moreover, there is an Improved Priority Exchange

(IPE) [36] which has similar performance as the EDL, yet being less complex

implementation wise. When the worst-case execution times are unknown, the

Constant Bandwidth Server (CBS) [24] can be used, guaranteeing that the server’s

users will never use more than the server’s capacity.

5.6 Real-Time Analysis

Time-driven schedulers create a schedule offline. As the schedule is created, the

schedule is verified so that all timing constraints are met. However, both priority-

driven and share-driven schedulers have a more dynamic behavior since the

scheduling is performed during run-time. Here, timing analysis (schedulability

tests) can be used in order to determine whether the temporal performance of a

real-time system can be guaranteed for a certain task set scheduled by a certain

scheduler. If such a guarantee is possible, the task set is said to be feasible.

There exist three different approaches for pre-run-time schedulability analysis:

utilisation-based tests, demand-based tests and response-time tests. The first approach

is based on the utilisation of the task-set under analysis (utilisation-based tests), the

second is based on the processor demand at a given time interval (demand-based

tests), and the third approach is based on calculating the worst-case response-time for

each task in the task-set (response-time tests). Utilisation-based tests are usually less

complex and faster to perform compared with demand-based tests and response-time

tests, but they can not always be used for complicated task models [37].

5.6.1 Task Model

The task model notation used throughout this section is presented in Table 5.2.

Periodic tasks could be of two types: synchronous periodic tasks, and asyn-

chronous periodic tasks. These are defined as:

120 5 Network Technologies for Real-Time Systems

Synchronous periodic tasks are a set of periodic tasks where all first instances

are released at the same time, usually considered time zero.

Asynchronous periodic tasks are a set of periodic tasks where tasks can have

their first instances released at different times.

5.6.2 Utilisation-Based Tests

Seminal work on utilisation-based tests for both fixed priority schedulers and

dynamic priority schedulers have been presented by Liu and Layland [27].

5.6.2.1 Fixed Priority Schedulers

In [27] by Liu and Layland, a utilisation-based test for synchronous periodic tasks

using the Rate Monotonic (RM) priority assignment is presented (Liu and Layland

provided the formal proofs). The task model they use consists of independent

periodic tasks with deadline equal to their periods. Moreover, all tasks are released

at the beginning of their period and have a known worst-case execution time and

they are fully pre-emptive. If the test succeeds, the tasks will always meet their

deadlines given that all the assumptions hold. The test is as follows:

XN

i¼1

Ci

Ti
�N � 21=N � 1

� �

ð5:1Þ

This test only guarantees that a task-set will not violate its deadlines if it passes

this test. The lower bound given by this test is around 69% when N approaches

infinity. However, there are task-sets that may not pass the test, yet they will

meet all their deadlines. Later on, Lehoczky showed that the average case real

Table 5.2 Task model
notation

Abbrivation Description

N Number of tasks in the task set

C Worst-case Execution time (WCET)

T Period

r Release time

D Relative deadline

d Absolute deadline

B Blocking-time

R Response-time

i Task under analysis

hp(i) set of tasks with priority higher than
that of tasks i

lep(i) set of tasks with priority less than or
equal to that of tasks i

5.6 Real-Time Analysis 121

feasible utilization is about 88% when using random generated task sets. More-

over, Lehoczky also developed an exact analysis. However, the test developed by

Lehoczky is a much more complex inequality compared to Inequality (5.1). It has

also been shown that, by having the task’s periods harmonic (or near harmonic),

the schedulability bound is up to 100% [38]. Harmonic task sets have only task

periods that are multiples if each other.

Inequality (5.1) has been extended in various ways, e.g., by Sha et al. [39] to

also cover blocking-time, i.e., to cover for when higher priority tasks are blocked

by lower priority tasks. For a good overview of FPS utilisation-based tests inter-

ested readers are referred to [25].

5.6.2.2 Dynamic Priority Schedulers

Liu and Layland [27] also present a utilisation-based test for EDF (with the same

assumptions as for Inequality (5.1)):

XN

i¼1

Ci

Ti
� 1 ð5:2Þ

This inequality is a necessary and sufficient condition for the task-set to be

schedulable. It has been shown that the Inequality (5.2) is also valid for asynchronous

task sets. However, later it has been shown that it is enough to investigate syn-

chronous task sets in order to determine if a periodic task set is feasible or not [40].

5.6.3 Demand-Based Tests

The processor demand is a measure that indicates how much computation that is

requested by the system’s task set, with respect to timing constraints, in an arbi-

trary time interval t 2 ½t1; t2Þ. The processor demand h½t1;t2Þ is given by

h½t1;t2Þ ¼
X

t1 � rk ;dk � t2

Ck ð5:3Þ

where rk is the release time of task k and dk is the absolute deadline of task k, i.e.,

the processor demand is in an arbitrary time interval given by the tasks released

within (and having absolute deadlines within) this time interval.

Looking at synchronous task sets, (5.3) can be expressed as hðtÞ given by

hðtÞ ¼
X

Di � t

1þ
t � Di

Ti

� �� �

� Ci

� 	

ð5:4Þ

where Di is the relative deadline of task i. Then, a task set is feasible iff

122 5 Network Technologies for Real-Time Systems

8t; hðtÞ� t ð5:5Þ

for which several approaches have been presented determining a valid (sufficient) t

[40, 41].

5.6.3.1 Dynamic Priority Schedulers

By looking at the processor demand, Inequality (5.2) has been extended for

deadlines longer than the period [40]. Moreover, [41] present a processor demand-

based feasibility test that allows for deadlines shorter than period. Given that

Inequality (5.2) is satisfied, Spuri et al. [33] introduce a generalized processor

demand-based feasibility test that allows for non pre-emptive EDF scheduling.

Additional extensions covering sporadic tasks is discussed in [40].

5.6.4 Response-Time Tests

Response-time tests are calculating the behavior of the worst-case scenario that

can happen for any given task, scheduled by a specific real time scheduler. This

worst case behavior is used in order to determine the worst-case response-time for

that task.

5.6.4.1 Fixed Priority Schedulers

Joseph and Pandya presented the first response-time test for real-time systems [42].

They present a response-time test for pre-emptive fixed-priority systems. The

worst-case response-time is calculated as follows:

Ri ¼ Ii þ Ci ð5:6Þ

where Ii is the interference from higher priority tasks defined as:

Ii ¼
X

j2hp ið Þ

Ri

Tj

 �
� Cj

� 	
ð5:7Þ

where hpðiÞ is the set of tasks with higher priority than task i.

For FPS scheduled systems, the critical instant is given by releasing task i with

all other higher priority tasks at the same time, i.e., the critical instant is generated

when using a synchronous task set [32]. Hence, the worst-case response-time for

task i is found when all tasks are released simultaneously at time 0.

The worst-case response-time is found when investigating the processors level-i

busy period, which is defined as the period preceding the completion of task i, i.e.,

the time in which task i and all other higher priority tasks still not yet have

5.6 Real-Time Analysis 123

executed until completion. Hence, the processors level-i busy period is given by

rewriting (5.6) to:

Rnþ1
i ¼

X

j2hpðiÞ

Rn
i

Tj

 �
� Cj

� 	
þ Ci ð5:8Þ

Note that (5.8) is a recurrence relation, where the approximation to the

ðnþ 1Þth value is found in terms of the nth approximation. The first approximation

is set to R0
i ¼ Ci. A solution is reached when Rnþ1

i ¼ Rn
i , i.e., a so called fixed-

point iteration. The recurrence equation will terminate given that Inequality (5.2)

is fulfilled [32].

The work of Joseph and Pandya [42] has been extended by Audsley et al. [43]

to cover for the non pre-emptive fixed-priority context. Note that non preemption

introduces a blocking factor Bi due to execution already initiated by lower priority

tasks. As a lower priority task has started its execution, it can not be pre-empted;

hence, it might block higher priority tasks for the duration of its worst-case exe-

cution time. Also, in a non pre-emptive system, the processors level-i busy period

is not including the task i itself:

Rnþ1
i ¼ Bi þ

X

j2hpðiÞ

Rn
i � Ci

Tj

� �

þ 1

� �

� Cj

� 	

þ Ci ð5:9Þ

where the blocking factor Bi is defined as follows:

Bi ¼
0 if lepðiÞ ¼ 0

max
k2lepðiÞ

Ck � ef g if lepðiÞ 6¼ 0

(

ð5:10Þ

where lep(i) is the set of tasks with priority less or equal than task i. e is the

minimum time quantum, which, in computer systems, corresponds to one clock

cycle. Including e makes the blocking expression less pessimistic by safely

removing one clock cycle from the worst case execution time of task k, causing the

blocking. The recurrence equation (5.9) is solved in the same way as (5.8). Note

that the in the presence of blocking, the scenario giving the critical instant is re-

defined. The maximum interference now occurs when task i and all other higher

priority tasks are simultaneously released just after the release of the longest lower

priority task (other than task i).

5.6.4.2 Dynamic Priority Schedulers

In dynamic priority systems, the worst-case response-time for a task-set is not

necessarily obtained considering the processors level-i busy period generated by

releasing all tasks at time 0. Instead, Spuri [33] find the worst-case response-time

in the processors deadline-i busy period. The deadline-i busy period is the period

124 5 Network Technologies for Real-Time Systems

T
a
b
le

5
.3

C
o
m
p
ar
is
o
n
o
f
n
et
w
o
rk
s

S
er
ia
l/
F
ie
ld

b
u
s
fe
at
u
re
s

C
A
N

T
T
C
A
N

T
O
K
E
N

B
U
S

E
th
er
n
et

(C
S
M
A
/C
D
)

M
IL
-S
T
D
-
1
5
5
3
B

S
ta
n
d
ar
d

C
A
N

d
at
a
li
n
k
la
y
er
:
IS
O

1
1
8
9
8
-1

IE
E
E
8
0
2
.4

n
et
w
o
rk

p
ro
to
co
l

B
u
s
co
n
tr
o
l
n
et
w
o
rk

fo
r

lo
g
ic
al
ly

ar
ra
n
g
ed

n
o
d
es

C
S
M
A
/C
D

M
A
C
p
ro
to
co
l:

M
IL
IT
A
R
Y

S
T
A
N
D
A
R
D

C
A
N

P
h
y
si
ca
l
li
n
k
la
y
er
:

IS
O
1
1
8
9
8
-1

IS
O

1
1
8
9
8
-4

IE
E
E
8
0
2
.3

n
et
w
o
rk

p
ro
to
co
l

C
o
m
m
u
n
ic
at
io
n
sc
h
ed
u
li
n
g

E
v
en
t
b
as
e,

m
es
sa
g
e
b
as
ed

ar
b
it
ra
ti
o
n
o
n
m
es
sa
g
e

p
ri
o
ri
ty

E
v
en
t
b
as
e,

E
x
cl
u
si
v
e
ti
m
e

w
in
d
o
w

fo
r
a
m
es
sa
g
e
o
n
ly

E
v
en
t
b
as
ed

o
n
to
k
en

p
as
si
n
g

E
v
en
t
b
as
ed

C
o
m
m
an
d
re
sp
o
n
se
;

ac
ti
v
it
y
o
n
th
e
b
u
s
in
it
ia
te
d

b
y
B
C
,
R
T
h
as

to
re
sp
o
n
d

to
B
C

M
ax
im

u
m

d
at
a
ra
te

1
M
B
/S

u
p
to

4
0
m

d
is
ta
n
ce

1
M
B
/S

u
p
to

4
0
m

d
is
ta
n
ce

5
M
B
/S

u
p
to

1
0
0
0
m

1
0
M
B
/S

u
p
to

2
5
0
0
m

1
M
B
/S
,
N
O

li
m
it

M
ax
im

u
m

d
at
a
si
ze

w
it
h

o
v
er
h
ea
d
s

8
b
y
te
s

O
v
er
h
ea
d
:4
7
/6
5
b
it
s

8
b
y
te
s

O
v
er
h
ea
d
:4
7
/
6
5
b
it
s

3
2
0
0
0
b
y
te
s

O
v
er
h
ea
d
:8
0
b
it
s
m
in
im

u
m

1
5
0
0
b
y
te
s

O
v
er
h
ea
d
:2
0
6
b
it
s

m
in
im

u
m

3
2
d
at
a
w
o
rd

(5
1
2
ac
tu
al

d
at
a
b
it
s)

o
v
er
h
ea
d
=
2
0
8

b
it
s

D
at
a
fl
o
w

H
al
f
d
u
p
le
x

H
al
f
d
u
p
le
x

H
al
f
d
u
p
le
x

H
al
f
d
u
p
le
x
/
F
u
ll
d
u
p
le
x

H
al
f
d
u
p
le
x

M
A
C
la
y
er

C
S
M
A

/C
D
/
A
M
P

A
rb
it
ra
ti
o
n
o
n
m
es
sa
g
e

p
ri
o
ri
ty
,

P
ri
o
ri
ty

b
as
ed

E
x
cl
u
si
v
e
w
in
d
o
w

fo
r
o
n
e

m
es
sa
g
e,

A
rb
it
ra
ti
o
n
fo
r

re
st

o
f
m
es
sa
g
es

li
k
e
b
as
ic

C
A
N

T
o
k
en

p
as
si
n
g

C
S
M
A
/C
D

w
it
h
B
E
B

al
g
o
ri
th
m

T
D
M
A
,
C
o
m
m
an
d

re
sp
o
n
se

C
lo
ck

sy
n
ch
ro
n
iz
at
io
n

N
o
t
re
q
u
ir
ed

R
ef
er
en
ce

m
es
sa
g
e
is

u
se
d

to
fo
r
lo
ca
l
sy
n
ch
ro
n
iz
at
io
n

N
o
t
re
q
u
ir
ed

N
o
t
re
q
u
ir
ed

N
o
t
re
q
u
ir
ed

D
el
ay

an
d
ji
tt
er

L
o
w

p
ri
o
ri
ty

m
es
sa
g
es

h
as

h
ig
h
er

d
el
ay

ji
tt
er

lo
w

d
el
ay

an
d
ji
tt
er

im
p
ro
v
em

en
t

W
o
rs
t
ca
se

d
el
ay

is
fi
x
ed

an
d
lo
w

ji
tt
er

U
n
b
o
u
n
d
ed

d
el
ay

an
d
v
er
y

h
ig
h
ji
tt
er

W
o
rs
t
ca
se

d
el
ay

is
fi
x

w
it
h
v
er
y
lo
w

ji
tt
er

N
et
w
o
rk

si
ze

in
te
rm

o
f

n
o
d
e

1
2
0
n
o
d
es

1
2
0
n
o
d
es

1
0
0
n
o
d
es

M
ax
im

u
m

se
g
m
en
t
le
n
g
th

is
1
0
0
m
.

M
in
im

u
m

le
n
g
th

b
et
w
ee
n

n
o
d
es

is
2
.5

m
.

M
ax
im

u
m

n
u
m
b
er

o
f

co
n
n
ec
te
d
se
g
m
en
ts

is
1
0
2
4
.
M
ax
im

u
m

n
u
m
b
er

o
f
n
o
d
es

p
er

se
g
m
en
t

is
1
(s
ta
r
to
p
o
lo
g
y
).

3
1
re
m
o
te

te
rm

in
al

m
ax
im

u
m

(c
o
n
ti
n
u
ed
)

5.6 Real-Time Analysis 125

T
a
b
le

5
.3

(c
o
n
ti
n
u
ed
)

S
er
ia
l/
F
ie
ld

b
u
s
fe
at
u
re
s

C
A
N

T
T
C
A
N

T
O
K
E
N

B
U
S

E
th
er
n
et

(C
S
M
A
/C
D
)

M
IL
-S
T
D
-
1
5
5
3
B

P
h
y
si
ca
l
M
ed
ia

T
w
is
te
d
p
ai
r

T
w
is
te
d
p
ai
r

T
w
is
te
d
p
ai
r

T
w
is
te
d
p
ai
r

T
w
is
te
d
p
ai
r

S
in
g
le

w
ir
e
C
A
N

(C
S
M
A
/C
R
)

T
o
p
o
lo
g
y

M
u
lt
id
ro
p

M
u
lt
id
ro
p

L
o
g
ic
al

ri
n
g

1
0
B
A
S
E
5
u
se
s
b
u
s

to
p
o
lo
g
y

M
u
lt
id
ro
p

R
ed
u
n
d
an
cy

N
O

N
O

N
O

N
O

D
U
A
L
o
r
m
o
re

re
d
u
n
d
an
t
B
U
S

F
au
lt
T
o
le
ra
n
t

N
O

N
O

N
O

N
O

Y
E
S

F
ai
l
si
le
n
t

Y
E
S
,
N
o
d
e
ca
n
g
o
in
to

B
U
S
O
F
F
st
at
e

Y
E
S
,
N
o
d
e
ca
n
g
o
in
to

B
U
S
O
F
F
st
at
e

N
O

N
O

N
O

F
ra
m
e/
M
es
sa
g
e
ch
ec
k

Y
E
S
,
ac
k
n
o
w
le
d
g
em

en
t

b
it
,
C
R
C

Y
E
S
,
ac
k
n
o
w
le
d
g
em

en
t

b
it
,
C
R
C

C
R
C

C
R
C

P
ar
it
y
,
st
at
u
s
w
o
rd

In
cr
em

en
ta
l/
D
et
ri
m
en
ta
l

co
u
n
te
r
fo
r
n
o
d
e
st
at
e
o
n

th
e
b
u
s

In
cr
em

en
ta
l/
D
et
ri
m
en
ta
l

co
u
n
te
r
fo
r
n
o
d
e
st
at
e
o
n

th
e
b
u
s

N
o
d
e
fa
il
u
re

to
le
ra
n
ce

Y
E
S

Y
E
S

Y
E
S

Y
E
S

Y
es
,
if
th
e
B
U
S
co
n
tr
o
ll
er

re
m
ai
n
s
fu
n
ct
io
n
al

126 5 Network Technologies for Real-Time Systems

in which only tasks with absolute deadlines smaller than or equal to di are allowed

to execute.

Hence, in dynamic-priority systems the worst-case response-time for an arbi-

trary task i can be found for the pre-emptive case when all tasks, but i, are released

at time 0. Then, multiple scenarios have to be examined where task i is released at

some time t.

Also for the non pre-emptive case, all tasks but i are released at time 0.

However, one task with an absolute deadline greater than task i (i.e., one lower

priority task) has initiated its execution at time 0-e. Then, as in the preemptive

case, multiple scenarios have to be examined where task i is released at some time

t.

Worst-case response-time equations for both preeptive and non pre-emptive

EDF scheduling are given by Spuri [33]. Furthermore, these have been extended

for response-time analysis of EDF scheduled systems to include offsets.

5.7 Comparison of Networks

Comparisons of some networks are listed in Table 5.3.

5.8 Summary

In this chapter, MAC mechanism of three candidate networks is presented in

detail. The MAC mechanism is responsible for the access to the network medium

and hence affects the timing requirement of message transmission. Comparison of

network parameters is also presented. These comparisons provide an under-

standing of these network protocols, and can be used as a primary guideline for

selecting a network solution for a given application.

