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Preface 

It is a great pleasure to present the proceedings of the 1
st
 International Workshop 

on Network-Embedded Management and Applications, NEMA.  NEMA was held on 

October 28, 2010, in Niagara Falls, Canada, in conjunction with the 6
th

 International 

Conference on Network and Service Management (CNSM), the former Manweek.  It 

was technically co-sponsored by the IEEE Communications Society and by IFIP. The 

goal of NEMA was to bring together researchers and scientists from industry and 

academia to share views and ideas and present their results regarding management 

(and other) applications that are embedded inside the network, as opposed to merely 

attached to a network.  It is the first workshop dedicated to this particular topic.  The 

also future editions will be announced.  

The motivation behind NEMA is the general trend of modern network devices to 

become increasingly “intelligent” and programmable. Examples range from router 

scripting environments to fully programmable server blades.  As a result, networked 

applications are no longer constrained just to servers that are interconnected via a 

network, but can migrate into and become embedded within the network itself.  This 

promises to accelerate the current trend towards systems that are increasingly 

autonomous and to a certain degree self-managing.  There are several drivers behind 

this trend: Equipment vendors continue to add value to the network to counter 

commoditization pressures.  Network and service providers desire to adapt and 

optimize networks ever more closely to their specific environment.  The emergence of 

cloud in the data center context has provided powerful evidence how programmable 

networking infrastructure which facilitates automation of management tasks can lead 

to entire new business models.  In addition, there is growing recognition of the 

importance to make network operation and administration as easy as possible to 

contain operational expenses, pushing functions into the network that used to be 

performed outside, and to be able cope with control cycles that need to keep getting 

shorter from the time that observations are made to the time action occurs.   

As network devices are being increasingly opened up to in a way that allows them 

to be programmed, the network itself is becoming a platform for a whole new 

ecosystem of network-embedded applications serving management and other 

purposes.  The next frontier lies in applications that go beyond traditional 

management and control functions and that are becoming increasingly decentralized, 

not constrained in scope to individual systems. Examples include decentralized 

monitoring, gossip-based configuration, network event correlation inside the network 

across multiple systems, overlay control protocols, and network-aware multi-media 

applications.  At the same time, another trend looks at leveraging increased 

programmability of networks, specifically programmability of data and control plane, 

to add more networking intelligence also outside, not inside the network.  This is an 

exciting time for both researchers and practitioners, as these trends pave the way for 

another wave of exciting new opportunities for innovation in networking.  

workshop’s Web site can be accessed at http://nema.networkembedded.org/, where 

http://nema.networkembedded.org


The six papers that were selected from the submissions to NEMA represent a wide 

cross section of varying interpretations of this theme and are divided into two parts.  

Part One covers enablers for network-embedded management applications – the 

platforms, frameworks, development environments which facilitate the development 

of network-embedded management and applications.  Starting with the general topic 

of how to instrument systems for management purposes and transition from legacy 

command-driven to model-driven architectures, it proceeds with a set of papers that 

introduce specific examples of hardware- and software based programmable 

platforms, namely a programmable low-power hardware platforms, as well as an 

application framework for programmable network control that allows application 

developers to create complex and application-specific network services.  Part Two 

covers network-embedded applications that might leverage and benefit from such 

enabling platforms, ranging from the determination of where to optimally place 

management control functions inside a network, then discussing how multi-core 

hardware processors can be leveraged for traffic filtering applications, finally 

concluding with an application of delay-tolerant networks in the context of the One 

Laptop Per Child Program.   

We hope that you will enjoy these proceedings and find the presented ideas 

stimulating and thought-provoking.  We would like to thank the authors of the papers 

without whom the program would not have been possible, the members of the NEMA 

Technical Program Committees who provided high-quality reviews that enabled us to 

make the final paper selection from the submissions that were received, and the 

organizers of CNSM who were hosting NEMA and allowed us to use their conference 

facilities.  In particular, we would like to thank the team at Springer, first and 

foremost Brett Kurzman, without whom these proceedings would not have been 

possible and who in many ways got the ball rolling in the first place.  

 

August 2010 Alexander Clemm and Ralf Wolter 
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Chapter 1 

Challenges and Experiences in Transitioning 

Management Instrumentation from Command-Oriented 

to Model-Driven 

Sean McGuiness, Jung Tjong, Prakash Bettadapur  

 
Cisco Systems Inc,  

170 West Tasman Drive,  
San Jose, CA 95134-1706, USA 

{smcguine, jtjong, pbettada}@cisco.com 

Abstract.  The popularity of model-driven development has grown 
significantly in recent years pushing its rapid adoption in the 
management instrumentation space. While standards and tooling have 
been created for virgin management instrumentation applications, little 
has been done to address the challenges of transitioning existing 
applications into the model-driven arena.   With management interfaces 
constructed with divergent stovepipe implementations to meet their 
differing requirements and data characteristics, moving the entire 
system to a model-driven environment is an expensive and impractical 
proposition. Discussed are the design challenges and implementation 
experiences encountered during the successful transition of a legacy 
management instrumentation system to a model-driven system, 
including major design choices and the rationale behind them. 

oriented, design, development, CLI, SNMP, MIB, legacy, 
transition 

1   Introduction 

around command-oriented interfaces.  As Model-Driven Engineering (MDE) 
has gained popularity in the management instrumentation community, 
designers are looking to transition existing command-oriented management 

where targeted commands have been constructed to directly manipulate or 

1

instrumentation applications to MDE-based designs.  Transitioning systems 

Keywords: Management, instrumentation, modeling, command-
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obtain hard-coded reports of configuration and operational data from specific 
instrumented features is a challenging proposition. While seemingly model-
friendly data-oriented interfaces such as Simple Network Management 
Protocol (SNMP) exist, these interfaces tend to be confined to data monitoring 
rather than configuration, provide less functional coverage and are frequently 
developed as distinctly separate and parallel instrumentation paths from their 
command-oriented counterparts.  Over time, this parallelism degrades the 
quality, reliability and consistency of the system and complicates transitions 
to a model-driven design.  

 
Inconsistencies across interfaces are demonstrated when data and functions 

are exposed in one management interface path but not others, like Command 
Line Interfaces (CLI) providing instrumentation in one form while the same 
instrumentation is supplied in an SNMP management interface in a different 
form  - or perhaps not at all. 

 
Different and multiply redundant instrumentation results in different and 

redundant request processing, inconsistent request handling, and duplicate 
configuration synchronization and maintenance requirements.  The handling 
of a CLI instrumentation request, for example, involves certain parameter and 
system state validation coupled with a specific response however; duplicate 
constraint validation and default processing can result in inconsistent handling 
and duplicate maintenance requirements.  CLI has one instrumentation data 
access method while SNMP has another.  With duplicated instrumentation 
access, in order to ensure consistency, quality and reliability, changes to 
instrumentation data and data constraints, must be applied and tested in all 
interfaces that access instrumentation.  This burden is compounded as 
instrumentation and management interfaces grow. 
 

The introduction of modeling concepts into a system constructed around a 
command-oriented paradigm will be met with difficulty, as there is a 
significant impedance mismatch between them.  Command-oriented 
instrumentation uses specific management interface commands tailored for 
particular features that access data and services directly.  Conversely model-
driven instrumentation focuses on access to feature data and services through 
a common abstract interface shared by all management interfaces. Modeled 
instrumentation describes data and services for all management interfaces.  
The primary transition problem to overcome is determining the origin of the 
instrumentation model.  One may utilize the characteristics of data and 
services embedded within the command-oriented implementations; one may 
create a model based on need and map implementation data and services to it.  
The choice is hindered by the inherent impedance mismatch introduced by 
multiple and inconsistent implementations of the command-oriented system 
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and differences between the implicit and imposed models.  
 
A model-driven system requires an underlying implementation in order to 

access instrumentation data and services.  This cannot be easily leveraged 
from the command-oriented implementation due to its parallel nature. 
Retrofitting model-driven instrumentation on a legacy application constructed 
with a hard-coded command-oriented instrumentation is difficult.  Defining an 
accurate model based on the actual implementation is the most pressing 
problem.  Designers are faced with the choice of whether to use existing 
implementations preserving their inconsistencies and redundancies or to 
address these problems by creating a new streamlined model-driven 
implementation from their domain knowledge and experience.  

 
In this paper the understanding of how management instrumentation system 

designs are impacted by this transition is discussed.  Challenges and 
experiences will be examined through the prism of a real-world development 
effort of transitioning a command-oriented management instrumentation 
system to a model-driven management instrumentation system. 

 
The remainder of this paper is structured as follows:  Section 2 provides 

some background on the existing command-oriented instrumentation 
methodology. Section 3 covers the design considerations for model-driven 
instrumentation derived from command-oriented instrumentation systems 
while Section 4 describes key transition implementation experiences. Section 
5 covers work in related areas of interest and Section 6 concludes the paper. 

2   Background 

Prior to discussing the transition challenges and experiences, for a better 
understanding of the problem domain, a brief overview of command-oriented 
instrumentation methodology is provided. 
 

Management Instrumentation interfaces constructed around command-
orientation do not typically adhere to crisp layered interface and object-
oriented data-hiding principles.  Management instrumentation systems often 
begin with the simplest management method and grow as requirements grow, 
starting with support of feature-based commands targeted for particular 
command-line driven instrumentation needs.  These CLI interfaces involve 
the parsing of a user-entered command that link to a monolithic action 
function.  These action functions perform validation of system and feature 
state and either configure some data or display a hard-coded report describing 
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instrumented feature.  These action functions are intimately linked with the 
parse result of their associated command line and the instrumentation they 
access.   

 
The action function for all CLIs that manipulate data and services of a 

management instrumentation component provide the component’s implicit 
management model.  Transitioning to a model-driven system, designers define 
and impose a model outside of the command-oriented framework and based 
on instrumentation domain knowledge and management requirements.  They 
ultimately face the issue of adapting their defined model to the implicit model 
of the CLI implementation.   Difficulties arise when the actual instrumentation 
capabilities of the implicit model are not reflected in the defined model they 
are imposing and vice-versa. 
 

A similar example of this impedance mismatch can be seen in today’s 
management instrumentation environment in the area of SNMP MIB support.  
An SNMP MIB is a model specified outside of the domain of any specific 
instrumentation implementation.  A MIB can specify access to management 
data and service capabilities that may or may not be reflected in the system 
instrumentation.  Implementers of SNMP MIB interfaces must provide 
mapping between the imposed model of data and services requested by the 
MIB and the model implicit in the implementation.   

 
Resolving this impedance mismatch – the differences between the implicit 

and imposed management instrumentation models is perhaps the largest and 
most complex challenge of the command-oriented to model-driven transition. 

3   Design Considerations 

Model-driven management instrumentation designs are approached from a 
practical inverse of command-oriented designs due to their focal differences.  
A command-oriented design focuses on particular management interface 
commands and their associated instrumentation with respect to a particular 
feature. Conversely, a model-driven design focuses on the feature 
instrumentation to be made available for all management interfaces.  This 
section discusses key design considerations when transitioning from a 
command-oriented to a model-driven design. 
 

Figures 1 and 2 below provide a comparison of command-oriented and 
model-driven architectures.  The command-oriented architecture depends 
upon access to feature instrumentation data being tightly coupled with the 
management interface.  In comparison, the management interfaces of the 
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model-driven architecture utilize a loosely coupled common abstract interface 
to access feature 
instrumentation.

Fig. 1.  Command-oriented architecture showing management interfaces directly 
manipulating feature data and services.  Highlighted is the duplication and coverage 
between management interfaces.   The CLI showing complete coverage, while others 
less 
so.

Fig. 2.  Illustrates how the model-driven architecture abstracts access to 
instrumentation data and services through a common interface and normalizes data 
and services availability to all management interfaces.  Models in the upper layer 
describe the management interfaces, while the models in the lower layer provide 
definitions of the instrumentation they manage.  Together, these models describe the 
management instrumentation of the system in an end-to-end manner. 

The general architecture of model-driven instrumentation has five primary 
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characteristics that should be considered when designing a model-driven 
architecture based on a command-oriented system. 

3.1 Defining the Instrumentation Model 

The instrumentation model may be defined using either of two distinctly 
different methods.  It may be derived from legacy source code or it may be 
explicitly constructed based on domain knowledge.  

 
Derivation from Source Code 
In an effort to minimize the impedance mismatch between the imposed model 
and the implicit model, deriving the instrumentation model from the 
management instrumentation implementation is often considered by 
designers.  Since the CLI management interface often contains the most 
complete implementation it is frequently seen as the canonical source for 
model derivation; however, this task can be wrought with difficulty.   
Achieving this objective requires correct and complete interpretation of 
implementation source code sufficient to extract instrumentation 
configuration data elements, operational data elements, and services.  Model 
element extraction alone is not enough to meet objectives, as the interpretation 
of the semantic relationship of features, data, and services is also required in 
the modeled system.  Without a perfect interpretation, gaps and model 
generation errors will require exhaustive human interaction and domain 
experience to correct.  Moreover, it should be carefully considered if the 
implicit instrumentation model in-fact meets the needs of the target model-
driven system. 
 
Designing from Domain Knowledge 
Designing an instrumentation model relies heavily on the designer’s 
knowledge of the instrumentation domain space.  They must understand the 
configuration data, operational data and services offered by the 
instrumentation and the relationships between them.  If modeling an existing 
system, it should be accepted that regardless of modeling choices, there is 
going to be some level of unavoidable impedance mismatch with legacy 
systems; however, when modeling new instrumentation in the model-driven 
system, this is not the case.  Designers creating models for brand new 
instrumentation can ensure models have a 100% match to data and services.   
When constructing model architectures, designers should avoid sacrificing 
model extensibility by designs that are too rigidly tied to legacy structures. 
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3.2 Model Inheritance 

When management instrumentation is considered as a collection of models 
describing the system’s instrumentation, common elements emerge.  These 
common elements may be collected into model libraries for leveraging across 
instrumentation models.  This reduces duplication, streamlines maintenance 
and helps to promote consistency across instrumentation modeling.  
Constructed models that leverage a model library may implement or extend it.  
Derived child models may themselves be model libraries, further extending a 
reusable model hierarchy.    

3.3 Dynamic versus Static Models 

There are two types of methods for model use in the management 
instrumentation system – Static and Dynamic.  Static models are used at build 
time to generate source code or other compile-time entities that are fixed in 
the run-time image.  Dynamic models are interpreted at run-time at occasions 
determined by the management system.  If a design is to employ both static 
and dynamic models, designers must consider what will occur if the model 
fails dynamic interpretation.  How will the model’s availability, as well as its 
possible dependent libraries be guaranteed?  How will version control be 
enforced?  Consider that dynamic models need not only be validated against 
their dependent libraries, but also against any static libraries used to build the 
runtime system in which they are being loaded.  Designers must take into 
account the effects of the system’s ability to successfully dynamically load a 
model in order to function and what affects this may have on system 
reliability and availability. 

3.4 Model Versioning 

Designs that include models that can implement or extend a model library 
must also consider management and enforcement of model versioning to 
ensure compatibility between parent and child models.  Defined models must 
include a mechanism the model interpreter/compiler may use to determine if 
two models are compatible.  In a system that utilizes dynamic models, pre-
compiled models must also support version information for system validation 
during dynamic interpretation. 

3.5 Model-Generated Instrumentation APIs 

Modeled management interfaces obtain and manipulate instrumented features 
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through a common abstract interface design.  This abstract middleware 
interface directs instrumentation access requests to appropriate 
instrumentation for manipulation of data and services through their 
instrumentation API.   

 
The instrumentation API is collection of functions that independently 

access specific instrumentation data and services.  The framework of 
functions may be generated from information in the instrumentation model, 
but not the particular code to access the actual data or service of the 
instrumentation – that must be supplied by the instrumentation developer. 

 
When implementing APIs for modeled legacy instrumentation, there are 

two potential sources for instrumentation API implementation source code: 1) 
port it from the legacy implementation, 2) write it from scratch.   It is 
important to consider which method is the most accurate, reliable, and most 
reusable.  Frequently, only fragments of command-oriented instrumentation 
source code may be leveraged in a model-driven design.  A careful evaluation 
of the effort required to port existing code or to write new and perhaps more 
efficient instrumentation code should be carefully considered. 

 
Creating model-driven instrumentation can be more challenging than 

command-oriented instrumentation development if model-imposed 
restrictions are to be used.  Command-oriented development allows direct and 
freeform access to feature instrumentation at anytime, from virtually 
anywhere, with no interface definition requirements.  In contrast, because of 
crisply defined constructs, modeled instrumentation has the capability to 
ensure rigorous data validation and consistent instrumentation interfaces 
between clients and available instrumentation data and services.  While this 
makes API definition somewhat more challenging than the freeform method, 
this is one of the premier benefits of model-driven systems and results in 
improved reliability and quality. 

4   Implementation Experiences 

This section will explore the challenges and experiences gained through the 
prism of a real-world development effort where an established command-
oriented management instrumentation system was transitioned to a model-
driven management instrumentation system.  It will discuss design choices 
and the reasoning behind them.  
 

The most design-influential aspect of the transition was resolving the 
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architectural differences between the existing command-oriented system and 
the target model-driven system.  Viewed by many as an inside out to outside 

in transformation, there were two primary areas that stood out as the biggest 
hurdles to overcome – instrumentation API development and Instrumentation 
Modeling.     

 
There was considerable effort devoted to developing automated tooling that 

could minimize the development effort by leveraging existing command-
oriented source code to generate candidate instrumentation models and create 
a basic instrumentation API implementation.   In order to perform such a task, 
the tooling was required to scan and interpret existing source code, derive 
APIs and candidate models from embedded domain knowledge.  These efforts 
were unsuccessful.  Resolution of run-time defined abstract function calls and 
model semantics proved impractical due to interface complexities and 
inconsistencies.  The end solution was to not transition the command-oriented 
code and functionality but instead to build a framework that utilized the 
existing system for existing feature command requests while directing 
requests for newly implemented functionality to the model-driven framework.  
This allowed the management instrumentation system to maintain it’s 
backwards compatibility while at the same time allowing its functionality to 
grow within the new model-driven paradigm.  This coexistence allows 
existing feature and functionality to be transitioned from the legacy 
component to the model-driven framework on a piecemeal basis if desired.  
Maintaining legacy functionality as a coexisting component within the model-
driven framework was found to be considerably more efficient, reliable and 
practical than attempting a manual transition of its entire functional feature 
set. 

