

Lecture Notes in Electrical Engineering

Volume 78

Cover Image:
Hard’n’Soft
c© Konstantin Inozemtsev 2008

obtained from istockphoto.com

Alexander Biedermann and H. Gregor Molter
(Eds.)

Design Methodologies for

Secure Embedded Systems

Festschrift in Honor of

Prof. Dr.-Ing. Sorin A. Huss

ABC

Alexander Biedermann
Technische Universität Darmstadt
Department of Computer Science
Integrated Circuits and Systems Lab
Hochschulstr. 10
64289 Darmstadt, Germany
E-mail: biedermann@iss.tu-darmstadt.de

H. Gregor Molter
Technische Universität Darmstadt
Department of Computer Science
Integrated Circuits and Systems Lab
Hochschulstr. 10
64289 Darmstadt, Germany
E-mail: molter@iss.tu-darmstadt.de

ISBN 978-3-642-16766-9 e-ISBN 978-3-642-16767-6

DOI 10.1007/978-3-642-16767-6

Library of Congress Control Number: 2010937862

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of
this publication or parts thereof is permitted only under the provisions of the German Copyright Law
of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typeset: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Sorin A. Huss

Preface

This Festschrift is dedicated to Mr. Sorin A. Huss by his friends and his Ph.D.
students to honor him duly on the occasion of his 60th birthday.

Mr. Sorin A. Huss was born in Bukarest, Romania on May 21, 1950. He
attended a secondary school with emphasis on mathematic and scientific topics in
Dachau near Munich and after his Abitur he studied Electrical Engineering with
the discipline information technology at the Technische Universität München.

1976 he started his career at this university as the first research assistant at
the newly established chair for design automation. Due to his very high ability he
was a particularly important member of the staff especially in the development
phase. In his research Mr. Huss dealt with methods for design automation of
integrated circuits. The results of his research activities and his dissertation “Zur
interaktiven Optimierung integrierter Schaltungen” were published in very high-
ranking international proceedings and scientific journals. In his dissertation he
started from the recognition that the computer-aided dimensioning of integrated
circuits on transistor level normally leads to a very bad conditioned optimization
problem and that this aspect played the central role in solving this problem.
Mr. Huss provided important contributions to this matter which were advanced
in future activities of the chair and finally resulted in the establishment of a
company. Today, 15 employees of the company MunEDA are busy with the
production and the world-wide sale of software tools for the design of analog
components in microchips.

In 1982, Mr. Huss changed from university to industry and then worked at the
AEG Concern in several positions. At last he was responsible for the development
and adoption of new design methods as well as for the long-term application of
the corresponding design systems as a department manager at the development
center Integrated Circuits. Design tools that were developed under his direc-
tion, were used not only in the AEG Concern but also in famous domestic and
foreign companies for the development of microelectronic circuits and systems.
Important cross-departmental functions and the preparation of publicly funded
major research projects indicate that his professional and organizational skills
were well appreciated. Despite his technical-economical aim and the surrounding
circumstances of internal release procedures Mr. Huss was able to document the
academic level of the activities in his field of work by publications and talks
outside of the company, too.

One of these publications brought forth the award of the ITG in 1988, for
one of the best publications of the year. After six years of university experience
and eight years of employment in industry, Mr. Huss had proved to be a well
appreciated and internationally accepted expert in the field of the computer-
aided design of integrated circuits and systems.

VIII Preface

After having obtained a call for a C4 professorship in Computer Engineering
at the Technische Hochschule Darmstadt, Mr. Huss started his work as a full
professor in Darmstadt on July 1, 1990. Since that time Prof. Huss not only
had a decisive impact on the technical sector of the Department of Computer
Science. Since 1996 he acts as a co-professor at the Department of Electrical
Engineering of the Technische Universität Darmstadt. With his assistance, the
field of study Information System Technology (IST) was founded as cooperation
between the Department of Computer Science and the Department of Electrical
Engineering. In the same year, he rejected an appointment for a C4 professorship
for technical computer science at the University Bonn and an offer as a head of
the Institute for systems engineering at GMD, St. Augustin, to continue research
and teaching at the TU Darmstadt.

On the basis of design methods for embedded systems, the focus of his re-
search has enlarged and now connects aspects of heterogeneous systems with
IT-systems and the automotive sector. More than 140 publications evidence
his research activities. His contributions to research were acknowledged inter
alia in 1988 with the Literature Award of the Information Technology Society
(VDE/ITG), the Outstanding Paper Award of the SCS European Simulation
Symposium in 1998, and both the Best Paper Award of the IEEE International
Conference on Hardware/Software Codesign-Workshop on Application Specific
Processors and the ITEA Achievement Award of the ITEA Society in 2004.

Apart from his memberships in ACM, IEEE, VDE/ITG and edacentrum he
is – due to his expert knowledge about the design of secure embedded systems –
head of one of three departments of the Center of Advanced Security Research
Darmstadt (CASED). CASED was established in the year 2008 by the Hessian
campaign for the development of scientific-economical excellence (LOEWE) as
one of five LOEWE-Centers. Just the research group lead by Prof Huss which
deals with the design of secure hardware, has presented more than fifty inter-
national publications since then. An Award for Outstanding Achievements in
Teaching in the year 2005 and other in-house awards for the best lecture fur-
thermore evidence his success in teaching. More than a dozen dissertations that
have been supported by Prof. Sorin A. Huss to the present day complete the
view of an expert, who does not only have extensive knowledge in his fields of
research but is also able to convey his knowledge to others.

We wish Prof. Dr.-Ing. Sorin Alexander Huss many more successful years!

November 2010 Kurt Antreich
Alexander Biedermann

H. Gregor Molter

Joint Celebration of the 60th Birthdays of
Alejandro P. Buchmann, Sorin A. Huss, and

Christoph Walther on November 19th, 2010

Honourable Colleague,
Dear Sorin,

Let me first send my congratulations to you as well as to the other two
guys. You jointly celebrate your sixtieths birthdays this year. I wish you all
the best for your future work at TU Darmstadt! Sorin, let me first thank you
for the time you served as one of my Deputies General in that treadmill they
call “Dekanat”. It was difficult for you to reserve some of your spare time for
that voluntary, additional job. I appreciate that you agreed to take over this
purely honorary post. Your advice has always been helpful for me. Your research
and teaching activities are extraordinarily successful. Your success has led to a
number of awards, from which I can only mention the most outstanding ones:
Literature Award of the IT Chapter of the VDE (the German association of
electrical engineers), European ITEA Achievement Award, Teaching Award of
the Ernst-Ludwigs-Hochschulgesellschaft. You were one of the initiators of TU
Darmstadt’s bachelor/master program in information systems technology. To
conclude this list, I would also like to mention that you are one of the domain
directors of CASED, which is an important position not only for CASED itself
but for the department and for TU Darmstadt as well. You three guys are true
institutions of the departments (I am tempted to speak of dinosaurs, however, in
an absolutely positive sense). You have seen colleagues come and go. Due to your
experience and your long time of service in the department, you have become
critical nodes of the departments corporate memory network. Your experience
has been deciding many discussions typically (yet not exclusively) for the better.
I should mention that each of you three guys is equipped with a specific kind of
spirit. Your humorous comments, always to the point, made many meetings of
the colleagues really enjoyable for the audience (well, the meeting chair did not
always enjoy, but thats fine). You have always combining passion with reason,
spirit with analysis, vision with rationality. On behalf of the colleagues, the
department, and TU Darmstadt, I wish you three guys that you will have another
great time together with all of us and an even longer chain of success stories than
ever. Happy Birthday!

November 2010 Karsten Weihe
Dean of the Department of Computer Science

Technische Universität Darmstadt

The Darmstadt Microprocessor Practical Lab

Some Memories of the E.I.S. Times

At the beginning of the 1980s, the publication of the book “Introduction to
VLSI-Systems” by Mead/Conway initiated a revolution in the design of inte-
grated circuits not only in the United States – it had a great feedback also in
Germany. So it was intensively thought about establishing the design of inte-
grated circuits as a field of study at the Technical Universities and Universities
of Applied Sciences. Funded by the German Federal Ministry of Research and
Technology (BMFT) the project E.I.S. (Entwurf Integrierter Schaltungen [design
of integrated circuits]) was started in close cooperation with industrial concerns
in 1983. The project was coordinated by the Society for Mathematics and Data
Processing at Bonn (today: Fraunhofer Institute) and had the following objec-
tives:

– Intensification of the research in the field of the design of microelectronic
circuits at the Universities and progress in the theory of design methods

– Design and development of experimental CAD-software for microelectronic
circuits for the use in research and teaching

– Design and test of application-specific circuits
– Enhancement of the number of computer scientists and electrical engineers

with a special skill in VLSI-Design

Following the publication of the book “Introduction to VLSI-Systems” by
Mead/Conway also people in Germany quickly recognized that VLSI-Design was
not a kind of black magic but was based on a well-structured methodology. Only
by means of this methodology it would be possible to handle the exponentially
increasing design complexity of digital (and analog) circuits expected in the
future.

Mr. Huss met this challenge very early and established a design lab at Darm-
stadt. The practical lab was intended to impart the complete design process from
the behavior-oriented design model to the point of the layout. Based on a high-
level-design methodology – which was taught in an accompanying lecture – and
by using a design example, the entire development should be comprehended in
detail and realized by means of modern CAE-tools. The practical lab therefore
allowed an integrated education in the field of high-level-design methodology
which was theoretically sound and deepened in practice. The design was car-
ried out according to the principle of “Meet in the Middle” which was common
practice instead of using the “Top Down” method. VHDL was used as formal
language, as it enabled a description on all levels of abstraction. The neces-
sary transformations were explained didactical cleverly using the Y-diagram of
Gajski.

XII Some Memories of the E.I.S. Times

The main objective of the practical lab at this was not only learning the lan-
guage, but to rehearse the Methodology in detail up of the design of a standard
cell in a 1.5m CMOS-technology with about 16,000 transistors. The production
took place within the framework of the EUROCHIP-program. The abstract of
the practical lab at the TH Darmstadt was introduced to an international group
of experts at the 6th E.I.S. Workshop 1993 in T”ubingen. As the Goethe Univer-
sity Frankfurt ran a practical lab with a similar intention, a lively exchange of
experiences arose subsequent to the E.I.S. Workshop. This fruitful cooperation
in teaching later brought forth a textbook with the title “Praktikum des moder-
nen VLSI-Entwurfs”. The authors were Andreas Bleck, Michael Goedecke, Sorin
A. Huss and Klaus Waldschmidt. The book was published by Teubner Verlag,
Stuttgart in 1996. Unfortunately, it is no longer available due to developments
in the publishing sector.

I gladly remember the cooperation with colleague Mr. Huss and his team.
This cooperation later also continued in the area of research, for instance in
the context of the SAMS-Project, which was funded by the BMBF and the
edacentrum. For the future, I wish colleague Mr. Huss continued success and
pleasure in teaching and research.

November 2010 Klaus Waldschmidt
Technische Informatik

Goethe Universität Frankfurt

Table of Contents

Towards Co-design of HW/SW/Analog Systems . 1
Christoph Grimm, Markus Damm, and Jan Haase

A Flexible Hierarchical Approach for Controlling the System-Level
Design Complexity of Embedded Systems . 25

Stephan Klaus

Side-Channel Analysis – Mathematics Has Met Engineering 43
Werner Schindler

Survey of Methods to Improve Side-Channel Resistance on Partial
Reconfigurable Platforms . 63

Marc Stöttinger, Sunil Malipatlolla, and Qizhi Tian

Multicast Rekeying: Performance Evaluation . 85
Abdulhadi Shoufan and Tolga Arul

Robustness Analysis of Watermark Verification Techniques for FPGA
Netlist Cores . 105

Daniel Ziener, Moritz Schmid, and Jürgen Teich

Efficient and Flexible Co-processor for Server-Based Public Key
Cryptography Applications . 129

Ralf Laue

Cellular-Array Implementations of Bio-inspired Self-healing Systems:
State of the Art and Future Perspectives . 151

André Seffrin and Alexander Biedermann

Combined Man-in-the-Loop and Software-in-the-Loop Simulation:
Electronic Stability Program for Trucks on the Daimler Driving
Simulator . 171

Uwe Baake and Klaus Wüst

Secure Beamforming for Weather Hazard Warning Application in
Car-to-X Communication . 187

Hagen Stübing and Attila Jaeger

Author Index . 207

Towards Co-design of HW/SW/Analog Systems

Christoph Grimm, Markus Damm, and Jan Haase

Vienna University of Technology
Chair of Embedded Systems

Gußhausstrae 27-29
1040 Wien, Austria

{grimm,damm,haase}@ict.tuwien.ac.at

Abstract. We give an overview of methods for modeling and system
level design of mixed HW/SW/Analog systems. For abstract, functional
modeling we combine Kahn Process Networks and Timed Data Flow
Graphs. In order to model concrete architectures, we combine KPN and
TDF with transaction level modeling. We describe properties and issues
raised by the combination of these models and show how these models
can be used for executable specification and architecture exploration. For
application in industrial practice we show how these models and methods
can be implemented by combining the standardized SystemC AMS and
TLM extensions.

Keywords: Analog/Digital Co-Design, KPN, Timed Data Flow, Sys-
tem Synthesis, Refinement, Refactoring, SystemC AMS extensions.

1 Introduction

Applications such as wireless sensor networks, cognitive radio, and multi-stan-
dard communication systems consist of multi-processor hardware, complex mul-
ti-threaded software, and analog/RF subsystems. A new complexity raised by
such applications is the tight functional interaction between the different do-
mains, even at mixed levels of abstraction. Therefore, specification and archi-
tecture level design require a comprehensive approach for system level design.
System level design includes the following issues:

1. Executable specification of the intended behavior including analog/RF be-
havior and multi-process HW/SW systems.

2. Architecture exploration by mapping the executable specification to abstract
processors, and adding SW that improves behavior of analog/RF components
(calibration, error detection/correction, etc.).

3. System integration, mostly by mixed-level simulation, upon availability of
hardware designs and software programs.

Compared with HW/SW co-design, the co-design of HW/SW/Analog systems
lacks models, methods and tools that go beyond modeling and simulation. A
major problem for co-design of HW/SW/Analog systems is that modeling and

A. Biedermann and H. Gregor Molter (Eds.): Secure Embedded Systems, LNEE 78, pp. 1–24.

springerlink.com � Springer-Verlag Berlin Heidelberg 2010

2 C. Grimm, M. Damm, and J. Haase

design of HW/SW systems at one hand, and of analog systems at the other use
fundamentally different methods:

– HW/SW Co-design is done usually “top-down”, relying on existing platforms
that enable to some extent abstraction from realization. In contrast, analog
design is rather done “bottom up”.

– Design of HW/SW systems can to some extent be automated and formalized.
In contrast, analog design is sometimes considered as “black magic”.

In this work we give an overview of methods that together draw the vision of
a co-design methodology that is applicable to HW/SW/Analog Systems as a
whole as shown by Fig. 1. We simplify the problem a lot by taking the analog
(and also digital) circuit design out of the challenge. Instead we assume that
“HW/SW/Analog Co-Design” gets characterized models from analog design,
and validated IP or platforms from digital design. Like in HW/SW Co-Design,
we propose an interactive strategy where architecture mapping selects a limited
number or architectures that are evaluated by modeling and simulation based on
SystemC. However, we propose to restrict modeling techniques to Kahn Process
Networks (KPN), Timed Data Flow (TDF), and Transaction Level Modeling
(TLM). This allows us to also address issues such as (maybe in future work
automated) partitioning or system synthesis.

In the following, we first describe related work and KPN, Timed Data Flow
(TDF) and Transaction Level Modeling (TLM). In Sect. 2 we discuss issues

Fig. 1. HW/SW/Analog Co-Design with Executable Specification and Architecture
Exploration consisting of architecture mapping and performance estimation by co-
simulation of mixed TLM/TDF models

Towards Co-design of HW/SW/Analog Systems 3

raised by the combination of KPN, TDF and TLM and show how they can be
modelled using SystemC. In Sect. 3 we show how the combination of KPN, TDF
and TLM models can be used for architecture exploration. In Sect. 4 we discuss
a real-world example.

1.1 Related Work

For many years, modeling languages were the main tools for designers of HW/-
SW/analog systems. A prominent success was the advent of standardized and
agreed modeling languages such as VHDL-AMS [1] and Verilog-AMS [2] that fo-
cus design of analog/digital subsystems. Recently, AMS extensions for SystemC
have been standardized that address the co-design of mixed HW/SW/Analog
systems better [3]. However, we believe that co-design should be more ambi-
tious than just being able to co-simulate. First attempts to address co-design
are made in [4,5,6,7] focusing the design of analog/mixed-signal subsystems.
Interactive methodologies that tackle the transition from data flow oriented de-
scriptions to analog/digital circuits are described in [8,9,10,11]. In order to deal
with overall HW/SW/Analog systems, models from HW/SW Co-Design and
from analog/RF design have to be combined.

In HW/SW Co-Design, models must show a maximum of parallelism. Task
Graphs [12], Kahn Process Networks (KPN) [13] or Synchronous Data Flow
(SDF) [14] are widely used in that context. Especially KPN and SDF maintain
a maximum of parallelism in the specification while being independent from
timing and synchronization issues, thus being useful for executable specification.
Pioneering work was done in the Ptolemy Project [15,16]. Jantsch [17] gives
a good summary and formalizes models of computation applied in embedded
system design, including combined models. Transaction Level Modeling (TLM,
[18,19]) and other means in SpecC and SystemC in contrast specifically enable
to model timing and synchronization at architecture level. SysteMoC enables
design of digital signal processing systems combining several models [20], but
lacks support for analog/RF systems.

In analog/RF systems, behavioral representations abstract from physical quan-
tities. However, abstraction from time is hardly possible because typical analog
functions such as integration over time are inherently time dependent. Block
diagrams in Simulink or Timed Data Flow (TDF) in the SystemC AMS exten-
sions [3] therefore abstract structure and physical quantities while maintaining
continuous or discrete time semantics.

It is difficult to bring the worlds of HW/SW Co-Design and analog/RF de-
sign together. Main focus of the Ptolemy project [15] was simulation and HW
or SW synthesis, but not overall system synthesis. Approaches such as Hybrid
Automata ([32], Model Checking) lack the ability to deal with complex HW/SW
systems. Hybrid Data Flow Graphs (HDFG [5,21], Partitioning) focus the border
between discrete and continuous modeling. The functional semantics of HDFG

4 C. Grimm, M. Damm, and J. Haase

offers – in combination with functional languages for system specification – in-
teresting perspectives for specification of parallel systems while being able to
describe HW/SW/analog systems. However, due to availability of tools and lan-
guages we focus on KPN and TDF in the following as a starting point for system
level synthesis, and TLM for architecture level modeling.

1.2 Kahn Process Networks, Timed Data Flow, and TLM

Kahn Process Networks (KPN). KPN are a frequently used model of com-
putation that allows easy specification of parallel, distributed HW/SW systems.
In KPN, processes specified e.g. in C/C++ communicate via buffers of infinite
length. Writing is therefore always non-blocking, whereas reading is blocking.
KPN are an untimed model of computation: Timing is not specified and not
necessary because the results are independent from timing and scheduling. KPN
are specifically useful for the executable specification of HW/SW systems, be-
cause they – in contrast to sequential program languages – maintain parallelism
in an executable specification and therefore enable the mapping to parallel hard-
ware, e.g. multi-processor systems. A particular useful property of KPN is that it
enables abstraction of timing and scheduling: Outputs only depend on the input
values and their order (determinacy), provided all processes are deterministic.
Non-determinacy can for example be introduced by a non-deterministic merge
process.

In order to enable execution, scheduling algorithms (e.g. Park’s algorithm
[22]) may be defined that restrict the size of the buffers (Bounded KPN, BKPN).
However, a limited size of buffers cannot be guaranteed in general.

Timed Data Flow (TDF). In order to overcome the restrictions of KPN
considering scheduling and size of buffers, different subsets of KPN have been
defined, most prominent of them the Synchronous Data Flow (SDF, [14]). In
SDF, an undividable execution of a process consumes a constant number of
tokens or samples from the inputs and generates a constant number of tokens at
the outputs. Under these conditions, a static schedule with size-limited buffers
can be determined before execution of the processes by solving the balancing
equations for a cluster of processes. For repeated inputs, the schedule is repeated
periodically. Like KPN, SDF is an untimed model of computation. Nevertheless,
SDF is used for representing digital signal processing (DSP) methods, assuming
constant time steps between samples.

In Timed Data Flow (TDF, [3,31]), each process execution is assigned a time
step. In case of multiple samples per execution, the time step is distributed
equally between the samples. Apart from specification of DSP algorithms, this
enables the representation of analog signals by a sequence of discrete-time
samples while abstracting from physical quantities and assuming a directed
communication between analog components. A major benefit of TDF for the
specification of analog and RF systems is the ability to embed other “analog”
formalisms in the processes. The analog formalisms can be transfer functions

Towards Co-design of HW/SW/Analog Systems 5

H(z) or H(s) and models of computation such as signal flow graphs or electrical
networks while maintaining advantages of SDF such as finite sizes of buffers,
static scheduling and analysis at compile-time. A limitation is the discrete-time
representation of inputs and outputs.

Transaction Level Modeling (TLM) is rather a means for abstract model-
ing than a model of computation. It provides means to model communication
of HW/SW systems at architecture level. The idea of Transaction Level Model-
ing (TLM) is to bundle the various signal-level communication events (request,
acknowledge, . . .) into a single element called a transaction. The OSCI TLM
2.0 standard [19] defines a TLM extension for SystemC. The TLM extensions
for SystemC use a dedicated data structure for representing a transaction (the
generic payload), which contains elements like a target address, a command and
a data array. Transactions – or more precisely references to them – are then
passed around through the system via method interfaces, and each system part
works on the transaction depending on the role of the system part. A simple
example might look like this: A TLM Initiator (e.g. a processor module) creates
a transaction, sets its command to READ, sets its target address to the address
in its virtual address space it wants to read from, and reserves an appropriate
data array for the data to read. It then sends the transaction through a socket
to a TLM Interconnect (e.g. a bus or a router), which might do arbitration,
and passes it on to the appropriate target device according to the address, after
mapping the virtual address to the physical address within the target device.
The TLM Target (e.g. a memory) then would copy the desired data to the
transactions’ data array, and return the transaction reference.

This basically implements a memory mapped bus. However, in TLM 2.0 it is
possible to augment the generic payload with custom commands. An important
observation is that passing the reference through the system might look like
passing a token, but the data associated to that token is mostly non-atomic and
can in theory be of arbitrary size.

Regarding time, the TLM 2.0 standard offers interesting possibilities. By using
temporal decoupling, it is possible to let every TLM initiator run according to
its own local time, which is allowed to run ahead of the global simulation time.
This is often referred to as time warp. The TLM 2.0 method interface foresees a
delay parameter to account for the local time offset of the initiator issuing the
transaction.

Synchronization with global time only occurs when needed, or with respect
to predefined time slots. This technique reduces context switches and therefore
increases simulation performance, with a possible loss of simulation accuracy. Us-
ing the facilities provided by the TLM 2.0 extensions in such a manner is referred
to as the loosely timed coding style, in contrast to the so-called approximately
timed coding style, where each component runs in lock-step with the global sim-
ulation time, and where the lifetime of a transaction is usually subdivided into
several timing points.

6 C. Grimm, M. Damm, and J. Haase

2 Executable Specification

The executable specification of a HW/SW/Analog system must be able to cap-
ture both analog behavior and behavior of a HW/SW system. Analog behavior
is usually modeled by transfer functions or static nonlinear functions, i.e. using
TDF model of computation; HW/SW systems are specified by multiple threads
or processes, i.e. KPN. In the following we first discuss the combination of KPN
and TDF for specification of behavior of HW/SW/Analog systems. Then we
show how to model behavior in these models of computation using SystemC.

2.1 Combination of KPN and TDF

A combination of KPN and TDF with embedded “analog” models of computa-
tion offers properties required for both HW/SW Co-Design and design of analog
systems, thus enabling HW/SW/Analog Co-Design. However, we have to define
semantics of the combined KPN/TDF model of computation carefully consider-
ing the following issues:

– KPN is an untimed model of computation, but TDF requires a concept of
time. One way to overcome this heterogeneity is to introduce time in KPN.
However, KPN with time extensions will no longer be determinate in the
sense of outputs which are independent from timing and scheduling.

– TDF is activated by advancement of time, assuming that a defined number
of input samples is available (guaranteed e.g. by schedule of KPN). However,
with arbitrary scheduling and timing, KPN output could produce too many
or not enough samples for TDF input.

In the following we examine communication from TDF to KPN and from KPN
to TDF. The communication from TDF to KPN is unproblematic: As KPN are
untimed, they can execute when there are samples at the inputs, regardless of the
time when they are produced by TDF. However, the communication from KPN
to TDF is a more complex issue: TDF processes are executed following a static
schedule that is triggered by time. The static schedule guarantees that enough
samples are available at connections between TDF processes. However, this is
not valid for communication from KPN (with by definition arbitrary scheduling)
and TDF processes. Two different extensions solve this issue in different ways:

1. Assuming a KPN schedule that in time generates enough samples at the
inputs of TDF.

2. Merging “default token” in case of absence of inputs from KPN to the TDF
processes, e.g. because 1 has failed.

In the first case, the property of determinacy is preserved for the whole model.
In the second case, determinacy is not preserved because the default tokes are
merged in a non-deterministic way.

Towards Co-design of HW/SW/Analog Systems 7

Simple Example: Executable Specification of a Signal Generator. As
an example we give a very simple signal generator shown by Fig. 2. The signal
generator produces a saw tooth shaped signal. We use a TDF model to describe
integration over time, and a KPN to observe the TDF output and to switch the
input of the TDF depending on the limits ul and ll. The comparison is done by
two KPN processes that continuously get a stream of TDF inputs, and omit an
output ub or lb only if the upper or lower border is crossed.

ulTDF:
integ dt

(TDF)

split
(TDF)

s[n] > ul
(KPN)

s[n] < ll
(KPN)

ul

ll

KPN:

ub

lb

-1.0 1.0
lb

ub

s[t]
ll

KPN->TDF Conversion: Repeat last sample if FIFO empty.

Fig. 2. A signal generator that generates saw tooth signals within limits ul and ll can
be modeled by a KPN with three processes (one specified by an automaton) and a
TDF of two nodes

The output of the KPN is generated by a process that waits on an input from
either comparison, then switches its internal state, and produces an output in
the same rate as needed by the TDF cluster. In the given example we assume
the scheduling will ensure that the TDF gets always enough inputs and we do
not need to insert a special converter that would insert default outputs in case
the KPN processes are not scheduled in time.

2.2 Modeling and Simulation of KPN and TDF with SystemC

SystemC is a modeling language for HW/SW Co-Design that is based on C++.
SystemC allows using C++ for the specification of processes. Processes are em-
bedded in modules that communicate with each other via ports, interfaces, and
channels. There are several interfaces and channels already defined in SystemC,
but they can also be defined by the user. This way, various models of computa-
tion can be supported, including KPN (via the already existing sc_fifo channel)
and SDF (by extending SystemC). Time in SystemC is maintained globally by a
discrete event simulation kernel. In the recently introduced AMS extensions, the
TDF model of computation is provided. In the following we show how SystemC
can be used to specify a mixed HW/SW/Analog system within the semantics of
combined KPN and TDF.

8 C. Grimm, M. Damm, and J. Haase

Modeling KPN using SystemC. Kahn Process Networks can be modeled by
using processes (SC_METHOD) which communicate only via FIFOs (sc_fifo<T>)
with appropriate properties: Blocking read, infinite size, and hence non-blocking
write. Obviously, no implementation can offer infinite size, but in practice it is
possible to have “large enough” FIFOs. In the case of a full FIFO, one can use
blocking behavior and omit an error message. The following example shows a
KPN process that distributes a stream of input samples u to two streams v and
w :

SC_MODULE(split)

{

sc_fifo_in<int> u;

sc_fifo_out<int> v, w;

bool n;

SC_CTOR(split): n(true)

{

SC_THREAD(do_split); sensitive << u;

}

void do_split()

{

while(true)

{

if(n) v.write(u.read()); else w.write(u.read());

n = !n;

}

}

}

Modeling TDF using SystemC AMS extensions. The TDF model of computation
is introduced by the AMS extensions 1.0 [3]. TDF models consist of TDF modules
that are connected via TDF signals using TDF ports. Connected TDF modules
form a contiguous structure called TDF cluster. Clusters must not have cycles
without delays, and each TDF signal must have one source. A cluster is activated
in discrete time steps. The behavior of a TDF module is specified by overloading
the predefined methods set_attributes(), initialize(), and processing():

– The method set_attributes() is used to specify attributes such as rates,
delays or time steps of TDF ports and modules.

– The method initialize() is used to specify initial conditions. It is executed
shortly before the simulation starts.

– The method processing() describes the time-domain behavior of the mod-
ule. It is executed at each activation of the TDF module.

At least one definition of the time step value and, in the case of cycles, one
definition of a delay value per cycle has to be done. TDF ports are single-rate by
default. It is the task of the elaboration phase to compute and propagate consis-
tent values for the time steps to all TDF ports and modules. Before simulation,

Towards Co-design of HW/SW/Analog Systems 9

the scheduler determines a static schedule that defines the order of activation of
the TDF modules, taking into account the rates, delays, and time steps. During
simulation, the processing() methods are executed at discrete time steps. The
following example shows the TDF model of a mixer. The processing() method
will be executed with a time step of 1�s:

SCA_TDF_MODULE(mixer) // TDF primitive module definition

{

sca_tdf::sca_in<double> rf_in, lo_in; // TDF in ports

sca_tdf::sca_out<double> if_out; // TDF out ports

void set_attributes()

{

set_timestep(1.0, SC_US); // time between activations

}

void processing() // executed at activation

{

if_out.write(rf_in.read() * lo_in.read());

}

SCA_CTOR(mixer) {}

};

In addition to the pure algorithmic or procedural description of the processing()
method, different kind of transfer functions can be embedded in TDF modules.
The next example gives the TDF model of a gain controlled low pass filter by
instantiating a class that computes a continuous-time Laplace transfer function
(LTF). The coefficients are stored in a vector of the class sca_util::sca_vector
and are set in the initialize() method. The transfer function is computed in
the processing() method by the ltf object at discrete time points using fixed-
size time steps:

SCA_TDF_MODULE(lp_filter_tdf)

{

sca_tdf::sca_in<double> in;

sca_tdf::sca_out<double> out;

sca_tdf::sc_in<double> gain;// converter port for SystemC input

sca_tdf::sca_ltf_nd ltf; // computes transfer function

sca_util::sca_vector<double> num, den; // coefficients

void initialize()

{

num(0) = 1.0;

den(0) = 1.0;

den(1) = 1.0/(2.0*M_PI*1.0e4); // M_PI=3.1415...

}

void processing()

{

out.write(ltf(num, den, in.read()) * gain.read());

}

SCA_CTOR(lp_filter_tdf) {}

};

10 C. Grimm, M. Damm, and J. Haase

The TDF modules given above can be instantiated and connected to form a
hierarchical structure together with other SystemC modules. The TDF modules
have to be connected by TDF signals (sca_tdf::sca_signal<type>). Prede-
fined converter ports (sca_tdf::sc_out or sca_tdf::sc_in) can establish a
connection to a SystemC DE channel, e.g. sc_signal<T>, reading or writing
values during the first delta cycle of the current SystemC time step.

As discussed above, conversion from TDF to KPN is quite easy, if we assume
an unbounded FIFO. A converter just has to convert the signal type:

{

sca_tdf::sca_in<double> in_tdf; // TDF in-port

sc_fifo_out <double> out_kpn, // KPN out-port

void processing()

{

out_de.write(in_tdf.read());

}

SCA_CTOR(tdf_kpn_converter) { }

};

However, as explained before, the conversion can lead to a situation where not
enough samples from KPN are available. The following piece of code demon-
strates a simple converter from KPN to TDF that inserts a “DEFAULT” value
and emits a warning to the designer that determinacy is no longer a valid prop-
erty of the combined KPN/TDF model.

SCA_TDF_MODULE(kpn_tdf_converter)

{

sc_fifo_in<double> in_kpn, // KPN in-port

sca_tdf::sca_out<double> out_tdf; // TDF out-port

void processing()

{

if (!in_kpn.empty()) // FIFO empty?

out_tdf.write(in_kpn.read());

else // we insert default

{

out_tdf.write(DEFAULT); // DEFAULT from somewhere

warning("Non-determinate due to merge with default values");

}

}

SCA_CTOR(kpn_tdf_converter) { }

};

3 Architecture Exploration

For HW/SW/Analog Co-Design we need a transition from an executable specifi-
cation to one or more architectures, for which quantitative performance proper-
ties such as accuracy or power consumption are estimated. We call this process

Towards Co-design of HW/SW/Analog Systems 11

“Architecture Exploration”. In the following, we describe first how to map the ex-
ecutable specification to concrete architectures. It has to be emphasized that the
implementation modeled by such an architecture mapping should show similar
behavior to the exploration – with the difference that communication/synchro-
nization and timing/scheduling are modeled in more detail for allowing perfor-
mance estimation by modeling/simulation. Then, we focus on modeling issues
that are raised when combining SystemC AMS extensions for modeling analog
behavior, and SystemC TLM 2.0 for modeling architecture of HW/SW systems.

3.1 Architecture Mapping to Analog and HW/SW Processors

In order to come to an implementation of the executable specification, we map
processes of KPN and TDF to allocated processors, and channels between KPN
or TDF processes to allocated communication/synchronization elements as de-
picted in Fig. 3.

Communication

P2 – P3: DAC

P1

(KPN)

P2

(KPN)

P3

(TDF)

Processor 1

(DSP)

Processor 2

(circuit)

Processes from executable

specification (KPN, TDF)

Processors of architecture

(Circuits, DSP, etc.)

Communication & synchronization

elements in architecture

(ADC, DAC, IPC, Bus, etc.)

Communication

P1 – P2: IPC

Fig. 3. Architecture mapping assigns processes to allocated processors and channels
to allocated communication/synchronization elements that implement the specified
behavior

Processors are components that implement the behavior of one or more pro-
cesses. Communication/synchronization elements are components that imple-
ment the behavior of one or more channels.

TDF processes can be implemented by the following kind of processors:

– Analog subsystem. We consider an analog subsystem as an “analog proces-
sor” in the following. Analog processors cannot be shared; hence the relation
between processors and processes is a 1:1 mapping in this case. The behav-
ior of analog subsystems at architecture level can be modeled by adding
the non-ideal behavior of the analog subsystem to the TDF model from the
executable specification.

– DSP software running on a digital processor (DSP, Microcontroller, etc.). A
DSP can implement a number of TDF processes, if the processor has appro-
priate performance, and a facility that takes care of discrete time scheduling

12 C. Grimm, M. Damm, and J. Haase

(e.g. interrupt service routing, ISR). For performance analysis, an instruction
set simulator can replace the TDF processes implemented by the processor.

TDF clusters with feedback loops are a special case. The implementation depends
on the delay that is inserted into the loop. If it is very small compared with time
constants, the delay can be negotiated for implementation. If it is a dedicated
delay used for specifying a delay in DSP methods, a switched capacitor or digital
implementation is required.

KPN processes can be implemented by the following kind of processors:

– Software processes running on a digital processor. Such processors can, given
an appropriate performance, implement one or more processes from one or
more KPN. For performance estimation, an instruction set simulator can
replace the TDF processes that are implemented by the processor.

– Application-specific co-processors. Such processors can, given an appropriate
performance, implement one or more processes from one or more KPN. For
performance analysis, the KPN processes can be substituted with timed
models of the co-processors.

Special care has to be taken on the communication/synchronization elements.
FIFOs of infinite size are obviously not an efficient implementation (although
convenient for specification). For that reason the communication infrastructure
in KPN and TDF is replaced with concrete communication/synchronization el-
ements that implement similar behavior of the overall system with low cost for
implementation.

The elements to be used for implementation depend on the mapping of
processes to processors: Communication between KPN processes mapped on
a micro-processor/DSP might use infrastructure for inter-process communica-
tion available in a real-time OS. However, in many cases an application-specific
co-processor is used. In that case, one has to model communication between pro-
cessor and (co-)processor at architecture level. Such communication usually goes
at physical layer via memory-mapped registers or memory areas to which the
communicating processes have access. Since this is a crucial part of the overall
system (both considering correctness and performance), it was a focus of research
in HW/SW Co-Design. Transaction-level modeling has become one of the most
important means for modeling and simulation of this part. After architecture
mapping, we get a model that consists of:

– TDF models that model the parts mapped to analog subsystems.
– An Instruction set simulator (ISS) that models the embedded SW parts

and the used embedded platform hardware (DSP, Microcontroller). The
ISS is interfacing either directly with the discrete-event simulator via TLM
modeling.

– A TLM model that models the communication with specific co-processors
that are modeled using the discrete-event model of computation

Towards Co-design of HW/SW/Analog Systems 13

Obviously, many different mappings of an executable specification in KPN/TDF
to processors are possible. Usually, only very few mappings are useful and often
roughly known. In a number of cases the system partitioning in HW/SW/Analog
systems can be determined by the following criteria:

1. Comparison operations are a good cut between analog and HW/SW domain
if the compared values are in analog, because this saves a costly and slow
A/D converter, e.g. like in the saw tooth generator example.

2. Signal conditioning of very small physical quantities, or at very high frequen-
cies can only be implemented in analog, e.g. RF frontend in radio, instru-
mentation amplifier.

3. Clear hints for a digital implementation are: Signal processing in lower fre-
quencies, high requirements for accuracy or for re-configurability, and pro-
cesses with complex control-flow (e.g. automata).

In order to optimize the mapping optimization techniques that go across the
borders of different models of computation are useful as described in [5,21] using
HDFG. Fig. 4 shows the principle of such optimizations.

P1
(KPN)

P2
(TDF, comb)

P3
(TDF)

Can be optimized/mapped

with techniques for KPN.

Can be optimized/mapped with

techniques for TDF.

Fig. 4. Optimization techniques for KPN and TDF are applicable across the borders
between these models of computation under the conditions described below (details:
see [5])

For such optimizations and to enable a higher flexibility in architecture map-
ping – note, that KPN/TDF processes can also be split into several processes –
processes have to be identified whose semantics are identical, no matter if they
are executed following the TDF or the KPN rules. The following rules apply:

1. Processes with time dependent function such as integration over time, or
transfer functions in TDF cannot be shifted to KPN without changing over-
all behavior, because the non-deterministic scheduling of KPN would have
impact on time of execution and hence the outputs.

14 C. Grimm, M. Damm, and J. Haase

2. Processes with internal state cannot be shifted across converters between
KPN and TDF that non-deterministically insert “default” samples without
changing overall behavior, because the inserted tokens would have an impact
on the state and hence, the outputs.

3. Processes with internal state and time-independent function state can be
shifted across converters between KPN and TDF if scheduling ensures sam-
ples from KPN to TDF are available, because in this case KPN and TDF
both are pure stream-processing functions.

4. Processes with combinational function can be shifted between from KPN to
TDF and vice versa, as long as the number and order of inserted default
samples is not changed.

Simple Example: Architecture Mapping Signal Generator Specifica-
tion. As an example we use again the simple signal generator. Of course, the
KPN and TDF nodes can be mapped to (HW) processors that are close to their
model of computation. The integrator in the TDF section, for example, can be
implemented by an analog circuit in an easy and efficient way, while the KPN
processes could be implemented using a microcontroller. The communication
between microcontroller (with KPN implementation) and the analog integra-
tor (with TDF implementation) will then require an analog/digital converter
(ADC) that produces a discrete-time stream of outputs. We get another, more
efficient mapping by “shifting” the border between KPN over the two compar-
isons s[n] > ul and s[n] < ll as shown in Fig.5. In this case we can assume that
these two (initially KPN) processes become part of the TDF cluster, and hence
we can also allocate an analog implementation for these processes. Because the

integ dt
(TDF)

split
(TDF|KPN)

s[n] > ul
(KPN|TDF)

s[n] < ll
(KPN|TDF)

ul

ll

KPN

ub

lb

-

1.0

1.0
lb

ub

Analog

integrator

uC with SW,

Polling ADC

ADC

uC with

ISR

Analog

integrator

2 analog

Comparators

Representation of behavior in KPN/TDF Allocated Processors

Direct: Optimized:

Fig. 5. Application of Repartitioning on the simple example allows finding a more
appropriate architecture mapping. The nodes that observe the output (s[n]) are better
implemented in continuous/discrete-time hardware that by a software that would have
to poll the output of an analog/digital converter (ADC).

Towards Co-design of HW/SW/Analog Systems 15

output of a comparison is digital, no ADC is required. The two comparators can
be used to trigger interrupts that start an interrupt service routing that executes
the automaton from the KPN.

Unfortunately, the most efficient architecture isn’t as obviously to find as in
the simple example given. For performance estimation in complex HW/SW/An-
alog Co-Design we have to create models that combine TDF models describing
the analog part, an ISS (e.g. with TLM interfaces), and TLM models that models
the HW/SW architecture and the operating system.

3.2 Estimation of Quantitative Properties by System Simulation

For comparison of different architectures quantitative properties of an imple-
mentation have to be estimated. Known from HW/SW systems are estimation
methods for the properties chip area, throughput, (worst case) execution time
(e.g. [26]), and power consumption (e.g. [23,28]). Power profiling for complex
HW/SW/Analog systems such as WSN is described in [25,27]. Although these
properties are also to be considered for partitioning of HW/SW/analog systems,
additional parameters are needed especially due to analog/RF subsystems. Ac-
curacy and re-configurability are the most important criteria for partitioning if
analog implementation is considered as well.

Accuracy is an important property because analog circuits have initially low
accuracy that is insufficient for most applications. The art of analog design is
to make an inaccurate circuit accurate by error cancellation techniques such
as calibration, feedback or correlation, often involving digital signal processing.
Estimation of accuracy therefore requires means to estimate accuracy across
the border between discrete and continuous signal processing. First attempts
in this direction have been done using a kind of automated error propagation
computation by affine arithmetic [33].

Re-Configurability is a property that is to some extend only offered by HW/-
SW implementation, but not only limited by an analog/RF implementation.
Hence, the need for full re-configurability of a process requires its implementation
in software. Reduced requirements for re-configurability of functionality only
on occasion allow also FPGA coprocessor architectures. If re-configurability is
restricted to changing parameters, or selecting a small number of alternatives, an
analog implementation is possible. Partitioning strategies that specifically take
care of re-configurability are described in [21].

Although the above mentioned estimation methods give some hints for
improved partitioning, an overall system simulation at architecture level is ab-
solutely essential due to complexity of most properties. Architecture level simu-
lation should include models of all non-ideal properties of subsystems that have
impact on the overall system behavior. To get architecture level models effi-
ciently from a functional model such as the executable specification, methods
from SW engineering such as refinement [11] or refactoring [9,10] are useful.

16 C. Grimm, M. Damm, and J. Haase

Fig. 6. Refinement of the processes from the executable specification to a model of an
architecture by using models of non-ideal properties e. g. from the TU Vienna building
block library

Refinement as proposed in [11] is based on a library with models of non-
ideal effects (e.g. [29]) such as jitter, or noise that can be used to augment
the ideal, functional model with non-ideal properties for evaluation of different
architectures while maintaining the abstract modeling using TDF. For example,
we can model sampling jitter in the TDF model of computation by assuming an
initially ideal signal x(t) that is sampled with a small delay δtcaused by jitter.
Hence, we assume that

x(t+ δt) −x(t)

δt
≈

dx

dt
(1)

and the error from jitter ∈jitter as x(t+ δt) − x(t) ≈ δtdx/dt. Hence, we can
refine the ideal signal x(t) to a signal that is sampled with a jittering signal
by adding ∈jitter to the ideal signal. In a similar way effects for most typical
architecture level effects (distortions of nonlinear switches, limitation, noise, etc.)
are modeled in the TUV library for communication system design.

Use of refactoring is proposed in [9,10]. Refactoring techniques are well suited
to support the transition from abstract modeling in block-diagrams (e.g. in TLM
model of computation) towards modeling with physical quantities and electrical
networks by automatically changing the interfaces of the models.

3.3 Coupling of TDF and TLM Models of Computation

For estimation of quantitative performance parameters such as accuracy (bit or
packet error rates), a high-performance overall system simulation at architec-
ture level is required. Behavioral models of analog circuits can be modeled easily

Towards Co-design of HW/SW/Analog Systems 17

using the TDF model of computation. For modeling performance of HW/SW
architectures, loosely and approximately timed TLM models are useful. There-
fore, a co-simulation between TDF and TLM model of computation is required.
An important aspect of TDF/TLM co-simulation is how to integrate TDF data
streams into TLM simulation and how to provide data streams out of TLM to
TDF. In the following we describe how co-simulation between a TDF model
and a loosely timed TLM model can be achieved. In loosely timed TDF models,
the TLM initiators involved might run ahead of simulation time. Regarding the
data, the approach is straightforward:

– TLM to TDF: The data bundled into the (write-) transactions arrives
irregularly; therefore it has to be buffered into a FIFO. The TDF process
then reads from this FIFO.

– TDF to TLM: The streaming data from the TDF side arrives regularly; yet
the (read-) transaction requesting this data are irregular in general regarding
time and data size requested. Here, a FIFO is also the solution: the TDF
process writes on it, and it is emptied by the TLM side.

Of course, like in the coupling of KPN and TDF, corner cases can occur if the
FIFOs run empty or (since we assume bounded FIFOs here) full. It is up to the
designer how these cases are handled, since the semantics depend on the model
at hand. If it is not acceptable, errors can be thrown, but providing fallback
values resp. discarding values might also be an option.

To minimize these corner cases, proper synchronization is very important.
Since we assume loosely timed initiators on the TLM side, we can exploit that
TDF (in the way it is implemented in the SystemC AMS extensions) also in
general runs ahead of the global simulation time (especially if large data rates
are used). That is, tTDF ≥ tDE always holds, where tTDF denotes the SystemC
AMS simulation time, and tDE denotes the SystemC simulation time.

Figure 7 illustrates this with a TDF module, which consumes 3 data tokens
every 2ms, and produces 2 data tokens every 3ms. Beneath the tokens the point
in (absolute) simulation time, where the respective token is valid, is indicated.
Above and below that, the values for tTDF and tDE are given, when the tokens
are processed.

At synchronization points, e.g. by accessing SystemC AMS converter ports
that synchronize the SystemC discrete event (DE) kernel with TDF, the SystemC
AMS simulation kernel yields to the SystemC simulation kernel such that the
DE processes can catch on.

Figure 7 also shows that further time warp effects result from using multi-
rate data flow. When a TDF module has an input port with data rate >1 it also
receives “future values” with respect to tDE, and even tTDF . When a TDF
module has an output port with data rate >1, it also sends values “to the future”
with respect to tDE and tTDF . The difference to TLM is that the effective local
time warps are a consequence of the static schedule, with the respective local
time offsets only varying because of interrupts of the static schedule execution
due to synchronization needs.

18 C. Grimm, M. Damm, and J. Haase

TDF-module M1

p2p1

2 ms

rate 3
3 ms

rate 2

26 ms
tTDF

32 ms 38 ms

20 ms 38 ms
tDE

26 ms 32 ms 38 ms

20 ms 38 ms

ms ms

token

valid at

synchronization

tTDFu tDE

4038363432302826 26 29 32 35 38 4142

Fig. 7. Communication between TDF and TLM models of computation has to consider
the time defined by the DE simulation kernel and the time that can run ahead in TDF
and in TLM

This shows that with respect to the loosely timed TLM initiators, we have
to deal with two parties which run ahead of global simulation time in their
own special way. The question is when to trigger synchronization. In general,
we want to trigger synchronization as infrequent as possible. But what are the
conditions for triggering synchronization? The answer lies in the corner cases
described above (buffer over- resp. underflow). We use these corner cases to
trigger synchronization:

– TLM to TDF: If a buffer runs full, the transaction can simply be returned
with an error message (a mechanism foreseen in TLM 2.0). If a buffer runs
empty, however, we still have to feed the unstoppable TDF side. By syn-
chronizing now we give the TLM side the chance to “catch on” and provide
sufficient write transaction to fill the buffer.

– TDF to TLM: Again, an empty buffer in this case can be handled by a
TLM error. A full buffer, however, needs new read-transactions to free space,
which might be provided due to synchronization.

Of course, synchronization might still not resolve the respective issue. Then the
designer has to specify the desired corner case behavior as described above.

The TDF to TLM conversion direction could be handled in an even more
straightforward manner, if we would allow the converter (i.e. the TDF side) to
act as an TLM initiator. In this case, the delay of the transaction could be set
to the difference of tDE and the valid time stamp of the last token sent via
the transaction (i.e. tTDF + token number ·sampling period). Note that in this
active approach there is no need for synchronization due to this delay annotation.

However, such an initiator would be very limited, since there is no natural
way to obtain other transaction data like target address or command out of
the streaming TDF input. Yet, it can make sense for a TLM initiator using
TDF processes, for example when modeling a DSP which uses TDF models of
signal processing algorithms. In this case, we have to write an application specific
converter.

A possible approach for such a converter would work by dividing the TDF
to TLM conversion into two parts incorporating the converter described above
and using an additional wrapper, which acts on top of the “raw” converter and

Towards Co-design of HW/SW/Analog Systems 19

implements the necessary semantics (see also Sect. 2.1). In general, the wrapper
would do two things: mutating transactions by interpreting their data sections,
or creating new transactions.

A DSP model might get the request for a certain computation, which might
be encoded by a transaction using extensions, as it is foreseen by the TLM 2.0
standard. It then would create a raw data transaction and send it (via a con-
verter) to the appropriate TLM model performing the necessary algorithm, and
insert the response data to the original transaction and return it. Another sce-
nario might involve a raw data transaction carrying the target address encoded
within its data section.

Then the wrapper would generate the new transaction target address accord-
ingly, and delete the encoded address out of the data section. Note that the
basic converters still play a crucial role in this approach, since they manage the
conversion regarding time.

4 Example

To demonstrate the feasibility of the approach, we implement a transceiver sys-
tem using the TUV building blocks library, and show how

– The executable specification can be refined by adding non-ideal effects from
analog subsystem to the behavior, and

– How we can attach a HW/SW system running on a DSP with two shared
memories to the transceiver subsystems.

In the following, we won’t describe real system synthesis. Instead, we will show
that there is a seamless path from executable specification to architecture ex-
ploration and finally to the start of circuit design in analog and digital do-
main. As example, we use an OFDM transceiver that is modeled using the TU
Vienna Building Block library for communication system design (source code:
www.systemc-ams.org).

Executable specification – For the executable specification, most DSP
tasks of the baseband processing are available in the library, modeled using
the TDF model of computation. Furthermore, the executable specification in-
cludes some “analog blocks” such as quadrature mixer and LNA. These blocks
are obviously analog, because they just modulate the information on specified
physical quantities (modulated carrier). Apart from the pure transceiver, we as-
sume that there is a protocol stack that handles media access (MAC layer) and
other issues above this layer. Most of these tasks involve complex control flow
and communication with application software. They are described best using the
KPN model of computation. Figure 8 shows an overview.

Architecture Mapping and Architecture Exploration – The OFDM
transceiver system offers directly a good partitioning (like most transceiver sys-
tems). Following the rules given in Sect. 3, we can map the executable

www.systemc-ams.org

20 C. Grimm, M. Damm, and J. Haase

s
e
ri
a
l
to

 p
a
ra

lle
l

p
a
ra

lle
l
to

 s
e
ri
a
l

Quadrature

Mixer

I

Q

OFDM Receiver

Voltage

detector

Voltage

detector

s
e
ri
a
l
to

 p
a
ra

lle
l

p
a
ra

lle
l
to

 s
e
ri
a
l

Quadrature

Mixer

I

Q

OFDM Transmitter

TDF part

K
P

N
s

T
D

F
T

D
F

 s
K

P
N

Tx

Rx

KPN partition

LNA,

filter,...

Amplifier,

Filter, ...

Fig. 8. Executable specification of an OFDM transceiver that combines KPN and TDF
with embedded continuous-time models (filter, LNA)

specification as follows to architecture level processors, describing an initial
mapping:

– Mixer, LNA, and filters must be implemented in analog due to excessively
small signals and high frequencies and very low voltages (rule 2; signal con-
ditioning)

– The baseband processing (FFT, IFFT, etc.) is described using TLM, can
be implemented in SW, digital HW, or analog. Rule 3 recommends digital
implementation.

– The protocol stack is modeled using KPN and has a quite complex control
flow which demands implementation using SW.

Architectures to be investigated by architecture explorations are due to different
mapping of the TDF part behind the mixer to DSP processor, digital, or analog
hardware. The mapping of the TDF processes to DSP or dedicated digital HW
basically spans the whole space of “SW defined” vs. “SW controlled radio”. An
interesting tradeoff specifically possible with HW/SW/Analog Co-Design is also
the placing of.

Critical issues during architecture exploration are:

– Impact of jitter, noise, distortions, accuracy of A/D conversion on the de-
pendability of communication.

– Performance of DSP subsystem under real operation conditions (i.e. shared
memory architecture).

The DSP uses TDF models of an OFDM transmitter and of an OFDM receiver
to receive and transmit data packets. These data packets contain WRITE and
READ request, using a simple protocol, and refer to write and read transactions
on the memory modules in the TLM part of the system. The DSP sends the
requests to the memory via the bus, and returns the results (either the data for
a READ request or an acknowledge for the WRITE request, or a fail in both
cases). The TDF testbench provides the test data, and reads the results. The

Towards Co-design of HW/SW/Analog Systems 21

s
e
ri
a
l
to

 p
a
ra

lle
l

p
a
ra

lle
l
to

 s
e
ri
a
l

Quadrature

Mixer

I

Q

OFDM Receiver

Voltage

detector

Voltage

detector

s
e
ri
a
l
to

 p
a
ra

lle
l

p
a
ra

lle
l
to

 s
e
ri
a
l

Quadrature

Mixer

I

Q

OFDM Transmitter

TDF part

T
L
M

 s
T

D
F

T
D

F
 s

T
L

M

T
L
M

 I
n
te

rc
o
n
n
e
c
t

M
e

m
o

ry
2

M
e

m
o

ry
1

TLM part

Tx

Rx

Fig. 9. Model of OFDM transceiver for architecture exploration: Analog hardware
(mixer, filter, frontend, ADC, DAC) and DSP hardware (FFT, IFFT, serializer, dese-
rializer, etc.) are modeled using TDF model of computation; DSP for protocol stack is
modeled using TLM style communication

carrier frequencies of the incoming and the outgoing data are different (10MHz
and 5 MHz, respectively).

The DSP basically constitutes the wrapper for the TLM-TDF conversion men-
tioned above. Since the requests have different lengths, the incoming TDF data
is stored in a buffer, and it is checked whether a complete request has been
received yet. If so, an appropriate transaction is created and sent to the TLM-
Interconnect. Regarding the memory responses, the DSP can simply mutate the
transactions (e.g. add the protocol data to the data of a READ request), and
pass it to the OFDM transmitter via the TLM to TDF converter. Figure 9 shows
an overview of the example system used for architecture exploration. The TLM
to TDF converter used here is the one described at the beginning of the Section,

Fig. 10. Example screenshots of traces of the above model, one with an ideal channel
without noise and attenuation (above), and one with noise, attenuation and resulting
bit errors (below)

22 C. Grimm, M. Damm, and J. Haase

while the TDF to TLM converter uses the active approach described above. Fig-
ure 10 shows example traces of the system without noise and with noise and
resulting errors.

5 Conclusion

We have described key ingredients that might enable future tools to achieve
real Co-Design of HW/SW/Analog systems: An executable specification by a
combination of TDF and KPN is the first step. Architecture mapping assigns
partitions of the combined TDF / KPN processes to either analog or digital
(HW/SW) processors. Although we briefly described some known simple rules
and techniques for estimation of quantitative parameters that might assist au-
tomatic partitioning, partitioning will still require an overall system simulation.
Only such a simulation is able to estimate most - sometimes very complex - prop-
erties of different architectures. For overall system simulation, we have discussed
issues in co-simulation of TDF (=analog) and TLM (=HW/SW) systems that
allows to raise the level of abstraction and to increase performance of simulation.

It seems that most ingredients for automatic synthesis are available. However,
the devil is in the details: Properties of analog subsystems and the overall sys-
tem cannot be estimated easily. Therefore, in the near future, system partitioning
will still be based on experiences. One reason for this is that for estimation of
HW/SW systems, complex functional units or even whole platforms can be as-
sumed as pre-designed components with fixed properties, usually area, delay,
power consumption. This is not the case for analog components: Analog design
goes rather bottom up; therefore the output of HW/SW/Analog Co-Design is
rather a starting point for a design, but for which properties (area, power con-
sumption, and accuracy) are not known in advance.

Another major drawback are the have to be estimated for system synthesis
including analog/RF systems are, in addition to area, delay and power con-
sumption the properties accuracy and flexibility resp. re-configurability. Unfor-
tunately, accuracy is very difficult to predict at higher level of abstraction if
analog circuits are involved. Furthermore, flexibility and re-configurability are
currently only understood as properties of an implementation. Means to specify
this property as integral part of requirements are still missing.

Nevertheless, HW/SW/Analog Co-Design and thereby integral approaches for
system syntheses will gain impact: Applications such as wireless sensor networks,
energy management in future smart grids, or the electric vehicle underline the
need for more comprehensive design methods that also take care of analog/RF
or analog power components as vital parts of IT systems. However, like - and
even more - than in HW/SW Co-Design modeling and simulation will play a
central role. With SystemC AMS extensions as the first standard for specification
of HW/SW/Analog Systems at system level, the most important step towards
HW/SW/Co-Design has been done and is being adopted by industry.

