

EE E
and Applications
Advances in Network-Embedded Management

Alexander Clemm • Ralf Wolter
Editors

Embedded Management
and Applications

Advances in Network-

Workshop on Network-Embedded

Management and Applications

Proceedings of the First International

October 28, 2010, Niagara Falls, Canada

Printed on acid-free paper

Springer New York Dordrecht Heidelberg London

All rights reserved. This work may not be translated or copied in whole or in part without the

New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly

is forbidden.
computer software, or by similar or dissimilar methodology now known or hereafter developed

Springer is part of Springer Science+Business Media (www.springer.com)

The use in this publication of trade names, trademarks, service marks, and similar terms, even if

they are subject to proprietary rights.
they are not identified as such, is not to be taken as an expression of opinion as to whether or not

Editors
Alexander Clemm

Los Gatos
Kalstert 1446Cisco Systems
40724 Hilden

Ralf Wolter

Germany

ISBN 978-1-4419-7752-6

analysis. Use in connection with any form of information storage and retrieval, electronic adaptation,

e-ISBN 978-1-4419-7753-3

written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street,

DOI 10.1007/978-1-4419-7753-3

© Springer Science+Business Media, LLC 2011

USA
alex@cisco.com rwolter@cisco.com

mailto:alex@cisco.com
mailto:rwolter@cisco.com
http://www.springer.com

Preface

It is a great pleasure to present the proceedings of the 1
st
 International Workshop

on Network-Embedded Management and Applications, NEMA. NEMA was held on

October 28, 2010, in Niagara Falls, Canada, in conjunction with the 6
th

 International

Conference on Network and Service Management (CNSM), the former Manweek. It

was technically co-sponsored by the IEEE Communications Society and by IFIP. The

goal of NEMA was to bring together researchers and scientists from industry and

academia to share views and ideas and present their results regarding management

(and other) applications that are embedded inside the network, as opposed to merely

attached to a network. It is the first workshop dedicated to this particular topic. The

also future editions will be announced.

The motivation behind NEMA is the general trend of modern network devices to

become increasingly “intelligent” and programmable. Examples range from router

scripting environments to fully programmable server blades. As a result, networked

applications are no longer constrained just to servers that are interconnected via a

network, but can migrate into and become embedded within the network itself. This

promises to accelerate the current trend towards systems that are increasingly

autonomous and to a certain degree self-managing. There are several drivers behind

this trend: Equipment vendors continue to add value to the network to counter

commoditization pressures. Network and service providers desire to adapt and

optimize networks ever more closely to their specific environment. The emergence of

cloud in the data center context has provided powerful evidence how programmable

networking infrastructure which facilitates automation of management tasks can lead

to entire new business models. In addition, there is growing recognition of the

importance to make network operation and administration as easy as possible to

contain operational expenses, pushing functions into the network that used to be

performed outside, and to be able cope with control cycles that need to keep getting

shorter from the time that observations are made to the time action occurs.

As network devices are being increasingly opened up to in a way that allows them

to be programmed, the network itself is becoming a platform for a whole new

ecosystem of network-embedded applications serving management and other

purposes. The next frontier lies in applications that go beyond traditional

management and control functions and that are becoming increasingly decentralized,

not constrained in scope to individual systems. Examples include decentralized

monitoring, gossip-based configuration, network event correlation inside the network

across multiple systems, overlay control protocols, and network-aware multi-media

applications. At the same time, another trend looks at leveraging increased

programmability of networks, specifically programmability of data and control plane,

to add more networking intelligence also outside, not inside the network. This is an

exciting time for both researchers and practitioners, as these trends pave the way for

another wave of exciting new opportunities for innovation in networking.

workshop’s Web site can be accessed at http://nema.networkembedded.org/, where

http://nema.networkembedded.org

The six papers that were selected from the submissions to NEMA represent a wide

cross section of varying interpretations of this theme and are divided into two parts.

Part One covers enablers for network-embedded management applications – the

platforms, frameworks, development environments which facilitate the development

of network-embedded management and applications. Starting with the general topic

of how to instrument systems for management purposes and transition from legacy

command-driven to model-driven architectures, it proceeds with a set of papers that

introduce specific examples of hardware- and software based programmable

platforms, namely a programmable low-power hardware platforms, as well as an

application framework for programmable network control that allows application

developers to create complex and application-specific network services. Part Two

covers network-embedded applications that might leverage and benefit from such

enabling platforms, ranging from the determination of where to optimally place

management control functions inside a network, then discussing how multi-core

hardware processors can be leveraged for traffic filtering applications, finally

concluding with an application of delay-tolerant networks in the context of the One

Laptop Per Child Program.

We hope that you will enjoy these proceedings and find the presented ideas

stimulating and thought-provoking. We would like to thank the authors of the papers

without whom the program would not have been possible, the members of the NEMA

Technical Program Committees who provided high-quality reviews that enabled us to

make the final paper selection from the submissions that were received, and the

organizers of CNSM who were hosting NEMA and allowed us to use their conference

facilities. In particular, we would like to thank the team at Springer, first and

foremost Brett Kurzman, without whom these proceedings would not have been

possible and who in many ways got the ball rolling in the first place.

August 2010 Alexander Clemm and Ralf Wolter

Preface vi

Table of Contents

Preface ……………………………………………………………………………. v

Part One: Enablers

Chapter 1

Challenges and Experiences in Transitioning Management Instrumentation

Sean McGuiness, Jung Tjong, Prakash Bettadapur

Chapter 2

Environment ………………………………………………………………………... 19

Pál Varga, István Moldován, Dániel Horváth, Sándor Plósz

Chapter 3

Application Framework for Programmable Network Control …………………...… 37

Rudolf Strijkers, Mihai Cristea, Cees de Laat, Robert Meijer

Part Two: Applications

Chapter 4

Facilitating Adaptive Placement of Management and Control Functions in

Converged ICT Systems ………...…………………………………………………. 53

Dominique Dudkowski, Marcus Brunner

Chapter 5

Wire-Speed Hardware-Assisted Traffic Filtering with Mainstream Network

Adapters ……………………………………………………………………………. 71

Luca Deri, Joseph Gasparakis, Peter Waskiewicz Jr, Francesco Fusco

Chapter 6

Embedded Rule-based Management for Content-based DTNs………….…….…… 87

Jorge Visca, Guillermo Apollonia, Matias Richart, Javier Baliosian,

íEduardo Gramp n

í

from Command-Oriented to Model-Driven ………………..………………………. 1

A Low Power, Programmable Networking Platform and Development

Contributors

Guillermo Apollonia, University of the Republic, Uruguay
Javier Baliosian, University of the Republic, Uruguay
Prakash Bettadapur, Cisco, USA
Marcus Brunner, NEC, Germany
Mihai Cristea, University of Amsterdam, The Netherlands
Luca Deri, ntop, Italy
Dominique Dudkowski, NEC, Germany
Francesco Fusco, IBM Research and ETH Zurich, Switzerland
Joseph Gasparakis, Intel, Ireland
Eduardo Grampin, University of the Republic, Uruguay
Dániel Horváth, Budapest Univ. of Technology and Economics, Hungary
Cees de Laat, University of Amsterdam, The Netherlands
Sean McGuiness, Cisco, San Jose/CA, USA
Robert Meijer, TNO and Univ of Amsterdam, The Netherlands
István Moldován , Budapest Univ. of Technology and Economics, Hungary
Sándor Plósz , Budapest Univ. of Technology and Economics, Hungary
Matias Richart, University of the Republic, Uruguay
Rudolf Strijkers, TNO and Univ of Amsterdam, The Netherlands
Jung Tjong, Cisco, San Jose/CA, USA
Pál Varga, Budapest Univ. of Technology and Economics, Hungary
Jorge Visca, University of the Republic, Uruguay
Peter Waskiewicz Jr, Intel, USA

Reviewers and NEMA Program Committee Members

Raouf Boutaba, University of Waterloo, Canada
Marcus Brunner, NEC Europe Ltd, Germany
Alexander Clemm, Cisco, USA
Waltenegus Dargie, Technical University of Dresden, Germany
Metin Feridun, IBM Research, Switzerland
Olivier Festor, INRIA Nancy, France
Silvia Figueira, Santa Clara University, USA
Luciano Paschoal Gaspary, UFRGS, Brazil
Lisandro Zambenedetti Granville, UFRGS, Brazil
Sven Graupner, HP Laboratories, USA
Masum Hasan, Cisco, USA
Bruno Klauser, Cisco, Germany
Jean-Philippe Martin-Flatin, Consultant, Switzerland
John McDowall, Cisco, USA
Aiko Pras, University of Twente, The Netherlands
Danny Raz, Technion, Israel
Jennifer Rexford, Princeton University, USA
Gabi Dreo Rodosek, Univ. of Federal Armed Forces, Munich, Germany
Volker Sander, FH Aachen University of Applied Sciences, Germany
Akhil Sahai, VMware Inc, USA
Joan Serrat, Universitat Politecnica de Catalunya, Spain
Rolf Stadler, KTH, Sweden
Radu State, Luxembourg University, Luxembourg
Burkhard Stiller, University of Zurich, Switzerland
Carl Sutton, F5 Networks, USA
Ralf Wolter, Cisco, USA
Xiaoyun Zhu, WMware Inc, USA

Chapter 1

Challenges and Experiences in Transitioning

Management Instrumentation from Command-Oriented

to Model-Driven

Sean McGuiness, Jung Tjong, Prakash Bettadapur

Cisco Systems Inc,

170 West Tasman Drive,
San Jose, CA 95134-1706, USA

{smcguine, jtjong, pbettada}@cisco.com

Abstract. The popularity of model-driven development has grown
significantly in recent years pushing its rapid adoption in the
management instrumentation space. While standards and tooling have
been created for virgin management instrumentation applications, little
has been done to address the challenges of transitioning existing
applications into the model-driven arena. With management interfaces
constructed with divergent stovepipe implementations to meet their
differing requirements and data characteristics, moving the entire
system to a model-driven environment is an expensive and impractical
proposition. Discussed are the design challenges and implementation
experiences encountered during the successful transition of a legacy
management instrumentation system to a model-driven system,
including major design choices and the rationale behind them.

oriented, design, development, CLI, SNMP, MIB, legacy,
transition

1 Introduction

around command-oriented interfaces. As Model-Driven Engineering (MDE)
has gained popularity in the management instrumentation community,
designers are looking to transition existing command-oriented management

where targeted commands have been constructed to directly manipulate or

1

instrumentation applications to MDE-based designs. Transitioning systems

Keywords: Management, instrumentation, modeling, command-

A. Clemm and R. Wolter (eds.), Advances in Network-Embedded Management and Applications,

Historically, much of network management instrumentation has revolved

DOI 10.1007/978-1-4419-7753-3_1, © Springer Science+Business Media, LLC 2011

2 NEMA Proceedings

obtain hard-coded reports of configuration and operational data from specific
instrumented features is a challenging proposition. While seemingly model-
friendly data-oriented interfaces such as Simple Network Management
Protocol (SNMP) exist, these interfaces tend to be confined to data monitoring
rather than configuration, provide less functional coverage and are frequently
developed as distinctly separate and parallel instrumentation paths from their
command-oriented counterparts. Over time, this parallelism degrades the
quality, reliability and consistency of the system and complicates transitions
to a model-driven design.

Inconsistencies across interfaces are demonstrated when data and functions

are exposed in one management interface path but not others, like Command
Line Interfaces (CLI) providing instrumentation in one form while the same
instrumentation is supplied in an SNMP management interface in a different
form - or perhaps not at all.

Different and multiply redundant instrumentation results in different and

redundant request processing, inconsistent request handling, and duplicate
configuration synchronization and maintenance requirements. The handling
of a CLI instrumentation request, for example, involves certain parameter and
system state validation coupled with a specific response however; duplicate
constraint validation and default processing can result in inconsistent handling
and duplicate maintenance requirements. CLI has one instrumentation data
access method while SNMP has another. With duplicated instrumentation
access, in order to ensure consistency, quality and reliability, changes to
instrumentation data and data constraints, must be applied and tested in all
interfaces that access instrumentation. This burden is compounded as
instrumentation and management interfaces grow.

The introduction of modeling concepts into a system constructed around a
command-oriented paradigm will be met with difficulty, as there is a
significant impedance mismatch between them. Command-oriented
instrumentation uses specific management interface commands tailored for
particular features that access data and services directly. Conversely model-
driven instrumentation focuses on access to feature data and services through
a common abstract interface shared by all management interfaces. Modeled
instrumentation describes data and services for all management interfaces.
The primary transition problem to overcome is determining the origin of the
instrumentation model. One may utilize the characteristics of data and
services embedded within the command-oriented implementations; one may
create a model based on need and map implementation data and services to it.
The choice is hindered by the inherent impedance mismatch introduced by
multiple and inconsistent implementations of the command-oriented system

Transitioning Management Instrumentation 3

and differences between the implicit and imposed models.

A model-driven system requires an underlying implementation in order to

access instrumentation data and services. This cannot be easily leveraged
from the command-oriented implementation due to its parallel nature.
Retrofitting model-driven instrumentation on a legacy application constructed
with a hard-coded command-oriented instrumentation is difficult. Defining an
accurate model based on the actual implementation is the most pressing
problem. Designers are faced with the choice of whether to use existing
implementations preserving their inconsistencies and redundancies or to
address these problems by creating a new streamlined model-driven
implementation from their domain knowledge and experience.

In this paper the understanding of how management instrumentation system

designs are impacted by this transition is discussed. Challenges and
experiences will be examined through the prism of a real-world development
effort of transitioning a command-oriented management instrumentation
system to a model-driven management instrumentation system.

The remainder of this paper is structured as follows: Section 2 provides

some background on the existing command-oriented instrumentation
methodology. Section 3 covers the design considerations for model-driven
instrumentation derived from command-oriented instrumentation systems
while Section 4 describes key transition implementation experiences. Section
5 covers work in related areas of interest and Section 6 concludes the paper.

2 Background

Prior to discussing the transition challenges and experiences, for a better
understanding of the problem domain, a brief overview of command-oriented
instrumentation methodology is provided.

Management Instrumentation interfaces constructed around command-
orientation do not typically adhere to crisp layered interface and object-
oriented data-hiding principles. Management instrumentation systems often
begin with the simplest management method and grow as requirements grow,
starting with support of feature-based commands targeted for particular
command-line driven instrumentation needs. These CLI interfaces involve
the parsing of a user-entered command that link to a monolithic action
function. These action functions perform validation of system and feature
state and either configure some data or display a hard-coded report describing

4 NEMA Proceedings

instrumented feature. These action functions are intimately linked with the
parse result of their associated command line and the instrumentation they
access.

The action function for all CLIs that manipulate data and services of a

management instrumentation component provide the component’s implicit
management model. Transitioning to a model-driven system, designers define
and impose a model outside of the command-oriented framework and based
on instrumentation domain knowledge and management requirements. They
ultimately face the issue of adapting their defined model to the implicit model
of the CLI implementation. Difficulties arise when the actual instrumentation
capabilities of the implicit model are not reflected in the defined model they
are imposing and vice-versa.

A similar example of this impedance mismatch can be seen in today’s
management instrumentation environment in the area of SNMP MIB support.
An SNMP MIB is a model specified outside of the domain of any specific
instrumentation implementation. A MIB can specify access to management
data and service capabilities that may or may not be reflected in the system
instrumentation. Implementers of SNMP MIB interfaces must provide
mapping between the imposed model of data and services requested by the
MIB and the model implicit in the implementation.

Resolving this impedance mismatch – the differences between the implicit

and imposed management instrumentation models is perhaps the largest and
most complex challenge of the command-oriented to model-driven transition.

3 Design Considerations

Model-driven management instrumentation designs are approached from a
practical inverse of command-oriented designs due to their focal differences.
A command-oriented design focuses on particular management interface
commands and their associated instrumentation with respect to a particular
feature. Conversely, a model-driven design focuses on the feature
instrumentation to be made available for all management interfaces. This
section discusses key design considerations when transitioning from a
command-oriented to a model-driven design.

Figures 1 and 2 below provide a comparison of command-oriented and
model-driven architectures. The command-oriented architecture depends
upon access to feature instrumentation data being tightly coupled with the
management interface. In comparison, the management interfaces of the

Transitioning Management Instrumentation 5

model-driven architecture utilize a loosely coupled common abstract interface
to access feature
instrumentation.

Fig. 1. Command-oriented architecture showing management interfaces directly
manipulating feature data and services. Highlighted is the duplication and coverage
between management interfaces. The CLI showing complete coverage, while others
less
so.

Fig. 2. Illustrates how the model-driven architecture abstracts access to
instrumentation data and services through a common interface and normalizes data
and services availability to all management interfaces. Models in the upper layer
describe the management interfaces, while the models in the lower layer provide
definitions of the instrumentation they manage. Together, these models describe the
management instrumentation of the system in an end-to-end manner.

The general architecture of model-driven instrumentation has five primary

6 NEMA Proceedings

characteristics that should be considered when designing a model-driven
architecture based on a command-oriented system.

3.1 Defining the Instrumentation Model

The instrumentation model may be defined using either of two distinctly
different methods. It may be derived from legacy source code or it may be
explicitly constructed based on domain knowledge.

Derivation from Source Code
In an effort to minimize the impedance mismatch between the imposed model
and the implicit model, deriving the instrumentation model from the
management instrumentation implementation is often considered by
designers. Since the CLI management interface often contains the most
complete implementation it is frequently seen as the canonical source for
model derivation; however, this task can be wrought with difficulty.
Achieving this objective requires correct and complete interpretation of
implementation source code sufficient to extract instrumentation
configuration data elements, operational data elements, and services. Model
element extraction alone is not enough to meet objectives, as the interpretation
of the semantic relationship of features, data, and services is also required in
the modeled system. Without a perfect interpretation, gaps and model
generation errors will require exhaustive human interaction and domain
experience to correct. Moreover, it should be carefully considered if the
implicit instrumentation model in-fact meets the needs of the target model-
driven system.

Designing from Domain Knowledge
Designing an instrumentation model relies heavily on the designer’s
knowledge of the instrumentation domain space. They must understand the
configuration data, operational data and services offered by the
instrumentation and the relationships between them. If modeling an existing
system, it should be accepted that regardless of modeling choices, there is
going to be some level of unavoidable impedance mismatch with legacy
systems; however, when modeling new instrumentation in the model-driven
system, this is not the case. Designers creating models for brand new
instrumentation can ensure models have a 100% match to data and services.
When constructing model architectures, designers should avoid sacrificing
model extensibility by designs that are too rigidly tied to legacy structures.

Transitioning Management Instrumentation 7

3.2 Model Inheritance

When management instrumentation is considered as a collection of models
describing the system’s instrumentation, common elements emerge. These
common elements may be collected into model libraries for leveraging across
instrumentation models. This reduces duplication, streamlines maintenance
and helps to promote consistency across instrumentation modeling.
Constructed models that leverage a model library may implement or extend it.
Derived child models may themselves be model libraries, further extending a
reusable model hierarchy.

3.3 Dynamic versus Static Models

There are two types of methods for model use in the management
instrumentation system – Static and Dynamic. Static models are used at build
time to generate source code or other compile-time entities that are fixed in
the run-time image. Dynamic models are interpreted at run-time at occasions
determined by the management system. If a design is to employ both static
and dynamic models, designers must consider what will occur if the model
fails dynamic interpretation. How will the model’s availability, as well as its
possible dependent libraries be guaranteed? How will version control be
enforced? Consider that dynamic models need not only be validated against
their dependent libraries, but also against any static libraries used to build the
runtime system in which they are being loaded. Designers must take into
account the effects of the system’s ability to successfully dynamically load a
model in order to function and what affects this may have on system
reliability and availability.

3.4 Model Versioning

Designs that include models that can implement or extend a model library
must also consider management and enforcement of model versioning to
ensure compatibility between parent and child models. Defined models must
include a mechanism the model interpreter/compiler may use to determine if
two models are compatible. In a system that utilizes dynamic models, pre-
compiled models must also support version information for system validation
during dynamic interpretation.

3.5 Model-Generated Instrumentation APIs

Modeled management interfaces obtain and manipulate instrumented features

8 NEMA Proceedings

through a common abstract interface design. This abstract middleware
interface directs instrumentation access requests to appropriate
instrumentation for manipulation of data and services through their
instrumentation API.

The instrumentation API is collection of functions that independently

access specific instrumentation data and services. The framework of
functions may be generated from information in the instrumentation model,
but not the particular code to access the actual data or service of the
instrumentation – that must be supplied by the instrumentation developer.

When implementing APIs for modeled legacy instrumentation, there are

two potential sources for instrumentation API implementation source code: 1)
port it from the legacy implementation, 2) write it from scratch. It is
important to consider which method is the most accurate, reliable, and most
reusable. Frequently, only fragments of command-oriented instrumentation
source code may be leveraged in a model-driven design. A careful evaluation
of the effort required to port existing code or to write new and perhaps more
efficient instrumentation code should be carefully considered.

Creating model-driven instrumentation can be more challenging than

command-oriented instrumentation development if model-imposed
restrictions are to be used. Command-oriented development allows direct and
freeform access to feature instrumentation at anytime, from virtually
anywhere, with no interface definition requirements. In contrast, because of
crisply defined constructs, modeled instrumentation has the capability to
ensure rigorous data validation and consistent instrumentation interfaces
between clients and available instrumentation data and services. While this
makes API definition somewhat more challenging than the freeform method,
this is one of the premier benefits of model-driven systems and results in
improved reliability and quality.

4 Implementation Experiences

This section will explore the challenges and experiences gained through the
prism of a real-world development effort where an established command-
oriented management instrumentation system was transitioned to a model-
driven management instrumentation system. It will discuss design choices
and the reasoning behind them.

The most design-influential aspect of the transition was resolving the

Transitioning Management Instrumentation 9

architectural differences between the existing command-oriented system and
the target model-driven system. Viewed by many as an inside out to outside

in transformation, there were two primary areas that stood out as the biggest
hurdles to overcome – instrumentation API development and Instrumentation
Modeling.

There was considerable effort devoted to developing automated tooling that

could minimize the development effort by leveraging existing command-
oriented source code to generate candidate instrumentation models and create
a basic instrumentation API implementation. In order to perform such a task,
the tooling was required to scan and interpret existing source code, derive
APIs and candidate models from embedded domain knowledge. These efforts
were unsuccessful. Resolution of run-time defined abstract function calls and
model semantics proved impractical due to interface complexities and
inconsistencies. The end solution was to not transition the command-oriented
code and functionality but instead to build a framework that utilized the
existing system for existing feature command requests while directing
requests for newly implemented functionality to the model-driven framework.
This allowed the management instrumentation system to maintain it’s
backwards compatibility while at the same time allowing its functionality to
grow within the new model-driven paradigm. This coexistence allows
existing feature and functionality to be transitioned from the legacy
component to the model-driven framework on a piecemeal basis if desired.
Maintaining legacy functionality as a coexisting component within the model-
driven framework was found to be considerably more efficient, reliable and
practical than attempting a manual transition of its entire functional feature
set.

The second highest design hurdle was the construction and composition of

the Model Framework’s APIs. There are two APIs to consider:

1. Middleware Interface API – communicates with management interfaces

such as the CLI, SNMP, Syslog and so forth.

2. Instrumentation API – Handles communication between the
instrumentation data/services and the Middleware Interface.

These APIs must be well considered in order to ensure they satisfy the
needs of their users. The Middleware Interface API communicates with
management interfaces to supply access to managed instrumentation data and
services without tight coupling to the particular kind of feature,
instrumentation, data or service being manipulated. A Create Read Update
Delete and eXecute (CRUDx) interface was selected to best satisfy the

10 NEMA Proceedings

abstract needs of the management interface clients. The CRUDx interface
provides database-like functionality of management instrumentation resources
to client management interfaces.

The Instrumentation API has a similar, but slightly more rigidly defined
CRUDx interface. This interface definition choice satisfied the middleware
layer’s management instrumentation needs enabling it to operate on managed
resource instances and on data and services directly.

Across both interfaces, request data is passed and response data is returned
in a data-oriented fashion. Function oriented APIs were not used as they
restrict input/output to the context of the specific function, making them less
portable. Data orientation promotes efficient use of individual
instrumentation APIs and allows a single request to more efficiently use the
services of many different instrumentation components.

The third challenge was to determine how to design the system for optimal
model management. Examination of the problem domain indicated that there
was a large amount of overlap between the instrumentation models and
potential for efficient model reuse streamlining both the design and
development. Model libraries were defined to promote implementation and
extension of common model components. This led to the imposition of model
version constraints that impacted model content and how models, model
libraries and model elements were referenced by the system.

Modeling decisions led to the proposition that the management interfaces
could be models and such models could reference instrumentation data and
services using abstract identifiers. This broached the subject of dynamic and
static model management. Instrumentation models are static, compiled at
build-time and are part of the application image. Dynamic models, such as
those defining a CLI or an SNMP MIB, may be statically defined at build-
time or loaded and compiled at runtime. Faced with the option of utilizing
static or dynamic models, a half way solution was adopted. Management
interface models were pre-compiled at build-time into quasi-object models
moved the compilation and validation step to build time. This optimization
enabled the run-time system to perform only the interpretation of validated
and prepared pre-compiled models for operation.