 
The second highest design hurdle was the construction and composition of 

the Model Framework’s APIs.  There are two APIs to consider: 
 
1. Middleware Interface API – communicates with management interfaces 

such as the CLI, SNMP, Syslog and so forth. 
 

2. Instrumentation API – Handles communication between the 
instrumentation data/services and the Middleware Interface. 

 

These APIs must be well considered in order to ensure they satisfy the 
needs of their users.  The Middleware Interface API communicates with 
management interfaces to supply access to managed instrumentation data and 
services without tight coupling to the particular kind of feature, 
instrumentation, data or service being manipulated.  A Create Read Update 
Delete and eXecute (CRUDx) interface was selected to best satisfy the 
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abstract needs of the management interface clients.  The CRUDx interface 
provides database-like functionality of management instrumentation resources 
to client management interfaces. 

 

The Instrumentation API has a similar, but slightly more rigidly defined 
CRUDx interface.  This interface definition choice satisfied the middleware 
layer’s management instrumentation needs enabling it to operate on managed 
resource instances and on data and services directly. 

 

Across both interfaces, request data is passed and response data is returned 
in a data-oriented fashion.  Function oriented APIs were not used as they 
restrict input/output to the context of the specific function, making them less 
portable.  Data orientation promotes efficient use of individual 
instrumentation APIs and allows a single request to more efficiently use the 
services of many different instrumentation components. 

 

The third challenge was to determine how to design the system for optimal 
model management.  Examination of the problem domain indicated that there 
was a large amount of overlap between the instrumentation models and 
potential for efficient model reuse streamlining both the design and 
development.  Model libraries were defined to promote implementation and 
extension of common model components.  This led to the imposition of model 
version constraints that impacted model content and how models, model 
libraries and model elements were referenced by the system.  

 

Modeling decisions led to the proposition that the management interfaces 
could be models and such models could reference instrumentation data and 
services using abstract identifiers.  This broached the subject of dynamic and 
static model management.  Instrumentation models are static, compiled at 
build-time and are part of the application image.  Dynamic models, such as 
those defining a CLI or an SNMP MIB, may be statically defined at build-
time or loaded and compiled at runtime.   Faced with the option of utilizing 
static or dynamic models, a half way solution was adopted.  Management 
interface models were pre-compiled at build-time into quasi-object models 
moved the compilation and validation step to build time.  This optimization 
enabled the run-time system to perform only the interpretation of validated 
and prepared pre-compiled models for operation. 

 

An API Implementation Example 
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To illustrate the result of some of the API design choices made, a high-level 
implementation example is provided.  For the sake of brevity, a simple 
Interface Flow Monitor was selected.  This component monitors the flow of 
bytes or packets per second across a network interface and sends and event 
when a configured high threshold is exceeded.  Additionally, it maintains the 
minimum and maximum observed flow rates and provides the capability to 
reset this operational data.  The model for this component is shown in figure 
3. 

 

 

Fig. 3.  Illustrates the model of the Interface Flow Monitor component. 

The Instrumentation CRUDx API generated from the Interface Flow 
Monitor model is shown below in pseudo code. 

errorcode createIntefaceFlowProb(Session); 
value readIntefaceFlowProb_unit(ErrorOut); 
value 
readIntefaceFlowProb_highThreshold(ErrorOut); 
value readIntefaceFlowProb_flowRate(ErrorOut); 
value readIntefaceFlowProb_minRate(ErrorOut); 
value readIntefaceFlowProb_maxRate(ErrorOut); 
errorcode deleteIntefaceFlowProb(); 
errorcode InterfaceFlowProb_resetMinMax(); 

These functions have direct interaction with the instrumentation and are 
called by middleware in response to middleware API originated 
instrumentation access requests. 
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The construct of the middleware API does not depend upon the model, 
however, the value of arguments passed are model-dependent.  For example, 
the URI arguments in the APIs identify the target object instance to create, 
read, update, delete or execute.  It may also identify a collection of object 
instances as in the case of a Collection URI (COL-URI) for manipulation of a 
collection of objects and data.  The DataIn and DataOut arguments 
signify the variant types of data that may be passed between the client and the 
identified target object(s).  The middleware API is illustrated below in pseudo 
code.  

errorcode create(URI); 
errorcode readConfigData(DataOut, URI); 
errorcode readOperationalData(DataOut, URI); 
errorcode updateConfigData(DataIn, URI); 
errorcode delete(URI); 
errorcode execute(DataOut, DataIn, URI); 

When the middleware receives a call across this interface, it resolves the 
URI to the object instance and performs the associated Instrumentation API 
call for the entity. 

readOperationalData(long& 
lRate,”/services;servicename=  
/IFFlowMon/probes;id=/Q/flowRate”
); 

The middleware resolves this information to a call to the instrumentation 
API shown here in trivial pseudo code: 

Q=get(”/services;servicename=/IFFlowMon/probes;id=
/Q”); 
lRate=Q->readIntefaceFlowProb_flowRate(ErrorOut); 

While most of the fine details of the middleware and instrumentation API 
interactions have been excluded, the example illustrates the design choices 
and resulting concepts of middleware and instrumentation API construction 
from the instrumentation model. 

5   Related Work 

There is a great deal of work that has been done in the area of Model-Driven 
Engineering (MDE) over the past three decades and was crystallized with the 
formation of the Object Management Group (OMG) [10] in 2001.  The OMG 
was formed to establish modeling and model-based standards.  Since that 
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time, the promises of MDE have been elucidated for the development of new 
applications, providing modeling tools, development tools, domain specific 
languages, and the like.  A virtual plethora of standards and applications have 
been created to support the development of new model-driven applications, 
however little has been done to address the cost effectiveness of leveraging 
existing systems in a model-driven environment.   Douglas Schmidt [4] in his 
February 2006 Model-Driven Engineering overview states  “When developers 
apply MDE tools to model large-scale systems containing thousands of 
elements, they must be able to examine various design alternatives quickly 
and evaluate the many diverse configuration possibilities available to them.”  
He refers to the Integrated Modeling Approach of Lockheed Martin Advanced 
Technology Laboratories as an example of legacy integration with less than 
ideal results: “Reverse engineering is used to build models… from existing 
source code.  Many previous attempts to reverse-engineer models from source 
code have failed due to a lack in constraining aspects of interest.”  A similar 
experience described in this paper.  

 
In his article “The Pragmatics of Model-Driven Development”, Bran 

Selic[6] discusses legacy integration mostly in terms of development tooling 
only tangentially touching upon the issue of leveraging application source 
code in the modeled environment.  In this case, the recommendation was to 
take advantage of legacy code libraries and other legacy software where 
domain-specific knowledge often resides.  While certainly true, this view 
overlooks the problems of impedance mismatch between the two designs and 
often-prohibitive implementation cost of custom glue code. 

 
At the UML Conference of 2003, Jean Bezivin [2] presented “MDA: From 

Hype to Hope, to Reality” where it was stated: “The extraction of MDE-
models from legacy systems is more difficult but looks as one of the great 
challenges of the future.  There is much more to legacy extraction than just 
conversion from old programming languages”.  Indeed, it is the variability of 
legacy systems, platforms and ultimately the model impedance mismatch that 
is at the heart of these challenges. 

 
Unfortunately, most work in the Model-Driven Engineering area focuses on 

the rapidly accelerating model-driven technologies and patently avoids 
dealing with the big white elephant in the middle of the room – how to 
leverage the existing application features and functionality in an efficient and 
cost-effective manner. 
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6   Conclusions 

Management instrumentation designers are looking to shift their command-
oriented management instrumentation to model-driven in order to utilize the 
benefits of these modern technologies but are daunted by the difficult 
challenges that complicate such a transition.  Features supported through 
stovepipe CLI implementations and augmented with redundant and often only 
partial, alternate management interfaces complicate the problem.  The practice 
of feature-specific/command-oriented implementations, while freeform in 
construct, culminates in multiple and redundant request handling, 
inconsistencies between management interfaces and differences across 
product versions. Perhaps most significantly, it geometrically increases 
maintenance requirements and costs due to duplicate and redundant code.  
Designers considering a transition to a model-driven system will find this 
impedance mismatch to be the most vexing problem.   

 
In an ideal scenario, designers would like to leverage legacy code in the 

model-driven system by deriving models directly from the legacy source 
code, however this is seldom possible.  The tight coupling of individual 
management interfaces with manipulated instrumentation data and services 
fundamentally blur the lines between the models they desire and the models 
implicit within their implemented instrumentation.  This makes model 
derivation from legacy source an impractical proposition.    

 
Experience has shown that neither reverse engineering nor model-

derivation met expectations, but rather integrating a legacy system as a 
coexisting component was found to be the most desirable solution.  Instead of 
attempting a re-design or fully modeling a seasoned management 
instrumentation system, the system itself was leveraged as an integrated 
partner of the model-driven framework.  This technique allowed the supply 
and maintenance of existing features to the system while at the same time 
promoted the development of new features and functionality within in the 
model-driven framework. 

 
The successful transition of a command-oriented system to a model-driven 

management instrumentation framework supporting both management 
interfaces and instrumentation involved the resolution of several key design 
considerations surrounding API development.  Management interfaces reside 
above the middleware layer and exist in the management domain, requesting 
instrumentation data and services from the middleware interface as clients.  
Client services available from this interface are accessed in a manner 
decoupled from the instrumentation implementation using functions that 
provide well-known Create Read Update Delete and eXecute (CRUDx) 
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capabilities. Similarly, the middleware communicates with instrumentation 
implementations using a more rigidly defined model-generated CRUDx API 
that operates directly on an instance of the instrumentation object, invisible to 
management interfaces.   Significant in the design of these APIs were their 
construction.  Decisions that request data would be passed across each 
interface affected the kind of API generated.  The API exposed to 
management interfaces is data oriented in order to facilitate optimal 
communication between management agents and middleware.  The 
Instrumentation API required similar exposition of data and services for direct 
operational performance on an instrumentation instance by middleware.  
 

Scrutiny of the instrumentation modeling problem domain revealed a large 
overlap of common elements among instrumentation models.  Model 
leveraging was introduced using model libraries to share common 
components among models and model libraries allowing extension and 
implementation promoting model reuse.  This concept further revealed the 
need for model and library versioning to ensure the integrity of referenced 
models during compilation and interpretation. 

 
As the implementation of modeling paradigms took hold, the concept of 

utilizing modeling to describe management interfaces became clear.  
Modeling management interfaces utilizing instrumentation models to connect 
management elements to associated instrumentation data and services 
promoted an end-to-end management instrumentation development paradigm.  
This opened the door to dynamic model management – the idea that a 
management model did not have to be built within an application, but could 
be installed or removed in a running system dynamically.  After considering 
dynamic build and interpretation options, designers chose to dynamically load 
pre-compiled/validated models. This design choice minimized the runtime 
compilation and validation burden on the running system and promoted better 
dynamism of the management interface models. 

 

When faced with the daunting task of moving a command-oriented system 
to a model-driven paradigm, the impedance mismatch is at the heart of the 
matter.  Finding a way to bridge the gulf the between the traditional “top-
down” view and the modern “everything is an object” view is the crux of a 
successful transition. 

 
Further Work 
The transition factors highlighted herein focused on the primary design and 
implementation considerations.  Additional work should be done to illustrate 
the details of integrating an existing management instrumentation system as a 
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coexistent component in a model-driven framework, covering details of the 
glue-logic and model-driven interactions.   Moreover, the concepts developed 
for code generation from models should be provided to describe the 
techniques developed through the experience to provide end-to-end round trip 
model, code management and synchronization.  Finally, and perhaps most 
importantly, the impedance mismatch between the command-oriented and 
model-driven paradigms are not restricted to design, but extend to 
development processes as well.  The experience yielded significant changes to 
existing command-oriented development processes and involved much work 
with human factors engineering resulting in new, optimized processes 
requiring developer management and acceptance.  All of these areas are in 
need of further research. 
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Abstract. Programmable networking platforms are getting widely 
used for customized traffic manipulation, analysis and network 
management. This propagates the need for exceptional development 
flexibility, for wide variety of high-speed interfaces and for the usage of 
high performance, yet low power technologies. This paper presents an 
FPGA-based programmable platform, capable of real-time processing, 
filtering and manipulating 10Gbps traffic. In order to expand its 
potential, besides the two 10GbE interfaces, the platform contains 
extension slots for COM express, mini PCI-e, and it has 16 onboard 
SFP connectors, towards which the fraction of the traffic, or even the 
full traffic can be forwarded to. The design is modular, programmable 
in both hardware (firmware) and software, aiming low power 
consumption. The full potential of the hardware can only be exploited 
with an easy-to-use development environment, with simple design 
customization and support for creating new applications. To fulfill this, 
a development environment is also presented, including a modeling 
framework that provides an easy way to create new networking 
applications on the platform. This framework allows modeling 
applications in SystemC, and eases the development of the hardware 
description code. 
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1 Introduction 

Networking at ever growingly high-rate connections constantly generates 
challenges for researchers and engineers developing algorithms and 
equipment to handle the demands of networking services. The increasing rate 
is not the only concern, but it brings some general, seemingly far-away 
problems into the limelight. 

When data arrives to a system at 10 Gigabit per second rate, the time is 
very limited for analyzing or handling it. Moreover, there is no point for its 
single storage for further analysis (except for some targeted analysis).  If the 
system cannot process continuously arriving data, it will not be able to 
process it later, when further data still arrives continuously. To optimize data 
processing in many levels, tasks should be distributed and made parallel. The 
processing level here does not only mean OSI levels, but levels of processing 
complexity determined by the given task. Examples for such tasks are flow 
assembly based on TCP- and IP-headers, routing and switching between 
interfaces, application classification by using DPI (Deep Packet Inspection), 
etc. Our system utilizes multiple processors with various capabilities for 
processing network traffic in various levels. The capabilities on the main 
board are distributed through FPGAs (used for time-stamping and initial 
packet header processing) and a general processor (used for management 
functions, and basic traffic analysis, statistics creation). Processors on the 
COM express PC and the PCIe-connected modules can be utilized for 
complex processing, including routing, switching and basic DPI. Furthermore, 
the system is prepared for very complex DPI (application analysis through 
fingerprints, deep flow analysis, etc.), by means of streaming digested packet 
and flow-data to external processors through its 1GbE interfaces. 

Low power design is a current and very important requirement in all fields, 
including IT systems. The high demand for networking services is covered by 
ever increasing number of servers and networking equipment, which, if left 
uncontrolled, waste electrical power and simply turns it into heat. On the other 
hand, handling or analyzing high speed traffic requires high performance, 
which is by definition a term competing with low power consumption. The 
challenge of high-performance, yet low-power systems is to find out which 
costs less power: should we shut down resources that are not in use and 
urgently wake them up when required or should we leave the resource 
running. Measuring power consumption and optimization for low power with 
high performance was a very key requirement during the definition and design 
of our system.  

We have also created a development environment together with the 
platform. The aim of this is to accelerate the development process of network 
applications on FPGAs in general. The environment provides a GUI and a set 
of hardware modules which builds up a variety of network devices. Key use-
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cases are switching, routing devices, NAT devices, firewalls, deep packet 
inspectors, and traffic loopback devices. 

The system has been designed and developed by applying a close 
hardware-software co-design methodology. This primarily defined the 
distribution of tasks among the various types of processors. Beside, this 
flexibility allowed the clarification of basic processing modules and 
algorithms, which enabled to create a programmable networking platform. 

For design space exploration and to validate the design, a SystemC [1] 
based modeling environment is used. The results of the SystemC modeling 
can be used to construct the final hardware models and the corresponding 
software. The SystemC hardware components are also available in generic 
hardware description language (Verilog/VHDL) making the synthesis of the 
hardware possible. The developers will also be able to generate the top-level 
hardware model through the GUI. The modules required for the generic 
networking applications have been selected by identifying the most important 
use cases. 

After the literature survey in the next chapter, we briefly describe the 
hardware, the firmware, and the development environment to be used for 
various networking applications hosted by the platform. Afterwards we 
highlight the usability of the environment through two use-cases: a network 
monitoring DPI scenario and a routing/switching scenario. 

2 Related Work 

In the literature, we have found similar work dealing with packet 
processing on FPGA-based systems.  

Besides the industry leading Endace DAG packet capture products [3], the 
NetFPGA [4] platforms are largely in use in academic research to test for 
ideas and implement them on flexible hardware. The TenGig NetFPGA card 
is currently under development, and it will be capable of 10G traffic handling. 
It will provide 4 XFP ports RLDRAM II, QDRII, SRAM, PCIe 8x interface 
and extension connector, powered by a large Xilinx Virtex-5 FPGA, 
XC5VTX240T which is quite expensive. A similar platform is developed 
within the Cesnet Liberouter project [5], which already provides a 10G 
extension card to their extensible Combo system, making it capable of 10G 
packet processing. We would also mention an interesting application of 
FPGA-based design platforms for Gigabit Ethernet Applications. FPGA-based 
implementations offer the possibility of changing the functionality of the 
platform to perform different tasks and high packet-processing rate 
capabilities. In particular, the authors of [6] proposed a versatile FPGA-based 
hardware platform for Gigabit Ethernet applications. By introducing 
controlled degradation to the network traffic, the authors provided an in-depth 
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study on real-application behavior under a wide range of specific network 
conditions, such as file transfer, Internet telephony (VoIP) and video 
streaming. Other approaches include hardware accelerated routing, e.g. the 
work of D. Antos et al. [7] on the design of lookup machine of a hardware 
router for IPv6 and IPv4 packet routing with operations are performed by 
FPGA. In this framework, part of the packet switching functionality is moved 
into the hardware accelerator, step by step. This allows keeping the complete 
functionality all the time, only increasing the overall speed of the system 
during the whole development process. D. Teuchert et al. [8] also dealt with 
FPGA based IPv6 lookup using a pipelined, tree-bitmap algorithm based 
method.  