Towards Co-design of HW/SW/Analog Systems 23

References

1. Christen, E., Bakalar, K.: VHDL-AMS – A hardware description language for
analog and mixed-signal applications. IEEE Transactions on Circuits and Systems-
II: Analog and Digital Signal Processing 46(10) (1999)

2. Standard: IEEE: Verilog. Verilog 1364–1995 (1995)

3. Grimm, C., Barnasconi, M., Vachoux, A., Einwich, K.: An Introduction to Model-
ing Embedded Analog/Digital Systems using SystemC AMS extensions. In: OSCI
SystemC AMS distribution (2008), Available on www.systemc.org

4. Huss, S.: Analog circuit synthesis: a search for the Holy Grail? In: Proceedings
International Symposium on Circuits and Systems (ISCAS 2006) (2006)

5. Grimm, C., Waldschmidt, K.: Repartitioning and technology mapping of electronic
hybrid systems. In: Design, Automation and Test in Europe (DATE 1998) (1998)

6. Oehler, P., Grimm, C., Waldschmidt, K.: A methodology for system-level synthesis
of mixed-signal applications. IEEE Transactions on VLSI Systems 2002 (2002)

7. Lopez, J., Domenech, G., Ruiz, R., Kazmierski, T.: Automated high level synthesis
of hardware building blocks present in ART-based neural networks, from VHDL-
AMS descriptions. In: IEEE International Symposium on Circuits and Systems
2002 (2002)

8. Zeng, K., Huss, S.: Structure Synthesis of Analog and Mixed-Signal Circuits using
Partition Techniques. In: Proceedings 7th International Symposium on Quality of
Electronic Design (ISQED 2006) (2006)

9. Zeng, K., Huss, S.: RAMS: a VHDL-AMS code refactoring tool supporting high
level analog synthesis. In: IEEE Computer Society Annual Symposium on VLSI
2006 (2005)

10. Zeng, K., Huss, S.: Architecture refinements by code refactoring of behavioral
VHDL-AMS models. In: IEEE International Symposium on Circuits and Systems
2006 (2006)

11. Grimm, C.: Modeling and Refinement of Mixed-Signal Systems with SystemC.
SystemC: Language and Applications (2003)

12. Klaus, S., Huss, S., Trautmann, T.: Automatic Generation of Scheduled SystemC
Models of Embedded Systems from Extended Task Graphs. In: Forum on Design
Languages 2002 (FDL 2002) (2002)

13. Kahn, G.: The semantics of a simple language for parallel programming. In: Rosen-
feld, J.L. (ed.) Information Processing 1974, IFIP Congress (1974)

14. Lee, E., Park, T.: Dataflow Process Networks. Proceedings of the IEEE (1995)

15. Eker, J., Janneck, J., Lee, E., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs,
S., Xiong, Y.: Taming Heterogeneity – the Ptolemy Approach. Proceedings of the
IEEE 91 (2003)

16. Lee, E., Sangiovanni-Vincentelli, A.: A Framework for Comparing Models of Com-
putation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems (1998)

17. Jantsch, A.: Modeling Embedded Systems and SoCs. Morgan Kaufman Publishers,
San Francisco (2004)

18. Cai, L., Gajski, D.: Transaction level modeling in system level design. Technical
Report 03-10. Center for Embedded Computer Systems, University of California
(2003)

19. Aynsley, J.: OSCI TLM-2.0 Language Reference Manual. Open SystemC Initiative
(2009)

www.systemc.org

24 C. Grimm, M. Damm, and J. Haase

20. Haubelt, C., Falk, J., Keinert, J., Schlicher, T., Streubühr, M., Deyhle, A., Hadert,
A., Teich, J.: A SystemC-based design methodology for digital signal processing
systems. EURASIP Journal on Embedded Systems (2007)

21. Ou, J., Farooq, M., Haase, J., Grimm, C.: A Formal Model for Specification and
Optimization of Flexible Communication Systems. In: Proceedings NASA/ESA
Conference on Adaptive Hardware and Systems (AHS 2010) (2010)

22. Parks, T.M.: Bounded Scheduling of Process Networks. Technical Report
UCB/ERL-95-105. EECS Department, University of California (1995)

23. Rosinger, S., Helms, D., Nebel, W.: RTL power modeling and estimation of sleep
transistor based power gating. In: 23th International Conference on Architecture
of Computing Systems (ARCS 2010) (2010)

24. Henkel, J., Ernst, R.: High-Level Estimation Techniques for Usage in Hard-
ware/Software Co-Design. In: Proceedings Asian Pacific Design Automation Con-
ference (ASP-DAC 1998) (1998)

25. Moreno, J., Haase, J., Grimm, C.: Energy Consumption Estimation and Profiling
in Wireless Sensor Networks. In: 23th International Conference on Architecture of
Computing Systems, ARCS 2010 (2010)

26. Wolf, F., Ernst, R.: Execution cost interval refinement in static software analysis.
Journal of Systems Architecture 47(3-4) (2001)

27. Haase, J., Moreno, J., Grimm, C.: High Level Energy Consumption Estimation
and Profiling for Optimizing Wireless Sensor Networks. In: 8th IEEE International
Conference on Industrial Informatics (INDIN 2010) (2010)

28. Bachmann, W., Huss, S.: Efficient algorithms for multilevel power estimation of
VLSI circuits. IEEE Transactions on VLSI Systems 13 (2005)

29. Adhikari, S., Grimm, C.: Modeling Switched Capacitor Sigma Delta Modulator
Nonidealities in SystemC-AMS. In: Forum on Specification and Design Languages
(FDL 2010) (2010)

30. Damm, M., Grimm, C., Haase, J., Herrholz, A., Nebel, W.: Connecting SystemC-
AMS models with OSCI TLM 2.0 models using temporal decoupling. In: Forum
on Specification and Design Languages (FDL 2008) (2008)

31. SystemC AMS Users Guide, OSCI (2010), www.systemc.org
32. Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X.,

Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems.
Theoret-ical Computer Science 138(1), 3–34 (1995)

33. Grimm, C., Heupke, W., Waldschmidt, W.: Analysis of Mixed-Signal Systems with
Affine Arithmetic. IEEE Transactions on Computer Aided Design of Circuits and
Systems 24(1), 118–120 (2005)

www.systemc.org

A Flexible Hierarchical Approach for

Controlling the System-Level Design Complexity
of Embedded Systems

Stephan Klaus

Technische Universität Darmstadt
Department of Computer Science

Integrated Circuits and Systems Lab
Hochschulstraße 10

64289 Darmstadt, Germany

Abstract. This paper summarizes results of the PhD theses on system-
level design of embedded systems at the Institute Integrated Circuits and
Systems Lab under the survey of Prof. Dr.-Ing. Sorin Huss. A straightfor-
ward identification of suited system-level implementations of distributed
embedded systems is increasingly restricted by the complexity of the
solution space and the size of modern systems. Therefore, concepts are
mandatory, which are able to control the design complexity and assist
the reuse of components. A hierarchical, task-based design approach and
two algorithms are developed, which allow to derive dynamically par-
tial specification models for design space exploration on different levels
of detail as well as task descriptions for IP encapsulation So, the de-
scriptive complexity of specifications is considerably reduced and the
execution time of system-level synthesis algorithm can be adopted to the
current requirements of the designer. The task behavior is captured by
Input/Output Relations, which represent a very general and powerful
means of encapsulating internal implementation details and of describ-
ing data as well as control-flow information on different levels of detail.
The necessity of these concepts are demonstrated by means of an MP3
decoder application example.

1 Introduction

Since the beginning of computer-aided hardware synthesis in the early 70’s, the
progress can be characterized by a steady shift of the design entry towards higher
levels of abstraction. At present, researchers focus on system-level design, which
addresses the synthesis of complete systems based on coarse-grained specifica-
tions. This process can be detailed as the selection of the necessary resources
(allocation) and the mapping of functional units onto the selected architecture in
space (binding) and time (scheduling), whereby real-time and other constraints
must be met. In particular, the non-functional requirements of embedded sys-
tems such as timing, cost, power consumption, etc., are extremely relevant for
their later commercial success. This optimization process is restricted both by

A. Biedermann and H. Gregor Molter (Eds.): Secure Embedded Systems, LNEE 78, pp. 25–42.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

26 S. Klaus

HW

C SW

A

B
BD

A

E F

C
Deadline: 1300

Costlimit: 650

FD

B

E

SW

HW

HW

HW

HW

A

HWHW SW

C

SW

SW

Costs

450

700

Time

1400

900

SW 580 1200

Implementation Variants:

Refinement

Fig. 1. Implementation Variants considering different Levels of Detail

increasing complexity of systems and by shorter time to market, whereby the
complexity in task-based specification models and therewith the execution of
synthesis algorithms grows exponential with the number of tasks. A tasks rep-
resents a single, quite simple part of an algorithm of the complete specification,
e.g. the Huffman decoding for an MP3 decoder. Even medium scaled embedded
systems are so complex, that flat representations become too difficult for humans
to handle and to comprehend. In the same manner as flat representations be-
come too complex, the execution time of synthesis and design space exploration
tools grows unacceptably, e.g., the simulation of an MP3 decoder takes 901s at
instruction set level, while a transaction level simulation takes only 41s. Due to
this fact, the design flow including all necessary implementation steps should be
accomplished on a current adequate level of detail only. But the drawback of too
abstract specifications is a loss of resulting quality, since the chosen level of detail
directly influences the optimization potential. Figure 1 illustrates this problem
by means of a hardware/software partitioning problem of task B. As it can be
seen, the cost and latency deadlines can not be fulfilled if task B is completely
implemented in software (first row) or hardware (second row). Instead of imple-
menting task B completely in hardware or software, a mixed implementation is
chosen, whereby task B is refined into a more detailed model consisting of the
three tasks D, E and, F . So, task D and E are implemented in hardware, while
F is mapped to software.

Such local refinements lead to the idea of static hierarchical synthesis al-
gorithms. Hierarchical algorithms work recursively on the static specification
hierarchy, whereat each module with its subtasks is optimized individually and
the results are composed on the next higher level. This reduces the design com-
plexity since smaller models have to be synthesized, but optimization potential is
dropped away. The loss of optimization potential between static hierarchical syn-
thesis algorithm and a global approach is depicted in Figure 2. The composition
of the individual results on the next higher level does not allow to schedule task
E in parallel to task C2, which is possible applying the flat synthesis process.
Nevertheless, the complexity in the hierarchical case is considerably reduced,
since in task-based specification models the complexity grows exponential with
the number of tasks.

A Flexible Hierarchical Approach 27

F

E

C1 C2
D

C1 E

C2

C

C1 C2

A

A

FDA

t

Resource1

Resource2

0 5 9

Resource1

Resource2

B
C

E

F

C1

C2DA

t

B

FED

0 5 9

Hierarchical Specifcation Flat Synthesis Model

Flattened Specifcation

Fig. 2. Local versus Global Optimization

It can be summarized that the level of detail of a specification is the crucial
point in terms of resulting quality and of execution time of the system-level syn-
thesis steps. A partial refinement of specifications may be mandatory to fulfill all
design requirements. On the other hand some parts of the specification may be
merged into one module to reduce the complexity and therewith the execution
time of the system-level synthesis. This means that a hierarchical specification
model has to provide dynamically suited representations for any subpart of the
specification and at any level of detail. Such a multi-level representation should
be able to capture the external behavior of subtasks and to represent data and
control-flow on different levels of detail, whereby internal implementation de-
tails should be hidden away. Thus, a reduction of the descriptive complexity of
embedded systems and both definition and reuse of IP cores become possible.

The next section discusses some other work, related to the presented meth-
ods. Section 3 outlines the proposed computational specification model and its
means of system behavior description. Algorithms for generating dynamically
flat model views and system behaviors on different levels of abstraction are de-
tailed next. Then, Section 5 summarizes the results produced by means of a
real-life application example of an MP3 decoder. Finally, a conclusion is given
and some open questions and future work are discussed.

2 Related Work

Designers of embedded systems can choose from many rather different specifica-
tion models. A good survey and a detailed description of appropriate specifica-
tion models can be found in [6]. According to [10] these models can be grouped
into five different classes: State-oriented, activity-oriented, structure-oriented,
data-oriented, and heterogeneous models. In contrast to state-oriented models
like Statecharts [11] or Esterel [2], which support hierarchy, most task-based
specifications are flat models. In the area of high-level synthesis hierarchical
models were explored in the past. An overview can be found in [17]. Hierarchical
system-level synthesis based on task graph specifications is addressed in [19,12,7].
[12] facilitate a classical hierarchical bottom-up design, whereby the determined

28 S. Klaus

Pareto optimal solutions are combined on higher levels of abstraction. A simu-
lation based approach is presented in [19]: The level of detail is increased each
time the solution space is reduced by system-level design decisions. COHRA [7]
proposes both a hierarchical specification and a hierarchical architecture model.
A specialized co-synthesis algorithm performs the mapping between these hi-
erarchical models. But all these approaches are working on static specification
hierarchies only and need specialized algorithms. Therefore, these approaches
are not so flexible and optimization just can take place internal to the fixed
functional partitioning as demonstrated in Figure 2 and therefore a loss of opti-
mization flexibility is in general to be expected.

Beside pure data-flow applications captured by task graph models as men-
tioned above, embedded systems mostly include control-flow parts, which must
be definitely taken into account for a complete and correct specification. There-
fore, a lot of research was done extending task graphs by control-flow informa-
tion. The CoDesign Model (CDM) [4] and the System Property Intervals (SPI)
model [9] [21] are cyclic graph models, which capture the behavior by relating
input edges to output edges. Thereby each task can have more than one of such
relations to model different control-depending system reactions. In addition, the
SPI model supports intervals for the timing and the amount of data. Conditional
Process Graphs (CPG) [8] and extended Task Graphs (eTG) [16] model control-
flow by boolean conditions, which are assigned to data-flow edges. In addition,
eTG support conditional behavior on input edges too. But all of these models do
not allow for a hierarchical specification, which is mandatory for a system-level
design of large systems.

3 Computational Model

The proposed specification method denoted as hierarchical CoDesign Model
(hCDM) is intended as a means for the description of IP core encapsulation
and for system-level synthesis on different levels of detail. The model is a spe-
cialization and hierarchical extension of [4] and is very well suited for data-flow
dominated systems, which contain control-flow behavior, too. In addition to the
hierarchical extension of the CDM, the data cycles in the original model is re-
moved from all definitions in order to allow an efficient system synthesis. The
cyclic property and the extended behavior description of the CDM lead to Turing
complexity of the model [5] and therewith the complexity for scheduling prob-
lem is NEXPTIME [13], which is not accabtable for system-level synthesis. Also
without data cycles, periodic behavior and bounded loops can be modeled in
hCDM. So, without loosing too much modeling power, the synthesis complexity
is drastically reduced. For that purpose also the behavior description and the
definitions of the conditions must be adopted.

The novel dynamic hierarchical decomposition property and the uniform
means of behavior description are its main advantages compared to state of
art system-level computational and specification models for embedded systems.

A Flexible Hierarchical Approach 29

3.1 Hierarchical Specification Method

A hCDM is a directed acyclic graph consisting of computational tasks, inputs,
outputs, and dependencies between the tasks. Additionally, each task may be
defined as a separate hCDM thus introducing recursively a hierarchical structure.

Definition 1. (hCDM Graph):
The hierarchical CoDesign Model consists of a directed acyclic graph G= (V,E)
where the nodes are composed of inputs, tasks, and outputs V = I∪ T∪ O. An
arc e∈ E is a 2-tuple (vi,vj), vi,vj ∈ V. In this model

– I denotes the set of inputs: ∀i∈ I.¬∃(v, i) ∈ E.v ∈ V
– O denotes the set of outputs:∀o ∈ O.¬∃(o, v) ∈ E.v ∈ V
– T is the set of computational tasks: ∀t ∈ T.∃(t, v1) ∈ E ∧∃(v2, t) ∈ E.v1v2 ∈

V .

Each task t ∈ T in a hCDM G can be defined recursively as a separate hCDM
denoted as G′ = (V ′, E′). Thereby each input edge of t (v, t) ∈ E, v ∈ V is
assigned to an input i′ ∈ I ′ and each outgoing edge (t, v) ∈ E, v ∈ V is assigned
to an output o′ ∈ O′ of G′.

Figure 3 illustrates a hierarchical specification by means of a simple example,
whereas the top-level module T is subdivided into three tasks A, B, and C. The
assignment of inputs/outputs to edges of the parent hCDM introduces hierar-
chical edges and thus a hierarchical data-flow. These edges are visualized as the
links between the levels n, n + 1 and n + 2.

In contrast to this hierarchical problem specification, a current model view
defines a sub-area of interest. All tasks, which are below a current level of detail
in the specification hierarchy, are ignored for the current model view and just

Fig. 3. Hierarchical Specification Example

30 S. Klaus

BA

T

D E F

G H I J

ML

K

C1 C2

C

Current Root

 Current Level of Detail

Model 1

Detail

F

BA

T

D E

G H I J

ML

K

C1 C2

C

Current Root

 Current

 Level of

Model 2

Fig. 4. Current Model View Examples

the subtree starting at a current root is taken into account. Note that the tasks
of the current level of detail are not necessarily leaves of the original hCDM
specification.

Definition 2. (Current Model View):
The current model view of a hCDM G is defined by a 2-tuple A = (r, L) where

– r ∈ T denotes the current root task and
– L ⊆ T the current level of detail.

Figure 4 illustrates the definition of the current model view based on the com-
plete hierarchical view of the example in Figure 3. Two different model views are
illustrated: Task T represents the root of both submodules and A, G, H, I, J, K, C
the current level of detail of the first model view. The second model encapsu-
lates task B on a higher level of abstraction leaving out the detailed subdivision
into task D up to task K. Additionally, task C is refined into C1 and C2. The

J

I

H

G

A

C

BD

F

Model 1

T

E

K

A

B

C2

C1

C

T

Model 2

Fig. 5. Partially flattened hCDM Models

A Flexible Hierarchical Approach 31

sub-area defined by a current model view can be transformed into a flat task
graph specification. So, standard synthesis algorithm for partitioning, allocation,
binding and, scheduling can be applied in a straight forward manner. Figure 5
depicts the transformed flat hCDMs for both models of Figure 4. The dashed
lines denote the hierarchy of the original model and the arrows visualize the
data-flow.

In Section 4 algorithms are proposed to derive automatically flat current
model views according to user requests. So, it is possible to manipulate dy-
namically the hierarchical structure in a systematic way, which allows to adopt
the level of detail to the current necessary level in a flexible way. Thus, the com-
plexity of the system-level synthesis steps can be easily reduced to a necessary
minimum with respect to the required accuracy.

3.2 Dynamic System Behavior

A hCDM is intended to jointly represent data and control-flow information.
Transformative applications like digital signal processing in multimedia applica-
tions, e.g., MP3 decoder or encoder, are dominated by data-flow operations, but
include also a few control-flow decisions. Both data- and control-flow informa-
tion of tasks should be captured on different levels of detail by means of one and
the same mechanism. In case of modeling the control-flow, a more sophisticated
behavior description than a simple Petri-net [20] activation rule is mandatory,
which is frequently exploited in task graph specifications.

Figure 6 illustrates code fragments, which cause possibly different control-flow
behaviors. The output of a task, which contains such code fragments, may differ
according to the value of type1 in the switch statement, or to a in the if statement,
respectively. In order to address this property Definition 3 introduces behavior
classes to denote possibly different control-flow effects in a hCDM. A behavior
class consists of an identifier and of a set of different behaviors according to
possible control-flow decisions.

Definition 3. (Behavior Class):
A behavior class b is a 2-tuple b= (n, W), where n is a unique identifier and
W a set of at least two different behaviors. BG is the set of all possible behavior
classes in a hCDM G.

switch (type1) {

 case ON :

 case OFF:

 case TEST:....

}

if (a > 10) then

else

Fig. 6. Behavior Class Examples

32 S. Klaus

G
B ={ (a,{T,F}) , (b,{1,0}) }

a=T

a=F

b=1

b=0

b=1

b=0

{ (a,F) (b,1) }

{ (a,T) (b,0) }

{ (a,T) (b,1) }

{ (a,F) (b,0) }

Cl=[{(a,T),(b,1)},{(a,T),(b,0)},{(a,F),(b,1)}]

Fig. 7. Conditionlist Example

The Behavior Classes for the examples in Figure 6 result in:

bleft = (type1, {ON, OFF, TEST }) and bright = (a, {T, F}).

Since a behavior class defines the set of all possible externally observable system
reactions, a Condition restricts this set to one current valid behavior. During
execution of a system a current control-flow reaction is selected from the set of
all possible behaviors. Therefore, a condition embodies the control-flow decisions
taken.

Definition 4. (Condition, Conditionlist):
A condition c is a 2-tuple c = (n, w), where w ∈ W with (n, W) ∈ BG.
A sequence of conditions is a Condition-Sequence Z.
A set of Condition-Sequences is a Conditionlist C.

A Condition-Sequence denotes conditions, which are executed in sequel. Figure 7
presents a decision tree consisting of two Behavior Classes, each featuring two
different behaviors. The nodes of the tree correspond to control-flow decisions
taken during the execution of a system. The two Behavior Classes result in 22

different system reactions, whereby the resulting Condition-Sequences are at-
tributed to the leafs of the decision tree in Figure 7. A Conditionlist subsumes
different Condition-Sequences to capture identical system output for a class of
Condition-Sequences. Cl in Figure 7 includes all Condition-Sequences except
{(a, f)(b, 0)}. So, Cl describes all executions when a = T or b = 1. In order to
map and to transfer the behavior to different levels of abstraction, some opera-
tors are to be introduced for the manipulation of Conditionlists. Especially, the
union and the intersection of these lists, performed by means of three auxiliary
functions, are to be provided.

Definition 5. (Operators):
Two operators on Conditionlists denoted as ⊕, ⊖ and three auxiliary functions
Names, All, Expand are defined as follows:

– Names: C → {n1, .., ni}
Names(C) = {n|(n, v) ∈ C}

A Flexible Hierarchical Approach 33

– All:{n1, .., ni} → C
All({n1, ..ni}) =

⋃

∀s1 ∈ W (n1)
...
∀si ∈ W (ni)

{(n1, s1), .., (ni, si)}

– Expand C × {n1, .., ni} → C
Expand(C, {n1, .., ni}) =

⋃

∀Z ∈ C
∀s1 ∈ W (n′

1)
...
∀si ∈ W (n′

i)

{Z ∪ {(n1, s1), .., (ni, si)}}

with {n′
1, ..n

′
i} = {n1, ..ni} \ Names(Z)

– ⊖ : C × C → C
C1 ⊖ C2 = Expand(C1, Names(C1 ∪ C2)) ∩ Expand(C2, Names(C1 ∪ C2))

– ⊕ : C × C → C
C1 ⊕ C2 = Expand(C1, Names(C1 ∪ C2)) ∪ Expand(C2, Names(C1 ∪ C2))

The operator Names determines the set of all identifiers in a Conditionlist. Ac-
cording to a set of Behavior classes All calculates a Conditionlist, which contains
all possible Condition-Sequences. Expand takes a Conditionlist and a set of Be-
havior Classes as an input and produces an identical Conditionlist extending
all Condition-Sequences of the input Conditionlist with the additional Behav-
ior Classes. This allows the application of simple set operations for ⊕ and ⊖.
Accordingly, ⊖ defines the intersection of two Conditionlists. The resulting Con-
ditionlist contains the Condition-Sequences, which are contained in C1 and C2.
In contrast, ⊕ defines the union of two Conditionlists. The resulting Condition-
lists is valid, if Conditionlist C1 or C2 is valid.

3.3 Task Behavior

The external behavior of tasks should be captured by a uniform means of descrip-
tion. For example, the MP3 decoder task Stereo in Figure 8 produces outputs on
both outgoing edges, in case that the input stream is stereo coded. Otherwise,
if the sound is mono encoded, only one output will be activated. Input/Output
(IO)Relations detail this external system reactions. The input set defines the
edges, which must present data to activate a task. Upon activation new data is
then generated on all edges specified by the output set. The IO Relation becomes
valid under the referenced Conditionlist only.

Definition 6. (Input/Output Relation):
For every t ∈ T a set of Input/Output Relations is assigned. An Input/Output
Relation is a 3-tuple < in|out, C >. where:

Stereo
1 2

3

Fig. 8. Example for External Task Behavior

34 S. Klaus

a=F

G

E J

K

4

6

7

H

5

8

9

1

I

2 3

B
G

a=T

 < 5 | 8 , (a,F) >

 < 1 | 3 , (a,F) >

H : < 1 | 2 , (a,T) >

J : < 7 | 8 , (a,T) >

G : < 2 | 4 , True >

E : < 4 | {6,7} , True >

I : < 3 | 5 , True >

K : < 8 | 9 , True >

={ (a,{T,F})}

Fig. 9. Input/Output Relations

– in ⊆ {(v, t)|(v, t) ∈ E ∧ v ∈ V } : subset of the input edges of t
– out ⊆ {(t, v)|(t, v) ∈ E ∧ v ∈ V }: subset of the output edges of t
– C denotes the Conditionlist.

The IO Relations for the simple example of Figure 8 results in: < 1|2, (t, mono)
> and < 1|{2, 3}, (t, stereo) >. Figure 9 illustrates another example for the
definition of IO Relations by means of a small task graph example. Later on,
the outlined behavior will be subsumed to a high-level description. Figure 9
details one Behavior Class named a, which contains two different behaviors.
Task H splits the control-flow according to Condition a, while task J merges
the different paths. The output on edge 6 occurs only if the value of Condition
a is T . The other tasks need data on all their input edges and upon activation
new data on all their output edges is generated. Conditional Process Graphs [8]
and extended Task Graph [16] specifications can be easily transformed into this
more general specification model. The task behavior of SDF [18] specifications
can be modeled by the proposed IO Relations too.

In order to perform a design space exploration an appropriate and well-defined
execution semantic is mandatory. The activation of tasks takes place according to
the activation rule outlined in Definition 7 considering the following basic princi-
ples: The execution of any task is non-preemptive and inter-task communication
may only take place either at the start or upon termination of a computation.

Definition 7. (Activation Rule):
A task t in a hCDM G can be activated by a set of data M ⊂ E under Condi-
tionlist Cm, if an IO Relation io =< in|out, Cio > exits in t, with:
in ⊆ M and Cm ⊖ Cio
= ∅.

A task can be only activated if valid data on its specified input edges is available
and the Conditionlists match the Conditionlist of the current execution. Upon
activation, the resulting data in G is determined from an Update Rule as follows.

A Flexible Hierarchical Approach 35

B = { (c,{T,F)}
G

< 1,2 | 4 ,(c,T) >

< 2,3 | 4,5 ,(c,F) >

 T2 :

IO Relation:

M={..,2,3,...}
Cm={(c,F)}

T2

2 31

4 5

M’={...,4,5,...}
Cm’={(c,F)}

T2

2 31

4 5

Activation of T2

Fig. 10. Task Execution

Definition 8. (Update Rule):
Upon activation of task t in a hCDM G under IO Relation io =< in|out, Cio >
the set of data M and the Conditionlist of the current execution Cm is updated
to M ′, C′

m according to the following properties:

– M ′ = M \ in ∪ out
– C′

m = Cm ⊖ Cio.

If an IO Relation is activated, its input data is removed and new output data
on all edges denoted in the output set is generated. In case that a new condition
is introduced by the activation of the IO Relation, then the Conditionlist of the
current execution has to be adjusted accordingly.

Figure 10 illustrates a task denoted T 2 and its IO Relations as an example.
This task may be activated under Condition (c, T) consuming data from input
edge 1 and 2. Alternatively, it may be activated under Condition (c, F) reading
data from edge 2 and 3 generating new data on edge 4 and 5, respectively. As
depicted by the filled circles in Figure 10 edges 2 and 3 contain data, so T 2 is
being activated under Condition (c, F). The set of edges, which contain data M
is then changed as visible from the right part of Figure 10.

4 Generating Current Model Views

To overcome the limitations of a static hierarchical structure two algorithms are
presented in the sequel aimed to the derivation of flat subgraphs at variable levels
of detail. These algorithms are intended to overcome the limitations of static
hierarchical structures. The algorithm of Figure 11 calculates the flat hCDM
defined by a given current root, a current level of detail, and a complete hCDM.
So, multiple views on different levels of detail can be generated dynamically.
The static structures are traversed by this flexible method. Flat representations
generated in this way allow for the application of standard algorithms for the
subsequent design steps.

The ports of the root task become the inputs (loop line 1 in Figure 11) and
outputs (loop in line 8) of the current model view. The set of tasks is established
by traversing the hierarchy tree starting from the root of the current model view
down either to a leaf or to a task in the current level of detail (while loop in
line 4). This restricts the current task list to a well-defined cut tree, since L in

36 S. Klaus

In: G: hCDM ; r: Current Root ; LoT: Current Level of Detail
OUT: aTasks: Current Task List; aInputs: Current Input Ports

aOutputs: Current Output ports; aEdges: Current Data Dependencies
(1) for all (p ∈ r.ports ∧ p.type=IN)do

(2) aInputs.insert(p) /* Insert Input */
(3) testTasks= r.GetSubTasks()
(4) while (testTasks.empty()=FALSE) do

(5) t=testTasks.removeFirst()
(6) if (t ∈ LoT ∧ t.GetSubTasks()=∅) then aTasks.insert(t) /* Insert Task */
(7) else testTasks = testTasks ∪ t.GetSubTasks()
(8) for all (p ∈ r.ports ∧ p.type=OUT) do

(9) aOutputs.insert(p) /* Insert Output */
(10) for all (n ∈ aTasks ∪ aInputs) do

(11) for all (h ∈ n.GetHierachicalOutEdges()) do

(12) n′=h.findSink(t,aTasks ∪ aOutputs)
(13) aEdges.insert(edge(n,n′))) /* Insert Data-Flow Edge */

Fig. 11. Algorithm: BuildCurrentModelView

Definition 2 may not necessarily define a proper cut tree. The data dependencies
of the current model are determined by traversing the hierarchical data-flow
edges starting from all current tasks and inputs up to a task or to an output
of the current model view (loop in line 10). The complexity of the algorithm is
O(#tasks*#edges) because of the loops in line 10 and 11.

After creating a partially flat representation of the hierarchical model, it is
necessary to summarize the behavior of the subtasks. The algorithm of Fig-
ure 12 takes the IO Relations of these subtasks as input and derives a compact
description of the envisaged high-level model.

This algorithm can be used in a bottom-up design style as well as in a top-
down verification flow. In the first case the IO Relations are generated with
respect to the behavior of the subtasks. In the second case it can be easily checked
that the implementation of the subtasks is equivalent to the specification of the
parent task. The algorithm takes a task as input and determines its IO Relations
with respect to the behavior of its subtasks. This can be done recursively to
bridge more than one level of abstraction. The generation process is illustrated
in Figure 13 for the subgraph of Figure 9 thus producing an IP description for
this subgraph.

At first, the set of all possible Conditionlists is determined considering the IO
Relations (loop in line 2 of Figure 12) of all subtasks using the All operator (line
4). The example from Figrure 9 has two different Conditionlists depending on
whether a is T or F , as it can be seen below the dashed lines in Figure 13. Then,
the input and output sets for each Conditionlist (loop in line 5) are established
considering all generated Conditionlists and the underlying connectivity. The
input and output set are combined (line 12) if the union of the Conditionlists is
not empty and the current IO Relation is linked to the newly build IO Relation
(line 9). Internal data edges are removed (loop in line 11), visualized by the

A Flexible Hierarchical Approach 37

In: t: Task
OUT: ioR: New Input/Output Relations
(1) N = ∅ ; ioR = ∅ ; ioR′ = ∅
(2) for all (io ∈ t.ioRelations)do /* Determine Condition Lists*/
(3) N=N ∪ Names(io.c)
(4) condSet = All(N)
(5) for all (c ∈ condSet)do

(6) in = ∅; out = ∅
(7) while (in or out changed) do /* Determine Input and Output Sets*/
(8) for all (io ∈ t.ioRelations)do

(9) if (((io.c ⊖ c) != ∅ ∧ (io.in has external port
∨ in ∩ io.out 	= ∅∨ out ∩ io.in 	= ∅))) then

(10) in = in ∪ io.in; out = out ∪ io.out
(11) for all(e ∈ in ∧ e ∈ out) do

(12) in=in \ e ; out=out \ e
(13) ioR′.insert (in,out,c)
(14) for all (io ∈ ioR′) do /* Compact IO Relation */
(15) c=io.c
(16) for all (io′ ∈ ioR′) do

(17) if (io.in = io′.in ∧ io.out = io′.out) then

(18) c= io.c ⊕ io′.c; ioR′ = ioR′\ io \ io′

(19) ioR.insert(io.in,io.out,c)

Fig. 12. Algorithm: DeriveIORelFromSubTasks

canceled edges in step 3 of Figure 13. Finally, IO Relations (loop in line 14)
are merged in case that the input and outputs sets are equal and all dispensable
Conditionlists are removed (line 18). So, the complexity of the algorithm depends
on the amount of behavior classes and IO Relations O(#Behavior Classes*#IO
Relations*#Ports), because of the loops in line 5, 7 and 8. The resulting two
IO Relations highlighted in Figure 13 represent the behavior of task B, which
was previously defined by eight IO Relations and six subtasks as illustrated in
Figure 9. Thus, the proposed approach to IO Relation encapsulation hides its
internal implementation and defines the external view of the envisaged high-
level model, i.e., an IP module. The proposed algorithms support designers of
embedded systems in both generating flexible submodules on all desired levels
of detail and in dealing with the dynamic control behavior of tasks on different
levels of detail.

5 Results

This sections attempts the hard try to give an idea of the benefits and the
application of the proposed specification model and its flexible hierarchical ma-
nipulations. Beside some generic, but meaningful experiments the system-level
design of a real-time MPEG 1 Layer 3 (MP3) Decoder is presented. First of all it
has to be mentioned that it is not in the focus of the paper and no easy answer

38 S. Klaus

G : (2 | 4 , true >

E : (4 | {6,7} , true >

I : (3 | 5 , true >

K : (8 | 9 , true >

==================================

1

3

H : (1 | 2 , (a,T) >

 (1 | 3 , (a,F) >

J : (7 | 8 , (a,T) >

 (5 | 8 , (a,F) >

< (1,2,4,7,8) | (2,4,7,8,6,9) , {(a,T) } >

< (1,3,5,8) | (3,5,8,9) , {(a,F) } >

< 1 | (6 , 9) , {(a,T) } >

< 1 | 9 , {(a,F) } >

Union of Input and Output Sets 2

Remove Internal Edges

possible Condition−

Determine all

 lists

Fig. 13. Generation Process of IP Descriptions

can thus be given to the question of the right or optimal level of detail for the
design process. However, some hints are given at the end of the section.

Figure 14 shows the execution time of a system-level synthesis algorithm de-
pending on the number of tasks in the specification. The process of system-level
synthesis or design space exploration is to determine suited implementation vari-
ants. For this purpose a genetic design space algorithm [14,15] is chosen. This
heuristic is able to deal with different design goals, e.g., run-time and size. For
this experiments ten individual runs were investigated for ten different specifi-
cations of each size. The specifications are generated by the tool Task Graph for
Free (TGFF), which was developed by Robert Dick at Princeton University.

The execution time increases directly by the number of tasks. Thus it is ob-
vious, that a specification should contain just the absolutely necessary amount
of tasks. If the number of tasks can be reduced, then the execution time is also
drastically reduced and design time can be saved. The proposed specification
model and the novel algorithms are aimed to a fast and flexible adoption of the
level of detail and thus to a reduction of the number of tasks for the system-level
synthesis step.

The necessity of a flexible refining of a specification for the system-level de-
sign is demonstrated by means of an MP3 Decoder. The upper two levels of the
hierarchical specification of the MP3 decoder, which will be implemented on top
of an Atmel FPSLIC System-on-Chip (SoC) [1] is summarized in Figure 15. The
specification is derived from a functional partitioning of the problem and the de-
sign process has to map this functional specification to the Field Programmable
Gate Array (FPGA) or the AVR micro-controller of SoC. Additionally, the cho-
sen genetic design space exploration calculates the complete system-level imple-
mentation including scheduling, allocation, and binding. At top-level the MP3
decoder functionality consists of reading data from a Multi Media Card, of de-
coding tasks, and of controlling the digital/analog converter. The decoding task
is refined into 14 subtasks on the next level as shown in Figure 15. Here, the
main tasks are the Huffman decoding (Huffman), the Inverse Modified Discrete

A Flexible Hierarchical Approach 39

0 50 100 150 200 250 300
Number of Tasks

0

50

100

150

200

250

300

E
x
ec

u
ti

o
n
 T

im
e

[s
]

Execution Times

Fig. 14. Execution time of the system-level Synthesis for different levels of detail

DAC: Digital Analog

 Converter

MMC: Multi Media Card

MP3 Player

MP3 Decoder

High−Level
Specification of

the Decoder

DAC

MMC

Huffman

Inv.

Error

Alias

Des.

Poly.

Poly.

Inv.

IMDC

IMDC

Alias

Stereo

Reorder

Scale

MP3 Decoder

Fig. 15. Hierarchical Specification of an MP3 Decoder

Cosine Transform (IMDC), and the Synthesis Polyphase Filterbank (Poly). The
most important non-functional specification of the decoder imposes that for real-
time audio streaming at least 39 frames per second have to be decoded. The size
of the FPGA and the rather small memory resources are the main limitations
of this target SoC architecture, which have to be considered accordingly by the
proposed design process.

Three different design approaches had to be investigated to finally receive a
real-time implementation. First of all, a fast approach was chosen, which tries to
map the high level specification of Figure 15 directly. The partitioning process
assigns the data-flow dominated parts IMDCT, Inverse, and Polyphase Filter
Bank to the FPGA, and the control-flow dominated parts to the AVR micro-
controller. This design process is fast, since only 14 tasks have to be mapped,
but the approach failed, however, either due to the limited memory or due to
the FPGA resources. Therefore, in a second approach the preliminary imple-
mentation was improved by local optimizations of each task. This leads to a
static hierarchical approach, where the hierarchical tasks are designed individ-
ually and combined on the next higher level. These separate modules for the

40 S. Klaus

tasks are generated by exploiting algorithm 11. The refined tasks contain be-
tween 45 and 442 subtasks. An optimization of the complete refined model is
not applicable due to the execution time. The estimated execution time of an
accurate simulation for the complete model is about 4, 32 ∗ 107s. But this tra-
ditional hierarchical approach violates, again, the real-time specs. In a last step
the flexible hierarchical approach was considered. Since the data-flow dominated
parts on the FPGA are the bottleneck of the static hierarchical approach, the
refined models of the IMDCT, Inverse, and Polyphase Filter Bank are merged
into one submodule, which is then optimized in a partially global process. This
submodule is generated by exploiting algorithm 12. The partially global sub-
module, which consists of about 600 subtasks, can now share resources and can
finally be optimized in time as shown in Figure 2. This flexible approach leads
to an acceptable real-time implementation of the decoder. A more detailed dis-
cussion of the design approach especially of the subsequent register transfer(RT)
design for this application example can be found in [3].

Table 1 summarizes the implementation results for all three design approaches,
i.e., the top-level specification mapping, the model using a static hierarchical
approach, and the model exploiting the proposed partially global optimizations
exploiting algorithm 11 and 12. As it can be easily seen, only the design ap-
proach exploiting the partially global optimizations of the hCDM leeds to an
implementation, which meets the real-time requirements on top of this highly
restricted SoC platform.

T able 1. Comparison of the Implementation Results for the FPSLIC SoC

Optimization AVR FPGA Time per

Clock Cycles CLB Clock Frame

High-Level 702500 >100% - 1s (AVR)

Local 350619 80% 4MHz 74ms

Global 350619 60% 12MHz 21ms

In addition to this real-life example generic specification models were inves-
tigated to demonstrate the composition of tasks into models on higher levels of
abstraction and the resulting quality. Therfore, two sequential tasks of the ran-
domly generated models are combined into one single task. Again, the genetic
design space exploration is taken to optimize the run-time of the resulting im-
plementation. By using ten different specifications consisting of 60 to 100 tasks
the average run-times of the reduced models increased by about 10%. But at the
same time the number of tasks decreases by a factor of two and so the execution
time of the system-level synthesis is reduced in the same manner as depicted in
Figure 14.

A Flexible Hierarchical Approach 41

On the one hand the flexible approach of the hCDM can be used to refine
the models, if needed, to reach the design goals. On the other hand parts of
the specification can be merged to save design time. It is an important and
interesting field of research to find rules and recommendations which party to
merge and which parts to refine. Up to now, no general answer can be given.

6 Conclusion

This paper introduces a formal hierarchical specification method, which is aimed
to the management of design complexity of embedded systems. Partial models
for system-level synthesis can be generated on demand on any level of detail. So,
at each point in time only the current necessary complexity of the specification
has to be taken into account and, therefore, the whole design process can be
flexibly structured in a hierarchical manner. In contrast to specialized hierar-
chical synthesis algorithms the proposed derivation of flat current model views
allows for the application of standard synthesis algorithms. IO Relations are ad-
vocated as a very general and flexible means of description for data- and dynamic
control-flow behavior on different levels of detail. The proposed method captures
the externally visible behavior of IP cores thus hiding internal implementation
details. It is therefore very well-suited for IP exploitation. The encapsulation of
IP cores by merging IO Relations according to the proposed algorithms reduces
considerably both the descriptive complexity and the execution times of sub-
sequent system-level synthesis steps. A subject for future work is to determine
cases and reasons, which allow encapsulation of modules, without affecting the
resulting accuracy of the generated IP core.

References

1. Atmel, I.: Configurable logic data book (2001), http://www.atmel.com
2. Berry, G., Gonthier, G.: The Esterel Synchronous Programming Language: De-

sign, Semantics, Implementation. Science of Computer Programming 19(2), 87–152
(1992)

3. Bieger, J., Huss, S., Jung, M., Klaus, S., Steininger, T.: Rapid prototyping for
configurable system-on-a-chip platforms: A simulation based approach. In: IEEE
Proc. 17th Int. Conf. on VLSI Design and 3rd Int. Conf. on Embedded Systems.
IEEE Computer Society Press, Mumbai (2004)

4. Bossung, W., Huss, S.A., Klaus, S.: High-Level Embedded System Specifications
Based on Process Activation Conditions. VLSI Signal Processing, Special Issue on
System Design 21(3), 277–291 (1999)

5. Buck, J.T.: Scheduling dynamic dataflow graphs with bounded memory using the
token flow model. Tech. Rep. ERL-93-69, UC Berkeley (September 1993)

6. Cortés, L.A., Eles, P., Peng, Z.: A survey on hardware/software codesign represen-
tation models. Tech. rep., Linköping University (June 1999)

7. Dave, B., Jha, N.: Cohra: Hardware-software co-synthesis of hierarchical dis-
tributed embedded system architectures. In: Proc. Eleventh Int. Conference on
VLSI Design. IEEE Computer Society Press, Chennai (1998)

http://www.atmel.com

42 S. Klaus

8. Eles, P., Kuchcinski, K., Peng, Z., Doboli, A., Pop, P.: Scheduling of conditional
process graphs for the synthesis of embedded systems. In: Proceedings of the con-
ference on Design, automation and test in Europe, pp. 132–139. IEEE Computer
Society Press, Paris (1998)

9. Ernst, R., Ziegenbein, D., Richter, K., Thiele, L., Teich, J.: Hardware/Software
Codesign of Embedded Systems - The SPI Workbench. In: Proc. IEEE Workshop
on VLSI. IEEE Computer Society Press, Orlando (1999)

10. Gajski, D.D., Vahid, F., Narayan, S., Gong, J.: Specification and Design of Em-
bedded Systems. Prentice Hall, Upper Saddle River (1994)

11. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8(3), 231–274 (1987)

12. Haubelt, C., Mostaghim, S., Slomka, F., Teich, J., Tyagi, A.: Hierarchical Synthesis
of Embedded Systems Using Evolutionary Algorithms. In: Evolutionary Algorithms
for Embedded System Design. Genetic Algorithms and Evolutionary Computation
(GENA), pp. 63–104. Kluwer Academic Publishers, Boston (2003)

13. Jakoby, A., Liskiewicz, M., Reischuk, R.: The expressive power and complexity of
dynamic process graphs. In: Workshop on Graph-Theoretic Concepts in Computer
Science. pp. 230–242 (2000)

14. Jhumka, A., Klaus, S., Huss, S.A.: A dependability-driven system-level design ap-
proach for embedded systems. In: Proceedings of IEEE/ACM International Con-
ference on Design Automation and Test in Europe (DATE), Munich, Germany
(March 2005)

15. Klaus, S., Laue, R., Huss, S.A.: Design space exploration of incompletely specified
embedded systems by genetic algorithms. In: GI/ITG/GMM Workshop Model-
lierung und Verifikation, München (April 2005)

16. Klaus, S., Huss, S.A.: Interrelation of Specification Method and Scheduling Results
in Embedded System Design. In: Proc. ECSI Int. Forum on Design Languages,
Lyon, France (September 2001)

17. Kountouris, A.A., Wolinski, C.: Efficient scheduling of conditional behaviours for
high-level synthesis. ACM Transactions on Design Automation of Electronic Sys-
tems 7(3), 380–412 (2002)

18. Lee, E.A., Messerschmitt, D.G.: Synchronous dataflow. Proceedings of the
IEEE 75(9), 1235–1245 (1997)

19. Mohanty, S., Prasanna, V.K., Neema, S., Davis, J.: Rapid design space exploration
of heterogeneous embedded systems using symbolic search and multi-granular sim-
ulation. In: Proceedings of the Joint Conference on Languages, Compilers and Tools
for Embedded Systems, pp. 18–27. ACM Press, Berlin (2002)

20. Petri, C.A.: Interpretations of a net theory. Tech. Rep. 75–07, GMD, Bonn, W.
Germany (1975)

21. Ziegenbein, D., Richter, K., Ernst, R., Thiele, L., Teich, J.: SPI- a system model for
heterogeneously specified embedded systems. IEEE Trans. on VLSI Systems 9(4),
379–389 (2002)

Side-Channel Analysis –

Mathematics Has Met Engineering

Werner Schindler1,2

1 Bundesamt für Sicherheit in der Informationstechnik (BSI)
Godesberger Allee 185–189

53175 Bonn, Germany
Werner.Schindler@bsi.bund.de

2 CASED (Center for Advanced Security Research Darmstadt)
Mornewegstraße 32

64289 Darmstadt, Germany
Werner.Schindler@cased.de

Dedicated to Sorin Huss on the occasion of his 60th birthday

Abstract. We illustrate the relevance of advanced mathematical meth-
ods in side-channel analysis by two detailed examples. This emphasizes
the central statement of this paper that progress in the field of side-
channel analysis demands a close cooperation between mathematicians
and engineers.

Keywords: Side-channel analysis, timing attack, power attack, secure
design, mathematics, engineering science, stochastic process, multivari-
ate statistics.

1 Introduction

In 1996 Paul Kocher introduced timing attacks [16] and in 1999 power analysis
[17]. Both papers virtually electrified the community because until then it had
appeared as if security analysis of cryptographic devices could be broken up into
several independent processes, which can be treated separately by mathemati-
cians (cryptographic algorithms and protocols), computer scientists (operating
systems, communication protocols) and engineers (hardware security). In the
first years side-channel analysis essentially was a research domain for engineers.
Especially in the case of power analysis this seemed to be natural because elec-
trical engineers have expertise in hardware but not mathematicians or computer
scientists, and they were able to perform experiments.

As a natural consequence, the applied mathematical methods usually were
elementary, and often only a fraction of the available information was exploited.
Moreover, when a countermeasure had been found that prevented (or, at least,
seemed to prevent) an attack the community usually lost its interest in this attack
and in deeper analysis. It is, however, absolutely desirable to know the strongest

A. Biedermann and H. Gregor Molter (Eds.): Secure Embedded Systems, LNEE 78, pp. 43–62.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

44 W. Schindler

attacks against cryptosystems, not only for attackers but also for designers and
evaluators. Otherwise it is not clear whether the implemented countermeasures
are really strong and reliable, i.e. how to assess countermeasures in a trustworthy
way. In particular, one should always understand the ’source’ of an attack and
not only learn how to execute it.

In the meanwhile the situation has definitely turned to the better, and more
sophisticated mathematical methods have been introduced, although the coop-
eration between mathematicians and security engineers might still be improved.
At present some researchers even try to tackle side-channel attacks with formal
methods or by the notion of information theory. In this regard side-channel anal-
ysis is in line with the physics, mechanics, astronomy and engineering sciences,
which have had close and fruitful cooperations with mathematics for centuries,
influencing each other heavily. Many branches of mathematics would presum-
ably not have been developed or at least would not have their relevance without
these appplications, consider, e.g., analysis or partial differential equations.

In this paper we discuss intensively two examples that show the fruitful con-
nection between mathematics and engineering science in side channel analysis.

The first example treats a well-known timing attack [9], whose efficiency was
improved by factor 50 by the formulation and analysis of stochastic processes.
Maybe more important, the gained insights smoothed the way for several new
attacks in the following years.

The second example is maybe even more instructive. It considers the stoch-
astic approach in power analysis, a well-known effective and efficient attack
method that combines engineering’s expertise with advanced stochastic meth-
ods from multivariate statistics. Moreover, the stochastic approach quantifies the
leakage with respect to a vector space basis, a feature that can constructively be
used for secure design.

2 My Personal Relation to Side-Channel Analysis

The way I came into contact with side-channel analysis is rather unusual. In 1998
I received my postdoctoral qualification (Privatdozent) and in the summer term
1999 I gave my first course at the mathematical department of Darmstadt Uni-
versity of Technology. In my habilitation thesis [24] (extended to the monograph
[30] later) I had considered problems from the field of measure and integra-
tion theory with impact on analysis, conclusive statistics and the generation of
non-uniformly distributed pseudorandom numbers. So far, my scientific life had
mainly been coined by stochastics and measure theory and by several fields from
pure mathematics. On the other hand, I had already worked at BSI for almost
six years, and so I decided to give a course entitled ”Selected topics in modern
cryptography”. Finally, I had a ’gap’ of one and a half 90-minute lectures to fill.
I remembered a timing attack on an early version of the Cascade chip, which
had been presented at CARDIS 1998 one year before [9]. So I decided to treat
this paper in my course.

Side-Channel Analysis – Mathematics Has Met Engineering 45

To make it short, after having studied [9] I was convinced that it is possible
to improve this attack significantly. This was the way I came to side-channel
analysis, and I have been stuck to this field till today. The preparation of a
lesson was the keystone for many research cooperations with engineers working
in the field of IT security, also with Sorin Huss. In 2010 we jointly introduced
the new international workshop COSADE (Constructive Side-Channel Analysis
and Secure Design), which is intended to take place annually in the future.

It should be mentioned that the jubilar Sorin Huss appreciates the use of effi-
cient mathematical methods in engineering science and also has own experience.
In his PhD thesis [12] he applied mathematical methods to develop integrated
circuits. His development method aims at the optimal solution with respect to
the trade-off between development costs and efficiency of the design solution,
and he demonstrated the applicability of his approach.

3 Timing Attack from CARDIS 1998

Target of the attack was an early version of the Cascade (square & multiply
exponentiation algorithm, ’direct’ exponentiation (i.e. no Chinese Remainder
Theorem (CRT)), Montgomery’s multiplication algorithm, ARM7M Risc pro-
cessor), which was not protected against timing attacks.

The square & multiply exponentiation algorithm computes modular exponen-
tiations by sequences of hundreds or even more than thousand modular squarings
and multiplications. As any timing attack exploits input-dependent timing dif-
ferences of modular multiplications and squarings it is necessary to explicitly
consider the modular multiplication algorithm. Montgomery’s multiplication al-
gorithm [20], Sect. 14, is widely used since it is very fast. The main reason is
that modular reductions can be moved to power-of-2 moduli.

As usually, Z M := {0,1,...,M − 1}, and for an integer b ∈ Z the term
b(mod M) denotes the unique element of Z M that is congruent to b modulo M .
In the following we assume that M is an odd modulus (e.g., an RSA modulus
or a prime factor) and that R := 2 x > M is a power of two (e.g. x = 512
or x = 1024). For input a, b Montgomery’s multiplication algorithm returns
MM(a, b; M) := abR− 1(mod M).

Usually, a time-efficient multiprecision variant of Montgomery’s algorithm is
implemented, which is tailored to the device’s hardware architecture. Assume
that ws denotes the word size for the arithmetic operations (e.g. ws = 32)
and that ws divides the exponent x. Then r := 2w s and R = r v with v =
x/ws (Example: x = 512, ws = 32, v = 16). For the moment let further a =
(av − 1, . . . , a0)r, b = (bv − 1, . . . , b0)r, and s = (sv − 1, . . . , s0)r denote the r-adic
representations of a, b and s, respectively. The term R− 1 ∈ ZM denotes the
multiplicative inverse of R in ZM , i.e. RR− 1 ≡ 1 (mod M). The integer M∗ ∈
ZR satisfies the integer equation RR−1 − MM∗ = 1, and m∗ := M∗(mod r).

46 W. Schindler

Algorithm 1. Montgomery’s algorithm

0.) Input: a,b

1.) s:=0

2.) for i=0 to v-1 do {

u i := (s0 + ai ∗ b0)m ∗ (mod r)
s := (s + aib + uim)/ r

}

3.) if s ≥ M then s := s−M * extra reduction step *\

4.) return s (= MM(a, b; M) = abR−1(mod M))

At least for smart cards it is reasonable to assume that for fixed parameters
M, R and r the execution time for Step 2 are identical for all pairs of operands
(a, b). Timing differences of single modular multiplications or squarings are thus
only caused by the fact whether in Step 3 an integer substraction, a so-called
extra reduction (abbreviated by ER in the following), has to be carried out or
not. Consequently, in the following we may assume

Time (MM(a, b; M)) ∈ {c, c + cER} (1)

Remark 1. Security software on PCs as OpenSSL, for instance, may process
small operands (i.e., those with leading zero-words) faster due to optimizations
of the underlying integer multiplication algorithm. This effect would be irrelevant
for the type of timing attack that is considered in this section anyway but may
cause additional difficulties for certain chosen-input attacks, cf. [5,1].

Algorithm 2 combines the square & multiply algorithm (or, shortly: s&m al-
gorithm) with Montgomery’s multiplication algorithm at cost of two additional
modular multiplications (compared to other modular multiplication algorithms).

Algorithm 2. s&m exponentiation with Montgomery’s multiplica-
tion algorithm

0.) Input: y

(returns y d (mod n) for d = (dw−1 = 1, dw−2, . . . , d0)2)
1.) ȳ = MM(y, R2; n) (= yR(mod n)) (pre-operation)

2.) temp := ȳ
for k=w-1 downto 0 do {

temp := MM(temp, temp; n)
if (dk = 1) then temp := MM(temp, ȳ; n)

}

3.) return temp := MM(temp, 1; n) (= yd(mod n); post-operation)

3.1 The Original Attack [9]

At first the attacker measures the execution times t1 := Time(yd
(1)(mod n), . . . ,

tN := Time(yd
(N)(mod n). More precisely, he gets t̃1 := t1 + terr(1), . . . , t̃N :=

tN + terr(N) where terr(j) denotes the measurement error for basis y(j) (which
hopefully is small compared to the effects we want to exploit). The attacker

Side-Channel Analysis – Mathematics Has Met Engineering 47

d
w-2

d
w-1

= 1 d
k

d
0

MS

S

0
…

MS

S

Q

1

0 1
01

0

Fig. 1. The correct path in the tree corresponds to the correct key

guesses the secret exponent bits dw−1 = 1, dw−2, . . . , d0 bit by bit, beginning
with dw−2. Now assume that he has already guessed the exponent bits dw−1 =
1, dw−2, . . . , dk+1 correctly. The next task is to guess exponent bit dk. The whole
attack corresponds to finding a path in a tree. Fig. 1 illustrates the situation. The
letters ’M’ and ’S’ stand for a multiplication of the temp variable in Algorithm 2
with the transformed basis ȳ and for a squaring of temp, respectively.

If the attacker has guessed the exponent bits dw−1, . . . , dk+1 correctly (our as-
sumption from above) he can calculate the intermediate temp-values temp1, . . . ,
tempN for all bases y(1), . . . , y(N) at this stage. Reference [9] sets

M1 := {y(j) | ER in MM(tempj , ȳ(j); n)} (2)

M2 := {y(j) | no ER in MM(tempj , ȳ(j); n)}

M3 := {y(j) | ER in MM(tempj , tempj ; n)}

M4 := {y(j) | no ER in MM(tempj , tempj ; n)} and

µ̃i :=
∑

y(j)∈Mi

t̃j/|Mi| (average execution time) for i = 1, . . . , 4. (3)

We first note that M1 ∪ M2 = M3 ∪ M4 = {y(1), . . . , y(N)}. If (dk = 1)

then MM(tempj , ȳ(j), n) is the next operation in the computation of yd
(j)(mod n)

while MM(tempj , tempj , n) is not part of the exponentiation. Thus we may ex-
pect that µ̃1 > µ̃2 and µ̃3 ≈ µ̃4 if (dk = 1). Of course, whether MM(tempj , tempj ;
n) requires an extra reduction is irrelevant for the exponentiation time tj . For
dk = 0 the roles of (µ̃1, µ̃2) and (µ̃3, µ̃4) swap. This leads to the diffuse guessing
strategy from [9]

d̃k := 1 if (µ̃1
>

(clearly)
µ̃2) and (µ̃3 ≈ µ̃4) (4)

d̃k := 0 if (µ̃1 ≈ µ̃2) and (µ̃3
>

(clearly)
µ̃4)

where d̃k denotes the guess for the exponent bit dk.