References

1. Tanenbaum A (2003) Computer networks. Prentice Hall, Upper Saddle River
2. Nolte T (2006) Share-driven scheduling of embedded networks. PhD thesis, Malardalen

University, Sweden, May 2006
3. IEEE 802.15, Working group for wireless personal area networks (wpans),

http://www.ieee802.org/15/
4. MIL-STD-1553B: Aircraft internal time division command/response multiplex data bus, 30

April 1975
5. Kopetz H, Bauer G (2003) The time-triggered architecture. Proc IEEE 91(1):112–126
6. Berwanger J, Peller M, Griessbach R. Byteflight—a new high-performance data bus system

for safety-related applications. BMW AG, London

5.6 Real-Time Analysis 127

http://www.ieee802.org/15/

7. Flexray communications system—protocol specification, version 2.0, 2004
8. Malcolm M, Zhao W (1994) The timed token protocol for real-time communication. IEEE

Comput 27(1):35–41
9. IEC 61158: Digital data communications for measurement and control: Fieldbus for use in

industrial control systems, 2003
10. PROFInet - architecture description and specification, No. 2.202, 2003
11. Specification of the ttp/a protocol, 2005, http://www.ieee802.org/15/
12. Spurgeon CE (2000) Ethernet: the definitive guide. O’Reilly & Associates, Inc, USA
13. Shoch JF, Dalal YK, Redell DD, Crane RC (1982) Evolution of the ethernet local computer

network. Computer 15(8):10–27
14. Kopetz H, Damm A, Koza C, Mulazzani M, Schwabl W, Senft C, Zainlinger R (1989)

Distributed fault-tolerant real-time systems: The mars approach. IEEE Micro 9(1):25–40
15. Chiueh T, Venkatramani C (1994) Supporting real-time traffic on ethernet. In: Proceedings of

Real-Time Systems Symposium, pp 282–286
16. Pedreiras P, Almeida L, Gai P (2002) The ftt-ethernet protocol: Merging flexibility,

timeliness and efficiency. In: Proceedings of the 14th Euromicro Conference on Real-Time
Systems, 0:152

17. Molle M, Kleinrock L (1985) Virtual time CSMA: why two clocks are better than one. IEEE
Trans Commun 33(9):919–933

18. Zhao W, Stonkovic JA, Ramamritham K (1990) A window protocol for transmission of time-
constrained messages. IEEE Trans Comput 39(9):1186–1203

19. Kweon S-K, Shin KG, Workman G (2000) Achieving real-time communication over ethernet
with adaptive traffic smoothing. In: Real-Time and Embedded Technology and Applications
Symposium, IEEE, 0:90

20. Lo Bello L, Kaczynski GA, Mirabella O (2005) Improving the real-time behavior of ethernet
networks using traffic smoothing. IEEE Trans Ind Inform 1(3):151–161

21. Farsi M, Ratcliff K, Barbosa M (1999) An overview of controller area network. Comput
Control Eng J 10:113–120

22. CAN specification 2.0. part A and B, CAN in automation (CiA)
23. MIL-STD-1553 Tutorial, CONDOR Engineering, Inc, Santa Barbara, CA 93101
24. Buttazzo GC (2003) Hard real-time computing systems - predictable scheduling algorithms

and applications. Springer, Heidelberg
25. Sha L, Abdelzaher T, Arzen K-E, Cervin A, Baker T, Burns A, Buttazzo G, Caccamo M,

Lehoczky J, Mok AK (2004) Real time scheduling theory: A historical perspective. Real-
Time Syst 28(2–3):101–155

26. Kopetz H (1998) The time-triggered model of computation. In: Proceedings of the 19th IEEE
Real-Time Systems Symposium (RTSS’98), pp 168–177

27. Liu CL, Layland JW (1973) Scheduling algorithms for multiprogramming in a hard real-time
environment. J ACM 20(1):40–61

28. Leung JY-T, Whitehead J (1982) On the complexity of fixed priority scheduling of periodic
real-time tasks. Perform Eval 2(4):237–250

29. Stocia I, Abdel-Wahab H, Jeffay K, Baruah SK, Gehrke JE, Plaxton CG (1996) A
proportional share resource allocation algorithm for real-time, time-shared systems. In:
Proceedings of the 17th IEEE Real-Time Systems Symposium (RTSS’96), pp 288–299

30. Parekh AK, Gallager RG (1993) A generalized processor sharing approach to flow control in
integrated services networks: the single node case. IEEE/ACM Trans Netw 1(3):334–357

31. Parekh AK, Gallager RG (1994) A generalized processor sharing approach to flow control in
integrated services networks: the multiple node case. IEEE/ACM Trans Netw 2(2):137–150

32. Sprunt B, Sha L, Lehoczky JP (1989) Aperiodic task scheduling for hard real-time systems.
Real-Time Syst 1(1):27–60

33. Spuri M, Buttazzo GC (1994) Efficient aperiodic service under earliest deadline scheduling.
In: Proceedings of the 15th IEEE Real-Time Systems Symposium (RTSS’94), pp 2–11

34. Strosnider JK, Lehoczky JP, Sha L (1995) The deferrable server algorithm for enhanced
aperiodic responsiveness in the hard real-time environment. IEEE Trans Comput 44(1):73–91

128 5 Network Technologies for Real-Time Systems

http://www.ieee802.org/15/

35. Tia T-S, Liu W-S, Shankar M (1996) Algorithms and optimality of scheduling soft aperiodic
requests in fixed-priority preemptive systems. Real-Time Syst 10(1):23–43

36. Spuri M, Buttazzo GC (1996) Scheduling aperiodic tasks in dynamic priority systems. Real-
Time Syst 10(2):179–210

37. Tindell KW, Burns A, Wellings AJ (1994) An extendible approach for analysing fixed
priority hard real-time tasks. Real-Time Syst 6(2):133–151

38. Sha L, Goodenough JB (1990) Real-time scheduling theory and ADA. IEEE Comput
23(4):53–62

39. Sha L, Rajkumar R, Lehoczky JP (1990) Priority inheritance protocols: An approach to real-
time synchronization. IEEE Trans Comput 39(9):1175–1185

40. Baruah SK, Mok AK, Rosier LE (1990) Preemptive scheduling hard real-time sporadic tasks
on one processor. In: Proceedings of the 11th IEEE Real-Time Systems Symposium
(RTSS’90), pp 182–190

41. Baruah SK, Rosier LE, Howell RR (1990) Algorithms and complexity concerning the
preemptive scheduling of periodic real-time tasks on one processor. Real-Time Syst
2(4):301–324

42. Joseph M, Pandya P (1986) Finding response times in a real-time system. Comput J
29(5):390–395

43. Audsley NC, Burns A, Richardson MF, Tindell K, Wellings AJ (1993) Applying new
scheduling theory to static priority pre-emptive scheduling. Softw Eng J 8(5):284–292

References 129

Chapter 6

Response-Time Models and Timeliness

Hazard Rate

6.1 Introduction

For networked systems, modeling of delay or response-time distribution [1–6] plays

an important role. It helps in estimating the probability of missing a specified

deadline [7], analyzing effect of redundancies on response-time. For dependability

models considering timeliness failures, estimation of timeliness hazard rate is

required. In this chapter, probabilistic response-time models for CAN, MIL-STD-

1553B and Ethernet networks is derived, effect of redundancies on response-time of

these networks is analyzed, a method to estimate timeliness hazard rate is proposed.

6.2 Review of Response-Time Models

6.2.1 Tagged Customer Approach

In tagged customer approach, an arbitrary message/customer is picked as the

tagged message/customer and its passage through the network (closed queuing,

with finite steady-state distribution) is tracked. By this method, the problem of

computing the response time distribution of the tagged customer is transformed

into time to absorption distribution of a finite-state, continuous time Markov chain

(CTMC), conditioned on the state of the system upon entry. Using the arrival

theorem of Sevcik and Mitrani [8], distribution of the other customers in the

network at the instant of arrival of tagged customer can be established. This allows

obtaining the unconditional response time distribution.

A. K. Verma et al., Dependability of Networked Computer-based Systems,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-318-3_6,
� Springer-Verlag London Limited 2011

131

Theorem:

lim
k!1

P Yk�n½ � ¼ pN�1 nð Þ

where

n 2 S N � 1ð Þ

This theorem forms the basis of the ‘‘tagged customer’’ approach for computing

the response time distribution. It is also referred to as the Arrival Theorem, and

states that in a closed queueing network an arriving customer would see the

network in equilibrium with one less customer. Thus in a network with N cus-

tomers, the tagged customer sees the network in equilibrium with N � 1 cus-

tomers. The arrival theorem gives the probability distribution for the state of the

system as seen by the arriving customer. So, computing the response time dis-

tribution using tagged customer approach is a two step process [5]:

1. Compute the steady-state probabilities for each of the states of the queueing

network with one less customer, pN�1ðnÞ
2. Use these probabilities to compute the response time distribution, P½R� t�

6.2.1.1 Example 1: A Single Server System

Let us consider a single server queueing model of a computing system as shown in

Fig. 6.1. Here jobs after service leave the system, at the same time an identical

customer becomes active and joins the queue following job dependent Poisson

arrivals. We assume SPNP service discipline at the queue and service time dis-

tributions are job dependent exponential distribution. In the figure, number in the

subscript denotes the priority of the job, lesser the number higher is the priority.

The system has 2 jobs. Fig. 6.2 shows the CTMC of the system. State (1.1)

indicates availability of both jobs for service. Similarly, state (1,0) indicates

availability of job ‘1’ for service. k1 and k2 indicated the job arrival rate and

l1 and l2 indicate the service rate of job ‘1’ and job ‘2’, respectively. For this

model we define response time as the amount of time elapsed from the time instant

at which job enter the queue until the instant at which it leaves the system after

receiving service.

1
λ

λ

λ

µ

µ

µ

2

.

.

n

1

2

.

.

n

Fig. 6.1 Single server
queuing model

132 6 Response-Time Models and Timeliness Hazard Rate

The first step is to derive CTMC of the system without the job of interest and

finding the steady-state probabilities. The CTMC is shown in Fig. 6.3.

Having found the steady state probability of the system without tagged customer,

we now construct the modified Markov chain from these state to state where tagged

customer leaves the system. The modified CTMC is shown in Fig. 6.4.

In the figure stating and absorbing states are obvious. Following set of differ-

ential equations need to be solved to get passage times:

d P1ð Þ
dx

¼ �0:175P1 þ 0:025P2
d P2ð Þ
dx

¼ 0:125P1 � 0:075P2
d P3ð Þ
dx

¼ 0:050P1 � 0:125P3
d P4ð Þ
dx

¼ 0:050P2 þ 0:125P3 � 0:225P4
d P5ð Þ
dx

¼ 0:025P4 � 0:2P5
d P6ð Þ
dx

¼ 0:2P4
d P7ð Þ
dx

¼ 0:2P5

1,0

0,0

0,1

1

1,1

2 1

1 2

1
2

Fig. 6.2 Single server queuing model

0,0 0,1

2

Fig. 6.3 CTMC without
tagged customer

6.2 Review of Response-Time Models 133

For following initial conditions:

1. P1ð0Þ ¼ 1, for other states 0

2. P2ð0Þ ¼ 1, for other states 0

with boundary condition:
P7

i¼1 Pi ¼ 1

Finally both the passage times are combined using the steady-state probabilities

calculated in the first step. So, the final result is:

P R� t½ � ¼ 0:1667 1�
8

3
e
�t
8 þ

5

3
e
�t
5

� �

þ 0:8333 1� e
�t
5

� �

This analytical response time is plotted along with simulation results in Fig. 6.5.

From figure it is clear that response time distribution obtained using the proposed

approach and from the simulation are quiet close. It proves the effectiveness of the

proposed method.

0,1

0,0

1,0

2

1,1

1 2

2

0,1

Fig. 6.4 Absorbing CTMC for response time of tagged customer

134 6 Response-Time Models and Timeliness Hazard Rate

6.2.1.2 Example 2: A Multi Server System

Now, let us take a multi-server model of a computer system as shown in Fig. 6.6. It

is also an example of close-queueing network. We have already assumed that

service discipline at all queues is SPNP and the service time distributions are job

dependent exponential. The service rates for a job i at CPU, Disk-1 and Disk-2 are

l0i; l1i; and l2i; respectively. When the customer finishes at the CPU, it will either

access to Disk-1 or Disk-2 with probability p1i, p2i, respectively. After completing

the disk access, the job rejoins the CPU queue. For this model we define the

response time as the amount of time elapsed from the instant at which the job enters

the CPU queue for service until the instance it leaves either of the disk.

Following the steps mentioned in section 6.2.1, CTMC of the system with job

‘1’ in the system is prepared. The steady state probabilities are evaluated for job

‘2’ being in CPU, Disk-1 and Disk-2 . These are the probabilities, job ‘1’ may see

at its arrival.

Now, CTMC is evolved from these states and sets of differential equations are

made. These equations are solved for three different initial conditions, i.e. at

arrival, job ‘1’ finds job ‘2’ at (1) CPU.

0 5 10 15 20 25 30 35 40 45 50
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
(R

e
s
p
 ≤ t

)

Time(ms)

Analytical Result
Simulation Result

Fig. 6.5 Single server
response—analytical and
simulation

p11
p12

p1n

p21
p22

p2n

CPU

µ

µ

µ

Disk-1

Disk-2
2n

1n

21

22

2n

12

11

0n

02

01

µ

µ

µ

µ

µ

µ

Fig. 6.6 Single server
queuing model

6.2 Review of Response-Time Models 135

After this, these three conditional passage times are unconditioned using

Arrival Theorem and steady-state probabilities.

The response time distribution of the highest priority job is plotted in the Fig. 6.7.

6.2.2 Probabilistic Response-Time Model

The method illustrated is applicable if the model has following properties [2, 3]:

1. System uses preemptive priority driven scheduling policy

2. Tasks have fixed priority and computation time distribution follows uniform

random distribution

To calculate the response time distribution of a job, this method takes into

account not only the computation times required by the job and the interference

that future jobs could cause on it due to preemption, but also the pending workload

not yet serviced at the instant the job is released.

This method is based on determining pending workload, and convolution of the

job’s computation time with higher priority tasks computation times.

To illustrate the method, we have taken a preliminary example from Refs.

[2, 3]. The system is modeled as a set of jobs fTig, each job being a three-tuple

i;Pi;Ci where i is the release instant of the job, Pi is the priority under which the

0 100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time(ms)

P
ro

b
(R

e
s
p
 ≤ t

)

Analytical Result

Fig. 6.7 Multi server
response—analytical
response

Table 6.1 Example system Job ki Pi PDF

T1 0 5 U[2, 5]

T2 3 10 U[1, 2]

T3 6 15 U[1, 3]

136 6 Response-Time Models and Timeliness Hazard Rate

job runs, and Ci is the required computation time, which is a random variable with

known probability density function (PDF).

Consider the system shown in Table 6.1, and it is required to obtain the PDF of

the response time for the job T1.

G0
1

gl0
1

gh 0
1

gl0
1

gh 0
1

f
c2

1/8

1/4

1/8

G1
1

0 1 2 3 4 5 6 7 r

1/4 1/4 1/4 1/4

0 1 2 3 4 5 6 7 r

1/4 1/4

0 1 2 3 4 5 6 7 r

1/4 1/4

8 8

0 1 2 3 4 5 6 7 r

1/4 1/4

0 1 2 3 4 5 6 7 r

1/8

8 8 9

1/4

1/8

0 1 2 3 4 5 6 7
r

8 9

1/4 1/4

'

(a) “Splitting” the function G 0
1

 at r = 3

(b) Construction of the function G 1
1

Fig. 6.8 Probabilistic response time estimation—graphical method

6.2 Review of Response-Time Models 137

The three steps used to determine the PDF of response-time graphically, are

shown in Fig. 6.8. These three steps are used iteratively to determine the PDF of

response-time in complex system involving several jobs.

It is an iterative method whose computational complexity is a function of

number of jobs in the system and the maximum number of points defining the

computation times.

6.3 Response-Time Models

6.3.1 CAN

In this section, a CAN model is discussed. For a benchmark problem it is com-

pared with literature, the results are compared with results from simulation model

and the basic CAN model is improved and results are compared again.

6.3.1.1 Worst-Case Delay Analysis

CAN network delay is also referred as response-time of CAN in literature. Tindell

et al. [9, 10] present analysis to calculate the worst-case latencies of CAN mes-

sages. The analysis is based on the standard fixed priority response time analysis.

The worst-case response-time of message is the longest time between the

queueing of a message and the time message reaches at destination nodes. In case of

CAN, it is defined to be composed of two delays, (1) queueing delay, qi, (2)

transmission delay, Ci [9]. The queueing delay is the longest time that a message

can be queued at a node and be delayed because of other higher- and lower- priority

messages are being sent on the bus. The transmission delay is the actual time taken

to send the message on the bus. Thus, worst-case response-time is defined as:

Ri ¼ qi þ Ci ð6:1Þ

The queueing time, qi is itself composed of two times, (1) longest time that any

lower priority message can occupy the bus, B, (2) the longest time that all higher

priority messages can be queued and occupy the bus before the message i is finally

transmitted.

qi ¼ Bi þ
X

j2hp ið Þ

qi þ Jj þ sbit

Tj

� �

Cj ð6:2Þ

where Ji is the queueing jitter of the messages, i.e., the maximum variation in the

queueing time relative to Ti; hpðiÞ is the set of messages with priority higher than

i; sbit (bit-time) caters for the difference in arbitration start times at the different

nodes due to propagation delays and protocol tolerances. Equation 6.2 is

138 6 Response-Time Models and Timeliness Hazard Rate

recurrence relation for qi. Considering effect of external interference and error, the

worst-case response time [11] can be given as:

Ri ¼ Bi þ
X

j2hp ið Þ

qi þ Jj þ sbit

Tj

� �

Cj þ Ci þ E qi þ Cið Þ ð6:3Þ

6.3.1.2 Basic CAN Model

The expression (6.1) depicts main parameters affecting response-time. The model

presented here is based on following assumptions:

1. Queueing jitter, Ji is neglected.

2. Messages are not synchronized with each other.

3. Worst-case message transmission time is taken, i.e. with maximum number of

stuff bits. (In the end, a method is discussed to accommodate bit-stuffing

mechanism with the proposed model)

4. All parameters (pdfs and probabilities) are time invariant.

Response-time is defined as, the time from the time instant a message is queued

for transmission to completion of transmission. Response-time model for a typical

mesQueued

bFree

mesReady arbSuc mesTxStarted t
C mesTxComp

~bFree

mesBlocked t
B

mesBlockOver mesBlock

~mesBlock

t
q

hpMesBlock

~hpMesBlock

~arbSuc

mesBlockedhp

Fig. 6.9 Response-time model for CAN. A token in place mesQueued depicts that a message of
interest is queued for transmission. Time taken by token to reach place mesTxComp is the
response-time of message. Immediate transitions bFree; hpmesBlock; arbSuc are probabilities of
bus being free, blocking due to higher priority message, and successful arbitration, respectively.
Immediate transitions labeled with as prefix � are complementary to transitions without this
symbol. General transitions tB; tq represent time associated with blocking, and queueing,

respectively. Deterministic transition tC , represent time associated with transmission

6.3 Response-Time Models 139

CAN message is shown in Fig. 6.9. This model is based on Deterministic Sto-

chastic Petri Net (DSPN). The model is analyzed analytically and the method is

discussed in detail. This DSPN model is chosen for better representation and

explanation of analysis steps. The DSPN model is only for explaining the model. A

brief introduction to SPN, GSPN and DSPN is given in Chapter 3.