The NetFPGA project also provides a development environment for the 
programmable hardware platform. Their approach [10] is to provide reference 
architectures (interface card, switch, router, etc.) as starting points for new 
development. To avoid the necessity of hardware level programming and 
provide a high level interface, a framework is presented in [11] to incorporate 
hardware G modules into NetFPGA based system designs.  

Although there are several similar approaches [9], none of them fulfills the 
requirements of the C-Board. The existing hardware is not fast or not scalable 
enough, while also the development environment lacks the flexibility and the 
required simplicity. 

3 The SCALOPES C-board 

The ARTEMIS SCALOPES project aims at developing and utilizing novel 
methods in low power, high performance embedded platforms. Our 
SCALOPES C-board is the prototype platform for the communication 
infrastructure-related applications inside the project. The main purpose of the 
C-board is to provide a basis for high-speed data processing and manipulation. 
It could either host or serve monitoring, switching, routing, filtering and other 
applications that require real-time processing of 10 Gigabit Ethernet traffic. In 
the following sections the motivations, requirements and the state of the art is 
surveyed, followed by the brief description of the architecture.  

3.1 Motivation and Requirements 

Real time analysis and manipulation of 10 Gigabit Ethernet traffic requires 
scalable, high performance equipment. Clear and easy-to-use management 
and programming interfaces further ease the task of the user of such 
equipment. There are some programmable networking platforms already 
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available in the field, nevertheless, upto this date we have not found another 
platform that  
- is both programmable in hardware and software,  
- can manipulate the traffic by utilizing PCIe-connected controllers, 
- has capabilities to directly forward 10Gbps Ethernet traffic to/from 1Gbps 

Ethernet or SONET, 
- is designed for measurable low power consumption, and 
- has lowered risks for extra developments since  composability, 

predictability and dependability [2] issues are tackled. 
The SCALOPES C-board was designed and developed with the ultimate 

intention of putting the above requirements into practice. 

3.2 Internal Structure 

The practical capabilities of any networking equipment are limited by its 
internal elements, their programmability, and its interfaces’ types, modes, and 
speed. During the development of the SCALOPES C-board, the requirements 
were set high: it is a highly scalable device with a well-defined programming 
toolchain, capable of manipulating traffic arriving from SONET, ATM, 
Gigabit and 10 Gigabit Ethernet, routing/switching the traffic between these 
interfaces and further controlling or processing it through PCIe x4 extension 
modules. The simplified architecture of the board is depicted by Fig. 1. 

The main components of the device are the following: 

- XFPs (10 Gigabit Small Form Factor Pluggable Modules) connecting to 
XAUIs (10 Gigabit Attachment Unit Interface) for 10 Gbps traffic 
reception, 

- SFPs (Small Form/factor Pluggables) to handle various Gigabit Ethernet 
ports, for output to devices, 

- four FPGAs (Field-Programmable Gate Arrays) connected in a matrix, 
used for packet capture and manipulation, including interface handling, 
traffic flow handling firmware blocks, basic statistical modules, 

- memory for packet buffering and flow tables, 
- extra processor for on-board processing and management software, 
- redundant power supply. 
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Fig. 1. The simplified structure of the SCALOPES C-board 

 
Each element of this architecture meets the basic dependability 

requirements in order to support the overall dependability/survivability of the 
system that it is part of.  

The main part of the device is the FPGA matrix (or ring), containing four 
FPGAs. The FPGA technology helps building a multi-purpose hardware. A 
great advantage of this technology is that a simple firmware switch enables us 
to switch between applications much faster than if we needed to switch the 
whole device. 

 The outside interfaces (SFP, XFP and COM express slots) connect to the 
FPGA’s RocketIO ports, which allow high speed communication between 
interfaces. The optional variation of interfaces (Gigabit Ethernet optic, 10/100 
Ethernet, STM-1 optic etc…) is possible by using SFP module receivers. 

The physical and logical connection between the interfaces is defined by 
the FPGA firmware ensuring the hardware’s flexibility. The current firmware 
is physically stored on flash memory connected to the chips: they load as soon 
as the hardware starts. I/O data is shared between FPGAs through a dedicated 
communication ring interface. There are two rings defined by the clockwise 
and counter-clockwise direction of communication, assigned to the two 10 
Gigabit Ethernet interfaces. Fig. 2 depicts the architecture of the board and the 
connection of the FPGAs. 
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Fig. 2. Internal structure of the SCALOPES C-board and the two-way 

communication of the FPGAs  

 

There is an additional interface designed for configuration and 
maintenance. The FPGAs can be reprogrammed during operation, and the 
running IP-core can be controlled/changed through a 10/100 Mbps Ethernet 
interface connected to the COM express PC.  

3.3 Low Power Design 

During the development of the C-board, one of the main, higher goals was to 
create a device of low power consumption. Depending on the network 
configuration, the used application and the traffic volume the power 
consumption of the C-board becomes significantly lower in comparison to 
systems that do not use sophisticated power control. As a static requirement, it 
can be reached by using low-power electronic elements. The operating power 
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consumption depends on the clock frequency as well. The C-board is 
configured to operate on the lowest frequency on which it is able to process 
all of the traversing packets on 10 Gbps interface. 

Furthermore, lower power consumption can be reached by close power 
control of the programmable devices in a dynamic manner, while they 
operate. There are three areas in the SCALOPES C-board where such 
Dynamic Power Control (DPC) can be administered: the interfaces, the FPGA 
and the memory. DPC is managed by a central resource manager (governor) 
application, residing in the compact PC. 

Naturally, if an Ethernet interface is not configured to be working in a 
given configuration (runtime), its controller is shut down, not consuming any 
power. Moreover, the Ethernet interfaces connect to the FPGA chips in a 
distributed manner, which means if the related interfaces are not needed, the 
corresponding FPGA chip can be assigned to stand-by mode, hence 
significantly decreasing the system’s energy consumption. This power 
reduction scheme can be initiated runtime, in connection with the network 
configuration changes.  

Internally to the FPGAs, power islands are defined for segregated 
functions: interface handling, packet filtering modules, management modules 
and low-speed/high-speed implementations of packet processing algorithms 
(depending on timing criteria, the low-speed implementation might be used 
for power considerations). Based on the running application and the traffic 
volumes the central power governor can decide to shutting down or waking up 
these islands. 

DDR RAM memory is connected to the FPGAs, and its power-
management can also be controlled from there, runtime: it can be set to stand-
by or power down mode if a given application does not need to use the 
external memory. 

In order to measure power consumption, sensors are placed at key areas of 
the hardware. These sensors send signals about the measured signals to the 
management interface, where the data can be collected, analyzed and used for 
system tuning.  

4 The Development Environment 

Developing or even modifying complex networking systems that consist of 
hardware and software processing modules require either incredible 
experience or extreme braveness – sometimes both. In order to develop 
applications to the SCALOPES C-board, efficient hardware and software co-
design methodology must be administered. 

Our approach follows a two-step process in the high-level, and based on 
elemental building blocks of a modular architecture. The first step in the 
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process is the development of simulation models, from the modeling blocks 
available or ready to be developed. The second step in the process is the 
actual hardware and software design, based on the experiences gathered from 
the modeling evaluation. This process requires both less experience and less 
braveness from the developer, since on one hand the building blocks already 
provide some design security, and on other hand he or she is going to be 
supported by the understanding the possible obstacles after learning the 
simulation models. Fig. 3 depicts the development environment from a high-
level perspective. 

The flexible programming capabilities provided by the SCALOPES C-
board’s processors and interfaces can only be exploited if a well-defined 
firmware development environment accompanies the device. Experience in 
HDL programming may be a serious limiting factor for customized system 
enhancements that require firmware development. Hardware, firmware and 
accompanying software programming knowledge is rarely present together in 
an organization that is not specialized exactly for these – and utilizing only 
one of these essential capabilities when experimenting with the networking 
platform leads to suboptimal results. 

 

 
Fig. 3. The development environment 

 
Therefore we provide a development environment that makes the 

development of generic applications possible, even without hardware 
knowledge. Beside this, custom hardware functions can be also developed 
easily, as new building blocks. 
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The development environment consists of a modeling environment, where 
the application is modeled in SystemC, and a hardware/software co-design 
methodology, utilizing commercially available programming tools as well. 

The development environment gives access for different levels of 
complexity, from basic GUI-based modifications to full simulation/modeling 
and co-design. 

4.1 GUI based development 

Starting from a provided generic application architecture, custom firmware 
can be easily generated using available “filters”. There are several generic 
modules available for packet manipulations that can be inserted at the packet 
input/output processing stages of the architecture. These modules may also 
provide a software interface, for setting filter rules, reading statistics etc. For 
example, a simple firewall can be created by adding input and output filter 
blocks to the generic packet forwarding application. Adding NAT 
functionality means inserting a NAT module at the egress interface. 

Fig. 3 shows the structure of the development environment. The whole 
development process can be done using the provided GUI. The GUI is written 
in Java,  integrates the tools into a development environment and provides 
editing functions. The available modules are described in IP-XACT [12] 
XML format, and they can be selected from the toolbox and with simple drag-
and-drop operations they can be inserted in the architecture. Composability is 
ensured by using the IP-XACT specification format, and is automatically 
checked while connecting the interfaces. Both the SystemC and VHDL 
sources for the different modules are also provided, along with their IP-XACT 
description. The new design can be tested by the SystemC simulation 
framework, which provides traffic generators for performance testing and 
predictability analysis. The top-level HDL file is generated automatically 
based on the connections made on the GUI, and the final firmware can be 
synthesized using the Xilinx ISE. As the new application is a modified 
version of the generic application with filter components added, its 
performance should not change, only an insignificant the latency is introduced 
by the filters. 

Besides the composability checking, a dependability and predictability 
analysis is also possible. The framework will be extended to generate a 
Continuous Time Markov Chain (CMTC) based dependability model of the 
system stored in a view in the IP-XACT description, which can be used in 
open-source simulators like the PRISM model checker [13]. A queuing model 
of the hardware can also be created, which makes possible the analysis and 
queue dimensioning for different traffic mix scenarios.  
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4.2 Custom module development 

The development of the new applications is also assisted by a number of 
available hardware component models that can be used for generic 
networking application development. The already available components 
define a generic packet processing/forwarding architecture with extensible 
filtering and processing properties, and a generic deep packet inspection 
architecture. All components come with SystemC and VHDL source code and 
IP-XACT description. The extensible, modular architectures are designed to 
allow easy integration of application-specific header operations at the ingress 
and egress. A method for buffering the packet payload is also provided. Most 
of the applications can be covered with the available modules. The 
architecture also features a hierarchical power management concept for low 
power operation [14]. 

However, if a custom module is needed for a hardware-level operation 
which is not yet available, new modules can be created and added to the 
model database by adding the source files to the SystemC and VHDL 
directories and creating the IP-XACT XML descriptor. The key issues are the 
interfaces of the new component, and the timing requirements. For the most 
common operations like input/output processing and flow handling well 
defined interfaces are provided with low timing requirements. However, for 
line-speed processing all modules must handle back-to-back packet arrivals at 
interface speeds. For even easier development generic filter prototypes are 
provided with full source code. First, the SystemC model should be created, 
for composability and predictability checking. Based on the SystemC model 
the HDL model can be created too, and added to the HDL model database. 

4.3 Hardware accelerator development 

The protocol processing task usually starts with basic input/output operations 
like packet reception and queuing. These operations require hardware 
processing, for fastest execution. After several stages of header processing, it 
may not be suitable for hardware processing because of increased complexity; 
software processing is more flexible and desirable. The conventional 
networking protocols had simple structure, binary headers and fixed fields.  

As we climb the levels of the OSI model, the protocols become more and 
more complicated, with variable header lengths and fields. One of the most 
difficult protocols to decode are the textual protocols like HTTP and SIP, 
where very few things are fixed, fields can be mixed, string identifiers are 
used and all fields have variable length. Such protocols require software 
processing, involving parsing. There are several methods to enhance the 
processing in hardware with accelerator interfaces. Different protocols require 
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different interfaces, possibly tailored to the given application. Unlike for 
network processors, where hardware accelerators are given, we can design 
and implement custom hardware accelerators in order to achieve best 
performance. There are several hardware accelerators that are generic, like 
binary/ternary CAM tables, queue managers etc., but accelerators can be 
tailored by an optimization process. In our approach we consider that 
processors can reach the hardware accelerators through a simple and fast 
interface, like port I/O operation or memory operation to a very specific area. 
The optimal separation of software/accelerators/hardware however is an 
optimization “knob” that requires an iterative approach to select the optimal 
parameters. 

A further gain for the hardware acceleration is the decreased power 
requirement, since hardware processing has lower cost form the point of view 
of energy consumption. 

 
Fig. 4. Hardware/Software optimization process 

The accelerator design tools are currently under development. Accelerator 
models are protocol-tailored hardware functions like table lookups, string 
operations or parallel lookup of several strings etc. The SystemC model of the 
protocol processing uses the library models of the hardware, accelerators and 
adds the software part too (see Fig. 4). The compiler expands the macros and 
includes the code from the model library, creating the simulation executable. 
The profiler tool collects data provided by the simulation and the results are 
timings, delays and also may estimate energy consumption for specific 
modules. Based on the profiler results new accelerators can be defined or 
existing ones can be refined and integrated into the SystemC model. The 
output of the simulation is the architecture, the hardware and accelerator 
modules on one hand, and the protocol processing software on the other. 
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5 Case Studies 

The platform itself is capable of high-speed packet processing but can be 
extended with industrial PC boards for complex functions and increased 
processing power. Therefore it can perform all network related functions from 
the low level high-speed packet forwarding to the most complex protocol 
processing.  

These packet processing architectures also utilize powerful energy 
management techniques. First, power islands can be formed, and unused 
islands may be powered down. Furthermore, local power management is used 
where possible by turning on the processing modules only if they are needed. 
Finally, a central manager provides a management interface for the control of 
the power islands. 

In the following we present several specific use cases for the SCALOPES 
C-board. 

5.1 A Network Monitoring System with DPI Capabilities 

Traffic monitoring plays an important role in network management, network 
optimization and planning. Operators are usually aware of only the main 
characteristics of the traffic, which generally is limited to an average 
throughput with 1-minute granularity. On the other hand, information about 
fine granularity of the traffic allows for network tuning and more effective 
planning. As the operators switch to 10GbE connections, processing packets 
and flows real time at this speed is getting more and more important - no 
matter how complex this task really is. Deep packet inspection and flow 
analysis cannot be carried out with on this rate by using the currently 
available processors and memories, hence the traffic is going to be filtered 
and distributed over several processors outside the C-board for full analysis. 
In this use-case we present a monitoring system capable of DPI at line speed. 
Furthermore, we show that using our easy development environment the DPI 
can be easily tailored to the specific requirements. The high-level workflow of 
DPI and flow analysis in this system works the in the way depicted by Fig. 5.  
The C-board receives the monitored traffic through the 10Gbps XFPs, and 
initially timestamp each packet. Depending on their configuration, the filter 
modules pass “interesting” packets to the forwarding buffer, and sends these 
to flow classification with the rest of the traffic. The classifier puts together 
flows based on the packet 
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Fig. 5. DPI firmware architecture 

 
headers. The flow analysis module provides statistics with fine granularity, 

and application identification information on each flow. The flow data and the 
chosen, “interesting” packets get forwarded from the buffer, through the 
output selectors to further processing entities over the 1Gbps Ethernet 
channels. 

These processing entities are PCs called “Monitor Units” with high 
processing and storage capacity. In order to reduce loss of data between the 
outsider processing entities and the C-board, the packet information (headers 
and predefined parts of the body) get encapsulated in TCP flows and then 
forwarded. TCP is needed in order to assure lossless transfer of capture-data 
towards the remote units. The Monitor Units carry out complex traffic 
identification and traffic matrix analysis, as well as store bit-by-bit packet 
header information if configured so.  

The basic DPI requires a specific firmware architecture, where the traffic is 
flowing from the XFPs towards the classifiers from where it will be de-
multiplexed to 1Gbps speed. The complex DPI algorithms run on the Monitor 
Units. 

The architecture shows the basic internal architecture for DPI application. 
The first and most important “knob” is the flow classifier. Several methods 
can be used, for example IP address range based, TCP/UDP port based, etc., 
selecting different portions of the traffic for deep inspection. It is even 
possible to configure the flow classifier from software, selecting the hardware 
filtering rules easily. Further user-selectable items are the statistic flow 
analysis modules. According to the required set of flow information, specific 
filters may be inserted in order to get the required information. 
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The C-Board with the DPI firmware architecture is capable of monitoring 
full speed the 10Gbps traffic in both directions, and it can forward it to the 
SFP interfaces without packet loss. 

Finally, in a realistic use-case a part of the traffic can be streamed to the 
SFPs for packet level analysis. Up to 8 Gbps traffic can be streamed to the 
receiving monitor PCs dependably [13]. 

5.2 Generic Switch/Router architecture 

The SCALOPES C-Board can also be used as a generic Switching/Routing 
architecture with hardware level packet forwarding. The architecture supports 
two 10 GbE ports, 16 GbE ports with an arbitrary combination of SFPs. 

 
Fig. 6. Generic Packet forwarding architecture 

 
The used packet processing pipeline is similar to the model recommended 

by Xilinx [15] and the model used by the Liberouter project [5]. The packets 
are filtered first, then all traffic is written in the DDRAM for buffering. Since 
the memory access can be the bottleneck in our packet processing pipeline, 
we tried to avoid copying the packet. We have decided to use the shared-
memory packet forwarding model, this way avoiding unnecessary copying of 
data. The model has a further advantage: even multicasting/broadcasting can 
be done without actually copying the data. 

The generic packet forwarding architecture is shown by Fig. 6. The arriving 
packets are buffered, while their header information is however forwarded to 
the lookup module. The lookup module is responsible to decide on which 
interface the packet should leave. For flooding, broadcast and multicast 
multiple interfaces may be selected. For different application types, different 
routing/switching modules can be designed, which may operate at different 
layers of the OSI model, like L2 switching, IPv4 or IPv6 routing, MPLS 
packet switching etc. Based on the decision at the lookup module, a short 
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internal header information is written in the egress interface queues (multiple 
queues in case of broadcast/multicast packets). The output filter block is 
responsible for scheduling and queuing, and retrieval of packet data from the 
DDRAM and transmitting on the egress interface. 