48 W. Schindler

Practical Experiments 1. (cf. [9,27]) The timing measurements were per-
formed with an emulator that predicts the execution time of a program in clock
cycles. The code was the ready-for-transfer version of the Cascade library, i.e.
with critical routines directly written in the card’s native assemble language.
Since the emulator is designed to allow implementors to optimise their code be-
fore ‘burning’ the actual smart cards, its predictions should match almost per-
fectly the properties of the ’real’ implementation. The attack from [9] required
200.000− 300.000 measurements to recover a 512-bit key.

The experiments verify that the guessing strategy (4) definitely works. On the
negative side the decision strategy exploits only a fraction of the information.
The equivalent path-finding problem depicted in Fig. 1 illustrates that there
is no chance to return to the right path after any wrong decision. A successful
attack requires ⌊log2(n)⌋ correct decisions. In other words: The decision strategy
should exploit all the information that is available.

As already mentioned I was sure that the original attack [9] was far from being
optimal. The first task was to analyse Montgomery’s multiplication algorithm.

3.2 A Closer Look on Montgomery’s Multiplication Algorithm

The central task is to understand the timing behaviour of Montgomery’s multipli-
cation algorithm within modular exponentiation (Algorithm 2). We summarise
results from [25,28,31] on the stochastic behaviour of the extra reductions.

Definition 1. Random variables are denoted with capital letters, their realisa-
tions (values assumed by these random variables) with the respective small letters.
The term N(µ, σ2) denotes a normal distribution with mean µ and variance σ2.

Lemma 1(i) says that whether MM(a, b; M) requires an ER depends only on
a, b, M, R but not on the word size ws. This is very helpful as it allows to
assume x = 1 in the proof Assertion (ii). Of course, word size ws and the
concrete architecture influence the values c, cER but this is irrelevant for the
moment.

Lemma 1. (i) For each word size ws for Algorithm 1 the intermediate result
after Step 2 in Algorithm 2 equals s = (ab + uM)/R with u = abM∗(mod R).

(ii) MM(a,b;M)
M =

(
a
M

b
M

M
R + abM∗ (mod R)

R

)
(mod 1). That is, an extra reduc-

tion is carried out iff the sum within the bracket is ≥ 1 iff MM(a,b;M)
M < a

M
b

M
M
R .

Proof. [25], Remark 1, [31], Lemma 2.

Exponentiation Algorithm 2 initialises the variable temp with the pre-processed
base ȳ and computes a sequence of modular squarings until temp = yd(mod n)
is computed. We interpret the normalised intermediate values from the exponen-
tiation of basis y(j), given by temp0(j)/n, temp1(j)/n, . . . ∈ [0, 1), as realizations
of [0, 1)-valued random variables S0(j), S1(j), Consequently, we interpret the

time for the ith Montgomery operation (squaring of tempi(j) or multiplication

Side-Channel Analysis – Mathematics Has Met Engineering 49

of tempi(j) by ȳ) as a realization of c +W i(j) · c ER, where W i(j) is a {0, 1}-valued
random variable for all i, j, assuming 1 iff an extra reduction is necessary. Un-
derstanding the stochastic process W1(j), W2(j), . . . is necessary to determine the
optimal decision strategy.

From Lemma 1 we deduce the following relations where the right-hand sides
differ for the two possible types of Montgomery operations in Step i. Again ’(j)’
refers to the base y(j).

Si+1(j) :=

{
n
RS2

i(j) + Vi+1(j)(mod 1) for MM(temp, temp; n)
ȳ
n

n
RSi(j) + Vi+1(j)(mod 1) for MM(temp, ȳ; n)

(5)

Lemma 2(ii) in [31] says that we may assume that the random variables V1(j),
V2(j), . . . are iid equidistributed on [0, 1). As an immediate consequence, the ran-
dom variables S1(j), S2(j), . . . are also iid equidistributed on [0, 1), which is hardly
surprising. The point here is that the random variables W1(j), W2(j), . . ., which
describe the (random) timing behaviour of the Montgomery operations within
the exponentiation of y(j) with exponentiation Algorithm 2, can be expressed in
terms of the random variables S0(j), S1(j), More precisely,

Wi(j) :=

{
1Si(j)<S2

i−1(j)
(n/R) for MM(temp, temp; n)

1Si(j)<Si−1(j)(ȳ(j)/n)(n/R) for MM(temp, ȳ(j); n).
(6)

The sequence W1(j), W2(j), . . . is neither independent nor identically distributed
but Wi(j) and Wi+1(j) are negatively correlated. On the other hand, the tuples
(Wi(j), Wi+1(j), . . . , Wi+m(j)) and (Wk(j), Wk+1(j), . . . , Wk+t(j)) (but not their
components!) are independent if k > i + m + 1. In particular, (6) yields the
one-dimensional distribution

E(Wi(j)) =

{
1
3

M
R for MM(temp, temp; n)

1
2

ȳ(j)

M
M
R for MM(temp, ȳ(j); n).

(7)

As easily can be seen, the probabilities for an ER in a squaring and in a multipli-
cation with ȳ differ. For multiplications this probability depends linearly on ȳ(j).

Remark 2. (i) It should be mentioned that this approach can be extended from
the square & multiply algorithm to table-based exponentiation algorithms as
well (cf. to [20], Alg. 14.79 (fixed windows exponentiation), [20], Alg. 14.85 (slid-
ing windows exponentiation)), which is relevant for the attacks addressed in
Subsection 3.4). For details the interested reader is referred to [31], Sect. 3.
(ii) It seems reasonable to follow a similar strategy for a security analysis of
other modular multiplication algorithms.

3.3 The Optimised CARDIS Timing Attack

In this subsection we sketch the central steps from [28,27]. As in the original
attack the attacker measures the exponentiation times t̃(j) := Time(yd

(j) (mod

n)) + tErr(j) for a sample y(1), . . . , y(N). More precisely,

t̃(j) = tErr(j) +tS(j)+(v+ham(d)−2)c+
(
w1(j) + . . . + wv+ham(d)−2(j)

)
cER (8)

50 W. Schindler

where ham(d) denotes the Hamming weight of d, and wi(j) ∈ {0, 1} equals 1 iff

the ith Montgomery operation requires an extra reduction for basis y(j) and 0
else. The term tS (j) summarises the time needed for all operations apart from the
Montgomery multiplications in Step 2 (input, output, handling the loop variable,
evaluating the if-statements, pre- and post-multiplication). We may assume that
the attacker knows tS (j) exactly; possible deviations may be interpreted as part of
the measurement error tErr(j). We further assume that the attacker had already
guessed the parameters v, ham(d), c and cER in a pre-step of the attack (cf. [26],
Sect. 6).

As in Subsection 3.1 we assume that the most significant exponent bits dv−1,
. . . , dk+1 have been guessed correctly. We focus on exponent bit dk. For each
basis y(j) the attacker subtracts the execution time that is needed to process the
exponent bits dv−1, . . . , dk+1 and tS(j) from the measured overall exponentiation

time t̃j , which gives the time that is required for the remaining bits dk, . . . , d0

(beginning at the step ‘if (dk = 1) then MM(temp(j), ȳ(j); n)’ in Algorithm 2).
From ham(d) he computes the number m of remaining Montgomery multiplica-
tions for ȳ(j).

Since time differences for the remaining operations are caused by the num-
ber of extra reductions (and maybe to some extent by measurement errors) we
consider the ‘normalised’ remaining execution time

t̃d,rem(j) : =
t̃(j) − tS(j) − (v + ham(d) − 2)c

cER
−

v+ham(d)−2−k−m∑

i=1

wi(j) (9)

= tdErr(j) +

v+ham(d)−2∑

i=v+ham(d)−k−m−1

wi(j).

The right-hand summand in the second line is the number of extra reductions
for the remaining Mongomery multiplications. The remaining Montgomery op-
erations are labelled by indices v + ham(d) − k − m − 1, . . . , v + ham(d) − 2.
The normalised measurement error tdErr(j) = tErr(j)/ cER is interpreted as a
realization of an N(0, α2 = σ2

Err/ cER
2)-distributed random variable that is in-

dependent of the sequence W1(j), W2(j) . . . (cf. [28], Sect. 6).
To determine the optimal attack strategy we interpret the guessing of ex-

ponent bit dk as a statistical decision problem (Θ = {0, 1}, Ω, s: Θ × A →
[0,∞), DE, A = {0, 1}). The set Θ contains the admissible parameters (here:
possible values of dk, i.e. 0 and 1), and the attacker decides for some value in A
(admissible decisions) on basis of an observation ω ∈ Ω. The loss function s(θ, a)
quantifies the loss if θ ∈ Θ is correct but the attacker decides for a ∈ A. The
attacker may apply any τ from DE := {τ ′: Ω → A}, the set of all (deterministic)
decision strategies. We refer the reader to [31], Sect. 2, which concentrates on
finite sets Θ = A, the case that is relevant for side-channel analysis. For a more
general treatment of statistical decision theory cf. [18], for instance.

A false guess d̃k �= dk implies wrong assumptions on the intermediate temp
values for both hypotheses dt = 0 and dt = 1 for all the forthcoming decisions

Side-Channel Analysis – Mathematics Has Met Engineering 51

(when guessing dt for t < k). Consequently, these guesses cannot be reliable,
and hence we use the loss function s(0, 1) = s(1, 0) = 1, and s(0, 0) = s(1, 1) =
0 since a correct decision should not imply a loss. Further useful information
is the probability distribution of the exponent bit dk (the so-called a priori
distribution). If the secret exponent d has been selected randomly or if the
public exponent e is fixed it is reasonable to assume that η(1) := Prob(dk =
1) = (m− 1)/k since d0 = 1. That is, the a priori distribution for bit dk is given
by (η(0), η(1)) = ((k + 1 − m)/k, (m − 1)/k).

If dk = 1 the next Montgomery operations in the computation of yd
(j)(mod

n) are MM(tempj , ȳ(j); n) and MM(MM(tempj , ȳ(j); n), MM(tempj , ȳ(j); n); n)
(multiplication and squaring) while if dk = 0 the next Montgomery operation
is MM(tempj , tempj ; n) (squaring). The variables uM(j), uS(j), tS(j) ∈ {0, 1}
are 1 iff the respective operation requires an ER. That is, uM(j) and uS(j)

are summands of the right-hand side of (9) if θ = 1 whereas tS(j) is such
a summand if θ = 0. The attacker decides on basis of the ’observation’(̃
tdrem(j), uM(j), uS(j), tS(j)

)
j≤N

. The stochastic process W1(j), W2(j), . . . quanti-

fies the (random) timing behaviour of the Montgomery multiplications that are
determined by dw−2, . . . , d0. These random variables are neither independent nor
stationary distributed. However, under weak assumptions they meet the assump-
tions of a version of the central limit theorem for dependent random variables
([28], Lemma 6.3(iii)). Since Wi(j) and Wr(j) are independent if |i − r| > 1 (cf.
Subsect. 3.2) we further conclude

Var
(
W1(j) + . . . + Wt(j)

)
=

t∑

i=1

Var(Wi(j)) + 2

t−1∑

i=1

Cov(Wi(j), Wi+1(j)) (10)

For the variances we have to distinguish between two cases (squaring, multipli-
cation with ȳ(j); cf. (6)), for the covariances between three cases, where Wi(j)

and Wi+1(j) correspond to two squarings (covSS), resp. to a squaring followed
by a multiplication with ȳ(j) (covSM(j)), resp. to a multiplication with ȳ(j) fol-
lowed by a squaring (covMS(j)). By (6) the random vector (Wi(j), Wi+1(j)) can
be expressed as a function of the iid random variables Si−1(j), Si(j), Si+1(j). For
instance, CovMS(WiWi+1) =
∫

[0,1)3
1{si<si−1ȳ(j)/R} ·1{si+1<s2

i
n/R}(si−1, si, si+1) dsi−1dsidsi+1−

ȳ(j)

2R
·

n

3R
(11)

Elementary but careful computations yield

covMS(j) = 2p3
jp∗ − pjp∗, covSM(j) =

9

5
pjp

2
∗ − pjp∗ (12)

covSS =
27

7
p4
∗ − p2

∗ with pj :=
ȳ(j)

2R
and p∗ :=

n

3R
.

Since the random variables W1(j), W2(j), . . . are not independent the distribution
of Wi+1(j)+· · ·+Wt(j) depends on the preceding value wi(j). Theorem 1 considers
this fact. We first introduce some abbreviations.

52 W. Schindler

Notation. h n(0, j) := (k − 1)p∗(1 − p∗) + mpj(1 − pj) + 2(m − 1)covMS(j) +

2(m − 1)covSM(j) + 2(k − m − 1)covSS + 2k−m
k−1 covSM(j) + 2m−1

k−1 covSS + α2,

hn(1, j) := (k − 1)p∗(1 − p∗) + (m − 1)pj(1 − pj) + 2(m − 2)covMS(j) +

2(m − 2)covSM(j) + 2(k − m)covSS + 2k−m+1
k−1 covSM(j) + 2m−2

k−1 covSS + α2,

ew(0, j | b) := (k − 1)p∗ + mpj + k−m
k−1 (p∗S(b) − p∗) + m−1

k−1 (pjS(b) − pj),

ew(1, j | b) := (k−1)p∗+(m−1)pj + k−m+1
k−1 (p∗S(b)−p∗)+

m−2
k−1 (pjS(b)−pj) with

p∗S(1) := 27
7 p3

∗, p∗S(0) :=
p∗−p∗p∗S(1)

1−p∗

, pjS(1) := 9
5p∗pj and pjS(0) :=

pj−p∗pjS(1)

1−p∗

.

For a complete proof of Theorem 1 we refer the interested reader to [28], Theorem
6.5 (i). We mention that the a priori distribution and the definition of the loss
function has impact on the optimal decision strategy.

Theorem 1. (Optimal decision strategy) Assume that the guesses d̃v−1, . . . , d̃k+1

are correct and that ham(dk, . . . , d0) = m. Let

ψN,d : (IR × {0, 1}3)N → IR, ψN,d((̃tdrem(1), uM(1), . . . ,uS(N), tS(N))) :=

−
1

2

N∑

j=1

((
t̃drem(j) − tS(j) − ew(0, j | tS(j))

)2

hn(0, j)
−

(
t̃drem(j) − uM(j) − uS(j) − ew(1, j | uS(j))

)2

hn(1, j)

)
.

Then the deterministic decision strategy τd: (IR × {0, 1}3)N → {0, 1}, defined by

τd = 1ψN,d<log(m−1
k−m+1)+ 1

2

∑
N
j=1 log (1+cj)

with cj :=
hn(0, j) − hn(1, j)

hn(1, j)
(13)

is optimal (i.e., a Bayes strategy against the a priori distribution η).

Sketch of the proof. To apply Theorem 1 (iii) from [31] we first have to de-
termine the conditional probability densities hθ,∗j|Cj

(t̃drem(j), uM(j), uS(j), tS(j))

(normal distribution) of the random vectors Xj := (T̃drem(j), UM(j), US(j), TS(j))
for θ = 0, 1 and j ≤ N with Cj = (UM(j) = uM(j), US(j) = uS(j), TS(j) = tS(j)).
(We point out that the Xj are independent but not their components.) The

products
∏N

j=1 hθ,∗j|Cj
(·) are inserted in equation (4) from [31], and elementary

computations complete the proof of Theorem 1.
The overall attack is successful iff all the guesses d̃v−1, . . . , d̃0 are correct.

Theorem 6.5 (ii) in [28] quantifies the probability for individual wrong guesses.
Guessing errors will presumably only occur in the first phase of the attack since
the variance of the sum Wv+ham(d)−k−m−1(j) + . . . + Wv+ham(d)−2(j) decreases
with index k.

Example 1. ([31], Example 3) Assume that the guesses d̃v−1, . . . , d̃k+1 have been
correct. For randomly chosen bases y(1), . . . , y(N), for n/R = 0.7, α2 = 0, N ≥
5000, and . . .

Side-Channel Analysis – Mathematics Has Met Engineering 53

(a) . . . (k, m) = (510, 255) we have Prob(d̃k �= dk) ≤ 0.014.

(b) . . . (k, m) = (440, 234) we have Prob(d̃k �= dk) ≤ 0.010.

(c) . . . (k, m) = (256, 127) we have Prob(d̃k �= dk) ≤ 0.001.

Remark 3. The attack falls into a sequence of statistical decision problems (one
for each exponent bit). The ψN,d-values themselves may be interpreted as real-
izations of random variables Zv−1, Zv−2, . . ., which have the pleasant property
that their distributions change noticeably after the first wrong guess. For in-
stance, the decision strategy from Theorem 1 then guesses d̃k = 1 only with a
probability of around 0.20. In Section 3 of [27] a new stochastic strategy was
introduced that detects, locates and corrects guessing errors, which additionally
reduces the sample size by about 40%.

Practical Experiments 2. (cf. [27]) For the same hardware as for the original
attack (cf. Practical Experiments 1) the optimal decision strategy from The-
orem 1 (combined with the error detection strategy mentioned above) yielded
a success rate of 74% (‘real-life’ case) for the overall attack for sample size
N = 5000. In the ideal case, realised by a stochastic simulation, the attacker
knows c, cER, v,ham(d) and t(S) exactly. In the ideal case the success rate in-
creased to 85%. For N = 6000 we obtained success rates of 85% and 95% (ideal
case), respectively. The optimal decision strategy increases the efficiency of the
original attack by factor 50. Moreover, the success rates for the ’real-life’ case
and the ideal case are of the same order of magnitude, another indicator that
the stochastic model fits well.

3.4 Stochastic Properties of Montgomery’s Multiplication
Algorithm: Further Consequences

First of all, the analysis of the stochastic behaviour of Montgomery’s multipli-
cation algorithm allowed to improve the original CARDIS attack by factor 50.
Both the original attack and its optimization can be prevented by blinding tech-
niques ([16], Sect. 10). However, it is always profitable to understand the source
of an attack since countermeasures may only prevent a special type of the attack.
The principal weakness clearly is the extra reduction of Montgomery’s algorithm.
Even more important, Subsection 3.2 collects important properties, which might
be used to exploit this feature.

Equation (7) says Prob(ER in MM(tempj , tempj ; n)) = n/3R while Prob(ER
in MM(tempj , ȳ(j))) depends linearly on ȳ(j). Reference [25] introduces a new
timing attack on RSA with CRT and Montgomery’s algorithm, which had be-
lieved to be immune against timing attacks. The central idea is that an at-
tacker can decide on basis of timing difference Time((u2(R

−1(modn)))d(mod
n)) − Time((u1(R

−1(mod n)))d(mod n)) whether a multiple of one RSA prime
factor lies in the interval {u1+1, . . . , u2}. The timing attack on RSA with CRT is
by one order of magnitude more efficient than the timing attack on RSA without
CRT. Under optimal conditions (exact timing measurements) about 300 RSA
encryptions suffice to factorise the RSA modulus n = p1p2. The attack also ap-
plies to table-based exponentiation algorithms, though on cost of efficiency. It

54 W. Schindler

should be noted that blinding techniques prevent also this type of timing at-
tack. The timing attack on RSA with CRT [25] would definitely not have been
detected without a careful analysis of the original CARDIS attack.

Reference [5] adapts this timing attack on RSA with CRT to the sliding win-
dows exponentiation algorithm ([20], 14.85f.), which made a patch of OpenSSL
v.0.9.7 necessary. Brumley and Boneh showed that also software implementa-
tions on PCs may be vulnerable against timing attacks and that remote timing
attacks are principally feasible. Both threats had been underestimated so far.
Despite of [25] basis blinding had been disabled by default in OpenSSL until
that time. As response to Brumley and Boneh’s timing attack the default set-
tings enabled basis blinding by default from OpenSSL v.0.9.7.b. We note that
[1] increases the efficiency of this attack by factor 10 and that base blinding
prevents this attack, too.

In [2] an instruction cache attack is introduced that again exploits the ER
step in Montgomery’s multiplication algorithm but is not prevented by basis
blinding. A patch of OpenSSL v.0.9.8.e used a result from Walter [38]. More
precisely, if the Montgomery constant R is selected by at least factor 4 larger
than the modulus the extra reduction step may be skipped. The intermediate
temp values will never become larger than twice the modulus. Interestingly, an
attack on a similar exponentiation algorithm had already been analysed in [29].
There the information on the ERs was gained by power analysis in place of an
instruction cache attack but the mathematical methods are similar. Both attacks
[5,2] underline that the cooperation between hardware engineers and software
engineers should be improved.

4 A New Method in Power Analysis

Since [17] lots of papers on power analysis have been published. Most of them
consider DPA (Differential Power Analysis) or CPA (Correlation Power Analy-
sis) techniques [4,13,21,23,37], and a large number of countermeasures have been
proposed ([6,8,34] etc.). Both DPA and CPA apply selection functions with sub-
key and plaintext (resp. ciphertext) as arguments. Ideally, for the correct subkey
the selection function should be strongly correlated to the power consumption at
some time instant t whereas the substitution of a wrong subkey into the selection
function should reduce the correlation to ≈ 0. DPA typically applies a Hamming
weight model or focuses on a particular bit while CPA is more flexible in the
choice of the selection function and applies the correlation coefficient. From an
abstract standpoint DPA and CPA are substantially very similar. Both are easy
to handle but on the negative side they only exploit a fraction of the available
information. In particular, it is not clear how to combine power measurements
from different time instants effectively.

Template attacks ([7,3] etc.) overcome this problem. Template attacks con-
sider the power consumption at several time instants t1 < · · · < tm. The mea-
sured power consumption at t := (t1, . . . , tm)) is interpreted as a realization of
an m-dimensional random vectors It(x, k) whose unknown distribution depends

Side-Channel Analysis – Mathematics Has Met Engineering 55

on the subkey k , on some part of the plaintext, resp. on some part of the ci-
phertext, denoted by x. If the attacked device applies masking techniques, the
random vector It(x, z, k) also depends on a masking value z (random number).

In the profiling phase the adversary uses an identical training device to obtain
estimates for the unknown densities (the so-called templates) fx,k(·), resp. fx,z,k

if masking techniques are applied. In the attack phase the adversary (attacker,
designer or evaluator) performs measurements at the target device. It is usually
assumed that the unknown densities are (at least approximately) multidimen-
sional normally distributed. Hence profiling reduces to the estimation of mean
values and covariance matrices.

In the attack phase the measurement values are substituted into the estimated
densities (maximum likelihood principle). This step is equal to the stochastic
approach (cf. to (25) and (26)).

In a ’full’ template attack the adversary estimates the densities for all pairs
(x, k) or even for all triplets (x, z, k) in the case of masking. For given time in-
stants t1, . . . , tm a full template attack should provide maximum attack efficiency
among all attacks that focus on the power consumption at t = (t1, . . . , tm), at
least if the sample size for the profiling series is sufficiently large. Clear disad-
vantage is the gigantic workload in the profiling phase, especially if masking
techniques are applied, due to the large number of different templates that have
to be generated. For strong implementations these densities differ only slightly,
demanding a large number of measurements for each template. Under specific
conditions the number of templates might be reduced, e.g. if an attacker aims at
a chosen-input attack or if he attacks the target device first. These restrictions
clearly limit the applicability of an attack, and attacks on masked implemen-
tations still demand a very large number of templates anyway. For evaluation
purposes it is a priori not clear whether the selected tuples (x, k), resp. selected
triples (x, z, k), are typical. Combining template attacks with DPA [22] may
relax this problem but the optimality of the attack efficiency may get lost.

The stochastic approach [32,10,19,33,35,15] combines engineers’ expertise with
quantitative stochastic methods from multivariate statistics. The stochastic ap-
proach is clearly stronger than DPA or CPA, and its attack efficiency is compa-
rable to template attacks whereas the number of profiling measurements is by
one to several orders of magnitude smaller. Moreover, the leakage is quantified
with respect to a vector space basis which supports target-oriented (re-)design.

It should be noted that attempts have been made to introduce formal methods
into side-channel analysis or to apply ideas from information theory [36,11]. We
do not consider these topics in this paper.

4.1 The Stochastic Approach

Target algorithms of the stochastic approach are block ciphers. The adversary
(designer, evaluator, attacker) guesses the key in small portions, called subkeys,
on basis of power measurements at time instants t1 < · · · < tm. In this subsection
we describe the stochastic approach and explain its most relevant features (cf.
[32,33] for details).

56 W. Schindler

Definition 2. The letter k ∈ {0, 1}s denotes a subkey, x ∈ {0, 1}p a known part
of the plaintext or the ciphertext, respectively, and z ∈ M denotes a masking
value. The random variables X and Z assume plaintext or ciphertext parts and
masking values, respectively.

As for template attacks we interpret a measurement value it := it(x, z, k) at
time t ∈ {t1, . . . , tm} as a realization of a random variable It(x, z, k) whose
(unknown) distribution depends on the triplet (x, z, k) (masking case), resp. of
a random variable It(x, k) whose (unknown) distribution depends on the tuple
(x, k) (non-masking case). Unlike template attacks the stochastic approach does
not estimate the corresponding probability densities directly but applies the
stochastic model

It(x, z, k) = ht(x, z, k) + Rt. (14)

The leakage function ht(x, z, k) quantifies the deterministic part of the power
consumption at time t, which depends on x, z and k. The random variable Rt

quantifies the ’noise’, which is originated by other operations that are carried
out at the same time (possibly depending on other subkeys) and measurement
errors. The random variable Rt is assumed to be independent of ht(x, z, k), and
we may assume E(Rt) = 0. (Otherwise, replace Rt by Rt−E(Rt) and ht(x, z, k)
by ht(x, z, k)+E(Rt).) The mathematical model for unmasked implementations

It(x, k) = ht(x, k) + Rt (unmasked implementation) (15)

follows immediately from (14) by simply cancelling the second argument ’z’. (The
same is true for nearly all results in this subsection.) The functions ht1(·, ·, ·), . . . ,
htm

(·, ·, ·) and the distribution of the noise vector (Rt1 , . . . , Rtm
) are unknown.

They are estimated on basis of power measurements on an identical training
device (profiling). Profiling consists two steps.

Profiling Step 1: Estimation of ht(·, ·, ·). It would be natural to estimate
the function values ht(x, z, k) for all admissible triplets (x, z, k) and all time
instants t ∈ {t1, . . . , tm} separately. However, this approach demanded gigantic
workload, and we would essentially perform a template attack.

Instead, we estimate functions but not function values. Let us fix t ∈ {t1,
. . . , tm}. For each k ∈ {0, 1}s we consider the restricted function ht;k: {0, 1}p ×
M × {k} → IR, ht;k(x, z, k) := ht(x, z, k). We view ht;k as an element of a
2p|M |-dimensional real subspace Fk := {h′: {0, 1}p × M × {k} → IR}. Roughly
speaking, the stochastic approach aims at characterizing the relevant source of
side-channel leakage, trading maximum precision for workload. Consequently, we
aim at the best approximator in a suitably selected subspace Fu,t;k of Fk. The
subspace Fu,t;k should be selected with regard to the concrete implementation
(cf. [32,10,19,33,35,15] and Example 2 below). Fu,t;k usually does not contain
the exact function ht;k but clearly should be close to it.

Side-Channel Analysis – Mathematics Has Met Engineering 57

The subspace Fu,t;k is spanned by u linearly independent, known functions
g j,t;k: {0, 1}p × M × {k} → IR, j = 0, . . . , u − 1. These basis vectors are related
to the expected relevant sources of leakage. More precisely,

Fu,t;k := {h′: {0, 1}p × M × {k} → IR | h′ =

u−1∑

j=0

β′
jgj,t;k with β′

j ∈ IR}. (16)

The best approximator h∗
t;k is the image of ht;k(·, ·, k) under the orthogonal

projection with regard to some L2 scalar product (= usual Euclidean scalar
product for uniformly distributed (X, Z), the case of highest practical relevance).

Theorem 2. Let k ∈ {0, 1}s denote the correct subkey.
(i) [Minimum property of h∗

t;k] Let h∗
t;k ∈ Fu,t;k. Then

EX,Z

((
ht(X, Z, k)− h∗

t;k(X, Z, k)
)2

)
= min
h′∈Fu,t;k

EX,Z

(
(ht(X, Z, k)− h′(X, Z, k))

2
)

(17)
if and only if

E
((

It(X, Z, k) − h∗
t;k(X, Z, k)

)2
)

= min
h′∈Fu,t;k

E
(
(It(X, Z, k) − h′(X, Z, k))

2
)

. (18)

(ii) The functions ht1;k, . . . , htm;k can be estimated separately without loss of
information.
(iii) [least square estimation of h∗

t;k] Let

A :=

⎛
⎜⎝

g0,t;k(x1, z1, k) . . . gu−1,t;k(x1, z1, k)
...

. . .
...

g0,t;k(xN1 , zN1 , k) . . . gu−1,t;k(xN1 , zN1 , k)

⎞
⎟⎠ , (19)

be a real-valued (N1 × u)-matrix, and assume that the components of it :=
(it(x1, z1, k), . . . , it(xN1 , zN1 , k))T ∈ IRN1 are power measurements at time t.
If the (u× u)-matrix AT A is regular the normal equation AT Ab = AT it has the
unique solution

b̃ ∗ = (AT A)−1AT it, with b̃ ∗ := (̃b ∗
0 , ..., b̃ ∗

u−1). (20)

Then h̃∗
t;k(·, ·, k) =

∑u−1
j=0 β̃∗

j,tgj,t;k(·, ·, k) with β̃∗
j,t;k := b̃∗j is the least square

estimate of h∗
t;k. If N1 tends to infinity h̃∗

t;k converges to h∗
t;k with probability 1.

Proof. [33], Theorem 2.7(i),(iv), and Theorem 3.2.

Theorem 2 is crucial for the stochastic approach. Assertion 2(i) implies that the
image h∗

t;k of ht;k can be computed without knowledge of ht;k since h∗
t;k fulfils

a minimum property in the subspace Fu,t;k. This allows to move all statistical
computations from the high-dimensional vector space Fk to a low-dimensional
subspace Fu,t;k, reducing the required number of power traces tremendously

58 W. Schindler

since the number of parameters to be estimated decreases from dim(Fk) = 2p|M |
to dim(Fu,t;k) = u. For AES implementations, for instance, typically dim(Fk) =
28 or 216 while 2 and 9 are typical values for dim(Fu,t;k). Theorem 2(iii) provides
an explicit formula for the computation of h ∗

t;k.

Example 2. ([15], Sect. 3) AES implementation on an FPGA, no masking, last
round. We focus on the second key byte k (2). CMOS technology suggests a
distance model. A natural choice for the subspace thus is
F9,t;k = 〈g 0,t;k(x, k), g1,t;k(x, k), . . . , g8,t;k(x, k)〉 with

g0,t;k(2)
((x(6), x(2)), k(2)) = 1

gj,t;k(2)
((x(6), x(2)), k(2)) = (x(6) ⊕ S−1(x(2) ⊕ k(2)))j for j = 1, . . . , 8 (21)

where x(2) and x(6) denote the second and the sixth ciphertext byte, respectively.

Profiling Step 2: Estimation of the Covariance Matrix

Notation. Rt denotes the random vector (Rt1 , . . . , Rtm
), and, analogously,

It(x, z, k), it(xj , zj , k), h∗
t;k(x, z, k) etc. denote m-dimensional vectors. Esti-

mates are assigned by the ∼ sign.

As for template attacks we assume that all It(x, z, k), and thus the random noise
vector Rt = It(x, z, k)−ht;k(x, z, k) are multidimensional normally distributed.
If Rt has regular the covariance matrix C = (cij)1≤i,j≤m it has density

fC : IRm → IR fC(y) =
1√

(2π)m detC
e−

1
2y

TC−1
y (22)

(cf. to [14], Subsect. 2.5.1, for instance). As C is unknown it has to be estimated
from a set of N2 fresh m-dimensional measurement vectors it(x1, z1, k1), . . . ,
it(xN2 , zN2 , kN2) from the training device. This gives the estimated density fC̃(·).

Key Extraction (Attack Phase). If k◦ is the correct (but unknown) subkey
the random vector

It(x, z, k◦) has density fx,z,k◦ : IRm → IR, fx,z,k◦(y) := fC(y−ht(x, z, k◦)). (23)

for each (x, z) ∈ {0, 1}p × M . Of course, the masking value z is unknown in the
attack phase. Instead, we view z as a realization of a random variable Z, and we
apply the probability density

It(x, Z, k◦) has density f̄x,k◦ :=
∑

z′∈M

Prob(Z = z′) · fx,z′,k◦ , (24)

usually with Prob(Z = z′) = 2−s for all z ∈ M . The adversary performs N3

measurements at the target device and obtains power vectors it(x1, z1, k
◦), . . . ,

it(xN3 , zN3 , k
◦) with unknown masking values z1, . . . , zN3 and, of course, with

Side-Channel Analysis – Mathematics Has Met Engineering 59

unknown subkey k◦. Due to (23) and (24) the adversary decides for that subkey
candidate k∗ ∈ {0, 1}s that maximises

N3∏

j=1

∑

z′

j
∈M

Prob(Z = z′j) · fC̃

(
it(xj , zj , k

◦) − h̃∗
t;k(xj , z

′
j, k)

)
. (25)

among all k ∈ {0, 1}s (maximum likelihood estimate). For unmasked implemen-
tations (25) simplifies to the product

N3∏

j=1

fC̃

(
it(xj , k

◦) − h̃∗
t;k(xj , k)

)
(26)

4.2 The Stochastic Approach Supports Design

The stochastic approach quantifies the leakage at time t with regard to the vector
space basis g0,t;k, . . . , gu−1,t;k. Namely,

h̃∗
t;k =

u−1∑

j=0

β̃j,t;kgj,t;k (27)

where the coefficients β̃j,t;k were estimated according to (20). Large absolute
values |βj,t;k| for j > 0 point to key-dependent weaknesses in the implementation.
Equation (27) gives the designer a hint where to find flaws. Example 3 shows
that power information can be used in a constructive way to find implementation
weaknesses.

Example 3. (cf. [15] for details) Fig. 2 shows |β1,t,k(1)
|, . . . , |β8,t,k(1)

| exemplarily
for the subkey k(1) = 209 at some time instant t. The numbers on the horizon-
tal axis refer to the particular β-coefficients, e.g. ’4’ refers to β4,t;k(1)

. Similarly,

Fig. 2. β -characteristic for subkey
k (1) = 209 at time t

Fig. 3. β -characteristic for subkey
k (1) = 209 at time instants t 1 , . . . , t 21

60 W. Schindler

Fig. 3 plots the β -characteristics for k(1) = 209 for time instants t1 . . . , t21. Dif-
ferently coloured lines belong to different time instants. The first observation
is that the curves are rather similar for all time instants. Further, it is striking
that the particular β-coefficients are not almost equal, what seems to be nat-
ural. Instead, the absolute values |β1,t,k(1)

|, . . . , |β4,t,k(1)
| are much larger than

|β6,t,k(1)
|, |β7,t,k(1)

|, |β8,t,k(1)
|, and |β5,t,k(1)

| is maximal.
In this AES implementation the SBox permutation was realised by a lookup-

table, and the design was finally synthesised for the Virtex-II pro family. The
β-coefficients indicate that the automatic place & route process treats the partic-
ular bits very differently. In fact, a closer look at the design shows that bit 5
switches several first stage multiplexers etc. We refer the interested reader to
[15], Sect. 4, for details.

5 Conclusion

Side channel analysis is a fascinating area of research for mathematicians, com-
puter scientists and engineers who are interested in interdisciplinary projects.
Especially the second example underlines that further progress is hardly possi-
ble without close research cooperations.

References

1. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Improving Brumley and Boneh Timing
Attack on Unprotected SSL Implementations. In: Meadows, C., Syverson, P. (eds.)
12th ACM Conference on Computer and Communications Security — CCS 2005,
pp. 139–146. ACM Press, New York (2005)

2. Acıiçmez, O., Schindler, W.: A Vulnerability in RSA Implementations due to In-
struction Cache Analysis and Its Demonstration on OpenSSL. In: Malkin, T.G.
(ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 256–273. Springer, Heidelberg (2008)

3. Archambeau, C., Peeters, E., Standaert, F.-X., Quisquater, J.-J.: Template at-
tacks in Principal Subspaces. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS,
vol. 4249, pp. 1–14. Springer, Heidelberg (2006)

4. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leak-
age model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 16–29. Springer, Heidelberg (2004)

5. Brumley, D., Boneh, D.: Remote Timing Attacks are Practical. In: Proceedings of
the 12th Usenix Security Symposium (2003)

6. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 398–412. Springer, Heidelberg (1999)

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer,
Heidelberg (2003)

8. Coron, J.-S., Goubin, L.: On Boolean and Arithmetic Masking against Differen-
tial Power Analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 231–237. Springer, Heidelberg (2000)

Side-Channel Analysis – Mathematics Has Met Engineering 61

9. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestré, P.-A., Quisquater, J.-J., Willems,
J.-L.: A Practical Implementation of the Timing Attack. In: Schneier, B.,
Quisquater, J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 175–191. Springer,
Heidelberg (2000)

10. Gierlichs, B., Lemke, K., Paar, C.: Templates vs. Stochastic Methods. In:
Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 15–29. Springer,
Heidelberg (2006)

11. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis - A
Generic Side-Channel Distinguisher. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008.
LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

12. Huss, S.: Zur interaktiven Optimierung integrierter Schaltungen. Dissertation, TU
München, Fakultät für Elektrotechnik und Informationstechnik (1982)

13. Joye, M., Paillier, P., Schoenmakers, B.: On Second-Order Differential Power
Analysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 293–308. Springer, Heidelberg (2005)

14. Kardaun, O.J.W.F.: Classical Methods of Statistics. Springer, Berlin (2005)
15. Kasper, M., Schindler, W., Stöttinger, M.: A Stochastic Method for Security Eval-

uation of Cryptographic FPGA Implementations (to appear in Proc. FPT 2010)
16. Kocher, P.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS

and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109,
pp. 104–113. Springer, Heidelberg (1996)

17. Kocher, P., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

18. Lehmann, E.L.: Testing Statistical Hypotheses., 2nd edn. Chapman & Hall, New
York (1994) (reprinted)

19. Lemke-Rust, K., Paar, C.: Analyzing Side Channel Leakage of Masked Implemen-
tations with Stochastic Methods. In: Biskup, J., López, J. (eds.) ESORICS 2007.
LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg (2007)

20. Menezes, A.J., van Oorschot, P.C., Vanstone, S.C.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997)

21. Messerges, T.S.: Using Second-Order Power Analysis to Attack DPA Resis-
tant Software. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965,
pp. 238–251. Springer, Heidelberg (2000)

22. Oswald, E., Mangard, S.: Template Attacks on Masking — Resistance is Futile. In:
Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg
(2006)

23. Peeters, E., Standaert, F.-X., Donckers, N., Quisquater, J.-J.: Improved Higher-
Order Side-Channel Attacks with FPGA Experiments. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 309–323. Springer, Heidelberg (2005)

24. Schindler, W.: Maße mit Symmetrieeigenschaften. Habilitationsschrift, TU
Darmstadt, Fachbereich Mathematik Darmstadt (1998)

25. Schindler, W.: A Timing Attack against RSA with the Chinese Remainder The-
orem. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 110–125.
Springer, Heidelberg (2000)

26. Schindler, W., Koeune, F., Quisquater, J.-J.: Unleashing the Full Power of Timing
Attack. Catholic University of Louvain, Technical Report CG-2001/3

27. Schindler, W., Koeune, F., Quisquater, J.-J.: Improving Divide and Conquer
Attacks Against Cryptosystems by Better Error Detection / Correction Strate-
gies. In: Honary, B. (ed.) IMA 2001. LNCS, vol. 2260, pp. 245–267. Springer,
Heidelberg (2001)

62 W. Schindler

28. Schindler, W.: Optimized Timing Attacks against Public Key Cryptosystems.
Statist. Decisions 20, 191–210 (2002)

29. Schindler, W.: A Combined Timing and Power Attack. In: Paillier, P., Naccache,
D. (eds.) PKC 2002. LNCS, vol. 2274, pp. 263–279. Springer, Heidelberg (2002)

30. Schindler, W.: Measures with Symmetry Properties. Lecture Notes in Mathematics,
vol. 1808. Springer, Berlin (2003)

31. Schindler, W.: On the Optimization of Side-Channel Attacks by Advanced Stoch-
astic Methods. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 85–103.
Springer, Heidelberg (2005)

32. Schindler, W., Lemke, K., Paar, C.: A Stochastic Model for Differential Side
Channel Analysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659,
pp. 30–46. Springer, Heidelberg (2005)

33. Schindler, W.: Advanced Stochastic Methods in Side Channel Analysis on Block
Ciphers in the Presence of Masking. Math. Crypt. 2, 291–310 (2008)

34. Schramm, K., Paar, C.: Higher Order Masking of the AES. In: Pointcheval, D.
(ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

35. Standaert, F.-X., Koeune, F., Schindler, W.: How to Compare Profiled Side-
Channel Attacks. In: Abdalla, M., Pointcheval, D., Fouque, P.-A., Vergnaud, D.
(eds.) ACNS 2009. LNCS, vol. 5536, pp. 485–498. Springer, Heidelberg (2009)

36. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2010)

37. Waddle, J., Wagner, D.: Towards Efficient Second-Order Analysis. In: Joye,
M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 1–15. Springer,
Heidelberg (2004)

38. Walter, C.D.: Montgomery Exponentiation Needs No Final Subtractions. IEE Elec-
tronics Letters 35(21), 1831–1832 (1999)

Survey of Methods to Improve Side-Channel Resistance

on Partial Reconfigurable Platforms

Marc Stöttinger1, Sunil Malipatlolla2, and Qizhi Tian1

1 Technische Universität Darmstadt

Department of Computer Science

Integrated Circuits and Systems Lab

Hochschulstraße 10

64289 Darmstadt, Germany

{stoettinger,tian}@iss.tu-darmstadt.de
2 CASED (Center for Advanced Security Research Darmstadt)

Mornewegstraße 32

64289 Darmstadt, Germany

sunil.malipatlolla@cased.de

Abstract. In this survey we introduce a few secure hardware implementa-

tion methods for FPGA platforms in the context of side-channel analysis.

Side-channel attacks may exploit data-dependent physical leakage to estimate

secret parameters like a cryptographic key. In particular, IP-cores for security

applications on embedded systems equipped with FPGAs have to be made secure

against these attacks. Thus, we discuss how the countermeasures, known from

literature, can be applied on FPGA-based systems to improve the side-channel

resistance. After introducing the reader to the FPGA technology and the FPGA

reconfiguration workflow, we discuss the hiding-based countermeasure against

power analysis attacks especially designed for reconfigurable FPGAs.

Keywords: FPGAs, side-channel attacks, countermeasures, power analysis

attacks.

1 Introduction

The market for embedded systems has grown rapidly in the last years and the Static

Random Access Memory-based (SRAM-based) Field Programmable Gate Arrays (FP-

GAs) are becoming increasingly popular as building blocks of such electronic systems.

The advantages being easy design modification (reconfigurability), rapid prototyping,

economical cost for low volume production, lower startup cost and better maintenance

in comparison to fully-customized Application Specific Integrated Circuits (ASICs),

and availability of sophisticated design and debugging tools. The integration of FPGAs

in embedded systems allows to carry out complex and time-consuming operations at

moderate costs in terms of power consumption, providing a higher degree of flexibil-

ity than ASICs. In the context of mobility and inter-device communication, embedded

systems should be secure against attacks on the cryptographic primitives if they support

security applications. In particular, secure communication channels between devices

A. Biedermann and H. Gregor Molter (Eds.): Secure Embedded Systems, LNEE 78, pp. 63–84.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

64 M. Stöttinger, S. Malipatlolla, and Q. Tian

within trusted environments are mandatory nowadays. A Set-Top Box for IP-TV, for in-

stance, has to provide large computational power for streaming high definition videos,

and a secure channel has to ensure secure transportation of the streaming content.

The throughput is limited for realization of cryptographic algorithms in software but

on the other hand, hardware methods offer high speed and large bandwidth, provid-

ing real-time encryption and decryption if needed. ASICs and FPGAs are two distinct

alternatives for implementing cryptographic algorithms in hardware.

Today, one of the biggest threats on implementations of cryptographic algorithms in

hardware devices are Side-Channel Attacks (SCA). In particular, Power Analysis has

become an important branch in cryptology since 1999 [13]. With such an attack the

secret key (a finite number of ones and zeros) can be recovered on basis of monitoring

the power consumption of an active crypto system device. Simply speaking, it is not

enough to use a straight forward implementation of a cryptographic algorithm to secure

an embedded system. Instead, the algorithm has to be adapted to the hardware platform

of the applied system. A lot of countermeasures have been proposed by the industry,

mainly the smart-card industry, and different academic research groups to prevent side-

channel attacks. Unfortunately most of the contributions focus on smart-cards, software,

or ASIC based implementations of crypto systems. With the rising usage of FPGAs for

high performance and secure applications it is mandatory to improve the side-channel

resistance with suitable countermeasure methods and applied techniques.

This contibution is structured as follows: First, we introduce the technology platform

of the FPGA and the (partial) reconfiguration workflow to the reader. In the second

section we recall the basics of SCA attacks for the readers with no or only a little

knowledge in this area. After this, we discuss the different countermeasure methods

in general. Before we summarize the work in conclusion, we highlight hiding based

countermeasures especially developed for reconfigurable platforms in an independent

section.

2 Reconfigurable Hardware

2.1 FPGA Platform Technology

Reconfigurability of a system is the capability to change its behavior i.e., by loading a

binary data stream which is called as the configuration bitstream in FPGA terminology.

One such group of devices offering the reconfigurability feature are FPGAs and others

like Complex Programmable Logic Devices (CPLDs). The granularity of a reconfig-

urable logic is the size of the smallest unit that can be addressed by the programming

tools. Architectures having finer granularity tend to be more useful for data manipu-

lation at bit level, and in general for combinatorial circuits. On the other hand, blocks

with a high granularity are better suited for higher levels of data manipulation, e.g. for

developing circuits at register transfer level. The level of granularity has a great impact

on the device configuration time. Indeed, devices with low granularity (called as fine-

grained devices) for example, FPGAs, require many configuration points producing a

bigger vector data for reconfiguration. The extra routing when compared to CPLDs has

an unavoidable cost on power and area. On the other hand, devices with high granularity

(called as coarse-grained devices) for example, CPLDs, have a tendency of decreased

Survey of Methods to Improve Side-Channel Resistance 65

FPGA

CLB CLBCLB

CLB CLBCLB

CLB CLBCLB

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O

I/O I/O I/O I/O

I/O I/O I/O I/O

Logic Block I/O Cells

Interconnection

wires

Programable

routing switches

Fig. 1. Architecture of an FPGA

performance when dealing with computations smaller than what their granularity is. In

essence, FPGAs can contain large designs while CPLDs can contain small designs only

because of fewer number of logic blocks available in the latter devices.

FPGAs are programmable semiconductor devices that are based around a matrix

of Configurable Logic Blocks (CLBs) connected via programmable interconnects as

shown in its general architecture in Figure 1. As opposed to ASICs where the device is

custom built for a particular design, FPGAs can be programmed to the desired appli-

cation or functionality requirements. The CLB is the basic logic unit in an FPGA and

exact number of CLBs and their features vary from device to device. In general, a CLB

consists of a configurable Look Up Table (LUT), usually with 4 or 6 inputs, some selec-

tion circuitry (Multiplexer, etc.), and Flip-Flops (FF). The LUT is highly flexible and

can be configured to handle combinatorial logic, shift registers or RAM. A high level

CLB overview is shown in Figure 2. While the CLB provides the logic capability, flexi-

ble interconnect routing, routes the signals between CLBs and to and from Input/Output

(I/O) pins.

The design software makes the interconnect routing task hidden to the user unless

specified otherwise, thus significantly reducing the design complexity. Current FPGAs

provide support for various I/O standards thus providing the required interface bridge

in the system under design. I/O in FPGAs is grouped in banks with each bank inde-

pendently able to support different I/O standards. Today’s leading FPGAs provide suf-

ficient I/O banks, to allow flexibility in I/O support. Embedded block RAM memory is

available in most FPGAs, which allows for on-chip memory storage in the design. For

example, Xilinx FPGAs provide up to 10 Mbits of on-chip memory in 36 kbit blocks

that can support true dual-port operation. Also, digital clock management is provided

by most FPGAs which acts as the clocking resource for the design.

66 M. Stöttinger, S. Malipatlolla, and Q. Tian

CLB

LUT

Input A

Input B

Input C

Input D

FF

Rst

Clk

Out

Fig. 2. Overview of a Configurable Logic Block (CLB)

2.2 Terminology

FPGA technology provides the flexibility of on-site programming and re-programming

without going through re-fabrication with a modified design. Some of the SRAM-based

FPGAs support a special feature called Partial Reconfiguration (PR). PR takes the

flexibility of FPGAs one step further, allowing modification of an operating design by

loading a partial configuration file, usually called as a partial bitfile. After a full bitfile

configures the FPGA, a partial bitfile may be downloaded to modify the reconfigurable

regions in the FPGA without affecting the applications that are running on those parts

of the device that are not being reconfigured. The logic in the FPGA design is divided

into two different types, reconfigurable (or dynamic) logic, i.e., the portion being re-

configured and static logic, i.e., the portion resuming the work. The static logic remains

continuously functioning and is completely unaffected by the loading of a partial bitfile.

Whereas, the configuration in reconfigurable logic is replaced by the partial bitfile. If

the configuration of the FPGA is changed at run-time, i.e., the system is neither stopped

nor switched off, then it is called as Dynamic PR (DPR) and is supported by commercial

FPGAs like Xilinx Virtex series. Additionally, if the system triggers the reconfiguration

by itself then it is a self-reconfigurable system which does not require the use of internal

FPGA infrastructure, but is often assumed.

The area of the FPGA that is reconfigured is called the Partially Reconfigurable Re-

gion (PRR). A PRR typically consists of a number of CLBs and functional blocks and a

design can have more than one PRR. The module to be placed inside the PRR is called

a Partially Reconfigurable Module (PRM), which is the specific configuration of the

PRR, and at least two PRMs are needed per PRR. In many cases, the assignment of

PRMs to a PRR is fixed (non-relocatable) though in principle, a PRM may be config-

ured to different PRRs [29]. There are different types of configurations possible in order

to achieve PR like “Differential”, “Partial”, and “Relocatable”. The “differential con-

figuration” contains, only difference between current and new configuration whereas,

“partial configuration” contains a new configuration part of an FPGA which is indepen-

dent of the current configuration. In “relocatable configuration”, the PRM can be moved

to a different location on an FPGA without modification. However, in the following we

address only the “partial configuration” technique.

Survey of Methods to Improve Side-Channel Resistance 67

FPGA

PRR

Static

Static

PRM1

PRM2

Fig. 3. Partial Reconfiguration in FPGAs

In Figure 3, we see that two PRMs which are mutually exclusive in time will be

placed in the PRR inside the FPGA, i.e., only one PRM can be assigned to a given PRR

at a given time. The remaining region in the FPGA which is outside the PRR is the

static region, where the application which needs to be run uninterruptedly, is placed.

In FPGAs supporting dynamic PR, single configuration units can be read, modified

and written. For example in Xilinx FPGAs, different Virtex-Series support different PR

schemes. Virtex-II/Virtex-II Pro supported initially column-based and later also tile-

based PR. Current FPGAs like Virtex-4 and Virtex-5 support tile-based PR only. A

minimal reconfigurable unit is one configuration frame which contains 16 x 1 CLBs,

1 clock and 2 IO blocks. The partial reconfiguration of an FPGA is done through the

Internal Configuration Access Port (ICAP), a built-in hard core Intellectual Property

(IP) module available on the FPGA. The ICAP module is controlled by the software

driver for the processor (e.g., Xilinx’s softcore MicroBlaze or IBM’s hardcore PowerPC

processor) on the FPGA.

A Macro is a predefined configuration for one or more FPGA components and a Bus

Macro is used for communication between regions on an FPGA. In a design containing

static and partially reconfigurable regions, the signals between static areas can be routed

through reconfigurable areas and the signals between a static and a reconfigurable area

are routed through a bus macro. In Virtex-4 devices, each bus macro spans 2 or 4 CLBs.

The bus macro has 8-bit signals and is unidirectional, i.e., signals can be routed left-

to-right, right-to-left, top-to-bottom or bottom-to-top. A correct macro has to be used,

based upon data flow and on which side of the PRR it has to be placed. In Virtex-5

devices, DPR is very similar to Virtex-4 but here the configuration frame is 20 CLBs

high and 1 CLB wide. Virtex-5 devices support single slice bus macros which are also

unidirectional and can support 4-bit signals. They can be placed anywhere within the

DPR area, unlike on the boundary between static and reconfigurable areas in Virtex-4

devices, and provide enable/disable signals to avoid glitches on output signals from a

PRR.

68 M. Stöttinger, S. Malipatlolla, and Q. Tian

Design
Partitioning

HDL Synthesis

Floor Planning

Placing Rules for
PRRs

Design
Implementation

Merge &
Bitstream

Generation

Fig. 4. PR Design Flow

We can draw an analogy between a processor’s context switching and the PR of an

FPGA. PR is basically a time multiplexing of hardware resources (partial bitfiles) as

compared to time multiplexing of software resources (programs or applications) run on

a general purpose processor. Many advantages can be gained by such time multiplexing

of hardware resources on an FPGA, like reducing the size of an FPGA required for

implementing a given function with consequent reductions in cost and/or power con-

sumption. PR provides flexibility in the choices of algorithms or protocols available for

an application and it enables new techniques in design security, as explained in section

5. Also, PR improves FPGA fault tolerance and accelerates configurable computing.

2.3 General Workflow for Partial Reconfiguration

Implementing a PR design is similar to implementing multiple non-PR designs that

share common logic. In PR, partitions are used to ensure that the common logic be-

tween the multiple designs is identical. As a part of the PR design flow, a synthesis

of Hardware Description Language (HDL) source to netlists for each module is done.

The appropriate netlists are implemented in each design to generate the full and partial

bitfiles for that configuration of corresponding CLBs and routing paths. The static logic

from the previous (first) implementation is shared among all subsequent design imple-

mentations. There are multiple reconfigurable modules for each reconfigurable partition

in the overall project. The modules are synthesized in a bottom-up fashion, resulting in

many netlists associated with each reconfigurable partition. The implementation is then

done top-down, which defines a specific set of netlists, called a configuration.

Survey of Methods to Improve Side-Channel Resistance 69

The individual steps in PR design flow as shown in Figure 4, can be explained as follows

[11]:

– Design Partitioning: A partially reconfigurable FPGA design project is more

complex than a normal FPGA design project; therefore a clear file and directory

structure will make project management easier. Modules on the top level have to

be partitioned into static and reconfigurable components. Each instance of a com-

ponent on top level is either static or reconfigurable. One reconfigurable instance

denotes one PRR in the design and there can be multiple PRMs associated with that

PRR. The entity names for PRMs must match component name of PRR instance

on top level. The top level contains no logic but only black box instantiations of

static and reconfigurable modules including FPGA primitives. Whereas, the mod-

ules (static and reconfigurable) themselves contain no FPGA primitives, no bus

macros but contain only the actual functionality of the designs. Bus macros are

inserted in top level between static components and PRRs.

– HDL Synthesis: Top level, static components and PRMs are all synthesized sepa-

rately. For all components except for top level, the synthesis process option

“Automatic Insertion of I/O Buffers” should be disabled whereas the option “Keep

Hierarchy” is enabled for all components including top level. Synthesis of modules

can be done using separate ISE projects or using XST scripts or a third party syn-

thesis tools. The results being netlist of the top level with instantiated black box

components and netlist of the synthesized logic for other modules.

– Floor Planning: A PRR area has to be fixed by constraints, i.e., the required size

of PRR area needs to be estimated and then addressed by coordinates of slices from

the lower left corner to the upper right. Static logic does not need to be constrained

but can be done, following which bus macros have to be placed. Constraints for

PRRs and bus macros are defined in a separate file called User Constraints File

(UCF).

– Placing Rules for PRRs: PRR areas have to span full CLBs with their lower left

coordinate being even and the upper right coordinate being odd. If the synthesized

design uses functional blocks (e.g. Block RAM) then separate range constraints

must be given. Virtex-4 bus macros must cross the boundary between static and

reconfigurable area and coordiantes are always even, whereas Virtex-5 uses single

slice bus macros which need to be inside PRR.

– Design Implementation: The top level netlist is initialized with constraints from

the UCF file. PRR locations are reserved and their instances are marked reconfig-

urable after which bus macros are imported and placed. For the static part, the top

level is merged with its components, and then Map, Place & Route are done.

– Merge and bitstream generation: PRM implementations are merged with static

implementations before applying design rule checks and generating a bitfile for

the full design. Bitfile for static design with empty PRRs is generated and partial

bitfiles are generated as difference between full design and design with holes. Also

blanking bitstreams can be generated which are used to erase PRR in order to save

some of the hardware resources on the FPGA.

70 M. Stöttinger, S. Malipatlolla, and Q. Tian

HDL Source

Netlists
(EDIF or NGC)

Static
Module

Top
Static

Reconfig
Module

Reconfig
Module

Reconfig
Module

SMTop RM_1 RM_2 RM_N

Synthesize

Static
Constrains

Module
Constrains

Design 1

Full_1.bit

RM_1.bit
Implement

Static
Constrains

Module
Constrains

Design 2

Full_2.bit

RM_2.bit
Implement

Static
Constrains

Module
Constrains

Design N

Full_N.bit

RM_N.bit
Implement

C
opy Static

C
opy Static

Fig. 5. Software Tool Flow for Partial Reconfiguration in Xilinx FPGAs

2.4 Workflow for PR in Xilinx FPGAs

As an example, the software tool flow for Xilinx PR design flow is shown in Figure 5.

Currently, Xilinx FPGAs are the only reconfigurable devices offering the PR feature.

Xilinx provides various tools to support each of the steps in the PR design flow. For

example, the design partitioning and HDL synthesis can be done using Xilinx’s ISE

tool. Xilinx’s PlanAhead suite can be used for defining PRRs on top level, assignment

of PRMs to PRRs, floor planning of PRRs and placement of bus macros. PlanAhead

also runs design rule checks and does Map, Place & Route, Merge & Bitfile generation.