An API Implementation Example

Transitioning Management Instrumentation 11

To illustrate the result of some of the API design choices made, a high-level
implementation example is provided. For the sake of brevity, a simple
Interface Flow Monitor was selected. This component monitors the flow of
bytes or packets per second across a network interface and sends and event
when a configured high threshold is exceeded. Additionally, it maintains the
minimum and maximum observed flow rates and provides the capability to
reset this operational data. The model for this component is shown in figure
3.

Fig. 3. Illustrates the model of the Interface Flow Monitor component.

The Instrumentation CRUDx API generated from the Interface Flow
Monitor model is shown below in pseudo code.

errorcode createIntefaceFlowProb(Session);
value readIntefaceFlowProb_unit(ErrorOut);
value
readIntefaceFlowProb_highThreshold(ErrorOut);
value readIntefaceFlowProb_flowRate(ErrorOut);
value readIntefaceFlowProb_minRate(ErrorOut);
value readIntefaceFlowProb_maxRate(ErrorOut);
errorcode deleteIntefaceFlowProb();
errorcode InterfaceFlowProb_resetMinMax();

These functions have direct interaction with the instrumentation and are
called by middleware in response to middleware API originated
instrumentation access requests.

12 NEMA Proceedings

The construct of the middleware API does not depend upon the model,
however, the value of arguments passed are model-dependent. For example,
the URI arguments in the APIs identify the target object instance to create,
read, update, delete or execute. It may also identify a collection of object
instances as in the case of a Collection URI (COL-URI) for manipulation of a
collection of objects and data. The DataIn and DataOut arguments
signify the variant types of data that may be passed between the client and the
identified target object(s). The middleware API is illustrated below in pseudo
code.

errorcode create(URI);
errorcode readConfigData(DataOut, URI);
errorcode readOperationalData(DataOut, URI);
errorcode updateConfigData(DataIn, URI);
errorcode delete(URI);
errorcode execute(DataOut, DataIn, URI);

When the middleware receives a call across this interface, it resolves the
URI to the object instance and performs the associated Instrumentation API
call for the entity.

readOperationalData(long&
lRate,”/services;servicename=
/IFFlowMon/probes;id=/Q/flowRate”
);

The middleware resolves this information to a call to the instrumentation
API shown here in trivial pseudo code:

Q=get(”/services;servicename=/IFFlowMon/probes;id=
/Q”);
lRate=Q->readIntefaceFlowProb_flowRate(ErrorOut);

While most of the fine details of the middleware and instrumentation API
interactions have been excluded, the example illustrates the design choices
and resulting concepts of middleware and instrumentation API construction
from the instrumentation model.

5 Related Work

There is a great deal of work that has been done in the area of Model-Driven
Engineering (MDE) over the past three decades and was crystallized with the
formation of the Object Management Group (OMG) [10] in 2001. The OMG
was formed to establish modeling and model-based standards. Since that

Transitioning Management Instrumentation 13

time, the promises of MDE have been elucidated for the development of new
applications, providing modeling tools, development tools, domain specific
languages, and the like. A virtual plethora of standards and applications have
been created to support the development of new model-driven applications,
however little has been done to address the cost effectiveness of leveraging
existing systems in a model-driven environment. Douglas Schmidt [4] in his
February 2006 Model-Driven Engineering overview states “When developers
apply MDE tools to model large-scale systems containing thousands of
elements, they must be able to examine various design alternatives quickly
and evaluate the many diverse configuration possibilities available to them.”
He refers to the Integrated Modeling Approach of Lockheed Martin Advanced
Technology Laboratories as an example of legacy integration with less than
ideal results: “Reverse engineering is used to build models… from existing
source code. Many previous attempts to reverse-engineer models from source
code have failed due to a lack in constraining aspects of interest.” A similar
experience described in this paper.

In his article “The Pragmatics of Model-Driven Development”, Bran

Selic[6] discusses legacy integration mostly in terms of development tooling
only tangentially touching upon the issue of leveraging application source
code in the modeled environment. In this case, the recommendation was to
take advantage of legacy code libraries and other legacy software where
domain-specific knowledge often resides. While certainly true, this view
overlooks the problems of impedance mismatch between the two designs and
often-prohibitive implementation cost of custom glue code.

At the UML Conference of 2003, Jean Bezivin [2] presented “MDA: From

Hype to Hope, to Reality” where it was stated: “The extraction of MDE-
models from legacy systems is more difficult but looks as one of the great
challenges of the future. There is much more to legacy extraction than just
conversion from old programming languages”. Indeed, it is the variability of
legacy systems, platforms and ultimately the model impedance mismatch that
is at the heart of these challenges.

Unfortunately, most work in the Model-Driven Engineering area focuses on

the rapidly accelerating model-driven technologies and patently avoids
dealing with the big white elephant in the middle of the room – how to
leverage the existing application features and functionality in an efficient and
cost-effective manner.

14 NEMA Proceedings

6 Conclusions

Management instrumentation designers are looking to shift their command-
oriented management instrumentation to model-driven in order to utilize the
benefits of these modern technologies but are daunted by the difficult
challenges that complicate such a transition. Features supported through
stovepipe CLI implementations and augmented with redundant and often only
partial, alternate management interfaces complicate the problem. The practice
of feature-specific/command-oriented implementations, while freeform in
construct, culminates in multiple and redundant request handling,
inconsistencies between management interfaces and differences across
product versions. Perhaps most significantly, it geometrically increases
maintenance requirements and costs due to duplicate and redundant code.
Designers considering a transition to a model-driven system will find this
impedance mismatch to be the most vexing problem.

In an ideal scenario, designers would like to leverage legacy code in the

model-driven system by deriving models directly from the legacy source
code, however this is seldom possible. The tight coupling of individual
management interfaces with manipulated instrumentation data and services
fundamentally blur the lines between the models they desire and the models
implicit within their implemented instrumentation. This makes model
derivation from legacy source an impractical proposition.

Experience has shown that neither reverse engineering nor model-

derivation met expectations, but rather integrating a legacy system as a
coexisting component was found to be the most desirable solution. Instead of
attempting a re-design or fully modeling a seasoned management
instrumentation system, the system itself was leveraged as an integrated
partner of the model-driven framework. This technique allowed the supply
and maintenance of existing features to the system while at the same time
promoted the development of new features and functionality within in the
model-driven framework.

The successful transition of a command-oriented system to a model-driven

management instrumentation framework supporting both management
interfaces and instrumentation involved the resolution of several key design
considerations surrounding API development. Management interfaces reside
above the middleware layer and exist in the management domain, requesting
instrumentation data and services from the middleware interface as clients.
Client services available from this interface are accessed in a manner
decoupled from the instrumentation implementation using functions that
provide well-known Create Read Update Delete and eXecute (CRUDx)

Transitioning Management Instrumentation 15

capabilities. Similarly, the middleware communicates with instrumentation
implementations using a more rigidly defined model-generated CRUDx API
that operates directly on an instance of the instrumentation object, invisible to
management interfaces. Significant in the design of these APIs were their
construction. Decisions that request data would be passed across each
interface affected the kind of API generated. The API exposed to
management interfaces is data oriented in order to facilitate optimal
communication between management agents and middleware. The
Instrumentation API required similar exposition of data and services for direct
operational performance on an instrumentation instance by middleware.

Scrutiny of the instrumentation modeling problem domain revealed a large
overlap of common elements among instrumentation models. Model
leveraging was introduced using model libraries to share common
components among models and model libraries allowing extension and
implementation promoting model reuse. This concept further revealed the
need for model and library versioning to ensure the integrity of referenced
models during compilation and interpretation.

As the implementation of modeling paradigms took hold, the concept of

utilizing modeling to describe management interfaces became clear.
Modeling management interfaces utilizing instrumentation models to connect
management elements to associated instrumentation data and services
promoted an end-to-end management instrumentation development paradigm.
This opened the door to dynamic model management – the idea that a
management model did not have to be built within an application, but could
be installed or removed in a running system dynamically. After considering
dynamic build and interpretation options, designers chose to dynamically load
pre-compiled/validated models. This design choice minimized the runtime
compilation and validation burden on the running system and promoted better
dynamism of the management interface models.

When faced with the daunting task of moving a command-oriented system
to a model-driven paradigm, the impedance mismatch is at the heart of the
matter. Finding a way to bridge the gulf the between the traditional “top-
down” view and the modern “everything is an object” view is the crux of a
successful transition.

Further Work
The transition factors highlighted herein focused on the primary design and
implementation considerations. Additional work should be done to illustrate
the details of integrating an existing management instrumentation system as a

16 NEMA Proceedings

coexistent component in a model-driven framework, covering details of the
glue-logic and model-driven interactions. Moreover, the concepts developed
for code generation from models should be provided to describe the
techniques developed through the experience to provide end-to-end round trip
model, code management and synchronization. Finally, and perhaps most
importantly, the impedance mismatch between the command-oriented and
model-driven paradigms are not restricted to design, but extend to
development processes as well. The experience yielded significant changes to
existing command-oriented development processes and involved much work
with human factors engineering resulting in new, optimized processes
requiring developer management and acceptance. All of these areas are in
need of further research.

References

1. Poole, J. D.: Model-Driven Architecture: Vision, Standards and Emerging
Technologies, ECOOP, Workshop on Metamodeling and Adaptive Object
Models (2001)

2. Bezivin, J.: On the Unification Power of Models, MDA: From Hype to
Hope, and Reality, UML Conference, San Francisco (2003)

3. Tolvanen, J.P.: Making model-based code generation work, Embedded
Systems Europe, Aug 2004,

2010)
4. Schmidt, D. C.: Model-Driven Engineering, IEEE Computer, Feb 2006,

5. Brown, A.: An Introduction to Model-Driven Architecture, IBM Technical

Library,
 http://www.ibm.com/developerworks/rational/library/3100.html

2010)
6. Selic, B.: The Pragmatics of Model-Driven Development, IEEE Software

2003,
 http://www.cs.helsinki.fi/u/przybils/courses/CBD06/papers/01231146.pdf

(retrieved 2010)
7. Daniels, J.: Modeling with a Sense of Purpose, IEEE Software, Jan 2002,
 http://www.syntropy.co.uk/papers/modelingwithpurpose.pdf (retrieved

2010)
8. Bezivn, J., Gerard, S., Muller, P-A., Rioux, L.: MDA Components:

Challenges and Opportunities, 2003,
 http://www.sciences.univ-nantes.fr/lina/atl/www/papers/MDAComponents-

9. Almeida, J.P.A: Model-Driven Design of Distributed Applications,

http://i.cmpnet.com/embedded/europe/esesep04/esesep04p36.pdf (retrieved

http://www.cs.wustl.edu/~schmidt/PDF/GEI.pdf (retrieved 2010)

(retrieved

ChallengesOpportunities.V1.3.PDF (retrieved 2010)

http://i.cmpnet.com/embedded/europe/esesep04/esesep04p36.pdf
http://www.cs.wustl.edu/~schmidt/PDF/GEI.pdf
http://www.ibm.com/developerworks/rational/library/3100.html
http://www.cs.helsinki.fi/u/przybils/courses/CBD06/papers/01231146.pdf
http://www.syntropy.co.uk/papers/modelingwithpurpose.pdf
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/MDAComponents-ChallengesOpportunities.V1.3.PDF
http://www.sciences.univ-nantes.fr/lina/atl/www/papers/MDAComponents-ChallengesOpportunities.V1.3.PDF

Transitioning Management Instrumentation 17

 Telematica Instituut Fundamental Research Series, No. 018, 2006
10. Object Management Group, www.omg.org

http://www.omg.org

Chapter 2

A Low Power, Programmable Networking Platform and

Development Environment

Pál Varga, István Moldován, Dániel Horváth, Sándor Plósz

Budapest University of Technology and Economics
Inter-University Cooperative Research Centre for Telecommunications and

Informatics,
Magyar Tudósok krt. 2, H-1117

Budapest, Hungary
{pvarga, moldovan, horvathd, plosz}@tmit.bme.hu

Abstract. Programmable networking platforms are getting widely
used for customized traffic manipulation, analysis and network
management. This propagates the need for exceptional development
flexibility, for wide variety of high-speed interfaces and for the usage of
high performance, yet low power technologies. This paper presents an
FPGA-based programmable platform, capable of real-time processing,
filtering and manipulating 10Gbps traffic. In order to expand its
potential, besides the two 10GbE interfaces, the platform contains
extension slots for COM express, mini PCI-e, and it has 16 onboard
SFP connectors, towards which the fraction of the traffic, or even the
full traffic can be forwarded to. The design is modular, programmable
in both hardware (firmware) and software, aiming low power
consumption. The full potential of the hardware can only be exploited
with an easy-to-use development environment, with simple design
customization and support for creating new applications. To fulfill this,
a development environment is also presented, including a modeling
framework that provides an easy way to create new networking
applications on the platform. This framework allows modeling
applications in SystemC, and eases the development of the hardware
description code.

Keywords: 10GE, programmable platform, DPI, FPGA, low
power

A. Clemm and R. Wolter (eds.), Advances in Network-Embedded Management and Applications, 19

DOI 10.1007/978-1-4419-7753-3_2, © Springer Science+Business Media, LLC 2011

20 NEMA Proceedings

1 Introduction

Networking at ever growingly high-rate connections constantly generates
challenges for researchers and engineers developing algorithms and
equipment to handle the demands of networking services. The increasing rate
is not the only concern, but it brings some general, seemingly far-away
problems into the limelight.

When data arrives to a system at 10 Gigabit per second rate, the time is
very limited for analyzing or handling it. Moreover, there is no point for its
single storage for further analysis (except for some targeted analysis). If the
system cannot process continuously arriving data, it will not be able to
process it later, when further data still arrives continuously. To optimize data
processing in many levels, tasks should be distributed and made parallel. The
processing level here does not only mean OSI levels, but levels of processing
complexity determined by the given task. Examples for such tasks are flow
assembly based on TCP- and IP-headers, routing and switching between
interfaces, application classification by using DPI (Deep Packet Inspection),
etc. Our system utilizes multiple processors with various capabilities for
processing network traffic in various levels. The capabilities on the main
board are distributed through FPGAs (used for time-stamping and initial
packet header processing) and a general processor (used for management
functions, and basic traffic analysis, statistics creation). Processors on the
COM express PC and the PCIe-connected modules can be utilized for
complex processing, including routing, switching and basic DPI. Furthermore,
the system is prepared for very complex DPI (application analysis through
fingerprints, deep flow analysis, etc.), by means of streaming digested packet
and flow-data to external processors through its 1GbE interfaces.

Low power design is a current and very important requirement in all fields,
including IT systems. The high demand for networking services is covered by
ever increasing number of servers and networking equipment, which, if left
uncontrolled, waste electrical power and simply turns it into heat. On the other
hand, handling or analyzing high speed traffic requires high performance,
which is by definition a term competing with low power consumption. The
challenge of high-performance, yet low-power systems is to find out which
costs less power: should we shut down resources that are not in use and
urgently wake them up when required or should we leave the resource
running. Measuring power consumption and optimization for low power with
high performance was a very key requirement during the definition and design
of our system.

We have also created a development environment together with the
platform. The aim of this is to accelerate the development process of network
applications on FPGAs in general. The environment provides a GUI and a set
of hardware modules which builds up a variety of network devices. Key use-

Low Power, Programmable Networking Platform 21

cases are switching, routing devices, NAT devices, firewalls, deep packet
inspectors, and traffic loopback devices.

The system has been designed and developed by applying a close
hardware-software co-design methodology. This primarily defined the
distribution of tasks among the various types of processors. Beside, this
flexibility allowed the clarification of basic processing modules and
algorithms, which enabled to create a programmable networking platform.

For design space exploration and to validate the design, a SystemC [1]
based modeling environment is used. The results of the SystemC modeling
can be used to construct the final hardware models and the corresponding
software. The SystemC hardware components are also available in generic
hardware description language (Verilog/VHDL) making the synthesis of the
hardware possible. The developers will also be able to generate the top-level
hardware model through the GUI. The modules required for the generic
networking applications have been selected by identifying the most important
use cases.

After the literature survey in the next chapter, we briefly describe the
hardware, the firmware, and the development environment to be used for
various networking applications hosted by the platform. Afterwards we
highlight the usability of the environment through two use-cases: a network
monitoring DPI scenario and a routing/switching scenario.

2 Related Work

In the literature, we have found similar work dealing with packet
processing on FPGA-based systems.

Besides the industry leading Endace DAG packet capture products [3], the
NetFPGA [4] platforms are largely in use in academic research to test for
ideas and implement them on flexible hardware. The TenGig NetFPGA card
is currently under development, and it will be capable of 10G traffic handling.
It will provide 4 XFP ports RLDRAM II, QDRII, SRAM, PCIe 8x interface
and extension connector, powered by a large Xilinx Virtex-5 FPGA,
XC5VTX240T which is quite expensive. A similar platform is developed
within the Cesnet Liberouter project [5], which already provides a 10G
extension card to their extensible Combo system, making it capable of 10G
packet processing. We would also mention an interesting application of
FPGA-based design platforms for Gigabit Ethernet Applications. FPGA-based
implementations offer the possibility of changing the functionality of the
platform to perform different tasks and high packet-processing rate
capabilities. In particular, the authors of [6] proposed a versatile FPGA-based
hardware platform for Gigabit Ethernet applications. By introducing
controlled degradation to the network traffic, the authors provided an in-depth

22 NEMA Proceedings

study on real-application behavior under a wide range of specific network
conditions, such as file transfer, Internet telephony (VoIP) and video
streaming. Other approaches include hardware accelerated routing, e.g. the
work of D. Antos et al. [7] on the design of lookup machine of a hardware
router for IPv6 and IPv4 packet routing with operations are performed by
FPGA. In this framework, part of the packet switching functionality is moved
into the hardware accelerator, step by step. This allows keeping the complete
functionality all the time, only increasing the overall speed of the system
during the whole development process. D. Teuchert et al. [8] also dealt with
FPGA based IPv6 lookup using a pipelined, tree-bitmap algorithm based
method.

The NetFPGA project also provides a development environment for the
programmable hardware platform. Their approach [10] is to provide reference
architectures (interface card, switch, router, etc.) as starting points for new
development. To avoid the necessity of hardware level programming and
provide a high level interface, a framework is presented in [11] to incorporate
hardware G modules into NetFPGA based system designs.

Although there are several similar approaches [9], none of them fulfills the
requirements of the C-Board. The existing hardware is not fast or not scalable
enough, while also the development environment lacks the flexibility and the
required simplicity.

3 The SCALOPES C-board

The ARTEMIS SCALOPES project aims at developing and utilizing novel
methods in low power, high performance embedded platforms. Our
SCALOPES C-board is the prototype platform for the communication
infrastructure-related applications inside the project. The main purpose of the
C-board is to provide a basis for high-speed data processing and manipulation.
It could either host or serve monitoring, switching, routing, filtering and other
applications that require real-time processing of 10 Gigabit Ethernet traffic. In
the following sections the motivations, requirements and the state of the art is
surveyed, followed by the brief description of the architecture.

3.1 Motivation and Requirements

Real time analysis and manipulation of 10 Gigabit Ethernet traffic requires
scalable, high performance equipment. Clear and easy-to-use management
and programming interfaces further ease the task of the user of such
equipment. There are some programmable networking platforms already

Low Power, Programmable Networking Platform 23

available in the field, nevertheless, upto this date we have not found another
platform that
- is both programmable in hardware and software,
- can manipulate the traffic by utilizing PCIe-connected controllers,
- has capabilities to directly forward 10Gbps Ethernet traffic to/from 1Gbps

Ethernet or SONET,
- is designed for measurable low power consumption, and
- has lowered risks for extra developments since composability,

predictability and dependability [2] issues are tackled.
The SCALOPES C-board was designed and developed with the ultimate

intention of putting the above requirements into practice.

3.2 Internal Structure

The practical capabilities of any networking equipment are limited by its
internal elements, their programmability, and its interfaces’ types, modes, and
speed. During the development of the SCALOPES C-board, the requirements
were set high: it is a highly scalable device with a well-defined programming
toolchain, capable of manipulating traffic arriving from SONET, ATM,
Gigabit and 10 Gigabit Ethernet, routing/switching the traffic between these
interfaces and further controlling or processing it through PCIe x4 extension
modules. The simplified architecture of the board is depicted by Fig. 1.

The main components of the device are the following:

- XFPs (10 Gigabit Small Form Factor Pluggable Modules) connecting to
XAUIs (10 Gigabit Attachment Unit Interface) for 10 Gbps traffic
reception,

- SFPs (Small Form/factor Pluggables) to handle various Gigabit Ethernet
ports, for output to devices,

- four FPGAs (Field-Programmable Gate Arrays) connected in a matrix,
used for packet capture and manipulation, including interface handling,
traffic flow handling firmware blocks, basic statistical modules,

- memory for packet buffering and flow tables,
- extra processor for on-board processing and management software,
- redundant power supply.

24 NEMA Proceedings

Fig. 1. The simplified structure of the SCALOPES C-board

Each element of this architecture meets the basic dependability

requirements in order to support the overall dependability/survivability of the
system that it is part of.

The main part of the device is the FPGA matrix (or ring), containing four
FPGAs. The FPGA technology helps building a multi-purpose hardware. A
great advantage of this technology is that a simple firmware switch enables us
to switch between applications much faster than if we needed to switch the
whole device.

 The outside interfaces (SFP, XFP and COM express slots) connect to the
FPGA’s RocketIO ports, which allow high speed communication between
interfaces. The optional variation of interfaces (Gigabit Ethernet optic, 10/100
Ethernet, STM-1 optic etc…) is possible by using SFP module receivers.

The physical and logical connection between the interfaces is defined by
the FPGA firmware ensuring the hardware’s flexibility. The current firmware
is physically stored on flash memory connected to the chips: they load as soon
as the hardware starts. I/O data is shared between FPGAs through a dedicated
communication ring interface. There are two rings defined by the clockwise
and counter-clockwise direction of communication, assigned to the two 10
Gigabit Ethernet interfaces. Fig. 2 depicts the architecture of the board and the
connection of the FPGAs.

Low Power, Programmable Networking Platform 25

Fig. 2. Internal structure of the SCALOPES C-board and the two-way

communication of the FPGAs

There is an additional interface designed for configuration and
maintenance. The FPGAs can be reprogrammed during operation, and the
running IP-core can be controlled/changed through a 10/100 Mbps Ethernet
interface connected to the COM express PC.

3.3 Low Power Design

During the development of the C-board, one of the main, higher goals was to
create a device of low power consumption. Depending on the network
configuration, the used application and the traffic volume the power
consumption of the C-board becomes significantly lower in comparison to
systems that do not use sophisticated power control. As a static requirement, it
can be reached by using low-power electronic elements. The operating power

26 NEMA Proceedings

consumption depends on the clock frequency as well. The C-board is
configured to operate on the lowest frequency on which it is able to process
all of the traversing packets on 10 Gbps interface.

Furthermore, lower power consumption can be reached by close power
control of the programmable devices in a dynamic manner, while they
operate. There are three areas in the SCALOPES C-board where such
Dynamic Power Control (DPC) can be administered: the interfaces, the FPGA
and the memory. DPC is managed by a central resource manager (governor)
application, residing in the compact PC.

Naturally, if an Ethernet interface is not configured to be working in a
given configuration (runtime), its controller is shut down, not consuming any
power. Moreover, the Ethernet interfaces connect to the FPGA chips in a
distributed manner, which means if the related interfaces are not needed, the
corresponding FPGA chip can be assigned to stand-by mode, hence
significantly decreasing the system’s energy consumption. This power
reduction scheme can be initiated runtime, in connection with the network
configuration changes.

Internally to the FPGAs, power islands are defined for segregated
functions: interface handling, packet filtering modules, management modules
and low-speed/high-speed implementations of packet processing algorithms
(depending on timing criteria, the low-speed implementation might be used
for power considerations). Based on the running application and the traffic
volumes the central power governor can decide to shutting down or waking up
these islands.

DDR RAM memory is connected to the FPGAs, and its power-
management can also be controlled from there, runtime: it can be set to stand-
by or power down mode if a given application does not need to use the
external memory.

In order to measure power consumption, sensors are placed at key areas of
the hardware. These sensors send signals about the measured signals to the
management interface, where the data can be collected, analyzed and used for
system tuning.

4 The Development Environment

Developing or even modifying complex networking systems that consist of
hardware and software processing modules require either incredible
experience or extreme braveness – sometimes both. In order to develop
applications to the SCALOPES C-board, efficient hardware and software co-
design methodology must be administered.

Our approach follows a two-step process in the high-level, and based on
elemental building blocks of a modular architecture. The first step in the

Low Power, Programmable Networking Platform 27

process is the development of simulation models, from the modeling blocks
available or ready to be developed. The second step in the process is the
actual hardware and software design, based on the experiences gathered from
the modeling evaluation. This process requires both less experience and less
braveness from the developer, since on one hand the building blocks already
provide some design security, and on other hand he or she is going to be
supported by the understanding the possible obstacles after learning the
simulation models. Fig. 3 depicts the development environment from a high-
level perspective.