The performance of this architecture is only limited by 2 main factors: 
lookup speed and DDRAM access. The lookup speed depends on the L2 or L3 
forwarding table size and lookup algorithm, while DDRAM access may 
introduce delays in case of small packet sizes.  

The generic packet forwarding architecture can be extended with a COM 
express based PC board, providing considerable processing power. This 
extension opens up further application possibilities for the board. Such a 
possible application is a Session Border Controller. Session Border 
Controllers (SBCs) have evolved to address the wide range of issues that arise 
when voice and multimedia services are overlaid on IP infrastructure. These 
include a wide range of operations from packet level monitoring tasks through 
flow level manipulation tasks to high level signaling processing tasks, all at 
high speeds. These put high demand on both hardware and software. With our 
C-board extended with a PC board a high performance SBC can be designed. 

The key idea in this use case is the close interworking between the 
software processing on the PC board and hardware processing on the FPGA 
board. The low level processing handles the high-speed traffic and passes only 
the network signaling traffic to the processor. The routing protocols and 
forwarding control can be done just like in the previous case. An open 
protocol like OpenFlow [16] can be used to control the hardware flow 
processing. 

6 Summary 

The SCALOPES C-board is a versatile programmable platform capable of 
handling 10Gbps Ethernet traffic. It provides a base platform for various 
packet processing applications such as switching, routing filtering, 
monitoring, etc. Its modular structure allows its extension with processing 
cards to increase its applications with high-speed software processing as well. 

The C-board is accompanied by a development environment to unlock its 
full potential. The environment supports the development process from 
design-space exploration and modeling in SystemC to modular design. It is 
based on predefined hardware modules, from which the basic applications 
(packet forwarding, DPI) can be constructed. The development environment 
will also feature a graphical user interface, providing easy development for 
customization. The scalability and low power requirements have been taken 
into consideration for both hardware and software design. We have 
demonstrated some major application fields for the hardware on use cases. 
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The DPI use case presents a configurable monitoring tool, with on-line 
processing capability and packet- as well as flow-level analysis. The Generic 
Switch/Router architecture demonstrates the use of the system as a high 
performance switch or router. We also highlighted a scenario for a session 
border controller device, capable processing of the traffic in both hardware 
and software. 

The high-performance, low-power SCALOPES C-board can be widely 
used by operators, research engineers and application developers in order to 
tackle the challenges of effective traffic handling, network and service 
management tasks at 10Gigabit Ethernet connections.  
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Abstract. We present a framework that enables application developers 
to create complex and application specific network services. The 
essence of our approach is to utilize programmable network elements to 
create a software representation of network elements in the application. 
We show that the typical pattern of an application specific network 
service is a control loop in which topology, paths, and services are 
continuously monitored and adjusted to match application specific 
qualities. We present a platform in which network control applications 
can be developed and illustrate possible use cases. Based on these use 
cases, new research questions are identified.  

Key words: Distributed Computing, Network Management, 
Programmable Networks. 

1   Introduction 

Almost every type of network implements measures to guard against 
unexpected environmental changes, such as the effects of failing links, 
changing traffic patterns or the failure of network nodes themselves. Such 
measures can be considered as optimization of network resources with respect 
to network robustness. At the basis of the optimization of network resources 
are programs that control the response of the network to changes in and 
outside of the network. Moreover, actively controlling network resources is 
crucial to maintain the network service that is delivered to applications. 

Optimizations have a certain penalty in realistic situations. For example, in 
sensor networks [1] minimizing the transmission power of sensor antennae 
optimizes battery lifetime, but impacts connectivity. Depending on the 
application and the actual situation, engineers will choose an optimum. 
Generally, the optimum network service is application-specific, yet in most 
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networks, application programmers have no control over the network. One 
reason is that a general applicable, conceptual and technical framework to 
program the network is absent [2].  

In the absence of any notion of specific application demands, as is usually 
the case, network providers offer typically a best or constant effort network 
service. Theoretically at least, computer programs can be so specific in their 
service requirement and optimal response to disturbances that network 
providers cannot configure and control the network for such applications 
anymore. If cloud infrastructures would only run on wind energy, for 
example, the amount and direction of wind will continuously change the 
energy available for computing and network resources. In such cases, (partial) 
control over the network must also be transferred to a computer program, i.e. 
the application domain, to automate continuous reconfiguration of the 
infrastructure. 

Traditionally, networks have been designed according to well-defined 
requirements. One could say that at this point application domain knowledge 
enters the network domain. Conversely, application engineers may use the 
interface of a given network service, e.g. sockets in the Internet, to include the 
network in the application logic. Here, we extend the latter approach; any 
application-specific property of a network service becomes a network control 
issue programmed in the application domain, i.e. a dynamic user network 
interface. Moreover, we define the basic framework needed to design and 
build network control programs in the application domain. 

In Section 2 we review state of the art of related areas in programmable 
networks, overlay network and sensor networks that allow network control 
from the application domain. Then, in Section 3, the application framework is 
presented and its functional components are described in Section 4. In Section 
5, the implementation and test bed is introduced and Section 6 follows with 
examples of applications that control networks. The paper ends with 
conclusions and future work in Section 7. 

2   Related Work  

A basic approach to develop a programmable network is to use general-
purpose computers as Network Elements (NE) and implement C programs 
that manipulate packet streams and network links [3-5]. The programmable 
and active network [6, 7] community developed the architectures for dynamic 
deployment and extensibility of functions in network elements. Other efforts 
provide programmability in the control plane of networks, while remaining 
backwards compatible with current Internet technologies [8-11]. These 
technologies enable network operators to offer better services to applications. 

Basically, there are two types of limitations in networks that motivate 
application control: (1) limited network functions or (2) limited network 
resources. If the network does not offer enough functionality, a well-known 
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approach is to implement the network functions as part of the application, i.e. 
create and manipulate a virtualized network (overlay network). If the network 
has limited resources to accommodate application demands in a best-effort 
manner, frameworks exist to manage the quality of service on behalf of the 
application [12-14]. Next, we illustrate some approaches from related network 
research areas that deal with these limitations. 

Overlay networks enable developers to redesign and implement, amongst 
others, addressing, routing and multicast services optimal to their application 
domain [15]. Overlay networks are widely used to support specific services, 
such as distributed hash tables [16], anonymity [17], and message passing 
[18]. Overlay networks might lead to sub-optimal utilization of network 
resources, because the mapping to the physical network resources is not open 
to the application developer. Moreover, overlay networks essentially duplicate 
functions offered by the physical network. Recently, some efforts [19] 
propose to expose physical network properties to applications to improve their 
mapping to the physical network. Assuming that networks are properly 
dimensioned, at least from the user’s perspective, overlay networks are a 
straightforward solution to support their specific network service 
requirements.  

Sensor networks illustrate best limitations in network resources. Sensor 
networks motivate tight integration of applications and network services [20]. 
Because of the resource constraints, sensor network designers attempt to use 
the scarce resources efficiently and various approaches to program sensor 
networks have been developed [21]. In macroprogramming [22], high-level 
programs use an intermediate language to abstract away concurrency and 
communication aspects in sensor application programming. A compiler 
translates the programs into basic instructions for individual nodes, and takes 
communication characteristics into account. In TinyDB [23], communication 
is integrated with a data query mechanism. Macroprogramming and TinyDB 
show that with a framework that structures the design space of network 
control applications, it becomes possible to design and implement reusable 
components for new applications. 

Our research in advanced applications of networks [24-30] shows that 
applications have different optimal network services. Existing network 
management systems do offer APIs to configure network services [31]. Such 
APIs implement the network abstractions chosen by the network operator. We 
found that our use cases in hybrid networks and sensor networks require more 
flexible and specific network services than those designed and implemented 
by network operators. Because the application domain offers developers more 
flexibility, it might be more practical to implement network services as part of 
the application. Hence, we developed a model that enables developers to 
program networks as part of their application [32]. The resulting framework, 
User Programmable Virtualized Networks (UPVN), models the interworking 
between networks and applications and provides a conceptual framework to 
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element execution environment, middleware/orchestration, and application 
code. The latter can be subdivided in two sub layers, namely the programming 
environment providing reusable components such as programming libraries, 
and the application program. The result is a four-layer architecture (Figure 3). 
Clearly, the architecture resulting from the application point of view is similar 
to programmable network architectures [6]. However, the functional 
components between the application and programmable network need to be 
further defined to support network control from the application domain and is 
described next. 

The orchestration layer (2) facilitates the interworking of software objects 
and ACs located on individual NEs (1). The orchestration layer may also 
supports basic mechanisms, such as discovery services, brokers, billing 
services, authorization, etc. The usefulness of these services depends on the 
network environment and application. In sensor networks, for example, there 
just may not be enough computational and storage resources to support an 
elaborate set of services.  

The programming environment, layer (3), provides the NC implementation 
and reusable components, such as a Distributed Transaction Monitor (DTM) 
or breadth-first search algorithm, to support programming of a collection of 
NCs. Depending on the network environment, some abstractions can be 
implemented in the ACs, as a library in the programming environment or 
both. For example, the application developer might want to program network 
element interactions in a non-blocking manner. Hence, either the 
programming environment or the orchestration layer must facilitate non-
blocking interaction mechanisms between ACs and NCs. In our 
implementation (Section 3) we use message passing in the orchestration layer 
and implemented (an easier to program) blocking interface to the application 
(Section 5). 

Because network control is now part of the application domain (layer 4), 
developers can benefit from a large amount of existing software to implement 
network control programs. A characteristic of the control applications is that 
they operate on data structures that represent the network state. Therefore, the 
programming environment (3) explicitly contains a model of the network and 
the orchestration layer must supply the data with which the model can be 
updated. In Section 6, we discuss issues related to the accuracy of the network 
model. 

Some applications support the construction of a network model that is close 
to mathematical concepts, such as graphs. The Mathematica [37] 
environment, for example, contains a graph data structure, which can be used 
as a basis for control applications that require graph algorithms. By enabling 
dynamic updates of network state into the Mathematica graph data structure, 
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domain experts can simply apply graph algorithms to find and remove 
(through network manipulation) articulation vertices; vertices that may 
disconnect a graph. Besides control, the application layer can also include 
visualization or other means of interaction with the network. The integration 
with toolboxes, such as those available in Mathematica, makes the application 
layer a powerful environment to develop network control applications. 

5   Implementation and Test Bed 

In the preceding sections, we introduced the framework for control 
applications as well as a four-layered functional model to implement such 
applications. We developed a test bed according to the presented functional 
model (Figure 3) to gain practical insight in the implementation of the 
application framework to support network control programs. The test bed 
implements the first three functional layers and enables further exploration of 
the network control applications that are part of the fourth layer.  

5.1   Hardware 

The test bed consists of eight machines (four dual processor AMD Opteron 
with 16GB RAM and dual port 10Gb NICs and four Sun Fire X4100 with 
4GB RAM and 1Gb NICs) interconnected by two 1Gb switches and a Dell 
hybrid 1/10Gb switch. All machines run VMWare [38] ESXi hypervisor 
software and the virtual hardware is centrally managed and monitored with 
VMware vSphere management software. The test bed was bootstrapped with 
one Linux instance containing the software we developed, and iteratively 
grown to 20 instances to create a non-trivial configuration of networks and 
computers (Figure 4). 

The setup involves two datacenter locations: a virtual infrastructure running 
in our datacenter in Groningen and an interactive programming environment 
including an interface to a multi-touch table running in our lab in Amsterdam. 
The multi-touch table enables users to interact with NCs (Section 6). The two 
locations are connected by two OSI-Layer 2 Virtual Private Networks (VPN) 
on basis of OpenVPN [39]: one for control traffic and one for data traffic. At 
the receiving host in Amsterdam, the control and data networks are separated 
by VLANs. 

5.2   Software 

The primary purpose of developing a prototype is to gain insight in the 
challenges and details to control a network from applications that require 
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Application developers have to make a trade-off between state exchange 
and the processing capabilities of network elements. For example, an 
application that finds and removes articulation vertices can run as (1) a 
centralized component or, in the other extreme, (2) can run on each NE under 
its control. Because the computation of articulation vertices requires full 
topology knowledge, running the application on each NE (2) requires 
additional mechanisms to update and synchronizes changes in topology. 
Between centralized and decentralized implementations of control loops many 
architectural variants exist. Likewise, an enormous variety of control 
algorithms can be expected. On these points applications programmers would 
benefit from research [45] on design patterns of control loops. 

7   Conclusion and Future Work 

Until now, engineers optimize networks at design time and independent of 
application engineers. Examples from sensor networks, hybrid networks and 
overlay networks show a need to control networks at run-time. Past efforts 
created the programmable network element technologies to support dynamic 
network service composition. In this paper, we use these technologies in a 
framework for network service development in which each programmable 
network element has a software representation in a possibly distributed 
application. We presented an implementation of the framework and several 
network control applications.  

Our implementations are limited to a single application that controls the 
network. In case many applications want control over the network, another 
control application is needed to manage (conflicting) resource demands, i.e. 
an operating system for networks. In the future, however, it can be expected 
that network management systems support mechanisms to host and run 
applications on the network. Recent research also continues in this direction 
(Section 2). More experience is needed to create reusable software 
components that enable and simplify control application development for 
large networks. 

Control loops are a fundamental part of applications that optimize a 
specific network service as a response to changes in or outside the network. In 
subsequent research we shall determine the operational properties of a control 
application (e.g. how accurate is a given network state, what is the delay 
between network events and the application’s ability to react, how fast can 
failures be detected). We have shown that architectural consequences can be 
expected when changes in the network occur faster than a single control loop 
can effectuate new adjustments, e.g. in large or unstable networks. In this 
case, the application framework needs to support decentralized network 
control. Hence, to extend the application framework to support multi-domain, 
multi-scale network control is a topic for further research.  
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Abstract. Mechanisms for the management and control (M&C) of large-
scale ICT systems, both established and innovative ones, generally 
follow a distinct approach on the dimensions from centralized to 
distributed and flat to hierarchical architectures. In this paper, we 
examine representative M&C frameworks and technologies and show 
that such a restrictive architectural choice is incompatible with system 
convergence, like computing/networking and fixed/mobile. To improve 
this situation, we propose a novel architectural approach that facilitates 
the adaptive placement of M&C functions by using different 
combinations of distribution and hierarchy patterns concurrently. Using 
a computing/networking systems scenario and a simulator prototype, 
we illustrate the potential of the proposed M&C approach in achieving 
more efficient overall M&C of converged ICT infrastructures. 

Keywords: Management systems, control systems, centralization, 
distribution, hierarchy, convergence of ICT infrastructures, OpenFlow. 

1   Introduction 

Modern systems of information and communication technology (ICT) are 
in the process of converging on several dimensions, such as 
computing/networking and fixed/mobile. Powerful complementary paradigms, 
most notably virtualization, enable completely new and comprehensive 
system architectures, such as cloud computing, cloud networking, and 
amalgamations of both. 

Managing such converged ICT systems becomes challenging because 
traditionally separated management realms now need to be considered within 
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a single framework. For example, managing IT and network resources 
naturally differs significantly, and virtualization leads to new performance 
constraints between computing and networking resources that require the 
redesign of management functions. 

We argue that management and control (M&C) systems must actively 
support both the static nature as well as the dynamic process of convergence 
in ICT systems in a way to achieve sustainable M&C for those ICT systems 
that are yet to be developed. Current M&C systems, however, are not flexible 
enough and competing, disparate views dominate state of the art management 
and control systems. 

In the quite heterogeneous landscape of M&C approaches, distribution and 
hierarchy can be identified as two of the strongest architectural separators that 
hinder the management and control of converged systems’ performance. Let 
us consider the dimension of distribution, delimited by centralized and 
distributed forms of M&C. Surveying the state of the art shows that 
established as well as innovative M&C control technologies prevail on both 
ends. In the centralized case, classical SNMP architectures, for example, have 
proven to be highly reliable, and modern control architectures, such as 
OpenFlow [1], [2], show that centralized M&C continues to make sense. On 
the other end, fully distributed architectures lead to M&C functions embedded 
in the network elements. Two examples are the established spanning tree 
protocol (STP) in Ethernet and novel in-network management (INM) 
approaches [3], [4], where distributed execution of M&C functions is strongly 
preferred and, optimally, does not require external intervention. 

More than static choices, M&C is also characterized by transitional 
developments, where, for example, handover management in wireless 
telecommunication networks moves from centralized to more distributed 
solutions (e.g. [5], [6], [7]). It should further be left to the system 
administrator which M&C approaches he or she considers to be the most 
suitable ones, depending on any of a system’s characteristics (e.g. size) that 
may require special consideration. Last but not least, system characteristics 
will likely change over time. For example, a system that is successful will 
grow in size and some of its M&C functions may have to be enhanced over 
time to maintain efficient system operation. 

Because fixed architectural choices put tight constraints on the distributed 
and hierarchical placement of M&C functions, they provide a limit for 
adaptability of converged system M&C. In contrast, there is a need for 
freedom of functional allocation. Central control and management have 
benefits, such as network element simplification (off-box), in terms of 
information to be used for decision-making, and it is a convenient single point 
for attaching policies, also high-level, such as business objectives. Strong 
distribution may lead to significant gains in performance,  reliability, 
scalability, flexibility, and robustness [8], e.g. when functions are only locally 
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relevant they may significantly reduce the risk of producing computing and 
communication bottlenecks. Hierarchical structures, in addition, have the 
benefit of improving scalability with little impact on algorithmic logic. 

It seems inadvisable to attempt to reconcile M&C approaches by simply 
bundling them within a single M&C system, because this would lead to 
tremendous complexity and redundancy of functions. It is more appropriate to 
conceive a homogeneous approach that allows for different mechanisms to 
coexist. 