In Fig. 6.9 a token in place mesQueued depicts that a message of interest is

queued for transmission. Time taken by token to reach place mesTxComp is the

response-time of message. Immediate transitions bFree, hpmesBlock, arbSuc are

probabilities of bus being free, blocking due to higher priority message, and

successful arbitration, respectively. Immediate transitions labeled with as prefix �
are complementary to transitions without this symbol. General transitions tB; tq
represent time associated with blocking and queueing, respectively. Deterministic

transition tC represent time associated with worst-case transmission.

To analyze this model, value of all transitions, immediate (probabilities) and

timed (pdfs) are required. This model gives response-time distribution of one

message only. So parameter values need to be calculated for all the messages

whose response-time distribution is required.

Set of messages of the system are denoted by M. Parameter are estimated for a

message m from set M. In parameters estimation sub-section, i 2 M means all

messages except message m for which the parameter is being estimated.

Probability of finding bus free (bFree): probability that a message finds the

network free when it gets queued, is estimated based on the utilization of network.

This utilization is by other messages of network.

Pm
free ¼ 1�

X

i2M

Ci

Ti
ð6:4Þ

Probability of finding the bus free, by a Message m is the complement of

utilization. This is because in a closed system (with fixed number of messages/

customers) with n messages, a message on arrival finds the system in equilibrium

with n� 1 messages [5].

Probability of no collision with high priority message (arbSuc): when net-

work is free, a node with ready message can start transmission. Node will abort

and back off transmission if it finds any higher priority message concurrently being

transmitted. This can happen if a node start transmitting a higher priority message

within the collision window sw.

Pm
Suc ¼

Q

i2M
i2hp mð Þ

Pi
C ð6:5Þ

where

Pi
C ¼ Prob non occurrence of ith message in time sw½ �

¼ 1�
1

Ti
� sw

� �

140 6 Response-Time Models and Timeliness Hazard Rate

http://dx.doi.org/10.1007/978-0-85729-318-3_3

Blocking time (tB): a message in queue can be blocked by any message under

transmission by any of the other nodes. This is because CAN messages in trans-

mission cannot be preempted. pdf of this blocking time pbðtÞ is obtained by

following steps:

1. Find the ratio ri of all the messages. ri ¼
1

Ti

P

j

1
Tj

, for i; j 2 M

2. Construct a pdf ; pðtÞ of total blocking time by other messages

p tð Þ ¼
X

i2M

ri � d t � Cið Þ ð6:6Þ

3. Message can get ready at any time during the blocking time with equal prob-

ability. So, effective blocking time is given by following convolution

pmb tð Þ ¼
1

maxðCiÞ

Z

t

0

p sð Þ U t þ sð Þ � U t þmax Cið Þ þ sð Þ½ �ds ð6:7Þ

Blocking time by high priority message (tq): when the ready node finds bus

free and start transmission of ready message, then if within the collision time

window, another node starts transmitting a higher priority message, node backs off.

And the message need to wait till the time of completion of this transmission. pdf

of blocking time by high priority message, pbhp is obtained by following steps 1–3

of Blocking time with one variation, instead of all messages only high priority

message of network are considered.

1. Find the ratio rHi of all the messages. rHi ¼ 1

Ti

P

j

1
Tj

, for i; j 2 M; i 2 hpðmÞ

2. pdf of blocking after back off is given by

pmbhp tð Þ ¼
X

i2hpðmÞ

rHi � d t � Cið Þ ð6:8Þ

where dð�Þ is Dirac delta function.

Probability of no new higher priority message arrival in tBð
�
mesBlockÞ:

this is similar to arbSuc with the difference that instead of collision window time,

mean of BlockTime is used.

Pm
TB

¼
Q

i2M
i2hp mð Þ

Pi
TB ð6:9Þ

where

Pi
TB

¼ Prob non occurrence of ith message in time BlockingTime½ �

¼ 1�
1

Ti
� E½tB�

� �

6.3 Response-Time Models 141

Probability of no new higher priority message arrival in tqð
�
hpMesBlockÞ:

this is similar to previous.

Pm
TBhp

¼
Y

i2M
i2hp mð Þ

Pi
TBhp

ð6:10Þ

where

Pi
TBhp

¼ Prob non occurrence of ith message in time Block Time by New½ �

¼ 1�
1

Ti
� E½tBhp�

� �

Queueing time: time to reach place mesReady from mesBlockedhp in ith step is

modeled as a single r.v. with pdf Bm
hpði; tÞ.

Bm
hp i; tð Þ ¼ 1� Pm

TBhp

� �i�1

Pm
TBhp

� 	

gi tð Þ

where

gi tð Þ ¼ gi�1 tð Þ � pmbhp tð Þ

g tð Þ ¼ pmbhp tð Þ

Bm
hp tð Þ ¼

X

i

Bhpm i; tð Þ

Symbol � is used to denote convolution.

In the same way, time to reach place mesTxStarted in ith attempt from

mesReady is modeled as a single r.v. with pdf trdyði; tÞ.

tmrdy i; tð Þ ¼ 1� Pfreeð Þi�1
Pfree

h i

ðBm
hpÞ

i�1
tð Þ

where

ðBm
hpÞ

iðtÞ ¼ ðBm
hpÞ

i�1
tð Þ � Bm

hp tð Þ

ðBm
hpÞ

0
tð Þ ¼ d tð Þ

tmrdy tð Þ ¼
X

i

tmrdy i; tð Þ

From the instant message is queued, it can reach state mesReady either directly

or via state mesBlocked and mesBlockedhp. State mesBlocked has an associated

time delay. So, using total probability theorem [12], total queueing time is given

as:

qm tð Þ ¼ Pm
freetrdy tð Þ þ 1� Pm

free

 �

Pm
TB

pmb tð Þ � trdy tð Þ
�

þ 1� Pm
free

 �

1� Pm
TB

� �

pmb tð Þ � pmbhp tð Þ � trdy tð Þ
h i

ð6:11Þ

142 6 Response-Time Models and Timeliness Hazard Rate

Response-time: response-time of a message is sum of its queueing time and

transmission time.

rm tð Þ ¼ qm tð Þ � Cmd tð Þ ð6:12Þ

Response-time distribution can be evaluated as

Rm tð Þ ¼

Z

t

0

rm sð Þds ð6:13Þ

Let tmd is deadline for the message m. Then value of cumulative distribution at

tmd gives the probability of meeting the deadline.

P t� tmd

 �

¼ Rm tmd

 �

ð6:14Þ

6.3.1.3 Example

To illustrate the method, benchmark message set of Society of Automotive

Engineers (SAE) [13] is considered. The message set have messages exchanged

between seven different subsystems in a prototype electric car. The list of mes-

sages along with other details are shown in Table 6.2 Message ID 17 is highest

priority while message ID 1 is lowest priority. MATLAB code for the example is

given in Appendix A.

Using the proposed method, parameters are calculated for each message con-

sidering worst-case transmission time. CAN operating speed is 125 kbps

ðbit-time ¼ 7:745 lsÞ [13]. For pdf ðBhpðtÞ and trdyðtÞ estimation number of

Table 6.2 SAE CAN
messages used for analysis
and comparison

Message ID No. of bytes Ti (ms) Di (ms)

17 1 1000 5

16 2 5 5

15 1 5 5

14 2 5 5

13 1 5 5

12 2 5 5

11 6 10 10

10 1 10 10

9 2 10 10

8 2 10 10

7 1 100 100

6 4 100 100

5 1 100 100

4 1 100 100

3 3 1000 1000

2 1 1000 1000

1 1 1000 1000

6.3 Response-Time Models 143

attempts i is truncated such that accumulated probability is 	 0:9999. Parameter

values Pm
free;P

m
high and number of attempts from mesReady are given in Table 6.3

The probability density function of blocking time and blocking time by high

priority message, random variables for message ID 9 is shown in Fig. 6.10

Once all the parameter values are available, response-time distribution is

estimated.

The response-time distribution of three messages (message ID = 1,9 and 17) is

shown in Fig. 6.11. From the response-time distribution, probability of meeting

Table 6.3 Calculated
parameter values

Priority (ID) bFree arbSuc i (No of attempts)

17 0.2039 1.0000 1

16 0.3150 1.0000 1

15 0.2995 0.9986 2

14 0.3150 0.9973 2

13 0.2995 0.9959 3

12 0.3150 0.9946 3

11 0.2902 0.9932 3

10 0.2515 0.9925 3

9 0.2592 0.9918 3

8 0.2592 0.9912 3

7 0.2082 0.9905 3

6 0.2106 0.9904 3

5 0.2082 0.9904 3

4 0.2082 0.9903 3

3 0.2041 0.9902 3

2 0.2039 0.9902 3

1 0.2039 0.9902 3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
10

-4

10
-3

10
-2

10
-1

10
0

Time (ms)

P
ro

b
a

b
ili

ty

pdf of Blocking times

Blocking Time

Blocking time due to high priority

Fig. 6.10 pdf of blocking
times

144 6 Response-Time Models and Timeliness Hazard Rate

two worst-case times Ri and Rsim
i [13] is evaluated. Ri is the worst-case response-

time from analysis while Rsim
i is from simulation. Columns 2 and 4 in Table 6.4

give these values, corresponding probabilities from response-time distribution

analysis is given in columns 3 and 5. Let for all messages, probability of meeting a

response-time is fixed to 0.999, then corresponding time value from response-time

distribution is given in column 6.

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response-time distribution

Time (ms)

P
ro

b
a
b
ili

ty

ID 17

ID 9

ID 1

Fig. 6.11 Response-time
distribution

Table 6.4 Comparison of response-time results of analysis with literature

Priority (ID) Ri [13] PðRiÞ Rsim
i [13] PðRisimÞ tmin

17 1.416 1.0000 0.680 0.5123 1.324

16 2.016 1.0000 1.240 0.9883 1.402

15 2.536 0.9997 1.720 0.9920 2.238

14 3.136 0.9997 2.280 0.9956 2.742

13 3.656 0.9995 2.760 0.9959 3.369

12 4.256 0.9995 3.320 0.9967 3.919

11 5.016 0.9991 4.184 0.9965 4.957

10 8.376 1.0000 4.664 0.9968 5.553

9 8.976 1.0000 5.224 0.9976 5.925

8 9.576 1.0000 8.424 0.9999 6.374

7 10.096 1.0000 8.904 0.9999 6.831

6 19.096 1.0000 9.616 0.9999 7.094

5 19.616 1.0000 10.096 1.0000 6.940

4 20.136 1.0000 18.952 1.0000 6.978

3 28.976 1.0000 18.952 1.0000 7.172

2 29.496 1.0000 19.432 1.0000 7.025

1 29.520 1.0000 19.912 1.0000 7.032

Second and fourth column give worst-case response-time from literature. Third and fifth column
gives probability of message delivery by corresponding time given in second and forth column,
respectively. Last column gives response-time from present analysis assuming probability of
message delivery to be 0.999

6.3 Response-Time Models 145

In Fig. 6.11 the offset at time axis is due to blocking when the message is

queued. It is same for all messages irrespective of message priority, because CAN

message transmissions are non-preemptive. Slope of response-time curves are

different. Slopes are dependent upon the message priority, higher the message

priority higher is the slope.

Response-times from worst-case analysis are giving upper bound on response-

time, so probability at these times from response-time distribution is expected to be

very high or even 1. Values in column 3 of Table 6.4 confirms this. Worst-case

response-time from simulation is obtained from a limited simulation (2,000,000 ms

[13]). Hence there is no consistence probability at these response-times.

Response-time of message with probability 0.999, is comparable for higher pri-

oritymessages, while it is almost 25% ofworst-case for lower priority. This is because

worst-case analysis assumes all higher priority message will get queued determinis-

tically, while response-time distribution gives probabilistic treatment to this.

6.3.1.4 Simulation Model

A simulation model is made using event-triggered approach [14]. Starting time of

each message is chosen based on a uniformly distributed random number. During

simulation no drift or relative variation among the nodes clock is assumed. Each

run is up to 10,000 s. This kind of 10,000 run are simulated to get response time

distribution of each message. MALTAB code of the simulation program is given

in Appendix A.

Using the simulation model, response-time distribution of messages of SAE

CAN example are estimated. The response-time distribution from simulation is

plotted along with response-time distribution of corresponding message from basic

model in Fig. 6.12.

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response−time distribution

Time (ms)

P
ro

b
a
b
ili

ty

ID 1 (Sim)
ID 9 (Sim)
ID 17 (Sim)
ID 1 (Ana)
ID 9 (Ana)
ID 17 (Ana)

Fig. 6.12 Response-time
distribution from simulation
and basic CAN model

146 6 Response-Time Models and Timeliness Hazard Rate

6.3.1.5 Improved Model

Basic CAN model of Fig. 6.9 is analyzed again, in view of the simulation results.

It has been found that probability of collision in collision window is almost

negligible for all the messages. So, considering this is of not much importance.

In basic CAN model, time taken to evaluate probabilities mesBlock and

hpmesBlock is mean of blocking times tB and tq, respectively. So, this time is

changed from mean to maximum blocking time in the improved model. The

improved CAN model is shown in Fig. 6.13. Computation of parameters

ImesBlock and IhpmesBlock is as below:

Probability of no new higher priority message arrival in tqð
�
hpMesBlockÞ:

in the improved mode maximum of BlockTime is used.

Pm
TB

¼
Q

i2M
i2hp mð Þ

Pi
TB ð6:15Þ

where

Pi
TB

¼ Prob non occurrence of ith message in timeBlockingTime½ �

¼ 1�
1

Ti
�max½tB�

� �

mesQueued

bFree mesTxStarted t
C mesTxComp

~bFree

mesBlocked t
B

mesBlockOver ImesBlock

~ImesBlock

t
q

IhpMesBlock

~IhpMesBlock

mesBlockedhp

Fig. 6.13 Improved response-time model for CAN

6.3 Response-Time Models 147

Probability of no new higher priority message arrival in tqð
�
hpMesBlockÞ:

This is similar to previous.

Pm
TBhp

¼
Q

i2M
i2hp mð Þ

Pi
TBhp ð6:16Þ

where

Pi
TBhp

¼ Prob non occurrence of ith message in timeBlockTimebyNew½ �

¼ 1�
1

Ti
�max½tBhp�

� �

Queueing time: time to reach place mesTxStarted from mesBlockedhp in ith

step is modeled as a single r.v. with pdf Bm
hpði; tÞ.

Bm
hp i; tð Þ ¼ 1� Pm

TBhp

� �i�1

Pm
TBhp

� 	

gi tð Þ

where

gi tð Þ ¼ gi�1 tð Þ � pmbhp tð Þ

g tð Þ ¼ pmbhp tð Þ

Bm
hp tð Þ ¼

X

i

Bhpm i; tð Þ

In the improved model, token from place mesQueued can reach place

mesTxStarted by following either of these following paths, (1) directly by firing

of transition bFree, (2) firing of transitions bFree; tB; ImesBlock and, (3) firing

of transitions � bFree; tB; ImesBlock, loop of transitions tq IhpMesBlock and

escaping transition � IhpMesBlock. Total queueing time for improved model is

given as:

qm tð Þ ¼ Pm
freedðtÞ þ

�

1� Pm
free

�

Pm
TB
pmb tð Þ

þ
�

1� Pm
free

�

1� Pm
TB

� �

½pmb tð Þ � Bm
hp tð Þ� ð6:17Þ

Response-time distribution for CAN message set of Table 6.2 is evaluated

using improved CAN model. MATLAB code of the improved CAN model is given

in Appendix A.

The response-time distribution for three message IDs 1, 9 and 17 from

improved CAN model is plotted along with simulation results in Fig. 6.14.

Here both response-time distributions seems to be in quite good agreement at

higher probability values.

148 6 Response-Time Models and Timeliness Hazard Rate

6.3.1.6 Effect of Bit-Stuffing

Total number of stuffed bits in a message depends on bit pattern of message.

A probabilistic treatment requires probability of each bit pattern to get distribution

of bit-stuffing for each message as given in [13, 15].

Once the distribution of number of stuff bits is available, distribution of

transmission time can be obtained [13]

Cm tð Þ ¼ Cm þ u nð Þð Þsbit ð6:18Þ

where

Cm time taken to transmit date without any stuff bits

u nð Þ prob. that stuff bits are n

sbit time taken to transmit a bit on the bus

Response-time of a message considering bit-stuffing can be determined using

above method, by replacing fixed Ci by distribution CiðtÞ in (6.6–6.8).

CAN message might get corrupted due to interference of EMI [16, 17]. The

transmitting node have to retransmit the message, thus, corruption of message have

effect of increasing message’s network delay. The interference affects probability

of finding free and both the blocking times of the CAN model in addition to

retransmission.

6.3.2 MIL-STD-1553B

6.3.2.1 Worst-Case Delay Analysis

As per [18], the delay for cyclic service network can be simply modeled as a

periodic function such that sSCk ¼ sSCkþ1 and sCAk ¼ sCAkþ1 where sSCk and sCAk are the

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response−time distribution

Time (ms)

P
ro

b
a

b
ili

ty

ID 1 (Sim)
ID 9 (Sim)
ID 17 (Sim)
ID 1 (Ana)
ID 9 (Ana)
ID 17 (Ana)

Fig. 6.14 Response-time
distribution from simulation
and improved CAN model

6.3 Response-Time Models 149

sensor-to-controller delay and the controller-to-actuator delay at sampling time

period k. The model works perfectly in ideal cases, i.e. when local clock are very

stable. In practice, systems may experience small variations on periodic delays due

to several reasons. For example, drift in clock generators of nodes & controllers,

failure & restoration of node may result in delay variation.

6.3.2.2 Response Time Model

Consider a network with two nodes as shown in Fig. 6.15. BC of the network

controls transfer of data on network. The network delay for data transfer from node

A to B is defined as

sAB ¼ tAsuc � tAQ ð6:19Þ

In this equation sAB is the network delay experienced by message at node A for

transfer to node B. tAsuc is the time of successful transfer of data from node A, tAQ is

the time of queuing of data by node A for transfer to B.

Node A is allowed to transmit its data to B periodically under the command of

BC. As node A and BC are not synchronized, waiting time (queuing time to the time

of actual start of transmission) will have uniform distribution. This uniform dis-

tribution has range 0; sABmil

 �

. sABmil is time period or cycle time of data transfer from A

to B. Once node A gets turn for message transfer to B, it starts putting the frame.

The transmission delay has two components, frame size and prorogation delay.

Frame size is proportional to number of bytes to be transferred, while propagation

delay is because media length connecting nodes A and B. Now in terms of waiting

time, frame time and propagation time, network delay can be written as:

sAB ¼ sAwait þ sAfr þ sAprop ð6:20Þ

For a given data and pair of nodes framing time and propagation time are

constant. The sum of these two is referred as transmission time. With the

assumption that data is not corrupted during framing or propagation (i.e no

A B

MIL-STD-1553B

BC

Fig. 6.15 Two nodes of a MIL-STD-1553B network

150 6 Response-Time Models and Timeliness Hazard Rate

retransmission), transmission time is constant. So, network delay is sum of a

random (waiting time) and fixed (transmission time) quantity.