The flexible programming capabilities provided by the SCALOPES C-
board’s processors and interfaces can only be exploited if a well-defined
firmware development environment accompanies the device. Experience in
HDL programming may be a serious limiting factor for customized system
enhancements that require firmware development. Hardware, firmware and
accompanying software programming knowledge is rarely present together in
an organization that is not specialized exactly for these – and utilizing only
one of these essential capabilities when experimenting with the networking
platform leads to suboptimal results.

Fig. 3. The development environment

Therefore we provide a development environment that makes the

development of generic applications possible, even without hardware
knowledge. Beside this, custom hardware functions can be also developed
easily, as new building blocks.

28 NEMA Proceedings

The development environment consists of a modeling environment, where
the application is modeled in SystemC, and a hardware/software co-design
methodology, utilizing commercially available programming tools as well.

The development environment gives access for different levels of
complexity, from basic GUI-based modifications to full simulation/modeling
and co-design.

4.1 GUI based development

Starting from a provided generic application architecture, custom firmware
can be easily generated using available “filters”. There are several generic
modules available for packet manipulations that can be inserted at the packet
input/output processing stages of the architecture. These modules may also
provide a software interface, for setting filter rules, reading statistics etc. For
example, a simple firewall can be created by adding input and output filter
blocks to the generic packet forwarding application. Adding NAT
functionality means inserting a NAT module at the egress interface.

Fig. 3 shows the structure of the development environment. The whole
development process can be done using the provided GUI. The GUI is written
in Java, integrates the tools into a development environment and provides
editing functions. The available modules are described in IP-XACT [12]
XML format, and they can be selected from the toolbox and with simple drag-
and-drop operations they can be inserted in the architecture. Composability is
ensured by using the IP-XACT specification format, and is automatically
checked while connecting the interfaces. Both the SystemC and VHDL
sources for the different modules are also provided, along with their IP-XACT
description. The new design can be tested by the SystemC simulation
framework, which provides traffic generators for performance testing and
predictability analysis. The top-level HDL file is generated automatically
based on the connections made on the GUI, and the final firmware can be
synthesized using the Xilinx ISE. As the new application is a modified
version of the generic application with filter components added, its
performance should not change, only an insignificant the latency is introduced
by the filters.

Besides the composability checking, a dependability and predictability
analysis is also possible. The framework will be extended to generate a
Continuous Time Markov Chain (CMTC) based dependability model of the
system stored in a view in the IP-XACT description, which can be used in
open-source simulators like the PRISM model checker [13]. A queuing model
of the hardware can also be created, which makes possible the analysis and
queue dimensioning for different traffic mix scenarios.

Low Power, Programmable Networking Platform 29

4.2 Custom module development

The development of the new applications is also assisted by a number of
available hardware component models that can be used for generic
networking application development. The already available components
define a generic packet processing/forwarding architecture with extensible
filtering and processing properties, and a generic deep packet inspection
architecture. All components come with SystemC and VHDL source code and
IP-XACT description. The extensible, modular architectures are designed to
allow easy integration of application-specific header operations at the ingress
and egress. A method for buffering the packet payload is also provided. Most
of the applications can be covered with the available modules. The
architecture also features a hierarchical power management concept for low
power operation [14].

However, if a custom module is needed for a hardware-level operation
which is not yet available, new modules can be created and added to the
model database by adding the source files to the SystemC and VHDL
directories and creating the IP-XACT XML descriptor. The key issues are the
interfaces of the new component, and the timing requirements. For the most
common operations like input/output processing and flow handling well
defined interfaces are provided with low timing requirements. However, for
line-speed processing all modules must handle back-to-back packet arrivals at
interface speeds. For even easier development generic filter prototypes are
provided with full source code. First, the SystemC model should be created,
for composability and predictability checking. Based on the SystemC model
the HDL model can be created too, and added to the HDL model database.

4.3 Hardware accelerator development

The protocol processing task usually starts with basic input/output operations
like packet reception and queuing. These operations require hardware
processing, for fastest execution. After several stages of header processing, it
may not be suitable for hardware processing because of increased complexity;
software processing is more flexible and desirable. The conventional
networking protocols had simple structure, binary headers and fixed fields.

As we climb the levels of the OSI model, the protocols become more and
more complicated, with variable header lengths and fields. One of the most
difficult protocols to decode are the textual protocols like HTTP and SIP,
where very few things are fixed, fields can be mixed, string identifiers are
used and all fields have variable length. Such protocols require software
processing, involving parsing. There are several methods to enhance the
processing in hardware with accelerator interfaces. Different protocols require

30 NEMA Proceedings

different interfaces, possibly tailored to the given application. Unlike for
network processors, where hardware accelerators are given, we can design
and implement custom hardware accelerators in order to achieve best
performance. There are several hardware accelerators that are generic, like
binary/ternary CAM tables, queue managers etc., but accelerators can be
tailored by an optimization process. In our approach we consider that
processors can reach the hardware accelerators through a simple and fast
interface, like port I/O operation or memory operation to a very specific area.
The optimal separation of software/accelerators/hardware however is an
optimization “knob” that requires an iterative approach to select the optimal
parameters.

A further gain for the hardware acceleration is the decreased power
requirement, since hardware processing has lower cost form the point of view
of energy consumption.

Fig. 4. Hardware/Software optimization process

The accelerator design tools are currently under development. Accelerator
models are protocol-tailored hardware functions like table lookups, string
operations or parallel lookup of several strings etc. The SystemC model of the
protocol processing uses the library models of the hardware, accelerators and
adds the software part too (see Fig. 4). The compiler expands the macros and
includes the code from the model library, creating the simulation executable.
The profiler tool collects data provided by the simulation and the results are
timings, delays and also may estimate energy consumption for specific
modules. Based on the profiler results new accelerators can be defined or
existing ones can be refined and integrated into the SystemC model. The
output of the simulation is the architecture, the hardware and accelerator
modules on one hand, and the protocol processing software on the other.

Low Power, Programmable Networking Platform 31

5 Case Studies

The platform itself is capable of high-speed packet processing but can be
extended with industrial PC boards for complex functions and increased
processing power. Therefore it can perform all network related functions from
the low level high-speed packet forwarding to the most complex protocol
processing.

These packet processing architectures also utilize powerful energy
management techniques. First, power islands can be formed, and unused
islands may be powered down. Furthermore, local power management is used
where possible by turning on the processing modules only if they are needed.
Finally, a central manager provides a management interface for the control of
the power islands.

In the following we present several specific use cases for the SCALOPES
C-board.

5.1 A Network Monitoring System with DPI Capabilities

Traffic monitoring plays an important role in network management, network
optimization and planning. Operators are usually aware of only the main
characteristics of the traffic, which generally is limited to an average
throughput with 1-minute granularity. On the other hand, information about
fine granularity of the traffic allows for network tuning and more effective
planning. As the operators switch to 10GbE connections, processing packets
and flows real time at this speed is getting more and more important - no
matter how complex this task really is. Deep packet inspection and flow
analysis cannot be carried out with on this rate by using the currently
available processors and memories, hence the traffic is going to be filtered
and distributed over several processors outside the C-board for full analysis.
In this use-case we present a monitoring system capable of DPI at line speed.
Furthermore, we show that using our easy development environment the DPI
can be easily tailored to the specific requirements. The high-level workflow of
DPI and flow analysis in this system works the in the way depicted by Fig. 5.
The C-board receives the monitored traffic through the 10Gbps XFPs, and
initially timestamp each packet. Depending on their configuration, the filter
modules pass “interesting” packets to the forwarding buffer, and sends these
to flow classification with the rest of the traffic. The classifier puts together
flows based on the packet

32 NEMA Proceedings

Fig. 5. DPI firmware architecture

headers. The flow analysis module provides statistics with fine granularity,

and application identification information on each flow. The flow data and the
chosen, “interesting” packets get forwarded from the buffer, through the
output selectors to further processing entities over the 1Gbps Ethernet
channels.

These processing entities are PCs called “Monitor Units” with high
processing and storage capacity. In order to reduce loss of data between the
outsider processing entities and the C-board, the packet information (headers
and predefined parts of the body) get encapsulated in TCP flows and then
forwarded. TCP is needed in order to assure lossless transfer of capture-data
towards the remote units. The Monitor Units carry out complex traffic
identification and traffic matrix analysis, as well as store bit-by-bit packet
header information if configured so.

The basic DPI requires a specific firmware architecture, where the traffic is
flowing from the XFPs towards the classifiers from where it will be de-
multiplexed to 1Gbps speed. The complex DPI algorithms run on the Monitor
Units.

The architecture shows the basic internal architecture for DPI application.
The first and most important “knob” is the flow classifier. Several methods
can be used, for example IP address range based, TCP/UDP port based, etc.,
selecting different portions of the traffic for deep inspection. It is even
possible to configure the flow classifier from software, selecting the hardware
filtering rules easily. Further user-selectable items are the statistic flow
analysis modules. According to the required set of flow information, specific
filters may be inserted in order to get the required information.

Low Power, Programmable Networking Platform 33

The C-Board with the DPI firmware architecture is capable of monitoring
full speed the 10Gbps traffic in both directions, and it can forward it to the
SFP interfaces without packet loss.

Finally, in a realistic use-case a part of the traffic can be streamed to the
SFPs for packet level analysis. Up to 8 Gbps traffic can be streamed to the
receiving monitor PCs dependably [13].

5.2 Generic Switch/Router architecture

The SCALOPES C-Board can also be used as a generic Switching/Routing
architecture with hardware level packet forwarding. The architecture supports
two 10 GbE ports, 16 GbE ports with an arbitrary combination of SFPs.

Fig. 6. Generic Packet forwarding architecture

The used packet processing pipeline is similar to the model recommended

by Xilinx [15] and the model used by the Liberouter project [5]. The packets
are filtered first, then all traffic is written in the DDRAM for buffering. Since
the memory access can be the bottleneck in our packet processing pipeline,
we tried to avoid copying the packet. We have decided to use the shared-
memory packet forwarding model, this way avoiding unnecessary copying of
data. The model has a further advantage: even multicasting/broadcasting can
be done without actually copying the data.

The generic packet forwarding architecture is shown by Fig. 6. The arriving
packets are buffered, while their header information is however forwarded to
the lookup module. The lookup module is responsible to decide on which
interface the packet should leave. For flooding, broadcast and multicast
multiple interfaces may be selected. For different application types, different
routing/switching modules can be designed, which may operate at different
layers of the OSI model, like L2 switching, IPv4 or IPv6 routing, MPLS
packet switching etc. Based on the decision at the lookup module, a short

34 NEMA Proceedings

internal header information is written in the egress interface queues (multiple
queues in case of broadcast/multicast packets). The output filter block is
responsible for scheduling and queuing, and retrieval of packet data from the
DDRAM and transmitting on the egress interface.

The performance of this architecture is only limited by 2 main factors:
lookup speed and DDRAM access. The lookup speed depends on the L2 or L3
forwarding table size and lookup algorithm, while DDRAM access may
introduce delays in case of small packet sizes.

The generic packet forwarding architecture can be extended with a COM
express based PC board, providing considerable processing power. This
extension opens up further application possibilities for the board. Such a
possible application is a Session Border Controller. Session Border
Controllers (SBCs) have evolved to address the wide range of issues that arise
when voice and multimedia services are overlaid on IP infrastructure. These
include a wide range of operations from packet level monitoring tasks through
flow level manipulation tasks to high level signaling processing tasks, all at
high speeds. These put high demand on both hardware and software. With our
C-board extended with a PC board a high performance SBC can be designed.

The key idea in this use case is the close interworking between the
software processing on the PC board and hardware processing on the FPGA
board. The low level processing handles the high-speed traffic and passes only
the network signaling traffic to the processor. The routing protocols and
forwarding control can be done just like in the previous case. An open
protocol like OpenFlow [16] can be used to control the hardware flow
processing.

6 Summary

The SCALOPES C-board is a versatile programmable platform capable of
handling 10Gbps Ethernet traffic. It provides a base platform for various
packet processing applications such as switching, routing filtering,
monitoring, etc. Its modular structure allows its extension with processing
cards to increase its applications with high-speed software processing as well.

The C-board is accompanied by a development environment to unlock its
full potential. The environment supports the development process from
design-space exploration and modeling in SystemC to modular design. It is
based on predefined hardware modules, from which the basic applications
(packet forwarding, DPI) can be constructed. The development environment
will also feature a graphical user interface, providing easy development for
customization. The scalability and low power requirements have been taken
into consideration for both hardware and software design. We have
demonstrated some major application fields for the hardware on use cases.

Low Power, Programmable Networking Platform 35

The DPI use case presents a configurable monitoring tool, with on-line
processing capability and packet- as well as flow-level analysis. The Generic
Switch/Router architecture demonstrates the use of the system as a high
performance switch or router. We also highlighted a scenario for a session
border controller device, capable processing of the traffic in both hardware
and software.

The high-performance, low-power SCALOPES C-board can be widely
used by operators, research engineers and application developers in order to
tackle the challenges of effective traffic handling, network and service
management tasks at 10Gigabit Ethernet connections.

Acknowledgments. The research leading to these results has received funding
from the ARTEMIS Joint Undertaking under grant agreement n° 100029 and
from the Hungarian National Office for Research and Technology (NKTH).

References

1. OSCI SystemC 2.2.0 Documentation: User’s Guide, Functional
Specifications, Language Reference Manual. Online:
http://www.systemc.org/

2. M. Werner, J. Richling, N. Milanovic, V. Stantchev: Composability
Concept for Dependable Embedded Systems, Proceedings of the
International Workshop on Dependable Embedded Systems at the 22nd
Symposium on Reliable Distributed Systems (SRDS 2003), Florence,
Italy, 2003.

3. Endace packet capture hardware, Online: http://www.endace.com/high-
speed-packet-capture-hardware.html

4. The NetFPGA project homepage, Online: http://www.netfpga.org/
5. Liberouter project homepage, Online: http://www.liberouter.org/
6. M. Ciobotaru, M. Ivanovici, R. Beuran, S. Stancu, Versatile FPGA-based

Hardware Platform for Gigabit Ethernet Applications, 6th Annual
Postgraduate Symposium, Liverpool, UK, June 27-28, 2005.

7. D. Antos, V. Rehak, J. Korenek: Hardware Router’s Lookup Machine and
its Formal Verification, ICN'2004 Conference Proceedings, 2004.

8. D. Teuchert, S. Hauger: A Pipelined IP Address Lookup Module for 100
Gbps Line Rates and beyond, The Internet of Future, pp. 148--157., ISBN
978-3-642-03699-6 (2009)

9. Martinek, T. and Kosek, M. NetCOPE: Platform for Rapid Development
of Network Applications. DDECS 2008, April 16-18, 2008, Bratislava,
Slovakia

http://www.systemc.org
http://www.endace.com/high-speed-packet-capture-hardware.html
http://www.endace.com/high-speed-packet-capture-hardware.html
http://www.endace.com/high-speed-packet-capture-hardware.html
http://www.netfpga.org
http://www.liberouter.org

36 NEMA Proceedings

10. M. Attig, G. Brebner,: High-level programming of the FPGA on
NetFPGA, NetFPGA Developers Workshop August 12-14, Stanford, CA,
2009

11. J. Naous et. al., NetFPGA: Reusable Router Architecture for
Experimental Research, PRESTO’08, August 22, 2008, Seattle,
Washington, USA.

12. IEEE 1685-2009, IEEE Standard for IP-XACT, Standard Structure for
Packaging, Integrating, and Reusing IP within Tool Flows, 2009

13. S. Plósz, I. Moldován, P. Varga, L. Kántor, Dependability of a network
monitoring hardware, DEPEND 2010, July 18 - 25, 2010 -
Venice/Mestre, Italy

14. D. Horváth, I. Bertalan, I. Moldován, T. A. Trinh, An Energy-Efficient
FPGA-Based Packet Processing Framework, EUNICE 2010, LNCS 6164,
pp. 31–40, 2010

15. N. Possley, Traffic Management in Xilinx FPGAs, White Paper, April 10,
2006. Online:
http://www.xilinx.com/support/documentation/white_papers/wp244.pdf

16. N. McKeown et al.: OpenFlow: Enabling Innovation in Campus
Networks, OpenFlow White Paper, Online:
http://www.openflowswitch.org/

http://www.xilinx.com/support/documentation/white_papers/wp244.pdf
http://www.openflowswitch.org

Chapter 3

Application Framework for Programmable Network

Control

1,2Rudolf Strijkers, 2Mihai Cristea, 2Cees de Laat, 1,2Robert Meijer

1TNO Information and Communication Technology, Groningen, The
Netherlands,

2University of Amsterdam, Amsterdam, The Netherlands
{strijkers, m.l.cristea, delaat}@uva.nl,

robert.meijer@tno.nl

Abstract. We present a framework that enables application developers
to create complex and application specific network services. The
essence of our approach is to utilize programmable network elements to
create a software representation of network elements in the application.
We show that the typical pattern of an application specific network
service is a control loop in which topology, paths, and services are
continuously monitored and adjusted to match application specific
qualities. We present a platform in which network control applications
can be developed and illustrate possible use cases. Based on these use
cases, new research questions are identified.

Key words: Distributed Computing, Network Management,
Programmable Networks.

1 Introduction

Almost every type of network implements measures to guard against
unexpected environmental changes, such as the effects of failing links,
changing traffic patterns or the failure of network nodes themselves. Such
measures can be considered as optimization of network resources with respect
to network robustness. At the basis of the optimization of network resources
are programs that control the response of the network to changes in and
outside of the network. Moreover, actively controlling network resources is
crucial to maintain the network service that is delivered to applications.

Optimizations have a certain penalty in realistic situations. For example, in
sensor networks [1] minimizing the transmission power of sensor antennae
optimizes battery lifetime, but impacts connectivity. Depending on the
application and the actual situation, engineers will choose an optimum.
Generally, the optimum network service is application-specific, yet in most

A. Clemm and R. Wolter (eds.), Advances in Network-Embedded Management and Applications, 37

DOI 10.1007/978-1-4419-7753-3_3, © Springer Science+Business Media, LLC 2011

mailto:meijer@tno.nl

38 NEMA Proceedings

networks, application programmers have no control over the network. One
reason is that a general applicable, conceptual and technical framework to
program the network is absent [2].

In the absence of any notion of specific application demands, as is usually
the case, network providers offer typically a best or constant effort network
service. Theoretically at least, computer programs can be so specific in their
service requirement and optimal response to disturbances that network
providers cannot configure and control the network for such applications
anymore. If cloud infrastructures would only run on wind energy, for
example, the amount and direction of wind will continuously change the
energy available for computing and network resources. In such cases, (partial)
control over the network must also be transferred to a computer program, i.e.
the application domain, to automate continuous reconfiguration of the
infrastructure.

Traditionally, networks have been designed according to well-defined
requirements. One could say that at this point application domain knowledge
enters the network domain. Conversely, application engineers may use the
interface of a given network service, e.g. sockets in the Internet, to include the
network in the application logic. Here, we extend the latter approach; any
application-specific property of a network service becomes a network control
issue programmed in the application domain, i.e. a dynamic user network
interface. Moreover, we define the basic framework needed to design and
build network control programs in the application domain.

In Section 2 we review state of the art of related areas in programmable
networks, overlay network and sensor networks that allow network control
from the application domain. Then, in Section 3, the application framework is
presented and its functional components are described in Section 4. In Section
5, the implementation and test bed is introduced and Section 6 follows with
examples of applications that control networks. The paper ends with
conclusions and future work in Section 7.

2 Related Work

A basic approach to develop a programmable network is to use general-
purpose computers as Network Elements (NE) and implement C programs
that manipulate packet streams and network links [3-5]. The programmable
and active network [6, 7] community developed the architectures for dynamic
deployment and extensibility of functions in network elements. Other efforts
provide programmability in the control plane of networks, while remaining
backwards compatible with current Internet technologies [8-11]. These
technologies enable network operators to offer better services to applications.

Basically, there are two types of limitations in networks that motivate
application control: (1) limited network functions or (2) limited network
resources. If the network does not offer enough functionality, a well-known

Application Framework 39

approach is to implement the network functions as part of the application, i.e.
create and manipulate a virtualized network (overlay network). If the network
has limited resources to accommodate application demands in a best-effort
manner, frameworks exist to manage the quality of service on behalf of the
application [12-14]. Next, we illustrate some approaches from related network
research areas that deal with these limitations.

Overlay networks enable developers to redesign and implement, amongst
others, addressing, routing and multicast services optimal to their application
domain [15]. Overlay networks are widely used to support specific services,
such as distributed hash tables [16], anonymity [17], and message passing
[18]. Overlay networks might lead to sub-optimal utilization of network
resources, because the mapping to the physical network resources is not open
to the application developer. Moreover, overlay networks essentially duplicate
functions offered by the physical network. Recently, some efforts [19]
propose to expose physical network properties to applications to improve their
mapping to the physical network. Assuming that networks are properly
dimensioned, at least from the user’s perspective, overlay networks are a
straightforward solution to support their specific network service
requirements.

Sensor networks illustrate best limitations in network resources. Sensor
networks motivate tight integration of applications and network services [20].
Because of the resource constraints, sensor network designers attempt to use
the scarce resources efficiently and various approaches to program sensor
networks have been developed [21]. In macroprogramming [22], high-level
programs use an intermediate language to abstract away concurrency and
communication aspects in sensor application programming. A compiler
translates the programs into basic instructions for individual nodes, and takes
communication characteristics into account. In TinyDB [23], communication
is integrated with a data query mechanism. Macroprogramming and TinyDB
show that with a framework that structures the design space of network
control applications, it becomes possible to design and implement reusable
components for new applications.

Our research in advanced applications of networks [24-30] shows that
applications have different optimal network services. Existing network
management systems do offer APIs to configure network services [31]. Such
APIs implement the network abstractions chosen by the network operator. We
found that our use cases in hybrid networks and sensor networks require more
flexible and specific network services than those designed and implemented
by network operators. Because the application domain offers developers more
flexibility, it might be more practical to implement network services as part of
the application. Hence, we developed a model that enables developers to
program networks as part of their application [32]. The resulting framework,
User Programmable Virtualized Networks (UPVN), models the interworking
between networks and applications and provides a conceptual framework to

40 NEMA Proceedings

investigate design patter
shortly introduce the mo

In UPVN (Figure 1),
used directly or through
programs. A NE compo
the application, i.e. a
together create a virtualiz
To accommodate appli
parameters of the NE, a
NEs have the ability to d

UPVN’s developmen
that are crucial for appli
NE uses technologies, s
the Internet. Through
interact simultaneously
optimize the behavio
development, the NE ap
(NC), in the developm
technology allows dyn
interacts with.

The UPVN model lea
is implemented as part o
services and optimizatio
past, we developed a
feasible [33]. In Section
a prototype that include
section, the application
introduced.

Fig. 1. Interworking mode

3 Application Fram

Programmable network
service composition for
network embedded tran
network, however, ap

tterns of application-specific network services. Here, w
model.

, individual NEs are regarded as resources, which a
gh the Internet (open lines) as components in applicatio
ponent (NC) can be seen as a manifestation of the NE
a virtualized NE. Consequently, all virtualized N
alized network, allowing interaction with user program
plication specific packet processing, to set particu
, and to facilitate other functions NEs play in a UPV

to deploy Application Components (ACs).
ent is application driven; creating only those facilitie
plications while other operations remain automated. T
, such as Grid- and web services, to expose interfaces
h the interfaces a NE exposes, various applicatio
ly with the NE. As such, each application is capable
ior of the NE accordingly. During applicatio

 appears as a software object, i.e. Network Compone
pment environment. During run-time, state of the
ynamic extension of the set of NEs the applicatio

leads to a practical framework in which network cont
rt of application domain programs and in which netwo
ations are expressed in user-definable qualities. In t
a prototype UPVN that showed that the approach

ion 4 and 5, we present the design and implementation
des the control concepts we propose. In the followin

tion framework for programmable network control

del of applications and networks.

mework for Network Control

ork element technologies support dynamic netwo
or applications that need new network functions, such
rans coding of video streams. If changes occur in t

pplications must adapt to the new situation. T

, we

h are
ation
E in
NEs
ams.

icular
PVN,

lities
. The
es on
tions
le to
ation
nent

e art
tions

ntrol
work
 the

ch is
on of
wing

 is

work
ch as
 the
The

adaptation process may
process but may also b
edge weights of a short
typically consists of (1)
(2) calculating network
that leads towards the d
known model in control
[35], provides a minima

In order to match the
application has to coll
application developer
update a model the appli
information from all o
principle, the interna
information, such as c
service level agreements

The control applicati
needed to adjust the n
application needs (e.g.
reference. To impleme
translates decisions into
specific to each NE inv
needs to provide a
manipulations that invol

Fig. 2. The application fra

In control theory, a
subtracted from a refere
the control application.
that represent network
controlled state (AC Ac
weights in shortest path
scenario is meaningful
(�) is known or can be
traffic to avoid congesti

Application Framework

ay be at the end-points, such as in TCP flow cont
be in the network, such as a process that changes t
rtest path routing protocol [34]. The adaptation proce
1) inferring (possibly incomplete) network informatio
rk state (3) and adjusting the network to a configuratio

desired optimum. A closed-loop control model, a we
rol theory to influence the behavior of a dynamic syste

al framework for network control (Figure 2).
e network to a state that is optimal to an application, t
llect (possibly incomplete) network information. T

r chooses application specific abstractions (NCx)
plication uses internally. The application combines sta

l or a subset of NEs to update the internal model.
nal model can also include non-network relat
 computing or hosting costs, sensor information a
nts.
ation applies an algorithm to find the actions (NC

 network behavior in such a way that it matches t
. a stable, optimized state), which are described by t
ent changes in the network, the control applicatio

to instructions, such as create, forward or drop pack
involved in the application. This means that the syste
 distributed transaction monitor to keep netwo
olve multiple NE consistent.

ramework to control networks contains a control loop.

a measurement (AC Properties) from the system
erence value, which leads to an error value as input f

. In our framework, the measurements (AC Propertie
rk state may use different metrics compared to t
ctions). For example, a controller may manipulate ed
ath routing based on throughput information. Such

ul if the relation between throughput and edge weigh
be learnt and would be useful to dynamically distribu
stion, for example [34].