In this paper, we propose a novel architecture for the management and 
control of converged ICT systems, which targets at the two dimensions of 
distribution and hierarchy. In Sec. 2, we first show how state-of-the-art M&C 
frameworks can be characterized along these dimensions in order to illustrate 
the lack and need for a homogeneous architectural approach that is able to 
unify individual frameworks. In Sec. 3, we introduce a compact architectural 
framework that facilitates the coexistence of different M&C paradigms and 
the adaptation of M&C function placement over time to keep up with the 
dynamics in system convergence. In order to show that the chosen M&C 
framework is adequate for practical deployment, we apply it in Sec. 4 to the 
scenario of an OpenFlow-enabled data center, in which computing, 
networking and virtualization must be considered by management and control. 
In the same section, we discuss briefly our simulator prototype and relevant 
implementation details and sketch a number of qualitative results in order to 
assess the proposed M&C framework. We conclude in Sec. 5 with a summary 
and a brief outlook on future work. 

2   Related Work 

Management and control frameworks in both the literature and deployed 
systems are abundant. We therefore focus here on a number of representative 
approaches that we present in Fig. 1 in the design space that is formed by the 
two dimensions of distribution and hierarchy, based on an extension and 
combination of previous classifications in [8], [9], [10], [11], [12]. Each M&C 
approach is represented by a shaded rectangle that indicates its approximate 
location in the design space and relative to other approaches. The dashed line 
indicates a hybridization of approaches, and arrows indicate selected trends in 
one or more dimensions. 

 



56 NEMA Proceedings 

 

 

 

MANNA
OSI

distribution

hierarchy

OpenFlow

STP

INM
deep

flat

centralized fully distributed

A-GAP

SNMPv1 +
RMON

DNA

BOSS

Femto SON

Mobile
Agents

Hybrid: mobile
agents + SNMP

Event Correlation

ASA

CROMA

SNMPv1

Madeira

P2P-based

FOCALE

TMN

handover management

 

Fig. 1. ICT management and control systems on the distribution and hierarchy design 
space. 

Several distributed management frameworks make use of highly distributed 
function placement, for example, In-Network Management (INM) [3], [4], the 
Autonomic Service Architecture (ASA) [13], the CROMA architecture [14], 
DNA [15], Madeira [16], Focale [17], and the framework proposed in [18]. 
These frameworks also vary in the depth of applied hierarchies, for example, 
INM and CROMA allow for a flexible stacking of hierarchical levels for 
objective management and policy management, respectively, while the 
framework in [18] is restricted to three layers and Focale’s autonomic 
management elements suggest cooperation on a relatively flat hierarchy. 
These frameworks follow distribution and hierarchy patterns that are in line 
with innovative management and control algorithms, such as handover 
management [5], [6] and femtocell self-organizing interference management 
in [7] in the context of fixed/mobile convergence, flat management and 
control protocols such as A-GAP monitoring [19] and STP, and distributed 
event correlation frameworks with hierarchical patterns such as [20]. 

In wireless sensor networks, although highly distributed in nature, 
management frameworks capture virtually all coordinates in the design space 
[21]. For instance, the centralized system in [22] performs management 
operations purely external to the network, while in [23] management tasks are 
performed by cooperating network nodes. The motivation for choosing any of 
such approaches is to achieve the best compromise between computation and 
communication overheads that are dictated by specific management functions. 
Hence, WSNs substantiate the claim that coexistence of different architectural 
patterns is essential for flexible function placement. 
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The authors of [24] also motivate the coexistence of centralized and 
distributed management approaches, and concrete hybrid management 
architectures are proposed, for instance, in [25], [26]. In these architectures, 
more traditional centralized and weakly distributed management frameworks, 
e.g. SNMPv1,  SNMPv1 + RMON, and TMN [27] (indicated in Fig. 1 
according to [8], [9], [10]), are combined with distributed management 
approaches that make use of mobile agent technology (e.g. [28], [29]). It is 
clear from these hybrid approaches that coexistence is vital for achieving 
optimal performance when different management functions are to be 
combined, such as high-level versus localized management. 

Of specific interest to network virtualization in particular is the recently 
proposed OpenFlow network switching technology [1], [2], which is 
characterized by a centralized controller that manipulates traffic flows by 
parameterizing the flow tables of individual network elements, which hence is 
in direct opposition to distributed management frameworks. Complementary, 
virtual switching in virtual machine monitors (hypervisors), such as [30], 
provide new abstractions to manipulate multiple virtual switches (Open 
vSwitches in [30]) to be controlled via a single logical image from a central 
point. At the same time, trends towards deeper embedding of control functions 
from host to programmable network interface card (NIC) space are pushed by 
new performance constraints that are dictated by virtual switching in the host. 
Such transitions are facilitated by e.g. [31] and lead to a shift of general 
networking functions [32] and in particular OpenFlow-related functions [33], 
[34] to the NIC. 

3   Adaptive Placement of Management and Control Functions 

In this section we introduce the principles and the framework for 
implementing a management and control system that is suitable for 
converging ICT systems. In particular, this system is focusing on the 
facilitation of different degrees of distribution and hierarchies as we will 
explain. 
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Fig. 2. Design space of management and control on 5 dimensions. 

Figure 2 is an extension to the design space that we introduced previously 
in [3], where we have identified the degree of autonomy, abstraction, and 
embedding as three fundamental dimensions along which various network 
management functions can be designed. In this paper, we focus on distribution 
and hierarchy; the concepts we present in the following are orthogonal to the 
work presented in [3], [4], [35]. 

3.1   Management/Control Capabilities 

Let us start by examining the distribution and hierarchy scale in more 
detail, where we can identify an intersection between both as a suitable 
starting point of our design. In that intersection, a transition from vertical to 
horizontal processing of management tasks (flows) occurs. We explicitly 
distinguish the semantics of these flows into organization (vertical) and 
collaborative (horizontal) to indicate the different nature of these flows. For 
instance, organization tasks may be used to inject high-level objectives or 
report key performance indicators, while collaboration implements the 
algorithms that obtain the values for these. 

Based on this view, we define the basic constituting component of 
management capability (MC) which we have introduced on a high level in [3]. 
In order to define its role in acting as a transitional element (mediator) 
between organization and collaboration flows of management, we also define 
its internal structure in such a way that it can flexibly support that transition 
without defining the specific management task. Fig. 3 depicts the structure of 
a management capability. 

External Interfaces of Management Capabilities 

Let us consider the management capability’s external interfaces first that 
integrate the capability into more complex management and control structures 
(Sec. 3.2). Two distinct interfaces, termed organization and collaboration 
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interface, define how the management capability interacts with other 
management capabilities on the level of organization (vertical) and 
collaboration (horizontal). 

More specifically, the collaboration interface is related to algorithm logic 
and deals with exchanging information or commands such that a certain 
management algorithm can be performed collaboratively across several 
instances of the same type of management capability, or across different 
functions collaboratively in order to achieve a certain management task. The 
particular implementation of this interface may follow different 
communication and programming styles, for instance, an RPC or REST style, 
discussed in more detail in Sec. 3.4. A typical interaction of an aggregation 
algorithm, such as A-GAP [19], for instance, may be the exchanging of partly 
aggregated values, and the management algorithm component would make 
them a full aggregate eventually that is finally sent in upward direction. 

The organization interface has two major tasks. Firstly, it exposes 
information to higher levels of abstraction along the organization hierarchy, 
the information typically being aggregated or filtered towards a high level of 
presentation (e.g. at the management console). Second, the interface receives 
objectives that are expressed in a higher level of abstraction and transforms 
them into lower level ones. This interface may also follow different 
programming styles (Sec. 3.4). 
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Fig. 3. Structure of management/control capabilities. 

Both organization and collaboration interfaces exist virtually independent 
of the location in which a management capability is executed, which is the 
key enabling concept for placing a management capability in any location of 
the system that is to be managed (see Sec. 4).  
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Internal Structure of Management Capabilities 

While a management capability’s interfaces allow for the necessary flexibility 
in placing the capability into the managed system’s runtime environment as a 
whole, a more detailed decomposition of MCs is used to make placement also 
flexible with respect to organization and collaboration tasks independently. 

In order to allow this, without loss of generality, three basic components 
make up a management capability’s interior. Within the management 
algorithm component, the actual management algorithm, such as A-GAP, is 
located. This component is associated with collaboration and only exposes a 
lean interface via which information that is relevant for the organization 
perspective is transferred. This interface is usually well understood by the 
algorithm designer and can be defined appropriately, but also be extended 
easily. For instance, in the case of A-GAP, the top-level aggregation result 
may be accessed via this interface in upstream direction, and basic threshold 
parameters of the aggregation algorithm may be set in downstream direction. 
The management algorithm component is further mapped to the management 
capabilities external collaboration interface to allow for communication with 
other MCs. 

The information retrieval component and objective enforcement component 
are responsible for handling information retrieval and composition in 
upstream and downstream direction along the organization hierarchy. Note 
that objectives might also be called policies. In this paper, we strive to be 
independent of the particular mechanisms used to specify objectives, so 
policies but also simple configuration of thresholds may all be executed via 
the organization path. Both components perform tasks that are related to 
organization only. For instance, the information retrieval component may 
simply receive the top-level aggregate from one management capability and 
hand it over to any other management capability via the organization 
interface. The objective enforcement component receives objectives (policies) 
from upper levels in the organization hierarchy and may parameterize both the 
internal policy and the management algorithm component. An example for the 
latter case is to adapt the performance of a management algorithm, e.g. 
increase the aggregation latency for a tradeoff of aggregation accuracy. 

3.2   Management and Control Structures 

From individual management capabilities, arbitrarily complex management 
and control structures can be created. Such structures extend vertically from 
one or several global management points that terminate the information chain 
at the most abstract level (e.g. management consoles) down to MCs that 
terminate the management/control hierarchy at the lower end, e.g. at 
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individual network elements or at one of the lower layers of a network 
protocol stack, down to the hardware of individual network elements (e.g. 
network switches). 

In a typical management task, for instance, a low-level objective is violated 
in a management capability and resolved by the next upstream capability 
using a specific self-adaptation mechanism without the need to report to a 
general management point. This example illustrates the ability of the proposed 
framework to adopt self-management principles, which are considered as an 
important means for local self-management operations in order to improve the 
management/control systems overall performance and to avoid explicit 
interactions with human beings. 

3.4   Realization Options 

Implementing MC-based network management and control works by defining 
the logic of management processes first, and then deploying management and 
control functions onto the system in question. The definition of management 
processes can be done by a language that is runtime-independent, which 
allows specifying functional elements (e.g. network elements), the functions 
these elements are to carry out, and how communication between elements is 
done. 

In particular, the organization and collaboration functions may be 
implemented using different kinds of programming/communication models. 
Based on our assessment, REST (representational state transfer) and RPC 
(remote procedure call) are suitable for organization and collaboration, 
respectively. The reason is that organization tasks are likely to be more 
abstract in that an objective is modeled as a resource and manipulated via one 
of the few generic methods according to REST. For collaboration, it is 
naturally the case that algorithms (e.g. for monitoring, fault detection, 
anomaly detection) are rather diverse and require specific interfaces to 
communicate with each other, specific to the algorithm. These may be more 
suitable designed via RPC or a new protocol suit is defined for that. 

Once a management process is defined, it is to be deployed. This phase 
requires specification of how to deploy a management function, and available 
support, e.g. in terms of compilers, will determine possible target runtime 
environments (also hardware is possible). For instance, OSGi is considered a 
suitable candidate to implement individual management functions, and brings 
with it already great flexibility and system support (such as discovery of 
services, which would be mapped to the management capabilities, etc.) that 
allows to easily relocate functions. Moreover, it is possible that existing 
hypervisor environments can be used as runtime environments in virtual 
environments. From these, in a transitional step, similar capabilities can then 
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be also recompiled and redeployed to programmable network interfaces, 
which is beginning to be applied in virtualized systems (e.g. [32]). 

A major feature of the M&C framework is the support for deployment on 
different levels. While the management capability usually encapsulates 
functions that are specific to a management task, such as the aggregation and 
upward propagation of a key performance indicator, deploying the 
components of a single management capability is key for allowing various 
kinds of tradeoffs, such as performance versus memory space. An example is 
that of a virtualized environment, in which a management capability’s 
algorithm component is located in the runtime environment of a 
programmable NIC due to performance reasons, while the information 
retrieval and objective enforcement components are located in the virtual 
hypervisor that is located “closer” to the virtualization system’s policy 
engines. 

4   Scenario: OpenFlow Control and In-Network Management 

We now describe an example scenario that combines some of the features 
of centralized, hierarchical, distributed, and flat technology and show how 
management capabilities facilitate the transition in parts of that scenario. 

4.1   Application to Converged Systems 

We consider how to apply management capabilities to a typical converged 
system, in this case, IT and network convergence occurring for example in 
large data centers. Fig. 4 illustrates how management capabilities can be 
applied to an IT/network converged management and control system in 
general. In the figure, both hierarchical and distribution concepts are indicated 
and some of the management capabilities translate between these two 
directions. 
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Fig. 4. Application of management capabilities to a converged IT/network system. 

In this figure, SNMP in a weakly distributed form, OpenFlow centralized 
control, and INM distributed network management with objectives on the IT 
side are all combined in a single architecture. The figure shows in particular 
how centralized approaches merge with decentralized management functions, 
that is, INM. To provide uniform handling of the technologies, adapters are 
used that encapsulate e.g. SNMP agents to allow standardized communication 
between management capabilities of other types of management and control 
protocols. Note in particular the resulting homogeneous switching layer, 
where each network element (including servers) supports OpenFlow 
switching functionality homogeneously. 

4.2   Scenario Description 

The scenario we consider is a data center with IT and network resources, 
and virtualization. We consider two use cases that are closely linked: 1) 
anomaly (congestion) detection, and 2) virtual machine migration with flow 

 
Assumptions 
 

1) An anomaly occurs locally, e.g. due to the exhaustion of CPU capacity 
at a host because of high load that is incurred by virtual machines. 

2) Local performance checks find out about other physical hosts to which 
some virtual machines may be migrated. 

rerouting that follows after an anomaly has been detected (also see Fig. 5). 
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3) One or more virtual machines are migrated, and flows are automatically 
adapted without contacting the central OpenFlow controller. This 
requires that a subset of controller functions must be implemented in 
the host initially, that is, the hypervisor that is executed on the physical 
machine. 

4) In a transitional step, the required OpenFlow controller functions are 
moved from hypervisor space to the programmable network interface 
for improved efficiency. This step is the offloading of network 
functions that follows the idea of [32]. 
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Fig. 5. Converged IT/network scenario in a typical data center. 

In the described scenario, it is essential that some modifications in the 
deployment, e.g. from host (hypervisor) space to NIC space, are likely not to 
be available immediately but require upgrading on the hardware side, for 
example. A typical occurrence of events is that during the detection of 
anomalies at a physical host, the management system that is currently 
deployed in the data center sets a limit on the maximum number of virtual 
machines that may be deployed on a host. With the availability of more 
advanced NICs supporting programming, the transitional step in 4) can be 
applied after the redeployment of the corresponding management capability to 
the programmable NIC execution environment. 

4.3   Discussion of Scenario 

In order to evaluate the feasibility and benefits of proposed framework for 
adapting the placement of management and control functions, we have 
implemented a simulation prototype for simulating large-scale data centers, 
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and specifically, data center networks. The prototype is able to perform 
migration of virtual machines and flows by cooperation between network and 
virtual machines. 

In previous work, the advantage of different architectural choices for 
network management and control in terms of hierarchies and distribution has 
been shown to a large extent in quantitative terms. For example, Du et al. [28] 
evaluate the benefits of a distributed agent-based management approach 
versus a centralized approach, where the distributed architecture incurs 
significantly smaller communication cost in terms of number and size of data 
packets compared to a centralized solution. Furthermore, most of the 
architectural choices that the discussed frameworks and algorithms in Sec. 2 
follow are motivated by certain desired performance characteristics. 

Rather than providing additional quantitative results, we focus here on 
evaluating the central claim of our framework, which is the adaptive support 
for functionality placement along the hierarchy and distribution dimensions. 
From the scenario that we have implemented in the simulator prototype, we 
can summarize the following points where dynamic placement is highly 
beneficial. We focus on a number of concrete practical situations of the 
described scenario: 

 
• Pushing OpenFlow control functionality down the hierarchy: in the 

first OpenFlow implementations, network control remains within the 
OpenFlow controller. The scenario has shown that dynamic placement 
is highly desirable to push OpenFlow controller functions down to 
network elements. Moreover, it is beneficial to do this in at least two 
steps. In the first step, control functions to manipulate network flows 
can be pushed to a host (e.g. to hypervisor space). In a second step, 
control functions can be pushed further to the programmable NICs. Our 
framework supports this function pushdown on the level of individual 
management capabilities. 

• Increasing scalability with scenario size: When the size of the 
scenario changes, e.g. when additional network elements and physical 
servers are added, it might become necessary to change function 
placement in order to maintain scalability and to avoid bottlenecks 
incurred by management and control functions. It is easy to expand the 
management and control structures via our framework in this case by 
extending the structures on the collaboration and/or organization 
direction by introducing additional management capabilities. Assuming 
deployment frameworks are used that support discovery and other basic 
runtime functions, which are provided e.g. by OSGi, it is 
straightforward to adapt structures dynamically using the mechanisms 
provided by the proposed management capabilities. 



66 NEMA Proceedings 

 

 

• Function replacement during runtime: While hierarchical and 
distribution structures of the management and control system do not 
always change, it sometimes is necessary to replace certain 
components. In a concrete case, an aggregation algorithm that 
aggregates data related to the anomaly of the described scenario may 
change. In this case, replacing just the management algorithm 
component of a management capability (see Fig. 3) is necessary. This is 
also supported by the proposed framework and can be readily 
implemented by frameworks such as OSGi. 

• Performance optimization of a management and control system: 

Dynamic placement allows to “experiment” with different locations of 
a function in the system and to choose the best placement after having 
assessed different trials. For example, it might not be immediately clear 
what is the best function placement due to system complexity. This 
would correspond to a more short-term dynamic placement, rather than 
a long-term dynamics for evolution in the managed/controlled system, 
which is both supported by our framework. 