In order to load the partial bitstreams onto the FPGA, ICAP is used. Xilinx’s EDK/XPS

tool includes the controller for ICAP, i.e., HWICAP which comes with a software driver

for a softcore MicroBlaze processor and is controllable by software. Once the full and

partial bitfiles are generated the design can be implemented on the FPGA.

Survey of Methods to Improve Side-Channel Resistance 71

Evaluating the most likely
key

Physical leakage of the
implementation

Perform operation of the
cryptographic algorithm

Device

Attack

Plaintext
or

Ciphertext

Processed
intermediate

values

Subkey

Key hypotheses: all
possible subkey

values

calculated
intermediate

values

calculated
intermediate

values

calculated
intermediate

values

Calculated
intermediate

values

Key-depended
physical leakage

 Leakage
models

Estimated value
in phsyical

domain

Estimated value
in phsyical

domain
Distinguisher

Estimated value
in phsyical

domain

Estimated value
in physical

domain

Most likely
subkey

Capture
physical leakage
by measurement

Reconstruct
secret key

Fig. 6. Workflow of a side-channel attack

3 Side-Channel Attacks

Today, side-channel analysis (SCA) attacks are one of the biggest threats to crypto-

graphic implementations in embedded systems. Even mathematically secure algorithms

may be susceptible to side-channel methods. SCA exploits the properties of the imple-

mented cryptographic algorithm to access information about the processed data and

the secrets of the cryptographic device. The different behaviors of the implementations

in different physical domains such as time or energy during runtime may generate an

exploitable signature. This leaking information, like the processing time, the power con-

sumption, or the electro-magnetic radiation, may be used to gain knowledge about the

secrets of the crypto system. The physical leakage of the device transforms the problem

of finding the secret private key as a whole into individually finding all the subkeys and

then combining them to reconstruct the secret key.

The attacking scenario for a side-channel attack is as follows: First, the adversary

needs to have access to the device for a limited time, to measure a physical property

of the device, e.g., power or time, during the execution of the cryptographic algorithm

by the system. Additionally, he also captures the public input data or output data, in

most cases the plaintext or ciphertext, and observes the monitor process of the behav-

ior of the crypto system in the chosen physical domain. Without a deeper knowledge

of the implementation, the adversary calculates a subset of intermediate values based

on the knowledge, which cryptographic algorithm was processed during the measure-

ment. The intermediate values thereby rely on the additionally collected plaintext or

ciphertext during the measurement and a key hypotheses. For each plaintext or cipher-

text the attacker gets a set of intermediate values, which equals the number of the key

hypothesis. Hereby, the attacker does not consider the complete bit length of the key,

instead he focuses on a subkey to reduce the number of hypotheses. In the next phase

the attacker estimates the physical measurable values, e.g. power consumption, using

72 M. Stöttinger, S. Malipatlolla, and Q. Tian

0 0.5 1 1.5
Time [μs]

Fig. 7. Power traces from an SPA attack

a leakage model, to transform the calculated intermediate values into the physical do-

main. In the last step of the attack, the adversary compares with a distinguisher, the

measured physical leakage like the power consumption of the device under attack and

the estimated values in the physical domain. The result of the distinguisher will point

out the subkey which most likely is used for the cryptographic primitive during the

monitor procedure of the attack. Figure 6 depicts the generic workflow of an SCA at-

tack described above.

In this contribution, we focus on side-channel attacks which exploit the power con-

sumption of the target device, i.e., we address power analysis attacks. These attacks use

only information leaks in the power consumption of a circuit, and no deeper knowledge

about the implementation of a cryptographic algorithm is necessarily required. From the

literature, the following types of attacks are well-known in the area of power attacks:

– Simple Power Analysis (SPA) attack,

– Differential Power Analysis (DPA) attack,

– Template Attack and

– Stochastic Approach

In 1999, Kocher et. al [13] first discovered this most elementary side-channel attack.

During an SPA attack, the adversary tries to interpret the captured power trace directly

to extract information about the key or the subkey. Especially cryptographic primitives

with subkey-value dependent branches in the control flow are very vulnerable to this

attack. For instance, SPA attacks on weak RSA and elliptic curve cryptography (ECC)

implementations are well-known in literature [6], [18], [13]. Based on each bit value of

these cryptographic primitives, the intermediate data is processed with different opera-

tions. In case of a weak implementation, the processing time of the different operations

is significant and thus the key-dependent processing order is directly readable from only

one captured power trace. Figure 7 illustrates, how clearly the signature of the trace is

key-dependent. These traces were recorded from a MCEliece cryptographic scheme

during the decryption [21] process.

The second attack, which Kocher also introduced in 1999, was the differential power

analysis attack [13]. Compared with the SPA, the DPA needs more power traces to

extract information about the key. In case of the DPA attack, the attacker does not need

to distinguish by himself which hypothesis is true for referring to the most likely key

or subkey. The method uses statistical techniques to evaluate the hypothesis and thus is

more resistant to a low signal-to-noise ratio. Therefore, the attacker has to collect more

Survey of Methods to Improve Side-Channel Resistance 73

0 50 100 150 200 250
0

0.005

0.01

0.015

0.02

Key hypotheses

C
o

rr
el

at
io

n

Fig. 8. Correlation result of a DPA attack

power traces of the device during runtime to get the required number of measurement

samples for applying the statistical techniques. A variant of the DPA is the correlation

power analysis (CPA), which uses the Pearson Correlation Coefficient for the statistical

evaluation. Based on the simple procedure and the quality of the results compared to

the effort, the CPA has been established as the most common attack in this area of side-

channel attacks. Thus, we will introduce this method a little bit more in detail to the

reader.

The ”distinguisher” statistically evaluates, how good the estimated hypotheses is,

based on matching the estimated power consumption levels to the recorded power con-

sumption levels for several time instants. For an evaluation, the sets of data as men-

tioned above are denoted as vectors and are sorted accordingly to the key hypotheses.

Roughly speaking, each vector of the estimated power consumption levels is based on

one key hypothesis and the different input or output data recorded during the monitor

procedure of the device. For each key hypothesis, thus, exactly one vector of estimated

power consumption levels exists. If one vector of estimated power consumption levels

fits better for one time instant than the other vectors with a very high probability to the

measured power consumption levels, then the key hypothesis of this vector is with a

very high probability the correct guessed key. Figure 8 illustrates an example of a suc-

cessful DPA attack on a subkey of the block cipher AES. The clearly distinguishable

correlation maximum at position 91 on the X-axis marks the most likely value of the

used subkey during the measurement phase.

The disadvantage of this method is the need for a higher amount of recorded power

traces which may need access to the device for a quite long duration. Depending on

the attacking scenario, the attacker may suffer from the disadvantage of the DPA and

has not sufficient time to gather enough power traces for a successful DPA attack.

In 2002, Rohatghi et al. introduced the Template Attack [5], which handles the

disadvantage of the DPA by splitting the attack into two phases: a profiling phase

and an attack phase. During the profiling phase the attacker analyses an identical

device with full access to all the parameters, for e.g. the keys, to characterize the key-

dependent power consumption. The adversary only needs a few measurements of the

attacked device to reveal successfully the secret key after characterizing the device, in-

stead of requiring thousands of power measurements for a successful attack. The cost of

this efficient attack phase is the expensive preparation in profiling phase on the training

device, in which for every subkey, thousands of power traces have to be collected to

characterize each possible key value of this focused subkey. However, Schindler pro-

74 M. Stöttinger, S. Malipatlolla, and Q. Tian

posed in 2005 an optimized approach [20] for attacks which are based on a profiling

phase by applying advanced stochastic methods for the subkey characterization. Com-

pared to the Template Attack, the stochastic approach usually needs one to two orders

of magnitude less traces in the profiling phase to charaterize a subkey without highly

compromising the efficiency during the attack phase.

4 Countermeasures against Power Attacks

In this section, we discuss countermeasures against DPA attacks in general for introduc-

ing the concepts. For lowering the success rate of a DPA attack, an intuitive approach

would be to decrease the key-dependent physical leakage, which is used to evaluate the

different key hypotheses and identifying the most likely subkey. A weak data-dependent

or more precisely an almost key-independent power consumption compromises the hy-

potheses test in the distinguisher, leading to a false result. The two basic concepts known

in the literature to decouple the power consumption form the data-dependency or key-

dependency are Masking and Hiding.

Several countermeasures based on these two concepts were introduced to the com-

munity over the years. Hereby, the countermeasures can be applied on both levels, the

architecture level and the cell level of the implementation. Each layer offers methods

and applied techniques to create the recorded power consumption traces in the eyes of

the attacker non-deterministic and uncorrelated to the processed key information. In the

following section, we introduce these two basic concepts briefly to the reader and state

some examples on both application levels.

4.1 Masking

The fundamental idea is to randomize the sensitive and secret (intermediate) values

inside the operations of the cryptographic algorithm. This concept benefits from the

platform-independency, because this countermeasure is of algebraic nature and can be

applied either on architecture or cell level. Randomization is applied on the crypto-

graphic algorithm so that the intermediate values are randomized but the final result

of the cryptographic algorithm is the same as the unmasked version of the algorithm.

We want to emphasize that the physical leakage characteristic of the implementation

is identical to without the countermeasure. The improved security is provided by the

countermeasure of the randomized intermediate values, which makes it very hard for

an attacker to formulate the corresponding and correct key hypotheses.

The effect of the randomization process can either be used for blinding a secret

operand, for instance see [6], or based on the mathematical composition of the random

value and the intermediate value, the secret is separated into at least two parts as de-

scribed in [4]. The cryptographic algorithm is then processed on the parts of the splitted

secret. The fragments are individually independent from the intermediate value. There-

fore, the effort to formulate corresponding and correct key hypotheses for the attack is

increased. After the execution of the cryptographic operations, the two fragments are

again united by the inverse function of the mathematical composition. Thus, the strength

of the system strongly depends on the injected entropy and thereby the scrambling of

the power consumption.

Survey of Methods to Improve Side-Channel Resistance 75

Masking on Architecture Level. The mathematical composition between the random

number and the intermediate values in a masking scheme can either be realized with

arithmetic operations or with boolean operations. If the arithmetic function is used to

create the mask, for instance addition or multiplication, then that masking scheme is

dedicated to the group of arithmetic masking. Multiplicative masking is a very suitable

countermeasure for point blinding in the cryptographic primitives ECC or RSA, e.g., see

[6] and [12]. The utilized mathematical cyclic fields of these asymmetric cryptographic

schemes are very much suitable for multiplicative masking because no de-masking is

needed to recover the correct result of these algorithms with an applied mask.

When using a XOR-operation or any other boolean operation to composite a ran-

domized intermediate value, the masking scheme is associated to boolean masking.

Block ciphers like AES or DES are the main application fields using boolean masking,

e.g. see [10] and [3]. As reported in [19], these masking schemes do not suffer from

so called zero-value attacks, which exploit the behavior of the masking scheme by pro-

cessing zero-values, on symmetric masked cryptographic schemes as in the introduced

multiplicative based countermeasure in [9] and [28]. For instance, in masking AES, the

AddRoundKey operation is blinded by a boolean mask and is then splitted into two parts

by a modified SBox implementation. The most efficient way for a secure version of the

SBox, however, would be a BlockRAM-based Look-Up-Table (LUT), but in terms of

the resources on an FPGA it costs too many of them.

Masking on Cell Level. The masking scheme on the cell layer focuses on single bits

for the randomization. In [27], [8], and [7], different methods to mask AND-gates were

discussed to improve the side-channel resistance. The basic principle may be adapted to

FPGAs by dedicated initialized LUTs, with the downside being worse CLB-utilization.

4.2 Hiding

In contrast to masking, hiding does not randomize the intermediate values to decou-

ple the key-dependency from the power consumption levels. Instead, hiding techniques

try to manipulate the power consumption at several time instants to cover the key-

dependent power consumption. Equalizing the consumption levels for every time in-

stant to get a constant power consumption is one possibility to manipulate the power

consumption. As much promising this approach sounds, as much difficult it is to realize

in general. For equalizing the power consumption to a constant consumption, the de-

sign has been specialized for the given implementation platform. The designer has not

only to consider a balance between the gate utilization for a constant number of transi-

tions for every input combination, but also he has to consider the captive effects of the

connection wires. Thus, the placement of the logic cells as routing of the connection

wires is very important to secure a design with the approach of balancing the power

consumption.

The second possibility is to randomize the power consumption levels for every point

in time to hide the key-dependent power consumption. This randomization method can

be applied on the time and amplitude domains to generate an indeterministic power

consumption. The randomization in the amplitude domain is very often realized by ad-

ditional active circuit elements. Thereby, for e.g., the information-leaking cryptographic

76 M. Stöttinger, S. Malipatlolla, and Q. Tian

Table 1. Known Hiding Techniques against Power Analysis Attacks

Domains Architecture level Cell level

time based
shuffling clockless logic

dummy operations delay insertion

amplitude based
random precharge dual-rail logic

noise injection triple-rail logic

operation is duplicated and is fed with false values to produce noise. A randomization

in the time domain is, e.g., realized by changing the synchronous control flow of the

algorithm. A randomized or indeterministic execution order of operations inside the

algorithm is one example to disturb the time resolution of the power trace.

Table 1 is an exemplary, illustrating some countermeasure methods grouped to the

domains that manipulate the power consumption. In the following, we stated some re-

lated work regarding hiding countermeasures on the two different application layers.

Architecture Level. Applying a hiding countermeasure which manipulates the timing

resolution of a cryptographic algorithm may be implemented straight forward. For in-

stance, the control flow is changed by inserting some unnecessary dummy operation to

randomly permute the execution order every time the cryptographic algorithm is being

executed. The downside of this approach is a performance loss, because the through-

put is lowered due to the extra operations. A more promising technique is shuffling

the execution order and thereby randomizing the power consumption levels for several

time instants. One constraint for this approach is that the shuffled operations have to be

independent from each other. However, in 2009 Madlener et al. introduced a shuffling

algorithm for a secured multiplication [16], which is able to permute, not completely in-

dependent operations. The conducted experiments on an FPGA platform and a detailed

algorithmic description of the proposed secured multiplication scheme (called eMSK)

is additionally listed in [23].

Another method to mainpulate the power consumption is to compromise the ampli-

tude domain, e.g., duplicated circuit elements, which operate on uncorrelated values to

increase the noise in the amplitude domain is either parallelism or pipelining. In [22]

Standaert et al. investigated deterministic pipelining as a countermeasure for AES on

a FPGA platform and derived from their experiment that it is not an efficient counter-

measure. A more efficient method is to precharge the register elements to compromise

the bit transitions, which directly effects the data-dependent power consumption. The

secured eMSK in [16] also applies this concept within its countermeasure.

Cell Level. A very efficient method to manipulate the time domain on cell layer is pro-

posed by Lu et al. [15]. This countermeasure injects random delays to change the time

instance when the leaking logic is active. With different propagation delay between the

registers, the transition activity is moved inside the clock cycle on the FPGA implemen-

tation. A manipulation technique, working in the amplitude domain is dual-rail logtic.

The basic idea behind dual-rail logic designs is to mirror the circuit design in such a way

Survey of Methods to Improve Side-Channel Resistance 77

FPGA

Configuration
Controller

(ICAP)

Crypto
primitive

Counter
measure

1

Bitstream 1

Bitstream 2

Plaintext Ciphertext

FPGA

Configuration
Controller

(ICAP)

Crypto
primitive

Counter
measure

2

Bitstream 1

Bitstream 2

Plaintext Ciphertext

Reconfiguration

Fig. 9. Basic concept using partial reconfiguration for hiding purpose

that the power consumption is the same for every point in time. Especially for FPGAs, it

is difficult to implement secured dual-rail logic based design [24,25,26] to manipulate

the amplitude domain by equalizing the power consumption over the complete cryp-

tographic process. Yu et al. developed a Place and Route tool for FPGAs [30], which

applies special constraints to assure that the power consumption is equalized. Lomné

et al. introduced triple-rail logic [14] to avoid glitches. They also verified their method

with conducted experiments on an FPGA platform.

5 Reconfigurable Technology-Based Countermeasure

In this section, we want to discuss methods and concepts to extend the application layers

for hiding based countermeasures, especially for reconfigurable platforms. The partial

reconfiguration properties of an FPGA offers a designer additional methods to imple-

ment hiding schemes to randomize the power consumption. As introduced in section

2, the reconfiguration techniques for FPGAs are quite flexible and offer the designer a

broad range of choices to adapt his design during runtime.

The ability to reconfigure the implemented architecture during runtime serves a de-

signer with an advantage to efficiently compare the countermeasures in one design with

an acceptable resource utilization. Figure 9 illustrates the fundamental idea of how the

partial reconfiguration is used to improve the side-channel resistance of a given design.

Additionally, the combination has not to be a composition of countermeasures,

instead the countermeasures may vary during the execution time. The changes of coun-

termeasures can be seen as a shuffling of the leakage characterization, considering the

assumption that no countermeasure completely seals the exploitable information leak-

age of a design. Therefore, the partial reconfiguration based countermeasures random-

ize the might-be exploitable leakage information of the countermeasure, to increase the

effort of the side-channel attack. In case of adapting the countermeasure during runtime,

to prevent a small but still explicit leakage, a random number generator might improve

this with a random selection of the countermeasure for each execution or at least a small

number of executions of the cryptographic primitive.

As stated before in previous section 4.2, the hiding-based countermeasures are not

platform-independent. With an adaptive reconfigurable platforms like FPGAs, we can

78 M. Stöttinger, S. Malipatlolla, and Q. Tian

Table 2. Hiding countermeasures for reconfigurable architectures

Domains Architecture level Cell level Data path level

time based
shuffling clockless logic

configurable pipelining
dummy operations delay insertion

amplitude based
random precharge dual-rail logic dynamic binding

noise injection triple-rail logic multi-characteristic

extend Table 1 with an additional application layer for hiding countermeasure concepts.

Table 2 depicts the novel application layer for hiding countermeasures. The introduced

reconfiguration-based hiding countermeasures on the data path level work also on both

domains, time and amplitude, to randomize the power consumption.

The hiding countermeasures on the data path level utilizes architectural structures

and implementation behavior of different logic blocks, which realize the cryptographic

operation for a cryptographic primitive. Especially the exchange of implementation

parts via reconfiguring the logic blocks on the FPGA is more effective than using only

rerouting and activating already fixed instantiated modules to avoid information leakage

based on the connection wiring.

Remark: Besides the adaptation of the countermeasure during runtime and the im-

provement of the security by the variants of the indeterministic power consumption

levels at several time instants, the reconfiguration can also be used to ”update” a coun-

termeasure scheme easily, during runtime. Thus, the design might evolve to overcome

new side-channel attack schemes without a complete redesign of the implementation

by using a modular structure with dedicated areas of countermeasures to strengthen the

system.

5.1 Mutating the Data Path

The fundamental idea behind hiding countermeasures on data path level, is to manip-

ulate not the complete architecture at once but concurrently to change only part-wise

and independently the behavior of some logic components in the amplitude and time

domains. With this approach, the implementation costs and efforts are less than on the

cell level but the flexibility and the variation of the distribution is higher than on the

architecture level. Based on the modularized randomization, we gain additional combi-

nations to hide the leakage and more variance of the power consumption levels at one

time instant.

In the following, we want to introduce to three countermeasures as an example how

the new application level can be used to harden a design against power analysis attacks.

We discuss the three hiding countermeasures on the data path level by realized example

cryptographic primitives.

Configurable Pipelining. To the best knowledge of the authors, the first known coun-

termeasure, which utilizes the reconfiguration techniques of a FPGA was done by

Survey of Methods to Improve Side-Channel Resistance 79

FPGA

Plaintext Ciphertext

Add
Roundkey

MixColumn

ShiftRows

SBox1

I/O

Register

Register

FPGA

Plaintext Ciphertext

Add
Roundkey

Register

ShiftRows

SBox1

I/O

Register

MixColumn

R
e
c
o
n
fi
g
u
ra

tio
n

FPGA

Plaintext Ciphertext

Add
Roundkey

MixColumn

ShiftRows

Register

I/O

Register

SBox1

R
e
c
o
n
fi
g
u
ra

tio
n

Fig. 10. Dynamic pipelining approach form [17]

Mentes et al. in 2008 [17]. Their approach focuses on a method which variates the

pipelining structure and the position of the pipeline stages of a recursive AES imple-

mentation. Figure 10 depicts the principle of this countermeasure and how the recon-

figuration is used to change the structure.

The difference between the three data path structures is the position of the pipeline

register and thereby the number of operations executed within one clock cycle. By

changing the pipelining stage for each execution, the attacker is not able, or at least

only with a lot more effort, to compare the different power consumption levels at sev-

eral time instants. The adversary can not determine in which clock cycle the focus

and leaking cryptographic operation is executed, thus, the attack success rate will be

lowered.

The partial reconfiguration in this countermeasure technique is used to reconnect the

input and the output of each cryptographic operation module in the AES, for e.g., the

SBox operation, with each other or one of two pipeline registers. The architecture con-

sists only of one partial reconfigurable module. This module interconnects the register

and the cryptographic operation modules. Such a reconfigurable interconnect module

consists only of wires and no additional switching logic. The additional logic will in-

crease propagation time and thus lowers the throughput. An additional switching logic

would also cause a higher power consumption, which might leak out information of

the chosen pipeline structure. The configuration time is minimized by just reconfigur-

ing one module, which only consists of static connections instead of reconfiguring the

complete AES scheme.

80 M. Stöttinger, S. Malipatlolla, and Q. Tian

FPGA

Plaintext Ciphertext

Add
Round

Key

Mix
Column

Shift
Rows

SBox
1

SBox
2

I/O

FPGA

Plaintext Ciphertext

Add
Round

Key

Mix
Column

Shift
Rows

SBox
1

SBox
2

I/O

N
e
x
t

E
n
c
ry

p
tio

n

FPGA

Plaintext Ciphertext

Add
Round

Key

Mix
Column

Shift
Rows

SBox
3

SBox
2

I/O

R
e
c
o
n
fi
g
u
ra

tio
n

Fig. 11. Basic concept of the multi-characteristic countermeasure applied on AES

This approach explicitly works in the time domain and is comparable with the ran-

dom delay insertion of [15] on the cell level. The reconfigurable approach also random-

izes the delay by selecting the pipelining states and structure via a random number but

it does not suffer from a lower throughput because of deeper combinatorial logic paths

like in [15]. The downside of the approach of Mentes et al. is the additional time to

reconfigure before executing AES once.

Multi-Characteristic of Power Consumption. In 2003, Benini et al. proposed the first

countermeasure against DPA attacks working on data path level. The proposed concepts

in [1,2] were not directly designed for the reconfigurable platforms, but they are very

suitable for FPGAs. In their proposal, they introduced the concept of mutating a data

path by using modules with different power consumptions but with the same function-

ality. The selection of a module is done by a random number generator. The basic idea

behind this approach is to change the proportional ratio between the transition activity

and the power consumption level. Shuffling the execution modules with different power

consumptions and thereby averaging the power consumption of different input data will

tamper the correlation between the real and the estimated power consumption levels.

The researchers demonstrated the concept by randomly switching between two dif-

ferent implementations of two arithmetic logic units. They analyzed different dynamic

power consumptions but not with a detailed DPA attack. As second application example

they discussed a RSA trace with and without this countermeasure, while the runtime in

both designs differs. In this example, the RSA power traces seem to be more random-

ized and not deterministic as the recorded trace of the unsecured version.

We adapted this concept to reconfigurable platforms to improve the strength of the

approach by Benini et al. and applied it on an AES scheme. Figure 11 depicts the

adapted version applied on an AES scheme. We chose to several different impleneta-

tions of the SBox operation because this module has the highest dynamic power con-

sumption according to its complexity.

Instead of instantiating four fixed SBoxes on the FPGA we use the partial reconfig-

uration technique to reconfigure one of the two modules in the design. The advantage

Survey of Methods to Improve Side-Channel Resistance 81

Bus

.......

Finite Field
Arithmetic

ModMult

Program
Type M2

Register
bank

Arithmetic
eMSK24

ModMult

Program
Type M4

Register
bank

Arithmetic
eMSK6

Point-Addition

inactive
programs

active
program

Point-Double

active
program

inactive
programs

Point-Multiplication

active
program

inactive
programs

ModMult

Program
Type M1

Arithmetic
eMSK24

Register
bank

Fig. 12. Concept of dynamic binding applied on the EC-arithmetic layer

is to hide the reconfiguration time by using the second SBox in the system and reduce

the complexity of the complete architecture by switching only between two SBoxes.

Additionally, this reduces the length of the combinatorial path and the throughput is

not as bad as using four fixed implemented SBoxes. Compared to the approach from

Mentes et al. in [17], our countermeasure needs more time for the reconfiguration of

one SBox, but with the approach of parallel instantiated SBoxes the availability of the

cryptographic scheme is not influenced by that.

Dynamic Binding. A combination of the previous reconfigurable countermeasures was

proposed in 2009 by Stöttinger et al. [23]. They applied a reconfigurable hiding con-

cept to improve the side-channel resistance of ECC to avoid either SPA attacks or DPA

attacks. Weak implementations of ECC are attackable based on the different execution

durations of the operations inside ECC. The adaptive hardening technique is also ap-

plied on the abstract data path level of the design. This countermeasure, either varies

the start and the execution time of the different operations inside ECC and disturbs the

signal-to-noise ratio by changing the degree of parallelism of the modular multiplica-

tion and squaring operations.

The basic concept of this hardening technique is to dynamically bind a different

number of multipliers for executing a Point-Addition or a Point-Doubling. Addition-

ally, executing a squaring operation, the binding has even more degrees of freedom,

82 M. Stöttinger, S. Malipatlolla, and Q. Tian

because this operation can be executed on one of the multiplier modules or on a special

squaring module, also with different power consumption and execution duration proper-

ties. The usage of eMSK based multiplier [16] additionally randomizes each concurrent

multiplication process. To further improve the strength of the system, each eMSK can

be exchanged with another implementation model to change the power consumption

characterization additionally to the shuffling process. So, this proposed countermeasure

unites the strength of the countermeasures in [17] and [1].

Figure 12 depicts the basic structure of the countermeasure. Each EC-operation is

implemented as an independent module to modularize the structure and increase the

possible combinations of different execution procedures. The control unit for the Point-

Doubling, the Point-Addition, and the Point-Multiplication is separated in an active and

an inactive part, like the previously proposed countermeasure for multi-characteristic

power consumption. This also enables the ability to hide the needed reconfiguration

time by reconfiguring the execution program of one module while an EC-operation is

processed.

6 Summary and Conclusion

In this survey, we gave an overview of the methods to improve side-channel security of

cryptographic primitive implementations on FPGAs. Besides a report of some related

work on countermeasures in general, we also discussed their adaptation on FPGAs.

Especially, because the hiding-based countermeasures are platform-dependent, it is dif-

ficult to transfer hiding techniques from ASICs, like those used in smart-card chips, to

FPGAs. To emphasize the potential of the FPGA platform for hiding techniques, we fur-

ther introduced the reader to the actual reconfiguration design flow. Afterwards, we dis-

cussed the first reconfigurable based hiding countermeasures for FPGA platforms and

showed how they improve the side-channel resistance on another abstract application

layer. Some of these discussed countermeasures can handle the needed configuration

time to avoid a lower throughput compared to a non-reconfigurable system.

Acknowledgment

This work was supported by DFG grant HU 620/12, as part of the Priority Program

1148, in cooperation with CASED (http://www.cased.de).

References

1. Benini, L., Macii, A., Macii, E., Omerbegovic, E., Poncino, M., Pro, F.: A novel archi-

tecture for power maskable arithmetic units. In: ACM Great Lakes Symposium on VLSI,

pp. 136–140. ACM, New York (2003)

2. Benini, L., Macii, A., Macii, E., Omerbegovic, E., Pro, F., Poncino, M.: Energy-aware design

techniques for differential power analysis protection. In: DAC, pp. 36–41. ACM, New York

(2003)

3. Canright, D., Batina, L.: A very compact ”perfectly masked” s-box for aes. In: Bellovin,

S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037,

pp. 446–459. Springer, Heidelberg (2008)

Survey of Methods to Improve Side-Channel Resistance 83

4. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-

analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412.

Springer, Heidelberg (1999)

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C.

(eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg (2003)

6. Coron, J.S.: Resistance against differential power analysis for elliptic curve cryptosys-

tems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302. Springer,

Heidelberg (1999)

7. Fischer, W., Gammel, B.M.: Masking at gate level in the presence of glitches. In: Rao, J.R.,

Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 187–200. Springer, Heidelberg (2005)

8. Golic, J.D., Menicocci, r.: Universal masking on logic gate level. IEEE Electronic Let-

ters 40(9), 526–528 (2004)

9. Golic, J.D., Tymen, C.: Multiplicative masking and power analysis of aes. In: Kaliski Jr.,

B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 198–212. Springer, Hei-

delberg (2003)

10. Herbst, C., Oswald, E., Mangard, S.: An aes smart card implementation resistant to power

analysis attacks. In: Zhou, J., Yung, M., Bao, F. (eds.) ACNS 2006. LNCS, vol. 3989,

pp. 239–252. Springer, Heidelberg (2006)

11. Herrholz, A.: Invited Talk on Dynamic Partial Reconfiguration Using Xilinx Tools and

Methodologies (February 2010)

12. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve cryptography.

In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 377–390.

Springer, Heidelberg (2001)

13. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO

1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

14. Lomné, V., Maurine, P., Torres, L., Robert, M., Soares, R., Calazans, N.: Evaluation on fpga

of triple rail logic robustness against dpa and dema. In: DATE, pp. 634–639. IEEE, Los

Alamitos (2009)

15. Lu, Y., O’Neill, M.: Fpga implementation and analysis of random delay insertion counter-

measure against dpa. In: IEEE International Conference on Field-Programmable Technology

(FPT) (2008)

16. Madlener, F., Stöttinger, M., Huss, S.A.: Novel hardening techniques against differential

power analysis for multiplication in gf(2n). In: IEEE International Conference on Field-

Programmable Technology (FPT) (December 2009)

17. Mentens, N., Gierlichs, B., Verbauwhede, I.: Power and fault analysis resistance in hard-

ware through dynamic reconfiguration. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS,

vol. 5154, pp. 346–362. Springer, Heidelberg (2008)

18. Örs, S.B., Oswald, E., Preneel, B.: Power-analysis attacks on an fpga - first experimental

results. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 35–50.

Springer, Heidelberg (2003)

19. Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A side-channel analysis resistant de-

scription of the aes s-box. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557,

pp. 413–423. Springer, Heidelberg (2005)

20. Schindler, W.: On the optimization of side-channel attacks by advanced stochastic methods.

In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 85–103. Springer, Heidelberg (2005)

21. Shoufan, A., Wink, T., Molter, H.G., Huss, S.A., Kohnert, E.: A novel cryptoprocessor ar-

chitecture for the mceliece public-key cryptosystem. IEEE Transactions on Computers 99

(2010)(preprints)

22. Standaert, F.X., Örs, S.B., Preneel, B.: Power analysis of an fpga: Implementation of rijndael:

Is pipelining a dpa countermeasure? In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS,

vol. 3156, pp. 30–44. Springer, Heidelberg (2004)

84 M. Stöttinger, S. Malipatlolla, and Q. Tian

23. Stöttinger, M., Madlener, F., Huss, S.A.: Procedures for securing ecc implementations against

differential power analysis using reconfigurable architectures. In: Platzner, M., Teich, J.,

Wehn, N. (eds.) Dynamically Reconfigurable Systems - Architectures, Design Methods and

Applications, pp. 305–321. Springer, Heidelberg (2009)

24. Tiri, K., Verbauwhede, I.: A logic level design methodology for a secure dpa resistant asic or

fpga implementation. In: DATE, pp. 246–251. IEEE Computer Society, Los Alamitos (2004)

25. Tiri, K., Verbauwhede, I.: Secure logic synthesis. In: Becker, J., Platzner, M., Vernalde, S.

(eds.) FPL 2004. LNCS, vol. 3203, pp. 1052–1056. Springer, Heidelberg (2004)

26. Tiri, K., Verbauwhede, I.: Synthesis of secure fpga implementations. Cryptology ePrint

Archive, Report 2004/068 (2004), http://eprint.iacr.org/

27. Trichina, E., Korkishko, T., Lee, K.H.: Small size, low power, side channel-immune aes

coprocessor: Design and synthesis results. In: Dobbertin, H., Rijmen, V., Sowa, A. (eds.)

AES 2005. LNCS, vol. 3373, pp. 113–127. Springer, Heidelberg (2005)

28. Trichina, E., Seta, D.D., Germani, L.: Simplified adaptive multiplicative masking for aes.

In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 187–197.

Springer, Heidelberg (2003)

29. Xilinx Corporation: Partial Reconfiguration User Guide (September 2009)

30. Yu, P., Schaumont, P.: Secure fpga circuits using controlled placement and routing. In: Ha,

S., Choi, K., Dutt, N.D., Teich, J. (eds.) CODES+ISSS, pp. 45–50. ACM, New York (2007)

http://eprint.iacr.org/

Multicast Rekeying: Performance Evaluation

Abdulhadi Shoufan and Tolga Arul

CASED (Center for Advanced Security Research Darmstadt)
Mornewegstraße 32

64289 Darmstadt, Germany
{abdul.shoufan,tolga.arul}@cased.de

Abstract. This paper presents a new approach for performance eval-
uation of rekeying algorithms. New system metrics related to rekeying
performance are defined: Rekeying Quality of Service and Rekeying Ac-
cess Control. These metrics are estimated in relation to both group size
and group dynamics. A simultor prototype demonstrates the merit of
this unified assessment method by means of a comprehensive case study.

Keywords: Group Rekeying Algorithms, Performance Evaluation,
Benchmarking, Simulation.

1 Introduction

While multicast is an efficient solution for group communication over the In-
ternet, it raises a key management problem when data encryption is desired.
This problem originates from the fact that the group key used to encrypt data
is shared between many members, which demands the update of this key every
time a member leaves the group or a new one joins it. The process of updating
and distribution of the group key, denoted as group rekeying, ensures forward ac-
cess control regarding leaving members and backward access control concerning
the joining ones. Figure 1 represents a Pay-TV environment as an example for a
multicast scenario. A video provider (VP) utilizes a video server (VS) to deliver
video content encrypted with a group key kg. A registration and authentication
server (RAS) manages the group and performs group rekeying. Every registered
member gets an identity key kd (e.g., k0 to k3 in Figure 1) and the group key
kg. To disjoin member m 2, for instance, the RAS generates a new group key and
encrypts it with each of the identity keys of the remaining members. In other
words, disjoining a member from a group having n participants costs a total of
n − 1 encryptions on the server side. Obviously, a scalability problem arises.

This problem has been amply addressed in the last decade to reduce the
rekeying costs and to achieve a scalable group key management. A large variety
of architectures, protocols, and algorithms have been proposed in literature, see
[1] to [14]. Although many approaches have been proposed, the reader of related
publications lacks a way to compare the results of these solutions to each other.
This is attributed mainly to vastly different ways of estimating rekeying costs by

A. Biedermann and H. Gregor Molter (Eds.): Secure Embedded Systems, LNEE 78, pp. 85–104.

springerlink.com c©Springer-Verlag Berlin Heidelberg 2010

86 A. Shoufan and T. Arul

k0

k1

k3

m0

m1

m2

m3

Registration &

Authentication

Server (RAS)

Video Server

(VS)

Encrypted

Video

Ek0
(kg)

Ek1
(kg)

Ek3
(kg)

Video Provider (VP)

Multicast

Network

k2

Fig. 1. Pay-TV a potential scenario for secure multicast

different researchers and to the application of highly diverse metrics to express
these costs.

In this paper a rekeying benchmark is presented, which allows for a reliable
rekeying performance evaluation and for fair comparison between different rekey-
ing algorithms. This originates from evaluating the rekeying performance on a
high abstraction level: Rekeying costs are determined on the system level in-
dependent of the evaluated rekeying algorithms themselves and regardless of
the underlying cryptographic primitives and execution platform. The rekeying
benchmark is realized by a simulator, which supports the execution of different
rekeying algorithms with uniform simulation parameters. The simulator esti-
mates unified cost metrics and presents simulation results in the same diagram
for comparison.

The rekeying benchmark considers only the costs of cryptographic operations
required for rekeying on the server side, which dominate the total cost in most
cases. Including other factors is part of future work.

The rest of the paper is organized as follows. Section 2 represents the design
concept of the proposed rekeying benchmark. Section 3 describes the realization
of this concept as a simulation environment. Section 4 details the benchmark
design. To show the advantage of this solution Section 5 provides a case study.

2 Rekeying Benchmark Design Concept

The difficulty of evaluating different rekeying algorithms is attributed to the
following three points in the literature:

1. Non-unified performance estimation methods.

2. Non-unified consideration of the input quantities affecting the performance.

3. Non-unified definition of output metrics representing the performance.

Multicast Rekeying: Performance Evaluation 87

2.1 Benchmark Abstraction Model

Rekeying is a solution for group key management in secure multicast. As an
essential step in the process of joining and removing members, rekeying perfor-
mance directly influences the efficiency of this process with major effects on the
system behavior. The faster a member can be removed the higher is the system
security. The faster a member can be joined the higher is the system quality of
service. The performance of a rekeying algorithm directly affects the supportable
group size and dynamics. Accordingly, the importance of rekeying performance
results from its significance for the system behavior with respect to the following
characteristics:

1. Amount of quality of service that can be offered to a joining member.

2. Amount of security against a removed member.

3. Scalability in terms of supportable group sizes.
4. Group dynamics in terms of maximal supportable join and disjoin rates.

These characteristics allow for evaluating rekeying performance on a high ab-
straction level, see Figure 2. To enable a reliable performance evaluation of
rekeying algorithms, metrics should be used, which are independent of these
algorithms. Therefore, the performance evaluation is settled on the Benchmark
Layer, which is sperated from Rekeying Layer in Figure 2. The introduction
of the Cryptography Layer and the Platform Layer is justified as follows. The
Rekeying Layer performs join and disjoin requests based on cryptographic oper-
ations such as encryption and digital signing. For each cryptographic primitive
a vast selection is available. Taking symmetric-key encryption as an example,
rekeying may employ 3DES, AES, IDEA or other algorithms. The same rekeying
algorithm behaves differently according to the utilized cryptographic primitives.
Further more, the same cryptographic primitive features different performance
according to the platform it runs on. This fact remains, even if public-domain
libraries such as CryptoLib [17] are utilized to realize cryptographic functions.
Consequently, a reliable rekeying benchmark does not only rely on an abstrac-
tion from the details of the analyzed rekeying algorithms. Rekeying itself must be
decoupled from the underlying cryptographic primitives and from the executing
platform.

The abstraction model of Figure 2 introduces essential design aspects for the
benchmark:

1. The separation of rekeying algorithms from the cryptographic layer and from
the execution platform leads to a substantial acceleration of the evaluation
process. This gain is based on the fact that rekeying algorithms to be eval-
uated do not need to execute cryptographic algorithms anymore. Instead,
they just provide information on the required numbers of these operations.
The actual rekeying costs are then determined by the benchmark with the
aid of timing parameters relating to the used primitives and the execution
platform. This point will be detailed in the Section 2.2.

88 A. Shoufan and T. Arul

2. From the last point it is obvious that the demand for a reliable rekeying
benchmark can not be fulfilled by real-time measurements on prototypes
or final products, since these measurements can not be performed indepen-
dently of the cryptographic primitives and the platform. Instead, for rekeying
algorithms to be evaluated fairly and efficiently, some kind of simulation has
to be employed.

2.2 Benchmark Data Flow

A good understanding of the benchmark abstraction model can be achieved
by investigating the data exchange between its different layers as depicted in
Figure 2:

Benchmark Layer

Rekeying Layer

Cryptography Layer

Rekeying

requests

Rekeying

cost data

Timing

parameters

Platform Layer

Fig. 2. Data exchange in the rekeying benchmark

1. The rekeying layer receives rekeying requests and executes pseudo rekey-
ing, which means that rekeying algorithms only decide on the cryptographic
operations needed for these requests without executing them. This issue is
illustrated by the gap between the rekeying and the cryptography layers.

2. The rekeying requests are delivered without any timing information. This
means that the rekeying layer is not informed about the temporal distribu-
tion of the rekeying requests. This task is assigned to the benchmark layer.

3. The rekeying cost data provide information on the number of the needed
cryptographic operations for each rekeying request or request batch.

4. The timing parameters hide the cryptographic primitives and the executing
platform to provide a unified cost estimation, which can be used by the
benchmark layer for all rekeying algorithms in the same way.

5. To determine the time needed for executing a rekeying request, the bench-
mark sums up the products of the rekeying cost data and the corresponding
timing parameters.

Multicast Rekeying: Performance Evaluation 89

3 Rekeying Benchmark as a Simulation Environment

3.1 Cost Metrics and Group Parameters

Definition 1. Required Join Time T sys
J

A Required Join Time is a system parameter representing the maximal allowable
rekeying time needed to join a member.

Definition 2. Actual Join Time T J

An Actual Join Time specifies a join request and is defined as the sum of the
waiting time W J of the join request in the system queue and the rekeying time
R TJ consumed by a rekeying algorithm to grant this request:

TJ = WJ + R TJ (1)

Definition 3. Rekeying Quality of Service R Q oS
Rekeying Quality of Service specifies a join request and is defined as the difference
between the required join time and the actual join time of this request:

R Q oS = T sys
J − TJ (2)

Definition 4. Required Disjoin Time T sys
D

A Required Disjoin Time is a system parameter representing the maximal al-
lowable rekeying time needed to disjoin a member.

Definition 5. Actual Disjoin Time TD

An Actual Disjoin Time specifies a disjoin request and is defined similarly to TJ

as follows:

TD = WD + R TD (3)

Definition 6. Rekeying Access Control R AC
Rekeying Access Control specifies a disjoin request and is defined as the difference
between the required disjoin time and the actual disjoin time of this request:

R AC = T sys
D − TD (4)

Definition 7. Maximal Group Size nmax

Maximal Group Size represents the supportable group size without deterioration
of the system requirements of QoS and access control.

Definition 8. Maximal Join/Disjoin rates λmax/µmax

Maximal Join/Disjoin rates represent the maximal group dynamics which can be
supported without deterioration of the system requirements of QoS and access
control.

90 A. Shoufan and T. Arul

3.2 Evaluation Criteria and Simulation Modes

Depending on the proposed metrics and parameters, rekeying algorithms may
be evaluated by checking the following criteria:

1. For a rekeying algorithm to function correctly, it must feature RQoS and
RAC values, which are equal to or greater than zero.

2. Considering two rekeying algorithms, which satisfy criterion 1, the algorithm
that supports a higher nmax features a higher scalability.

3. Considering two rekeying algorithms, which fulfill criterion 1, the algorithm
that supports higher λmax or µmax features higher join or disjoin dynamics,
respectively.

To verify these criteria 4 simulation modes are proposed as illustrated in Table
1. Note that the system parameter Nmax given in this table represents the de-
sired group size, which is needed by some rekeying algorithm to set up the data
structures. It differs from the actual supportable nmax given in Definition 7.

Table 1. Simulation modes

Transient Scalability
Join

Dynamics

Disjoin

Dynamics

System

parameters
TJ

sys, TD
sys , Nmax

Timing

parameters
Cg , Ce, Ch , Cm, Cs

Group

parameters
n0, λ , µ λ , µ n0, µ n0, λ

Simulation

parameters
tsim

T0, ∆n,

[nstart , nend]

T0, ∆λ,

[λstart , λend]

T0, ∆µ,

[µstart , µend]

Variable time n λ µ

Output

metric

RQoS(t)
RAC(t)

RQoSmin

RACmin

RQoSmin

RACmin

RQoSmin

RACmin

Transient Simulation. This simulation mode estimates the current values of the
group size n(t), of the rekeying quality of service RQoS(t), and of the rekeying
access control RAC(t). By this means, the behavior of rekeying algorithms over
long time periods can be observed. For this purpose, an initial group size n0,
a join rate λ, a disjoin rate µ, and the desired simulation time tsim are set by
the user. Similarly to other modes, the transient simulation receives the system

Multicast Rekeying: Performance Evaluation 91

parameters T sys
J and T sys

D and the timing parameters (see Definition 22) to
estimate the rekeying times RTJ and RTD. Similarly to the system parameters,
the timing parameters are independent of the simulation mode, as can be seen in
Table 1. The transient simulation builds the foundation for all other simulation
modes.

Scalability Simulation. The importance of this simulation mode results from
the significance of the scalability problem in group rekeying. The scalability
simulation investigates the effect of the group size on the system behavior, which
is implied in the terms RTJ and RTD of equations (1) and (3). The user sets the
group size range [nstart, nend] and the simulation step ∆n. For each n value of this
range, a transient simulation is started with n0 = n. This transient simulation
runs over a fixed user-definable observation interval To. From all the resulting
values of RQoS and RAC for this simulation point, only the worst case values
are considered, i.e. RQoSmin and RACmin. The scalability simulation helps to
estimate the maximal group size nmax.

Join/Disjoin Dynamics Simulation. High join rates result in shorter inter-arrival
times of join requests and more rekeying computations. This causes longer wait-
ing times for join and disjoin requests according to the terms WJ and WD in (1)
and (3). Thus, higher join rates affect not only RQoS, but also RAC. The join
dynamic simulation represents a way to investigate theses dependencies. The
user defines an initial group size n0, a disjoin rate µ, and a fixed observation
interval To. In addition, a simulation range for the join rate λ is entered. For
each λ value a transient simulation over To is started as in the case of scalability
simulation. With the help of join dynamics simulation the maximal join rate
λmax for a rekeying algorithm may be determined.

The disjoin dynamics simulation is similar to the join dynamics simulation
and can be exploited to calculate the maximal disjoin rate µmax.

4 Rekeying Benchmark Design

The Rekeying Benchmark is mainly composed of two interfaces and three compo-
nents, as depicted in Figure 3. The User Interface (UI) enables users to evaluate
different rekeying algorithms by selecting these algorithms and setting the de-
sired parameters. For designers a Programming Interface (PI) is provided to
integrate new algorithms. In addition, groups with special dynamic behavior,
which does not follow Poisson distribution, can be supported by means of a
special programming interface module.

The component Request Generator creates a rekeying request list depend-
ing on the selected group and simulation parameters. An entry of this list keeps
information on the request type, join or disjoin, the identity of the member to be

92 A. Shoufan and T. Arul

Algorithm Manager

System
Parameters

Algorithm
Selection

Tabular
Data

A1

Programming
Interface for new

algorithms

Request Generator

A2 An

Performance Evaluator

Group
 Parameters

Timing
Parameters

Rekeying
Requests

Abstract
Rekeying

Cost

Programming Interface
for new group

dynamics models

Simulation
Parameters

Graphical
Diagrams

UI

PI

Fig. 3. Benchmark architecture

joined or removed, and the arrival time of this request. The Algorithm Manager
then selects and configures the rekeying algorithms according to the user set-
tings. It coordinates all the functions of the simulator and controls the rekeying
algorithms. Based on the rekeying cost data delivered from the rekeying algo-
rithms and the entered timing parameters, the Performance Evaluator finally
estimates the rekeying performance of each algorithm and prepares its output
for a graphical presentation.

4.1 Request Generator

The Request Generator produces a rekeying request list RRL(T) by executing a
main process and 3 subprocesses. Before describing these processes, the following
terminology is given.

Definition 9. Rekeying Request
A Rekeying Request is a 3-tuple (type, ID, ta). type indicates the request type,
which may be either join (J) or disjoin (D). ID represents the member identity
to be joined (IDJ) or removed (IDD). ta describes the arrival time of a join
(disjoin) request ta J (ta D), measured from the simulation start point.

Definition 10. Rekeying Request List RRL(T)
A rekeying request list over T , RRL(T), is an ordered set of rekeying requests,
which arrive during a defined time interval T . The requests in the list are ordered
according to their arrival times.

Multicast Rekeying: Performance Evaluation 93

Example 1. An RRL(T) can be represented in tabular form as seen in Table 2.

Table 2. Example for a rekeying request list R R L (T)

Request Type
Member

Identity
Arrival Time

(ms)

J 1099 0

D 50 0.1

D 178 2

J 22657 5.3

Definition 11. Join Arrival List AJ(T)
A join arrival list over a time interval T is an ordered list of inter-arrival times
relating to all join requests generated during T : AJ (T) = (∆tJ (1), ∆tJ(2), . . . ,
∆tJ(h)), where ∆tJ (i) indicates the inter-arrival time of the i-th join request in
the interval T , and

i=h
∑

i=0

∆tJ(i) ≤ T. (5)

Definition 12. Disjoin Arrival List AD(T)
Similarly to AJ (T), a disjoin arrival list over a time interval T is defined as:
AD(T) = (∆tD(1), ∆tD(2), . . . , ∆tD(k)), where

i=k
∑

i=0

∆tD(i) ≤ T. (6)

Definition 13. Member Identity ID
A member identity is a natural number between 0 and Nmax − 1.

Definition 14. Complete Multicast Group M
A complete multicast group is the set of all the member identities: M = ID(i),
where i ∈ 0 . . . (Nmax − 1).

Definition 15. Joined Multicast Subgroup MJ

A joined multicast subgroup is the subset of all the given identities. At the start
of a simulation with an initial group size n0, MJ can be given as: MJ = ID(i),
where i ∈ 0 . . . (n0 − 1).

Definition 16. Potential Multicast Subgroup MD

A potential multicast subgroup is the subset of all the identities, which can be
given to new members. At the start of a simulation with an initial group size n0,
MD can be given as: MD = ID(i), where i ∈ n0 . . . (Nmax − 1).

94 A. Shoufan and T. Arul

Algorithm 1. GenReqList

R eq u ire: T
Ensure: RRL(T)
1: GetArrivalLists(T)→ AJ(T) and AD(T)
2: i := 1, j := 1, taJ := 0, taD := 0
3: while i ≤ h or j ≤ k do

4: if ∆tJ (i) ≥ ∆tD(j) then

5: taD := taD + ∆tD(j)
6: GetDisjoinID → IDD

7: Add (D, IDD, taD) into RRL(T)
8: j := j + 1
9: else

10: taJ := taJ + ∆tJ (i)
11: GetJoinID → IDJ

12: Add (J , IDJ , taJ) into RRL(T)
13: i := i + 1
14: end if

15: end while

16: Sort RRL(T) according to increasing arrival times.
17: return RRL(T)

Request Generator Process GenReqList. This process generates the rekey-
ing request list RRL(T) as given in Algorithm 1. First, the arrival process GetAr-
rivalLists(T) is called to produce join and disjoin arrival lists AJ (T) and AD(T).
According to the inter-arrival times in these lists, the arrival times for the in-
dividual requests are determined. Depending on the request type, the mem-
ber identity is then obtained by calling GetJoinID or GetDisjoinID. Then, the
RRL(T) is updated by the new request. After processing all entries in AJ(T)
and AD(T), the RRL(T) is sorted with increasing arrival time. Note that the
request generator is transparent to the simulation mode. Utilizing the generator
for different simulation modes will be described in the scope of the Algorithm
Manager. Example 2 illustrates this code in more details.

Example 2. Assume a group of maximal 8 members, where 5 members are cur-
rently joined as follows: M = {0, 1, 2, 3, 4, 5, 6, 7}, MJ = {0, 1, 2, 3, 4}, MD

= {5, 6, 7}, See definitions 14, 15, and 16 for M , MJ and MD, respectively.
Assume that calling the process GetArrivalLists(T) on some interval T results
in the inter-arrival time lists AJ(T) = (10, 25) and, AD(T) = (11, 5, 7). This
means that during the given interval 2 join requests and 3 disjoin requests are
collected, i.e. h = 2, k = 3. In addition, the requests feature the following
inter-arrival times: ∆tJ(1) = 10, ∆tJ(2) = 25, ∆tD(1) = 11, ∆tD(2) = 5, and
∆tD(3) = 7.

In the first run of the while loop, the if-condition in Algorithm 1 is false
because ∆tJ(1) < ∆tD(1). Therefore, the first join request is processed by de-
termining its arrival time as taJ := 0 + 10 = 10, as taJ = 0 initially. Assuming
that executing the process GetJoinID returned a member identity IDJ = 5, a

Multicast Rekeying: Performance Evaluation 95

first entry is written into the rekeying request list RRL(T), as depicted in the
first row of Table 3 which represents the RRL(T) for this example. In the second
iteration the if-condition is true because ∆tJ(2) > ∆tD(1). Therefore, the next
request to be written to the RRL(T) is of a disjoin type and has an arrival time
taD := 0+ 11 = 11, as taD = 0 initially. Assuming that GetDisjoinID returns an
IDD which is equal to 3, the RRL(T) is extended by the second entry of Table
3. The other entries of Table 3 can be determined in the same way. Figure 4
illustrates the relation between the inter-arrival times generated by the process
GetArrivalList(T) and the estimated arrival times in the given example.

Table 3. RRL(T) of Example 2

Request

Type

Member

Identity
Arrival Time

(ms)

J 5 10

D 3 11

D 1 16

D 4 23

J 1 35

Arrival Process GetArrivalLists. Based on related work on modeling multi-
cast member dynamics [15], the rekeying simulator assumes inter-arrival times,
which follow an exponential distribution for join and disjoin requests with the
rates λ and µ respectively. The corresponding cumulative distribution functions
are given by:

FJ (∆tJ) = 1 − e−λ∆tJ FD(∆tD) = 1 − e−µ∆tD (7)

To generate an exponentially distributed random variate based on uniform ran-
dom numbers between 0 and 1, the inverse transformation technique can be used.
Accordingly, if r represents such a random number, the inter-arrival times of a
join and disjoin request can be estimated as:

∆tJ = −
1

λ
ln r ∆tD = −

1

µ
ln r (8)

Algorithm 2 outlines the arrival process for creating the join arrival list AJ (T).
Creating AD(T) is identical and omitted, for brevity.

〉tJ(1)=10 〉tJ(2)=25

〉tD(1)=11 〉tD(2)=5 〉tD(3)=7

taJ(1)=10 taJ(2)=35 taD(1)=11 taD(2)=16 taD(3)=23

time

Fig. 4. Arrival times and inter-arrival times for Example 2

96 A. Shoufan and T. Arul

Algorithm 2. GetArrivalLists

Require: T
Ensure: AJ(T) (Generating AD(T) is identical)
1:

∑

∆tJ := 0;
∑

∆tD := 0;
2: while

∑

∆tJ ≤ T do

3: Generate r
4: Determine ∆tJ = 0 according to (8)
5:

∑

∆tJ =
∑

∆tJ + ∆tJ

6: Add ∆tJ to AJ(T)
7: end while

8: return AJ(T)

Join/Disjoin Identity Selection Processes GetJoinID and GetDis-
joinID. To join a member, any identity IDJ may be selected from the potential
multicast subgroup MD. A possible selection strategy may rely on choosing the
smallest available IDJ , which allows some order in the group management. In
contrast, selecting a leaving IDD from MJ is inherently non-deterministic, as a
group owner can not forecast which member will leave the group. To select an
IDD the following method is proposed. The IDD’s of MJ are associated with
continuous successive indices from 0 to m − 1, where m is the number of all
IDD’s in MJ . To select an IDD, first a uniform zero-one random number r is
generated. Then an index i is determined as m · r. In a last step, the IDD is
selected, which has the index i.

4.2 Algorithm Manager

The algorithm manager plays a central role in the benchmark architecture. Its
functionality can be illustrated by the process described in Figure 5. After read-
ing the user settings of the desired parameters, the simulation mode, and the
algorithms to be evaluated, the algorithm manager executes the corresponding
simulation process. Simulation processes on their part call the request generator
and pass the rekeying requests to the selected rekeying algorithms. As a result,
a simulation process provides abstract rekeying costs, i.e. without timing infor-
mation. This information is first supplied to the performance evaluator which
determines the metrics RQoS and RAC. In this section the underlying simula-
tion processes DoTranSim, DoScalSim, DoJoinDynSim, and DoDisjoinDynSim
will be explained. For this purpose, three basic concepts are introduced first.

Definition 17. Abstract Rekeying Cost (ARC)Abstract rekeying cost is a
5-tuple (G, E, H, M, S), which specifies a rekeying request and gives the numbers
of cryptographic operations needed to grant this request by a rekeying algorithm.
The elements of the ARC are specified in Table 4.

Multicast Rekeying: Performance Evaluation 97

Simulation

Mode?

Enable Simulation Setup

Enter User Settings

DoDisjoinDynSim

Evaluate Simulation Results

Output Evaluation Results

DoJoinDynSimDoScalSimDoTranSim

Fig. 5. Rekeying performance evaluation procedure

Table 4. Abstract rekeying costs notation

ARC Element Meaning

G # Generated cryptograpic keys

E # Symmetric encryptions

H # Cryptographic hash operations

M # Message authentication codes

S # Digital signatures

Definition 18. Rekeying Cost List RCL(T)
A rekeying cost list is a rekeying request list RRL(T), see Definition 10, which is
extended by the abstract rekeying cost ARC for each request. RCL(T) is used
for transient simulation.

Example 3. Table 5 shows an example for an RCL(T), which is an extension
of the rekeying request list given in Table 2. This example results from exe-
cuting the LKH algorithm with binary trees. This can be seen from the fact
that each generated key is encrypted twice to determine the rekeying submes-
sages. Note that the rekeying algorithm in this example does not use group
authentication. Therefore, no message authentication codes are needed. Instead,
rekeying submessages are hashed and the final hash value is signed once for each
request [18].