41

ntrol
the

cess
tion,
ation
well-
stem

, the
 The
) to

 state
l. In
lated

and

Cy)
s the
y the
ation
ckets
stem

twork

m is
t for

rties)
the

edge
ch a
ights
ibute

42 NEMA Proceedings

Applications exchang
network, possibly over
band). Even though ap
management network,
application complicates
properties, such as laten
that can be exchanged o
incomplete, inaccurate o
the limits in information
designing the control ap

This section introdu
framework for network
related to interworking
model are described.

4 Functional Comp

The OSI reference mo
networks in seven lay
decomposition of a com
lost in the process. If
application interface to
problem domain. How
specific organization of
of functional componen
and organization of netw
the context of the NEs
of NEs in the applicatio
software representation
in the network for filterin

We identify three lay

Fig. 3. Four functional

nge information (NCx,y) with NEs over a communicatio
er the same network the application is controlling (
application developers may have access to a separa
k, the communication path between network a
es the design and validation of the controller. Netwo
tency and packet loss, limit the amount of informatio
 or synchronized. So, NE state information can becom

e or aged. The application developer has to understa
tion exchange of a given network, i.e. observability, wh

pplication.
duced the abstractions needed to provide the ba
rk control in the application domain. Next, the deta
g of applications and networks that lead to a function

ponents

odel organizes the interworking of applications a
layers [36]. The design principle of layering allo
omplex problem, but application specific details may
If network elements are virtualized in software, t
to the software (NCs) can be fine-tuned to the specif
wever, the fine-tuning might lead to an applicatio
of network functions. Here, we define the organizatio
ents to support fine-tuning of the application interfa
etwork functions. The functional organization preserv
 by creating and managing the software representatio

ation domain. For example, an application can use t
n of NEs to manipulate traffic of a single strategic po

iltering or anomaly detection purposes.
layers of abstraction in a distributed program: netwo

l layers characterize practical application domain netwo

ation
 (in-
arate
and

work
ation
ome

stand
hen

basic
etails
tional

 and
lows
y be

the
cific
ation
ation
rface
erves
tation
e the
point

work

work

Application Framework 43

element execution environment, middleware/orchestration, and application
code. The latter can be subdivided in two sub layers, namely the programming
environment providing reusable components such as programming libraries,
and the application program. The result is a four-layer architecture (Figure 3).
Clearly, the architecture resulting from the application point of view is similar
to programmable network architectures [6]. However, the functional
components between the application and programmable network need to be
further defined to support network control from the application domain and is
described next.

The orchestration layer (2) facilitates the interworking of software objects
and ACs located on individual NEs (1). The orchestration layer may also
supports basic mechanisms, such as discovery services, brokers, billing
services, authorization, etc. The usefulness of these services depends on the
network environment and application. In sensor networks, for example, there
just may not be enough computational and storage resources to support an
elaborate set of services.

The programming environment, layer (3), provides the NC implementation
and reusable components, such as a Distributed Transaction Monitor (DTM)
or breadth-first search algorithm, to support programming of a collection of
NCs. Depending on the network environment, some abstractions can be
implemented in the ACs, as a library in the programming environment or
both. For example, the application developer might want to program network
element interactions in a non-blocking manner. Hence, either the
programming environment or the orchestration layer must facilitate non-
blocking interaction mechanisms between ACs and NCs. In our
implementation (Section 3) we use message passing in the orchestration layer
and implemented (an easier to program) blocking interface to the application
(Section 5).

Because network control is now part of the application domain (layer 4),
developers can benefit from a large amount of existing software to implement
network control programs. A characteristic of the control applications is that
they operate on data structures that represent the network state. Therefore, the
programming environment (3) explicitly contains a model of the network and
the orchestration layer must supply the data with which the model can be
updated. In Section 6, we discuss issues related to the accuracy of the network
model.

Some applications support the construction of a network model that is close
to mathematical concepts, such as graphs. The Mathematica [37]
environment, for example, contains a graph data structure, which can be used
as a basis for control applications that require graph algorithms. By enabling
dynamic updates of network state into the Mathematica graph data structure,

44 NEMA Proceedings

domain experts can simply apply graph algorithms to find and remove
(through network manipulation) articulation vertices; vertices that may
disconnect a graph. Besides control, the application layer can also include
visualization or other means of interaction with the network. The integration
with toolboxes, such as those available in Mathematica, makes the application
layer a powerful environment to develop network control applications.

5 Implementation and Test Bed

In the preceding sections, we introduced the framework for control
applications as well as a four-layered functional model to implement such
applications. We developed a test bed according to the presented functional
model (Figure 3) to gain practical insight in the implementation of the
application framework to support network control programs. The test bed
implements the first three functional layers and enables further exploration of
the network control applications that are part of the fourth layer.

5.1 Hardware

The test bed consists of eight machines (four dual processor AMD Opteron
with 16GB RAM and dual port 10Gb NICs and four Sun Fire X4100 with
4GB RAM and 1Gb NICs) interconnected by two 1Gb switches and a Dell
hybrid 1/10Gb switch. All machines run VMWare [38] ESXi hypervisor
software and the virtual hardware is centrally managed and monitored with
VMware vSphere management software. The test bed was bootstrapped with
one Linux instance containing the software we developed, and iteratively
grown to 20 instances to create a non-trivial configuration of networks and
computers (Figure 4).

The setup involves two datacenter locations: a virtual infrastructure running
in our datacenter in Groningen and an interactive programming environment
including an interface to a multi-touch table running in our lab in Amsterdam.
The multi-touch table enables users to interact with NCs (Section 6). The two
locations are connected by two OSI-Layer 2 Virtual Private Networks (VPN)
on basis of OpenVPN [39]: one for control traffic and one for data traffic. At
the receiving host in Amsterdam, the control and data networks are separated
by VLANs.

5.2 Software

The primary purpose of developing a prototype is to gain insight in the
challenges and details to control a network from applications that require

dynamic traffic manipul
control mechanisms. T

software tools into one
software that implement
Packet Processing and
and manipulation facil
originally developed fo
approaches presented in
from other approaches b
manipulate filter graph
language FPL [40]. In

kernel modules that prov
We extended Streamli

in the IPv4 options fiel
Streamline expression d
describes the network b
such as fpl_tbs allow p
chain of packet processi
separately by the cont
manages loading of eac
path, for example.
Orchestration Softwa
network is implemente
Streamline, are wrappe
using a peer-to-peer mo
Each network element
controller). Currently, a
provide basic message-

Fig. 4. Test bed and netwo

(netfilter_fetc

\

 >(fpl_ipdest,

>(skb_transmit)

Fig. 5. A Streamline r

Application Framework

ulation, and to enable experiments with various netwo
 The implementation combines several open sour

ne NE platform. We provide a global overview of t
nts the functional layers.

nd Token Networking. Fine-grained packet processin
cilities are implemented in Streamline [4], a to

 for high-speed packet filtering and similar to oth
 in literature (Section 2). However, Streamline diffe
s by providing a simple and flexible query language
phs on the fly (Figure 5) and a packet processin
n addition, Streamline also allows dynamic loading

rovide specific packet manipulation functions.
mline to support insertion, removal and filtering of ta
ield, which allows us to bind ACs to network traffic.
 defines a chain of packet processing modules, whi
 behavior for a particular application on a NE. Filte
 packets with specific tags to pass through a specif

ssing modules. The expression is calculated for each N
ntrol software and a distributed transaction moni
ach expression on the subsequent nodes to provision

are. The orchestration of ACs in the programmab
nted in Java. ACs available to applications, such
ped by Java objects. Network elements communica
odel. ACs register as a service on the network eleme
t knows at least one peer to which it can connect (t
all peers connect to a single known controller, whi
-passing functions over TCP sockets. The controll

ork connectivity.

tch_in) >(fpl_tbs,expression="TOKEN")

,expression="DST_IP")

t)

 request in which packets are taken from the Lin

45

twork
urce

f the

ssing
tool

other
iffers
ge to
ssing
g of

 tags
. A

hich
ilters,
cific

h NE
nitor
ion a

able
h as
icate
ent.
the

hich
oller

)

inux

46 NEMA Proceedings

also provides basic se
distributed transaction m
implemented as a set of
Currently only a single
controllers on-demand i
Network Model. Our
monitoring ACs that
maintain a network mod
Ping provides basic info
Network Mapper (NMap
interface with ARP, and
/proc/dev/net is used to
kernel,
Uptime collects CPU loa
The controller contains
events, such as NEs reg
entry point for peers tha
subscribes to all know
requests when a new N
to the new network state
AC Management. Man
manipulating AC of the p
the Ruby [43] programmin
at runtime, e.g. Java class

For example, a ruby scrip
insert it into the kernel can

Fig. 6. A multi-touch tab
components of 20 virtual
streamline graph that mult
of (b) is distorted, while th

services that involve more than one NE, such as
n monitor or topology discovery. The basic services a
of ACs and can be used by network control application
gle instance of the controller is used. Creating mo

is a topic for future investigation. (Section 6).
r implementation provides various active and passi

t enables network control applications to create a
odel:
formation about latency and jitter,
ap) [42] can detect nodes in the broadcast domain of

nd
to retrieve basic throughput information from the Lin

load information.
s a Dispatcher AC that allows other ACs to subscribe

registering to or detaching from the network and is t
that connect to the control network. The Dispatcher A
wn network elements and triggers network discove
NE registers, consequently updating its network mod

tate.
anagement functions, such as starting, stopping a

 programmable network implementation, are implemented
ing language. This allows new network behavior to be add

sses, kernel modules or installation of complete applicatio

ipt with instructions to compile new code for Streamline a
an be remotely executed on NEs.

table enables direct manipulation of programmable netwo
al machines. A user (a) modifies a sampler component o
ulticasts a video to screen (b) and (c). As a result, the stre
 the other remains normal.

as a
s are
ions.
more

ssive
 and

of an

inux

ibe to
is the
r AC
very
odel

and
ed in
dded

tions.

e and

work
 of a
ream

6 Network Control

We showed a practic
enables a straightforwa
the setup an interface to
manipulation of video
displayed on computers
user can interact with th
and modify NE param
Streamline. We successf
in Austin, TX [44] (Fig

We developed an inte
which enabled automati
Combining Mathematic
straightforward implem
implemented a Java a
Agent (orchestration l
Mathematica’s, such a
responsive to user input

The Java adapter enab
of a number of data stru

Fig. 7. Mathematica’s fu
network state. The stateme
is updated with informatio
topology discovery.

Application Framework

ol Programs

tical implementation of the model in Section 4, whi
ard prototyping of network control programs. To t

 to view and modify the state of NCs was built. It allo
o streams produced by several nodes, which can

ers with a screen attached. By manipulating the NCs
ith the programmable network: create and modify path

rameters, such as the packet processing chains
ssfully demonstrated the setup at Super Computing 20
igure 6).

nteractive programming environment with Mathematic
ation of the possible user manipulations in the setu

tica with programmable networks allows advanced, y
lementation of network control applications. W
 adapter between Mathematica and the Manageme
 layer). The Java adapter deals with limitations
 as real-time polling of the network, while bein
ut at the same time.
nables the Monitor AC to trigger the continuous upda
tructures in the Mathematica kernel, such as theNetwo

function Dynamic[] facilitates continuous reevaluation
ment redraws the graph every time theNetwork data structu
tion of the network (a). Picture (b) and (c) show two stages

47

hich
 test
lows
n be
Cs, a
paths

 of
2008

atica,
etup.
, yet
We

ment
s of
eing

dates
ork

n of
cture
es of

48 NEMA Proceedings

or thptNetwork, and fa
Mathematica. An elem
network state while the
the current IP network
network is in progress;
and (c). Another visual
3D contour plot (Figure
using the test bed. For e
were implemented by s
throughput measuremen
continuously find and
experiments, we identify

Application develope
model. For network pro
can be tolerated. How
require accurate topolog
influenced by the rate
transported and (3) p
consequences for the co
to divide the network
areas in OSPF. In on
individual control do
architecture, i.e. peer to
can be generated, transp
then for practical purpos

Fig. 8. Network throughp
weights in the thptNetwork

programmable network. T
throughput to the z-axis (i
network and write algorith

facilitates the development of control applications
mentary control application is one that visualizes t

the data structures are updated (Figure 7). For examp
k topology can be displayed while the discovery of t

 fully discovered in (a) and two intermediate steps (
alization example maps throughput measurements on
re 8). We also implemented various control applicatio
r example, two control applications avoiding congestio

switching paths and by dropping packets on basis
ents. Another control application was to developed

d provision disjoint shortest paths [26]. Based on t
tify new research questions.
pers have to consider the accuracy of the netwo

properties as throughput and delay some range of err
wever, applications that require exact shortest path

logy information. The accuracy of the network model
ate at which state information is (1) generated, (

processed. At least (2) and (3) have architectu
 control loop. One possible architectural consequence

 in multiple separately controlled domains, similar
one extreme, dividing up the network into small

domains eventually leads to a fully decentraliz
 to peer networks. In the other extreme, if network sta
sported to and processed fast enough by one controlle
oses a centralized implementation might be preferred.

hput of the test bed visualized in Mathematica. The vert
rk data structure are updated with throughput values from t

. The network topology is mapped to the x-y plane a
 (in bytes per second). This way, a user can detect busy sp
ithms to avoid such spots.

s in
the
ple,

f the
s (b)
on a
tions
stion
is of
ed to
 the

work
error
paths
el is

, (2)
tural
ce is

lar to
aller
lized
 state
oller,
d.

ertex
 the

 and
spots

Application Framework 49

Application developers have to make a trade-off between state exchange
and the processing capabilities of network elements. For example, an
application that finds and removes articulation vertices can run as (1) a
centralized component or, in the other extreme, (2) can run on each NE under
its control. Because the computation of articulation vertices requires full
topology knowledge, running the application on each NE (2) requires
additional mechanisms to update and synchronizes changes in topology.
Between centralized and decentralized implementations of control loops many
architectural variants exist. Likewise, an enormous variety of control
algorithms can be expected. On these points applications programmers would
benefit from research [45] on design patterns of control loops.

7 Conclusion and Future Work

Until now, engineers optimize networks at design time and independent of
application engineers. Examples from sensor networks, hybrid networks and
overlay networks show a need to control networks at run-time. Past efforts
created the programmable network element technologies to support dynamic
network service composition. In this paper, we use these technologies in a
framework for network service development in which each programmable
network element has a software representation in a possibly distributed
application. We presented an implementation of the framework and several
network control applications.

Our implementations are limited to a single application that controls the
network. In case many applications want control over the network, another
control application is needed to manage (conflicting) resource demands, i.e.
an operating system for networks. In the future, however, it can be expected
that network management systems support mechanisms to host and run
applications on the network. Recent research also continues in this direction
(Section 2). More experience is needed to create reusable software
components that enable and simplify control application development for
large networks.

Control loops are a fundamental part of applications that optimize a
specific network service as a response to changes in or outside the network. In
subsequent research we shall determine the operational properties of a control
application (e.g. how accurate is a given network state, what is the delay
between network events and the application’s ability to react, how fast can
failures be detected). We have shown that architectural consequences can be
expected when changes in the network occur faster than a single control loop
can effectuate new adjustments, e.g. in large or unstable networks. In this
case, the application framework needs to support decentralized network
control. Hence, to extend the application framework to support multi-domain,
multi-scale network control is a topic for further research.

50 NEMA Proceedings

Acknowledgments

We thank Wolfgang Mühlbauer, Burkhard Stiller and Bernhard Plattner for
their comments and support.

References

1. Culler, D., Estrin, D., Srivastava, M.: Guest Editors' Introduction:
Overview of Sensor Networks. IEEE Computer 37 (2004) 41-49

2. Ng, T.S.E., Yan, H.: Towards a framework for network control
composition. Proceedings of the 2006 SIGCOMM workshop on Internet
network management. ACM, Pisa, Italy (2006)

3. Elischer, J., Cobbs, A.: FreeBSD Netgraph pluggable network stack

4. Bos, H., Bruijn, W.d., Cristea, M., Nguyen, T., Portokalidis, G.: FFPF:
Fairly Fast Packet Filters. OSDI (2004)

5. Morris, R., Kohler, E., Jannotti, J., Kaashoek, M.F.: The Click modular
router. SIGOPS Oper. Syst. Rev. 33 (1999) 217-231

6. Campbell, A.T., Meer, H.G.D., Kounavis, M.E., Miki, K., Vicente, J.B.,
Villela, D.: A survey of programmable networks. SIGCOMM Comput.
Commun. Rev. 29 (1999) 7-23

7. Tennenhouse, D.L., Wetherall, D.J.: Towards an active network
architecture. SIGCOMM Comput. Commun. Rev. 37 (2007) 81-94

8. Wang, W.M., Dong, L.G., Bin, Z.G.: Analysis and implementation of an
open programmable router based on forwarding and control element
separation. Journal of Computer Science and Technology 23 (2008) 769-
779

9. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L.,
Rexford, J., Shenker, S., Turner, J.: OpenFlow: enabling innovation in
campus networks. SIGCOMM Comput. Commun. Rev. 38 (2008) 69-74

10. Casado, M., Freedman, M.J., Pettit, J., Luo, J., Gude, N., McKeown, N.,
Shenker, S.: Rethinking Enterprise Network Control. Networking,
IEEE/ACM Transactions on 17 (2009) 1270-1283

11. Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N.,
Shenker, S.: NOX: towards an operating system for networks. SIGCOMM
Comput. Commun. Rev. 38 (2008)

12. Braden, R., Clark, D., Shenker, S.: Integrated Services in the Internet
Architecture: an Overview. RFC1633 (1994)

13. Blake, S., Black, D., Carlson, M., Davies, E., Wang, Z., Weiss, W.: An
Architecture for Differentiated Services. RFC2475 (1998)

14. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching
Architecture. RFC3031 (2001)

15. Lua, K., Crowcroft, J., Pias, M., Sharma, R., Lim, S.: A survey and
comparison of peer-to-peer overlay network schemes. Communications
Surveys & Tutorials, IEEE (2005) 72-93

16. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.:
Chord: A scalable peer-to-peer lookup service for internet applications.

http://www.freebsd.org/, accessed at 10 August 2009

http://www.freebsd.org

Application Framework 51

Proceedings of the 2001 conference on Applications, technologies,
architectures, and protocols for computer communications. ACM, San
Diego, California, United States (2001)

17. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-
Generation Onion Router. 13th USENIX Security Symposium (2004) 303-
320

19. Xie, H., Yang, Y.R., Krishnamurthy, A., Liu, Y.G., Silberschatz, A.: P4p:
provider portal for applications. SIGCOMM Comput. Commun. Rev. 38
(2008) ACM--362

20. Romer, K., Mattern, F.: The design space of wireless sensor networks.
IEEE Wireless Communications 11 (2004) 54-61

21. Royer, E.M., Chai-Keong, T.: A review of current routing protocols for ad
hoc mobile wireless networks. Personal Communications, IEEE 6 (1999)
46-55

22. Newton, R., Arvind, R., Welsh, M.: Building up to macroprogramming:
an intermediate language for sensor networks. Proceedings of the 4th
international symposium on Information processing in sensor networks.
IEEE Press, Los Angeles, California (2005)

23. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TinyDB: an
acquisitional query processing system for sensor networks. ACM Trans.
Database Syst. 30 (2005) 122-173

24. Meijer, R.J., Koelewijn, A.R.: The Development of an Early Warning
System for Dike Failures. 1st International Conference and Exhibition on
WATERSIDE SECURITY, Copenhagen, Denmark (2008)

25. Cristea, M., Strijkers, R.J., Marchal, D., Gommans, L., Laat, C.d., Meijer,
R.J.: Supporting Communities in Programmable Networks: gTBN. IFIP
Integrated Management 2009, New York (2009)

26. Strijkers, R.J., Meijer, R.J.: Integrating networks with Mathematica. 9th
International Mathematica Symposium 2008, Maastricht (2008)

27. Cook, G.: ICT and E-Science as an Innovation Platform in The
Netherlands. Cook Report on Internet Protocol. Cook Network Consultants
(2009)

28. Portegies, Zwart, S., Ishiyama, T., Groen, D., Nitadori, K., Makino, J.,
Laat, C.d., McMillan, S., Hiraki, K., Harfst, S., Grosso, P.: Simulating the
universe on an intercontinental grid of supercomputers. Submitted to IEEE
Computer (2009)

29. Kruithof, N., Marchal, D.: Real-time Software Correlation. INGRID
Workshop (2008)

30. Strijkers, R., Cristea, M., Khorkov, V., Marchal, D., Belloum, A., Laat,
C.d., Meijer, R.: Network Resource Control for Grid Workflow
Management Systems. SWF2010. IEEE, Miami, Florida (2010)

31. Haggerty, P., Seetharaman, K.: The benefits of CORBA-based network
management. Commun. ACM 41 (1998) 73-79

32. Meijer, R.J., Strijkers, R.J., Gommans, L., de Laat, C.: User
Programmable Virtualized Networks. Proceedings of IEEE International
Conference on e-Science and Grid Computing. IEEE Computer Society
(2006)

18. Open MPI: Open Source High Performance Computing http://www.open-
mpi.org/, accessed at 11 August 2009

http://www.open-mpi.org
http://www.open-mpi.org
http://www.open-mpi.org

52 NEMA Proceedings

33. Strijkers, R.J.: The Network is in the Computer. Master Thesis.
Informatics Institute, University of Amsterdam, Amsterdam (2009)

34. Fortz, B., Rexford, J., Thorup, M.: Traffic engineering with traditional IP
routing protocols. Communications Magazine, IEEE 40 (2002) 118-124

35. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of
Computing Systems. John Wiley & Sons (2004)

36. Zimmermann, H.: OSI Reference Model--The ISO Model of Architecture
for Open Systems Interconnection. Communications, IEEE Transactions on
28 (1980) 425-432

at 2 August 2007
38. VMWare http://www.vmware.com, accessed at 2 August 2007

40. Cristea, M., de Bruijn, W., Bos, H.: FPL-3: towards language support for
distributed packet processing. Proceedings of IFIP Networking '05 (2005)

41. Linux Netfilter http://www.netfilter.org, accessed at 17 August 2009
42. Network Mapper http://nmap.org, accessed at 7 April 2008
43. Thomas, D., Fowler, C., Hunt, A.: Programming Ruby. Pragmatic

Bookshelf (2004)
44. Strijkers, R., Muller, L., Cristea, M., Belleman, R., Laat, C.d., Sloot, P.,

Meijer, R.: Interactive Control over a Programmable Computer Network
using a Multi-touch Surface. ICCS 2009. LNCS, Baton Rouge, Louisiana
(2009)

45. Feitelson, D.G.: Distributed Hierarchical Control for Parallel Processing.
Computer 23 (1990) 65-77

37. Wolfram Mathematica http://www.wolfram.com/mathematica/, accessed

39. OpenVPN http://www.openvpn.net/, accessed at 14 August 2009

http://www.wolfram.com/mathematica
http://www.vmware.com
http://www.openvpn.net
http://www.netfilter.org
http://nmap.org

Chapter 4

Facilitating Adaptive Placement of Management and

Control Functions in Converged ICT Systems

Dominique Dudkowski and Marcus Brunner

NEC Laboratories Europe, Network Research Division,

Kurfürsten-Anlage 36, 69115 Heidelberg, Germany
{dudkowski|brunner}@neclab.eu

Abstract. Mechanisms for the management and control (M&C) of large-
scale ICT systems, both established and innovative ones, generally
follow a distinct approach on the dimensions from centralized to
distributed and flat to hierarchical architectures. In this paper, we
examine representative M&C frameworks and technologies and show
that such a restrictive architectural choice is incompatible with system
convergence, like computing/networking and fixed/mobile. To improve
this situation, we propose a novel architectural approach that facilitates
the adaptive placement of M&C functions by using different
combinations of distribution and hierarchy patterns concurrently. Using
a computing/networking systems scenario and a simulator prototype,
we illustrate the potential of the proposed M&C approach in achieving
more efficient overall M&C of converged ICT infrastructures.

Keywords: Management systems, control systems, centralization,
distribution, hierarchy, convergence of ICT infrastructures, OpenFlow.

1 Introduction

Modern systems of information and communication technology (ICT) are
in the process of converging on several dimensions, such as
computing/networking and fixed/mobile. Powerful complementary paradigms,
most notably virtualization, enable completely new and comprehensive
system architectures, such as cloud computing, cloud networking, and
amalgamations of both.