 

5   Conclusion 

In this paper, we proposed a framework for adaptive placement of 
management and control functions in converged ICT systems. The framework 
introduces management capabilities and their internal composition as the basic 
component to compose complex management and control structures that are 
flexible with respect to the placement and wiring of individual functional 
parts. 

The framework particularly considers the dimensions of hierarchical and 
distributed composition of management functions, and provides the means to 
implement more flexibly combinations that are compatible and do not have to 
coexist without intersection. In other words, the proposed concepts do not 
force the adoption of specific technologies that work in a specific distribution 
scheme, but these can be combined. Fundamentally, that is possible if 
management capabilities are described and the interfaces are understood 
between different components, which might require a certain degree of 
standardization. In this paper we also studied a scenario integrating 
management and control (M&C) of different technology domains, namely, IT 
and network, and different M&C technologies, OpenFlow and SNMP. 

While our simulation prototype gives valuable insights into the adaptive 
placement of management functions and shows that it is beneficial to have 
support for flexible function placement, the framework needs yet to be 
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specified in more detail. Additionally, more detailed analysis of how the 
deployment of functions and adaptive placement can be accomplished in 
technical terms via suitable execution environments (e.g. OSGi) needs to be 
carried out. 
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Abstract. Modern computer architectures are founded on multi-core 
processors. In order to efficiently process network traffic, it is necessary 
to dynamically split high-speed packet streams across cores based on 
the monitoring goal. Most network adapters are multi-core aware but 
offer limited facilities for assigning packets to processor cores. 
In this paper we introduce a hybrid traffic analysis framework that 
leverages flexible packet balancing mechanisms available on recent 
10 Gbit commodity network adapters not yet exploited by operating 
systems. The main contribution of this paper is an open source 
hardware-assisted software layer for dynamically configuring packet 
balancing policies in order to fully exploit multi-core systems and 
enable 10 Gbit wire-speed network traffic analysis. 

Keywords:  High-speed network traffic monitoring, hardware-
assisted dynamic packet filtering, commodity hardware, 
operating system design. 

1  Introduction 

The complexity and heterogeneity of monitoring tasks, such as anomaly and 
intrusion detection, traffic classification and application level analysis [1], 
gradually caused a shift from dedicated network devices toward hybrid 
software and hardware architectures which are more flexible and easier to 
maintain than dedicated monitoring devices [2]. Along with hardware-based 
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solutions [20], researchers have demonstrated that the performance of traffic 
analysis applications running on commodity hardware can be substantially 
improved by properly accelerating selected operating system tasks [19, 21, 
22]. However, the performance gap between pure software solutions and 
hardware assisted ones has been significant. Recent advances in off-the-shelf 
server technologies suggest that the gap can be substantially reduced. In fact, 
modern servers are based on advanced multi-core processors featuring 
integrated memory controllers and high-speed and low latency 
interconnections. In addition, off-the-shelf network interface cards (NICs) are 
supporting new advanced features such as message signaled interrupts (MSI-
X), multi-queue capabilities and virtualization support, which have been 
designed to boost the network performance in specific scenarios. The trend is 
to introduce into NICs the logic for offloading workstations from 
computationally intensive network operations. With the advent of multi-core 
processors, balancing the networking workload among cores is necessary in 
order to increase the networking performance of network services. Therefore, 
modern interface cards provide multiple independent reception (RX) and 
transmission (TX) queues and hardware traffic splitting techniques to 
distribute the traffic among cores. 
Unfortunately, traffic monitoring software did not fully benefit from these 
new breakthrough technologies. The reason is that software layers on top of 
which network monitoring applications are implemented, such as network 
device drivers and operating systems, are not designed for exploiting these 
features for network monitoring purposes. 
In this work we present a flexible and extensible framework that simplifies 
the development of complex and yet efficient traffic analysis applications 
running on commodity hardware. The main contribution of this work is a 
novel traffic balancing and filtering networking layer optimized for traffic 
analysis purposes that fully exploit advanced features implemented by modern 
off-the-shelf NICs. The framework is characterized by the following 
properties: 
• It provides an API for hardware-assisted traffic filtering and balancing 

across cores. 
• It can be deployed on sub-1000$/port commodity network adapters which 

are more than an order of magnitude cheaper than dedicated traffic 
monitoring devices. 

• The filtering mechanisms are flexible and able to address common 
problems monitoring scenarios such as adaptively balancing the incoming 
traffic among cores or dynamically filtering incoming traffic.  

• It can be used as a building block for designing complex yet efficient 
monitoring applications. 

• It is publicly available at no cost under the GNU GPL license. 
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The rest of the paper is structured as follows. In section 2 we describe how the 
software framework we designed few years ago could benefit from modern 
NICs in particular for supporting in hardware those features we previously 
implemented in software. In section 3 we position the work described in this 
paper against similar efforts. Section 4 describes the design and 
implementation of a new software layer that allowed us to offload traffic 
filtering to modern NICs. Finally section 5 describes some common use cases 
we used to evaluate the developed solution hence to demonstrate that this 
work is a major step ahead with respect to existing software-only solutions. 

2  Motivation and Scope of Work 

The intrinsic dynamism of Internet protocols has increased the demand for 
flexible monitoring frameworks designed to speed up the development of 
efficient and cost effective applications capable to analyze modern network 
protocols. Nowadays, most network monitoring infrastructures are built 
around hybrid frameworks combining the flexibility of software and the 
performance of hardware accelerators designed to offload network probes 
from selected computationally expensive tasks. The design of  hybrid 
frameworks requires expertise in software, firmware and hardware 
development, as well substantial investments that have a negative impact on 
end-user prices. In fact, since the target of these devices is a niche market, 
their price is in order of magnitudes higher than commodity off-the-shelf 
network interfaces. 
Packet capture accelerators are the most cost effective solution for improving 
software based traffic monitoring applications. As packet capture is the 
cornerstone of many passive monitoring application, capture accelerators have 
been able to provide substantial speedups to traffic monitoring applications by 
allowing incoming traffic to be copied directly into the address space of the 
analysis process without any CPU assistance. 
In our past research, we focused on pure-software traffic analysis frameworks. 
In particular, we proposed filtering solutions that are capable to overcome the 
limitations of the popular Berkley Packet Filter (BPF) [8], a rule-based traffic 
filtering mechanisms provided by the majority of the operating systems. In [9] 
we describe a traffic filtering mechanism that, contrary to BPF, can be 
reconfigured in real-time and scale in terms of number of traffic filtering 
rules. In [10] we present a traffic filtering and analysis framework named 
RTC-Mon that substantially simplifies the development of modular and 
efficient traffic monitoring applications. The core of the framework is a rule-
based infrastructure that allows traffic analysis components to be enabled over 
the traffic matching rules. By introducing services for IP de-fragmentation, 
packet parsing and maintenance of flow state statistics, the development 
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efforts for implementing monitoring applications are substantially reduced. 
The framework is useful for implementing traffic analysis applications, such 
as VoIP and IPTV monitoring software, where traffic filters must be 
added/removed in real-time. 
In our previous works, we decided not to leverage any specific monitoring 
device in order to reduce costs and simplify the deployment. In this work 
instead, we evaluate the opportunity of accelerating our framework by 
exploiting mainstream NICs. Unlike special purpose monitoring hardware, 
off-the-shelf network interfaces target the mainstream market and therefore 
come at low end-customer prices. Even if these NICs are not designed for 
accelerating monitoring software but rather tasks as virtualization, some of 
their features can be successfully exploited for increasing the performance of 
traffic analysis applications. 
Modern off-the-shelf adapters provide several independent RX/TX queues 
and hardware-based mechanisms such as Receive-Side-Scaling (RSS) that 
balance network flows among RX queues mapped on processor cores. By 
splitting the traffic among queues, the workload, both in terms of packet 
processing and interrupts can be balanced across cores for better exploiting 
the intrinsic parallelism of modern computing architectures. As of today, the 
majority of server class adapters in the market are multi-queue enabled and 
support RSS for splitting the traffic across queues. The main limitation of 
RSS is that the balancing policy is static hence it cannot be adapted to 
changing traffic conditions. This represents a serious limitation as workload 
unbalances correspond to scalability penalties. Even if it is possible to 
augment RSS with software based traffic balancing policies, this approach is, 
in practice, unfeasible for high-speed networks as the performance penalty is 
severe. Therefore, NIC manufacturers are introducing the second generation 
traffic balancing hardware mechanisms that are dynamically configurable in 
order to adapt traffic balancing policies to every traffic condition. Although 
these mechanisms have been introduced for enhancing general purpose 
networking, we believe that packet filtering will also benefit from these 
breakthrough balancing technologies, and therefore, the performance gap 
between special purpose monitoring devices and off-the-shelf network 
adapters would be reduced. 
In this work we present an advanced and yet easy to use open source software 
framework that leverages the customizable hardware assisted traffic balancing 
and filtering features introduced in modern NICs. As these filtering features 
will likely be available in future NIC cards manufactured by various vendors 
just as happened with RSS, we believe that this work is not limited only to the 
specific NIC we considered in this paper, but it paves the way to supporting a 
new family of cheap 10 Gbit (and 40 Gbit in the future) network adapters. 
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3  Related Work 

The industry followed three paths for accelerating software applications by 
means of specialized hardware while preserving the software flexibility: 
• Accelerate the capture process via packet capture accelerators [3, 4] that 

allow incoming packets to be copied directly to the address space of 
monitoring applications without any CPU intervention. 

• Split the monitoring workload among different network probes using smart 
traffic balancers [5] so that each probe receives and analyzes a portion of 
the traffic. 

• Run traffic analysis software on programmable network cards based on 
network processors [6] or massive parallel architectures [7]. Programmable 
network cards are massive parallel architectures on a NIC. Monitoring 
applications are implemented in C and executed on these device [7] that run 
a modified version of Linux which simplifies the porting of existing 
applications on top of this special purpose architecture. However, even if 
they have been able to substantially simplify the development compared to 
network processors based cards, the porting is still not trivial. 

Most general purpose operating systems support rule based filtering 
mechanisms such as the BPF where filtering expressions are compiled into an 
intermediate language and interpreted by a virtual machine running at the 
kernel layer. PF_RING [11] is an advanced network monitoring framework 
enhancing Linux with more flexible filtering mechanisms implemented in 
software by means of kernel modules. NetVM [15, 16] is a virtual machine 
designed to simplify the development and maintenance of complex and yet 
efficient packet processing applications running on top of heterogeneous 
network devices. FFPF [17] is an extensible and high-performance packet 
capture and filtering architecture based on Linux. Contrary to our work, FFPF 
does not leverage modern multi-core or multi-queue interfaces. The SCAMPI 
project [18] provides a feature rich monitoring API but it has been designed to 
run on top of specialized monitoring devices and therefore it yields poor 
performance when running over commodity hardware. [22] describes a 
framework for high-speed networks monitoring that provides features such as 
IP defragmentation and flow reassembly, that relies on a pure-software 
implementation of a packet scheduling algorithm proposed in [23]. Our work 
instead, exposes to the software layers an API to design hardware assisted 
packet schedulers. 
Capture accelerators based on FPGA, implement filtering mechanisms at the 
network layer by means of rule sets (usually limited to 32 or 64) similar to 
BPF. Filtering runs at wire-speed. As the rule set is not meant to be changed 
at runtime, its scope of application is drastically limited. Often traffic filtering 
is used to mark packets and balance them across DMA engines. Traffic 
balancing policies are similar to RSS and are usually implemented at the 
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FPGA layer and allow the traffic to be split among cores within a multi-core 
processor. As for traffic filtering, dynamically updating the traffic balancing 
policies at run-time is in practice unfeasible as a card reconfiguration may 
require seconds if not minutes. 

4  Framework Design 

In our past research, we developed an extensible traffic analysis framework 
implemented under the Linux Kernel called PF_RING [11] which accelerates 
packet capture and implements packet parsing and filtering by means of 
dynamically loadable kernel plugins. A user space library called libpfring 
provides an easy to use API that allows user space applications to interact 
with the framework. 

 
Fig. 1. PF_RING Monitoring Framework. 
 
PF_RING runs on top of commodity network interface cards and can use both 
standard NIC drivers or PF_RING optimized drivers. These drivers, available 
for popular 1 and 10 Gbit adapters produced by vendors such as Intel and 
Broadcom, push incoming packets directly to PF_RING without passing 
through the standard kernel mechanisms hence accelerating capture speed.  
PF_RING provides a flexible rule-based mechanism that allows users to 
assign packets to kernel plugins which are then responsible to dissect, order in 
flows, and compute flow metrics (e.g. voice quality) directly at the kernel 
layer without copying packets to user space. For example, it is possible to 
configure PF_RING to dispatch TCP packets on port 80 to the HTTP plugin, 
and UDP packets on port 5060 to the SIP plugin. The same rule-based 
mechanism can be used for filtering out from PF_RING analysis unwanted 
packets (e.g. discard packets coming from a specific host or port) similar to 
what the firewalling layer does at an operating system level. 
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With the advent of multi-core systems and multi-queue adapters, PF_RING 
has been extended with support of virtual RX queues [12], that enable specific 
plugins/user space applications to receive traffic from specific RX queues. 
The PF_RING kernel infrastructure is responsible to exploit facilities such as 
RSS for balancing and assigning packets to cores while queue information is 
preserved in received packets.  
In summary, PF_RING has become an advanced framework that thanks to its 
rule-based mechanism, has been capable to simplify the engineering of 
modular applications and not just accelerate packet capture. However, the 
rule-based mechanism has been completely implemented in software, and 
therefore, it is inefficient at very high speed such as 10 Gbit. 
Last year Intel introduced X520, a 10 Gbit card based on the new 82599 
ethernet controller [13]. What makes this adapter interesting for PF_RING, is 
the ability to support in hardware dynamically configurable flow affinity 
filters for classifying, load balancing and dispatching traffic flows to 
processor cores. The filtering mechanisms introduced by 82599 can be seen as 
a fine-grained RSS that allows selected flows to be classified and dispatched 
towards specific cores based on configurable packet filters and not on RSS 
hashing. 

 
Fig. 2. Integrating 82599 with PF_RING. 
 
The availability of this affinity facility in commodity adapters has been the 
natural solution to address performance issues of PF_RING at 10 Gbit. 
Exploiting the flow affinity filters is indeed attractive for: 
• leveraging hardware facilities for dispatching packets across PF_RING 

plugins enabled on selected RX queues; 
• dropping unwanted packets in hardware inside the NIC before they hit the 

driver. 
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In a nutshell, flow affinity filters introduce new opportunities, not yet 
exploited by operating systems and monitoring applications, for the 
implementation of hardware assisted packet schedulers capable to accelerate 
traffic analysis applications by fully exploiting the parallelism offered by 
multi-core architectures.  
As we believe that 82599 is just the “first of a kind” and similar flow affinity 
filters mechanisms will soon be introduced by other vendors, PF_RING has 
been extended not only to exploit these features as implemented by 82599 but 
also to support future NICs providing similar capabilities. For this reason we 
introduced a new hardware-neutral software layer that is responsible for 
setting up specific flow affinity filtering rules in hardware. This layer has not 
been designed for natively supporting the 82599 controller in PF_RING, but 
rather as a foundation layer for offloading selected filtering tasks to those 
NICs that feature flow affinity filters. This means that: 

• not all facilities offered by 82599 have been supported yet (e.g. IEEE 
1588 time synchronization), but only those (i.e. flow affinity filters) that 
can be currently exploited by PF_RING for accelerating its operations 
(i.e. we have not added support of 82599 in PF_RING, but rather 
exploited those 82599 features that can accelerate PF_RING); 

• adding support in PF_RING for flow affinity filters-like features in future 
NICs, will not require PF_RING redesign but it will just require the 
implementation of new extensions into PF_RING-enabled NIC drivers; 

• existing applications such as RTC-Mon will not need to be recoded (but 
just slightly modified) in order to exploit flow affinity filters, as 
PF_RING transparently sets in hardware the appropriate flow affinity 
filters. 

 
PF_RING supports two families of filters: precise filters where the whole 
<vlan, protocol, ip/port src, ip/port dst> tuple needs to 
be specified, and wild card filters where some filter parameters can be 
unspecified (e.g. tcp and port 80). When a packet is received, 
PF_RING uses the “best match first” policy, so it will first try to match the 
packet against configured precise filters, and in case of no match against wild 
card filters. Packets matching a filter will be passed to the specified plugin or 
action, if configured. Hardware flow affinity filters support has been added 
into PF_RING as follows: 
• PF_RING-aware drivers notify (when the driver is loaded inside the kernel) 

the PF_RING engine whenever a given NIC supports flow affinity filters. 
• PF_RING has been extended with a new function named 
handle_hw_filtering_rule() that allow precise and wild carded 
filters to be added/removed inside NICs. 

• For each NIC supporting flow affinity filters, PF_RING adds a virtual file 
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whose path is /proc/net/pf_ring/ethX/rules that network 
administrators, and not just monitoring applications, can use for 
adding/removing filters by means of a simple echo of a string on it. For 
instance echo “+(1,-1,tcp,192.168.0.10,25,0.0.0.0,0)” > 
/proc/net/pf_ring/eth3/rules, instructs PF_RING to add in the 
eth3 device a new filtering affinity rule with id 1 and that sends all TCP 
packets from 192.168.0.10:25 to the core id -1. Since the identifier -1 does 
not correspond to a physical processor core, this rule allows packets 
matching the filter to be dropped at the NIC layer. Using another existing 
queue id would simply advise the filtering mechanism to direct the packets 
to the appropriate queue and hence through the SMP affinity mechanism in 
the Linux kernel into the desired core. 