Let transmission time of the message transmitted from node A to B is denoted

as sABtx . Then pdf of transmission delay is given as:

dAB tð Þ ¼
1

sABmil

Z

t

0

U sð Þ � U s� sABmil

 ��

d t � sþ sABtx

 �

ds ð6:21Þ

From (6.21), it is clear under the assumption of no retransmission, network delay

has time shifted uniform distribution. This time shift is by fixed transmission time.

Effect of EMI is slightly different from that in CAN. Transmitter might

retransmit the frame again or wait for next cycle, based on the implementation. So,

interference might result in network delay or message loss as well.

6.3.3 Ethernet

Wewill start with amyths about Ethernet performance. Themain is that the Ethernet

system saturates at 37% utilization. The 37% number was first reported by Bob

Metcalfe and David Boggs in their 1976 paper titled ‘‘Ethernet: Distributed Packet

Switching for Local Computer Networks’’. The paper considered a simple model of

Ethernet. The model used the smallest frame size and assumed a constantly trans-

mitting set of 256 stations. With this model, the system reached saturation at 1=e
(36.8%) channel utilization. The authors had warned that this was simplified model

of a constantly overloaded channel, and did not bear any relationship to the normal

functioning networks. But the myth is persistent that Ethernet saturates at 37% load.

Ethernet is a 1-persistent CSMA/CD protocol. 1-persistent means, a node with

ready data senses the bus for carrier, and try to acquire the bus as soon as it becomes

free. This protocol has serious problem, following a collision detection. Nodes

involved in collision, keep on colliding with this 1-persistent behavior. To resolve

this, Ethernet has BEB (binary exponential backoff) algorithm. Incorporation of

BEB introduces random delays and makes the response time indeterministic.

In this section, we proposes a method to estimate response time distribution for

a given system. The method is based on stochastic processes and operations. The

method requires definition of model parameters.

6.3.3.1 Response-Time Model

A DSPN model for response-time modeling of a message in basic Ethernet (10/

100 Mbps) is given in Fig. 6.16.

A token in place mesReady in Fig. 6.16 depicts a massage ready for trans-

mission at a node. Place BusFree stands for the condition when node senses that

bus (i.e. physical medium) is free. BusAcq stands for the condition when message

transmission is in progress in excess to minimum packet size. Place named

Collision depict the collision on the bus. Places mesBackedOff and

6.3 Response-Time Models 151

CollisionCounter depicts the back off condition and retransmission counter,

respectively. There are four immediate transitions – bfree; ~bfree;PtNC; ~PtNC – in the

model. The two are actually complementary of each other. Transitions bFree;PtNC

depicts the probability of finding the bus free and probability of no collision,

respectively. Timed transition ttx represents the fixed time of transmission of the

message. General timed transitions mesBlocked; tcol; tBEB represents blocking time

when bus is not free, collision time and variable back off time, respectively.

The model counts the number of collisions (or retries) before actual transmis-

sion. tBEB need to be varied as the count changes. It does not model stoppage of

transmission after 16 attempts.

The estimation of these probabilities and general time distribution is the most

difficult part. It varies with number of message ready for transmission and other

network parameters.

6.4 System Response-Time Models

6.4.1 Sample to Actuation Delay and Response-Time

In networked system, two parameter of importance are sample to actuation delay

and response-time. First is the time difference of actuating action to the corre-

sponding sampling time. While the second is time taken by networked system to

react (or respond) to an action of physical process.

Assuming that all nodes are time-triggered, i.e. they sample inputs from

physical process or network periodically. Nodes generate output to physical

BusAcq

mesReady

Collision tcol mesBackedOff

tBEB

~bFree

mesBlocked

PtNC

BusFree ttx MesTransComp

CollisionCounter

bFree

~
PNC

Fig. 6.16 Response-time model for messages on basic Ethernet

152 6 Response-Time Models and Timeliness Hazard Rate

process or network after computation time. For a node i, sampling period is

denoted by sisamp and delay after sampling is computation delay is denoted as sicomp.

In case of networked system, sampling of process input is carried out by sensor

node and actuation for corrective action is done by actuator node. So, sample to

actuation delay is given by:

sa�s ¼ sScomp þ sSC þ sCsamp þ sCcomp þ sCA þ sAsamp þ sAcomp ð6:22Þ

Computation delay is negligible for some nodes (sensor, actuator). For con-

troller nodes it is finite. For analysis purpose it can be assumed constant. Sampling

time due to phase difference is modeled as uniform distribution.

sisamp
 Unif 0; tisamp

� �

ð6:23Þ

So, pdf of sample to actuation delay is convolution of all the variable of above

equation:

da�s tð Þ ¼ dSC tð Þ � unif 0; tCsamp

� �

�d t � tCcomp

� �

� dCA tð Þ

�unif 0; tAsamp

� �

ð6:24Þ

Since sensor node samples the physical inputs periodically, response-time

density is given as:

r tð Þ ¼ unif 0; tSsamp

� �

� da�s tð Þ ð6:25Þ

6.4.1.1 Example: Numerical Example—Deterministic Case

Take a distributed system as shown in Fig. 6.17. System is configured as TMR

(Triple Modular Redundant). It consists of three input nodes (IPNA/B/C), three

output nodes (OPNA/B/C), and one communication link or channel, C1. The

behavior of the node and communication channel is as follows:

IPN’s run a cyclic program of acquiring primary inputs, processing them as per

the defined algorithm (or logic) and put output of processing in the buffer of its

communication interface for transmission to respective OPN (i.e. IPNA to OPNA).

The node may have any of the scheduling algorithms such as, round-robin (RR),

priority with preemption, and priority without preemption etc. and load on the

system will decide the periodicity in acquiring primary inputs and also the time

required to perform processing. Time elapsed from the instant of a change in input

to its acquisition is a random variable denoted as sIacq with domain (0, cycle time of

IPN). Similarly, time required for processing and depositing output to the buffer of

communication interface is also a random variable, sIprowith domain <(set of +ve

real numbers).

6.4 System Response-Time Models 153

OPN’s also run a cyclic program of acquiring outputs from their respective

IPN’s, and generates commands for the actuators/manipulators. Similar to IPNs,

time elapsed from the instant of reception of commands at communication inter-

face to its acquisition is a random variable sOacq with domain (0, cycle time of OPN)

and time required for generation of command for actuators, sOgen with domain <.

Let us take a deterministic case. Here all the random variable are having fixed

values. The density function of fixed random variables is denoted by Dirac delta

function, dðtÞ. Response-time density functions of random variable of channel A

are given in Table 6.5.

IPN
A

. . . .

IPN
B

. . . .

IPN
C

. . . .

OPN
A

OPN
B

OPN
C

.

Primary Inputs from sensor or Status

Voted Command to actuators

Communication

Channel

2/3 Voting

Fig. 6.17 Distributed system with triple redundant nodes

154 6 Response-Time Models and Timeliness Hazard Rate

Using (3–3) channel A response-time density is given as:

_FA sð Þ ¼ _F1 � _F2 � _F3 � _F4 � _F5 sð Þ

putting values of individual response-time densities in above equation, we get:

FA tð Þ ¼

Z

t

0

Z

s5

0

Z

s4

0

Z

s3

0

Z

s2

0

d s1 � 3ð Þd s2 � s1 � 2ð Þd s3 � s2 � 5ð Þd s4 � s3 � 3ð Þ

� d s5 � s4 � 1ð Þds1ds2ds3ds4ds5

Solving this for response-time distribution, gives the following:

FA tð Þ ¼

Z

t

0

_FA sð Þds ¼ [t � 14ð Þ

In similar manner, response-time distribution of other two channels, B and C

can be obtained. Let’s take following:

FB tð Þ ¼

Z

t

0

_FB sð Þds ¼ [t � 15ð Þ

and

FC tð Þ ¼

Z

t

0

_FC sð Þds ¼ [t � 16ð Þ

Using (3–8), response-time distribution of system can be obtained. Mathe-

matically it is given as:

FSys tð Þ¼
[t�14ð Þ[t�15ð Þ

þ[t�15ð Þ[t�16ð Þ
þ[t�16ð Þ[t�14ð Þ

8

<

:

9

=

;

�
[t�14ð Þ[t�15ð Þ[t�15ð Þ[t�16ð Þ

þ[t�14ð Þ[t�15ð Þ[t�16ð Þ[t�14ð Þ
þ[t�15ð Þ[t�16ð Þ[t�16ð Þ[t�14ð Þ

8

<

:

9

=

;

þ
[t�14ð Þ[t�15ð Þ[t�15ð Þ[t�16ð Þ[t�16ð Þ[t�14ð Þ
[t�14ð Þ[t�15ð Þ[t�15ð Þ[t�16ð Þ[t�16ð Þ[t�14ð Þ

� �

Table 6.5 Values of random
variables

Notation Value Density function

_F1 tð Þ 3 d t � 3ð Þ

_F2 tð Þ 2 d t � 2ð Þ

_F3 tð Þ 5 d t � 5ð Þ

_F4 tð Þ 3 d t � 3ð Þ

_F5 tð Þ 1 d t � 1ð Þ

6.4 System Response-Time Models 155

The result obtained needs no explanation; it is self-evident.

FSys tð Þ ¼ [t � 15ð Þ

6.4.1.2 Example: Numerical Example—Non-Deterministic Case

In this case random variables for time to acquire inputs are assumed to be

uniformly distributed over its cycle time. This assumption is based on the fact

that instant of change of input and instant of acquisitions are statistically inde-

pendent. Random variable for time to process (or transmit/generate) at IPN

(communication channel/OPN) is assumed to be exponentially distributed. This

assumption is based on the fact that these systems (IPN/OPN/communication

channel) are having complex interactions within them, making then non-deter-

ministic and memoryless. Memoryless means, remaining time to process does

not depend on how long it is being processed. Memory less random variable in

continuous domain is exponential.

Density functions of the random variables are given in Table 6.6.

Using (3–3) and (3–4), response-time densities and distributions can be

obtained. The response-time distribution for a channel, e.g. channel A is given as:

FAðtÞ ¼ � 2=9� t þ 1=72� Uðt � 6Þ � expð�t þ 6Þ � 625=432� Uðt � 12Þ

� expð�1=5� t þ 12=5Þ � 8=27� Uðt � 6Þ � expð�1=2� t þ 3Þ

� 5=9� Uðt � 12Þ � t þ 625=216� Uðt � 6Þ � expð�1=5� t þ 6=5Þ

� 113=18� Uðt � 6Þ þ 4=27� Uðt � 12Þ � expð�1=2� t þ 6Þ

� 1=144� Uðt � 12Þ � expð12� tÞ þ 4=27� expð�1=2� tÞ � 1=144

� expð�tÞ þ 1=72� t2 þ 215=36� Uðt � 12Þ þ 7=9� Uðt � 6Þ

� t þ 1=72� Uðt � 12Þ � t2 � 625=432� expð�1=5� tÞ � 1=36

� Uðt � 6Þ � t2 þ 47=36

Assuming channel response-time distribution for all the three channels same,

system response-time distribution can be calculated using (3–8).

Table 6.6 Notations and
distributions of random
variables

Notation Mean value Distribution Density function

_F1 tð Þ 3 Uniform 1
6
[tð Þ � [t � 6ð Þð Þ

_F2 tð Þ 2 Exponential 1
2
e
�t
2

_F3 tð Þ 5 Exponential 1
5
e
�t
5

_F4 tð Þ 3 Uniform 1
6
[tð Þ � [t � 6ð Þð Þ

_F5 tð Þ 1 Exponential e�t

156 6 Response-Time Models and Timeliness Hazard Rate

FSysðtÞ ¼ 3 � ð1=72� t2 � 2=9� t� 113=18�Uðt� 6Þ þ 4=27�Uðt� 12Þ

� expð�1=2� tþ 6Þ � 625=432� expð�1=5� tÞ � 8=27�Uðt� 6Þ

� expð�1=2� tþ 3Þ � 1=144� expð�tÞ � 625=432�Uðt� 12Þ

� expð�1=5� tþ 12=5Þ þ 215=36�Uðt� 12Þ � 1=144�Uðt� 12Þ

� expð12� tÞ þ 1=72�Uðt� 6Þ � expð�tþ 6Þ þ 625=216

�Uðt� 6Þ � expð�1=5� tþ 6=5Þ þ 4=27� expð�1=2� tÞ þ 1=72

�Uðt� 12Þ � t2 þ 7=9�Uðt� 6Þ � t� 1=36�Uðt� 6Þ � t2 � 5=9

�Uðt� 12Þ � tþ 47=36Þ2 � 3� ð1=72� t2 � 2=9� t� 113=18

�Uðt� 6Þ þ 4=27�Uðt� 12Þ � expð�1=2� tþ 6Þ � 625=432

� expð�1=5� tÞ � 8=27�Uðt� 6Þ � expð�1=2� tþ 3Þ � 1=144

� expð�tÞ � 625=432�Uðt� 12Þ � expð�1=5� tþ 12=5Þ þ 215=36

�Uðt� 12Þ � 1=144�Uðt� 12Þ � expð12� tÞ þ 1=72

�Uðt� 6Þ � expð�tþ 6Þ þ 625=216�Uðt� 6Þ

� expð�1=5� tþ 6=5Þ þ 4=27� expð�1=2� tÞ þ 1=72�Uðt� 12Þ

� t2 þ 7=9�Uðt� 6Þ � t� 1=36�Uðt� 6Þ � t2 � 5=9�Uðt� 12Þ

� tþ 47=36Þ4 þ ð1=72� t2 � 2=9� t� 113=18�Uðt� 6Þ þ 4=27

�Uðt� 12Þ � expð�1=2� tþ 6Þ � 625=432� expð�1=5� tÞ � 8=27

�Uðt� 6Þ � expð�1=2� tþ 3Þ � 1=144� expð�tÞ � 625=432

�Uðt� 12Þ � expð�1=5� tþ 12=5Þ þ 215=36�Uðt� 12Þ � 1=144

�Uðt� 12Þ � expð12� tÞ þ 1=72�Uðt� 6Þ � expð�tþ 6Þ þ 625=216

�Uðt� 6Þ � expð�1=5� tþ 6=5Þ þ 4=27� expð�1=2� tÞ þ 1=72

�Uðt� 12Þ � t2 þ 7=9�Uðt� 6Þ � t� 1=36�Uðt� 6Þ � t2 � 5=9

�Uðt� 12Þ � tþ 47=36Þ6

Channel response-time density, distribution and system response-time distri-

butions are plotted in Fig. 6.18.

6.4.2 Effect of Node Redundancy

In networked systems, to make the system fault-tolerant, it’s node group (sensor,

controller and actuator) can have redundancy. This redundancy could of any form

and type, active/passive, hot, cold or warm [19], etc. Here MooN (M-out-of-N)

redundancy is considered. A generic diagram is shown in Fig 6.19.

6.4 System Response-Time Models 157

All nodes in a group are independent. Each sensor node of sensor group sample

the physical parameter independently. Parameters from network are common to all

the nodes of a group. For parameters from network, nodes might wait for copies of

same message from multiple nodes of the sending group. For example, in case

sensor group is having triple redundancy, controller nodes might wait for a data

from two different nodes of sensor group for processing for majority voting sys-

tem. As all nodes are time-triggered, a controller node performs 2oo3 of recent

messages from sensor group.

Let redundancy of each group is denoted as MiooN i and i 2 fS;C;Ag.
Receiving nodes of a data wait for data from sending group, i from at least Mi

nodes. To model response-time in this scenario, we define group delay time.

Group delay time of a group j, is defined as time difference of successful

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

P
r.

[R
e
s
p
o
n
s
e
-t

im
e
 <

 t
]

Response-Time Distribution

channel density function

channel distribition

system distribution

Fig. 6.18 System response-
time distribution for non-
deterministic case

1

2

N
S

1

2

N
A

1

2

N
C

Physical Process

Sensor

Group
Controller

Group

Actuator

Group

n n

S
samp

S
comp SC CA

C
comp

C
samp

A
samp

A
comp

S C A

Network with n 1

Fig. 6.19 NCS response-time with redundancies

158 6 Response-Time Models and Timeliness Hazard Rate

transmission of output data by Mj nodes from occurrence of an event at physical

process or receipt of data at nodes of group j. Where i, is the sending group.

si ¼ mi

 �

thmedian
sisamp þ sicomp þ sij

� �

1
; . . .;

sisamp þ sicomp þ sij

� �

Ni

8

<

:

9

=

;

ð6:26Þ

This is again an order statistics problem. As sample, compute and network

delay of each node independent and identically distributed (i � i � d�), di1 tð Þ is used

to denote pdf of this sum. Corresponding distribution function is denoted as Di
1 tð Þ.

So, group delay is given as:

Di tð Þ ¼
X

Ni

n¼Mi

Di
1 tð Þ

�
n
1� Di

1 tð Þ
�
N i�n

ð6:27Þ

With this response-time model of the system in Fig. 6.19 is given as:

r tð Þ ¼ dS tð Þ � dC tð Þ � dA tð Þ ð6:28Þ

6.4.3 Dependence of Response-Time Between

Consecutive Cycles

In the above analysis, we considered that nodes are asynchronous. The analysis is

valid only for initial or first response, as nodes and network controllers are car-

rying out their periodically. Local clocks of nodes as well as network controllers

(if any) are very stable. So, if system response-time is, x at first cycle after startup,

chances are very high that it will remain x in consecutive cycle(s). Response-times

of consecutive cycles are correlated. From common logic it can be inferred, any

variation in consecutive response-times will be due to drift in clocks, failure of

node/controller and restoration of node/controller.

A networked real-time system, able to meets its deadline at startup may fail

after operating for time t, due to drift in clocks, failure and restoration of nodes/

network controllers.

6.4.3.1 CAN

Network delay on CAN has variation mainly due to traffic and priority among

messages. Message with lower priority has higher variation than high priority

messages. Network delay of a message in one cycle is not related with the delay in

the previous cycle, as the interacting traffic is independent. So, network delay in

each cycle is independent and follow the pdf given by (6.12).

6.4 System Response-Time Models 159

6.4.3.2 MIL-STD-1553B

As discussed earlier, network delay in case of MIL-STD-1553B has variation

mainly because of mismatch in clocks of remote terminals and bus controllers.

Most of the cases, this mismatch is very small. So, network delay in consecutive

cycles will have small variations, means network delay is dependent on previous

cycle. Let network delay of data from node A to B is measured in cycle k, then

network delay in cycle k þ 1 is going to be around the measured value with a high

probability. Although network response-time at any random cycle will follow the

pdf given by (6.21). But network delay in consecutive cycle will be dependent on

current cycle network delay.

Let ppre is the probability that network delay in any cycle is same as in the

previous cycle, then network delay in successive cycles is given as:

dAB t; ið Þ ¼ d t � xð Þ ð6:29Þ

where x is the network delay in cycle i

dAB t; iþ 1ð Þ ¼ ppred t � xð Þ þ 1� ppre

 �

dAB tð Þ ð6:30Þ

and

dAB t; iþ 2ð Þ ¼ ppred
AB t; iþ 1ð Þ þ 1� ppre

 �

dAB tð Þ

¼ p2pred t � xð Þ þ 1� ppre

 �

1þ ppre

 �

dAB tð Þ

similarly

dAB t; iþ nð Þ ¼ ppred
AB t; n� 1ð Þ þ 1� ppre

 �

dAB tð Þ

¼ pnpred t � xð Þ þ 1� pnpre

� �

dAB tð Þ
ð6:31Þ

If ppre ¼ 1, i.e. there is no mismatch in clocks, then nth cycle will also have the

same network delay as ith cycle. When ppre\1, then network delay in nth cycle

will be given be dABðtÞ.
Similarly, if the receiving node has received the message in present cycle

before a specified time, ta, then the distribution of delay time in next cycle is given

be the above equations. Let conditional density is denoted as dAB t tajð Þ. Dirac delta
function in above equations is replaced by conditional density function.