Managing such converged ICT systems becomes challenging because
traditionally separated management realms now need to be considered within

A. Clemm and R. Wolter (eds.), Advances in Network-Embedded Management and Applications, 53

DOI 10.1007/978-1-4419-7753-3_4, © Springer Science+Business Media, LLC 2011

54 NEMA Proceedings

a single framework. For example, managing IT and network resources
naturally differs significantly, and virtualization leads to new performance
constraints between computing and networking resources that require the
redesign of management functions.

We argue that management and control (M&C) systems must actively
support both the static nature as well as the dynamic process of convergence
in ICT systems in a way to achieve sustainable M&C for those ICT systems
that are yet to be developed. Current M&C systems, however, are not flexible
enough and competing, disparate views dominate state of the art management
and control systems.

In the quite heterogeneous landscape of M&C approaches, distribution and
hierarchy can be identified as two of the strongest architectural separators that
hinder the management and control of converged systems’ performance. Let
us consider the dimension of distribution, delimited by centralized and
distributed forms of M&C. Surveying the state of the art shows that
established as well as innovative M&C control technologies prevail on both
ends. In the centralized case, classical SNMP architectures, for example, have
proven to be highly reliable, and modern control architectures, such as
OpenFlow [1], [2], show that centralized M&C continues to make sense. On
the other end, fully distributed architectures lead to M&C functions embedded
in the network elements. Two examples are the established spanning tree
protocol (STP) in Ethernet and novel in-network management (INM)
approaches [3], [4], where distributed execution of M&C functions is strongly
preferred and, optimally, does not require external intervention.

More than static choices, M&C is also characterized by transitional
developments, where, for example, handover management in wireless
telecommunication networks moves from centralized to more distributed
solutions (e.g. [5], [6], [7]). It should further be left to the system
administrator which M&C approaches he or she considers to be the most
suitable ones, depending on any of a system’s characteristics (e.g. size) that
may require special consideration. Last but not least, system characteristics
will likely change over time. For example, a system that is successful will
grow in size and some of its M&C functions may have to be enhanced over
time to maintain efficient system operation.

Because fixed architectural choices put tight constraints on the distributed
and hierarchical placement of M&C functions, they provide a limit for
adaptability of converged system M&C. In contrast, there is a need for
freedom of functional allocation. Central control and management have
benefits, such as network element simplification (off-box), in terms of
information to be used for decision-making, and it is a convenient single point
for attaching policies, also high-level, such as business objectives. Strong
distribution may lead to significant gains in performance, reliability,
scalability, flexibility, and robustness [8], e.g. when functions are only locally

Facilitating Adaptive Placement of Management 55

relevant they may significantly reduce the risk of producing computing and
communication bottlenecks. Hierarchical structures, in addition, have the
benefit of improving scalability with little impact on algorithmic logic.

It seems inadvisable to attempt to reconcile M&C approaches by simply
bundling them within a single M&C system, because this would lead to
tremendous complexity and redundancy of functions. It is more appropriate to
conceive a homogeneous approach that allows for different mechanisms to
coexist.

In this paper, we propose a novel architecture for the management and
control of converged ICT systems, which targets at the two dimensions of
distribution and hierarchy. In Sec. 2, we first show how state-of-the-art M&C
frameworks can be characterized along these dimensions in order to illustrate
the lack and need for a homogeneous architectural approach that is able to
unify individual frameworks. In Sec. 3, we introduce a compact architectural
framework that facilitates the coexistence of different M&C paradigms and
the adaptation of M&C function placement over time to keep up with the
dynamics in system convergence. In order to show that the chosen M&C
framework is adequate for practical deployment, we apply it in Sec. 4 to the
scenario of an OpenFlow-enabled data center, in which computing,
networking and virtualization must be considered by management and control.
In the same section, we discuss briefly our simulator prototype and relevant
implementation details and sketch a number of qualitative results in order to
assess the proposed M&C framework. We conclude in Sec. 5 with a summary
and a brief outlook on future work.

2 Related Work

Management and control frameworks in both the literature and deployed
systems are abundant. We therefore focus here on a number of representative
approaches that we present in Fig. 1 in the design space that is formed by the
two dimensions of distribution and hierarchy, based on an extension and
combination of previous classifications in [8], [9], [10], [11], [12]. Each M&C
approach is represented by a shaded rectangle that indicates its approximate
location in the design space and relative to other approaches. The dashed line
indicates a hybridization of approaches, and arrows indicate selected trends in
one or more dimensions.

56 NEMA Proceedings

MANNA
OSI

distribution

hierarchy

OpenFlow

STP

INM
deep

flat

centralized fully distributed

A-GAP

SNMPv1 +
RMON

DNA

BOSS

Femto SON

Mobile
Agents

Hybrid: mobile
agents + SNMP

Event Correlation

ASA

CROMA

SNMPv1

Madeira

P2P-based

FOCALE

TMN

handover management

Fig. 1. ICT management and control systems on the distribution and hierarchy design
space.

Several distributed management frameworks make use of highly distributed
function placement, for example, In-Network Management (INM) [3], [4], the
Autonomic Service Architecture (ASA) [13], the CROMA architecture [14],
DNA [15], Madeira [16], Focale [17], and the framework proposed in [18].
These frameworks also vary in the depth of applied hierarchies, for example,
INM and CROMA allow for a flexible stacking of hierarchical levels for
objective management and policy management, respectively, while the
framework in [18] is restricted to three layers and Focale’s autonomic
management elements suggest cooperation on a relatively flat hierarchy.
These frameworks follow distribution and hierarchy patterns that are in line
with innovative management and control algorithms, such as handover
management [5], [6] and femtocell self-organizing interference management
in [7] in the context of fixed/mobile convergence, flat management and
control protocols such as A-GAP monitoring [19] and STP, and distributed
event correlation frameworks with hierarchical patterns such as [20].

In wireless sensor networks, although highly distributed in nature,
management frameworks capture virtually all coordinates in the design space
[21]. For instance, the centralized system in [22] performs management
operations purely external to the network, while in [23] management tasks are
performed by cooperating network nodes. The motivation for choosing any of
such approaches is to achieve the best compromise between computation and
communication overheads that are dictated by specific management functions.
Hence, WSNs substantiate the claim that coexistence of different architectural
patterns is essential for flexible function placement.

Facilitating Adaptive Placement of Management 57

The authors of [24] also motivate the coexistence of centralized and
distributed management approaches, and concrete hybrid management
architectures are proposed, for instance, in [25], [26]. In these architectures,
more traditional centralized and weakly distributed management frameworks,
e.g. SNMPv1, SNMPv1 + RMON, and TMN [27] (indicated in Fig. 1
according to [8], [9], [10]), are combined with distributed management
approaches that make use of mobile agent technology (e.g. [28], [29]). It is
clear from these hybrid approaches that coexistence is vital for achieving
optimal performance when different management functions are to be
combined, such as high-level versus localized management.

Of specific interest to network virtualization in particular is the recently
proposed OpenFlow network switching technology [1], [2], which is
characterized by a centralized controller that manipulates traffic flows by
parameterizing the flow tables of individual network elements, which hence is
in direct opposition to distributed management frameworks. Complementary,
virtual switching in virtual machine monitors (hypervisors), such as [30],
provide new abstractions to manipulate multiple virtual switches (Open
vSwitches in [30]) to be controlled via a single logical image from a central
point. At the same time, trends towards deeper embedding of control functions
from host to programmable network interface card (NIC) space are pushed by
new performance constraints that are dictated by virtual switching in the host.
Such transitions are facilitated by e.g. [31] and lead to a shift of general
networking functions [32] and in particular OpenFlow-related functions [33],
[34] to the NIC.

3 Adaptive Placement of Management and Control Functions

In this section we introduce the principles and the framework for
implementing a management and control system that is suitable for
converging ICT systems. In particular, this system is focusing on the
facilitation of different degrees of distribution and hierarchies as we will
explain.

58 NEMA Proceedings

embedding

abstraction

autonomy

distribution

hierarchy

Fig. 2. Design space of management and control on 5 dimensions.

Figure 2 is an extension to the design space that we introduced previously
in [3], where we have identified the degree of autonomy, abstraction, and
embedding as three fundamental dimensions along which various network
management functions can be designed. In this paper, we focus on distribution
and hierarchy; the concepts we present in the following are orthogonal to the
work presented in [3], [4], [35].

3.1 Management/Control Capabilities

Let us start by examining the distribution and hierarchy scale in more
detail, where we can identify an intersection between both as a suitable
starting point of our design. In that intersection, a transition from vertical to
horizontal processing of management tasks (flows) occurs. We explicitly
distinguish the semantics of these flows into organization (vertical) and
collaborative (horizontal) to indicate the different nature of these flows. For
instance, organization tasks may be used to inject high-level objectives or
report key performance indicators, while collaboration implements the
algorithms that obtain the values for these.

Based on this view, we define the basic constituting component of
management capability (MC) which we have introduced on a high level in [3].
In order to define its role in acting as a transitional element (mediator)
between organization and collaboration flows of management, we also define
its internal structure in such a way that it can flexibly support that transition
without defining the specific management task. Fig. 3 depicts the structure of
a management capability.

External Interfaces of Management Capabilities

Let us consider the management capability’s external interfaces first that
integrate the capability into more complex management and control structures
(Sec. 3.2). Two distinct interfaces, termed organization and collaboration

Facilitating Adaptive Placement of Management 59

interface, define how the management capability interacts with other
management capabilities on the level of organization (vertical) and
collaboration (horizontal).

More specifically, the collaboration interface is related to algorithm logic
and deals with exchanging information or commands such that a certain
management algorithm can be performed collaboratively across several
instances of the same type of management capability, or across different
functions collaboratively in order to achieve a certain management task. The
particular implementation of this interface may follow different
communication and programming styles, for instance, an RPC or REST style,
discussed in more detail in Sec. 3.4. A typical interaction of an aggregation
algorithm, such as A-GAP [19], for instance, may be the exchanging of partly
aggregated values, and the management algorithm component would make
them a full aggregate eventually that is finally sent in upward direction.

The organization interface has two major tasks. Firstly, it exposes
information to higher levels of abstraction along the organization hierarchy,
the information typically being aggregated or filtered towards a high level of
presentation (e.g. at the management console). Second, the interface receives
objectives that are expressed in a higher level of abstraction and transforms
them into lower level ones. This interface may also follow different
programming styles (Sec. 3.4).

management
capability

collaboration
interface

organization interface

management
algorithm component

objective
enforcement
component

information
retrieval

component

to/f rom higher levels of abstraction

collaboration
interface

point line indicates deployable unit

component
interfaces

Fig. 3. Structure of management/control capabilities.

Both organization and collaboration interfaces exist virtually independent
of the location in which a management capability is executed, which is the
key enabling concept for placing a management capability in any location of
the system that is to be managed (see Sec. 4).

60 NEMA Proceedings

Internal Structure of Management Capabilities

While a management capability’s interfaces allow for the necessary flexibility
in placing the capability into the managed system’s runtime environment as a
whole, a more detailed decomposition of MCs is used to make placement also
flexible with respect to organization and collaboration tasks independently.

In order to allow this, without loss of generality, three basic components
make up a management capability’s interior. Within the management
algorithm component, the actual management algorithm, such as A-GAP, is
located. This component is associated with collaboration and only exposes a
lean interface via which information that is relevant for the organization
perspective is transferred. This interface is usually well understood by the
algorithm designer and can be defined appropriately, but also be extended
easily. For instance, in the case of A-GAP, the top-level aggregation result
may be accessed via this interface in upstream direction, and basic threshold
parameters of the aggregation algorithm may be set in downstream direction.
The management algorithm component is further mapped to the management
capabilities external collaboration interface to allow for communication with
other MCs.

The information retrieval component and objective enforcement component
are responsible for handling information retrieval and composition in
upstream and downstream direction along the organization hierarchy. Note
that objectives might also be called policies. In this paper, we strive to be
independent of the particular mechanisms used to specify objectives, so
policies but also simple configuration of thresholds may all be executed via
the organization path. Both components perform tasks that are related to
organization only. For instance, the information retrieval component may
simply receive the top-level aggregate from one management capability and
hand it over to any other management capability via the organization
interface. The objective enforcement component receives objectives (policies)
from upper levels in the organization hierarchy and may parameterize both the
internal policy and the management algorithm component. An example for the
latter case is to adapt the performance of a management algorithm, e.g.
increase the aggregation latency for a tradeoff of aggregation accuracy.

3.2 Management and Control Structures

From individual management capabilities, arbitrarily complex management
and control structures can be created. Such structures extend vertically from
one or several global management points that terminate the information chain
at the most abstract level (e.g. management consoles) down to MCs that
terminate the management/control hierarchy at the lower end, e.g. at

Facilitating Adaptive Placement of Management 61

individual network elements or at one of the lower layers of a network
protocol stack, down to the hardware of individual network elements (e.g.
network switches).

In a typical management task, for instance, a low-level objective is violated
in a management capability and resolved by the next upstream capability
using a specific self-adaptation mechanism without the need to report to a
general management point. This example illustrates the ability of the proposed
framework to adopt self-management principles, which are considered as an
important means for local self-management operations in order to improve the
management/control systems overall performance and to avoid explicit
interactions with human beings.

3.4 Realization Options

Implementing MC-based network management and control works by defining
the logic of management processes first, and then deploying management and
control functions onto the system in question. The definition of management
processes can be done by a language that is runtime-independent, which
allows specifying functional elements (e.g. network elements), the functions
these elements are to carry out, and how communication between elements is
done.

In particular, the organization and collaboration functions may be
implemented using different kinds of programming/communication models.
Based on our assessment, REST (representational state transfer) and RPC
(remote procedure call) are suitable for organization and collaboration,
respectively. The reason is that organization tasks are likely to be more
abstract in that an objective is modeled as a resource and manipulated via one
of the few generic methods according to REST. For collaboration, it is
naturally the case that algorithms (e.g. for monitoring, fault detection,
anomaly detection) are rather diverse and require specific interfaces to
communicate with each other, specific to the algorithm. These may be more
suitable designed via RPC or a new protocol suit is defined for that.

Once a management process is defined, it is to be deployed. This phase
requires specification of how to deploy a management function, and available
support, e.g. in terms of compilers, will determine possible target runtime
environments (also hardware is possible). For instance, OSGi is considered a
suitable candidate to implement individual management functions, and brings
with it already great flexibility and system support (such as discovery of
services, which would be mapped to the management capabilities, etc.) that
allows to easily relocate functions. Moreover, it is possible that existing
hypervisor environments can be used as runtime environments in virtual
environments. From these, in a transitional step, similar capabilities can then

62 NEMA Proceedings

be also recompiled and redeployed to programmable network interfaces,
which is beginning to be applied in virtualized systems (e.g. [32]).

A major feature of the M&C framework is the support for deployment on
different levels. While the management capability usually encapsulates
functions that are specific to a management task, such as the aggregation and
upward propagation of a key performance indicator, deploying the
components of a single management capability is key for allowing various
kinds of tradeoffs, such as performance versus memory space. An example is
that of a virtualized environment, in which a management capability’s
algorithm component is located in the runtime environment of a
programmable NIC due to performance reasons, while the information
retrieval and objective enforcement components are located in the virtual
hypervisor that is located “closer” to the virtualization system’s policy
engines.

4 Scenario: OpenFlow Control and In-Network Management

We now describe an example scenario that combines some of the features
of centralized, hierarchical, distributed, and flat technology and show how
management capabilities facilitate the transition in parts of that scenario.

4.1 Application to Converged Systems

We consider how to apply management capabilities to a typical converged
system, in this case, IT and network convergence occurring for example in
large data centers. Fig. 4 illustrates how management capabilities can be
applied to an IT/network converged management and control system in
general. In the figure, both hierarchical and distribution concepts are indicated
and some of the management capabilities translate between these two
directions.

Facilitating Adaptive Placement of Management 63

network
interface

implant leightweight, task-specif ic and self -

organizing control / management functions

OpenFlow switching on physical servers

would for NW/IT joint self -organization

controller activates

and interacts with

self -organizing control /

management functions

VMM

switching

VMs

management
domain

physical server

NW domain

network switch (OFS)

network
interface

switching

task specif ic and self -organizing control /

management functions on application layer

TCP/IP

network
interface

Applications

„traditional“

protocol

stack

OFC

„traditional“ control applications

control domain

IT domain

„traditional“ management applications

„traditional“ management paths

management

node interacts

in a traditional way with other

DC nodes and also with self-

organizing functions

Fig. 4. Application of management capabilities to a converged IT/network system.

In this figure, SNMP in a weakly distributed form, OpenFlow centralized
control, and INM distributed network management with objectives on the IT
side are all combined in a single architecture. The figure shows in particular
how centralized approaches merge with decentralized management functions,
that is, INM. To provide uniform handling of the technologies, adapters are
used that encapsulate e.g. SNMP agents to allow standardized communication
between management capabilities of other types of management and control
protocols. Note in particular the resulting homogeneous switching layer,
where each network element (including servers) supports OpenFlow
switching functionality homogeneously.

4.2 Scenario Description

The scenario we consider is a data center with IT and network resources,
and virtualization. We consider two use cases that are closely linked: 1)
anomaly (congestion) detection, and 2) virtual machine migration with flow

Assumptions

1) An anomaly occurs locally, e.g. due to the exhaustion of CPU capacity
at a host because of high load that is incurred by virtual machines.

2) Local performance checks find out about other physical hosts to which
some virtual machines may be migrated.

rerouting that follows after an anomaly has been detected (also see Fig. 5).

64 NEMA Proceedings

3) One or more virtual machines are migrated, and flows are automatically
adapted without contacting the central OpenFlow controller. This
requires that a subset of controller functions must be implemented in
the host initially, that is, the hypervisor that is executed on the physical
machine.

4) In a transitional step, the required OpenFlow controller functions are
moved from hypervisor space to the programmable network interface
for improved efficiency. This step is the offloading of network
functions that follows the idea of [32].

H1 H2 H3 H4

S7 S8

S3

S9 S10

S4

S1

H5 H6 H7 H8

S11 S12

S5

S13 S14

S6

S2

management nodes
(e.g. OF controller)

network
switch

only relevant changes

are signalled to

management system

(e.g. new VM locations

to load balancer)

VM coordination for

a single type of server

application handled

only between relevant

physical machines

detection of VM

migration possibility

to other segment

using coordinated

calculations (e.g.

based on VM load)

VM migration triggers

f low rerouting only

in relevant

network switches

f lows are rerouted

transparently by

distributed coordination

between switches

optional coordination

self -organization and

„tranditional“ control /

management can

be mixed arbitrarily

VM migration

flow
reconfiguration

only high-level

changes are signalled

to OpenFlow

controller (e.g.

f reed switches)

management and

control domain

Fig. 5. Converged IT/network scenario in a typical data center.

In the described scenario, it is essential that some modifications in the
deployment, e.g. from host (hypervisor) space to NIC space, are likely not to
be available immediately but require upgrading on the hardware side, for
example. A typical occurrence of events is that during the detection of
anomalies at a physical host, the management system that is currently
deployed in the data center sets a limit on the maximum number of virtual
machines that may be deployed on a host. With the availability of more
advanced NICs supporting programming, the transitional step in 4) can be
applied after the redeployment of the corresponding management capability to
the programmable NIC execution environment.

4.3 Discussion of Scenario

In order to evaluate the feasibility and benefits of proposed framework for
adapting the placement of management and control functions, we have
implemented a simulation prototype for simulating large-scale data centers,

Facilitating Adaptive Placement of Management 65

and specifically, data center networks. The prototype is able to perform
migration of virtual machines and flows by cooperation between network and
virtual machines.

In previous work, the advantage of different architectural choices for
network management and control in terms of hierarchies and distribution has
been shown to a large extent in quantitative terms. For example, Du et al. [28]
evaluate the benefits of a distributed agent-based management approach
versus a centralized approach, where the distributed architecture incurs
significantly smaller communication cost in terms of number and size of data
packets compared to a centralized solution. Furthermore, most of the
architectural choices that the discussed frameworks and algorithms in Sec. 2
follow are motivated by certain desired performance characteristics.

Rather than providing additional quantitative results, we focus here on
evaluating the central claim of our framework, which is the adaptive support
for functionality placement along the hierarchy and distribution dimensions.
From the scenario that we have implemented in the simulator prototype, we
can summarize the following points where dynamic placement is highly
beneficial. We focus on a number of concrete practical situations of the
described scenario:

• Pushing OpenFlow control functionality down the hierarchy: in the

first OpenFlow implementations, network control remains within the
OpenFlow controller. The scenario has shown that dynamic placement
is highly desirable to push OpenFlow controller functions down to
network elements. Moreover, it is beneficial to do this in at least two
steps. In the first step, control functions to manipulate network flows
can be pushed to a host (e.g. to hypervisor space). In a second step,
control functions can be pushed further to the programmable NICs. Our
framework supports this function pushdown on the level of individual
management capabilities.

• Increasing scalability with scenario size: When the size of the
scenario changes, e.g. when additional network elements and physical
servers are added, it might become necessary to change function
placement in order to maintain scalability and to avoid bottlenecks
incurred by management and control functions. It is easy to expand the
management and control structures via our framework in this case by
extending the structures on the collaboration and/or organization
direction by introducing additional management capabilities. Assuming
deployment frameworks are used that support discovery and other basic
runtime functions, which are provided e.g. by OSGi, it is
straightforward to adapt structures dynamically using the mechanisms
provided by the proposed management capabilities.

66 NEMA Proceedings

• Function replacement during runtime: While hierarchical and
distribution structures of the management and control system do not
always change, it sometimes is necessary to replace certain
components. In a concrete case, an aggregation algorithm that
aggregates data related to the anomaly of the described scenario may
change. In this case, replacing just the management algorithm
component of a management capability (see Fig. 3) is necessary. This is
also supported by the proposed framework and can be readily
implemented by frameworks such as OSGi.

• Performance optimization of a management and control system:

Dynamic placement allows to “experiment” with different locations of
a function in the system and to choose the best placement after having
assessed different trials. For example, it might not be immediately clear
what is the best function placement due to system complexity. This
would correspond to a more short-term dynamic placement, rather than
a long-term dynamics for evolution in the managed/controlled system,
which is both supported by our framework.

5 Conclusion

In this paper, we proposed a framework for adaptive placement of
management and control functions in converged ICT systems. The framework
introduces management capabilities and their internal composition as the basic
component to compose complex management and control structures that are
flexible with respect to the placement and wiring of individual functional
parts.

The framework particularly considers the dimensions of hierarchical and
distributed composition of management functions, and provides the means to
implement more flexibly combinations that are compatible and do not have to
coexist without intersection. In other words, the proposed concepts do not
force the adoption of specific technologies that work in a specific distribution
scheme, but these can be combined. Fundamentally, that is possible if
management capabilities are described and the interfaces are understood
between different components, which might require a certain degree of
standardization. In this paper we also studied a scenario integrating
management and control (M&C) of different technology domains, namely, IT
and network, and different M&C technologies, OpenFlow and SNMP.

While our simulation prototype gives valuable insights into the adaptive
placement of management functions and shows that it is beneficial to have
support for flexible function placement, the framework needs yet to be

Facilitating Adaptive Placement of Management 67

specified in more detail. Additionally, more detailed analysis of how the
deployment of functions and adaptive placement can be accomplished in
technical terms via suitable execution environments (e.g. OSGi) needs to be
carried out.

References

1. Appenzeller, G.; Balland, P.; Casado, M.; Erickson, D.; Gibb, G.; Heller,
B.; Kobayashi, M.; McKeown, N.; Pettit, J.; Pfaff, B.; Price, R.; Sherwood,
R.; Talayco, D.; Tourrilhes, J.; Yap, KK; Yiakoumis, Y.: OpenFlow
Switch Specification. Version 1.0.0 (Wire Protocol 0x01), OpenFlow
Consortium, December 31, 2009.

2. McKeown, N.; Anderson, T.; Balakrishnan, H.; Parulkar, G.; Peterson, L.;
Rexford, J.; Shenker, S.; Turner, J.: OpenFlow: Enabling Innovation in
Campus Networks. White Paper, OpenFlow Consortium, March 14, 2008.

3. Dudkowski, D.; Brunner, M.; Nunzi, G.; Mingardi, C.; Foley, C.; Ponce de
Leon, M.; Meirosu, C.; Engberg, S.: Architectural Principles and Elements
of In-Network Management. In: Proceedings of the 11th IFIP/IEEE
International Symposium on Integrated Network Management (IM’09), pp.
529-636, Hempstead, NY, USA. IEEE Press (2009)

4. Prieto, A. G.; Dudkowski, D.; Meirosu, C.; Mingardi, C.; Nunzi, G.;
Brunner, M.; Stadler, R.: Decentralized In-Network Management for the
Future Internet. In: Proceedings of the IEEE International Conference on
Communications Workshops (FutureNet’09), pp. 1-5, Dresden, Germany,
2009. IEEE Press (2009)

5. Schröder, A.; Lundqvist, H.; Nunzi, G.: Distributed Self-Optimization of
Handover for the Long Term Evolution. In: Proceedings of the Third
International Workshop on Self-Organizing Systems (IWSOS’08), pp.
281-286, Vienna, Austria, 2008. LNCS 5343, Springer Berlin / Heidelberg,
Germany (2008)

6. Suciu, L.; Guillouard, K.: A Hierarchical and Distributed Handover
Management Approach for Heterogeneous Networking Environments. In:
Proceedings of the International Conference on Networking and Services
(ICNS’07), Athens, Greece, 2007. IEEE Computer Society (2007)

7. Haßlinger, G.; Andersen, F.-U.: Business Value Scenarios of Inherent
Network Management Approaches for the Future Internet. In: Proceedings
of EUROMEDIA 2009, pp. 91-95, Bruges, Belgium (2009)

8. Martin-Flatin, J. P.; Znaty, S.; Hubaux, J.-P.: A Survey of Distributed
Enterprise Network and Systems Management Paradigms. In: Journal of
Network and Systems Management, pp. 9-26, vol. 7, no. 1 (1999).