 
In order not to modify the existing driver structure by introducing new hooks 
for adding and removing filters, we decided to jeopardize some existing driver 
hooks. The advantage is that all current drivers do not need to be changed, 
and this gives us a way to migrate towards packet filtering integration when 
supported in Linux1. The data structure used to pass filter specifications to 
drivers is generic and does not rely on 82599 specific data types. In this way, 
the efforts for supporting future network adapters providing similar features 
will be substantially reduced. 82599 provides several types of filters including 
layer 2 and FCoE (Fibre Channel over Ethernet), but as PF_RING supports 
only precise and wild card filters, we focus only on 5-tuple and flow director 
filters that are very close to PF_RING filters: 

• 5-tuple filters (up to 128 filters can be defined in 82599) allow packets 
belonging to flows identified by the 5-tuple <protocol, ip source, port 
source, ip destination, port destination> to be forwarded to a specific RX 
queue. 5-tuple filters are defined as <id, protocol, ip/port 
src, ip/port dst, target RX queue id>. Some of the 
fields specified in a 5-tuple filter can be “masked” (i.e. wild carded) in 
order to avoid comparing them against incoming packets. 

• Flow Director (FD) filters can be specified as precise (i.e. the filter 
members are matched precisely against incoming packets) or hash (i.e. 
the packet hash is compared against the filter hash, conceptually similar 
to bloom filters [14]) filters. 82599 supports up to 32k precise filters. The 
number of distinct hash filters is not limited by design. However, the 
adoption of excessive hash filtering rules may lead to false positives. FD 
filters are expressed as <slot id, VLAN, protocol, ip 

netmask/port src, ip netmask/port dst, target RX 

                                                      
1 In kernel 2.6.34 the ethtool, not the kernel itself, introduced limited support for EFD 

thanks to patches we submitted to Linux kernel maintainers. 
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queue id>. Currently all configured filters must have the same mask 
defined in 82599.  

 
The 82599 adapter is quite different from many FPGA-based NICs as it does 
not use a TCAM (Ternary Content Addressable Memory) for handling filters. 
This means that a filter is configured by setting up specific NIC registers and, 
therefore, that the last configured filter overwrites the previous register value. 
For this reason, it is not possible to read from the NIC all configured filters, 
and therefore the driver has to maintain the list of configured filters. The 
advantage of this approach is that, contrary to many FPGA-based NICs where 
setting a filter requires card reconfiguration, in 82599 setting a filter is 
extremely fast and from the application point of view it takes as long as the 
setsockopt() system call necessary to pass the filter specification to the 
kernel, making this NIC usable in environments where filter configuration has 
to be dynamically changed. 

5  Use Cases and Validation 

Validation has been performed using an IXIA XM12 10 Gbit traffic generator 
and a NUMA computer using a single 6-core Xeon® X5650 (Westmere) CPU 
at 2.67GHz. In all tests we have injected IPv4 UDP traffic with random 
payload at wire speed, and compared the number of packets sent by the traffic 
generator with those reported by pfcount, a simple packet-counting 
application running on top of PF_RING. pfcount spawns and binds a thread 
per core (i.e. thread X is bound to core X). The injected traffic contained 6 
flows, each balanced to an individual core using hardware filtering rules. 
Packets have been captured using the standard NAPI-based 82599 driver 
enhanced with PF_RING and hardware filtering support.  

Table 1.  Hardware vs. Software Filtering Comparison 

Frame Size 
(Bytes) 

Test 1 Test 2 
Software 

Filter�(Captur
e Rate) 

Hardware 
Filter 

(Capture Rate) 

Software 
Filter�(CPU 

Load) 

Hardware 
Filter 

(CPU Load) 
64 5.7% 6.3% 95.6% None 

128 10.0% 11.6% 95.4% None 
256 19.5% 23.2% 98.7% None 
512 37.4% 42.3% 3.5% None 
1024 99.8% 100% 3.3% None 
1518 99.6% 100% < 0.1% None 
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In the first test we compared hardware (i.e. 82599) vs. software (i.e. 
PF_RING) packet filtering using a single filtering rule that match for every 
incoming packet (i.e. the entire traffic is forwarded to the user space). In the 
second test we have injected traffic that does not match any configured filter, 
and verified that there is no load on the CPU whenever hardware filters are 
used. On the contrary, what we observed with software filters, is that for 
packets up to 256 bytes the CPU utilization was around 95%, and about 3% 
for larger packets. This leads us to the conclusion that in the hybrid model of 
software and hardware filtering we propose, it is recommended to use 
software filters only for medium to large packets. 
In order to further improve packet capture, the authors have developed 
TNAPI [25], a multithreaded RX queue polling mechanism that significantly 
improves packet capture performance with respect to the standard Linux 
NAPI. 

5.1 Realtime Multimedia Traffic Monitoring 

As described earlier in this paper, RTC-Mon has been designed to efficiently 
handle VoIP calls and video-on-demand traffic analysis at 1 Gbit. In order to 
scale the solution to 10 Gbit, we have slightly modified the original RTC-
Mon code as follows: 
• A few 5-tuple filters have been configured: 

• All the SIP signaling packets go to core 0. 
• Non UDP (i.e. ICMP/TCP) packets are dropped. 
• UDP traffic on popular ports (e.g. port 53 used by DNS) is also 

dropped. 
• Whenever a new VoIP call has been setup, such call is tracked by adding 

two FD filters (one per call direction) that send the voice traffic for the 
tracked call (i.e. RTP traffic) to the same RX queue where the RTP plugin 
is active. In order to evenly balance the traffic across queues, the queue ids 
used for voice traffic are selected in round robin so that all queues have 
almost the same amount of traffic. 

 
This setup has allowed RTC-Mon to operate efficiently in 10 Gbit links where 
VoIP is only a portion of the overall traffic, thanks to 82599 filters used to 
discard packets not belonging to calls being tracked. Unfortunately, not all 
unwanted packets have been discarded and a small portion of them is still 
received by PF_RING. This is because 5-tuple filters are evaluated before FD 
filters, hence it is not possible to set 5-tuple rule that discards all the 
remaining traffic because this would also discard traffic that matched by FD 
filters. It is worth noting that the ability to setup thousands of flow affinity 
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filters with almost no latency is a key factor for using effectively 82599 in 
cases where filter setup latency is crucial as with RTC-Mon. 

5.2 Network Troubleshooting 

Troubleshooting a heavily loaded 10 Gbit link using popular tools such as 
tcpdump and wireshark [24] is almost impossible due to severe packet capture 
loss. Furthermore, most commercial tools are not distributed with source 
code, hence it is not possible to recompile them in order to take advantage of 
PF_RING flow affinity filters. In this case, we used PF_RING’s /proc 
interface for setting a few traffic filtering rules that discard in hardware 
unwanted traffic, hence pass to the Linux kernel only those packets that must 
reach network monitoring applications. This solution has the advantage that 
existing applications do not need to be modified, and PF_RING is used just 
for allowing the network administrator to easily configure (e.g. using a shell 
script) flow affinity filters without having to code a C/C++ application sitting 
on top of libpfring.  

5.3 Traffic Classification and Balancing  

In case monitoring applications do not run on the same box where an 82599 
based NIC is installed (e.g. because they run on a non-Linux OS such as 
Windows), it is possible to create a traffic filtering box using the pfreflect 
application part of PF_RING, that filters incoming packets and copies them 
onto one or more NICs based on the PF_RING filters configuration. As 
PF_RING filters (hence flow affinity filters) are evaluated before reflection 
(i.e. packet bridging in PF_RING parlance), this application can be used for 
creating an inexpensive traffic filtering box that can be used for reducing the 
amount of traffic to analyze. If the filtered traffic is less than one Gbit it can 
be forwarded onto a 1 Gbit card so that legacy measurements box do not need 
to be updated to 10 Gbit. Furthermore as PF_RING supports traffic balancing, 
it is possible to forward filtered traffic onto several output interfaces by 
balancing each RX queue of 82599 onto a different output interface. This 
solution allows high-speed links to be monitored and troubleshooted without 
having to purchase costly 10 Gbit measurement boxes. 

5.4 Lawful Interception of Internet Traffic 

Since the approval of the wiretapping in the US in 1984, lawful interception 
(LI) has become very popular. In LI a lawful authority requires to intercept 
and store specific traffic for the purpose of analysis or evidence. In IP 
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networks, this means that traffic originated/directed to specific IPs or flowing 
on specific ports need to analyzed. Doing this on a 10 Gbit link using 
software-based traffic filters can be inefficient as packet loss might prevent 
captured traffic from being analyzed properly. In order to implement a simple 
packet capture system driven by signaling protocols such as Radius or DHCP, 
it is possible to setup (e.g. via the PF_RING /proc filesystem interface) a few 
filtering rules that discard all traffic except signaling (similar to the setup used 
in 5.2) and traffic belonging to target IPs that need to be intercepted. 

5.5 Firewalling at 10 Gbit 

The Linux netfilter/iptables firewall is quite efficient but it cannot operate 
with no loss on heavily loaded 10 Gbit links. The use of 5-tuple filters can 
definitively help dropping unwanted traffic or tracking NAT sessions using 
FD filters. Unfortunately the Linux firewall is more flexible than 5-tuple 
filters, hence it is not possible to do a one-to-one mapping between iptables 
rules and 5-tuple filters. This means that 82599 can be used to discard a large 
portion of incoming traffic but not all, leaving to netfilter the duty of 
completing packet filtering. Nevertheless this hybrid, hardware plus software, 
filtering architecture allows to significantly boost the firewall performance in 
most situations. Currently we are add filters using the PF_RING /proc 
filesystem interface as we have not yet added native 82599 support into 
netfilter. 

6  Open Issues and Future Work 

The main limitation of the current implementation is the lack of a compiler 
that transparently compiles BPF filters into PF_RING (hence flow affinity) 
filters. Due to this limitation, users must configure both BPF filters (e.g. on 
the command line while starting the monitoring tool) and flow affinity filters 
(e.g. using the PF_RING /proc filesystem). In future code releases we plan 
to implement such feature so that BPF-aware applications (e.g. Wireshark) 
can still use BPF for setting filters while the underlying kernel layers add 
automatically flow affinity filters in order to reduce the amount of packets 
that will hit the BPF filtering engine. In addition to 5-tuple and FD filters, 
82599 also supports SYN filter that diverts to a specific core all incoming 
TCP packets with the SYN flag set. While its support would be trivial from 
the 82599 point of view, the PF_RING engine instead needs some extensions 
in order to add filters that can select packets based on TCP flags. 
Finally we would like to use 82599 in the context of OpenFlow switching, for 
implementing efficient in-kernel switching across network applications 
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without requiring external switching equipment. From the hardware point of 
view, we envisage that future NICs will further enhance flow affinity filters 
number and expressiveness (e.g. adding the ability to filter tunneled traffic), 
add per-filter statistics (e.g. number of packets and bytes that matched each 
filter) so that developers could implement efficient NetFlow caches in 
hardware. 

7  Conclusions 

Monitoring the Internet is challenging as high-speed networks are becoming 
popular and traffic patterns more complex. In order to satisfy the increasing 
performance requirements and reduce deployment costs, modern network 
monitoring frameworks should leverage those features offered by mainstream 
NICs that are introduced for general-purpose networking and not fully 
exploited in the context of network monitoring. This paper has presented an 
evolution of PF_RING, a monitoring framework originally designed for 
accelerating packet capture, that exploits hardware-based filtering 
mechanisms offered by the Intel 82599 based NICs and likely future NICs.  
Thanks to flow affinity filters PF_RING can now fine-grain flow balance 
packets across cores, classify traffic and discard unwanted communication 
patterns directly into the NIC before packets hit the driver. The validation 
process has demonstrated that many network applications can benefit from 
this work, making it very general and usable also outside of the network 
monitoring domain. Not to mention that it is finally possible to combine the 
speed of hardware with the flexibility of software for effectively monitoring 
10 Gbit networks using commodity network adapters. 
 
Availability. This work is distributed under the GNU GPL license and is 
available at no cost form the PF_RING home page 
(http://www.ntop.org/PF_RING.html). 
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Abstract. Several countries such as Uruguay and Brazil are implementing
the well-known One Laptop Per Child Program (OLPC) by which every
child that attend to primary school obtains in property a laptop with wire-
less capabilities. They carry their laptops from home to school and back
every day and, as we observed in our research, they also carry their laptops
to parks, community centers etc. That provides a wide platform for oppor-
tunistic, delay tolerant, networking applications. This paper presents a low-
cost, delay-tolerant, network of sensors implemented embedding high-level
decision-making capabilities inside consumer-grade wireless routers working
together with the OLPC laptops. The sensors are deployed at the living
premises of children in environmentally vulnerable neighborhoods as well as
at their schools, parks, etc. The environmental data collected by the sensors
is carried to the school by the laptops and from the school to monitoring
stations over the Internet. In this system, all the entities in the network
are publishers and subscribers of configuration commands, policy-rules and
environmental data, building a flexible, self-management solution.

1 Introduction

Several countries such as Uruguay and Brazil are implementing the well-known One
Laptop Per Child Program (Plan Ceibal in Uruguay [4] and UCA in Brazil [6]) by
which every child that assists to the primary school obtains in property a laptop
with wireless capabilities. Besides carrying the laptops to school everyday, children
frequently keep the laptops with them when going to parks, community centers, etc.
This provides a wide platform for opportunistic networking applications. The basic
concept behind opportunistic networking is that, in the absence of a fixed connectiv-
ity infrastructure, some data of interest (in our case, domestic environmental data)
is transferred between mobile devices using the “connection opportunity” that arise
whenever mobile devices happens to come into the range of other devices because
of the mobility of the devices’ users.

The ongoing DEMOS project (Domestic Environment Monitoring with Oppor-
tunistic Sensor networks) is developing a low-cost platform for environmental sen-
sors, such as air-quality sensors, at the living premises of children in environmentally
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Fig. 1. The DEMOS Project

vulnerable neighborhoods as well as at their schools, parks, etc. The environmen-
tal data collected by those sensors are transmitted, using opportunistic networking
techniques, to the children’s laptops as they pass by during their daily life. Later,
at school, using the same techniques, the data will be transmitted into the local
school server and from there to an environment monitoring station using the Inter-
net. This monitoring station may be operated by governmental or non-governmental
organizations, including the same community that is being object of the monitoring.

Each time data moves from sensors to laptops, school servers and monitoring
stations, the collected information is aggregated and summarized to guarantee the
scalability of the solution. Additionally, since the information may include data
about the position and environment of peoples’ houses, the confidentially of that
information has to be protected by encryption or anonymization techniques.

Opportunistic networks (ON), sometimes called Delay Tolerant Networks (DTN),
as opposed to infrastructure networks, are built on-the-fly by mobile, intermittently
connected ad-hoc nodes, allowing to run delay tolerant applications. Many ON
routing algorithms have been proposed, see [8] for a comprehensive review, but the
common idea is always to store the message, to carry it for some time, and to for-
ward it when a suitable mobile node happens to be in range with the hope that,
after some of these store-and-forward steps, the message will eventually arrive to
its destination.

The optimum values for DTN algorithm’s parameters are dependent on the
network characteristics (number of nodes, movement patterns) and data flow char-
acteristics (load, data patterns). Usually, those attributes are highly dynamic and
hard to predict. Some analysis can be done through extensive simulation, but fact
remains that to optimize the network performance, configuration parameters must
be adjusted to the environment, at runtime.
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We propose a mechanism that allows us to take configuration decisions in a
distributed fashion, responding to high level rules.

The structure of the paper is as follows. The overall description of our ON
protocol is presented in Section 2. Later, in Section 3, we shortly motivate the need
of including self-management capabilities to ON nodes. The overall design of the
system is presented in Section 4.1. The characteristics of our prototype and the main
hardware characteristics and constraints that drive the implementation is presented
in Section 5. Finally, in Section 6, the paper presents an evaluation of the DEMOS
system that shows how it is possible to perform self-optimization decisions with a
very reasonable overhead in terms of CPU and memory.

2 An Opportunistic Content-based Routing Protocol

The DEMOS architecture implies the existence of an opportunistic network between
the sensor devices and the data collection points. In an opportunistic network, the
existence of a connectivity path between any pair of nodes in a given moment is not
guaranteed. For a message to reach its target, it may be necessary that some node
or nodes keep the message in their own memory until they can deliver the message.

There are several methods and algorithms for Opportunistic Routing, but to
support DEMOS operations we created RON, a new content-based opportunistic
protocol. The reasons for creating a new protocol were:

– Usually, opportunistic network algorithms are intended for destination-based
routing. On the other hand, Content-based routing provides us of several ad-
vantages: as specifying a data flow does not rely on having inventory on the
network devices, the deployment is simpler; multicast and broadcast messaging
is more naturally represented; the messages can be dynamically prioritized or
routed based on message properties such as the type of issuing sensor, danger
level, or geographical location. All this rich behavior can be changed at runtime
without changing the configuration of any node of the network, providing great
flexibility.

– Many gossip-based algorithms operate on a Peer-to-peer basis, where each link
is considered isolated from the rest. On the other hand, our target are wireless
networks, where when one node issues a message, all the nodes in its range
receive the message independently of their address in the network layer (the
“broadcast advantage”). Our routing algorithm uses this property to reduce
the network traffic.

RON is a publish-subscribe protocol in which a node that is interested in some
type of messages, issues a subscription that specifies that interest using a logic filter.
This subscription is flooded through the network passing from one node to another
each time those nodes are within range of each other. When a node wants to publish
a notification, it broadcasts a message containing the notification to all the nodes
in the neighborhood. Each of these nodes matches the received message against
the subscriptions it is carrying, and decide whether to carry or ignore it according
to routing rules. Eventually, the message will reach all the subscriber nodes. The
algorithm is described in more detail below.
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NOTIFICATION

notification_id=notif123

source=sensor_node1

message_type=trap

watcher_id=watch_temp

mib=temperature

value=36.5

END

(a) A Notification.

SUBSCRIBE

subscription_id=sid123

subscriptor_id=collector1

FILTER

mib=temperature

value > 35

END

(b) A Subscription.

Fig. 2. The Messages of the Notification Bus

2.1 RON Protocol

In our network, there are two entities: subscriptions and notifications. The associ-
ated messages are plain text multi-line strings.

Notification messages are the mean of distributing information in the network.
A sample notification is shown in Figure 2(a). As seen, it is a simple list of key/value
pairs. The only mandatory attribute is notification id, a unique identifier. The user
of the bus must define additional fields and their semantics. In the example we
can see a source field (the identifier of the sensor node), and the remaining fields
describe the sensor-reading being carried (36.5 from a temperature sensor).