6.4.4 Failure/Repair Within the System

Node and network channel may fail, repaired and restored back to operation. When

a node or network channel is not available because of failure, it might affect the

system response-time distribution and probability of meeting deadline(s).

160 6 Response-Time Models and Timeliness Hazard Rate

Assuming link, i.e. interconnects, failure probability to be negligible, failure

location-wise system elements can be categorized as failures in nodes and failures in

network. Further, failures in node can be divided as (1) failure in processing unit

(PU), (2) network interface unit (NIU) and, (3) complete failure, e.g. power supply,

etc. Failure in node’s PU might affect data, but failure in NIU and complete failure

affect response-time distribution. Network might fail if it has active components

such as bus controller (BC)—in case of MIL-STD-1553B—, hubs or switches.

For a NRT system with redundancy at node and network level, the network

delay distribution and response-time distribution, for each possible state of failure

state-space is evaluated. Number of states will increase rapidly with system size.

So to limit the evaluation of distributions for all possible state, distribution in

hardware-wise healthy states is considered.

The system will fail, if at any time number of failed nodes in a group exceeds

tolerable number of failures. Response-time distribution for a given set of nodes

and network channel operating can be evaluated using the already explained steps.

Using the steps, response-time distribution for all healthy states can be derived.

Response-time distribution in each system state ði; j; k; nÞ, where i; j; k; n are

number of UP sensor nodes, controller nodes, actuator nodes and network chan-

nels, respectively.

6.5 Timeliness Hazard Rate

Systems usually have robust control algorithm to tolerate message delays and

drops. Message delay and drop has effect of delaying control action by networked

real-time systems. Delay beyond a specified time in taking control action is

considered timeliness failure.

Let system failure criteria is n consecutive deadline violation (or timeliness

failures). When n ¼ 1, number of cycles at which timeliness failure will occur

follows geometric distribution [12].

P Z ¼ ið Þ ¼ pi�1q ð6:32Þ

where Z: randomvariable; q: probability of occurrence of timeliness failure; p : 1� q:
Geometric distribution is a memoryless distribution in discrete time and is

counterpart of exponential distribution in continuous time [12]. At gross level

(larger time scale), it can be easily converted to exponential distribution.

In exponential distribution characterizing parameter is hazard rate, which in this

case is referred to as ‘‘timeliness hazard rate’’.

kT ¼
1

t
ln

1

P Z[

t

tC

� �� �

0

B

B

@

1

C

C

A

ð6:33Þ

where k: Timeliness hazard rate; t: Operating time; t: Cycle time.

6.4 System Response-Time Models 161

When n[1, number of cycles for timeliness failure will not follow geometric

distribution. This process (number of cycles for timeliness failure) is a memory

process and directly cannot be modeled as Markov. Using the technique of

additional states [20], Markov model can be used to model this process. A DTMC

for this process is shown in Fig. 6.20. It is clear a general equation for n cannot be

given. This gives rise to computational problem for higher values of n. Also, it will

be better if this process can be mapped to a continuous time process, as it will

enable modeling of timeliness failure along with hardware failures in system

dependability modeling.

One algorithm to evaluate timeliness hazard is by using 6.33. Alternate method

to estimate hazard rate is by its definition [12]. Hazard rate at any given time t, is

conditional instantaneous probability of failure at time, given that it has survived

up to time t [12].

kTðtÞ ¼ f tð Þ
1�F tð Þ ¼

f tð Þ
R tð Þ ð6:34Þ

where: F(t): Failure distribution (CDF); f(t): Failure density (pdf); R(t): Reliability.

Equation (6.34) requires FðtÞ as differentiable function. While DTMC will give

FðtÞ values at discrete points only. Using techniques of discrete mathematics, these

discrete values are used to evaluate timeliness hazard rate. MATLAB code for

deriving timeliness hazard rate is given in Appendix A.

6.5.1 Example 1

Let probability of meeting the specified deadline is p ¼ 0:99998 per cycle. And

cycle time is 50 ms. Timeliness hazard rate, kT for three timing failure criteria,

n ¼ 1; 2 and 3, as evaluated using (6.33) is given in Table 6.7

Timeliness failure probabilities are estimated using DTMC of Fig. 6.20 and

using exponential distribution with hazard rate of Table 6.7

Plot of timeliness hazard rate with time does not show any trend, as shown in

Fig. 6.21. All three hazard rates are constant with time, so exponential distribution

0 1 n-1 n

qp
q q q

p
p

OK Fail

Fig. 6.20 DTMC of system failure due to timeliness

162 6 Response-Time Models and Timeliness Hazard Rate

can be used to model failure distribution [12, 20]. Difference in estimated prob-

abilities is plotted in Fig. 6.22.

The process with more than one consecutive failure although have memory at

micro-scale i.e. at cycle level, but at a larger time scale it may not. If there is no

timeliness failure up to time t, then chances of timeliness failure in time t þ dt in

independent of t. Means, system state at t w.r.t. timeliness failures is as good as new.

Table 6.7 Probability and hazard rates with exponential distribution

Probability kT1 (per cycle) kT2 (per cycle) kT3 (per cycle)

0.99998 2.00E-05 4.00E-10 8.00E-15

For the given probability of meeting deadline in one cycle, hazard rate for three failure condi-
tions, n = 1, 2, and 3 is given in second to fourth columns

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

Time (x cycle time)

H
a
z
a
rd

 r
a
te

n=1
n=2
n=3

Fig. 6.21 Hazard rates with
time

10
0

10
1

10
2

10
3

10
4

10
5

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

-6

Time (x cycle time)

d
if
fe

re
n

c
e

n=1
n=2
n=3

Fig. 6.22 Difference in
estimated probabilities with
time. The difference is taken
as (failure probability from
DTMC—failure probability
from exponential failure
distribution)

6.5 Timeliness Hazard Rate 163

6.5.2 Example 2

Consider a two node system with three networks interconnecting them. One node

acts as sensor & controller (SC) node and other node acts as actuator (A) node.

Interconnecting network system is taken to be CAN in one case and MIL-STD-

1553B in the other. The schematic of the system is shown in Fig. 6.23.

System components may fail and restored back by means of repair. In degraded

states (system has some faulty components, but still system is functional) response

time change. In all working states system’s response-time is computed using

method discussed earlier in this chapter.

In this example system, message set of previous example is taken. Messages

with 2 bytes and 10 ms cycle time are considered for both the cases. On network

other messages are taken. System has total of 17 messages as per Table 6.2.

Messages for present case I, have message ID 8, 9 and 12 (with message ID 12

having 10 ms as period). For case I following healthy and degraded states are

considered:

1. All nodes are healthy and at least one network is healthy

2. One SC node is Down and at least one network is healthy

3. One A node is Down and at least one network is healthy

4. One SC and one A nodes are Down and at least one network is healthy

In case of CAN bus, redundancy at CAN level does not affect the system

response-time, while in case of MIL-STD-1553B, failure of network channels do

SC

1

2

3

1 2 3

Communication

networks

A

1 2 3

Fig. 6.23 Schematic of example system

164 6 Response-Time Models and Timeliness Hazard Rate

affect the system response-time. For case II following healthy and degraded states

are considered:

1. All nodes and network channels are healthy

2. One SC node is Down and all network channels are healthy

3. One A node is Down and all network channels are healthy

4. One SC and A nodes are Down and all network channels are healthy

5. One SC node is Down and one network channel is Down

6. One A node is Down and one network channel is Down

7. One SC and A nodes are Down and one network channel is Down

8. One SC node is Down and two network channels are Down

9. One A node is Down and two network channels are Down

10. One SC and A nodes are Down and two network channels are Down

System response-time distribution, under two cases are shown in Figs. 6.24 and

6.25.

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response−time distribution under various conditions

Time (ms)

P
ro

b
a
b
ili

ty

No fault
1 SC faulty
1 A node faulty
1 SC and 1 A node faulty

Fig. 6.24 Response-time
distribution under various
operating states of case I

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Response−time distribution under various conditions

Time (ms)

P
ro

b
a

b
ili

ty

No fault
1 SC node faulty
1 A node faulty
1 SC node and 1 A node faulty
1 SC node and 1 network faulty
1 A node and 1 network faulty
1 SC, 1 A node and 1 network faulty
1 SC node and 2 networks faulty
1 A node and 2 networks faulty
1 SC, 1A node and 2 networks faulty

Fig. 6.25 Response-time
distribution under various
operating states of case II

6.5 Timeliness Hazard Rate 165

Probability that response is generated by 25 and 30 ms, under various operating

conditions, along with hazard rate estimated for n = 1, 2 and 3 are given in

Table 6.8 and 6.9 for case I and II, respectively.

Table 6.8 Probability and hazard rates for Case I

System state Deadline (ms) Probability kT1 (h)�1 kT2 (h)�1 kT3 (h)�1

1.1 30 1.00000 0.0000E+00 0.0000E+00 0.0000E+00

25 0.99999 3.1728E+00 2.7963E-05 2.4645E-10

1.2 30 0.99990 3.6000E+01 3.5996E-03 3.5996E-07

25 0.99699 1.0836E+03 3.2519E+00 9.7880E-03

1.3 30 1.00000 0.0000E+00 0.0000E+00 0.0000E+00

25 0.99996 1.4400E+01 5.7598E-04 2.3039E-08

1.4 30 0.99972 1.0080E+02 2.8216E-02 7.9005E-06

25 0.99191 2.9124E+03 2.3374E+01 1.8907E-01

First column gives the system state, second time-deadline, third gives corresponding probability
of meeting time-deadline in a cycle, columns 4th, 5th and 6th give timeliness hazard rates for
n = 1, 2 and 3, respectively

Table 6.9 Probability and hazard rates for Case II

System state Deadline (ms) Probability kT1 (h)�1 kT2 (h)�1 kT3 (h)�1

1.1 30 0.99998 7.2000E+00 1.4400E-04 2.8799E-09

25 0.99978 7.9200E+01 1.7420E-02 3.8324E-06

1.2 30 0.99536 1.6704E+03 7.7150E+00 3.5796E-02

25 0.98905 3.9420E+03 4.2702E+01 4.6748E-01

1.3 30 0.99998 7.2000E+00 1.4400E-04 2.8799E-09

25 0.99901 3.5640E+02 3.5249E-01 3.4896E-04

1.4 30 0.99534 1.6776E+03 7.7815E+00 3.6260E-02

25 0.97441 9.2124E+03 2.3001E+02 5.8785E+00

1.5 30 0.99689 1.1196E+03 3.4712E+00 1.0795E-02

25 0.97860 7.7040E+03 1.6148E+02 3.4527E+00

1.6 30 0.99999 3.6000E+00 3.6000E-05 3.6000E-10

25 0.99554 1.6056E+03 7.1293E+00 3.1796E-02

1.7 30 0.99670 1.1880E+03 3.9075E+00 1.2895E-02

25 0.94573 1.9537E+04 1.0084E+03 5.4444E+01

1.8 30 0.99970 1.0800E+02 3.2390E-02 9.7171E-06

25 0.93599 2.3044E+04 1.3913E+03 8.8439E+01

1.9 30 0.99997 1.0800E+01 3.2399E-04 9.7197E-09

25 0.97175 1.0170E+04 2.7962E+02 7.8875E+00

1.10 30 0.99755 8.8200E+02 2.1556E+00 5.2812E-03

25 0.85557 5.1995E+04 6.6681E+03 9.3560E+02

First column gives the system state, second time-deadline, third gives corresponding probability
of meeting time-deadline in a cycle, columns 4th, 5th and 6th give timeliness hazard rates for
n = 1, 2 and 3, respectively

166 6 Response-Time Models and Timeliness Hazard Rate

6.6 Summary

Network-induced delays are important for NRT systems as they are the cause of

system degradation, failure and sometime system’s stability. NRT system’s control

algorithms considering probabilistic network delay have better control QoP. In this

chapter, methods to probabilistically model network-induced delay of two field bus

networks, CAN, MIL-STD-1553B and Ethernet is proposed. CAN is random

access network. For response-time analysis, various model parameters—proba-

bilities and blocking time pdf- need to be evaluated from message specifications.

Effect of hot network redundancy on system delay time of these two networks is

analyzed. The method is extended to evaluate sample-to-actuation delay and

response-time. A fault-tolerant networked computer system has a number of nodes

within sensor, controller and actuator groups, effect to these redundancy on system

response-time is also analyzed. Assuming probability of missing deadline in each

cycle is constant and given failure criteria, a method to derive timeliness hazard

rate is given. This method derives hazard rate from a discrete time process.

References

1. Wesly WC, Chi-Man S, Kin KL (1991) Task response time for real-time distributed systems
with resource contentions. IEEE Trans Softw Eng 17(10):1076–1092

2. Diaz JL, Gracia DF, Kim K, Lee C-Gun, Bello LL, Lopez JM, Min SL, and Mirabella O
(2002) Stochastic analysis of periodic real-time systems. In: Proceedings of the 23rd IEEE
real-time systems symposium (RTSS’02)

3. Diaz JL, Lopez JM, Gracia DF (2002) Probabilistic analysis of the response time in a real
time system. In: Proceedings of the 1st CARTS workshop on advanced real-time
technologies, October

4. Mitrani I (1985) Response time problems in communication networks. J R Statist Soc (Series
B) 47(3):396-406

5. Muppala JK, Varsha M, Trivedi KS, Kulkarni VG (1994) Numerical computation of
response-time distributions using stochastic reward nets. Ann Oper Res 48:155–184

6. Trivedi KS, Ramani S, Fricks R (2003) Recent advances in modeling response-time
distributions in real-time systems. Proc IEEE 91:1023–1037

7. Muppala JK, Trivedi KS (1991) Real-time systems performance in the presence of failures.
IEEE Comp Mag 37–47

8. Sevick KC, Mitrani I (1981) The distribution of queueing network states at input and output
instants. J ACM 28(2):353–471

9. Tindell K, Burns A, Wellings AJ (1995) Calculating controller area network (CAN) message
response times. Control Eng Prac 3(2):1163–1169

10. Tindell KW, Hansson H, Wellings AJ (1994) Analyzing real-time communications:
controller area network (CAN). In: Proceeding of real-time symposium, pp 259–263,
December

11. Nolte T, Hansson H, Norstrom C (2002) Minimizing can response-time jitter by message
manipulation. In: Proceedings of the 8th real-time and embedded technology and application
symposium (RTAS’02)

12. Trivedi KS (1982) Probability & Statistics with Reliability, Queueing, and Computer Science
Applications. Prentice-Hall, Englewood Cliffs

6.6 Summary 167

13. Nolte T, Hansson H, Norstrom C (2003) Probabilistic worst-case response-time analysis for
the controller area network. In: Proceedings of the 9th real-time and embedded technology
and application symposium (RTAS’03)

14. Law M, Kelton WD (2000) Simulation Modeling and Analysis. McGraw Hill, New York
15. Nolte T, Hansson H, Norstrom C, Punnekkat S (2001) Using bit-stuffing distributions in can

analysis. In: IEEE/IEE real-time embedded systems workshop (RTES’01), December
16. Hansson H, Norstrom C, Punnekkat S (2000) Integrating reliability and timing analysis of

can-based systems. In: Proceedings of WCFS’2000-3rd IEEE international workshop on
factory communication systems, pp 165–172, September

17. Lindgren M, Hansson H, Norstrom C, Punnekkat S (2000) Deriving reliability estimates of
distributed real-time systems by simulation. In: Proceeding of 7th international conference on
real-time computing system and applications, pp 279–286

18. Tipsuwan Y, Chow M-Y (2003) Control methodologies in networked control systems.
Control Eng Prac 11(10):1099-1111

19. Johnson BW (1989) Design and analysis of fault-tolerant digital systems. Addison Wesley,
Reading

20. Cox DR, Miller HD (1970) The theory of stochastic processes. Methuen, London

168 6 Response-Time Models and Timeliness Hazard Rate

Chapter 7

Dependability of Networked

Computer-Based Systems

7.1 Introduction

A real-time system is said to be operational if it performs its functions correctly

and in a timely manner. Performing function correctly is a dependent on health-

iness of its constituent components and error free operation of communication

links. Ensuring timeliness is dependent upon the delay offered at various stages of

node and communication links of the system. So, reliability of a real-time system

can be defined as a probabilistic measure of performing correct function and

timeliness in the given environment for given amount of time.

We emphasized on a single measure for reliability of real-time systems, which

usually is done in two parts. This has following two motivations:

1. real-time system being a single entity so in line with pure hardwired systems it

shall have one reliability measure

2. need for a single platform to compare diverse designs, e.g. mainly if one option

is either dedicated analog or digital

In this chapter, dependability models—reliability, availability, safety—for NRT

system are derived considering timeliness failures in addition to hardware failures.

7.2 Background

The system under discussion is a networked system. A network system has two

basic elements, (i) nodes, (ii) network. Nodes are the users of the network and

performs the functional part of the system. Network provides a medium for

communication between nodes, and responsible for timely behavior of nodes.

Network consists of network controller(s), if any, cables, connectors, hub/switches

etc. These elements can fail and might have different impact on overall system

dependability attributes.

A. K. Verma et al., Dependability of Networked Computer-based Systems,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-318-3_7,
� Springer-Verlag London Limited 2011

169

Hardware failures consist of failure in nodes and/or network channels. Nodes

and networks may have redundancy. Redundant nodes performing similar func-

tions are referred as constituent of a functional group. A functional group will fail

if there are failures in more than tolerable number of nodes. A network channel

may fail, if it has active components such as switch, controller or hub. Network

group is said to be failed if all the network channels are failed.

System state, P is defined as 4-tuple, P ¼ ðnS; nP; nA; nNÞ. Here ðnS; nP;
nA; nNÞ is the number of UP (or healthy) sensor nodes, processing nodes, actuator

nodes and network channels. In each system state there is a finite probability of

occurrence of timeliness failure. This probability can be derived from the time-

liness hazard rate for that state as derived in Chap. 6.

7.3 Reliability Modeling

Reliability is a well established dependability attribute. In general terms, reliability

gives the probability of failure free operation/service by an specified time. For

mission-critical and non-repairable systems [8–10], it is the most appropriate

dependability attribute. In this section, a method to estimate reliability of net-

worked real-time system is outlined.

7.3.1 System Model

Reliability model for networked real-time systems considered here is based on

performability model by Muppala et al. [11]. This model is shown in Fig. 7.1.

Muppala [12] has introduced, techniques for the analysis of both hard and soft

real-time systems, taking into account the effects of failures and repairs, degraded

levels of performance and the violation of response-time deadlines. In this model

task arrival are assumed to follow Poisson arrivals, i.e. inter-arrival times are

exponentially distributed with rate k. Also, the task execution times are assumed to

be exponentially distributed- with rates a1 (when 2 processors are working) and a2
(when 1 processor is working). States labeled 0,1 and 2 represent the number of

functioning control systems. The system is considered functional as long as at least

one of the processor is operational and no hard deadline has been violated. The

parameter c represents coverage probability [13]. State DF indicates that the

system has failed due to a deadline violation, while RP represents failure due to

system being in failed state.