68 NEMA Proceedings

9. Martin-Flatin, J.-P.; Znaty, S.: A Simple Typology of Distributed Network
Management Paradigms. In: Proceedings of the 8th IFIP/IEEE International
Symposium on Distributed Systems: Operations and Management
(DSOM’97), pp. 13-24, Sydney, Australia (1997)

10. Martin-Flatin, J. P.; Znaty, S.: Annotated Typology of Distributed
Network Management Paradigms. Technical Report SSC/1997/008, SSC,
EPFL, Lausanne, Switzerland (1997)

11. Kakadia, D.; Thomas, T. G.; Vembu, S.; Ramasamy, J.: Enterprise
Management Systems Part I: Architectures and Standards. Sun
BluePrintsTM OnLine, Sun Microsystems, Santa Clara, CA, USA (2002)

12. Pras, A.; Schönwälder, J.; Burgess, M.; Festor, O.; Pérez, G. M.; Stadler,
R.; Stiller, B.: Key Research Challenges in Network Management. In:
IEEE Communications Magazine, vol. 42, no. 10, pp. 104-110 (2007).

13. Cheng, Y.; Farha, R.; Kom, M. S.; Leon-Garcia, A.; Hong, J. W.-K.: A
Generic Architecture for Autonomic Service and Network Management,”
In: Computer Communications, vol. 29, no. 18, pp. 3691-3709 (2006)

14. Davison, R.; Hardwicke, J.: A New Architecture for Open and Distributed
Network Management. In: Proceedings of the 6th International Conference
on Intelligence and Services in Network (IS&N’99), pp. 25-38, Barcelona,
Spain, 1999. LNCS 1597, Springer-Verlag, London, UK (1999).

15. Binzenhöfer, A.; Tutschku, K.; auf dem Graben, B.; Fiedler, M.; Arlos, P.:
A P2P-based Framework for Distributed Network Management. In:
 Wireless Systems and Network Architectures in Next Generation
Internet. LNCS, vol. 3883, pp. 198-210, Springer, Heidelberg (2006)

16. Zach, M.; Parker, D.; Fahy, C.; Carroll, R.; Lehtihet, E.; Georgalas, N.;
Marin, R.; Serrat, J.; Nielsen, J.: Towards a Framework for Network
Management Applications Based on Peer-to-Peer Paradigms. In:
Proceedings of the 10th IEEE/IFIP Network Operations and Management
Symposium (NOMS’06), Vancouver, Canada (2006)

17. Jennings, B.; van der Meer, S.; Balasubramaniam, S.; Botvich, D.; Foghlú,
M. Ó.; Donnelly, W.: Towards Autonomic Management of
Communications Networks. In: IEEE Communications Magazine, vol. 45,
no. 10, pp. 112-121 (2007)

18. Panisson, A.; Rosa, D. M.; Melchiors, C.; Granville, L. Z.; Almeida, M. J.
B.; Tarouco, L. M. R.: Designing the Architecture of P2P-Based Network
Management Systems. In: Proceedings of the IEEE Symposium on
Computers and Communications (ISCC’06), pp. 69-75, Pula-Cagliara,
Sardinia, Italy (2006)

19. Prieto, A. G.; Stadler, R.: A-GAP: An Adaptive Protocol for Continuous
Network Monitoring with Accuracy Objectives. In: IEEE Transactions on
Network and Service Management, vol. 4, no. 1 (2007)

20. Martin-Flatin, J. P.: Distributed Event Correlation and Self-Managed
Systems. In: Proceedings of the 1st International Workshop on Self-*

Facilitating Adaptive Placement of Management 69

Properties in Complex Information Systems (Self-Star’04), pp. 61-64,
Bertinoro, Italy (2004)

21. Lee, W. L.; Datta, A.; Cardell-Oliver, R.: Network Management in
Wireless Sensor Networks. In: Denko, M. K.; Yang, L. T. (eds.) Handbook
of Mobile Ad Hoc and Pervasive Communications. American Scientific
Publishers (2006)

22. Song, H.; Kim, D.; Lee, K.; Sung, J.: Upnp-based Sensor Network
Management Architecture. In: Proceedings of the Second International
Conference on Mobile Computing and Ubiquitous Networking
(ICMU’05), Osaka, Japan (2005)

23. Ruiz, L. B.; Nogueira, J. M.; Loureiro, A. A. F.: MANNA: A
Management Architecture for Wireless Sensor Networks. In: IEEE
Communications Magazine, vol. 41, no. 2, pp. 116-125 (2003)

24. Meyer, K.; Erlinger, M.; Betser, J.; Sunshine, C.: Decentralizing Control
and Intelligence in Network Management. In: Proceedings of the 4th
International Symposium on Integrated Network Management (IM’95), pp.
4-16, Santa Barbara, CA (1995).

25. Greenwood, D.; Ghanbari, M.; O’Mahony, M.: A Hybrid Centralised –
Distributed Network Management Architecture. In: Proceedings of the 4th
IEEE Symposium on Computers and Communications (ISCC’99), pp. 434-
441, Sharm El Sheikh, Egypt (1999).

26. Pagurek, B.; Wang, Y.; White, T.: Integration of Mobile Agents with
SNMP: Why and how. In. Proceedings of the Network Operations and
Management Symposium (NOMS’00), pp. 609-622, Honolulu, Hawaii,
USA (2000)

27. Pras, A.; van Beijnum, B.-J.; Sprenkels, R.: Introduction to TMN. CTIT
Technical Report 99-09, University of Twente, Enschede, The Netherlands
(1999)

28. Du, T. C.; Li, B. Y.; Chang, A.-P.: Mobile Agents in Distributed Network
Management. In: Communications of the ACM, vol. 46, no. 7, pp. 127-132
(2003)

29. Tsekouras, G. E.; Anagnostopoulos, C.: A Mobile Agent Platform for
Distributed Network and Systems Management. In: Journal of Systems and
Software, vol. 82, no. 2, pp. 355-371. Elsevier (2009)

30. Pfaff, B.; Pettit, J.; Koponen, T.; Amidon, K.; Casado, M.; Shenker, S.:
Extending Networking into the Virtualization Layer. 8th ACM Workshop
on Hot Topics in Networks (HotNets-VIII), New York City, NY (2009)

31. Lockwood, J. W.; McKeown, N.; Watson, G.; Gibb, G.; Hartke, P.;
Naous, J.; Raghuraman, R.; Luo, J.: NetFPGA – An Open Platform for
Gigabit-rate Network Switching and Routing. In: Proceedings of the IEEE
International Conference on Microelectronic Systems Education
(MSE’07), San Diego, California, USA (2007)

70 NEMA Proceedings

32. Maccabe, A. B.; Zhu, W.; Otto, J.; Riesen, R.: Experience in Offloading
Protocol Processing to a Programmable NIC. In: Proceedings of the IEEE
International Conference on Cluster Computing (CLUSTER’02)

33. Luo, Y.; Cascon, P.; Murray, E.; Ortega, J.: Accelerating OpenFlow
Switching with Network Processors. In: Proceedings of the ACM/IEEE
Symposium on Architectures for Networking and Communications
Systems (ANCS’09), Princeton, NJ, USA (2009)

34. Naous, J.; Erickson, D.; Covington, A.; Appenzeller, G.: Implementing
an OpenFlow Switch on the NetFPGA platform. In: Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS’08), San Jose, CA, USA (2008)

35. Dudkowski, D.: Co-Design Patterns for Embedded Network Management.
In: Proceedings of the 2009 Workshop on Re-Architecting the Internet
(ReArch’09), pp. 61-66, Rome, Italy, December 2009. ACM, New York,
NY, USA (2009)

Chapter 5

Wire-Speed Hardware-Assisted Traffic Filtering with

Mainstream Network Adapters

Luca Deri 1, Joseph Gasparakis 2, Peter Waskiewicz Jr 3, Francesco Fusco 4 5

1 ntop, Pisa, Italy

2 Intel Corporation, Embedded and Communications Group, Shannon, Ireland
3 Intel Corporation, LAN Access Division, Hillsboro, OR, USA

4 IBM Research - Zurich, Rüschlikon, Switzerland
5 ETH Zurich, Switzerland

Abstract. Modern computer architectures are founded on multi-core
processors. In order to efficiently process network traffic, it is necessary
to dynamically split high-speed packet streams across cores based on
the monitoring goal. Most network adapters are multi-core aware but
offer limited facilities for assigning packets to processor cores.
In this paper we introduce a hybrid traffic analysis framework that
leverages flexible packet balancing mechanisms available on recent
10 Gbit commodity network adapters not yet exploited by operating
systems. The main contribution of this paper is an open source
hardware-assisted software layer for dynamically configuring packet
balancing policies in order to fully exploit multi-core systems and
enable 10 Gbit wire-speed network traffic analysis.

Keywords: High-speed network traffic monitoring, hardware-
assisted dynamic packet filtering, commodity hardware,
operating system design.

1 Introduction

The complexity and heterogeneity of monitoring tasks, such as anomaly and
intrusion detection, traffic classification and application level analysis [1],
gradually caused a shift from dedicated network devices toward hybrid
software and hardware architectures which are more flexible and easier to
maintain than dedicated monitoring devices [2]. Along with hardware-based

A. Clemm and R. Wolter (eds.), Advances in Network-Embedded Management and Applications, 71

DOI 10.1007/978-1-4419-7753-3_5, © Springer Science+Business Media, LLC 2011

peter.p.waskiewicz.jr@intel.com, ffu@zurich.ibm.com
deri@ntop.org, joseph.gasparakis@intel.com,

mailto:deri@ntop.org
mailto:gasparakis@intel.com
mailto:jr@intel.com
mailto:ffu@zurich.ibm.com

72 NEMA Proceedings

solutions [20], researchers have demonstrated that the performance of traffic
analysis applications running on commodity hardware can be substantially
improved by properly accelerating selected operating system tasks [19, 21,
22]. However, the performance gap between pure software solutions and
hardware assisted ones has been significant. Recent advances in off-the-shelf
server technologies suggest that the gap can be substantially reduced. In fact,
modern servers are based on advanced multi-core processors featuring
integrated memory controllers and high-speed and low latency
interconnections. In addition, off-the-shelf network interface cards (NICs) are
supporting new advanced features such as message signaled interrupts (MSI-
X), multi-queue capabilities and virtualization support, which have been
designed to boost the network performance in specific scenarios. The trend is
to introduce into NICs the logic for offloading workstations from
computationally intensive network operations. With the advent of multi-core
processors, balancing the networking workload among cores is necessary in
order to increase the networking performance of network services. Therefore,
modern interface cards provide multiple independent reception (RX) and
transmission (TX) queues and hardware traffic splitting techniques to
distribute the traffic among cores.
Unfortunately, traffic monitoring software did not fully benefit from these
new breakthrough technologies. The reason is that software layers on top of
which network monitoring applications are implemented, such as network
device drivers and operating systems, are not designed for exploiting these
features for network monitoring purposes.
In this work we present a flexible and extensible framework that simplifies
the development of complex and yet efficient traffic analysis applications
running on commodity hardware. The main contribution of this work is a
novel traffic balancing and filtering networking layer optimized for traffic
analysis purposes that fully exploit advanced features implemented by modern
off-the-shelf NICs. The framework is characterized by the following
properties:
• It provides an API for hardware-assisted traffic filtering and balancing

across cores.
• It can be deployed on sub-1000$/port commodity network adapters which

are more than an order of magnitude cheaper than dedicated traffic
monitoring devices.

• The filtering mechanisms are flexible and able to address common
problems monitoring scenarios such as adaptively balancing the incoming
traffic among cores or dynamically filtering incoming traffic.

• It can be used as a building block for designing complex yet efficient
monitoring applications.

• It is publicly available at no cost under the GNU GPL license.

Wire-Speed Hardware 73

The rest of the paper is structured as follows. In section 2 we describe how the
software framework we designed few years ago could benefit from modern
NICs in particular for supporting in hardware those features we previously
implemented in software. In section 3 we position the work described in this
paper against similar efforts. Section 4 describes the design and
implementation of a new software layer that allowed us to offload traffic
filtering to modern NICs. Finally section 5 describes some common use cases
we used to evaluate the developed solution hence to demonstrate that this
work is a major step ahead with respect to existing software-only solutions.

2 Motivation and Scope of Work

The intrinsic dynamism of Internet protocols has increased the demand for
flexible monitoring frameworks designed to speed up the development of
efficient and cost effective applications capable to analyze modern network
protocols. Nowadays, most network monitoring infrastructures are built
around hybrid frameworks combining the flexibility of software and the
performance of hardware accelerators designed to offload network probes
from selected computationally expensive tasks. The design of hybrid
frameworks requires expertise in software, firmware and hardware
development, as well substantial investments that have a negative impact on
end-user prices. In fact, since the target of these devices is a niche market,
their price is in order of magnitudes higher than commodity off-the-shelf
network interfaces.
Packet capture accelerators are the most cost effective solution for improving
software based traffic monitoring applications. As packet capture is the
cornerstone of many passive monitoring application, capture accelerators have
been able to provide substantial speedups to traffic monitoring applications by
allowing incoming traffic to be copied directly into the address space of the
analysis process without any CPU assistance.
In our past research, we focused on pure-software traffic analysis frameworks.
In particular, we proposed filtering solutions that are capable to overcome the
limitations of the popular Berkley Packet Filter (BPF) [8], a rule-based traffic
filtering mechanisms provided by the majority of the operating systems. In [9]
we describe a traffic filtering mechanism that, contrary to BPF, can be
reconfigured in real-time and scale in terms of number of traffic filtering
rules. In [10] we present a traffic filtering and analysis framework named
RTC-Mon that substantially simplifies the development of modular and
efficient traffic monitoring applications. The core of the framework is a rule-
based infrastructure that allows traffic analysis components to be enabled over
the traffic matching rules. By introducing services for IP de-fragmentation,
packet parsing and maintenance of flow state statistics, the development

74 NEMA Proceedings

efforts for implementing monitoring applications are substantially reduced.
The framework is useful for implementing traffic analysis applications, such
as VoIP and IPTV monitoring software, where traffic filters must be
added/removed in real-time.
In our previous works, we decided not to leverage any specific monitoring
device in order to reduce costs and simplify the deployment. In this work
instead, we evaluate the opportunity of accelerating our framework by
exploiting mainstream NICs. Unlike special purpose monitoring hardware,
off-the-shelf network interfaces target the mainstream market and therefore
come at low end-customer prices. Even if these NICs are not designed for
accelerating monitoring software but rather tasks as virtualization, some of
their features can be successfully exploited for increasing the performance of
traffic analysis applications.
Modern off-the-shelf adapters provide several independent RX/TX queues
and hardware-based mechanisms such as Receive-Side-Scaling (RSS) that
balance network flows among RX queues mapped on processor cores. By
splitting the traffic among queues, the workload, both in terms of packet
processing and interrupts can be balanced across cores for better exploiting
the intrinsic parallelism of modern computing architectures. As of today, the
majority of server class adapters in the market are multi-queue enabled and
support RSS for splitting the traffic across queues. The main limitation of
RSS is that the balancing policy is static hence it cannot be adapted to
changing traffic conditions. This represents a serious limitation as workload
unbalances correspond to scalability penalties. Even if it is possible to
augment RSS with software based traffic balancing policies, this approach is,
in practice, unfeasible for high-speed networks as the performance penalty is
severe. Therefore, NIC manufacturers are introducing the second generation
traffic balancing hardware mechanisms that are dynamically configurable in
order to adapt traffic balancing policies to every traffic condition. Although
these mechanisms have been introduced for enhancing general purpose
networking, we believe that packet filtering will also benefit from these
breakthrough balancing technologies, and therefore, the performance gap
between special purpose monitoring devices and off-the-shelf network
adapters would be reduced.
In this work we present an advanced and yet easy to use open source software
framework that leverages the customizable hardware assisted traffic balancing
and filtering features introduced in modern NICs. As these filtering features
will likely be available in future NIC cards manufactured by various vendors
just as happened with RSS, we believe that this work is not limited only to the
specific NIC we considered in this paper, but it paves the way to supporting a
new family of cheap 10 Gbit (and 40 Gbit in the future) network adapters.

Wire-Speed Hardware 75

3 Related Work

The industry followed three paths for accelerating software applications by
means of specialized hardware while preserving the software flexibility:
• Accelerate the capture process via packet capture accelerators [3, 4] that

allow incoming packets to be copied directly to the address space of
monitoring applications without any CPU intervention.

• Split the monitoring workload among different network probes using smart
traffic balancers [5] so that each probe receives and analyzes a portion of
the traffic.

• Run traffic analysis software on programmable network cards based on
network processors [6] or massive parallel architectures [7]. Programmable
network cards are massive parallel architectures on a NIC. Monitoring
applications are implemented in C and executed on these device [7] that run
a modified version of Linux which simplifies the porting of existing
applications on top of this special purpose architecture. However, even if
they have been able to substantially simplify the development compared to
network processors based cards, the porting is still not trivial.

Most general purpose operating systems support rule based filtering
mechanisms such as the BPF where filtering expressions are compiled into an
intermediate language and interpreted by a virtual machine running at the
kernel layer. PF_RING [11] is an advanced network monitoring framework
enhancing Linux with more flexible filtering mechanisms implemented in
software by means of kernel modules. NetVM [15, 16] is a virtual machine
designed to simplify the development and maintenance of complex and yet
efficient packet processing applications running on top of heterogeneous
network devices. FFPF [17] is an extensible and high-performance packet
capture and filtering architecture based on Linux. Contrary to our work, FFPF
does not leverage modern multi-core or multi-queue interfaces. The SCAMPI
project [18] provides a feature rich monitoring API but it has been designed to
run on top of specialized monitoring devices and therefore it yields poor
performance when running over commodity hardware. [22] describes a
framework for high-speed networks monitoring that provides features such as
IP defragmentation and flow reassembly, that relies on a pure-software
implementation of a packet scheduling algorithm proposed in [23]. Our work
instead, exposes to the software layers an API to design hardware assisted
packet schedulers.
Capture accelerators based on FPGA, implement filtering mechanisms at the
network layer by means of rule sets (usually limited to 32 or 64) similar to
BPF. Filtering runs at wire-speed. As the rule set is not meant to be changed
at runtime, its scope of application is drastically limited. Often traffic filtering
is used to mark packets and balance them across DMA engines. Traffic
balancing policies are similar to RSS and are usually implemented at the

76 NEMA Proceedings

FPGA layer and allow the traffic to be split among cores within a multi-core
processor. As for traffic filtering, dynamically updating the traffic balancing
policies at run-time is in practice unfeasible as a card reconfiguration may
require seconds if not minutes.

4 Framework Design

In our past research, we developed an extensible traffic analysis framework
implemented under the Linux Kernel called PF_RING [11] which accelerates
packet capture and implements packet parsing and filtering by means of
dynamically loadable kernel plugins. A user space library called libpfring
provides an easy to use API that allows user space applications to interact
with the framework.

Fig. 1. PF_RING Monitoring Framework.

PF_RING runs on top of commodity network interface cards and can use both
standard NIC drivers or PF_RING optimized drivers. These drivers, available
for popular 1 and 10 Gbit adapters produced by vendors such as Intel and
Broadcom, push incoming packets directly to PF_RING without passing
through the standard kernel mechanisms hence accelerating capture speed.
PF_RING provides a flexible rule-based mechanism that allows users to
assign packets to kernel plugins which are then responsible to dissect, order in
flows, and compute flow metrics (e.g. voice quality) directly at the kernel
layer without copying packets to user space. For example, it is possible to
configure PF_RING to dispatch TCP packets on port 80 to the HTTP plugin,
and UDP packets on port 5060 to the SIP plugin. The same rule-based
mechanism can be used for filtering out from PF_RING analysis unwanted
packets (e.g. discard packets coming from a specific host or port) similar to
what the firewalling layer does at an operating system level.

Wire-Speed Hardware 77

With the advent of multi-core systems and multi-queue adapters, PF_RING
has been extended with support of virtual RX queues [12], that enable specific
plugins/user space applications to receive traffic from specific RX queues.
The PF_RING kernel infrastructure is responsible to exploit facilities such as
RSS for balancing and assigning packets to cores while queue information is
preserved in received packets.
In summary, PF_RING has become an advanced framework that thanks to its
rule-based mechanism, has been capable to simplify the engineering of
modular applications and not just accelerate packet capture. However, the
rule-based mechanism has been completely implemented in software, and
therefore, it is inefficient at very high speed such as 10 Gbit.
Last year Intel introduced X520, a 10 Gbit card based on the new 82599
ethernet controller [13]. What makes this adapter interesting for PF_RING, is
the ability to support in hardware dynamically configurable flow affinity
filters for classifying, load balancing and dispatching traffic flows to
processor cores. The filtering mechanisms introduced by 82599 can be seen as
a fine-grained RSS that allows selected flows to be classified and dispatched
towards specific cores based on configurable packet filters and not on RSS
hashing.

Fig. 2. Integrating 82599 with PF_RING.

The availability of this affinity facility in commodity adapters has been the
natural solution to address performance issues of PF_RING at 10 Gbit.
Exploiting the flow affinity filters is indeed attractive for:
• leveraging hardware facilities for dispatching packets across PF_RING

plugins enabled on selected RX queues;
• dropping unwanted packets in hardware inside the NIC before they hit the

driver.

78 NEMA Proceedings

In a nutshell, flow affinity filters introduce new opportunities, not yet
exploited by operating systems and monitoring applications, for the
implementation of hardware assisted packet schedulers capable to accelerate
traffic analysis applications by fully exploiting the parallelism offered by
multi-core architectures.
As we believe that 82599 is just the “first of a kind” and similar flow affinity
filters mechanisms will soon be introduced by other vendors, PF_RING has
been extended not only to exploit these features as implemented by 82599 but
also to support future NICs providing similar capabilities. For this reason we
introduced a new hardware-neutral software layer that is responsible for
setting up specific flow affinity filtering rules in hardware. This layer has not
been designed for natively supporting the 82599 controller in PF_RING, but
rather as a foundation layer for offloading selected filtering tasks to those
NICs that feature flow affinity filters. This means that:

• not all facilities offered by 82599 have been supported yet (e.g. IEEE
1588 time synchronization), but only those (i.e. flow affinity filters) that
can be currently exploited by PF_RING for accelerating its operations
(i.e. we have not added support of 82599 in PF_RING, but rather
exploited those 82599 features that can accelerate PF_RING);

• adding support in PF_RING for flow affinity filters-like features in future
NICs, will not require PF_RING redesign but it will just require the
implementation of new extensions into PF_RING-enabled NIC drivers;

• existing applications such as RTC-Mon will not need to be recoded (but
just slightly modified) in order to exploit flow affinity filters, as
PF_RING transparently sets in hardware the appropriate flow affinity
filters.

PF_RING supports two families of filters: precise filters where the whole
<vlan, protocol, ip/port src, ip/port dst> tuple needs to
be specified, and wild card filters where some filter parameters can be
unspecified (e.g. tcp and port 80). When a packet is received,
PF_RING uses the “best match first” policy, so it will first try to match the
packet against configured precise filters, and in case of no match against wild
card filters. Packets matching a filter will be passed to the specified plugin or
action, if configured. Hardware flow affinity filters support has been added
into PF_RING as follows:
• PF_RING-aware drivers notify (when the driver is loaded inside the kernel)

the PF_RING engine whenever a given NIC supports flow affinity filters.
• PF_RING has been extended with a new function named
handle_hw_filtering_rule() that allow precise and wild carded
filters to be added/removed inside NICs.

• For each NIC supporting flow affinity filters, PF_RING adds a virtual file

Wire-Speed Hardware 79

whose path is /proc/net/pf_ring/ethX/rules that network
administrators, and not just monitoring applications, can use for
adding/removing filters by means of a simple echo of a string on it. For
instance echo “+(1,-1,tcp,192.168.0.10,25,0.0.0.0,0)” >
/proc/net/pf_ring/eth3/rules, instructs PF_RING to add in the
eth3 device a new filtering affinity rule with id 1 and that sends all TCP
packets from 192.168.0.10:25 to the core id -1. Since the identifier -1 does
not correspond to a physical processor core, this rule allows packets
matching the filter to be dropped at the NIC layer. Using another existing
queue id would simply advise the filtering mechanism to direct the packets
to the appropriate queue and hence through the SMP affinity mechanism in
the Linux kernel into the desired core.