A Subscription message signals the interest of its creating client on receiving
certain notifications. A typical Subscription is shown in Figure 2(b). The subscrip-
tion is composed of two parts, the header and the filter. The header contains general
information, like a unique Subscription identifier and the identifier of the node sub-
scribing. The filter specifies a set of conditions, which must be met by a notification
for it to be delivered to the client. Each condition is of the form attribute-operator-
value, where attribute is a Notification field. If a Notification does not contain that
field, the given expression is considered satisfied. In other words, a Notification fails
a filter only if it contains a field which fails some condition. In the example, the
subscription will match any notification with a payload of a temperature over 35
(whatever sensor node originates it).

To move those entities trough the network, each node maintains Sj , a table
of accessible destination (Subscriptions in our case) with an associated quality for
each. The quality of a destination represents how good is the node to reach that
destination. Nodes periodically exchange their destination lists with their associated
qualities, and update their own qualities in the process. Also, the nodes keep a set of
messages Nj . The amount of messages that can be carried is limited, so a decision
must be made on what message to carry. The destination quality information is
used to select which messages are best carried by the node, which are the messages
targeted at destination with higher qualities.

As usual for a gossiping algorithm, RON can be split in two threads: an active
emitting main loop (the Control Cycle), and a passive event handler (the Message
Handler) that receives, processes and issue messages.
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The Control Cycle periodically triggers two actions. The first is the broadcasting
of a Views message. This message contains a list of all subscriptions in Sj and their
associated quality. The receivers of this node will use that data to maintain their
own subscription qualities and trigger Notification broadcasts. The second Control
Cycle’s action is to periodically decrease the quality for all subscriptions (the aging
process).

The Message Handler listens the network and can receive two types of messages:

– Views message. These messages come from other node’s Control Cycle. Upon
reception, for each subscription in Sj that also appears in in the View mes-
sage, the algorithm will increase its quality. Furthermore, it will iterate trough
all notifications in Nj , and for each that matches a recevied subscription will
broadcast a Notification message.

– Notification message. Notifications proceed from the Message Handler of other
nodes. While Nj is not full, all notifications are stored. When Nj becomes full,
the algorithm will look for a Notification with a smaller accumulated quality Q
to replace. The accumulated quality Q for a notification is implemented as the
sum of all subscription qualities that the given notification matches.

To keep the broadcasts reduced to a minimum, special care is taken. In first
place, when Views message are broadcast, only the subscription’s identifiers and
associated qualities are transmitted. If a node sees the identifier of a subscription
it does not have, it requests it in a separated message. Second, nodes timestamp
entries in Nj and Sj as they listen the medium, and will refrain from transmitting
data already seen inside a (configurable) time frame. Thus, when a Views broadcast
triggers a Notification message broadcast from one node, this message will reach
other nodes in the network and will inhibit them from repeating it. To this purpose
and to avoid synchronization problems every sending is delayed by a small random
time.

When broadcasting a Views message, there is a chance other nodes will answer
with notifications already carried. To reduce this chance, a bloom filter of carried
notifications could be included in said Views message. This way, receiving nodes
could easily check if a notification is a repeat and skip it. For an in-depth description
of the RON algorithm, see [10].

3 Managing a Delay Tolerant Protocol

There are several parameters that have a significant influence on protocol’s perfor-
mance. The optimum values for these parameters depend on network characteristics,
which can be stable through the network’s lifetime, or change over time.

The main configuration parameters of the protocol are:

– Buffer size. This parameter controls the amount of carried notifications. A too
low value can cause message loss, when a message is replaced on all nodes’ buffers
before reaching destination. Too high a value has an impact on performance and
resource consumption, as messages take space to be carried, computing power
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to be checked for transmission, and air time when transmitted. Optimum buffer
size depends on such parameters as network latency (e.g., there is no benefit in
keeping messages after a copy reaches destination) and network load (the rate
of arrival of new messages).

– Subscription quality management parameters. These parameters control the re-
inforcement and aging behavior of the quality of subscriptions, and should be
tuned to the real probabilities of encounter in the network, which in turn depend
on the network density and movement patterns.

– Views broadcast period. This parameter controls the rate of gossiping messages,
and must also match the network density and movement patterns. Too low a rate
will miss encounter opportunities, and too high a rate imposes an unnecessary
load on the network.

There are several other parameters that could be added to the basic protocol, like
remaining battery or available bandwidth. An example of such extension applied to
PRoPHET can be seen in [11]. Our management infrastructure uses all configuration
parameters in a consistent way, and thus provides a method to easily integrate and
take advantage of new variables.

The optimum values for those parameters can be hard to estimate in advance. For
example, the movement patterns and number of nodes change: there is a week/week-
end cycle, and an yearly cycle of vacations. Network patterns also change: a single
new subscription or sensor installed can define a new flow of data that changes
the load imposed on the network. At the same time, the sensor nodes emit data
depending on local readings, and thus are hard to predict.

This leads to the need of a mechanism that would manipulate the configuration
parameters autonomously, adjusting them to optimize the algorithm’s performance.
We implement this mechanism through the use of PDP (Policy Decision Point), a
general purpose policy engine. The idea is that a state machine is used to recognize
patterns that occur in a flow of events as described in [9]. A success in recognizing a
pattern triggers a corresponding action or set of actions. Those actions can be con-
figuration change commands, or abstract notifications that express the occurrence
of a situation. The later can be consumed by other recognizers in a hierarchical way.

4 System Overview

The DEMOS system (see Figure 1) consists of a set of services deployed on the
nodes, according to their function in the DEMOS network. The nodes fall under
some of the following categories:

– Sensor Nodes. These are the nodes that collect environmental data. Those are
usually fixed, and have attached sensing hardware. Different nodes can have
different sensing hardware attached.

– Collectors. These nodes are usually placed in schools, and are the recipients of
data generated by the Sensor Nodes. Data is collected and relayed to a central
Management Station through the Internet.
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Sensors

PDP

Fig. 3. Architecture of a DEMOS sensor node

– Carriers. These are the mobile nodes that relay information from the Sensor
Nodes to Collector in an opportunistic fashion. Usually these are children’s XO
laptops.

– Management Station. All data is summarized and prepared for analysis here.
Also, rules are prepared and deployed from here.

Sensor Nodes, Carriers, and Collectors participate in an Opportunistic Network,
and thus run the supporting service, RON. Additionally, Sensor Nodes run a mon-
itoring service attached to the sensing hardware.

4.1 Common Node Architecture

On Figure 3 the general architecture of DEMOS sensor node is shown. RON and
associated PDP modules are responsible for the opportunistic routing of messages.
They must be available on all edge and mobile nodes participating in the DTN.
RON is the routing service, and it relies on PDP, a general purpose Policy Decision
Point, to take decisions that affect the routing. The PDP service will be described
with more detail in the Section 5.2.

Rmoon is the monitoring service, responsible for collecting and sending sensor
data through the network. The internal architecture of the Rmoon module and
associated sensor device will be described in more detail in Section 5.3.

Mobile nodes for DEMOS only have the RON and associated PDP modules
installed. PDP module is available for other uses besides opportunistic routing.
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It can be used, for example, to allow sensors deciding intelligently on what and
when sensor data must be collected and sent, autonomously trigger actions on some
conditions, etc.

During the development in place of real environmental sensing hardware a gen-
eral purpose microprocessor board was used, the PICDEM FS USB[3] demoboard.
This is a board for prototyping systems based on a Microchip PIC-18 microproces-
sor, and has a temperature sensor and a variable potentiometer on board that were
used as stand-ins for real environmental sensors. Other sensors can be attached to
the board through Digital Lines, I2C bus, A/D converters, etc. This platform was se-
lected on the grounds of low cost and availability on the local market. Nevertheless,
our software has been also ported to the AVR family of microprocessors.

5 Implementation

A requirement for our solution was the need to be deployable on a wide spectrum of
hardware and software platforms. It ranged from Desktop PCs on central data col-
lecting nodes, to embedded platforms such as Linksys WRT54GL wireless routers.
The intermediate nodes included such platforms as OLPC XO laptops and Intel’s
Classmate netbooks, running several flavors of Linux and Windows Operating Sys-
tems. At the same time, sensor nodes should be able to interface with external
sensor hardware. Another point of interest was the ability to be run in a simulation
platform, for better analysis and tuning of the Opportunistic Routing component.

5.1 Language selection

It was decided to develop in Lua[1]. Lua is a compact virtual-machine based dynamic
language, with great emphasis on extensibility. It is weakly typed and has a garbage
collector. It is written completely in ANSI-standard C99 and thus the core has
minimal dependencies, and can be run in an extremely wide spectrum of platforms
down to embedded microcontrollers. At the same time, it offers powerful facilities
to programmers, like regular expression matching, hash-based tables, functions as
first class members, upvalues, and lexical scoping.

Our implementation runs on the core Lua with the only dependency of Lu-
aSocket[12] library. The only platform dependent code needed was for interfacing
the sensor hardware.

The very small number of external dependencies of Lua virtual machine allowed
us to run it inside an experimental ns3 [2] branch intended for running native code.
This branch is at early stages of development, and the high level of isolation of
Lua code allowed us to run production code inside it with only moderate effort.
Being able to run the same code in physical platforms and in the simulator greatly
simplifies the development and tuning of networking protocols. At the same time,
the small size per network node of the runtime allows us to simulate reasonable
large networks. Additionally, ns3 allows to connect a real device to a simulated
network. Thus it is possible to deploy a testbed split between a simulation and
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physical devices, allowing to simulate a large network while monitoring the resource
consumption on a real device.

For the embedded platforms in our tests (consumer grade wireless routers such
as Linksys WRT54GL and Asus 520gu), we have used OpenWRT [5], a distribution
of Linux for embedded devices. This setup provides a profusion of standard tools
for managing and configuring the behavior of the node. At the same time, in recent
versions of OpenWRT Lua is used as a platform for the administration web-page,
and thus most of the runtime needed for our programs is already in place by default.

As a result, we could develop a networking platform, a general purpose decision
engine, and a monitoring software in a high level scripting language, which can run
unmodified on a PC, a wireless router, or a network simulator.

5.2 PDP

PDP’s task is to take autonomous decisions, based on the stream of Notifications
it receives through the Notification Bus. To this purpose, a special policy file is
pushed from a central server. This policy file is generated in the central server
from the rules specified by an administrator, and delivered to the PDP agent in a
command notification through the network. The policy file is a Lua program that
implements a state machine, accessible through function calls. When a policy file
is received, the PDP executes it in a special sandboxed environment, and starts
triggering it with notifications. The state is kept internally in the policy script, and
the PDP must not know how it is implemented, only that call hooks are respected.

The PDP maintains a list of recent notifications, which is shared into the scripts
environment. This list contains a sliding window of the last arrived notifications. To
simplify the state machine, the notifications are ordered in the window by a fixed
ordering rule. In this way, the state machine does not have to handle every possible
permutation of the notifications of interest.

The size of the sliding windows can be set at configuration time. For this purpose
there are two parameters: a length of time in seconds, and a maximum number
of notifications in the window. Also, there is a special category of notifications:
“happening notifications”. Those are notifications that signal permanent change in
some attribute, and thus must be kept in the window for it to be correctly processed.
For example, a decision could depend on whether a given service is active or not,
thus the hypothetical “going up” and “going down” notifications from that service
could be marked as happening to keep them in the window. This way, the state
machine could count on the presence of said notification no mater how old they are.
Marking and unmarking notifications as “happening” is policy’s responsibility, and
the PDP will comply while maintaining the sliding window.

Beside accessing the window, the policy script must provide the following calls:

– initialize () This is called once after the script is loaded.
– process window add () This function is called whenever a new notification ar-

rives. It gives the opportunity to advance the state machine.
– process window move () This function is called whenever the sliding window

moves, thus a notification is removed from the leading edge. This implies that
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the state machine must be reset, and run from the beginning of the window
again.

All three calls can return a list of notifications to be emitted to perform whatever
action the state machine decides to be made. So, initialize() would return commands
to set-up the notification sources needed, and whenever a pattern is recognized dur-
ing either process window add or process window move, the corresponding actions
will be returned.

By expressing the state machine as Lua code, there is no intermediate represen-
tation for the state machine and thus no special parsing. All the parsing work is
done in the central server, and the PDP just executes it.

5.3 Rmoon

Rmoon is a general purpose monitoring service. It is controlled through the RAN
bus: it receives commands to setup and remove “watchers”, and emits notifications
when the watchers get triggered.

Each watcher has a unique identifier used to tag all its notifications. A watcher
observes a variable (called a mib), and specifies a condition the variable must met
to trigger a notification. The condition is specified as a comparison operator (>,
< or =) and a reference value. When the reference value is numeric, an additional
hysteresis value can be provided. The comparison can be specified to be made
against the instantaneous value of the variable, the difference with the last reading,
or the difference with the last value that triggered a notification. In other words,
the conditions can be set on the value of the variable, its rate of change, or the
deviation from last reported value. Additionally, a timeout can be specified, which
triggers a notifications emission if a given time has expired without the notification
being triggered otherwise.

When used to monitor the node’s state, Rmoon uses shell scripts and it is easily
extensible. For the DEMOS project we extended Rmoon with support for exter-
nal sensors. For this purpose we interfaced with a microprocessor software frame-
work developed in our research group, called USB4ALL[7]. USB4ALL is a modular
firmware that provides a high level communication mechanism. It allows the con-
troller to discover installed modules, load and unload them at runtime, and query
them through an RPC-like mechanism. Originally developed for the Microchip PIC-
18 series of microprocessors, it has been also ported to AVR based Arduino platform.
To interface with USB4ALL, a library called Lubot (also written in Lua) has been
developed. The only native code needed on the Rmoon side is a Lua - libusb bind-
ing or a small message oriented serial library (depending on how the microprocessor
board is attached, through USB or serial link).

5.4 RON

As mentioned earlier, RON tries to take the “broadcast advantage”. While in tra-
ditional gossiping algorithms is the emitter responsibility to select the recipients for
his messages, in our implementation the only decision the emitter does is whether to
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Fig. 4. The Prototype Sensor

emit. The listener responsibility is to decide whether they accept the messages, and
thus become the receiver. To this effect, and to keep the traffic at the IP layer for
flexibility, all the traffic for the opportunistic support is encapsulated in broadcast
UDP packets (by default over port 8181).

Another interesting problem is time-stamping of messages: as sensor and mobile
nodes do not have reliable clocks, and the transit time through the network is
highly variable, it is difficult to know when exactly the notification was generated.
Our solution is to record the in-transit time of each message in a special field. Each
time a node forwards a message, the time that the message spent stored in the node
is added to the in-transit field. In this manner, the issuing time of a message is
computed by the receiving node in reference to its local time. For the purposes of
DEMOS project, the precision of this method is satisfactory.

6 Management Footprint

The focus of this paper is on the feasibility of embedding a high-level self-management
system into the constrained devices of a network of sensors. With this goal we have
set up a scenario with one sensor measuring the temperature of the air and pub-
lishing it, and a client producing an increasing number of different subscriptions.

6.1 Experiment

The objective of this experiment is to show that the footprint of the system pre-
sented above in Section 4.1 is small enough for the targeted constrained devices.
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Fig. 5. System Footprint Study.

The setup of this experiment follows the scenario described above. The prototype
sensor is an ASUS 520gu wireless router (as depicted in Figure 4) with 32MB of
RAM and OpenWRT Kamikaze operating system, connected to a general purpose
microprocessor board PICDEM FS USB. This device is running the notifications bus
RON with the buffer size set to 40 messages (about 12KB), the monitoring service
Rmoon and the Policy Decision Point described in Section 5.2. The measurements
depicted bellow are made on this device. The client is a Core 2 Duo PC running
RON.

The experiment runs during 380s. During the first 10s ten watchers are sent
from the client arriving to the sensor during the first 50s. Each of those watchers
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are configured to emit a notification every 5s. The increment on the memory load
produced by the activation of the watchers can be seen at the beginning of the
graphs in Figure 5(b). After the watchers have being submitted, the client start
producing a different subscription every 10s. Every subscription matches with all
the notifications emitted by the sensor. In order to simulate the load of the PDP re-
configuring the routing protocol, every time a subscription is received at the sensor,
the PDP reconfigures RON’s buffer-size to the same value of 40 messages.

Is worth noticing the evolution of the percentage of CPU consumed by the
system in Figure 5(a) and its the memory load in Figure 5(b). The CPU consumed
by Rmoon and the PDP combined is never beyond 10%. The CPU consumed by
the notifications bus is quite spiky but with maximums of around 50%. This leaves
plenty of CPU resources for other tasks. Regarding memory load, it grows during
the arriving of the watchers up to about 1.2MB and then grows moderately as
more subscriptions arrive. Considering that more than 30 different subscriptions
matching the data of ten different watchers every 5s is an extremely high load for a
environmental sensor, we conclude that the tested hardware can cope comfortably
with the expected loads.

7 Conclusions and Future Work

In this paper we have presented the self-management part of an opportunistic net-
work of in-house environmental sensors and a myriad of mobile devices that act
as the carriers of the collected data. Our work shows that a content-based, op-
portunistic routing protocol benefits from some self-configuration features, such as
the dynamic adaptation of the buffer-size of a node to the density of the network.
We conclude that it is feasible to deploy rule-based self-management capabilities
inside very-constrained devices such as the prototype sensor presented in Section 5.
The footprint of the management components is not negligible but, from the initial
experiments, we observe that it is small enough to keep us working on this path.

The system presented in this paper is in its developing stage, therefore much
work remains to be made. The routing protocol presented has many aspects to be
improved, but regarding the self-management functionality of the system, besides
its feasibility, its correctness must be tested extensively. A whole set of management
rules and scenarios are being experimented on the ns3 simulator.

Finally, despite the fact that DEMOS project takes advantage of the Uruguayan
and Brazilian particularities, and proposes to use the platform of low-cost laptops of
the OLPC program, the project idea is easily translatable to other communication
platforms that are becoming ubiquitous in developing countries such as cellular
phones with Bluetooth or other wireless capabilities.
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