When 2 processors are working, two tasks are executed in parallel. The task

completion time will be maximum of two task’s completion time [14]. The dis-

tribution of task completion time, F2ðtÞ is given as [11]:

F2 tð Þ ¼ Pr T2 � t½ � ¼ 1� e�a1t � e�a2t � e� a1þa2ð Þt ð7:1Þ

170 7 Dependability of Networked Computer-Based Systems

http://dx.doi.org/10.1007/978-0-85729-318-3_6

When only one processor is available, the task has to be executed sequentially,

so the task completion time distribution, F1ðtÞ will be hypoexponential [14] with

parameters a1 and a2. This is given as [11]:

F1 tð Þ ¼ Pr T1 � t½ �

¼
1� e�a2

a2 � a1
e�a1t þ e�a1

a2 � a1
e�a2t; 8a1 6¼ a2

1� e�a1t � a1te
�a1t; 8a1 ¼ a2

8

<

:

ð7:2Þ

The model was solved for system unavailability, due to (i) deadline violations

and (ii) due to arrivals when all processors are down.

Reliability model of NRT system proposed here, is conceptually similar to the

above model. The key features of proposed model are as follows:

1. tasks arrival are periodic

2. task response-time follow general distribution

3. failure-repair activities at nodes are independent of each other

4. system have shared communication links for information exchange. Shared link

have delay which may not be constant.

5. system may have different redundancy configurations

In Chap. 6, it was shown that timeliness failures are dependent on the system

state. The reliability of NRT systems is evaluated using the following two step

process:

2

RP 0

1

DF

c

c

Pr[T
2

> t] Pr[T
1
> t]

Fig. 7.1 Performability
model of Muppala [11]

7.3 Reliability Modeling 171

http://dx.doi.org/10.1007/978-0-85729-318-3_6

1. Markov model of individual node groups and network

2. From healthy state of NRT system, based on previous step, transitions to failure

state because of timeliness hazard rate.

7.3.2 Analysis

Let probability of healthy states of all groups is denoted by pHS tð Þ, pHC tð Þ, pHA tð Þ and

pHN tð Þ, where suffix denotes the group, i.e. sensor, controller, actuator and network,

respectively. These probabilities are function of time as system evolve with time.

These probabilities can be estimated from the Markov model of each group.

With the assumption – failure/repair activities of each group are independent,

the NRT system state of healthy states can be obtained from cross product of

individual group states [15]. With this system state probabilities can be obtained as

product of individual node’s state probability. State probability of various system

states is given as cartesian cross product of individual group and network state.

pHi;j;k;l tð Þ 2 pHS tð Þ� pHC tð Þ � pHA tð Þ � pHN tð Þ
� �

ð7:3Þ

Let timeliness hazard rate from various healthy state of the system is denoted as

kTi;j;k;l, where i; j; k; l denote the number of UP sensor, controller and actuator node

and number of UP network channels, respectively. Probability of not reaching

Failure state by time, t due to timeliness hazard rate from healthy system state is

the NRT system reliability, RðtÞ.

dF tð Þ

dt
¼

X

i2S

X

j2C

X

k2A

X

l2N

kTi;j;k;lp
H
i;j;k;l tð Þ ð7:4Þ

R tð Þ ¼ 1� F tð Þ ð7:5Þ

7.3.2.1 Example 1

To illustrate the model an example system with two node groups- sensor (con-

troller node is clubbed with sensor node) and actuator are considered. Each node

group has 2oo3 redundancy. Figure 7.2 shows the node’s state-space considering

hardware failures. States with more than tolerable number of node failures, i.e. 2,

in this case are termed as node failure states. Nodes cannot be repaired back from

any of the failure state, while in case of repairable systems, nodes can be repaired

from healthy set of system states. In Fig. 7.2 repair rate, l will be zero in case of

non-repairable mission-critical systems.

In this example, there are 2 types of functional nodes and network is assumed to

be failure free. So, NRT system will have 4 UP states. From the technique

172 7 Dependability of Networked Computer-Based Systems

developed in Chap. 6, timeliness hazard rate for each state can be obtained. Once

these hazard rate are available from each of these non-failure state, a state tran-

sition diagram for timeliness failure is as shown as in Fig. 7.3.

7.4 Safety Modeling

Safety-critical systems differ from other computer based systems - control and

monitoring - based on the mode of operation. Other computer based systems may

require change their type of response continuously. While safety systems need to

be in either of two states, (i) operate (i.e. allowing EUC to operate), (ii) and safe

(i.e. shutting down/stopping of EUC). Means, in absence of any of the safety

condition, safety system allows EUC to be in operational state and on assertion of

any of the safety condition, safety system takes the EUC in safe state. So, in case

of detectable failures, safety system shall take fail-safe action.

Safety-critical systems are designed to minimize the probability of unsafe

failures, by incorporating design principles such as fail-safe and testability. To

derive safety model for safety critical NRT systems, following assumptions are

made.

7.4.1 Assumptions

1. All nodes have indulgent protocol. Indulgent protocol ensures safety even when

message arrive late or corrupted [16–18].

2. Safe (unsafe) failure of any group lead to safe (unsafe) failure of system.

3. When system is in safe state, unsafe failure cannot happen.

4. Proof-tests are carried out at system level as a whole.

mF mF-1nF nF-1

nN nN-1 0

(a) State-space of node groups (S, C and A). nF denotes the total number of UP nodes at beginning. mF denotes the number of

nodes required to be in UP state for functional group to be UP. From healthy states repair may be possible. From failure state repair

is not possible.

(b) State-space of network. nN denotes the total number of UP network channels at beginning. Repair of network channel may be

possible

λ∗ λ∗λ∗

µ

λ∗ λ∗

µ

µ

µ

Fig. 7.2 Generic Markov models for node groups and networks

7.3 Reliability Modeling 173

http://dx.doi.org/10.1007/978-0-85729-318-3_6

7.4.2 System Model

Safety model of individual nodes without considering timeliness failure is similar

to safety model discussed earlier. Failure of network channels, more than tolerable

will affect the system, as it will lead to safe failure due to indulgent protocol.

Generic safety model of nodes and state-space of network is shown in Fig. 7.4.

State of system safety model can be obtained from the cross product of indi-

vidual functional group states and network states. From this cross product, func-

tional group safe state and network DN state is excluded. As, any node group in

safe state or network in DN state ensures fail�safe failure of the system. This will

give exhaustive state-space of system. To estimate PFaD of NRT system, mainly

system’s DU state are required.

pDUi;j;k;l ¼ pS¼f4g � pC2f1;2;4g � pA2f1;2;4g � pHN

þ pS2f1;2;4g � pC¼f4g � pA2f1;2;4g � pHN

þ pS2f1;2;4g � pC2f1;2;4g � pA¼f4g � pHN ð7:6Þ

ijkl
: timeliness hazard rate in state (i,j,k,l)

Fail

nS,nC,nA,nN

λ

xyza

mS,mC,mA,
mN

ijk

0000

l

i,j,k,l

x: nS-mS

y: nC-mC

z: nA-mA

a: nN-mN

0 < i< x

0 < j < y

0 < k < z

0 < l < a

λ

λ

λ

Fig. 7.3 Reliability Model
considering timeliness failure

174 7 Dependability of Networked Computer-Based Systems

When NRT system is in DU state demand arrival will lead to unsafe failure of

system. It is pictorially shown in Fig. 7.5.

The probability of NRT system being is DU state can be estimated from

independent model of functional nodes and network. Once this probability is

known PFaDðtÞ can be estimated.

dPDEUC tð Þ

dt
¼ karr

X

pDUi;j;k;l tð Þ

PFaD tð Þ ¼ PDEUC tð Þ ð7:7Þ

OK

1

Dr

2

F
S

3

F
DU

4

1,2

i

2,3

j

2,4

1,3

P
(t)

P
(t)

2,4

Functional group-
Sensor, Controller, Actuator

N

i
(0<i<N)

0

State-space of node safety model
State-space for number of networks

in DN state

Healthy state of network

λ

λ λ

λ

λ

µ

µ

µ

µ

Fig. 7.4 A generic safety model of networked real-time system

F
DU

DEUC

arr
λFig. 7.5 Safety model of

NRT system FDU : system
state where at least one of the
functional group is in DU

state and network is in
healthy state

7.4 Safety Modeling 175

In contrast to PES (programmable electronic system), NRT systems have two

factors affecting its availability, (i) hardware failures (nodes and networks) and,

(ii) timeliness failures. Network failure is due to hardware failure and down time is

decided by repair rate. Timeliness failure can occur when system is in UP state,

down time due to timeliness failure is negligible. So, main contributor to the

manifested availability of NRT system are hardware failures. Conditional state

probabilities provided system has not failed in unsafe mode by time t.

p̂ i;j;k;lð Þ tð Þ ¼
p i;j;k;lð Þ tð Þ

1� PFaD tð Þ ð7:8Þ

where

i 2 S1; S2; S3; S4f g; j 2 P1;P2;P3;P4f g; k 2 A1;A2;A3;A4f g; l 2 NH ;NFf g.

mAv tð Þ ¼ 1�
X

i;j;k;l

p i;j;k;lð Þ tð Þ ð7:9Þ

where i 2 S3f g; j 2 P3f g; k 2 A3f g; l 2 NFf g.
Timeliness failure of NRT system has negligible effect on its manifested

availability, as repair time is negligible. But this momentary safe failure may

shutdown the EUC affecting the availability of EUC. Manifested availability in

case of PES gives the upper bound of the EUC availability, neglecting other

sources causing shutdown of EUC. In case of NRT system manifested availability

is unable to give upper bound of the EUC availability.

The upper bound on EUC availability with NRT system can be evaluated from

Markov chain of Fig. 7.6.

In Fig. 7.6 transition rate kT is the expected timeliness hazard rate of system from

UP states. Transition rate lEUC is rate of restoring back EUC to operational state.

Computation of expected timeliness hazard rate is given in succeeding section.

7.5 Availability Modeling

A generic Markov model for NRT system availability is shown in Fig. 7.7.

Continuing with philosophy of independence of groups, and evaluation of

system state based on individual group states. The availability of NRT system can

EUC-UP EUC-DN

EUC

λ

µ

TFig. 7.6 EUC state-space
considering timeliness failure
when NRT system is in
healthy state

176 7 Dependability of Networked Computer-Based Systems

be estimated based on the condition that all functional groups are in UP

state. Failure of any functional group or network lead to unavailability of the

system.

So, set of states comprising system availability are those states of functional

node and networks, where none is in failure state. Probability of these state can be

obtained from individual group’s model. Timeliness failures as in case of safety

model, have negligible effect on NRT availability, but EUC availability is affected

by timeliness failure. Method to find the upper bound of EUC availability is

similar as in safety model for NRT systems. So, a new measure to capture prob-

ability of timeliness failure is defined.

7.5.1 Timeliness Hazard Rate

Timeliness failures are of importance when NRT system is in UP state. For any

working state of the system, timeliness failure hazard rate can be evaluated using

the technique discussed in preceding chapter. Timeliness hazard rate for a given

system state is constant, as derived in previous chapter. Evaluation of equivalent

timeliness hazard rate for NRT systems can be modeled as a reward rate problem

[19, 20]. Here system evolves because of hardware failures and repairs, timeliness

hazard rate is taken as reward rate of the corresponding states.

kT tð Þ ¼

P

k2UP k
T
k pk tð Þ

P

k2UP pk
ð7:10Þ

Sensor

All UP

Dr

Fail
S

n
sS

(n
s
-1)i

S

m
s

i
S

Controller

All UP

Dr

Fail
P

n
PP

(n
P
-1)i

P

m
P

i
P

Actuator

All UP

Dr

Fail
A

n
AA

(n
A
-1)i

A

m
A

v
A

Network

All UP

Dr

Fail
N

n
NN

(n
N
-1iµ

N

m
N

iµ
N

t

λ λ

λ

λ λ

λ

λ λ

λ

λ

λ

Λ(

µ

µ

µ µ

µ

µ µ

µ

µ

)

µ

E[]

Fig. 7.7 A generic NRT system model for availability

7.5 Availability Modeling 177

where kk is the timeliness hazard rate in system state k; pk is the probability of

being in system state k.

Equation 7.10 gives mean or equivalent timeliness hazard rate at time t. As

system state probabilities can be function of time, mean hazard rate over a given

time period can be obtained by taking mean over the time period.

E kT tð Þ
� �

¼

R t

0
u:kT uð Þdu

t

In case of availability model, all nodes and networks are repairable, so Markov

model of each functional group is irreducible. It implies state probabilities after a

long run become independent of time. So, a fixed timeliness hazard rate value can

be estimated when system reaches steady state.

7.6 Example

Here example of previous chapter is extended to evaluate reliability, safety and

availability. The hazard rate and other parameters of both the nodes is given in

Tables 7.1 and 7.2.

Here only CAN network is considered, so probability of network failure is zero.

With given system parameters, reliability of the NRT system for a mission time,

tmission ¼ 4; 380 h is estimate using DSPN based computer tool—TimeNET 4.0

[21]. System is modeled as GSPN [22]. Based on the method developed in this

chapter. The GSPN model of NRT system reliability is shown in Fig. 7.8.

Table 7.1 SC and A node hardware failure and repair rates

SC A

Hazard rate (k) 8.00E-05 4.00E-05 h�1

Safe (kS) 4.00E-05 2.00E-05 h�1

unsafe (kD) 4.00E-05 2.00E-05 h�1

Diagnostic coverage (DC) 0.75 0.75

Repair rate 1 1 h�1

Diagnostic rate 0.1 0.1 h�1

Table 7.2 Timeliness hazard rate in various system states

System state n = 2 n = 3

All node UP 0 0 h�1

1 SC node DN 3.60E-03 3.60E-10 h�1

1 A node DN 0 0 h�1

1 SC and 1 A node DN 2.82E-02 7.90E-06 h�1

178 7 Dependability of Networked Computer-Based Systems

Failure distribution evaluated up to t ¼ 4; 380 h is plotted in Fig. 7.9. Figure 7.9

shows two plots, first one (n = 2), is with two consecutive timeliness failures,

while second (n = 3), is with three consecutive timeliness failures.

For safety modeling, some additional parameters, as MTBD and Tproof are need

to be specified. These are given in Table 7.3. Here time of operation, tproof ¼ 8760,

i.e. one year is taken.

DSPN model based on concept of safety modeling for NRT system is given in

Fig. 7.10.

The results are plotted in Fig. 7.11.

GSPN model of the NRT system is shown in Fig. 7.12.

The result of the analysis is summarized in Table 7.4.

P6

P0

T0

P1

T4

P3

T1

P4

T5

2

2

T2

T7

T6

T9

T3

T8

UC1 = P{#P0=3}

UC2 = P{#P3=3}

CombProb = P{(#P0=3) AND (#P3=3)}

Fig. 7.8 GSPN model of NRT system reliability

Table 7.3 Parameters for
safety model

MTBD 4,380 h

Tproof 2,000 h

T 8,760 h

7.6 Example 179

7.7 Summary

Models are derived for three dependability attributes, reliability, availability and

safety, of NRT systems. Appropriate engineering assumptions are made about

NRT systems used in different applications. It was found as timeliness failure does

0 500 1000 1500 2000 2500 3000 3500 4000
10-10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

Failure distribution

Time (hr)

P
ro

b
a

b
ili

ty with n=2
with n=3

Fig. 7.9 Failure distribution
of NRT system

2

2

SC

T2 P1

T6

2

2

T3

T7

T71

T21

T61

T31

DEUC

P6

P7

T11
T10

P2

P21

P11

#P2

#P2

#P2

#P2

A

Fig. 7.10 DSPN model of NRT safety

180 7 Dependability of Networked Computer-Based Systems

not require any repair and if system has not failed can be restarted back instan-

taneously. In case of safety and availability models, where system goes to

fail�safe or unavailable state for short (or negligible) time, timeliness failures

does not affect safety and availability attributes. In these models, timeliness fail-

ures only affect the EUC availability. Timeliness hazard rate is modeled as reward

rate. This mean reward rate serves as an index for overall timeliness failures. In

case of reliability modeling timeliness failure are one source of system failure,

they are considered in system reliability modeling.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1
x 10

-3 PFaD(t)
P

ro
b

a
b

ili
ty

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.5

1

1.5
x 10

 -3

P
ro

b
a

b
ili

ty

Distribution of undangerous failure

0 1000 2000 3000 4000 5000 6000 7000 8000
10

 -10

10
 -5

10
0

Time (hr)

P
ro

b
a

b
ili

ty

Distribution of safe failure

Fig. 7.11 Plot of PFaD and other state probabilities with time

Table 7.4 Mean
probabilities of various
system states in availability
model

System states Mean probabilities

All healthy 0.9996401

1 SC node DN 0.0002399

1 A node DN 0.00012

1 SC and 1 A node DN 0

7.6 Example 181

References

1. Borcsok J, Schwarz MH, Holub P (2006) Principles of safety bus systems. In: UKACC
Control Conference, Universities of Glasgow and Strathclyde, UK, September 2006

2. Borcsok J, Ugljesa E, Holub P (2006) Principles of safety bus systems-part II. In: UKACC
Control Conference, Universities of Glasgow and Strathclyde, UK, September 2006

3. Elia A, Ferrarini L, Veber C (2006) Analysis of Ethernet-based safe automation networks
according to IEC 61508. In: IEEE Conf. on Emerging Technologies and Factory Automation
(ETFA ’06), pp 333–340, September 2006

4. Rushby J (2001) Bus architectures for safety-critical embedded systems. In Embedded
Software, Lecture Notes in Computer Science 2211, Springer, pp 306–323

5. Rushby J (2001) A comparison of bus architectures for safety-critical embedded systems.
Technical report, June 2001

6. Vasko DA, Suresh Nair R (2003) CIP Safety: Safety networking for the future. In: 9th
International CAN Conference, CAN in Automation (iCC 2003), Munich, Germany

7. IEC 61508: Functional safety of electric/electronic/programmable electronic safety-related
systems, Parts 0–7; October 1998–May 2000

8. Avizienis A, Laprie J-C, Randell B (2000) Fundamental concepts of dependability. In: Proc.
of 3rd Information Survivability Workshop, pp 7–11, October 2000

9. Johnson BW (1989) Design and analysis of fault-tolerant digital systems. Addison Wesley,
New York

SC

T0

P1

T1

A

T01

P11

T11

Net

T02

P12

T12

Fig. 7.12 GSPN model for
NRT system availability

182 7 Dependability of Networked Computer-Based Systems

10. Mishra KB (1992) Reliability analysis and prediction. Elsevier, Amsterdam
11. Trivedi KS, Ramani S, Fricks R (2003) Recent advances in modeling response-time

distributions in real-time systems. In: Proceedings of the IEEE, vol 91, pp 1023–1037
12. Muppala JK, Trivedi KS (1991) Real-time systems performance in the presence of failures.