98 A. Shoufan and T. Arul

Table 5. RCL(T) for Example 3

Request

Type

Member

Identity
Arrival

Time (ms)

Rekeying Cost List

RCL(T)
G E H M S

L 1099 0 6 12 12 0 1

J 50 0.1 3 6 6 0 1

J 178 2 8 16 16 0 1

L 22657 5.3 2 4 4 0 1

Definition 19. Complex Rekeying Cost List CRCL(T)
A complex rekeying cost list over an interval T is a set of rekeying cost lists gener-
ated over this interval under different group conditions: CRCL(T) = {RCL1(T),
RCL2(T), · · ·}. CRCL(T) is used in the simulation modes of scalability and
join/disjoin dynamics, where an RCL(T) is generated for each n, λ, or µ value
in the desired simulation range, respectively.

Transient Simulation. Algorithm 3 represents the process of transient simulation
DoTranSim. The request generator process is resumed to generate a request list
RRL(tsim) for the desired simulation time period. For each selected rekeying
algorithm, the Algorithm Manger performs two main steps. Firstly, the rekeying
algorithm is requested to initialize a group with n0 members. Secondly, each
request of RRL(tsim) is sent to the rekeying algorithm, which determines the
corresponding abstract rekeying cost ARC for that request.

Algorithm 3. DoTranSim

Require: All settings for a transient simulation as given in Table 1; set of rekeying
algorithms to be evaluated.

Ensure: A RCL(tsim) for each rekeying algorithm
1: GenReqList(tsim) according to Algorithm 1 → RRL(tsim)
2: for each algorithm do

3: Initialize the group with n0members
4: while RRL(tsim) is not empty do

5: Send a rekeying request to the algorithm
6: Get corresponding ARC
7: Add ARC to RCL(tsim)
8: end while

9: end for

10: return RCL(tsim) for all algorithms

Other Simulation Modes. As mentioned in Section 3.2, other simulation modes
are highly similar and rely all on the transient simulation mode. Therefore, only
the scalability simulation is given in Algorithm 4, for brevity.

Multicast Rekeying: Performance Evaluation 99

Algorithm 4. DoScalSim

Require: All settings for a scalability simulation as given in Table 1; set of rekeying
algorithms to be evaluated.

Ensure: A CRCL(To) for each rekeying algorithm
1: for each algorithm do

2: n := nstart

3: while n ≤ nend do

4: DoTranSim for To and n0= n according to Algorithm 3→ RCL(To)
5: Add RCL(To) to CRCL(To)
6: n := n + ∆n
7: end while

8: end for

9: return CRCL(To) for all algorithms

4.3 Performance Evaluator

This component receives a set of RCL(T) or CRCL(T) and calculates the system
metrics RQoS and RAC as a function of time, group size, join rate, or disjoin
rate.

Definition 20. Performance Simulation Point (PSP)
A performance simulation point is a 3-tuple (x, RQoS, RAC), where x is the
variable, which the RQoS and RAC are related to, e.g. n in the scalability sim-
ulation. Depending on the simulation mode x, RQoS, and RAC are interpreted
as illustrated in Table 1. Note that in a transient simulation RQoS and RAC
are not defined for a disjoin and join request, respectively.

Definition 21. Rekeying Performance List (RPL)
A rekeying performance list is a set of performance simulation points. RPL
= {PSP} = {(x1, RQoS1, RAC1), (x2, RQoS2, RAC2), . . .}.

Definition 22. Timing Parameter List (TPL)
A timing parameter list (TPL) is a 5-tuple (Cg , Ce, Ch, Cm, Cs), where the
tuple elements are defined as given in Table 6. Recall that the timing parame-
ters reflect the performance of cryptographic algorithms and of the platform on
an abstraction level, which allows for a reliable evaluation of different rekeying
algorithms.

Table 6. Timing parameters

TPL Element Meaning: Time cost of

Cg Generating one cryptograpic key

Ce One symmetric encryption

Ch One cryptographic hash operation

Cm One message authentication code

Cs One digital signature

100 A. Shoufan and T. Arul

The Performance Evaluator executes processes, which combine a rekeying cost
list RCL(T) or a complex rekeying cost list CRCL(T) with a timing parameter
list TPL to produce a rekeying performance list PRL for a specific rekeying al-
gorithm. For each rekeying request in RCL(T)/CRCL(T) the actual join/disjoin
time is established according to equations (1) and (3). The rekeying and waiting
times for a join or disjoin request are determined as

RTJ/D = G · Cg + E · Ce + H · Ch + M · Cm + S · Cs (9)

WJ/D =

{
∑m

i=1 RTi if m ≥ 1
0 if m = 0

(10)

where m represents the number of all requests waiting in the system queue or
being processed at the arrival of the request at hand. Knowing the waiting times
and the rekeying times, the actual rekeying times can be estimated using (1) and
(3). Afterwards, RQoS and RAC can be calculated for a join or disjoin request
according to (2) or (4), respectively.

Transient Evaluation Process (EvalTranSimResults). In the case of a transient
simulation the performance evaluator executes the process EvalTranSimResults
according to Algorithm 5. For each join and disjoin request in the RCL(T), a
performance simulation point PSP is determined. The symbol ∞ in the pseudo
code indicates an undefined metric for the current request. For example, RQoS
is not defined for a disjoin request. taJ and taD represent the arrival times of
the corresponding join and disjoin requests, respectively. Remember that these
time values are determined from the arrival lists by the request generator process
according to Algorithm 1.

Algorithm 5. EvalTranSimResults

Require: A RCL(tsim) for each rekeying algorithm, T sys

J , T sys

D

Ensure: A PRL for each rekeying algorithm
1: for each RCL(tsim) do

2: for each request in RCL(tsim) do

3: if request type = J then

4: Determine RTJ and WJ according to (9) and (10)
5: Determine TJ and RQoS according to (1) and (2)
6: PSP=(taJ , RQoS, ∞)
7: else

8: Determine RTD and WD according to (9) and (10)
9: Determine TD and RAC according to (3) and (4)

10: PSP=(taD, ∞, RAC)
11: end if

12: Add PSP to PRL
13: end for

14: end for

15: return PRL for all algorithms

Multicast Rekeying: Performance Evaluation 101

Complex Evaluation Process (EvalComplexSimResults). Other simulation modes
deliver a CRCL(T). The Performance Evaluator generates one performance sim-
ulation point PSP for each RCL(T) of CRCL(T). The first element of the PSP
tuple represents a n, λ, or µ value for scalability, join dynamics or disjoin dynam-
ics simulation, respectively. The second element represents the minimal rekeying
quality of service RQoSmin of all join requests in the observation time for the
corresponding n, λ, or µ value. Similarly, the third element represents RACmin

of all disjoin requests. Algorithm 6 depicts the process EvalComplexSimResults
for evaluating non-transient simulation results. The symbol ∞in this pseudo
code indicates an initial very large value of the corresponding metric.

Algorithm 6. EvalComplexSimResults

Require: A CRCL(To) for each rekeying algorithm, T sys

J , T sys

D

Ensure: A PRL for each rekeying algorithm
1: for each rekeying algorithm do

2: for each RCL(To) of CRCL(To) do

3: RQoSmin = ∞, RACmin = ∞
4: for each request in RCL(To) do

5: if request type = J then

6: Determine RTJ and WJ according to (9) and (10)
7: Determine TJ and RQoS according to (1) and (2)
8: if RQoS < RQoSmin then

9: RQoSmin := RQoS
10: end if

11: else

12: Determine RTD and WD according to (9) and (10)
13: Determine TD and RAC according to (3) and (4)
14: if RAC < RACmin then

15: RACmin := RAC
16: end if

17: end if

18: PSP=(n/λ/µ, RQoSmin, RACmin)
19: end for

20: Add PSP to PRL
21: end for

22: end for

23: return PRL for all algorithms

5 Case Study

LKH is a tree-based rekeying scheme. As an effect of multiple disjoin processes,
the key tree may get out of balance. Several solutions have been proposed to
rebalance the tree in this case. The first contribution originates from Moyer
[11] who introduced two methods to rebalance the key tree, an immediate and a

102 A. Shoufan and T. Arul

periodic rebalancing. Only a cost analysis after one disjoin request is given for
the first method. The periodic rebalancing is not analyzed. In [12] a method for
rebalancing based on sub-trees was presented. A comparison with the solution
of Moyer is drawn, but not with the original LKH. In [13] an AVL-tree rebal-
ancing methods was applied to key trees. However, no backward access control
is guaranteed in this solution. In [14] three algorithms for tree rebalancing were
proposed. Simulation results are provided, which assume equally likely join and
disjoin behavior. However, this condition itself ensures tree balancing, because
a new member can be joined at the leaf of the most recently removed member.
The same applies to the simulation results by Lu [9]. From this description, it
is obvious that a comprehensive analysis is needed to justify the employment of
rebalancing, which is associated with extra rekeying costs resulting from shifting
members between tree leaves. The rekeying benchmark offers this possibility by
allowing a simultaneous evaluation of two LKH algorithms (with and without
rebalancing) under complex conditions. Especially the effect of the disjoin rate is
of interest in case of rebalancing. Therefore, a disjoin dynamics simulation is per-
formed under the following conditions: T sys

J = T sys
D = 100ms, Nmax = 65.536,

Cg = Ce = Ch = Cm = 1µs, Cs = 15ms, n0 = 4096, To = 1s, λ = 10s−1,
µstart = 1s−1, µstop = 20s−1, ∆µstart = 1s−1. Simulation results are depicted
in Figure 6 and Figure 7.

These diagrams clearly unveil that rebalancing degrades both RQoS and RAC
values and that this degrading increases with an increasing disjoin rate. Thus, the
simulation discloses that additional rekeying costs associated with rebalancing
exceed the performance gain achieved by it. Consequently, rebalancing is not
advantageous for LKH trees, at least under the given simulation conditions.

Fig. 6. RQoS in rebalanced vs. non-rebalanced LKH

Multicast Rekeying: Performance Evaluation 103

Fig. 7. RAC in rebalanced vs. non-rebalanced LKH

6 Conclusion

An assessment methodology and an associated simulation tool were presented
as a novel method to deal with the rekeying performance evaluation problem.
By means of the underlying concept of abstraction a reliable and meaningful
evaluation of different rekeying algorithms is provided. A case study illustrated
the advantage of this benchmark in analyzing yet unanswered questions relating
to rekeying. In its first prototype, the benchmark considers rekeying costs in
terms of cryptographic operations to be run on the server side. Other cost factors,
such as tree traversing in LKH, will be addressed in future work. Additionally,
more rekeying algorithms will be programmed and evaluated.

References

1. Wong, C.K., Gouda, M., Lam, S.S.: Secure Group Communication Using Key
Graph. IEEE/ACM Trans. on Networking 8(1), 16–30 (2000)

2. Ng, W.H.D., Sun, Z.: Multi-Layers Balanced LKH. In: Proc. of IEEE Int. Conf. on
Communication ICC, pp. 1015–1019 (May 2005)

3. Li, X.S., Yang, Y.R., Gouda, M., Lam, S.S.: Batch Rekeying for Secure Group
Communications. In: Proc. ACM 10th Int. World Wide Web Conf., Hong Kong
(May 2001)

4. Amir, Y., Kim, Y., Nita-Rotaru, C., Tsudik, G.: On the Performance of Group Key
Agreement Protocols. ACM Trans. on Information Systems Security 7(3), 457–488
(2004)

5. Pegueroles, J., Rico-Novella, F.: Balanced Batch LKH: New Proposal, Implemen-
tation and Performance Evaluation. In: Proc. IEEE Symp. on Computers and
Communications, p. 815 (2003)

6. Chen, W., Dondeti, L.R.: Performance Comparison of Stateful and Stateless Group
Rekeying Algorithms. In: Proc. of Int. Workshop in Networked Group Communi-
cation (2002)

104 A. Shoufan and T. Arul

7. Sherman, A., McGrew, D.: Key Establishment in Large Dynamic Groups Using
One-Way Function Trees. IEEE Trans. on Software Engineering 29(5), 444–458
(2003)

8. Waldvogel, M., Caronni, G., Sun, D., Weiler, N., Plattner, B.: The VersaKey
Framework: Versatile Group Key Management. IEEE J. on Selected Areas in Com-
munications 17(8), 1614–1631 (1999)

9. Lu, H.: A Novel High-Order Tree for Secure Multicast Key Management. IEEE
Trans. on Computers 54(2), 214–224 (2005)

10. Mittra, S.: Iolus: A Framework for Scalable Secure Multicasting. In: Proc. of ACM
SIGCOMM, Cannes, France, pp. 277–288 (September 1997)

11. Moyer, M.J., Tech, G., Rao, J.R., Rohatgi, P.: Maintaining Balanced Key Trees
for Secure Multicast, Internet draft (June 1999),
http://www.securemulticast.org/draft-irtf-smug-key-tree-balance-00.txt

12. Moharrum, M., Mukkamala, R., Eltoweissy, M.: Efficient Secure Multicast with
Well-Populated Multicast Key Trees. In: Proc. of IEEE ICPADS, p. 214 (July
2004)

13. Rodeh, O., Birman, K.P., Dolev, D.: Using AVL Trees for Fault Tolerant Group
Key Management, Tech. Rep. 2000-1823, Cornell University (2000)

14. Goshi, J., Ladner, R.E.: Algorithms for Dynamic Multicast Key Distribution Trees.
In: Proc. of ACM Symp. on Principles of Distributed Computing, pp. 243–251
(2003)

15. Almeroth, K.C., Ammar, M.H.: Collecting and Modeling the join/leave Behavior of
Multicast Group Members in the MBone. In: Proc. of HPDC, pp. 209–216 (1996)

16. NIST (National Institute of Standards and Technology), Advanced Encryption
Standard (AES), Federal Information Processing Standard 197 (November 2001)

17. http://www.cryptopp.com/

18. Shoufan, A., Laue, R., Huss, S.A.: High-Flexibility Rekeying Processor for Key
Management in Secure Multicast. In: IEEE Int. Symposium on Embedded Com-
puting SEC 2007, Niagara Falls, Canada (May 2007)

http://www.securemulticast.org/draft-irtf-smug-key-tree-balance-00.txt
http://www.cryptopp.com/

Robustness Analysis of Watermark Verification

Techniques for FPGA Netlist Cores

Daniel Ziener, Moritz Schmid, and Jürgen Teich

Hardware/Software Co-Design
Department of Computer Science

University of Erlangen-Nuremberg, Germany
Am Weichselgarten 3

91058 Erlangen, Germany
{daniel.ziener,moritz.schmid,teich}@cs.fau.de

Abstract. In this paper we analyze the robustness of watermarking
techniques for FPGA IP cores against attacks. Unlike most existing wa-
termarking techniques, the focus of our techniques lies on ease of verifica-
tion, even if the protected cores are embedded into a product. Moreover,
we have concentrated on higher abstraction levels for embedding the wa-
termark, particularly at the logic level, where IP cores are distributed
as netlist cores. With the presented watermarking methods, it is possi-
ble to watermark IP cores at the logic level and identify them with a
high likelihood and in a reproducible way in a purchased product from
a company that is suspected to have committed IP fraud. For robust-
ness analysis we enhanced a theoretical watermarking model, originally
introduced for multimedia watermarking. Finally, two exemplary water-
marking techniques for netlist cores using different verification strategies
are described and the robustness against attacks is analyzed.

1 Introduction

The ongoing miniaturization of on-chip structures allows us to implement very
complex designs which require very careful engineering and an enormous effort
for debugging and verification. Indeed, complexity has risen to such enormous
measures that it is no longer possible to keep up with productivity constraints if
all parts of a design must be developed from scratch. In addition, the very lively
market for embedded systems with its demand for very short product cycles
intensifies this problem significantly. A popular solution to close this so called
productivity gap is to reuse design components that are available in-house or
that have been acquired from other companies. The constantly growing demand
for ready to use design components, also known as IP cores, has created a very
lucrative and flourishing market which will continue its current path not only
into the near future.

One problem of IP cores is the lack of protection mechanisms against un-
licensed usage. A possible solution is to hide a unique signature (watermark)
inside the core by which the original author can be identified and an unlicensed

A. Biedermann and H. Gregor Molter (Eds.): Secure Embedded Systems, LNEE 78, pp. 105–127.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

106 D. Ziener, M. Schmid, and J. Teich

usage can be proven. Our vision is that it should be possible to detect the un-
licensed usage of an IP core solely using the product in which the IP core may
be embedded and the watermark information of the original author. It should
not be necessary to request any additional information from the manufacturer
of suspicious product. Such concepts of course need advanced verification tech-
niques in order for a signature or certain characteristics to be detectable in one
of possibly many IP cores inside a system. Another aspect to be considered is the
fact that IP cores will undergo several sophisticated optimization steps during
the course of synthesis. It is of utmost importance that a watermark is trans-
parent towards design and synthesis tools, that is, the embedded identification
must be preserved in all possible scenarios. Whilst on the one hand, we must deal
with the problem that automated design tools might remove an embedded sig-
nature all by themselves, a totally different aspect is that embedded signatures
must also be protected against the removal by illegitimate parties whose inten-
tion is to keep the IP core from being identifiable. The latter is not to be taken
lightly because if a sufficiently funded company decides to use unlicensed cores
to, for example, lower design costs, there are usually very high skilled employees
assigned with the task to remove or bypass the embedded watermark.

Figure 1 depicts a possible watermarking flow. An IP core developer embeds
a signature inside his IP core using a watermark embedder and publishes the
protected IP core. The intention of this procedure is that companies interested
into using the developer’s core would obtain a licensed copy. However, a third-
party company may also obtain an unlicensed copy of the protected IP core and
use it in one of their products. If the IP core developer becomes suspicious that
his core might have been used in a certain product without proper licensing, he
can simply acquire the product and check for the presence of his signature. If
this attempt is successful and his signature presents a strong enough proof of
authorship, the developer may decide to accuse the product manufacturer of IP
fraud and press legal charges.

IP cores exist for all design flow levels, from plain text HDL cores on the
register-transfer level (RTL) to bitfile cores for FPGAs or layout cores for ASIC
designs on the device level. In the future, IP core companies will concentrate
more and more on the versatile HDL and netlist cores due to their flexibility.
One reason for this development is that these cores can be easily adapted to new
technologies and different FPGA devices. This work focuses on watermarking
methods for IP cores implemented for FPGAs. These have a huge market seg-
ment and the inhibition threshold for using unlicensed cores is lower than in the
ASIC market where products are produced in high volumes and vast amounts
of funds are spent for mask production. Moreover, we concentrate on flexible IP
cores which are delivered on the logic level in a netlist format. The advantage
of this form of distribution is that these cores can be used for different families
FPGA devices and can be combined with other cores to obtain a complete SoC
solution. Our work differs from most other existing watermarking techniques,
which do not cover the area of HDL and netlist cores, or are not able to easily

Robustness Analysis of Watermark Verification Techniques for IP Cores 107

 !"#$%&'(

 !"#$%&"'&(&)$*&%"

)*+,-'(

. /$%('0$'1+
203(44('

/$%('0$'1(4
)*+,-'(.

!%$'+,-"'&(&)$*&%"

/$%('0$'1(4
)*+,-'(

*'-4&5%
)067(0(#%$%!-#

/$%('0$'1(4
)*+,-'(.)*+,-'(

'-4&5%'-4&5%

/$%('0$'1+
28%'$5%-'

 !"#$%&'(

. !"#$%&'(

9

.
9&:+*'-4&5%

(;";<+
,-6:+
.%%$51

9

 (77+)*+,-'(=

>3%$!#+!5(#=(4+,-'(

Fig. 1. An IP core developer embeds a watermark inside his core. If a company uses
this core in one of their product without proper licensing, the IP core developer can
obtain the product and check it for the presence of his watermark.

extract an embedded watermark from a heterogeneous SoC implemented in a
given product.

The remaining work is organized as follows: In Section 2, a short overview
of related work for IP watermarking is provided. Afterwards, Section 3 presents
a theoretical model for watermarking IP cores. Section 4 deals with different
strategies to extract a watermark from an FPGA embedded into a product. We
proceed by describing two methods for extracting a watermark. The first method
explains the extraction of a watermark from an FPGA bitfile in Section 5. An-
alyzing the power consumption of the FPGA in order to verify the presence of
a watermark is the second method and will be discussed in Section 6. Addition-
ally, the robustness against typical attacks will be analyzed for both methods.
In conclusion, the contributions will be summarized.

2 Related Work

IP cores are often distributed like software and can therefore be used without
proper legitimacy, which ranges from over-provisioning agreed on amounts of
licensed uses to simply not licensing an IP core at all. Some core suppliers use
encryption to protect their cores. The downside of such approaches is that en-
crypted cores can only be used in conjunction with special tools and that the
encryption will eventually be broken by individuals with high criminal energy.
A different approach is to hide a signature in the core, a so-called watermark,
which can be used as a reactive proof of the original ownership enabling IP core

108 D. Ziener, M. Schmid, and J. Teich

developers to identify and react upon IP fraud. There exist many concepts and
approaches on the issue of integrating a watermark into a core, several of which
will be reviewed in this section.

In general, hiding a signature into data, such as a multimedia file, some text,
program code, or even an IP core by steganographic methods is called water-
marking. For multimedia data, it is possible to exploit the imperfection of human
eyes or ears to enforce variations on the data that represent a certain signature,
but for which the difference between the original and the watermarked work
cannot be recognized. Images, for example, can be watermarked by changing the
least significant bit positions of the pixel tonal values to match the bit sequence
of the original authors signature. For music, it is a common practice to water-
mark the data by altering certain frequencies, the ear cannot perceive and thus
not interfering with the quality of the work [5]. In contrast, watermarking IP
cores is entirely different from multimedia watermarking, because the user data,
which represents the circuit, must not be altered since functional correctness
must be preserved.

Most methods for watermarking IP cores focus on either introducing addi-
tional constraints on certain parts of the solution space of synthesis and opti-
mization algorithms, or adding redundancies to the design.

Additive methods add a signature to the functional core, for example, by using
empty lookup-tables in an FPGA [15,19] or by sending the signature as a pream-
ble of the output of the test mode [8]. Constraint-based methods were originally
introduced by [9] and restrict the solution space of an optimization algorithm by
setting additional constraints which are used to encode the signature. Methods
for constraint-based watermarking in FPGAs exploit the scan-chain [13], pre-
serve nets during logic synthesis [12], place constraints for CLBs in odd/even
rows [10], alter the transistor width [4] or route constraints with unusual routing
resources [10].

A common problem of many watermarking approaches is that for verification
of the presence of the marks, the existence and the characteristic of a watermark
must be disclosed, which enables possible attackers to remove the watermark.
To overcome this obstacle, Adelsbach [2] and Li [16] have presented so-called
zero-knowledge watermark schemes which enable the detection of the watermark
without disclosing relevant information.

A survey and analysis of watermarking techniques in the context of IP cores
is provided by Abdel-Hamid and others [1]. Further, we refer to our own survey
of watermarking techniques for FPGA designs [25]. Moreover, a general survey
of security topics for FPGAs is given by Drimer [7].

3 Theoretical Watermark Model for Robustness Analysis
against Attacks

In this section, we propose a theoretical model for IP core watermarking. With
this model, different threats and attack scenarios can be described and evalu-
ated. In general, watermarking techniques must deal with an uncontrolled area,

Robustness Analysis of Watermark Verification Techniques for IP Cores 109

where the watermarked work is further processed. This is true for multimedia
watermarking, where, for example, watermarked images are processed to en-
hance the image quality by filters or for IP core watermarking where the core
is combined with other cores and traverses other design flow steps. However,
the watermarked work may be exposed to further attacks in this uncontrolled
area that may destroy the watermark and thus the proof of authorship as well.
This uncontrolled area is difficult to describe in a precise way and therefore, the
security goals and issues for watermarking are often given in natural language
which results in an imprecise description. This natural description makes an as-
sessment of the security very difficult, particularly if the attackers are intelligent
and creative.

Introducing a defined theoretical watermarking model with attackers and
threats allows us to assess the security of IP core watermarking techniques.
However, it should be noted that the model has to cover all possible attack
scenarios and represent all aspects of the real world behavior to allow for a
meaningful assessment of the security. In this section, we present a general wa-
termark model introduced by Li et al. [17] which will be enhanced with aspects
of IP core watermarking.

Watermarking intellectual property can be specified precisely by characteriz-
ing the involved actions using a security model. We use the standard definitions
from security theory, which defines security goals, threats and attacks. Security
goals represent certain abilities of a scheme, which are important to protect in
order to keep its functionality in tact. These abilities may be violated by threats
which are realized by attacks. Regarding watermarking, the overall security goal
is to be able to present a proof of authorship that is strong enough to hold in
front of a court. The security goal of a watermark scheme is violated if the origi-
nal author cannot produce a strong enough proof of authorship, so that a dispute
with another party will lead to an ownership deadlock, but also in the occasion,
where another party is able to present a more convincing proof of authorship
than the original author, resulting in counterfeit ownership. Another violation
of the proof of authorship occurs if the watermark of a credible author is forged
by another author and is used to convince a third party, that a work was created
by someone who did not.

An attacker can realize an ownership deadlock, if he can present a watermark
in the work, that is at least as convincing as the original authors watermark. If
such an ambiguity attack is successful, the real ownership cannot be decided and
the original author cannot prove his authorship. If, in addition, the ambiguity
attack results in the pirate being able to present an even more convincing proof of
authorship than the creator of the work, the pirate can counterfeit the ownership.
Another way to take over the ownership of a piece of IP is to be able to remove the
original authors watermark by means of a removal attack. Forged authorship can
be achieved by a key copy attack which simply duplicates the means of creating
a credible authors watermark. One last violation of the security goal does not
directly involve the author, but requires him to not take part in a dispute over
theft. The theft of a work resulting in counterfeit ownership can be realized by

110 D. Ziener, M. Schmid, and J. Teich

 !""#$"#$
%&'("!)(*

+,-.!)(*/
0.123"45

6"&-'.!#.*'
+,-.!)(*/

7"!8.2
%&'("!)(*/

%9:*8&*';
%''145

<.9"=13
%''145

6"/;
%''145

>.;$6"/;
%''145

?.4&!*';$
@"13

A(!.1')

%''145)

Fig. 2. An overview of threats, attacks and the watermarking security goal of the proof
of authorship. The different threats are realized by attacks which violate the security
goal.

a copy attack. The realized threat is only successful until the original author
realizes the violation. An overview of the introduced terms can be observed in
Figure 2.

Watermarking IP cores in electronic design automation is in some aspects
different from multimedia watermarking (image, audio, etc.). An essential dif-
ference is that watermarking must preserve the functionality of the core. Another
difference is that IP cores can be distributed at several abstraction levels which
have completely different properties for the watermark security against attacks.
We define different design steps as different technology or abstraction levels a
work or IP core can be specified on. On higher abstraction levels, as for example
on the architecture or register-transfer level, the functionality is described by an
algorithm. At these levels, mainly the behavior is described and the representa-
tion is optimized for easy reading and understanding the algorithm. During the
course of the design flow, more and more information is added. For example,
placement information is included at the device level representation of the core.
Extracting only the relevant information about the behavior of the algorithm
is much harder than at higher abstraction levels. Furthermore, the information
at lower abstraction levels is usually interpreted by tools rather than humans.
The representation of this information is therefore optimized for machine and
not human readability. For example, consider an FPGA design flow. Here, three
different abstraction levels exist: RTL, logic, and device level. An algorithm,
specified on the register-transfer-level (RTL) in an HDL core is easier to under-
stand than a synthesized algorithm on the logic level, represented by a netlist. In
summary, we can say that the behavior of an algorithm is easier to understand
on higher abstraction levels than it is on the lower ones.

Transformations from a higher to a lower abstraction level are usually done
by design tools. For example, a synthesis tool is able to transform an HDL
core specified on the register-transfer level (RTL) into its representation on the
logic level. Transformations from a lower to a higher level can be achieved by
reverse engineering. Here, usually no common tools are available. One exception

Robustness Analysis of Watermark Verification Techniques for IP Cores 111

is the Java library JBits from Xilinx [21] which is able to interpret the bitfiles of
Virtex-II device types. Thus, it is possible to transfer a bitfile core into a netlist
at the logic level by using JBits. However, in general, reverse engineering must
be considered as very challenging task which may cause high costs.

A watermark can be embedded at every abstraction level. Furthermore, the
watermarked core can be published and distributed also at every abstraction
level which must not necessarily be the same level at which the watermark was
embedded. However, the extraction of the watermark is usually done on the
lowest abstraction level, because this is the representation of the design which
is implemented into the end product.

Hiding a watermark at a lower abstraction level is easier, because first, there
are more possibilities of how and where to hide the watermark and second, the
information stored at these abstraction levels is usually outside the reception
area of the human developer.

To explain all threats and attacks in detail, some definitions have to be made
first [17,20].

3.1 Definitions

Our definitions for the IP core watermarking model [20] are derived from the
general watermarking model introduced by Li et al. [17]. A work or IP core that
is specified at abstraction level Y is denoted by IY = (xY1 , xY2 , . . . , xYm

), where
each xYi

∈ IY is an element of the work, and IY is a universe, inherent to the
abstraction level Y. For example, an FPGA design at the device abstraction
level might be represented by a bitfile which can be characterized as a work IB

= (xB1 , . . . , xBm
), whose elements reside in the universe Bit (IB). Hence, a bitfile

IB with |IB|= m can also be considered as a binary sequence IB = {0, 1}m.
Let T(·) be a transformation, which transforms a work on a specific abstrac-

tion level into a work of another abstraction level. A transformation from the
higher level Y to the lower abstraction level Z is denoted TY → Z(·), whereas a
transformation from a lower to a higher level is denoted TY ← Z(·).

Let DistY (·, ·) be a distance function which is able to measure the differences
of two works of the same abstraction level. If the distance of two IP cores IY

and I ′Y of the same abstraction level Y is smaller than a threshold value tI
(DistY (IY , I ′Y) < tI), the two works may be considered similar.

A watermark WY is a vector WY = (wY 1, wY 2, . . . , wY l), where each element
wY i ∈ WY . The universe WY is dependent on the universe of the work IY

and the watermark generation process. A key K is a sequence of m binary bits
(K = {0, 1}m).

In the watermark model, there exist three algorithms: the watermark gener-
ator G, the watermark embedder E, and the watermark detector D. In detail, a
specific watermark generator GX(·) is able to generate a watermark WX for the
abstraction level X from a key K: WX = GX(K). The input of the watermark
embedder or detector must be in the same abstraction level. For example, to
watermark an IP core IX at abstraction level X, also the watermark WX must
be generated for this abstraction level. So to obtain a watermarked work on the

112 D. Ziener, M. Schmid, and J. Teich

abstraction level X , it is necessary to also use a watermarked and an embed-
ding algorithm suitable for the same abstraction level, i.e., ĨX = EX(IX , WX).

The watermark in ĨX should obviously not be visible. Therefore, the difference
between IX and ĨX should be small. With the distance function, this can be
expressed as DistX(IX , ĨX) < tI , where tI is a threshold value upon the dif-
ference is noticeable. Using the watermark detector DX , the existence of the
watermark WX in the work ĨX can be proven, if DX(ĨX , WX) = true or negated

if DX(ĨX , WX) = false.
In order to achieve full transparency of the watermarking process towards de-

sign tools, it is an essential requirement that a work, marked on any abstraction
level, will retain the watermark if transformed to a lower abstraction level. Hence,
if DY (ĨY , WY) = true, so should also D(ĨZ , WZ) = true, if ĨZ = TY →Z(ĨY), and
WZ is a representation of WY on abstraction level Z.

However, considering reverse engineering, the watermark information may
be removed by the reverse engineering transformation TY ←Z(·), or the detec-
tion and removal of the watermark may be greatly simplified on the higher
abstraction level. For example, consider an FPGA bitfile IP core watermark-
ing technique for which the watermark is stored in some placement informa-
tion inside the bitfile. The watermark is generated for bitfiles on the device
level: WB = GB(K) and is embedded in a bitfile core IB to create the water-

marked bitfile: ĨB = EB(IB , WB). If an attacker is able to reverse engineer the

TA→B(ĨA)

Abstraction

Level

A

K

Author

IA = (xA1
, . . . , xAk

)

IP Core

WA = GA(K)

Watermark Generator

WA = (wA1
, . . . , wAl

)

Watermark

ĨA = E(IA, WA)

Watermark Embedder

ĨA

Marked IP Core Watermark Detector

ĨB

Marked IP Core

WB = (wB1
, . . . , wBl

)

Watermark

Watermark Detector

Abstraction

Level

B

DA(ĨA, WA) = true

DB(ĨB , WB) = true

Fig. 3. An example of a watermarking procedure characterized in the IP core water-
mark model with different abstraction levels. At abstraction level A, the watermark
is generated and embedded. A transformation to the abstraction level Bretains the
watermark [20].

Robustness Analysis of Watermark Verification Techniques for IP Cores 113

bitfile and reconstruct a netlist on the logic level, the placement information will
get lost, since there is no representation for this information on the logic level.
This implies, of course, that the watermark is lost, as well: ĨL = TL ← B(ĨB),

DL(ĨL, WL) = false. Another problem of reverse engineering may be that an
embedded watermark might become obviously readable at the higher abstraction
level and can be removed easily.

Figure 3 shows an example of the IP core watermark model considering dif-
ferent abstraction levels.

3.2 Threat Model

In the general multimedia watermarking model introduced by Li et al. [17], it
should be computationally infeasible to remove the watermark without changing
the properties of the work. For the introduced IP core watermarking model, this
requirement does not necessarily hold. Sometimes, it might be easier for an
attacker to redevelop an IP core than to remove a watermark. The question to
purchase or to redevelop a core is a pure matter of cost. An uprising economical
question is whether the development of an attack is an option. For many cases,
the redevelopment from scratch might be cheaper than obtaining an unlicensed
core and develop an attack in order to remove the watermark. On the other
hand, there are designs involving such cunning cleverness and creativity that
trying to redevelop a work of equivalent economic value would exceed the costs
of developing an appropriate attack by several orders of magnitude.

We may consider a watermarking technique secure, if the cost for obtaining
an unlicensed IP core and developing a removal attack is higher than to purchase
the IP core.

Let AY be an algorithm which is able to transform a watermarked IP core ĨY

at the abstraction level Y into an IP core with removed or disabled watermark
I✆

Y = AY (ĨY). Let C(·) be a cost function. Furthermore, denote CD(·) as the
development cost of a specified IP core or attack and CP(·) the purchase cost
of an IP core. Let CO(·) denote the cost to obtain an (unlicensed) IP core.
Note that this cost may vary between the costs for copying the core from an
arbitrary source and those for purchasing it. We define a watermarked core ĨY

to be secure against attacks if attacks produce higher costs than the legal use of
the core. Instead of requiring computational infeasibility, it is enough to fulfill:

CP(ĨY) < CD(IY) ≤ (CO(ĨY) + CD(AY(ĨY))). (1)

Furthermore, a reverse engineering step to a higher abstraction level and the
development of an attacker algorithm on this level might be cheaper than the
development of an attacker algorithm on the lower abstraction level. Therefore,
we must also consider the usage of reverse engineering:

CP(ĨY) < CD(IY) ≤ (CO(ĨY)+C(TX← Y(ĨY))+CD(AX(ĨX))+C(TX→Y(I ′X)).
(2)

114 D. Ziener, M. Schmid, and J. Teich

Definition 1. An IP core watermarking scheme is called tI -resistant to removal
attacks if for any attacker A and any IP core ĨY of a given abstraction level
Y and watermarked by WY , it is either computationally infeasible to compute
I�

Y = A(ĨY) with DistY (ĨY , I�

Y) < tI and DY (I�

Y , WY) = false or produces
higher costs than its legal use.

The term tI-resistant means that the watermark scheme is resistant against
removal attacks with respect to the threshold value tI . If the distance exceeds
tI , the works cannot be counted as identical. For example, if the attacker creates
a completely new work, the watermark is also removed, but the works are not
the same. The phrase computationally infeasible follows the standard definition
from cryptography. Something is computationally infeasible if the cost (e.g.,
memory, runtime, area) is finite but impossibly large [6]. Here, this is true if the

probability Pr[AY (ĨY) = I �

Y] is negligible with respect to the problem size n. A
quantity X is negligible with respect to n if and only if for all sufficiently large
n and any fixed polynomial q(·) (the attacker AY is defined as an algorithm of
polynomial complexity), we have X < 1/ q (n) [17].

In other words, with a sufficiently large problem size of watermarked work Ĩ Y ,
resistance against removal attacks means that the attacker is unable to remove
the watermark as the problem size is beyond the computational capability of
the attacker, unless the resulting work is perceptually different from the original
work.

For ambiguity attacks where an attacker tries to counterfeit the ownership or
to achieve an ownership deadlock, the attacker searches for a fake watermark
inside the IP core. This can be done by analyzing the IP core and searching for
a structural or statistical feature which might be suitable to be interpreted as
a fake watermark. However, the published IP core may be delivered in different
target technology versions, for example, for an ASIC design flow or for different
FPGA target devices. This fake watermark must of course be present in any
other distributed version of the IP core in order to guarantee the attacker’s
authentic evidence of ownership. Furthermore, the attacker must present a fake
original work and the evidence of a comprehensible watermark generation from
a unique key, which clearly identifies the attacker. These are all reasons why
ambiguity attacks are very difficult in the area of IP core watermarking.

Definition 2. An IP core watermarking scheme is called resistant to ambiguity
attacks if for any attacker A and any given IP core Ĩ Y of a certain abstrac-
tion level Y and watermarked by WY , it is either computationally infeasible to
compute a valid watermark W �

Y such that DY (ĨY , W �

Y) = true or produces more
costs than its legal use.

In case of key copy attacks, the key of a credible author is used to watermark
a work with lower quality. In general, it should be impossible for an attacker
to create a work I�

Y which is distinguishable from any work of another author
where the key or watermark of a credible author can be found.

Definition 3. A watermarking scheme is tI-resistant to key copy attacks if for
any attacker AY and any work ĨY = EY (IY , WY) for some original IY and the

Robustness Analysis of Watermark Verification Techniques for IP Cores 115

watermark WY , it is computationally infeasible for AY to compute a work I ✁

Y

such that Dist(IY , I✁

Y) > tI , yet DY (I✁

Y , WY) = true [17].

To prevent key copy attacks, a private/public key algorithm, like RSA [18] can
be used. RSA is an asymmetrical cryptography method that is based on factor-
ization of a number into prime numbers. The author encrypts a message which
clearly identifies the author and the work with his private key. The work can be
identified by a hash value over the original work. This encrypted message is now
used for generating the watermark and embedded inside the work. Stealing this
watermark is useless, because everyone can decrypt the message with the public
key, whereas no one can alter this message.

4 Watermark Verification Strategies for Embedded
FPGAs

The problem of applying watermarking techniques to FPGA designs is not the
coding and insertion of a watermark, rather it is the verification with an FPGA
embedded in a system that poses the real challenge. Hence, our methods concen-
trate in particular on the verification of watermarks. When considering finished
products, there are five potential sources of information that can be used for
extracting a watermark: The configuration bitfile, the ports, the power con-
sumption, electromagnetic (EM) radiation, and the temperature.

If the developer of an FPGA design has disabled the possibility to simply read
back the bitfile from the chip, it can be extracted by wire tapping the communi-
cation between the PROM and the FPGA. Some FPGA manufactures provide
an option to encrypt the bitstream which will be decrypted only during config-
uration inside the FPGA. Monitoring the communication between PROM and
FPGA in this case is useless, because only the encrypted file will be transmitted.
Configuration bitfiles mostly use a proprietary format which is not documented
by the FPGA manufacturers. However, it seems to be possible to read out some
parts of the bitfile, such as information stored in RAMs or lookup tables. In Sec-
tion 5, we introduce a procedure in which the watermarks are inserted into an
IP core specified on the logic level in form of a netlist and can then be extracted
from the configuration bitstream.

Another popular approach for retrieving a signature from an FPGA is to
employ unused ports. Although this method is applicable to top-level designs,
it is impractical for IP cores, since these are mostly used as components that
will be combined with other resources and embedded into a design so that the
ports will not be directly accessible any more. Due to these restrictions, we do
not discuss the extraction of watermarks over output ports.

Furthermore, it is possible to force patterns on the power consumption of an
FPGA, which can be used as a covert channel to transmit data to the outside
of the FPGA. We have shown in [27] and [24] that the clock frequency and
toggling logic can be used to control such a power spectrum covert channel.
The basic idea to use these techniques for watermarking is to force a signature

116 D. Ziener, M. Schmid, and J. Teich

dependent toggle pattern and extract the resulting change in power consumption
as a signature from the FPGA’s power spectrum. We refer to this method as
“Power Watermarking” in Section 6.

With almost the same strategy it is also possible to extract signatures from
the electro magnetic (EM) radiation of an FPGA. A further advantage of this
technique is that a raster scan of an FPGA surface with an EM sensor can also
use the location information to extract and verify the watermark. Unfortunately,
more and more FPGAs are delivered in a metal chip package which absorbs
the EM radiation. Nevertheless, this is an interesting alternative technique for
extracting watermarks and invites for future research.

Finally, a watermark might be read out by monitoring the temperature radia-
tion. The concept is similar to the power and EM-field watermarking approaches,
however, the transmission speed is drastically reduced. Interestingly, this is the
only watermarking approach which is commercially available [11]. Here, reading
the watermark from an FPGA may take up to 10 minutes.

5 Watermark Verification Using the FPGA Bitfile

In this section we present a method where an embedded signature is extracted
from an FPGA bitfile. We start out by discussing how the contents of the lookup
tables may be extracted from the FPGA bitfile. Following, a watermarking
method for netlist cores is proposed (see also [20]).

5.1 Lookup Table Content Extraction

In order to harden the watermark against removal it is very important to in-
tegrate the watermark into the functional parts of the IP core, so that simply
removing the mark carrying components would damage the core. For FPGA de-
signs, the functional lookup tables are an ideally suited component for carrying
watermarks. From a finished product, it is possible to obtain the configura-
tion bitstream of the FPGA. The extraction of the lookup table contents from
the configuration bitfile depends on the FPGA device and the FPGA vendor.
To read out the LUT content directly from the bitfile, it must be known at
which position in the bitfile the lookup table content is stored and how these
values must be interpreted. In [22], for example, a standard black-box reverse
engineering procedure is applied to interpret Xilinx Virtex-II and Virtex-II Pro
bitfiles. To generalize this approach, we define a lookup table extractor function
LX(·) for the abstraction level X . The extractor function is able to extract the
lookup table content of a work IX as follows: LX(IX) = {xX1 , xX2 , . . . , xXm

},
whereas xXi

is a lookup table content element of the abstraction level X , and
m is the number of used lookup tables. Here it is essential to include the
abstraction level, because LUT content might be encoded differently on dif-
ferent technology representations. The extraction function can be applied to
extract the lookup table contents of a design IB of the bitfile on abstraction level

Robustness Analysis of Watermark Verification Techniques for IP Cores 117

B: LB(IB) = {xB1 , xB2 , . . . , xBq
}. Each element xBi

consists of the lookup ta-
ble content as well as the slice coordinates of the corresponding lookup table.
Once again, we have to mention that these methods will not work with bitfile
encryption.

5.2 Watermarks in Functional LUTs for Netlist Cores

Since we want to keep the IP core as versatile as possible, we watermark the
design in the form of a netlist representation, which, although technology depen-
dent to a certain degree, can still be used for a large number of different devices.
Netlist designs will almost certainly undergo the typical design flow for silicon
implementations. This also includes very sophisticated optimization algorithms,
which will eliminate any redundancy that can be found in the design in order to
make improvements. As a consequence it is necessary to embed the watermarks
in the netlist in such a way, that the optimization tools will not remove the
watermarks from the design. In Xilinx FPGAs, for example, lookup tables are
essentially RAM cells, with the inputs specifying which of the stored bits to de-
liver to the output of the RAM. Naturally, these cells can therefore also be used
as storage, but also as shift-register cells (see Figure 4). Interesting, however, is
the fact that if the cell is configured as a lookup table, Xilinx optimization tools
will try to optimize the contained logic function. If the cell is in contrast con-
figured as a shift-register or distributed RAM, the optimization tools will leave
the contents alone, but the logic function is still carried out. This means, that
if we want to add redundancy to a netlist, that is not removed by automized
tools, all we have to do is to take the corresponding cells out of the scope of the
tools. FPGAs usually consist of the same type of lookup tables with respect to
the number of inputs. For example, the Xilinx Virtex-II uses lookup tables with
four inputs whereas the Virtex-5 has lookup tables with six inputs. However, in
common netlist cores many logical lookup tables exist, which have less inputs
than the type used on the FPGA. These lookup tables are mapped to the phys-
ical lookup tables of the FPGA during synthesis. If the logical lookup table of
the netlist core has fewer inputs than the physical representation, the memory
space which was not present in the logical representation remains unused. Using
the unused memory space of functional lookup tables for watermarking with-
out converting the lookup table either to a shift register or distributed memory
turns out to be not applicable, because design flow tools identify the watermark
as redundant and remove the content due to optimization. Converting the wa-
termarked functional lookup table into a shift register or a memory cell prevents
the watermark from deletion due to optimization.

Embedding the Watermark. The first step of embedding a watermark is to
extract all lookup tables from a given netlist core IL: LL(IL) = {lutL1, lutL2, . . . ,
lutLr

}, where L denotes the logic abstraction level used for netlist cores (see
Figure 5) and subscript r refers to the amount of extracted LUTs. Each element
lutLi

denotes a lookup table primitive cell in the netlist (e.g. for Virtex-II devices,
LUT1, LUT2, LUT3, or LUT4). A watermark generator GL(·, ·) must know the

118 D. Ziener, M. Schmid, and J. Teich

 !
 "
 #
 $

%&
'(

)

*

++*!,

-./!0 !
 "
 #
 $

%&
'(

)

*

++*!,

/12$

Fig. 4. In the Xilinx Virtex architecture, the same standard cell is used as a lookup
table (LUT4) and also as a 16-bit shift-register lookup table(SRL16)

different lookup table cells with the functional content as well as the unique key
K to generate the watermarks: GL(K, LL(IL)) = WL.

From the unique key K a secure pseudo random sequence is generated. Some
or all of the extracted lookup table primitive cells are chosen to carry a water-
mark. Note that only lookup tables from the netlist core can be chosen which use
less inputs than the physical lookup tables on the FPGA. Usually a core which
is worth to be watermarked consists of many markable lookup tables. Now, the
lookup tables are transformed to shift registers, ordered, and the first 4 bits of
the free space are used for a counter value. The other bits are initialized ac-
cording to the position with values from the pseudo random stream, generated
from the key K. Note that the number of bits which can be used for the random
stream depends on the original functional lookup table type.

The generated watermark WL consists of the transformed shift registers:
WL = {srlL1 , srlL2 , . . . , srlLk

} with k ≤ r. The watermark embedder EL in-
serts the watermarks into the netlist core IL by replacing the corresponding
original functional lookup tables with the shift registers: EL(IL, WL) = ĨL. The

watermarked work ĨL can now be published and sold.

Extraction of the Watermark. The purchased core ĨL can be combined by a
product developer with other purchased or self developed cores and implemented
into an FPGA bitfile: ÎB = TL→B(ĨL ◦ I ′L1

◦ I ′L2
◦ . . .) (see Figure 5). An FPGA

which is programmed with this bitfile ÎB may be part of a product. If the product
developer is accused of using an unlicensed core, the product can be purchased
and the bitfile can be read out, e.g., by wire tapping. The lookup table content
and the content of the shift registers can be extracted from the bitfile: LB(ÎB) =
{x̂B1 , x̂B2 , . . . , x̂Bq

}.
The lookup table or shift register elements xBi

belong to the device abstrac-
tion level B . The representation can differ from the representation of the same
content in the logic abstraction level L . For example, in Xilinx Virtex-II FP-
GAs the encoding of the shift register differs from the encoding of lookup ta-
bles. For shift registers the bit order is reversed compared to the lookup table
encodings. Therefore, the bitfile elements must be transferred to the logic level

Robustness Analysis of Watermark Verification Techniques for IP Cores 119

 !"#$%&'
()*)+",)!

-$&.)/&0%1&0"/
234&)5

657)##0/8
234&)5

 !"#$%!$&
'#(#$!")$**

 !"#$%!$&+* !

,(-./#*0#1*"

 !"#$%!$&
2%3#44#$**

5$-6!"#*0#1
7/"8)$*9(:)$%!"-)(

;))&/<*"!3=#
2>"$!?")$***

@#"=-+"*A)$#*#!

;))&/<
B!3=#+

#CDCE*
A)<1*
7""!?&

 !"#$%!$
95*A)$#* !

;))&/<*"!3=#
2>"$!?")$***

 !"#$%!$&
F#"#?")$

2>"$!?"#4
;))&/<*
B!3=#+

 !"#$%!$&
G#$-:-?!"-)(

,(-./#*0#1*"5/3=-?*0#1
7/"8)$*9(:)$%!"-)(HI(#$+8-<*

2+"!3=-+8#4J
1#+K()

9%<=#%"!"-)(
*

@#"=-+"*A)$#*#$!%

@#"=-+"*A)$#*#$!&

F#?)4#$

5$)4/?"

Fig. 5. The netlist core watermarking system. The embedding system is responsible
for extracting the lookup tables from the netlist core, selecting suitable locations and
embedding the watermarks in those LUTs that were converted into shift-registers. A
product developer may obtain such a watermarked netlist core and combine it with
other cores into a product. The lookup tables from the product can be extracted and
transformed so that the detector can decide if the watermark is present or not.

by the corresponding decoding. This can be done by the reverse engineering op-
erator : TL←B(LB(ÎB)) = {x̂L1 , x̂L2 , . . . , x̂Lq

}. Reverse engineering lookup table
or shift register content is however very simple compared to reverse engineering
the whole bitfile. Now, the lookup table or shift register content can be used for
the watermark detector DL which can decide if the watermark WL is embedded
in the work or not: DL(WL, {x̂L1 , x̂L2 , . . . , x̂Lq

}) = true/false.

Robustness Analysis. To recall Section 3, the most important attacks are
removal, ambiguity, key copy, and copy attacks. As stated before, a possible
protection against copy attacks does not exist and key copy attacks can be
prevented by using an asymmetric cryptographic method, like RSA.

Removal attacks most likely occur on the logic level, after obtaining the un-
licensed core and before the integration with other cores. The first step of a

120 D. Ziener, M. Schmid, and J. Teich

removal attack is the detection of the watermarks. The appearance of the shift
register primitive cells (here SRL16) in a netlist core is not suspicious because
shift registers appear also in unwatermarked cores. However, the cumulative ap-
pearance may be suspicious, which may alert an attacker. However, it is not
sufficient to simply convert all the SRL cells back to LUT cells, because, al-
though this might remove the watermark content, all the shift registers in the
design will be disabled. In contrast to bitfiles, the signal nets can be easily read
out from a netlist core. An attacker may analyze the net structures of shift regis-
ters in order to detect the watermarked cells. This might be successful, however,
we can better hide the watermark if we alter the encoding of the watermark and,
therefore, the connections to the watermark cell. The reachable functional part
of the shift register can be shifted to other positions by using other functional
inputs and clamping the remaining inputs to different values. If a watermark
cell is detected by an attacker, he cannot easily remove the cell, because the cell
also has a functional part. By removing the cell, the functional part is removed
and the core is damaged. Therefore, after the detection of the watermark, the
attacker must either decode the content of the watermarked shift register to
extract the functional part and insert a new lookup table, or overwrite the wa-
termarked part of the cell with other values, so the watermark is not detectable
any more. The different encodings of the functional part of the shift register
content complicates the analysis and the extraction of it. Furthermore, even if
some watermarks are removed, the establishment of the right ownership of the
core is still possible, because we need not all watermarked cells for a successful
detection of the signature.

In case of ambiguity attacks, an attacker analyzes the bitfile or the netlist to
find shift register or lookup table contents which may be suitable to build a fake
watermark. However, the attacker must also present the insertion procedure to
achieve a meaningful result. Due to the usage of secure one way cryptographic
functions for generating the watermark, the probability of a success is very low.
Furthermore, the attacker can use a self-written netlist core which he water-
marked with his signatures and combine it with the obtained unlicensed core.
The result is, that the watermarks of the authors of both cores are found in the
bitfile, which are both trustful. Inside the unique key K, not only the author
information should be included but also information of the core, e.g., a hash
value over the netlist core file without the watermark. Of course, the attacker
can use the identification of the obtained unlicensed core for watermarking his
core. However, to generate a hash value of the obtained core without watermarks,
he must first remove the marks. In general, attacks against this approach are
possible, but they need a high amount of effort. To increase the security against
ambiguity attacks, the core may be registered at a trusted third party.

6 Power Watermarking

This section describes watermarking techniques introduced in [27] and [24],
where a signature is verified over the power consumption pattern of an FPGA.

Robustness Analysis of Watermark Verification Techniques for IP Cores 121

 !"#

$%&'()*+, !-.,+
!()),+'
",',+()-+

/-0)(&,
$*1102

)+(
3,

4,),3),5
$%&'()*+,6
7 894:;<

$%&'()*+,=>+-?=)@,=
3-+,=A*110%,+6
7 894:;<

B-?1(+,

1+-C,

D!=B-+,

Fig. 6. Watermark verification using power signature analysis: From a signature (wa-
termark), a power pattern inside the core will be generated that can be probed at the
voltage supply pins of the FPGA. From the trace, a detection algorithm verifies the
existence of the watermark.

The presented idea is new and differs from [14] and [3] where the goal of using
power analysis techniques is the detection of cryptographic keys and other secu-
rity issues. For power watermarking methods, the term signature refers to the
part of the watermark which can be extracted and is needed for the detection
and verification of the watermark. The signature is usually a bit sequence which
is derived from the unique key for author and core identification.

There is no way to measure the relative power consumption of an FPGA
directly. Only by measuring the relative supply voltage or current the actual
power consumtion can be inferred. We have decided to measure the voltage of
the core as close as possible to the voltage supply pins such that the smoothing
from the plane and block capacities are minimal and no shunt is required. Most
FPGAs have ball grid array (BGA) packages and the majority of them have
vias to the back of the PCB for the supply voltage pins. So, the voltage can
be measured on the rear side of the PCB using an oscilloscope. The voltage
can be sampled using a standard oscilloscope, and analyzed and decoded using
a program developed to run on a PC. The decoded signature can be compared
with the original signature and thus, the watermark can be verified. This method
has the advantage of being non-destructive and requires no further information
or aids than the given product (see Figure 6).

122 D. Ziener, M. Schmid, and J. Teich

In the power watermarking approach described in [26] and [27], the amplitude
of the interferences in the core voltage is altered. The basic idea is to add a
power pattern generator (e.g., a set of shift registers) and clock it either with
the operational clock or an integer division thereof. This power pattern generator
is controlled according to the encoding of the signature sequence which should
be sent.

The mapping of a signature sequence s = {0, 1}n onto a sequence of sym-
bols {σ 0, σ1}

n [24] is called encoding: {0, 1}n → Zn, n ≥ 0 with the alphabet
Z = {σ0, σ1}. Here, each signature bit {0, 1} is assigned to a symbol. Each sym-
bol σi is a triple (ei, δi, ωi), with the event ei ∈ {γ, γ̄}, the period length δi > 0,
and the number of repetitions ωi > 0. The event γ is power consumption through
a shift operation and the inverse event γ̄ is no power consumption. The period
length is given in terms of number of clock cycles. For example, the encoding
through 32 shifts with the period length 1 (one shift operation per cycle) if the
data bit ’1’ should be sent, and 32 cycles without a shift operation for the data
bit ’0’ is defined by the alphabet Z = {(γ, 1, 32), (γ̄, 1, 32)}.

Different power watermarking encoding schemes were introduced and ana-
lyzed. The basic method with encoding scheme: Z = {(γ, 1, 1), (γ̄, 1, 1)}, the
enhanced robustness encoding: Z = {(γ, 1, 32), (γ̄, 1, 32)}, and the BPSK ap-
proach: Z = {(γ, 1, ω), (γ̄, 1, ω)} are explained in detail in [27]. The correlation
method with encoding Z = {(γ, 25, 1), (γ̄, 25, 1)} can be reviewed in [24]. To
avoid interference from the operational logic in the measured voltage, the signa-
ture is only generated during the reset phase of the core.

The power pattern generator consists of several shift registers, causing a rec-
ognizable signature- and encoding-dependent power consumption pattern. As
mentioned before in Section 5.2, a shift register can also be used as a lookup
table and vice versa in many FPGA architectures (see Figure 4 in Section 5.2).
A conversion of functional lookup tables into shift registers does not affect the
functionality if the new inputs are set correctly. This allows us to use functional
logic for implementing the power pattern generator. The core operates in two
modes, the functional mode and the reset mode. In the functional mode, the shift
is disabled and the shift register operates as a normal lookup table. In the reset
mode, the content is shifted according to the signature bits and consumes power
which can be measured outside of the FPGA. To prevent the loss of the content
of the lookup table, the output of the shift register is fed back to the input, such
that the content is shifted circularly. When the core changes to the functional
mode, the content have to be shifted to the proper position to get a functional
lookup table for the core.

To increase the robustness against removal and ambiguity attacks, the con-
tent of the power consumption shift register which is also part of the functional
logic can be initialized shifted. Only during the reset state, when the signa-
ture is transmitted, the content of the functional lookup table can be positioned
correctly. So, normal core operation cannot start before the signature was trans-
mitted completely. The advantage is that the core is only able to work after
sending the signature. Furthermore, to avoid a too short reset time in which

Robustness Analysis of Watermark Verification Techniques for IP Cores 123

the watermark cannot be detected exactly, the right functionality will only be
established if the reset state is longer than a predefined time. This prevents the
user from leaving out or shorten the reset state with the result that the signature
cannot be detected properly.

The signature itself can be implemented as a part of the functional logic
in the same way. Some lookup tables are connected together and the content,
the function of the LUTs, represents the signature. Furthermore, techniques
described in Section 5.2 can be used to combine an additional watermark and
the functional part in a single lookup table if not all lookup table inputs are used
for the function. For example, LUT2 primitives in Xilinx Virtex-II devices can
be used to carry an additional 12-bit watermark by restricting the reachability of
the functional lookup table through clamping certain signals to constant values.
Therefore, the final sending sequence consists of the functional part and the
additional watermark. This principle makes it almost impossible for an attacker
to change the content of the signature shift register. Altering the signature would
also affect the functional core and thus result in a corrupt core.