In order not to modify the existing driver structure by introducing new hooks
for adding and removing filters, we decided to jeopardize some existing driver
hooks. The advantage is that all current drivers do not need to be changed,
and this gives us a way to migrate towards packet filtering integration when
supported in Linux1. The data structure used to pass filter specifications to
drivers is generic and does not rely on 82599 specific data types. In this way,
the efforts for supporting future network adapters providing similar features
will be substantially reduced. 82599 provides several types of filters including
layer 2 and FCoE (Fibre Channel over Ethernet), but as PF_RING supports
only precise and wild card filters, we focus only on 5-tuple and flow director
filters that are very close to PF_RING filters:

• 5-tuple filters (up to 128 filters can be defined in 82599) allow packets
belonging to flows identified by the 5-tuple <protocol, ip source, port
source, ip destination, port destination> to be forwarded to a specific RX
queue. 5-tuple filters are defined as <id, protocol, ip/port
src, ip/port dst, target RX queue id>. Some of the
fields specified in a 5-tuple filter can be “masked” (i.e. wild carded) in
order to avoid comparing them against incoming packets.

• Flow Director (FD) filters can be specified as precise (i.e. the filter
members are matched precisely against incoming packets) or hash (i.e.
the packet hash is compared against the filter hash, conceptually similar
to bloom filters [14]) filters. 82599 supports up to 32k precise filters. The
number of distinct hash filters is not limited by design. However, the
adoption of excessive hash filtering rules may lead to false positives. FD
filters are expressed as <slot id, VLAN, protocol, ip

netmask/port src, ip netmask/port dst, target RX

1 In kernel 2.6.34 the ethtool, not the kernel itself, introduced limited support for EFD

thanks to patches we submitted to Linux kernel maintainers.

80 NEMA Proceedings

queue id>. Currently all configured filters must have the same mask
defined in 82599.

The 82599 adapter is quite different from many FPGA-based NICs as it does
not use a TCAM (Ternary Content Addressable Memory) for handling filters.
This means that a filter is configured by setting up specific NIC registers and,
therefore, that the last configured filter overwrites the previous register value.
For this reason, it is not possible to read from the NIC all configured filters,
and therefore the driver has to maintain the list of configured filters. The
advantage of this approach is that, contrary to many FPGA-based NICs where
setting a filter requires card reconfiguration, in 82599 setting a filter is
extremely fast and from the application point of view it takes as long as the
setsockopt() system call necessary to pass the filter specification to the
kernel, making this NIC usable in environments where filter configuration has
to be dynamically changed.

5 Use Cases and Validation

Validation has been performed using an IXIA XM12 10 Gbit traffic generator
and a NUMA computer using a single 6-core Xeon® X5650 (Westmere) CPU
at 2.67GHz. In all tests we have injected IPv4 UDP traffic with random
payload at wire speed, and compared the number of packets sent by the traffic
generator with those reported by pfcount, a simple packet-counting
application running on top of PF_RING. pfcount spawns and binds a thread
per core (i.e. thread X is bound to core X). The injected traffic contained 6
flows, each balanced to an individual core using hardware filtering rules.
Packets have been captured using the standard NAPI-based 82599 driver
enhanced with PF_RING and hardware filtering support.

Table 1. Hardware vs. Software Filtering Comparison

Frame Size
(Bytes)

Test 1 Test 2
Software

Filter�(Captur
e Rate)

Hardware
Filter

(Capture Rate)

Software
Filter�(CPU

Load)

Hardware
Filter

(CPU Load)
64 5.7% 6.3% 95.6% None

128 10.0% 11.6% 95.4% None
256 19.5% 23.2% 98.7% None
512 37.4% 42.3% 3.5% None
1024 99.8% 100% 3.3% None
1518 99.6% 100% < 0.1% None

Wire-Speed Hardware 81

In the first test we compared hardware (i.e. 82599) vs. software (i.e.
PF_RING) packet filtering using a single filtering rule that match for every
incoming packet (i.e. the entire traffic is forwarded to the user space). In the
second test we have injected traffic that does not match any configured filter,
and verified that there is no load on the CPU whenever hardware filters are
used. On the contrary, what we observed with software filters, is that for
packets up to 256 bytes the CPU utilization was around 95%, and about 3%
for larger packets. This leads us to the conclusion that in the hybrid model of
software and hardware filtering we propose, it is recommended to use
software filters only for medium to large packets.
In order to further improve packet capture, the authors have developed
TNAPI [25], a multithreaded RX queue polling mechanism that significantly
improves packet capture performance with respect to the standard Linux
NAPI.

5.1 Realtime Multimedia Traffic Monitoring

As described earlier in this paper, RTC-Mon has been designed to efficiently
handle VoIP calls and video-on-demand traffic analysis at 1 Gbit. In order to
scale the solution to 10 Gbit, we have slightly modified the original RTC-
Mon code as follows:
• A few 5-tuple filters have been configured:

• All the SIP signaling packets go to core 0.
• Non UDP (i.e. ICMP/TCP) packets are dropped.
• UDP traffic on popular ports (e.g. port 53 used by DNS) is also

dropped.
• Whenever a new VoIP call has been setup, such call is tracked by adding

two FD filters (one per call direction) that send the voice traffic for the
tracked call (i.e. RTP traffic) to the same RX queue where the RTP plugin
is active. In order to evenly balance the traffic across queues, the queue ids
used for voice traffic are selected in round robin so that all queues have
almost the same amount of traffic.

This setup has allowed RTC-Mon to operate efficiently in 10 Gbit links where
VoIP is only a portion of the overall traffic, thanks to 82599 filters used to
discard packets not belonging to calls being tracked. Unfortunately, not all
unwanted packets have been discarded and a small portion of them is still
received by PF_RING. This is because 5-tuple filters are evaluated before FD
filters, hence it is not possible to set 5-tuple rule that discards all the
remaining traffic because this would also discard traffic that matched by FD
filters. It is worth noting that the ability to setup thousands of flow affinity

82 NEMA Proceedings

filters with almost no latency is a key factor for using effectively 82599 in
cases where filter setup latency is crucial as with RTC-Mon.

5.2 Network Troubleshooting

Troubleshooting a heavily loaded 10 Gbit link using popular tools such as
tcpdump and wireshark [24] is almost impossible due to severe packet capture
loss. Furthermore, most commercial tools are not distributed with source
code, hence it is not possible to recompile them in order to take advantage of
PF_RING flow affinity filters. In this case, we used PF_RING’s /proc
interface for setting a few traffic filtering rules that discard in hardware
unwanted traffic, hence pass to the Linux kernel only those packets that must
reach network monitoring applications. This solution has the advantage that
existing applications do not need to be modified, and PF_RING is used just
for allowing the network administrator to easily configure (e.g. using a shell
script) flow affinity filters without having to code a C/C++ application sitting
on top of libpfring.

5.3 Traffic Classification and Balancing

In case monitoring applications do not run on the same box where an 82599
based NIC is installed (e.g. because they run on a non-Linux OS such as
Windows), it is possible to create a traffic filtering box using the pfreflect
application part of PF_RING, that filters incoming packets and copies them
onto one or more NICs based on the PF_RING filters configuration. As
PF_RING filters (hence flow affinity filters) are evaluated before reflection
(i.e. packet bridging in PF_RING parlance), this application can be used for
creating an inexpensive traffic filtering box that can be used for reducing the
amount of traffic to analyze. If the filtered traffic is less than one Gbit it can
be forwarded onto a 1 Gbit card so that legacy measurements box do not need
to be updated to 10 Gbit. Furthermore as PF_RING supports traffic balancing,
it is possible to forward filtered traffic onto several output interfaces by
balancing each RX queue of 82599 onto a different output interface. This
solution allows high-speed links to be monitored and troubleshooted without
having to purchase costly 10 Gbit measurement boxes.

5.4 Lawful Interception of Internet Traffic

Since the approval of the wiretapping in the US in 1984, lawful interception
(LI) has become very popular. In LI a lawful authority requires to intercept
and store specific traffic for the purpose of analysis or evidence. In IP

Wire-Speed Hardware 83

networks, this means that traffic originated/directed to specific IPs or flowing
on specific ports need to analyzed. Doing this on a 10 Gbit link using
software-based traffic filters can be inefficient as packet loss might prevent
captured traffic from being analyzed properly. In order to implement a simple
packet capture system driven by signaling protocols such as Radius or DHCP,
it is possible to setup (e.g. via the PF_RING /proc filesystem interface) a few
filtering rules that discard all traffic except signaling (similar to the setup used
in 5.2) and traffic belonging to target IPs that need to be intercepted.

5.5 Firewalling at 10 Gbit

The Linux netfilter/iptables firewall is quite efficient but it cannot operate
with no loss on heavily loaded 10 Gbit links. The use of 5-tuple filters can
definitively help dropping unwanted traffic or tracking NAT sessions using
FD filters. Unfortunately the Linux firewall is more flexible than 5-tuple
filters, hence it is not possible to do a one-to-one mapping between iptables
rules and 5-tuple filters. This means that 82599 can be used to discard a large
portion of incoming traffic but not all, leaving to netfilter the duty of
completing packet filtering. Nevertheless this hybrid, hardware plus software,
filtering architecture allows to significantly boost the firewall performance in
most situations. Currently we are add filters using the PF_RING /proc
filesystem interface as we have not yet added native 82599 support into
netfilter.

6 Open Issues and Future Work

The main limitation of the current implementation is the lack of a compiler
that transparently compiles BPF filters into PF_RING (hence flow affinity)
filters. Due to this limitation, users must configure both BPF filters (e.g. on
the command line while starting the monitoring tool) and flow affinity filters
(e.g. using the PF_RING /proc filesystem). In future code releases we plan
to implement such feature so that BPF-aware applications (e.g. Wireshark)
can still use BPF for setting filters while the underlying kernel layers add
automatically flow affinity filters in order to reduce the amount of packets
that will hit the BPF filtering engine. In addition to 5-tuple and FD filters,
82599 also supports SYN filter that diverts to a specific core all incoming
TCP packets with the SYN flag set. While its support would be trivial from
the 82599 point of view, the PF_RING engine instead needs some extensions
in order to add filters that can select packets based on TCP flags.
Finally we would like to use 82599 in the context of OpenFlow switching, for
implementing efficient in-kernel switching across network applications

84 NEMA Proceedings

without requiring external switching equipment. From the hardware point of
view, we envisage that future NICs will further enhance flow affinity filters
number and expressiveness (e.g. adding the ability to filter tunneled traffic),
add per-filter statistics (e.g. number of packets and bytes that matched each
filter) so that developers could implement efficient NetFlow caches in
hardware.

7 Conclusions

Monitoring the Internet is challenging as high-speed networks are becoming
popular and traffic patterns more complex. In order to satisfy the increasing
performance requirements and reduce deployment costs, modern network
monitoring frameworks should leverage those features offered by mainstream
NICs that are introduced for general-purpose networking and not fully
exploited in the context of network monitoring. This paper has presented an
evolution of PF_RING, a monitoring framework originally designed for
accelerating packet capture, that exploits hardware-based filtering
mechanisms offered by the Intel 82599 based NICs and likely future NICs.
Thanks to flow affinity filters PF_RING can now fine-grain flow balance
packets across cores, classify traffic and discard unwanted communication
patterns directly into the NIC before packets hit the driver. The validation
process has demonstrated that many network applications can benefit from
this work, making it very general and usable also outside of the network
monitoring domain. Not to mention that it is finally possible to combine the
speed of hardware with the flexibility of software for effectively monitoring
10 Gbit networks using commodity network adapters.

Availability. This work is distributed under the GNU GPL license and is
available at no cost form the PF_RING home page
(http://www.ntop.org/PF_RING.html).

Acknowledgments. The authors would like to thank Intel and in particular
Edward Clinton and Richard P. Kelly for their support during this research
work.

References

1. W. John and others, Passive internet measurement: Overview and
guidelines based on experiences, Computer Communications, vol. 33,
issue 5 (2010).

http://www.ntop.org/PF_RING.html

Wire-Speed Hardware 85

2. G. Memik and W.H. Mangione-Smith, Specialized Hardware for Deep
Network Packet Filtering, Proc. of FPL 2002, Montpellier, France,
(2002).

3. S. Donnelly, DAG Packet Capture Performance, White Paper, (2006).
4. Napatech Inc, The Napatech Protocol and Traffic Analysis Network

Adapter, White Paper, (2006).
5. cPacket Networks, cVu 320G: Aggregation, Complete Packet

Inspection Filtering, Automatic Flow Balancing, (2010).
6. P. Crowley and others, Characterizing processor architectures for

programmable network interfaces, Proc. of the 14th international
conference on Supercomputing, Santa Fe, New Mexico, (2000).

7. A. Agarwal, The Tile processor: A 64-core multi-core for embedded
processing, Proc. of HPEC Workshop, (2007)

8. S. McCanne and V. Jacobson, The BSD packet filter: A new
architecture for user-level packet capture, Proc. of Winter '93 USENIX
Conference, (1993).

9. L. Deri, High-Speed Dynamic Packet Filtering, Journal of Network and
System Management, (2007).

10. F. Fusco and others, Enabling High-Speed and Extensible Real-Time
Communications Monitoring, In Proc of IM 2009, (2009).

11. L. Deri, Improving Passive Packet Capture: Beyond Device Polling,
Proc. of SANE 2004, (2004).

12. L. Deri, Towards 10 Gbit NetFlow Monitoring Using Commodity
Hardware, Proc. Joint EMANICS/IRTF-NMRG Workshop, Munich,
(2008).

13. Intel Corporation, 82599 10 GbE Controller Datasheet, Rev. 2.3,
(2010).

14. B. Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM, July 1970.

15. F. Risso and others, Extending the NetPDL language to support traffic
classification, Proc. of IEEE Globecom, (2007).

16. L. Degioanni and others, Network virtual machine (NetVM): a new
architecture for efficient and portable packet processing applications,
Proc. of 8th International Conference on Telecommunications, (2005).

17. H. Bos and others, FFPF: Fairly fast packet filters, Proc. of OSDI ’04,
(2004).

18. J. Coppens and others, SCAMPI: A Scalable and Programmable
Architecture for Monitoring Gigabit Networks, Proc. of E2EMON
Workshop, (2003).

19. L. Deri, nCap: Wire-speed Packet Capture and Transmission, Proc. of
E2EMON, (2005).

86 NEMA Proceedings

20. L. Degioanni and G. Varenni, Introducing Scalability in Network
Measurement: Toward 10 Gbps with Commodity Hardware,
Proceedings of IMC ’04, (2004).

21. M. Smith and others, Enabling High-Performance Internet-Wide
Measurements on Windows, Proc. of PAM 2010, pp. 121-130, Zurich,
Switzerland, (2010).

22. M. Dashtbozorgi and others, A scalable multi-core aware software
architecture for high-performance network monitoring, Proc. of the 2nd
international conference on Security of information and networks, pp.
117-122, Famagusta, Cyprus, (2009).

23. M. Dashtbozorgi and others, A high-performance software solution for
packet capture and transmission, Proc. of 2nd IEEE International
Conference on Computer Science and Information Technology, pp.
407-411, Beijing, China, (2009).

24. F. Fuentes and D. C. Kar, Ethereal vs. Tcpdump: a comparative study
on packet sniffing tools for educational purpose, Journal of Computing
Sciences in Colleges, Vol. 20, Issue 4, pp. 169 - 176 , (2005).

25. L. Deri and F. Fusco, Exploiting Commodity Multi-core Systems for
Network Traffic Analysis, Technical Report,
http://luca.ntop.org/MulticorePacketCapture.pdf, (2009).

http://luca.ntop.org/MulticorePacketCapture.pdf

Chapter 6

Embedded Rule-based Management for

Content-based DTNs

Jorge Visca, Guillermo Apollonia, Matias Richart,
Javier Baliosian, and Eduardo Gramṕın

School of Engineering, University of the Republic, Uruguay.
{jvisca, gapollo, mrichart, javierba, grampin}@fing.edu.uy

Abstract. Several countries such as Uruguay and Brazil are implementing
the well-known One Laptop Per Child Program (OLPC) by which every
child that attend to primary school obtains in property a laptop with wire-
less capabilities. They carry their laptops from home to school and back
every day and, as we observed in our research, they also carry their laptops
to parks, community centers etc. That provides a wide platform for oppor-
tunistic, delay tolerant, networking applications. This paper presents a low-
cost, delay-tolerant, network of sensors implemented embedding high-level
decision-making capabilities inside consumer-grade wireless routers working
together with the OLPC laptops. The sensors are deployed at the living
premises of children in environmentally vulnerable neighborhoods as well as
at their schools, parks, etc. The environmental data collected by the sensors
is carried to the school by the laptops and from the school to monitoring
stations over the Internet. In this system, all the entities in the network
are publishers and subscribers of configuration commands, policy-rules and
environmental data, building a flexible, self-management solution.

1 Introduction

Several countries such as Uruguay and Brazil are implementing the well-known One
Laptop Per Child Program (Plan Ceibal in Uruguay [4] and UCA in Brazil [6]) by
which every child that assists to the primary school obtains in property a laptop
with wireless capabilities. Besides carrying the laptops to school everyday, children
frequently keep the laptops with them when going to parks, community centers, etc.
This provides a wide platform for opportunistic networking applications. The basic
concept behind opportunistic networking is that, in the absence of a fixed connectiv-
ity infrastructure, some data of interest (in our case, domestic environmental data)
is transferred between mobile devices using the “connection opportunity” that arise
whenever mobile devices happens to come into the range of other devices because
of the mobility of the devices’ users.

The ongoing DEMOS project (Domestic Environment Monitoring with Oppor-
tunistic Sensor networks) is developing a low-cost platform for environmental sen-
sors, such as air-quality sensors, at the living premises of children in environmentally

A. Clemm and R. Wolter (eds.), Advances in Network-Embedded Management and Applications, 87

DOI 10.1007/978-1-4419-7753-3_6, © Springer Science+Business Media, LLC 2011

mailto:@fing.edu.uy

88 | NEMA Proceedings

Fig. 1. The DEMOS Project

vulnerable neighborhoods as well as at their schools, parks, etc. The environmen-
tal data collected by those sensors are transmitted, using opportunistic networking
techniques, to the children’s laptops as they pass by during their daily life. Later,
at school, using the same techniques, the data will be transmitted into the local
school server and from there to an environment monitoring station using the Inter-
net. This monitoring station may be operated by governmental or non-governmental
organizations, including the same community that is being object of the monitoring.

Each time data moves from sensors to laptops, school servers and monitoring
stations, the collected information is aggregated and summarized to guarantee the
scalability of the solution. Additionally, since the information may include data
about the position and environment of peoples’ houses, the confidentially of that
information has to be protected by encryption or anonymization techniques.

Opportunistic networks (ON), sometimes called Delay Tolerant Networks (DTN),
as opposed to infrastructure networks, are built on-the-fly by mobile, intermittently
connected ad-hoc nodes, allowing to run delay tolerant applications. Many ON
routing algorithms have been proposed, see [8] for a comprehensive review, but the
common idea is always to store the message, to carry it for some time, and to for-
ward it when a suitable mobile node happens to be in range with the hope that,
after some of these store-and-forward steps, the message will eventually arrive to
its destination.

The optimum values for DTN algorithm’s parameters are dependent on the
network characteristics (number of nodes, movement patterns) and data flow char-
acteristics (load, data patterns). Usually, those attributes are highly dynamic and
hard to predict. Some analysis can be done through extensive simulation, but fact
remains that to optimize the network performance, configuration parameters must
be adjusted to the environment, at runtime.

Embedded Rule-based Management | 89

We propose a mechanism that allows us to take configuration decisions in a
distributed fashion, responding to high level rules.

The structure of the paper is as follows. The overall description of our ON
protocol is presented in Section 2. Later, in Section 3, we shortly motivate the need
of including self-management capabilities to ON nodes. The overall design of the
system is presented in Section 4.1. The characteristics of our prototype and the main
hardware characteristics and constraints that drive the implementation is presented
in Section 5. Finally, in Section 6, the paper presents an evaluation of the DEMOS
system that shows how it is possible to perform self-optimization decisions with a
very reasonable overhead in terms of CPU and memory.

2 An Opportunistic Content-based Routing Protocol

The DEMOS architecture implies the existence of an opportunistic network between
the sensor devices and the data collection points. In an opportunistic network, the
existence of a connectivity path between any pair of nodes in a given moment is not
guaranteed. For a message to reach its target, it may be necessary that some node
or nodes keep the message in their own memory until they can deliver the message.

There are several methods and algorithms for Opportunistic Routing, but to
support DEMOS operations we created RON, a new content-based opportunistic
protocol. The reasons for creating a new protocol were:

– Usually, opportunistic network algorithms are intended for destination-based
routing. On the other hand, Content-based routing provides us of several ad-
vantages: as specifying a data flow does not rely on having inventory on the
network devices, the deployment is simpler; multicast and broadcast messaging
is more naturally represented; the messages can be dynamically prioritized or
routed based on message properties such as the type of issuing sensor, danger
level, or geographical location. All this rich behavior can be changed at runtime
without changing the configuration of any node of the network, providing great
flexibility.

– Many gossip-based algorithms operate on a Peer-to-peer basis, where each link
is considered isolated from the rest. On the other hand, our target are wireless
networks, where when one node issues a message, all the nodes in its range
receive the message independently of their address in the network layer (the
“broadcast advantage”). Our routing algorithm uses this property to reduce
the network traffic.

RON is a publish-subscribe protocol in which a node that is interested in some
type of messages, issues a subscription that specifies that interest using a logic filter.
This subscription is flooded through the network passing from one node to another
each time those nodes are within range of each other. When a node wants to publish
a notification, it broadcasts a message containing the notification to all the nodes
in the neighborhood. Each of these nodes matches the received message against
the subscriptions it is carrying, and decide whether to carry or ignore it according
to routing rules. Eventually, the message will reach all the subscriber nodes. The
algorithm is described in more detail below.

90 | NEMA Proceedings

NOTIFICATION

notification_id=notif123

source=sensor_node1

message_type=trap

watcher_id=watch_temp

mib=temperature

value=36.5

END

(a) A Notification.

SUBSCRIBE

subscription_id=sid123

subscriptor_id=collector1

FILTER

mib=temperature

value > 35

END

(b) A Subscription.

Fig. 2. The Messages of the Notification Bus

2.1 RON Protocol

In our network, there are two entities: subscriptions and notifications. The associ-
ated messages are plain text multi-line strings.

Notification messages are the mean of distributing information in the network.
A sample notification is shown in Figure 2(a). As seen, it is a simple list of key/value
pairs. The only mandatory attribute is notification id, a unique identifier. The user
of the bus must define additional fields and their semantics. In the example we
can see a source field (the identifier of the sensor node), and the remaining fields
describe the sensor-reading being carried (36.5 from a temperature sensor).

A Subscription message signals the interest of its creating client on receiving
certain notifications. A typical Subscription is shown in Figure 2(b). The subscrip-
tion is composed of two parts, the header and the filter. The header contains general
information, like a unique Subscription identifier and the identifier of the node sub-
scribing. The filter specifies a set of conditions, which must be met by a notification
for it to be delivered to the client. Each condition is of the form attribute-operator-
value, where attribute is a Notification field. If a Notification does not contain that
field, the given expression is considered satisfied. In other words, a Notification fails
a filter only if it contains a field which fails some condition. In the example, the
subscription will match any notification with a payload of a temperature over 35
(whatever sensor node originates it).

To move those entities trough the network, each node maintains Sj , a table
of accessible destination (Subscriptions in our case) with an associated quality for
each. The quality of a destination represents how good is the node to reach that
destination. Nodes periodically exchange their destination lists with their associated
qualities, and update their own qualities in the process. Also, the nodes keep a set of
messages Nj . The amount of messages that can be carried is limited, so a decision
must be made on what message to carry. The destination quality information is
used to select which messages are best carried by the node, which are the messages
targeted at destination with higher qualities.

As usual for a gossiping algorithm, RON can be split in two threads: an active
emitting main loop (the Control Cycle), and a passive event handler (the Message
Handler) that receives, processes and issue messages.

Embedded Rule-based Management | 91

The Control Cycle periodically triggers two actions. The first is the broadcasting
of a Views message. This message contains a list of all subscriptions in Sj and their
associated quality. The receivers of this node will use that data to maintain their
own subscription qualities and trigger Notification broadcasts. The second Control
Cycle’s action is to periodically decrease the quality for all subscriptions (the aging
process).

The Message Handler listens the network and can receive two types of messages:

– Views message. These messages come from other node’s Control Cycle. Upon
reception, for each subscription in Sj that also appears in in the View mes-
sage, the algorithm will increase its quality. Furthermore, it will iterate trough
all notifications in Nj , and for each that matches a recevied subscription will
broadcast a Notification message.

– Notification message. Notifications proceed from the Message Handler of other
nodes. While Nj is not full, all notifications are stored. When Nj becomes full,
the algorithm will look for a Notification with a smaller accumulated quality Q
to replace. The accumulated quality Q for a notification is implemented as the
sum of all subscription qualities that the given notification matches.