In: IEEE Computer Magazine, pp 37–47, May 1991
13. Dugan JB, Trivedi KS (1989) Coverage modeling for dependability analysis of fault-tolerant

systems. IEEE Trans Comput 38(6):775–787
14. Trivedi KS (1982) Probability and statistics with reliability, queueing, and computer science

applications. Prentice-Hall, Englewood Cliffs
15. Aldous DJ (1991) Meeting times for independent markov chains. Stoch Process Appl

38:185–193
16. IEC 880: (1986) Software for computers in safety systems of nuclear power stations
17. IEC 60880-2.0: (2006) Nuclear power plants—instrumentation and control systems important

to safety—software aspects for computer-based systems performing category a functions
18. Keidar I, Shraer A (2007) How to choose a timing model? In: Proc. 37th Annual IEEE/IFIP

Int. Conf. on Dependable Systems and Networks (DSN’07)
19. Howard RA (1971) Dynamic probabilistic systems, vol II: semi-Markov and decision

processes. Wiley, New York
20. Muppala J, Gianfranco C, Trivedi KS (1994) Stochastic reward nets for reliability prediction.

Commun Reliab Maintainab Serviceability 1(2):9–20
21. Zimmermann A, Knoke M (2007) TimeNET 4.0 user manual. Technical report, August 2007
22. Marson MA, Balbo G, Conte G (1984) A class of generalized stochastic petri nets for the

performance evaluation of multiprocessor systems. ACM Trans Comput Syst 93:93–122

References 183

Appendix A:

MATLAB Codes

MATLAB programs are used throughout the thesis for analysis and plotting of

results. Source code of important programs is attached here. The codes are

arranged chapter wise.

A.0.0.2 Codes used in Chapter 4

Code for evaluation of safety measure PFaD and manifested availability mAv for

1oo2 system.

Code: 1

% ***********Input Parameters ********************
prmtr = load(’parameters1oo2O.txt’);

LSafe = prmtr(1,1);

LDang = prmtr(2,1);

MeanRepairTime = prmtr(3,1);

DiagCov = prmtr(4,1);

PrTestCov = prmtr(5,1);

Tproof = prmtr(6,1);

RunTime = prmtr(7,1);

MeanTimeBetweenDemands = prmtr(8,1);

CommonCause2 = prmtr(9,1);

CommonCause3 = prmtr(10,1);

NumberofRepairStn = prmtr(11,1);

% **********Derived Parameters *******************
L1 = LSafe + DiagCov*LDang;

L2 = (1-DiagCov)*LDang;

M = 1/MeanRepairTime;

La = 1/MeanTimeBetweenDemands;

a = PrTestCov;

B = CommonCause2;

A. K. Verma et al., Dependability of Networked Computer-based Systems,
Springer Series in Reliability Engineering, DOI: 10.1007/978-0-85729-318-3,
� Springer-Verlag London Limited 2011

185

B2 = CommonCause3;

Tp = Tproof;

n = floor(RunTime/Tp);

s = RunTime - n*Tp;

N = NumberofRepairStn;

B2_ = 1 - B2;

B_ = 1 -B;

Alfa = 1-(2-B2)*B;

L = L1 + L2;

% Definition of infinitesimal generator matrix for 1oo1

Q = [-(2*B_+B)*L M 0 0

2*B_*L1 -(L+M) M 0

B*L1 L1 -M 0 0

2*B_*L2 0 0 -L

0 L2 0 L1 -M

0 0;

0 0;

0;

M 0;

0;

B*L2 0 0 L2 0 -La;];

% Definition of Delta matrix

Delta = [1 0 0 0 0 0;

0 1 0 a 0 0;

0 0 1 0 a a;

0 0 0 (1-a) 0 0;

0 0 0 0 (1-a) 0;

0 0 0 0 0 (1-a);];

P0 = [1 0 0 0 0 0]’;

% ***
E = Delta*expm(Q*Tp);

I = eye(size(Q));

%EPn=(1/RunTime)*(inv(Q)*(expm(Q*s)-I)*inv(I-E)*(I-Eˆ(n+1))*P0);

Temp = inv(Q)*(expm(Q*Tp)-I)*inv(I-E)*(I-Eˆn)*P0;

meanProb =(1/RunTime)*(Temp + inv(Q)*(expm(Q*s)-I)*P0);

anaPFaD =1 - ones(size(P0’))*(meanProb);

anaFs = [0 1 1 0 1 0]*meanProb;

anaS = [1 0 0 1 0 0]*meanProb;

for i = 0:RunTime/10,

Time(i+1) = 10*i;

n = floor(Time(i+1)/Tp);

s = Time(i+1)-n*Tp;

Pn(i+1) = (ones(size(P0’)))*expm(Q*s)*Eˆn*P0;

F(i+1) = 1-Pn(i+1);

186 Appendix A: MATLAB Codes

end

% PFaD_t = 1 - ones(size(Pn’))*Pn;

% PFaD = 1 - ones(size(EPn’))*EPn;

% [Tp PFaD]

plot(Time, F);

[anaPFaD anaFs anaS]

Ratio = F(size(F,2))/anaPFaD

%[PFaD_t PFaD]

Code for evaluation of safety measure PFaD and manifested availability mAv for

2oo3 system.

Code: 2

% ***********Input Parameters ********************
prmtr = load(’parameters2oo3w.txt’);

LSafe = prmtr(1,1);

LDang = prmtr(2,1);

MeanRepairTime = prmtr(3,1);

DiagCov = prmtr(4,1);

PrTestCov = prmtr(5,1);

Tproof = prmtr(6,1);

RunTime = prmtr(7,1);

MeanTimeBetweenDemands = prmtr(8,1);

CommonCause2 = prmtr(9,1);

CommonCause3 = prmtr(10,1);

% **********Derived Parameters *******************
L1 = LSafe + DiagCov*LDang;

L2 = (1-DiagCov)*LDang;

M = 1/MeanRepairTime;

La = 1/MeanTimeBetweenDemands;

a = PrTestCov;

B = CommonCause2;

B2 = CommonCause3;

Tp = Tproof;

n = floor(RunTime/Tp);

s = RunTime - n*Tp;

B2_ = 1 - B2;

B_ = 1 -B;

Alfa = 1-(2-B2)*B;

L = L1 + L2;

% Definition of infinitesimal generator matrix for 1oo1

Q = [-(3*Alfa+3*B2_*B+B2*B)*L M 0 0

Appendix A: MATLAB Codes 187

0 0

3*Alfa*L1 -(2*B_+B)*L-M

0 0

3*B2_*B*L1 2*B_*L1

0 0

B2*B*L1 B*L1

0 0

3*Alfa*L2

-(2*B_+B)*L M

*B_*L2

2*B_*L1 -(L+M)

B*L1 L1 -M

3*B2_*B*L2

2*B_*L2 0 0 -(L+La)

*L2

0 L2 0 L1

B2*B*L2

B*L2 0 0 L2 0

0 0 0 0;

M 0

0 0 0 0;

-(L+M) M

0 0 0 0;

L1 -M

0 0 0 0;

0 0 0

0 0 0 0;

20 0 0

M 0 0 0;

00 L2 0

0 0 0;

0 0 0

M 0;

B0 0 0

-(M+La) 0;

0 0 0

-La;];

% Definition of Delta matrix

Delta = [1 0 0 0 0 0 0 0 0 0;

0 1 0 0 a 0 0 0 0 0;

0 0 1 0 0 a 0 a 0 0;

0 0 0 1 0 0 a 0 a a;

0 0 0 0 1-a 0 0 0 0 0;

0 0 0 0 0 (1-a) 0 0 0 0;

0 0 0 0 0 0 (1-a) 0 0 0;

0 0 0 0 0 0 0 (1-a) 0 0;

0 0 0 0 0 0 0 0 (1-a) 0;

0 0 0 0 0 0 0 0 0 (1-a);];

P0 = [1 0 0 0 0 0 0 0 0 0]’;

% ***
E = Delta*expm(Q*Tp);

I = eye(size(Q));

% EPn =(1/RunTime)*(inv(Q)*(expm(Q*s)-I)*inv(I-E)*(I-Eˆ(n+1))*P0)

Temp = inv(Q)*(expm(Q*Tp)-I)*inv(I-E)*(I-Eˆn)*P0;

meanProb =(1/RunTime)*(Temp + inv(Q)*(expm(Q*s)-I)*P0);

anaPFaD =1 - ones(size(P0’))*(meanProb);

anaFs = [0 0 1 1 0 0 1 0 0 0]*meanProb;

anamAv = 1 - (anaPFaD + anaFs);

for i = 0:RunTime/10,

Time(i+1) = 10*i;

;

188 Appendix A: MATLAB Codes

n = floor(Time(i+1)/Tp);

s = Time(i+1)-n*Tp;

Pn(i+1) = (ones(size(P0’)))*expm(Q*s)*Eˆn*P0;

F(i+1) = 1-Pn(i+1);

end

% PFaD_t = 1 - ones(size(Pn’))*Pn;

% PFaD = 1 - ones(size(EPn’))*EPn;

% [Tp PFaD]

plot(Time, F);

[anaPFaD anaFs anamAv]

Ratio = F(size(F,2))/anaPFaD

%[PFaD_t PFaD]

A.0.0.3 Codes used in Chapter 5

Basic CAN model: The program shown below, is the code for response-time analysis

of CAN messages. This program is based on basic CAN model. Message set is

defined in file named ‘messlist.txt’.

Code: 3

% File name: RespCANBasic.m

messList = load(’messlist.txt’);

messInt = 9;

% Message ID for which response-time distribution is required

ProbDelivery = 0.9999; %0.99999;

ProbBnB = 0.9999;

bittime = 0.007745;

fractColl = 0.88;

% *** %

Util = 0.0;

maxC = 0;

for i = 1: 17

C(i) = messList(i,2)*8 + 44 +floor((messList(i,2)*8 + 33)/4);

if i ˜= messInt

Util = Util + (C(i)*bittime)/messList(i,3);

if C(i) > maxC

maxC = C(i);

end

end

end

% *** %

Appendix A: MATLAB Codes 189

Pfree = 1 - Util; %prob. of finding free

% *** %

Phigh=1;

for i = messInt+1: 17

Phigh = Phigh*(1-(fractColl*bittime)/messList(i,3));

%prob. of no collision

end

% *** %

% ********************* (pdf) Blocking time ******************* %

sumTi = 0.0;

for i = 1: 17

if i ˜= messInt

sumTi = sumTi + 1/messList(i,3);

end

end

for i = 1: 17

if i == messInt

ri(i) = 0.0;

else

ri(i) = 1/(messList(i,3)*sumTi);

end

end

% ********************** Mean Time **************************** %

mT = 0;

for i = 1: 17

mT = mT + ri(i)*C(i);

end

% ** %

temppt = zeros(1,maxC);

for i = 1: 17

if i ˜= messInt

temppt(C(i)) = temppt(C(i)) + ri(i);

end

end

%Find non-zero entries

j=1;

for i = 1: maxC

if temppt(i) > 0

WaitLen(j)=i;

WaitVal(j)=temppt(i);

j=j+1;

end

190 Appendix A: MATLAB Codes

end

pbtfinal = zeros(1,maxC);

for i = 1: length(WaitLen)

pbt(i,:)=WaitVal(i)*(1/WaitLen(i))*
[ones(1,WaitLen(i)),zeros(1,maxC-WaitLen(i))];

pbtfinal = pbtfinal+pbt(i,:); % pdf of blocking time

end

% *** %

% ************* (pdf) Blocking Time by high priority ********** %

sumT = 0.0;

maxCnew = 0;

for i = messInt+1: 17

sumT = sumT + 1/messList(i,3);

if C(i) > maxCnew

maxCnew = C(i);

end

end

for i = 1: 17

if i > messInt

rbhp(i) = 1/(messList(i,3)*sumT);

else

rbhp(i) = 0.0;

end

end

% ********************** Mean Time **************************** %

mTnew = 0;

for i = 1: 17

mTnew = mTnew + rbhp(i)*C(i);

end

% ** %

pbhpt = zeros(1,maxCnew);

for i = 1: 17

if i > messInt

pbhpt(C(i)) = pbhpt(C(i)) + rbhp(i);

% timepbhp(i) = i*bittime; % ??

end

end

% ************** Prob[no new hp arrival in Blocking time] ******%

PB_hp = 1;

for i = messInt+1: 17

PB_hp = PB_hp*(1-(mT*bittime)/messList(i,3));

Appendix A: MATLAB Codes 191

%prob. of no new hp arrival in Blocking

end

% PB_hp = 1-PB_hp;

% ********** Prob[no new hp arrival in Blocking by new time]*****%

PBhp_hp = 1;

for i = messInt+1: 17

PBhp_hp = PBhp_hp*(1-(mTnew*bittime)/messList(i,3));

%prob. of no new hp arrival in Blocking by new

end

% PBhp_hp = 1-PBhp_hp;

% ****** (pdf) Blocking in Blocking by new Time by high priority ** %

pdfTB = fBlock(PBhp_hp, ProbBnB, pbhpt);

% **************** Cycles required for delivery ****************%

QueueTime = fReady(Phigh, ProbDelivery, pdfTB);

% ********************* Blocking + Queueing Time ************** %

Temp1 = Pfree*QueueTime;

Temp2 = (1-Pfree)*(PB_hp)*conv(pbtfinal,QueueTime);

Temp3 = (1-Pfree)*(1-PB_hp)*conv(conv(pbtfinal,pdfTB),QueueTime);

Temp1=[Temp1,zeros(1,max(length(Temp2),length(Temp3))-length(Temp1))];

Temp2=[Temp2,zeros(1,max(length(Temp2),length(Temp3))-length(Temp2))];

Temp3=[Temp3,zeros(1,max(length(Temp2),length(Temp3))-length(Temp3))];

Bl_QTime = Temp1 + Temp2 + Temp3;

% ********************* Response-time ************************* %

TxTime = zeros(1,C(messInt));

TxTime(C(messInt)) = 1;

Respt = conv(Bl_QTime, TxTime);

CumResp(1)=Respt(1);

Time (1) = bittime;

for i = 2: length(Respt)

CumResp(i)= CumResp(i-1) + Respt(i);

Time(i) = i*bittime;

end

plot(Time, CumResp, ’-k’);

Basic CAN response-time model uses two functions to perform the iterative

tasks. They are give below:

Function: “fBlock”

function [Q] = fBlock(p, C, x)

n = 0;

probSum = 0.0;

192 Appendix A: MATLAB Codes

while probSum < C

n = n + 1;

prob(n) = ((1-p)ˆ(n-1))*p;

probSum = probSum + prob(n);

end

prob(n) = prob(n) + 1 - probSum;

convBlock = 1;

mSize = n*length(x)-(n-1);

q = zeros(n,mSize);

Q = zeros(1,mSize);

for i = 1 : n

convBlock = conv(x,convBlock);

convBlockt = [convBlock, zeros(1,mSize-length(convBlock))];

q(i,:) = prob(i)*convBlockt; %prob(i)*
Q = Q + q(i,:);

end

Function: “fReady”

function [Q] = fReady(p, C, x)

n = 0;

probSum = 0.0;

while probSum < C

n = n + 1;

prob(n) = ((1-p)ˆ(n-1))*p;

probSum = probSum + prob(n);

end

prob(n) = prob(n) + 1 - probSum;

convBlock = 1;

mSize = (n-1)*length(x)-(n-2);

q = zeros(n,mSize);

Q = zeros(1,mSize);

for i = 1 : n

convBlockt = [convBlock, zeros(1,mSize-length(convBlock))];

q(i,:) = prob(i)*convBlockt; %prob(i)*
Q = Q + q(i,:);

convBlock = conv(x,convBlock);

end

For CAN response-time analysis, event based simulation model is as proposed.

The code is as follows:

Appendix A: MATLAB Codes 193

Code: 4

clear all;

messList = load(’messlist.txt’);

bitTime = 0.007745;

RespTime = zeros(17,200);

% Prepare array of time-period and worst-case tx times

for i = 1: length(messList)

List(i,1)= messList(i,3);

List(i,2)= (47 + 8*messList(i,2) +

ceil((34+8*messList(i,2)-1)/4))*bitTime;

end

for run = 1:10000

% Prepare initial message list

for i = 1: length(List)

NextSch(i)= rand*List(i,1);

end

RespTime = RespTime + fCANrun(bitTime, List, NextSch);

end

CAN response-time simulation model uses one functions to perform the iterative

task. It is given below:

Function: “fCANrun”

%20.10.2008: saving time changed from 1000 to 2000

function [Resp] = fCANrun(bitTime, List, NextSch)

Resp = zeros(17,200);

Time = 0.0;

while Time < 10000,

% Decide which message to be taken

% find min in the list

EarliestTime = min(NextSch);

if (Time <= EarliestTime)

%find the message ID

for i = length(List):-1:1

if NextSch(i)== EarliestTime

SelectedMess = i;

Time = EarliestTime;

break,

end

end

else

%search for highest priority to be taken

for i = length(List):-1:1

if NextSch(i)<= Time

SelectedMess = i;

194 Appendix A: MATLAB Codes

break,

end

end

end

% Update time to completion of Tx

Time = Time + List(SelectedMess, 2); % + 3*bitTime;

if Time >= 2000

rTime = Time - NextSch(SelectedMess);

Resp(SelectedMess, ceil(rTime*10))=

Resp(SelectedMess, ceil(rTime*10))+1;

end

% Update list

NextSch(SelectedMess)=NextSch(SelectedMess)+List(SelectedMess,1);

%Check for missed deadlines

for i = 1:length(List)

if NextSch(i) < Time

if (NextSch(i) + List(i)) < Time

% deadlines missed, record and update the list

if Time >= 2000

Resp(i,200) = Resp(i,100)+1;

%Last element will record the dealline misses

end

NextSch(i) = NextSch(i) + List(i);

end

end

end

end

Improved CAN response-time model is follows:

Code: 5

%Program modified on 04/11/08 to correct inconsistencies

%between previous analytical model’s result with that of simulation model.

clear all;

messList = load(’messlist.txt’); % load the message file

messInt = 17 ; % message of interest

ProbDelivery = 0.9999; % 0.99999;

bittime = 0.007745; % time in milli-second

% **********************Prob of finding FREE ****************** %

Util = 0.0;

maxC = 0;

for i = 1: 17

C(i) = messList(i,2)*8 + 44 + floor((messList(i,2)*8 + 33)/4);

if i ˜= messInt

Appendix A: MATLAB Codes 195

Util = Util + (C(i)*bittime)/messList(i,3);

if C(i) > maxC

maxC = C(i);

end

end

end

Pfree = 1 - Util; %prob. of finding free

% *** %

% ************** (pdf) Blocking time ********************* %

sumTi = 0.0;

for i = 1: 17

if i ˜= messInt

sumTi = sumTi + 1/messList(i,3);

end

end

for i = 1: 17

if i == messInt

ri(i) = 0.0;

else

ri(i) = 1/(messList(i,3)*sumTi);

end

end

temppt = zeros(1,maxC);

for i = 1: 17

if i ˜= messInt

temppt(C(i)) = temppt(C(i)) + ri(i);

end

end

%Find non-zero entries

j=1;

for i = 1: maxC

if temppt(i) > 0

WaitLen(j)=i;