The advantages of using the functional logic of the core as a shift register
are the reduced resource overhead for watermarking and the robustness of this
method. It is hard, if not impossible, to remove shift registers without destroying
the functional core, because they are embedded in the functional design. The
watermark embedder EL(IL, WL) = ĨL consists of two steps. First, the core IL

must be embedded in a wrapper which contains the control logic for emitting the
signature. This step is done at the register-transfer level before synthesis. The
second step is at the logic level after the synthesis. A program converts suitable
lookup tables (for example LUT4 for Virtex-II FPGAs) into shift registers for the
generation of the power pattern and attaches the corresponding control signal
from the control logic in the wrapper. The wrapper contains the control logic for
emitting the watermark and a register that contains the signature. The ports of
the wrapper are identical to the core, so we can easily integrate this wrapper into
the hierarchy. The control logic enables the signature register while the core is in
reset state. Also, the power pattern shift registers are shifted in correspondence
to the current signature bit. If the reset input of the wrapper is deasserted, the
core function cannot start immediately, but only as soon as the content in the
shift registers has been shifted back to the correct position. Then the control logic
deasserts the internal reset signal to enter normal function mode. The translation
of four input lookup tables (LUT4) of the functional logic into 16 Bit shift

registers (SRL16) is done at the netlist level. The watermarked core ĨL is now
ready for purchase or publication. A company may obtain an unlicensed version
of the core ÎL and embeds this core in a product: ÎP = TL→B(ÎL ◦I ′L1

◦I ′L2
◦ . . .).

If the core developer has a suspicious fact, he can buy the product and verify
that his signature is inside the core using a detection function DP (ÎP , WL) =
true/false. The detecting function depends on the encoding scheme. In [27] and
[24], the detecting functions of all introduced encoding schemes are described in
detail.

124 D. Ziener, M. Schmid, and J. Teich

The advantage of power watermarking is that the signature can easily be read
out from a given device. Only the core voltage of the FPGA must be measured
and recorded. No bitfile is required which needs to be reverse-engineered. Also,
these methods work for encrypted bitfiles where methods extracting the signa-
ture from the bitfile fail. Moreover, we are able to sign netlist cores, because
our watermarking algorithm does not need any placement information. How-
ever, many watermarked netlist cores can be integrated into one design. The
results are superpositions and interferences which complicate or even prohibit
the correct decoding of the signatures. To achieve the correct decoding of all
signatures, we proposed multiplexing methods in [23].

Robustness Analysis. The most common attacks against watermarking men-
tioned in Section 3 are removal, ambiguity, key copy, and copy attacks. Once
again, key copy attacks can be prevented by asymmetric cryptographic meth-
ods, and there is no protection against copy attacks.

Removal attacks most likely take place on the logic level instead of the device
level where it is really hard to alter the design. The signature and power shift
registers as well as the watermark sending control logic in the wrapper are mixed
with functional elements in the netlist. Therefore, they are not easy to detect.
Even if an attacker is able to identify the sending logic, a deactivation is useless
if the content of the power shift register is only shifted into correct positions
after sending the signature. By preventing the sending of the watermark, the
core is unable to start. Another possibility is to alter the signature inside the
shift register. The attacker may analyze the netlist to find the place were the
signature is stored. This attack is only successful if there is no functional logic
part mixed with the signature. By mixing the random bits with functional bits,
it is hard to alter the signature without destroying the correct functionality of
the core. Therefore, this watermark technique can be considered as resistant
against removal attacks.

In case of ambiguity attacks, an attacker analyses the power consumption of
the FPGA in order to find a fake watermark, or to implement a core whose
power pattern disturbs the detection of the watermark. In order to trustfully
fake watermarks inside the power consumption signal, the attacker must present
the insertion and sending procedure which should be impossible without using
an additional core. Another possibility for the attacker is to implement a distur-
bance core which needs a lot of power and makes the detection of the watermark
impossible. In [27] and [24], enhanced robustness encoding methods are presented
which increase the possibility to decode the signature, even if other cores are op-
erating during the sending of the signature. Although a disturbance core might
be successful, this core needs area and most notably power which increases the
costs for the product. The presence of a disturbance core in a product is also
suspicious and might lead to further investigation if a copyright infringement has
occurred. Finally, the attacker may watermark another core with his watermark

Robustness Analysis of Watermark Verification Techniques for IP Cores 125

and claim that all cores belong to him. This can be prevented by adding a
hash value of the original core without the watermark to the signature like in
the bitfile watermarking method for netlist cores. The sending of watermarks of
multiple cores at the same time is addressed in [23].

7 Conclusions

In this paper, we have presented exemplary two different approaches for water-
marking of IP cores. Our methods follow the strategy of an easy verification
of the watermark or the identification of the core in a bought product from an
accused company without any further information. Netlist cores, which have a
high trade potential for embedded systems developers, are in the focus of our
analysis. To establish the authorship in a bought product by watermarking or
core identification, we have discovered different new techniques, how information
can be transmitted from the embedded core to the outer world. In this paper, we
concentrated on methods using the FPGA bitfile which can be extracted from the
product and on methods where the signature is transmitted over the power pins
of the FPGA. In Section 3, we adapt the theoretical general watermark approach
from Li et al. [17] for IP core watermarking and show possible threats and at-
tacks. Section 5 deals with IP core watermarking methods where the authorship
is established by analysis of the extracted bitfile. In Section 6, we have described
watermark techniques for IP cores where the signature can be extracted easily
over the power pins of the chip. The main idea is that during a reset phase of
a chip, a watermark circuit is responsible to emit a characteristic power pattern
sequence that may be measured by voltage fluctuations on power pins. With
these techniques, it is possible to decide with high confidence, whether an IP
core of a certain vendor is present on the FPGA or not. For all methods, we
analyzed the strengths and weaknesses in case of removal of ambiguity attacks.

References

1. Abdel-Hamid, A.T., Tahar, S., Aboulhamid, E.M.: A Survey on IP Watermarking
Techniques. Design Automation for Embedded Systems 9(3), 211–227 (2004)

2. Adelsbach, A., Rohe, M., Sadeghi, A.-R.: Overcoming the Obstacles of Zero-
knowledge Watermark Detection. In: Proceedings of the 2004 Workshop on Multi-
media and Security MM&Sec 2004, pp. 46–55. ACM, New York (2004)

3. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side-Channel(s).
In: Kaliski Jr., B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp.
29–45. Springer, Heidelberg (2003)

4. Bai, F., Gao, Z., Xu, Y., Cai, X.: A Watermarking Technique for Hard IP Protec-
tion in Full-custom IC Design. In: International Conference on Communications,
Circuits and Systems (ICCCAS 2007), pp. 1177–1180 (2007)

5. Boney, L., Tewfik, A.H., Hamdy, K.N.: Digital Watermarks for Audio Signals.
In: International Conference on Multimedia Computing and Systems, pp. 473–480
(1996)

126 D. Ziener, M. Schmid, and J. Teich

6. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

7. Drimer, S.: Security for Volatile FPGAs (November 2009)
8. Fan, Y.C., Tsao, H.W.: Watermarking for Intellectual Property Protection. Elec-

tronics Letters 39(18), 1316–1318 (2003)
9. Kahng, A.B., Lach, J., Mangione-Smith, W.H., Mantik, S., Markov, I.L., Potkon-

jak, M.M., Tucker, P.A., Wang, H., Wolfe, G.: Constraint-Based Watermarking
Techniques for Design IP Protection. IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems 20(10), 1236–1252 (2001)

10. Kahng, A.B., Mantik, S., Markov, I.L., Potkonjak, M.M., Tucker, P.A., Wang,
H., Wolfe, G.: Robust IP Watermarking Methodologies for Physical Design. In:
Proceedings of the 35th Annual Design Automation Conference DAC 1998, pp.
782–787. ACM, New York (1998)

11. Kean, T., McLaren, D., Marsh, C.: Verifying the Authenticity of Chip Designs with
the DesignTag System. In: Proceedings of the 2008 IEEE International Workshop
on Hardware-Oriented Security and Trust HOST 2008, Washington, DC, USA, pp.
59–64. IEEE Computer Society, Los Alamitos (2008)

12. Kirovski, D., Hwang, Y.-Y., Potkonjak, M., Cong, J.: Intellectual Property Protec-
tion by Watermarking Combinational Logic Synthesis Solutions. In: Proceedings of
the 1998 IEEE/ACM International Conference on Computer-Aided Design ICCAD
1998, pp. 194–198. ACM, New York (1998)

13. Kirovski, D., Potkonjak, M.: Intellectual Property Protection Using Watermarking
Partial Scan Chains For Sequential Logic Test Generation. In: Proceedings of the
1998 IEEE/ACM International Conference on Computer-Aided Design ICCAD
1998 (1998)

14. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

15. Lach, J., Mangione-Smith, W.H., Potkonjak, M.: Signature Hiding Techniques for
FPGA Intellectual Property Protection. In: Proceedings of the 1998 IEEE/ACM
International Conference on Computer-Aided Design ICCAD 1998, pp. 186–189.
ACM, New York (1998)

16. Li, Q., Chang, E.-C.: Zero-knowledge Watermark Detection Resistant to Ambiguity
Attacks. In: Proceedings of the 8th Workshop on Multimedia and Security MMSec
2006, pp. 158–163. ACM, New York (2006)

17. Li, Q., Memon, N., Sencar, H.T.: Security Issues in Watermarking Applications
– A Deeper Look. In: Proceedings of the 4th ACM International Workshop on
Contents Protection and Security MCPS 2006, pp. 23–28. ACM, New York (2006)

18. Rivest, R.L., Shamir, A., Adleman, L.M.: A Method for Obtaining Digital Signa-
tures and Public-key Cryptosystems. Communications of the ACM 21(2), 120–126
(1978)

19. Saha, D., Sur-Kolay, S.: Fast Robust Intellectual Property Protection for VLSI
Physical Design. In: Proceedings of the 10th International Conference on Infor-
mation Technology ICIT 2007, Washington, DC, USA, pp. 1–6. IEEE Computer
Society, Los Alamitos (2007)

20. Schmid, M., Ziener, D., Teich, J.: Netlist-Level IP Protection by Watermarking for
LUT-Based FPGAs. In: Proceedings of IEEE International Conference on Field-
Programmable Technology (FPT 2008), Taipei, Taiwan, pp. 209–216 (December
2008)

Robustness Analysis of Watermark Verification Techniques for IP Cores 127

21. Xilinx Inc. JBits 3.0 SDK for Virtex-II,
http://www.xilinx.com/labs/projects/jbits/

22. Ziener, D., Aßmus, S., Teich, J.: Identifying FPGA IP-Cores based on Lookup
Table Content Analysis. In: Proceedings of 16th International Conference on Field
Programmable Logic and Applications (FPL 2006), Madrid, Spain, pp. 481–486
(August 2006)

23. Ziener, D., Baueregger, F., Teich, J.: Multiplexing Methods for Power Watermark-
ing. In: Proceedings of the IEEE Int. Symposium on Hardware-Oriented Security
and Trust (HOST 2010), Anaheim, USA (June 2010)

24. Ziener, D., Baueregger, F., Teich, J.: Using the Power Side Channel of FPGAs
for Communication. In: Proceedings of the 18th Annual International IEEE Sym-
posium on Field-Programmable Custom Computing Machines (FCCM 2010), pp.
237–244 (May 2010)

25. Ziener, D., Teich, J.: Evaluation of Watermarking Methods for FPGA-Based IP-
cores. Technical Report 01-2005, University of Erlangen-Nuremberg, Department
of CS 12, Hardware-Software-Co-Design, Am Weichselgarten 3, D-91058 Erlangen,
Germany (March 2005)

26. Ziener, D., Teich, J.: FPGA Core Watermarking Based on Power Signature Anal-
ysis. In: Proceedings of IEEE International Conference on Field-Programmable
Technology (FPT 2006), Bangkok, Thailand, pp. 205–212 (December 2006)

27. Ziener, D., Teich, J.: Power Signature Watermarking of IP Cores for FPGAs. Jour-
nal of Signal Processing Systems 51(1), 123–136 (2008)

http://www.xilinx.com/labs/projects/jbits/

Efficient and Flexible Co-processor for

Server-Based Public Key Cryptography

Applications

Ralf Laue

KOBIL Systems GmbH
67547 Worms, Germany
ralf.laue@kobil.com

Abstract. This work presents a SoC-based co-processor for public key
cryptography and server application. Because of the focus on the server
side, high throughput was chosen as metric for efficiency instead of low
latency as usually done in literature. This becomes important in light
of the second goal, which is flexibility regarding the supported crypto-
graphic schemes. Starting with an unified view on the abstraction levels
of different public key cryptographic schemes and an overview on their
parallelization possibilities, parallelization is applied in a more refined
way than usually done in literature: It is examined on each abstraction
level which degree of parallelization still aids throughput without sacri-
ficing flexibility.

Keywords: Public Key Cryptography, Parallelization, System-on-a-Chip.

1 Introduction

Client-server networks become increasingly heterogeneous concerning the in-
volved platforms and protocols. As secure channels are becoming more impor-
tant, cryptography is included into many protocols. For the server, which has to
execute cryptographic operation for each client, this introduces a considerable
computational overhead. This overhead is especially significant for Public Key
Cryptography, which is needed to solve the problem of securely distributing keys.

To help servers shoulder this additional computational load, this work
proposes a cryptographic co-processor, which encapsulates all the necessary oper-
ations as a System-on-a-Chip (SoC). Additionally, a server using different proto-
cols for communication, may need to support different cryptographic algorithms.
Therefore, such a co-processor should be designed with two main goals:

Efficiency. To enable the server to communicate with as many clients as pos-
sible, it should exhibit a high throughput, i.e., number of cryptographic
operations per second. Low latency is not as important, as long as the crypto-
graphic operation does not become the bottleneck in the overall
communication process.

A. Biedermann and H. Gregor Molter (Eds.): Secure Embedded Systems, LNEE 78, pp. 129–149.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

130 R. Laue

Flexibility. The co-processor should be flexible concerning the supported cryp-
tographic algorithms. This also means that it should be relatively easy to
add support of new cryptographic protocols.

Implementing the cryptographic operations on a SoC co-processor also aids
reusability and helps security: The reusability is increased, as the co-processor
incorporates all required functions, which simplifies the control tasks for the host
server. The security is helped, because the secret information does not need to
leave the physical chip, which considerably decreases the eavesdropping risk.

Today, the most common public key scheme is RSA [29]. Although it features
a high trust in its security, because of the amount of time it is known, there are
many alternative proposals. The most important is Elliptic Curve Cryptography
(ECC) [9]. Although it is more complicated, its computational complexity in-
creases slower for higher security levels than that of RSA. Additional, this work
considers Pairing Based Cryptography (PBC) [8], which hasn’t fully outgrown
its research phase yet.

To gain a design exhibiting the desired properties efficiency and flexibility,
this work presents an abstraction level framework highlighting similarities and
differences of the different algorithms of RSA, ECC, and PBC. Based on this, an
architecture is derived, which uses as much parallelization on each abstraction
level as it still provides throughput gains for all supported algorithms.

To evaluate the validity of the chosen approach an SoC-based prototype im-
plementation of this architecture was realized on an FPGA. In short, FPGAs
are reprogrammable hardware units. In terms of speed and development effort
they lie between pure hardware and software implementations. Because of their
reprogrammability, they are well-suited for prototype implementations. For a
more detailed overview the reader is referred to [36].

The remainder of this work is structured as follows: The next section con-
tains an overview on literature with similarities to this work. Section 3 gives
more details on the considered cryptographic algorithms and shows the derived
abstraction level framework. It also provides an overview on parallelization pos-
sibilities for public key cryptography and explains, which options were chosen on
the different levels. The derived co-processor architecture is presented in Section
4 also stating the design decisions leading to it. Section 5 shows a prototype
implementation of this architecture. The results gained from this implementa-
tion are presented in Section 6 together with a comparison with results from
literature. Section 7 concludes this work by summarizing the important points.

2 Related Work

Related work may be divided into the aspects RSA/ECC combinations, cryp-
tographic HW/SW combinations, and single-chip solutions. Note that hardware
designs for PBC are not considered here, because such implementations from
literature concentrate on GF(2m).

Although many designs from literature notice the similarities between RSA
and ECC and consider them both, most must be instantiated for a certain

Efficient and Flexible Cryptographic Co-processor 131

bit-width and do not aim for equal support of both, see [24,26,23,2]. [2] some-
what addresses this problem by extending an existing RSA implementation into
an ECC implementation by reusing the modular multiplier and adding parts
like other modular operations and a module executing the EC operations. How-
ever, this approach does not lead to a continuous exploitation of all resources,
as the larger part of the modular multiplier will stay unused for ECC. A design
combining support for RSA and ECC while trying to minimize the amount of
unused resources is presented in [7]. It proposes the use of several smaller mod-
ular multipliers optimized for the bit-widths of ECC, which may either be used
independently in parallel or combined together into a single larger multiplier to
compute numbers of larger bit-widths for RSA. This still leads to unused re-
sources for bit-widths, which are not a multiple of the bit-width of the smaller
cores and requires the possibility to schedule ECC and RSA operations.

HW/SW co-design allows implementations, which execute the parts of an
algorithm either in hardware or software depending on where it is most advan-
tageous. Such designs for cryptography may be found in [22,32], both realizing
the modular multiplication in hardware and the exponentiation needed for RSA
in software. An HW/SW-realization concentrating on ECC may be found in [31].

[37,13,25] present cryptographic single-chip solutions consisting of a single
general purpose processor core and dedicated cores for modular arithmetic and
auxiliary functions. The design from [13] features a general purpose processor
and cores for RSA, ECC, AES, and hash function. However, the possible syner-
gies between RSA and ECC are not exploited and the cores are optimized for a
single bit-width for both RSA and ECC, making it less flexible and upgradeable
than this work. [25] has a general purpose processor and cores for symmetric
encryption, RSA/ECC, random number generation, and MPEG en-/decoding.
The authors’ aim was the presentation of a new design methodology using cryp-
tographic cores to examine their technique. Therefore, [25] does not focus on
achieving flexibility and efficiency at the same time and also does not give per-
formance figures. [37] presents an ASIC design with a RISC CPU and cores for
random number generation and modular arithmetic. Latter is word-based and
may be used for RSA and ECC up to bit-widths of 2048, which promises easy
upgradeability for new approaches like PBC. The design is aimed for client ap-
plication making high throughput less important than low latency and this may
be the reason why parallelization is considered to a lower degree than in this
work.

3 Cryptographic Aspects

The public key cryptography schemes RSA and ECC are both based on modular
arithmetic. ECC has the advantage that the used numbers are shorter, which
results in a faster computation, especially for higher security levels. The downside
of ECC is its more complex mathematical background, which makes it harder
to understand and implement.

132 R. Laue

PBC builds on the foundations of ECC and extends it by the so called pairing,
which is a way to compare pairs of points on elliptic curves, see [5]. An interesting
application of PBC are identity-based schemes, which allow the public key to
be derived from some unique identifier, e.g., an email-address. This would make
the distribution of public keys unnecessary. The main reason PBC was chosen
as third algorithm in this work is that it shares many parts with RSA and ECC,
thus, allowing reusing most of the hardware cores and much of the software
parts.

3.1 Abstractions Levels for Public Key Cryptography

The above introduced public key systems share some properties and may be
classified into different abstraction levels as shown in Fig. 1. Note that RSA is
the most simple approach, thus, does not need some parts required for ECC and
PBC. In turn, PBC has additional elements compared to ECC.

System

Cryptographic

Scheme

Cryptographic

Main Operation

Intermediate

Algebraic Structure

Modular

Arithmetic

RSA ECC PBC

Application Application Application

En−/Decrypt/Sign/VerifyEn−/Decrypt/Sign/VerifyEn−/Decrypt/Sign/Verify

Modular Exponentiation Point Multiplication Point Multiplication Pairing

Extension FieldElliptic Curve GroupElliptic Curve Group

Finite FieldMultiplicative Group Finite Field

Fig. 1. Abstraction levels for different public key algorithms

The lowest abstraction level modular arithmetic contains modular operations,
which are needed by algorithms on higher abstraction levels. For ECC and PBC
the modular arithmetic must be a finite field, i.e., GF(q) in this work, where the
modulus q is a prime number. For RSA the modulus n is not a prime, but the
product of the large primes p and q. Thus, the modular arithmetic for RSA is
not a finite field, but just a multiplicative group.

The abstraction level of the intermediate algebraic structures exists only for
ECC and PBC. For former, this is the elliptic curve group offering operations on
points on an elliptic curve. For PBC there are also operations in the extension
field.

For RSA the abstraction level of the cryptographic main operation contains the
modular exponentiation, which uses the modular arithmetic as a multiplicative
group. The point multiplication used for ECC and PBC utilizes the elliptic curve
group as an additive group. The pairing needed only for PBC uses operations
of both the elliptic curve group and of the extension field.

Efficient and Flexible Cryptographic Co-processor 133

On the next abstraction level complete cryptographic schemes are build by
combining the cryptographic main operation(s) with cryptographic auxiliary
functions like hash function and/or random number generation. Those are not
shown in Fig. 1 for simplicity. On the system level, finally, the cryptographic
schemes may be used by the application.

3.2 Parallelization in Public Key Cryptography

Performance improvements may be realized by utilizing parallelization. Conse-
quently, many parallelization techniques for public key algorithms may be found
in literature. In the following, several are presented categorized according to
above abstraction levels. Note that parallelization may be exploited on different
abstraction levels at the same time, as done in this work.

Modular Arithmetic Level. As modular multiplication is the most time con-
suming and most heavily used modular operation, a very obvious and common
approach is to decrease execution time by applying many of its elementary build-
ing blocks – be they bit- or word-based – in parallel. Parallelization of the re-
maining modular operations is not as effective, as those are relatively simple and
fast. Note that the following list does not constitute an exhaustive list.

Buses of Full Bit-Width. Basically, the complexity of a multiplication in-
creases with the square of the utilized bit-length. If all bits are considered at
the same time, the execution time is reduced to linear complexity. However,
this requires also a proportional increase in terms of resources. For example,
to double the bit-width of the implementation shown in [24] the amount of
resources is also roughly doubled. Further examples for implementation with
buses of full bit-width can be found in [28,3,23,26].

Parallelization using buses of full bit-width has relatively small costs, as it
is done on a low level and most of the additional resources are really used to
speed up computation and not for parallelizing the control logic as well. But
with this approach the implementation is optimized for a single bit-width.
Operations with larger bit-widths are difficult and for operations with a
smaller bit-width, some of the resources stay unused. The architecture from
[7] partly solves this problem as explained in Section 2. But it still exhibits
some inflexibility as it does not solve the problem for larger bit-widths and
leads to unused resources for bit-widths, which are not a multiple of the
ECC-size.

Buses of full bit-width have another downside, if the memory structure
has limitations, as it is the case on FPGAs. Although several memory blocks
may be used to build up a memory with a wide enough data bus, the over-
all memory size is then likely much larger than required for cryptographic
calculations. The alternative, namely realizing the memory in the logic cells,
is more flexible regarding its widths and depths. But the used-up logic cells
are then not available for other tasks.

134 R. Laue

Pipelining. Pipelining can be seen as counterpart to buses of full bit-width, as
the parallel resources are not used to widen the input paths but to increase
the operational depths, i.e., while the computation on the word-wide input
values is executed, parallel resources are utilized to concurrently execute
computations on the respective resulting intermediate results. This way the
input and output buses still have the width of a single word or of a single
bit.

Algorithm 1. Montgomery Multiplication (from [20])

Require: factors a = (an−1, . . . ,a1,a0), b = (bn−1, . . . ,b1,b0), modulus q =
(qn−1, . . . ,q1,q0), q′ =−q−1 mod2w, R =2wn, w is word-width of ai/bi/qi/ti

Ensure: t =ab ·R−1 modq
1: t :=0 {t =(tn, tn−1, . . . , t1, t0)}
2: for i :=0 to n − 1 do

3: u :=(t0 +aib0)q
′ mod2w

4: t :=(t +aib +uq)/2w

5: end for

6: if t ≥ q then

7: t :=t − q
8: end if

9: return t

This work considers only pipelining using the approach of the Montgomery
Multiplication (see Algorithm 1), which allows two pipelining strategies.
– Each step of the inner loop – this is the loop over the single words of

the computation in line 3/4 of Algorithm 1 – is executed by one pipeline
stage, as shown in [35]. Because the first step of the inner loop is more
complex than the following steps, this requires the full complexity only in
the first stage. But a data feedback in the algorithm makes it necessary
to employ as many stages as the operands have word. Therefore, this
approach exhibits similar drawbacks as buses of full bit-width.

– By assigning pipelining stages to the steps of the outer loop a more
flexible design may be reached, see [33]. That way the data feedback
is kept inside each stage, allowing to keep the number of stages being
independent from the number of words in the operands. This allows a
trade-off between execution time and resource usage, as an increase in
the number of pipeline stages roughly results in a proportional decrease
of execution time without favoring a single bit-widths. The drawback of
this approach is that now each stage has to be able to compute the more
complex first step of the inner loop, making all stages more complex.

Intermediate Algebraic Structure Level. By executing modular operations
– in particular the modular multiplication – in parallel, the point addition and
doubling and also operations on the extension field may be accelerated. The de-
gree of acceleration is only limited by the data dependencies within the respective
algorithms.

Efficient and Flexible Cryptographic Co-processor 135

For point doubling and addition, [30,1,16] suggest the utilization of 2 or 3
parallel multipliers: Although a further increase will still lead to a speed-up,
it also results in relatively low utilization of the multiplier instances and the
increased resource usage may not be justifiable by the efficiency gains.

[11] contains an interesting proposal for the combined calculation of point
addition and doubling in a single atomic operation. As this calculation consists
of more modular multiplications than its parts alone, it allows the exploitation
of more parallel multiplier instances, see [16]. The utilization of this approach
would also reduce the complexity of the elliptic curve operations, as the atomic
operation requires only 19 modular multiplications, instead of the 16 and 10
modular multiplications needed by point addition and doubling, respectively.

Cryptographic Main Operation Level. Although modular exponentiation
and point multiplication are based upon different underlying groups – i.e., mod-
ular arithmetic and elliptic curves, respectively – they may be speed-up by utiliz-
ing similar parallelization techniques. One of these techniques is the Montgomery
Powering Ladder, which allows to use two parallel instances of the group opera-
tion, see [14]. Algorithm 2 shows the algorithm as modular exponentiation, but
it may also be used for the point multiplication by substituting squaring with
point doubling and multiplication with point addition, respectively.

Algorithm 2. Montgomery Powering Ladder (from [14])

Require: modulus m= (mn−1mn−2 . . . m0), base g < m, exponent e ≥ 1 in binary
representation with bit-length l (i.e., e = (el−1el−2 . . . e1e0))

Ensure: result ge mod m
1: a := 1, b := 1
2: for j = l − 1 down to 0 do

3: if ej = 0 then

4: b := a · b
5: a := a2

6: else

7: a := a · b
8: b := b2

9: end if

10: end for

11: return a

A further increase in the degree of parallelization may be reached, if pre-
computation is utilized. [18] suggests a technique allowing a trade-off between
memory usage and execution time. The precomputed values may also be used to
initialize parallel hardware instances, which then calculate intermediate results
using only a part of the exponent or scalar, respectively. In a final step, these
intermediate results may then be combined for the final result.

136 R. Laue

For the computation of the pairing for PBC, the most commonly used algo-
rithm is Miller’s algorithm. Its approach is similar to that of the point multi-
plication adding some additional operations, see [5]. Because of that techniques
allowing a parallelization of the point multiplication may also be used to paral-
lelize Miller’s algorithm.

Cryptographic Scheme and System Level. Parallelization on the crypto-
graphic scheme level is suggested only seldom, because acceleration here has
higher costs compared to lower levels, because of the higher portion of control
logic. As described in Section 4 this work still utilizes parallelization on this level,
because with the goals of flexibility and efficiency parallelization on lower levels
may only be exploited to some degree. Contrary to lower levels, parallelization
on cryptographic scheme level does not exhibit data dependencies, allowing as
much parallelization as the resources allow.

Parallelization on system level is only mentioned because of completeness. It
is obvious how the usage of a second whole system will speed-up the overall
performance assuming the are no data dependencies.

4 Co-processor Architecture

The two main properties of the desired co-processor are high number of oper-
ations per second and high flexibility concerning the supported cryptographic
schemes. The simultaneous support of RSA and ECC results in a wide range
of possible bit-widths for the modular arithmetic. The security levels, which are
reached with ECC with bit-lengths of 160 to 256 bit require bit-lengths of 1024
to 3072 bit for RSA. The co-processor architecture has to take this into account.
Additionally, auxiliary functions like hash function and random number gener-
ation are needed to execute the complete cryptographic schemes inside a single
chip.

4.1 Design Consideration

As high throughput is desired, the architecture should exploit all resources as
continuously as possible, thus, minimizing the time some resources stay unused.
The latency should still be decreased as long as this does not hinder throughput.

HW/SW Co-Design. Software implementations are relatively slow, but more
flexible, because they are relatively easy to design and an increase in functionality
does only increase the memory usage. In contrast, hardware is faster, but more
inflexible, as it is more difficult to design and an increase in functionality requires
additional state machines, of which only one is active at each point in time.

HW/SW co-design supports the combination of high throughput and high
efficiency, because it allows to realize those parts in software and hardware,

Efficient and Flexible Cryptographic Co-processor 137

respectively, to which they are best suited to. The control-flow intensive tasks are
implemented in software. The slowness of software is no drawback here, because
the control-flow parts wait most of the time for the data-flow intensive parts
to finish execution to start them anew with new operands. The high flexibility
of software, in contrast, is an advantage, as the control-flow of the different
cryptographic schemes differs significantly.

Consequently, the data-flow intensive parts are realized in hardware, as they
are time-critical and very similar for the different schemes. Therefore, dedicated
hardware is used to implement the modular arithmetic, which is the basis of all
supported cryptographic schemes. The auxiliary functions are also realized in
hardware: Although they are needed only occasionally, which would make them
suited to a software implementation, they are also time-critical and may not
be executed concurrently to other parts. Thus, while they would be executed in
software, the hardware parts would stay unused, as the software processor is busy
executing the auxiliary functions and cannot control the dedicated hardware.

The operations on the abstraction levels above the modular arithmetic are
only control-flow intensive parts. They are different for the supported crypto-
graphic schemes and most of the time wait for the execution of the modular
operations. Consequently, they are implemented in software.

Parallelization. While the utilization of HW/SW co-design allows combin-
ing the goals flexibility and efficiency, parallelization may be used to increase
the efficiency. The degree of parallelization should be chosen so that it aids the
throughput of all supported cryptographic schemes. Generally, parallelization is
less costly on lower abstraction levels, because less control-logic has to be par-
alellized as well. Therefore, starting from the modular arithmetic it is examined,
how big the degree of parallelization can be.

On the lowest level a wide range of bit-widths must be supported. A paralleli-
zation degree optimized for the large bit-widths of RSA will lead to large amount
of unused resources for ECC operations with their much smaller bit-widths.
Therefore, the inflexible approaches like buses of full bid-width and pipelining
of the inner loop will not aid throughput. However, pipelining of the outer loop
allows to chose an arbitrary amount of pipeline stages, thus, relatively short
pipelines optimized for the small bit-width are possible, which still speed-up
computations with larger bit-widths.

On the abstraction level above modular arithmetic the usage of parallel mul-
tiplier instances leads to increases speed. As described above it is possible to
exploit two parallel multipliers for RSA using the Montgomery Powering Lad-
der. In contrast, the ECC and PBC operations would be able to take advantage
of up to three instances without resulting into a high amount of unused re-
sources. But because RSA is not able to exploit a third multiplier, only two
parallel modular multiplier instances are used.

138 R. Laue

ECC and PBC have one additional abstraction level compared to RSA. Here
it would also be possible to use the Montgomery Powering Ladder (this time for
point multiplication or the pairing) to exploit parallelization to gain an addi-
tional speed-up. But as the resources required for this would not be usable for
RSA, no parallelization is utilized here.

The level of the cryptographic scheme is present for all three approaches
and the degree of parallelization is not hindered by data dependencies. The
only limitation is the amount of available resources and, therefore, the degree of
parallelization should be chosen as high as those allow.

Summarizing, the concrete numbers of pipeline stages and parallel operating
cryptographic schemes are still left open. As the optimal values for both are not
obvious, possible combinations are examined in Section 6.

4.2 Resulting Architecture

Fig. 2 depicts the resulting architecture in general form. The time-critical mod-
ular operations are executed in ModArith cores, which feature two pipelined
modules for modular multiplication and one module for the remaining modu-
lar operations. Each modular core is assigned to a Scheme Controller, which
is realized by a general purpose processor. They execute the control-flow of the
higher abstraction levels. The auxiliary cryptographic functions are implemented
in the AES Core, which realizes symmetric encryption, hash function, and ran-
dom number generation. Those operations are only a minor part of the complete
cryptographic schemes and, therefore, the core may be shared by the Scheme

...

Bus

(Cryptographic

Schemes)

Core
(Modular

Operations)

Scheme

Central
Core

(IO,Control)

Controller
ModArith

Scheme
Controller

ModArith
Core

ModArith
Controller
Scheme

(Cryptographic

Schemes)

(Modular

Operations)

(Modular

Operations)Schemes)

(Cryptographic

Core
Hash,PRNG)

En−/Decrypt,

(Symmetric

Core
AES

Host

Server

Fig. 2. Proposed co-processor architecture

Efficient and Flexible Cryptographic Co-processor 139

Controllers. The Central Core, finally, controls the different Scheme Controllers
and handles communication with the outside world.

Modular Arithmetic. The structure of the ModArith-cores is a refined version
of that proposed in [16] and is depicted in Fig. 3. At its heart are the two modular
multipliers ModMultA/B. Both are assigned their own memory allowing them
unrestricted access via its first port as motivated in [16]. The second port of each
memory is shared between the module for the Remaining Modular Arithmetic
and the Scheme Controller. Latter one needs it to write and read the input
values and the results, respectively, and may only access the memory, while the
ModArith core is not executing.

Remaining Buildings Blocks. The core for the auxiliary cryptographic func-
tions is taken from [17]. It supports symmetric en-/decryption, hash function,
and random number generation. Its realization is aimed at minimized resources
usage. This is achieved by using the AES block cipher as basis for all three
functions, which allows them to share many resources.

The Scheme Controllers execute all operations above the modular arithmetic
level and are realized with general purpose processors. Although each ModArith
core is assigned to one Scheme Controller, it would also be possible to control all
ModArith cores with a single Scheme Controller, as those wait for the completion

MUX

Scheme Controller

Modular Arithmetic

Remaining

S
ta

tu
s

C
o

m
m

a
n

d
s

Busy

Status Commands

Data

Data

Memory

Data

ModArith Core

ModMultB

Memory

ModMultA

Fig. 3. ModArith core highlighting the memory architecture

140 R. Laue

of the modular operations most of the time anyway. It was decided against
this, because then the software would have to support the concurrency of the
hardware. The usual solution for this problem is the usage of threads. But the
amount of cycles needed for a thread change is in the same order as the execution
time of a modular operation. Thus, then the time-critical part, namely, the
modular arithmetic would have to wait for the control-logic quite often.

The Central Core, which is responsible for communication with the outside
world and for controlling all other cores, is also realized by a general purpose
processor. Although those tasks could also be executed by the Scheme Con-
trollers, it has three advantages to do this with a dedicated instance. It provides
a fixed communication partner for the outside world, lets the Scheme Controllers
concentrate on operating the ModArith cores as fast as possible, and the clear
division of tasks eases implementation.

5 Prototype Implementation

To evaluate the proposed architecture, a prototype implementation was created,
which is described in the following. It was realized using a XUP2P board [38]
and the synthesis tools Xilinx EDK and ISE (both in version 9.1).

5.1 Supported Functionality

Usual recommended security levels range from 80 bit for medium term security
up to 128 bit for long term security [34]. The respective key-length to achieve

Table 1. Different security bit-lengths and the resulting key-length

Security Symmetric
Hash

Public Key Cryptography
(bit) Cryptography RSA ECC PBC

80 80 160 1024 160 160 and 512
96 96 192 1536 192 −
112 112 224 2048 224 −
128 128 256 3072 256 −

Table 2. Auxiliary functions needed for different public key schemes

Scheme
Symmetric Hash Random Number
Encryption Function Generation

RSAES-OAEP [29] − � �

RSASSA-PSS [29] − � �

ECDSA [9] − � �

ECIES [10] � � �

BLS [6] − � �

Efficient and Flexible Cryptographic Co-processor 141

these security levels with the different cryptographic schemes are shown in
Table 1. Thus, the modular operations have to be able to work with bit-widths
between 160 and 3072 bit.

Some auxiliary functions are needed for the complete execution of the sup-
ported schemes. Table 2 depicts which are required for which scheme.

5.2 Implementation Overview

Fig. 4 gives an overview on the prototype implementation. It extends Fig. 2 by
realization details like memory usage and type of the general purpose proces-
sor. The presented configuration utilizes four scheme controllers, as this is the
maximum number, which was instantiated for the experiments.

PowerPC

PLB−OPB−Bridge

Core
AES−

DDR−RAM

Controller
DDR−RAM

Micro
Blaze
(MB1)

Micro
Blaze
(MB2)

Micro
Blaze
(MB3)

Micro
Blaze
(MB4)

(ModArith1)

Modular
Arithmetic

Core
(ModArith2)

Modular
Arithmetic

Core
(ModArith3)

Modular
Arithmetic

Core
(ModArith4)

Modular
Arithmetic

Core

PLB

DLMBDLMBDLMBDLMB

IL
M

B

IL
M

B

IL
M

B

IL
M

B

FSLFSLFSLFSL

OPB1

Host−
System

Virtex II Pro

Data
Memory
(DM1)

Memory
(DM3)

Data Data
Memory
(DM4)

Memory
(IM2)(IM1)

Instr.

Data
Memory
(DM2)

Memory

Interface
UART−

OPB2
Instr.

Fig. 4. Detailed view on the new co-processor architecture

The scheme controllers were realized using soft core processors called Micro
Blaze. Their memories are implemented using the BRAM blocks connected to
them via the Local Memory Bus (LMB). The ModArith cores and the AES core
are realized as dedicated hardware in VHDL and connected using the Fast Sim-
plex Link (FSL) and the Open Processor Bus (OPB), respectively. The central
core, finally, uses a PowerPC core and uses off-chip memory. Note that this only
makes sense for a proof-of-concept implementation, as it allows eavesdropping on
the memory content of the central core. However, otherwise the on-chip memory
would have only been sufficient to store the RSA and ECC functionality. Note
also that a fully usable implementation should use a faster interface to the host
server than an UART-interface.

142 R. Laue

5.3 Modular Multiplication

Because modular multiplication is the most critical operation for the supported
cryptographic schemes, special care must be taken for its implementation. It
is realized using the pipelining approach from [33], but works in a word-based
manner to allow exploitation of the dedicated multipliers of the FPGA. Although
such a realization can be found in [15], its memory access was not compatible
to the memory architecture used for the prototype implementation. Therefore,
a new implementation was created, which complies to the memory interface, see
[27]. Note that this realization is not able to compute numbers with a word-count
smaller than the double of the number of pipeline stages.

The pipeline of the modular multipliers with s stages can be seen in Fig. 5.
The register Reg reduces the longest path, thus allows to operate the multiplier
with a cycle frequency of 100 MHz.

R
eg Stage sMemory

00 . . . 0

qj , q
′

ai, bj, tj ,

ai, q
′

Stage 1
tj

bj , qj

tj

Stage 2

bj, qj

tj
. . .

Fig. 5. Pipeline architecture of the modular multiplication

If 0 ≤ k ≤ s, then the k-th stage computes the n inner steps of first the (k−1)-
th step and then the (k − 1 + s)-th step of the outer loop. If n > (k − 1 + s),
the k-th stage is then also used to compute the (k − 1 + 2s)-th step of the outer
loop. If necessary, this continues until all n steps of the outer loop are executed.

Each j-th step of the inner loop takes five cycles, because five memory accesses
are required for the intermediate result tj(i) := ai ·bj +ui ·qj +tj+1(i−1)+carry.
Here tj(i) denotes the j-th word of t in the i-th step of the outer loop. Note that
the stages after the first get their input values from their previous stage and
could compute their result in only four cycles. But because this would lead to
coordination problems for storing the results of the last stage in memory, it was
decided that each stage takes the following five cycles for the computation of
step j:

1. ai is read from memory and stored in the stage requiring it.
2. bj is read (from memory or from previous stage). It is used in ai · bj and also

passed on to the next stage via the shift registers.
3. The intermediate result tj+1(i− 1) is read (from memory or previous stage)

and added to the intermediate result of this stage.
4. tj(i) computed by the last stage is written into memory.
5. qj is read (from memory or previous stage) and used in ui ·qj and also passed

on to the next stage via the shift registers.

The shift registers buffer bj and qj for ten cycles until the following stage requires
them, because the next stage needs bj and qj together with the intermediate
result tj+1(i − 1), which is calculated by the previous stage two steps of the
inner loop later.

Efficient and Flexible Cryptographic Co-processor 143

The datapaths of each stage are depicted in Fig. 6. If the path-widths do not
fit, the values are filled with 0 from the left.

uiqcry

tj

bj , qj

×

Mult Result

+

Add Result

a q′

tcry

toNext

fromRAM

3 hi 16 lo

toShift

32

16 16

19 19

19

17

1916 hi 16 lo

Fig. 6. Data path of a single pipeline stage

The total cycle count of a single modular multiplication is 5n · ⌈n
s ⌉+10⌈n

s ⌉+
10s− 5. Additionally, 3 to 5n− 2 clock cycles are needed for the computation of
the final correction of the Montgomery Multiplication (lines 6/7 of Algorithm 1).

6 Results

Table 3 shows the resource usage of four different configurations of the proto-
type implementation described above. In this context xSCyST denotes a design
variant featuring x scheme controllers and y pipeline stages in each modular
multiplier. The cycle frequency is 100 Mhz for all design variants. Table 3 also
shows the resource usage of a single ModArith core.

Given an FPGA featuring more resources it would have been possible to
instantiate variants with more scheme controllers and/or pipeline stages. For
the variant with only 2 scheme controllers it is likely that more than 6 pipeline
stages would have been synthesizable. But as the number of words must be at

144 R. Laue

Table 3. System resource usage

Overall System Single ModArith Core

Variant #Logic
#BRAMs

#Logic #Word
#BRAMs

Name Cells Cells Multipliers

4SC2ST 26344 117 3524 4 4
3SC3ST 24142 105 4406 6 4
3SC4ST 23666 105 5292 8 4
2SC6ST 21818 61 7168 12 4

least the double of the pipeline stages, it would have prohibited further bit-
widths for ECC. With the utilized word-width of 16 bit ECC with 160 bit was
already impossible.

Fig. 7 and Fig. 8 show the timing results of above variants for execution of
signature and verification schemes, respectively. The values are averaged over
2000 scheme executions of each scheme. The throughput of the whole system is
given as total operations per second, i.e., the number of operations all scheme
controllers together execute in one second.

Variant 3SC4ST exhibits the best throughput for all schemes except for ECC
with 160 bit, where 4SC2ST is better. Because 3SC4ST has as total of 24 pipeline
stages while 4SC2ST has only 16, it seems that for short bit-length additional
scheme controllers are more more effective than additional pipeline stages.

While 3SC4ST is the best variant for all scheme, the second-best for RSA and
PBC is 2SC6ST, while 4SC2ST is the second-best for ECC. This is not surprising,
because the large bit-widths of RSA and PBC are better able to take advantage
of the long pipelines: Firstly, pipelined multipliers always compute a multiple
of the number of stages in words, thus, the relation between the actually used
bit-width and the required bit-width is smaller for larger bit-widths. Secondly,
all stages of a pipeline work only concurrently after they are filled stage-by-stage.
Therefore, computations with large bit-widths keep all stages filled longer.

Table 4 contains the resource and performance figures from variant 3SC4ST
and from comparable designs from literature. The resources are given in logic
cells (LC) for Xilinx FPGAs and logic elements (LE) for Altera FPGAs and
those numbers are roughly comparable. Note that Table 4 only contains values
for ECC and RSA, because designs for PBC concentrate on realizations over
GF(2m).

Most designs in literature are limited to the cryptographic main operation.
From Table 4 only [13] gives values for complete RSA-encryption and decryption,
which have a similar complexity as verification and signing, respectively. For the
others only the timing for a point multiplication or a modular exponentiation is
given, either with short or long exponent, which is used in verification or signing,
respectively. The values marked with ’*’ are estimated, because the reference did
only give the value for a single modular multiplication.

Efficient and Flexible Cryptographic Co-processor 145

80 96 112 128

Security level [bit]

0

100

200

300

400

T
o
ta

l
o
p
s
/s

e
c

ECC 4SC2ST
ECC 3SC3ST
ECC 3SC4ST
ECC 2SC6ST
RSA 4SC2ST
RSA 3SC3ST
RSA 3SC4ST
RSA 2SC6ST
PBC 4SC2ST
PBC 3SC3ST
PBC 3SC4ST
PBC 2SC6ST

Fig. 7. Results for signing schemes

Contrary to the other references, [13] supports complete schemes by featuring
cores for AES, SHA-1, RSA, and ECC over GF(2m). Only the performance for
RSA is comparable1 and all variants from this work show better throughput for
the RSA-signing operation, which is comparable to the RSA-decryption. The
higher performance of [13] for the encryption (compared to RSA-verification)
could stem from the utilization of a shorter exponent (only 5 bits in [13], 17 bits
in this work).

Similar to this work, [7] also aims for hardware beneficial for both RSA and
ECC at the same time. Again, all variants from this work show better through-
put, probably because of the usage of the FPGA’s dedicated word-multipliers.

[19,21] feature optimized designs for ECC and RSA, respectively, and have
both a considerable higher throughput than 3SC4ST. But both are less flexible,
as they are committed only to a single bit-width. Also, as they do concentrate
on the cryptographic main operation, only the 15876 LC used for the modular

1 Modular multiplications over GF(2m) and GF(q) are considerably different.

146 R. Laue

80 96 112 128

Security level [bit]

0

500

1000

1500

2000

T
o
ta

l
o
p
s
/s

e
c

ECC 4SC2ST
ECC 3SC3ST
ECC 3SC4ST
ECC 2SC6ST
RSA 4SC2ST
RSA 3SC3ST
RSA 3SC4ST
RSA 2SC6ST
PBC 4SC2ST
PBC 3SC3ST
PBC 3SC4ST
PBC 2SC6ST

Fig. 8. Results for verification schemes

arithmetic in 3SC4ST should be counted in a comparison, making 3SC4ST being
considerably smaller than both.

Similar to this work, [32] features two pipelined modular multipliers in paral-
lel. But it considers only RSA. The performance figures shown in Table 4 are for
a variant with 16 pipeline stages for each multiplier. Even if the lower resource
usage of [32] is taken into account, 3SC4ST exhibits a higher throughput.

A pipelined modular multiplier able to work on values of arbitrary bit-width,
is presented in [12]. The values shown in Table 4 are those of a variant with
16 pipeline stages. It has a considerably higher throughput than 3SC4ST, if its
lower resource usage is taken into account. This is probably because [12] exploits
both more word-multipliers and more memory blocks, which were very scarce in
the prototype implementation of this work, however.

Efficient and Flexible Cryptographic Co-processor 147

Table 4. Performance figures of comparable designs

Ref LC/LE Bit-width Operation Type Latency Ops/Sec

1024
ModExp (short Exp) 1.11 ms 2696.63

this
ModExp (long Exp) 16.18 ms 185.40

work
23666 LC

2048
ModExp (short Exp) 4.12 ms 727.89
ModExp (long Exp) 115.32 ms 26.02

256 PointMult 17.43 ms 172.16

[13] 28451 LE 1024
RSA-Encr 0.25 ms 4000.00
RSA-Decr 31.93 ms 31.32

[7] 10534 LC
256 PointMult *26.50 ms *39.06
1033 ModExp (long Exp) *35.76 ms *27.96

[19] 31510 LC 256 PointMult 3.86 ms 259.07

[21] 24324 LC 1024 ModExp (long Exp) 3.829 ms 261.16

1024
ModExp (short Exp) 7.8 ms 128.21

[32] 4112 LE
ModExp (long Exp) 39 ms 25.64

2048
ModExp (short Exp) 31 ms 32.26
ModExp (long Exp) 222 ms 4.50

[12] 4768 LC 1024 ModExp (long Exp) 8.17 ms 122.40

7 Conclusion

This work proposed a novel co-processor architecture aimed for public key cryp-
tography and server application. Contrary to the usually approach in literature,
it tries to achieve efficiency and flexibility at the same time. This limits the
parallelization degree on lower abstraction levels, which is compensated by also
utilizing parallelization on higher abstraction levels. The validity of this ap-
proach is shown by means of an SoC-based prototype implementation able to
execute complete cryptographic schemes on-chip and which is only outperformed
by highly specialized realizations geared for a single bit-width, thus, lacking a
comparable flexibility.

References

1. Aoki, K., Hoshino, F., Kobayashi, T., Oguro, H.: Elliptic Curve Arithmetic Using
SIMD. In: Davida, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 235–247.
Springer, Heidelberg (2001)

2. Batina, L., Bruin-Muurling, G., Örs, S.B.: Flexible Hardware Design for RSA
and Elliptic Curve Cryptosystems. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS,
vol. 2964, pp. 250–263. Springer, Heidelberg (2004)

3. Bednara, M., Daldrup, M., von zur Gathen, J., Shokrollahi, J., Teich, J.: Reconfig-
urable Implementation of Elliptic Curve Crypto Algorithms. In: International Par-
allel and Distributed Processing Symposium (IPDPS) (2002), http://www-math.
upb.de/~aggathen/Publications/raw02.pdf

http://www-math.upb.de/~aggathen/Publications/raw02.pdf
http://www-math.upb.de/~aggathen/Publications/raw02.pdf

148 R. Laue

4. Blake, I.F., Seroussi, G., Smart, N.P.: Elliptic Curves in Cryptography. Cambridge
University Press, New York (1999)

5. Blake, I.F., Seroussi, G., Smart, N.P.: Advances in Elliptic Curve Cryptography.
Cambridge University Press, New York (2005)

6. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In:
Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Hei-
delberg (2001)

7. Crowe, F., Daly, A., Marnane, W.P.: A Scalable Dual Mode Arithmetic Unit for
Public Key Cryptosystems. In: International Conference on Information Technol-
ogy: Coding and Computing (ITCC), vol. 1, pp. 568–573 (2005)

8. Dutta, R., Barua, R., Sarkar, P.: Pairing-Based Cryptographic Protocols: A Survey,
IACR eprint archive, 2004/064 (2004), http://eprint.iacr.org/2004/064

9. IEEE: IEEE 1363-2000 - Standard Specifications for Public-Key Cryptography,
New York, USA (2000), http://grouper.ieee.org/groups/1363/

10. IEEE: IEEE 1363a-2004: Standard Specifications for Public-Key Cryptography –
Amendment 1: Additional Techniques, New York, USA (2004), http://grouper.
ieee.org/groups/1363/

11. Fischer, W., Giraud, C., Knudsen, E.W.: Parallel scalar multiplication on general
elliptic curves over Fp hedged against Non-Differential Side-Channel Attacks, IACR
eprint archive 2002/007 (2002), http://eprint.iacr.org/2002/007.pdf

12. Güdü, T.: A new Scalable Hardware Architecture for RSA Algorithm. In: Inter-
national Conference on Field Programmable Logic and Applications (FPL), pp.
670–674 (2007)

13. Hani, M.K., Wen, H.Y., Paniandi, A.: Design and Implementation of a Private
and Public Key Crypto Processor for Next-Generation IT Security Applications.
Malaysian Journal of Computer Science 19(1), 20–45 (2006)

14. Joye, M., Yen, S.-M.: The Montgomery Powering Ladder, Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES). In: Kaliski Jr., B.S., Koç, Ç.K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003), http://www.gemplus.com/smart/rd/publications/pdf/JY03mont.pdf

15. Kelley, K., Harris, D.: Very High Radix Scalable Montgomery Multipliers. In: In-
ternational Workshop on System-on-Chip for Real-Time Applications (IWSOC),
Washington, DC, USA, pp. 400–404 (2005)

16. Laue, R., Huss, S.A.: Parallel Memory Architecture for Elliptic Curve Cryptog-
raphy over GF(p) Aimed at Efficient FPGA Implementation. Journal of Signal
Processing Systems 51(1), 39–55 (2008)

17. Laue, R., Kelm, O., Schipp, S., Shoufan, A., Huss, S.A.: Compact AES-based Ar-
chitecture for Symmetric Encryption, Hash Function, and Random Number Gener-
ation. In: International Conference on Field Programmable Logic and Applications
(FPL), Amsterdam, Netherlands, pp. 480–484 (2007)

18. Lim, C.H., Lee, P.J.: More Flexible Exponentiation with Precomputation. In:
Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 95–107. Springer, Hei-
delberg (1994), citeseer.ist.psu.edu/lim94more.html

19. McIvor, C.J., McLoone, M., McCanny, J.V.: Hardware Elliptic Curve Crypto-
graphic Processor Over GF(p). IEEE Transactions on Circuits and Systems I:
Regular Papers 53(9), 1946–1957 (2006)

20. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press, Boca Raton (1997),
http://www.cacr.math.uwaterloo.ca/hac/

http://eprint.iacr.org/2004/064
http://grouper.ieee.org/groups/1363/
http://grouper.ieee.org/groups/1363/
http://grouper.ieee.org/groups/1363/
http://eprint.iacr.org/2002/007.pdf
http://www.gemplus.com/smart/rd/publications/pdf/JY03mont.pdf
citeseer.ist.psu.edu/lim94more.html
http://www.cacr.math.uwaterloo.ca/hac/

Efficient and Flexible Cryptographic Co-processor 149

21. Michalski, A., Buell, D.: A Scalable Architecture for RSA Cryptography on Large
FPGAs. In: IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM), pp. 331–332 (2006)

22. de Macedo Mourelle, L., Nedjah, N.: Efficient Cryptographic Hardware Using the
Co-Design Methodology. In: International Conference on Information Technology:
Coding and Computing (ITCC), vol. 2, pp. 508–512 (2004)

23. Nedjah, N., de Macedo Mourelle, L.: Fast Less Recursive Hardware for Large Num-
ber Multiplication Using Karatsuba-Ofman’s Algorithm. In: Yazıcı, A., Şener, C.
(eds.) ISCIS 2003. LNCS, vol. 2869, pp. 43–50. Springer, Heidelberg (2003)

24. Örs, S.B., Batina, L., Preneel, B., Vandewalle, J.: Hardware Implementation of a
Montgomery Modular Multiplier in a Systolic Array. In: International Parallel and
Distributed Processing Symposium (IPDPS), p. 184 (2003), http://www.cosic.
esat.kuleuven.be/publications/article-32.pdf

25. Ohba, N., Takano, K.: An SoC design methodology using FPGAs and embedded
microprocessors. In: Conference on Design automation (DAC), pp. 747–752 (2004)

26. Orlando, G., Paar, C.: A Scalable GF(p) Elliptic Curve Processor Architecture for
Programmable Hardware. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 348–363. Springer, Heidelberg (2001)

27. Rieder, F.: Modular Multiplikation mit kurzen Pipelines, Technische Universität
Darmstadt, Diplom Thesis (2008) (in German), http://www.vlsi.informatik.

tu-darmstadt.de/staff/laue/arbeiten/rieder_thesis.pdf
28. Rodríguez-Henríquez, F., Koç, Ç.K.: On fully parallel Karatsuba Multipliers for

GF (2m). In: International Conference on Computer Science and Technology (CST),
pp. 405–410 (2003), http://security.ece.orst.edu/papers/c29fpkar.pdf

29. RSA Laboratories: PKCS #1 v2.1: RSA Cryptography Standard (June 2002),
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

30. Saqib, N.A., Rodríguez-Henríquez, F., Díaz-Pérez, A.: A Parallel Architecture for
Computing Scalar Multiplication on Hessian Elliptic Curves. In: International Con-
ference on Information Technology: Coding and Computing (ITCC), vol. 2, pp.
493–497 (2004)

31. Sakiyama, K., Batina, L., Preneel, B., Verbauwhede, I.: HW/SW Co-design for
Accelerating Public-Key Cryptosystems over GF(p) on the 8051 µ-controller. In:
Proceedings of World Automation Congress (WAC) (2006)

32. Šimka, M., Fischer, V., Drutarovský, M.: Hardware-Software Codesign in Embed-
ded Asymmetric Cryptography Application – a Case Study. In: Y. K. Cheung, P.,
Constantinides, G.A. (eds.) FPL 2003. LNCS, vol. 2778, pp. 1075–1078. Springer,
Heidelberg (2003),
http://citeseer.ist.psu.edu/simka03hardwaresoftware.html

33. Tenca, A.F., Koç, Ç.K.: A Scalable Architecture for Modular Multiplication Based
on Montgomery’s Algorithm. IEEE Trans. Computers 52(9), 1215–1221 (2003),
http://security.ece.orst.edu/papers/c17asamm.pdf

34. Vanstone, S.A.: Next generation security for wireless: elliptic curve cryptography.
Computers & Security 22(5), 412–415 (2003)

35. Walter, C.D.: Improved linear systolic array for fast modular exponentiation. IEE
Proceedings Computers & Digital Techniques 147(5), 323–328 (2000)

36. Wannemacher, M.: Das FPGA-Kochbuch. MITP-Verlag (1998)
37. Wu, M., Zeng, X., Han, J., Wu, Y., Fan, Y.: A High-Performance Platform-Based

SoC for Information Security. In: Conference on Asia South Pacific design automa-
tion (ASP-DAC), pp. 122–123 (2006)

38. XILINX: Xilinx XUP Virtex-II Pro Development System, http://www.xilinx.

com/univ/xupv2p.html

http://www.cosic.esat.kuleuven.be/publications/article-32.pdf
http://www.cosic.esat.kuleuven.be/publications/article-32.pdf
http://www.vlsi.informatik.tu-darmstadt.de/staff/laue/arbeiten/rieder_thesis.pdf
http://www.vlsi.informatik.tu-darmstadt.de/staff/laue/arbeiten/rieder_thesis.pdf
http://security.ece.orst.edu/papers/c29fpkar.pdf
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf
http://citeseer.ist.psu.edu/simka03hardwaresoftware.html
http://security.ece.orst.edu/papers/c17asamm.pdf
http://www.xilinx.com/univ/xupv2p.html
http://www.xilinx.com/univ/xupv2p.html

Cellular-Array Implementations of Bio-inspired

Self-healing Systems: State of the Art and Future

Perspectives

André Seffrin1 and Alexander Biedermann2

1 CASED (Center for Advanced Security Research Darmstadt)

Mornewegstraße 32

64289 Darmstadt, Germany

andre.seffrin@cased.de
2 Technische Universität Darmstadt

Department of Computer Science

Integrated Circuits and Systems Lab

Hochschulstraße 10

64289 Darmstadt, Germany

biedermann@iss.tu-darmstadt.de

Abstract. This survey aims to give an overview of bio-inspired systems which

employ cellular arrays in order to achieve redundancy and self-healing capabil-

ities. In spite of numerous publications in this particular field, only a few fun-

damentally different architectures exist. After a general introduction to research

concerning bio-inspired systems, we describe these fundamental system types

and evaluate their advantages and disadvantages. In addition, we identify areas of

interest for future research.