To keep the broadcasts reduced to a minimum, special care is taken. In first
place, when Views message are broadcast, only the subscription’s identifiers and
associated qualities are transmitted. If a node sees the identifier of a subscription
it does not have, it requests it in a separated message. Second, nodes timestamp
entries in Nj and Sj as they listen the medium, and will refrain from transmitting
data already seen inside a (configurable) time frame. Thus, when a Views broadcast
triggers a Notification message broadcast from one node, this message will reach
other nodes in the network and will inhibit them from repeating it. To this purpose
and to avoid synchronization problems every sending is delayed by a small random
time.

When broadcasting a Views message, there is a chance other nodes will answer
with notifications already carried. To reduce this chance, a bloom filter of carried
notifications could be included in said Views message. This way, receiving nodes
could easily check if a notification is a repeat and skip it. For an in-depth description
of the RON algorithm, see [10].

3 Managing a Delay Tolerant Protocol

There are several parameters that have a significant influence on protocol’s perfor-
mance. The optimum values for these parameters depend on network characteristics,
which can be stable through the network’s lifetime, or change over time.

The main configuration parameters of the protocol are:

– Buffer size. This parameter controls the amount of carried notifications. A too
low value can cause message loss, when a message is replaced on all nodes’ buffers
before reaching destination. Too high a value has an impact on performance and
resource consumption, as messages take space to be carried, computing power

92 | NEMA Proceedings

to be checked for transmission, and air time when transmitted. Optimum buffer
size depends on such parameters as network latency (e.g., there is no benefit in
keeping messages after a copy reaches destination) and network load (the rate
of arrival of new messages).

– Subscription quality management parameters. These parameters control the re-
inforcement and aging behavior of the quality of subscriptions, and should be
tuned to the real probabilities of encounter in the network, which in turn depend
on the network density and movement patterns.

– Views broadcast period. This parameter controls the rate of gossiping messages,
and must also match the network density and movement patterns. Too low a rate
will miss encounter opportunities, and too high a rate imposes an unnecessary
load on the network.

There are several other parameters that could be added to the basic protocol, like
remaining battery or available bandwidth. An example of such extension applied to
PRoPHET can be seen in [11]. Our management infrastructure uses all configuration
parameters in a consistent way, and thus provides a method to easily integrate and
take advantage of new variables.

The optimum values for those parameters can be hard to estimate in advance. For
example, the movement patterns and number of nodes change: there is a week/week-
end cycle, and an yearly cycle of vacations. Network patterns also change: a single
new subscription or sensor installed can define a new flow of data that changes
the load imposed on the network. At the same time, the sensor nodes emit data
depending on local readings, and thus are hard to predict.

This leads to the need of a mechanism that would manipulate the configuration
parameters autonomously, adjusting them to optimize the algorithm’s performance.
We implement this mechanism through the use of PDP (Policy Decision Point), a
general purpose policy engine. The idea is that a state machine is used to recognize
patterns that occur in a flow of events as described in [9]. A success in recognizing a
pattern triggers a corresponding action or set of actions. Those actions can be con-
figuration change commands, or abstract notifications that express the occurrence
of a situation. The later can be consumed by other recognizers in a hierarchical way.

4 System Overview

The DEMOS system (see Figure 1) consists of a set of services deployed on the
nodes, according to their function in the DEMOS network. The nodes fall under
some of the following categories:

– Sensor Nodes. These are the nodes that collect environmental data. Those are
usually fixed, and have attached sensing hardware. Different nodes can have
different sensing hardware attached.

– Collectors. These nodes are usually placed in schools, and are the recipients of
data generated by the Sensor Nodes. Data is collected and relayed to a central
Management Station through the Internet.

Embedded Rule-based Management | 93

RON

PIC-18 / AVR
W

ireless Router

DTN

USB / Serial

modules...

RMOON

lubot

drivers...

usb4all

Sensors

PDP

Fig. 3. Architecture of a DEMOS sensor node

– Carriers. These are the mobile nodes that relay information from the Sensor
Nodes to Collector in an opportunistic fashion. Usually these are children’s XO
laptops.

– Management Station. All data is summarized and prepared for analysis here.
Also, rules are prepared and deployed from here.

Sensor Nodes, Carriers, and Collectors participate in an Opportunistic Network,
and thus run the supporting service, RON. Additionally, Sensor Nodes run a mon-
itoring service attached to the sensing hardware.

4.1 Common Node Architecture

On Figure 3 the general architecture of DEMOS sensor node is shown. RON and
associated PDP modules are responsible for the opportunistic routing of messages.
They must be available on all edge and mobile nodes participating in the DTN.
RON is the routing service, and it relies on PDP, a general purpose Policy Decision
Point, to take decisions that affect the routing. The PDP service will be described
with more detail in the Section 5.2.

Rmoon is the monitoring service, responsible for collecting and sending sensor
data through the network. The internal architecture of the Rmoon module and
associated sensor device will be described in more detail in Section 5.3.

Mobile nodes for DEMOS only have the RON and associated PDP modules
installed. PDP module is available for other uses besides opportunistic routing.

94 | NEMA Proceedings

It can be used, for example, to allow sensors deciding intelligently on what and
when sensor data must be collected and sent, autonomously trigger actions on some
conditions, etc.

During the development in place of real environmental sensing hardware a gen-
eral purpose microprocessor board was used, the PICDEM FS USB[3] demoboard.
This is a board for prototyping systems based on a Microchip PIC-18 microproces-
sor, and has a temperature sensor and a variable potentiometer on board that were
used as stand-ins for real environmental sensors. Other sensors can be attached to
the board through Digital Lines, I2C bus, A/D converters, etc. This platform was se-
lected on the grounds of low cost and availability on the local market. Nevertheless,
our software has been also ported to the AVR family of microprocessors.

5 Implementation

A requirement for our solution was the need to be deployable on a wide spectrum of
hardware and software platforms. It ranged from Desktop PCs on central data col-
lecting nodes, to embedded platforms such as Linksys WRT54GL wireless routers.
The intermediate nodes included such platforms as OLPC XO laptops and Intel’s
Classmate netbooks, running several flavors of Linux and Windows Operating Sys-
tems. At the same time, sensor nodes should be able to interface with external
sensor hardware. Another point of interest was the ability to be run in a simulation
platform, for better analysis and tuning of the Opportunistic Routing component.

5.1 Language selection

It was decided to develop in Lua[1]. Lua is a compact virtual-machine based dynamic
language, with great emphasis on extensibility. It is weakly typed and has a garbage
collector. It is written completely in ANSI-standard C99 and thus the core has
minimal dependencies, and can be run in an extremely wide spectrum of platforms
down to embedded microcontrollers. At the same time, it offers powerful facilities
to programmers, like regular expression matching, hash-based tables, functions as
first class members, upvalues, and lexical scoping.

Our implementation runs on the core Lua with the only dependency of Lu-
aSocket[12] library. The only platform dependent code needed was for interfacing
the sensor hardware.

The very small number of external dependencies of Lua virtual machine allowed
us to run it inside an experimental ns3 [2] branch intended for running native code.
This branch is at early stages of development, and the high level of isolation of
Lua code allowed us to run production code inside it with only moderate effort.
Being able to run the same code in physical platforms and in the simulator greatly
simplifies the development and tuning of networking protocols. At the same time,
the small size per network node of the runtime allows us to simulate reasonable
large networks. Additionally, ns3 allows to connect a real device to a simulated
network. Thus it is possible to deploy a testbed split between a simulation and

Embedded Rule-based Management | 95

physical devices, allowing to simulate a large network while monitoring the resource
consumption on a real device.

For the embedded platforms in our tests (consumer grade wireless routers such
as Linksys WRT54GL and Asus 520gu), we have used OpenWRT [5], a distribution
of Linux for embedded devices. This setup provides a profusion of standard tools
for managing and configuring the behavior of the node. At the same time, in recent
versions of OpenWRT Lua is used as a platform for the administration web-page,
and thus most of the runtime needed for our programs is already in place by default.

As a result, we could develop a networking platform, a general purpose decision
engine, and a monitoring software in a high level scripting language, which can run
unmodified on a PC, a wireless router, or a network simulator.

5.2 PDP

PDP’s task is to take autonomous decisions, based on the stream of Notifications
it receives through the Notification Bus. To this purpose, a special policy file is
pushed from a central server. This policy file is generated in the central server
from the rules specified by an administrator, and delivered to the PDP agent in a
command notification through the network. The policy file is a Lua program that
implements a state machine, accessible through function calls. When a policy file
is received, the PDP executes it in a special sandboxed environment, and starts
triggering it with notifications. The state is kept internally in the policy script, and
the PDP must not know how it is implemented, only that call hooks are respected.

The PDP maintains a list of recent notifications, which is shared into the scripts
environment. This list contains a sliding window of the last arrived notifications. To
simplify the state machine, the notifications are ordered in the window by a fixed
ordering rule. In this way, the state machine does not have to handle every possible
permutation of the notifications of interest.

The size of the sliding windows can be set at configuration time. For this purpose
there are two parameters: a length of time in seconds, and a maximum number
of notifications in the window. Also, there is a special category of notifications:
“happening notifications”. Those are notifications that signal permanent change in
some attribute, and thus must be kept in the window for it to be correctly processed.
For example, a decision could depend on whether a given service is active or not,
thus the hypothetical “going up” and “going down” notifications from that service
could be marked as happening to keep them in the window. This way, the state
machine could count on the presence of said notification no mater how old they are.
Marking and unmarking notifications as “happening” is policy’s responsibility, and
the PDP will comply while maintaining the sliding window.

Beside accessing the window, the policy script must provide the following calls:

– initialize () This is called once after the script is loaded.
– process window add () This function is called whenever a new notification ar-

rives. It gives the opportunity to advance the state machine.
– process window move () This function is called whenever the sliding window

moves, thus a notification is removed from the leading edge. This implies that

96 | NEMA Proceedings

the state machine must be reset, and run from the beginning of the window
again.

All three calls can return a list of notifications to be emitted to perform whatever
action the state machine decides to be made. So, initialize() would return commands
to set-up the notification sources needed, and whenever a pattern is recognized dur-
ing either process window add or process window move, the corresponding actions
will be returned.

By expressing the state machine as Lua code, there is no intermediate represen-
tation for the state machine and thus no special parsing. All the parsing work is
done in the central server, and the PDP just executes it.

5.3 Rmoon

Rmoon is a general purpose monitoring service. It is controlled through the RAN
bus: it receives commands to setup and remove “watchers”, and emits notifications
when the watchers get triggered.

Each watcher has a unique identifier used to tag all its notifications. A watcher
observes a variable (called a mib), and specifies a condition the variable must met
to trigger a notification. The condition is specified as a comparison operator (>,
< or =) and a reference value. When the reference value is numeric, an additional
hysteresis value can be provided. The comparison can be specified to be made
against the instantaneous value of the variable, the difference with the last reading,
or the difference with the last value that triggered a notification. In other words,
the conditions can be set on the value of the variable, its rate of change, or the
deviation from last reported value. Additionally, a timeout can be specified, which
triggers a notifications emission if a given time has expired without the notification
being triggered otherwise.

When used to monitor the node’s state, Rmoon uses shell scripts and it is easily
extensible. For the DEMOS project we extended Rmoon with support for exter-
nal sensors. For this purpose we interfaced with a microprocessor software frame-
work developed in our research group, called USB4ALL[7]. USB4ALL is a modular
firmware that provides a high level communication mechanism. It allows the con-
troller to discover installed modules, load and unload them at runtime, and query
them through an RPC-like mechanism. Originally developed for the Microchip PIC-
18 series of microprocessors, it has been also ported to AVR based Arduino platform.
To interface with USB4ALL, a library called Lubot (also written in Lua) has been
developed. The only native code needed on the Rmoon side is a Lua - libusb bind-
ing or a small message oriented serial library (depending on how the microprocessor
board is attached, through USB or serial link).

5.4 RON

As mentioned earlier, RON tries to take the “broadcast advantage”. While in tra-
ditional gossiping algorithms is the emitter responsibility to select the recipients for
his messages, in our implementation the only decision the emitter does is whether to

Embedded Rule-based Management | 97

Fig. 4. The Prototype Sensor

emit. The listener responsibility is to decide whether they accept the messages, and
thus become the receiver. To this effect, and to keep the traffic at the IP layer for
flexibility, all the traffic for the opportunistic support is encapsulated in broadcast
UDP packets (by default over port 8181).

Another interesting problem is time-stamping of messages: as sensor and mobile
nodes do not have reliable clocks, and the transit time through the network is
highly variable, it is difficult to know when exactly the notification was generated.
Our solution is to record the in-transit time of each message in a special field. Each
time a node forwards a message, the time that the message spent stored in the node
is added to the in-transit field. In this manner, the issuing time of a message is
computed by the receiving node in reference to its local time. For the purposes of
DEMOS project, the precision of this method is satisfactory.

6 Management Footprint

The focus of this paper is on the feasibility of embedding a high-level self-management
system into the constrained devices of a network of sensors. With this goal we have
set up a scenario with one sensor measuring the temperature of the air and pub-
lishing it, and a client producing an increasing number of different subscriptions.

6.1 Experiment

The objective of this experiment is to show that the footprint of the system pre-
sented above in Section 4.1 is small enough for the targeted constrained devices.

98 | NEMA Proceedings

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400

C
PU

 L
oa

d
(%

)

Time (sec)

CPU Load by RON and Rmoon+PDP.

CPU used by RON
CPU used by Rmoon+PDP

(a) CPU load at the Sensor

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300 350 400

R
AM

 (k
b)

Time (sec)

RAM used by RON and Rmoon+PDP.

Memory used by RON
Memory used by Rmoon+PDP

(b) RAM used at the Sensor

Fig. 5. System Footprint Study.

The setup of this experiment follows the scenario described above. The prototype
sensor is an ASUS 520gu wireless router (as depicted in Figure 4) with 32MB of
RAM and OpenWRT Kamikaze operating system, connected to a general purpose
microprocessor board PICDEM FS USB. This device is running the notifications bus
RON with the buffer size set to 40 messages (about 12KB), the monitoring service
Rmoon and the Policy Decision Point described in Section 5.2. The measurements
depicted bellow are made on this device. The client is a Core 2 Duo PC running
RON.

The experiment runs during 380s. During the first 10s ten watchers are sent
from the client arriving to the sensor during the first 50s. Each of those watchers

Embedded Rule-based Management | 99

are configured to emit a notification every 5s. The increment on the memory load
produced by the activation of the watchers can be seen at the beginning of the
graphs in Figure 5(b). After the watchers have being submitted, the client start
producing a different subscription every 10s. Every subscription matches with all
the notifications emitted by the sensor. In order to simulate the load of the PDP re-
configuring the routing protocol, every time a subscription is received at the sensor,
the PDP reconfigures RON’s buffer-size to the same value of 40 messages.

Is worth noticing the evolution of the percentage of CPU consumed by the
system in Figure 5(a) and its the memory load in Figure 5(b). The CPU consumed
by Rmoon and the PDP combined is never beyond 10%. The CPU consumed by
the notifications bus is quite spiky but with maximums of around 50%. This leaves
plenty of CPU resources for other tasks. Regarding memory load, it grows during
the arriving of the watchers up to about 1.2MB and then grows moderately as
more subscriptions arrive. Considering that more than 30 different subscriptions
matching the data of ten different watchers every 5s is an extremely high load for a
environmental sensor, we conclude that the tested hardware can cope comfortably
with the expected loads.

7 Conclusions and Future Work

In this paper we have presented the self-management part of an opportunistic net-
work of in-house environmental sensors and a myriad of mobile devices that act
as the carriers of the collected data. Our work shows that a content-based, op-
portunistic routing protocol benefits from some self-configuration features, such as
the dynamic adaptation of the buffer-size of a node to the density of the network.
We conclude that it is feasible to deploy rule-based self-management capabilities
inside very-constrained devices such as the prototype sensor presented in Section 5.
The footprint of the management components is not negligible but, from the initial
experiments, we observe that it is small enough to keep us working on this path.

The system presented in this paper is in its developing stage, therefore much
work remains to be made. The routing protocol presented has many aspects to be
improved, but regarding the self-management functionality of the system, besides
its feasibility, its correctness must be tested extensively. A whole set of management
rules and scenarios are being experimented on the ns3 simulator.

Finally, despite the fact that DEMOS project takes advantage of the Uruguayan
and Brazilian particularities, and proposes to use the platform of low-cost laptops of
the OLPC program, the project idea is easily translatable to other communication
platforms that are becoming ubiquitous in developing countries such as cellular
phones with Bluetooth or other wireless capabilities.

Acknowledgments

This work was partially funded by the Research Funding Initiatives of the Latin
American and Caribbean Collaborative ICT Research (LACCIR) virtual institute.

100 | NEMA Proceedings

References

1. Lua, the programming language, http://www.lua.org
2. ns3 network simulator, http://www.nsnam.org/
3. PICDEM Full Speed USB, http://www.microchip.com/
4. Plan Ceibal, http://www.ceibal.edu.uy/
5. The OpenWrt Project, http://openwrt.org/

7. usb4all, http://www.fing.edu.uy/inco/grupos/mina/pGrado/pgusb/material.html
8. A., Levine, B., Venkataramani, A.: Dtn routing as a resource

allocation problem. vol. 37, pp. 373–384. ACM, New York, NY, USA (2007),
http://dx.doi.org/10.1145/1282427.1282422

9. Baliosian, J., Visca, J., Grampin, E., Vidal, L., Giachino, M.: A rule-based distributed
system for self-optimization of constrained devices. In: Integrated Network Manage-
ment, 2009. IM ’09. IFIP/IEEE International Symposium on. pp. 41 –48 (1-5 2009)

10. Baliosian, J., Visca, J., Richart, M., Apollonia, G., Vidal, L., Giachino, M., Gramṕın,
E.: Self-managed content-based routing for delay tolerant networks. Tech. rep., UDE-
LAR (2010), http://www.fing.edu.uy/inco/proyectos/wan/documentos/ronreport.pdf

11. Huang, T.K., Lee, C.K., Chen, L.J.: Prophet+: An adaptive prophet-based routing
protocol for opportunistic network. In: Advanced Information Networking and Appli-
cations (AINA), 2010 24th IEEE International Conference on. pp. 112 –119 (20-23
2010)

12. Nehab, D.: Network support for the lua language. Web, http://www.tecgraf.puc-
rio.br/d̃iego/professional/luasocket/

6.

Balasubramanian,

UmComputadorporAluno -UCA,http://wiki.laptop.org/go/OLPC Brasil/Porto Alegre

http://www.lua.org
http://www.nsnam.org
http://www.microchip.com
http://www.ceibal.edu.uy
http://openwrt.org
http://wiki.laptop.org/go/OLPC
http://www.�ng.edu.uy/inco/grupos/mina/pGrado/pgusb/material.html
http://dx.doi.org/10.1145/1282427.1282422
http://www.�ng.edu.uy/inco/proyectos/wan/documentos/ronreport.pdf
http://www.tecgraf.puc-rio.br/~diego/professional/luasocket
http://www.tecgraf.puc-rio.br/~diego/professional/luasocket
http://www.tecgraf.puc-rio.br/~diego/professional/luasocket

	Advances in Network Embedded Management and Applications
	Preface
	Table of Contents
	Contributors
	Reviewers and NEMA Program Committee Members

	Chapter 1:Challenges and Experiences in Transitioning Management Instrumentation from Command-Oriented to Model-Driven
	1 Introduction
	2 Background
	3 Design Considerations
	3.1 Defining the Instrumentation Model
	Derivation from Source Code
	Designing from Domain Knowledge

	3.2 Model Inheritance
	3.3 Dynamic versus Static Models
	3.4 Model Versioning
	3.5 Model-Generated Instrumentation APIs

	4 Implementation Experiences
	An API Implementation Example

	5 Related Work
	6 Conclusions
	Further Work

	References

	Chapter 2:A Low Power, Programmable Networking Platform and Development Environment
	1 Introduction
	2 Related Work
	3 The SCALOPES C-board
	3.1 Motivation and Requirements
	3.2 Internal Structure
	3.3 Low Power Design

	4 The Development Environment
	4.1 GUI based development
	4.2 Custom module development
	4.3 Hardware accelerator development

	5 Case Studies
	5.1 A Network Monitoring System with DPI Capabilities
	5.2 Generic Switch/Router architecture

	6 Summary
	References

	Chapter 3:Application Framework for Programmable Network Control
	1 Introduction
	2 Related Work
	3 Application Framework for Network Control
	4 Functional Components
	5 Implementation and Test Bed
	5.1 Hardware
	5.2 Software

	6 Network Control Programs
	7 Conclusion and Future Work
	Acknowledgments
	References

	Chapter 4:Facilitating Adaptive Placement of Management and Control Functions in Converged ICT Systems
	1 Introduction
	2 Related Work
	3 Adaptive Placement of Management and Control Functions
	3.1 Management/Control Capabilities
	External Interfaces of Management Capabilities
	Internal Structure of Management Capabilities

	3.2 Management and Control Structures
	3.4 Realization Options

	4 Scenario: OpenFlow Control and In-Network Management
	4.1 Application to Converged Systems
	4.2 Scenario Description
	Assumptions

	4.3 Discussion of Scenario

	5 Conclusion
	References

	Chapter 5:Wire-Speed Hardware-Assisted Traffic Filtering with Mainstream Network Adapters
	1 Introduction
	2 Motivation and Scope of Work
	3 Related Work
	4 Framework Design
	5 Use Cases and Validation
	5.1 Realtime Multimedia Traffic Monitoring
	5.2 Network Troubleshooting
	5.3 Traffic Classification and Balancing
	5.4 Lawful Interception of Internet Traffic
	5.5 Firewalling at 10 Gbit

	6 Open Issues and Future Work
	7 Conclusions
	References

	Chapter 6:Embedded Rule-based Management for Content-based DTNs
	1 Introduction
	2 An Opportunistic Content-based Routing Protocol
	2.1 RON Protocol

	3 Managing a Delay Tolerant Protocol
	4 System Overview
	4.1 Common Node Architecture

	5 Implementation
	5.1 Language selection
	5.2 PDP
	5.3 Rmoon
	5.4 RON

	6 Management Footprint
	6.1 Experiment

	7 Conclusions and Future Work
	Acknowledgments
	References

	Cover
	Advances in Network Embedded Management and Applications
	Preface
	Table of Contents
	Contributors
	Reviewers and NEMA Program Committee Members

	Chapter 1:Challenges and Experiences in Transitioning Management Instrumentation from Command-Oriented to Model-Driven
	1 Introduction
	2 Background
	3 Design Considerations
	3.1 Defining the Instrumentation Model
	Derivation from Source Code
	Designing from Domain Knowledge

	3.5 Model-Generated Instrumentation APIs
	3.2 Model Inheritance
	3.3 Dynamic versus Static Models
	3.4 Model Versioning

	4 Implementation Experiences
	An API Implementation Example

	5 Related Work
	6 Conclusions
	Further Work

	References

	Chapter 2:A Low Power, Programmable Networking Platform and Development Environment
	1 Introduction
	2 Related Work
	3 The SCALOPES C-board
	3.1 Motivation and Requirements
	3.2 Internal Structure
	3.3 Low Power Design

	4 The Development Environment
	4.1 GUI based development
	4.3 Hardware accelerator development
	4.2 Custom module development

	5 Case Studies
	5.1 A Network Monitoring System with DPI Capabilities
	5.2 Generic Switch/Router architecture

	6 Summary
	References

	Chapter 3:Application Framework for Programmable Network Control
	1 Introduction
	2 Related Work
	3 Application Framework for Network Control
	4 Functional Components
	5 Implementation and Test Bed
	5.1 Hardware
	5.2 Software

	6 Network Control Programs
	7 Conclusion and Future Work
	Acknowledgments
	References

	Chapter 4:Facilitating Adaptive Placement of Management and Control Functions in Converged ICT Systems
	1 Introduction
	2 Related Work
	3 Adaptive Placement of Management and Control Functions
	3.1 Management/Control Capabilities
	External Interfaces of Management Capabilities

	3.2 Management and Control Structures
	Internal Structure of Management Capabilities

	3.4 Realization Options

	4 Scenario: OpenFlow Control and In-Network Management
	4.1 Application to Converged Systems
	4.2 Scenario Description
	Assumptions

	4.3 Discussion of Scenario

	5 Conclusion
	References

	Chapter 5:Wire-Speed Hardware-Assisted Traffic Filtering with Mainstream Network Adapters
	1 Introduction
	2 Motivation and Scope of Work
	3 Related Work
	4 Framework Design
	5 Use Cases and Validation
	5.1 Realtime Multimedia Traffic Monitoring
	5.2 Network Troubleshooting
	5.3 Traffic Classification and Balancing
	5.4 Lawful Interception of Internet Traffic

	6 Open Issues and Future Work
	5.5 Firewalling at 10 Gbit

	7 Conclusions
	References

	Chapter 6:Embedded Rule-based Management for Content-based DTNs
	1 Introduction
	2 An Opportunistic Content-based Routing Protocol
	2.1 RON Protocol

	3 Managing a Delay Tolerant Protocol
	4 System Overview
	4.1 Common Node Architecture

	5 Implementation
	5.1 Language selection
	5.2 PDP
	5.4 RON
	5.3 Rmoon

	6 Management Footprint
	6.1 Experiment

	7 Conclusions and Future Work
	Acknowledgments
	References