WaitVal(j)=temppt(i);

j=j+1;

end

end

pbtfinal = zeros(1,maxC);

for i = 1: length(WaitLen)

pbt(i,:)=WaitVal(i)*(1/WaitLen(i))*
[ones(1,WaitLen(i)),zeros(1,maxC-WaitLen(i))];

pbtfinal = pbtfinal+pbt(i,:); % pdf of blocking time

end

196 Appendix A: MATLAB Codes

% ** %

% ********* (pdf) Blocking Time by high priority ************ %

sumT = 0.0;

maxCnew = 0;

for i = messInt+1: 17

sumT = sumT + 1/messList(i,3);

if C(i) > maxCnew

maxCnew = C(i);

end

end

for i = 1: 17

if i > messInt

rbhp(i) = 1/(messList(i,3)*sumT);

else

rbhp(i) = 0.0;

end

end

pbhpt = zeros(1,maxCnew);

for i = 1: 17

if i > messInt

pbhpt(C(i)) = pbhpt(C(i)) + rbhp(i);

% timepbhp(i) = i*bittime; % ??

end

end

% ************* Prob[no new hp arrival in Blocking time] *******%

PB_hp = 1;

for i = messInt+1: 17

PB_hp = PB_hp*(1-(maxC*bittime)/messList(i,3));

%prob. of no new hp arrival in Blocking

end

% PB_hp = 1-PB_hp;

% ******** Prob[no new hp arrival in Blocking by new time] *****%

PBhp_hp = 1;

for i = messInt+1: 17

PBhp_hp = PBhp_hp*(1-(maxCnew*bittime)/messList(i,3));

%prob. of no new hp arrival in Blocking by new

end

% PBhp_hp = 1-PBhp_hp;

% ***** (pdf) Blocking in Blocking by new Time by high priority***%

pdfTB = fBlock(PBhp_hp, ProbDelivery, pbhpt);

Appendix A: MATLAB Codes 197

% ***************** Cycles required for delivery ***************%

% QueueTime = fReady(Phigh, ProbDelivery, pdfTB);

% *********** Blocking + Queueing Time ************************ %

Temp1 = Pfree; %*QueueTime;

Temp2 = (1-Pfree)*(PB_hp)*pbtfinal; %conv(pbtfinal,QueueTime);

Temp3 = (1-Pfree)*(1-PB_hp)*conv(pbtfinal,pdfTB);

%conv(conv(pbtfinal,pdfTB),QueueTime);

Temp1=[Temp1,zeros(1,max(length(Temp2),length(Temp3))-length(Temp1))];

Temp2=[Temp2,zeros(1,max(length(Temp2),length(Temp3))-length(Temp2))];

Temp3=[Temp3,zeros(1,max(length(Temp2),length(Temp3))-length(Temp3))];

Bl_QTime = Temp1 + Temp2 + Temp3;

% **************** Response-time ************************** %

TxTime = zeros(1,C(messInt));

TxTime(C(messInt)) = 1;

Respt = conv(Bl_QTime, TxTime);

CumResp(1)=Respt(1);

Time (1) = bittime;

for i = 2: length(Respt)

CumResp(i)= CumResp(i-1) + Respt(i);

Time(i) = i*bittime;

end

plot(Time, CumResp, ’-k’);

Function ”fBlock” used here is same as of basic CAN model.

Code for evaluating timeliness hazard rate is as follows:

Code: 6

% Hazard rate evaluation based on probability of meeting

% deadline and criteria of timeliness failure, i.e. n=1,2,3,...

p = 0.99998;

q = 1-p;

cycTime = 1; %time in seconds

operTime = 1000; % time in hour

P1 = [p q; 0 1];

P2 = [p q 0; p 0 q; 0 0 1];

P3 = [p q 0 0; p 0 q 0; p 0 0 q; 0 0 0 1];

P10 = [1 0];

P20 = [1 0 0];

P30 = [1 0 0 0];

198 Appendix A: MATLAB Codes

Appendix A: MATLAB Codes 199

Err3(i) = (Pd3(i)-Pl3(i)); %/Pd3(i))*100;

end

Time = [0:1:9999]*5; %time in seconds

plot(Time, Err1, ’k’, Time, Err2, ’r’, Time, Err3, ’b’);

200 Appendix A: MATLAB Codes

	Dependability of Networked Computer-based Systems
	Foreword
	Preface
	Acknowledgments
	Contents
	Acronyms

	1 Introduction
	1.1…Evolution of computer based systems
	1.2…Application areas: safety-critical, life-critical
	1.3…A review of system failures
	1.4…Example: Comparison of system reliability
	1.5…Dependability
	1.5.1 Basic concepts
	1.5.1.1 Threats
	1.5.1.2 Attributes
	1.5.1.3 Means

	1.5.2 Basic Definitions and Terminology
	1.5.2.1 Hardware Redundancy
	1.5.2.2 Information Redundancy
	1.5.2.3 Time Redundancy
	1.5.2.4 Software Redundancy

	1.6…Motivation
	1.7…Summary
	References

	2 Probability Theory
	2.1…Probability Models
	2.2…Sample Space, Events and Algebra of Events
	2.3…Conditional Probability
	2.4…Independence of Events
	2.5…Exclusive Events
	2.6…Bayes’ Rule
	2.7…Random Variables
	2.7.1 Discrete Random Variables
	2.7.1.1 Discrete Mathematical Distributions

	2.7.2 Continuous Random Variables
	2.7.2.1 Continuous Mathematical Distributions

	2.8…Transforms
	2.8.1 Probability Generating Function
	2.8.2 Laplace Transform

	2.9…Expectations
	2.10…Operations on Random Variables
	2.11…Moments
	2.12…Summary

	3 Stochastic Processes and Models
	3.1…Introduction
	3.2…Classification of Stochastic Processes
	3.3…The Random Walk
	3.4…Markov Chain
	3.4.1 Markov processes with Discrete state in discrete time
	3.4.2 Markov Processes with Discrete States in Continuous Time3.5…Markov Processes with Discrete States in Continuous Time

	3.5…Non-Markovian Processes
	3.5.1 Markov Renewal Sequence
	3.5.2 Markov Regenerative Processes

	3.6…Higher Level Modeling Formalisms
	3.6.1 Petri Nets
	3.6.2 Structural Extensions
	3.6.3 Stochastic Petri Nets
	3.6.4 Generalized Stochastic Petri Nets
	3.6.5 Stochastic Reward Nets (SRN)
	3.6.6 Deterministic and Stochastic Petri Net (DSPN)
	3.6.7 Queueing Networks
	3.6.8 Stochastic Process Algebra (SPA)

	3.7…Tools
	3.7.1 SPNP
	3.7.2 TimeNET

	3.8…Summary
	References

	4 Dependability Models of Computer-Based Systems
	4.1…Introduction
	4.2…Dependability Attributes
	4.3…Reliability Models
	4.3.1 Combinatorial Models
	4.3.1.1 Reliability Block Diagrams
	4.3.1.2 Reliability Graphs
	4.3.1.3 Fault Trees

	4.3.2 Dynamic Models
	4.3.2.1 Dynamic Fault Trees
	4.3.2.2 Markov Models

	4.3.3 Software Reliability

	4.4…Availability Models
	4.5…Safety Models
	4.5.1 Modeling of Common Cause Failures (CCF)
	4.5.1.1 \beta-Factor Model
	4.5.1.2 Multiple Beta Factor (MBF) for Common Cause Failures (CCF)

	4.5.2 Safety Model of IEC 61508
	4.5.3 System Model
	4.5.4 Performance Based Safety and Availability Indices
	4.5.4.1 Safety Index: Probability of Failure on Actual Demand (PFaD)
	4.5.4.2 Comparison with PFDPRS
	4.5.4.3 Availability Index: Manifested Availability

	4.6…Examples
	4.6.1 Example 1
	4.6.1.1 System Description
	4.6.1.2 Model
	4.6.1.3 Results

	4.6.2 Example 2
	4.6.2.1 Parameter Values
	4.6.2.2 Calculation and Results
	4.6.2.3 Discussion

	4.7…Advantage of Modeling Safe Failures
	4.8…DSPN Based Safety Models
	4.9…Summary
	References

	5 Network Technologies for Real-Time Systems
	5.1…Introduction
	5.2…Network Basics
	5.3…Medium Access Control (MAC) Protocols
	5.3.1 Carrier Sense Multiple Access/Collision Detection (CSMA/CD)
	5.3.2 Carrier Sense Multiple Access/Collision Resolution (CSMA/CR)
	5.3.3 Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)
	5.3.4 Time Division Multiple Access (TDMA)
	5.3.5 Flexible Time Division Multiple Access (FTDMA)
	5.3.6 Distributed Solutions Relying on Tokens
	5.3.7 Master/Slave

	5.4…Networks
	5.4.1 Ethernet
	5.4.1.1 Evolution of Ethernet
	5.4.1.2 CSMA/CD in Ethernet
	5.4.1.3 Switched Ethernet

	5.4.2 Controller Area Network (CAN)
	5.4.3 MIL-STD-1553B

	5.5…Real-Time Scheduling
	5.5.1 Time-Driven Scheduling
	5.5.2 Priority-Driven Scheduling
	5.5.2.1 Fixed Priority Schedulers
	5.5.2.2 Dynamic Priority Schedulers

	5.5.3 Share-Driven Scheduling
	5.5.3.1 Share-Driven Scheduling in Fixed Priority Systems
	5.5.3.2 Share-driven Scheduling in Dynamic Priority Systems

	5.6…Real-Time Analysis
	5.6.1 Task Model
	5.6.2 Utilisation-Based Tests
	5.6.2.1 Fixed Priority Schedulers
	5.6.2.2 Dynamic Priority Schedulers

	5.6.3 Demand-Based Tests
	5.6.3.1 Dynamic Priority Schedulers

	5.6.4 Response-Time Tests
	5.6.4.1 Fixed Priority Schedulers
	5.6.4.2 Dynamic Priority Schedulers

	5.7…Comparison of Networks
	5.8…Summary
	References

	6 Response-Time Models and Timeliness Hazard Rate
	6.1…Introduction
	6.2…Review of Response-Time Models
	6.2.1 Tagged Customer Approach
	6.2.1.1 Example 1: A Single Server System
	6.2.1.2 Example 2: A Multi Server System

	6.2.2 Probabilistic Response-Time Model

	6.3…Response-Time Models
	6.3.1 CAN
	6.3.1.1 Worst-Case Delay Analysis
	6.3.1.2 Basic CAN Model
	6.3.1.3 Example
	6.3.1.4 Simulation Model
	6.3.1.5 Improved Model
	6.3.1.6 Effect of Bit-Stuffing

	6.3.2 MIL-STD-1553B
	6.3.2.1 Worst-Case Delay Analysis
	6.3.2.2 Response Time Model

	6.3.3 Ethernet
	6.3.3.1 Response-Time Model

	6.4…System Response-Time Models
	6.4.1 Sample to Actuation Delay and Response-Time
	6.4.1.1 Example: Numerical Example---Deterministic Case
	6.4.1.2 Example: Numerical Example---Non-Deterministic Case

	6.4.2 Effect of Node Redundancy
	6.4.3 Dependence of Response-Time Between Consecutive Cycles
	6.4.3.1 CAN
	6.4.3.2 MIL-STD-1553B

	6.4.4 Failure/Repair Within the System

	6.5…Timeliness Hazard Rate
	6.5.1 Example 1
	6.5.2 Example 2

	6.6…Summary
	References

	7 Dependability of Networked Computer-Based Systems
	7.1…Introduction
	7.2…Background
	7.3…Reliability Modeling
	7.3.1 System Model
	7.3.2 Analysis
	7.3.2.1 Example 1

	7.4…Safety Modeling
	7.4.1 Assumptions
	7.4.2 System Model

	7.5…Availability Modeling
	7.5.1 Timeliness Hazard Rate

	7.6…Example
	7.7…Summary
	References

	Appendix A:MATLAB Codes
	Cover
	Dependability of Networked Computer-based Systems
	Foreword
	Preface
	Acknowledgments
	Contents
	Acronyms

	1 Introduction
	1.1…Evolution of computer based systems
	1.2…Application areas: safety-critical, life-critical
	1.3…A review of system failures
	1.4…Example: Comparison of system reliability
	1.5…Dependability
	1.5.1 Basic concepts
	1.5.1.1 Threats
	1.5.1.2 Attributes
	1.5.1.3 Means

	1.5.2 Basic Definitions and Terminology
	1.5.2.1 Hardware Redundancy
	1.5.2.3 Time Redundancy
	1.5.2.2 Information Redundancy

	1.6…Motivation
	1.5.2.4 Software Redundancy

	References
	1.7…Summary

	2 Probability Theory
	2.1…Probability Models
	2.2…Sample Space, Events and Algebra of Events
	2.4…Independence of Events
	2.3…Conditional Probability
	2.5…Exclusive Events
	2.6…Bayes’ Rule
	2.7…Random Variables
	2.7.1 Discrete Random Variables
	2.7.1.1 Discrete Mathematical Distributions

	2.7.2 Continuous Random Variables
	2.7.2.1 Continuous Mathematical Distributions

	2.8…Transforms
	2.8.1 Probability Generating Function
	2.8.2 Laplace Transform

	2.9…Expectations
	2.10…Operations on Random Variables
	2.11…Moments
	2.12…Summary

	3 Stochastic Processes and Models
	3.1…Introduction
	3.2…Classification of Stochastic Processes
	3.3…The Random Walk
	3.4…Markov Chain
	3.4.1 Markov processes with Discrete state in discrete time
	3.4.2 Markov Processes with Discrete States in Continuous Time3.5…Markov Processes with Discrete States in Continuous Time

	3.5…Non-Markovian Processes
	3.5.1 Markov Renewal Sequence
	3.5.2 Markov Regenerative Processes

	3.6…Higher Level Modeling Formalisms
	3.6.1 Petri Nets
	3.6.2 Structural Extensions
	3.6.3 Stochastic Petri Nets
	3.6.4 Generalized Stochastic Petri Nets
	3.6.5 Stochastic Reward Nets (SRN)
	3.6.6 Deterministic and Stochastic Petri Net (DSPN)
	3.6.7 Queueing Networks
	3.6.8 Stochastic Process Algebra (SPA)

	3.7…Tools
	3.7.1 SPNP

	References
	3.8…Summary
	3.7.2 TimeNET

	4 Dependability Models of Computer-Based Systems
	4.1…Introduction
	4.2…Dependability Attributes
	4.3…Reliability Models
	4.3.1 Combinatorial Models
	4.3.1.1 Reliability Block Diagrams
	4.3.1.2 Reliability Graphs

	4.3.2 Dynamic Models
	4.3.2.1 Dynamic Fault Trees
	4.3.1.3 Fault Trees
	4.3.2.2 Markov Models

	4.3.3 Software Reliability

	4.4…Availability Models
	4.5…Safety Models
	4.5.1 Modeling of Common Cause Failures (CCF)
	4.5.1.2 Multiple Beta Factor (MBF) for Common Cause Failures (CCF)
	4.5.1.1 \beta-Factor Model

	4.5.2 Safety Model of IEC 61508
	4.5.3 System Model
	4.5.4 Performance Based Safety and Availability Indices
	4.5.4.2 Comparison with PFDPRS
	4.5.4.1 Safety Index: Probability of Failure on Actual Demand (PFaD)
	4.5.4.3 Availability Index: Manifested Availability

	4.6…Examples
	4.6.1 Example 1
	4.6.1.1 System Description
	4.6.1.2 Model
	4.6.1.3 Results

	4.6.2 Example 2
	4.6.2.1 Parameter Values
	4.6.2.2 Calculation and Results

	4.7…Advantage of Modeling Safe Failures
	4.6.2.3 Discussion

	4.8…DSPN Based Safety Models
	4.9…Summary
	References

	5 Network Technologies for Real-Time Systems
	5.2…Network Basics
	5.1…Introduction
	5.3…Medium Access Control (MAC) Protocols
	5.3.1 Carrier Sense Multiple Access/Collision Detection (CSMA/CD)
	5.3.3 Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)
	5.3.2 Carrier Sense Multiple Access/Collision Resolution (CSMA/CR)
	5.3.4 Time Division Multiple Access (TDMA)
	5.3.7 Master/Slave
	5.3.6 Distributed Solutions Relying on Tokens
	5.3.5 Flexible Time Division Multiple Access (FTDMA)

	5.4…Networks
	5.4.1 Ethernet
	5.4.1.2 CSMA/CD in Ethernet
	5.4.1.1 Evolution of Ethernet
	5.4.1.3 Switched Ethernet

	5.4.2 Controller Area Network (CAN)
	5.4.3 MIL-STD-1553B

	5.5…Real-Time Scheduling
	5.5.1 Time-Driven Scheduling
	5.5.2 Priority-Driven Scheduling
	5.5.2.1 Fixed Priority Schedulers
	5.5.2.2 Dynamic Priority Schedulers

	5.5.3 Share-Driven Scheduling
	5.5.3.1 Share-Driven Scheduling in Fixed Priority Systems
	5.5.3.2 Share-driven Scheduling in Dynamic Priority Systems

	5.6…Real-Time Analysis
	5.6.1 Task Model
	5.6.2 Utilisation-Based Tests
	5.6.2.1 Fixed Priority Schedulers

	5.6.3 Demand-Based Tests
	5.6.2.2 Dynamic Priority Schedulers

	5.6.4 Response-Time Tests
	5.6.4.1 Fixed Priority Schedulers
	5.6.3.1 Dynamic Priority Schedulers
	5.6.4.2 Dynamic Priority Schedulers

	5.7…Comparison of Networks
	5.8…Summary
	References

	6 Response-Time Models and Timeliness Hazard Rate
	6.1…Introduction
	6.2…Review of Response-Time Models
	6.2.1 Tagged Customer Approach
	6.2.1.1 Example 1: A Single Server System
	6.2.1.2 Example 2: A Multi Server System

	6.2.2 Probabilistic Response-Time Model

	6.3…Response-Time Models
	6.3.1 CAN
	6.3.1.1 Worst-Case Delay Analysis
	6.3.1.2 Basic CAN Model
	6.3.1.3 Example
	6.3.1.4 Simulation Model
	6.3.1.5 Improved Model

	6.3.2 MIL-STD-1553B
	6.3.1.6 Effect of Bit-Stuffing
	6.3.2.1 Worst-Case Delay Analysis
	6.3.2.2 Response Time Model

	6.3.3 Ethernet
	6.3.3.1 Response-Time Model

	6.4…System Response-Time Models
	6.4.1 Sample to Actuation Delay and Response-Time
	6.4.1.1 Example: Numerical Example---Deterministic Case
	6.4.1.2 Example: Numerical Example---Non-Deterministic Case

	6.4.2 Effect of Node Redundancy
	6.4.3 Dependence of Response-Time Between Consecutive Cycles
	6.4.3.1 CAN

	6.4.4 Failure/Repair Within the System
	6.4.3.2 MIL-STD-1553B

	6.5…Timeliness Hazard Rate
	6.5.1 Example 1
	6.5.2 Example 2

	6.6…Summary
	References

	7 Dependability of Networked Computer-Based Systems
	7.2…Background
	7.1…Introduction
	7.3…Reliability Modeling
	7.3.1 System Model
	7.3.2 Analysis
	7.3.2.1 Example 1

	7.4…Safety Modeling
	7.4.1 Assumptions
	7.4.2 System Model

	7.5…Availability Modeling
	7.5.1 Timeliness Hazard Rate

	7.6…Example
	7.7…Summary
	References

	Appendix A:MATLAB Codes