1 Introduction

In various technical fields, mechanisms inspired by biology have been employed. As

these mechanisms have been successful in the natural world, it seems logical to as-

sume that they will also be relevant when applied to systems conceived by man. The

most outstanding features of biological systems are their capability of self-healing, self-

replication and adaptability. Self-healing systems which rely on traditional methods,

such as TMR (triple modular redundancy) [9], usually have a high resource overhead.

In many bio-inspired systems, the overhead can be fine-tuned much better according to

safety needs than within regular systems. In this survey, we focus on architectures of

cellular arrays which provide redundancy through provision of spare cells. The prime

institutes to conduct research in this field include the University of York, England and

the Swiss Federal Institute of Technology.

While a large number of publications exist in this field, the underlying mechanisms

are usually quite similar. Unfortunately, it must be noted that within a lot of papers on

this topic, a huge amount of redundancy exists. In addition, the biological terminology

used for the description of certain hardware mechanisms are not entirely consistent.

A. Biedermann and H. Gregor Molter (Eds.): Secure Embedded Systems, LNEE 78, pp. 151–170.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

152 A. Seffrin and A. Biedermann

This survey is structured as follows: We present different classification structures for

bio-inspired systems in section 2, and give an overview of hardware-software

analogies in section 3. In section 5, we examine different types of self-healing arrays

and evaluate them with regard to features such as redundancy and self-healing mecha-

nisms. Design methodologies, a topic still bearing many opportunities for cellular-array

type structures, are considered in section 8. A conclusion and future outlook are given

in section 9.

2 Classification of Bio-inspired and Self-healing Systems

The most well-suited classification system for the type of system to be considered in

this survey stems from Sanchez et al. [32]. Three fundamental properties of biological

systems, which may aid as inspiration for hardware systems, are identified: Phylogeny,

ontogeny, and epigenesis. Phylogeny refers to the fact that the genetic code of species

can evolve over subsequent generations. This process is driven by the three mechanisms

of selective reproduction, crossover and mutations [41]. Ontogeny refers to the growth

processes of a single cell, in particular through the methods of cellular division and

cellular differentiation. Finally, epigenesis implies that an organism can evolve through

learning, which is usually accomplished by neural networks.

These three properties can be visualized along three coordinate axes, resulting in

Figure 1 (as first presented in [32]). This method of system classification is referred to

as the POE model. The majority of the systems described within this survey lie solely

on the ontogenetic axis and are indicated within the coordinate system.

Ontogeny

Phylogeny

Epigenesis

Bio-Inspired Self-Healing Cellular Arrays

Fig. 1. Phylogenetic, Ontogenetic and Epigenetic Axes

For a an overview on systems focusing on the phylogenetic axis, see the survey by

Yao et al. [42]. For a survey which mainly explores the epigenetic axis of bio-inspired

hardware, see [13]. Typical high-level means for performing the classification of self-

healing systems [20] are tailored to high-level software systems and not applicable to

cellular-array based designs at their current level of sophistication.

Bio-inspired cellular arrays are organized in a homogeneous structure typically

called cellular lattice [12], a term which has no direct biological counterpart, since

cells in nature are not arranged in regular, grid-like structures. With reference to the

POE-model, this type of versatile, cellular array has also been called poetic tissue [41]

and cell matrix architecture [16].

Cellular-Array Implementations of Bio-inspired Self-healing Systems 153

3 Analogies between Biology and Hardware Systems

Various mechanisms from nature are proposed for use in self-healing cellular arrays.

The term embryonics, introduced by Mange et al. [17,18,19], describes the construction

of systems by using homogeneous cells. Like natural cells, these cells contain identical

DNA, i.e., operating instructions, and differentiate their behaviour according to their

position within the system. The method of having each cell in the homogeneous array

carry the same “genetic code” is widely used in cellular arrays, and the cell configura-

tions are usually referred to as DNA or operative genome [38]. The cells themselves,

capable of acquiring very different types of functionality, can be considered to be stem

cells [12,16,30]. The ability of cells to self-replicate can be compared to the biological

feature of mitosis (DNA replication) [26].

The following analogy with regard to self-healing mechanisms is presented in [14,

15]: In the immune systems of vertebrates, pathogens, which can be compared to hard-

ware errors in computing systems, are detected by lymphocytes known as B-cells. After

the pathogens have been marked, they can be destroyed by another type of lymphocyte

called T-cell. In hardware, this mechanism may be represented by a replicated module

which emulates the behaviour of a module under supervision. Such a module could de-

tect behaviour deviations and thus detect foreign cells. For the sake of completeness,

we state that lymphocytes are a subspecies of white blood cells which possess various

methods of dealing with pathogens. No further mechanisms with regard to white blood

cells are mentioned within the literature that is the basis of this survey.

A different principle is mentioned in [11, 12], which proposes the analogy of endo-

crine communication and paracrine signalling. The endocrine system works via glands

which produce hormones. The hormones are then distributed via the bloodflow through-

out the body. Special receptors at target cells receive the hormones and trigger the

corresponding responses. While endocrine communication works over long distances,

paracrine signalling is restricted to very short distances. In the case of paracrine sig-

nalling, the messaging molecules do not enter the bloodstream. In hardware, endocrine

communication may be modelled by a data packet with a distinct marker which travels

through an on-chip network. Paracrine signalling may be implemented in hardware by

a simple point-to-point communication over a wire.

A comparison of the different levels of hierarchy at the biological and at the hardware

level is given in figure 2, originally presented in [24]. The term cicatrization refers to

self-repair of cells at the molecular level [40].

Further analogies between biological systems and technical means of self-healing

can be found in a survey by Ghosh et. al [10], which focuses on self-healing on the

software level.

4 Error Detection and Correction

Error correction within a bio-inspired system is usually executed at the level of cellu-

lar granularity, i.e., each cell is responsible to detect errors within itself. The follow-

ing methods are traditionally used for error correction and detection in security-critical

systems:

154 A. Seffrin and A. Biedermann

DNA Structure

Nucleotide =⇒ Codons =⇒ Genes =⇒
Chromo-

somes
=⇒

DNA

(Genome)

Embryonic Array Structure

Capacitors,

Flip-flops,

etc.

=⇒
Fields in

Registers
=⇒

Configu-

ration

Registers

=⇒
Columns in

the Array
=⇒

Genome

Memory

Fig. 2. Comparison of Terms in Biology and Hardware Design

– Built-In Self Test: The term BIST (Built-In Self Test) commonly refers to methods

of self testing which use test vectors for system testing. This means that it is known

how a system will respond to certain input combinations. For small systems such

as those employed in bio-inspired cells with a low level of granularity, full system

coverage can be achieved. BIST systems have the drawback that testing at run-time

is not easy to implement.

– Parity Calculation: The system configuration of each cell is stored within reg-

isters. They are prone to radiation-induced faults which manifest themselves as

bitflips. By calculating the parity value of the stored configuration, it can be deter-

mined whether it is still valid. For a bio-inspired cell, it may be practical to simply

perform an xor on all included bits, or to employ a CRC check. For large-scale sys-

tems with extended configuration files, various crypthographic hash mechanisms

may be applied. This method requires a certain amount of data redundancy, as it

also requires the parity data to be stored within the cells.

– Module Redundancy: A popular way of providing security by redundancy is to in-

stantiate multiple hardware modules of the same type, and to use a majority voter to

decide which output to use. The most common variant is called TMR (triple mod-

ular redundancy), and is illustrated in figure 3. In a reduced variant of this scheme,

only two copies of the same design are present, and their outputs are compared

for equivalence. This type of system can only detect, but not correct errors. This

approach is commonly known as DWC (duplication with comparison).

Module 1

Module 2

Module 3

System

Input
Voter

System

Output

Fig. 3. Triple Modular Redundancy

Cellular-Array Implementations of Bio-inspired Self-healing Systems 155

Of the approaches listed above, the most common one to be applied in bio-inspired

systems is DWC. A variant of BIST methods is that of self-nonself discrimination [8].

This method assumes that systems have the two fundamental sets of states self and non-

self. When a healthy system is probed by a set of test-vectors, the corresponding healthy

states can be determined. In biological systems, the protective agents are exposed to the

body’s molecules (i.e., the self part) during their gestation period, and agents undergo a

period of negativ selection in order to remove obtain a set of agents which only tolerates

the valid system configuration [7].

This method of error detection has been applied to electronics under the term of

immunotronics [2, 3]. Its application in conjunction with cellular arrays has only been

demonstrated in [4,6], although it must be noted that this method is merely employed as

a security layer above the cellular array, and does not serve to protect individual cells.

5 Architectures for Redundant, Cellular Arrays

The standard design for embryonic cells is a matrix of Xby Ycells. We also present two

other types of designs which function in a slightly different way. These designs impose

a strong locality on cells. Finally, we represent a higher-level architecture which utilizes

the endocrine and paracrine messaging. We give formulas for calculating the degree of

redundancy and hardware overhead for each of the low-level designs.

5.1 MUXTREE Architecture

The MUXTREE architecture [18, 29] is a type of bio-inspired self-healing cellular ar-

ray which has been quite thoroughly researched. In this type of design, cells are laid

out in a homogeneous grid, and cell replacement is implemented by shifting all cells

within a row or column. Depending on the architecture type, a shift by one or multiple

cells is possible. Some architectures offer shifts in both directions. Each cell carries all

the different data sets for cell configurations that it may have to adopt. Thus, resource

requirements in this architecture decrease with higher locality of redundancy, and also

because fewer routing resources are required. For instance, a system may only allow up

to n cell shifts within each row.

Within this type of cellular array, it is possible to identify two prime cell elimina-

tions schemes, cell elimination and row elimination. Row elimination assumes that a

complete row is replaced by a neighbouring row in case of a cell error. This is possible

because the system provides a certain amount of spare rows. In most implementations,

damaged cells become transparent, i.e., they simply route data through themselves.

This saves resources in contrast to the usage of separate channels capable of routing

data around damaged cells. It is assumed that routing is rather failure tolerant in com-

parison to the remaining cell components. Thus, no tests with regard to proper routing

are performed by any architecture under review in this survey. The method of row elim-

ination is illustrated in figure 4. Cell elimination assumes that each row can tolerate a

fix amount of cell faults, as each row contains a number of spare cells. This elimination

method is illustrated in Figure 5.

156 A. Seffrin and A. Biedermann

Step 1. An error occurs

at position (2,2). Row 4 of

the system only contains spare

cells. The remainder of the cells

are functional cells required for

correct system operation.

1 2 3 4

1

2

3

4 Spare Spare Spare Spare

Step 2. Row 2 has been

completely deactivated, and all

of its functionality has been

shifted to row 3. The function-

ality of the cells in row 3 is

now implemented by the for-

merly spare cells in row 4.

1 2 3 4

1

2

3

4

Fig. 4. Row Elimination

Step 1. An error occurs

at position (2,2). Column 4 of

the system only contains spare

cells. The remainder of the cells

are functional cells required for

correct system operation.

1 2 3 4

1 Spare

2 Spare

3 Spare

4 Spare

Step 2. The cell at (2,2) has

now become transparent, and

its functionality is now imple-

mented by cell (2,3). Likewise,

the functionality of cell (2,3) is

now implemented by the for-

merly spare cell in column 4.

1 2 3 4

1 Spare

2

3 Spare

4 Spare

Fig. 5. Cell Elimination

Cellular-Array Implementations of Bio-inspired Self-healing Systems 157

For these schemes, various performance measurements can be given. The derivations

for these formulas are presented in [25, 28]. Consider a square homogeneous array of

cells with a dimension of n. For the case that x rows are eliminated, the percentage of

cells lost can be calculated as follows:

F (n, x) =
x × n

n2
× 100 =

x

n
× 100 (1)

F (n, x) asymptotically decreases with increasing array sizes and thus, for sufficiently

large arrays, the relevance of x diminishes. For cell elimination mode, no losses occur

except for the damaged cells.

For a system which eliminates a row in case of an error occuring therein, let r be the

number of rows required for the system to function properly, and n the total number of

rows in the array. The amount of elements in each row is specified by m, and each of

those elements possesses the failure rate λR. With these values, the system reliability

can be calculated using the following formula:

Rtr(t) =

n
∑

j=r

(

n

j

)

e−jmλRt(1 − e−mλRt)n−j (2)

In contrast to the row-elimination scheme, within the cell-elimination scheme, a row is

only eliminated when all individual cells within a row have been corrupted. Formula 3

gives the reliability of such a system with respect to time, λC denotes the failure rate of

every cell which performs array elimination. It requires formula 4 for the calculation of

Rrc, the reliability of each individual row.

Rtc(t) =
∑

j=r

(

n

j

)

Rrc(t)
j(1 − Rrc(t))

n−j (3)

Rrc(t) =

m
∑

i=k

(

m

i

)

e−iλC t(1 − eλCt)m−i (4)

Cell elimination yields a much higher reliability than row elimination as only a faulty

cell deactivated instead of a complete row containing still functioning cells. However,

the routing and logic overhead of cell elimination is high compared to row elimination,

so that only few systems rely on this method. In [43], a system is presented which

supports both row and cell elimination, i.e., after a vital amount of cells within one row

has been eliminated, the row itself is eliminated and replaced by a neighbouring row.

The redundancy overhead introduced by this type of cellular architecture is highly

variable, and easy to control. In order to introduce redundancy to a system with X ×
Y squares, we can add Rc spare columns, with a resulting overhead of RcY/XY . If

we want to ensure that complete rows can be replaced once all their redundant cells

have been used up, we can add Rr rows, resulting in an overhead of (Rr(X + Rc) +
RcY)/XY .

158 A. Seffrin and A. Biedermann

5.2 Architecture due to Szasz et al.

We now consider the design proposed in [35, 34, 36, 37], which features cells that are

arranged in a grid structure. Each cell has a design which is illustrated in Figure 6. This

arrangement is called macro group.

C

A B

D E

C

A B

D E

C

A B

D E

C

A B

D E

C

A B

D E

C

A B

D E

C

A B

D E

C

A B

D E

C

A B

D E

Fig. 6. Architecture due to Szasz et al.

Each cell with a white background is an active cell that contains five different genes.

According to its position, one of these five genes is active, determining the functionality

of the cell (active gene is bold). Besides the five active cells, there are 4 backup cells.

Whenever any of the standard cells gets damaged, the backup cells can take over the

functionality of the damaged cells.

This architecture provides a high amount of backup cells at a local level. While the

cells in the previously examined architecture are relatively complex, each containing

the full system gene or at least the genes required for the current row or column, these

cells only store five local genes. Thus, cell size is reduced, but the degree of redundancy

is increased. Calculating the overhead as the ratio of spare cells to functional cells, we

obtain 4/5.

5.3 Architecture due to Lala et al.

This architecture has been presented in [14, 15]. It combines local redundancy without

the use of specific macro groups, and is illustrated in Figure 7 (connections between

cells are not pictured).

Each functional cell (F) has two spare cells (S) and two router cells (R) as its direct

neighbours in the horizontal and vertical directions. Each spare cell can serve to replace

one of four functional cells which are located right next to it. Each functional cell only

carries its own genetic information, while each spare cell carries the genetic information

for all four cells whose functionality it may have to replace. The router cells ensure that

the proper interconnections are retained in case of cell replacement.

Cellular-Array Implementations of Bio-inspired Self-healing Systems 159

R F R F R

F S F S F

R F R F R

F S F S F

R F R F R

Fig. 7. Architecture due to Lala et al.

The overhead for this cell architecture is given as the ratio of spare cells to the sum

of functional and router cells, which amounts to 1/3. However, it should be considered

that the elements included in router cells are not counted as area overhead in other

architectures, in which routing elements are implemented outside of cells.

5.4 Architecture due to Greensted et al.

There are multiple other self-healing architectures which deviate from the general cell-

scheme as introduced above, or which are especially adapted for their target platforms.

One notable architecture is the design introduced in [12], which employs endocrine and

paracrine messaging, as described in section 2. Each node in this network is pluripotent,

and nodes are grouped into functional groups called organs. Each bionode has connec-

tions to its nearest eight neighbours. Figure 8 illustrates the architecture. Any organ can

use the pluripotent cells as backup in case of cell failure.

Communication between organs is achieved by paracrine messaging, i.e., network

packets are sent among the nodes. These paracrine messages are routed according to

weighted random decisions, introducing an artificial blood flow. Since they are not sup-

posed to remain within the blood flow indefinitely, the nodes will stop propagating after

a certain amount of hops has elapsed. Paracrine is used for communication within or-

gans: These messages are only propagated by one hop, but they are propagated to all

neighbours of a cell. Due to the complex nature of this architecture, it does not lend

itself to very fine-granular approaches. However, the paracrine system seems to be a

viable solution for the distribution of information within large cellular arrays.

160 A. Seffrin and A. Biedermann

Organ C

Organ B

Organ A

Spare Cells

Fig. 8. Architecture due to Greensted et al.

6 Cell Design

Within the research towards the MUXTREE architecture, a fundamental architecture

has been established which represents the most typical features of embryonic cells.

Based on this design, we present the typical set of features of embryonic cells within

this section.

6.1 Embryonic Cell Design

A basic cell architecture based on the MUXTREE design is shown in Figure 9 (based on

an image in [27]). This is a cell for a cellular array which employs row deletion in case

of an error. In this design, each cell carries the complete genome of the system, i.e., the

memory block holds the information for all coordinates. This is a design choice which

is not implemented by all cellular arrays. In [23, 5], architectures are shown wherein

cells only store the configurations present in their own columns; since only rows can be

eliminated in this system, no other knowledge is required by the cells.

The coordinate generator determines which of the memory slots is to be used. For

this purpose, it receives the X and Y coordinates located below and left of the cell and

increments these coordinates by one. Thus, it is ensured that the cells in the adjacent

cells receive the proper coordinates. This mechanism is illustrated by Listing 1 for a

matrix with cellular array with dimensions 2 by 3 , taken from [38]. Variables WX and

WY represent coordinate inputs, and X and Y are the generated coordinates. Each of the

selected genes represents one possible cell configuration.

System errors can be selected by diagnosis logic, which works according to the DWC

method in this particular cell. The processing element block contains the functional

Cellular-Array Implementations of Bio-inspired Self-healing Systems 161

Coordinate Generator

Memory

Processing

Element

I/O Router

Diagnosis

Logic

From Neighbour

To Neighbour

S

N

W E

Fig. 9. Design of an Embryonic Cell

block of the cell, explained in detail in section 6.2. The I/O router has the responsibility

of making the cell transparent in case of failure.

6.2 Implementation of Functionality

Let us now focus more closely on how the actual calculation functionality is imple-

mented within the device. The most basic function which can be implemented is a

two-to-one multiplexer. This type of architecture has been introduced under the name

of MUXTREE [18, 29] and has been used in many subsequent designs. By construct-

ing a network of multiplexers, any desired logic function can be implemented. This

Listing 1. Coordinate Generation

X = WX+1

Y = SY+1

c a s e of X,Y:

X,Y = 1 , 1 : do gene A

X,Y = 1 , 2 : do gene B

X,Y = 2 , 1 : do gene C

X,Y = 2 , 2 : do gene D

X,Y = 3 , 1 : do gene E

X,Y = 3 , 2 : do gene F

162 A. Seffrin and A. Biedermann

is the most fine-grained design approach possible. For practical applications, a more

coarse-grained is necessary, as each cell generates a certain amount of overhead.

Such an approach can be realized by use of a so-called LUT (look-up table). A look-

up table with n binary inputs and one binary output. It can implement 2n different

functions, and requires n bits to be configured. A lookup-table by itself is only combi-

natoric, it does not store a value. This is why many cell-based architectures also include

a register as part of the device functionality, which can be switched on and off according

to the configuration of the cell.

A different approach is taken in [33, 19, 39] by introduction and usage of the so-

called MICROTREE architecture. This type of cell only supports a limited number of

basic instructions, belonging to the group of binary decision machines. Thus, it is not

programmable like a regular processor. The MICROTREE cell allows to store up to

1024 instructions.

Due to current hardware restrictions, more complex basic cells have not been imple-

mented directly in hardware. However, for implementations meant for the demonstra-

tion of bio-inspired networks, it is often necessary to use more complex basic cells. A

cell network consisting of hybrid nodes is presented in [11, 12]. Each node consists of

a Virtex FPGA and an Atmel microcontroller.

In [1], a virtual network of cells is presented, i.e., it completely runs in software. Each

cell is controlled by a configuration format called eDNA. This format allows the cell to

be programmed with instructions that include control statements such as branches, con-

ditional loops and array operations. A fundamentally different approach is taken by net-

works of cells which merely perform a function based on the states of their neighbours.

The Game of Life by Conway is a famous example of such a system. More complex

systems of this type, commonly known as cellular automata, have been extensively

researched.

6.3 Cell Configuration

Early FPGA implementation of bio-inspired cellular arrays used only few bits to decide

their configuration. For instance, the design introduced in [27] requires 17 configuration

bits, which serve the following purposes:

– Configuration of the cell multiplexer.

– Selection of the proper inputs, outputs and routing.

– Indication whether the cell output is registered.

However, this information is not sufficient in more complex designs, especially if there

are no special components external to the cells to handle functions such as cell deletion

and error handling. In [43], the memory is split into two sections: While the ordinary

configuration data is held in a so-called DNA segment memory, the memory for per-

forming additional functions such as error handling is held in a so-called core register.

In order to illustrate the scope of management functions performed by the cell, we give

a description of the flags within its 14 bit wide core register in Table 1.

Cellular-Array Implementations of Bio-inspired Self-healing Systems 163

Table 1. Cell Configuration Memory

Flag Purpose

Cell Error Status
Flag is set to ’1’ if the cell has been

marked as damaged.

Cell Function Status
Indicate whether the cell is to act as

a spare or functional cell.

DNA-Repair Requirement
Set to ’1’ if the cell needs DNA re-

pair.

DNA-Repair Flag
Indicate that DNA-repair has fin-

ished.

Cell-Elimination Requirement
The cell has been irreparably dam-

aged and needs to be eliminated.

Cell-Elimination Flag

Indicate that the cell-elimination re-

quested by previous flag has fin-

ished.

Row-Elimination Requirement

The maximum number of cells has

been damaged within the current

row and it needs to be eliminated.

Row-Elimination Flag
Flag is set to ’1’ if row-elimination

has been completed.

Permission flag of reconfiguration
Indicate whether reconfiguration of

the cell is allowed.

Last-Cell Flag Set to ’1’ in the last cell of a row.

First-Cell Flag Set to ’1’ in the first cell of a row.

Last-Row Flag Set to ’1’ in all cells of the last row.

First-Row Flag Set to ’1’ in all cells of the first row.

System Error Flag
Indicate that the system cannot be

repaired.

7 Technological Requirements for Self-healing Structures

Enabling self-healing mechanisms within a system requires the system to be able to

modify itself. This property can be implemented by technology in different ways: On

the one hand, software-based implementations may initialize the execution of another

program in the course of self-healing actions. On the other hand, hardware-based im-

plementations may make use of the capacity to reconfigure. Thus, not the fundamental

structure of a device itself is changed, but for example the wiring of its connection

elements and the assignment of its look-up tables which implement logical functions

is altered. The most common representative of this architecture type is FPGA tech-

nology. Furthermore, less complex devices with these abilities are CPLDs (complex

programmable logic devices).

Dynamic partial reconfiguration is a powerful technology for reconfigurable hard-

ware devices with self-healing abilities: Using this paradigm, the configuration of only

a part of the device is modified during operation, notably without affecting the remain-

ing areas. The area to be reconfigured is disconnected from the surrounding system,

164 A. Seffrin and A. Biedermann

reconfigured and then reintegrated into the system. Thus, in case of a defect or an error,

it is possible to repair single cells of the cellular designs.

There exist reconfiguration strategies for both transient and persistent errors of a de-

vice. A sudden and unwarranted change in a register value caused by cosmic radiation,

referred to as single event upset, can be repaired by dynamic partial reconfiguration

as registers are reinitialized during the reconfiguration process. In case of a persis-

tent defect within the device which cannot be reverted, the affected area may also be

reconfigured.

Because of the generic structure of a reconfigurable device such as an FPGA, it is

likely that not all elements contained within the device are used by a configuration.

A different hardware mapping may make use of different hardware areas. Therefore,

in case of an error, the device may simply retain the original functionality, but switch

to a different mapping thereof. If defective area is not used by the new configuration,

the device can resume faultless operation. However, to apply this approach, different

mappings have to be stored for each functionality.

Using the mechanisms presented in this survey, the ability of a biological organism

to replace defective parts can be emulated. However, there are some major differences:

Contrary to the concept of dynamic partial reconfiguration applied to a cellular-based

approach, a biological organism usually does not try to repair defective cells. They are

discarded and replaced by new ones. Furthermore, an organism is able to produce virtu-

ally any number of new cells whereas a electronic device is bound to its already existing

resources. The resources available on a device are further decreased by faults and sub-

sequent healing actions which render non-repairable areas inactive. In conclusion, the

resource bounds place strong limits on the analogy between the mode of operation of

biological organisms and of electronic devices.

8 Design Methodologies for Cellular Arrays

Within this article, we have presented several layouts of cellular arrays with self-healing

abilites. This section adds remarks on quality and criteria of self-healing functionalities,

on different paradigms when designing cellular arrays, and on limitations of the analogy

to biology.

8.1 Measuring the Quality of Self-healing Cellular Arrays

When designing a bio-inspired cellular array, several considerations regarding the qual-

ity of its self-healing abilites have to be considered. With regard to this question, support

is provided by the work presented in [21], which establishes attributes for the quality

of self-healing systems, expanding the ISO 9126 quality model. These five additional

attributes may be transferred to cellular arrays:

– Support for Detection of Anomalous System Behavior: The ability to monitor,

recognize and address anomalies within the system. In cellular arrays, monitoring

functions cells should be either integrated in each cell itself or in an overlying

control instance, a design called the ”aggregator-escalator-peer architectural style”

in [21]. This has the advantage that a monitoring system can evaluate the state of

more than one cell at the same time.

Cellular-Array Implementations of Bio-inspired Self-healing Systems 165

– Support for Failure Diagnosis: The ability to locate a fault. In case of cellular

arrays, the cell which malfunctions has to be found and addressed.

– Support for Simulation of Expected or Predicted Behavior: Based on a frame-

work that allows simulation. Since most of the presented cellular arrays are based

on FPGAs, existing design tools already feature the use of mighty system

simulators.

– Differentiating Between Expected and Actual Behavior: This type of

self-awareness uses results from simulation as foundation to detect variations of

the system behavior. Cell-based systems can contain a model of the desired behav-

ior in each cell and compare it to its actual behavior to integrate this ability.

– Support for Testing of Correct Behavior: With regard to cellular arrays, verifica-

tion of the entire system can be achieved, as each cell is individually monitored.

8.2 Design and Programming Paradigms

Though all of the concepts presented in this paper rely on a cellular layout of homoge-

neous cells, the inner structure of cells may widely differ as seen in Section 6. Moreover,

not only the inner cell design, but also the overlying design and programming paradigms

vary.

For instance, in the eDNA approach published in [1], the cells, referred to as eCells,

are connected through a network-on-chip. The eDNA within each cell defines the func-

tionality. An eCell resembles to a CLB (configurable logic block) known from FP-

GAs, but also has a small processing unit. Each eCell is bound to a definite identifier.

The destination of data of an output port of an eCell is determined based on these

identifiers.

The advantage of this approach is the possibility to describe algorithms for it in

a high-level language. Parallel sections have to be marked explicitly, and thus, the

massive-parallel layout of the cellular array can be utilized. Each of the operators used

in this language is assigned a number. In an intermediate step, the code is translated to

be executable on the hardware. Each sequence of code with a number is assigned to a

different cell. A dedicated start signal on each eCell based on the number scheme or-

ganizes the controlled sequencing. This process is considered to be a self-organization

process. In case of a faulty cell, an eCell detected as defective is marked as dead.

The approach assumes BIST or other failure detection mechanisms. The identifier of

a dead cell is deleted and assigned to the cell with the identifier next in size. Therefore,

all subsequent eCells are assigned new identifiers and the process of self-organization

has to be restarted. However, this type of self-healing affects large parts of the running

systems since there is need for a new self-organization process. This approach has the

advantage of using a high-level language to describe a parallel cellular-based design

with self-healing abilities.

The MUXTREE architecture, described in section 5.1 also features programmability

using a high level language. A cell in the MUXTREE approach consists of a 2-1 mul-

tiplexer which chooses between two 8-1 multiplexers. These deliver either constants,

values from neighbors or a saved result from the cell’s register at their inputs. Neigh-

boring cells are connected via a switch matrix similar to those found in FPGAs. The

configuration of the multiplexers are stored within a gene. To program this architecture,

166 A. Seffrin and A. Biedermann

the language NANOPASCAL was developed. It consists of simple commands which

are either conditional statements or assignments, but does not allow branches. A com-

piler is available which computes the target address of the genes, i. e. the configuration

bits of each cell. Related to this MUXTREE implementation is the realization of the

MUXTREE architecture as a set of universal Turing machines as shown in [31]. In ad-

dition, there is the programming language PICOPASCAL, which has a similar structure

as NANOPASCAL.

8.3 Cell Granularity

Many of the approaches presented in this survey share the same fundamental structure:

A two-dimensional array of homogeneous function units, which are known as cells,

constitute the bio-inspired systems. However, the functionality of the cells may vary

significantly. In [19], a functional unit consists of three multiplexers and a register. The

authors describe this as the “molecular” level. Functional units can be combined into a

microtree, a small processing unit resembling a CPU, on the “cellular” level.

As in [31], cells are considers as complete universal Turing machines. This approach

is based on the work of the mathematician John von Neumann in work first published

in 1966 [22]. Depending on the granularity of the inner cell structure, programming

paradigm differ. Whereas for very fine-grained cells, special programming languages

and their interpreters or compilers often need to be defined, cellular arrays with cells as

complex as CPUs possibly resemble common multiprocessor architectures. Therefore,

existing paradigms for multiprocessor programming could be adapted to these systems.

8.4 Evaluation of the Analogy

An essential decision while designing bio-inspired systems is the question which con-

cepts and mechanisms known from biology are worthy of adoption. Depending on the

intended use, either a design emulating DNA-based cell and immune system is con-

sidered as a bio-inspired system or rather as a composition of homogeneous functional

units with self-replicating abilities. The amount and complexity of biological concepts

which have been adopted, however, allows no conclusion with regard to the quality of

a bio-inspired system: The concept of a central nervous system, for example, is indeed

simplified imaginable as a central processing unit within the design which covers moni-

toring and control functions. However, for living organisms, this central system forms a

critical element. In case of irreversible injury, the organism will eventually die or rather

not be able to continue autonomous operation. Within the class of electronic devices, a

system with such a central unit would pose a single point of failure. Therefore, it has

to be evaluated if bio-inspired systems should prefer a more decentralized approach to

execute the tasks mentioned above, in spite of the desired analogy to biology.

Furthermore, while many of the authors of papers based on bio-inspired systems use

many terms defined in the field of biology, this analogy is misleading in some aspects.

For example, the term cicatrization is used in [19] to advertise that a defective cell has

been replaced and the function running within has performed a reset. Apart from the

modified cell and system state, the new cell is identical with regard to its functionality

Cellular-Array Implementations of Bio-inspired Self-healing Systems 167

in comparison to the original cell. In terms of biology, however, cicatrization means the

creation of inferior tissue as replacement for tissue irreversibly damaged after an injury.

Additionally, different options exist with regard to the functionalities held ready

within each cell. In some approaches, a single cell only has the functionality needed

to execute its own task; this corresponds to fully differentiated cells in biology. If one

of these cells fails, surrounding cells are not able to resume their tasks.

In other approaches, as for example in [35], cells also contain functionality of their

neighboring cells. In biology, this corresponds to stem cells which are able to further dif-

ferentiate to several different types of cells. This causes a higher resource consumption

within each cell, nevertheless, in case of a fault of a cell, a neighboring cell may replace

the defective cell. Further approaches could include the complete functionality of a sys-

tem within each cell. This corresponds to zygotic cells which are able to differentiate to

every type of cells of an organism. Thus, depending on the overall functionality of the

system and the granularity of the cells, resource consumption for each cell can be huge.

However, this may eventually allow the system to restore its original functionality even

in case of multiple cell defects. Thus, not every concept known from biology is always

suited to be transferred to electronic systems and in some cases, the analogy seems to

be overused. The cellular array approaches presented in this paper have the ability of

self-replication and self-healing through reconfiguration and sometimes even immune

system-like designs like in [15]. They show in numerous publications that biological

concepts can be adapted to electrical systems in a reasonable manner.

9 Conclusion and Future Outlook

Biologically-inspired systems are modeled on living organisms and strive to adapt con-

cepts known from nature. Especially in the field of self-healing systems, biology may

contribute several aspects: A structure based on cells which can easily be replaced in

case of faults, simulated growth or mutation of structures by using reconfigurable de-

vices are ideas which are borrowed from nature.

However, this analogy is often overused or used imprecisely. In contrast to a biolog-

ical organism, resources of electronic devices are always bounded. The number of dif-

ferent functionalities which can be run on a system at the same time is limited thereby.

While an organism usually replaces defective cells without any limitation, faults in a

electronic device are often only repaired by using redundant or spare resources. The

use of dedicated spare cells which are only activated in case of faults further intensifies

the scarcity of resources.

Despite the ability of many of the presented biologically-inspired systems to tolerate

or even to recover from faults or attacks, only few of them try to adopt the concept of

an immune system, for example [2, 3]. Only if immune systems have been adapted, it

will be possible for a bio-inspired system to be protected against a new appearance of

the same fault or attack. In order to “educate” artificial immune systems, concepts used

in machine learning could be considered. Using machine learning, the epigenesis axis

could further be explored.

Even if all of these capabilities would be combined, it remains unclear how to apply

existing paradigms for programming such architectures. Given the numerous existence

168 A. Seffrin and A. Biedermann

of homogeneous cells in most of the presented approaches, paradigms like CUDA or

OpenCL, known from the field of massively parallel devices, could be employed. Some

approaches, such as [1] or [18], already deliver new mechanisms to use constructs

known from common programming languages.

In summary, despite still being a niche in the area of self-healing systems, bio-

inspired systems not only cover aspects known from nature, but also offer the possibility

to combine different fields of research such as design methodologies for massively par-

allel devices or machine learning. Possible fields of application are fully autonomous

systems which have to be highly reliable, such as nodes in isolated sensor networks and

devices exposed to cosmic radiation.

References

1. Boesen, M., Madsen, J.: eDNA: A Bio-Inspired Reconfigurable Hardware Cell Architecture

Supporting Self-organisation and Self-healing. In: 2009 NASA/ESA Conference on Adaptive

Hardware and Systems, pp. 147–154 (2009)

2. Bradley, D., Tyrrell, A.: Hardware fault tolerance: An immunological solution. In: IEEE

International Conference on Systems, Man, and Cybernetics, vol. 1, pp. 107–112. Citeseer

(2000)

3. Bradley, D., Tyrrell, A.: The architecture for a hardware immune system, p. 0193 (2001)

4. Canham, R., Tyrrell, A.: A learning, multi-layered, hardware artificial immune system imple-

mented upon an embryonic array. In: Tyrrell, A.M., Haddow, P.C., Torresen, J. (eds.) ICES

2003. LNCS, vol. 2606, pp. 174–185. Springer, Heidelberg (2003)

5. Canham, R., Tyrrell, A.: An embryonic array with improved efficiency and fault tolerance.

In: Proceedings of the 2003 NASA/DoD Conference on Evolvable Hardware EH 2003, p.

275. IEEE Computer Society, Washington (2003)

6. Canham, R., Tyrrell, A.: A hardware artificial immune system and embryonic array for fault

tolerant systems. Genetic Programming and Evolvable Machines 4(4), 359–382 (2003)

7. Dasgupta, D., Ji, Z., Gonzalez, F., et al.: Artificial immune system (AIS) research in the last

five years. In: Proceedings of The 2003 Congress on Evolutionary Computation (CEC 2003),

pp. 123–130 (2003)

8. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer.

In: Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy,

pp. 202–212 (1994)

9. Gericota, M., Alves, G., Ferreira, J.: A self-healing real-time system based on run-time self-

reconfiguration. In: 10th IEEE Conference on Emerging Technologies and Factory Automa-

tion, ETFA 2005, vol. 1 (2005)

10. Ghosh, D., Sharman, R., Raghav Rao, H., Upadhyaya, S.: Self-healing systems–survey and

synthesis. Decision Support Systems 42(4), 2164–2185 (2007)

11. Greensted, A., Tyrrell, A.: An endocrinologic-inspired hardware implementation of a multi-

cellular system. In: NASA/DoD Conference on Evolvable Hardware, Seattle, USA (2004)

12. Greensted, A., Tyrrell, A.: Implementation results for a fault-tolerant multicellular architec-

ture inspired by endocrine communication. In: Proceedings of NASA/DoD Conference on

Evolvable Hardware, pp. 253–261 (2005)

13. Hammerstrom, D.: A survey of bio-inspired and other alternative architectures. In: Nanotech-

nology. Information Technology II, vol. 4 (2008)

14. Lala, P., Kumar, B.: An architecture for self-healing digital systems. In: Proceedings of the

Eighth IEEE International On-Line Testing Workshop, pp. 3–7 (2002)

Cellular-Array Implementations of Bio-inspired Self-healing Systems 169

15. Lala, P., Kumar, B.: Human immune system inspired architecture for self-healing digital

systems. In: Proceedings of International Symposium on Quality Electronic Design, pp.

292–297 (2002)

16. Macias, N., Athanas, P.: Application of Self-Configurability for Autonomous, Highly-

Localized Self-Regulation. In: Second NASA/ESA Conference on Adaptive Hardware and

Systems, AHS 2007, pp. 397–404 (2007)

17. Mange, D., Goeke, M., Madon, D., Stauffer, A., Tempesti, G., Durand, S.: Embryonics:

A new family of coarse-grained field-programmable gate array with self-repair and self-

reproducing properties. In: Towards evolvable hardware, pp. 197–220 (1996)

18. Mange, D., Sanchez, E., Stauffer, A., Tempesti, G., Marchal, P., Piguet, C.: Embryon-

ics: a new methodology for designing field-programmable gatearrays with self-repair and

self-replicating properties. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems 6(3), 387–399 (1998)

19. Mange, D., Sipper, M., Stauffer, A., Tempesti, G.: Towards robust integrated circuits: The

embryonics approach. Proceedings of the IEEE 88(4), 516–541 (2000)

20. Neti, S., Muller, H.: Quality criteria and an analysis framework for self-healing systems. In:

ICSE Workshops International Workshop on Software Engineering for Adaptive and Self-

Managing Systems SEAMS 2007, p. 6 (2007)

21. Neti, S., Muller, H.A.: Quality criteria and an analysis framework for self-healing systems.

In: International Workshop on Software Engineering for Adaptive and Self-Managing Sys-

tems, p. 6 (2007)

22. Neumann, J.V.: Theory of Self-Reproducing Automata. University of Illinois Press,

Champaign (1966)

23. Ortega, C., Tyrell, A.: MUXTREE revisited: Embryonics as a reconfiguration strategy in

fault-tolerant processor arrays. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES 1998.

LNCS, vol. 1478, p. 217. Springer, Heidelberg (1998)

24. Ortega, C., Tyrrell, A.: Reliability analysis in self-repairing embryonic systems. Memory 12,

11 (1999)

25. Ortega, C., Tyrrell, A.: Self-repairing multicellular hardware: A reliability analysis. In:

Floreano, D., Mondada, F. (eds.) ECAL 1999. LNCS, vol. 1674, pp. 442–446. Springer,

Heidelberg (1999)

26. Ortega, C., Tyrrell, A.: A hardware implementation of an embryonic architecture using

Virtex R© FPGAs. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES

2000. LNCS, vol. 1801, pp. 155–164. Springer, Heidelberg (2000)

27. Ortega, C., Tyrrell, A.: A hardware implementation of an embryonic architecture using virtex

fpgas. In: Miller, J.F., Thompson, A., Thompson, P., Fogarty, T.C. (eds.) ICES 2000. LNCS,

vol. 1801, pp. 155–164. Springer, Heidelberg (2000)

28. Ortega-Sanchez, C., Mange, D., Smith, S., Tyrrell, A.: Embryonics: A bio-inspired cel-

lular architecture with fault-tolerant properties. Genetic Programming and Evolvable Ma-

chines 1(3), 187–215 (2000)

29. Ortega-Sanchez, C., Tyrrell, A.: Design of a basic cell to construct embryonic arrays. IEE

Proceedings-Computers and Digital Techniques 145(3), 242–248 (1998)

30. Prodan, L., Tempesti, G., Mange, D., Stauffer, A.: Embryonics: electronic stem cells. Artifi-

cial life eight, 101 (2003)

31. Restrepo, H.F., Mange, D.: An embryonics implementation of a self-replicating universal

turing machine, pp. 74–87 (2001)

32. Sanchez, E., Mange, D., Sipper, M., Tomassini, M., Pérez-Uribe, A., Stauffer, A.: Phylogeny,

ontogeny, and epigenesis: Three sources of biological inspiration for softening hardware. In:

Higuchi, T., Iwata, M., Weixin, L. (eds.) ICES 1996. LNCS, vol. 1259, pp. 33–54. Springer,

Heidelberg (1997)

170 A. Seffrin and A. Biedermann

33. Stauffer, A., Mange, D., Goeke, M., Madon, D., Tempesti, G., Durand, S., Marchal,

P., Piguet, C.: MICROTREE: Towards a Binary Decision Machine-Based FPGA with

Biological-like Properties, pp. 103–112 (1996)

34. Szasz, C., Chindris, V.: Artificial life and communication strategy in bio-inspired hardware

systems with FPGA-based cell networks. In: 11th International Conference on Intelligent

Engineering Systems, INES 2007, pp. 77–82 (2007)

35. Szasz, C., Chindris, V.: Development strategy and implementation of a generalized model

for FPGA-based artificial cell in bio-inspired hardware systems. In: 5th IEEE International

Conference on Industrial Informatics, vol. 2 (2007)

36. Szasz, C., Chindris, V.: Bio-inspired hardware systems development and implementation

with FPGA-based artificial cell network. In: IEEE International Conference on Automation,

Quality and Testing, Robotics, AQTR 2008, vol. 1 (2008)

37. Szasz, C., Czumbil, L.: Artificial molecule development model for genes implementation in

bio-inspired hardware systems. In: 11th International Conference on Optimization of Elec-

trical and Electronic Equipment, OPTIM 2008, pp. 15–20 (2008)

38. Tempesti, G., Mange, D., Mudry, P., Rossier, J., Stauffer, A.: Self-replicating hardware for

reliability: The embryonics project. ACM Journal on Emerging Technologies in Computing

Systems (JETC) 3(2), 9 (2007)

39. Tempesti, G., Mange, D., Stauffer, A.: A self-repairing FPGA inspired by biology. In: Proc.

3rd IEEE Int. On-Line Testing Workshop, pp. 191–195 (1997)

40. Tempesti, G., Mange, D., Stauffer, A.: Self-replicating and self-repairing multicellular au-

tomata. Artificial Life 4(3), 259–282 (1998)

41. Tyrrell, A., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J., Rosenberg,

J., Villa, A.: Poetic tissue: An integrated architecture for bio-inspired hardware. In: Tyrrell,

A.M., Haddow, P.C., Torresen, J. (eds.) ICES 2003. LNCS, vol. 2606, pp. 269–294. Springer,

Heidelberg (2003)

42. Yao, X., Higuchi, T.: Promises and challenges of evolvable hardware. In: Evolvable Systems:

From Biology to Hardware, pp. 55–78 (1997)

43. Zhang, X., Dragffy, G., Pipe, A., Gunton, N., Zhu, Q.: A reconfigurable self-healing embry-

onic cell architecture. Differentiation 1, 4 (2003)

Combined Man-in-the-Loop and

Software-in-the-Loop Simulation

Electronic Stability Program for Trucks
on the Daimler Driving Simulator

Uwe Baake and Klaus Wüst

D aimler AG
Company Postal Code B209
70546 Stuttgart, Germany

{uwe.baake,klaus.wuest}@daimler.com

Abstract. The main targets in commercial vehicle development in the
near future will be improving the energy e ffi e n c y of t h e v e h i c l e s an d
improving vehicle safety. One of the measures to increase safety is the
decision of the European Committee to make electronic stability sys-
tems compulsory for nearly all trucks and buses. To guarantee that the
system performs well for a wide variety of trucks and buses, new simu-
lation methods are being introduced into the development process. The
system functionalities, which are developed by system suppliers, are im-
plemented by Daimler Trucks as software-in-the-loop codes into vehicle
dynamics simulation models. By using the multi-body simulation soft-
ware’s real-time capabilities, it has become possible to investigate the
interaction between the vehicle and the electronic stability system on
the Daimler driving simulator.

Keywords: Driving simulator, Electronic Stability Program, Software-
in-the-Loop, Man-in-the-Loop, Multi-body systems simulation, Commer-
cial vehicle development.

1 Introduction

Thetransportationofpeopleandgoodsplaysa keyroleinthegloballynetworked
economy and is indispensable for the growth and prosperity of every society.
Goods transportation is continually expanding, and road transport in particular
is registering highgrowthrates.Expertsarepredicting anannual global increase
intransportationvolumesintheorderof2.5 percentonaveragebytheyear2030;
this represents double the figure for the year 2000. Consequently, development
of commercial vehicles is facing two major challenges for the near future [1],
grouped together in the Shaping Future Transportation initiative as shown in
Fig. 1.

Shaping future transportationmeans preserving resources and reducing emis-
sions of all kinds, while at the same time ensuring maximum road safety. The

A . B ie d e r m a n n a n d H . G r e g o r M o lt e r (E d s .) : S e c u r e E m b e d d e d S y s t e m s , L N E E 7 8 , p p . 171–185.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

172 U . B aak e and K. Wüst

Fig. 1. Daimler technology programs

Clean Drive Technologies program has been initiated in order to offer new prod-
ucts with overall operating efficiencybutalso withlowemissionsandlowfuel
consumption.Withinthisprogram,thefocusofalleffortsisonfuelconsump-
tionandthusindirectlyonreducing CO2 emissions,asdemandedbyfactors
suchasincreasing fuelpricesandincreasing emissionstandards.Thiswillre-
quireoptimizationoftheconventionaldrivetrainsaswellastheintroduction
ofalternativedrivetrainsystemssuchashybriddrives.Theworkdoneso far
hasledto fuelconsumptionandtheemissionslimitedbyregulations(NOX ,HC,
CO,particulatematter) being drasticallyreducedforallcommercialvehicles.
Recently,withmanycommercialvehicleshaving alreadyfulfilledEuro Vand
sincetheannouncementbytheEuropeanCommissionin2006 thatemission
limitswouldbemademuchstricteronceagain,theindustry’sfocushasbeenon
fulfilling theemissionlimitsoftheupcoming Euro VIlegislation.

Thegoalofaccidentreductionthusremainsambitiousandchallenging and
isthemainfocusofthesecondprogram,Safe Drive Technologies,asoutlined
inFig.1.Roadsafetyisinfluencedbynumerousfactors.Roaduserbehavior,
weather-relatedinfluences,vehicletechnology,trafficinfrastructure,andefficient
emergencyservicesallplaya role.Dueinparticularto theimprovementsof
vehiclesafetytechnology,thenumberoffatalitiesonGermanroadseachyear
hasfallencontinuouslysince1970 andreacheda historiclowof4,949 in2007.

ItisequallytrueforGermanyandthewholeofEuropethatthenumber
ofvehiclesontheroadshasapproximatelytripledandmileageshaveapproxi-
matelydoubledduring thatperiod.Thismeansthattheriskofanaccident–
theaccidentratemeasuredbythenumberofaccidentsinrelationto totalve-
hiclekilometersdriven– hasfallenbymorethan90%since1970.Thepositive

Electronic Stability Program for Trucks 173

Fig. 2. Development of the fatality rate on motorways in Western Europe and USA

results of road safety work in Germany are also reflected by the development
of the accident rate on the autobahns. Compared internationally, Germany has
some of the best statistics. The probability of a fatal accident on German auto-
bahns is now only one third as high as on other roads. The enormous road safety
progress made by commercial vehicles is impressively demonstrated by accident
statistics. Although goods transport on the roads has risen by 71% since 1992,
the number of fatal accidents involving trucks has decreased by 36% during the
same period (see Fig. 3). When these figures are seen statistically in relation to
the increased transport volumes, the accident rate has actually fallen by 63%.
Substantial road safety progress has been achieved through the deployment of
innovative active safety systems in commercial vehicles. Besides the development
of driver assistance systems, one of the measures to achieve the goal of increasing
commercial vehicle safety is the introduction of the Electronic Stability Program
(ESP) for trucks and buses. ESP is very common in passenger cars nowadays and
has proven to be an essential factor in reducing traffic accidents. For commer-
cial vehicles, electronic stability systems have been available in series production
vehicles since 2001. By modifying the European Committee (ECE) regulation
for the braking systems of heavy commercial vehicles, the European Union has
started an initiative for making ESP compulsory for nearly all trucks and buses
(except construction trucks and city buses), with a schedule starting in 2011.

A survey conducted by the Mercedes-Benz passenger car division in 2002
has shown that the evaluation of accidents with Mercedes-Benz passenger cars
clearly proves the ability of ESP to reduce accidents. After the introduction of
ESP for all Mercedes-Benz passenger cars in 1999, the number of accidents was
reduced significantly already in the years 2000 and 2001 as outlined in Fig. 4 [2].
It is expected that a similar effect on accident reduction may be achieved by the
mandatory introduction of ESP for trucks and buses.

174 U. Baake and K. Wüst

Fig. 3. Development of truck accidents with fatalities in Germany 1992 – 2006

Fig. 4. Decrease of accidents due to ESP

Electronic Stability Program for Trucks 175

2 ESP for Commercial Vehicles

2.1 System Description

ESP for trucks and buses has two basic functionalities, Electronic Stability Con-
trol (ESC) and Rollover Control (RSC). ESC works in a similar way to that in
passenger car systems. Sensors are measuring steering wheel angle, yaw velocity
and lateral acceleration and feed the values into a simple vehicle model. As soon
as this model detects a big difference between the desired and the measured re-
action of the vehicle upon the steering wheel input, either in an oversteering or
an understeering direction, braking forces are applied to individual wheels gen-
erating a moment around the vehicle’s vertical axis, which stabilizes the vehicle
movement as shown in Fig. 5.

Fig. 5. ESC as an ESP Functionality

For commercial vehicles, especially when laden, limits of adhesion are only
reached on roads with a low coefficient of friction. For a fully laden truck with
an elevated load, rollover may already occur for steady-state lateral accelerations
below 4 m/s2, which is far below the limits of adhesion of the tyres on dry road
surfaces. For trucks and buses travelling on dry road surfaces, it is therefore
more important to prevent them from reaching the rollover limit. The rollover
control limits the lateral acceleration of the vehicle to a pre-defined value. As the
rollover limit of a commercial vehicle strongly depends on the loading condition
of the vehicle, a mass detection is integrated into the rollover control, which
adapts the intervention threshold value of lateral acceleration to the vehicle
mass and additionally to the vehicle speed. When the vehicle reaches this load-
and speed-dependent maximum value of lateral acceleration, all wheels of the

176 U. Baake and K. Wüst

(a) Without Rollover Control

(b) With Rollover Control

Fig. 6. Truck without and with Rollover Control

towing vehicle and trailer are braked to reduce speed and thus prevent rollover.
Braking of both towing vehicle and trailer is necessary to maintain the stability
of the tractor/trailer combination and prevent it from the dangerous jackknifing
effect, where the trailer swerves around completely until it hits the tractor cabin.

For Daimler trucks, the system is integrated into the electronic braking system
and has been available on the market since 2001 as Telligent Stability System, in-
tegrated into a safety package together with other systems such as Lane Keeping
Assistant and Active Cruise Control (ACC).

Since 2005, these safety packages for trucks and buses also include Active
Brake Assist. With the ACC sensors, this system detects if the truck or bus is
quickly approaching a car which is driving ahead and is decelerating by exceeding
the maximum deceleration of ACC. In a first step, the system warns the driver
with an acoustic signal. If despite this warning there is no reaction by the driver,
the system activates the braking system and brakes at first with a moderate
deceleration and then with fully applied brakes until standstill. The main benefit
of this system is the avoidance of accidents, when a truck or bus approaches the
end of a traffic jam.

However, until now these systems have only been available for tractor/semi-
trailer combinations and coaches as outlined in Fig. 7. Mainly because of the
additional costs for the operator, the percentage of vehicles equipped with the
system is still low, although there is not only the advantage of reduced accidents,
but also many insurance companies are offering reductions for vehicles equipped
with safety systems.

Electronic Stability Program for Trucks 177

(a) Safety Truck

(b) Safety Coach

Fig. 7. Mercedes-Benz Actros Safety Truck and Mercedes-Benz Travego Safety Coach

2.2 System Development

Because of aforementioned reasons, the legislation committee of the European
Union has decided to make ESP systems for trucks and buses compulsory. Other
systems like the Lane Keeping Assistance and the Active Brake Assist will proba-
bly follow. The newly-defined ECE-R13 legislation [3] including mandatory ESP
systems will come into effect in 2011, starting with ESP systems for coaches
and for tractor/semitrailer combinations, where it is already available. All other
trucks and buses except vehicles with more than 3 axles and vehicles for con-
struction purposes will have to follow by 2014.

This makes it necessary for the truck and bus manufacturers and the braking
system suppliers to develop the system for a wide variety of commercial vehicles.
As the amount of vehicles which can be used for proving the system functional-
ities in field testing is limited, it is necessary to use vehicle dynamics simulation
to support the development of the system for the whole variety of commercial
vehicle parameters, such as different axle configurations, different wheelbases,
tyre variations and various loading conditions as shown in Fig. 8.

178 U. Baake and K. Wüst

(a) Field testing

(b) Simulation

Fig. 8. ESP field testing and ESP simulation

Furthermore, the fact that the system must be designed to cover the whole
range of commercial vehicles requires a flexible ESP system, which can be pa-
rameterized and which is able to detect not only the loading conditions but
also the overall, present vehicle behavior. For this purpose, parameters like the
wheelbase, the axle configuration and the steering ratio can be fed into the sys-
tem during the production process, and additionally the system is able to detect
the self-steering gradient of the vehicle and gets additional information during
driving, for example the status of lift axles.

Figure 9 shows the simulation approach deployed for ESP development. Field
testing results of few vehicle types are used to validate the basic simulation
model, which is at first parameterized according to the test vehicle. The results
of the simulation concerning the vehicle’s dynamic performance and the functions
of the ESP system both have to show a good correlation to the measurements. For
this model validation, internationally standardized driving maneuvers are used
both in simulation and field testing, for example steady-state cornering or lane
change maneuvers [4,5]. On the basis of a successful validation, the simulation

Electronic Stability Program for Trucks 179

Reference

parameters

Measured data

Simulation Simulation

validation by

comparison of

simulation and

field test results

Feedback into field testing, testing of additional variants

Simulation of

additional

maneuvers

Field testing

Validation

tests

Test evaluation

Optimization

and evaluation

of ESP

Reference

software

Simulation of

vehicle variants,

identification of

worst case variants

Fig. 9. Simulation-assisted ESP development

is then used to cover the whole range of vehicle variations (by varying vehicle
parameters inside the model) and to cover the whole range of possible driving
situations (by varying the maneuvers inside the simulation process).

2.3 Software-in-the-Loop Integration of ESP into Vehicle Models

To investigate the vehicle behavior with ESP in simulation, a code of the system
has to be integrated into the vehicle dynamics simulation tool. The Computer-
Aided Engineering (CAE) analysis division of Daimler Trucks uses Simpack
as a standard multibody simulation tool for different purposes. This software
package offers multiple possibilities for the integration of system codes into the
simulation [6].

With the aid of different sets of parameters inside the tyre model, either a
dry road surface or a low friction road can be simulated. As the tyre is the
only contact between the vehicle and the road, the modeling of the tyre is very
important for a realistic vehicle dynamics simulation. For the purpose of ESP
simulation with Simpack, Mftyre is used as a standard tool for tyre modeling
[7]. The parameters of the tyre model are gained with measurements conducted
either on tyre test stands or on tyre road testing devices as outlined in Fig. 11.

For the integration of truck ESP into vehicle simulation models, Daimler
and the system suppliers have chosen Matlab/Simulink as an exchange and
integration platform. The CAE analysis division uses the Simpack code ex-
port feature to convert the vehicle simulation model into a transferrable code,
which is combined with an S-function of the ESP code generated by the system

180 U. Baake and K. Wüst

Fig. 10. Truck simulation model

Fig. 11. Tyre test stand

Electronic Stability Program for Trucks 181

supplier. The definition and evaluation of the various driving maneuvers which
have to be investigated to prove the functionality of the ESP system (for example,
lane change maneuvers on different road surfaces or closing curve maneuvers) is
generated within Matlab/Simulink as shown in Fig. 12.

Fig. 12. Simulink simulation with exported Simpack model and ESP

3 Man-in-the-Loop Simulation: The Driving Simulator

3.1 Transfer of Vehicle Models to the Driving Simulator

The Daimler driving simulator in Berlin was introduced in 1995 and is presently
moved to Sindelfingen. As shown in Fig. 13, a complete car or a truck cabin is in-
stalled on a hexapod. The hexapod comprises 6 hydraulic cylinders which allow
rotational movements of the device around all three coordinate axles. Addition-
ally, the hexapod is fixed on a rail which can be moved in lateral direction [8].
The movements of the simulator are generated by a vehicle simulation model.
This simulator serves for investigations of the interactions between the driver
and the vehicle. It is partly used for subjective evaluations of driver assistance
systems – for example, the Brake Assist that guarantees full braking application
during emergency situations was developed on the basis of simulator investiga-
tions. Other systems which were designed with the aid of the simulator are Lane
Keeping Assistance and Active Brake Assist. The simulator is also used for the
subjective evaluation of parameter changes within the chassis layout during the
development phase of new passenger cars and commercial vehicles.

The Daimler commercial vehicles CAE analysis division has used the driving
simulator since 2006, when the real-time capabilities of the multi-body simu-
lation software Simpack allowed a whole variety of simulation models, which
are used for the chassis layout investigations, to be transferred to the driving
simulator. Since then, several driving simulator tests have been conducted with
Simpack vehicle models, which were used to define the target values for the ve-
hicle dynamics of new truck or van generations and for the subjective evaluation
of many chassis variants before field testing.

182 U. Baake and K. Wüst

(a) Driving simulator overview (b) Truck cabin

Fig. 13. Daimler driving simulator

The vehicle models used for simulation of the driving behavior have to be
detailed enough to guarantee a good representation of the vehicle dynamics
behavior. In contrary, they also have to be simple enough to guarantee the
real-time capabilities for the driving simulator tests. This goal is achieved by
reducing flexible bodies (for example, the frame rails of the truck) to simple
rotational spring-/damper-units, by reducing the number of tyre/road contacts
(twin tyres are reduced to one tyre) and by using a specially developed equation
solver with constant step size (usually 1ms). The validation of the exported real-
time multibody simulation models (see also Chapt. 2.2) is checked within a user
interface that allows quick changes of vehicle parameters and driving maneuvers
as presented in Fig. 14, before transferring the models to the simulator. Even
experienced test drivers agree that these models give a very realistic feel of the
dynamic behavior of a truck in the simulator.

Fig. 14. Transfer of vehicle models to the driving simulator

Electronic Stability Program for Trucks 183

3.2 ESP Investigations on the Driving Simulator

An initial test with ESP for trucks on the driving simulator was conducted in
November 2009. The test served as a basis for investigating if the simulator could
give additional value to the simulation-supported development of ESP for trucks.
The basic questions were, if the simulator would be able to realistically reproduce
the interventions of an ESP system for trucks, and if the simulator could be used
for optimizing the system, e.g. for defining the intervention threshold values for
different vehicles and various vehicle parameters.

As the Windows-based Matlab/Simulink software-in-the-loop environment
was not suited for the Unix operating system of the driving simulator, it was
decided to use a different approach for this first test. A Fortran code, which
simulates the basic ESP functionalities of stability control and rollover protec-
tion, was integrated into a real-time vehicle model as a user routine. Fortran was
chosen, as Simpack offers a standard user routine interface for Fortran routines.
The model was then exported into the simulator environment together with the
user routine, which also could be parameterized after the code export. With

(a) Lane Change

(b) Slalom

Fig. 15. Lane Change and Slalom maneuver on the driving simulator

184 U. Baake and K. Wüst

this approach, both vehicle parameters and ESP parameters could be varied
easily during the simulator test. For example, the threshold values for the in-
tervention of both stability control and rollover control were variable during the
test. Beside the parameters of the ESP system, variations of vehicle parameters
such as loading conditions, steering parameters and tyre characteristics were also
investigated.

Different driving situations were chosen to evaluate the ESP interventions on
the driving simulator, all based on straight-ahead driving on a highway track as
shown in Fig. 15. Pylons were used for various lane-change and slalom maneuvers
with different vehicle velocities. Similar to the validation process of the vehicle
models, these maneuvers are based on ISO standards which are applied both in
field testing and in simulation [5].

3.3 Results

The main result was to prove that the interventions of the ESP system on the
driving simulator basically produce interventions comparable to those on the real
road, and that the effects of varied vehicle parameters and loading conditions
upon the interventions of the systems could also be shown in a realistic manner.
Yet, for a complete evaluation of the ESP system on the simulator, the simple
code used for the first test is not sufficient. Especially for interventions of the
ESP system during fast lane change maneuvers, a more precise representation
of the dynamic pressure build-up of the pneumatic braking system is necessary.
Furthermore, it should be possible to compare the functionality of the ESP sys-
tem before and after the parameter learning process and also the interaction of
the ESP system with the vehicle drive train. For this, it will be necessary to
integrate the complete system functionality, which will be done by implement-
ing a C code provided by the system supplier which is compiled on the same
operating system platform as used on the driving simulator.

4 Summary, Future Work

For the development of electronic stability systems for trucks, it is useful to
integrate vehicle dynamics simulations into the development process to be able
to prove the correct system functionality for a wide variety of vehicle variants and
driving situations. For this purpose, a software-in-the-loop environment has been
established which integrates ESP software codes generated by the brake system
supplier into a vehicle simulation interface. Additionally, it was investigated if a
transfer of these simulation models and the ESP codes to the driving simulator
could give additional benefit for the ESP system development.

During a first test of a truck ESP system on the Daimler driving simulator,
it could be shown that the combination of vehicle models with a software-in-
the-loop code of the ESP system is able to realistically reproduce the stability
interventions of the system and thus can principally be used for optimizing the

Electronic Stability Program for Trucks 185

system for a wide variety of vehicles and vehicle conditions. In the next step,
a complete supplier code of the truck ESP will be integrated into the vehicle
model as a user routine in order to achieve a complete representation of the
system functionality on the driving simulator.

References

1. Baake, U.: Industrielle Nutzfahrzeugentwicklung – Die richtige Spur finden und
halten, vol. 4. GFFT Jahrestre ff en, Frankfurt (2010)

2. DaimlerChrysler, A.G.: Relevanz von ESP zur Reduzierung von Unfallzahlen.
Pressemitteilung (2002)

3. ECE Regulation: Braking (passenger cars). Regulation No. 13-H Version 11 (2009)
4. ISO Standard: Road vehicles – Heavy commercial vehicles and buses – Steady-state

circular tests. ISO 14792 (2003)
5. ISO Standard: Road vehicles – Heavy commercial vehicles and buses – Lateral tran-

sient response test methods. ISO 14793 (2003)
6. Wüst, K.: Simpack Real-time Models for HiL Testing at Daimler Trucks. In: Pro-

ceedings of the Simpack User Meeting (2007)
7. TNO Automotive: MFTYRE & MF-SWIFT 6.1.1 – Release Notes (2008),

www.tno.nl

8. Baake, U.: Industrielle Nutzfahrzeugentwicklung in globalen Märkten. Vor-
lesungsskript RWTH Aachen (2010)

www.tno.nl

Secure Beamforming for Weather Hazard

Warning Application
in Car-to-X Communication

Hagen Stübing1 and Attila Jaeger2

1 Adam Opel GmbH
Active Safety Systems

Friedrich-Lutzmann-Ring
65423 Rüsselsheim, Germany
hagen.stuebing@de.opel.com

2 Technische Universität Darmstadt
Integrated Circuits and Systems Lab

Hochschulstraße 10
64289 Darmstadt, Germany

jaeger@iss.tu-darmstadt.de

Abstract. Intelligent networking of cars and infrastructure (Car-to-X,
C2X) by means of dedicated short range communication represents one
of the most promising attempts towards enhancement of active safety
and traffic efficiency in the near future. Nevertheless, as an open and
decentralized system, Car-to-X is exposed to various attacks against se-
curity and driver’s privacy. This work presents an approach for enhancing
security and privacy on physical layer, i.e. already during sending and re-
ceiving of messages. The technique is called Secure Beamforming and is
based on the radiation patterns produced by the antenna array proposed
in [1].

In this work we evaluate the feasibility of this antenna for Weather
Hazard Warning, a C2X application which includes communication sce-
narios among cars and between cars and infrastructure. By means of a
dedicated simulator, appropriate beams are explored and beamforming
protocols for different communication scenarios are proposed.

Keywords: Car-to-X Communication, Secure Beamforming, Weather
Hazard Warning.

1 Introduction

Modern vehicles include a multitude of highly sophisticated technologies for ac-
tive safety. Driver assistance systems like A d ap tiv e C ru is e C o n tro l (ACC), Active

Braking, Night Vision or Pedestrian Recognition are only some examples which
are expected to enhance future road safety significantly. Basically, all these sys-
tems rely their decisions on information received from their local sensors. Among
others, these are Sonar, Radar, Lidar, or Camera. For detection of vehicles in

A. Biedermann and H. Gregor Molter (Eds.): Secure Embedded Systems, LNEE 78, pp. 187–206.

springerlink.com c© Springer-Verlag Berlin Heidelberg 2010

188 H. Stübing and A. Jaeger

direct proximity, P ark Assistant Systems use ultrasound sensors which possess
a very limited transmission range about 4m. For detection of more distant ve-
hicles or pedestrians in case of Active Braking, camera-based image detection is
deployed. With automotive cameras available today, a reliable detection can be
achieved up a total distance of 80m. Long-range Radar possesses very promis-
ing transmission ranges up to 200m which enables active braking even at high
speeds. Compared to Radar, a Lidar-based system can also be deployed to detect
heavy rain or snowfall, which delivers valuable input for dynamically calibrating
sensitivity of the Electronic Stability Control (ESC) or Traction Control System

(TCS).
Nevertheless, these sensors generally monitor only the near area around the

vehicle, and do not distribute the collected information to other vehicles. Thus,
sensing is restricted to line of sight, leaving out hidden and unrecognized but
possibly relevant vehicles or other obstacles. Furthermore, since Radar and Lidar
are still expensive, car manufacturers will only offer this sort of safety technology
to buyers of luxury cars in the near future.

Car-to-X Communication offers new possibilities for enhancing active safety
and traffic efficiency at a large scale. The term Car-to-X thereby refers to both,
cooperative information interchange between cars (C2C), and between cars and
infrastructure (C2I) which includes Road Side Units (RSU). Figure 1 illustrates
the extended driver horizon by means of Car-to-X, in comparison to the limited
range of local sensors. By means of this, warnings of potential risky situations
are no longer limited to local detection only. Instead, a dangerous situation is
detected only once and then forwarded via several hops, such that approaching
vehicle drivers may react in time and adapt their driving behavior accordingly.

Sonar

ultra-sound

ø"6o

Radar, Lidar

radiowaves, laser

ø"422"o

Camera

optical

ø":2o

Car-to-X

multi-hop WLAN

>> 200m

Fig. 1. Vehicle sensor range comparison

Secure Beamforming for Weather Hazard Warning Application 189

The European Federal Commission has dedicated the 5.9GHz frequency ex-
clusively for transportation-related communications that can transmit data over
distances of up to 1000m. For road safety applications a bandwidth of two
20MHz contiguous channels is required. One channel is dedicated for network
control and safety purposes and the second for safety applications only [2]. C2X
communication is based on the IEEE 802.11p standard and enables time criti-
cal safety applications at very low data transmission delay. Currently developed
chipsets allow communications between stations in ad-hoc mode without the
necessity of a permanent infrastructure connection.

Car-to-X enables various kinds of promising applications from different cate-
gories. With respect to road safety, Electronic Brake Light, Collision Avoidance

on Intersections or Weather Hazard Warning are use cases which may avoid
one of the most frequent causes of accidents, today. Traffic management systems
may react on traffic events more dynamically because mobility data of all vehi-
cles is constantly monitored by RSUs. Traffic assessment becomes more precise
and thus, alternative route management becomes more efficient.

Especially for use cases such as Weather Hazard Warnings, the driver may
greatly benefit from the exchange of this foresighted traffic information. The
message distribution thereby may include the forwarding via several intermediate
stations using Car-to-Car and Car-to-Infrastructure communication links.

Besides, enhancing safety on the road, collecting weather relevant data via
a vehicle’s local sensors and forwarding of this information via C2X communi-
cation is also of high interest for meteorological institutions. For them, vehicles
on the road may be regarded as a network of sensor nodes, providing valuable
information about the current weather or climate in a specified region. Actu-
ally, today’s vehicles are equipped with a bundle of sophisticated sensors such as
temperature sensors, light sensors, or rain sensors. By distributing sensor probes
of all vehicles, a central infrastructure facility may aggregate this data to derive
weather relevant information. Including weather information from conventional
sources like satellite observations or weather measurement stations, helps metro-
logical institutions to create a more accurate weather view, and thus, enhance
their forecasts significantly.

Despite all benefits, Car-to-X applications will contribute to active safety or
traffic efficiency they are highly vulnerable towards possible attacks. A compre-
hensive attack analysis is given by [3]. Especially applications such as warning
of aquaplaning or black ice require instant driver reaction and therefore have
to be reliable by all means. Corrupted or forged message not only lead to low
acceptance of Car-to-X technology by the customer but may also have fatal
consequences for road safety. Table 1 summarizes the main threats relevant for
Car-to-X and how they are currently addressed by running field trials and draft
standards.

Data integrity as well as sender authentication are ensured by means of a
Public Key Infrastructure (PKI). Digital signatures are used to detect message
manipulations, whereas the public keys used to create the signatures are certi-
fied by a central Certification Authority (CA). Eavesdropping of messages and

190 H. Stübing and A. Jaeger

Table 1. Possible threats and coutermeasures

Threats Countermeasures

Message Manipulation
Cryptographic, asymmetric signatures based on Elliptic
Curves Cryptography (ECC)

Message Forging
Certification of public keys and certain attributes by trusted
Public Key Infrastructure (PKI)

Message Replay Timestamps and/or sequence numbers plus geostamps

Message Falsification Mobility data verification and plausibility checking

Denial of Service Monitoring protocols, Secure Beamforming

Privacy Infringement Changing pseudonym identifiers, Secure Beamforming

replaying them at different locations may be impeded by including a secure
timestamp and geostamp into the signature. In IEEE 1609.2 [4] standard secure
message formats and cryptographic algorithms are defined. This standard is cur-
rently deployed and further investigated by large scale operational field tests like
simT D [5] and Pre-DriveC2X [6].

An attacker, which is in charge of a valid certificate, is hardly detectable,
unless he is sending non-plausible data. In [7] a component has been developed
which is capable of verifying the mobility data, i.e. position, speed, and heading
inside a message to detect, if the vehicle is following a realistic driving behavior.
If any deviating values are observed, the message is marked as insecure. These
checks may be further complemented by additional plausibility checks on ap-
plications layer. For instance, a message indicating a black ice warning, while
the vehicles local temperature sensor measures a temperature above 30 ◦C, gives
evidence on an untrustworthy message.

In this work, we present the deployment of a countermeasure, which may
be applied to cope with road side attackers, that cannot be detected by means
of cryptographic primitives, e.g., Denial of Service attacks. This technique is
called Secure Beamforming and has been introduced in [8], [9] and [1]. Secure
Beamforming refers to applying directional antennas by which one may force
transmission energy into desired directions, leaving out the road sides, where
potential attackers may be located. In [1], an appropriate simulation-based ap-
proach was presented that supports an antenna designer in specifying an antenna
aperture, which satisfies security needs. Besides enhancing security level of C2X,
this approach may also be applied for enhancing driver’s privacy.

While in [9] a comprehensive study on a large set of C2X use cases has been
carried out, in this work we will focus on a single use case and perform an in-
depth analysis, which communication scenarios may occur within this use case
and how Secure Beamforming is designed for each. As one of the most promising
use cases, we are investigating on Weather Hazard Warning. This use case will
have an effect on both, traffic efficiency and road safety, and therefore possesses

Secure Beamforming for Weather Hazard Warning Application 191

high security requirements. Furthermore, the detection, forwarding, and aggre-
gation of weather data requires various communication scenarios, including C2C
as well as C2I communication, which makes this use case a good candidate to
explore the possibilities of Secure Beamforming.

This work is structured as follows: After this introduction, Sect. 2 presents
the principles of Secure Beamforming, including the underlying antenna model
and attacker assumptions. In Sect. 3, an intensive survey over the Weather Haz-
ard Warning application is given. The Car-to-X architecture is presented, as it is
composed of the individual components and communication links between them.
In Sect. 4, a Secure Beamforming configuration is derived for each of these com-
munication links and appropriate protocols for scheduling the beams according
to the actual traffic scenarios are proposed. Section 5 summarizes the results and
gives an outlook on future work.

2 Secure Beamforming Concept

Currently running field operational tests like simT D 1 or Pre-DriveC2X2 entirely
rely either on single whip antennas or shark fin antennas. These antennas pos-
sess a rather omnidirectional radiation pattern, distributing information into all
directions uniformly. While being cost-effective and easily realizable, such an-
tennas are highly dissipative concerning channel usage. Such a characteristic is
disadvantageous not only for channel capacity reasons. As illustrated in Fig. 2(a)
an omnidirectional pattern furthermore allows an attacker to operate very far
away from the road side.

Attacker

(a) Without beamforming

Attacker

(b) With beamforming

Fig. 2. Attacker exclusion by Secure Beamforming

In [9] we actually examined that for almost all use cases, the message validity
is never omnidirectional. In fact, a message generally possesses a geographical

1 www.simtd.de
2 www.pre-drive-c2x.eu

192 H. Stübing and A. Jaeger

validity, i.e. the message is either relevant for vehicles located to the front, to
the back or to the side, in case of a RSU connection. By mapping the radiation
pattern for the message to its geographical validity, an attacker on the road
side, as shown in Fig. 2(b), will have to put much more effort into his antenna
system to still receive the message with a sufficient power level. In conjunction
with frequently changing pseudonyms this technique impedes tracking of vehicles
considerably.

Furthermore, adapting the antenna characteristic not only applies for the
sending of messages. Instead, a radiation pattern also defines which directions
are amplified and which are suppressed for the receiving case. By orienting the
receiving pattern towards relevant senders, leaving out the road sides, security
on a physical layer is enhanced. Please note that Secure Beamforming is a com-
plementary technique and as such it is embedded inseparably into an overall
security solution as depicted in previous sections.

2.1 Attacker Model

In this work a very sophisticated attacker is assumed, who is in charge of sending
plausible and correctly signed messages with valid certificates. Thus, a forged
message cannot be detected by cryptographic primitives. In this case, Secure
Beamforming represents a way to suppress the messages sent by this roadside
attacker.

Furthermore, the attacker is equipped with a common C2X communication
system, consisting of a whip antenna and the corresponding 802.11p transceiver.
Located about 400m away from the road, e.g., on a parking place or nearby
housing area, he is trying to inject forged weather messages and to eavesdrop
exchanged messages.

2.2 Antenna Model

The total field of linear antenna arrays results from the vector addition of the
fields radiated by the individual elements. To provide very directive patterns, it
is necessary that the fields from the elements of the array interfere constructively
in the desired directions and interfere destructively in the remaining space. As-
suming equidistant antenna elements and an identical feeding current, the overall
pattern is shaped by at least three parameter [10]:

1. the number of antennas N ,
2. the distance d between the individual elements,
3. the excitation phase α of the individual elements.

According to a specified configuration, a resulting radiation pattern is produced,
which is described by the pattern of an individual array element multiplied by
the Array Factor AF :

AF =
1

N
·

(

sin(N
2 Ψ)

sin(Ψ

2)

)

(1)

Secure Beamforming for Weather Hazard Warning Application 193

Within this Array Factor N denotes the number of elements in that array and Ψ
is the progressive angle of the antenna array. For a linear array, the progressive
angle is a function of the element separation d, the phase shift α, the wave
number k = 2π

☎
and elevation angle θ:

Ψ = α + kd · cos(θ) (2)

For all simulation processes a wavelength λ = 5.1688cm was selected, which
corresponds to the C2X communication frequency of 5.9GHz. By choosing the
distance d between the individual elements as multiple of the wavelength, the
array factor becomes independent from the frequency.

Our antenna model consists of two orthogonal antenna arrays which are
steered independently from each other as proposed in [9]. By means of this
antenna system a great variety of different configurations in terms of type, num-
ber, distance, and phase shift of antennas is given. In order to yield a specified
pattern characteristic, according to the array factor, only some elements of the
antenna array in Fig. 3 are biased. The transmission power for each packet may
be varied individually with a grading of 0.5 dB from 0dBm to a maximum of
21 dBm.

y1

y2

y3

y6

y7

y8

y12

y13

y14

y19

y18

y20

y17

y16

y9

y11

y15

y4

y5

x1 x2 x3 x10 x11 x12x6x4 x5 x8 x9

n
10

2

n
10

4

n
10

4

28.9 cm

22.7 cm

Fig. 3. Antenna model

194 H. Stübing and A. Jaeger

3 Weather Hazard Warning Application

One of the most promising applications for C2X communication is Weather Haz-

ard Warning. This application informs the driver about upcoming local weather
events which may influence road safety so that he may adapt his driving behavior
on time and pass hazardous driving situations unharmed.

In this section, we describe the setup for such an application. Since realization
of the Weather Hazard Warning application highly depends on available commu-
nication links and components inside the C2X architecture, we describe a most
likely C2X system architecture that enables such a Weather Hazard Warning
application. These application assumptions are used to develop feasible beam-
forming strategies in the following section.

3.1 Information Distribution Requirements

Currently, a large infrastructure of approved and well equipped weather mea-
surement stations is established. However, knowledge about road safety relevant
weather information is present in weather services like Deutscher Wetter Dienst

(DWD, a German meteorological institute) but are rarely available to drivers on
the road.

On the other side, a large number of vehicles are widely spread all over the
roads. Vehicles already carry sensors to measure weather relevant data, e.g. tem-
perature or rain fall. This data heavily extends knowledge delivered by estab-
lished weather stations, if they were available to weather services.

Distributing weather warnings to relevant vehicles was proposed in [11] and
usually realized via Traffic Message Channel (TMC). But this technology is
not yet available in large scale and moreover, information transmission is only
unidirectional. However, a Weather Hazard Warning application in C2X com-
munication requires information distribution in both directions. Accordingly,
a bidirectional communication link between vehicles on one side and weather
measurement stations as well as weather services on the other side has to be
established.

3.2 Weather C2X Architecture

Actual, there is no standardized C2X architecture available. We therefore rely
our system assumptions on architectures developed in large scale field oper-
ational tests [12], consortiums [13], and standardization committees [2]. The
architecture and how our Weather Hazard Warning is embedded is described
briefly in this section.

Basically every entity involved in C2X has to be equipped with an On Board

Unit (OBU), which consists of equipment for wireless communication (Control

Communication Unit, CCU) and a processing unit (Application Unit, AU), e.g.,
a small personal computer on which functionality for use cases is realized. This
distinction is rather logical and does not imply physical distinction. Therefore,

Secure Beamforming for Weather Hazard Warning Application 195

CCU and AU may be in just one physical device. Moreover, the separation be-
tween these components is not well-defined and may vary in different implemen-
tations. Vehicles equipped with C2X technology furthermore require a Human

Machine Interface (HMI).
Beside vehicles, also Road Side Units (RSU) are involved and distributed

along the roads. These stations are used to store and forward messages if no direct
vehicle to vehicle communication is possible. For that reason, RSUs communicate
via several communication technologies. On one hand, messages are exchanged
to vehicles via IEEE 802.11p wireless communication. On the other hand, RSUs
serve as a communication interface to wired backend network, enabling high data
transfer over large distances. This network interconnects RSUs to each other and
to local Traffic Management Centers, e.g., Hessian Traffic Center (a local road
authority in the state of Hessian, Germany). Since Traffic Management Centers
typically are already connected to infrastructure facilities, service providers, and
the internet, vehicles have also access to these via RSUs.

To realize the Weather Hazard Warning application, we introduce the Road

Weather Center (RWC), as new part of the Traffic Management Centers. The
RWC connects all parties involved in weather warnings and gathers data from lo-
cal weather services, measurement stations, and vehicles. This gathered weather
data is used to generate highly reliable weather warnings based on a more com-
prehensive view on the actual weather situation. RWC furthermore forwards
weather warnings and recorded sensor measurements from vehicles to weather
services to improve their knowledge as well.

3.3 In-Vehicle Weather Detection

Actual vehicles contain several sensors to gather weather relevant data. How-
ever, these sensor data may be complemented by observing driver’s action, e.g.,
switching on front shield wipers or rear fog light.

All this information is used to detect hazardous weather events. In our use
case we distinguish three different weather events which are detected. In Table 2
these events and associated sensors and driver actions are listed. A more detailed
overview on how sensors may be used is given in [14].

In general, a single vehicle data is not sufficient for reliable weather event
detection. Vehicle data must be weighed against each other and evaluated in
context of the current driving situation. For instance, ESC not only reacts on
slippery roads but also, and probably more often, on rapid driving through
curves. Table 3 very briefly lists proposals how to combine vehicle data to get
event indication. Thereby a focus is set to widely available vehicle data. Rarely
available sensors are intended to validate or support these data.

For all types of events an indication has to be active for a minimum amount
of time to overcome short appearance of runaway values or accidentally pushed
buttons by the driver. In case of leaving an event same criteria are applied.

196 H. Stübing and A. Jaeger

Table 2. Weather events with associated vehicle data

Weather Event Hazard Indicating Vehicle Data

Fog reduced visibility – fog lights activity

– vehicle speed

– air humidity

– Radar or Lidar used in ACC

Heavy Rain reduced visibility
and aquaplaning

– front shield wiper speed

– vehicle speed

– rain sensor

Black Ice or
Frozen Snow

slippery road – exterior temperature

– vehicle speed

– anti-lock braking system (ABS)

– ESC

Table 3. Proposals how to indicate weather events

Weather Event Vehicle Data Combination

Fog Rear fog light is active and vehicle speed is below 50 km/h.

Air humidity and radar may be used to validate fog light usage.

Heavy Rain Wiper speed is set to level two and vehicle speed is below
80 km/h

Rain sensors may deliver more authentic level of rainfall than
wiper speed.

Black Ice or
Frozen Snow

Exterior temperature is below 2 ◦C, vehicle speed is below
50 km/h, ABS is active even on low brake intensity.

Unexpected ESC activity in large curves or strait roads can be
considered in addition.

3.4 Event Notification Strategies

To communicate a weather event to other road participants, vehicles are sending
short notification messages when first detecting an event. While driving through
the hazard vehicles periodically update this notification. When leaving an event,
a final notification is sent to mark the hazardous zone. These notifications are
sent, even if the vehicle already received a notification from other road traffic
participants or the RWC. This way it confirms und updates the older notifica-
tions and a more precise and reliable database can be generated.

The driver gets warnings on hazardous weather events via the HMI. This
notifications and warnings may be visual, acoustical or haptical. Drivers should
get warnings on weather events before they reach the hazardous zone so that they
may adapt their driving behavior on time. Therefore each notification message
contains three areas:

Secure Beamforming for Weather Hazard Warning Application 197

1. H azard Zone: The zone where the hazardous weather event is located.

2. Notification Area: The area, in which the driver should be informed about
the hazardous event. This area typically is larger as the Hazard Zone.

3. Dissemination Area: The area, in which the messages must be distribued.
This area typically is larger as the Notification Area.

Displaying a warning after the driver has already reached the hazardous zone
is not reasonable, so this has to be avoided. Furthermore, a driver acting in
expected behavior should not be warned, because he does not need to adapt his
behavior. If a driver does not react, warnings become more insistent till reaching
the hazardous zone.

3.5 Involved Message Types

Due to different communication scenarios, there are two different message types
involved in this application. These are respectively, the Decentralized Environ-

mental Notification (DEN) and the Probe Vehicle Data (PVD). The previous
mentioned CAMs are not involved in the Weather Hazard Warning.

DENs are used as explicit notification of a dangerous weather event in the near
environment. It may be generated either from a RWC or directly from vehicles
driving nearby. A DEN mainly consists of event type, location, detection time
and message validity time. Thereby, the location usually is encoded as a rectangle
surrounding the hazardous area. The type gives evidence on the weather hazard.

PVD consist of collected sets of probe values with timestamp and geographical
position. These sets are gathered while the vehicle is driving along the road and
accumulated in order to build up a weather profile for the past region. The
weather profile contains sensor measurements like temperature, air humidity
and barometric pressure. This enables conclusions on the weather situation.

In contrast to DENs, PVD are rarely processed data and need to be inter-
preted. Due to rather low processing power in vehicles, this extensive data eval-
uation is not performed on the vehicles, but on infrastructure side. Hence PVD
are not transmitted to other vehicles but are forwarded to RWC.

3.6 Data Aggregation and Fusion

Since vehicles receive DENs from multiple sources, comparing and aggregation
of this data has to be performed. Furthermore received messages have to be
compared with own vehicle sensor data.

However, since a RWC gathers also PVD, measurements of weather stations,
and information from weather services, data fusion has to be done with all this
different kind of information. Weather stations deliver highly precise measure-
ments from various sensors not available in vehicles, e.g. dew-point temperature,
air temperature, street and in earth temperature, sight distance, rainfall inten-
sity, and remaining salt ratio on the street. So vehicle generated warnings can
be confirmed and improved for areas with these measurement stations. Weather

198 H. Stübing and A. Jaeger

station measurements are valid for local area only. RWC combine these mea-
surements with weather profiles to extract an overall weather view for the entire
region.

Furthermore weather stations have sensors for wind speed and direction. So
the RWC is able to generate warnings for strong crosswinds, which are not
detectable by means of local vehicle sensors.

3.7 Communication Scenarios

As described above, in Weather Hazard Warning application, different message
types are transmitted between vehicles and between vehicles and infrastructure.
This results in different communication scenarios as described in the following.

Weather Hazard Notification scenario includes sending of DENs, which are
sent from vehicles to other vehicles and also to RWCs via RSUs, as indicated in
Fig. 4.

The second scenario refers to Weather Hazard Forwarding and uses Store &

Forward mechanism according to [13] to distribute warnings over larger dis-
tances. In Fig. 4 forwarding over three hops and different lanes is depicted. While
forwarding, vehicles only send messages into opposite direction of recieving, i.e.,
away from the Hazard Zone.

The last scenario is called Probe Data Distribution. This is transmission of
PVDs from vehicles to the RWC via RSUs. It has to mentioned, that PVDs are
large messages, therefore the relative position between vehicle and RSU will vary
considerable during transmission. The exchange of large PVD messages between
vehicles is as afore mentioned not intended.

RSU

RSU

RSU

RWC

Traffic Management Center Weather Service(s)

Weather

Measurement

Station

c
a

b

b

b

a

Weather

Hazard Event

a

b

c

Weather Hazard Notification

Weather Hazard Forwarding

Probe Data Distribution

Fig. 4. Overview of Weather Hazard Warning communication scenarios

Secure Beamforming for Weather Hazard Warning Application 199

4 Simulation

In this section, we will derive an appropriate pattern steering of our antenna
model for each of the communication types occurring inside the weather warning
application. To apply the approach of beamforming we developed a simulator
[1], which works on top of Matlab, a well-known simulation environment in
the automotive domain. Many built-in routines for mathematical calculations in
Matlab were used to yield an efficient calculation of the antenna field.

4.1 Simulation Objectives

From the previous description of Weather Hazard Warning applications, we may
recall three basic communication scenarios. These are respectively: Weather Haz-

ard Notification, Weather Hazard Forwarding, and Probe Data Distribution. Be-
fore starting the simulation process the required radiation patterns have to be
defined for each of the three communication scenarios. In the following we will
do this by means of argumentative reasoning.

Before starting the simulation process the required radiation patterns have to
be defined for each of the three communication scenarios. In the following we
will do this by means of argumentative reasoning.

If a vehicle detects a whether hazard such as black ice, heavy rain or fog by
its local sensors it instantly distributes a corresponding warning message to all
surrounding vehicles. By nature, weather hazards are not limited to the vehicles
positions only, but rather have an effect on the entire area around the vehi-
cle. Consequently, these messages are relevant for all vehicles in communication
range. An a priori dissemination direction is not anticipated for the Weather Haz-

ard Notification communication scenario. Nevertheless, a beamforming adaption
according to the position of vehicles in communication range is intended.

Via Store & Forward techniques according to [13] hazard warning messages
are forwarded over longer distances to warn approaching traffic in time. For
Weather Hazard Forwarding the geographical validity is similar to the previ-
ous communication scenario. Besides adapting the field to surrounding vehicles,
further refinements may be applied according to the intended dissemination di-
rection of the message. Assuming that messages sent by the originator have also
been received by all surrounding vehicles, the next forwarder may adapt his
radiation pattern in a way that already notified vehicles left out.

The Probe Data Distribution refers to the use case of a Local RSU Connection,
and therefore possesses similar requirements concerning the pattern steering as
described in [9]. The exchanged data does not only include probe of all sensors,
relevant for weather identification but further includes related information for
other applications, such as congestion warning. This requires the exchange of
large sets of data when passing by a RSU. In order to support the secure trans-
mission of these packets, a mutual beamforming of both, sender and receiver is
anticipated.

200 H. Stübing and A. Jaeger

In the following section, an appropriate beamforming for each communica-
tion scenario is determined. The related antenna configurations are stated, and
beamforming protocols for scheduling of the different beams are defined.

4.2 Secure Beamforming Design Methodology

The deployed design methodology refers to the simulation-based approach pro-
posed in [9]. Accordingly, the designer determines the respective antenna config-
uration via graphical comparison of the required pattern with achieved radiation
pattern produced by the beamforming simulator. In the following the steps as
defined in [1] are performed:

1. Defining the attacker model: In the scope of this work we limit our
analysis to static attackers located on the roadside as described in Sect. 2.1.

2. Selecting the scenario: The scenarios are chosen accordingly to Sect. 3.7,
reflecting the most common communication scenarios for Weather Hazard
Warning application:
(a) Weather Hazard Notification,
(b) Weather Hazard Forwarding and
(c) Probe Data Distibution.

3. Selecting the traffic and road situation: In this work, beamforming for
weather applications is investigated with respect to geometry of motorway
and rural roads.

4. Configuring the antenna array: Compared to [9], in this work the design
space exploration is limited to configurations achievable with the antenna
model stated in Sect. 2.2.

5. Evaluating the generated patterns: Section 4.1 gives evidence on the
patterns, required for each communication scenario. To find a matching pat-
tern, the system designer explores all achievable patterns by varying the
different configurations for the antenna model stated in Fig. 3. In case of
conformance, the corresponding configuration is recorded along with the re-
spective communication scenario, as defined during step 2.

Please note that this design flow supports the designer in defining which antennas
are biased within the antenna model. Hence, the phase shift inside the feeding
signal is adjusted according to the relative position of the receiver station and
may be determined analytically.

4.3 Simulation Results

Figure 5 summarizes the set of different beams, feasible for the Weather Hazard
Warning application. In Fig. 6 the corresponding configurations of our antenna
model are stated. For each configuration only a specified subset of antenna ele-
ments is biased.

Apparently, the beams produced by the antenna model fulfill the requirements
stated in the previous Sect.4.1. According to the position of vehicles in reception
range the main beam is steered into the respective directions.

Secure Beamforming for Weather Hazard Warning Application 201

Pattern Fig. 5(a) restricts message dissemination and reception to regions
located along the same lane as the host vehicle. By translating the driving angle
into a related phase shift of the feeding signal, the pattern is oriented into driving
direction. That way, high directivity is ensured even when driving curves as
depicted in Fig. 5(b).

Biasing antenna elements y1-y16 and applying a phase shift of 207◦ produces
a very narrow cone towards the back of the vehicle (Fig. 5(c)). In comparison, a
broadside pattern is chosen to sent messages to all vehicles driving to the front
of our host vehicle (Fig. 5(d)). The Road Restricted Pattern in (Fig. 5(e)) refers
to the omnidirectional case, where all vehicles on the road are addressed. For
unicast messages to RSUs a very directive pattern is produced and steered into
the respective direction (Fig. 5(f)). Please note that the presented patterns may
be used for sending or receiving equivalently.

Generally, it is recommended for vehicle to select an appropriate beamforming
in a way that minimum area is covered and in contrary no safety relevant message
gets lost. In the following sections a simple beamforming protocol is proposed,
dealing with that issue.

4.4 Beamforming Protocols for Wheather Hazard Warning

Selecting and steering the different beams is a task performed on lower abstrac-
tion layers of the ITS reference model [2]. In Fig. 7 and Fig. 8 the cross-layer
protocol between application and MAC layer is stated.

If a weather hazard message is handed over for sending, a beamforming com-
ponent on MAC layer analyses the message header to determine the communica-
tion scenario according to the previous section. Car-to-X architectures like [12]
generally foresee neighborhood tables, which include the frequently updated mo-
bility data of all vehicles in communication range. We specify a relevance filter

to extract those vehicles from the neighborhood table, which are located inside
the intended message dissemination area. For the Weather Hazard Notification

scenario the dissemination area is considered omnidirectional, which includes all
stations inside the neighborhood table. In case of Weather Hazard Forwarding

scenario, the relevance filter is set such that all stations are extracted which are
located inside the message dissemination direction. Please note that the dissem-
ination direction is derived from the dissemination area, specified inside the sent
message as described in Sect. 3.

As the next step, an appropriate beam pattern is selected from the set of
feasible beams stated in Fig. 5. By adjusting the power level of the feeding
signal, the communication range is scaled to the most distant vehicle.

Probe Vehicle Data is sent every time the vehicle passes by a Road Side Unit.
For that purpose, the position-based pattern (Fig. 5(f)) is deployed to produce a
very narrow beam towards the position of the RSU. To steer that beam according
to the dynamic driving behavior of the vehicle, the relative geometric angle
between both stations is calculated and transferred to an electrical phase shift
of the feeding signal. Furthermore, mutual beamforming between both stations
requires a handshake protocol at start-up.

202 H. Stübing and A. Jaeger

(a) Lane Restricted Pattern (b) Curve Restricted Pattern

(c) Endfire Pattern (d) Broadside Pattern

(e) Road Restricted Pattern (f) Position-Based Pattern

Fig. 5. Secure Beamforming patterns for Hazard Weather application

Secure Beamforming for Weather Hazard Warning Application 203

y1

y2

y3

y6

y7

y8

y12

y13

y14

y19

y18

y20

y17

y16

y9

y11

y15

y4

y5

x1 x2 x3 x10 x11 x12x6x4 x5 x8 x9

n
10

2

n
10

4

n
10

4

28.9 cm

22.7 cm

Array N d α

X 12 4

10
λ 0

(a) Lane Restricted Pattern

y1

y2

y3

y6

y7

y8

y12

y13

y14

y19

y18

y20

y17

y16

y9

y11

y15

y4

y5

x1 x2 x3 x10 x11 x12x6x4 x5 x8 x9

n
10

2

n
10

4

n
10

4

28.9 cm

22.7 cm

Array N d α

Y 15 4

10
λ 207

(b) Endfire Pattern

y1

y2

y3

y6

y7

y8

y12

y13

y14

y19

y18

y20

y17

y16

y9

y11

y15

y4

y5

x1 x2 x3 x10 x11 x12x6x4 x5 x8 x9

n
10

2

n
10

4

n
10

4

28.9 cm

22.7 cm

Array N d α

X 9 4

10
λ Linear

(c) Position Based Pattern

y1

y2

y3

y6

y7

y8

y12

y13

y14

y19

y18

y20

y17

y16

y9

y11

y15

y4

y5

x1 x2 x3 x10 x11 x12x6x4 x5 x8 x9

n
10

2

n
10

4

n
10

4

28.9 cm

22.7 cm

Array N d α

Y 10 2

10
λ 60

(d) Broadside Pattern

Fig. 6. Antenna array configurations

204 H. Stübing and A. Jaeger

evaluate

message header

Local Sensor Detection

apply relevance filter to

neighbourhood table

select beam pattern

scale field to most distant vehicle

Communication Scenario:

Weather Hazard Notification

relevance filter = all vehicles in

communication range

Communication Scenario:

Whether Hazard Forwarding

relevance filter = all stations in

dissemination direction

Forwarding

sent C2X message

message

to be sent

Fig. 7. Beamforming protocol for Weather Hazard Warning and Weather Hazard For-
warding

calculate distance and relative angle to RSU

sent C2X message

apply phase shift to signal

handshake protocol for

mutual beamforming with RSU

Communication Scenario:

Probe Data Distribution

relevance filter = RSU in reception range

Probe Vehicle Data

to be sent

apply relevance filter to

neighbourhood table

choose Position Based Pattern

RSU

RSU

RSU

Fig. 8. Mutual Beamforming protocol for Probe Vehicle Dissemination

Secure Beamforming for Weather Hazard Warning Application 205

The proposed secure beamforming protocols serve the purpose of enhancing
the driver’s privacy by minimizing the dissemination area of messages. To en-
hance security, similar protocols have to be found for the receiving case. Whereas
the beamforming for sending is bounded to a single message, the pattern for re-
ceiving has a large impact on all kinds of messages received. A dynamic arbitra-
tion of the channel, depending on the requirements of the different applications
is subject of future work. In this work we propose to use road-restricted pattern
according to Fig. 5(e) for Weather Hazard Warning.

5 Summary and Conclusion

In this work, the feasibility of secure beamforming for Car-to-X has been studied
by means of a representative use case. We have decided to perform our analysis
on Weather Hazard Warning, because it is considered as one of the most sensitive
use cases towards possible attacks. Instant driver reaction is required in case of
black ice warning and therefore underlies high security needs.

A detailed survey of the Weather Hazard Warning has been given, starting
from the event detection, message generation to the final distribution and for-
warding via several hops. The description of this use cases refers to the full
specification of Road Weather Warning and Identification of Road Weather ac-
cording to [15].

We identified three different communication scenarios within this Weather
Hazard Warning use case: Weather Hazard Notification, Weather Hazard For-

warding and Probe Data Distribution. For those scenarios the requirements re-
garding beamforming are postulated. From that we concluded that geographical
validity of messages is hardly ever omnidirectional, but may be restricted to the
regions where intended receivers are located.

In order to find a related beamforming which matches the geographical va-
lidity for the different scenarios, a simulation-based approach has been applied.
Several traffic situations with varying vehicles densities and road types have been
modeled by means of a dedicated simulator. By switching different configurations
of the anticipated antenna model, the appropriateness of the resulting pattern
has been evaluated. In fact, a large set of the available patterns with this antenna
model are feasible for the examined Weather Hazard Warning application. Espe-
cially for a rear-oriented as well as forward-oriented dissipation of messages the
benefits of beamforming become evident. The antenna may produce a radiation
pattern, which covers only the same road in both directions, limiting the area
from where an attacker may operate. In order to exchange larger sets of PVD,
a mutual beamforming of vehicle and RSU has been proposed.

The scheduling of different beams is a non-trivial task, as it is highly de-
pendent on a precise traffic assessment and correct decisions, which vehicles
are relevant as receivers. We presented two beamforming protocols by which
the relevant recipients are determined with respect to the intended dissipation
direction.

206 H. Stübing and A. Jaeger

In our future work, we will adapt and further refine our beamforming con-
cepts by means of real-world measurements obtained from field operational test
simTD. Especially the interoperability of beamforming protocols from different
and concurrently running applications represents an important perquisite for
successful deployment of this novel security technique.

References

1. Stuebing, H., Shoufan, A., Huss, S.A.: Enhancing Security and Privacy in C2X
Communication by Radiation Pattern Control. In: 3rd IEEE International Sym-
posium on Wireless Vehicular Communications (WIVEC 2010), Taipei (2010)

2. Standard: ETSI: Intelligent Transport Systems (ITS); Communications; Architec-
ture. ETSI Draft TS 102 665 (2009)

3. Buttyan, L., Hubaux, J.P.: Security and Cooperation in Wireless Networks.
Cambridge Univ. Press, Cambridge (2007)

4. Standard: IEEE Vehicular Technology Society: IEEE Trial-Use Standard for Wire-
less Access in Vehicular Environments – Security Services for Applications and
Management Messages. 1609.2T M -2006 (2006)

5. Bißmeyer, N., Stuebing, H., Mattheß, M., Stotz, J.P., Schütte, J., Gerlach, M.,
Friederici, F.: SimT D Security Architecture: Deployment of a Security and Pri-
vacy Architecture in Field Operational Tests. In: 7th Embedded Security in Cars
Conference (ESCAR), Düsseldorf (2009)

6. Gerlach, M., Friederici, F., Held, A., Friesen, V., Festag, A., Hayashi, M., Stübing,
H., Weyl, B.: Deliverable D1.3 – Security Architecture. In: PRE-DRIVE C2X
(2009)

7. Stuebing, H., Jaeger, A., Bißmeyer, N., Schmidt, C., Huss, S.A.: Verifying Mobil-
ity Data under Privacy Considerations in Car-to-X Communication. In: 17th ITS
World Congress, Busan 2010 (2010)

8. Stuebing, H., Shoufan, A., Huss, S.A.: Secure C2X Communication based on Adap-
tive Beamforming. In: 14th VDI International Conference on Electronic for Vehi-
cles, Baden-Baden (2009)

9. Stuebing, H., Shoufan, A., Huss, S.A.: A Demonstrator for Beamforming in C2X
Communication. In: 3rd IEEE International Symposium on Wireless Vehicular
Communications (WIVEC 2010), Taipei (2010)

10. Balanis, C.A.: Antenna Theory – Analysis and Design, 3rd edn., ch. 6, pp. 283–333.
John Wiley & Sons, Chichester (2005)

11. Patent: US 2002/0 067 289 A1: United States of America (2002)
12. Stuebing, H., Bechler, M., Heussner, D., May, T., Radusch, I., Rechner, H., Vogel,

P.: SimT D : A Car-to-X System Architecture For Field Operational Tests. IEEE
Communications Magazine (2010)

13. CAR 2 CAR Communication Consortium: C2C-CC Manifesto - Overview of the
C2C-CC System (2007), http://www.car-to-car.org/index.php?id=31

14. Petty, K.R., Mahoney III, W.P.: Enhancing road weather information through
vehicle infrastructure integration. Transportation Research Record: Journal of the
Transportation Research Board 2015, 132–140 (2007)

15. Karl, N., et al.: Deliverable D11.1 – Description of the C2X Functions. Sichere
Inteligente Mobilität –Testfeld Deutschland (2009)

http://www.car-to-car.org/index.php?id=31

Author Index

A r u l, T olga 85

Baake, Uwe 171
Biedermann, Alexander 151

Damm, Markus 1

Grimm, Christoph 1

Haase, Jan 1

Jaeger, Attila 187

Klaus, Stephan 25

Laue, Ralf 129

Malipatlolla, Sunil 63

Schindler, Werner 43

Schmid, Moritz 105

Seffrin, André 151

Shoufan, Abdulhadi 85

Stöttinger, Marc 63

Stübing, Hagen 187

Teich, Jürgen 105

Tian, Qizhi 63

Wüst, Klaus 171

Ziener, Daniel 105

	Towards Co-design of HW/SW/Analog Systems
	Introduction
	Related Work
	Kahn Process Networks, Timed Data Flow, and TLM

	Executable Specification
	Combination of KPN and TDF
	Modeling and Simulation of KPN and TDF with SystemC

	Architecture Exploration
	Architecture Mapping to Analog and HW/SW Processors
	Estimation of Quantitative Properties by System Simulation
	Coupling of TDF and TLM Models of Computation

	Example
	Conclusion
	References

	A Flexible Hierarchical Approach for Controlling the System-Level Design Complexity of Embedded Systems
	Introduction
	Related Work
	Computational Model
	Hierarchical Specification Method
	Dynamic System Behavior
	Task Behavior

	Generating Current Model Views
	Results
	Conclusion
	References

	Side-Channel Analysis – Mathematics Has Met Engineering
	Introduction
	My Personal Relation to Side-Channel Analysis
	Timing Attack from CARDIS 1998
	The Original Attack DKL+98
	A Closer Look on Montgomery's Multiplication Algorithm
	The Optimised CARDIS Timing Attack
	Stochastic Properties of Montgomery's Multiplication Algorithm: Further Consequences

	A New Method in Power Analysis
	The Stochastic Approach
	The Stochastic Approach Supports Design

	Conclusion
	References

	Survey of Methods to Improve Side-Channel Resistance on Partial Reconfigurable Platforms
	Introduction
	Reconfigurable Hardware
	FPGA Platform Technology
	Terminology
	GeneralWorkflow for Partial Reconfiguration
	Workflow for PR in Xilinx FPGAs

	Side-Channel Attacks
	Countermeasures against Power Attacks
	Masking
	Hiding

	Reconfigurable Technology-Based Countermeasure
	Mutating the Data Path

	Summary and Conclusion
	References

	Multicast Rekeying: Performance Evaluation
	Introduction
	Rekeying Benchmark Design Concept
	Benchmark Abstraction Model
	Benchmark Data Flow

	Rekeying Benchmark as a Simulation Environment
	Cost Metrics and Group Parameters
	Evaluation Criteria and Simulation Modes

	Rekeying Benchmark Design
	Request Generator
	Algorithm Manager
	Performance Evaluator

	Case Study
	Conclusion
	References

	Robustness Analysis of Watermark Verification Techniques for FPGA Netlist Cores
	Introduction
	Related Work
	Theoretical Watermark Model for Robustness Analysis against Attacks
	Definitions
	Threat Model

	Watermark Verification Strategies for Embedded FPGAs
	Watermark Verification Using the FPGA Bitfile
	Lookup Table Content Extraction
	Watermarks in Functional LUTs for Netlist Cores

	Power Watermarking
	Conclusions
	References

	Efficient and Flexible Co-processor for Server-Based Public Key Cryptography Applications
	Introduction
	Related Work
	Cryptographic Aspects
	Abstractions Levels for Public Key Cryptography
	Parallelization in Public Key Cryptography

	Co-processor Architecture
	Design Consideration
	Resulting Architecture

	Prototype Implementation
	Supported Functionality
	Implementation Overview
	Modular Multiplication

	Results
	Conclusion
	References

	Cellular-Array Implementations of Bio-inspired Self-healing Systems: State of the Art and Future Perspectives
	Introduction
	Classification of Bio-inspired and Self-healing Systems
	Analogies between Biology and Hardware Systems
	Error Detection and Correction
	Architectures for Redundant, Cellular Arrays
	MUXTREE Architecture
	Architecture due to Szasz et al.
	Architecture due to Lala et al.
	Architecture due to Greensted et al.

	Cell Design
	Embryonic Cell Design
	Implementation of Functionality
	Cell Configuration

	Technological Requirements for Self-healing Structures
	Design Methodologies for Cellular Arrays
	Measuring the Quality of Self-healing Cellular Arrays
	Design and Programming Paradigms
	Cell Granularity
	Evaluation of the Analogy

	Conclusion and Future Outlook
	References

	Combined Man-in-the-Loop and Software-in-the-Loop Simulation Electronic Stability Program for Trucks on the Daimler Driving Simulator
	Introduction
	ESP for Commercial Vehicles
	System Description
	System Development
	Software-in-the-Loop Integration of ESP into Vehicle Models

	Man-in-the-Loop Simulation: The Driving Simulator
	Transfer of Vehicle Models to the Driving Simulator
	ESP Investigations on the Driving Simulator
	Results

	Summary, Future Work
	References

	Secure Beamforming for Weather Hazard Warning Application in Car-to-X Communication
	Introduction
	Secure Beamforming Concept
	Attacker Model
	Antenna Model

	Weather Hazard Warning Application
	Information Distribution Requirements
	Weather C2X Architecture
	In-Vehicle Weather Detection
	Event Notification Strategies
	Involved Message Types
	Data Aggregation and Fusion
	Communication Scenarios

	Simulation
	Simulation Objectives
	Secure Beamforming Design Methodology
	Simulation Results
	Beamforming Protocols for Wheather Hazard Warning

	Summary and Conclusion
	References

	Cover
	Front Matter
	Towards Co-design of HW/SW/Analog Systems
	Introduction
	Related Work
	Kahn Process Networks, Timed Data Flow, and TLM

	Executable Specification
	Combination of KPN and TDF
	Modeling and Simulation of KPN and TDF with SystemC

	Architecture Exploration
	Architecture Mapping to Analog and HW/SW Processors
	Estimation of Quantitative Properties by System Simulation
	Coupling of TDF and TLM Models of Computation

	Example
	Conclusion
	References

	A Flexible Hierarchical Approach for Controlling the System-Level Design Complexity of Embedded Systems
	Introduction
	Related Work
	Computational Model
	Hierarchical Specification Method
	Dynamic System Behavior
	Task Behavior

	Generating Current Model Views
	Results
	Conclusion
	References

	Side-Channel Analysis – Mathematics Has Met Engineering
	Introduction
	My Personal Relation to Side-Channel Analysis
	Timing Attack from CARDIS 1998
	The Original Attack DKL+98
	A Closer Look on Montgomery's Multiplication Algorithm
	The Optimised CARDIS Timing Attack
	Stochastic Properties of Montgomery's Multiplication Algorithm: Further Consequences

	A New Method in Power Analysis
	The Stochastic Approach
	The Stochastic Approach Supports Design

	References
	Conclusion

	Survey of Methods to Improve Side-Channel Resistance on Partial Reconfigurable Platforms
	Introduction
	Reconfigurable Hardware
	FPGA Platform Technology
	Terminology
	GeneralWorkflow for Partial Reconfiguration
	Workflow for PR in Xilinx FPGAs

	Side-Channel Attacks
	Countermeasures against Power Attacks
	Masking
	Hiding

	Reconfigurable Technology-Based Countermeasure
	Mutating the Data Path

	References
	Summary and Conclusion

	Multicast Rekeying: Performance Evaluation
	Introduction
	Rekeying Benchmark Design Concept
	Benchmark Abstraction Model
	Benchmark Data Flow

	Rekeying Benchmark as a Simulation Environment
	Cost Metrics and Group Parameters
	Evaluation Criteria and Simulation Modes

	Rekeying Benchmark Design
	Request Generator
	Algorithm Manager
	Performance Evaluator

	Case Study
	References
	Conclusion

	Robustness Analysis of Watermark Verification Techniques for FPGA Netlist Cores
	Introduction
	Related Work
	Theoretical Watermark Model for Robustness Analysis against Attacks
	Definitions
	Threat Model

	Watermark Verification Strategies for Embedded FPGAs
	Watermark Verification Using the FPGA Bitfile
	Lookup Table Content Extraction
	Watermarks in Functional LUTs for Netlist Cores

	Power Watermarking
	Conclusions
	References

	Efficient and Flexible Co-processor for Server-Based Public Key Cryptography Applications
	Introduction
	Related Work
	Cryptographic Aspects
	Abstractions Levels for Public Key Cryptography
	Parallelization in Public Key Cryptography

	Co-processor Architecture
	Design Consideration
	Resulting Architecture

	Prototype Implementation
	Supported Functionality
	Implementation Overview
	Modular Multiplication

	Results
	References
	Conclusion

	Cellular-Array Implementations of Bio-inspired Self-healing Systems: State of the Art and Future Perspectives
	Introduction
	Classification of Bio-inspired and Self-healing Systems
	Analogies between Biology and Hardware Systems
	Error Detection and Correction
	Architectures for Redundant, Cellular Arrays
	MUXTREE Architecture
	Architecture due to Szasz et al.
	Architecture due to Lala et al.
	Architecture due to Greensted et al.

	Cell Design
	Embryonic Cell Design
	Implementation of Functionality
	Cell Configuration

	Technological Requirements for Self-healing Structures
	Design Methodologies for Cellular Arrays
	Measuring the Quality of Self-healing Cellular Arrays
	Design and Programming Paradigms
	Evaluation of the Analogy
	Cell Granularity

	Conclusion and Future Outlook
	References

	Combined Man-in-the-Loop and Software-in-the-Loop Simulation Electronic Stability Program for Trucks on the Daimler Driving Simulator
	Introduction
	ESP for Commercial Vehicles
	System Description
	System Development
	Software-in-the-Loop Integration of ESP into Vehicle Models

	Man-in-the-Loop Simulation: The Driving Simulator
	Transfer of Vehicle Models to the Driving Simulator
	ESP Investigations on the Driving Simulator

	Summary, Future Work
	Results

	References

	Secure Beamforming for Weather Hazard Warning Application in Car-to-X Communication
	Introduction
	Secure Beamforming Concept
	Attacker Model
	Antenna Model

	Weather Hazard Warning Application
	Weather C2X Architecture
	Information Distribution Requirements
	In-Vehicle Weather Detection
	Event Notification Strategies
	Involved Message Types
	Data Aggregation and Fusion
	Communication Scenarios

	Simulation
	Simulation Objectives
	Secure Beamforming Design Methodology
	Simulation Results
	Beamforming Protocols for Wheather Hazard Warning

	Summary and Conclusion
	References

	Back Matter

